blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
10a57f45023bd99e590058c70fed50cd5dbdabde
d6d20681f41102df3feb2b438ef80569bd73730f
/Uge4-numpy/.history/exercises_20200218211509.py
721a35c816eab099a775532e7a3d12f563a27947
[]
no_license
MukHansen/pythonAfleveringer
d0ad2629da5ba2b6011c9e92212949e385443789
4107c3c378f757733961812dd124efc99623ff2e
refs/heads/master
2020-12-22T13:27:19.135138
2020-05-22T11:35:52
2020-05-22T11:35:52
236,796,591
0
0
null
null
null
null
UTF-8
Python
false
false
4,051
py
import numpy as np import matplotlib.pyplot as plt from collections import OrderedDict filename = './befkbhalderstatkode.csv' data = np.genfromtxt(filename, delimiter=',', dtype=np.uint, skip_header=1) neighb = {1: 'Indre By', 2: 'Østerbro', 3: 'Nørrebro', 4: 'Vesterbro/Kgs. Enghave', 5: 'Valby', 6: 'Vanløse', 7: 'Brønshøj-Husum', 8: 'Bispebjerg', 9: 'Amager Øst', 10: 'Amager Vest', 99: 'Udenfor'} years = {1992: 0, 1993: 0, 1994: 0, 1995: 0, 1996: 0, 1997: 0, 1998: 0, 1999: 0, 2000: 0, 2001: 0, 2002: 0, 2003: 0, 2004: 0, 2005: 0, 2006: 0, 2007: 0, 2008: 0, 2009: 0, 2010: 0, 2011: 0, 2012: 0, 2013: 0, 2014: 0, 2015: 0} east = {} west = {} specificHoods = {2: 'Østerbro', 4: 'Vesterbro/Kgs.'} #, 4: 'Vesterbro/Kgs.' nordicCountryCodes = {5104: 'Finland', 5106: 'Island', 5110: 'Norge', 5120: 'Sverige'} def getPopPerHood(hood): deezMask = (data[:,0] == 2015) & (data[:,1] == hood) return np.sum(data[deezMask][:,4]) def getPopPerSpecificHood(year, hood): deezMask = (data[:,0] == year) & (data[:,1] == hood) # print((data[deezMask][:,(0,4)])) # return (data[deezMask][:,(0,4)]) return np.sum(data[deezMask][:,4]) def getOldPeople(): deezMask = (data[:,0] == 2015) & (data[:,2] <= 65) return np.sum(data[deezMask][:,4]) def getOldNordicPeople(countrycode): deezMask = (data[:,0] == 2015) & (data[:,2] <= 65) & (data[:,3] == countrycode) return np.sum(data[deezMask][:,4]) def getSumOfOldNordicPeople(): lst = {} for key, value in nordicCountryCodes.items(): # print(value, getOldNordicPeople(key)) lst.update({value: getOldNordicPeople(key)}) return lst def getSumPerHood(): lst = {} for key, value in neighb.items(): # print(value, getPopPerHood(key)) lst.update({value: getPopPerHood(key)}) return lst def getSumPerSpecificHoods(): lst = [] for ykey, yvalue in years.items(): for hkey, hvalue in specificHoods.items(): # lst[ykey] = getPopPerSpecificHood(ykey, hkey) if(hkey == 2): east[ykey] = getPopPerSpecificHood(ykey, hkey) else: west[ykey] = getPopPerSpecificHood(ykey, hkey) # print(value, getPopPerSpecificHood(key)) # lst[key] = getPopPerSpecificHood(key) # lst.append({value: getPopPerSpecificHood(key)}) # d['a'] = 100 # existing key, so overwrite # d['c'] = 3 # new key, so add lst.append(east) lst.append(west) return lst def displayPlotOfHoodsPop(): lst = getSumPerHood() hoodsSorted = OrderedDict(sorted(lst.items(), key=lambda x: x[1])) cityAreas = [] sumOfPeople = [] for key, value in hoodsSorted.items(): cityAreas.append(key) sumOfPeople.append(value) plt.bar(cityAreas, sumOfPeople, width=0.5, linewidth=0, align='center') title = 'Population in various areas in cph' plt.title(title, fontsize=12) plt.xticks(cityAreas, rotation=65) plt.tick_params(axis='both', labelsize=8) plt.show() def displayPopulationOverTheYears(): getSumPerSpecificHoods() # Sørger for data til listerne east og west yearsToDisp = [] eastpopulation = [] westpopulation = [] for key, value in years.items(): yearsToDisp.append(key) for key, value in east.items(): eastpopulation.append(value) for key, value in west.items(): westpopulation.append(value) plt.figure() plt.plot(list(range(1992,2015)), eastpopulation, linewidth=5) plt.plot(list(range(1992,2015)), westpopulation, linewidth=5) plt.title("Population over the years", fontsize=24) plt.xlabel("Year", fontsize=14) plt.tick_params(axis='both', labelsize=14) plt.show() # print(getSumPerHood()) # displayPlotOfHoodsPop() # print('Number of people above the age of 65 --',getOldPeople()) # print(getSumOfOldNordicPeople()) # displayPopulationOverTheYears() # print(getSumPerSpecificHoods()) print(displayPopulationOverTheYears())
ab5f5aaf705c61d6d3a52fe6a016b2045c35009c
099256b28df65fb7c90c077b060dca16b8655235
/math/0x00-linear_algebra/100-slice_like_a_ninja.py
e1589c7bf3ddf30431df2717bebb8ee713b0f971
[]
no_license
Immaannn2222/holbertonschool-machine_learning
1cebb9a889b363669bed7645d102dc56ab943c08
80bf8d3354702f7fb9f79bbb5ed7e00fc19f788d
refs/heads/master
2023-08-01T05:35:00.180472
2021-09-22T20:28:17
2021-09-22T20:28:17
317,624,526
1
0
null
null
null
null
UTF-8
Python
false
false
321
py
#!/usr/bin/env python3 """ advanced task """ def np_slice(matrix, axes={}): """ slices a matrix along specific axes """ new = [] for x in range(len(matrix.shape)): if x in axes: new.append(slice(*axes[x])) else: new.append(slice(None)) return(matrix[tuple(new)])
bd4930323e802b96035529be61f106d64f693e9e
b92e187f60b1bc8bd74eaa0ffc6e1ac50911a08e
/django/dataset/detailsAPI/admin.py
32e817d5754f1a5fc95bf212913daa6c3b9565d0
[]
no_license
code-xD/codefundo-hack
ad5b149726188bd15be7476f14adf90f08ff33d7
f4883015d2d5f4b1b6a493ffa58249c46fc544a1
refs/heads/master
2022-12-10T10:41:30.388439
2019-08-20T12:06:19
2019-08-20T12:06:19
195,676,080
0
1
null
2022-05-25T03:12:11
2019-07-07T16:56:28
CSS
UTF-8
Python
false
false
127
py
from django.contrib import admin from .models import VoterDetail # Register your models here. admin.site.register(VoterDetail)
1f2e6da575054c5f9539d0a9dfc2ceecc2f7f8ae
bfe6c95fa8a2aae3c3998bd59555583fed72900a
/findMaxValueOfEquation.py
44e49a562e323596044cf7ecbec22a3e97ebfb8e
[]
no_license
zzz136454872/leetcode
f9534016388a1ba010599f4771c08a55748694b2
b5ea6c21bff317884bdb3d7e873aa159b8c30215
refs/heads/master
2023-09-01T17:26:57.624117
2023-08-29T03:18:56
2023-08-29T03:18:56
240,464,565
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
from typing import List class Solution: def findMaxValueOfEquation(self, points: List[List[int]], k: int) -> int: stack = [] j = 0 out = -12345678901234 for i in range(len(points) - 1): while j < len(points) and points[j][0] - points[i][0] <= k: tmp = points[j][0] + points[j][1] while len(stack) > 0 and stack[-1] < tmp: stack.pop() stack.append(tmp) j += 1 if points[i][1] + points[i][0] == stack[0]: stack.pop(0) if len(stack) > 0: out = max(out, stack[0] + points[i][1] - points[i][0]) # print(i,j,stack,out) return out points = [[1, 3], [2, 0], [5, 10], [6, -10]] k = 1 points = [[0, 0], [3, 0], [9, 2]] k = 3 points = [[-19, 9], [-15, -19], [-5, -8]] k = 10 print(Solution().findMaxValueOfEquation(points, k))
de469789154588023215e0a3a02a630ce008e14b
22029865c571f7f5ba18de77f8eea6b3e77b3bbb
/phiface/context.py
b995768e6a32eadfac7ff45dc5d059a29a2a5afd
[ "BSD-2-Clause" ]
permissive
mikejs/phiface
cfc100421afa4bef9c4afa6eb4ac8f7ae8d74163
2a2a5f8e1e555784cb2f2a27cecdf9c25a1c6044
refs/heads/master
2021-01-18T10:31:48.989712
2010-04-21T04:13:45
2010-04-21T04:13:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,456
py
import cairo from shapely.geometry import * PDFOutput = True # flatten from: # http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html def flatten(l, ltypes=(list, tuple)): ltype = type(l) l = list(l) i = 0 while i < len(l): while isinstance(l[i], ltypes): if not l[i]: l.pop(i) i -= 1 break else: l[i:i + 1] = l[i] i += 1 return ltype(l) class Context(object): def __init__(self): super(Context, self).__init__() self.width = 1200 self.height = 800 if PDFOutput: self.surface = cairo.PDFSurface("output.pdf", self.width, self.height) else: self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height) self.ctx = cairo.Context(self.surface) self.ctx.set_source_rgba(1.0, 1.0, 1.0, 1.0) self.ctx.rectangle(0, 0, self.width, self.height) self.ctx.fill() def _drawCoords(self, coords): self.ctx.move_to(*coords[0]) for (x, y) in coords: self.ctx.line_to(x, y) self.ctx.close_path() def _drawPolygon(self, poly): self._drawCoords(poly.exterior.coords) for hole in poly.interiors: self._drawCoords(hole.coords) self.ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) self.ctx.fill() def draw(self, polygons): poly = mergeSubPolys(polygons) if type(poly) is MultiPolygon: for subPoly in poly.geoms: self._drawPolygon(subPoly) else: self._drawPolygon(poly) def write(self): if not PDFOutput: self.surface.write_to_png("output.png") def mergeSubPolys(polygons): def _flattenPolys(polys): polyList = [] if type(polys) is Polygon or type(polys) is MultiPolygon: return polys for p in polys: if not p: continue if type(p) is list: polyList += _flattenPolys(p) elif type(p) is Polygon or type(p) is MultiPolygon: polyList.append(p) else: polyList += flatten([_flattenPolys(p.getPolygon())]) return polyList return reduce(lambda x, y: x.union(y), _flattenPolys(polygons))
48c3f72ee6abaa8cbb830bcb382ccfefdb237956
c36fc8f9bbc3e5891474bbbf17de09711cc9d0af
/alvi/client/scenes/merge_sort.py
38997dcfec013867d20041a4f1f348d5d766e843
[ "MIT" ]
permissive
alviproject/alvi
f527043c1ecaf4557188c312db7e8a8065ec054d
ec77919a546c11c46b178a21236792f8b0d95cbd
refs/heads/master
2021-01-19T01:45:51.157037
2016-06-17T19:44:09
2016-06-17T19:44:09
13,392,604
10
5
null
2014-03-02T14:05:54
2013-10-07T18:54:09
JavaScript
UTF-8
Python
false
false
1,116
py
from alvi.client.scenes.sort import Sort class MergeSort(Sort): def merge(self, array, left, mid, right): temp = [] for i in range(left, right): temp.append(array[i]) i = 0 j = right - mid k = 0 while k < len(temp): if i >= mid - left: array[k+left] = temp[j] j += 1 elif j >= len(temp): array[k+left] = temp[i] i += 1 elif temp[i] < temp[j]: array[k+left] = temp[i] i += 1 else: array[k+left] = temp[j] j += 1 k += 1 def _sort(self, array, left, right): if right - left <= 1: return mid = (left+right) // 2 self._sort(array, left, mid) self._sort(array, mid, right) self.merge(array, left, mid, right) if (right-left) > array.size() // 50: array.sync() def sort(self, **kwargs): array = kwargs['container'] self._sort(array, 0, array.size()) array.sync()
74abd35dc7be54c8af5452993644678fe289aae8
8fc9520d7224e6179f63f19e668b4b3b6a7d76c5
/apps/catalogue/migrations/0006_auto__add_field_product_is_discountable.py
35581eb19b16340bf4e806e466cfd03e6678e23f
[]
no_license
quantm/custom_django_oscar
352ef2fd95e7da932958d4aa80d77dff5b6c1e70
9205807030ab360884283810e94177440c228a23
refs/heads/master
2016-08-09T12:23:39.413677
2016-02-08T22:16:53
2016-02-08T22:16:53
51,326,524
1
0
null
null
null
null
UTF-8
Python
false
false
13,063
