blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
adf28e920deddf72529dcb0823b1473ab4f87eba
ae9ce341ffb6b6d0587b04af81d8a25d81adc987
/src/core/migrations/0001_initial.py
96305126d9e1be6c432a17f0620d4a7bf2e73231
[]
no_license
MrTsepa/track_web
7eda8e0cdcb2c384b57569b59f03a7d4ad0c4543
276860bdeb42a2b27002e1e19eca0383ffb27b0e
refs/heads/master
2021-01-12T17:53:15.769984
2016-12-27T17:44:15
2016-12-27T17:44:15
71,288,968
0
0
null
2016-12-25T19:12:27
2016-10-18T20:34:17
JavaScript
UTF-8
Python
false
false
3,021
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-10-18 16:09 from __future__ import unicode_literals import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.ASCIIUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=30, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('avatar', models.ImageField(blank=True, null=True, upload_to=b'avatars')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, 'verbose_name': 'user', 'verbose_name_plural': 'users', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
4606275fa5d9e722d6644f7d7cf1c37e42c82127
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_230/ch168_2020_06_15_19_49_26_764111.py
6d30c2c492a8b42526eb6299bf967924d030cb9f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
678
py
def login_disponivel(login, lista): novo_login=0 num=0 if login not in lista: lista.append(login) return login else: for logins in lista: if login!=logins: continue else: num+=1 novo_login=login+str(num) if novo_login not in lista: return novo_login else: while novo_login in lista: num+=1 outro_login=novo_login.replace(novo_login[-1], str(num)) if outro_login not in lista: return outro_login
fb2a17ee074aee2dd601440a013c1d40a2e94c24
2b54b1fb1540ab73d6c83cae3acd5fdd58bdead5
/Platinum_clusters_Project/Pt7O11_richness/Ptoxides_zorderimage_new.py
5c29ede674b6b65b4573cae10e0835fa87be76a9
[]
no_license
sivachiriki/GOFEE_Pt_V_supported
5787d44294262870075f35f2d31c096021b7ce20
6bd700dac1f3e7c58394b758d75246ac6e07eade
refs/heads/master
2022-04-08T11:38:13.038455
2020-03-09T10:48:31
2020-03-09T10:48:31
226,359,812
0
0
null
null
null
null
UTF-8
Python
false
false
6,547
py
from __future__ import division import matplotlib #matplotlib.use('Agg') # Can also use 'tkagg' or 'webagg' #from plot_neb_tio2 import * from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox import matplotlib.patches as patches from math import ceil, floor import matplotlib.pyplot as plt from ase.io import read, write from ase.visualize import view import matplotlib.patches as mpatches from ase.data.colors import jmol_colors from decimal import Decimal from pylab import * from ase.data import covalent_radii as aradii from matplotlib.patches import Circle from math import atan2,pi import matplotlib.gridspec as gridspec matplotlib.rc('xtick', labelsize=14) matplotlib.rc('ytick', labelsize=14) def plot_atoms(ax, atoms, xyz, acols, alp, z): ecols = [[0, 0, 0] for col in atoms] indices = range(len(atoms)) for ia in indices: acol = acols[ia] ecol = ecols[ia] arad = aradii[atoms[ia].number] apos = atoms[ia].position eps = arad circ = Circle([apos[xyz[0]], apos[xyz[1]]], fc = acol, ec = ecol, radius = arad, lw = 0.5, alpha = alp[ia], zorder = 1 - apos[1]/1000 ) ax.add_patch(circ) def plot_conf(ax, atoms, colorlenth,rot=False): colors = np.array([jmol_colors[atom.number] for atom in atoms]) positions =atoms.get_positions() for i, atom in enumerate(atoms): if (atom.number ==78): colors[i] =[0.1, 0.6, 0.6] if (atom.number ==6): colors[i] =[0.0, 0.0, 0.0] if (atom.number ==8 and positions[i,2]>12.2): colors[i] =[128/255, 0/255, 128/255] alp = [None] * colors.shape[0] for i,a in enumerate(atoms): if a.symbol == 'Al' or a.symbol == 'O': if a.position[2] < 9.7: alp[i] = 0.3 if rot: atoms.rotate('x',pi/2) plot_atoms(ax, atoms, [0,2,1], colors, alp, z=-1) def plot_conf1(ax, atoms, colorlenth,rot=False): colors = np.array([jmol_colors[atom.number] for atom in atoms]) positions =atoms.get_positions() for i, atom in enumerate(atoms): if (atom.number ==78): colors[i] =[0.1, 0.6, 0.6] if (atom.number ==6): colors[i] =[0.1, 0.2, 0.9] if (atom.number ==8 and positions[i,2]>12.2): colors[i] =[128/255, 0/255, 128/255] if (positions[i,2]<12.7 ): colors[i] =[255/255, 255/255, 255/255] alp = [None] * colors.shape[0] for i,a in enumerate(atoms): if a.symbol == 'Al' or a.symbol == 'O': if a.position[2] < 9.7: alp[i] = 0.3 if rot: atoms.rotate('x',pi/2) plot_atoms(ax, atoms, [0,2,1], colors, alp, z=-1) #-----------------------------------------------------------# fig = plt.figure(figsize=(13.0,10.5)) outer = gridspec.GridSpec(4, 9, wspace=0.04, hspace=0.2) color_lib = ['#00FF00','#377eb8','#4daf4a','#00FFFF','#a65628','#FF0000','#0000FF', '#FF00FF','#FFFF00','#000000'] #---------------------- Pt7 clusters -------------------------------------# data=read(sys.argv[1]+'@:') energydif =np.zeros(len(data)) for j in range(len(data)): GM_energy = data[0].get_potential_energy() energydif[j] = (data[j].get_potential_energy() - GM_energy) for j in range(0,len(data)): inner = gridspec.GridSpecFromSubplotSpec(2, 1,subplot_spec=outer[j], wspace=0.00, hspace=0.0, height_ratios=[6.86,9.9]) atoms = data[j] colorlenth = len(atoms) atoms =atoms*(3,3,1) print(colorlenth) # write('newimage.traj',atoms) a=atoms del atoms[[atom.index for atom in atoms if atom.index <=colorlenth*5-19 or atom.index >=colorlenth*5]] #view(atoms) centreofmass = a.get_center_of_mass() atoms = data[j]*(3,3,1) a=atoms del atoms[atoms.positions[:,0] >=centreofmass[0]+8.10] del atoms[atoms.positions[:,0] <= centreofmass[0]-8.10] del atoms[atoms.positions[:,1] >= centreofmass[1]+7.8] del atoms[atoms.positions[:,1] <= centreofmass[1]-7.10] colorlenth = len(atoms) #view(atoms) cell = atoms.get_cell() # 0 0 ax = plt.Subplot(fig, inner[0]) img = atoms.copy() if (j!=4): plot_conf(ax, img,colorlenth) if (j==4): plot_conf1(ax, img,colorlenth) ax.set_xlim([centreofmass[0]-7.50, centreofmass[0]+7.50]) ax.set_ylim([10.7, 20.0]) ax.set_yticks([]) ax.set_xticks([]) ax.set(aspect=1) fig.add_subplot(ax) #----------------- drawing box -------------------------------# xlim = ax.get_xlim() ylim = ax.get_ylim() #print(xlim) #print(ylim) box_x = [xlim[0], xlim[1], xlim[1], xlim[0], xlim[0]] box_y =[ylim[0], ylim[0], ylim[1], ylim[1], ylim[0]] ax.add_patch( patches.Rectangle( (box_x[0],box_y[0]), xlim[1]-xlim[0], ylim[1]-ylim[0], fill=True,facecolor='white', clip_on=False,zorder =0.8) ) ax.plot(box_x, box_y, color='blue',linewidth=5.0) # 0 1 ax = plt.Subplot(fig, inner[1]) cell = atoms.get_cell() img = atoms.copy() if (j!=4): plot_conf(ax, img,colorlenth, rot=True) if (j==4): plot_conf1(ax, img,colorlenth, rot=True) ax.set_xlim([centreofmass[0]-7.5, centreofmass[0]+7.50]) ax.set_ylim([centreofmass[1]-6.5, centreofmass[1]+7.0]) name ='$\Delta E = {:3.3f}$ eV'.format(energydif[j]) ax.text(0.05, -0.14, name, transform=ax.transAxes,fontsize=10) name1 = "S$_{"+ str(j+1) + "}$" ax.text(0.05, 1.6, name1, transform=ax.transAxes,fontsize=10) ax.set_yticks([]) ax.set_xticks([]) ax.set(aspect=1) #----------------- drawing box -------------------------------# xlim = ax.get_xlim() ylim = ax.get_ylim() #print(xlim) #print(ylim) box_x = [xlim[0], xlim[1], xlim[1], xlim[0], xlim[0]] box_y =[ylim[0], ylim[0], ylim[1], ylim[1], ylim[0]] ax.add_patch( patches.Rectangle( (box_x[0],box_y[0]), xlim[1]-xlim[0], ylim[1]-ylim[0], fill=True,facecolor='white', clip_on=False,zorder =0.8) ) ax.plot(box_x, box_y, color='blue',linewidth=5.0) fig.add_subplot(ax) fig.text(0.4, 0.89, 'Lowest Isomers of Pt$_7$O$_{11}$', ha='center',fontsize=14) name = sys.argv[2] name =name savefig(name,bbox_inches='tight') show() exit()
19fe4733092470c04d9b22d2264b885c70a14290
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/QcswPnY2cAbrfwuWE_24.py
87292310bdc04e8e32529844946ccbcd1e95cb45
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
618
py
""" Create a function that filters out factorials from a list. A factorial is a number that can be represented in the following manner: n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1 Recursively, this can be represented as: n! = n * (n-1)! ### Examples filter_factorials([1, 2, 3, 4, 5, 6, 7]) ➞ [1, 2, 6] filter_factorials([1, 4, 120]) ➞ [1, 120] filter_factorials([8, 9, 10]) ➞ [] ### Notes N/A """ factorial = lambda x: 1 if not x else x * factorial(x-1) ​ def filter_factorials(n): fs = [ factorial(x) for x in range(1,max(n)) ] return [ e for e in n if e in fs ]
40282fc5a8d13a3550a7977c79d53dc897d2564a
3a17b31ed9250b38de3b9fd9db8d3d3a8719222c
/setup.py
1b13c01094f9aa2e0ecd2d15e8c084c887a0422e
[ "MIT" ]
permissive
a627414850/Macropodus
4cc9bb48408b832cdc890a098a7ea8dc64328ba1
1d7b8f9938cb8b6d7744e9caabc3eb41c8891283
refs/heads/master
2023-02-15T09:04:35.889058
2020-12-25T14:29:04
2020-12-25T14:29:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,566
py
# -*- coding: UTF-8 -*- # !/usr/bin/python # @time :2019/12/30 22:17 # @author :Mo # @function :setup of Macropodus # @codes :fix it and copy reference from https://github.com/TianWenQAQ/Kashgari/blob/master/setup.py from macropodus.version import __version__ from setuptools import find_packages, setup import codecs # Package meta-data. NAME = 'Macropodus' DESCRIPTION = 'Macropodus: Tookit of Chinese Natural Language Processing' URL = 'https://github.com/yongzhuo/Macropodus' EMAIL = '[email protected]' AUTHOR = 'yongzhuo' LICENSE = 'MIT' with codecs.open('README.md', 'r', 'utf8') as reader: long_description = "\n".join(reader.readlines()) with codecs.open('requirements.txt', 'r', 'utf8') as reader: install_requires = list(map(lambda x: x.strip(), reader.readlines())) setup(name=NAME, version=__version__, description=DESCRIPTION, long_description=long_description, long_description_content_type="text/markdown", author=AUTHOR, author_email=EMAIL, url=URL, packages=find_packages(), # (exclude=('test')), package_data={'macropodus': ['*.*', 'data/*', 'data/dict/*', 'data/embedding/*', 'data/embedding/word2vec/*', 'data/model/*'] }, install_requires=install_requires, license=LICENSE, classifiers=['License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy'], ) if __name__ == "__main__": print("setup ok!") # 说明, tensorflow>=1.13.0 or tensorflow-gpu>=1.13.0 # 项目工程目录这里Macropodus, 实际上, 下边还要有一层macropodus, 也就是说, macropodus和setup同一层 # data包里必须要有__init__.py, 否则文件不会生成, .py文件才能copy # anaconda3创建环境 # conda remove -n py35 --all # conda create -n py351 python=3.5 # 编译的2种方案: # 方案一 # 打开cmd # 到达安装目录 # python setup.py build # python setup.py install # 方案二 # python setup.py bdist_wheel --universal # twine upload dist/*
2ba20a83f2e3080ecf33539555d67783b0a914b3
253b65bc1317abd276649020a0474533ee65c350
/preprocess_coco.py
54ca521272eaecdeebe953414a0d52336b71842b
[ "MIT" ]
permissive
AMDS123/Faster-RCNN-Densecap-torch
53a19ce1e44e2ec5e27c9ec8601799e66059138f
e41c3f585a15e4438348f5402ab3c6a945ea66f1
refs/heads/master
2021-06-02T09:38:43.607179
2016-09-12T00:43:10
2016-09-12T00:43:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,131
py
# coding=utf8 import argparse, os, json, string from collections import Counter from Queue import Queue from threading import Thread, Lock from math import floor import h5py import numpy as np from scipy.misc import imread, imresize """ This file expects a JSON file containing ground-truth regions and captions in the same format as the region descriptions file from the Visual Genome website. Concretely, this is a single large JSON file containing a list; each element of the list describes a single image and has the following format: annotation{ "id" : [int] Unique identifier for this region, "image_id" : [int] ID of the image to which this region belongs, "category_id" : int, "bbox" : [x,y,width,height], 0-index "iscrowd" : 0 or 1, } We assume that all images are on disk in a single folder, and that the filename for each image is the same as its id with a .jpg extension. This file will be preprocessed into an HDF5 file and a JSON file with some auxiliary information. The captions will be tokenized with some basic preprocessing (split by words, remove special characters). Note, in general any indices anywhere in input/output of this file are 1-indexed. The output JSON file is an object with the following elements: - cls_to_idx: Dictionary mapping strings to integers for encoding tokens, in 1-indexed format. - filename_to_idx: Dictionary mapping string filenames to indices. - idx_to_cls: Inverse of the above. - idx_to_filename: Inverse of the above. The output HDF5 file has the following format to describe N images with M total regions: - images: uint8 array of shape (N, 3, image_size, image_size) of pixel data, in BDHW format. Images will be resized so their longest edge is image_size pixels long, aligned to the upper left corner, and padded with zeros. The actual size of each image is stored in the image_heights and image_widths fields. - image_heights: int32 array of shape (N,) giving the height of each image. - image_widths: int32 array of shape (N,) giving the width of each image. - original_heights: int32 array of shape (N,) giving the original height of each image. - original_widths: int32 array of shape (N,) giving the original width of each image. - boxes: int32 array of shape (M, 4) giving the coordinates of each bounding box. Each row is (xc, yc, w, h) where yc and xc are center coordinates of the box, and are one-indexed. - iscrowd: int32 array of shape (M,) giving whether the region is crowded or not - labels: int32 array of shape (M,) giving the class label index for each region. To recover a class label from an integer in this matrix, use idx_to_cls from the JSON output file. - img_to_first_box: int32 array of shape (N,). If img_to_first_box[i] = j then captions[j] and boxes[j] give the first annotation for image i (using one-indexing). - img_to_last_box: int32 array of shape (N,). If img_to_last_box[i] = j then captions[j] and boxes[j] give the last annotation for image i (using one-indexing). - box_to_img: int32 array of shape (M,). If box_to_img[i] = j then then regions[i] and captions[i] refer to images[j] (using one-indexing). """ def build_class_dict(data): cls_to_idx, idx_to_cls = {}, {} cidx_to_idx = {} idx_to_cls[1] = '__background__' cls_to_idx['__background__'] = 1 next_idx = 2 for cat in data['categories']: cls_to_idx[cat['name']] = next_idx idx_to_cls[next_idx] = cat['name'] cidx_to_idx[cat['id']] = next_idx next_idx = next_idx + 1 for img in data['images']: for region in img['regions']: region['category_id'] = cidx_to_idx[region['category_id']] return cls_to_idx, idx_to_cls def encode_labels(data, cls_to_idx): encoded_list = [] iscrowd = [] for img in data: for region in img['regions']: encoded_list.append(region['category_id']) iscrowd.append(region['iscrowd']) return np.asarray(encoded_list, dtype=np.int32), np.asarray(iscrowd, dtype=np.int32) def encode_boxes(data, original_heights, original_widths, image_size): all_boxes = [] xwasbad = 0 ywasbad = 0 wwasbad = 0 hwasbad = 0 for i, img in enumerate(data): H, W = original_heights[i], original_widths[i] scale = float(image_size) / max(H, W) for region in img['regions']: if region['category_id'] is None: continue # recall: x,y are 0-indexed x, y = round(scale*(region['bbox'][0])+1), round(scale*(region['bbox'][1])+1) w, h = round(scale*region['bbox'][2]), round(scale*region['bbox'][3]) # clamp to image if x < 1: x = 1 if y < 1: y = 1 if x > image_size - 1: x = image_size - 1 xwasbad += 1 if y > image_size - 1: y = image_size - 1 ywasbad += 1 if x + w > image_size: w = image_size - x wwasbad += 1 if y + h > image_size: h = image_size - y hwasbad += 1 box = np.asarray([x+floor(w/2), y+floor(h/2), w, h], dtype=np.int32) # also convert to center-coord oriented assert box[2]>=0 # width height should be positive numbers assert box[3]>=0 all_boxes.append(box) print 'number of bad x,y,w,h: ', xwasbad, ywasbad, wwasbad, hwasbad return np.vstack(all_boxes) def build_img_idx_to_box_idxs(data): img_idx = 1 box_idx = 1 num_images = len(data) img_to_first_box = np.zeros(num_images, dtype=np.int32) img_to_last_box = np.zeros(num_images, dtype=np.int32) for img in data: img_to_first_box[img_idx - 1] = box_idx for region in img['regions']: if region['category_id'] is None: continue box_idx += 1 img_to_last_box[img_idx - 1] = box_idx - 1 # -1 to make these inclusive limits img_idx += 1 return img_to_first_box, img_to_last_box def build_filename_dict(data): # First make sure all filenames filenames_list = [img['file_name'] for img in data] assert len(filenames_list) == len(set(filenames_list)) next_idx = 1 filename_to_idx, idx_to_filename = {}, {} for img in data: filename = img['file_name'] filename_to_idx[filename] = next_idx idx_to_filename[next_idx] = filename next_idx += 1 return filename_to_idx, idx_to_filename def encode_filenames(data, filename_to_idx): filename_idxs = [] for img in data: filename = img['file_name'] idx = filename_to_idx[filename] for region in img['regions']: if region['category_id'] is None: continue filename_idxs.append(idx) return np.asarray(filename_idxs, dtype=np.int32) def get_filepath(s): if 'train' in s: return os.path.join(s[s.find('train'):s.find('train') + 9], s) if 'val' in s: return os.path.join(s[s.find('val'):s.find('val') + 7], s) def add_images(data, h5_file, args): num_images = len(data['images']) shape = (num_images, 3, args.image_size, args.image_size) image_dset = h5_file.create_dataset('images', shape, dtype=np.uint8) original_heights = np.zeros(num_images, dtype=np.int32) original_widths = np.zeros(num_images, dtype=np.int32) image_heights = np.zeros(num_images, dtype=np.int32) image_widths = np.zeros(num_images, dtype=np.int32) lock = Lock() q = Queue() for i, img in enumerate(data['images']): filename = os.path.join(args.image_dir, img['file_name']) q.put((i, filename)) def worker(): while True: i, filename = q.get() img = imread(filename) # handle grayscale if img.ndim == 2: img = img[:, :, None][:, :, [0, 0, 0]] H0, W0 = img.shape[0], img.shape[1] img = imresize(img, float(args.image_size) / max(H0, W0)) H, W = img.shape[0], img.shape[1] # swap rgb to bgr. Is this the best way? r = img[:,:,0].copy() img[:,:,0] = img[:,:,2] img[:,:,2] = r lock.acquire() if i % 1000 == 0: print 'Writing image %d / %d' % (i, len(data['images'])) original_heights[i] = H0 original_widths[i] = W0 image_heights[i] = H image_widths[i] = W image_dset[i, :, :H, :W] = img.transpose(2, 0, 1) lock.release() q.task_done() print('adding images to hdf5.... (this might take a while)') for i in xrange(args.num_workers): t = Thread(target=worker) t.daemon = True t.start() q.join() h5_file.create_dataset('image_heights', data=image_heights) h5_file.create_dataset('image_widths', data=image_widths) h5_file.create_dataset('original_heights', data=original_heights) h5_file.create_dataset('original_widths', data=original_widths) def encode_splits(data, split_data): """ Encode splits as intetgers and return the array. """ lookup = {'train': 0, 'val': 1, 'test': 2} id_to_split = {} split_array = np.zeros(len(data['images'])) for split, idxs in split_data.iteritems(): for idx in idxs: id_to_split[idx] = split for i, img in enumerate(data['images']): if id_to_split[img['id']] in lookup: split_array[i] = lookup[id_to_split[img['id']]] return split_array def filter_images(data, split_data): """ Keep only images that are in some split and have some captions """ all_split_ids = set() for split_name, ids in split_data.iteritems(): all_split_ids.update(ids) tmp_data = [] for img in data['images']: keep = img['id'] in all_split_ids and len(img['regions']) > 0 if keep: tmp_data.append(img) new_data = {} new_data['images'] = tmp_data new_data['categories'] = data['categories'] return new_data def make_data(filename): data = {} train_data = json.load(open(filename %('train'))) val_data = json.load(open(filename %('val'))) data['images'] = train_data['images'] + val_data['images'] data['annotations'] = train_data['annotations'] + val_data['annotations'] # Merge all the regions in the key 'images'. tmp_data = {} for anno in data['annotations']: tmp_data[anno['image_id']] = tmp_data.get(anno['image_id'], []) + [anno] for img in data['images']: img['regions'] = tmp_data.get(img['id'], []) img['file_name'] = get_filepath(img['file_name']) del data['annotations'] data['categories'] = train_data['categories'] return data def main(args): # read in the data data = make_data(args.region_data) with open(args.split_json, 'r') as f: split_data = json.load(f) # Only keep images that are in a split print 'There are %d images total' % len(data['images']) data = filter_images(data, split_data) print 'After filtering for splits there are %d images' % len(data['images']) # create the output hdf5 file handle f = h5py.File(args.h5_output, 'w') # add several fields to the file: images, and the original/resized widths/heights add_images(data, f, args) # add split information split = encode_splits(data, split_data) f.create_dataset('split', data=split) # build class label mapping cls_to_idx, idx_to_cls = build_class_dict(data) # both mappings are dicts # Remove the redundant category information data = data['images'] # encode labels labels_matrix, iscrowd_vector = encode_labels(data, cls_to_idx) f.create_dataset('labels', data=labels_matrix) f.create_dataset('iscrowd', data=iscrowd_vector) # encode boxes original_heights = np.asarray(f['original_heights']) original_widths = np.asarray(f['original_widths']) boxes_matrix = encode_boxes(data, original_heights, original_widths, args.image_size) f.create_dataset('boxes', data=boxes_matrix) # integer mapping between image ids and box ids img_to_first_box, img_to_last_box = build_img_idx_to_box_idxs(data) f.create_dataset('img_to_first_box', data=img_to_first_box) f.create_dataset('img_to_last_box', data=img_to_last_box) filename_to_idx, idx_to_filename = build_filename_dict(data) box_to_img = encode_filenames(data, filename_to_idx) f.create_dataset('box_to_img', data=box_to_img) f.close() # and write the additional json file json_struct = { 'cls_to_idx': cls_to_idx, 'idx_to_cls': idx_to_cls, 'filename_to_idx': filename_to_idx, 'idx_to_filename': idx_to_filename, } with open(args.json_output, 'w') as f: json.dump(json_struct, f) if __name__ == '__main__': parser = argparse.ArgumentParser() # INPUT settings parser.add_argument('--region_data', default='/home/ruotian/code/pycoco/annotations/instances_%s2014.json', help='Input JSON file with regions and captions') parser.add_argument('--image_dir', default='/home/ruotian/data/MSCOCO/', help='Directory containing all images') parser.add_argument('--split_json', default='info/coco_splits.json', help='JSON file of splits') # OUTPUT settings parser.add_argument('--json_output', default='data/COCO-regions-dicts.json', help='Path to output JSON file') parser.add_argument('--h5_output', default='data/COCO-regions.h5', help='Path to output HDF5 file') # OPTIONS parser.add_argument('--image_size', default=720, type=int, help='Size of longest edge of preprocessed images') parser.add_argument('--num_workers', default=5, type=int) args = parser.parse_args() main(args)
ab7557f54c78b00a84b9184bb4bae7e516208f59
c0156da1c81a3a76e397974399c7345d082eca9b
/venv/lib/python3.7/site-packages/webdav/common.py
5ba8b2c9e55df9fcb895045c8a1ca7c86de54bb2
[ "Apache-2.0" ]
permissive
leanhvu86/matrix-server
1823c60fc6ba5ed489bb5720474c6b56a9aec688
6e16fc53dfebaeaf222ff5a371ccffcc65de3818
refs/heads/master
2023-05-09T01:21:37.774510
2021-05-21T15:10:48
2021-05-21T15:10:48
369,569,370
0
0
null
null
null
null
UTF-8
Python
false
false
4,095
py
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## """Commonly used functions for WebDAV support modules.""" import re from six.moves.urllib.parse import urlparse from six.moves.urllib.parse import urlunparse from Acquisition import aq_base from Acquisition import aq_parent from zExceptions import HTTPConflict from zExceptions import HTTPLocked from zExceptions import HTTPPreconditionFailed from zExceptions import HTTPUnsupportedMediaType class WebDAVException(Exception): pass class Locked(WebDAVException, HTTPLocked): pass class PreconditionFailed(WebDAVException, HTTPPreconditionFailed): pass class Conflict(WebDAVException, HTTPConflict): pass class UnsupportedMediaType(WebDAVException, HTTPUnsupportedMediaType): pass def absattr(attr): if callable(attr): return attr() return attr def urljoin(url, s): url = url.rstrip('/') s = s.lstrip('/') return '/'.join((url, s)) def urlfix(url, s): n = len(s) if url[-n:] == s: url = url[:-n] if len(url) > 1 and url[-1] == '/': url = url[:-1] return url def is_acquired(ob): # Return true if this object is not a direct # subobject of its __parent__ object. if not hasattr(ob, '__parent__'): return 0 if hasattr(aq_base(aq_parent(ob)), absattr(ob.id)): return 0 if hasattr(aq_base(ob), 'isTopLevelPrincipiaApplicationObject') and \ ob.isTopLevelPrincipiaApplicationObject: return 0 return 1 def urlbase(url, ftype=None, fhost=None): # Return a '/' based url such as '/foo/bar', removing # type, host and port information if necessary. parsed = urlparse(url) return urlunparse(('', '') + tuple(parsed)[2:]) or '/' def isDavCollection(object): """Return true if object is a DAV collection.""" return getattr(object, '__dav_collection__', 0) def tokenFinder(token): # takes a string like '<opaquelocktoken:afsdfadfadf> and returns the token # part. if not token: return None # An empty string was passed in if token[0] == '[': return None # An Etag was passed in if token[0] == '<': token = token[1:-1] return token[token.find(':') + 1:] # If: header handling support. IfParser returns a sequence of # TagList objects in the order they were parsed which can then # be used in WebDAV methods to decide whether an operation can # proceed or to raise HTTP Error 412 (Precondition failed) IfHdr = re.compile( r"(?P<resource><.+?>)?\s*\((?P<listitem>[^)]+)\)" ) ListItem = re.compile( r"(?P<not>not)?\s*(?P<listitem><[a-zA-Z]+:[^>]*>|\[.*?\])", re.I) class TagList(object): def __init__(self): self.resource = None self.list = [] self.NOTTED = 0 def IfParser(hdr): out = [] i = 0 while 1: m = IfHdr.search(hdr[i:]) if not m: break i = i + m.end() tag = TagList() tag.resource = m.group('resource') if tag.resource: # We need to delete < > tag.resource = tag.resource[1:-1] listitem = m.group('listitem') tag.NOTTED, tag.list = ListParser(listitem) out.append(tag) return out def ListParser(listitem): out = [] NOTTED = 0 i = 0 while 1: m = ListItem.search(listitem[i:]) if not m: break i = i + m.end() out.append(m.group('listitem')) if m.group('not'): NOTTED = 1 return NOTTED, out
cccc8870f7ed30c693be4991c997bd40760e5ee8
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_180/ch62_2019_10_02_15_14_58_527777.py
b4ad3aad05eeb567a0a0710d004c18a93d56a9fd
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
def filtra_positivos(lista): lista_positivos = [] for i in lista: if i > 0: lista_positivos.append(i) returnn lista_positivos
d8a55ec8bdd74b0f3ae4fc16b7c292a0b5ab4452
c4c159a21d2f1ea0d7dfaa965aeff01c8ef70dce
/flask/flaskenv/Lib/site-packages/tensorflow/python/estimator/canned/linear.py
a870fe7a1fe83f1323f5d1b7383d5c93f2edf5e8
[]
no_license
AhsonAslam/webapi
54cf7466aac4685da1105f9fb84c686e38f92121
1b2bfa4614e7afdc57c9210b0674506ea70b20b5
refs/heads/master
2020-07-27T06:05:36.057953
2019-09-17T06:35:33
2019-09-17T06:35:33
208,895,450
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:e4a29da17634359c96032259089138e261570186b23d8d3ede31721e341ba111 size 1310
[ "github@cuba12345" ]
github@cuba12345
8881a9b4109aac6cccaa8aad8b8db98a4aecf08a
c0f4104194a7989e44d7f0161b2425c5a5bc3a98
/tacker/agent/linux/daemon.py
e60c6d9210e2a6984c2d5f8ba4f96c7331599496
[]
no_license
bopopescu/Openstack-2
f65470bdd0ee4736c45b6f869f0453cb8eb446c8
6f06133562e3dfd490695a92c9ddf1a322675104
refs/heads/master
2022-11-28T09:19:21.633850
2016-06-23T07:55:32
2016-06-23T07:55:32
282,095,817
0
0
null
2020-07-24T01:44:49
2020-07-24T01:44:48
null
UTF-8
Python
false
false
4,324
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2012 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import atexit import fcntl import os import signal import sys from tacker.openstack.common import log as logging LOG = logging.getLogger(__name__) class Pidfile(object): def __init__(self, pidfile, procname, uuid=None): self.pidfile = pidfile self.procname = procname self.uuid = uuid try: self.fd = os.open(pidfile, os.O_CREAT | os.O_RDWR) fcntl.flock(self.fd, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: LOG.exception(_("Error while handling pidfile: %s"), pidfile) sys.exit(1) def __str__(self): return self.pidfile def unlock(self): if not not fcntl.flock(self.fd, fcntl.LOCK_UN): raise IOError(_('Unable to unlock pid file')) def write(self, pid): os.ftruncate(self.fd, 0) os.write(self.fd, "%d" % pid) os.fsync(self.fd) def read(self): try: pid = int(os.read(self.fd, 128)) os.lseek(self.fd, 0, os.SEEK_SET) return pid except ValueError: return def is_running(self): pid = self.read() if not pid: return False cmdline = '/proc/%s/cmdline' % pid try: with open(cmdline, "r") as f: exec_out = f.readline() return self.procname in exec_out and (not self.uuid or self.uuid in exec_out) except IOError: return False class Daemon(object): """A generic daemon class. Usage: subclass the Daemon class and override the run() method """ def __init__(self, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null', procname='python', uuid=None): self.stdin = stdin self.stdout = stdout self.stderr = stderr self.procname = procname self.pidfile = Pidfile(pidfile, procname, uuid) def _fork(self): try: pid = os.fork() if pid > 0: sys.exit(0) except OSError: LOG.exception(_('Fork failed')) sys.exit(1) def daemonize(self): """Daemonize process by doing Stevens double fork.""" # fork first time self._fork() # decouple from parent environment os.chdir("/") os.setsid() os.umask(0) # fork second time self._fork() # redirect standard file descriptors sys.stdout.flush() sys.stderr.flush() stdin = open(self.stdin, 'r') stdout = open(self.stdout, 'a+') stderr = open(self.stderr, 'a+', 0) os.dup2(stdin.fileno(), sys.stdin.fileno()) os.dup2(stdout.fileno(), sys.stdout.fileno()) os.dup2(stderr.fileno(), sys.stderr.fileno()) # write pidfile atexit.register(self.delete_pid) signal.signal(signal.SIGTERM, self.handle_sigterm) self.pidfile.write(os.getpid()) def delete_pid(self): os.remove(str(self.pidfile)) def handle_sigterm(self, signum, frame): sys.exit(0) def start(self): """Start the daemon.""" if self.pidfile.is_running(): self.pidfile.unlock() message = _('Pidfile %s already exist. Daemon already running?') LOG.error(message, self.pidfile) sys.exit(1) # Start the daemon self.daemonize() self.run() def run(self): """Override this method when subclassing Daemon. start() will call this method after the process has daemonized. """ pass
[ "egonmin@CN00119199" ]
egonmin@CN00119199
8ee2f1b168cb673bb9e1196e8e8507088a55e75b
7300fc72162568f886e04509431359a62a09da79
/lino_xl/lib/phones/mixins.py
cfc73974e2bfd9b6033a7d3015cfbcb1ca35f494
[ "BSD-2-Clause" ]
permissive
forexblog/xl
ad27aa1e9f5669f8a78ec55f4b7d0bd952da6327
130303647d01c0d8271f770f3054907c183dc1e8
refs/heads/master
2023-03-04T01:44:39.485452
2021-02-13T08:18:16
2021-02-13T08:18:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,590
py
# Copyright 2017-2019 Rumma & Ko Ltd # License: BSD (see file COPYING for details) from etgen.html import E, join_elems from lino.api import rt, dd, _ from lino.core.diff import ChangeWatcher from lino.mixins import Contactable, Phonable from .choicelists import ContactDetailTypes class ContactDetailsOwner(Contactable, Phonable): class Meta: abstract = True if dd.is_installed('phones'): def after_ui_save(self, ar, cw): if cw is None: # it's a new instance for cdt in ContactDetailTypes.get_list_items(): self.propagate_contact_detail(cdt) pass else: for k, old, new in cw.get_updates(): cdt = ContactDetailTypes.find(field_name=k) # cdt = getattr(ContactDetailTypes, k, False) if cdt: self.propagate_contact_detail(cdt) super(ContactDetailsOwner, self).after_ui_save(ar, cw) def propagate_contact_detail(self, cdt): k = cdt.field_name if k: value = getattr(self, k) ContactDetail = rt.models.phones.ContactDetail kw = dict(partner=self, primary=True, detail_type=cdt) try: cd = ContactDetail.objects.get(**kw) if value: cd.value = value # don't full_clean() because no need to check # primary of other items cd.save() else: cd.delete() except ContactDetail.DoesNotExist: if value: kw.update(value=value) cd = ContactDetail(**kw) # self.phones_by_partner.add(cd, bulk=False) cd.save() def propagate_contact_details(self, ar=None): watcher = ChangeWatcher(self) for cdt in ContactDetailTypes.get_list_items(): self.propagate_contact_detail(cdt) if ar is not None: watcher.send_update(ar) def get_overview_elems(self, ar): # elems = super(ContactDetailsOwner, self).get_overview_elems(ar) yield rt.models.phones.ContactDetailsByPartner.get_table_summary( self, ar) @dd.displayfield(_("Contact details")) def contact_details(self, ar): if ar is None: return '' sar = rt.models.phones.ContactDetailsByPartner.request(parent=ar, master_instance=self) items = [o.detail_type.as_html(o, sar) for o in sar if not o.end_date] return E.p(*join_elems(items, sep=', ')) else: def get_overview_elems(self, ar): return [] @dd.displayfield(_("Contact details")) def contact_details(self, ar): # if ar is None: # return '' items = [] for cdt in ContactDetailTypes.get_list_items(): if cdt.field_name: value = getattr(self, cdt.field_name) if value: items.append(cdt.format(value)) # items.append(ContactDetailTypes.email.format(self.email)) # # items.append(E.a(self.email, href="mailto:" + self.email)) # items.append(self.phone) # items.append(E.a(self.url, href=self.url)) return E.p(*join_elems(items, sep=', '))
2e7b9dada3d2c6d1f5775277b7fedd5aaa57321b
c29b838371729ac04744b40d486f0b55212990b6
/Spider-Learn/Spider/chapter4_analyse_library_pyquery.py
5ec6b154f29be6291fe4c1e9b4b48b87708a9f36
[]
no_license
Sugarsugarzz/PyPractice
93c3155a94d162c9eabf0d1a641d28bc6d639c22
d91b7d6ca996792fe409c08862fa9da5b1dc319b
refs/heads/master
2023-02-13T01:51:24.909947
2021-01-20T02:57:22
2021-01-20T02:57:22
163,177,428
0
0
null
null
null
null
UTF-8
Python
false
false
6,717
py
#****** 4.3 使用pyquery ****** # 适合于用CSS选择器较多的情况 # 1、安装 # pip3 install pyquery import pyquery # 引入PyQuery,别名py from pyquery import PyQuery as pq # 2、初始化 # 传入一个参数来初始化Pyquery # *字符串初始化 html = ''' <div> <ul> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div ''' doc = pyquery.PyQuery(html) # 简化后 doc = pq(html) print(doc('li')) # *URL初始化 # doc = pq(url='https://cuiqingcai.com') print(doc('title')) # *文件初始化 doc = pq(filename='test.html') print(doc('li')) # 3、基本CSS选择器 # 返回的是PyQuery类型 # 实例 html = ''' <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div> ''' doc = pq(html) # #container选择的是id为container的 # .list选择的是class为list的 # li直接选择li节点 print(doc('#container .list li')) print(type(doc('#container .list li'))) # 4、查找节点 # *子节点 # 查找子节点,用到find()方法,传入的参数是CSS选择器 # find()的范围是所有子孙节点,如果只查找子节点,用children()方法 doc = pq(html) items = doc('.list') print(type(items)) print(items) lis = items.find('li') print(type(lis)) print(lis) lis = items.children('.active') print(type(lis)) print(lis) # *父节点 # 用parent()方法,返回直接父节点 html = ''' <div class="wrap"> <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div> </div> ''' doc = pq(html) items = doc('.list') container = items.parent() print(type(container)) print(container) # 用parents()方法,会返回所有的祖先节点 container = items.parents() print(type(container)) print(container) # 筛选某个祖先节点,可以传入CSS选择器 container = items.parents('.wrap') print(type(container)) print(container) # *兄弟节点 # 用siblings()方法,返回所有兄弟节点,可传入CSS选择器 doc = pq(html) li = doc('.list .item-0.active') print(li.siblings()) # *遍历 # 单个节点,可以直接打印输出,也可以转成字符串 doc = pq(html) li = doc('.item-0.active') print(li) print(str(li)) # 多个节点,遍历,用items()方法,返回生成器类型 doc = pq(html) lis = doc('li').items() # lis是generator类型 print(type(lis)) for li in lis: print(li, type(li)) # 6、获取信息 # *获取属性 # 用attr()方法获取属性 doc = pq(html) a = doc('.item-0.active a') print(a) print(a.attr('href')) # 用attr属性获取属性 print(a.attr.href) # 但是attr()只能得到第一个节点的属性,要获取所有a节点的属性,就要遍历 doc = pq(html) a = doc('a') for item in a.items(): print(item.attr('href')) # *获取文本 # 总结:html()方法返回的是第一个节点的内部HTML文本,多个节点的结果,需要遍历 # text()方法返回的是所有节点取文本后合并成一个字符串,不需要遍历 # 获取其内部的文本,调用text()方法实现 # 此时会忽略掉节点内部包含的所有HTML,只返回纯文字内容 html = ''' <div class="wrap"> <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div> </div> ''' doc = pq(html) a = doc('.item-0.active') print(li) print(li.text()) # 获取这个节点内部的HTML文本,调用html()方法实现 li = doc('.item-0.active') print(li) print(li.html()) # 7、节点操作 # 对节点进行动态修改,如给节点添加一个class、移除某个节点等 # * addClass 和 removeClass html = ''' <div class="wrap"> <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div> </div> ''' doc = pq(html) li = doc('.item-0.active') print(li) li.remove_class('active') print(li) li.add_class('active') print(li) # * attr、text和html html = ''' <ul class="list"> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> </ul> ''' doc = pq(html) li = doc('.item-0.active') print(li) li.attr('name', 'link') print(li) li.text('changed item') print(li) li.html('<span>changed item</span>') print(li) # *remove() html = ''' <div class="wrap"> Hello, World <p>This is a paragraph.</p> </div> ''' doc = pq(html) wrap = doc('.wrap') print(wrap.text()) # 只要Hello World wrap.find('p').remove() print(wrap.text()) # 8、伪类选择器 # CSS选择器之所以强大,是因为支持多种多样的伪类选择器 html = ''' <div class="wrap"> <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li> <li class="item-1 active"><a href ="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul> </div> </div> ''' doc = pq(html) # 选择第一个li节点 li = doc('li:first-child') print(li) # 选择最后一个li节点 li = doc('li:last-child') print(li) # 选择第二个li节点 li = doc('li:nth-child(2)') print(li) # 选择第三个li之后的li节点 li = doc('li:gt(2)') print(li) # 选择偶数位置的li节点 li = doc('li:nth-child(2n)') print(li) # 选择包含second文本的li节点 li = doc('li:contains(second)') print(li)
c46eea6ac70388e3126470a5470b481d84d8b08e
a7b66311c2ce113789933ec3162f1128b2862f13
/app/waterQual/EPA/ntnModel/wrapCl.py
1059b5ef803b609b8ac5c26f307b198b30e4359e
[ "MIT" ]
permissive
ChanJeunlam/geolearn
214b2c42359ea1164b39117fad2d7470adeb6d35
791caa54eb70920823ea7d46714dc8a3e7fa7445
refs/heads/master
2023-07-16T04:13:15.526364
2021-08-16T05:24:18
2021-08-16T05:24:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,772
py
import os import time import pandas as pd import numpy as np import json from hydroDL import kPath from hydroDL.data import usgs, gageII, gridMET, transform # varC = usgs.varC varC = ['00940'] siteNoLst = ['0422026250', '04232050', '0423205010'] nFill = 3 varG = gageII.lstWaterQuality caseName = 'chloride' # add a start/end date to improve efficiency. t = pd.date_range(start='1979-01-01', end='2019-12-30', freq='W-TUE') sd = t[0] ed = t[-1] td = pd.date_range(sd, ed) rho = 50 # temp: read NTN dirNTN = os.path.join(kPath.dirData, 'EPA', 'NTN') fileData = os.path.join(dirNTN, 'NTN-All-w.csv') fileSite = os.path.join(dirNTN, 'NTNsites.csv') tabData = pd.read_csv(fileData) tabSite = pd.read_csv(fileSite) tabData['siteID'] = tabData['siteID'].apply(lambda x: x.upper()) tabData = tabData.replace(-9, np.nan) tab = tabData[tabData['siteID'] == 'NY43'] tab.index = pd.to_datetime(tab['dateon']) weekday = tab.index.normalize().weekday tab2 = pd.DataFrame(index=t) tol = pd.Timedelta(3, 'D') tab2 = pd.merge_asof(left=tab2, right=tab, right_index=True, left_index=True, direction='nearest', tolerance=tol) varPLst = ['ph', 'Conduc', 'Ca', 'Mg', 'K', 'Na', 'NH4', 'NO3', 'Cl', 'SO4'] dfP = tab2[varPLst] # gageII tabG = gageII.readData(varLst=varG, siteNoLst=siteNoLst) tabG = gageII.updateCode(tabG) # read data and merge to: f/q=[nT,nP,nX], g/c=[nP,nY] fLst = list() # forcing ts pLst = list() # concentrations in rainfall gLst = list() # geo-const qLst = list() # streamflow cLst = list() # water quality # cfLst = list() # water quality flags infoLst = list() t0 = time.time() for i, siteNo in enumerate(siteNoLst): t1 = time.time() dfC = usgs.readSample(siteNo, codeLst=varC, startDate=sd) dfQ = usgs.readStreamflow(siteNo, startDate=sd) dfF = gridMET.readBasin(siteNo) # merge to one table df = pd.DataFrame({'date': td}).set_index('date') df = df.join(dfC) df = df.join(dfQ) df = df.join(dfF) df = df.rename(columns={'00060_00003': '00060'}) # convert to weekly offset = pd.offsets.timedelta(days=-6) dfW = df.resample('W-MON', loffset=offset).mean() dfW = dfW.join(dfP) dfC = dfW[varC].dropna(how='all') for k in range(len(dfC)): ct = dfC.index[k] ctR = pd.date_range( start=ct-pd.Timedelta(days=rho*7-1), end=ct, freq='W-TUE') if (ctR[0] < sd) or (ctR[-1] > ed): continue tempQ = pd.DataFrame({'date': ctR}).set_index('date').join( dfW['00060']).interpolate(limit=nFill, limit_direction='both') tempF = pd.DataFrame({'date': ctR}).set_index('date').join( dfW[gridMET.varLst+varPLst]).interpolate(limit=nFill, limit_direction='both') qLst.append(tempQ.values) fLst.append(tempF.values) cLst.append(dfC.iloc[k].values) gLst.append(tabG.loc[siteNo].values) infoLst.append(dict(siteNo=siteNo, date=ct)) t2 = time.time() print('{} on site {} reading {:.3f} total {:.3f}'.format( i, siteNo, t2-t1, t2-t0)) q = np.stack(qLst, axis=-1).swapaxes(1, 2).astype(np.float32) f = np.stack(fLst, axis=-1).swapaxes(1, 2).astype(np.float32) g = np.stack(gLst, axis=-1).swapaxes(0, 1).astype(np.float32) c = np.stack(cLst, axis=-1).swapaxes(0, 1).astype(np.float32) infoDf = pd.DataFrame(infoLst) saveFolder = os.path.join(kPath.dirWQ, 'trainData') saveName = os.path.join(saveFolder, caseName) np.savez(saveName, q=q, f=f, c=c, g=g) infoDf.to_csv(saveName+'.csv') dictData = dict(name=caseName, rho=rho, nFill=nFill, varG=varG, varC=varC, varQ=['00060'], varF=gridMET.varLst+varPLst, siteNoLst=siteNoLst) with open(saveName+'.json', 'w') as fp: json.dump(dictData, fp, indent=4)
c4a71d58b51d50f238a0fcfefb454888e76cbac3
c3cf442e56969e98fbd392ee89bd85b3e22d5cd2
/python/Spider/github_login2.py
ddd07e038a2e21d86bbac1715e399e0fe3d6860d
[]
no_license
Eacaen/diff_Code_Learn
bd4bd409f0027ab3d606ef029de9ae4a3af09775
e55619c5736181fd50666b61d06e6ed7cafc4394
refs/heads/master
2021-01-12T07:55:54.127018
2019-11-07T10:42:05
2019-11-07T10:42:05
77,052,231
0
0
null
null
null
null
UTF-8
Python
false
false
2,942
py
# -*- coding:utf-8 -*- import requests import re session = requests.Session() # header = { # "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", # "Accept-Encoding": "gzip, deflate, sdch, br", # "Accept-Language": "zh-CN,zh;q=0.8", # "Cache-Control": "max-age=0", # "Connection": "keep-alive", # "Cookie": "_octo=GH1.1.1664649958.1449761838; _gat=1; logged_in=no; _gh_sess=eyJsYXN0X3dyaXRlIjoxNDcyODA4MTE1NzQ5LCJzZXNzaW9uX2lkIjoiZGU3OTQ1MWE0YjQyZmI0NmNhYjM2MzU2MWQ4NzM0N2YiLCJjb250ZXh0IjoiLyIsInNweV9yZXBvIjoiY25vZGVqcy9ub2RlY2x1YiIsInNweV9yZXBvX2F0IjoxNDcyODA3ODg0LCJyZWZlcnJhbF9jb2RlIjoiaHR0cHM6Ly9naXRodWIuY29tLyIsIl9jc3JmX3Rva2VuIjoiTllUd3lDdXNPZmtyYmRtUDdCQWtpQzZrNm1DVDhmY3FPbHJEL0U3UExGaz0iLCJmbGFzaCI6eyJkaXNjYXJkIjpbXSwiZmxhc2hlcyI6eyJhbmFseXRpY3NfbG9jYXRpb25fcXVlcnlfc3RyaXAiOiJ0cnVlIn19fQ%3D%3D--91c34b792ded05823f11c6fe8415de24aaa12482; _ga=GA1.2.1827381736.1472542826; tz=Asia%2FShanghai", # "Host": "github.com", # "Upgrade-Insecure-Requests": "1", # "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36", # } header = { "Accept" : "text/html,application/xhtml+x…lication/xml;q=0.9,*/*;q=0.8" , "Accept-Encoding" : "gzip, deflate, br", "Accept-Language" : "en-US,en;q=0.5", "Connection" : "keep-alive", "Cookie" : "logged_in=no; _octo=GH1.1.1970970484.1500426888; _ga=GA1.2.1727967677.1500426888; _gh_sess=eyJsYXN0X3dyaXRlIjoxNTAxMjMyMzg5MDEyLCJzZXNzaW9uX2lkIjoiZThiNTIxZmFhYjdiNWMzZTVjNTY2YWY4MmU5MWJjNWQiLCJjb250ZXh0IjoiLyIsImxhc3RfcmVhZF9mcm9tX3JlcGxpY2FzIjoxNTAxMjMyMzkyMTEzLCJyZWZlcnJhbF9jb2RlIjoiaHR0cHM6Ly9naXRodWIuY29tLyIsIl9jc3JmX3Rva2VuIjoiQ2JkYjAxSGREZTVtcnJZU29GQ29aYzNabHZjWitCQmN6WFdKcDEwV2thaz0iLCJmbGFzaCI6eyJkaXNjYXJkIjpbXSwiZmxhc2hlcyI6eyJhbmFseXRpY3NfbG9jYXRpb25fcXVlcnlfc3RyaXAiOiJ0cnVlIn19fQ%3D%3D--59c4346f810a2bd6b496962bda680907c92ba032; tz=Asia%2FShanghai; _gat=1", "Host" : "github.com" , "Upgrade-Insecure-Requests" : "1", "User-Agent" :"Mozilla/5.0 (X11; Ubuntu; Lin… Gecko/20100101 Firefox/54.0" , "Content-Type" : "application/x-www-form-urlencoded", # "Content-Length" : "182", "Referer" : "https://github.com", } def getToken(): html = session.get('https://github.com/login', headers=header) pattern = re.compile(r'<input name="authenticity_token" type="hidden" value="(.*)" />') authenticity_token = pattern.findall(html.content)[0] print authenticity_token return authenticity_token def userpwdLogin(): payload = { "login" : "Eacaen", "password" : "HTy119110315", 'commit': 'Sign+in', 'authenticity_token': getToken(), 'utf8': '%E2%9C%93'} r = session.post('https://github.com/session', data=payload, headers=header) print r.status_code print r.content #login success userpwdLogin()
dab468facc509b0bc4a17bf71d78d2f64e565972
0689ad04900b45e6ffb85756e65e96f30781558b
/py44/数据/day06/demo03_vectorize.py
53433c685f1e8058eb2bb0adb205b8acc6cb2766
[]
no_license
lizhihui16/aaa
a5452b5d0de4c2ad6342fce1b8aef278d2d2943e
e8c38e012f6aa0bc05ac6481d6c3e2b4e9013b56
refs/heads/master
2020-04-24T01:05:19.266060
2019-02-20T01:43:51
2019-02-20T01:43:51
171,586,359
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals ''' vectorize矢量化案例 ''' import numpy as np import math as m def foo(x, y): return m.sqrt(x**2 + y**2) x, y = 3, 4 print(foo(x, y)) x = np.array([3, 4, 5, 6]) y = np.array([4, 5, 6, 7]) # z = foo(x, y) 错误 # 把foo函数矢量化处理 foo_v = np.vectorize(foo) print(foo_v(x, y)) # 使用frompyfunc方法矢量化函数 # foo需要2个参数, 最终将会有1个返回值 foo_f = np.frompyfunc(foo, 2, 1) print(foo_f(x, y))
9012a4c3c7502633f1df59574ab7602af3edaaeb
533c298a21e865d190e69b0c95a0f9ecd9dd8d8b
/reviewboard/__init__.py
016a72ad23705cdef9d791d57c91bf2bda9806f0
[ "MIT" ]
permissive
djs/reviewboard
cb78573890b821cbc228fb43a1bdb8e337d5e9d5
813158fbb31d7889e224f3fc1350fd4a791874ec
refs/heads/master
2021-01-15T22:41:24.101928
2009-09-23T09:54:41
2009-09-23T09:54:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,573
py
# The version of Review Board. # # This is in the format of: # # (Major, Minor, Micro, alpha/beta/rc/final, Release Number, Released) # VERSION = (1, 1, 0, 'alpha', 2, False) def get_version_string(): version = '%s.%s' % (VERSION[0], VERSION[1]) if VERSION[2]: version += ".%s" % VERSION[2] if VERSION[3] != 'final': if VERSION[3] == 'rc': version += ' RC%s' % VERSION[4] else: version += ' %s %s' % (VERSION[3], VERSION[4]) if not is_release(): version += " (dev)" return version def get_package_version(): version = '%s.%s' % (VERSION[0], VERSION[1]) if VERSION[2]: version += ".%s" % VERSION[2] if VERSION[3] != 'final': version += '%s%s' % (VERSION[3], VERSION[4]) return version def is_release(): return VERSION[5] def initialize(): """Begins initialization of Review Board. This sets up the logging, generates cache serial numbers, and then fires an initializing signal that other parts of the codebase can connect to. This must be called for such features as e-mail notification to work. """ import logging import os from djblets.util.misc import generate_cache_serials from djblets import log from reviewboard import signals # Set up logging. log.init_logging() logging.info("Log file for Review Board v%s (PID %s)" % (get_version_string(), os.getpid())) # Generate cache serials generate_cache_serials() signals.initializing.send(sender=None)
f5a8c989e65546942db6eb04c553e6eccd86bdf4
387d39b6be636d7a0c119882e055ee527f727e1a
/python/ccxt/bybit.py
928a39f843ac70f3ebdf5da08cf566799862c092
[ "MIT" ]
permissive
lobatt/ccxt
30b30fa08d55538fe7dad4380aa1842a28ce06a3
9faec08330ca2565f63c7c2b11c99161883e2bdd
refs/heads/master
2023-07-19T19:57:29.110899
2021-09-04T00:26:51
2021-09-04T00:26:51
228,749,714
4
4
MIT
2021-08-01T01:15:51
2019-12-18T03:25:20
JavaScript
UTF-8
Python
false
false
88,075