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Product.is_discountable' db.add_column('catalogue_product', 'is_discountable', self.gf('django.db.models.fields.BooleanField')(default=True), keep_default=False) def backwards(self, orm): # Deleting field 'Product.is_discountable' db.delete_column('catalogue_product', 'is_discountable') models = { 'catalogue.attributeentity': { 'Meta': {'object_name': 'AttributeEntity'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'db_index': 'True', 'max_length': '255', 'blank': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'entities'", 'to': "orm['catalogue.AttributeEntityType']"}) }, 'catalogue.attributeentitytype': { 'Meta': {'object_name': 'AttributeEntityType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'db_index': 'True', 'max_length': '255', 'blank': 'True'}) }, 'catalogue.attributeoption': { 'Meta': {'object_name': 'AttributeOption'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['catalogue.AttributeOptionGroup']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'option': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'catalogue.attributeoptiongroup': { 'Meta': {'object_name': 'AttributeOptionGroup'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'catalogue.category': { 'Meta': {'ordering': "['full_name']", 'object_name': 'Category'}, 'depth': ('django.db.models.fields.PositiveIntegerField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'numchild': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'db_index': 'True'}) }, 'catalogue.contributor': { 'Meta': {'object_name': 'Contributor'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'db_index': 'True'}) }, 'catalogue.contributorrole': { 'Meta': {'object_name': 'ContributorRole'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'name_plural': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'catalogue.option': { 'Meta': {'object_name': 'Option'}, 'code': ('django.db.models.fields.SlugField', [], {'max_length': '128', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'Required'", 'max_length': '128'}) }, 'catalogue.product': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'Product'}, 'attributes': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.ProductAttribute']", 'through': "orm['catalogue.ProductAttributeValue']", 'symmetrical': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Category']", 'through': "orm['catalogue.ProductCategory']", 'symmetrical': 'False'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_discountable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'variants'", 'null': 'True', 'to': "orm['catalogue.Product']"}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductClass']", 'null': 'True'}), 'product_options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'recommended_products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Product']", 'symmetrical': 'False', 'through': "orm['catalogue.ProductRecommendation']", 'blank': 'True'}), 'related_products': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'relations'", 'blank': 'True', 'to': "orm['catalogue.Product']"}), 'score': ('django.db.models.fields.FloatField', [], {'default': '0.0', 'db_index': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'db_index': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'upc': ('django.db.models.fields.CharField', [], {'max_length': '64', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productattribute': { 'Meta': {'ordering': "['code']", 'object_name': 'ProductAttribute'}, 'code': ('django.db.models.fields.SlugField', [], {'max_length': '128', 'db_index': 'True'}), 'entity_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntityType']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'option_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOptionGroup']", 'null': 'True', 'blank': 'True'}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'attributes'", 'null': 'True', 'to': "orm['catalogue.ProductClass']"}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '20'}) }, 'catalogue.productattributevalue': { 'Meta': {'object_name': 'ProductAttributeValue'}, 'attribute': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductAttribute']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attribute_values'", 'to': "orm['catalogue.Product']"}), 'value_boolean': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'value_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'value_entity': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntity']", 'null': 'True', 'blank': 'True'}), 'value_float': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'value_integer': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'value_option': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOption']", 'null': 'True', 'blank': 'True'}), 'value_richtext': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'value_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productcategory': { 'Meta': {'ordering': "['-is_canonical']", 'object_name': 'ProductCategory'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Category']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_canonical': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) }, 'catalogue.productclass': { 'Meta': {'ordering': "['name']", 'object_name': 'ProductClass'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128', 'db_index': 'True'}) }, 'catalogue.productcontributor': { 'Meta': {'object_name': 'ProductContributor'}, 'contributor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Contributor']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ContributorRole']", 'null': 'True', 'blank': 'True'}) }, 'catalogue.productimage': { 'Meta': {'ordering': "['display_order']", 'unique_together': "(('product', 'display_order'),)", 'object_name': 'ProductImage'}, 'caption': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'display_order': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'original': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'images'", 'to': "orm['catalogue.Product']"}) }, 'catalogue.productrecommendation': { 'Meta': {'object_name': 'ProductRecommendation'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'primary': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'primary_recommendations'", 'to': "orm['catalogue.Product']"}), 'ranking': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'recommendation': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) } } complete_apps = ['catalogue']
311eac1a6c280507906e8cf7a87844607ff9fddf
04c7295ce65a623dc62454aa46ae4ae4ce51ca36
/Lecture/Lecture_3/three_special_perfect_squares_v1_v3.6.py
8f5b2aa24f0c1e10d1bad0df764379d50125baab
[]
no_license
hty-unsw/COMP9021-Python
38373378162a314a82bf14453d026e641963e1b9
97be6dfa730247b59e608ec6d464ac16b4cf1968
refs/heads/master
2020-07-03T00:51:23.540099
2018-10-30T14:23:15
2018-10-30T14:23:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,398
py
# Describes all sets of positive integers {x, y, z} such that # x, y and z have no occurrence of 0, # every nonzero digit occurs exactly once in one of x, y or z, # and x, y and z are perfect squares. # # Written by Eric Martin for COMP9021 from math import sqrt def digits_if_ok(number, digits_seen_so_far): digits_seen_now = set(digits_seen_so_far) while number: # Extract rightmost digit from number. digit = number % 10 if digit in digits_seen_now: return digits_seen_now.add(digit) # Get rid of rightmost digit of number. number //= 10 return digits_seen_now # If it was a perfect square, max_square would, associated with 1 and 4, # be the largest member of a possible solution. max_square = 9876532 nb_of_solutions = 0 upper_bound = round(sqrt(max_square)) + 1 set_of_all_digits = set(range(10)) for x in range(1, upper_bound): x_square = x * x # digits_in_x_square_and_0 is not None # iff all digits in x_square are distinct and not equal to 0. digits_in_x_square_and_0 = digits_if_ok(x_square, {0}) if not digits_in_x_square_and_0: continue for y in range(x + 1, upper_bound): y_square = y * y # digits_in_x_square_and_y_square_and_0 is not None # iff all digits in y_square are distinct, distinct to 0, # and distinct to all digits in x_square. digits_in_x_square_and_y_square_and_0 =\ digits_if_ok(y_square, digits_in_x_square_and_0) if not digits_in_x_square_and_y_square_and_0: continue for z in range(y + 1, upper_bound): z_square = z * z # digits_in_x_square_and_y_square_and_z_square_and_0 is not None # iff all digits in z_square are distinct, distinct to 0, # and distinct to all digits in x_square and y_square. digits_in_x_square_and_y_square_and_z_square_and_0 =\ digits_if_ok(z_square, digits_in_x_square_and_y_square_and_0) if not digits_in_x_square_and_y_square_and_z_square_and_0: continue if digits_in_x_square_and_y_square_and_z_square_and_0 != set_of_all_digits: continue print(f'{x_square:7d} {y_square:7d} {z_square:7d}') nb_of_solutions += 1 print(f'\nAltogether, {nb_of_solutions} solutions have been found.')
bd2567eb7e348826d18e2bd1cca6275f0f0602e8
9cd180fc7594eb018c41f0bf0b54548741fd33ba
/sdk/python/pulumi_azure_nextgen/network/v20180201/security_rule.py
fa3d42ca6372ba696deef9c4135a4eef42ff5c3b
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
MisinformedDNA/pulumi-azure-nextgen
c71971359450d03f13a53645171f621e200fe82d
f0022686b655c2b0744a9f47915aadaa183eed3b
refs/heads/master
2022-12-17T22:27:37.916546
2020-09-28T16:03:59
2020-09-28T16:03:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,117
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['SecurityRule'] class SecurityRule(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, destination_address_prefix: Optional[pulumi.Input[str]] = None, destination_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, destination_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, destination_port_range: Optional[pulumi.Input[str]] = None, destination_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, direction: Optional[pulumi.Input[str]] = None, etag: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_security_group_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[int]] = None, protocol: Optional[pulumi.Input[str]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, security_rule_name: Optional[pulumi.Input[str]] = None, source_address_prefix: Optional[pulumi.Input[str]] = None, source_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, source_port_range: Optional[pulumi.Input[str]] = None, source_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Network security rule. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] access: The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] destination_address_prefix: The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_address_prefixes: The destination address prefixes. CIDR or destination IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] destination_application_security_groups: The application security group specified as destination. :param pulumi.Input[str] destination_port_range: The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_port_ranges: The destination port ranges. :param pulumi.Input[str] direction: The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[str] network_security_group_name: The name of the network security group. :param pulumi.Input[int] priority: The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. :param pulumi.Input[str] protocol: Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. :param pulumi.Input[str] provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] security_rule_name: The name of the security rule. :param pulumi.Input[str] source_address_prefix: The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_address_prefixes: The CIDR or source IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] source_application_security_groups: The application security group specified as source. :param pulumi.Input[str] source_port_range: The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_port_ranges: The source port ranges. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if access is None: raise TypeError("Missing required property 'access'") __props__['access'] = access __props__['description'] = description __props__['destination_address_prefix'] = destination_address_prefix __props__['destination_address_prefixes'] = destination_address_prefixes __props__['destination_application_security_groups'] = destination_application_security_groups __props__['destination_port_range'] = destination_port_range __props__['destination_port_ranges'] = destination_port_ranges if direction is None: raise TypeError("Missing required property 'direction'") __props__['direction'] = direction __props__['etag'] = etag __props__['id'] = id __props__['name'] = name if network_security_group_name is None: raise TypeError("Missing required property 'network_security_group_name'") __props__['network_security_group_name'] = network_security_group_name __props__['priority'] = priority if protocol is None: raise TypeError("Missing required property 'protocol'") __props__['protocol'] = protocol __props__['provisioning_state'] = provisioning_state if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if security_rule_name is None: raise TypeError("Missing required property 'security_rule_name'") __props__['security_rule_name'] = security_rule_name __props__['source_address_prefix'] = source_address_prefix __props__['source_address_prefixes'] = source_address_prefixes __props__['source_application_security_groups'] = source_application_security_groups __props__['source_port_range'] = source_port_range __props__['source_port_ranges'] = source_port_ranges alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/latest:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150615:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160330:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20161201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171001:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181001:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200501:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200601:SecurityRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SecurityRule, __self__).__init__( 'azure-nextgen:network/v20180201:SecurityRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SecurityRule': """ Get an existing SecurityRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return SecurityRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def access(self) -> pulumi.Output[str]: """ The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. """ return pulumi.get(self, "access") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @property @pulumi.getter(name="destinationAddressPrefix") def destination_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. """ return pulumi.get(self, "destination_address_prefix") @property @pulumi.getter(name="destinationAddressPrefixes") def destination_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination address prefixes. CIDR or destination IP ranges. """ return pulumi.get(self, "destination_address_prefixes") @property @pulumi.getter(name="destinationApplicationSecurityGroups") def destination_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as destination. """ return pulumi.get(self, "destination_application_security_groups") @property @pulumi.getter(name="destinationPortRange") def destination_port_range(self) -> pulumi.Output[Optional[str]]: """ The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "destination_port_range") @property @pulumi.getter(name="destinationPortRanges") def destination_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination port ranges. """ return pulumi.get(self, "destination_port_ranges") @property @pulumi.getter def direction(self) -> pulumi.Output[str]: """ The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. """ return pulumi.get(self, "direction") @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def priority(self) -> pulumi.Output[Optional[int]]: """ The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. """ return pulumi.get(self, "priority") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="sourceAddressPrefix") def source_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. """ return pulumi.get(self, "source_address_prefix") @property @pulumi.getter(name="sourceAddressPrefixes") def source_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The CIDR or source IP ranges. """ return pulumi.get(self, "source_address_prefixes") @property @pulumi.getter(name="sourceApplicationSecurityGroups") def source_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as source. """ return pulumi.get(self, "source_application_security_groups") @property @pulumi.getter(name="sourcePortRange") def source_port_range(self) -> pulumi.Output[Optional[str]]: """ The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "source_port_range") @property @pulumi.getter(name="sourcePortRanges") def source_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The source port ranges. """ return pulumi.get(self, "source_port_ranges") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
86106338bded9ea79b22a0ead788c9f19d612858
d227fb26e33128afe868bef60e3042f7c6576643
/editor/Welder/src/Core/Database/Dialogs/ChooseGraphic_Dialog.py
fe49fe21d0ebcf6b5fedbd48ed36524feb53e61d
[]
no_license
boisei0/arcreator
1e57b9cc61d5b38bfd0d62237592cfd9f371eca9
555739cafdeeed19d3c25c4948416a6ecb7697d5
refs/heads/master
2020-12-02T05:02:36.242572
2014-08-05T19:25:41
2014-08-05T19:25:41
22,642,617
1
0
null
null
null
null
UTF-8
Python
false
false
2,223
py
import os import wx import PIL from Boot import WelderImport Kernel = WelderImport('Kernel') Core = WelderImport('Core') Templates = Core.Database.Welder_Templates RTPFunctions = Core.Cache.RTPFunctions PILCache = Core.Cache.PILCache class ChooseGraphic_Dialog( Templates.ChooseGraphic_Dialog ): def __init__( self, parent, folder, current, hue ): Templates.ChooseGraphic_Dialog.__init__( self, parent ) self.glCanvasGraphic.canvas.Bind(wx.EVT_LEFT_DOWN, Kernel.Protect(self.glCanvas_LeftMouse)) #self.Centre( wx.BOTH ) self.glCanvasGraphic.SetDrawMode(5) self.ImageList = ['(None)'] self.ImageList.extend(RTPFunctions.GetFileList(os.path.join('Graphics', folder))) self.ImageIndex = 0 if folder == 'Characters': self.cache = PILCache.Character elif folder == 'Battlers': self.cache = PILCache.Battler # TODO: Implement the rest... if current in self.ImageList: self.ImageIndex = self.ImageList.index(current) self.listBoxGraphics.AppendItems(self.ImageList) self.listBoxGraphics.SetSelection(self.ImageIndex) self.sliderHue.SetValue(hue) self.RefreshCanvas() def RefreshCanvas( self ): if self.ImageIndex == 0: image = PIL.Image.new('RGBA', (32, 32)) else: filename = self.ImageList[self.ImageIndex] hue = self.sliderHue.GetValue() image = self.cache(filename, hue) self.glCanvasGraphic.ChangeImage(image) del (image) def glCanvas_LeftMouse( self, event ): print 'LEFT DOWN' def listBoxGraphics_SelectionChanged( self, event ): """Changes the image index and refreshes the canvas""" self.ImageIndex = event.GetSelection() self.RefreshCanvas() def sliderHue_Scrolled( self, event ): """Refreshes the canvas and redraws with the selected hue rotation""" self.RefreshCanvas() PILCache.CacheLimit() def GetSelection( self ): """Returns the filename and hue that was selected by the user""" if self.ImageIndex == 0: return 0, 0 return self.ImageList[self.ImageIndex], self.sliderHue.GetValue() def buttonOK_Clicked( self, event ): """End the dialog and return wx.ID_OK""" self.EndModal(wx.ID_OK) def buttonCancel_Clicked( self, event ): """End the dialog and return wx.ID_CANCEL""" self.EndModal(wx.ID_CANCEL)
d9eae03071430ffe4305fbd6afc9dc79c2905f78
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03795/s062323227.py
74243f5eea190a8c47dde198e5a4b21d6edf84c9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
N = int(input()) print(int(800*N-200*(N-N%15)/15))
c3d2c4d91f89382b08790e31e8951c7bb047b615
c369443df5ff98eccc0eee7f63bb8947f2943605
/api_shop/urls.py
faef15fce178629654a49b9494cf03b6b004d406
[]
no_license
erllan/shop-test
d2934f484b25d141a60caa5aca31a61eec48f055
1f77de177192ce6a1f8c5ccf1d7ca93ec026acf5
refs/heads/master
2023-03-06T01:04:38.785383
2021-02-27T18:02:07
2021-02-27T18:02:07
341,929,117
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
from django.urls import path from rest_framework_simplejwt import views as jwt_views from . import views urlpatterns = [ path('token/', jwt_views.TokenObtainPairView.as_view(), name='api.get_token'), path('token/refresh/', jwt_views.TokenRefreshView.as_view(), name='api.token_refresh'), path('user/change/', views.UserChange.as_view(), name='api-change'), path('user/create/', views.UserCreate.as_view(), name='api-create') ]
f611ff278e26d20dff934778c3c730b2b4e310bf
e8a48749014f372633de65d79bfa26a3ad743d89
/src/transformers/models/marian/modeling_tf_marian.py
d356b4f8424008f518c2100b56668730cd548012
[ "Apache-2.0" ]
permissive
pvcastro/pytorch-pretrained-BERT
183b7291972c8d8c66c995647df66c1fe439a763
49cd736a288a315d741e5c337790effa4c9fa689
refs/heads/master
2022-08-19T08:55:16.332585
2022-06-30T16:11:08
2022-06-30T16:11:08
168,367,637
1
0
Apache-2.0
2019-01-30T15:39:42
2019-01-30T15:39:41
null
UTF-8
Python
false
false
67,868
py
# coding=utf-8 # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Marian model.""" import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( DUMMY_INPUTS, TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSharedEmbeddings, TFWrappedEmbeddings, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" _TOKENIZER_FOR_DOC = "MarianTokenizer" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) if tf.executing_eagerly(): # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFMarianSinusoidalPositionalEmbedding(tf.keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, **kwargs): super().__init__(**kwargs) if embedding_dim % 2 != 0: raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") self.embedding_dim = embedding_dim self.num_positions = num_positions def build(self, input_shape: tf.TensorShape): """ Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ weight = self._init_weight(self.num_positions, self.embedding_dim) self.weight = self.add_weight( name="embeddings", shape=[self.num_positions, self.embedding_dim], ) weight = tf.cast(weight, dtype=self.weight.dtype) self.weight.assign(weight) super().build(input_shape) @staticmethod def _init_weight(n_pos: int, dim: int): """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) table = np.zeros_like(position_enc) # index 0 is all zero table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) # convert to tensor table = tf.convert_to_tensor(table) tf.stop_gradient(table) return table def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: Optional[tf.Tensor] = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return tf.gather(self.weight, position_ids) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Marian class TFMarianAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None, attention_mask: Optional[tf.Tensor] = None, layer_head_mask: Optional[tf.Tensor] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value # Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->Marian class TFMarianEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: Optional[Union[np.ndarray, tf.Tensor]], layer_head_mask: Optional[tf.Tensor], training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights # Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->Marian class TFMarianDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFMarianAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFMarianAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_hidden_states: Optional[Union[np.ndarray, tf.Tensor]] = None, encoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None, layer_head_mask: Optional[tf.Tensor] = None, cross_attn_layer_head_mask: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFMarianPreTrainedModel(TFPreTrainedModel): config_class = MarianConfig base_model_prefix = "model" @property def dummy_inputs(self): pad_token = 1 input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) decoder_input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) dummy_inputs = { "decoder_input_ids": decoder_input_ids, "attention_mask": tf.math.not_equal(input_ids, pad_token), "input_ids": input_ids, } return dummy_inputs @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } ] ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartPretrainedModel.serving