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import NotSupported from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import InvalidNonce from ccxt.base.decimal_to_precision import TICK_SIZE class bybit(Exchange): def describe(self): return self.deep_extend(super(bybit, self).describe(), { 'id': 'bybit', 'name': 'Bybit', 'countries': ['VG'], # British Virgin Islands 'version': 'v2', 'userAgent': None, 'rateLimit': 100, 'has': { 'cancelOrder': True, 'CORS': True, 'cancelAllOrders': True, 'createOrder': True, 'editOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchDeposits': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchOrderTrades': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': True, 'fetchTrades': True, 'fetchTransactions': False, 'fetchWithdrawals': True, }, 'timeframes': { '1m': '1', '3m': '3', '5m': '5', '15m': '15', '30m': '30', '1h': '60', '2h': '120', '4h': '240', '6h': '360', '12h': '720', '1d': 'D', '1w': 'W', '1M': 'M', '1y': 'Y', }, 'urls': { 'test': 'https://api-testnet.bybit.com', 'logo': 'https://user-images.githubusercontent.com/51840849/76547799-daff5b80-649e-11ea-87fb-3be9bac08954.jpg', 'api': 'https://api.bybit.com', 'www': 'https://www.bybit.com', 'doc': [ 'https://bybit-exchange.github.io/docs/inverse/', 'https://bybit-exchange.github.io/docs/linear/', 'https://github.com/bybit-exchange', ], 'fees': 'https://help.bybit.com/hc/en-us/articles/360039261154', 'referral': 'https://www.bybit.com/app/register?ref=X7Prm', }, 'api': { 'public': { 'get': [ 'orderBook/L2', 'kline/list', 'tickers', 'trading-records', 'symbols', 'time', 'announcement', ], }, 'private': { 'get': [ 'order', 'stop-order', 'position/list', 'wallet/balance', 'execution/list', ], 'post': [ 'order/create', 'order/cancel', 'order/cancelAll', 'stop-order/cancelAll', ], }, 'openapi': { 'get': [ 'order/list', 'stop-order/list', 'wallet/risk-limit/list', 'wallet/risk-limit', 'funding/prev-funding-rate', 'funding/prev-funding', 'funding/predicted-funding', 'api-key', 'wallet/fund/records', 'wallet/withdraw/list', ], 'post': [ 'order/replace', 'stop-order/create', 'stop-order/cancel', 'stop-order/replace', 'position/trading-stop', ], }, 'publicLinear': { 'get': [ 'kline', 'recent-trading-records', 'funding/prev-funding-rate', 'mark-price-kline', ], }, 'privateLinear': { 'get': [ 'order/list', 'order/search', 'stop-order/list', 'stop-order/search', 'position/list', 'trade/execution/list', 'trade/closed-pnl/list', 'risk-limit', 'funding/prev-funding', 'funding/predicted-funding', ], 'post': [ 'order/create', 'order/cancel', 'order/cancelAll', 'stop-order/create', 'stop-order/cancel', 'stop-order/cancelAll', 'position/switch-isolated', 'position/set-auto-add-margin', 'position/set-leverage', 'position/trading-stop', 'position/add-margin', ], }, 'position': { 'post': [ 'change-position-margin', ], }, 'user': { 'get': [ 'leverage', ], 'post': [ 'leverage/save', ], }, }, 'httpExceptions': { '403': RateLimitExceeded, # Forbidden -- You request too many times }, 'exceptions': { 'exact': { '10001': BadRequest, # parameter error '10002': InvalidNonce, # request expired, check your timestamp and recv_window '10003': AuthenticationError, # Invalid apikey '10004': AuthenticationError, # invalid sign '10005': PermissionDenied, # permission denied for current apikey '10006': RateLimitExceeded, # too many requests '10007': AuthenticationError, # api_key not found in your request parameters '10010': PermissionDenied, # request ip mismatch '10017': BadRequest, # request path not found or request method is invalid '20001': OrderNotFound, # Order not exists '20003': InvalidOrder, # missing parameter side '20004': InvalidOrder, # invalid parameter side '20005': InvalidOrder, # missing parameter symbol '20006': InvalidOrder, # invalid parameter symbol '20007': InvalidOrder, # missing parameter order_type '20008': InvalidOrder, # invalid parameter order_type '20009': InvalidOrder, # missing parameter qty '20010': InvalidOrder, # qty must be greater than 0 '20011': InvalidOrder, # qty must be an integer '20012': InvalidOrder, # qty must be greater than zero and less than 1 million '20013': InvalidOrder, # missing parameter price '20014': InvalidOrder, # price must be greater than 0 '20015': InvalidOrder, # missing parameter time_in_force '20016': InvalidOrder, # invalid value for parameter time_in_force '20017': InvalidOrder, # missing parameter order_id '20018': InvalidOrder, # invalid date format '20019': InvalidOrder, # missing parameter stop_px '20020': InvalidOrder, # missing parameter base_price '20021': InvalidOrder, # missing parameter stop_order_id '20022': BadRequest, # missing parameter leverage '20023': BadRequest, # leverage must be a number '20031': BadRequest, # leverage must be greater than zero '20070': BadRequest, # missing parameter margin '20071': BadRequest, # margin must be greater than zero '20084': BadRequest, # order_id or order_link_id is required '30001': BadRequest, # order_link_id is repeated '30003': InvalidOrder, # qty must be more than the minimum allowed '30004': InvalidOrder, # qty must be less than the maximum allowed '30005': InvalidOrder, # price exceeds maximum allowed '30007': InvalidOrder, # price exceeds minimum allowed '30008': InvalidOrder, # invalid order_type '30009': ExchangeError, # no position found '30010': InsufficientFunds, # insufficient wallet balance '30011': PermissionDenied, # operation not allowed as position is undergoing liquidation '30012': PermissionDenied, # operation not allowed as position is undergoing ADL '30013': PermissionDenied, # position is in liq or adl status '30014': InvalidOrder, # invalid closing order, qty should not greater than size '30015': InvalidOrder, # invalid closing order, side should be opposite '30016': ExchangeError, # TS and SL must be cancelled first while closing position '30017': InvalidOrder, # estimated fill price cannot be lower than current Buy liq_price '30018': InvalidOrder, # estimated fill price cannot be higher than current Sell liq_price '30019': InvalidOrder, # cannot attach TP/SL params for non-zero position when placing non-opening position order '30020': InvalidOrder, # position already has TP/SL params '30021': InvalidOrder, # cannot afford estimated position_margin '30022': InvalidOrder, # estimated buy liq_price cannot be higher than current mark_price '30023': InvalidOrder, # estimated sell liq_price cannot be lower than current mark_price '30024': InvalidOrder, # cannot set TP/SL/TS for zero-position '30025': InvalidOrder, # trigger price should bigger than 10% of last price '30026': InvalidOrder, # price too high '30027': InvalidOrder, # price set for Take profit should be higher than Last Traded Price '30028': InvalidOrder, # price set for Stop loss should be between Liquidation price and Last Traded Price '30029': InvalidOrder, # price set for Stop loss should be between Last Traded Price and Liquidation price '30030': InvalidOrder, # price set for Take profit should be lower than Last Traded Price '30031': InsufficientFunds, # insufficient available balance for order cost '30032': InvalidOrder, # order has been filled or cancelled '30033': RateLimitExceeded, # The number of stop orders exceeds maximum limit allowed '30034': OrderNotFound, # no order found '30035': RateLimitExceeded, # too fast to cancel '30036': ExchangeError, # the expected position value after order execution exceeds the current risk limit '30037': InvalidOrder, # order already cancelled '30041': ExchangeError, # no position found '30042': InsufficientFunds, # insufficient wallet balance '30043': PermissionDenied, # operation not allowed as position is undergoing liquidation '30044': PermissionDenied, # operation not allowed as position is undergoing AD '30045': PermissionDenied, # operation not allowed as position is not normal status '30049': InsufficientFunds, # insufficient available balance '30050': ExchangeError, # any adjustments made will trigger immediate liquidation '30051': ExchangeError, # due to risk limit, cannot adjust leverage '30052': ExchangeError, # leverage can not less than 1 '30054': ExchangeError, # position margin is invalid '30057': ExchangeError, # requested quantity of contracts exceeds risk limit '30063': ExchangeError, # reduce-only rule not satisfied '30067': InsufficientFunds, # insufficient available balance '30068': ExchangeError, # exit value must be positive '34026': ExchangeError, # the limit is no change }, 'broad': { 'unknown orderInfo': OrderNotFound, # {"ret_code":-1,"ret_msg":"unknown orderInfo","ext_code":"","ext_info":"","result":null,"time_now":"1584030414.005545","rate_limit_status":99,"rate_limit_reset_ms":1584030414003,"rate_limit":100} }, }, 'precisionMode': TICK_SIZE, 'options': { 'marketTypes': { 'BTC/USDT': 'linear', }, 'code': 'BTC', 'fetchBalance': { 'code': 'BTC', }, 'cancelAllOrders': { 'method': 'privatePostOrderCancelAll', # privatePostStopOrderCancelAll }, 'recvWindow': 5 * 1000, # 5 sec default 'timeDifference': 0, # the difference between system clock and Binance clock 'adjustForTimeDifference': False, # controls the adjustment logic upon instantiation }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'taker': 0.00075, 'maker': -0.00025, }, 'funding': { 'tierBased': False, 'percentage': False, 'withdraw': {}, 'deposit': {}, }, }, }) def nonce(self): return self.milliseconds() - self.options['timeDifference'] def load_time_difference(self, params={}): serverTime = self.fetch_time(params) after = self.milliseconds() self.options['timeDifference'] = after - serverTime return self.options['timeDifference'] def fetch_time(self, params={}): response = self.publicGetTime(params) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: {}, # time_now: '1583933682.448826' # } # return self.safe_timestamp(response, 'time_now') def fetch_markets(self, params={}): if self.options['adjustForTimeDifference']: self.load_time_difference() response = self.publicGetSymbols(params) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # name: 'BTCUSD', # base_currency: 'BTC', # quote_currency: 'USD', # price_scale: 2, # taker_fee: '0.00075', # maker_fee: '-0.00025', # leverage_filter: {min_leverage: 1, max_leverage: 100, leverage_step: '0.01'}, # price_filter: {min_price: '0.5', max_price: '999999.5', tick_size: '0.5'}, # lot_size_filter: {max_trading_qty: 1000000, min_trading_qty: 1, qty_step: 1} # }, # ], # time_now: '1583930495.454196' # } # markets = self.safe_value(response, 'result', []) options = self.safe_value(self.options, 'fetchMarkets', {}) linearQuoteCurrencies = self.safe_value(options, 'linear', {'USDT': True}) result = [] for i in range(0, len(markets)): market = markets[i] id = self.safe_string(market, 'name') baseId = self.safe_string(market, 'base_currency') quoteId = self.safe_string(market, 'quote_currency') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) linear = (quote in linearQuoteCurrencies) inverse = not linear symbol = base + '/' + quote baseQuote = base + quote if baseQuote != id: symbol = id lotSizeFilter = self.safe_value(market, 'lot_size_filter', {}) priceFilter = self.safe_value(market, 'price_filter', {}) precision = { 'amount': self.safe_float(lotSizeFilter, 'qty_step'), 'price': self.safe_float(priceFilter, 'tick_size'), } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'active': None, 'precision': precision, 'taker': self.safe_float(market, 'taker_fee'), 'maker': self.safe_float(market, 'maker_fee'), 'type': 'future', 'spot': False, 'future': True, 'option': False, 'linear': linear, 'inverse': inverse, 'limits': { 'amount': { 'min': self.safe_float(lotSizeFilter, 'min_trading_qty'), 'max': self.safe_float(lotSizeFilter, 'max_trading_qty'), }, 'price': { 'min': self.safe_float(priceFilter, 'min_price'), 'max': self.safe_float(priceFilter, 'max_price'), }, 'cost': { 'min': None, 'max': None, }, }, 'info': market, }) return result def fetch_balance(self, params={}): self.load_markets() defaultCode = self.safe_value(self.options, 'code', 'BTC') options = self.safe_value(self.options, 'fetchBalance', {}) code = self.safe_value(options, 'code', defaultCode) currency = self.currency(code) request = { 'coin': currency['id'], } response = self.privateGetWalletBalance(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: { # BTC: { # equity: 0, # available_balance: 0, # used_margin: 0, # order_margin: 0, # position_margin: 0, # occ_closing_fee: 0, # occ_funding_fee: 0, # wallet_balance: 0, # realised_pnl: 0, # unrealised_pnl: 0, # cum_realised_pnl: 0, # given_cash: 0, # service_cash: 0 # } # }, # time_now: '1583937810.370020', # rate_limit_status: 119, # rate_limit_reset_ms: 1583937810367, # rate_limit: 120 # } # result = { 'info': response, } balances = self.safe_value(response, 'result', {}) currencyIds = list(balances.keys()) for i in range(0, len(currencyIds)): currencyId = currencyIds[i] balance = balances[currencyId] code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_float(balance, 'available_balance') account['used'] = self.safe_float(balance, 'used_margin') account['total'] = self.safe_float(balance, 'equity') result[code] = account return self.parse_balance(result) def parse_ticker(self, ticker, market=None): # # fetchTicker # # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # timestamp = None marketId = self.safe_string(ticker, 'symbol') symbol = marketId if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if (symbol is None) and (market is not None): symbol = market['symbol'] last = self.safe_float(ticker, 'last_price') open = self.safe_float(ticker, 'prev_price_24h') percentage = self.safe_float(ticker, 'price_24h_pcnt') if percentage is not None: percentage *= 100 change = None average = None if (last is not None) and (open is not None): change = last - open average = self.sum(open, last) / 2 baseVolume = self.safe_float(ticker, 'turnover_24h') quoteVolume = self.safe_float(ticker, 'volume_24h') vwap = None if quoteVolume is not None and baseVolume is not None: vwap = quoteVolume / baseVolume return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high_price_24h'), 'low': self.safe_float(ticker, 'low_price_24h'), 'bid': self.safe_float(ticker, 'bid_price'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'ask_price'), 'askVolume': None, 'vwap': vwap, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': average, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.publicGetTickers(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # ], # time_now: '1583948195.818255' # } # result = self.safe_value(response, 'result', []) first = self.safe_value(result, 0) timestamp = self.safe_timestamp(response, 'time_now') ticker = self.parse_ticker(first, market) ticker['timestamp'] = timestamp ticker['datetime'] = self.iso8601(timestamp) return ticker def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetTickers(params) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # ], # time_now: '1583948195.818255' # } # result = self.safe_value(response, 'result', []) tickers = {} for i in range(0, len(result)): ticker = self.parse_ticker(result[i]) symbol = ticker['symbol'] tickers[symbol] = ticker return self.filter_by_array(tickers, 'symbol', symbols) def parse_ohlcv(self, ohlcv, market=None): # # inverse perpetual BTC/USD # # { # symbol: 'BTCUSD', # interval: '1', # open_time: 1583952540, # open: '7760.5', # high: '7764', # low: '7757', # close: '7763.5', # volume: '1259766', # turnover: '162.32773718999994' # } # # linear perpetual BTC/USDT # # { # "id":143536, # "symbol":"BTCUSDT", # "period":"15", # "start_at":1587883500, # "volume":1.035, # "open":7540.5, # "high":7541, # "low":7540.5, # "close":7541 # } # return [ self.safe_timestamp_2(ohlcv, 'open_time', 'start_at'), self.safe_float(ohlcv, 'open'), self.safe_float(ohlcv, 'high'), self.safe_float(ohlcv, 'low'), self.safe_float(ohlcv, 'close'), self.safe_float_2(ohlcv, 'turnover', 'volume'), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], 'interval': self.timeframes[timeframe], } duration = self.parse_timeframe(timeframe) now = self.seconds() if since is None: if limit is None: raise ArgumentsRequired(self.id + ' fetchOHLCV requires a since argument or a limit argument') else: request['from'] = now - limit * duration else: request['from'] = int(since / 1000) if limit is not None: request['limit'] = limit # max 200, default 200 marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) method = 'publicLinearGetKline' if (marketType == 'linear') else 'publicGetKlineList' response = getattr(self, method)(self.extend(request, params)) # # inverse perpetual BTC/USD # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # interval: '1', # open_time: 1583952540, # open: '7760.5', # high: '7764', # low: '7757', # close: '7763.5', # volume: '1259766', # turnover: '162.32773718999994' # }, # ], # time_now: '1583953082.397330' # } # # linear perpetual BTC/USDT # # { # "ret_code":0, # "ret_msg":"OK", # "ext_code":"", # "ext_info":"", # "result":[ # { # "id":143536, # "symbol":"BTCUSDT", # "period":"15", # "start_at":1587883500, # "volume":1.035, # "open":7540.5, # "high":7541, # "low":7540.5, # "close":7541 # } # ], # "time_now":"1587884120.168077" # } # result = self.safe_value(response, 'result', {}) return self.parse_ohlcvs(result, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # id: 43785688, # symbol: 'BTCUSD', # price: 7786, # qty: 67, # side: 'Sell', # time: '2020-03-11T19:18:30.123Z' # } # # fetchMyTrades, fetchOrderTrades(private) # # { # "closed_size": 0, # "cross_seq": 277136382, # "exec_fee": "0.0000001", # "exec_id": "256e5ef8-abfe-5772-971b-f944e15e0d68", # "exec_price": "8178.5", # "exec_qty": 1, # # the docs say the exec_time field is "abandoned" now # # the user should use "trade_time_ms" # "exec_time": "1571676941.70682", # "exec_type": "Trade", #Exec Type Enum # "exec_value": "0.00012227", # "fee_rate": "0.00075", # "last_liquidity_ind": "RemovedLiquidity", #Liquidity Enum # "leaves_qty": 0, # "nth_fill": 2, # "order_id": "7ad50cb1-9ad0-4f74-804b-d82a516e1029", # "order_link_id": "", # "order_price": "8178", # "order_qty": 1, # "order_type": "Market", #Order Type Enum # "side": "Buy", #Side Enum # "symbol": "BTCUSD", #Symbol Enum # "user_id": 1, # "trade_time_ms": 1577480599000 # } # id = self.safe_string_2(trade, 'id', 'exec_id') symbol = None base = None marketId = self.safe_string(trade, 'symbol') amount = self.safe_float_2(trade, 'qty', 'exec_qty') cost = self.safe_float(trade, 'exec_value') price = self.safe_float_2(trade, 'price', 'exec_price') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] base = market['base'] if market is not None: if symbol is None: symbol = market['symbol'] base = market['base'] if cost is None: if amount is not None: if price is not None: cost = amount * price timestamp = self.parse8601(self.safe_string(trade, 'time')) if timestamp is None: timestamp = self.safe_integer(trade, 'trade_time_ms') side = self.safe_string_lower(trade, 'side') lastLiquidityInd = self.safe_string(trade, 'last_liquidity_ind') takerOrMaker = 'maker' if (lastLiquidityInd == 'AddedLiquidity') else 'taker' feeCost = self.safe_float(trade, 'exec_fee') fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': base, 'rate': self.safe_float(trade, 'fee_rate'), } return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': self.safe_string(trade, 'order_id'), 'type': self.safe_string_lower(trade, 'order_type'), 'side': side, 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'from': 123, # from id } if limit is not None: request['count'] = limit # default 500, max 1000 marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) method = 'publicLinearGetRecentTradingRecords' if (marketType == 'linear') else 'publicGetTradingRecords' response = getattr(self, method)(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # id: 43785688, # symbol: 'BTCUSD', # price: 7786, # qty: 67, # side: 'Sell', # time: '2020-03-11T19:18:30.123Z' # }, # ], # time_now: '1583954313.393362' # } # result = self.safe_value(response, 'result', {}) return self.parse_trades(result, market, since, limit) def parse_order_book(self, orderbook, timestamp=None, bidsKey='Buy', asksKey='Sell', priceKey='price', amountKey='size'): bids = [] asks = [] for i in range(0, len(orderbook)): bidask = orderbook[i] side = self.safe_string(bidask, 'side') if side == 'Buy': bids.append(self.parse_bid_ask(bidask, priceKey, amountKey)) elif side == 'Sell': asks.append(self.parse_bid_ask(bidask, priceKey, amountKey)) else: raise ExchangeError(self.id + ' parseOrderBook encountered an unrecognized bidask format: ' + self.json(bidask)) return { 'bids': self.sort_by(bids, 0, True), 'asks': self.sort_by(asks, 0), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'nonce': None, } def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.publicGetOrderBookL2(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # {symbol: 'BTCUSD', price: '7767.5', size: 677956, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7767', size: 580690, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7766.5', size: 475252, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7768', size: 330847, side: 'Sell'}, # {symbol: 'BTCUSD', price: '7768.5', size: 97159, side: 'Sell'}, # {symbol: 'BTCUSD', price: '7769', size: 6508, side: 'Sell'}, # ], # time_now: '1583954829.874823' # } # result = self.safe_value(response, 'result', []) timestamp = self.safe_timestamp(response, 'time_now') return self.parse_order_book(result, timestamp, 'Buy', 'Sell', 'price', 'size') def parse_order_status(self, status): statuses = { # basic orders 'Created': 'open', 'Rejected': 'rejected', # order is triggered but failed upon being placed 'New': 'open', 'PartiallyFilled': 'open', 'Filled': 'closed', 'Cancelled': 'canceled', 'PendingCancel': 'canceling', # the engine has received the cancellation but there is no guarantee that it will be successful # conditional orders 'Active': 'open', # order is triggered and placed successfully 'Untriggered': 'open', # order waits to be triggered 'Triggered': 'closed', # order is triggered # 'Cancelled': 'canceled', # order is cancelled # 'Rejected': 'rejected', # order is triggered but fail to be placed 'Deactivated': 'canceled', # conditional order was cancelled before triggering } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # createOrder # # { # "user_id": 1, # "order_id": "335fd977-e5a5-4781-b6d0-c772d5bfb95b", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8800, # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Created", # "last_exec_time": 0, # "last_exec_price": 0, # "leaves_qty": 1, # "cum_exec_qty": 0, # in contracts, where 1 contract = 1 quote currency unit(USD for inverse contracts) # "cum_exec_value": 0, # in contract's underlying currency(BTC for inverse contracts) # "cum_exec_fee": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-11-30T11:03:43.452Z", # "updated_at": "2019-11-30T11:03:43.455Z" # } # # fetchOrder # # { # "user_id" : 599946, # "symbol" : "BTCUSD", # "side" : "Buy", # "order_type" : "Limit", # "price" : "7948", # "qty" : 10, # "time_in_force" : "GoodTillCancel", # "order_status" : "Filled", # "ext_fields" : { # "o_req_num" : -1600687220498, # "xreq_type" : "x_create" # }, # "last_exec_time" : "1588150113.968422", # "last_exec_price" : "7948", # "leaves_qty" : 0, # "leaves_value" : "0", # "cum_exec_qty" : 10, # "cum_exec_value" : "0.00125817", # "cum_exec_fee" : "-0.00000031", # "reject_reason" : "", # "cancel_type" : "", # "order_link_id" : "", # "created_at" : "2020-04-29T08:45:24.399146Z", # "updated_at" : "2020-04-29T08:48:33.968422Z", # "order_id" : "dd2504b9-0157-406a-99e1-efa522373944" # } # marketId = self.safe_string(order, 'symbol') symbol = None base = None if marketId in self.markets_by_id: market = self.markets_by_id[marketId] timestamp = self.parse8601(self.safe_string(order, 'created_at')) id = self.safe_string(order, 'order_id') price = self.safe_float(order, 'price') average = self.safe_float(order, 'average_price') amount = self.safe_float(order, 'qty') cost = self.safe_float(order, 'cum_exec_value') filled = self.safe_float(order, 'cum_exec_qty') remaining = self.safe_float(order, 'leaves_qty') if market is not None: symbol = market['symbol'] base = market['base'] lastTradeTimestamp = self.safe_timestamp(order, 'last_exec_time') if lastTradeTimestamp == 0: lastTradeTimestamp = None if (filled is None) and (amount is not None) and (remaining is not None): filled = amount - remaining if filled is not None: if (remaining is None) and (amount is not None): remaining = amount - filled if cost is None: if price is not None: cost = price * filled status = self.parse_order_status(self.safe_string(order, 'order_status')) side = self.safe_string_lower(order, 'side') feeCost = self.safe_float(order, 'cum_exec_fee') fee = None if feeCost is not None: feeCost = abs(feeCost) fee = { 'cost': feeCost, 'currency': base, } type = self.safe_string_lower(order, 'order_type') clientOrderId = self.safe_string(order, 'order_link_id') if (clientOrderId is not None) and (len(clientOrderId) < 1): clientOrderId = None return { 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': None, } def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'order_link_id': 'string', # one of order_id, stop_order_id or order_link_id is required # regular orders --------------------------------------------- # 'order_id': id, # one of order_id or order_link_id is required for regular orders # conditional orders --------------------------------------------- # 'stop_order_id': id, # one of stop_order_id or order_link_id is required for conditional orders } marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) method = 'privateLinearGetOrderSearch' if (marketType == 'linear') else 'privateGetOrder' stopOrderId = self.safe_string(params, 'stop_order_id') if stopOrderId is None: orderLinkId = self.safe_string(params, 'order_link_id') if orderLinkId is None: request['order_id'] = id else: method = 'privateLinearGetStopOrderSearch' if (marketType == 'linear') else 'privateGetStopOrder' response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Sell", # "order_type": "Limit", # "price": "8083", # "qty": 10, # "time_in_force": "GoodTillCancel", # "order_status": "New", # "ext_fields": {"o_req_num": -308787, "xreq_type": "x_create", "xreq_offset": 4154640}, # "leaves_qty": 10, # "leaves_value": "0.00123716", # "cum_exec_qty": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-10-21T07:28:19.396246Z", # "updated_at": "2019-10-21T07:28:19.396246Z", # "order_id": "efa44157-c355-4a98-b6d6-1d846a936b93" # }, # "time_now": "1571651135.291930", # "rate_limit_status": 99, # The remaining number of accesses in one minute # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": "8000", # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Untriggered", # "ext_fields": {}, # "leaves_qty": 1, # "leaves_value": "0.00013333", # "cum_exec_qty": 0, # "cum_exec_value": null, # "cum_exec_fee": null, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-12-27T19:56:24.052194Z", # "updated_at": "2019-12-27T19:56:24.052194Z", # "order_id": "378a1bbc-a93a-4e75-87f4-502ea754ba36" # }, # "time_now": "1577476584.386958", # "rate_limit_status": 99, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) qty = self.amount_to_precision(symbol, amount) if market['inverse']: qty = int(qty) else: qty = float(qty) request = { # orders --------------------------------------------------------- 'side': self.capitalize(side), 'symbol': market['id'], 'order_type': self.capitalize(type), 'qty': qty, # order quantity in USD, integer only # 'price': float(self.price_to_precision(symbol, price)), # required for limit orders 'time_in_force': 'GoodTillCancel', # ImmediateOrCancel, FillOrKill, PostOnly # 'take_profit': 123.45, # take profit price, only take effect upon opening the position # 'stop_loss': 123.45, # stop loss price, only take effect upon opening the position # 'reduce_only': False, # reduce only # when creating a closing order, bybit recommends a True value for # close_on_trigger to avoid failing due to insufficient available margin # 'close_on_trigger': False, # 'order_link_id': 'string', # unique client order id, max 36 characters # conditional orders --------------------------------------------- # base_price is used to compare with the value of stop_px, to decide # whether your conditional order will be triggered by crossing trigger # price from upper side or lower side, mainly used to identify the # expected direction of the current conditional order # 'base_price': 123.45, # required for conditional orders # 'stop_px': 123.45, # trigger price, required for conditional orders # 'trigger_by': 'LastPrice', # IndexPrice, MarkPrice } priceIsRequired = False if type == 'limit': priceIsRequired = True if priceIsRequired: if price is not None: request['price'] = float(self.price_to_precision(symbol, price)) else: raise ArgumentsRequired(self.id + ' createOrder requires a price argument for a ' + type + ' order') stopPx = self.safe_value(params, 'stop_px') basePrice = self.safe_value(params, 'base_price') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) method = 'privateLinearPostOrderCreate' if (marketType == 'linear') else 'privatePostOrderCreate' if stopPx is not None: if basePrice is None: raise ArgumentsRequired(self.id + ' createOrder requires both the stop_px and base_price params for a conditional ' + type + ' order') else: method = 'privateLinearPostStopOrderCreate' if (marketType == 'linear') else 'openapiPostStopOrderCreate' request['stop_px'] = float(self.price_to_precision(symbol, stopPx)) request['base_price'] = float(self.price_to_precision(symbol, basePrice)) params = self.omit(params, ['stop_px', 'base_price']) elif basePrice is not None: raise ArgumentsRequired(self.id + ' createOrder requires both the stop_px and base_price params for a conditional ' + type + ' order') response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "order_id": "335fd977-e5a5-4781-b6d0-c772d5bfb95b", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8800, # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Created", # "last_exec_time": 0, # "last_exec_price": 0, # "leaves_qty": 1, # "cum_exec_qty": 0, # "cum_exec_value": 0, # "cum_exec_fee": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-11-30T11:03:43.452Z", # "updated_at": "2019-11-30T11:03:43.455Z" # }, # "time_now": "1575111823.458705", # "rate_limit_status": 98, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8000, # "qty": 1, # "time_in_force": "GoodTillCancel", # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "order_status": "Untriggered", # "ext_fields": { # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "expected_direction": "Rising", # "trigger_price": 7500, # "op_from": "api", # "remark": "127.0.01", # "o_req_num": 0 # }, # "leaves_qty": 1, # "leaves_value": 0.00013333, # "reject_reason": null, # "cross_seq": -1, # "created_at": "2019-12-27T12:48:24.000Z", # "updated_at": "2019-12-27T12:48:24.000Z", # "stop_px": 7500, # "stop_order_id": "a85cd1c0-a9a4-49d3-a1bd-bab5ebe946d5" # }, # "ext_info": null, # "time_now": "1577450904.327654", # "rate_limit_status": 99, # "rate_limit_reset_ms": 1577450904335, # "rate_limit": "100" # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def edit_order(self, id, symbol, type, side, amount=None, price=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' editOrder requires an symbol argument') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) if marketType == 'linear': raise NotSupported(self.id + ' does not support editOrder for ' + marketType + ' ' + symbol + ' market type') self.load_markets() market = self.market(symbol) request = { # 'order_id': id, # only for non-conditional orders 'symbol': market['id'], # 'p_r_qty': self.amount_to_precision(symbol, amount), # new order quantity, optional # 'p_r_price' self.priceToprecision(symbol, price), # new order price, optional # ---------------------------------------------------------------- # conditional orders # 'stop_order_id': id, # only for conditional orders # 'p_r_trigger_price': 123.45, # new trigger price also known as stop_px } stopOrderId = self.safe_string(params, 'stop_order_id') method = 'openapiPostOrderReplace' if stopOrderId is not None: method = 'openapiPostStopOrderReplace' request['stop_order_id'] = stopOrderId params = self.omit(params, ['stop_order_id']) else: request['order_id'] = id if amount is not None: request['p_r_qty'] = int(self.amount_to_precision(symbol, amount)) if price is not None: request['p_r_price'] = float(self.price_to_precision(symbol, price)) response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": {"order_id": "efa44157-c355-4a98-b6d6-1d846a936b93"}, # "time_now": "1539778407.210858", # "rate_limit_status": 99, # remaining number of accesses in one minute # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": {"stop_order_id": "378a1bbc-a93a-4e75-87f4-502ea754ba36"}, # "ext_info": null, # "time_now": "1577475760.604942", # "rate_limit_status": 96, # "rate_limit_reset_ms": 1577475760612, # "rate_limit": "100" # } # result = self.safe_value(response, 'result', {}) return { 'info': response, 'id': self.safe_string_2(result, 'order_id', 'stop_order_id'), 'order_id': self.safe_string(result, 'order_id'), 'stop_order_id': self.safe_string(result, 'stop_order_id'), } def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'order_link_id': 'string', # one of order_id, stop_order_id or order_link_id is required # regular orders --------------------------------------------- # 'order_id': id, # one of order_id or order_link_id is required for regular orders # conditional orders --------------------------------------------- # 'stop_order_id': id, # one of stop_order_id or order_link_id is required for conditional orders } marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_value(marketTypes, symbol) method = 'privateLinearPostOrderCancel' if (marketType == 'linear') else 'privatePostOrderCancel' stopOrderId = self.safe_string(params, 'stop_order_id') if stopOrderId is None: orderLinkId = self.safe_string(params, 'order_link_id') if orderLinkId is None: request['order_id'] = id else: method = 'privateLinearPostStopOrderCancel' if (marketType == 'linear') else 'openapiPostStopOrderCancel' response = getattr(self, method)(self.extend(request, params)) result = self.safe_value(response, 'result', {}) return self.parse_order(result, market) def cancel_all_orders(self, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelAllOrders requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } options = self.safe_value(self.options, 'cancelAllOrders') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) defaultMethod = 'privateLinearPostOrderCancelAll' if (marketType == 'linear') else 'privatePostOrderCancelAll' method = self.safe_string(options, 'method', defaultMethod) response = getattr(self, method)(self.extend(request, params)) result = self.safe_value(response, 'result', []) return self.parse_orders(result, market) def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'order_id': 'string' # 'order_link_id': 'string', # unique client order id, max 36 characters # 'symbol': market['id'], # default BTCUSD # 'order': 'desc', # asc # 'page': 1, # 'limit': 20, # max 50 # 'order_status': 'Created,New' # conditional orders --------------------------------------------- # 'stop_order_id': 'string', # 'stop_order_status': 'Untriggered', } market = None if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if limit is not None: request['limit'] = limit options = self.safe_value(self.options, 'fetchOrders', {}) marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) defaultMethod = 'privateLinearGetOrderList' if (marketType == 'linear') else 'openapiGetOrderList' query = params if ('stop_order_id' in params) or ('stop_order_status' in params): stopOrderStatus = self.safe_value(params, 'stopOrderStatus') if stopOrderStatus is not None: if isinstance(stopOrderStatus, list): stopOrderStatus = ','.join(stopOrderStatus) request['stop_order_status'] = stopOrderStatus query = self.omit(params, 'stop_order_status') defaultMethod = 'privateLinearGetStopOrderList' if (marketType == 'linear') else 'openapiGetStopOrderList' method = self.safe_string(options, 'method', defaultMethod) response = getattr(self, method)(self.extend(request, query)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "current_page": 1, # "last_page": 6, # "data": [ # { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Sell", # "order_type": "Market", # "price": 7074, # "qty": 2, # "time_in_force": "ImmediateOrCancel", # "order_status": "Filled", # "ext_fields": { # "close_on_trigger": True, # "orig_order_type": "BLimit", # "prior_x_req_price": 5898.5, # "op_from": "pc", # "remark": "127.0.0.1", # "o_req_num": -34799032763, # "xreq_type": "x_create" # }, # "last_exec_time": "1577448481.696421", # "last_exec_price": 7070.5, # "leaves_qty": 0, # "leaves_value": 0, # "cum_exec_qty": 2, # "cum_exec_value": 0.00028283, # "cum_exec_fee": 0.00002, # "reject_reason": "NoError", # "order_link_id": "", # "created_at": "2019-12-27T12:08:01.000Z", # "updated_at": "2019-12-27T12:08:01.000Z", # "order_id": "f185806b-b801-40ff-adec-52289370ed62" # } # ] # }, # "ext_info": null, # "time_now": "1577448922.437871", # "rate_limit_status": 98, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "current_page": 1, # "last_page": 1, # "data": [ # { # "user_id": 1, # "stop_order_status": "Untriggered", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8000, # "qty": 1, # "time_in_force": "GoodTillCancel", # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "order_link_id": "", # "created_at": "2019-12-27T12:48:24.000Z", # "updated_at": "2019-12-27T12:48:24.000Z", # "stop_px": 7500, # "stop_order_id": "a85cd1c0-a9a4-49d3-a1bd-bab5ebe946d5" # }, # ] # }, # "ext_info": null, # "time_now": "1577451658.755468", # "rate_limit_status": 599, # "rate_limit_reset_ms": 1577451658762, # "rate_limit": 600 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_orders(data, market, since, limit) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): defaultStatuses = [ 'Rejected', 'Filled', 'Cancelled', # conditional orders # 'Active', # 'Triggered', # 'Cancelled', # 'Rejected', # 'Deactivated', ] options = self.safe_value(self.options, 'fetchClosedOrders', {}) status = self.safe_value(options, 'order_status', defaultStatuses) if isinstance(status, list): status = ','.join(status) request = {} stopOrderStatus = self.safe_value(params, 'stop_order_status') if stopOrderStatus is None: request['order_status'] = status else: request['stop_order_status'] = stopOrderStatus return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): defaultStatuses = [ 'Created', 'New', 'PartiallyFilled', 'PendingCancel', # conditional orders # 'Untriggered', ] options = self.safe_value(self.options, 'fetchOpenOrders', {}) status = self.safe_value(options, 'order_status', defaultStatuses) if isinstance(status, list): status = ','.join(status) request = {} stopOrderStatus = self.safe_value(params, 'stop_order_status') if stopOrderStatus is None: request['order_status'] = status else: request['stop_order_status'] = stopOrderStatus return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): request = { 'order_id': id, } return self.fetch_my_trades(symbol, since, limit, self.extend(request, params)) def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'order_id': 'f185806b-b801-40ff-adec-52289370ed62', # if not provided will return user's trading records # 'symbol': market['id'], # 'start_time': int(since / 1000), # 'page': 1, # 'limit' 20, # max 50 } market = None if symbol is None: orderId = self.safe_string(params, 'order_id') if orderId is None: raise ArgumentsRequired(self.id + ' fetchMyTrades requires a symbol argument or an order_id param') else: request['order_id'] = orderId params = self.omit(params, 'order_id') else: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['start_time'] = since if limit is not None: request['limit'] = limit # default 20, max 50 marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) method = 'privateLinearGetTradeExecutionList' if (marketType == 'linear') else 'privateGetExecutionList' response = getattr(self, method)(self.extend(request, params)) # # inverse # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "order_id": "Abandonednot !", # Abandonednot ! # "trade_list": [ # { # "closed_size": 0, # "cross_seq": 277136382, # "exec_fee": "0.0000001", # "exec_id": "256e5ef8-abfe-5772-971b-f944e15e0d68", # "exec_price": "8178.5", # "exec_qty": 1, # "exec_time": "1571676941.70682", # "exec_type": "Trade", #Exec Type Enum # "exec_value": "0.00012227", # "fee_rate": "0.00075", # "last_liquidity_ind": "RemovedLiquidity", #Liquidity Enum # "leaves_qty": 0, # "nth_fill": 2, # "order_id": "7ad50cb1-9ad0-4f74-804b-d82a516e1029", # "order_link_id": "", # "order_price": "8178", # "order_qty": 1, # "order_type": "Market", #Order Type Enum # "side": "Buy", #Side Enum # "symbol": "BTCUSD", #Symbol Enum # "user_id": 1 # } # ] # }, # "time_now": "1577483699.281488", # "rate_limit_status": 118, # "rate_limit_reset_ms": 1577483699244737, # "rate_limit": 120 # } # # linear # # { # "ret_code":0, # "ret_msg":"OK", # "ext_code":"", # "ext_info":"", # "result":{ # "current_page":1, # "data":[ # { # "order_id":"b59418ec-14d4-4ef9-b9f4-721d5d576974", # "order_link_id":"", # "side":"Sell", # "symbol":"BTCUSDT", # "exec_id":"0327284d-faec-5191-bd89-acc5b4fafda9", # "price":0.5, # "order_price":0.5, # "order_qty":0.01, # "order_type":"Market", # "fee_rate":0.00075, # "exec_price":9709.5, # "exec_type":"Trade", # "exec_qty":0.01, # "exec_fee":0.07282125, # "exec_value":97.095, # "leaves_qty":0, # "closed_size":0.01, # "last_liquidity_ind":"RemovedLiquidity", # "trade_time":1591648052, # "trade_time_ms":1591648052861 # } # ] # }, # "time_now":"1591736501.979264", # "rate_limit_status":119, # "rate_limit_reset_ms":1591736501974, # "rate_limit":120 # } # result = self.safe_value(response, 'result', {}) trades = self.safe_value_2(result, 'trade_list', 'data', []) return self.parse_trades(trades, market, since, limit) def fetch_deposits(self, code=None, since=None, limit=None, params={}): if code is None: raise ArgumentsRequired(self.id + ' fetchWithdrawals() requires a currency code argument') self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } if limit is not None: request['count'] = limit response = self.privateGetGetDeposits(self.extend(request, params)) # # { # "jsonrpc": "2.0", # "id": 5611, # "result": { # "count": 1, # "data": [ # { # "address": "2N35qDKDY22zmJq9eSyiAerMD4enJ1xx6ax", # "amount": 5, # "currency": "BTC", # "received_timestamp": 1549295017670, # "state": "completed", # "transaction_id": "230669110fdaf0a0dbcdc079b6b8b43d5af29cc73683835b9bc6b3406c065fda", # "updated_timestamp": 1549295130159 # } # ] # } # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_transactions(data, currency, since, limit, params) def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'coin': currency['id'], # 'start_date': self.iso8601(since), # 'end_date': self.iso8601(till), # 'status': 'Pending', # ToBeConfirmed, UnderReview, Pending, Success, CancelByUser, Reject, Expire # 'page': 1, # 'limit': 20, # max 50 } currency = None if code is not None: currency = self.currency(code) request['coin'] = currency['id'] if since is not None: request['start_date'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.openapiGetWalletWithdrawList(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "data": [ # { # "id": 137, # "user_id": 1, # "coin": "XRP", # Coin Enum # "status": "Pending", # Withdraw Status Enum # "amount": "20.00000000", # "fee": "0.25000000", # "address": "rH7H595XYEVTEHU2FySYsWnmfACBnZS9zM", # "tx_id": "", # "submited_at": "2019-06-11T02:20:24.000Z", # "updated_at": "2019-06-11T02:20:24.000Z" # }, # ], # "current_page": 1, # "last_page": 1 # }, # "ext_info": null, # "time_now": "1577482295.125488", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577482295132, # "rate_limit": 120 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_transactions(data, currency, since, limit, params) def parse_transaction_status(self, status): statuses = { 'ToBeConfirmed': 'pending', 'UnderReview': 'pending', 'Pending': 'pending', 'Success': 'ok', 'CancelByUser': 'canceled', 'Reject': 'rejected', 'Expire': 'expired', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # fetchWithdrawals # # { # "id": 137, # "user_id": 1, # "coin": "XRP", # Coin Enum # "status": "Pending", # Withdraw Status Enum # "amount": "20.00000000", # "fee": "0.25000000", # "address": "rH7H595XYEVTEHU2FySYsWnmfACBnZS9zM", # "tx_id": "", # "submited_at": "2019-06-11T02:20:24.000Z", # "updated_at": "2019-06-11T02:20:24.000Z" # } # currencyId = self.safe_string(transaction, 'coin') code = self.safe_currency_code(currencyId, currency) timestamp = self.parse8601(self.safe_string(transaction, 'submited_at')) updated = self.parse8601(self.safe_string(transaction, 'updated_at')) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) address = self.safe_string(transaction, 'address') feeCost = self.safe_float(transaction, 'fee') fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': code, } return { 'info': transaction, 'id': self.safe_string(transaction, 'id'), 'txid': self.safe_string(transaction, 'tx_id'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'address': address, 'addressTo': None, 'addressFrom': None, 'tag': None, 'tagTo': None, 'tagFrom': None, 'type': 'withdrawal', 'amount': self.safe_float(transaction, 'amount'), 'currency': code, 'status': status, 'updated': updated, 'fee': fee, } def fetch_ledger(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'coin': currency['id'], # 'currency': currency['id'], # alias # 'start_date': self.iso8601(since), # 'end_date': self.iso8601(till), # 'wallet_fund_type': 'Deposit', # Withdraw, RealisedPNL, Commission, Refund, Prize, ExchangeOrderWithdraw, ExchangeOrderDeposit # 'page': 1, # 'limit': 20, # max 50 } currency = None if code is not None: currency = self.currency(code) request['coin'] = currency['id'] if since is not None: request['start_date'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.openapiGetWalletFundRecords(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "data": [ # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # ] # }, # "ext_info": null, # "time_now": "1577481867.115552", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577481867122, # "rate_limit": 120 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_ledger(data, currency, since, limit) def parse_ledger_entry(self, item, currency=None): # # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # currencyId = self.safe_string(item, 'coin') code = self.safe_currency_code(currencyId, currency) amount = self.safe_float(item, 'amount') after = self.safe_float(item, 'wallet_balance') direction = 'out' if (amount < 0) else 'in' before = None if after is not None and amount is not None: difference = amount if (direction == 'out') else -amount before = self.sum(after, difference) timestamp = self.parse8601(self.safe_string(item, 'exec_time')) type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) id = self.safe_string(item, 'id') referenceId = self.safe_string(item, 'tx_id') return { 'id': id, 'currency': code, 'account': self.safe_string(item, 'wallet_id'), 'referenceAccount': None, 'referenceId': referenceId, 'status': None, 'amount': amount, 'before': before, 'after': after, 'fee': None, 'direction': direction, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'type': type, 'info': item, } def parse_ledger_entry_type(self, type): types = { 'Deposit': 'transaction', 'Withdraw': 'transaction', 'RealisedPNL': 'trade', 'Commission': 'fee', 'Refund': 'cashback', 'Prize': 'prize', # ? 'ExchangeOrderWithdraw': 'transaction', 'ExchangeOrderDeposit': 'transaction', } return self.safe_string(types, type, type) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'] request = path # public v2 if api == 'public': request = '/' + self.version + '/' + api + '/' + request if params: request += '?' + self.rawencode(params) elif api == 'publicLinear': request = '/public/linear/' + request if params: request += '?' + self.rawencode(params) else: self.check_required_credentials() if api == 'openapi': request = '/open-api/' + request elif api == 'private': # private v2 request = '/' + self.version + '/' + api + '/' + request elif api == 'privateLinear': request = '/private/linear/' + request else: # position, user request = '/' + api + '/' + request timestamp = self.nonce() query = self.extend(params, { 'api_key': self.apiKey, 'recv_window': self.options['recvWindow'], 'timestamp': timestamp, }) auth = self.rawencode(self.keysort(query)) # fix https://github.com/ccxt/ccxt/issues/7377 # bybit encodes whole floats as integers without .0 auth = auth.replace('.0&', '&') signature = self.hmac(self.encode(auth), self.encode(self.secret)) if method == 'POST': body = self.json(self.extend(query, { 'sign': signature, })) headers = { 'Content-Type': 'application/json', } else: request += '?' + auth + '&sign=' + signature url += request return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if not response: return # fallback to default error handler # # { # ret_code: 10001, # ret_msg: 'ReadMapCB: expect {or n, but found \u0000, error ' + # 'found in #0 byte of ...||..., bigger context ' + # '...||...', # ext_code: '', # ext_info: '', # result: null, # time_now: '1583934106.590436' # } # errorCode = self.safe_value(response, 'ret_code') if errorCode != 0: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], body, feedback) raise ExchangeError(feedback) # unknown message
0c6a313f175fae0b84ab49d728b75441dcf2ea5f
13b14c9c75143bf2eda87cb4a41006a52dd6f02b
/AOJ/ITP1_1_D/ITP1_1_D_p.py
a6acf7b75b82545eb6dc179dabcbd87b1719406f
[]
no_license
yutaka-watanobe/problem-solving
2c311ac856c79c20aef631938140118eb3bc3835
f0b92125494fbd3c8d203989ec9fef53f52ad4b4
refs/heads/master
2021-06-03T12:58:39.881107
2020-12-16T14:34:16
2020-12-16T14:34:16
94,963,754
0
1
null
null
null
null
UTF-8
Python
false
false
103
py
s = int(input()) h = s // 3600 m = s % 3600 // 60 s = s % 60 print(str(h) +":" + str(m) +":" + str(s))
4e0e82716584b6f00ebb5773c0e041000aa55a11
1d9138d777744fa2d9d6e3b629a43041f2358d06
/real_time/abc/118/B.py
0cbaafe88c142600626cc3f11fe6341f0d44f97f
[]
no_license
Yuyats/AtCoderAnswers
f1956b790ee64a4d0b3b48b98791a91679a30244
fac7e3eb74a888e77ba7a6b6a15d836c589baa3e
refs/heads/master
2021-06-24T16:19:45.848524
2021-06-13T03:51:07
2021-06-13T03:51:07
198,857,448
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools sys.setrecursionlimit(10**7) inf = 10 ** 20 eps = 1.0 / 10**10 mod = 10**9+7 dd = [(-1, 0), (0, 1), (1, 0), (0, -1)] ddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)] def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def I(): return int(sys.stdin.readline()) def F(): return float(sys.stdin.readline()) def S(): return input() def pf(s): return print(s, flush=True) def main(): N, M = LI() KA = [] [KA.append(LI()) for i in range(N)] result = 0 for i in KA[0][1:]: if all([i in j[1:] for j in KA]): result += 1 print(result) main()
8b2fb070f5bd9c5bfb41af82e806c1cdd09c1850
e764c69d09cb69653817df8fa410ce7a31dd5d1d
/residuosWebapp/residuos/models.py
95607856e983b103db5e578608aeadf61d6b7687
[]
no_license
fafaschiavo/residuosWebbapp
5620d60a933e3894864c89de232ebebf11df6a5f
f1915bc1f136801e96c5bf01bd7d5127eddb8551
refs/heads/master
2021-01-20T17:12:27.770482
2016-08-14T22:26:03
2016-08-14T22:26:03
65,656,457
0
0
null
null
null
null
UTF-8
Python
false
false
1,541
py
from __future__ import unicode_literals from django.db import models # Create your models here. class members(models.Model): first_name = models.CharField(max_length=200) last_name = models.CharField(max_length=200) email = models.CharField(max_length=200) phone = models.CharField(max_length=200) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) newsletter = models.IntegerField(default=1) is_adm = models.IntegerField(default=0) company_id = models.IntegerField(default=0) def __first_name__(self): return self.first_name def __last_name__(self): return self.last_name def __email__(self): return self.email def __phone__(self): return self.phone def __created_at__(self): return self.created_at def __newsletter__(self): return self.newsletter def __is_adm__(self): return self.is_adm class company(models.Model): company_name = models.CharField(max_length=400) email = models.CharField(max_length=200) phone = models.CharField(max_length=200) cnpj = models.CharField(max_length=200) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) zip_code = models.CharField(max_length=200) address = models.CharField(max_length=200) def __company_name__(self): return self.company_name def __email__(self): return self.email def __phone__(self): return self.phone def __cnpj__(self): return self.cnpj def __created_at__(self): return self.created_at def __zip_code__(self): return self.zip_code def __address__(self): return self.address
33c85c8bf476a439d5dacd0afbbd365c0df5f844
fb65b7c000642dca68c93ee85a87795b3f30fe21
/Advance_Python/Quantifiers/Rule4.py
2c441191c03a5512a02d8b5f8398a98bb93e4222
[]
no_license
toncysara17/luminarpythonprograms
f41b446251feba641e117d87ce235dc556086f8f
17bc37c3f83c0e9792aaa8bccd901371a6413f14
refs/heads/master
2023-04-17T18:51:31.493118
2021-04-20T05:25:02
2021-04-20T05:25:02
358,550,813
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
#Quantifiers import re x = "a{3}" #no of a position r="aaa abc aaaa cga" matcher=re.finditer(x,r) for match in matcher: print(match.start()) print(match.group())
02ca81936a9bbc323cdc7593087daf093dfe7a6a
dc0d7e49eafe40f1c41f631621a6ccdefdcbbf7c
/press/log.py
fd7a77624aba7893cf089a1fce44ac9a436ccd5f
[]
no_license
jr0d/press
b2314b319da5b44d23110036064775796246c5c1
477b78700b644b2d333f4d9289f319a52fc54100
refs/heads/master
2021-06-15T20:44:18.061919
2019-04-24T17:01:37
2019-04-24T17:01:37
80,559,927
7
3
null
2021-03-25T21:49:09
2017-01-31T20:38:44
Python
UTF-8
Python
false
false
830
py
import logging FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' def setup_logging(log_level=logging.ERROR, console_logging=True, log_file=None, cli_debug=False): press_logger = logging.getLogger('press') press_cli_logger = logging.getLogger('press.helpers.cli') if console_logging: # True unless explicitly untrue stream_handler = logging.StreamHandler() press_logger.addHandler(stream_handler) press_logger.setLevel(log_level) if log_file: fh = logging.FileHandler(log_file) fh.setFormatter(logging.Formatter(fmt=FORMAT)) press_logger.info('Setting log file: {}'.format(log_file)) press_logger.addHandler(fh) if not cli_debug: press_cli_logger.setLevel(logging.ERROR)
6ab505a1ac637cbf578adba0cb1b1eb19c59b563
4ad94b71e30883d6df07a3277265bd6fb7457ba7
/python/examples/doc_examples/plot/axis_title_3d.py
e81c6c337eadf7fd0d7458a698deea9e1388cc48
[ "MIT" ]
permissive
Tecplot/handyscripts
7cb1d4c80f323c785d06b0c8d37aeb0acb67f58c
84a89bfecff5479a0319f08eb8aa9df465283830
refs/heads/master
2023-08-22T15:29:22.629644
2023-08-12T01:19:59
2023-08-12T01:19:59
149,826,165
89
64
MIT
2022-01-13T01:11:02
2018-09-21T22:47:23
Jupyter Notebook
UTF-8
Python
false
false
1,345
py
from os import path import tecplot as tp from tecplot.constant import PlotType, SurfacesToPlot, Color, AxisTitleMode examples_dir = tp.session.tecplot_examples_directory() infile = path.join(examples_dir, 'SimpleData', 'F18.plt') dataset = tp.data.load_tecplot(infile) plot = tp.active_frame().plot(PlotType.Cartesian3D) plot.activate() plot.show_contour = True plot.contour(0).variable = dataset.variable('S') plot.contour(0).colormap_name = 'Sequential - Yellow/Green/Blue' plot.contour(0).legend.show = False plot.fieldmap(0).surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces xaxis = plot.axes.x_axis xaxis.show = True #{DOC:highlight}[ xaxis.title.title_mode = AxisTitleMode.UseText xaxis.title.text = 'Longitudinal (m)' xaxis.title.color = Color.BluePurple xaxis.title.position = 10 #] yaxis = plot.axes.y_axis yaxis.show = True #{DOC:highlight}[ yaxis.title.title_mode = AxisTitleMode.UseText yaxis.title.text = 'Transverse (m)' yaxis.title.color = Color.BluePurple yaxis.title.position = 90 #] zaxis = plot.axes.z_axis zaxis.show = True #{DOC:highlight}[ zaxis.title.title_mode = AxisTitleMode.UseText zaxis.title.text = 'Height (m)' zaxis.title.color = Color.BluePurple zaxis.title.offset = 13 #] plot.view.fit() tp.export.save_png('axis_title_3d.png', 600, supersample=3)
5a9c07053f256cb8360b535a35fb9b97ed2bcae8
c652797f5303bb7102967fc6603e5704025afb36
/gamelayer/uitools/textline.py
179db7b1680cae5dd59791572dfc2579cff6863c
[ "MIT" ]
permissive
Windspar/Gamelayer
fc1ce499cccb6530a4dcd446f9d86fd44026e564
65e1cf11548bc02bc49348eb265c209172c14844
refs/heads/master
2022-06-13T08:06:37.828771
2020-05-07T17:17:59
2020-05-07T17:17:59
258,047,982
0
0
null
null
null
null
UTF-8
Python
false
false
4,569
py
import string from pygame import KMOD_CTRL, Rect, KEYDOWN, MOUSEMOTION, MOUSEBUTTONDOWN from .label import Label from .ui_base import UI_Base from .textline_core import * class TextLine(UI_Base): def __init__(self, font, color, callback, rect, allowed_keys=None, *groups): UI_Base.__init__(self, rect, (0, 0), "topleft", *groups) self.callback = callback self._left = 0 self._right = 0 self._offset = 2 if allowed_keys: self.allowed_keys = allowed_keys else: self.allowed_keys = string.digits + string.ascii_letters + string.punctuation + " " self.recall = Recall() position = self.rect.x + self._offset, self.rect.centery self.carrot = Carrot("|", font, color, position) self.carrot.set_callback(self.build_image) self.buffer = Buffer(self.carrot, self.recall, callback) self.label = Label("", font, color, position, "midleft") self.label.set_apply_image(self.build_image) def bind(self, events): events.bind(KEYDOWN, self.on_keydown) events.bind(MOUSEMOTION, self.on_mousemotion) events.bind(MOUSEBUTTONDOWN, self.on_mousebuttondown) def build_image(self, tool=None): self.image = self.build_surface() self.label.draw_to(self.image, self.rect) self.carrot.draw_to(self.image, self.rect) self.apply_image() def draw(self, surface): self.label.draw(surface) self.carrot.draw(surface) def on_keydown(self, event): if self._toggle: self.carrot.show(True) ctrl = event.mod & KMOD_CTRL if ctrl == 0 and event.unicode in self.allowed_keys and event.unicode != "": self.buffer.insert(self.carrot.position, event.unicode) self.carrot.position += 1 self.update_text() elif ctrl == 0: if event.key in self.buffer.key_events.keys(): self.buffer.key_events[event.key]() self.update_text() def on_mousebuttondown(self, event): self._toggle = False if event.button == 1: if self._hover: self._toggle = True if not self.carrot._enable: self.carrot.enable(True) if not self._toggle: self.carrot.enable(False) self.apply_image() def update(self, delta): self.carrot.update(delta) def update_text(self): if not self.buffer.empty(): text = self.buffer.text font = self.label._font width = self.rect.width - self._offset * 3 self.label.set_text(text) if self.carrot.position > self._right: self._right = self.carrot.position elif self.carrot.position < self._left: self._left = self.carrot.position # Looking for clipping text best fit. Base on carrot position # Move left position to the left. while font.size(text[self._left:self._right])[0] < width and self._left > 0: self._left -= 1 # Move left position to the right. while font.size(text[self._left:self._right])[0] > width and self._left < self.carrot.position: self._left += 1 # Move right position to right. while font.size(text[self._left:self._right])[0] < width and self._right < len(self.buffer): self._right += 1 # Move right position to left. while font.size(text[self._left:self._right])[0] > width: self._right -= 1 label_x = self.label.rect.x - 1 x = font.size(text[0: self._left])[0] w = min(width, self.label.rect.width - x) # Smooth scrolling effect if w < width < self.label.rect.width: offset = width - (self.label.rect.width - x) x -= offset w += offset label_x += offset # Clip rect clip_rect = Rect(x, 0, w, self.label.rect.height) # Carrot position slice = text[self._left:self.carrot.position] self.carrot.rect.x = font.size(slice)[0] + label_x # Must set label clip rect. After setting carrot x position. # For image is update correctly. self.label.clip(clip_rect) else: self.carrot.rect.x = self.label.rect.x self.label.set_text("")
20aed6156cab0fb01197eb7232f5d902cc34d1ae
5023f3f6f493a6cf3a6e4acf7ee742fdecc2a558
/ScopeFoundryHW/newport_esp300/esp300_xyz_stage_hw.py
ea5170c66505e93c87a73e26db3c8a6b14c200da
[ "BSD-3-Clause" ]
permissive
erictang000/stackbot
1a0de1a30c0b17a67808cbb7f084149f0c744070
e9a20930d790c995163192b29394a266af54a3d0
refs/heads/master
2022-04-10T06:48:25.785204
2020-03-18T23:08:57
2020-03-18T23:08:57
248,362,086
1
3
null
null
null
null
UTF-8
Python
false
false
3,673
py
from ScopeFoundry.hardware import HardwareComponent class ESP300XYZStageHW(HardwareComponent): name = 'esp300_xyz_stage' def __init__(self, app, debug=False, name=None, ax_names='xyz'): """ ax_names defines the names of the three axes connected to the stage. if an "_" underscore is found, that axis will be skipped. May be any iterable. examples include 'xyz' or ['r', 'theta', 'phi'] """ self.ax_names = ax_names HardwareComponent.__init__(self, app, debug=debug, name=name) def setup(self): self.settings.New('port', str, initial='COM5') for axis in self.ax_names: if axis == '_' or axis == None: continue self.settings.New(axis + "_position", dtype=float, ro=True, unit='mm', spinbox_decimals=6, si=False ) #self.settings.New(axis + "_ref_position", dtype=float, ro=True, unit='nm') self.settings.New(axis + "_target_position", dtype=float, ro=False, vmin=-20, vmax=20, unit='mm', spinbox_decimals=6, spinbox_step=0.01, si=False) self.settings.New(axis + '_enabled', bool, initial=True) self.settings.New(axis + '_is_moving', bool, ro=True) self.settings.New(axis + "_step_delta", dtype=float, unit='m', si=True, initial=100e-6, vmin=0 ) def connect(self): S = self.settings from .esp300_dev import ESP300 E = self.esp300 = ESP300(port=S['port'], debug=S['debug_mode']) for axis_index, axis_name in enumerate(self.ax_names): axis_num = axis_index + 1 # skip axes that are excluded from ax_names if axis_name == '_' or axis_name == None: continue unit = E.read_unit(axis_num) self.settings.get_lq(axis_name + "_position").change_unit(unit) self.settings.get_lq(axis_name + "_target_position").change_unit(unit) self.settings.get_lq(axis_name + "_position").connect_to_hardware( lambda a=axis_num: E.read_pos(a)) self.settings.get_lq(axis_name + "_target_position").connect_to_hardware( write_func = lambda new_pos, a=axis_num: E.write_target_pos_abs(a, new_pos)) self.settings.get_lq(axis_name + "_enabled").connect_to_hardware( read_func = lambda a=axis_num: E.read_enabled(a), write_func = lambda enabled, a=axis_num: E.write_enabled(a, enabled)) self.settings.get_lq(axis_name + "_is_moving").connect_to_hardware( read_func = lambda a=axis_num: E.read_is_moving(a)) def disconnect(self): self.settings.disconnect_all_from_hardware() if hasattr(self, 'esp300'): self.esp300.close() del self.esp300 def move_step_delta(self, axname, dir=+1): "dir should be +/- 1" dir = dir * 1.0/ abs(dir) self.settings[axname + "_target_position"] += dir * self.settings[axname + '_step_delta']
761694d396861a5c422b785015b5680bb34787ac
81f6fd135813f3727576bd5d74acaf0469b53615
/test/test_variables_api.py
92de66d295e33ba672eaac9f15c6edcb303a029b
[]
no_license
rlisowski/phrase-python
cb65ded1e80d1985aa95a4403c7aa3f012bd33b4
cbd6bf580a74140928b7536bb9b466d43276cc29
refs/heads/master
2023-06-18T09:24:43.916142
2021-07-15T14:21:58
2021-07-15T14:21:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,350
py
# coding: utf-8 """ Phrase API Reference The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import phrase_api from phrase_api.api.variables_api import VariablesApi # noqa: E501 from phrase_api.rest import ApiException class TestVariablesApi(unittest.TestCase): """VariablesApi unit test stubs""" def setUp(self): self.api = phrase_api.api.variables_api.VariablesApi() # noqa: E501 def tearDown(self): pass def test_variable_create(self): """Test case for variable_create Create a variable # noqa: E501 """ pass def test_variable_delete(self): """Test case for variable_delete Delete a variable # noqa: E501 """ pass def test_variable_show(self): """Test case for variable_show Get a single variable # noqa: E501 """ pass def test_variable_update(self): """Test case for variable_update Update a variable # noqa: E501 """ pass def test_variables_list(self): """Test case for variables_list List variables # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
673e7667066dc50650cfcf844997ca18b98537de
4ba18540bfd8c523fe39bbe7d6c8fa29d4ec0947
/atlas/testing/auth_acceptance/config.py
8cd7cc13ffa195f811cd91010896c159bec16db3
[ "BSD-3-Clause", "MIT", "CC0-1.0", "Apache-2.0", "BSD-2-Clause", "MPL-2.0" ]
permissive
yottabytt/atlas
c9d8ef45a0921c9f46d3ed94d42342f11488a85e
b040e574fbc64c833039b003f8a90345dd98e0eb
refs/heads/master
2022-10-14T11:12:12.311137
2020-06-13T13:19:35
2020-06-13T13:19:35
272,008,756
0
0
Apache-2.0
2020-06-13T12:55:29
2020-06-13T12:55:28
null
UTF-8
Python
false
false
1,381
py
# separates test runs from uuid import uuid4 TEST_UUID = uuid4() def set_foundations_home(): import os os.environ["FOUNDATIONS_HOME"] = os.getcwd() + "/auth_acceptance/foundations_home" os.environ["FOUNDATIONS_COMMAND_LINE"] = "True" def _flattened_config_walk(): import os import os.path as path for dir_name, _, files in os.walk("auth_acceptance/foundations_home"): for file_name in files: if file_name.endswith(".envsubst.yaml"): yield path.join(dir_name, file_name) def _load_execution_config(): from foundations_core_cli.typed_config_listing import TypedConfigListing from foundations_internal.config.execution import translate TypedConfigListing("execution").update_config_manager_with_config( "default", translate ) def _config(): import os import subprocess for env_var in ["FOUNDATIONS_HOME"]: if not os.environ.get(env_var, None): print(f"{env_var} was not set") exit(1) for template_file_name in _flattened_config_walk(): output_file_name = template_file_name[: -len(".envsubst.yaml")] + ".yaml" subprocess.run( f"envsubst < {template_file_name} > {output_file_name}", shell=True ) # _load_execution_config() def setup_auth_home_config(): set_foundations_home() _config()
aa94f2a5beb0b786f90536824232dccead006413
53dd5d2cfb79edc87f6c606bbfb7d0bedcf6da61
/.history/EMR/zhzd_3_20190605095859.py
fff25287104a8fd3c22d7bf52709955151761a05
[]
no_license
cyc19950621/python
4add54894dc81187211aa8d45e5115903b69a182
d184b83e73334a37d413306d3694e14a19580cb0
refs/heads/master
2020-04-11T20:39:34.641303
2019-07-02T12:54:49
2019-07-02T12:54:49
162,078,640
0
0
null
null
null
null
UTF-8
Python
false
false
1,295
py
import time import math import os import sys import os, os.path,shutil import codecs import EMRdef import re import pandas as pd emrtxts = EMRdef.txttq(u'D:\DeepLearning ER\EHRzhzd')#txt目录提取 dis = open(r'C:\Users\Administrator\Desktop\ICD-10.txt',errors='ignore') ds=dis.readlines() ds_cs = [] for line in ds: line = re.sub('\n','',line) ds_cs.append(line) ryzd=[] for emrtxt in emrtxts: f = open(emrtxt,'r',errors="ignore")#中文加入errors emrpath = os.path.basename(emrtxt) emrpath = os.path.splitext(emrpath)[0]#提取目录 pattern =r'\s*\d+、+\s?(.*)' c=re.compile(pattern) output=[] for line in f.readlines(): line1=line.strip('\n') line2 = ''.join(line1) line2 = line2.strip( ) line3=c.findall(line2) line3=''.join(line3) line4 = str(line3) out = line4 out= re.sub(r'右侧|两侧|双侧|左侧|右|左|双','',out) out = re.sub(r'肺肺','肺',out) out = re.sub('(.*?)', '', out) for ds in ds_cs: if EMRdef.SBS(out,ds) > 0.8: output.append(out) output=EMRdef.delre(output) output1='\n'.join(output) EMRdef.text_create(r'D:\DeepLearning ER\EHRzhzd2','.txt',emrpath,output1)
36e76dcb3732230740ae113deefc19b4e2a6d793
fac4c2fa64e6a22d0a80eec7b65c93d7a6236b7f
/original-modules/text-to-text-transfer-transformer-master/t5/data/utils.py
99bc9b12ed3388a6db2db6e2ca7b57fef107517b
[ "Apache-2.0" ]
permissive
zouning68/nlp-transfer-learning
ec2b9e91f4b3bb9d77bf88dd78282f6ff5aaa4fd
e9b1544b55905ceb2235471f036abc1d7c4160db
refs/heads/master
2023-04-13T18:25:22.206475
2020-01-15T02:36:19
2020-01-15T02:36:19
228,514,893
2
0
Apache-2.0
2023-03-24T23:36:35
2019-12-17T02:21:15
Python
UTF-8
Python
false
false
38,608
py
# Copyright 2019 The T5 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for data loading and processing. Defines Tasks, TaskRegistry, Mixture, and MixtureRegistry """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import inspect import json import os import re from absl import logging import gin import numpy as np from t5.data import sentencepiece_vocabulary import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds _DEFAULT_FEATURE_KEYS = ["inputs", "targets"] _VALID_TASK_NAME_REGEX = re.compile(r"^[\w\d\._]+$") _INFO_FILENAME = "info.{split}.json" _STATS_FILENAME = "stats.{split}.json" _TFRECORD_PREFIX = "{split}.tfrecord" _MAX_EXAMPLES_TO_MEM_CACHE = 10000 _SHUFFLE_BUFFER_SIZE = 1000 _TFDS_DATA_DIR_OVERRIDE = None _GLOBAL_CACHE_DIRECTORIES = [] DEFAULT_SPM_PATH = "gs://t5-data/vocabs/cc_all.32000/sentencepiece.model" # GCS def set_tfds_data_dir_override(tfds_data_dir): global _TFDS_DATA_DIR_OVERRIDE _TFDS_DATA_DIR_OVERRIDE = tfds_data_dir def set_global_cache_dirs(global_cache_dirs): global _GLOBAL_CACHE_DIRECTORIES _GLOBAL_CACHE_DIRECTORIES = global_cache_dirs def add_global_cache_dirs(global_cache_dirs): global _GLOBAL_CACHE_DIRECTORIES _GLOBAL_CACHE_DIRECTORIES += global_cache_dirs class DatasetProviderBase(object): """Abstract base for classes that provide a tf.data.Dataset.""" __metaclass__ = abc.ABCMeta @abc.abstractproperty def sentencepiece_model_path(self): raise NotImplementedError @abc.abstractproperty def output_features(self): raise NotImplementedError @abc.abstractmethod def get_vocabulary(self): raise NotImplementedError @abc.abstractmethod def get_dataset( self, sequence_length, split, use_cached=False, shuffle=True): raise NotImplementedError @abc.abstractmethod def num_input_examples(self, split): raise NotImplementedError class DatasetProviderRegistry(object): """Base for registry of data providers. Child classes must implement a _REGISTRY dict. """ _PROVIDER_TYPE = DatasetProviderBase @classmethod def add(cls, name, provider_cls, *provider_args, **provider_kwargs): """Adds provider to the registry.""" if name in cls._REGISTRY: raise ValueError("Attempting to register duplicate provider: %s" % name) provider = provider_cls(*provider_args, **provider_kwargs) if not isinstance(provider, cls._PROVIDER_TYPE): raise ValueError( "Attempting to register a class not of an invalid type. " "Expecting instance of %s, got %s" % (cls._PROVIDER_TYPE, provider_cls)) cls._REGISTRY[name] = provider @classmethod def remove(cls, name): """Remove provider from the registry, if it exists.""" if name in cls._REGISTRY: del cls._REGISTRY[name] @classmethod def get(cls, name): """Returns provider from the registry.""" if name not in cls._REGISTRY: raise ValueError("Provider name not registered: %s" % name) return cls._REGISTRY[name] @classmethod def names(cls): """Returns all provider names in registry.""" return cls._REGISTRY.keys() @classmethod def get_dataset( cls, name, sequence_length, split, use_cached=False, shuffle=True): return cls.get(name).get_dataset( sequence_length=sequence_length, split=split, use_cached=use_cached, shuffle=shuffle) class LazyTfdsLoader(object): """Wrapper for TFDS datasets with memoization and additional functionality. Lazily loads info from TFDS and provides memoization to avoid expensive hidden file operations. Also provides additional utility methods. """ _MEMOIZED_INSTANCES = {} def __new__(cls, name, data_dir=None): """Either creates a new dataset or returns it if it already exists.""" key = (name, data_dir) if key not in cls._MEMOIZED_INSTANCES: cls._MEMOIZED_INSTANCES[key] = object.__new__(cls) return cls._MEMOIZED_INSTANCES[key] def __init__(self, name, data_dir=None): """LazyTfdsLoader constructor. Args: name: str, the name of the TFDS dataset. data_dir: str (optional), directory to read/write TFDS data. """ self._name = name self._data_dir = data_dir self._builder = None def __getstate__(self): """Remove un-pickle-able attributes and return the state.""" state = self.__dict__.copy() del state["_builder"] return state def __getnewargs__(self): return self._name, self._data_dir @property def name(self): return self._name @property def data_dir(self): if _TFDS_DATA_DIR_OVERRIDE: if self._data_dir: logging.warning( "Overriding TFDS data directory '%s' with '%s' for dataset '%s'.", self._data_dir, _TFDS_DATA_DIR_OVERRIDE, self.name) return _TFDS_DATA_DIR_OVERRIDE return self._data_dir @property def builder(self): if not self._builder: self._builder = tfds.builder(self.name, data_dir=self.data_dir) return self._builder @property def info(self): return self.builder.info def files(self, split): """Returns set containing paths to TFDS TFRecord files for the dataset.""" self.verify_split(split) files = set() def _get_builder_files(builder): split_info = builder.info.splits[split] if builder.version.implements(tfds.core.Experiment.S3): num_shards = len(split_info.shard_lengths) else: num_shards = split_info.num_shards return tfds.core.naming.filepaths_for_dataset_split( dataset_name=builder.name, split=split_info.name, num_shards=num_shards, data_dir=builder._data_dir, # pylint:disable=protected-access filetype_suffix="tfrecord", ) if self.builder.BUILDER_CONFIGS and "/" not in self.name: # If builder has multiple configs, and no particular config was # requested, then compute all. for config in self.builder.BUILDER_CONFIGS: builder_for_config = tfds.builder(self.builder.name, config=config) files.update(_get_builder_files(builder_for_config)) else: files.update(_get_builder_files(self.builder)) if not files: logging.fatal("No TFRecord files found for dataset: %s", self.name) return files def load(self, split, shuffle_files): """Returns a tf.data.Dataset for the given split.""" self.verify_split(split) return tfds.load( self._name, split=split, data_dir=self.data_dir, shuffle_files=shuffle_files, download=True, try_gcs=True) def load_shard(self, shard_path): """Returns a dataset for a single shard of the TFDS TFRecord files.""" ds = tfds.core.file_format_adapter.TFRecordExampleAdapter( self.info.features.get_serialized_info()).dataset_from_filename( shard_path) ds = ds.map(self.info.features.decode_example) return ds def verify_split(self, split): """Verify that `split` is a valid split.""" if split not in self.info.splits.keys(): raise ValueError("{} has no '{}' split".format(self.name, split)) def size(self, split): """Returns the number of examples in the split.""" self.verify_split(split) ds_splits = self.info.splits dataset_size = ds_splits[split].num_examples # Very large datasets have num_examples = 0; default instead to np.inf dataset_size = dataset_size if dataset_size > 0 else np.inf return dataset_size def encode_string_features( dataset, vocabulary, keys, copy_plaintext=False): """Encode specified string features. Passes through non-string features unchanged. Optionally passes through copy of original string features with "_plaintext" suffix added to the key. Args: dataset: a tf.data.Dataset vocabulary: a vocabulary.Vocabulary keys: list of strings, keys of features to encode. copy_plaintext: bool, whether to pass through copies of plaintext strings with a "_plaintext" suffix added to the key. Returns: a tf.data.Dataset """ keys = set(keys) def my_fn(features): """Encode all specified feature that are strings and return a dictionary. Args: features: a dictionary Returns: a dictionary """ ret = {} for k, v in features.items(): if v.dtype == tf.string and k in keys: if copy_plaintext: ret["%s_plaintext" % k] = v v = tf.cast(vocabulary.encode_tf(v), tf.int64) ret[k] = v return ret return dataset.map(my_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) def dict_to_tfexample(ex): """Convert example dictionary to tf.train.Example proto.""" feature_dict = {} for k, v in ex.items(): t = tf.constant(v) if len(t.shape) == 0: # pylint:disable=g-explicit-length-test v = [v] elif len(t.shape) == 1: v = list(v) else: raise ValueError( "Unsupported shape (%s) for '%s' value: %s" % (tf.shape, k, v)) if t.dtype == tf.string and len(t.shape) <= 1: feature_dict[k] = tf.train.Feature( bytes_list=tf.train.BytesList( value=[tf.compat.as_bytes(t) for t in v])) elif t.dtype in (tf.int32, tf.int64) and len(t.shape) <= 1: feature_dict[k] = tf.train.Feature( int64_list=tf.train.Int64List(value=v)) else: raise ValueError( "Unsupported type (%s) and shape (%s) for '%s' value: %s" % (tf.dtype, tf.shape, k, v)) return tf.train.Example(features=tf.train.Features(feature=feature_dict)) def inverse_dataset(dataset, label): """Invert examples and prepend the given label to the new inputs. Args: dataset: tf.data.Dataset, contains "inputs" and "targets" keys label: str, the label to prepend to the inputs. Returns: a tf.data.Dataset """ def map_fn(x): return { "inputs": tf.strings.join([label, x["targets"]]), "targets": x["inputs"], } return dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) # ================================ Tasks ======================================= def get_info_path(data_dir, split): return os.path.join(data_dir, _INFO_FILENAME.format(split=split)) def get_tfrecord_prefix(data_dir, split): return os.path.join(data_dir, _TFRECORD_PREFIX.format(split=split)) def get_stats_path(data_dir, split): return os.path.join(data_dir, _STATS_FILENAME.format(split=split)) class Task(DatasetProviderBase): """A wrapper for a `tf.data.Dataset` along with preprocessing information. Tasks handle preprocessing (via arbitrary TF function) and tokenization (via SentencePiece). Non-train splits also pass through the original plaintext strings with a "_plaintext" suffix added to the key. """ def __init__(self, name, dataset_fn, splits, text_preprocessor, sentencepiece_model_path, metric_fns, postprocess_fn=None, token_preprocessor=None, output_features=None, num_input_examples=None): """Task constructor. Args: name: string, a unique name for the Task. A ValueError will be raised if another task with this name is already registered. dataset_fn: callable, a function with the signature `dataset_fn(split, shuffle_files)' that returns a `tf.data.Dataset`. splits: list(string), a list of allowable splits to request from the `dataset_fn`. text_preprocessor: a function (or list of functions) that (each) takes in a tf.data.Dataset of string features and returns a tf.data.Dataset of string features. Can be set to None as a no-op. If a list is given, they will be executed sequentially. sentencepiece_model_path: string, path to a SentencePiece model file to use for tokenization. metric_fns: list(callable), list of metric functions with the signature `metric_fn(targets, predictions)` to use during evaluation. postprocess_fn: function, a function that takes in decoded model outputs (strings) and returns a string which is ready for evaluation using the metric functions in `metric_fns`. Can be set to None as a no-op. token_preprocessor: an optional function (or list of functions) that (each) takes in a tf.data.Dataset of token features and returns a tf.data.Dataset of token features. Can be set to None as a no-op. If a list is given, they will be executed sequentially. The functions are also passed `sequence_length` and `vocabulary` keyword arguments. output_features: list(string), a list of the primary output features of the dataset that will be prepared for the model. Defaults to 'inputs' and 'targets'. num_input_examples: dict(string: int) or None, a dictionary mapping split to its size in number of input examples (before preprocessing). The `num_input_examples` method will return None if not provided. """ if not _VALID_TASK_NAME_REGEX.match(name): raise ValueError( "Task name '%s' contains invalid characters. Must match regex: %s" % ( name, _VALID_TASK_NAME_REGEX.pattern)) _validate_args(dataset_fn, ["split", "shuffle_files"]) for metric_fn in metric_fns: _validate_args(metric_fn, ["targets", "predictions"]) self._name = name self._dataset_fn = dataset_fn self._text_preprocessor = ( [] if text_preprocessor is None else text_preprocessor) self._token_preprocessor = ( [] if token_preprocessor is None else token_preprocessor) self._sentencepiece_model_path = sentencepiece_model_path self._metric_fns = metric_fns # Use a pass-through if postprocess_fn is not provided self._postprocess_fn = postprocess_fn or (lambda x, **unused_kwargs: x) self._cache_dir = None self._stats = {} self._output_features = sorted( set(output_features or _DEFAULT_FEATURE_KEYS)) self._splits = splits self._num_input_examples = num_input_examples @property def name(self): return self._name @property def postprocess_fn(self): return self._postprocess_fn @property def metric_fns(self): return self._metric_fns @property def sentencepiece_model_path(self): return self._sentencepiece_model_path @property def output_features(self): return self._output_features @property def token_preprocessor(self): return self._token_preprocessor @property def splits(self): return self._splits def num_input_examples(self, split): if self._num_input_examples is None: return None return self._num_input_examples[split] def _preprocess_dataset(self, dataset, preprocessors, **preprocess_kwargs): if not hasattr(preprocessors, "__iter__"): preprocessors = [preprocessors] for prep_fn in preprocessors: dataset = prep_fn(dataset, **preprocess_kwargs) return dataset def _validate_dataset( self, dataset, expected_output_type, expected_output_rank, error_label, ensure_no_eos=False): """Validates properties of a tf.data.Dataset, raising Exceptions if needed. Args: dataset: a tf.data.Dataset to validate. expected_output_type: a tf.dtype, the expected type of the model features. expected_output_rank: an int, the expected rank of the model features. error_label: a string, an identifier for the previous processing step to report in raised ValueErrors. ensure_no_eos: a bool, whether or not to verify that the model features contain no EOS tokens. Returns: a validated tf.data.Dataset. """ types = tf.data.get_output_types(dataset) shapes = tf.data.get_output_shapes(dataset) for feat in self.output_features: if feat not in types: raise ValueError( "Task dataset is missing expected output feature after {label}: " "{feat}".format(label=error_label, feat=feat)) if expected_output_type != types[feat]: raise ValueError( "Task dataset has incorrect type for feature '{feat}' after " "{label}: Got {actual}, expected {expected}".format( feat=feat, label=error_label, actual=types[feat].name, expected=expected_output_type.name)) if expected_output_rank != len(shapes[feat]): raise ValueError( "Task dataset has incorrect rank for feature '{feat}' after " "{label}: Got {actual}, expected {expected}".format( feat=feat, label=error_label, actual=len(shapes[feat]), expected=expected_output_rank)) def _ensure_no_eos(feat, v): if feat not in self.output_features: return v with tf.control_dependencies([ tf.assert_none_equal( v, tf.constant(1, tf.int64), message="Feature '{feat}' unexpectedly contains EOS=1 token " "after {label}.".format(feat=feat, label=error_label)) ]): return v if ensure_no_eos: dataset = dataset.map( lambda ex: {k: _ensure_no_eos(k, v) for k, v in ex.items()}, num_parallel_calls=tf.data.experimental.AUTOTUNE) return dataset def preprocess_text(self, dataset): """Preprocessed text dataset.""" dataset = self._preprocess_dataset(dataset, self._text_preprocessor) dataset = self._validate_dataset( dataset, expected_output_type=tf.string, expected_output_rank=0, error_label="text preprocessing") return dataset def preprocess_tokens(self, dataset, sequence_length): """Preprocesses tokenized dataset. Args: dataset: a tf.data.Dataset sequence_length: dict mapping feature key to int length for that feature Returns: a tf.data.Dataset """ dataset = self._preprocess_dataset( dataset, self._token_preprocessor, sequence_length=sequence_length, vocabulary=self.get_vocabulary()) dataset = self._validate_dataset( dataset, expected_output_type=tf.int64, expected_output_rank=1, error_label="token preprocessing", ensure_no_eos=True) # Trim and append EOS=1 token to model features. def _trim_and_append_eos(feat, v): if feat not in self.output_features: return v return tf.concat([v[:sequence_length[feat]-1], [1]], axis=0) return dataset.map( lambda ex: {k: _trim_and_append_eos(k, v) for k, v in ex.items()}, num_parallel_calls=tf.data.experimental.AUTOTUNE) def initialize(self): """Attempts to load cached dataset and stats.""" if self._cache_dir: return # See if cached data exists in any of the cache directories. potential_cache_dirs = [ os.path.join(d, self.name) for d in _GLOBAL_CACHE_DIRECTORIES] for cache_dir in potential_cache_dirs: if tf.io.gfile.exists(os.path.join(cache_dir, "COMPLETED")): self._cache_dir = cache_dir logging.info("'%s' is cached at %s.", self.name, self.cache_dir) return logging.info( "'%s' does not exist in any task cache directories (searched %s).", self.name, potential_cache_dirs, ) @property def cached(self): """Returns whether or not cached dataset exists, initializing if needed.""" self.initialize() return self._cache_dir is not None @property def cache_dir(self): """Returns the cache directory, initializing if needed.""" self.assert_cached() return self._cache_dir def assert_cached(self): """Raises an assertion error if cached dataset does not exist.""" assert self.cached, ( "'%s' does not exist in any of the task cache directories" % self.name) def get_cached_stats(self, split=tfds.Split.TRAIN): """Returns basic statistics for cached dataset.""" self.assert_cached() if split not in self._stats: stats_path = get_stats_path(self.cache_dir, split) if not tf.io.gfile.exists(stats_path): raise ValueError( "Stats do not exist for '%s' split: %s" % (self.name, split)) with tf.io.gfile.GFile(stats_path) as f: self._stats[split] = json.load(f) return self._stats[split] def get_vocabulary(self): """Returns a SentencePieceVocabulary object using the Task's model.""" return sentencepiece_vocabulary.SentencePieceVocabulary( self.sentencepiece_model_path) def get_dataset( self, sequence_length, split=tfds.Split.TRAIN, use_cached=False, shuffle=True, shuffle_buffer_size=_SHUFFLE_BUFFER_SIZE, ): """Returns a tf.data.Dataset from cache or generated on the fly. Args: sequence_length: dict mapping feature key to int length for that feature split: string, the split to return. use_cached: bool, whether to use the cached dataset instead of processing it on the fly. Defaults to True. shuffle: bool, whether to shuffle the dataset. Only used when generating on the fly (use_cached=False). shuffle_buffer_size: an integer Returns: A mixed tf.data.Dataset. """ if use_cached: ds = self._get_cached_dataset(split, shuffle) else: ds = self._dataset_fn(split=split, shuffle_files=shuffle) ds = self.preprocess_text(ds) # Tokenize ds = encode_string_features( ds, self.get_vocabulary(), keys=self.output_features, copy_plaintext=True) if (not use_cached and self.num_input_examples(split) and self.num_input_examples(split) < _MAX_EXAMPLES_TO_MEM_CACHE): ds = ds.cache() # Post tokenization processing. ds = self.preprocess_tokens(ds, sequence_length) if shuffle: # Shuffle before mixing since preprocessor can output multiple # (correlated) examples per input. ds = ds.shuffle(shuffle_buffer_size) return ds def _get_cached_dataset(self, split=tfds.Split.TRAIN, shuffle=True): """Returns a tf.data.Dataset read from cached files.""" self.assert_cached() with tf.io.gfile.GFile(get_info_path(self.cache_dir, split)) as f: split_info = json.load(f) # Use `FixedLenSequenceFeature` for sequences with variable length. def _feature_config(shape, dtype): if shape and shape[0] is None: return tf.io.FixedLenSequenceFeature( shape[1:], dtype, allow_missing=True) return tf.io.FixedLenFeature(shape, dtype) feature_desc = { feat: _feature_config(**desc) for feat, desc in split_info["features"].items()} ds = tf.data.Dataset.list_files( "%s-*-of-*%d" % ( get_tfrecord_prefix(self.cache_dir, split), split_info["num_shards"]), shuffle=shuffle) ds = ds.interleave( tf.data.TFRecordDataset, cycle_length=16, block_length=16, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds = ds.map(lambda ex: tf.parse_single_example(ex, feature_desc), num_parallel_calls=tf.data.experimental.AUTOTUNE) if self.get_cached_stats(split)["examples"] <= _MAX_EXAMPLES_TO_MEM_CACHE: ds = ds.cache() return ds class TfdsTask(Task): """A `Task` that uses TensorFlow Datasets to provide the input dataset.""" def __init__( self, name, tfds_name, text_preprocessor, sentencepiece_model_path, metric_fns, tfds_data_dir=None, splits=None, **task_kwargs): """TfdsTask constructor. Args: name: string, a unique name for the Task. A ValueError will be raised if another task with this name is already registered. tfds_name: string, the name and version number of a TFDS dataset, optionally with a config. text_preprocessor: a function (or list of functions) that (each) takes in a tf.data.Dataset of string features and returns a tf.data.Dataset of string features. Can be set to None as a no-op. If a list is given, they will be executed sequentially. sentencepiece_model_path: string, path to a SentencePiece model file to use for tokenization. metric_fns: list(callable), list of metric functions with the signature metric_fn(targets, predictions) to use during evaluation. tfds_data_dir: string, an optional path to a specific TFDS data directory to use. splits: list(string) or None, a list of allowable splits to load. The default, None, uses all available splits from the TFDS dataset info. **task_kwargs: dict, additional keyword arguments for the parent `Task` class. """ if ":" not in tfds_name: raise ValueError( "TFDS name must contain a version number, got: %s" % tfds_name) self._tfds_dataset = LazyTfdsLoader(tfds_name, tfds_data_dir) def dataset_fn(split, shuffle_files): return self._tfds_dataset.load(split, shuffle_files) super(TfdsTask, self).__init__( name, dataset_fn=dataset_fn, splits=splits, text_preprocessor=text_preprocessor, sentencepiece_model_path=sentencepiece_model_path, metric_fns=metric_fns, **task_kwargs) @property def splits(self): """Override since we can't call `info.splits` until after init.""" return self._splits or self._tfds_dataset.info.splits @property def tfds_dataset(self): return self._tfds_dataset def num_input_examples(self, split): return self.tfds_dataset.size(split) class TextLineTask(Task): """A `Task` that reads text lines as input. Requires a text_processor to be passed that takes a tf.data.Dataset of strings and returns a tf.data.Dataset of feature dictionaries. e.g. preprocessors.preprocess_tsv() """ def __init__( self, name, split_to_filepattern, text_preprocessor, sentencepiece_model_path, metric_fns, skip_header_lines=0, **task_kwargs): """TextLineTask constructor. Args: name: string, a unique name for the Task. A ValueError will be raised if another task with this name is already registered. split_to_filepattern: dict of string (split name) to string (filename or filepattern). text_preprocessor: a function (or list of functions) that (each) takes in a tf.data.Dataset of string features and returns a tf.data.Dataset of string features. Can be set to None as a no-op. If a list is given, they will be executed sequentially. sentencepiece_model_path: string, path to a SentencePiece model file to use for tokenization. metric_fns: list(callable), list of metric functions with the signature metric_fn(targets, predictions) to use during evaluation. skip_header_lines: int, number of header lines to skip in each source file. **task_kwargs: dict, additional keyword arguments for the parent `Task` class. """ def dataset_fn(split, shuffle_files): filepattern = split_to_filepattern[split] def _read_file(fname): return tf.data.TextLineDataset(fname).skip(skip_header_lines) files = tf.data.Dataset.list_files(filepattern, shuffle=shuffle_files) return files.interleave( _read_file, cycle_length=16, block_length=16, num_parallel_calls=tf.data.experimental.AUTOTUNE) super(TextLineTask, self).__init__( name, dataset_fn=dataset_fn, splits=split_to_filepattern.keys(), text_preprocessor=text_preprocessor, sentencepiece_model_path=sentencepiece_model_path, metric_fns=metric_fns, **task_kwargs) class TaskRegistry(DatasetProviderRegistry): _REGISTRY = {} _PROVIDER_TYPE = Task @classmethod def add(cls, name, task_cls=Task, **kwargs): super(TaskRegistry, cls).add(name, task_cls, name, **kwargs) # ================================ Mixtures ==================================== class Mixture(DatasetProviderBase): """Class for mixing multiple tasks.""" def __init__(self, tasks, default_rate=None): """Mixture constructor. A mixture specifies a set of tasks with associated mixing rates. Mixing happens on preprocessed tokenized examples. The mixing rates represent relative numbers of examples to use from their associated tasks. Setting the mixing rates to be equal to the numbers of examples in the tasks will result in each task going through an epoch in about the same amount of time - i.e. all examples are sampled equally across all tasks. Rates can be expressed either as absolute numbers or as functions that receive the Task as an argument. Args: tasks: a list where each element is either a string (task name) or a pair whose first element is the task name and whose second element is either a float (rate) or a function from Task to float. default_rate: a float or a function from Task to float. This specifies the default rate if rates are not provided in the `tasks` argument. """ self._task_to_rate = {} self._tasks = [] for t in tasks: if isinstance(t, str): task_name = t rate = default_rate if default_rate is None: raise ValueError("need a rate for each task") else: task_name, rate = t self._tasks.append(TaskRegistry.get(task_name)) self._task_to_rate[task_name] = rate if len(set(tuple(t.output_features) for t in self._tasks)) != 1: raise ValueError( "All Tasks in a Mixture must have the same output features." ) if len(set(t.sentencepiece_model_path for t in self._tasks)) != 1: raise ValueError( "All Tasks in a Mixture must have the same sentencepiece_model_path." ) @property def tasks(self): return self._tasks def get_rate(self, task): rate = self._task_to_rate[task.name] return float(rate(task) if callable(rate) else rate) def num_input_examples(self, split): return sum(t.num_input_examples(split) for t in self.tasks) @property def output_features(self): # We require all tasks to have the same output_features in __init__ # so we can just get the output_features for the 0th task return self._tasks[0].output_features @property def sentencepiece_model_path(self): # We require all tasks to have the same sentencepiece_model_path in __init__ # so we can just get the sentencepiece_model_path for the first task return self._tasks[0].sentencepiece_model_path def get_vocabulary(self): """Returns a SentencePieceVocabulary object using the Tasks' model.""" return self._tasks[0].get_vocabulary() def get_dataset( self, sequence_length, split=tfds.Split.TRAIN, use_cached=False, shuffle=True, compute_stats_empirically=False, ): """Returns the dataset of mixed tasks using the object-specified rates. Args: sequence_length: dict mapping feature key to int length for that feature split: string, the split to return for all tasks. use_cached: bool, whether to use the cached dataset instead of processing it on the fly. Defaults to True. shuffle: bool, whether to shuffle the dataset. Only used when generating on the fly (use_cached=False). compute_stats_empirically: a boolean - does not work on TPU """ tasks = [] for task in self.tasks: if split not in task.splits: logging.info( "Task %s has no '%s' split, skipping.", task.name, split ) continue tasks.append(task) if not tasks: raise ValueError("No datasets have a '{}' split".format(split)) def filter_features(ex): return {k: v for k, v in ex.items() if k in self.output_features} datasets = [ task.get_dataset(sequence_length, split, use_cached, shuffle=shuffle) # pylint:disable=g-complex-comprehension .repeat() .map(filter_features, num_parallel_calls=tf.data.experimental.AUTOTUNE) for task in tasks] rates = [self.get_rate(task) for task in tasks] # Sample from the dataset with the rates rates dataset = tf.data.experimental.sample_from_datasets(datasets, rates) if split == "train" and use_cached: _log_mixing_proportions(tasks, datasets, rates, dataset, sequence_length, compute_stats_empirically) return dataset # Functions to be used as mixing rates: @gin.configurable def rate_num_examples(task, maximum=None, temperature=1.0, scale=1.0): """Mixing rate equal to the number of examples for the task.""" # TODO(adarob): Support case when there are no cached stats. ret = task.get_cached_stats("train")["examples"] ret *= scale if maximum: ret = min(ret, maximum) if temperature != 1.0: ret = ret ** (1.0 / temperature) return ret @gin.configurable def rate_unsupervised(task, value=1e6): """Gin-configurable mixing rate for the unsupervised co-training task.""" del task return value def _log_padding_fractions(dataset, sequence_length, num_examples=100): """Empirically compute the fraction of padding - log the results. Args: dataset: a tf.data.Dataset sequence_length: dict from string to int (packed lengths) num_examples: an integer """ logging.info("computing padding fractions") keys = sequence_length.keys() padding_frac = {k: 0 for k in keys} for ex in tfds.as_numpy(dataset.take(num_examples)): for k in keys: padding_frac[k] += 1 - (sequence_length[k] / len(ex[k])) for k in keys: logging.info("%s padding fraction = %g", k, padding_frac[k]) def _log_mixing_proportions( tasks, datasets, rates, mixed_dataset, sequence_length, compute_stats_empirically): """Log information about the mixing proportions. Called from Mixture.get_dataset. Args: tasks: a list of Task datasets: a list of tf.data.Dataset rates: a list of floats mixed_dataset: a tf.data.Dataset sequence_length: dict from string to int (packed lengths) compute_stats_empirically: a boolean - does not work on TPU """ def _normalize(l): denom = sum(l) return [x / denom for x in l] # compute some stats about the mixture examples_fraction = _normalize(rates) if compute_stats_empirically: stats_examples = 100 mean_inputs_length = [] mean_targets_length = [] for dataset in datasets: inputs_sum = 0 targets_sum = 0 for ex in tfds.as_numpy(dataset.take(stats_examples)): inputs_sum += ex["inputs"].size targets_sum += ex["targets"].size mean_inputs_length.append(inputs_sum / float(stats_examples)) mean_targets_length.append(targets_sum / float(stats_examples)) else: def _estimated_mean_length(task, key): if task.token_preprocessor: return sequence_length[key] else: return min(sequence_length[key], (task.get_cached_stats("train")[key + "_tokens"] / task.get_cached_stats("train")["examples"])) mean_inputs_length = [_estimated_mean_length(task, "inputs") for task in tasks] mean_targets_length = [_estimated_mean_length(task, "targets") for task in tasks] inputs_fraction = _normalize( [l * r for l, r in zip(mean_inputs_length, rates)]) targets_fraction = _normalize( [l * r for l, r in zip(mean_targets_length, rates)]) logging.info("%12s %12s %12s %12s %12s %12s %s", "rate", "ex.frac.", "inp.frac.", "tgt.frac.", "inp.len.", "tgt.len", "task") for i in range(len(rates)): logging.info("%12g %12g %12g %12g %12g %12g %s", rates[i], examples_fraction[i], inputs_fraction[i], targets_fraction[i], mean_inputs_length[i], mean_targets_length[i], tasks[i].name) if compute_stats_empirically: _log_padding_fractions(mixed_dataset, sequence_length) class MixtureRegistry(DatasetProviderRegistry): _REGISTRY = {} _PROVIDER_TYPE = Mixture @classmethod def add(cls, name, tasks, default_rate=None): super(MixtureRegistry, cls).add(name, Mixture, tasks, default_rate) def get_mixture_or_task(task_or_mixture_name): """Return the Task or Mixture from the appropriate registry.""" mixtures = MixtureRegistry.names() tasks = TaskRegistry.names() if task_or_mixture_name in mixtures: if task_or_mixture_name in tasks: logging.warning("%s is both a Task and a Mixture, returning Mixture", task_or_mixture_name) return MixtureRegistry.get(task_or_mixture_name) if task_or_mixture_name in tasks: return TaskRegistry.get(task_or_mixture_name) else: raise ValueError("No Task or Mixture found with name: %s" % task_or_mixture_name) def get_subtasks(task_or_mixture): """Returns all the Tasks in a Mixture as a list or the Task itself.""" if isinstance(task_or_mixture, Task): return [task_or_mixture] else: return task_or_mixture.tasks def _validate_args(fn, expected_pos_args): """Ensure function has exactly expected positional args.""" argspec = inspect.getargspec(fn) expected_pos_args = tuple(expected_pos_args) actual_args = tuple(argspec.args) if actual_args[:len(expected_pos_args)] != expected_pos_args: raise ValueError( "'%s' must have positional args %s, got: %s" % ( fn.__name__, expected_pos_args, actual_args)) actual_pos_args = tuple( argspec.args[:-len(argspec.defaults)] if argspec.defaults else argspec.args) if actual_pos_args != expected_pos_args[:len(actual_pos_args)]: raise ValueError( "'%s' may only have positional args %s, got: %s" % ( fn.__name__, expected_pos_args, actual_pos_args))
f25a62b621331ffbb01cb7d174dcc64601a12e56
032a1ad3c94e1126729417a16e2a95743d121244
/cell_fitting/optimization/evaluation/plot_sine_stimulus/when_doublet_start.py
d9a7d6b7ffa9710e6429e0347cd53e945c59af5e
[]
no_license
cafischer/cell_fitting
0fd928f5ae59488e12c77648c2e6227c1911d0e9
75a81987e1b455f43b5abdc8a9baf6b8f863bee2
refs/heads/master
2021-01-23T19:27:30.635173
2019-09-14T08:46:57
2019-09-14T08:46:57
44,301,986
1
0
null
null
null
null
UTF-8
Python
false
false
3,321
py
from __future__ import division import matplotlib.pyplot as pl from matplotlib.patches import Rectangle from matplotlib.colors import Normalize import numpy as np import os from nrn_wrapper import Cell from cell_fitting.optimization.evaluation.plot_sine_stimulus import simulate_sine_stimulus from cell_characteristics.analyze_APs import get_AP_onset_idxs from cell_fitting.util import init_nan from cell_characteristics import to_idx pl.style.use('paper') if __name__ == '__main__': # parameters save_dir = '/home/cf/Phd/programming/projects/cell_fitting/cell_fitting/results/best_models/1' model_dir = os.path.join(save_dir, 'cell.json') mechanism_dir = '../../../model/channels/vavoulis' # load model cell = Cell.from_modeldir(model_dir, mechanism_dir) # parameters AP_threshold = -10 amp1 = 0.6 sine1_dur = 1000 onset_dur = 500 offset_dur = 500 dt = 0.01 d_amp = 0.1 amp2s = np.arange(0.1, 1.0+d_amp, d_amp) d_freq = 2 freq2s = np.arange(3, 15+d_freq, d_freq) ISI_first = init_nan((len(amp2s), len(freq2s))) save_dir_img = os.path.join(save_dir, 'img', 'sine_stimulus', 'when_doublet', 'start', 'amp1_'+str(amp1) + '_dur1_'+str(sine1_dur)) if not os.path.exists(save_dir_img): os.makedirs(save_dir_img) for i, amp2 in enumerate(amp2s): for j, freq2 in enumerate(freq2s): v, t, _ = simulate_sine_stimulus(cell, amp1, amp2, sine1_dur, freq2, onset_dur, offset_dur, dt) onsets = get_AP_onset_idxs(v, AP_threshold) # use only period in the middle if len(onsets) >= 2: if (onsets[1] - onsets[0]) * dt < 1/2 * 1/freq2 * 1000: ISI_first[i, j] = (onsets[1] - onsets[0]) * dt print ISI_first[i, j] pl.figure(figsize=(18, 8)) pl.plot(t, v, 'k', linewidth=1.0) pl.xlabel('Time (ms)') pl.ylabel('Membrane Potential (mV)') pl.ylim(-95, 55) pl.tight_layout() pl.savefig(os.path.join(save_dir_img, 'v_'+str(amp2)+'_'+str(freq2)+'.png')) #pl.show() # plot cmap = pl.get_cmap('viridis') ISI_max = 15 norm = Normalize(vmin=0, vmax=ISI_max) fig, ax = pl.subplots() for i, amp2 in enumerate(amp2s): for j, freq2 in enumerate(freq2s): if not np.isnan(ISI_first[i, j]): if ISI_first[i, j] > ISI_max: w = d_amp / 2 h = d_freq / 6 ax.add_patch(Rectangle((amp2 - w / 2, freq2 - h / 2), w, h, color='r')) else: c = cmap(norm(ISI_first[i, j])) w = d_amp/2 h = d_freq/6 ax.add_patch(Rectangle((amp2-w/2, freq2-h/2), w, h, color=c)) pl.xlim(amp2s[0]-d_amp/2, amp2s[-1]+d_amp/2) pl.ylim(freq2s[0]-d_freq/2, freq2s[-1]+d_freq/2) pl.xlabel('Amplitude (nA)') pl.ylabel('Frequency (Hz)') sm = pl.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array(np.array([0, ISI_max])) cb = pl.colorbar(sm) cb.ax.get_yaxis().labelpad = 20 cb.ax.set_ylabel('$ ISI_{2nd-1st}$', rotation=270) pl.tight_layout() pl.savefig(os.path.join(save_dir_img, 'ISI.png')) #pl.show()
df74c510b2fa1f4bec7ac08c8ae445e9eb2ce365
f259ca399ab33b5c2e66ae07921711ea5917ac9e
/pytorch/sphere20a.py
d4ce73637194c4236b20b4eb2bb1a4d6717c6d89
[]
no_license
jizhuoran/HyperTea_Maker
9a7930e1d6af995c8fdb9a15354eea5fc29f0806
2c3f8dfcb699495093165cd986eebedfb17a2433
refs/heads/master
2020-04-22T19:32:39.385611
2019-04-14T15:12:06
2019-04-14T15:12:48
170,610,900
4
0
null
null
null
null
UTF-8
Python
false
false
3,046
py
import torch.nn as nn import torch class sphere20a(nn.Module): def __init__(self,classnum=10574,feature=False): super(sphere20a, self).__init__() self.classnum = classnum self.feature = feature #input = B*3*112*96 self.conv1_1 = nn.Conv2d(3,64,3,2,1) #=>B*64*56*48 self.relu1_1 = nn.PReLU(64) self.conv1_2 = nn.Conv2d(64,64,3,1,1) self.relu1_2 = nn.PReLU(64) self.conv1_3 = nn.Conv2d(64,64,3,1,1) self.relu1_3 = nn.PReLU(64) self.conv2_1 = nn.Conv2d(64,128,3,2,1) #=>B*128*28*24 self.relu2_1 = nn.PReLU(128) self.conv2_2 = nn.Conv2d(128,128,3,1,1) self.relu2_2 = nn.PReLU(128) self.conv2_3 = nn.Conv2d(128,128,3,1,1) self.relu2_3 = nn.PReLU(128) self.conv2_4 = nn.Conv2d(128,128,3,1,1) #=>B*128*28*24 self.relu2_4 = nn.PReLU(128) self.conv2_5 = nn.Conv2d(128,128,3,1,1) self.relu2_5 = nn.PReLU(128) self.conv3_1 = nn.Conv2d(128,256,3,2,1) #=>B*256*14*12 self.relu3_1 = nn.PReLU(256) self.conv3_2 = nn.Conv2d(256,256,3,1,1) self.relu3_2 = nn.PReLU(256) self.conv3_3 = nn.Conv2d(256,256,3,1,1) self.relu3_3 = nn.PReLU(256) self.conv3_4 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 self.relu3_4 = nn.PReLU(256) self.conv3_5 = nn.Conv2d(256,256,3,1,1) self.relu3_5 = nn.PReLU(256) self.conv3_6 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 self.relu3_6 = nn.PReLU(256) self.conv3_7 = nn.Conv2d(256,256,3,1,1) self.relu3_7 = nn.PReLU(256) self.conv3_8 = nn.Conv2d(256,256,3,1,1) #=>B*256*14*12 self.relu3_8 = nn.PReLU(256) self.conv3_9 = nn.Conv2d(256,256,3,1,1) self.relu3_9 = nn.PReLU(256) self.conv4_1 = nn.Conv2d(256,512,3,2,1) #=>B*512*7*6 self.relu4_1 = nn.PReLU(512) self.conv4_2 = nn.Conv2d(512,512,3,1,1) self.relu4_2 = nn.PReLU(512) self.conv4_3 = nn.Conv2d(512,512,3,1,1) self.relu4_3 = nn.PReLU(512) self.fc5 = nn.Linear(512*7*6,512) self.fc6 = nn.Linear(512,self.classnum) def forward(self, x): x = self.relu1_1(self.conv1_1(x)) x = x + self.relu1_3(self.conv1_3(self.relu1_2(self.conv1_2(x)))) x = self.relu2_1(self.conv2_1(x)) x = x + self.relu2_3(self.conv2_3(self.relu2_2(self.conv2_2(x)))) x = x + self.relu2_5(self.conv2_5(self.relu2_4(self.conv2_4(x)))) x = self.relu3_1(self.conv3_1(x)) x = x + self.relu3_3(self.conv3_3(self.relu3_2(self.conv3_2(x)))) x = x + self.relu3_5(self.conv3_5(self.relu3_4(self.conv3_4(x)))) x = x + self.relu3_7(self.conv3_7(self.relu3_6(self.conv3_6(x)))) x = x + self.relu3_9(self.conv3_9(self.relu3_8(self.conv3_8(x)))) x = self.relu4_1(self.conv4_1(x)) x = x + self.relu4_3(self.conv4_3(self.relu4_2(self.conv4_2(x)))) x = x.view(x.size(0),-1) x = self.fc5(x) x = self.fc6(x) return x
42978fcaa46628548561391c85f29c13b5e7dd6d
44600adf1731a449ff2dd5c84ce92c7f8b567fa4
/colour_down/examples/plotting/examples_volume_plots.py
769af73894ba737a07e58c6c32c7848950048d7f
[]
no_license
ajun73/Work_Code
b6a3581c5be4ccde93bd4632d8aaaa9ecc782b43
017d12361f7f9419d4b45b23ed81f9856278e849
refs/heads/master
2020-04-11T23:16:43.994397
2019-12-28T07:48:44
2019-12-28T07:48:44
162,161,852
0
1
null
null
null
null
UTF-8
Python
false
false
1,535
py
# -*- coding: utf-8 -*- """ Showcases colour models volume and gamut plotting examples. """ import numpy as np from colour.plotting import (RGB_colourspaces_gamuts_plot, RGB_scatter_plot, colour_plotting_defaults) from colour.utilities import message_box message_box('Colour Models Volume and Gamut Plots') colour_plotting_defaults() message_box(('Plotting "ITU-R BT.709" RGB colourspace volume in "CIE xyY" ' 'colourspace.')) RGB_colourspaces_gamuts_plot( ('ITU-R BT.709', ), reference_colourspace='CIE xyY') print('\n') message_box(('Comparing "ITU-R BT.709" and "ACEScg" RGB colourspaces volume ' 'in "CIE L*a*b*" colourspace.')) RGB_colourspaces_gamuts_plot( ('ITU-R BT.709', 'ACEScg'), reference_colourspace='CIE Lab', style={ 'face_colours': (None, (0.25, 0.25, 0.25)), 'edge_colours': (None, (0.25, 0.25, 0.25)), 'edge_alpha': (1.0, 0.1), 'face_alpha': (1.0, 0.0) }) print('\n') message_box(('Plotting "ACEScg" colourspaces values in "CIE L*a*b*" ' 'colourspace.')) RGB = np.random.random((32, 32, 3)) RGB_scatter_plot( RGB, 'ACEScg', reference_colourspace='CIE Lab', colourspaces=('ACEScg', 'ITU-R BT.709'), face_colours=((0.25, 0.25, 0.25), None), edge_colours=((0.25, 0.25, 0.25), None), edge_alpha=(0.1, 0.5), face_alpha=(0.1, 0.5), grid_face_colours=(0.1, 0.1, 0.1), grid_edge_colours=(0.1, 0.1, 0.1), grid_edge_alpha=0.5, grid_face_alpha=0.1)
ead60febeb04e387de8528926f63dddb77c1025d
d27b030ce654d523b266821080acb246d71a85af
/PDB/clrender.py
b5283cb280bcb2552552a4dac8d1945ddc356746
[]
no_license
amiller/graphicsii
9b6d638591a8df3267865a1be83cb1591586f662
da6cc6347d2b1f344056b71358a4b5b8efabdb77
refs/heads/master
2016-09-03T06:23:42.297039
2011-05-02T02:39:15
2011-05-02T02:39:15
1,689,837
0
0
null
null
null
null
UTF-8
Python
false
false
4,923
py
import pyglet.gl from OpenGL.GL import * from OpenGL.GLU import * from molecule import Molecule import pyopencl as cl import numpy as np def print_info(obj, info_cls): for info_name in sorted(dir(info_cls)): if not info_name.startswith("_") and info_name != "to_string": info = getattr(info_cls, info_name) try: info_value = obj.get_info(info) except: info_value = "<error>" print "%s: %s" % (info_name, info_value) platform = cl.get_platforms()[0] device = platform.get_devices()[0] context = cl.Context([device]) print_info(context.devices[0], cl.device_info) queue = cl.CommandQueue(context, properties = cl.command_queue_properties.PROFILING_ENABLE) mf = cl.mem_flags N = 512 class CLRender(object): angles = [0,0,0] scale = 1 mol = None env_buf = None def __init__(self): self.dst = np.empty((N,N,4)).astype(np.uint8) self.dst_buf = cl.Buffer(context, mf.WRITE_ONLY, self.dst.nbytes) self.inv_matrix = cl.Buffer(context, mf.READ_ONLY, 16 * 4) self.matrix = cl.Buffer(context, mf.READ_ONLY, 16 * 4) with open('kernel.cl','r') as f: self.program = cl.Program(context, f.read()).build("-cl-mad-enable") print self.program.get_build_info(context.devices[0], cl.program_build_info.LOG) self.dstTex = glGenTextures(1); glBindTexture(GL_TEXTURE_2D, self.dstTex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, N, N, 0, GL_RGBA, GL_UNSIGNED_BYTE, None); glBindTexture(GL_TEXTURE_2D, 0); print_info(self.program, cl.program_info) print_info(self.program.pdbTracer, cl.kernel_info) grid = np.array(range(256),dtype=np.float32)/256 x1,x2 = np.meshgrid(grid, grid) rad = np.sqrt(x1) phi = 2*np.pi * x2 phimap = np.dstack((np.cos(phi)*rad, np.sin(phi)*rad, np.sqrt(1-rad*rad), 0*rad)) self.p = phimap fmt = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT) self.phimap = cl.Image(context, mf.READ_ONLY | mf.COPY_HOST_PTR, fmt, shape=phimap.shape[:2], hostbuf=np.array(phimap, order='C')) def applySceneTransforms(self): gluLookAt(0, 0, 2*self.mol.radius, 0, 0, 0, 0, 1, 0); # Push molecule away from the origin along -Z direction. glScalef(self.scale,self.scale,self.scale); def mouse_rotate(xAngle, yAngle, zAngle): glRotatef(xAngle, 1.0, 0.0, 0.0); glRotatef(yAngle, 0.0, 1.0, 0.0); glRotatef(zAngle, 0.0, 0.0, 1.0); mouse_rotate(self.angles[0],self.angles[1],self.angles[2]); glTranslatef(-self.mol.x, -self.mol.y, -self.mol.z); # Bring molecue center to origin def render(self): glBindTexture(GL_TEXTURE_2D, self.dstTex) glEnable(GL_TEXTURE_2D) glBegin(GL_QUADS) glTexCoord2f( 0.0, 0.0 ); glVertex3f( -1.0, -1.0, -1.0 ) glTexCoord2f( 0.0, 1.0 ); glVertex3f( -1.0, 1.0, -1.0 ) glTexCoord2f( 1.0, 1.0 ); glVertex3f( 1.0, 1.0, -1.0 ) glTexCoord2f( 1.0, 0.0 ); glVertex3f( 1.0, -1.0, -1.0 ) glEnd() glDisable(GL_TEXTURE_2D) def compute(self): glMatrixMode(GL_MODELVIEW) glPushMatrix() glLoadIdentity() self.applySceneTransforms() mat = np.array(glGetFloat(GL_MODELVIEW_MATRIX).transpose(), order='C') glPopMatrix() inv = np.array(np.linalg.inv(mat), order='C') e1 = cl.enqueue_write_buffer(queue, self.matrix, mat) e2 = cl.enqueue_write_buffer(queue, self.inv_matrix, inv) e3 = self.program.pdbTracer(queue, self.dst.shape[:2], self.dst_buf, self.matrix, self.inv_matrix, np.array(len(self.mol.spheres)), self.spheredata, self.envmap, self.phimap, self.sampler) e4 = cl.enqueue_read_buffer(queue, self.dst_buf, self.dst) queue.finish() e4.wait() for e in [e3]: print (e.profile.END - e.profile.START)*1e-9 glBindTexture(GL_TEXTURE_2D, self.dstTex) glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, N, N, GL_RGBA, GL_UNSIGNED_BYTE, self.dst) def set_envmap(self, envmap): fmt = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT) em = np.zeros(envmap.shape[:2] + (4,), dtype=np.float32) em[:,:,:3] = envmap; em[:,:,3] = 1; self.envmap = cl.Image(context, mf.READ_ONLY | mf.COPY_HOST_PTR, fmt, shape=em.shape[:2], hostbuf=em) self.sampler = cl.Sampler(context, True, cl.addressing_mode.CLAMP, cl.filter_mode.LINEAR) def set_molecule(self, mol): self.mol = mol self.spheredata = cl.Buffer(context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf = self.mol.spheredata) def load_molecule(self, filename): self.set_molecule(Molecule(filename)) if __name__ == "__main__": from pfmloader import load_pfm r = CLRender() r.set_molecule(Molecule('data/sugars/sucrose.pdb')) r.set_envmap(load_pfm('data/probes/stpeters_probe.pfm')) r.compute()