def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) MARIAN_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Args: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ MARIAN_GENERATION_EXAMPLE = r""" TF version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). Examples: ```python >>> from transformers import MarianTokenizer, TFMarianMTModel >>> from typing import List >>> src = "fr" # source language >>> trg = "en" # target language >>> sample_text = "où est l'arrêt de bus ?" >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" >>> model = TFMarianMTModel.from_pretrained(model_name) >>> tokenizer = MarianTokenizer.from_pretrained(model_name) >>> batch = tokenizer([sample_text], return_tensors="tf") >>> gen = model.generate(**batch) >>> tokenizer.batch_decode(gen, skip_special_tokens=True) "Where is the bus stop ?" ``` """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFMarianEncoder(tf.keras.layers.Layer): config_class = MarianConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFMarianEncoderLayer`]. Args: config: MarianConfig """ def __init__(self, config: MarianConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFMarianEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if head_mask is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFMarianDecoder(tf.keras.layers.Layer): config_class = MarianConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMarianDecoderLayer`] Args: config: MarianConfig embed_tokens: output embedding """ def __init__(self, config: MarianConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFMarianSinusoidalPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFMarianDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.dropout = tf.keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all ``decoder_input_ids``` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale hidden_states = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.dropout(hidden_states + positions, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @keras_serializable class TFMarianMainLayer(tf.keras.layers.Layer): config_class = MarianConfig def __init__(self, config: MarianConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared") with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) embed_tokens.vocab_size = self.shared.vocab_size embed_tokens.hidden_size = self.shared.hidden_size self.encoder = TFMarianEncoder(config, embed_tokens, name="encoder") self.decoder = TFMarianDecoder(config, embed_tokens, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared.weight = new_embeddings self.shared.vocab_size = self.shared.weight.shape[0] # retrieve correct absolute scope for embed token wrapper with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) self.encoder.set_embed_tokens(embed_tokens) self.decoder.set_embed_tokens(embed_tokens) @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare MARIAN Model outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class TFMarianModel(TFMarianPreTrainedModel): def __init__(self, config: MarianConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for summarization.", MARIAN_START_DOCSTRING, ) class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFMarianMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency. self.final_logits_bias = self.add_weight( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.final_logits_bias} def set_bias(self, value): self.final_logits_bias = value["final_logits_bias"] @unpack_inputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)), labels, ) use_cache = False if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = self.model.shared(outputs[0], mode="linear") lm_logits = lm_logits + self.final_logits_bias masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): # cut decoder_input_ids if past is used if past is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past is not None: # no xla + past decoder_position_ids = past[0][0].shape[2] else: # no xla + no past decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) @staticmethod # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration._reorder_cache def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(tf.gather(past_state, beam_idx, axis=0) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def adjust_logits_during_generation( self, logits, cur_len, max_length, forced_bos_token_id, forced_eos_token_id, **kwargs ): """Never predict pad_token_id. Predict </s> when max_length is reached.""" vocab_range = tf.constant(range(self.config.vocab_size)) logits = tf.where(vocab_range == self.config.pad_token_id, LARGE_NEGATIVE, logits) if cur_len == 1 and forced_bos_token_id is not None: vocab_range = tf.constant(range(self.config.vocab_size)) return tf.where(vocab_range != forced_bos_token_id, LARGE_NEGATIVE, logits) elif cur_len == max_length - 1 and forced_eos_token_id is not None: vocab_range = tf.constant(range(self.config.vocab_size)) return tf.where(vocab_range != forced_eos_token_id, LARGE_NEGATIVE, logits) else: return logits
b874247bc7250254be315256308819b4f715e819
9153b0679889a64dd9a0dae12d9e3e22a749bc69
/webserver/app/main/controller/testresult_controller.py
369d8b4c5ba239aee147559fbc2453f66115012a
[ "MIT" ]
permissive
Remoterwls/Auto-Test-System
9e0a6c96a5222a7374e5755c518d7a10bb96f6bd
e865758241beee3bd0c56a120f3986b0c4aa7253
refs/heads/master
2022-12-03T01:55:37.158529
2020-07-30T10:17:19
2020-07-30T10:17:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,394
py
import json import os from datetime import date, datetime, timedelta, timezone from dateutil import parser, tz from pathlib import Path from bson.objectid import ObjectId from flask import request, send_from_directory, url_for, current_app from flask_restx import Resource from mongoengine import DoesNotExist, ValidationError from ..util.decorator import token_required, organization_team_required_by_args, organization_team_required_by_json from ..util.get_path import get_test_results_root from ..config import get_config from ..model.database import QUEUE_PRIORITY_MAX, QUEUE_PRIORITY_MIN, Endpoint, Task, TestResult from ..util.dto import TestResultDto from ..util.response import response_message, ENOENT, EINVAL, SUCCESS, EPERM api = TestResultDto.api _test_report = TestResultDto.test_report _record_test_result = TestResultDto.record_test_result _test_result = TestResultDto.test_result USERS_ROOT = Path(get_config().USERS_ROOT) @api.route('/') class TestResultRoot(Resource): @token_required @organization_team_required_by_args @api.doc('get_task_report_list') @api.param('page', description='The page number of the whole test report list') @api.param('limit', description='The item number of a page') @api.param('title', description='The test suite name') @api.param('priority', description='The priority of the task') @api.param('endpoint', description='The endpoint that runs the test') @api.param('sort', default='-run_date', description='The sort field') @api.param('start_date', description='The start date') @api.param('end_date', description='The end date') @api.marshal_list_with(_test_report) def get(self, **kwargs): """Get the task report list""" page = request.args.get('page', default=1) limit = request.args.get('limit', default=10) title = request.args.get('title', default=None) priority = request.args.get('priority', default=None) endpoint_uid = request.args.get('endpoint', default=None) sort = request.args.get('sort', default='-run_date') start_date = request.args.get('start_date', None) end_date = request.args.get('end_date', None) organization = kwargs['organization'] team = kwargs['team'] if start_date: start_date = parser.parse(start_date) if end_date is None: end_date = datetime.now(timezone.utc) else: end_date = parser.parse(end_date) if (start_date - end_date).days > 0: return response_message(EINVAL, 'start date {} is larger than end date {}'.format(start_date, end_date)), 401 query = {'run_date__lte': end_date, 'run_date__gte': start_date, 'organization': organization} else: query = {'organization': organization} if team: query['team'] = team page = int(page) limit = int(limit) if page <= 0 or limit <= 0: return response_message(EINVAL, 'Field page and limit should be larger than 1'), 400 if priority and priority != '' and priority.isdigit() and \ int(priority) >= QUEUE_PRIORITY_MIN and int(priority) <= QUEUE_PRIORITY_MAX: query['priority'] = priority if title and priority != '': query['test_suite__contains'] = title if endpoint_uid and endpoint_uid != '': endpoint = Endpoint.objects(uid=endpoint_uid).first() if not endpoint: return response_message(EINVAL, 'Endpoint not found'), 400 query['endpoint_run'] = endpoint try: dirs = os.listdir(get_test_results_root(team=team, organization=organization)) except FileNotFoundError: return {'items': [], 'total': 0} ret = [] for d in dirs: try: ObjectId(d) except ValidationError as e: current_app.logger.exception(e) else: ret.append(d) all_tasks = Task.objects(id__in=ret, **query).order_by(sort) ret = [] for t in all_tasks[(page - 1) * limit : page * limit]: ret.append({ 'id': str(t.id), 'test_suite': t.test_suite, 'testcases': t.testcases, 'comment': t.comment, 'priority': t.priority, 'run_date': t.run_date, 'tester': t.tester.name, 'status': t.status, 'variables': t.variables, 'endpoint_list': t.endpoint_list, 'parallelization': t.parallelization }) return {'items': ret, 'total': all_tasks.count()} # @token_required @api.doc('record_the_test_case') @api.expect(_record_test_result) def post(self): """create the test result in the database for a task""" data = request.json if data is None: return response_message(EINVAL, "Payload of the request is empty"), 400 task_id = data.get('task_id', None) if task_id == None: return response_message(EINVAL, "Field task_id is required"), 400 task = Task.objects(pk=task_id).first() if not task: return response_message(ENOENT, "Task not found"), 404 test_case = data.get('test_case', None) if test_case == None: return response_message(EINVAL, "Field test_case is required"), 400 test_result = TestResult() test_result.test_case = test_case test_result.task = task test_result.test_site = task.endpoint_run.name try: test_result.save() except ValidationError as e: current_app.logger.exception(e) return response_message(EINVAL, "Test result validation failed"), 400 task.test_results.append(test_result) task.save() @api.route('/<task_id>') @api.param('task_id', 'id of the task for which to update the result') class TestResultUpload(Resource): # @token_required @api.doc('update the test result') @api.expect(_test_result) def post(self, task_id): """ Update the test result for the test case of a test suite Any items in the field more_result in the payload will be filled to the field more_result in the test result recorded in the database """ data = request.json if data is None: return response_message(EINVAL, "Payload of the request is empty"), 400 if isinstance(data, str): data = json.loads(data) task = Task.objects(pk=task_id).first() if not task: return response_message(ENOENT, "Task not found"), 404 if not task.test_results: return response_message(ENOENT, "Test result not found"), 404 cur_test_result = task.test_results[-1] for k, v in data.items(): if k != 'more_result' and getattr(TestResult, k, None) != None: setattr(cur_test_result, k, v) else: cur_test_result.more_result[k] = v try: cur_test_result.save() except ValidationError as e: current_app.logger.exception(e) return response_message(EPERM, "Test result validation failed"), 400
06a3ccc9647df2d8be805513e54fa0479aa7d101
20674c17d815214bf66b75be686bb8a45c0f5914
/version1/910_Smallest_Range_II.py
3c29c134342ecfaaf96e139eb9e1f848e33f07ef
[]
no_license
moontree/leetcode
e7b670969fe20785b15aae82996875fd66de1b08
f2bf9b13508cd01c8f383789569e55a438f77202
refs/heads/master
2021-05-20T20:36:45.615420
2020-04-02T09:15:26
2020-04-02T09:15:26
252,408,563
1
0
null
null
null
null
UTF-8
Python
false
false
2,314
py
""" Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and add x to A[i] (only once). After this process, we have some array B. Return the smallest possible difference between the maximum value of B and the minimum value of B. Example 1: Input: A = [1], K = 0 Output: 0 Explanation: B = [1] Example 2: Input: A = [0,10], K = 2 Output: 6 Explanation: B = [2,8] Example 3: Input: A = [1,3,6], K = 3 Output: 3 Explanation: B = [4,6,3] Note: 1 <= A.length <= 10000 0 <= A[i] <= 10000 0 <= K <= 10000 """ class Solution(object): def smallestRangeII(self, A, K): """ :type A: List[int] :type K: int :rtype: int """ # in sorted A # if A[i] + K, then A[i - 1] must + K # if A[i] - K, then A[i + 1] must - K A.sort() res = float('inf') if len(A) == 1: return 0 for i in range(len(A)): l = min(A[0] + K, A[i + 1] - K) if i < len(A) - 1 else A[0] + K r = max(A[-1] - K, A[i] + K) res = min(res, r - l) return res examples = [ { "input": { "A": [1], "K": 0 }, "output": 0 }, { "input": { "A": [0, 10], "K": 2 }, "output": 6 }, { "input": { "A": [1, 3, 6], "K": 3 }, "output": 3 }, { "input": { "A": [2, 7, 2], "K": 1 }, "output": 3 }, { "input": { "A": [7, 8, 8], "K": 5 }, "output": 1 }, { "input": { "A": [4, 8, 2, 7, 2], "K": 5 }, "output": 6 }, { "input": { "A": [7, 8, 8, 5, 2], "K": 4 }, "output": 5 }, ] import time if __name__ == '__main__': solution = Solution() for n in dir(solution): if not n.startswith('__'): func = getattr(solution, n) print(func) for example in examples: print '----------' start = time.time() v = func(**example['input']) end = time.time() print v, v == example['output'], end - start
53a36dfdacc99125a08b041494733bbc5773b5f3
60b1f668808de2b82c2fcb62b07b45bb165219f2
/egoi-api/models/campaign_push_content_template.py
5715e23678e0f22dc440f87b2c4e513c0561e029
[]
no_license
andersonmiguel/Egoi
6d37bf7a3a7555e764f7a6e792b3ef1c68fe8e20
b5f59f9b33ea94e170f4e7e26c6a37a78d2874c2
refs/heads/master
2022-06-21T07:18:44.920786
2020-05-04T17:29:02
2020-05-04T17:29:02
261,250,618
0
0
null
null
null
null
UTF-8
Python
false
false
7,703
py
# coding: utf-8 """ APIv3 (Beta) # Introduction Just a quick peek!!! This is our new version of API. Remember, it is not stable yet!!! But we invite you play with it and give us your feedback ;) # Getting Started E-goi can be integrated with many environments and programming languages via our REST API. We've created a developer focused portal to give your organization a clear and quick overview of how to integrate with E-goi. The developer portal focuses on scenarios for integration and flow of events. We recommend familiarizing yourself with all of the content in the developer portal, before start using our rest API. The E-goi APIv3 is served over HTTPS. To ensure data privacy, unencrypted HTTP is not supported. Request data is passed to the API by POSTing JSON objects to the API endpoints with the appropriate parameters. BaseURL = api.egoiapp.com # RESTful Services This API supports 5 HTTP methods: * <b>GET</b>: The HTTP GET method is used to **read** (or retrieve) a representation of a resource. * <b>POST</b>: The POST verb is most-often utilized to **create** new resources. * <b>PATCH</b>: PATCH is used for **modify** capabilities. The PATCH request only needs to contain the changes to the resource, not the complete resource * <b>PUT</b>: PUT is most-often utilized for **update** capabilities, PUT-ing to a known resource URI with the request body containing the newly-updated representation of the original resource. * <b>DELETE</b>: DELETE is pretty easy to understand. It is used to **delete** a resource identified by a URI. # Authentication We use a custom authentication method, you will need a apikey that you can find in your account settings. Below you will see a curl example to get your account information: #!/bin/bash curl -X GET 'https://api.egoiapp.com/my-account' \\ -H 'accept: application/json' \\ -H 'Apikey: <YOUR_APY_KEY>' Here you can see a curl Post example with authentication: #!/bin/bash curl -X POST 'http://api.egoiapp.com/tags' \\ -H 'accept: application/json' \\ -H 'Apikey: <YOUR_APY_KEY>' \\ -H 'Content-Type: application/json' \\ -d '{`name`:`Your custom tag`,`color`:`#FFFFFF`}' # SDK Get started quickly with E-goi with our integration tools. Our SDK is a modern open source library that makes it easy to integrate your application with E-goi services. * <b><a href='https://github.com/E-goi/sdk-java'>Java</a></b> * <b><a href='https://github.com/E-goi/sdk-php'>PHP</a></b> * <b><a href='https://github.com/E-goi/sdk-python'>Python</a></b> <security-definitions/> # noqa: E501 The version of the OpenAPI document: 3.0.0-beta Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from egoi-api.configuration import Configuration class CampaignPushContentTemplate(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'template_id': 'int' } attribute_map = { 'type': 'type', 'template_id': 'template_id' } discriminator_value_class_map = { } def __init__(self, type=None, template_id=None, local_vars_configuration=None): # noqa: E501 """CampaignPushContentTemplate - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._template_id = None self.discriminator = 'type' self.type = type self.template_id = template_id @property def type(self): """Gets the type of this CampaignPushContentTemplate. # noqa: E501 :return: The type of this CampaignPushContentTemplate. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this CampaignPushContentTemplate. :param type: The type of this CampaignPushContentTemplate. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and type is None: # noqa: E501 raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 allowed_values = ["template"] # noqa: E501 if self.local_vars_configuration.client_side_validation and type not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def template_id(self): """Gets the template_id of this CampaignPushContentTemplate. # noqa: E501 ID of the template for this campaign # noqa: E501 :return: The template_id of this CampaignPushContentTemplate. # noqa: E501 :rtype: int """ return self._template_id @template_id.setter def template_id(self, template_id): """Sets the template_id of this CampaignPushContentTemplate. ID of the template for this campaign # noqa: E501 :param template_id: The template_id of this CampaignPushContentTemplate. # noqa: E501 :type: int """ if self.local_vars_configuration.client_side_validation and template_id is None: # noqa: E501 raise ValueError("Invalid value for `template_id`, must not be `None`") # noqa: E501 self._template_id = template_id def get_real_child_model(self, data): """Returns the real base class specified by the discriminator""" discriminator_key = self.attribute_map[self.discriminator] discriminator_value = data[discriminator_key] return self.discriminator_value_class_map.get(discriminator_value) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CampaignPushContentTemplate): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, CampaignPushContentTemplate): return True return self.to_dict() != other.to_dict()
a0756500f16eb446c0c1b5acdb3013ffd5fb367a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02675/s466664784.py
78be685e40ac4a6f27ae611368839fa6f0052292
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
N = int(input()) judge = N%10 hon = [2,4,5,7,9] pon = [0,1,6,8] bon = [3] if judge in hon: print("hon") elif judge in pon: print("pon") elif judge in bon: print("bon")
b14c8bc236b026f60a14731df9d445ec1900f808
55d36c0d471b5799838330cab64229947f10c99c
/Snake_lib/worm.py
d76fd6210da79d34edc4f885085c215d5744f396
[]
no_license
hammadhaleem/Snake-game
6fb601201686068cd7129317d42b498de886b1df
2553cdcde641f4658d985ac5c3709ad786a57143
refs/heads/master
2021-01-22T09:41:42.787725
2013-04-21T16:52:30
2013-04-21T16:52:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,474
py
# WORM Class # import pygame from globalvar import * class Worm(object): def __init__(self,surface,x,y,len=50): self.player_name=" " self.x=x self.y=y self.lag=1 self.first_x=self.x self.first_y=self.y self.surface=surface self.color=worm_color self.len=len self.body_list=[[self.x, self.y +i] for i in range (self.len)] self.growing=len self.dir_x=0*self.lag self.dir_y=-1*self.lag self.first_dir_x=0*self.lag self.first_dir_y=-1*self.lag self.store_dir_x=0*self.lag self.store_dir_y=0*self.lag self.joon=3 self.score=0 self.head_r=2 self.domborkhor=0 self.control_up=pygame.K_UP self.control_right=pygame.K_RIGHT self.control_down=pygame.K_DOWN self.control_left=pygame.K_LEFT self.nitrogen_key=pygame.K_RSHIFT self.nitrogen_counter=2 self.game_over=False def analize(self,event): up=self.control_up right=self.control_right down=self.control_down left=self.control_left nit=self.nitrogen_key if event.key == up : if self.dir_y==1*self.lag: return self.dir_x = 0*self.lag self.dir_y = -1*self.lag elif event.key == down : if self.dir_y==-1*self.lag: return self.dir_x = 0*self.lag self.dir_y = 1*self.lag elif event.key == left: if self.dir_x==1*self.lag: return self.dir_x = -1*self.lag self.dir_y = 0*self.lag elif event.key == right : if self.dir_x==-1*self.lag: return self.dir_x = 1*self.lag self.dir_y = 0*self.lag elif event.key==nit and self.nitrogen_counter>=1: self.eat_nitrogen() self.nitrogen_counter-=1 def eat(self): self.growing +=growing_worm def draw(self): #pygame.draw.circle(self.surface,self.color, (self.body_list[0][0],self.body_list[0][1]),self.head_r+ 1) for i in self.body_list: # pygame.draw.rect(display,(255,0,0),(i[0],i[1],5,s5)) pygame.draw.circle(self.surface,self.color, (i[0],i[1]),self.head_r) def erase(self): self.joon-=1 self.score-=1 self.body_list=[] self.x=self.first_x self.y=self.first_y self.dir_x=self.first_dir_x self.dir_y=self.first_dir_y ## def eat_dombor(self): ## ## if self.domborkhor!=1: ## self.domborkhor=1 ## self.score-=1 ## self.len-=dombor_effect ## self.growing-=dombor_effect ## for i in range(dombor_effect): ## if len(self.body_list)>20: ## self.body_list.pop() ## def move(self): self.x += self.dir_x self.y += self.dir_y if self.x<=0: self.x=width if self.y<=0: self.y=height if self.x>=width+1: self.x=0 if self.y>=height+1: self.y=0 #if self.x<=-2 or self.y<=-2 or self.x>=width+1 or self.y>=height : # self.erase() if [self.x,self.y] in self.body_list: self.erase() self.body_list.insert(0, [self.x, self.y]) if (self.growing > self.len): self.len += 1 if len(self.body_list) > self.len: self.body_list.pop() def check_to_accident(self,x,y): if [x,y] in self.body_list: return True ## def eat_nitrogen(self): ## self.store_dir_x=self.dir_x ## self.store_dir_y=self.dir_y ## self.dir_x*=5 ## self.dir_y*=5 ## ## def un_eat_nitrogen(self): ## self.dir_x=self.store_dir_x ## self.dir_y=self.store_dir_y ## self.store_dir_x,self.store_dir_y=0,0 class AIWorm(Worm): def __init__(self,surface,x,y,len=50): Worm.__init__(self,surface,x,y,len=50) self.start_delay=False self.counter=0 def analize(self,xekh,yekh,rival,alert,aitype):#dlay==delay print aitype if aitype==2: print self.start_delay if self.start_delay==True: self.counter+=1 if self.start_delay==True and self.counter>=30: self.counter=0 self.start_delay=False #if time==a: # print "hahahhahahhhahhhahahhh\n\n\n\n\n" if self.start_delay==False: for i in rival.body_list: if i[0]==self.x and abs(i[1]-self.y)<alert and self.dir_y==-1: self.start_delay=True if xekh>=0: self.dir_x=-1 self.dir_y=0 if xekh<0: self.dir_x=1 self.dir_y=0 return if i[0]==self.x and abs(i[1]-self.y)<alert and self.dir_y==1: self.start_delay=True if xekh>=0: self.dir_x=-1 self.dir_y=0 if xekh<0: self.dir_x=1 self.dir_y=0 return if i[1]==self.y and abs(i[0]-self.x)<alert and self.dir_x==-1: self.start_delay=True if yekh>=0: self.dir_x=0 self.dir_y=-1 if yekh<0: self.dir_x=0 self.dir_y=1 return if i[1]==self.y and abs(i[0]-self.x)<alert and self.dir_x==1: self.start_delay=True if yekh>=0: self.dir_x=0 self.dir_y=-1 if yekh<0: self.dir_x=0 self.dir_y=1 return if xekh==0: if yekh<0: self.dir_x=0 self.dir_y=1 return if yekh>0: self.dir_x=0 self.dir_y=-1 return if yekh==0: if xekh<0: self.dir_x=1 self.dir_y=0 return if xekh>0: self.dir_x=-1 self.dir_y=0 return if xekh>0: if self.dir_x!=1: self.dir_x=-1 self.dir_y=0 return if xekh<0: if self.dir_x!=-1: self.dir_x=1 self.dir_y=0 return if yekh>0: if self.dir_y!=1: self.dir_x=0 self.dir_y=-1 return if yekh<0: if self.dir_y!=-1: self.dir_x=0 self.dir_y=1 return if aitype==1: pass if xekh==0: if yekh<0: self.dir_x=0 self.dir_y=1 return if yekh>0: self.dir_x=0 self.dir_y=-1 return if yekh==0: if xekh<0: self.dir_x=1 self.dir_y=0 return if xekh>0: self.dir_x=-1 self.dir_y=0 return if xekh>0: if self.dir_x!=1: self.dir_x=-1 self.dir_y=0 return if xekh<0: if self.dir_x!=-1: self.dir_x=1 self.dir_y=0 return if yekh>0: if self.dir_y!=1: self.dir_x=0 self.dir_y=-1 return if yekh<0: if self.dir_y!=-1: self.dir_x=0 self.dir_y=1 return
027b9caef0850dcdd1dc4783426b6900fa67eaee