21e1b0da1f6e231a3370a401206faebd2f2aff3e
c351c54ff292d4ce8628cf033f8f3026829d79f3
/blog_api/apis/authorization_layer/python/bin/pyrsa-keygen
126ebac139a75ad6bfe8c1f5d7e0f83016d8882e
[]
no_license
MathiasDarr/Portfolio
424ba0d3bd3b36bb9be09a31ea0b9bca2d3cc568
0eb6377d9aedba75ac30a0a5583f47dc31d31810
refs/heads/master
2023-02-06T04:33:44.123544
2020-12-31T08:35:45
2020-12-31T08:35:45
261,949,420
0
0
null
null
null
null
UTF-8
Python
false
false
232
#!/home/mddarr/data/anaconda3/bin/python # -*- coding: utf-8 -*- import re import sys from rsa.cli import keygen if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(keygen())
d0c9931e691e704b6c556340c506cac64843ae85
08966e05b74e20774ed9cdd4501e843fab0a3a86
/capacitacion/views.py
9cc93845a726d801555587f8fe78a07b320dc903
[]
no_license
luisfarfan/capacitacion_v2
6a650ea3119ad7da65f26f146c7e5d9d5139e76d
802ef6b4c1101153a1c77e1bdf41bfe1966f4bff
refs/heads/master
2020-06-30T20:14:52.686006
2016-12-10T00:05:01
2016-12-10T00:05:01
74,354,910
0
0
null
null
null
null
UTF-8
Python
false
false
10,455
py
from rest_framework.views import APIView from django.db.models import Count, Value from django.http import JsonResponse from django.http import HttpResponse from django.template import loader from serializer import * from rest_framework import generics from django.views.decorators.csrf import csrf_exempt from django.db.models import F from datetime import datetime import pandas as pd from django.db.models.functions import Concat from django.core.exceptions import ObjectDoesNotExist import json def modulo_registro(request): template = loader.get_template('capacitacion/modulo_registro.html') context = { 'titulo_padre': 'Capacitacion', 'titulo_hijo': 'REGISTRO DE LOCAL' } return HttpResponse(template.render(context, request)) def cursos_evaluaciones(request): template = loader.get_template('capacitacion/cursos_evaluaciones.html') context = { 'titulo_padre': 'Capacitacion', 'titulo_hijo': 'Cursos y Evaluaciones' } return HttpResponse(template.render(context, request)) def asistencia(request): template = loader.get_template('capacitacion/asistencia.html') context = { 'titulo_padre': 'Capacitacion', 'titulo_hijo': 'Modulo de Asistencia' } return HttpResponse(template.render(context, request)) def distribucion(request): template = loader.get_template('capacitacion/distribucion.html') context = { 'titulo_padre': 'Capacitacion', 'titulo_hijo': 'Modulo de Distribucion' } return HttpResponse(template.render(context, request)) # Create your views here. class DepartamentosList(APIView): def get(self, request): departamentos = list( Ubigeo.objects.values('ccdd', 'departamento').annotate(dcount=Count('ccdd', 'departamento'))) response = JsonResponse(departamentos, safe=False) return response class ProvinciasList(APIView): def get(self, request, ccdd): provincias = list( Ubigeo.objects.filter(ccdd=ccdd).values('ccpp', 'provincia').annotate(dcount=Count('ccpp', 'provincia'))) response = JsonResponse(provincias, safe=False) return response class DistritosList(APIView): def get(self, request, ccdd, ccpp): distritos = list(Ubigeo.objects.filter(ccdd=ccdd, ccpp=ccpp).values('ccdi', 'distrito').annotate( dcount=Count('ccdi', 'distrito'))) response = JsonResponse(distritos, safe=False) return response class ZonasList(APIView): def get(self, request, ubigeo): zonas = list( Zona.objects.filter(UBIGEO=ubigeo).values('UBIGEO', 'ZONA', 'ETIQ_ZONA').annotate( dcount=Count('UBIGEO', 'ZONA'))) response = JsonResponse(zonas, safe=False) return response class TbLocalByUbigeoViewSet(generics.ListAPIView): serializer_class = LocalSerializer def get_queryset(self): ubigeo = self.kwargs['ubigeo'] return Local.objects.filter(ubigeo=ubigeo) class TbLocalByZonaViewSet(generics.ListAPIView): serializer_class = LocalAulasSerializer def get_queryset(self): ubigeo = self.kwargs['ubigeo'] zona = self.kwargs['zona'] return Local.objects.filter(ubigeo=ubigeo, zona=zona) def TbLocalAmbienteByLocalViewSet(request, id_local): query = LocalAmbiente.objects.filter(id_local=id_local).order_by('-capacidad').annotate( nombre_ambiente=F('id_ambiente__nombre_ambiente')).values( 'id_localambiente', 'numero', 'capacidad', 'nombre_ambiente') return JsonResponse(list(query), safe=False) class LocalAmbienteByLocalAulaViewSet(generics.ListAPIView): serializer_class = LocalAmbienteSerializer def get_queryset(self): id_local = self.kwargs['id_local'] id_ambiente = self.kwargs['id_ambiente'] return LocalAmbiente.objects.filter(id_local=id_local, id_ambiente=id_ambiente) class AmbienteViewSet(viewsets.ModelViewSet): queryset = Ambiente.objects.all() serializer_class = AmbienteSerializer class LocalViewSet(viewsets.ModelViewSet): queryset = Local.objects.all() serializer_class = LocalSerializer class LocalAmbienteViewSet(viewsets.ModelViewSet): queryset = LocalAmbiente.objects.all() serializer_class = LocalAmbienteSerializer class CursobyEtapaViewSet(generics.ListAPIView): serializer_class = CursoSerializer def get_queryset(self): id_etapa = self.kwargs['id_etapa'] return Curso.objects.filter(id_etapa=id_etapa) class CriteriosViewSet(viewsets.ModelViewSet): queryset = Criterio.objects.all() serializer_class = CriterioSerializer class CursoCriteriosViewSet(viewsets.ModelViewSet): queryset = CursoCriterio.objects.all() serializer_class = CursoCriterioSerializer class CursoViewSet(viewsets.ModelViewSet): queryset = Curso.objects.all() serializer_class = CursoSerializer class CursoCriteriobyCursoViewSet(generics.ListAPIView): serializer_class = CursoCriterioSerializer def get_queryset(self): id_curso = self.kwargs['id_curso'] return CursoCriterio.objects.filter(id_curso=id_curso) class PEA_BY_AULAViewSet(viewsets.ModelViewSet): queryset = LocalAmbiente.objects.all() serializer_class = PEA_BY_AULASerializer class PEA_ASISTENCIAViewSet(viewsets.ModelViewSet): queryset = PEA_ASISTENCIA.objects.all() serializer_class = PEA_ASISTENCIASerializer class PEA_AULAViewSet(generics.ListAPIView): serializer_class = PEA_AULASerializer def get_queryset(self): id_localambiente = self.kwargs['id_localambiente'] return PEA_AULA.objects.filter(id_localambiente=id_localambiente) class PEA_AULAbyLocalAmbienteViewSet(generics.ListAPIView): serializer_class = PEA_AULASerializer def get_queryset(self): id_localambiente = self.kwargs['id_localambiente'] return PEA_AULA.objects.filter(id_localambiente=id_localambiente) @csrf_exempt def sobrantes_zona(request): if request.method == "POST" and request.is_ajax(): ubigeo = request.POST['ubigeo'] zona = request.POST['zona'] sobrantes = PEA.objects.exclude(id_pea__in=PEA_AULA.objects.values('id_pea')).filter(ubigeo=ubigeo, zona=zona).order_by( 'ape_paterno').values('dni', 'ape_paterno', 'ape_materno', 'nombre', 'cargo') return JsonResponse(list(sobrantes), safe=False) return JsonResponse({'msg': False}) @csrf_exempt def asignar(request): if request.method == "POST" and request.is_ajax(): ubigeo = request.POST['ubigeo'] zona = request.POST['zona'] locales_zona = Local.objects.filter(ubigeo=ubigeo, zona=zona) for e in locales_zona: aulas_by_local = LocalAmbiente.objects.filter(id_local=e.id_local).order_by('-capacidad') for a in aulas_by_local: if disponibilidad_aula(a.id_localambiente): pea_ubicar = PEA.objects.exclude(id_pea__in=PEA_AULA.objects.values('id_pea')).filter( ubigeo=ubigeo, zona=zona, id_cargofuncional__in=Funcionario.objects.filter(id_curso=e.id_curso)).order_by( 'ape_paterno')[:a.capacidad] for p in pea_ubicar: pea = PEA.objects.get(pk=p.id_pea) aula = LocalAmbiente.objects.get(pk=a.id_localambiente) pea_aula = PEA_AULA(id_pea=pea, id_localambiente=aula) pea_aula.save() return JsonResponse({'msg': True}) return JsonResponse({'msg': False}) def disponibilidad_aula(aula): aula = LocalAmbiente.objects.get(pk=aula) cantidad_asignada = PEA_AULA.objects.filter(id_localambiente=aula).count() is_disponible = True if cantidad_asignada >= aula.capacidad: is_disponible = False return is_disponible """ TURNO 0 = MANANA 1 = TARDE 2 = TOOD EL DIA """ def getRangeDatesLocal(request, id_local): format_fechas = [] local = Local.objects.filter(pk=id_local).values('fecha_inicio', 'fecha_fin', 'turno_uso_local') fecha_inicio = datetime.strptime(local[0]['fecha_inicio'], '%d/%m/%Y').strftime('%Y-%m-%d') fecha_fin = datetime.strptime(local[0]['fecha_fin'], '%d/%m/%Y').strftime('%Y-%m-%d') rango_fechas = pd.Series(pd.date_range(fecha_inicio, fecha_fin).format()) for f in rango_fechas: format_fechas.append(datetime.strptime(f, '%Y-%m-%d').strftime('%d/%m/%Y')) return JsonResponse({'fechas': format_fechas, 'turno': local[0]['turno_uso_local']}, safe=False) def getPeaAsistencia(request): id_localambiente = request.POST['id_localambiente'] fecha = request.POST['fecha'] pea = PEA_AULA.objects.filter(id_localambiente=id_localambiente).annotate( nombre_completo=Concat( 'id_pea__ape_paterno', Value(' '), 'id_pea__ape_materno', Value(' '), 'id_pea__nombre'), cargo=F('id_pea__cargo')).values('nombre_completo', 'cargo', 'id_pea__pea_aula__pea_asistencia__turno_manana', 'id_pea__pea_aula__pea_asistencia__turno_tarde') return JsonResponse(list(pea), safe=False) @csrf_exempt def save_asistencia(request): if request.method == "POST" and request.is_ajax(): data = json.loads(request.body) for i in data: try: pea = PEA_ASISTENCIA.objects.get(fecha=i['fecha'], id_peaaula=PEA_AULA.objects.get(pk=i['id_peaaula'])) except ObjectDoesNotExist: pea = None if pea is None: pea_asistencia = PEA_ASISTENCIA(fecha=i['fecha'], turno_manana=i['turno_manana'], turno_tarde=i['turno_tarde'], id_peaaula=PEA_AULA.objects.get(pk=i['id_peaaula'])) pea_asistencia.save() else: pea_asistencia = PEA_ASISTENCIA.objects.get(fecha=i['fecha'], id_peaaula=PEA_AULA.objects.get(pk=i['id_peaaula'])) pea_asistencia.turno_tarde = i['turno_tarde'] pea_asistencia.turno_manana = i['turno_manana'] pea_asistencia.save() return JsonResponse({'msg': True})
7ecaa4450f543c9a68460f1cc3e01872c9cb707f
09ee86d0bd77ca79992f073b6c8b1e98b88cb09b
/resource_allocation.py
df8c166cbc456843a049ef8501f85c59300fe21a
[]
no_license
JaneWuNEU/hitdl_server
624fbb5cfea3641cb624a291ed6de1e274982463
9076a813c803bc9c47054fff7bae2824304da282
refs/heads/master
2022-12-29T22:14:44.496492
2020-10-13T01:58:19
2020-10-13T01:58:19
303,327,129
0
0
null
null
null
null
UTF-8
Python
false
false
4,589
py
import cvxpy as cp import numpy as np c1 = np.array([1,3,5]) e1 = np.array([1.505,1.351,1.27])*c1 c2 = np.array([2,5,7]) e2 = np.array([1.844,1.502,1.843])*c2 c3 = np.array([1,5]) e3 = np.array([1.505,1.148])*c3 C = 12 ''' x1 = cp.Variable(name="inception",shape=(len(c1),1),integer=True,pos=True) y1 = cp.Variable(shape=(len(c1),1),integer=True,pos=True) x2 = cp.Variable(name="mobilenet",shape=(len(c2),1),integer=True,pos=True) y2 = cp.Variable(shape=(len(c2),1),integer=True,pos=True) x3= cp.Variable(name="resnet",shape=(len(c3),1),integer=True,pos=True) y3 = cp.Variable(shape=(len(c3),1),integer=True,pos=True) x1 = cp.Variable(name="inception",shape=(len(c1),1),pos=True) y1 = cp.Variable(shape=(len(c1),1),pos=True) x2 = cp.Variable(name="mobilenet",shape=(len(c2),1),pos=True) y2 = cp.Variable(shape=(len(c2),1),pos=True) x3= cp.Variable(name="resnet",shape=(len(c3),1),pos=True) y3 = cp.Variable(shape=(len(c3),1),pos=True) exp1 = [email protected](x1-np.ones((len(c1),1)),y1-np.ones((len(c1),1))) exp2 = [email protected](x2-np.ones((len(c2),1)),y2-np.ones((len(c2),1))) exp3 = [email protected](x3-np.ones((len(c3),1)),y3-np.ones((len(c3),1))) exp4 = [email protected](x1-np.ones((len(c1),1)),y1-np.ones((len(c1),1))) exp5 = [email protected](x2-np.ones((len(c2),1)),y2-np.ones((len(c2),1))) exp6 = [email protected](x3-np.ones((len(c3),1)),y3-np.ones((len(c3),1))) obj = exp1+exp2+exp3 print(obj.shape) cores_cons = exp4+exp5+exp6 prob1 = cp.Problem(cp.Maximize(obj), [cp.sum(y1-np.ones((len(c1),1)))==1, cp.sum(y2-np.ones((len(c2),1)))==1, cp.sum(y3-np.ones((len(c3),1)))==1, cores_cons <= C]) result = prob1.solve(gp=True) ''' class MCKPAllocation: def __init__(self,CPU_Cores,F): self.CPU_Cores = CPU_Cores self.F = F self.C_upper = round(C*F) def cpu_const(self): ins_size = {"inception":{"intra":[1,3,5],"efficiency":[2.605,1.351,1.27]}, "resnet":{"intra":[2,5,7],"efficiency":[1.844,1.502,1.843]}, "mobilenet":{"intra":[1,5],"efficiency":[1.505,1.148]}} total_plans = len(ins_size["inception"]["intra"])+len(ins_size["resnet"]["intra"])+len(ins_size["mobilenet"]["intra"]) overall_cons = np.zeros(total_plans) overall_E = np.zeros(total_plans) model_cons = [np.zeros(total_plans),np.zeros(total_plans),np.zeros(total_plans)]#{"inception":np.zeros(total_plans),"resnet":np.zeros(total_plans),"mobilenet":np.zeros(total_plans)} cons_start = {"inception":0,"resnet":len(ins_size["inception"]["intra"]),"mobilenet":len(ins_size["resnet"]["intra"])+len(ins_size["inception"]["intra"])} i = 0 ins_num_upper = np.zeros(total_plans) ins_num_lower = [np.zeros(total_plans),np.zeros(total_plans),np.zeros(total_plans)] for model_name in ["inception","resnet","mobilenet"]: model_cons[i][cons_start[model_name]:cons_start[model_name]+len(ins_size[model_name]["intra"])] = ins_size[model_name]["intra"] overall_cons[cons_start[model_name]:cons_start[model_name]+len(ins_size[model_name]["intra"])] = ins_size[model_name]["intra"] overall_E[cons_start[model_name]:cons_start[model_name] + len(ins_size[model_name]["intra"])] = ins_size[model_name]["efficiency"] ins_num_upper[cons_start[model_name]:cons_start[model_name] + len(ins_size[model_name]["intra"])] = np.floor(C_upper/np.array(ins_size[model_name]["intra"])) ins_num_lower[i][cons_start[model_name]:cons_start[model_name] + len(ins_size[model_name]["intra"])] =np.ones(len(ins_size[model_name]["intra"])) i = i+1 return overall_cons,model_cons,overall_E,ins_num_upper.reshape((total_plans,1)),ins_num_lower def resource_allocation(self): result = self.cpu_const() overall_cons = result[0] model_cons = result[1] overall_E = result[2] ins_num_upper = result[3] ins_num_lower = result[4] Z = cp.Variable((len(overall_cons),1),integer=True) obj = cp.Maximize(overall_E@Z) prob = cp.Problem(obj,[overall_cons@Z<=C, model_cons[0]@Z<=C_upper,model_cons[1]@Z<=C_upper,model_cons[2]@Z<=C_upper,Z<=ins_num_upper, ins_num_lower[0] @ Z >=1, ins_num_lower[1] @ Z >=1, ins_num_lower[2] @ Z >=1, Z <= ins_num_upper, Z>=np.zeros(shape=(len(overall_cons),1))]) print(prob.solve(),prob.status) print(Z.value) resource_allocation()
e739ca2725e96d1eb54ca21c74baf7f2e0a954eb
7ce56dc3a1110b61d0087565f02b4fe576cad58c
/scrapy_test/coolscrapy/coolscrapy/middlewares.py
2c8cf90cc52912785d05f2df18a5cb027042f66d
[]
no_license
lssxfy123/PythonStudy
7c251961ce72217e83184853cb0c11dc773e4075
d5beba373b78c6c0276c413a44819d3084899d01
refs/heads/master
2022-11-28T17:25:36.957483
2021-11-26T09:55:32
2021-11-26T09:55:32
55,392,700
1
1
null
2022-11-22T01:39:12
2016-04-04T07:28:25
Jupyter Notebook
UTF-8
Python
false
false
3,605
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class CoolscrapySpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class CoolscrapyDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
bef5e7923ef0e16ee3bfb5807262adf9b9c54494
159f1032e3da50f15718e2ca99f6a3e50642b4b0
/disquaire_project/disquaire_project/settings.py
b5ca2ae7e481309473f430f6948a4b80df16b46c
[]
no_license
Ellobo1er/disquaire_project
a3b29372dfe95f9938cd84723633f0ef3120ab3e
0af1d93b2f8aa6302cb6ecb0b2d5b3bd7ddcb2ef
refs/heads/master
2023-06-28T14:23:54.285800
2021-07-29T16:01:23
2021-07-29T16:01:23
390,767,796
0
0
null
null
null
null
UTF-8
Python
false
false
3,373
py
""" Django settings for disquaire_project project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '$4fpf$=&&zwkr1qty!b1gu)57_y+_kvvygn5@bz698or1jqa&s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'store.apps.StoreConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'debug_toolbar', ] # ... INTERNAL_IPS = ['127.0.0.1'] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ] ROOT_URLCONF = 'disquaire_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'disquaire_project.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'disquaire', 'USER': 'postgres', 'PASSWORD': 'admin', 'HOST': '127.0.0.1', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'fr' TIME_ZONE = 'Europe/Paris' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' INTERNAL_IPS = ['127.0.0.1']
6618838361e332c0f1e2a1d03010d913848c0609
4144df22392350035a9a24fcbc23fd1c6bce5c12
/Lib/glyphNameFormatter/rangeProcessors/ipa_extensions.py
ccf36e61c84dd3c9b8071eb6a3377ab9c632c3e7
[ "BSD-3-Clause", "Adobe-Glyph" ]
permissive
danielgrumer/glyphNameFormatter
55b6076684bed7ff4cc6e37ce4a0bb0e2ce86a4a
9a41b3ef02c01cd18afe0232f6e436a2f7379178
refs/heads/master
2020-12-11T05:35:47.835908
2016-03-19T09:50:33
2016-03-19T09:50:33
53,578,090
0
0
null
2016-03-10T11:07:31
2016-03-10T11:07:30
null
UTF-8
Python
false
false
1,329
py
def process(self): self.edit("LATIN") self.edit("OPEN", "open") self.edit("WITH FISHHOOK", "fishhook") self.edit("SCRIPT", "script") self.edit("WITH BELT", "belt") self.edit("WITH MIDDLE TILDE", "middletilde") self.edit("WITH LONG LEG", "longleg") self.edit("WITH CROSSED-TAIL", "crossedtail") self.edit("BILABIAL", "bilabial") self.edit("BIDENTAL", "bidental") self.edit("STRETCHED", "stretched") self.edit("WITH STROKE", "stroke") self.edit("SQUAT", "squat") self.edit("INVERTED", "inverted") self.edit("REVERSED", "reversed") self.replace("DZ", "dzed") self.replace("LZ", "lzed") self.replace("DIGRAPH") self.replace("PERCUSSIVE", "percussive") self.replace("GLOTTAL", "glottal") self.replace("STOP", "stop") self.replace("PHARYNGEAL", "pharyngeal") self.replace("VOICED", "voiced") self.replace("FRICATIVE", "fricative") self.replace("LETTER CLICK", "click") self.replace("LETTER GLOTTAL STOP WITH STROKE", "glottalstopstroke") self.replace("LETTER SMALL CAPITAL OE", "OEsmall") self.processDiacritics() self.processShape() self.handleCase() self.replace("LETTER") self.compress() if __name__ == "__main__": from glyphNameFormatter.test import printRange printRange("IPA Extensions")
e6fae05c449f2092d5fda416fb23b95be3b3aa1f
73105a000374f7bbe97dac50b91b0c019826a1ba
/account/pipelines.py
8fb36edc4bd7c7340a1ddea7f7606a19b22a27d7
[ "MIT" ]
permissive
carpedm20/UNIST-auction
657e80840e4c6adbfaeebd118acc03d4e04cc2a5
f2db1d6fdb2c7781b3c142f8a2582888e24ad06d
refs/heads/master
2021-01-22T04:43:55.844905
2014-10-21T14:01:32
2014-10-21T14:01:32
22,419,149
0
1
null
null
null
null
UTF-8
Python
false
false
746
py
from social_auth.backends.facebook import FacebookBackend from social_auth.backends.twitter import TwitterBackend from social_auth.backends import google from social_auth.signals import socialauth_registered def get_user_avatar(backend, details, response, social_user, uid,\ user, *args, **kwargs): url = None if backend.__class__ == FacebookBackend: url = "http://graph.facebook.com/%s/picture?type=large" % response['id'] elif backend.__class__ == TwitterBackend: url = response.get('profile_image_url', '').replace('_normal', '') else: url = 'http://www.gravatar.com/avatar/00000000000000000000000000000000' if url: user.profile_image_url = url user.save()
7bb48802e116289f7974b0bc98bf6ea4da6cdcc9
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/cloud/dialogflow/cx/v3beta1/dialogflow-cx-v3beta1-py/tests/unit/gapic/dialogflowcx_v3beta1/test_session_entity_types.py
e149c587481234541d44591766391b6ac202a885
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
97,381
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import mock import packaging.version import grpc from grpc.experimental import aio import math import pytest from proto.marshal.rules.dates import DurationRule, TimestampRule from google.api_core import client_options from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import grpc_helpers from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials from google.auth.exceptions import MutualTLSChannelError from google.cloud.dialogflowcx_v3beta1.services.session_entity_types import SessionEntityTypesAsyncClient from google.cloud.dialogflowcx_v3beta1.services.session_entity_types import SessionEntityTypesClient from google.cloud.dialogflowcx_v3beta1.services.session_entity_types import pagers from google.cloud.dialogflowcx_v3beta1.services.session_entity_types import transports from google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.base import _API_CORE_VERSION from google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.base import _GOOGLE_AUTH_VERSION from google.cloud.dialogflowcx_v3beta1.types import entity_type from google.cloud.dialogflowcx_v3beta1.types import session_entity_type from google.cloud.dialogflowcx_v3beta1.types import session_entity_type as gcdc_session_entity_type from google.oauth2 import service_account from google.protobuf import field_mask_pb2 # type: ignore import google.auth # TODO(busunkim): Once google-api-core >= 1.26.0 is required: # - Delete all the api-core and auth "less than" test cases # - Delete these pytest markers (Make the "greater than or equal to" tests the default). requires_google_auth_lt_1_25_0 = pytest.mark.skipif( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0"), reason="This test requires google-auth < 1.25.0", ) requires_google_auth_gte_1_25_0 = pytest.mark.skipif( packaging.version.parse(_GOOGLE_AUTH_VERSION) < packaging.version.parse("1.25.0"), reason="This test requires google-auth >= 1.25.0", ) requires_api_core_lt_1_26_0 = pytest.mark.skipif( packaging.version.parse(_API_CORE_VERSION) >= packaging.version.parse("1.26.0"), reason="This test requires google-api-core < 1.26.0", ) requires_api_core_gte_1_26_0 = pytest.mark.skipif( packaging.version.parse(_API_CORE_VERSION) < packaging.version.parse("1.26.0"), reason="This test requires google-api-core >= 1.26.0", ) def client_cert_source_callback(): return b"cert bytes", b"key bytes" # If default endpoint is localhost, then default mtls endpoint will be the same. # This method modifies the default endpoint so the client can produce a different # mtls endpoint for endpoint testing purposes. def modify_default_endpoint(client): return "foo.googleapis.com" if ("localhost" in client.DEFAULT_ENDPOINT) else client.DEFAULT_ENDPOINT def test__get_default_mtls_endpoint(): api_endpoint = "example.googleapis.com" api_mtls_endpoint = "example.mtls.googleapis.com" sandbox_endpoint = "example.sandbox.googleapis.com" sandbox_mtls_endpoint = "example.mtls.sandbox.googleapis.com" non_googleapi = "api.example.com" assert SessionEntityTypesClient._get_default_mtls_endpoint(None) is None assert SessionEntityTypesClient._get_default_mtls_endpoint(api_endpoint) == api_mtls_endpoint assert SessionEntityTypesClient._get_default_mtls_endpoint(api_mtls_endpoint) == api_mtls_endpoint assert SessionEntityTypesClient._get_default_mtls_endpoint(sandbox_endpoint) == sandbox_mtls_endpoint assert SessionEntityTypesClient._get_default_mtls_endpoint(sandbox_mtls_endpoint) == sandbox_mtls_endpoint assert SessionEntityTypesClient._get_default_mtls_endpoint(non_googleapi) == non_googleapi @pytest.mark.parametrize("client_class", [ SessionEntityTypesClient, SessionEntityTypesAsyncClient, ]) def test_session_entity_types_client_from_service_account_info(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object(service_account.Credentials, 'from_service_account_info') as factory: factory.return_value = creds info = {"valid": True} client = client_class.from_service_account_info(info) assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == 'dialogflow.googleapis.com:443' @pytest.mark.parametrize("client_class", [ SessionEntityTypesClient, SessionEntityTypesAsyncClient, ]) def test_session_entity_types_client_from_service_account_file(client_class): creds = ga_credentials.AnonymousCredentials() with mock.patch.object(service_account.Credentials, 'from_service_account_file') as factory: factory.return_value = creds client = client_class.from_service_account_file("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) client = client_class.from_service_account_json("dummy/file/path.json") assert client.transport._credentials == creds assert isinstance(client, client_class) assert client.transport._host == 'dialogflow.googleapis.com:443' def test_session_entity_types_client_get_transport_class(): transport = SessionEntityTypesClient.get_transport_class() available_transports = [ transports.SessionEntityTypesGrpcTransport, ] assert transport in available_transports transport = SessionEntityTypesClient.get_transport_class("grpc") assert transport == transports.SessionEntityTypesGrpcTransport @pytest.mark.parametrize("client_class,transport_class,transport_name", [ (SessionEntityTypesClient, transports.SessionEntityTypesGrpcTransport, "grpc"), (SessionEntityTypesAsyncClient, transports.SessionEntityTypesGrpcAsyncIOTransport, "grpc_asyncio"), ]) @mock.patch.object(SessionEntityTypesClient, "DEFAULT_ENDPOINT", modify_default_endpoint(SessionEntityTypesClient)) @mock.patch.object(SessionEntityTypesAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(SessionEntityTypesAsyncClient)) def test_session_entity_types_client_client_options(client_class, transport_class, transport_name): # Check that if channel is provided we won't create a new one. with mock.patch.object(SessionEntityTypesClient, 'get_transport_class') as gtc: transport = transport_class( credentials=ga_credentials.AnonymousCredentials() ) client = client_class(transport=transport) gtc.assert_not_called() # Check that if channel is provided via str we will create a new one. with mock.patch.object(SessionEntityTypesClient, 'get_transport_class') as gtc: client = client_class(transport=transport_name) gtc.assert_called() # Check the case api_endpoint is provided. options = client_options.ClientOptions(api_endpoint="squid.clam.whelk") with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "never". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "never"}): with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT is # "always". with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "always"}): with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_MTLS_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) # Check the case api_endpoint is not provided and GOOGLE_API_USE_MTLS_ENDPOINT has # unsupported value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "Unsupported"}): with pytest.raises(MutualTLSChannelError): client = client_class() # Check the case GOOGLE_API_USE_CLIENT_CERTIFICATE has unsupported value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": "Unsupported"}): with pytest.raises(ValueError): client = client_class() # Check the case quota_project_id is provided options = client_options.ClientOptions(quota_project_id="octopus") with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id="octopus", client_info=transports.base.DEFAULT_CLIENT_INFO, ) @pytest.mark.parametrize("client_class,transport_class,transport_name,use_client_cert_env", [ (SessionEntityTypesClient, transports.SessionEntityTypesGrpcTransport, "grpc", "true"), (SessionEntityTypesAsyncClient, transports.SessionEntityTypesGrpcAsyncIOTransport, "grpc_asyncio", "true"), (SessionEntityTypesClient, transports.SessionEntityTypesGrpcTransport, "grpc", "false"), (SessionEntityTypesAsyncClient, transports.SessionEntityTypesGrpcAsyncIOTransport, "grpc_asyncio", "false"), ]) @mock.patch.object(SessionEntityTypesClient, "DEFAULT_ENDPOINT", modify_default_endpoint(SessionEntityTypesClient)) @mock.patch.object(SessionEntityTypesAsyncClient, "DEFAULT_ENDPOINT", modify_default_endpoint(SessionEntityTypesAsyncClient)) @mock.patch.dict(os.environ, {"GOOGLE_API_USE_MTLS_ENDPOINT": "auto"}) def test_session_entity_types_client_mtls_env_auto(client_class, transport_class, transport_name, use_client_cert_env): # This tests the endpoint autoswitch behavior. Endpoint is autoswitched to the default # mtls endpoint, if GOOGLE_API_USE_CLIENT_CERTIFICATE is "true" and client cert exists. # Check the case client_cert_source is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env}): options = client_options.ClientOptions(client_cert_source=client_cert_source_callback) with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class(client_options=options) if use_client_cert_env == "false": expected_client_cert_source = None expected_host = client.DEFAULT_ENDPOINT else: expected_client_cert_source = client_cert_source_callback expected_host = client.DEFAULT_MTLS_ENDPOINT patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) # Check the case ADC client cert is provided. Whether client cert is used depends on # GOOGLE_API_USE_CLIENT_CERTIFICATE value. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env}): with mock.patch.object(transport_class, '__init__') as patched: with mock.patch('google.auth.transport.mtls.has_default_client_cert_source', return_value=True): with mock.patch('google.auth.transport.mtls.default_client_cert_source', return_value=client_cert_source_callback): if use_client_cert_env == "false": expected_host = client.DEFAULT_ENDPOINT expected_client_cert_source = None else: expected_host = client.DEFAULT_MTLS_ENDPOINT expected_client_cert_source = client_cert_source_callback patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=expected_host, scopes=None, client_cert_source_for_mtls=expected_client_cert_source, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) # Check the case client_cert_source and ADC client cert are not provided. with mock.patch.dict(os.environ, {"GOOGLE_API_USE_CLIENT_CERTIFICATE": use_client_cert_env}): with mock.patch.object(transport_class, '__init__') as patched: with mock.patch("google.auth.transport.mtls.has_default_client_cert_source", return_value=False): patched.return_value = None client = client_class() patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) @pytest.mark.parametrize("client_class,transport_class,transport_name", [ (SessionEntityTypesClient, transports.SessionEntityTypesGrpcTransport, "grpc"), (SessionEntityTypesAsyncClient, transports.SessionEntityTypesGrpcAsyncIOTransport, "grpc_asyncio"), ]) def test_session_entity_types_client_client_options_scopes(client_class, transport_class, transport_name): # Check the case scopes are provided. options = client_options.ClientOptions( scopes=["1", "2"], ) with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file=None, host=client.DEFAULT_ENDPOINT, scopes=["1", "2"], client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) @pytest.mark.parametrize("client_class,transport_class,transport_name", [ (SessionEntityTypesClient, transports.SessionEntityTypesGrpcTransport, "grpc"), (SessionEntityTypesAsyncClient, transports.SessionEntityTypesGrpcAsyncIOTransport, "grpc_asyncio"), ]) def test_session_entity_types_client_client_options_credentials_file(client_class, transport_class, transport_name): # Check the case credentials file is provided. options = client_options.ClientOptions( credentials_file="credentials.json" ) with mock.patch.object(transport_class, '__init__') as patched: patched.return_value = None client = client_class(client_options=options) patched.assert_called_once_with( credentials=None, credentials_file="credentials.json", host=client.DEFAULT_ENDPOINT, scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) def test_session_entity_types_client_client_options_from_dict(): with mock.patch('google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.SessionEntityTypesGrpcTransport.__init__') as grpc_transport: grpc_transport.return_value = None client = SessionEntityTypesClient( client_options={'api_endpoint': 'squid.clam.whelk'} ) grpc_transport.assert_called_once_with( credentials=None, credentials_file=None, host="squid.clam.whelk", scopes=None, client_cert_source_for_mtls=None, quota_project_id=None, client_info=transports.base.DEFAULT_CLIENT_INFO, ) def test_list_session_entity_types(transport: str = 'grpc', request_type=session_entity_type.ListSessionEntityTypesRequest): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.ListSessionEntityTypesResponse( next_page_token='next_page_token_value', ) response = client.list_session_entity_types(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.ListSessionEntityTypesRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListSessionEntityTypesPager) assert response.next_page_token == 'next_page_token_value' def test_list_session_entity_types_from_dict(): test_list_session_entity_types(request_type=dict) def test_list_session_entity_types_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport='grpc', ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: client.list_session_entity_types() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.ListSessionEntityTypesRequest() @pytest.mark.asyncio async def test_list_session_entity_types_async(transport: str = 'grpc_asyncio', request_type=session_entity_type.ListSessionEntityTypesRequest): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Designate an appropriate return value for the call. call.return_value =grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.ListSessionEntityTypesResponse( next_page_token='next_page_token_value', )) response = await client.list_session_entity_types(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.ListSessionEntityTypesRequest() # Establish that the response is the type that we expect. assert isinstance(response, pagers.ListSessionEntityTypesAsyncPager) assert response.next_page_token == 'next_page_token_value' @pytest.mark.asyncio async def test_list_session_entity_types_async_from_dict(): await test_list_session_entity_types_async(request_type=dict) def test_list_session_entity_types_field_headers(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.ListSessionEntityTypesRequest() request.parent = 'parent/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: call.return_value = session_entity_type.ListSessionEntityTypesResponse() client.list_session_entity_types(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'parent=parent/value', ) in kw['metadata'] @pytest.mark.asyncio async def test_list_session_entity_types_field_headers_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.ListSessionEntityTypesRequest() request.parent = 'parent/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.ListSessionEntityTypesResponse()) await client.list_session_entity_types(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'parent=parent/value', ) in kw['metadata'] def test_list_session_entity_types_flattened(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.ListSessionEntityTypesResponse() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.list_session_entity_types( parent='parent_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].parent == 'parent_value' def test_list_session_entity_types_flattened_error(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.list_session_entity_types( session_entity_type.ListSessionEntityTypesRequest(), parent='parent_value', ) @pytest.mark.asyncio async def test_list_session_entity_types_flattened_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.ListSessionEntityTypesResponse() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.ListSessionEntityTypesResponse()) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.list_session_entity_types( parent='parent_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].parent == 'parent_value' @pytest.mark.asyncio async def test_list_session_entity_types_flattened_error_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.list_session_entity_types( session_entity_type.ListSessionEntityTypesRequest(), parent='parent_value', ) def test_list_session_entity_types_pager(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Set the response to a series of pages. call.side_effect = ( session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], next_page_token='abc', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[], next_page_token='def', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), ], next_page_token='ghi', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], ), RuntimeError, ) metadata = () metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata(( ('parent', ''), )), ) pager = client.list_session_entity_types(request={}) assert pager._metadata == metadata results = [i for i in pager] assert len(results) == 6 assert all(isinstance(i, session_entity_type.SessionEntityType) for i in results) def test_list_session_entity_types_pages(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__') as call: # Set the response to a series of pages. call.side_effect = ( session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], next_page_token='abc', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[], next_page_token='def', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), ], next_page_token='ghi', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], ), RuntimeError, ) pages = list(client.list_session_entity_types(request={}).pages) for page_, token in zip(pages, ['abc','def','ghi', '']): assert page_.raw_page.next_page_token == token @pytest.mark.asyncio async def test_list_session_entity_types_async_pager(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__', new_callable=mock.AsyncMock) as call: # Set the response to a series of pages. call.side_effect = ( session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], next_page_token='abc', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[], next_page_token='def', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), ], next_page_token='ghi', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], ), RuntimeError, ) async_pager = await client.list_session_entity_types(request={},) assert async_pager.next_page_token == 'abc' responses = [] async for response in async_pager: responses.append(response) assert len(responses) == 6 assert all(isinstance(i, session_entity_type.SessionEntityType) for i in responses) @pytest.mark.asyncio async def test_list_session_entity_types_async_pages(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials, ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.list_session_entity_types), '__call__', new_callable=mock.AsyncMock) as call: # Set the response to a series of pages. call.side_effect = ( session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], next_page_token='abc', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[], next_page_token='def', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), ], next_page_token='ghi', ), session_entity_type.ListSessionEntityTypesResponse( session_entity_types=[ session_entity_type.SessionEntityType(), session_entity_type.SessionEntityType(), ], ), RuntimeError, ) pages = [] async for page_ in (await client.list_session_entity_types(request={})).pages: pages.append(page_) for page_, token in zip(pages, ['abc','def','ghi', '']): assert page_.raw_page.next_page_token == token def test_get_session_entity_type(transport: str = 'grpc', request_type=session_entity_type.GetSessionEntityTypeRequest): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.SessionEntityType( name='name_value', entity_override_mode=session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, ) response = client.get_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.GetSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE def test_get_session_entity_type_from_dict(): test_get_session_entity_type(request_type=dict) def test_get_session_entity_type_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport='grpc', ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: client.get_session_entity_type() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.GetSessionEntityTypeRequest() @pytest.mark.asyncio async def test_get_session_entity_type_async(transport: str = 'grpc_asyncio', request_type=session_entity_type.GetSessionEntityTypeRequest): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value =grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.SessionEntityType( name='name_value', entity_override_mode=session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, )) response = await client.get_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.GetSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE @pytest.mark.asyncio async def test_get_session_entity_type_async_from_dict(): await test_get_session_entity_type_async(request_type=dict) def test_get_session_entity_type_field_headers(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.GetSessionEntityTypeRequest() request.name = 'name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: call.return_value = session_entity_type.SessionEntityType() client.get_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'name=name/value', ) in kw['metadata'] @pytest.mark.asyncio async def test_get_session_entity_type_field_headers_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.GetSessionEntityTypeRequest() request.name = 'name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.SessionEntityType()) await client.get_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'name=name/value', ) in kw['metadata'] def test_get_session_entity_type_flattened(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.SessionEntityType() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.get_session_entity_type( name='name_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].name == 'name_value' def test_get_session_entity_type_flattened_error(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.get_session_entity_type( session_entity_type.GetSessionEntityTypeRequest(), name='name_value', ) @pytest.mark.asyncio async def test_get_session_entity_type_flattened_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.get_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = session_entity_type.SessionEntityType() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(session_entity_type.SessionEntityType()) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.get_session_entity_type( name='name_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].name == 'name_value' @pytest.mark.asyncio async def test_get_session_entity_type_flattened_error_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.get_session_entity_type( session_entity_type.GetSessionEntityTypeRequest(), name='name_value', ) def test_create_session_entity_type(transport: str = 'grpc', request_type=gcdc_session_entity_type.CreateSessionEntityTypeRequest): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType( name='name_value', entity_override_mode=gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, ) response = client.create_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.CreateSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcdc_session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE def test_create_session_entity_type_from_dict(): test_create_session_entity_type(request_type=dict) def test_create_session_entity_type_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport='grpc', ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: client.create_session_entity_type() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.CreateSessionEntityTypeRequest() @pytest.mark.asyncio async def test_create_session_entity_type_async(transport: str = 'grpc_asyncio', request_type=gcdc_session_entity_type.CreateSessionEntityTypeRequest): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value =grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType( name='name_value', entity_override_mode=gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, )) response = await client.create_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.CreateSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcdc_session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE @pytest.mark.asyncio async def test_create_session_entity_type_async_from_dict(): await test_create_session_entity_type_async(request_type=dict) def test_create_session_entity_type_field_headers(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcdc_session_entity_type.CreateSessionEntityTypeRequest() request.parent = 'parent/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: call.return_value = gcdc_session_entity_type.SessionEntityType() client.create_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'parent=parent/value', ) in kw['metadata'] @pytest.mark.asyncio async def test_create_session_entity_type_field_headers_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcdc_session_entity_type.CreateSessionEntityTypeRequest() request.parent = 'parent/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType()) await client.create_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'parent=parent/value', ) in kw['metadata'] def test_create_session_entity_type_flattened(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.create_session_entity_type( parent='parent_value', session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].parent == 'parent_value' assert args[0].session_entity_type == gcdc_session_entity_type.SessionEntityType(name='name_value') def test_create_session_entity_type_flattened_error(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.create_session_entity_type( gcdc_session_entity_type.CreateSessionEntityTypeRequest(), parent='parent_value', session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), ) @pytest.mark.asyncio async def test_create_session_entity_type_flattened_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.create_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType()) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.create_session_entity_type( parent='parent_value', session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].parent == 'parent_value' assert args[0].session_entity_type == gcdc_session_entity_type.SessionEntityType(name='name_value') @pytest.mark.asyncio async def test_create_session_entity_type_flattened_error_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.create_session_entity_type( gcdc_session_entity_type.CreateSessionEntityTypeRequest(), parent='parent_value', session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), ) def test_update_session_entity_type(transport: str = 'grpc', request_type=gcdc_session_entity_type.UpdateSessionEntityTypeRequest): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType( name='name_value', entity_override_mode=gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, ) response = client.update_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.UpdateSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcdc_session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE def test_update_session_entity_type_from_dict(): test_update_session_entity_type(request_type=dict) def test_update_session_entity_type_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport='grpc', ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: client.update_session_entity_type() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.UpdateSessionEntityTypeRequest() @pytest.mark.asyncio async def test_update_session_entity_type_async(transport: str = 'grpc_asyncio', request_type=gcdc_session_entity_type.UpdateSessionEntityTypeRequest): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value =grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType( name='name_value', entity_override_mode=gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE, )) response = await client.update_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == gcdc_session_entity_type.UpdateSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert isinstance(response, gcdc_session_entity_type.SessionEntityType) assert response.name == 'name_value' assert response.entity_override_mode == gcdc_session_entity_type.SessionEntityType.EntityOverrideMode.ENTITY_OVERRIDE_MODE_OVERRIDE @pytest.mark.asyncio async def test_update_session_entity_type_async_from_dict(): await test_update_session_entity_type_async(request_type=dict) def test_update_session_entity_type_field_headers(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcdc_session_entity_type.UpdateSessionEntityTypeRequest() request.session_entity_type.name = 'session_entity_type.name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: call.return_value = gcdc_session_entity_type.SessionEntityType() client.update_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'session_entity_type.name=session_entity_type.name/value', ) in kw['metadata'] @pytest.mark.asyncio async def test_update_session_entity_type_field_headers_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = gcdc_session_entity_type.UpdateSessionEntityTypeRequest() request.session_entity_type.name = 'session_entity_type.name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType()) await client.update_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'session_entity_type.name=session_entity_type.name/value', ) in kw['metadata'] def test_update_session_entity_type_flattened(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType() # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.update_session_entity_type( session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), update_mask=field_mask_pb2.FieldMask(paths=['paths_value']), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].session_entity_type == gcdc_session_entity_type.SessionEntityType(name='name_value') assert args[0].update_mask == field_mask_pb2.FieldMask(paths=['paths_value']) def test_update_session_entity_type_flattened_error(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.update_session_entity_type( gcdc_session_entity_type.UpdateSessionEntityTypeRequest(), session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), update_mask=field_mask_pb2.FieldMask(paths=['paths_value']), ) @pytest.mark.asyncio async def test_update_session_entity_type_flattened_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.update_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = gcdc_session_entity_type.SessionEntityType() call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(gcdc_session_entity_type.SessionEntityType()) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.update_session_entity_type( session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), update_mask=field_mask_pb2.FieldMask(paths=['paths_value']), ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].session_entity_type == gcdc_session_entity_type.SessionEntityType(name='name_value') assert args[0].update_mask == field_mask_pb2.FieldMask(paths=['paths_value']) @pytest.mark.asyncio async def test_update_session_entity_type_flattened_error_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.update_session_entity_type( gcdc_session_entity_type.UpdateSessionEntityTypeRequest(), session_entity_type=gcdc_session_entity_type.SessionEntityType(name='name_value'), update_mask=field_mask_pb2.FieldMask(paths=['paths_value']), ) def test_delete_session_entity_type(transport: str = 'grpc', request_type=session_entity_type.DeleteSessionEntityTypeRequest): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = None response = client.delete_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.DeleteSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert response is None def test_delete_session_entity_type_from_dict(): test_delete_session_entity_type(request_type=dict) def test_delete_session_entity_type_empty_call(): # This test is a coverage failsafe to make sure that totally empty calls, # i.e. request == None and no flattened fields passed, work. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport='grpc', ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: client.delete_session_entity_type() call.assert_called() _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.DeleteSessionEntityTypeRequest() @pytest.mark.asyncio async def test_delete_session_entity_type_async(transport: str = 'grpc_asyncio', request_type=session_entity_type.DeleteSessionEntityTypeRequest): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # Everything is optional in proto3 as far as the runtime is concerned, # and we are mocking out the actual API, so just send an empty request. request = request_type() # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(None) response = await client.delete_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == session_entity_type.DeleteSessionEntityTypeRequest() # Establish that the response is the type that we expect. assert response is None @pytest.mark.asyncio async def test_delete_session_entity_type_async_from_dict(): await test_delete_session_entity_type_async(request_type=dict) def test_delete_session_entity_type_field_headers(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.DeleteSessionEntityTypeRequest() request.name = 'name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: call.return_value = None client.delete_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'name=name/value', ) in kw['metadata'] @pytest.mark.asyncio async def test_delete_session_entity_type_field_headers_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Any value that is part of the HTTP/1.1 URI should be sent as # a field header. Set these to a non-empty value. request = session_entity_type.DeleteSessionEntityTypeRequest() request.name = 'name/value' # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(None) await client.delete_session_entity_type(request) # Establish that the underlying gRPC stub method was called. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0] == request # Establish that the field header was sent. _, _, kw = call.mock_calls[0] assert ( 'x-goog-request-params', 'name=name/value', ) in kw['metadata'] def test_delete_session_entity_type_flattened(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = None # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. client.delete_session_entity_type( name='name_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) == 1 _, args, _ = call.mock_calls[0] assert args[0].name == 'name_value' def test_delete_session_entity_type_flattened_error(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): client.delete_session_entity_type( session_entity_type.DeleteSessionEntityTypeRequest(), name='name_value', ) @pytest.mark.asyncio async def test_delete_session_entity_type_flattened_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Mock the actual call within the gRPC stub, and fake the request. with mock.patch.object( type(client.transport.delete_session_entity_type), '__call__') as call: # Designate an appropriate return value for the call. call.return_value = None call.return_value = grpc_helpers_async.FakeUnaryUnaryCall(None) # Call the method with a truthy value for each flattened field, # using the keyword arguments to the method. response = await client.delete_session_entity_type( name='name_value', ) # Establish that the underlying call was made with the expected # request object values. assert len(call.mock_calls) _, args, _ = call.mock_calls[0] assert args[0].name == 'name_value' @pytest.mark.asyncio async def test_delete_session_entity_type_flattened_error_async(): client = SessionEntityTypesAsyncClient( credentials=ga_credentials.AnonymousCredentials(), ) # Attempting to call a method with both a request object and flattened # fields is an error. with pytest.raises(ValueError): await client.delete_session_entity_type( session_entity_type.DeleteSessionEntityTypeRequest(), name='name_value', ) def test_credentials_transport_error(): # It is an error to provide credentials and a transport instance. transport = transports.SessionEntityTypesGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), transport=transport, ) # It is an error to provide a credentials file and a transport instance. transport = transports.SessionEntityTypesGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = SessionEntityTypesClient( client_options={"credentials_file": "credentials.json"}, transport=transport, ) # It is an error to provide scopes and a transport instance. transport = transports.SessionEntityTypesGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) with pytest.raises(ValueError): client = SessionEntityTypesClient( client_options={"scopes": ["1", "2"]}, transport=transport, ) def test_transport_instance(): # A client may be instantiated with a custom transport instance. transport = transports.SessionEntityTypesGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) client = SessionEntityTypesClient(transport=transport) assert client.transport is transport def test_transport_get_channel(): # A client may be instantiated with a custom transport instance. transport = transports.SessionEntityTypesGrpcTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel transport = transports.SessionEntityTypesGrpcAsyncIOTransport( credentials=ga_credentials.AnonymousCredentials(), ) channel = transport.grpc_channel assert channel @pytest.mark.parametrize("transport_class", [ transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport, ]) def test_transport_adc(transport_class): # Test default credentials are used if not provided. with mock.patch.object(google.auth, 'default') as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class() adc.assert_called_once() def test_transport_grpc_default(): # A client should use the gRPC transport by default. client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), ) assert isinstance( client.transport, transports.SessionEntityTypesGrpcTransport, ) def test_session_entity_types_base_transport_error(): # Passing both a credentials object and credentials_file should raise an error with pytest.raises(core_exceptions.DuplicateCredentialArgs): transport = transports.SessionEntityTypesTransport( credentials=ga_credentials.AnonymousCredentials(), credentials_file="credentials.json" ) def test_session_entity_types_base_transport(): # Instantiate the base transport. with mock.patch('google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.SessionEntityTypesTransport.__init__') as Transport: Transport.return_value = None transport = transports.SessionEntityTypesTransport( credentials=ga_credentials.AnonymousCredentials(), ) # Every method on the transport should just blindly # raise NotImplementedError. methods = ( 'list_session_entity_types', 'get_session_entity_type', 'create_session_entity_type', 'update_session_entity_type', 'delete_session_entity_type', ) for method in methods: with pytest.raises(NotImplementedError): getattr(transport, method)(request=object()) @requires_google_auth_gte_1_25_0 def test_session_entity_types_base_transport_with_credentials_file(): # Instantiate the base transport with a credentials file with mock.patch.object(google.auth, 'load_credentials_from_file', autospec=True) as load_creds, mock.patch('google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.SessionEntityTypesTransport._prep_wrapped_messages') as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.SessionEntityTypesTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with("credentials.json", scopes=None, default_scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), quota_project_id="octopus", ) @requires_google_auth_lt_1_25_0 def test_session_entity_types_base_transport_with_credentials_file_old_google_auth(): # Instantiate the base transport with a credentials file with mock.patch.object(google.auth, 'load_credentials_from_file', autospec=True) as load_creds, mock.patch('google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.SessionEntityTypesTransport._prep_wrapped_messages') as Transport: Transport.return_value = None load_creds.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.SessionEntityTypesTransport( credentials_file="credentials.json", quota_project_id="octopus", ) load_creds.assert_called_once_with("credentials.json", scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), quota_project_id="octopus", ) def test_session_entity_types_base_transport_with_adc(): # Test the default credentials are used if credentials and credentials_file are None. with mock.patch.object(google.auth, 'default', autospec=True) as adc, mock.patch('google.cloud.dialogflowcx_v3beta1.services.session_entity_types.transports.SessionEntityTypesTransport._prep_wrapped_messages') as Transport: Transport.return_value = None adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport = transports.SessionEntityTypesTransport() adc.assert_called_once() @requires_google_auth_gte_1_25_0 def test_session_entity_types_auth_adc(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, 'default', autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) SessionEntityTypesClient() adc.assert_called_once_with( scopes=None, default_scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), quota_project_id=None, ) @requires_google_auth_lt_1_25_0 def test_session_entity_types_auth_adc_old_google_auth(): # If no credentials are provided, we should use ADC credentials. with mock.patch.object(google.auth, 'default', autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) SessionEntityTypesClient() adc.assert_called_once_with( scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow',), quota_project_id=None, ) @pytest.mark.parametrize( "transport_class", [ transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport, ], ) @requires_google_auth_gte_1_25_0 def test_session_entity_types_transport_auth_adc(transport_class): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, 'default', autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) adc.assert_called_once_with( scopes=["1", "2"], default_scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow',), quota_project_id="octopus", ) @pytest.mark.parametrize( "transport_class", [ transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport, ], ) @requires_google_auth_lt_1_25_0 def test_session_entity_types_transport_auth_adc_old_google_auth(transport_class): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc: adc.return_value = (ga_credentials.AnonymousCredentials(), None) transport_class(quota_project_id="octopus") adc.assert_called_once_with(scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), quota_project_id="octopus", ) @pytest.mark.parametrize( "transport_class,grpc_helpers", [ (transports.SessionEntityTypesGrpcTransport, grpc_helpers), (transports.SessionEntityTypesGrpcAsyncIOTransport, grpc_helpers_async) ], ) @requires_api_core_gte_1_26_0 def test_session_entity_types_transport_create_channel(transport_class, grpc_helpers): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch.object( grpc_helpers, "create_channel", autospec=True ) as create_channel: creds = ga_credentials.AnonymousCredentials() adc.return_value = (creds, None) transport_class( quota_project_id="octopus", scopes=["1", "2"] ) create_channel.assert_called_with( "dialogflow.googleapis.com:443", credentials=creds, credentials_file=None, quota_project_id="octopus", default_scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), scopes=["1", "2"], default_host="dialogflow.googleapis.com", ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize( "transport_class,grpc_helpers", [ (transports.SessionEntityTypesGrpcTransport, grpc_helpers), (transports.SessionEntityTypesGrpcAsyncIOTransport, grpc_helpers_async) ], ) @requires_api_core_lt_1_26_0 def test_session_entity_types_transport_create_channel_old_api_core(transport_class, grpc_helpers): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch.object( grpc_helpers, "create_channel", autospec=True ) as create_channel: creds = ga_credentials.AnonymousCredentials() adc.return_value = (creds, None) transport_class(quota_project_id="octopus") create_channel.assert_called_with( "dialogflow.googleapis.com:443", credentials=creds, credentials_file=None, quota_project_id="octopus", scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize( "transport_class,grpc_helpers", [ (transports.SessionEntityTypesGrpcTransport, grpc_helpers), (transports.SessionEntityTypesGrpcAsyncIOTransport, grpc_helpers_async) ], ) @requires_api_core_lt_1_26_0 def test_session_entity_types_transport_create_channel_user_scopes(transport_class, grpc_helpers): # If credentials and host are not provided, the transport class should use # ADC credentials. with mock.patch.object(google.auth, "default", autospec=True) as adc, mock.patch.object( grpc_helpers, "create_channel", autospec=True ) as create_channel: creds = ga_credentials.AnonymousCredentials() adc.return_value = (creds, None) transport_class(quota_project_id="octopus", scopes=["1", "2"]) create_channel.assert_called_with( "dialogflow.googleapis.com:443", credentials=creds, credentials_file=None, quota_project_id="octopus", scopes=["1", "2"], ssl_credentials=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) @pytest.mark.parametrize("transport_class", [transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport]) def test_session_entity_types_grpc_transport_client_cert_source_for_mtls( transport_class ): cred = ga_credentials.AnonymousCredentials() # Check ssl_channel_credentials is used if provided. with mock.patch.object(transport_class, "create_channel") as mock_create_channel: mock_ssl_channel_creds = mock.Mock() transport_class( host="squid.clam.whelk", credentials=cred, ssl_channel_credentials=mock_ssl_channel_creds ) mock_create_channel.assert_called_once_with( "squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), ssl_credentials=mock_ssl_channel_creds, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Check if ssl_channel_credentials is not provided, then client_cert_source_for_mtls # is used. with mock.patch.object(transport_class, "create_channel", return_value=mock.Mock()): with mock.patch("grpc.ssl_channel_credentials") as mock_ssl_cred: transport_class( credentials=cred, client_cert_source_for_mtls=client_cert_source_callback ) expected_cert, expected_key = client_cert_source_callback() mock_ssl_cred.assert_called_once_with( certificate_chain=expected_cert, private_key=expected_key ) def test_session_entity_types_host_no_port(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions(api_endpoint='dialogflow.googleapis.com'), ) assert client.transport._host == 'dialogflow.googleapis.com:443' def test_session_entity_types_host_with_port(): client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), client_options=client_options.ClientOptions(api_endpoint='dialogflow.googleapis.com:8000'), ) assert client.transport._host == 'dialogflow.googleapis.com:8000' def test_session_entity_types_grpc_transport_channel(): channel = grpc.secure_channel('http://localhost/', grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.SessionEntityTypesGrpcTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None def test_session_entity_types_grpc_asyncio_transport_channel(): channel = aio.secure_channel('http://localhost/', grpc.local_channel_credentials()) # Check that channel is used if provided. transport = transports.SessionEntityTypesGrpcAsyncIOTransport( host="squid.clam.whelk", channel=channel, ) assert transport.grpc_channel == channel assert transport._host == "squid.clam.whelk:443" assert transport._ssl_channel_credentials == None # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize("transport_class", [transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport]) def test_session_entity_types_transport_channel_mtls_with_client_cert_source( transport_class ): with mock.patch("grpc.ssl_channel_credentials", autospec=True) as grpc_ssl_channel_cred: with mock.patch.object(transport_class, "create_channel") as grpc_create_channel: mock_ssl_cred = mock.Mock() grpc_ssl_channel_cred.return_value = mock_ssl_cred mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel cred = ga_credentials.AnonymousCredentials() with pytest.warns(DeprecationWarning): with mock.patch.object(google.auth, 'default') as adc: adc.return_value = (cred, None) transport = transport_class( host="squid.clam.whelk", api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=client_cert_source_callback, ) adc.assert_called_once() grpc_ssl_channel_cred.assert_called_once_with( certificate_chain=b"cert bytes", private_key=b"key bytes" ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=cred, credentials_file=None, scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel assert transport._ssl_channel_credentials == mock_ssl_cred # Remove this test when deprecated arguments (api_mtls_endpoint, client_cert_source) are # removed from grpc/grpc_asyncio transport constructor. @pytest.mark.parametrize("transport_class", [transports.SessionEntityTypesGrpcTransport, transports.SessionEntityTypesGrpcAsyncIOTransport]) def test_session_entity_types_transport_channel_mtls_with_adc( transport_class ): mock_ssl_cred = mock.Mock() with mock.patch.multiple( "google.auth.transport.grpc.SslCredentials", __init__=mock.Mock(return_value=None), ssl_credentials=mock.PropertyMock(return_value=mock_ssl_cred), ): with mock.patch.object(transport_class, "create_channel") as grpc_create_channel: mock_grpc_channel = mock.Mock() grpc_create_channel.return_value = mock_grpc_channel mock_cred = mock.Mock() with pytest.warns(DeprecationWarning): transport = transport_class( host="squid.clam.whelk", credentials=mock_cred, api_mtls_endpoint="mtls.squid.clam.whelk", client_cert_source=None, ) grpc_create_channel.assert_called_once_with( "mtls.squid.clam.whelk:443", credentials=mock_cred, credentials_file=None, scopes=( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/dialogflow', ), ssl_credentials=mock_ssl_cred, quota_project_id=None, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) assert transport.grpc_channel == mock_grpc_channel def test_session_entity_type_path(): project = "squid" location = "clam" agent = "whelk" session = "octopus" entity_type = "oyster" expected = "projects/{project}/locations/{location}/agents/{agent}/sessions/{session}/entityTypes/{entity_type}".format(project=project, location=location, agent=agent, session=session, entity_type=entity_type, ) actual = SessionEntityTypesClient.session_entity_type_path(project, location, agent, session, entity_type) assert expected == actual def test_parse_session_entity_type_path(): expected = { "project": "nudibranch", "location": "cuttlefish", "agent": "mussel", "session": "winkle", "entity_type": "nautilus", } path = SessionEntityTypesClient.session_entity_type_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_session_entity_type_path(path) assert expected == actual def test_common_billing_account_path(): billing_account = "scallop" expected = "billingAccounts/{billing_account}".format(billing_account=billing_account, ) actual = SessionEntityTypesClient.common_billing_account_path(billing_account) assert expected == actual def test_parse_common_billing_account_path(): expected = { "billing_account": "abalone", } path = SessionEntityTypesClient.common_billing_account_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_common_billing_account_path(path) assert expected == actual def test_common_folder_path(): folder = "squid" expected = "folders/{folder}".format(folder=folder, ) actual = SessionEntityTypesClient.common_folder_path(folder) assert expected == actual def test_parse_common_folder_path(): expected = { "folder": "clam", } path = SessionEntityTypesClient.common_folder_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_common_folder_path(path) assert expected == actual def test_common_organization_path(): organization = "whelk" expected = "organizations/{organization}".format(organization=organization, ) actual = SessionEntityTypesClient.common_organization_path(organization) assert expected == actual def test_parse_common_organization_path(): expected = { "organization": "octopus", } path = SessionEntityTypesClient.common_organization_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_common_organization_path(path) assert expected == actual def test_common_project_path(): project = "oyster" expected = "projects/{project}".format(project=project, ) actual = SessionEntityTypesClient.common_project_path(project) assert expected == actual def test_parse_common_project_path(): expected = { "project": "nudibranch", } path = SessionEntityTypesClient.common_project_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_common_project_path(path) assert expected == actual def test_common_location_path(): project = "cuttlefish" location = "mussel" expected = "projects/{project}/locations/{location}".format(project=project, location=location, ) actual = SessionEntityTypesClient.common_location_path(project, location) assert expected == actual def test_parse_common_location_path(): expected = { "project": "winkle", "location": "nautilus", } path = SessionEntityTypesClient.common_location_path(**expected) # Check that the path construction is reversible. actual = SessionEntityTypesClient.parse_common_location_path(path) assert expected == actual def test_client_withDEFAULT_CLIENT_INFO(): client_info = gapic_v1.client_info.ClientInfo() with mock.patch.object(transports.SessionEntityTypesTransport, '_prep_wrapped_messages') as prep: client = SessionEntityTypesClient( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info) with mock.patch.object(transports.SessionEntityTypesTransport, '_prep_wrapped_messages') as prep: transport_class = SessionEntityTypesClient.get_transport_class() transport = transport_class( credentials=ga_credentials.AnonymousCredentials(), client_info=client_info, ) prep.assert_called_once_with(client_info)
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
6237d5cd45456cf4aea5e5eaa2cd7525a5a0f984
22bf910b64283b3c15cc4d80542e83fa89e9f09d
/monero_glue/messages/DebugLinkShowTextStyle.py
6ddc6028fdf6a547536fc717cd8d48b7bf7a8654
[ "MIT" ]
permissive
ph4r05/monero-agent
24ed1aa17d6616b2ae6bcdb7b9997f982f8b7b5d
0bac0e6f33142b2bb885565bfd1ef8ac04559280
refs/heads/master
2022-10-18T06:30:43.550133
2021-07-01T16:27:56
2021-07-01T16:27:56
126,215,119
24
5
MIT
2022-09-23T22:53:44
2018-03-21T17:18:21
Python
UTF-8
Python
false
false
315
py
# Automatically generated by pb2py # fmt: off if False: from typing_extensions import Literal NORMAL = 0 # type: Literal[0] BOLD = 1 # type: Literal[1] MONO = 2 # type: Literal[2] MONO_BOLD = 3 # type: Literal[3] BR = 4 # type: Literal[4] BR_HALF = 5 # type: Literal[5] SET_COLOR = 6 # type: Literal[6]
759b0b137a7faf1da9dc6ffbab58053fdcbad295
bb5465b31067d8e2ef20a93c87bfad2c6a8e6569
/orders/forms.py
c30ac21ad1c2d2d3346d20718321be245f6af33b
[]
no_license
greypanda/Django-Bootcamp-1
cc7e1b131b55be4ca224702397f0e4aee6e1d2d9
d66886bd2ab65f07cba08dc26640f52e0da72ac4
refs/heads/main
2022-12-27T01:27:26.516712
2020-10-14T23:45:57
2020-10-14T23:45:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
from django import forms from .models import Order class OrderForm(forms.ModelForm): def __init__(self, *args, **kwargs): product = kwargs.pop("product") or None super().__init__(*args, **kwargs) self.product = product class Meta: model = Order fields = [ 'shipping_address', 'billing_address', ] def clean(self, *args, **kwargs): cleaned_data = super().clean(*args, **kwargs) # check product inventory if self.product != None: if not self.product.has_inventory(): raise forms.ValidationError("This product is out of inventory.") return cleaned_data
3a05d1a9e15233697f2611e6105e3a61f8da2282
b0ede55e98d454f558e5397369f9265893deedb5
/SWEA/D3/3750_digit_sum.py
91b7ee6c6d6baa5d0dc8631446283554e277d0fb
[]
no_license
YeonggilGo/python_practice
5ff65852900c4c6769d541af16f74a27a67920ec
43082568b5045a8efc1d596074bdca3e66b2fed1
refs/heads/master
2023-06-22T02:09:31.906745
2023-06-17T01:27:22
2023-06-17T01:27:22
280,361,205
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
# 매 테스트 케이스마다 print를 하지않고 # 배열에 저장해서 한꺼번에 출력하니까 동작시간이 훨씬 줄어들었다. # 이유가 뭔지는 아직 모르겠다. T = int(input()) ans = [] for tc in range(1, T + 1): N = input() while len(N) > 1: N_li = list(map(int, N)) N = str(sum(N_li)) ans.append(N) for tc in range(0, T): print(f'#{tc+1} {ans[tc]}')
25e7860fa269e96b48ce74d7908cadb94fc03315
0ddbbc997883aa7c17e50a08de7aa40c3a4955c7
/project1/package1/plot_test.py
ac3581147ec93402bf0aa6e75ea365f5c588c3e6
[]
no_license
kwoolter/vscode-online
39eef2ab9c13c0460d6f8a45a8674906e7594bdd
f13c0a1378a2724a44d95ce4ab06700eb0642cae
refs/heads/master
2022-07-14T01:44:28.495267
2020-05-16T10:21:42
2020-05-16T10:21:42
264,375,452
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 20, 100) plt.plot(x, np.sin(x)) plt.show(block=False) input('press <ENTER> to continue')
70cd3506623f02e09d026e8fbf4721df8d98cd99
8cb8bfd2dae516612251039e0632173ea1ea4c8a
/modules/user/publisher_user.py
946ebcc7023cc69b7181138f470652fe3331ebb9
[]
no_license
nyzsirt/lift-prod
563cc70700d26a5812a1bce0bd9795998dce6e99
9a5f28e49ad5e80e422a5d5efee77a2d0247aa2b
refs/heads/master
2020-04-22T01:05:42.262876
2019-02-09T13:31:15
2019-02-09T13:31:15
170,003,361
1
0
null
2019-02-10T17:11:50
2019-02-10T17:11:50
null
UTF-8
Python
false
false
979
py
class PublisherUserOnCreate: """ Publisher for notifying subscribers on new service admin user creating """ def __init__(self): self.__new_user=None self.__subscribers=[] @property def new_user(self): """ Publisher notifies subscribers about this user dict :return: new user dict """ return self.__new_user @new_user.setter def new_user(self,user): """ Set new_user dict and if not None notify all subscribers :param user: user dict :return: Void """ self.__new_user=user if self.__new_user: self.notify_subscribers() def notify_subscribers(self): for subscriber in self.__subscribers : subscriber.notify() pass def add_subscriber(self,subscriber): self.__subscribers.append(subscriber) def remove_subscriber(self,subscriber): self.__subscribers.remove(subscriber)
1bacbdd7d2adb957a389d64b3941a31252aa6e64
609582ee37a01ac6a67fb9c957825dcd3c9a5b3a
/LeetCode_Linked_List/160_Intersection_Of_Two_Linked_List.py
b95d8c954f372d3807f1ca3cb6bbbed0548eadf4
[]
no_license
captainjack331089/captainjack33.LeetCode
a9ad7b3591675c76814eda22e683745068e0abed
4c03f28371e003e8e6a7c30b7b0c46beb5e2a8e7
refs/heads/master
2022-03-07T19:53:40.454945
2019-11-06T19:32:00
2019-11-06T19:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,345
py
""" 160. Intersection of Two Linked Lists Category: Linked List Difficulty: Easy """ """ Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: begin to intersect at node c1. Example 1: Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3 Output: Reference of the node with value = 8 Input Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B. Example 2: Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1 Output: Reference of the node with value = 2 Input Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B. Example 3: Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 Output: null Input Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values. Explanation: The two lists do not intersect, so return null. Notes: If the two linked lists have no intersection at all, return null. The linked lists must retain their original structure after the function returns. You may assume there are no cycles anywhere in the entire linked structure. Your code should preferably run in O(n) time and use only O(1) memory. """ # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def getIntersectionNone(self, headA, headB): p1 = headA p2 = headB while p1 != p2: if not p1: p1 = headB else: p1 = p1.next if not p2: p2 = headA else: p2 = p2.next return p2
6d960235947bbf4e658d18e273fb3658fd207da8
91b3f9f1803161c22ff5bed3e5604a07d67728ac
/patterns/factory/overlay_factory.py
802822ffdc740832cd8fbf414f2218ceb02f190f
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
AndreTeixeira1998/TekkenBot
dab01fd022f91787f709241a17a903291e7089bd
015c601afbea5d75a46b3385f1d322b2655249b0
refs/heads/master
2023-07-17T16:52:14.182255
2021-04-22T17:29:55
2021-04-22T17:29:55
273,787,610
0
0
MIT
2020-06-20T21:34:27
2020-06-20T21:34:26
null
UTF-8
Python
false
false
2,082
py
#!/usr/bin/env python3 # Copyright (c) 2019, Alchemy Meister # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice,this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ """ import inspect from gui.my_tkinter.overlay import Overlay from .factory import Factory class OverlayFactory(Factory): def __init__(self): super().__init__() self.__register_subclasses(Overlay) def __register_subclasses(self, parent_class): for cls in parent_class.__subclasses__(): if inspect.isabstract(cls): self.__register_subclasses(cls) else: self.register_class(cls.CLASS_ID, cls)
c48a6539ae876c3189fcf79c05265e1fdc2a596b
4a399d20f9934c4984bab229a015be69e9189067
/devel/lib/python2.7/dist-packages/roboy_communication_control/msg/_DebugNotification.py
39749bcc8f1c881c53ae2f12b81695e3eb409819
[ "BSD-3-Clause" ]
permissive
Roboy/myoarm_small_FPGA
09af14c7d82c9e8fc923842ae5aad1be6344bf27
f2f11bee50078d8a03f352e3b3ef9f3d9244d87a
refs/heads/master
2021-01-21T03:21:49.777564
2017-08-30T22:11:44
2017-08-30T22:11:44
101,892,113
0
0
null
2017-08-30T14:49:18
2017-08-30T14:33:46
null
UTF-8
Python
false
false
7,015
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from roboy_communication_control/DebugNotification.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class DebugNotification(genpy.Message): _md5sum = "e83a19f2165c907848c09efd00ad9d5e" _type = "roboy_communication_control/DebugNotification" _has_header = False #flag to mark the presence of a Header object _full_text = """int32 code string object string msg string extra int32 validityDuration""" __slots__ = ['code','object','msg','extra','validityDuration'] _slot_types = ['int32','string','string','string','int32'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: code,object,msg,extra,validityDuration :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(DebugNotification, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.code is None: self.code = 0 if self.object is None: self.object = '' if self.msg is None: self.msg = '' if self.extra is None: self.extra = '' if self.validityDuration is None: self.validityDuration = 0 else: self.code = 0 self.object = '' self.msg = '' self.extra = '' self.validityDuration = 0 def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_i().pack(self.code)) _x = self.object length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.msg length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.extra length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_i().pack(self.validityDuration)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 4 (self.code,) = _get_struct_i().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.object = str[start:end].decode('utf-8') else: self.object = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.msg = str[start:end].decode('utf-8') else: self.msg = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.extra = str[start:end].decode('utf-8') else: self.extra = str[start:end] start = end end += 4 (self.validityDuration,) = _get_struct_i().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_i().pack(self.code)) _x = self.object length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.msg length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.extra length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) buff.write(_get_struct_i().pack(self.validityDuration)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 4 (self.code,) = _get_struct_i().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.object = str[start:end].decode('utf-8') else: self.object = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.msg = str[start:end].decode('utf-8') else: self.msg = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.extra = str[start:end].decode('utf-8') else: self.extra = str[start:end] start = end end += 4 (self.validityDuration,) = _get_struct_i().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_i = None def _get_struct_i(): global _struct_i if _struct_i is None: _struct_i = struct.Struct("<i") return _struct_i
674d799ef87465a5e5b80fdd21d63878fb2e1361
e7b956cd98f3400249cd5097029f0a1a9e8ba645
/app/relations/many_to_many/migrations/0002_auto_20180205_0701.py
727d216af345dda00738984b376c0fcafe2b46fb
[]
no_license
standbyme227/fc-django-document
8ffc4430099fbee037f1336e319e40292bcf7af4
8f01c108f773f3f7edc49e1f6527ed3789754ba9
refs/heads/master
2021-05-04T16:08:11.133487
2018-02-22T03:05:44
2018-02-22T03:05:44
120,244,689
0
0
null
null
null
null
UTF-8
Python
false
false
1,435
py
# Generated by Django 2.0.2 on 2018-02-05 07:01 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('many_to_many', '0001_initial'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='Postlike', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='many_to_many.Post')), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.AddField( model_name='postlike', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='many_to_many.User'), ), ]
c0816befac5b3984dad7c534e48520cc62c3eb87
88c1fa6dd5b51a93c4345951c41c4f56a82ba5a3
/LiveProject-Python/AppBuilder9000/ZPYLP0612/GreatestComedies/models.py
8eda5a405781578635b00d1f099ff55c4023617a
[]
no_license
Sean-Beyer/PythonDjango-LiveProject
83335c4d5e22d00c34dac1c71c39f770ad896c4e
986b567fad49368c52182eb5196534ff8a8ebcfc
refs/heads/master
2022-12-13T22:43:21.820355
2020-09-01T00:34:18
2020-09-01T00:34:18
291,854,193
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
from django.db import models # Created models class Comedies(models.Model): comedy = models.CharField(max_length=100, blank=True) actor = models.CharField(max_length=100, blank=True) director = models.CharField(max_length=100, blank=True) year = models.CharField(max_length=100, blank=True) imdb_rating = models.CharField(max_length=100, null=True) rating = models.DecimalField(max_digits=2, decimal_places=1, null=True) review = models.CharField(max_length=1000, blank=True, null=True) Comedy= models.Manager() # object manager for Movie Database def __str__(self): return self.comedy
239ad35cba71416a20dce988b43a1d29433918c0
748b0b8d653e2bf0a33b72ca97ac145c1bdce9b3
/backend/msm_mobile_261109_d_15730/urls.py
06b219555ca9a5c714db9636877f1c6fa779b44e
[]
no_license
crowdbotics-apps/msm-mobile-261109-d-15730
b511e190dbd6fa5535698ce5d1b02bba649e129f
dfbf6260071f3b6a3f4a5e97f4ad9ddd06969b1d
refs/heads/master
2023-01-19T12:59:19.711357
2020-11-26T05:42:47
2020-11-26T05:42:47
316,133,704
0
0
null
null
null
null
UTF-8
Python
false
false
1,975
py
"""msm_mobile_261109_d_15730 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "MSM-mobile-261109" admin.site.site_title = "MSM-mobile-261109 Admin Portal" admin.site.index_title = "MSM-mobile-261109 Admin" # swagger api_info = openapi.Info( title="MSM-mobile-261109 API", default_version="v1", description="API documentation for MSM-mobile-261109 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
ddfeb229c2eb58e3c70f6c7666511fd98cae0dd1
0ced37fd5631850c43319b43aa2ac48a105eeb08
/package/json_scraper.py
3c3aabec5aae14fa57f94f0663d4e51004aa6958
[]
no_license
chomman/earthquake-finder
c0d9b0bd5104b10b0bd7beec5d11f58c0d22e69c
d7f4de33843e7ceed5c2113cdefbb908f11338a2
refs/heads/master
2020-12-28T20:41:48.404930
2015-03-31T15:14:24
2015-03-31T15:14:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
352
py
#!/usr/bin/python ## @json_scraper.py # This file makes a request to an external webpage, and returns the json # response content. import requests ## scrape: scrape the content of provided url. def scrape(url): # request (get) given url, store json response content r = requests.get(url) data = r.json() # return content return data
6fa79bddee0f2e98fef1c64301eae7417409cc46
e474eefcc719c06aad59f8f69b01f903e3e0bbb9
/src/cmd_tools.py
404783908ac73bb4ef12e5d306b7b35249476c94
[]
no_license
YiFeng0755/RepackGUI
3ef8a46d0d31057993a1c52d2b27c2e59055af6e
89794d804dd27e6dcff16bafb312579d63a2327c
refs/heads/master
2020-04-28T04:44:49.062399
2018-03-06T04:26:00
2018-03-06T04:26:00
146,294,713
0
0
null
null
null
null
UTF-8
Python
false
false
11,540
py
#-*-coding:utf8 -*- ''' Created on 2014-11-3 @author: wangdongchun ''' import os import re import subprocess import platform import my_utils import env import log_utils def dexTrans2Smali(dexFile, targetDir, baksmali = env.TOOL_DEF_BAKSMALI_JARFILE): ''' @brief 把dex文件反编译成smali格式文件组成的内容 @param[in] dexFile dex文件路径 @param[in] targetDir smali文件存放 @param[in] baksmali反编译需要的辅助jar包 @return >0:失败; 0:成功 ''' dexFile = my_utils.getFullPath(dexFile) baksmaliFile = my_utils.getToolPath(baksmali) targetDir = my_utils.getFullPath(targetDir) if not os.path.exists(targetDir): os.mkdir(targetDir) if not os.path.exists(dexFile) or not os.path.exists(baksmaliFile): my_utils.printf("dexTrans2Smali: file %s or %s not exist." % (baksmali,dexFile)) return 1 cmd = '%s -jar "%s" -o "%s" "%s"' % (my_utils.getJavaPath('java'), baksmaliFile, targetDir, dexFile) print('--------xxx----' + cmd) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("dexTrans2Smali: execFormatCmd(%s) failure ret(%d)." % (cmd,ret)) return ret else: return 0 def smaliTrans2dex(smaliDir, targetFile, smalijarfile = env.TOOL_DEF_SMALI_JARFILE): ''' @brief smali文件编译打包成dex文件 @param[in] smaliDir smali文件存放目录 @param[in] targetFile 生成的dex文件路径 @return >0:失败; 0:成功 ''' smaliDir = my_utils.getFullPath(smaliDir) targetFile = my_utils.getFullPath(targetFile) smaliFile = my_utils.getToolPath(smalijarfile) if not os.path.exists(targetFile) or not os.path.exists(smaliFile): my_utils.printf("smaliTrans2dex: %s or %s file not exist." % (targetFile,smaliFile)) return 1 cmd = '%s -jar -Xms512m -Xmx512m "%s" "%s" -o "%s"' % (my_utils.getJavaPath('java'), smaliFile, smaliDir, targetFile) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("smaliTrans2dex: execFormatCmd(%s) failure ret(%d)." % (cmd,ret)) return ret else: return 0 def signApk(apkFile, keyStore, storepassword, keyalias, aliaspassword): ''' @brief 签名apk文件 @param[in] apkFile apk文件路径 @param[in] keyStore keystore文件路径 @param[in] storepassword keystore文件路径 @param[in] keyalias keystore文件路径 @param[in] aliaspassword keystore文件路径 @return >0:失败; 0:成功 ''' apkFile = my_utils.getFullPath(apkFile) aapt = my_utils.getToolPath('aapt') keyStore = my_utils.getFullPath(keyStore) if not os.path.exists(apkFile) or not os.path.exists(keyStore): my_utils.printf("signApk: %s or %s file not exist." % (apkFile,keyStore)) return 2 listcmd = '%s list %s' % (aapt, apkFile) listcmd = listcmd.decode('utf-8') output = os.popen(str(listcmd)).read() for filename in output.split('\n'): if filename.find('META-INF') == 0: rmcmd = '"%s" remove "%s" "%s"' % (aapt, apkFile, filename) print(' --------xxx----' + rmcmd) bReturn = my_utils.execFormatCmd(rmcmd) jarsingnCmd = '"%s" -keystore "%s" -storepass "%s" -keypass "%s" "%s" "%s" -sigalg SHA1withRSA -digestalg SHA1' % \ (my_utils.getJavaPath('jarsigner'), #java的执行文件路径 keyStore, storepassword, aliaspassword, apkFile, keyalias) print('--------xxx----' + jarsingnCmd) ret = my_utils.execFormatCmd(str(jarsingnCmd)) if ret: #my_utils.printf("signApk: execFormatCmd(%s) failure ret(%d)." % (jarsingnCmd,ret)) return ret else: return 0 def alignAPK(tempApkFile, apkFile): ''' @brief 优化Apk二进制文件 @param[in] tempApkFile 源apk文件路径 @param[in] apkFile 目标apk文件名 @return 1:失败; 0:成功 ''' align = my_utils.getToolPath('zipalign') if platform.system() == 'Linux': align = 'zipalign' if not os.path.exists(tempApkFile): my_utils.printf("alignAPK: %s file not exist." % tempApkFile) return 1 aligncmd = '"%s" -f 4 "%s" "%s"' % (align, tempApkFile, apkFile) print('--------xxx----' + aligncmd) ret = my_utils.execFormatCmd(aligncmd) if ret: #my_utils.printf("alignAPK: execFormatCmd(%s) failure ret=%d" % ret) return 2 else: return 0 def decompileApk(apkFile, targetDir, tmpPath, apkTool = env.TOOL_DEF_APKTOOL_JARFILE): ''' @brief 反编译apk文件 @param[in] apkFile apk文件路径 @param[in] targetDir 反编译文件存放目录 @param[in] tmpPath 反编译文件apktool工具 @param[in] apkTool 反编译工具jar包 @return 1:失败; 0:成功 ''' apkFile = my_utils.getFullPath(apkFile) targetDir = my_utils.getFullPath(targetDir) apkTool = my_utils.getToolPath(apkTool) if not os.path.exists(apkFile) or not os.path.exists(apkTool): my_utils.printf("decompileApk: %s or %s file not exist." % (apkFile,apkTool)) return 1 if os.path.exists(targetDir): my_utils.delete_file_folder(targetDir) os.makedirs(targetDir) # tmpPath 没有用 # cmd = '"{0}" -jar "{1}" -q d --frame-path "{2}" -b -f -o "{3}" "{4}"'.format( cmd = '"{0}" -jar "{1}" d --frame-path "{2}" -f -o "{3}" "{4}"'.format( my_utils.getJavaPath('java'), apkTool, tmpPath, targetDir, apkFile) log_utils.getLogger().debug(cmd) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("decompileApk: execFormatCmd failure ret = %d." % ret) return ret else: return 0 # 调用apktool.jar 把反编译后的目录,编译成apkFile def recompileApk(srcFolder, apkFile, tmpPath, apkTool = env.TOOL_DEF_APKTOOL_JARFILE): '''重新编译生成Apk文件''' srcFolder = my_utils.getFullPath(srcFolder) apkTool = my_utils.getToolPath(apkTool) if not os.path.exists(apkTool) or not os.path.exists(srcFolder): my_utils.printf("recompileApk: %s or %s file not exist." % (srcFolder,apkTool)) return 1 apkFile = my_utils.getFullPath(apkFile) # cmd = '"{0}" -jar "{1}" -q b --frame-path "{2}" -f -o "{3}" "{4}"'.format( # 调用apktool.jar 把反编译后的目录,编译成apkFile cmd = '"{0}" -jar "{1}" b --frame-path "{2}" -f -o "{3}" "{4}"'.format( my_utils.getJavaPath('java'), apkTool, tmpPath, apkFile, srcFolder) print('--------xxx----' + cmd.decode('utf-8')) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("recompileApk: execFormatCmd failure ret = %d." % ret) return 2 else: return 0 # 1.调用aapt.exe 将工程的资源编译到R.java文件 def produceNewRFile(packName, decompileFullDir, androidManiFest = 'AndroidManifest.xml'): '''生成R文件''' fullPath = decompileFullDir tempPath = os.path.dirname(decompileFullDir) tempPath = tempPath + '/tempRFile' if os.path.exists(tempPath): my_utils.delete_file_folder(tempPath) # 在跟反编译目录同目录下新建temRFile os.makedirs(tempPath) resPath = os.path.join(decompileFullDir, 'res') targetResPath = os.path.join(tempPath, 'res') # 反编译后的res目录 拷贝到 temRFile/res my_utils.copyFiles(resPath, targetResPath) # temRFile/gen目录 genPath = os.path.join(tempPath, 'gen') if not os.path.exists(genPath): os.mkdir(genPath) androidPath = my_utils.getToolPath('android.jar') srcManifest = os.path.join(fullPath, androidManiFest) # 调用aapt.exe 将工程的资源编译到R.java文件 # 把 temRFile/res下的资源 编译到 temRFile/gen目录生成R.java aaptPath = my_utils.getToolPath('aapt') cmd = '%s p -f -m -J "%s" -S "%s" -I "%s" -M "%s"' % (aaptPath, genPath, targetResPath, androidPath, srcManifest) print('xxxxxxxxxxxx--' + cmd) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("produceNewRFile: execFormatCmd(%s) failure ret=%d" % (cmd,ret)) return 1 RPath = packName.replace('.', '/') RPath = os.path.join(genPath, RPath) RFile = os.path.join(RPath, 'R.java') # javac 编译 temRFile/gen/R.java文件 cmd = '"%s" -source %s -target %s -encoding UTF-8 "%s"' % \ (my_utils.getJavaPath('javac'),env.JAVAC_COMPILE_VERSION,env.JAVAC_COMPILE_VERSION,RFile) print('--------xxx----' + cmd) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("produceNewRFile: execFormatCmd(%s) failure ret=%d" % (cmd,ret)) return 2 dexPath = os.path.join(tempPath, 'class.dex') #if platform.system() == 'Windows': #dxTool = my_utils.getToolPath('dx.bat') #cmd = '"%s" --dex --output="%s" "%s"' % (dxTool, dexPath, genPath) #else: # 调dx.jar 把temRFile/gen/.class文件编译成 temRFile/class.dex文件 dxTool = my_utils.getToolPath('dx.jar') cmd = '"%s" -jar "%s" --dex --output="%s" "%s"' % \ (my_utils.getJavaPath('java'),dxTool, dexPath, genPath) ret = my_utils.execFormatCmd(cmd) if ret: #my_utils.printf("produceNewRFile: execFormatCmd(%s) failure ret=%d" % (cmd,ret)) return 3 smaliPath = os.path.join(fullPath, 'smali') # 用baksmali.jar 把 temRFile/class.dex 转成 反编译后的/smali目录 ret = dexTrans2Smali(dexPath, smaliPath, 'baksmali-1.4.1.jar') if ret: return 4 else: return 0 def getVersion(apkFile,vtype): '''获得sdk或者apk的版本号''' cmd = my_utils.getToolPath('aapt') + " d badging '" + apkFile + "'" cmd = cmd.replace('\\', '/') cmd = re.sub('/+', '/', cmd) ret = 0 if platform.system() == 'Windows': st = subprocess.STARTUPINFO st.dwFlags = subprocess.STARTF_USESHOWWINDOW st.wShowWindow = subprocess.SW_HIDE else: cmd = str(cmd).encode('utf-8') s = subprocess.Popen(str(cmd), stdout=subprocess.PIPE, shell=True) info = s.communicate()[0] versionName = '' if vtype == 1:#apk version nPos = info.find('versionName') nEnd = info.find("'", nPos + 13) versionName = info[nPos + 13:nEnd] elif vtype == 2:#sdk version nPos = info.find('targetSdkVersion') nEnd = info.find("'", nPos + 18) versionName = info[nPos + 18:nEnd] if versionName == '': versionName = 'Unknown Version' return versionName def decodeLuaFile(filePath): decodeToolPath = os.path.join(env.GOD_TOOL_DIR, 'BinaryEncoder', 'BinaryEncoder.exe') decodedFilePath = filePath.replace(".lua", "_decoded.lua") cmd = " ".join([decodeToolPath, "-d", filePath, decodedFilePath]) ret = my_utils.execFormatCmd(cmd) return ret, decodedFilePath def encodeLuaFile(filePath): encodedToolPath = os.path.join(env.GOD_TOOL_DIR, 'BinaryEncoder', 'BinaryEncoder.exe') encodedFilePath = filePath.replace(".lua", "_encoded.lua") cmd = " ".join([encodedToolPath, "-e", filePath, encodedFilePath]) ret = my_utils.execFormatCmd(cmd) return ret, encodedFilePath if __name__ == '__main__': decodeLuaFile(r'C:\Users\JonLiang\Desktop\apks\temp\gameConfig.lua');
b844262993e1cf3a0e55258d539ddecd80993328
2ad52a65c45051f26fe26631a31f80279522ddb7
/build/test/catkin_generated/pkg.installspace.context.pc.py
610ea7253b985ee7cc655143bb6f00b5a64ccb4c
[]
no_license
aryamansriram/Movel_Nav
a64c32528b7ce0a5a19127ba3a9379dca0201356
0e5e64232a01771999d34694f3bf6840f0c1e3ee
refs/heads/master
2023-01-03T20:35:22.041816
2020-10-21T13:37:11
2020-10-21T13:37:11
305,279,271
0
0
null
null
null
null
UTF-8
Python
false
false
368
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "test" PROJECT_SPACE_DIR = "/home/rosguy/catkin_ws/install" PROJECT_VERSION = "0.0.0"
df4a7dfe2740775f79df27bea8aabba64637d720
6b97da799cb9b72d711a5e1d6321e4e11f3cbe51
/bin/iptest3
8f85d0e0d8a8e3a6e242b360c552cbf740df3398
[]
no_license
dx-entity/env_parabola
3531120d213ade533052161ec70f3a511f2fc90a
f830d5f05a578b1ed2b16f6898fb226e27de6b52
refs/heads/master
2021-01-09T20:22:51.509076
2016-07-22T06:55:49
2016-07-22T06:55:49
63,930,774
0
0
null
null
null
null
UTF-8
Python
false
false
258
#!/root/python_pro/env_parabola/bin/python # -*- coding: utf-8 -*- import re import sys from IPython.testing.iptestcontroller import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a92d9bc93ed8d9c1567fb32f622b50c221616b5e
b5937928a48340569f673e237e42f32ab62cfd15
/src/pathCrossing/path.py
19ce0bdef5e67249b47937b919aa1930eff3039d
[ "CC0-1.0" ]
permissive
rajitbanerjee/leetcode
79731de57ab4b0edd765b3cbb4aac459973fb22d
720fcdd88d371e2d6592ceec8370a6760a77bb89
refs/heads/master
2021-06-13T11:19:03.905797
2021-06-02T14:40:08
2021-06-02T14:40:08
191,103,205
2
1
null
2020-02-23T23:41:45
2019-06-10T05:34:46
Java
UTF-8
Python
false
false
575
py
class Solution: def isPathCrossing(self, path: str) -> bool: x, y = 0, 0 visited = {(x, y)} for p in path: if p == 'N': y += 1 elif p == 'S': y -= 1 elif p == 'E': x += 1 else: x -= 1 if (x, y) in visited: return True else: visited.add((x, y)) return False if __name__ == '__main__': path = input("Input: ") print(f"Output: {Solution().isPathCrossing(path)}")
8399f0725684d5f05d0c7cdd73ca17a6c14c7062
403217dc6e0ea465b90d26faaa630dc30b04b396
/tests/test_transformers.py
47c941b50561247fa4c2c912717b5c08700f0256
[ "Python-2.0", "Apache-2.0" ]
permissive
fuzeman/QueryCondenser
f5708fe855c449e195d20d7db9ca5e7b0b657541
624d8db0077e540b4214eb44bb1def4bd659c50a
refs/heads/master
2016-09-11T03:35:02.571079
2013-11-25T04:04:47
2013-11-25T04:04:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,422
py
# Copyright 2013 Dean Gardiner <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from unittest import TestCase from logr import Logr from qcond import MergeTransformer, SliceTransformer from qcond.helpers import itemsMatch from qcond.transformers.base import Transformer from qcond.transformers.merge import DNode, print_tree class TestTransformer(TestCase): def test_run(self): transformer = Transformer() self.assertRaises(NotImplementedError, transformer.run, []) class TestMergeTransformer(TestCase): def setUp(self): Logr.configure(logging.DEBUG) self.merge = MergeTransformer() def test_apartment_23(self): self.assertSequenceEqual(self.merge.run([ "Don't Trust the B---- in Apartment 23", "Apartment 23", "Apt 23", "Don't Trust the B in Apt 23", "Don't Trust the B- in Apt 23", "Don't Trust the Bitch in Apartment 23", "Don't Trust the Bitch in Apt 23", "Dont Trust the Bitch in Apartment 23" ]), [ 'dont trust the', 'dont trust the apartment 23', 'dont trust the apt 23', 'apt 23', 'apartment 23' ]) def test_legend_of_korra(self): self.assertSequenceEqual(self.merge.run([ "The Legend of Korra", "The Last Airbender The Legend of Korra", "Avatar: The Legend of Korra", "Legend of Korra", "La Leggenda Di Korra" ]), [ 'the', 'the korra', 'avatar the legend of korra', 'la leggenda di korra', 'legend of korra' ]) def test_merge_is_order_independent(self): root_one = [ self._create_chain(['avatar', 'the', 'legend', 'of', 'korra']), self._create_chain(['la', 'leggenda', 'di', 'korra']), self._create_chain(['the', 'last', 'airbender', 'the', 'legend', 'of', 'korra']) ] self._create_chain(['legend', 'of', 'korra'], root_one[-1]) root_one.append(self._create_chain(['legend', 'of', 'korra'])) result_one = self.merge.merge(root_one) Logr.debug("-----------------------------------------------------------------") root_two = [ self._create_chain(['the', 'legend', 'of', 'korra']), ] self._create_chain(['last', 'airbender', 'the', 'legend', 'of', 'korra'], root_two[-1]) root_two += [ self._create_chain(['legend', 'of', 'korra']), self._create_chain(['la', 'leggenda', 'di', 'korra']), self._create_chain(['avatar', 'the', 'legend', 'of', 'korra']) ] result_two = self.merge.merge(root_two) Logr.debug("=================================================================") assert itemsMatch( self._get_chain_values(result_one), self._get_chain_values(result_two) ) def test_merge(self): pass def _get_chain_values(self, node_or_nodes): if type(node_or_nodes) is list: results = [] for node in node_or_nodes: results += self._get_chain_values(node) return results node = node_or_nodes if node.right: return self._get_chain_values(node.right) score, value, original_value = node.full_value() return [value] def _create_chain(self, words, root=None): if not root: root = DNode(words[0], None) words = words[1:] last_node = root while len(words): word = words.pop(0) node = DNode(word, last_node) last_node.right.append(node) last_node = node return root class TestSliceTransformer(TestCase): def setUp(self): self.slice = SliceTransformer() def test_apartment_23(self): self.assertSequenceEqual(self.slice.run([ "Don't Trust the B---- in Apartment 23", "Apartment 23", "Apt 23", "Don't Trust the B in Apt 23", "Don't Trust the B- in Apt 23", "Don't Trust the Bitch in Apartment 23", "Don't Trust the Bitch in Apt 23", "Dont Trust the Bitch in Apartment 23" ]), [ "Don't Trust the B in Apt 23", 'Dont Trust the Bitch in Apartment 23', 'Apartment 23', 'Apt 23' ]) def test_legend_of_korra(self): self.assertSequenceEqual(self.slice.run([ "The Legend of Korra", "The Last Airbender The Legend of Korra", "Avatar: The Legend of Korra", "Legend of Korra", "La Leggenda Di Korra" ]), [ 'Legend of Korra', 'La Leggenda Di Korra' ])
1755ace993f4ea02065efd561ec2b726b5d17337
838302a39e25067fa7152c1a21574d80dbc25e94
/routes/urls.py
482446f2644cfefb444e61bbee0deb991c87a2b7
[]
no_license
Vadym-Hub/route_search
53f46b39f588bb9ee53f1f70d09f045f1d466492
b1c0b5ac754e5e3601ab6815649eda4f50e9ae32
refs/heads/master
2021-09-28T01:40:57.271666
2020-07-12T23:03:27
2020-07-12T23:03:27
250,011,206
0
0
null
2021-09-22T18:57:23
2020-03-25T15:07:23
Python
UTF-8
Python
false
false
525
py
from django.urls import path from .views import HomeView, RouteDetailView, RouteListView, add_route, find_routes, RouteDeleteView apps_name = 'routes' urlpatterns = [ path('find/', find_routes, name='find_routes'), path('add_route/', add_route, name='add_route'), path('list/', RouteListView.as_view(), name='list'), path('detail/<int:pk>/', RouteDetailView.as_view(), name='detail'), path('delete/<int:pk>/', RouteDeleteView.as_view(), name='delete'), path('', HomeView.as_view(), name='home'), ]
c64a3abd2aad3c7bedc07c54f1a3deb7689b11c4
685f4474699d769dae88537c69f5517ac13a8431
/EL385..py
4170e4cfd9fa9008ec8bd6c37d95d5916a705ace
[]
no_license
Pumafied/Project-Euler
7466f48e449b7314598c106398c0be0424ae72d5
0c3e80a956893ce1881a9694131d52b156b9d3d8
refs/heads/master
2016-09-05T22:45:09.733696
2013-04-20T04:46:48
2013-04-20T04:46:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
# http://projecteuler.net/problem=385
a72e20d9939dd2d43d0f6b798a108c4a1ceb872e
e99dfc900052272f89d55f2fd284389de2cf6a73
/apostello/forms.py
e069a875e9ac32cb666be19e6c15e47374ee20b0
[ "MIT" ]
permissive
armenzg/apostello
a3e6ca3d34917608af79fbab4134ee4de1f5e8ee
1827547b5a8cf94bf1708bb4029c0b0e834416a9
refs/heads/master
2021-01-18T18:16:02.364837
2017-03-22T20:34:21
2017-03-22T20:34:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,984
py
from django import forms from django.forms import ModelMultipleChoiceField from apostello.models import Keyword, Recipient, RecipientGroup, UserProfile from apostello.validators import gsm_validator, less_than_sms_char_limit class SendAdhocRecipientsForm(forms.Form): """Send an sms to ad-hoc groups.""" content = forms.CharField( validators=[gsm_validator, less_than_sms_char_limit], required=True, min_length=1, ) recipients = forms.ModelMultipleChoiceField( queryset=Recipient.objects.filter(is_archived=False), required=True, help_text='', widget=forms.SelectMultiple( attrs={ "class": "ui compact search dropdown", "multiple": "", } ), ) scheduled_time = forms.DateTimeField( required=False, help_text='Leave this blank to send your message immediately, ' 'otherwise select a date and time to schedule your message', widget=forms.TextInput( attrs={ 'data-field': 'datetime', 'readonly': True, }, ), ) def clean(self): """Override clean method to check SMS cost limit.""" cleaned_data = super(SendAdhocRecipientsForm, self).clean() if 'recipients' in cleaned_data and 'content' in cleaned_data: # if we have no recipients, we don't need to check cost limit Recipient.check_user_cost_limit( cleaned_data['recipients'], self.user.profile.message_cost_limit, cleaned_data['content'] ) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user', None) super(SendAdhocRecipientsForm, self).__init__(*args, **kwargs) class SendRecipientGroupForm(forms.Form): """Send an sms to pre-defined group.""" content = forms.CharField( validators=[gsm_validator, less_than_sms_char_limit], required=True, min_length=1, ) recipient_group = forms.ModelChoiceField( queryset=RecipientGroup.objects.filter(is_archived=False), required=True, empty_label='Choose a group...', widget=forms.Select( attrs={ "class": "ui fluid dropdown", "id": "id_recipient_group", } ), ) scheduled_time = forms.DateTimeField( required=False, help_text='Leave this blank to send your message immediately, ' 'otherwise select a date and time to schedule your message', widget=forms.TextInput( attrs={ 'data-field': 'datetime', 'readonly': True, }, ), ) def clean(self): """Override clean method to check SMS cost limit.""" cleaned_data = super(SendRecipientGroupForm, self).clean() if 'recipient_group' in cleaned_data and 'content' in cleaned_data: # if we have no recipient group, we don't need to check cost limit cleaned_data['recipient_group'].check_user_cost_limit( self.user.profile.message_cost_limit, cleaned_data['content'] ) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user', None) super(SendRecipientGroupForm, self).__init__(*args, **kwargs) class ManageRecipientGroupForm(forms.ModelForm): """ Manage RecipientGroup updates and creation. __init__ and save are overridden to pull in group members. """ class Meta: model = RecipientGroup exclude = ['is_archived'] class RecipientForm(forms.ModelForm): """Handle Recipients.""" class Meta: model = Recipient exclude = ['is_archived', 'is_blocking'] widgets = { 'number': forms.TextInput(attrs={'placeholder': '+447259006790'}), 'groups': forms.SelectMultiple( attrs={ "class": "ui fluid search dropdown", "multiple": "", "id": "groups_dropdown", } ), } class UserChoiceField(ModelMultipleChoiceField): """Display emails and user names when selecting users.""" def label_from_instance(self, obj): """Display the user's label.""" return '{0} ({1})'.format(obj.email, obj.username) class KeywordForm(forms.ModelForm): """Handle Keywords.""" class Meta: model = Keyword exclude = ['is_archived', 'last_email_sent_time'] field_classes = { 'subscribed_to_digest': UserChoiceField, 'owners': UserChoiceField, } widgets = { 'keyword': forms.TextInput(attrs={'placeholder': '(No spaces allowed)'}), 'description': forms.TextInput( attrs={ 'placeholder': 'Please provide a description of your keyword.' } ), 'custom_response': forms.TextInput( attrs={ 'placeholder': 'eg: Thanks %name%, you have sucessfully signed up.' } ), 'activate_time': forms.TextInput( attrs={ 'data-field': 'datetime', 'readonly': True, }, ), 'deactivate_time': forms.TextInput( attrs={ 'data-field': 'datetime', 'readonly': True, }, ), 'owners': forms.SelectMultiple( attrs={ "class": "ui fluid search dropdown", "multiple": "", "id": "owners_dropdown", } ), 'linked_groups': forms.SelectMultiple( attrs={ "class": "ui fluid search dropdown", "multiple": "", "id": "linked_group_dropdown", } ), 'subscribed_to_digest': forms.SelectMultiple( attrs={ "class": "ui fluid search dropdown", "multiple": "", "id": "digest_dropdown", } ), } class CsvImport(forms.Form): """Handle CSV imports.""" csv_data = forms.CharField( help_text='John, Calvin, +447095237960', widget=forms.Textarea ) class UserProfileForm(forms.ModelForm): """Handle User Permission Updates""" class Meta: model = UserProfile exclude = ['user', ] class GroupAllCreateForm(forms.Form): """Form used to create groups with all recipients. Should only be used to create, not edit groups. """ group_name = forms.CharField( help_text='Name of group.\n' 'If this group already exists it will be overwritten.', max_length=150, )
93fa705b2aa486c2ea927afb7382f4d04a4ab1b2
4569d707a4942d3451f3bbcfebaa8011cc5a128d
/masterticketsplugin/branches/0.10/setup.py
959b0c3c08eb24427c6df3a00be9187b87778476
[]
no_license
woochica/trachacks
28749b924c897747faa411876a3739edaed4cff4
4fcd4aeba81d734654f5d9ec524218b91d54a0e1
refs/heads/master
2021-05-30T02:27:50.209657
2013-05-24T17:31:23
2013-05-24T17:31:23
13,418,837
0
1
null
null
null
null
UTF-8
Python
false
false
772
py
#!/usr/bin/env python # -*- coding: iso-8859-1 -*- from setuptools import setup setup( name = 'TracMasterTickets', version = '1.0', packages = ['mastertickets'], package_data = { 'mastertickets': ['htdocs/*.js', 'htdocs/*.css' ] }, author = "Noah Kantrowitz", author_email = "[email protected]", description = "Provides support for ticket dependencies and master tickets.", license = "BSD", keywords = "trac plugin ticket dependencies master", url = "http://trac-hacks.org/wiki/MasterTicketsPlugin", classifiers = [ 'Framework :: Trac', ], install_requires = ['TracWebAdmin'], entry_points = { 'trac.plugins': [ 'mastertickets.web_ui = mastertickets.web_ui', ] } )
[ "coderanger@7322e99d-02ea-0310-aa39-e9a107903beb" ]
coderanger@7322e99d-02ea-0310-aa39-e9a107903beb
cb90179a0f2c0c6d6d9ecd0add119d15ce349b91
cdaeb2c9bbb949b817f9139db2d18120c70f1694
/setup.py
3464bc1d5f33496f16de775ce95e205c38b6b79e
[ "Apache-2.0" ]
permissive
sreekanthpulagam/rakam-python-client
665c984ac7a29b57ead6feaeb99a69ba345220e6
8bd843208b03726d6ce89ee343b48b889b576e0e
refs/heads/master
2021-01-24T15:42:36.374366
2016-07-19T21:49:26
2016-07-19T21:49:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,537
py
# coding: utf-8 """ Rakam API Documentation An analytics platform API that lets you create your own analytics services. OpenAPI spec version: 0.5 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from setuptools import setup, find_packages NAME = "rakam_client" VERSION = "0.5" # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools REQUIRES = ["urllib3 >= 1.15", "six >= 1.10", "certifi", "python-dateutil"] setup( name=NAME, version=VERSION, description="Rakam API Documentation", author_email="[email protected]", url="", keywords=["Swagger", "Rakam API Documentation"], install_requires=REQUIRES, packages=find_packages(), include_package_data=True, long_description="""\ An analytics platform API that lets you create your own analytics services. """ )
83aaae77975388840c2ec6d353f47230ec65d254
540c2057cb9180f563b8b097a3b369d3e346cc2c
/federatedml/protobuf/generated/mf_model_meta_pb2.py
f9376f4c31aedbd95d2bfc3b5d1b42d205ba391d
[ "Apache-2.0" ]
permissive
AustinNeverPee/FedRec
e35d282d9d80dc1312278b55112072c7fbf24d0c
24a246239f8179c0d5facc982229d1568d05ae26
refs/heads/master
2022-12-25T08:07:26.470641
2020-08-30T12:02:46
2020-08-30T12:02:46
271,752,017
0
0
Apache-2.0
2020-06-12T08:47:08
2020-06-12T08:47:07
null
UTF-8
Python
false
true
11,192
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: mf-model-meta.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='mf-model-meta.proto', package='com.webank.ai.fate.core.mlmodel.buffer.mf', syntax='proto3', serialized_options=_b('B\020MFModelMetaProto'), serialized_pb=_b('\n\x13mf-model-meta.proto\x12)com.webank.ai.fate.core.mlmodel.buffer.mf\",\n\tEarlyStop\x12\x12\n\nearly_stop\x18\x01 \x01(\t\x12\x0b\n\x03\x65ps\x18\x02 \x01(\x01\",\n\tOptimizer\x12\x11\n\toptimizer\x18\x01 \x01(\t\x12\x0c\n\x04\x61rgs\x18\x02 \x01(\t\"\xb5\x02\n\rHeteroMFParam\x12\x18\n\x10secure_aggregate\x18\x01 \x01(\x08\x12\x1f\n\x17\x61ggregate_every_n_epoch\x18\x02 \x01(\x05\x12\x12\n\nbatch_size\x18\x03 \x01(\x05\x12\x10\n\x08max_iter\x18\x04 \x01(\x05\x12H\n\nearly_stop\x18\x05 \x01(\x0b\x32\x34.com.webank.ai.fate.core.mlmodel.buffer.mf.EarlyStop\x12\x0f\n\x07metrics\x18\x06 \x03(\t\x12G\n\toptimizer\x18\x07 \x01(\x0b\x32\x34.com.webank.ai.fate.core.mlmodel.buffer.mf.Optimizer\x12\x0c\n\x04loss\x18\x08 \x01(\t\x12\x11\n\tembed_dim\x18\t \x01(\x05\"o\n\x0bMFModelMeta\x12\x16\n\x0e\x61ggregate_iter\x18\x01 \x01(\x05\x12H\n\x06params\x18\x64 \x01(\x0b\x32\x38.com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParamB\x12\x42\x10MFModelMetaProtob\x06proto3') ) _EARLYSTOP = _descriptor.Descriptor( name='EarlyStop', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.EarlyStop', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='early_stop', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.EarlyStop.early_stop', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eps', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.EarlyStop.eps', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=66, serialized_end=110, ) _OPTIMIZER = _descriptor.Descriptor( name='Optimizer', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.Optimizer', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='optimizer', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.Optimizer.optimizer', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='args', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.Optimizer.args', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=112, serialized_end=156, ) _HETEROMFPARAM = _descriptor.Descriptor( name='HeteroMFParam', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='secure_aggregate', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.secure_aggregate', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='aggregate_every_n_epoch', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.aggregate_every_n_epoch', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.batch_size', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_iter', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.max_iter', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='early_stop', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.early_stop', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metrics', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.metrics', index=5, number=6, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.optimizer', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.loss', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='embed_dim', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam.embed_dim', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=159, serialized_end=468, ) _MFMODELMETA = _descriptor.Descriptor( name='MFModelMeta', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.MFModelMeta', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='aggregate_iter', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.MFModelMeta.aggregate_iter', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='params', full_name='com.webank.ai.fate.core.mlmodel.buffer.mf.MFModelMeta.params', index=1, number=100, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=470, serialized_end=581, ) _HETEROMFPARAM.fields_by_name['early_stop'].message_type = _EARLYSTOP _HETEROMFPARAM.fields_by_name['optimizer'].message_type = _OPTIMIZER _MFMODELMETA.fields_by_name['params'].message_type = _HETEROMFPARAM DESCRIPTOR.message_types_by_name['EarlyStop'] = _EARLYSTOP DESCRIPTOR.message_types_by_name['Optimizer'] = _OPTIMIZER DESCRIPTOR.message_types_by_name['HeteroMFParam'] = _HETEROMFPARAM DESCRIPTOR.message_types_by_name['MFModelMeta'] = _MFMODELMETA _sym_db.RegisterFileDescriptor(DESCRIPTOR) EarlyStop = _reflection.GeneratedProtocolMessageType('EarlyStop', (_message.Message,), dict( DESCRIPTOR = _EARLYSTOP, __module__ = 'mf_model_meta_pb2' # @@protoc_insertion_point(class_scope:com.webank.ai.fate.core.mlmodel.buffer.mf.EarlyStop) )) _sym_db.RegisterMessage(EarlyStop) Optimizer = _reflection.GeneratedProtocolMessageType('Optimizer', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZER, __module__ = 'mf_model_meta_pb2' # @@protoc_insertion_point(class_scope:com.webank.ai.fate.core.mlmodel.buffer.mf.Optimizer) )) _sym_db.RegisterMessage(Optimizer) HeteroMFParam = _reflection.GeneratedProtocolMessageType('HeteroMFParam', (_message.Message,), dict( DESCRIPTOR = _HETEROMFPARAM, __module__ = 'mf_model_meta_pb2' # @@protoc_insertion_point(class_scope:com.webank.ai.fate.core.mlmodel.buffer.mf.HeteroMFParam) )) _sym_db.RegisterMessage(HeteroMFParam) MFModelMeta = _reflection.GeneratedProtocolMessageType('MFModelMeta', (_message.Message,), dict( DESCRIPTOR = _MFMODELMETA, __module__ = 'mf_model_meta_pb2' # @@protoc_insertion_point(class_scope:com.webank.ai.fate.core.mlmodel.buffer.mf.MFModelMeta) )) _sym_db.RegisterMessage(MFModelMeta) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
cb86190241829fe4dbed3dcca133c4bba33f705d
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2021_12_01_preview/operations/_tenant_level_access_review_instance_contacted_reviewers_operations.py
48d84587e79ccee9f1e63b27a608b56c06fc182f
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
7,033
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Iterable, Optional, TypeVar from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from ..._serialization import Serializer from .._vendor import _convert_request, _format_url_section T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request(schedule_definition_id: str, id: str, **kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/contactedReviewers", ) # pylint: disable=line-too-long path_format_arguments = { "scheduleDefinitionId": _SERIALIZER.url("schedule_definition_id", schedule_definition_id, "str"), "id": _SERIALIZER.url("id", id, "str"), } _url = _format_url_section(_url, **path_format_arguments) # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) class TenantLevelAccessReviewInstanceContactedReviewersOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.authorization.v2021_12_01_preview.AuthorizationManagementClient`'s :attr:`tenant_level_access_review_instance_contacted_reviewers` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list( self, schedule_definition_id: str, id: str, **kwargs: Any ) -> Iterable["_models.AccessReviewContactedReviewer"]: """Get access review instance contacted reviewers. :param schedule_definition_id: The id of the access review schedule definition. Required. :type schedule_definition_id: str :param id: The id of the access review instance. Required. :type id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AccessReviewContactedReviewer or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.authorization.v2021_12_01_preview.models.AccessReviewContactedReviewer] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-12-01-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.AccessReviewContactedReviewerListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( schedule_definition_id=schedule_definition_id, id=id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: request = HttpRequest("GET", next_link) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("AccessReviewContactedReviewerListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorDefinition, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = {"url": "/providers/Microsoft.Authorization/accessReviewScheduleDefinitions/{scheduleDefinitionId}/instances/{id}/contactedReviewers"} # type: ignore
24983dba27a4c3513d731d7b06bc5dccdeee9d43
7dba60ae27ff247705607839348f017b85f5da16
/nyumbax/migrations/0002_auto_20210411_0803.py
2ec99f45ae6bd3b4e3db2f3f8d33a24f6ac451aa
[ "MIT" ]
permissive
BwanaQ/nyumba-kumi
7edccb6745ede6d9f6faf5bd8c0dcf6e24726991
c264b0941c77a4d7175a2dc5380723bea1acf380
refs/heads/master
2023-04-05T09:32:34.867456
2021-04-13T15:54:16
2021-04-13T15:54:16
356,136,458
0
0
null
null
null
null
UTF-8
Python
false
false
1,845
py
# Generated by Django 3.2 on 2021-04-11 08:03 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('nyumbax', '0001_initial'), ] operations = [ migrations.CreateModel( name='Essential', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('officer', models.CharField(max_length=100)), ('phone', models.CharField(max_length=100)), ('email', models.CharField(max_length=100)), ], ), migrations.RemoveField( model_name='hood', name='admin', ), migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('body', models.TextField()), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Business', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('email', models.CharField(max_length=100)), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
1732ea51eb17a5805ad684399acaf1b1dd263503
e34ba843cf682892462aec8b477d4a708968286d
/examples/reinforce/play_train_eval.py
3940862cc92ca0638f291c3fc9e4d0b1fd396006
[]
no_license
mecha2k/mygo
e088e4abff292aa225dd22655ef9032cd89ddabc
db77aeade0ef25b9cd8d0097aff7dd7cc7d78ef6
refs/heads/master
2023-01-21T21:37:57.930762
2020-11-26T14:02:33
2020-11-26T14:02:33
303,343,049
0
0
null
null
null
null
UTF-8
Python
false
false
10,461
py
import argparse import datetime import multiprocessing import os import random import shutil import time import tempfile from collections import namedtuple from dotenv import load_dotenv import h5py import numpy as np from dlgo import agent from dlgo import kerasutil from dlgo import scoring from dlgo import reinforce from dlgo.goboard_fast import GameState, Player, Point COLS = "ABCDEFGHJKLMNOPQRST" STONE_TO_CHAR = { None: ".", Player.black: "x", Player.white: "o", } def avg(items): if not items: return 0.0 return sum(items) / float(len(items)) def print_board(board): for row in range(board.num_rows, 0, -1): line = [] for col in range(1, board.num_cols + 1): stone = board.get(Point(row=row, col=col)) line.append(STONE_TO_CHAR[stone]) print("%2d %s" % (row, "".join(line))) print(" " + COLS[: board.num_cols]) class GameRecord(namedtuple("GameRecord", "moves winner margin")): pass def name(player): if player == Player.black: return "B" return "W" def simulate_game(black_player, white_player, board_size): moves = [] game = GameState.new_game(board_size) agents = { Player.black: black_player, Player.white: white_player, } while not game.is_over(): next_move = agents[game.next_player].select_move(game) moves.append(next_move) game = game.apply_move(next_move) print_board(game.board) game_result = scoring.compute_game_result(game) print(game_result) return GameRecord( moves=moves, winner=game_result.winner, margin=game_result.winning_margin, ) def get_temp_file(): fd, fname = tempfile.mkstemp(prefix="dlgo-train") os.close(fd) return fname def do_self_play( board_size, agent1_filename, agent2_filename, num_games, temperature, experience_filename, gpu_frac, ): kerasutil.set_gpu_memory_target(gpu_frac) random.seed(int(time.time()) + os.getpid()) np.random.seed(int(time.time()) + os.getpid()) with h5py.File(agent1_filename, "r") as agent1f: agent1 = agent.load_policy_agent(agent1f) agent1.set_temperature(temperature) with h5py.File(agent2_filename, "r") as agent2f: agent2 = agent.load_policy_agent(agent2f) collector1 = reinforce.ExperienceCollector() color1 = Player.black for i in range(num_games): print("Simulating game %d/%d..." % (i + 1, num_games)) collector1.begin_episode() agent1.set_collector(collector1) if color1 == Player.black: black_player, white_player = agent1, agent2 else: white_player, black_player = agent1, agent2 game_record = simulate_game(black_player, white_player, board_size) if game_record.winner == color1: print("Agent 1 wins.") collector1.complete_episode(reward=1) else: print("Agent 2 wins.") collector1.complete_episode(reward=-1) color1 = color1.other experience = reinforce.combine_experience([collector1]) print("Saving experience buffer to %s\n" % experience_filename) with h5py.File(experience_filename, "w") as experience_outf: experience.serialize(experience_outf) def generate_experience(learning_agent, reference_agent, exp_file, num_games, board_size, num_workers, temperature): experience_files = [] workers = [] gpu_frac = 0.95 / float(num_workers) games_per_worker = num_games // num_workers for i in range(num_workers): filename = get_temp_file() experience_files.append(filename) worker = multiprocessing.Process( target=do_self_play, args=( board_size, learning_agent, reference_agent, games_per_worker, temperature, filename, gpu_frac, ), ) worker.start() workers.append(worker) # Wait for all workers to finish. print("Waiting for workers...") for worker in workers: worker.join() # Merge experience buffers. print("Merging experience buffers...") first_filename = experience_files[0] other_filenames = experience_files[1:] with h5py.File(first_filename, "r") as expf: combined_buffer = reinforce.load_experience(expf) for filename in other_filenames: with h5py.File(filename, "r") as expf: next_buffer = reinforce.load_experience(expf) combined_buffer = reinforce.combine_experience([combined_buffer, next_buffer]) print("Saving into %s..." % exp_file) with h5py.File(exp_file, "w") as experience_outf: combined_buffer.serialize(experience_outf) # Clean up. for fname in experience_files: os.unlink(fname) def train_worker(learning_agent, output_file, experience_file, lr, batch_size): with h5py.File(learning_agent, "r") as learning_agentf: learning_agent = agent.load_policy_agent(learning_agentf) with h5py.File(experience_file, "r") as expf: exp_buffer = reinforce.load_experience(expf) learning_agent.train(exp_buffer, lr=lr, batch_size=batch_size) with h5py.File(output_file, "w") as updated_agent_outf: learning_agent.serialize(updated_agent_outf) def train_on_experience(learning_agent, output_file, experience_file, lr, batch_size): # Do the training in the background process. Otherwise some Keras # stuff gets initialized in the parent, and later that forks, and # that messes with the workers. worker = multiprocessing.Process( target=train_worker, args=[learning_agent, output_file, experience_file, lr, batch_size] ) worker.start() worker.join() def play_games(args): agent1_fname, agent2_fname, num_games, board_size, gpu_frac = args kerasutil.set_gpu_memory_target(gpu_frac) random.seed(int(time.time()) + os.getpid()) np.random.seed(int(time.time()) + os.getpid()) with h5py.File(agent1_fname, "r") as agent1f: agent1 = agent.load_policy_agent(agent1f) with h5py.File(agent2_fname, "r") as agent2f: agent2 = agent.load_policy_agent(agent2f) wins, losses = 0, 0 color1 = Player.black for i in range(num_games): print("Simulating game %d/%d..." % (i + 1, num_games)) if color1 == Player.black: black_player, white_player = agent1, agent2 else: white_player, black_player = agent1, agent2 game_record = simulate_game(black_player, white_player, board_size) if game_record.winner == color1: print("Agent 1 wins") wins += 1 else: print("Agent 2 wins") losses += 1 print("Agent 1 record: %d/%d" % (wins, wins + losses)) color1 = color1.other return wins, losses def evaluate(learning_agent, reference_agent, num_games, num_workers, board_size): games_per_worker = num_games // num_workers gpu_frac = 0.95 / float(num_workers) pool = multiprocessing.Pool(num_workers) worker_args = [ ( learning_agent, reference_agent, games_per_worker, board_size, gpu_frac, ) for _ in range(num_workers) ] game_results = pool.map(play_games, worker_args) total_wins, total_losses = 0, 0 for wins, losses in game_results: total_wins += wins total_losses += losses print("FINAL RESULTS:") print("Learner: %d" % total_wins) print("Refrnce: %d" % total_losses) pool.close() pool.join() return total_wins def main(): load_dotenv(verbose=True) DATA_DIR = os.getenv("DATA_DIR") AGENT_DIR = os.getenv("AGENT_DIR") agent_file = AGENT_DIR + "/my_deep_bot.h5" log_file = DATA_DIR + "/reinforce/play_train.log" parser = argparse.ArgumentParser() parser.add_argument("--agent", default=agent_file) parser.add_argument("--games-per-batch", "-g", type=int, default=2) parser.add_argument("--work-dir", "-d", default=DATA_DIR + "/reinforce") parser.add_argument("--num-workers", "-w", type=int, default=1) parser.add_argument("--temperature", "-t", type=float, default=0.05) parser.add_argument("--board-size", "-b", type=int, default=19) parser.add_argument("--lr", type=float, default=0.01) parser.add_argument("--bs", type=int, default=512) parser.add_argument("--log-file", "-l", default=log_file) args = parser.parse_args() logf = open(args.log_file, "a") logf.write("----------------------\n") logf.write("Starting from %s at %s\n" % (args.agent, datetime.datetime.now())) learning_agent = args.agent reference_agent = args.agent experience_file = os.path.join(args.work_dir, "exp_temp.hdf5") tmp_agent = os.path.join(args.work_dir, "agent_temp.hdf5") working_agent = os.path.join(args.work_dir, "agent_cur.hdf5") total_games = 0 while True: print("Reference: %s" % (reference_agent,)) logf.write("Total games so far %d\n" % (total_games,)) generate_experience( learning_agent, reference_agent, experience_file, num_games=args.games_per_batch, board_size=args.board_size, num_workers=args.num_workers, temperature=args.temperature, ) train_on_experience(learning_agent, tmp_agent, experience_file, lr=args.lr, batch_size=args.bs) total_games += args.games_per_batch wins = evaluate( learning_agent, reference_agent, num_games=480, num_workers=args.num_workers, board_size=args.board_size, ) print("Won %d / 480 games (%.3f)" % (wins, float(wins) / 480.0)) logf.write("Won %d / 480 games (%.3f)\n" % (wins, float(wins) / 480.0)) shutil.copy(tmp_agent, working_agent) learning_agent = working_agent if wins >= 262: next_filename = os.path.join(args.work_dir, "agent_%08d.hdf5" % (total_games,)) shutil.move(tmp_agent, next_filename) reference_agent = next_filename logf.write("New reference is %s\n" % next_filename) else: print("Keep learning\n") logf.flush() if __name__ == "__main__": main()
d0074cf34faa97e409587457b3a55e2e27a680b9
e4e1223e28a47bee5c47f3b08e05276996bb3694
/example/context.py
101cbd0c816dc15c5e05434adbb53d99e805564c
[ "BSD-3-Clause" ]
permissive
ecarreras/subcmd
891bc108ea713a2e2f78dfde9a2e7f2661f3c847
ee0475b82da7125909c6a6828eee115d20e6193c
refs/heads/master
2020-12-25T04:18:09.850340
2012-08-28T09:09:52
2012-08-28T09:09:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,682
py
# ## BEGIN LICENSE BLOCK # # Copyright (c) <2012>, Raul Perez <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <organization> nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ## END LICENSE BLOCK # import sys import os sys.path.insert(0, os.path.abspath('..'))
e7ed20584cd2a3e9120547bf256c89a97295ec0d
1a949f20cafe328c5ad145659903e8dc5d974a76
/subjects/admin.py
70f7ea47f0a4e6dd08a1ec643b007f0d733a30c9
[]
no_license
Fabricourt/plotx
7154be9153ab532796a16a1de3125276913fca97
b2a526d4a9236217978a48a997b3b425cd40c0a9
refs/heads/master
2022-12-11T18:57:36.631087
2020-07-07T17:22:50
2020-07-07T17:22:50
230,000,109
0
1
null
2022-12-08T03:27:54
2019-12-24T20:25:39
JavaScript
UTF-8
Python
false
false
458
py
from django.contrib import admin from .models import * class SubjectAdmin(admin.ModelAdmin): list_display = ('subject_name', 'created_by', 'is_published', ) list_display_links = ('subject_name',) list_filter = ('subject_name', 'created_by',) list_editable = ('is_published',) search_fields = ('subject_name', 'created_by', ) prepopulated_fields = {"slug": ('subject_name',)} list_per_page = 25 admin.site.register(Subject, SubjectAdmin)
397e0436029206c88d0e89238ad11c9b50d2c719
80e83dd69395312db092f7b0277310a29afb95b6
/untitled1/doc-To-Excel/ResolveDocx_JieYing-AddValue.py
d703a0525d96c3bd701c4fe5765107cd7388ac85
[]
no_license
yif-zhu/Python-Project
3a102695a7eab2e149e260ccee955de84685b6cb
d55edb652d66e6694a120eb329cd04abba57ba1e
refs/heads/master
2023-01-21T00:59:27.743845
2020-12-04T08:42:56
2020-12-04T08:42:56
299,492,449
0
0
null
null
null
null
UTF-8
Python
false
false
28,901
py
# _*_ coding:utf-8 _*_ import os import os.path import sys import re import xml.etree.ElementTree as XETree import xml.etree.ElementTree as ET from docx import Document from openpyxl import load_workbook cdfp = None cwb = None clws = None DATANOTFOUND = 0 writeLog = 0 def formatNum(num): num=str(num) pattern=r'(\d+)(\d{3})((,\d{3})*)' while True: num,count=re.subn(pattern,r'\1,\2\3',num) if count==0: break return num def arearMapSupInfoToExcelName(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode, sNode): sheet = cwb[dSheet] sList = sCols.split(',') dList = dCols.split(',') dcolsNames = sNode.attrib['colsNames'] isReplace = 'false' if 'isReplace' in sNode.attrib: isReplace = sNode.attrib['isReplace'] dNameList = dcolsNames.split(',') dRowIncress = 0 sRowNum = 0 itemName = 1 if 'itemName' in sNode.attrib: itemName = int(sNode.attrib['itemName']) if dBeginRow =='': dBeginRow = 3 dValue = str(sheet[dList[0] + str(dBeginRow)].value) while dValue !='None': dBeginRow += 1 dValue = str(sheet[dList[0] + str(dBeginRow)].value) if isReplace == 'true': while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] if sCol == 'space': dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = ' ' sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 elif sCol == 'spaceValue': scolsValue = sNode.attrib['colsValue'].split(',') dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = scolsValue[sCellI] sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 else: isfind = 0 value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat == 'true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年') >= 0: value = value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day for rCell in sNode: cTag = rCell.tag if cTag == ('A'+str(sRowNum)): for rsCell in rCell: crTag = rsCell.tag if crTag == ('B'+str(sCol)): isfind = 1 crUsing = rsCell.attrib['using'] if crUsing == 'replace': value = rsCell.attrib['value'] elif crUsing == 'date-day': day = rsCell.attrib['value'] value = value.replace('年', '/').replace('月', '/') value = value + day elif crUsing == 'sum': rsRowList = rsCell.attrib['cols'].split(',') value = float(0.00) for rsRow in range(len(rsRowList)): value += float(table.rows[sBeginRow].cells[int(rsRowList[rsRow])].text.replace(',', '')) value = ('%.2f' % value) value = formatNum(value) break if isfind == 1: break dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = str(value) sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 sBeginRow += 1 sRowNum += 1 itemName += 1 else: while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] if sCol == 'space': dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = ' ' sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 elif sCol == 'spaceValue': scolsValue = sNode.attrib['colsValue'].split(',') dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = scolsValue[sCellI] sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 else: value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat == 'true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年') >= 0: value = value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = dNameList[sCellI] sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = value sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 sBeginRow += 1 sRowNum += 1 itemName += 1 def arearMapSupInfoToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode, sNode): sheet = cwb[dSheet] sList = sCols.split(',') dList = dCols.split(',') isReplace = 'false' if 'isReplace' in sNode.attrib: isReplace = sNode.attrib['isReplace'] dRowIncress = 0 sRowNum = 0 itemName = 1 if dBeginRow =='': dBeginRow = 3 dValue = str(sheet[dList[0] + str(dBeginRow)].value) while dValue !='None': dBeginRow += 1 dValue = str(sheet[dList[0] + str(dBeginRow)].value) if isReplace == 'true': while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] isfind = 0 value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat =='true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年') >= 0: value = value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day for rCell in sNode: cTag = rCell.tag if cTag == ('A' + str(sRowNum)): for rsCell in rCell: crTag = rsCell.tag if crTag == ('B' + str(sCol)): isfind = 1 crUsing = rsCell.attrib['using'] if crUsing == 'replace': value = rsCell.attrib['value'] elif crUsing =='date-day': day = rsCell.attrib['value'] value = value.replace('年', '/').replace('月', '/') value = value + day elif crUsing == 'sum': rsRowList = rsCell.attrib['cols'].split(',') value = float(0.00) for rsRow in range(len(rsRowList)): value += float(table.rows[sBeginRow].cells[int(rsRowList[rsRow])].text.replace(',', '')) value = ('%.2f' % value) value = formatNum(value) break if isfind == 1: break dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = 'ItemCode' + str(sCellI) sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = str(value) sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 sBeginRow += 1 sRowNum += 1 itemName += 1 else: while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat =='true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年') >= 0: value = value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day dRow = dBeginRow + dRowIncress sheet[dList[0] + str(dRow)] = 'ItemCode'+ str(sCellI) sheet[dList[1] + str(dRow)] = itemName sheet[dList[2] + str(dRow)] = value sheet[dList[3] + str(dRow)] = reportType sheet[dList[4] + str(dRow)] = dataSource sheet[dList[5] + str(dRow)] = tableCode dRowIncress += 1 sBeginRow += 1 sRowNum +=1 itemName += 1 def arearMapExtractDataToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, sNode): sheet = cwb[dSheet] sList = sCols.split(',') dList = dCols.split(',') isReplace = 'false' if 'isReplace' in sNode.attrib: isReplace = sNode.attrib['isReplace'] sRowNum = 0 dRowIncress = 0 if isReplace == 'true': while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat =='true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年') >= 0: value =value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day isfind = 0 for rCell in sNode: cTag = rCell.tag if cTag == ('A' + str(sRowNum)): for rsCell in rCell: crTag = rsCell.tag if crTag == ('B' + str(sCol)): isfind = 1 crUsing = rsCell.attrib['using'] if crUsing =='replace': value = rsCell.attrib['value'] elif crUsing =='date-day': day = rsCell.attrib['value'] value = value.replace('年', '/').replace('月', '/') value = value + day elif crUsing == 'sum': rsRowList = rsCell.attrib['cols'].split(',') value = float(0.00) for rsRow in range(len(rsRowList)): value += float(table.rows[sBeginRow].cells[int(rsRowList[rsRow])].text.replace(',', '')) value = ('%.2f' % value) value = formatNum(value) break if isfind == 1: break dRow = dBeginRow + dRowIncress if dSheet == '资产统计信息': sheet['A' + str(dRow)] = 'ItemCode'+ str(dRowIncress) if value != '': sheet[dList[sCellI] + str(dRow)] = str(value) dRowIncress += 1 sBeginRow += 1 sRowNum += 1 else: while sBeginRow <= sEndRow: for sCellI in range(len(sList)): sCol = sList[sCellI] value = table.rows[sBeginRow].cells[int(sCol)].text if 'dateFormat' in sNode.attrib: dateFormat = sNode.attrib['dateFormat'] if dateFormat =='true': dateCol = sNode.attrib['dateCol'] if dateCol == sCol: day = sNode.attrib['day'] if value.find('年')>=0: value =value.replace('年', '/').replace('月', '/').replace('日', '') value = value + day dRow = dBeginRow + dRowIncress if dSheet == '资产统计信息': sheet['A' + str(dRow)] = 'ItemCode'+ str(dRowIncress) if value != '': sheet[dList[sCellI] + str(dRow)] = value dRowIncress += 1 sBeginRow += 1 sRowNum += 1 def cellMapExtractDataToExcel(table, dNode, dSheet): sheet = cwb[dSheet] for cell in dNode: cUsing = cell.attrib['using'] cTag = cell.tag cText = cell.text if cUsing == 'replace': r = int(cText.split(',')[0]) c = int(cText.split(',')[1]) v = table.rows[r].cells[c].text.strip() if v != '': sheet[cTag] = v elif cUsing == 'sum': dcs = cText.split(';') sumv = 0 for i in range(len(dcs)): r = int(dcs[i].split(',')[0]) c = int(dcs[i].split(',')[1]) v = table.rows[r].cells[c].text.strip() v = v.replace(',', '').replace('-', '') if v != '': sumv += float(v) sheet[cTag] = "{0:.2f}".format(sumv) def arearMapExtract(table, cfgItem, itemIndex): global DATANOTFOUND itemDesc = cfgItem.attrib['desc'] sNode = cfgItem.find('source') dNode = cfgItem.find('dest') sAnchor = sNode.attrib['anchor'].strip() sSkipRows = int(sNode.attrib['skiprows']) if 'skiprows' in sNode.attrib else 0 sAnchorEnd = sNode.attrib['anchorend'].strip() dLimit = int(dNode.attrib['limited']) if 'limited' in dNode.attrib else 0 sAnchorEndArr = sAnchorEnd.split('$') sBeginRow = -1 sEndRow = -1 for rIndex, row in enumerate(table.rows): firstCellText = row.cells[0].text.strip() if firstCellText == '': continue if sBeginRow == -1 and (firstCellText.startswith(sAnchor) or firstCellText.endswith(sAnchor)): sBeginRow = rIndex + sSkipRows + 1; elif sBeginRow != -1 and sAnchorEnd != '' and ( (sAnchorEnd.find('$') == -1 and firstCellText.startswith(sAnchorEnd)) or ( sAnchorEnd.find('$') != -1 and firstCellText in sAnchorEndArr)): sEndRow = rIndex if dLimit == 0 or rIndex + 1 - sBeginRow <= dLimit else sBeginRow + dLimit - 1 break if sBeginRow != -1 and sEndRow == -1: rowsCount = len(table.rows) if dLimit == 0 and sAnchorEnd == '': sEndRow = rowsCount - 1 break if dLimit != 0 and sAnchorEnd == '': sEndRow = sBeginRow + dLimit if sBeginRow + dLimit <= rowsCount - 1 else rowsCount - 1 break if dLimit != 0 and sAnchorEnd != '' and rIndex - sBeginRow == dLimit - 1: sEndRow = rIndex break if sBeginRow != -1 and sEndRow != -1: sCols = sNode.attrib['cols'] dCols = dNode.attrib['cols'] dSheet = dNode.attrib['sheet'] dBeginRow = dNode.attrib['beginrow'] if dBeginRow != '': dBeginRow = int(dBeginRow) writeSheetLog('{0} 提取: 【{1}】'.format(itemIndex + 1, itemDesc)) writeSheetLog( '--------源表格起始行:{0},源表格结束行:{1},目标Sheet[{3}]开始行:{2}'.format(sBeginRow, sEndRow, dBeginRow, dSheet)) if 'type' in cfgItem.attrib: reportType = dNode.attrib['ReportType'] dataSource = dNode.attrib['DataSource'] tableCode = dNode.attrib['TableCode'] if 'colsNames' in sNode.attrib: arearMapSupInfoToExcelName(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode, sNode) else: arearMapSupInfoToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode) else: arearMapExtractDataToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, sNode) writeSheetLog('--------【{0}】数据已提取完成'.format(itemDesc)) if writeLog == 0: cwb.save(cdfp) if sBeginRow == -1 and sEndRow == -1: DATANOTFOUND += 1 writeSheetLog('{1} 【{0}】数据未找到,请检查源文件和配置文件'.format(itemDesc, itemIndex)) def arearMapExtractTable(tables, cfgItem, itemIndex): global DATANOTFOUND itemDesc = cfgItem.attrib['desc'] sNode = cfgItem.find('source') dNode = cfgItem.find('dest') sAnchor = sNode.attrib['anchor'].strip() sSkipRows = int(sNode.attrib['skiprows']) if 'skiprows' in sNode.attrib else 0 sAnchorEnd = sNode.attrib['anchorend'].strip() dLimit = int(dNode.attrib['limited']) if 'limited' in dNode.attrib else 0 sAnchorEndArr = sAnchorEnd.split('$') sBeginRow = -1 sEndRow = -1 index = int(sNode.attrib['index'].strip()) for tbIndex, table in enumerate(tables): if tbIndex >= index or index == -1: for rIndex, row in enumerate(table.rows): firstCellText = row.cells[0].text.strip() if firstCellText == '': continue if sBeginRow == -1 and (firstCellText.startswith(sAnchor) or firstCellText.endswith(sAnchor)): sBeginRow = rIndex + sSkipRows + 1; elif sBeginRow != -1 and sAnchorEnd != '' and ( (sAnchorEnd.find('$') == -1 and firstCellText.startswith(sAnchorEnd)) or ( sAnchorEnd.find('$') != -1 and firstCellText in sAnchorEndArr)): sEndRow = rIndex if dLimit == 0 or rIndex + 1 - sBeginRow <= dLimit else sBeginRow + dLimit - 1 break if sBeginRow != -1 and sEndRow == -1: rowsCount = len(table.rows) if dLimit == 0 and sAnchorEnd == '': sEndRow = rowsCount - 1 break if dLimit != 0 and sAnchorEnd == '': sEndRow = sBeginRow + dLimit if sBeginRow + dLimit <= rowsCount - 1 else rowsCount - 1 break if dLimit != 0 and sAnchorEnd != '' and rIndex - sBeginRow == dLimit - 1: sEndRow = rIndex break if sBeginRow != -1 and sEndRow != -1: sCols = sNode.attrib['cols'] dCols = dNode.attrib['cols'] dSheet = dNode.attrib['sheet'] dBeginRow = dNode.attrib['beginrow'] if dBeginRow != '': dBeginRow = int(dBeginRow) writeSheetLog('{0} 提取: 【{1}】'.format(itemIndex + 1, itemDesc)) writeSheetLog( '--------源表格起始行:{0},源表格结束行:{1},目标Sheet[{3}]开始行:{2}'.format(sBeginRow, sEndRow, dBeginRow, dSheet)) if 'type' in cfgItem.attrib: reportType = dNode.attrib['ReportType'] dataSource = dNode.attrib['DataSource'] tableCode = dNode.attrib['TableCode'] if 'colsNames' in sNode.attrib: arearMapSupInfoToExcelName(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode, sNode) else: arearMapSupInfoToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, reportType, dataSource, tableCode, sNode) else: arearMapExtractDataToExcel(table, sBeginRow, sEndRow, sCols, dSheet, dBeginRow, dCols, sNode) writeSheetLog('--------【{0}】数据已提取完成'.format(itemDesc)) if writeLog == 0: cwb.save(cdfp) break if sBeginRow == -1 and sEndRow == -1: DATANOTFOUND += 1 writeSheetLog('{1} 【{0}】数据未找到,请检查源文件和配置文件'.format(itemDesc, itemIndex)) def cellMapExtract(tables, cfgItem, itemIndex): global DATANOTFOUND itemDesc = cfgItem.attrib['desc'] sNode = cfgItem.find('source') dNode = cfgItem.find('dest') foundTable = 0 sAnchor = sNode.attrib['anchor'].strip() index = int(sNode.attrib['index'].strip()) for tbIndex, table in enumerate(tables): if tbIndex >= index or index == -1: for rIndex, row in enumerate(table.rows): firstCellText = row.cells[0].text.strip() if firstCellText == '' or firstCellText != sAnchor: continue if firstCellText == sAnchor: foundTable = 1 break if foundTable == 1: dSheet = dNode.attrib['sheet'] writeSheetLog('{0} 提取: 【{1}】'.format(itemIndex + 1, itemDesc)) writeSheetLog('--------开始表格映射映射数据提取') cellMapExtractDataToExcel(table, dNode, dSheet) writeSheetLog('--------【{0}】数据已提取完成'.format(itemDesc)) if writeLog == 0: cwb.save(cdfp) break if foundTable == 0: DATANOTFOUND += 1 writeSheetLog('\033[1;31m {1} 【{0}】数据未找到,请检查源文件和配置文件 \033[0m!'.format(itemDesc, itemIndex + 1)) def extractDocFile(cfgItems, sourceFilePath): doc = Document(sourceFilePath) tables = doc.tables for i in range(len(cfgItems)): cfgItem = cfgItems[i] if 'useTableName' not in cfgItem.attrib: if 'type' in cfgItem.attrib: itemType = cfgItem.attrib['type'] if itemType == 'cellmap': cellMapExtract(tables, cfgItem, i) elif itemType == 'supInfo': arearMapExtractTable(tables, cfgItem, i) else: arearMapExtractTable(tables, cfgItem, i) else: if 'type' in cfgItem.attrib: itemType = cfgItem.attrib['type'] if itemType == 'cellmap': findTableName(tables, cfgItem, i, 1) elif itemType == 'supInfo': findTableName(tables, cfgItem, i, 0) else: findTableName(tables, cfgItem, i, 0) def writeSheetLog(info): if writeLog == 1 and clws is not None: clws['A' + str(clws.max_row + 1)] = info cwb.save(cdfp) def findTableName(tables, cfgItem, index, typeId): sNode = cfgItem.find('source') dNode = cfgItem.find('dest') itemDesc = cfgItem.attrib['desc'] tableName = sNode.attrib['tableName'].strip() row_xml = [] for tbIndex, table in enumerate(tables): xml = table._tblPr.xml root_elem = ET.fromstring(xml) for ch in root_elem: key = ch.tag.split('}')[1] if key == 'tblCaption': titleName = str(list(ch.attrib.values())).split('\'')[1] if titleName == tableName: if typeId == 1: dSheet = dNode.attrib['sheet'] writeSheetLog('{0} 提取: 【{1}】'.format(tbIndex + 1, itemDesc)) writeSheetLog('--------开始表格映射映射数据提取') cellMapExtractDataToExcel(table, dNode, dSheet) writeSheetLog('--------【{0}】数据已提取完成'.format(itemDesc)) if writeLog == 0: cwb.save(cdfp) break elif typeId == 0: arearMapExtract(table, cfgItem, index) for rIndex, row in enumerate(table.rows): for cell in row.cells: if len(cell.tables) > 0: cIndex = 0 isTrue = 0 while cIndex < len(cell.tables): rXml = cell.tables[cIndex]._tblPr.xml cIndex += 1 if rXml not in row_xml: isTrue = 1 row_xml.append(rXml) continue if isTrue == 1: findTableName(cell.tables, cfgItem,index, typeId) def main(): global DATANOTFOUND global cdfp global clws global cwb global writeLog reload(sys) sys.setdefaultencoding('utf-8') sourceFilePath = sys.argv[1] destFileName = sys.argv[3] configFilePath = sys.argv[2] mappingTree = XETree.parse(configFilePath) cfgRoot = mappingTree.getroot() destFolder = cfgRoot.attrib['destfolder'] templateFilePath = cfgRoot.attrib['template'] writeLog = int(cfgRoot.attrib['writelog']) if 'writelog' in cfgRoot.attrib else 0 cdfp = os.path.join(destFolder, destFileName) if not os.path.exists(destFolder): os.makedirs(destFolder) if os.path.exists(cdfp): os.remove(cdfp) open(cdfp, "wb").write(open(templateFilePath, "rb").read()) cwb = load_workbook(cdfp) if writeLog == 1: clws = cwb.create_sheet("Extract Log") cwb.save(cdfp) extractDocFile(cfgRoot, sourceFilePath) main()
62b8907735fd3b6d06a37ae9b1f26172eb1cbfb7
922e77ac07392028c2d0ebdd2d40766638ad5008
/detectron2/data/detection_utils.py
e6692e138ffced257458edebfa9ffc6569fff969
[ "Apache-2.0" ]
permissive
lucascooper/detectron2
9acc0a59a5c45b9dc204e60463ad34a9b1f4db5f
75ebc5340fa31f9ee0f41e9d6b761db249237043
refs/heads/master
2022-11-08T00:22:10.768847
2020-06-26T19:06:29
2020-06-26T19:08:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,489
py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Common data processing utilities that are used in a typical object detection data pipeline. """ import logging import numpy as np import pycocotools.mask as mask_util import torch from fvcore.common.file_io import PathManager from PIL import Image from detectron2.structures import ( BitMasks, Boxes, BoxMode, Instances, Keypoints, PolygonMasks, RotatedBoxes, polygons_to_bitmask, ) from . import transforms as T from .catalog import MetadataCatalog class SizeMismatchError(ValueError): """ When loaded image has difference width/height compared with annotation. """ # https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601 _M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]] _M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]] # https://www.exiv2.org/tags.html _EXIF_ORIENT = 274 # exif 'Orientation' tag def convert_PIL_to_numpy(image, format): """ Convert PIL image to numpy array of target format. Args: image (PIL.Image): a PIL image format (str): the format of output image Returns: (np.ndarray): also see `read_image` """ if format is not None: # PIL only supports RGB, so convert to RGB and flip channels over below conversion_format = format if format in ["BGR", "YUV-BT.601"]: conversion_format = "RGB" image = image.convert(conversion_format) image = np.asarray(image) # PIL squeezes out the channel dimension for "L", so make it HWC if format == "L": image = np.expand_dims(image, -1) # handle formats not supported by PIL elif format == "BGR": # flip channels if needed image = image[:, :, ::-1] elif format == "YUV-BT.601": image = image / 255.0 image = np.dot(image, np.array(_M_RGB2YUV).T) return image def convert_image_to_rgb(image, format): """ Convert an image from given format to RGB. Args: image (np.ndarray or Tensor): an HWC image format (str): the format of input image, also see `read_image` Returns: (np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8 """ if isinstance(image, torch.Tensor): image = image.cpu().numpy() if format == "BGR": image = image[:, :, [2, 1, 0]] elif format == "YUV-BT.601": image = np.dot(image, np.array(_M_YUV2RGB).T) image = image * 255.0 else: if format == "L": image = image[:, :, 0] image = image.astype(np.uint8) image = np.asarray(Image.fromarray(image, mode=format).convert("RGB")) return image def _apply_exif_orientation(image): """ Applies the exif orientation correctly. This code exists per the bug: https://github.com/python-pillow/Pillow/issues/3973 with the function `ImageOps.exif_transpose`. The Pillow source raises errors with various methods, especially `tobytes` Function based on: https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59 https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527 Args: image (PIL.Image): a PIL image Returns: (PIL.Image): the PIL image with exif orientation applied, if applicable """ if not hasattr(image, "getexif"): return image exif = image.getexif() if exif is None: return image orientation = exif.get(_EXIF_ORIENT) method = { 2: Image.FLIP_LEFT_RIGHT, 3: Image.ROTATE_180, 4: Image.FLIP_TOP_BOTTOM, 5: Image.TRANSPOSE, 6: Image.ROTATE_270, 7: Image.TRANSVERSE, 8: Image.ROTATE_90, }.get(orientation) if method is not None: return image.transpose(method) return image def read_image(file_name, format=None): """ Read an image into the given format. Will apply rotation and flipping if the image has such exif information. Args: file_name (str): image file path format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601". Returns: image (np.ndarray): an HWC image in the given format, which is 0-255, uint8 for supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601. """ with PathManager.open(file_name, "rb") as f: image = Image.open(f) # work around this bug: https://github.com/python-pillow/Pillow/issues/3973 image = _apply_exif_orientation(image) return convert_PIL_to_numpy(image, format) def check_image_size(dataset_dict, image): """ Raise an error if the image does not match the size specified in the dict. """ if "width" in dataset_dict or "height" in dataset_dict: image_wh = (image.shape[1], image.shape[0]) expected_wh = (dataset_dict["width"], dataset_dict["height"]) if not image_wh == expected_wh: raise SizeMismatchError( "Mismatched (W,H){}, got {}, expect {}".format( " for image " + dataset_dict["file_name"] if "file_name" in dataset_dict else "", image_wh, expected_wh, ) ) # To ensure bbox always remap to original image size if "width" not in dataset_dict: dataset_dict["width"] = image.shape[1] if "height" not in dataset_dict: dataset_dict["height"] = image.shape[0] def transform_proposals(dataset_dict, image_shape, transforms, *, proposal_topk, min_box_size=0): """ Apply transformations to the proposals in dataset_dict, if any. Args: dataset_dict (dict): a dict read from the dataset, possibly contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode" image_shape (tuple): height, width transforms (TransformList): proposal_topk (int): only keep top-K scoring proposals min_box_size (int): proposals with either side smaller than this threshold are removed The input dict is modified in-place, with abovementioned keys removed. A new key "proposals" will be added. Its value is an `Instances` object which contains the transformed proposals in its field "proposal_boxes" and "objectness_logits". """ if "proposal_boxes" in dataset_dict: # Transform proposal boxes boxes = transforms.apply_box( BoxMode.convert( dataset_dict.pop("proposal_boxes"), dataset_dict.pop("proposal_bbox_mode"), BoxMode.XYXY_ABS, ) ) boxes = Boxes(boxes) objectness_logits = torch.as_tensor( dataset_dict.pop("proposal_objectness_logits").astype("float32") ) boxes.clip(image_shape) keep = boxes.nonempty(threshold=min_box_size) boxes = boxes[keep] objectness_logits = objectness_logits[keep] proposals = Instances(image_shape) proposals.proposal_boxes = boxes[:proposal_topk] proposals.objectness_logits = objectness_logits[:proposal_topk] dataset_dict["proposals"] = proposals def transform_instance_annotations( annotation, transforms, image_size, *, keypoint_hflip_indices=None ): """ Apply transforms to box, segmentation and keypoints annotations of a single instance. It will use `transforms.apply_box` for the box, and `transforms.apply_coords` for segmentation polygons & keypoints. If you need anything more specially designed for each data structure, you'll need to implement your own version of this function or the transforms. Args: annotation (dict): dict of instance annotations for a single instance. It will be modified in-place. transforms (TransformList): image_size (tuple): the height, width of the transformed image keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`. Returns: dict: the same input dict with fields "bbox", "segmentation", "keypoints" transformed according to `transforms`. The "bbox_mode" field will be set to XYXY_ABS. """ # bbox is 1d (per-instance bounding box) bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS) # clip transformed bbox to image size bbox = transforms.apply_box([bbox])[0].clip(min=0) annotation["bbox"] = np.minimum(bbox, list(image_size + image_size)[::-1]) annotation["bbox_mode"] = BoxMode.XYXY_ABS if "segmentation" in annotation: # each instance contains 1 or more polygons segm = annotation["segmentation"] if isinstance(segm, list): # polygons polygons = [np.asarray(p).reshape(-1, 2) for p in segm] annotation["segmentation"] = [ p.reshape(-1) for p in transforms.apply_polygons(polygons) ] elif isinstance(segm, dict): # RLE mask = mask_util.decode(segm) mask = transforms.apply_segmentation(mask) assert tuple(mask.shape[:2]) == image_size annotation["segmentation"] = mask else: raise ValueError( "Cannot transform segmentation of type '{}'!" "Supported types are: polygons as list[list[float] or ndarray]," " COCO-style RLE as a dict.".format(type(segm)) ) if "keypoints" in annotation: keypoints = transform_keypoint_annotations( annotation["keypoints"], transforms, image_size, keypoint_hflip_indices ) annotation["keypoints"] = keypoints return annotation def transform_keypoint_annotations(keypoints, transforms, image_size, keypoint_hflip_indices=None): """ Transform keypoint annotations of an image. If a keypoint is transformed out of image boundary, it will be marked "unlabeled" (visibility=0) Args: keypoints (list[float]): Nx3 float in Detectron2's Dataset format. Each point is represented by (x, y, visibility). transforms (TransformList): image_size (tuple): the height, width of the transformed image keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`. When `transforms` includes horizontal flip, will use the index mapping to flip keypoints. """ # (N*3,) -> (N, 3) keypoints = np.asarray(keypoints, dtype="float64").reshape(-1, 3) keypoints_xy = transforms.apply_coords(keypoints[:, :2]) # Set all out-of-boundary points to "unlabeled" inside = (keypoints_xy >= np.array([0, 0])) & (keypoints_xy <= np.array(image_size[::-1])) inside = inside.all(axis=1) keypoints[:, :2] = keypoints_xy keypoints[:, 2][~inside] = 0 # This assumes that HorizFlipTransform is the only one that does flip do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 # Alternative way: check if probe points was horizontally flipped. # probe = np.asarray([[0.0, 0.0], [image_width, 0.0]]) # probe_aug = transforms.apply_coords(probe.copy()) # do_hflip = np.sign(probe[1][0] - probe[0][0]) != np.sign(probe_aug[1][0] - probe_aug[0][0]) # noqa # If flipped, swap each keypoint with its opposite-handed equivalent if do_hflip: assert keypoint_hflip_indices is not None keypoints = keypoints[keypoint_hflip_indices, :] # Maintain COCO convention that if visibility == 0 (unlabeled), then x, y = 0 keypoints[keypoints[:, 2] == 0] = 0 return keypoints def annotations_to_instances(annos, image_size, mask_format="polygon"): """ Create an :class:`Instances` object used by the models, from instance annotations in the dataset dict. Args: annos (list[dict]): a list of instance annotations in one image, each element for one instance. image_size (tuple): height, width Returns: Instances: It will contain fields "gt_boxes", "gt_classes", "gt_masks", "gt_keypoints", if they can be obtained from `annos`. This is the format that builtin models expect. """ boxes = [BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos] target = Instances(image_size) target.gt_boxes = Boxes(boxes) classes = [obj["category_id"] for obj in annos] classes = torch.tensor(classes, dtype=torch.int64) target.gt_classes = classes if len(annos) and "segmentation" in annos[0]: segms = [obj["segmentation"] for obj in annos] if mask_format == "polygon": # TODO check type and provide better error masks = PolygonMasks(segms) else: assert mask_format == "bitmask", mask_format masks = [] for segm in segms: if isinstance(segm, list): # polygon masks.append(polygons_to_bitmask(segm, *image_size)) elif isinstance(segm, dict): # COCO RLE masks.append(mask_util.decode(segm)) elif isinstance(segm, np.ndarray): assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format( segm.ndim ) # mask array masks.append(segm) else: raise ValueError( "Cannot convert segmentation of type '{}' to BitMasks!" "Supported types are: polygons as list[list[float] or ndarray]," " COCO-style RLE as a dict, or a full-image segmentation mask " "as a 2D ndarray.".format(type(segm)) ) # torch.from_numpy does not support array with negative stride. masks = BitMasks( torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks]) ) target.gt_masks = masks if len(annos) and "keypoints" in annos[0]: kpts = [obj.get("keypoints", []) for obj in annos] target.gt_keypoints = Keypoints(kpts) return target def annotations_to_instances_rotated(annos, image_size): """ Create an :class:`Instances` object used by the models, from instance annotations in the dataset dict. Compared to `annotations_to_instances`, this function is for rotated boxes only Args: annos (list[dict]): a list of instance annotations in one image, each element for one instance. image_size (tuple): height, width Returns: Instances: Containing fields "gt_boxes", "gt_classes", if they can be obtained from `annos`. This is the format that builtin models expect. """ boxes = [obj["bbox"] for obj in annos] target = Instances(image_size) boxes = target.gt_boxes = RotatedBoxes(boxes) boxes.clip(image_size) classes = [obj["category_id"] for obj in annos] classes = torch.tensor(classes, dtype=torch.int64) target.gt_classes = classes return target def filter_empty_instances(instances, by_box=True, by_mask=True, box_threshold=1e-5): """ Filter out empty instances in an `Instances` object. Args: instances (Instances): by_box (bool): whether to filter out instances with empty boxes by_mask (bool): whether to filter out instances with empty masks box_threshold (float): minimum width and height to be considered non-empty Returns: Instances: the filtered instances. """ assert by_box or by_mask r = [] if by_box: r.append(instances.gt_boxes.nonempty(threshold=box_threshold)) if instances.has("gt_masks") and by_mask: r.append(instances.gt_masks.nonempty()) # TODO: can also filter visible keypoints if not r: return instances m = r[0] for x in r[1:]: m = m & x return instances[m] def create_keypoint_hflip_indices(dataset_names): """ Args: dataset_names (list[str]): list of dataset names Returns: ndarray[int]: a vector of size=#keypoints, storing the horizontally-flipped keypoint indices. """ check_metadata_consistency("keypoint_names", dataset_names) check_metadata_consistency("keypoint_flip_map", dataset_names) meta = MetadataCatalog.get(dataset_names[0]) names = meta.keypoint_names # TODO flip -> hflip flip_map = dict(meta.keypoint_flip_map) flip_map.update({v: k for k, v in flip_map.items()}) flipped_names = [i if i not in flip_map else flip_map[i] for i in names] flip_indices = [names.index(i) for i in flipped_names] return np.asarray(flip_indices) def gen_crop_transform_with_instance(crop_size, image_size, instance): """ Generate a CropTransform so that the cropping region contains the center of the given instance. Args: crop_size (tuple): h, w in pixels image_size (tuple): h, w instance (dict): an annotation dict of one instance, in Detectron2's dataset format. """ crop_size = np.asarray(crop_size, dtype=np.int32) bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS) center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5 assert ( image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1] ), "The annotation bounding box is outside of the image!" assert ( image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1] ), "Crop size is larger than image size!" min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0) max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0) max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32)) y0 = np.random.randint(min_yx[0], max_yx[0] + 1) x0 = np.random.randint(min_yx[1], max_yx[1] + 1) return T.CropTransform(x0, y0, crop_size[1], crop_size[0]) def check_metadata_consistency(key, dataset_names): """ Check that the datasets have consistent metadata. Args: key (str): a metadata key dataset_names (list[str]): a list of dataset names Raises: AttributeError: if the key does not exist in the metadata ValueError: if the given datasets do not have the same metadata values defined by key """ if len(dataset_names) == 0: return logger = logging.getLogger(__name__) entries_per_dataset = [getattr(MetadataCatalog.get(d), key) for d in dataset_names] for idx, entry in enumerate(entries_per_dataset): if entry != entries_per_dataset[0]: logger.error( "Metadata '{}' for dataset '{}' is '{}'".format(key, dataset_names[idx], str(entry)) ) logger.error( "Metadata '{}' for dataset '{}' is '{}'".format( key, dataset_names[0], str(entries_per_dataset[0]) ) ) raise ValueError("Datasets have different metadata '{}'!".format(key)) def build_augmentation(cfg, is_train): """ Create a list of :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format( len(min_size) ) logger = logging.getLogger(__name__) augmentation = [] augmentation.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: augmentation.append(T.RandomFlip()) logger.info("Augmentations used in training: " + str(augmentation)) return augmentation build_transform_gen = build_augmentation """ Alias for backward-compatibility. """