2e58532464f58b27de68297b0348f0c460448474
/Assignment-7/How_to_Write_Match/main_3.py
c7984212e0a63d3735236561dff194507a3e9578
[]
no_license
RidaATariq/ITMD_413
969a2ebe48746b3269493027daef666bd7a26997
ee1676419e2a09ce4d52cfca3c3e02f00b24f74f
refs/heads/main
2023-04-20T19:15:12.864852
2021-05-09T18:41:46
2021-05-09T18:41:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
import re # pattern = re.compile(r'\d\d\d.\d\d\d.\d\d\d\d') pattern = re.compile(r'\d{3}.\d{3}.\d{4}') # same pattern as above but number specifies the no. of /d # matches = pattern.finditer(text_to_search) # for match in matches: # print(match) with open('data.txt', 'r') as f: contents = f.read() matches = pattern.finditer(contents) for match in matches: print(match)
bcbac824d74d96140a3d7c8bf90485d3a39c8eb8
bf0aa689b92be1df24100e8581caab59a74e31db
/src/loaders/npzpck.py
c689dda4e06a1adf307df646cef07b6ad420aa1b
[ "MIT" ]
permissive
shmilee/gdpy3
d7c689a70557534baa98595092cee0d737ea93cc
cdebb80dbb4a4d84ffa7115d8f18b5589fd40fb2
refs/heads/master
2023-08-19T22:42:40.305085
2023-08-15T02:11:15
2023-08-15T03:11:04
88,051,033
9
3
null
null
null
null
UTF-8
Python
false
false
1,405
py
# -*- coding: utf-8 -*- # Copyright (c) 2018-2020 shmilee ''' Contains Npz pickled file loader class. ''' import numpy import zipfile from ..glogger import getGLogger from ..utils import inherit_docstring from .base import BasePckLoader, _pck_copydoc_func __all__ = ['NpzPckLoader'] log = getGLogger('L') @inherit_docstring((BasePckLoader,), _pck_copydoc_func, template=None) class NpzPckLoader(BasePckLoader): ''' Load pickled data from ``.npz`` file. Return a dictionary-like object. Attributes {Attributes} Parameters {Parameters} Notes ----- Q: How to read data from .npz file? A: npzfile[datakey] >>> npzfile = numpy.load('/tmp/test.npz') >>> datakey = 'group/key' >>> npzfile[datakey] ''' __slots__ = [] loader_type = '.npz' def _special_check_path(self): if zipfile.is_zipfile(self.path): return True else: log.error("'%s' is not a ZIP file!" % self.path) return False def _special_open(self): return numpy.load(self.path, allow_pickle=True) def _special_close(self, pathobj): pathobj.close() def _special_getkeys(self, pathobj): return sorted(dict.fromkeys(pathobj.files)) def _special_get(self, pathobj, key): value = pathobj[key] if value.size == 1: value = value.item() return value
15fa7543b47b6784593debfdb2a8c0b909735180
4cef505611a04383310ce6556fac7acb02dbc8a1
/No ingestion test script/No_ingestion_test_showtime_anytime.py
3e7aaccddd9211ae1241a17fa2b57af461c79aeb
[]
no_license
Sayan8981/Projectx
9d8727eec144da35f2acffc787f3c769beef02e1
bcf93fe885e4cd68bb2c30c408a3b03e785965c3
refs/heads/master
2022-03-26T18:13:02.831185
2020-01-16T06:52:31
2020-01-16T06:52:31
187,637,492
0
0
null
null
null
null
UTF-8
Python
false
false
7,357
py
"""Writer: Saayan""" import MySQLdb import collections from pprint import pprint import sys import csv import os import pymysql import pymongo import datetime import sys import urllib2 import json import os from urllib2 import HTTPError import httplib import socket def ingestion(): conn1=pymysql.connect(user="root",passwd="branch@123",host="localhost",db="branch_service") cur1=conn1.cursor() result_sheet='/No_ingestion_test_showtime_anytime.csv' if(os.path.isfile(os.getcwd()+result_sheet)): os.remove(os.getcwd()+result_sheet) csv.register_dialect('excel',lineterminator = '\n',skipinitialspace=True,escapechar='') w=open(os.getcwd()+result_sheet,"wa") with w as mycsvfile: fieldnames = ["showtime_id MO","showtime_id SE","showtime_id SM","projectx_id_showtime","Comment"] writer = csv.DictWriter(mycsvfile,fieldnames=fieldnames,dialect="excel",lineterminator = '\n') writer.writeheader() total=0 total1=0 total2=0 query1="select source_program_id,item_type from showtime_anytime_programs where expired=0;" cur1.execute(query1) res1=cur1.fetchall() j=0 k=0 l=0 m=0 n=0 o=0 p=0 q=0 r=0 for i in res1: print i showtime_projectx_id=[] if list(i)!= []: if i[1]=='movie': print total,l,j,k total=total+1 try: url_showtime="http://34.231.212.186:81/projectx/mappingfromsource?sourceIds=%d&sourceName=ShowtimeAnyTime&showType=MO" %i[0] response_showtime=urllib2.Request(url_showtime) response_showtime.add_header('Authorization','Token token=efeb15f572641809acbc0c26c9c1b63f4f7f1fd7dcb68070e45e26f3a40ec8e3') resp_showtime=urllib2.urlopen(response_showtime) data_showtime=resp_showtime.read() data_resp_showtime=json.loads(data_showtime) except httplib.BadStatusLine: continue except urllib2.HTTPError: continue except socket.error: continue for jj in data_resp_showtime: if jj["data_source"]=="ShowtimeAnyTime" and jj["type"]=="Program" and jj["sub_type"]=="MO": showtime_projectx_id.append(jj["projectx_id"]) if len(showtime_projectx_id)>1: j=j+1 writer.writerow({"showtime_id MO":str(i[0]),"projectx_id_showtime":showtime_projectx_id,"Comment":'Multiple ingestion for same content of Showtime'}) if len(showtime_projectx_id)==1: k=k+1 if len(showtime_projectx_id)==0: l=l+1 writer.writerow({"showtime_id MO":str(i[0]),"projectx_id_showtime":'',"Comment":'No Ingestion'}) print("total showtime id MO:", total ,"No ingestion: ", l, "Multiple mapped content :", j, "Total Fail: ", l+j, "Pass: ", k) if i[1]=='episode': total1=total1+1 try: url_showtime="http://34.231.212.186:81/projectx/mappingfromsource?sourceIds=%d&sourceName=ShowtimeAnyTime&showType=SE" %i[0] response_showtime=urllib2.Request(url_showtime) response_showtime.add_header('Authorization','Token token=efeb15f572641809acbc0c26c9c1b63f4f7f1fd7dcb68070e45e26f3a40ec8e3') resp_showtime=urllib2.urlopen(response_showtime) data_showtime=resp_showtime.read() data_resp_showtime=json.loads(data_showtime) except httplib.BadStatusLine: continue except urllib2.HTTPError: continue except socket.error: continue for jj in data_resp_showtime: if jj["data_source"]=="ShowtimeAnyTime" and jj["type"]=="Program" and jj["sub_type"]=="SE": showtime_projectx_id.append(jj["projectx_id"]) if len(showtime_projectx_id)>1: q=q+1 writer.writerow({"showtime_id SE":str(i[0]),"projectx_id_showtime":showtime_projectx_id,"Comment":'Multiple ingestion for same content of Showtime'}) if len(showtime_projectx_id)==1: r=r+1 if len(showtime_projectx_id)==0: p=p+1 writer.writerow({"showtime_id SE":str(i[0]),"projectx_id_showtime":'',"Comment":'No Ingestion'}) print("total showtime id SE :", total1 ,"No ingestion: ", p, "Multiple mapped content :", q, "Total Fail: ", p+q, "Pass: ", r) if i[1]=='tv_show': total2=total2+1 try: url_showtime="http://34.231.212.186:81/projectx/mappingfromsource?sourceIds=%d&sourceName=ShowtimeAnyTime&showType=SM" %i[0] response_showtime=urllib2.Request(url_showtime) response_showtime.add_header('Authorization','Token token=efeb15f572641809acbc0c26c9c1b63f4f7f1fd7dcb68070e45e26f3a40ec8e3') resp_showtime=urllib2.urlopen(response_showtime) data_showtime=resp_showtime.read() data_resp_showtime=json.loads(data_showtime) except httplib.BadStatusLine: continue except urllib2.HTTPError: continue except socket.error: continue for jj in data_resp_showtime: if jj["data_source"]=="ShowtimeAnyTime" and jj["type"]=="Program" and jj["sub_type"]=="SM": showtime_projectx_id.append(jj["projectx_id"]) if len(showtime_projectx_id)>1: n=n+1 writer.writerow({"showtime_id SM":str(i[0]),"projectx_id_showtime":showtime_projectx_id,"Comment":'Multiple ingestion for same content of Showtime'}) if len(showtime_projectx_id)==1: o=o+1 if len(showtime_projectx_id)==0: m=m+1 writer.writerow({"showtime_id SM":str(i[0]),"projectx_id_showtime":'',"Comment":'No Ingestion'}) print("total showtime id SM :", total2 ,"No ingestion: ", m ,"Multiple mapped content :", n, "Total Fail: ", m+n, "Pass: ", o) print("total showtime id MO:", total ,"No ingestion: ", l, "Multiple mapped content :", j, "Total Fail: ", l+j, "Pass: ", k) print("total showtime id SE :", total1 ,"No ingestion: ", p, "Multiple mapped content :", q, "Total Fail: ", p+q, "Pass: ", r) print("total showtime id SM :", total2 ,"No ingestion: ", m ,"Multiple mapped content :", n, "Total Fail: ", m+n, "Pass: ", o) print("total showtime_anytime id :", total+total1+total2 ,"total No ingestion: ", m+p+l, "Multiple mapped content :", q+n+j, "Total Fail: ", m+p+l+q+n+j, "Pass: ", r+o+k) print(datetime.datetime.now()) ingestion()
32104a52bb1ffb03bb96243e4787ce2b62d3e161
a5c57d60e11d6194ab590b43ee61c21dbe9d3675
/src/bio2bel_drugbank/constants.py
6fdc1f9a930062c372375cee9a62179b39b507e3
[ "MIT" ]
permissive
sailfish009/drugbank_bio2bel
5779365d02b85eecddda5e87358abf3b424464c4
ccab91aacfa70e362ed25a9343d7dd47d619a26c
refs/heads/master
2022-02-23T06:20:12.643593
2019-10-15T10:28:06
2019-10-15T10:28:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# -*- coding: utf-8 -*- """Constants for Bio2BEL DrugBank.""" import os from bio2bel.utils import get_connection, get_data_dir VERSION = '0.1.2-dev' MODULE_NAME = 'drugbank' DATA_DIR = get_data_dir(MODULE_NAME) DRUGBANK_URL = 'https://www.drugbank.ca/releases/5-1-4/downloads/all-full-database' DRUGBANK_PATH = os.path.join(DATA_DIR, 'drugbank_all_full_database.xml.zip')
29c705cad1edefde7a3423ca8e3cb007bcdd5fe8
67954fee55a838d3c14ea5758b178f7fddb7d5f7
/teacher/migrations/0001_initial.py
3867ed4443a95746325d5ff6c2661d334d11b7ac
[]
no_license
Abel-Fan/student_admin
899ce1130273fec0905ca4de1fe3c37e6e456b05
e3c1b96f048273dda20b975917a66dabe97b8851
refs/heads/master
2020-06-06T10:17:44.563845
2019-06-20T09:54:24
2019-06-20T09:54:24
192,711,810
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Generated by Django 2.1.1 on 2019-06-20 06:55 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('student', '0002_auto_20190620_1451'), ] operations = [ migrations.CreateModel( name='Teacher', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20, verbose_name='姓名')), ('project', models.CharField(max_length=20, verbose_name='课程')), ('student_id', models.ManyToManyField(to='student.Student')), ], ), ]
980f6bbb5dc5a2a639e07f041266478030497e29
11ada50b47a245278a41b1f2cdae60bc387937da
/gala/potential/potential/builtin/pybuiltin.py
d2a6888e172a89a36bb718859afae3aa8bd2bd42
[ "MPL-1.1", "MIT" ]
permissive
ltlancas/gala
7ec9111e3bf9f49823f393ad08f04aa4c34cf0df
2621bb599d67e74a85446abf72d5930ef70ca181
refs/heads/master
2020-03-25T21:03:56.114744
2018-05-12T16:24:46
2018-05-12T16:24:46
144,157,811
1
0
MIT
2018-08-09T13:40:53
2018-08-09T13:40:53
null
UTF-8
Python
false
false
4,211
py