632b44110f8d17e5a87f2169f16492724791a409
2c4ba5a56b7a3d3e1c286b678eb8068f51c23046
/week2/3-Simple-Algorithms/solutions/first_n_perfect.py
388005a98408f01742f75b53102ab5c4f146e5ab
[]
no_license
OgnyanPenkov/Programming0-1
3b69757bd803814585d77479fc987a0ee92d0390
8078f316ea2b81216c21cf78e7cf1afc17f54846
refs/heads/master
2021-01-21T15:12:20.814368
2015-10-07T18:16:39
2015-10-07T18:16:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
# Проблемът на тази задача е, че не знаем горната граница на интервала # Например, не знае първите 4 перфектни числа в какъв интервал са # За това подхождаме по следния начин - while True: # За всяко число +1 гледаме дали е перфектно # Aко намерим перфектно, намаляваме търснеата бройка с 1 # Когато търсената бройка стане 0, приключваме n = input("Enter n: ") n = int(n) start = 6 while True: divisors_sum = 0 divisor = 1 while divisor < start: if start % divisor == 0: divisors_sum += divisor divisor += 1 if divisors_sum == start: print(start) n = n - 1 if n == 0: break start += 1
04b6c88d1353b5bcedc3f41edb10107f55960060
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/lib/python2.7/site-packages/networkx/drawing/layout.py
d6ade95e25422e759c0531fc265903f50288c684
[ "Python-2.0", "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
18,158
py
""" ****** Layout ****** Node positioning algorithms for graph drawing. The default scales and centering for these layouts are typically squares with side [0, 1] or [0, scale]. The two circular layout routines (circular_layout and shell_layout) have size [-1, 1] or [-scale, scale]. """ # Authors: Aric Hagberg <[email protected]>, # Dan Schult <[email protected]> # Copyright (C) 2004-2016 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import collections import networkx as nx __all__ = ['circular_layout', 'random_layout', 'shell_layout', 'spring_layout', 'spectral_layout', 'fruchterman_reingold_layout'] def random_layout(G, dim=2, scale=1., center=None): """Position nodes uniformly at random. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the default interval [0.0, 1.0), or on an interval of length `scale` centered at `center`. NumPy (http://scipy.org) is required for this function. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. dim : int Dimension of layout. scale : float (default 1) Scale factor for positions center : array-like (default scale*0.5 in each dim) Coordinate around which to center the layout. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.lollipop_graph(4, 3) >>> pos = nx.random_layout(G) """ import numpy as np shape = (len(G), dim) pos = np.random.random(shape) * scale if center is not None: pos += np.asarray(center) - 0.5 * scale return dict(zip(G, pos)) def circular_layout(G, dim=2, scale=1., center=None): """Position nodes on a circle. Parameters ---------- G : NetworkX graph or list of nodes dim : int Dimension of layout, currently only dim=2 is supported scale : float (default 1) Scale factor for positions, i.e. radius of circle. center : array-like (default origin) Coordinate around which to center the layout. Returns ------- dict : A dictionary of positions keyed by node Examples -------- >>> G=nx.path_graph(4) >>> pos=nx.circular_layout(G) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. """ import numpy as np if len(G) == 0: return {} twopi = 2.0*np.pi theta = np.arange(0, twopi, twopi/len(G)) pos = np.column_stack([np.cos(theta), np.sin(theta)]) * scale if center is not None: pos += np.asarray(center) return dict(zip(G, pos)) def shell_layout(G, nlist=None, dim=2, scale=1., center=None): """Position nodes in concentric circles. Parameters ---------- G : NetworkX graph or list of nodes nlist : list of lists List of node lists for each shell. dim : int Dimension of layout, currently only dim=2 is supported scale : float (default 1) Scale factor for positions, i.e.radius of largest shell center : array-like (default origin) Coordinate around which to center the layout. Returns ------- dict : A dictionary of positions keyed by node Examples -------- >>> G = nx.path_graph(4) >>> shells = [[0], [1,2,3]] >>> pos = nx.shell_layout(G, shells) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. """ import numpy as np if len(G) == 0: return {} if nlist is None: # draw the whole graph in one shell nlist = [list(G)] numb_shells = len(nlist) if len(nlist[0]) == 1: # single node at center radius = 0.0 numb_shells -= 1 else: # else start at r=1 radius = 1.0 # distance between shells gap = (scale / numb_shells) if numb_shells else scale radius *= gap npos={} twopi = 2.0*np.pi for nodes in nlist: theta = np.arange(0, twopi, twopi/len(nodes)) pos = np.column_stack([np.cos(theta), np.sin(theta)]) * radius npos.update(zip(nodes, pos)) radius += gap if center is not None: center = np.asarray(center) for n,p in npos.items(): npos[n] = p + center return npos def fruchterman_reingold_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None): """Position nodes using Fruchterman-Reingold force-directed algorithm. Parameters ---------- G : NetworkX graph dim : int Dimension of layout k : float (default=None) Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart. pos : dict or None optional (default=None) Initial positions for nodes as a dictionary with node as keys and values as a list or tuple. If None, then use random initial positions. fixed : list or None optional (default=None) Nodes to keep fixed at initial position. If any nodes are fixed, the scale and center features are not used. iterations : int optional (default=50) Number of iterations of spring-force relaxation weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the effective spring constant. If None, edge weights are 1. scale : float (default=1.0) Scale factor for positions. The nodes are positioned in a box of size `scale` in each dim centered at `center`. center : array-like (default scale/2 in each dim) Coordinate around which to center the layout. Returns ------- dict : A dictionary of positions keyed by node Examples -------- >>> G=nx.path_graph(4) >>> pos=nx.spring_layout(G) # this function has two names: # spring_layout and fruchterman_reingold_layout >>> pos=nx.fruchterman_reingold_layout(G) """ import numpy as np if len(G) == 0: return {} if fixed is not None: nfixed = dict(zip(G, range(len(G)))) fixed = np.asarray([nfixed[v] for v in fixed]) if pos is None: msg = "Keyword pos must be specified if any nodes are fixed" raise ValueError(msg) if pos is not None: # Determine size of existing domain to adjust initial positions pos_coords = np.array(list(pos.values())) min_coords = pos_coords.min(0) domain_size = pos_coords.max(0) - min_coords shape = (len(G), dim) pos_arr = np.random.random(shape) * domain_size + min_coords for i,n in enumerate(G): if n in pos: pos_arr[i] = np.asarray(pos[n]) else: pos_arr=None if k is None and fixed is not None: # Adjust k for domains larger than 1x1 k=domain_size.max()/np.sqrt(len(G)) try: # Sparse matrix if len(G) < 500: # sparse solver for large graphs raise ValueError A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='f') pos = _sparse_fruchterman_reingold(A,dim,k,pos_arr,fixed,iterations) except: A = nx.to_numpy_matrix(G, weight=weight) pos = _fruchterman_reingold(A, dim, k, pos_arr, fixed, iterations) if fixed is None: pos = _rescale_layout(pos, scale) if center is not None: pos += np.asarray(center) - 0.5 * scale return dict(zip(G,pos)) spring_layout=fruchterman_reingold_layout def _fruchterman_reingold(A,dim=2,k=None,pos=None,fixed=None,iterations=50): # Position nodes in adjacency matrix A using Fruchterman-Reingold # Entry point for NetworkX graph is fruchterman_reingold_layout() import numpy as np try: nnodes,_=A.shape except AttributeError: raise nx.NetworkXError( "fruchterman_reingold() takes an adjacency matrix as input") A=np.asarray(A) # make sure we have an array instead of a matrix if pos is None: # random initial positions pos=np.asarray(np.random.random((nnodes,dim)),dtype=A.dtype) else: # make sure positions are of same type as matrix pos=pos.astype(A.dtype) # optimal distance between nodes if k is None: k=np.sqrt(1.0/nnodes) # the initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. # Calculate domain in case our fixed positions are bigger than 1x1 t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1]))*0.1 # simple cooling scheme. # linearly step down by dt on each iteration so last iteration is size dt. dt=t/float(iterations+1) delta = np.zeros((pos.shape[0],pos.shape[0],pos.shape[1]),dtype=A.dtype) # the inscrutable (but fast) version # this is still O(V^2) # could use multilevel methods to speed this up significantly for iteration in range(iterations): # matrix of difference between points for i in range(pos.shape[1]): delta[:,:,i]= pos[:,i,None]-pos[:,i] # distance between points distance=np.sqrt((delta**2).sum(axis=-1)) # enforce minimum distance of 0.01 distance=np.where(distance<0.01,0.01,distance) # displacement "force" displacement=np.transpose(np.transpose(delta)*\ (k*k/distance**2-A*distance/k))\ .sum(axis=1) # update positions length=np.sqrt((displacement**2).sum(axis=1)) length=np.where(length<0.01,0.01,length) delta_pos=np.transpose(np.transpose(displacement)*t/length) if fixed is not None: # don't change positions of fixed nodes delta_pos[fixed]=0.0 pos+=delta_pos # cool temperature t-=dt if fixed is None: pos = _rescale_layout(pos) return pos def _sparse_fruchterman_reingold(A, dim=2, k=None, pos=None, fixed=None, iterations=50): # Position nodes in adjacency matrix A using Fruchterman-Reingold # Entry point for NetworkX graph is fruchterman_reingold_layout() # Sparse version import numpy as np try: nnodes,_=A.shape except AttributeError: raise nx.NetworkXError( "fruchterman_reingold() takes an adjacency matrix as input") try: from scipy.sparse import spdiags,coo_matrix except ImportError: raise ImportError("_sparse_fruchterman_reingold() scipy numpy: http://scipy.org/ ") # make sure we have a LIst of Lists representation try: A=A.tolil() except: A=(coo_matrix(A)).tolil() if pos is None: # random initial positions pos=np.asarray(np.random.random((nnodes,dim)),dtype=A.dtype) else: # make sure positions are of same type as matrix pos=pos.astype(A.dtype) # no fixed nodes if fixed is None: fixed=[] # optimal distance between nodes if k is None: k=np.sqrt(1.0/nnodes) # the initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. # Calculate domain in case our fixed positions are bigger than 1x1 t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1]))*0.1 # simple cooling scheme. # linearly step down by dt on each iteration so last iteration is size dt. dt=t/float(iterations+1) displacement=np.zeros((dim,nnodes)) for iteration in range(iterations): displacement*=0 # loop over rows for i in range(A.shape[0]): if i in fixed: continue # difference between this row's node position and all others delta=(pos[i]-pos).T # distance between points distance=np.sqrt((delta**2).sum(axis=0)) # enforce minimum distance of 0.01 distance=np.where(distance<0.01,0.01,distance) # the adjacency matrix row Ai=np.asarray(A.getrowview(i).toarray()) # displacement "force" displacement[:,i]+=\ (delta*(k*k/distance**2-Ai*distance/k)).sum(axis=1) # update positions length=np.sqrt((displacement**2).sum(axis=0)) length=np.where(length<0.01,0.01,length) pos+=(displacement*t/length).T # cool temperature t-=dt if fixed is None: pos = _rescale_layout(pos) return pos def spectral_layout(G, dim=2, weight='weight', scale=1., center=None): """Position nodes using the eigenvectors of the graph Laplacian. Parameters ---------- G : NetworkX graph or list of nodes dim : int Dimension of layout weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. scale : float optional (default 1) Scale factor for positions, i.e. nodes placed in a box with side [0, scale] or centered on `center` if provided. center : array-like (default scale/2 in each dim) Coordinate around which to center the layout. Returns ------- dict : A dictionary of positions keyed by node Examples -------- >>> G=nx.path_graph(4) >>> pos=nx.spectral_layout(G) Notes ----- Directed graphs will be considered as undirected graphs when positioning the nodes. For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK). """ # handle some special cases that break the eigensolvers import numpy as np if len(G) <= 2: if len(G) == 0: return {} elif len(G) == 1: if center is not None: pos = np.asarray(center) else: pos = np.ones((1,dim)) * scale * 0.5 else: #len(G) == 2 pos = np.array([np.zeros(dim), np.ones(dim) * scale]) if center is not None: pos += np.asarray(center) - scale * 0.5 return dict(zip(G,pos)) try: # Sparse matrix if len(G)< 500: # dense solver is faster for small graphs raise ValueError A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='d') # Symmetrize directed graphs if G.is_directed(): A = A + np.transpose(A) pos = _sparse_spectral(A,dim) except (ImportError, ValueError): # Dense matrix A = nx.to_numpy_matrix(G, weight=weight) # Symmetrize directed graphs if G.is_directed(): A = A + np.transpose(A) pos = _spectral(A, dim) pos = _rescale_layout(pos, scale) if center is not None: pos += np.asarray(center) - 0.5 * scale return dict(zip(G,pos)) def _spectral(A, dim=2): # Input adjacency matrix A # Uses dense eigenvalue solver from numpy try: import numpy as np except ImportError: raise ImportError("spectral_layout() requires numpy: http://scipy.org/ ") try: nnodes,_=A.shape except AttributeError: raise nx.NetworkXError(\ "spectral() takes an adjacency matrix as input") # form Laplacian matrix # make sure we have an array instead of a matrix A=np.asarray(A) I=np.identity(nnodes,dtype=A.dtype) D=I*np.sum(A,axis=1) # diagonal of degrees L=D-A eigenvalues,eigenvectors=np.linalg.eig(L) # sort and keep smallest nonzero index=np.argsort(eigenvalues)[1:dim+1] # 0 index is zero eigenvalue return np.real(eigenvectors[:,index]) def _sparse_spectral(A,dim=2): # Input adjacency matrix A # Uses sparse eigenvalue solver from scipy # Could use multilevel methods here, see Koren "On spectral graph drawing" try: import numpy as np from scipy.sparse import spdiags except ImportError: raise ImportError("_sparse_spectral() requires scipy & numpy: http://scipy.org/ ") try: from scipy.sparse.linalg.eigen import eigsh except ImportError: # scipy <0.9.0 names eigsh differently from scipy.sparse.linalg import eigen_symmetric as eigsh try: nnodes,_=A.shape except AttributeError: raise nx.NetworkXError(\ "sparse_spectral() takes an adjacency matrix as input") # form Laplacian matrix data=np.asarray(A.sum(axis=1).T) D=spdiags(data,0,nnodes,nnodes) L=D-A k=dim+1 # number of Lanczos vectors for ARPACK solver.What is the right scaling? ncv=max(2*k+1,int(np.sqrt(nnodes))) # return smallest k eigenvalues and eigenvectors eigenvalues,eigenvectors=eigsh(L,k,which='SM',ncv=ncv) index=np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue return np.real(eigenvectors[:,index]) def _rescale_layout(pos, scale=1.): # rescale to [0, scale) in each axis # Find max length over all dimensions maxlim=0 for i in range(pos.shape[1]): pos[:,i] -= pos[:,i].min() # shift min to zero maxlim = max(maxlim, pos[:,i].max()) if maxlim > 0: for i in range(pos.shape[1]): pos[:,i] *= scale / maxlim return pos # fixture for nose tests def setup_module(module): from nose import SkipTest try: import numpy except: raise SkipTest("NumPy not available") try: import scipy except: raise SkipTest("SciPy not available")
7393ed5275df359c4798e683f9f52f70ea73ee36
5fd4707876cac0a4ca3b14af9a936301c45b5599
/02_数据结构/fp_15_一个谜题.py
12cd3f9686732f4027c53318216d150dbc7debc7
[]
no_license
xuelang201201/FluentPython
5b0d89bfc6ee1238ad77db9955ec7e8417b418b8
7cbedf7c780c2a9e0edac60484f2ad4c385e1dbd
refs/heads/master
2022-04-26T21:49:16.923214
2020-04-27T01:27:50
2020-04-27T01:27:50
258,290,957
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
# 一个关于+=的谜题 t = (1, 2, [30, 40]) t[2] += [50, 60] # 到底会发生下面4中情况中的哪一种? # a. t变成 (1, 2, [30, 40, 50, 60])。 # b. 因为 tuple 不支持对它的元素赋值,所以会抛出 TypeError 异常。 # c. 以上两个都不是。 # d. a 和 b 都是对的。 # 在终端中运行:没人料到的结果:t[2] 被改动了,但是也有异常抛出 # t # TypeError Traceback (most recent call last) # <ipython-input-2-d877fb0e9d36> in <module> # ----> 1 t[2] += [50, 60] # # TypeError: 'tuple' object does not support item assignment # t # (1, 2, [30, 40, 50, 60]) # 所以答案是 d
bdea5739deb6de4ea45ee5a8b9375074d1bd4a56
c1e31f49a59beb6089328d09040f6f48d2e12cde
/lib/python2.7/exportfits.py
8ac16bd8a03a5dfb2e656ce6285ff75d901e1e57
[ "Python-2.0" ]
permissive
kernsuite-debian/casalite
3d81761e0d8ae497f97ea242e98d4357618a7591
b620981f14f4ba5b77f347f649cd2c16d498db04
refs/heads/master
2021-06-22T16:22:51.765703
2021-02-25T13:28:05
2021-02-25T13:28:05
80,822,139
0
1
null
null
null
null
UTF-8
Python
false
false
1,655
py
# # This file was generated using xslt from its XML file # # Copyright 2009, Associated Universities Inc., Washington DC # import sys import os from casac import * import string from taskinit import casalog from taskinit import xmlpath #from taskmanager import tm import task_exportfits def exportfits(imagename='', fitsimage='', velocity=False, optical=False, bitpix=-32, minpix=0, maxpix=-1, overwrite=False, dropstokes=False, stokeslast=True, history=True, dropdeg=False): """Convert a CASA image to a FITS file FOR MORE INFORMATION, SEE THE TASK PAGES OF EXPORTFITS IN CASA DOCS: https://casa.nrao.edu/casadocs/ """ # # The following is work around to avoid a bug with current python translation # mytmp = {} mytmp['imagename'] = imagename mytmp['fitsimage'] = fitsimage mytmp['velocity'] = velocity mytmp['optical'] = optical mytmp['bitpix'] = bitpix mytmp['minpix'] = minpix mytmp['maxpix'] = maxpix mytmp['overwrite'] = overwrite mytmp['dropstokes'] = dropstokes mytmp['stokeslast'] = stokeslast mytmp['history'] = history mytmp['dropdeg'] = dropdeg pathname='file://' + xmlpath( ) + '/' trec = casac.utils().torecord(pathname+'exportfits.xml') casalog.origin('exportfits') if trec.has_key('exportfits') and casac.utils().verify(mytmp, trec['exportfits']) : result = task_exportfits.exportfits(imagename, fitsimage, velocity, optical, bitpix, minpix, maxpix, overwrite, dropstokes, stokeslast, history, dropdeg) else : result = False return result
03751bac302d1bfbd2bf027224f83efe634a666c
9b01f7d430f7ee87217618cfa4567f42635e8923
/22-06-2017/cloudformation/nginx-demo-1/ansible/.env/lib/python2.7/site-packages/ansible/executor/task_executor.py
21a29052d1f8809f341b51f3230f658a4224f5cd
[]
no_license
awsusergroupsantiago/demos
ccb045545d2a407a39d865cf19800d2b6d284b8f
e7f0dc8d9a4e8f2547c33a5a294fd76bf3ac9c9c
refs/heads/master
2022-04-30T23:43:30.646556
2020-08-08T01:35:40
2020-08-08T01:35:40
95,129,959
2
0
null
2022-03-29T21:54:09
2017-06-22T15:29:25
Python
UTF-8
Python
false
false
36,398
py
# (c) 2012-2014, Michael DeHaan <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import base64 import subprocess import sys import time import traceback from ansible.compat.six import iteritems, string_types, binary_type from ansible import constants as C from ansible.errors import AnsibleError, AnsibleParserError, AnsibleUndefinedVariable, AnsibleConnectionFailure from ansible.executor.task_result import TaskResult from ansible.module_utils._text import to_bytes, to_text from ansible.playbook.conditional import Conditional from ansible.playbook.task import Task from ansible.template import Templar from ansible.utils.encrypt import key_for_hostname from ansible.utils.listify import listify_lookup_plugin_terms from ansible.utils.ssh_functions import check_for_controlpersist from ansible.vars.unsafe_proxy import UnsafeProxy, wrap_var try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() __all__ = ['TaskExecutor'] class TaskExecutor: ''' This is the main worker class for the executor pipeline, which handles loading an action plugin to actually dispatch the task to a given host. This class roughly corresponds to the old Runner() class. ''' # Modules that we optimize by squashing loop items into a single call to # the module SQUASH_ACTIONS = frozenset(C.DEFAULT_SQUASH_ACTIONS) def __init__(self, host, task, job_vars, play_context, new_stdin, loader, shared_loader_obj, rslt_q): self._host = host self._task = task self._job_vars = job_vars self._play_context = play_context self._new_stdin = new_stdin self._loader = loader self._shared_loader_obj = shared_loader_obj self._connection = None self._rslt_q = rslt_q self._loop_eval_error = None self._task.squash() def run(self): ''' The main executor entrypoint, where we determine if the specified task requires looping and either runs the task with self._run_loop() or self._execute(). After that, the returned results are parsed and returned as a dict. ''' display.debug("in run()") try: try: items = self._get_loop_items() except AnsibleUndefinedVariable as e: # save the error raised here for use later items = None self._loop_eval_error = e if items is not None: if len(items) > 0: item_results = self._run_loop(items) # loop through the item results, and remember the changed/failed # result flags based on any item there. changed = False failed = False for item in item_results: if 'changed' in item and item['changed']: changed = True if 'failed' in item and item['failed']: failed = True # create the overall result item, and set the changed/failed # flags there to reflect the overall result of the loop res = dict(results=item_results) if changed: res['changed'] = True if failed: res['failed'] = True res['msg'] = 'One or more items failed' else: res['msg'] = 'All items completed' else: res = dict(changed=False, skipped=True, skipped_reason='No items in the list', results=[]) else: display.debug("calling self._execute()") res = self._execute() display.debug("_execute() done") # make sure changed is set in the result, if it's not present if 'changed' not in res: res['changed'] = False def _clean_res(res, errors='surrogate_or_strict'): if isinstance(res, UnsafeProxy): return res._obj elif isinstance(res, binary_type): return to_text(res, errors=errors) elif isinstance(res, dict): for k in res: try: res[k] = _clean_res(res[k], errors=errors) except UnicodeError: if k == 'diff': # If this is a diff, substitute a replacement character if the value # is undecodable as utf8. (Fix #21804) display.warning("We were unable to decode all characters, replaced some in an effort to return as much as possible") res[k] = _clean_res(res[k], errors='surrogate_then_replace') else: raise elif isinstance(res, list): for idx,item in enumerate(res): res[idx] = _clean_res(item, errors=errors) return res display.debug("dumping result to json") res = _clean_res(res) display.debug("done dumping result, returning") return res except AnsibleError as e: return dict(failed=True, msg=to_text(e, nonstring='simplerepr')) except Exception as e: return dict(failed=True, msg='Unexpected failure during module execution.', exception=to_text(traceback.format_exc()), stdout='') finally: try: self._connection.close() except AttributeError: pass except Exception as e: display.debug(u"error closing connection: %s" % to_text(e)) def _get_loop_items(self): ''' Loads a lookup plugin to handle the with_* portion of a task (if specified), and returns the items result. ''' # save the play context variables to a temporary dictionary, # so that we can modify the job vars without doing a full copy # and later restore them to avoid modifying things too early play_context_vars = dict() self._play_context.update_vars(play_context_vars) old_vars = dict() for k in play_context_vars: if k in self._job_vars: old_vars[k] = self._job_vars[k] self._job_vars[k] = play_context_vars[k] # get search path for this task to pass to lookup plugins self._job_vars['ansible_search_path'] = self._task.get_search_path() templar = Templar(loader=self._loader, shared_loader_obj=self._shared_loader_obj, variables=self._job_vars) items = None if self._task.loop: if self._task.loop in self._shared_loader_obj.lookup_loader: if self._task.loop == 'first_found': # first_found loops are special. If the item is undefined then we want to fall through to the next value rather than failing. loop_terms = listify_lookup_plugin_terms(terms=self._task.loop_args, templar=templar, loader=self._loader, fail_on_undefined=False, convert_bare=False) loop_terms = [t for t in loop_terms if not templar._contains_vars(t)] else: loop_terms = listify_lookup_plugin_terms(terms=self._task.loop_args, templar=templar, loader=self._loader, fail_on_undefined=True, convert_bare=False) # get lookup mylookup = self._shared_loader_obj.lookup_loader.get(self._task.loop, loader=self._loader, templar=templar) # give lookup task 'context' for subdir (mostly needed for first_found) for subdir in ['template', 'var', 'file']: # TODO: move this to constants? if subdir in self._task.action: break setattr(mylookup,'_subdir', subdir + 's') # run lookup items = mylookup.run(terms=loop_terms, variables=self._job_vars, wantlist=True) else: raise AnsibleError("Unexpected failure in finding the lookup named '%s' in the available lookup plugins" % self._task.loop) # now we restore any old job variables that may have been modified, # and delete them if they were in the play context vars but not in # the old variables dictionary for k in play_context_vars: if k in old_vars: self._job_vars[k] = old_vars[k] else: del self._job_vars[k] if items: from ansible.vars.unsafe_proxy import UnsafeProxy for idx, item in enumerate(items): if item is not None and not isinstance(item, UnsafeProxy): items[idx] = UnsafeProxy(item) # ensure basedir is always in (dwim already searches here but we need to display it) if self._loader.get_basedir() not in self._job_vars['ansible_search_path']: self._job_vars['ansible_search_path'].append(self._loader.get_basedir()) return items def _run_loop(self, items): ''' Runs the task with the loop items specified and collates the result into an array named 'results' which is inserted into the final result along with the item for which the loop ran. ''' results = [] # make copies of the job vars and task so we can add the item to # the variables and re-validate the task with the item variable #task_vars = self._job_vars.copy() task_vars = self._job_vars loop_var = 'item' label = None loop_pause = 0 if self._task.loop_control: # the value may be 'None', so we still need to default it back to 'item' loop_var = self._task.loop_control.loop_var or 'item' label = self._task.loop_control.label or ('{{' + loop_var + '}}') loop_pause = self._task.loop_control.pause or 0 if loop_var in task_vars: display.warning(u"The loop variable '%s' is already in use. " u"You should set the `loop_var` value in the `loop_control` option for the task" u" to something else to avoid variable collisions and unexpected behavior." % loop_var) ran_once = False items = self._squash_items(items, loop_var, task_vars) for item in items: task_vars[loop_var] = item # pause between loop iterations if loop_pause and ran_once: time.sleep(loop_pause) else: ran_once = True try: tmp_task = self._task.copy(exclude_parent=True, exclude_tasks=True) tmp_task._parent = self._task._parent tmp_play_context = self._play_context.copy() except AnsibleParserError as e: results.append(dict(failed=True, msg=to_text(e))) continue # now we swap the internal task and play context with their copies, # execute, and swap them back so we can do the next iteration cleanly (self._task, tmp_task) = (tmp_task, self._task) (self._play_context, tmp_play_context) = (tmp_play_context, self._play_context) res = self._execute(variables=task_vars) (self._task, tmp_task) = (tmp_task, self._task) (self._play_context, tmp_play_context) = (tmp_play_context, self._play_context) # now update the result with the item info, and append the result # to the list of results res[loop_var] = item res['_ansible_item_result'] = True if label is not None: templar = Templar(loader=self._loader, shared_loader_obj=self._shared_loader_obj, variables=self._job_vars) res['_ansible_item_label'] = templar.template(label) self._rslt_q.put(TaskResult(self._host.name, self._task._uuid, res), block=False) results.append(res) del task_vars[loop_var] return results def _squash_items(self, items, loop_var, variables): ''' Squash items down to a comma-separated list for certain modules which support it (typically package management modules). ''' name = None try: # _task.action could contain templatable strings (via action: and # local_action:) Template it before comparing. If we don't end up # optimizing it here, the templatable string might use template vars # that aren't available until later (it could even use vars from the # with_items loop) so don't make the templated string permanent yet. templar = Templar(loader=self._loader, shared_loader_obj=self._shared_loader_obj, variables=variables) task_action = self._task.action if templar._contains_vars(task_action): task_action = templar.template(task_action, fail_on_undefined=False) if len(items) > 0 and task_action in self.SQUASH_ACTIONS: if all(isinstance(o, string_types) for o in items): final_items = [] for allowed in ['name', 'pkg', 'package']: name = self._task.args.pop(allowed, None) if name is not None: break # This gets the information to check whether the name field # contains a template that we can squash for template_no_item = template_with_item = None if name: if templar._contains_vars(name): variables[loop_var] = '\0$' template_no_item = templar.template(name, variables, cache=False) variables[loop_var] = '\0@' template_with_item = templar.template(name, variables, cache=False) del variables[loop_var] # Check if the user is doing some operation that doesn't take # name/pkg or the name/pkg field doesn't have any variables # and thus the items can't be squashed if template_no_item != template_with_item: for item in items: variables[loop_var] = item if self._task.evaluate_conditional(templar, variables): new_item = templar.template(name, cache=False) final_items.append(new_item) self._task.args['name'] = final_items # Wrap this in a list so that the calling function loop # executes exactly once return [final_items] else: # Restore the name parameter self._task.args['name'] = name #elif: # Right now we only optimize single entries. In the future we # could optimize more types: # * lists can be squashed together # * dicts could squash entries that match in all cases except the # name or pkg field. except: # Squashing is an optimization. If it fails for any reason, # simply use the unoptimized list of items. # Restore the name parameter if name is not None: self._task.args['name'] = name return items def _execute(self, variables=None): ''' The primary workhorse of the executor system, this runs the task on the specified host (which may be the delegated_to host) and handles the retry/until and block rescue/always execution ''' if variables is None: variables = self._job_vars templar = Templar(loader=self._loader, shared_loader_obj=self._shared_loader_obj, variables=variables) context_validation_error = None try: # apply the given task's information to the connection info, # which may override some fields already set by the play or # the options specified on the command line self._play_context = self._play_context.set_task_and_variable_override(task=self._task, variables=variables, templar=templar) # fields set from the play/task may be based on variables, so we have to # do the same kind of post validation step on it here before we use it. self._play_context.post_validate(templar=templar) # now that the play context is finalized, if the remote_addr is not set # default to using the host's address field as the remote address if not self._play_context.remote_addr: self._play_context.remote_addr = self._host.address # We also add "magic" variables back into the variables dict to make sure # a certain subset of variables exist. self._play_context.update_vars(variables) except AnsibleError as e: # save the error, which we'll raise later if we don't end up # skipping this task during the conditional evaluation step context_validation_error = e # Evaluate the conditional (if any) for this task, which we do before running # the final task post-validation. We do this before the post validation due to # the fact that the conditional may specify that the task be skipped due to a # variable not being present which would otherwise cause validation to fail try: if not self._task.evaluate_conditional(templar, variables): display.debug("when evaluation failed, skipping this task") return dict(changed=False, skipped=True, skip_reason='Conditional check failed', _ansible_no_log=self._play_context.no_log) # since we're not skipping, if there was a loop evaluation error # raised earlier we need to raise it now to halt the execution of # this task if self._loop_eval_error is not None: raise self._loop_eval_error except AnsibleError: # skip conditional exception in the case of includes as the vars needed might not be avaiable except in the included tasks or due to tags if self._task.action not in ['include', 'include_role']: raise # if we ran into an error while setting up the PlayContext, raise it now if context_validation_error is not None: raise context_validation_error # if this task is a TaskInclude, we just return now with a success code so the # main thread can expand the task list for the given host if self._task.action == 'include': include_variables = self._task.args.copy() include_file = include_variables.pop('_raw_params', None) if not include_file: return dict(failed=True, msg="No include file was specified to the include") include_file = templar.template(include_file) return dict(include=include_file, include_variables=include_variables) # if this task is a IncludeRole, we just return now with a success code so the main thread can expand the task list for the given host elif self._task.action == 'include_role': include_variables = self._task.args.copy() return dict(include_role=self._task, include_variables=include_variables) # Now we do final validation on the task, which sets all fields to their final values. self._task.post_validate(templar=templar) if '_variable_params' in self._task.args: variable_params = self._task.args.pop('_variable_params') if isinstance(variable_params, dict): display.deprecated("Using variables for task params is unsafe, especially if the variables come from an external source like facts") variable_params.update(self._task.args) self._task.args = variable_params # get the connection and the handler for this execution if not self._connection or not getattr(self._connection, 'connected', False) or self._play_context.remote_addr != self._connection._play_context.remote_addr: self._connection = self._get_connection(variables=variables, templar=templar) hostvars = variables.get('hostvars', None) if hostvars: try: target_hostvars = hostvars.raw_get(self._host.name) except: # FIXME: this should catch the j2undefined error here # specifically instead of all exceptions target_hostvars = dict() else: target_hostvars = dict() self._connection.set_host_overrides(host=self._host, hostvars=target_hostvars) else: # if connection is reused, its _play_context is no longer valid and needs # to be replaced with the one templated above, in case other data changed self._connection._play_context = self._play_context self._handler = self._get_action_handler(connection=self._connection, templar=templar) # And filter out any fields which were set to default(omit), and got the omit token value omit_token = variables.get('omit') if omit_token is not None: self._task.args = dict((i[0], i[1]) for i in iteritems(self._task.args) if i[1] != omit_token) # Read some values from the task, so that we can modify them if need be if self._task.until: retries = self._task.retries if retries is None: retries = 3 elif retries <= 0: retries = 1 else: retries += 1 else: retries = 1 delay = self._task.delay if delay < 0: delay = 1 # make a copy of the job vars here, in case we need to update them # with the registered variable value later on when testing conditions vars_copy = variables.copy() display.debug("starting attempt loop") result = None for attempt in range(1, retries + 1): display.debug("running the handler") try: result = self._handler.run(task_vars=variables) except AnsibleConnectionFailure as e: return dict(unreachable=True, msg=to_text(e)) display.debug("handler run complete") # preserve no log result["_ansible_no_log"] = self._play_context.no_log # update the local copy of vars with the registered value, if specified, # or any facts which may have been generated by the module execution if self._task.register: vars_copy[self._task.register] = wrap_var(result.copy()) if self._task.async > 0: if self._task.poll > 0 and not result.get('skipped'): result = self._poll_async_result(result=result, templar=templar, task_vars=vars_copy) # ensure no log is preserved result["_ansible_no_log"] = self._play_context.no_log # helper methods for use below in evaluating changed/failed_when def _evaluate_changed_when_result(result): if self._task.changed_when is not None and self._task.changed_when: cond = Conditional(loader=self._loader) cond.when = self._task.changed_when result['changed'] = cond.evaluate_conditional(templar, vars_copy) def _evaluate_failed_when_result(result): if self._task.failed_when: cond = Conditional(loader=self._loader) cond.when = self._task.failed_when failed_when_result = cond.evaluate_conditional(templar, vars_copy) result['failed_when_result'] = result['failed'] = failed_when_result else: failed_when_result = False return failed_when_result if 'ansible_facts' in result: vars_copy.update(result['ansible_facts']) # set the failed property if the result has a non-zero rc. This will be # overridden below if the failed_when property is set if result.get('rc', 0) != 0: result['failed'] = True # if we didn't skip this task, use the helpers to evaluate the changed/ # failed_when properties if 'skipped' not in result: _evaluate_changed_when_result(result) _evaluate_failed_when_result(result) if retries > 1: cond = Conditional(loader=self._loader) cond.when = self._task.until result['attempts'] = attempt if cond.evaluate_conditional(templar, vars_copy): break else: # no conditional check, or it failed, so sleep for the specified time if attempt < retries: result['_ansible_retry'] = True result['retries'] = retries display.debug('Retrying task, attempt %d of %d' % (attempt, retries)) self._rslt_q.put(TaskResult(self._host.name, self._task._uuid, result), block=False) time.sleep(delay) else: if retries > 1: # we ran out of attempts, so mark the result as failed result['attempts'] = retries - 1 result['failed'] = True # do the final update of the local variables here, for both registered # values and any facts which may have been created if self._task.register: variables[self._task.register] = wrap_var(result) if 'ansible_facts' in result: variables.update(result['ansible_facts']) # save the notification target in the result, if it was specified, as # this task may be running in a loop in which case the notification # may be item-specific, ie. "notify: service {{item}}" if self._task.notify is not None: result['_ansible_notify'] = self._task.notify # add the delegated vars to the result, so we can reference them # on the results side without having to do any further templating # FIXME: we only want a limited set of variables here, so this is currently # hardcoded but should be possibly fixed if we want more or if # there is another source of truth we can use delegated_vars = variables.get('ansible_delegated_vars', dict()).get(self._task.delegate_to, dict()).copy() if len(delegated_vars) > 0: result["_ansible_delegated_vars"] = dict() for k in ('ansible_host', ): result["_ansible_delegated_vars"][k] = delegated_vars.get(k) # and return display.debug("attempt loop complete, returning result") return result def _poll_async_result(self, result, templar, task_vars=None): ''' Polls for the specified JID to be complete ''' if task_vars is None: task_vars = self._job_vars async_jid = result.get('ansible_job_id') if async_jid is None: return dict(failed=True, msg="No job id was returned by the async task") # Create a new psuedo-task to run the async_status module, and run # that (with a sleep for "poll" seconds between each retry) until the # async time limit is exceeded. async_task = Task().load(dict(action='async_status jid=%s' % async_jid)) # Because this is an async task, the action handler is async. However, # we need the 'normal' action handler for the status check, so get it # now via the action_loader normal_handler = self._shared_loader_obj.action_loader.get( 'normal', task=async_task, connection=self._connection, play_context=self._play_context, loader=self._loader, templar=templar, shared_loader_obj=self._shared_loader_obj, ) time_left = self._task.async while time_left > 0: time.sleep(self._task.poll) try: async_result = normal_handler.run(task_vars=task_vars) # We do not bail out of the loop in cases where the failure # is associated with a parsing error. The async_runner can # have issues which result in a half-written/unparseable result # file on disk, which manifests to the user as a timeout happening # before it's time to timeout. if int(async_result.get('finished', 0)) == 1 or ('failed' in async_result and async_result.get('_ansible_parsed', False)) or 'skipped' in async_result: break except Exception as e: # Connections can raise exceptions during polling (eg, network bounce, reboot); these should be non-fatal. # On an exception, call the connection's reset method if it has one (eg, drop/recreate WinRM connection; some reused connections are in a broken state) display.vvvv("Exception during async poll, retrying... (%s)" % to_text(e)) display.debug("Async poll exception was:\n%s" % to_text(traceback.format_exc())) try: normal_handler._connection._reset() except AttributeError: pass time_left -= self._task.poll if int(async_result.get('finished', 0)) != 1: if async_result.get('_ansible_parsed'): return dict(failed=True, msg="async task did not complete within the requested time") else: return dict(failed=True, msg="async task produced unparseable results", async_result=async_result) else: return async_result def _get_connection(self, variables, templar): ''' Reads the connection property for the host, and returns the correct connection object from the list of connection plugins ''' if self._task.delegate_to is not None: # since we're delegating, we don't want to use interpreter values # which would have been set for the original target host for i in list(variables.keys()): if isinstance(i, string_types) and i.startswith('ansible_') and i.endswith('_interpreter'): del variables[i] # now replace the interpreter values with those that may have come # from the delegated-to host delegated_vars = variables.get('ansible_delegated_vars', dict()).get(self._task.delegate_to, dict()) if isinstance(delegated_vars, dict): for i in delegated_vars: if isinstance(i, string_types) and i.startswith("ansible_") and i.endswith("_interpreter"): variables[i] = delegated_vars[i] conn_type = self._play_context.connection if conn_type == 'smart': conn_type = 'ssh' if sys.platform.startswith('darwin') and self._play_context.password: # due to a current bug in sshpass on OSX, which can trigger # a kernel panic even for non-privileged users, we revert to # paramiko on that OS when a SSH password is specified conn_type = "paramiko" else: # see if SSH can support ControlPersist if not use paramiko if not check_for_controlpersist(self._play_context.ssh_executable): conn_type = "paramiko" connection = self._shared_loader_obj.connection_loader.get(conn_type, self._play_context, self._new_stdin) if not connection: raise AnsibleError("the connection plugin '%s' was not found" % conn_type) if self._play_context.accelerate: # accelerate is deprecated as of 2.1... display.deprecated('Accelerated mode is deprecated. Consider using SSH with ControlPersist and pipelining enabled instead') # launch the accelerated daemon here ssh_connection = connection handler = self._shared_loader_obj.action_loader.get( 'normal', task=self._task, connection=ssh_connection, play_context=self._play_context, loader=self._loader, templar=templar, shared_loader_obj=self._shared_loader_obj, ) key = key_for_hostname(self._play_context.remote_addr) accelerate_args = dict( password=base64.b64encode(key.__str__()), port=self._play_context.accelerate_port, minutes=C.ACCELERATE_DAEMON_TIMEOUT, ipv6=self._play_context.accelerate_ipv6, debug=self._play_context.verbosity, ) connection = self._shared_loader_obj.connection_loader.get('accelerate', self._play_context, self._new_stdin) if not connection: raise AnsibleError("the connection plugin '%s' was not found" % conn_type) try: connection._connect() except AnsibleConnectionFailure: display.debug('connection failed, fallback to accelerate') res = handler._execute_module(module_name='accelerate', module_args=accelerate_args, task_vars=variables, delete_remote_tmp=False) display.debug(res) connection._connect() return connection def _get_action_handler(self, connection, templar): ''' Returns the correct action plugin to handle the requestion task action ''' if self._task.action in self._shared_loader_obj.action_loader: if self._task.async != 0: raise AnsibleError("async mode is not supported with the %s module" % self._task.action) handler_name = self._task.action elif self._task.async == 0: handler_name = 'normal' else: handler_name = 'async' handler = self._shared_loader_obj.action_loader.get( handler_name, task=self._task, connection=connection, play_context=self._play_context, loader=self._loader, templar=templar, shared_loader_obj=self._shared_loader_obj, ) if not handler: raise AnsibleError("the handler '%s' was not found" % handler_name) return handler
568bc42695dfdf14190d884be35c1c4afa43689f
d1ac66f9a935fd5515a16a1cc8d4dae0104ea0fe
/src/check_structures.py
3c3fea7183213683e377187b6fdf992c82b42c34
[ "MIT" ]
permissive
chemspacelab/meltingpoint
8b1b1f5a7e6f45fee82c2e8d55db2df29c6ae0bc
e3d8eb61fcb5fa5c9c2a1a03852216e4e625a9c9
refs/heads/master
2020-08-30T06:08:17.739191
2020-04-17T11:18:32
2020-04-17T11:18:32
218,285,755
5
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
import qml from chemhelp import cheminfo import numpy as np from rdkit import Chem import sys args = sys.argv[1:] filename = args[0] molobjs = cheminfo.read_sdffile(filename) for i, molobj in enumerate(molobjs): molobj = next(molobjs) # stat = cheminfo.molobj_optimize(molobj) # print(stat) dist = Chem.rdmolops.Get3DDistanceMatrix(molobj) np.fill_diagonal(dist, 10.0) min_dist = np.min(dist) if min_dist < 0.01: print(i, min_dist) smi = cheminfo.molobj_to_smiles(molobj) molobj = cheminfo.conformationalsearch(smi) dist = Chem.rdmolops.Get3DDistanceMatrix(molobj) np.fill_diagonal(dist, 10.0) min_dist = np.min(dist) print(smi) print(min_dist) # atoms, coord = cheminfo.molobj_to_xyz(molobj) # atoms = list(atoms) # many_atoms = [atoms] # mbtypes = qml.representations.get_slatm_mbtypes(many_atoms) # rep = qml.representations.generate_slatm(coord, atoms, mbtypes) # print(cheminfo.molobj_to_smiles(molobj)) # print(rep.mean())
dae39314521542665f7fe4ce4c6605824fa4d40c
728e57a80995d7be98d46295b780d0b433c9e62a
/src/rewriter/rewriter.gyp
1566c15345faf46401995133dcfc423cc15a2523
[ "Apache-2.0", "MIT", "BSD-3-Clause", "GPL-1.0-or-later" ]
permissive
SNQ-2001/Mozc-for-iOS
7936bfd9ff024faacfd2d96af3ec15a2000378a1
45b0856ed8a22d5fa6b4471548389cbde4abcf10
refs/heads/master
2023-03-17T22:19:15.843107
2014-10-04T05:48:29
2014-10-04T05:48:42
574,371,060
0
0
Apache-2.0
2022-12-05T06:48:07
2022-12-05T06:48:06
null
UTF-8
Python
false
false
4,492
gyp
# Copyright 2010-2014, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. { 'variables': { 'relative_dir': 'rewriter', 'gen_out_dir': '<(SHARED_INTERMEDIATE_DIR)/<(relative_dir)', }, 'targets': [ { 'target_name': 'rewriter', 'type': 'static_library', 'sources': [ '<(gen_out_dir)/embedded_collocation_data.h', '<(gen_out_dir)/embedded_collocation_suppression_data.h', '<(gen_out_dir)/emoji_rewriter_data.h', '<(gen_out_dir)/emoticon_rewriter_data.h', '<(gen_out_dir)/reading_correction_data.h', '<(gen_out_dir)/single_kanji_rewriter_data.h', '<(gen_out_dir)/symbol_rewriter_data.h', '<(gen_out_dir)/usage_rewriter_data.h', 'calculator_rewriter.cc', 'collocation_rewriter.cc', 'collocation_util.cc', 'correction_rewriter.cc', 'command_rewriter.cc', 'date_rewriter.cc', 'dice_rewriter.cc', 'dictionary_generator.cc', 'embedded_dictionary.cc', 'emoji_rewriter.cc', 'emoticon_rewriter.cc', 'english_variants_rewriter.cc', 'focus_candidate_rewriter.cc', 'fortune_rewriter.cc', 'language_aware_rewriter.cc', 'normalization_rewriter.cc', 'number_compound_util.cc', 'number_rewriter.cc', 'remove_redundant_candidate_rewriter.cc', 'rewriter.cc', 'single_kanji_rewriter.cc', 'symbol_rewriter.cc', 'transliteration_rewriter.cc', 'unicode_rewriter.cc', 'usage_rewriter.cc', 'user_boundary_history_rewriter.cc', 'user_dictionary_rewriter.cc', 'user_segment_history_rewriter.cc', 'variants_rewriter.cc', 'version_rewriter.cc', 'zipcode_rewriter.cc', ], 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:config_file_stream', '../composer/composer.gyp:composer', '../config/config.gyp:character_form_manager', '../config/config.gyp:config_handler', '../config/config.gyp:config_protocol', '../converter/converter_base.gyp:conversion_request', '../converter/converter_base.gyp:immutable_converter', '../data_manager/data_manager.gyp:user_pos_manager', '../dictionary/dictionary.gyp:dictionary', '../dictionary/dictionary_base.gyp:pos_matcher', '../session/session_base.gyp:session_protocol', '../storage/storage.gyp:storage', '../usage_stats/usage_stats_base.gyp:usage_stats', 'calculator/calculator.gyp:calculator', 'rewriter_base.gyp:gen_rewriter_files#host', ], 'xcode_settings' : { 'SDKROOT': 'iphoneos', 'IPHONEOS_DEPLOYMENT_TARGET': '7.0', 'ARCHS': '$(ARCHS_UNIVERSAL_IPHONE_OS)', }, 'conditions':[ ['target_platform=="Android"', { 'sources!': [ '<(gen_out_dir)/usage_rewriter_data.h', 'usage_rewriter.cc', ], }], ] }, ], }
86203cbdc8524bc438ae6337aa0c9192f9d21c19
bfc25f1ad7bfe061b57cfab82aba9d0af1453491
/data/external/repositories_2to3/152687/plankton-classification-master/code/maxout/train.py
1a1c2151cd0734ec1b1463ad74ed84d26eb51fef
[ "MIT" ]
permissive
Keesiu/meta-kaggle
77d134620ebce530d183467202cf45639d9c6ff2
87de739aba2399fd31072ee81b391f9b7a63f540
refs/heads/master
2020-03-28T00:23:10.584151
2018-12-20T19:09:50
2018-12-20T19:09:50
147,406,338
0
1
null
null
null
null
UTF-8
Python
false
false
9,293
py
import os import numpy as np from data import load_images from realtime_augment import RealtimeAugment from pylearn2.datasets import preprocessing from pylearn2.training_algorithms import sgd, learning_rule from pylearn2.termination_criteria import EpochCounter from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix, DefaultViewConverter from pylearn2.train import Train from pylearn2.train_extensions import best_params from pylearn2.termination_criteria import MonitorBased from pylearn2.costs.mlp.dropout import Dropout from pylearn2.models.maxout import MaxoutConvC01B, Maxout from pylearn2.models import mlp from pylearn2.space import Conv2DSpace from pylearn2.utils import serial from theano import tensor as T from theano import function from sklearn.utils import shuffle from sklearn.cross_validation import StratifiedKFold #optionally set to False to make predictions on a saved model retrain = True #nn params img_dim = 48 central_window_shape = img_dim max_epochs = 50 learn_rate = .025 batch_size = 128 momentum_start = .5 momentum_end = .9 momentum_saturate = max_epochs decay_factor = .025 * learn_rate decay_saturate = max_epochs view_converter_dim = 1 axes = ['b',0,1,'c'] view_converter = DefaultViewConverter(shape=[img_dim, img_dim, view_converter_dim], axes=axes) #image augment params scale_diff = .2 translation = 9. center_shape = (img_dim-2, img_dim-2) preprocess = [preprocessing.GlobalContrastNormalization(sqrt_bias=10.,use_std=True), preprocessing.LeCunLCN([img_dim, img_dim], batch_size=5000)] #number of random test augmentations to predict test_examples = 2 #convolutional layers l1= MaxoutConvC01B(layer_name='l1', tied_b=1, num_channels=32, num_pieces=2, pad=0, kernel_shape=[4,4], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) l2= MaxoutConvC01B(layer_name='l2', tied_b=1, num_channels=64, num_pieces=2, pad=3, kernel_shape=[4,4], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) l3 = MaxoutConvC01B(layer_name='l3', tied_b=1, num_channels=128, num_pieces=2, pad=3, kernel_shape=[3,3], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) l4 = MaxoutConvC01B(layer_name='l4', tied_b=1, num_channels=128, num_pieces=2, pad=3, kernel_shape=[3,3], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) l5 = MaxoutConvC01B(layer_name='l5', tied_b=1, num_channels=256, num_pieces=2, pad=2, kernel_shape=[3,3], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) l6 = MaxoutConvC01B(layer_name='l6', tied_b=1, num_channels=256, num_pieces=2, pad=2, kernel_shape=[3,3], pool_shape=[2,2], pool_stride=[2,2], max_kernel_norm= 1.9365, irange=.025) #dense layers l7 = Maxout(layer_name='l7', num_units=1024, num_pieces=2, irange=.025) l8 = Maxout(layer_name='l8', num_units=2048, num_pieces=2, irange=.025) output_layer = mlp.Softmax(layer_name='y', n_classes=121, irange=.01) layers = [l1,l2,l3,l4,l5, l6,l7, l8, output_layer] images = [] y = [] file_names = [] dimensions = [] train_labels = [x for x in os.listdir("train") if os.path.isdir("{0}{1}{2}".format("train", os.sep, x))] train_directories = ["{0}{1}{2}".format("train", os.sep, x) for x in train_labels] train_labels, train_directories = list(zip(*sorted(zip(train_labels, train_directories), key=lambda x: x[0]))) for idx, folder in enumerate(train_directories): for f_name_dir in os.walk(folder): dir_images, fnames, dims = load_images(f_name_dir, img_dim=img_dim) images = images + dir_images y = y + [idx for x in dir_images] dimensions = dimensions + dims file_names = file_names + fnames def to_one_hot(l): out = np.zeros((len(l), len(set(l)))) for idx, label in enumerate(l): out[idx, label] = 1 return out y = to_one_hot(y) def predict(model, X_test): model.set_batch_size(batch_size) m = X_test.X.shape[0] extra = batch_size - m % batch_size if extra > 0: X_test.X = np.concatenate([X_test.X, np.zeros((extra, X_test.X.shape[1]), dtype=X_test.X.dtype)], axis=0) X_m = model.get_input_space().make_theano_batch() Y = model.fprop(X_m) f = function([X_m], Y, allow_input_downcast=True) p = [] for i in range(X_test.X.shape[0] / batch_size): if i % 100 == 0: print("predicting batch {0} of {1}".format(i, X_test.X.shape[0] / batch_size)) x_arg = X_test.X[i*batch_size:(i+1)*batch_size,:] x_arg = X_test.get_topological_view(x_arg) p.append(f(x_arg.astype(X_m.dtype))) p = np.concatenate(p) p = p[:m] return p images, y, file_names, dimensions = shuffle(images, y, file_names, dimensions, random_state=7) folds = 10 fold = 0 kfold = StratifiedKFold([np.argmax(y[i]) for i in range(y.shape[0])], n_folds=folds) for train_index, test_index in kfold: save_path = 'valid_best_fold%d.pkl' % fold print(save_path) images_train = images[train_index] y_train = y[train_index] images_train, y_train = shuffle(images_train, y_train, random_state=7) X_train = DenseDesignMatrix(X=images_train, y=y_train,view_converter=view_converter) images_test = images[test_index] y_test = y[test_index] X_test = DenseDesignMatrix(X=images_test, y=y_test,view_converter=view_converter) if retrain: print("training on", X_train.X.shape, 'testing on', X_test.X.shape) trainer = sgd.SGD(learning_rate=learn_rate, batch_size=batch_size, learning_rule=learning_rule.Momentum(momentum_start), cost=Dropout( input_include_probs={'l1':1., 'l2':1., 'l3':1., 'l4':1., 'l5':1., 'l6':1.}, input_scales={'l1':1., 'l2':1., 'l3':1., 'l4':1., 'l5':1., 'l6':1.} ), termination_criterion=EpochCounter(max_epochs=max_epochs), monitoring_dataset={'train':X_train, 'valid':X_test}, ) input_space = Conv2DSpace(shape=(central_window_shape, central_window_shape), axes = axes, num_channels = 1) ann = mlp.MLP(layers, input_space=input_space) velocity = learning_rule.MomentumAdjustor(final_momentum=momentum_end, start=1, saturate=momentum_saturate) watcher = best_params.MonitorBasedSaveBest(channel_name='valid_y_nll', save_path=save_path) decay = sgd.LinearDecayOverEpoch(start=1, saturate=decay_saturate, decay_factor=decay_factor) ra = RealtimeAugment(window_shape=[img_dim, img_dim], randomize=[X_train, X_test], scale_diff=scale_diff, translation=translation, center_shape=center_shape, center=[X_train, X_test], preprocess=preprocess) train = Train(dataset=X_train, model=ann, algorithm=trainer, extensions=[watcher, velocity, decay, ra]) train.main_loop() print("using model", save_path) model = serial.load(save_path) print("loading test set") for f_name_dir in os.walk("test"): images_test, fnames, dims_test = load_images(f_name_dir, img_dim=img_dim) X_test = None p_test = np.zeros((len(images_test),121), dtype=np.float32) for example in range(test_examples): print("creating test augmentation %d" % example) X_train = DenseDesignMatrix(X=images_train, y=y_train,view_converter=view_converter) X_test_ = DenseDesignMatrix(X=np.array(images_test), y=np.array((len(images_test),)), view_converter=view_converter) ra = RealtimeAugment(window_shape=[img_dim, img_dim], randomize=[X_train, X_test_], scale_diff=scale_diff, translation=translation, center_shape=center_shape, center=[X_train, X_test_], preprocess=preprocess) ra.setup(None,None,None) preds = predict(model, X_test_) p_test += preds p_test /= test_examples print("writing sub to file") with open('sub.csv', 'w') as sub: sub.write("image," + ",".join(train_labels) + "\n") for idx, fname in enumerate(fnames): p_row = p_test[idx] sub.write("{0},{1}\n".format(fname, ",".join([str(x) for x in p_row]))) quit()
0cc9f793bbbacb2d71d1f077caac1470878e96ee
badb121a8c72debc539e7b9caf17b5c4cd875897
/setup.py
d788bb0448c2f1d68b5d93911c2598c8b73aeadc
[ "MIT" ]
permissive
shlpu/DeepNeuro
8721e1f83b30031a422e6cf112c31879edfa0feb
6b239942589d1b05e2384019c442508f5d02beb3
refs/heads/master
2020-03-16T07:12:25.128910
2018-04-10T22:32:29
2018-04-10T22:32:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,506
py
"""DeepNeuro: A deep learning python package for neuroimaging data. Created by the Quantitative Tumor Imaging Lab at the Martinos Center (Harvard-MIT Program in Health, Sciences, and Technology / Massachussets General Hospital). """ DOCLINES = __doc__.split("\n") import sys from setuptools import setup, find_packages from codecs import open from os import path if sys.version_info[:2] < (2, 7): raise RuntimeError("Python version 2.7 or greater required.") setup( name = 'deepneuro', # packages = ['qtim_tools'], # this must be the same as the name above version = '0.1.1', description = DOCLINES[0], packages = find_packages(), entry_points = { "console_scripts": ['segment_gbm = deepneuro.pipelines.Segment_GBM.cli:main', 'skull_strip = deepneuro.pipelines.Skull_Stripping.cli:main'], }, author = 'Andrew Beers', author_email = '[email protected]', url = 'https://github.com/QTIM-Lab/DeepNeuro', # use the URL to the github repo download_url = 'https://github.com/QTIM-Lab/DeepNeuro/tarball/0.1.1', keywords = ['neuroimaging', 'neuroncology', 'neural networks', 'neuroscience', 'neurology', 'deep learning', 'fmri', 'pet', 'mri', 'dce', 'dsc', 'dti', 'machine learning', 'computer vision', 'learning', 'keras', 'theano', 'tensorflow', 'nfiti', 'nrrd', 'dicom'], install_requires=['keras', 'pydicom', 'pynrrd', 'nibabel', 'numpy', 'scipy', 'scikit-image==0.12.3'], classifiers = [], )
54b5f9999727867f92c0a86ef38bb2f8502bf5aa
56fc8fe58ec8d576ec857f19a8adc43b49e19125
/DjangoDrf/DjangoDrf/urls.py
c75f1d5a486221814c1b64622ac12621ad0426fc
[]
no_license
Qpigzhu/Drf
53ae3dfd7d2715ea49bbfca02ada1a9239cb25a2
e4faa165a81abe8e641b992b6f86cc46cb01ac16
refs/heads/master
2022-12-13T16:30:33.868771
2018-12-12T02:34:11
2018-12-12T02:34:11
161,421,986
0
0
null
2022-12-08T01:20:24
2018-12-12T02:32:20
JavaScript
UTF-8
Python
false
false
2,253
py
"""DjangoDrf URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include,re_path from django.views.static import serve import xadmin from rest_framework.documentation import include_docs_urls from rest_framework.routers import DefaultRouter from rest_framework_jwt.views import obtain_jwt_token from .settings import MEDIA_ROOT from goods.views import GoodsList,CategoryViewset from users.views import SmsCodeView,UserView #使用router注册Url router = DefaultRouter() router.register('goods',GoodsList,base_name="GoodsList") # 配置Category的url router.register('categorys', CategoryViewset, base_name="categories") #发送验证码 router.register("code",SmsCodeView,base_name="sms_code") #用户 router.register("users",UserView,base_name="users") urlpatterns = [ # path('admin/', admin.site.urls), #rest_framewor的Url,方便测试 path('api-auth/', include('rest_framework.urls')), #xadmin后台Url path('xadmin/', xadmin.site.urls), # 富文本相关url path('ueditor/', include('DjangoUeditor.urls')), # 处理图片显示的url,使用Django自带serve,传入参数告诉它去哪个路径找,我们有配置好的路径MEDIAROOT re_path('media/(?P<path>.*)', serve, {"document_root": MEDIA_ROOT}), #rest_framework自动化文档,1.11版本中注意此处前往不要加$符号 path('docs/',include_docs_urls(title='mtianyan生鲜超市文档')), #食品列表 # path('goods/',GoodsList.as_view(),name="食品列表"), #使用router注册Url path('', include(router.urls)), #使用jwt来登录 path('login/',obtain_jwt_token), ]
4fdd0d8c6ae5710146751a450372bd9c6f5b06d7
1934761958bbb6082beebe887af36d7579d73fd5
/sandbox/test_concatenation.py
e25fa9c7ed94080b29d6fbe34cc88e58924e3439
[ "MIT" ]
permissive
sjoerdapp/tacoma
92d16e0beb93a3fc0dd0a745bccc35e050fa5dbe
3c63d51e2b9b021f95a6945716f50b557dd41d52
refs/heads/master
2020-04-10T14:01:22.713198
2018-12-07T17:10:09
2018-12-07T17:10:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,403
py
import tacoma as tc print("===== edge_lists => edge_lists =====") L = tc.edge_lists() L.N = 4 L.t = [0.0,1.0,2.0] L.tmax = 3.0 L.edges = [ [ (0,1) ], [ (1,2), (0,2) ], [ (0,1) ], ] L2 = tc.edge_lists() L2.N = 4 L2.t = [0.0,1.0,2.0] L2.tmax = 3.0 L2.edges = [ [ (3,1) ], [ (3,2), (0,2) ], ] new = tc.concatenate([L,L2,L]) print(new.N) print(new.t) print(new.tmax) print(new.edges) print("===== edge_changes => edge_changes =====") C = tc.edge_changes() C.N = 4 C.edges_initial = [ (0,1) ] C.t0 = 1.0 C.tmax = 3.0 C.t = [ 2.0, ] C.edges_in = [ [ (1,2), (0,2) ], ] C.edges_out = [ [ (0,1) ], ] C2 = tc.edge_changes() C2.N = 4 C2.edges_initial = [ (3,1) ] C2.t0 = 1.0 C2.tmax = 3.0 C2.t = [ 2.0, ] C2.edges_in = [ [ (3,2), (0,2) ], ] C2.edges_out = [ [ (3,1) ], ] new = tc.concatenate([C,C2,C]) print(new.N) print(new.t0) print(new.t) print(new.tmax) print(new.edges_initial) print(new.edges_in) print(new.edges_out)
75b3a9895a158f61870ce7f6948ee8c615166ebf
ad1fc1783487a70b3b10e9d3927cd864d15a6056
/pytablewriter/style/__init__.py
01aa4c10be5158f44fcc371276ce1231fe78cce7
[ "MIT" ]
permissive
Diwahars/pytablewriter
ea1d53669d7f0507c35332cb296fc9c0015473d0
6275405d75cb091c9e225e278b0d1230736fb9e8
refs/heads/master
2020-04-16T09:41:39.070414
2019-01-09T13:38:03
2019-01-09T13:38:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
# encoding: utf-8 from __future__ import absolute_import from ._font import FontSize, FontWeight from ._style import Align, Style, ThousandSeparator from ._styler import ( HtmlStyler, LatexStyler, NullStyler, TextStyler, MarkdownStyler, ReStructuredTextStyler, ) from dataproperty import Format
0f9324881116da5ccc6d95e209e3b1eca52c64cb
d0bdf444c71b724ecfd59b5bc6850962c56494cb
/labs/07-resampling_and_the_bootstrap/tests/q0_2.py
cb757a625b8c22fcb31df3b7f2d4ca35b9ab74d6
[]
no_license
ucsd-ets/dsc10-su20-public
10e3d0ff452b337f222baee330fe60d1465b0071
38787e6cc3e6210b4cc8a46350e5120845971c9f
refs/heads/master
2022-12-13T23:28:20.512649
2020-09-03T19:28:06
2020-09-03T19:28:06
275,905,339
0
1
null
null
null
null
UTF-8
Python
false
false
356
py
test = { 'hidden': False, 'name': '0.2', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> p_50 == 76 True """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest' } ] }
911268cc7033fdb9e4f5dfa358b0e1e352f93e23
ae39044997354b7270c6f35957bdd5efdcfbd2ee
/21.类.py/carse.py
c25056e3efde01e2d06ef62660cd80b401ed2c88
[]
no_license
text007/learngit
a2a7d8c872f17103a388f77370dcd07d6eb477c9
6f3429ecab51f738a99b2ec6637cd21603f48ec4
refs/heads/master
2020-06-18T13:18:34.563100
2019-10-08T13:08:09
2019-10-08T13:08:09
156,345,863
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
'''一个类''' # 导入另外一个类 from cars import Car class Battery(): # 定义一个类 def __init__(self, battery_size = 70): # 定义一个方法,传入一个形参,如果没有传入参数值,则默认值 self.battery_size = battery_size # 初始化 def describe_battery(self): # 定义一个方法 print(str(self.battery_size)) # 打印 def get_range(self): # 定义一个方法 if self.battery_size == 70: # 当 range = 240 elif self.battery_size == 85: # 当 range = 270 message = 'T ' + str(range) message += ' m' print(message) # 打印 class ElectricCar(Car): # 定义子类,()中必须包含父类名称 def __init__(self, make, model, year): # 接受创建父类实例所需信息 # 初始化父类属性 # super():特殊方法;将父类与子类关联 super().__init__(make, model, year) self.battery = Battery() # 子类包含这个属性,父类不包含
4ed203fe5bd61e1e611d29326dfa8157d106a3bd
292726345fae67a78771477e164441a716e0c22b
/setup.py
90234c02a27b4334d60238f950aa900379015c21
[]
no_license
anirban89/mypackage
d9bf8c7b0d2cc9dbd4ac4b5493cd650bf390f8a7
7b38e6db6c9e60cf2edb2b34ebe649ec3b7f0737
refs/heads/master
2021-01-13T02:26:17.878874
2014-10-02T00:29:34
2014-10-02T00:29:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
from setuptools import setup setup( name = 'mypackage', version = 0.1, packages = ['mypackage'], install_requires = ['numpy'] )
07382111d4dd14b487f8ddc2f8632c66c9034b55
60d2c390736f5dce1cd0c9d4249a0ab95bdae802
/worker/vtmis/vtmis/vtmis.py
6c886d68c3dbbe2f79a09e4295661bcb96a4eb5f
[ "Apache-2.0" ]
permissive
tsmolka/stoq-plugins-public
d996b0be051ce0bac453af7380e7cbfecc03ff93
a8d3351fe55fc72891c395d6767188746bf381cf
refs/heads/master
2020-12-28T22:22:15.077514
2016-07-13T17:57:43
2016-07-13T17:57:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,148
py
# Copyright 2014-2015 PUNCH Cyber Analytics Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Overview ======== Interact with VTMIS public and private API """ import argparse from queue import Queue from threading import Thread from datetime import timedelta from datetime import datetime from stoq.args import StoqArgs from stoq.plugins import StoqWorkerPlugin class VtmisScan(StoqWorkerPlugin): def __init__(self): super().__init__() def activate(self, stoq): self.stoq = stoq # VTMIS API calls are not consistent, so let's map them out so the # code can be as simple as possible. The primary key below will # be appened to the root VTMIS API URI and the underscores ("_") # replaced with a "/". As an example, the key "ip-address_report" # will be translated as: # https://www.virustotal.com/vtapi/v2/ip-address/report/ self.api_calls = {'file_report': {'key': 'resource', 'allinfo': True, 'method': 'get', 'private': False}, 'file_behaviour': {'key': 'hash', 'allinfo': True, 'method': 'get', 'private': True}, 'file_network-traffic': {'key': 'hash', 'allinfo': False, 'method': 'get', 'private': True}, 'file_feed': {'key': 'package', 'allinfo': False, 'method': 'get', 'private': True}, 'file_download': {'key': 'hash', 'allinfo': False, 'method': 'get', 'private': True}, 'file_scan': {'key': False, 'allinfo': False, 'method': 'post', 'private': False}, 'file_rescan': {'key': 'resource', 'allinfo': False, 'method': 'post', 'private': False}, 'file_search': {'key': 'query', 'allinfo': False, 'method': 'get', 'private': True}, 'file_clusters': {'key': 'date', 'allinfo': False, 'method': 'get', 'private': True}, 'url_report': {'key': 'resource', 'allinfo': True, 'method': 'get', 'private': False}, 'url_scan': {'key': 'url', 'allinfo': False, 'method': 'post', 'private': False}, 'url_feed': {'key': 'package', 'allinfo': False, 'method': 'get', 'private': True}, 'ip-address_report': {'key': 'ip', 'allinfo': False, 'method': 'get', 'private': False}, 'domain_report': {'key': 'domain', 'allinfo': False, 'method': 'get', 'private': False}, 'comments_get': {'key': 'resource', 'allinfo': False, 'method': 'get', 'private': True} } parser = argparse.ArgumentParser() parser = StoqArgs(parser) worker_opts = parser.add_argument_group("Plugin Options") worker_opts.add_argument("-a", "--apikey", dest='apikey', help="VTMIS API Key") worker_opts.add_argument("-r", "--resource", dest='api_resource', default=False, help="VTMIS API Resource to interact with") worker_opts.add_argument("-q", "--query", dest='query_value', default=False, help="Value to query using the specified API resource") worker_opts.add_argument("-l", "--list", dest='list_resources', default=False, action='store_true', help="List all VTMIS API resources available") worker_opts.add_argument("-s", "--alerts", dest='do_alerts', default=False, action='store_true', help="Check for alerts via the API") worker_opts.add_argument("-d", "--download", dest='download_samples', default=self.download_samples, action='store_true', help="Download samples from alerts and file feed") worker_opts.add_argument("--download-path", dest='download_path', default=False, help="Directory to save download samples, if supported") worker_opts.add_argument("-c", "--feed-connector", dest='feed_connector', help="Connector to utilize to save original JSON feed content") worker_opts.add_argument("-f", "--save-feed", dest='feed_save', default=self.feed_save, action='store_true', help="Save original JSON feed content") worker_opts.add_argument("-p", "--feed-path", dest='feed_path', help="Directory where the feed content is saved, if supported") worker_opts.add_argument("-m", "--max-threads", dest='max_threads', help="Max number of threads when processing feeds") options = parser.parse_args(self.stoq.argv[2:]) super().activate(options=options) if self.list_resources: print("VTMIS API Resources Available:") for key, value in self.api_calls.items(): print("\t- {}".format(key)) print("\nUsage: stoq-cli.py vtmis -r file_search -q 7896b9b34bdbedbe7bdc6d446ecb09d5") print(" OR stoq-cli.py vtmis -r domain_report -q www.google.com") exit(0) return True def scan(self, payload, **kwargs): """ Interact with public and private VTMIS API :param **kwargs resource: VTMIS API resource to query :param **kwargs query: Query VTMIS for a specific item :returns: Results from specified API call :type: dict """ super().scan() results = None resource = kwargs.get('resource', self.api_resource) query = kwargs.get('query', self.query_value) if not query: if not resource: resource = "file_report" query = kwargs.get('sha1', None) if resource == "alerts" or self.do_alerts: results = self.alerts() elif resource.endswith("_feed"): results = [] for date in self.generate_dates(query): results.append(self.call_api(resource, date, payload)) else: results = self.call_api(resource, query, payload) return results def call_api(self, resource, query=None, payload=None): # make sense of the API resource provided if resource in self.api_calls: api = self.api_calls[resource] # Replace any _ with / so we can build a valid URL uri = resource.replace("_", "/") url = "{}/{}".format(self.api_url, uri) else: self.stoq.log.warn("Invalid API resource:{}".format(resource)) return None # Start building the parameters of our API call params = {'apikey': self.apikey} # Determine what key is required, if any if api['key']: if query: params[api['key']] = query # Some API calls provide additional context, if using the private API if api['allinfo']: params['allinfo'] = 1 # Determine whether this API call requires a POST or GET, and whether # whether we are uploading a file or not. if api['method'] == 'get': response = self.stoq.get_file(url, params=params) elif api['method'] == 'post': if payload: uuid = self.stoq.get_uuid files = {'file': (uuid, payload)} response = self.stoq.post_file(url, files=files, params=params) else: response = self.stoq.post_file(url, params=params) if resource == 'file_download': return self.save_download(response) elif resource.endswith("_feed"): self.process_feed(response, resource, query) return True try: return self.stoq.loads(response) except: return None def alerts(self): processed_hashes = [] ids = [] results = [] url = "{}{}{}&output=json".format(self.alerts_url, self.alerts_uri, self.apikey) response = self.stoq.get_file(source=url) alerts = self.stoq.loads(response) # Ensure we have results, otherwise just return None try: alert_list = alerts['notifications'] except TypeError: return None for alert in alert_list: if alert['sha1'] not in processed_hashes: # Check to see if we need to download the file, if so, do it. if self.download_samples: self.call_api('file_download', query=alert['sha1']) # Keep track of the hashes we've processed so we don't handle # dupes processed_hashes.append(alert['sha1']) results.append(alert) # Track the IDs so we can delete them when done ids.append(alert['id']) # Delete the alert from the feed so we don't handle it again self.delete_alert(ids) return results def delete_alert(self, ids): # Split the IDs into lists of 100, the maximum allowed per the API delete_ids = (ids[pos:pos + 100] for pos in range(0, len(ids), 100)) # Construct the URL url = "{}{}{}".format(self.alerts_url, self.delete_alerts_uri, self.apikey) # Iterate over the lists and post the content to delete the alerts for delete_id in delete_ids: self.stoq.post_file(url=url, data=str(delete_id)) def save_download(self, payload, filename=None, feed=False): if payload and self.archive_connector and not feed: if self.download_path: path = self.download_path archive = False else: path = None archive = True self.connectors[self.archive_connector].save(payload, archive=archive, binary=True, path=path, filename=filename) elif payload and self.feed_connector and feed: self.load_connector(self.feed_connector) self.connectors[self.feed_connector].save(payload, archive=False, binary=True, path=self.feed_path, filename=filename) else: self.stoq.log.error("No connector or payload defined. Unable to save payload.") def generate_dates(self, query): """ Generate dates that are valid for VTMIS feeds. """ current_time = datetime.now() if query.endswith("h"): max_time = int(query[:-1]) + 1 for i in range(1, max_time): delta = current_time - timedelta(hours=i) yield delta.strftime("%Y%m%dT%H") elif query.endswith("m"): # VT recommends pulling no sooner than 5 minutes to allow for # processing on their side. Let's take that into consideration # when the user makes a call and automatically add 5 minutes. max_time = int(query[:-1]) + 5 for i in range(5, max_time): delta = current_time - timedelta(minutes=i) yield delta.strftime("%Y%m%dT%H%M") else: yield query def process_feed(self, payload, resource, query): # Set saveresults to False as we don't return anything of use # when handling feeds. All of the results are saved outside of the # normal workflow. self.saveresults = False # Generate the filename index = "vtmis_{}".format(resource) filename = "{}-{}.tar.bz2".format(resource, query) queue = Queue() max_threads = int(self.max_threads) for i in range(max_threads): proc = Thread(target=self._save_feed, args=(queue, index, resource)) proc.setDaemon(True) proc.start() # Do we want to save the raw JSON feed that is initially downloaded? if self.feed_save: self.save_download(payload, filename=filename, feed=True) self.load_extractor("decompress") tar_files = self.extractors['decompress'].extract(payload) for tar_file in tar_files: raw_content = self.extractors['decompress'].extract(tar_file[1]) for content in raw_content: lines = content[1].decode().split("\n") compressed_filename = content[0]['filename'] self.stoq.log.info("Processing {} items from {}".format(len(lines), compressed_filename)) for line in lines: line = self.stoq.loads(line) queue.put(line) queue.join() def _save_feed(self, queue, index, resource): while True: try: result = queue.get() # Check to see if we should download each sample file if self.download_samples and resource == 'file_feed': file_link = result['link'] file_payload = self.stoq.get_file(file_link) self.save_download(file_payload) self.connectors[self.output_connector].save(result, index=index) except Exception as err: self.stoq.log.error("Unable to process VTMIS feed: {}".format(str(err))) queue.put(result) queue.task_done()
f705ee4bc444b70f5af055fe8b3972fe83329f2c
8a6c18088c50bc782df58e176663114d91ffc47c
/src/teams/migrations/0048_auto_20180814_1950.py
c59f9f8cb4135dcc034d5f69b80569efbd596119
[ "BSD-3-Clause" ]
permissive
flummer/bornhack-website
14cc55f34b85740d32567d6a3934e865f2549381
c40f225f0993a6edd25dc608de1f6467f7d8e5a1
refs/heads/master
2020-04-29T13:23:44.167064
2019-05-12T15:30:01
2019-05-12T15:30:01
176,167,685
0
0
BSD-3-Clause
2019-03-17T22:19:27
2019-03-17T22:19:27
null
UTF-8
Python
false
false
359
py
# Generated by Django 2.1 on 2018-08-14 17:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('teams', '0047_taskcomment'), ] operations = [ migrations.RenameField( model_name='taskcomment', old_name='content', new_name='comment', ), ]
07151db73c571183b2efe81f155b7ee8f4d0d5aa
9b8e2992a38f591032997b5ced290fe1acc3ad94
/untitled1.py
5168631138eec406cbc548e97cca8ab1abb1401a
[]
no_license
girishdhegde/aps-2020
c694443c10d0d572c8022dad5a6ce735462aaa51
fb43d8817ba16ff78f93a8257409d77dbc82ced8
refs/heads/master
2021-08-08T04:49:18.876187
2021-01-02T04:46:20
2021-01-02T04:46:20
236,218,152
0
0
null
null
null
null
UTF-8
Python
false
false
2,329
py
import cv2 import numpy as np def dense(): global cap,currentframe if denseflag==1: x=currentframe x1=x-100 y1=x+100 count=x1 cap.set(1,x1) ret, frame1 = cap.read() prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) while(count<y1): ret, frame2 = cap.read() next1 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback(prvs,next1, None, 0.5, 3, 15, 3, 5, 1.2, 0) a=flow[0] a=np.sum(np.square(a)) b=flow[1] b=np.sum(np.square(b)) z=np.sqrt(a+b) data.append([count,z]) print(count) #cv2.imshow('frame1',frame1) #k = cv2.waitKey(30) & 0xff #if k == 27: # break prvs = next1 count+=1 List = [data[f][1] for f in range(len(data))] high=List.index(max(List)) print(high) cap.set(1,data[high][0]) currentframe = data[high][0] ret, frame1 = cap.read() cv2.destroyAllWindows() cv2.imshow('frame',frame1) else : print("Check mark optical flow") temp=[] data=[] def left(): global currentframe,high,List,temp,cap if denseflag==1: if(high!=0): temp=[List[f] for f in range(0,high)] high=temp.index(max(temp)) high=List.index(temp[high]) print(data[high][0]) cap.set(1,data[high][0]) currentframe = data[high][0] ret, frame1 = cap.read() cv2.destroyAllWindows() cv2.imshow('frame',frame1) else: print("Go right") else : print("Check mark optical flow") def right(): global high,List,cap,currentframe if denseflag==1: if(high!=199): temp=[List[f] for f in range(high+1,200)] high=temp.index(max(temp)) high=List.index(temp[high]) print(data[high][0]) cap.set(1,data[high][0]) currentframe = data[high][0] ret, frame1 = cap.read() cv2.destroyAllWindows() cv2.imshow('frame',frame1) else: print("Go left") else : print("Check mark optical flow")
5294c57910e749afa0feb0dc04adc4fd5fdc14aa
a7685d315e6616cc2b6d43587bb19ead4324fb2a
/cci_salesman/wizard/extract_participations.py
11c7dc952971d632537da32cf14d109bdf728a5d
[]
no_license
philmervdm/modules_cci_odoo8
472ea68de409e876722413afdd873d6a7827744e
603144219a86e805f7603cfafc0fb05a78166eef
refs/heads/master
2021-01-09T20:02:58.326569
2017-05-06T15:45:03
2017-05-06T15:45:03
60,332,279
2
2
null
null
null
null
UTF-8
Python
false
false
2,601
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import wizard import pooler import datetime def _club_active_participations(self, cr, uid, data, context): club_id = data['id'] # cr.execute('SELECT p.id FROM cci_club_participation as p, cci_club_participation_state as s WHERE p.group_id = %s AND ( p.date_out is null OR p.date_out > %s ) #AND p.state_id = s.id AND s.current', (club_id, datetime.date.today() )) # res = cr.fetchall() # part_ids = [x[0] for x in res] # value = { # 'domain': [('id', 'in', part_ids)], # 'name': 'Active Participations', # 'view_type': 'form', # 'view_mode': 'tree,form', # 'res_model': 'cci_club.participation', # 'context': {}, # 'type': 'ir.actions.act_window' # } # THE FOLLOWING WAY IS MORE DYNAMIC value = { 'domain': [('group_id', '=', club_id),('state_id.current','=',True),'|',('date_out','=',False),('date_out','>',datetime.date.today().strftime('%Y-%m-%d') )], 'name': 'Active Participations', 'view_type': 'form', 'view_mode': 'tree,form', 'res_model': 'cci_club.participation', 'context': {}, 'type': 'ir.actions.act_window' } return value class wizard_club_active_participations(wizard.interface): states = { 'init': { 'actions': [], 'result': { 'type': 'action', 'action': _club_active_participations, 'state': 'end' } }, } wizard_club_active_participations("wizard_cci_club_active_participations") # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
37aad6a8d126f7a2f34d49e6e6fd4bddd5f08cb1
7f529df5381361874d51c8cb7d8678e088dbe71d
/aea/protocols/default/__init__.py
52e51b51e36ef3b50d6e1ccddf33b0782f9c9c80
[ "Apache-2.0" ]
permissive
cyenyxe/agents-aea
914546708ce3e2e913ce1bb48bc8928289738c9a
c2aec9127028ae13def3f69fbc80d35400de1565
refs/heads/master
2021-01-07T05:36:27.879856
2020-02-07T19:28:01
2020-02-07T19:28:01
241,594,907
0
0
Apache-2.0
2020-03-05T14:53:54
2020-02-19T10:35:49
null
UTF-8
Python
false
false
872
py
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the support resources for the default protocol."""
125494d60a6fda1d0624163876564440784178ed
f8666599b83d34c861651861cc7db5b3c434fc87
/plotly/validators/carpet/baxis/tickformatstop/_name.py
8ff0b7a47aa7b5fed8b166c536845b675ff38361
[ "MIT" ]
permissive
mode/plotly.py
8b66806e88c9f1820d478bab726f0bea81884432
c5a9ac386a40df2816e6c13264dadf14299401e4
refs/heads/master
2022-08-26T00:07:35.376636
2018-09-26T19:08:54
2018-09-26T19:19:31
60,372,968
1
1
MIT
2019-11-13T23:03:22
2016-06-03T19:34:55
Python
UTF-8
Python
false
false
492
py
import _plotly_utils.basevalidators class NameValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='name', parent_name='carpet.baxis.tickformatstop', **kwargs ): super(NameValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), role=kwargs.pop('role', 'style'), **kwargs )
d15d67d65624be46de1b72401f49d991cdb8c86e
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-projectman/huaweicloudsdkprojectman/v4/model/batch_delete_iterations_v4_request.py
49a9950000cd6af7e35e6cdf50daf4cd5933de11
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,126
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class BatchDeleteIterationsV4Request: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'project_id': 'str', 'body': 'BatchDeleteIterationsV4RequestBody' } attribute_map = { 'project_id': 'project_id', 'body': 'body' } def __init__(self, project_id=None, body=None): """BatchDeleteIterationsV4Request The model defined in huaweicloud sdk :param project_id: devcloud项目的32位id :type project_id: str :param body: Body of the BatchDeleteIterationsV4Request :type body: :class:`huaweicloudsdkprojectman.v4.BatchDeleteIterationsV4RequestBody` """ self._project_id = None self._body = None self.discriminator = None self.project_id = project_id if body is not None: self.body = body @property def project_id(self): """Gets the project_id of this BatchDeleteIterationsV4Request. devcloud项目的32位id :return: The project_id of this BatchDeleteIterationsV4Request. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """Sets the project_id of this BatchDeleteIterationsV4Request. devcloud项目的32位id :param project_id: The project_id of this BatchDeleteIterationsV4Request. :type project_id: str """ self._project_id = project_id @property def body(self): """Gets the body of this BatchDeleteIterationsV4Request. :return: The body of this BatchDeleteIterationsV4Request. :rtype: :class:`huaweicloudsdkprojectman.v4.BatchDeleteIterationsV4RequestBody` """ return self._body @body.setter def body(self, body): """Sets the body of this BatchDeleteIterationsV4Request. :param body: The body of this BatchDeleteIterationsV4Request. :type body: :class:`huaweicloudsdkprojectman.v4.BatchDeleteIterationsV4RequestBody` """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BatchDeleteIterationsV4Request): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
740028a049c72a4eb04c08359edfac9f378d6525
c0340c511cff5b40b4681c4d3238d807624c0323
/models/corpus_reader/corpusIterator.py
9ae01c2a3c9b76ef214d4727d895cd74c0b05141
[]
no_license
m-hahn/grammar-optim
5fa7ade47d2ad91f517c887ee2c65af24059069d
07a1a80692a504bcafc8120a21c4dc9066b495ee
refs/heads/master
2022-08-30T06:54:42.749264
2022-08-05T12:09:28
2022-08-05T12:09:28
156,456,167
13
2
null
null
null
null
UTF-8
Python
false
false
4,334
py
import os import random import sys header = ["index", "word", "lemma", "posUni", "posFine", "morph", "head", "dep", "_", "_"] def readUDCorpus(language, partition): basePaths = ["/u/scr/mhahn/grammar-optim_ADDITIONAL/corpora/"] files = [] while len(files) == 0: if len(basePaths) == 0: print("No files found") raise IOError basePath = basePaths[0] del basePaths[0] files = os.listdir(basePath) files = list(filter(lambda x:x.startswith("UD_"+language), files)) data = [] for name in files: if "Sign" in name: print("Skipping "+name) continue assert ("Sign" not in name) if "Chinese-CFL" in name: print("Skipping "+name) continue suffix = name[len("UD_"+language):] subDirectory =basePath+"/"+name subDirFiles = os.listdir(subDirectory) partitionHere = partition candidates = list(filter(lambda x:"-ud-"+partitionHere+"." in x and x.endswith(".conllu"), subDirFiles)) if len(candidates) == 0: print("Did not find "+partitionHere+" file in "+subDirectory) continue if len(candidates) == 2: candidates = list(filter(lambda x:"merged" in x, candidates)) assert len(candidates) == 1, candidates try: dataPath = subDirectory+"/"+candidates[0] with open(dataPath, "r") as inFile: newData = inFile.read().strip().split("\n\n") assert len(newData) > 1 data = data + newData except IOError: print("Did not find "+dataPath) assert len(data) > 0, (language, partition, files) print >> sys.stderr, "Read "+str(len(data))+ " sentences from "+str(len(files))+" "+partition+" datasets." return data class CorpusIterator(): def __init__(self, language, partition="train", storeMorph=False, splitLemmas=False, shuffleData=True, shuffleDataSeed=None, splitWords=False): assert not splitLemmas self.splitLemmas = splitLemmas self.splitWords = splitWords assert not self.splitWords self.storeMorph = storeMorph data = readUDCorpus(language, partition) if shuffleData: if shuffleDataSeed is None: random.shuffle(data) else: random.Random(shuffleDataSeed).shuffle(data) self.data = data self.partition = partition self.language = language assert len(data) > 0, (language, partition) def permute(self): random.shuffle(self.data) def length(self): return len(self.data) def processSentence(self, sentence): sentence = list(map(lambda x:x.split("\t"), sentence.split("\n"))) result = [] for i in range(len(sentence)): # print sentence[i] if sentence[i][0].startswith("#"): continue if "-" in sentence[i][0]: # if it is NUM-NUM continue if "." in sentence[i][0]: continue sentence[i] = dict([(y, sentence[i][x]) for x, y in enumerate(header)]) sentence[i]["head"] = int(sentence[i]["head"]) sentence[i]["index"] = int(sentence[i]["index"]) sentence[i]["word"] = sentence[i]["word"].lower() if self.splitLemmas: sentence[i]["lemmas"] = sentence[i]["lemma"].split("+") if self.storeMorph: sentence[i]["morph"] = sentence[i]["morph"].split("|") if self.splitWords: sentence[i]["words"] = sentence[i]["word"].split("_") sentence[i]["dep"] = sentence[i]["dep"].lower() if self.language == "LDC2012T05" and sentence[i]["dep"] == "hed": sentence[i]["dep"] = "root" if self.language == "LDC2012T05" and sentence[i]["dep"] == "wp": sentence[i]["dep"] = "punct" result.append(sentence[i]) # print sentence[i] return result def getSentence(self, index): result = self.processSentence(self.data[index]) return result def iterator(self, rejectShortSentences = False): for sentence in self.data: if len(sentence) < 3 and rejectShortSentences: continue yield self.processSentence(sentence)
27c7fe3ed3a9f243315dd8256f5390ab76485e06
e81576012330e6a6024d14f3e241f88ca34b73cd
/python_code/vnev/Lib/site-packages/jdcloud_sdk/services/mps/apis/GetNotificationRequest.py
49630052bdeca358968876ff0e2634d9dd20ad88
[ "MIT" ]
permissive
Ureimu/weather-robot
eba6a84147755aa83c941a306bac1a7c4e95e23e
7634195af388538a566ccea9f8a8534c5fb0f4b6
refs/heads/master
2021-01-15T07:23:42.274413
2020-03-23T02:30:19
2020-03-23T02:30:19
242,912,896
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class GetNotificationRequest(JDCloudRequest): """ 获取媒体处理通知 """ def __init__(self, parameters, header=None, version="v1"): super(GetNotificationRequest, self).__init__( '/regions/{regionId}/notification', 'GET', header, version) self.parameters = parameters class GetNotificationParameters(object): def __init__(self, regionId, ): """ :param regionId: region id """ self.regionId = regionId
578ab4564ac917e59f31823eb1d6cfb9f28fc608
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_21885.py
8917a8ab7563dc2340287d482527305078ed27d8
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
# Making a call to a Chef server from Windows PE &gt; perl Configure VC-WIN32 no-asm no-shared &gt; ms\do_ms &gt; nmake -f ms\ntdll.mak
4fcebeee0e3e255674d7dfda68f199803b482d48
c7e9ec5ce6627f6f68bab1b86a27a4516595154d
/maintenance/06migratedeletes.py
c9d6b4ad448306f6ddbcd4e2633be4ec2113805c
[]
no_license
michaelcrubenstein/consentrecords
7b79e82c9ad4b5efcfbb44a50ff1d4cadf7180e2
992fe78c68d1d5c083f9e2cc0e3e9aa24363b93d
refs/heads/master
2021-01-23T19:28:13.807809
2018-07-03T16:10:34
2018-07-03T16:10:34
41,223,029
1
1
null
2018-07-03T16:10:35
2015-08-22T20:21:26
JavaScript
UTF-8
Python
false
false
1,765
py
# Migrate translation objects to translation types. import datetime import django import tzlocal import getpass import sys from django.db import transaction from django.contrib.auth import authenticate from django.db.models import F from django.db.models import Count from consentrecords.models import TransactionState, Terms, Instance, Value, DeletedValue, DeletedInstance from consentrecords.models import UserInfo, NameList from consentrecords.models import AccessRecord from consentrecords import pathparser if __name__ == "__main__": django.setup() timezoneoffset = -int(tzlocal.get_localzone().utcoffset(datetime.datetime.now()).total_seconds()/60) if len(sys.argv) > 1: username = sys.argv[1] else: username = input('Email Address: ') password = getpass.getpass("Password: ") user = authenticate(username=username, password=password) if not user: raise ValueError("user was not authenticated") with transaction.atomic(): transactionState = TransactionState(user, timezoneoffset) Terms.initialize(transactionState) i = Instance.objects.filter(deletedinstance__isnull=False).count() j = Value.objects.filter(deletedvalue__isnull=False).count() for x in Instance.objects.filter(deletedinstance__isnull=False): x.deleteTransaction = x.deletedinstance.transaction x.save() for x in Value.objects.filter(deletedvalue__isnull=False): x.deleteTransaction = x.deletedvalue.transaction x.save() print("migrate %s instances" % i) print("migrate %s values" % j) input('Confirm transaction: ') print("Complete.")
0c35e06c4e5be85693d075e16977c37d18936c4b
14aab11a9bd38acaaf3ed959ce736a3e1f1e3bad
/contrast/4/p4/mininet/delay.py
dc4aa0dd140d190cd83feac0ad77c10c8e299be3
[]
no_license
chenyuchuting0912/SwitchML
4eae7d3a3f40c93156ebf039e34df67df430c286
d24ee879b3feadf308b4fdf52d090d0d21d1ee80
refs/heads/master
2020-06-03T17:41:13.993330
2020-01-09T02:39:47
2020-01-09T02:39:47
191,668,879
4
2
null
null
null
null
UTF-8
Python
false
false
1,623
py
#!/usr/bin/python from mininet.net import Mininet from mininet.node import Controller, RemoteController, OVSController from mininet.node import CPULimitedHost, Host, Node from mininet.node import OVSKernelSwitch, UserSwitch from mininet.node import IVSSwitch from mininet.cli import CLI from mininet.log import setLogLevel, info from mininet.link import TCLink, Intf from subprocess import call def myNetwork(): net = Mininet( topo=None, build=False, ipBase='10.0.0.0/8') info( '*** Adding controller\n' ) info( '*** Add switches\n') s1 = net.addSwitch('s1', cls=OVSKernelSwitch) info( '*** Add hosts\n') h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None) h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None) h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None) info( '*** Add links\n') h3s1 = {'bw':10,'delay':'5ms','loss':0,'max_queue_size':1000} net.addLink(h3, s1, cls=TCLink , **h3s1) h1s1 = {'bw':10,'delay':'5ms','loss':0,'max_queue_size':1000} net.addLink(h1, s1, cls=TCLink , **h1s1) h2s1 = {'bw':10,'delay':'5ms','loss':0,'max_queue_size':1000} net.addLink(h2, s1, cls=TCLink , **h2s1) info( '*** Starting network\n') net.build() info( '*** Starting controllers\n') for controller in net.controllers: controller.start() info( '*** Starting switches\n') net.get('s1').start([]) info( '*** Post configure switches and hosts\n') CLI(net) net.stop() if __name__ == '__main__': setLogLevel( 'info' ) myNetwork()
045862281c288c88f92463538e884c0427ee8453
d41d18d3ea6edd2ec478b500386375a8693f1392
/plotly/validators/choropleth/_reversescale.py
8af580fb6748504b61ef7f5ef3b1ef25f5da02e4
[ "MIT" ]
permissive
miladrux/plotly.py
38921dd6618650d03be9891d6078e771ffccc99a
dbb79e43e2cc6c5762251537d24bad1dab930fff
refs/heads/master
2020-03-27T01:46:57.497871
2018-08-20T22:37:38
2018-08-20T22:37:38
145,742,203
1
0
MIT
2018-08-22T17:37:07
2018-08-22T17:37:07
null
UTF-8
Python
false
false
431
py
import _plotly_utils.basevalidators class ReversescaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name='reversescale', parent_name='choropleth', **kwargs ): super(ReversescaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', role='style', **kwargs )
1f84f12505ff59602d122001d005785a8f5bce8d
adbedf9626c52748aa048f2b17c18d25262b4d56
/robot_framework_baseline_comparator/BaselineComparator/html_baseline.py
34eefcebeb0891f7888d2198c466c78c88472e5c
[]
no_license
sanjitroy1992/robot_framework_custom_libraries
3ef91ea6d4705215f86c83d276d67ce7c5af673a
e5fde8f428a4d46d5cacb2c5369f9c59529f5c91
refs/heads/master
2022-11-06T09:11:02.148601
2020-06-29T09:35:46
2020-06-29T09:35:46
274,330,471
0
0
null
null
null
null
UTF-8
Python
false
false
7,893
py
from Libraries.Common.BaselineComparator.HTMLTBodyComparator import HTMLBodyComparator from Libraries.Common.BaselineComparator.HTMLTBodyComparator import HTMLFooterComparator from Libraries.Common.BaselineComparator.HTMLTBodyComparator import HTMLHeaderComparator from Libraries.Utilities import ReportBuilder from itertools import zip_longest import lxml.html class HTMLBaseline(object): def __init__(self): self.success = True self.error_msgs = set() @staticmethod def convert_csv_to_html(header, body): table = lxml.html.fromstring('<table>') header_lxml = HTMLBaseline._list_to_tbody(header) body_lxml = HTMLBaseline._list_to_tbody(body) table.append(header_lxml) table.append(body_lxml) return lxml.html.tostring(table, encoding='unicode') @staticmethod def _list_to_tbody(list_of_rows): tbody = lxml.html.fromstring('<tbody>') for row in list_of_rows: tr = lxml.html.fromstring('<tr>') for cell_text in row: td = lxml.html.fromstring('<td>') if cell_text is None: td.text = "missed_or_extra_cell" else: td.text = cell_text.strip() tr.append(td) tbody.append(tr) return tbody def _open_file(self, baseline_file): with open(baseline_file, "rb") as f: return f.read() def compare_html_pivot_baseline_to_application(self, baseline, app): self.success = True self.error_msgs = set() report = ReportBuilder() tbody, thead = self._prepare_table_for_pivot(report) app, baseline = self._prepere_lxml_baseline_and_app(app, baseline) self._compare_pivot_upper_part(app, baseline, report, thead) self._compare_pivot_lower_part(app, baseline, report, tbody) return self.success, self.error_msgs def _compare_pivot_lower_part(self, app, baseline, report, tbody): for row_left, row_right in zip_longest(self._compare_pivot_part(app, baseline, report, 3), self._compare_pivot_part(app, baseline, report, 4)): self._merge_pivot_parts(report, row_left, row_right, tbody) def _merge_pivot_parts(self, report, row_left, row_right, tbody): if row_left is None: row_left = report.create_row() td = report.create_td() row_left.append(td) right_tds = row_right.getchildren() for td in right_tds: row_left.append(td) tbody.append(row_left) def _compare_pivot_upper_part(self, app, baseline, report, thead): for row_left, row_right in zip_longest(self._compare_pivot_part(app, baseline, report, 1), self._compare_pivot_part(app, baseline, report, 2)): self._merge_pivot_parts(report, row_left, row_right, thead) def _prepere_lxml_baseline_and_app(self, app, baseline): baseline = lxml.html.fromstring(baseline) app = lxml.html.fromstring(app) for tr in baseline.xpath(r".//tr[not(.//td[text()])]"): tr.drop_tree() for tr in app.xpath(r".//tr[not(.//td[text()])]"): tr.drop_tree() return app, baseline def _prepare_table_for_pivot(self, report): table = report.create_table() thead = report.create_thead() tbody = report.create_tbody() table.append(thead) table.append(tbody) return tbody, thead def _compare_pivot_part(self, app, baseline, report, index): baseline_lxml = baseline.xpath('.//td[@id="no-boarder{}"]'.format(index))[0] application_lxml = app.xpath('.//td[@id="no-boarder{}"]'.format(index))[0] body_comparator = HTMLBodyComparator(baseline_lxml, application_lxml) comparison = list(body_comparator.icompare()) self.success = self.success and body_comparator.success self.error_msgs.update(body_comparator.error_msgs) return comparison def compare_html_baseline_to_app(self, baseline, app, skip_columns_names=None, sort_column_names=None, key_column_names=None, missing_columns=None): table_comparison = self._compare_table_to_baseline(baseline, app, skip_columns_names, sort_column_names, key_column_names, missing_columns) print("*HTML* {}".format(table_comparison)) return self.success, self.messages def _compare_table_to_baseline(self, baseline, app, skip_columns_names=None, sort_column_names=None, key_column_names=None, missing_columns=[]): report = ReportBuilder() table = report.create_table() app, baseline = self._prepere_lxml_baseline_and_app(app, baseline) baseline_header = [i.text_content() for i in baseline.xpath(".//tbody")[0].xpath(".//tr")[0].xpath(".//td[not(@id)]")] if missing_columns: missing_columns_index = [baseline_header.index(i) for i in missing_columns] else: missing_columns_index = None header_comparator = HTMLHeaderComparator(self._get_tbody_by_index(baseline, 0), self._get_tbody_by_index(app, 0), skip_columns_names, key_column_names ) body_comparator = HTMLBodyComparator(self._get_tbody_by_index(baseline, 1), self._get_tbody_by_index(app, 1), header_comparator.get_columns_indexes(skip_columns_names), header_comparator.get_columns_indexes(sort_column_names), header_comparator.get_columns_indexes(key_column_names), baseline_header, missing_columns_index ) footer_comparator = HTMLFooterComparator(self._get_tbody_by_index(baseline, 2), self._get_tbody_by_index(app, 2), header_comparator.get_columns_indexes(skip_columns_names) ) header_comparison = header_comparator.compare() body_comparison, unique_key_found = body_comparator.compare() if unique_key_found: header_comparator = HTMLHeaderComparator(self._get_tbody_by_index(baseline, 0), self._get_tbody_by_index(app, 0), skip_columns_names, key_column_names=unique_key_found ) header_comparison = header_comparator.compare() footer_comparison = footer_comparator.compare() table.append(header_comparison) table.append(body_comparison) table.append(footer_comparison) self.success = all([header_comparator.success, body_comparator.success, footer_comparator.success]) self.messages = set() self.messages.update(header_comparator.error_msgs, body_comparator.error_msgs, footer_comparator.error_msgs) return report @staticmethod def _get_tbody_by_index(app, index): try: app_part = app.xpath(".//tbody")[index] except IndexError: app_part = lxml.html.fromstring("<p></p>") return app_part