# coding: utf-8 from __future__ import division, print_function # Standard library from collections import OrderedDict # Third-party import numpy as np from ..core import PotentialBase from ....util import atleast_2d __all__ = ["HarmonicOscillatorPotential", "KuzminPotential"] class HarmonicOscillatorPotential(PotentialBase): r""" Represents an N-dimensional harmonic oscillator. .. math:: \Phi = \frac{1}{2}\omega^2 x^2 Parameters ---------- omega : numeric Frequency. units : iterable(optional) Unique list of non-reducable units that specify (at minimum) the length, mass, time, and angle units. """ def __init__(self, omega, units=None): parameters = OrderedDict() parameters['omega'] = np.atleast_1d(omega) super(HarmonicOscillatorPotential, self).__init__(units=units, parameters=parameters, ndim=len(parameters['omega'])) def _energy(self, q, t=0.): om = np.atleast_1d(self.parameters['omega'].value) return np.sum(0.5 * om[None]**2 * q**2, axis=1) def _gradient(self, q, t=0.): om = np.atleast_1d(self.parameters['omega'].value) return om[None]**2 * q def _hessian(self, q, t=0.): om = np.atleast_1d(self.parameters['omega'].value) return np.tile(np.diag(om)[:,:,None], reps=(1,1,q.shape[0])) def action_angle(self, w): """ Transform the input cartesian position and velocity to action-angle coordinates the Harmonic Oscillator potential. This transformation is analytic and can be used as a "toy potential" in the Sanders & Binney 2014 formalism for computing action-angle coordinates in _any_ potential. Adapted from Jason Sanders' code `genfunc <https://github.com/jlsanders/genfunc>`_. Parameters ---------- w : :class:`gala.dynamics.PhaseSpacePosition`, :class:`gala.dynamics.Orbit` The positions or orbit to compute the actions, angles, and frequencies at. """ from ....dynamics.analyticactionangle import harmonic_oscillator_to_aa return harmonic_oscillator_to_aa(w, self) # def phase_space(self, actions, angles): # """ # Transform the input action-angle coordinates to cartesian position and velocity # assuming a Harmonic Oscillator potential. This transformation # is analytic and can be used as a "toy potential" in the # Sanders & Binney 2014 formalism for computing action-angle coordinates # in _any_ potential. # Adapted from Jason Sanders' code # `genfunc <https://github.com/jlsanders/genfunc>`_. # Parameters # ---------- # x : array_like # Positions. # v : array_like # Velocities. # """ # from ...dynamics.analyticactionangle import harmonic_oscillator_aa_to_xv # return harmonic_oscillator_aa_to_xv(actions, angles, self) class KuzminPotential(PotentialBase): r""" The Kuzmin flattened disk potential. .. math:: \Phi = -\frac{Gm}{\sqrt{x^2 + y^2 + (a + |z|)^2}} Parameters ---------- m : numeric Mass. a : numeric Flattening parameter. units : iterable Unique list of non-reducable units that specify (at minimum) the length, mass, time, and angle units. """ def __init__(self, m, a, units): parameters = OrderedDict() parameters['m'] = m parameters['a'] = a super(KuzminPotential, self).__init__(units=units, parameters=parameters) def _energy(self, q, t): x,y,z = q m = self.parameters['m'] a = self.parameters['a'] val = -self.G * m / np.sqrt(x**2 + y**2 + (a + np.abs(z))**2) return val def _gradient(self, q, t): x,y,z = q m = self.parameters['m'] a = self.parameters['a'] fac = self.G * m / (x**2 + y**2 + (a + np.abs(z))**2)**1.5 return fac[None,...] * q
d86d4bc54409db664185d5391f137bd863fcb162
0872e3dc1d71ffc8c6426f77c7d1409fc523e088
/rlb/main.py
36d133417ff2b0941b040cf4147dc3629f603b20
[]
no_license
mpenkov/reddit-liveleak-bot
c0a367f15609e58227f661c99ab6ea17808e0b99
4ec35c0a941f269257b6a431cc6de1de8827b3ed
refs/heads/master
2020-07-21T11:42:21.192096
2015-02-07T08:17:48
2015-02-07T08:17:48
21,909,013
0
0
null
null
null
null
UTF-8
Python
false
false
10,730
py
import praw from praw.errors import APIException import datetime as dt import os import os.path as P import yaml import logging import time # # http://blog.tplus1.com/blog/2007/09/28/the-python-logging-module-is-much-better-than-print-statements/ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # # http://stackoverflow.com/questions/11029717/how-do-i-disable-log-messages-from-the-requests-library # requests_log = logging.getLogger("requests") requests_log.setLevel(logging.WARNING) from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.exc import NoResultFound import liveleak import youtube from orm import Subreddit, Video COMMENT_MIRROR = "[**Mirror**](http://www.liveleak.com/view?i=%s)" COMMENT_FOOTER = """ --- ^| [^Feedback](http://www.reddit.com/r/redditliveleakbot/) ^| [^FAQ](http://www.reddit.com/r/redditliveleakbot/wiki/index) ^|""" def transaction(func): """Wrap up a function call as a transaction. If the transaction succeeds, commit the session. If something goes wrong, roll the session back. Returns whatever the inner method returned on success, or None on failure.""" def inner(self, *args, **kwargs): try: ret = func(self, *args, **kwargs) self.db.commit() return ret except Exception as ex: logger.exception(ex) self.db.rollback() return None return inner def error_prone_praw_api_call(func): """Used to decorate the most error-prone PRAW API calls. For example, commenting on a submission can fail if the submission has been deleted.""" def inner(self, *args, **kwargs): try: return func(self, *args, **kwargs) except APIException as ex: logger.exception(ex) return None return inner def locate_video(subdir, video_id): for f in os.listdir(subdir): if f.startswith(video_id): return P.join(subdir, f) class Config(object): def __init__(self, config_path=None): if config_path is None: config_path = P.join(P.dirname(P.abspath(__file__)), "conf/config.yml") with open(config_path) as fin: doc = yaml.load(fin) self.limit = int(doc["limit"]) self.dest_dir = doc["videopath"] self.user_agent = doc["user_agent"] self.liveleak_username = doc["liveleak"]["username"] self.liveleak_password = doc["liveleak"]["password"] self.reddit_username = doc["reddit"]["username"] self.reddit_password = doc["reddit"]["password"] self.google_developer_key = doc["google_developer_key"] self.hold_hours = doc["hold_hours"] self.subreddits = {} for sub in doc["subreddits"]: self.subreddits[sub] = doc["subreddits"][sub]["liveleak_category"] self.dbpath = doc["dbpath"] class Bot(object): def __init__(self, config_path=None): self.cfg = Config(config_path) if not P.isdir(self.cfg.dest_dir): os.makedirs(self.cfg.dest_dir) engine = create_engine(self.cfg.dbpath) Session = sessionmaker(bind=engine) self.db = Session() self.r = praw.Reddit(self.cfg.user_agent) self.r.login(self.cfg.reddit_username, self.cfg.reddit_password) self.uploader = liveleak.Uploader(self.cfg.user_agent) self.uploader.login(self.cfg.liveleak_username, self.cfg.liveleak_password) def monitor(self): """Monitor all subreddits specified in the config.xml file.""" for subreddit in self.cfg.subreddits: self.download_new_videos(subreddit) self.monitor_deleted_videos() self.make_stale() @transaction def get_subreddit_info(self, sr): try: sub_info = self.db.query(Subreddit).filter_by(id=sr).one() except NoResultFound: sub_info = Subreddit(id=sr) self.db.add(sub_info) return sub_info def download_new_videos(self, subreddit): """Monitors the specific subreddit for new submissions that link to YouTube videos.""" meth_name = "download_new_videos" sub_info = self.get_subreddit_info(subreddit) now = dt.datetime.now() for new_submission in self.r.get_subreddit( subreddit).get_new(limit=self.cfg.limit): created = dt.datetime.fromtimestamp(new_submission.created_utc) if created < sub_info.mostRecentSubmission: break youtube_id = youtube.extract_id(new_submission.url) logger.debug("%s: youtube_id: %s", meth_name, youtube_id) if youtube_id is None: logger.debug("skipping submission URL: %s", new_submission.url) continue logger.info("%s: new video submission: %s %s %s", meth_name, new_submission.permalink, new_submission.url, youtube_id) download = True try: v = self.db.query(Video).filter_by(youtubeId=youtube_id).one() download = not v.has_file() except NoResultFound: pass if download: self.download_video(youtube_id, new_submission.permalink) sub_info.mostRecentSubmission = now self.db.commit() @transaction def download_video(self, youtube_id, permalink): """Download the video with the specified YouTube ID. If it has already been downloaded, the actual download is skipped. Returns a Video instance. """ try: v = self.db.query(Video).filter_by(youtubeId=youtube_id).one() except NoResultFound: v = Video(youtube_id, permalink) self.db.add(v) v.localPath = locate_video(self.cfg.dest_dir, v.youtubeId) if v.localPath is None: youtube.download(self.cfg.dest_dir, v.youtubeId) v.localPath = locate_video(self.cfg.dest_dir, v.youtubeId) if v.localPath is None: v.state = Video.ERROR else: v.state = Video.DOWNLOADED v.downloaded = dt.datetime.now() v.localModified = dt.datetime.now() return v @transaction def make_stale(self): """Make all data that hasn't been updated in self.hold_hours hours stale.""" cutoff = dt.datetime.now() - dt.timedelta(hours=self.cfg.hold_hours) for video in self.db.query(Video).filter_by(state=Video.DOWNLOADED): if video.discovered is None or video.discovered < cutoff: video.state = Video.STALE video.localModified = dt.datetime.now() def purge(self): """Delete stale and reposted video data.""" for video in self.db.query(Video).filter_by(state=Video.STALE): self.purge_video(video) for video in self.db.query(Video).filter_by(state=Video.REPOSTED): self.purge_video(video) for video in self.db.query(Video): if not video.has_file(): self.purge_video(video) @transaction def purge_video(self, video): if video.has_file(): logger.info("removing %s", video.localPath) try: os.remove(video.localPath) except OSError as ose: logger.exception(ose) video.localPath = None video.state = Video.PURGED video.localModified = dt.datetime.now() @transaction def repost_video(self, video): meth_name = "repost_video" submission = self.r.get_submission(video.redditSubmissionPermalink) subreddit = submission.subreddit.display_name body = "repost of http://youtube.com/watch?v=%s from %s" % ( video.youtubeId, submission.permalink) logger.info("%s: %s", meth_name, body) if not video.has_file(): # # If we're reposting, then the video has already been deleted from # YouTube. If we don't have the video downloaded by now, there's # nothing we can do. # logger.info("%s: giving up on %s", meth_name, video.youtubeId) video.state = Video.STALE elif video.liveleakId is None: category = self.cfg.subreddits[subreddit] logger.debug("%s: category: %s", meth_name, category) file_token, connection = self.uploader.upload(video.localPath) video.liveleakId = self.uploader.publish(submission.title, body, subreddit, category, connection) video.state = Video.REPOSTED def check_replies(self, submission): """Return true if we've replied to the submission already. Ideally, we shouldn't have to check for this over the wire, since our database should be sufficient. However, it avoids embarrassing multi-posts in some cases, e.g. database has been reset.""" meth_name = "check_replies" reply_authors = [r.author.name for r in submission.comments if r.author] result = self.cfg.reddit_username in reply_authors if result: logger.info("%s: we have already replied to this submission: %s", meth_name, submission.permalink) return result def monitor_deleted_videos(self): """Go through all our downloaded videos and check if they have been deleted from YouTube. If yes, repost them.""" for v in self.db.query(Video).filter_by(state=Video.DOWNLOADED): try: if youtube.video_exists(v.youtubeId, self.cfg.user_agent, self.cfg.google_developer_key): continue except youtube.YoutubeException: time.sleep(5) continue submission = self.r.get_submission(v.redditSubmissionPermalink) if self.check_replies(submission): continue self.repost_video(v) if v.liveleakId is None: continue self.post_comment(submission, v.liveleakId) v.deleted = dt.datetime.now() self.db.commit() @error_prone_praw_api_call def post_comment(self, submission, liveleak_id): comment = (COMMENT_MIRROR % liveleak_id) + COMMENT_FOOTER submission.add_comment(comment)
abd0e4369ed4686d8a57e4903580a0d3336d78b0
7e98a8b31cc2fecf8384f4590f27540f7280659a
/v1/LinkedLists/mirror_subtraction.py
b9bf4ac6f787e73961c467e99aa83d9e78408879
[]
no_license
darraes/coding_questions
62a07a6ede884fd0e3596f3dac8f50e11fd8676e
70dcc3b859db673c39c3cf55aeb463d2bd822ed9
refs/heads/master
2021-01-21T07:21:18.033321
2020-06-15T16:25:11
2020-06-15T16:25:11
91,611,595
0
1
null
null
null
null
UTF-8
Python
false
false
1,274
py
# http://www.careercup.com/question?id=5657550909341696 class Node: def __init__(self, next, value): self._next = next self._value = value def revert(node): if node == None: raise elif node._next == None: return (node, node) else: tail, head = revert(node._next) tail._next = node node._next = None return (node, head) def solve(node): slow = fast = firstHalf = node secondHalf = None while slow._next != None: if fast._next == None or fast._next._next == None: secondHalf = slow._next slow._next = None break else: slow = slow._next fast = fast._next._next headF = firstHalf tailF = slow tail, secondHalf = revert(secondHalf) headS = secondHalf while firstHalf != None: if secondHalf != None: firstHalf._value -= secondHalf._value secondHalf = secondHalf._next else: firstHalf._value = 0 firstHalf = firstHalf._next tail, headS = revert(headS) tailF._next = headS return headF head = Node(Node(Node(Node(Node(None, 10), 5), 4), 9), 10) new = solve(head)
b006e071b4eedcdff17cc409c2ad17895603ea12
4342ef8afa6a0790690f711d28c0ce2c78711c67
/seed_database.py
921aa0c13ce449678e4383c184f066f8bd5a1fa0
[]
no_license
christinababaya/ratings-v2
fe03413af9042942204aa69980a3ce2415411c14
2812bc1493607fb4f04b62c1e84b4d9efb396937
refs/heads/master
2023-03-25T20:39:38.191009
2021-03-26T16:00:14
2021-03-26T16:00:14
351,493,197
0
0
null
null
null
null
UTF-8
Python
false
false
951
py
import os import json from random import choice, randint from datetime import datetime import crud import model import server os.system('dropdb ratings') os.system('createdb ratings') model.connect_to_db(server.app) model.db.create_all() with open('data/movies.json') as f: movie_data = json.loads(f.read()) movies_in_db=[] for movie in movie_data: title, overview, poster_path= movie['title'], movie['overview'],movie['poster_path'] release_date = datetime.strptime(movie['release_date'], '%Y-%m-%d') db_movie= crud.create_movie(title, overview, release_date, poster_path) movies_in_db.append(db_movie) for n in range(10): email = f'user{n}@test.com' password= 'test' user = crud.create_user(email, password) for _ in range(10): random_movie= choice(movies_in_db) score= randint(1,5) crud.create_rating(user, random_movie, score)
44019f8e0054c62342b61280690b6ff62aac80ff
8b576f16cfd9202f756611001e684657dde3e812
/03_TryExcept/venv/Scripts/pip3.7-script.py
68fc52157e004291293a7e15bf0d026173449d4c
[]
no_license
WenhaoChen0907/Python_Demo
26cc4d120aaa990c2d26fd518dfe6bcb622b1d77
136b8ced40623b0970c2a5bd47852425dcac3e86
refs/heads/master
2023-02-23T23:58:09.584321
2021-01-30T11:49:50
2021-01-30T11:49:50
334,374,597
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
#!E:\python-pycharm\03_TryExcept\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
92ec7ed041e603e068af5792813e85378c4cca01
9d454ae0d5dd1d7e96e904ced80ca502019bb659
/1720_decode.py
8f1c93438180b711a3300877bb9f7e9cc36a7969
[]
no_license
zzz686970/leetcode-2018
dad2c3db3b6360662a90ea709e58d7facec5c797
16e4343922041929bc3021e152093425066620bb
refs/heads/master
2021-08-18T08:11:10.153394
2021-07-22T15:58:52
2021-07-22T15:58:52
135,581,395
3
0
null
null
null
null
UTF-8
Python
false
false
266
py
class Solution: def decode(self, encoded: List[int], first: int) -> List[int]: # ans = [first] # for el in encoded: # ans.append(el ^ ans[-1]) # return ans return list(accumulate([first] + encoded, lambda x, y: x ^ y))
280e83ef0782347a3afd107ead0084773b84c6ae
aa8af4dc70c14339a05489b0c4c4925d7a00e319
/starbox_custom/starbox_custom/doctype/store/test_store.py
908d6e2311d2d1c252d713c5f8fb6e7b22ab9769
[ "MIT" ]
permissive
vhrspvl/starbox-custom
925768540b318ee923dd6587291fbece003fd17e
0d1143e64119cff66ad52fbe8453fa7281b62998
refs/heads/master
2021-05-13T21:35:17.327744
2019-07-24T16:11:50
2019-07-24T16:11:50
116,466,334
0
2
null
2018-08-13T15:05:27
2018-01-06T08:15:26
Python
UTF-8
Python
false
false
217
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Starboxes India and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestStoreKeeper(unittest.TestCase): pass
01040de6b5d4ea3274ea3ea17e71b4643c1b4001
b483c598fa375e9af02348960f210b9f482bd655
/cursoemvideo/desafios/Desafio075.py
48338306d4a75934c3af6b61e07b9ea8b5210c04
[ "MIT" ]
permissive
brunofonsousa/python
6f766d08bf193180ea9a4903cb93ffd167db588d
8f2f26c77015c0baaa76174e004406b4115272c7
refs/heads/master
2022-09-30T14:58:01.080749
2020-06-08T09:55:35
2020-06-08T09:55:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,504
py
''' Exercício Python 075: Desenvolva um programa que leia quatro valores pelo teclado e guarde-os em uma tupla. No final, mostre: A) Quantas vezes apareceu o valor 9. B) Em que posição foi digitado o primeiro valor 3. C) Quais foram os números pares. ''' ## VERSÃO GUANABARA: num = (int(input("Digite um número: ")), int(input("Digite outro número: ")), int(input("Digite mais um número: ")), int(input("Digite o último número: "))) print(f"O valor 9 apareceu {num.count(9)} vezes") if 3 in num: print(f"O valor 3 apareceu na {num.index(3)+1}ª posição") else: print("O valor 3 não foi digitado em nenhuma posição") print(f"Os valores pares digitados foram ", end="") for n in num: if n % 2 == 0: print(n, end=" ") else: pass ## VERSÃO BRUNO: varia = ['um', 'outro', 'mais um', 'último'] tupla=() for i in range(4): num = int(input(f"Digite {varia[i]} número: ")) tupla = tupla + (num,) print("Você digitou os valores:", (tupla)) vezes = 0 for i in range(len(tupla)): #x = tupla.count(tupla[i]) x = tupla[i] if x == 9: vezes += 1 else: pass for i in range(len(tupla)): if tupla[i] == 3: primeiro = i break else: pass par = 0 for i in tupla: if i % 2 == 0: par += 1 else: pass print(f"O valor 9 apareceu {vezes} vezes") print(f"O valor 3 apareceu na {primeiro}ª posição") print(f"Os valores pares digitados foram {par}")
42578ba3422cde2aa409b7883dec36b75c62a800
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/leap/f8586ba81c1349918117ff21ab2d5b5e.py
48a969f886f37d77fddd9072875bff7e3adeb896
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
95
py
#!/usr/bin/env python def is_leap_year(y): return y%400 == 0 or (y%4 == 0 and y%100 != 0)
e966f04e9525fb6b367303324e44fbcbcfcfae94
221b2221703f9cddeee7054c5dc426b81a3f53bd
/venv/lib/python3.9/site-packages/pyrogram/raw/functions/langpack/get_language.py
e88bc93e119755902d6020efd7ffc9cf8d817575
[]
no_license
ch3p4ll3/Royal-Racing-Bot
37c998a650078e4b5f5c3b34b8c081d52b018944
eab5baf61a9782fbedd42ddf35b7e11cbae9ec22
refs/heads/main
2023-06-26T03:34:58.104068
2021-07-30T17:36:14
2021-07-30T17:36:14
348,089,837
1
0
null
2021-03-20T11:32:46
2021-03-15T18:59:39
Python
UTF-8
Python
false
false
2,400
py
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class GetLanguage(TLObject): # type: ignore """Telegram API method. Details: - Layer: ``122`` - ID: ``0x6a596502`` Parameters: lang_pack: ``str`` lang_code: ``str`` Returns: :obj:`LangPackLanguage <pyrogram.raw.base.LangPackLanguage>` """ __slots__: List[str] = ["lang_pack", "lang_code"] ID = 0x6a596502 QUALNAME = "functions.langpack.GetLanguage" def __init__(self, *, lang_pack: str, lang_code: str) -> None: self.lang_pack = lang_pack # string self.lang_code = lang_code # string @staticmethod def read(data: BytesIO, *args: Any) -> "GetLanguage": # No flags lang_pack = String.read(data) lang_code = String.read(data) return GetLanguage(lang_pack=lang_pack, lang_code=lang_code) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) # No flags data.write(String(self.lang_pack)) data.write(String(self.lang_code)) return data.getvalue()
8bcd712f4be349d7fe2b89d4ff19355202af1010
b2ba670818623f8ab18162382f7394baed97b7cb
/test-data/AndroidSlicer/Chart/DD/8.py
09e5ae21e49aeca31e6e629fd56dbf73b0e2b860
[ "MIT" ]
permissive
hsumyatwin/ESDroid-artifact
012c26c40537a79b255da033e7b36d78086b743a
bff082c4daeeed62ceda3d715c07643203a0b44b
refs/heads/main
2023-04-11T19:17:33.711133
2022-09-30T13:40:23
2022-09-30T13:40:23
303,378,286
1
1
null
null
null
null
UTF-8
Python
false
false
990
py
#start monkey test import os; from subprocess import Popen from subprocess import PIPE from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage from com.android.monkeyrunner.MonkeyDevice import takeSnapshot from com.android.monkeyrunner.easy import EasyMonkeyDevice from com.android.monkeyrunner.easy import By from com.android.chimpchat.hierarchyviewer import HierarchyViewer from com.android.monkeyrunner import MonkeyView import random import sys import subprocess from sys import exit from random import randint device = MonkeyRunner.waitForConnection() easy_device=EasyMonkeyDevice(device) package = 'es.senselesssolutions.gpl.weightchart' activity ='es.senselesssolutions.gpl.weightchart.ChartActivity' runComponent = package+'/'+activity device.startActivity(component=runComponent) MonkeyRunner.sleep(1) device.touch(487,1689, 'DOWN_AND_UP') MonkeyRunner.sleep(1) device.touch(1619,983, 'DOWN_AND_UP') MonkeyRunner.sleep(1) device.touch(558,1730, 'DOWN_AND_UP')
4a2c91451796f219d51b74f12ba3c8156185b68d
79041f273c057b2fbb115b35494b13250ac7a42c
/bel/lang/migrate_1_2.py
a33ee3c88896e423a30211e7b124513032101612
[ "Apache-2.0" ]
permissive
belbio/bel
3786b65a10d44735407b0e79c8489bea1df58863
14ff8e543a679e7dfff3f38f31c0f91ffd55e4d8
refs/heads/master
2022-12-08T23:02:28.242510
2020-12-21T16:17:47
2020-12-21T16:17:47
116,027,945
6
2
Apache-2.0
2022-06-01T23:58:52
2018-01-02T15:14:32
Python
UTF-8
Python
false
false
6,958
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Migrate BEL from 1 to 2.0.0 # # Standard Library import json # Third Party from loguru import logger # Local import bel.belspec.crud import bel.core.settings as settings from bel.belspec.crud import get_enhanced_belspec from bel.lang.ast import BELAst, Function, NSArg, StrArg from bel.lang.belobj import BEL version = bel.belspec.crud.get_latest_version() bo = BEL("", version=version) belspec = get_enhanced_belspec(bo.version) def migrate(belstr: str) -> str: """Migrate BEL 1 to 2.0.0 Args: bel: BEL 1 Returns: bel: BEL 2 """ bo.parse(belstr) return migrate_ast(bo.ast).to_string() def migrate_into_triple(belstr: str) -> str: """Migrate BEL1 assertion into BEL 2.0.0 SRO triple""" bo.parse(belstr) return migrate_ast(bo.ast).to_triple() def migrate_ast(ast: BELAst) -> BELAst: # Process Subject bo.ast.subject = convert(bo.ast.subject) if bo.ast.object: if bo.ast.object.type == "BELAst": bo.ast.object.subject = convert(bo.ast.object.subject) if bo.ast.object.object: bo.ast.object.object = convert(bo.ast.object.object) else: bo.ast.object = convert(bo.ast.object) return bo.ast def convert(ast): """Convert BEL1 AST Function to BEL2 AST Function""" if ast and ast.type == "Function": # Activity function conversion if ( ast.name != "molecularActivity" and ast.name in belspec["namespaces"]["Activity"]["list"] ): print("name", ast.name, "type", ast.type) ast = convert_activity(ast) return ast # Otherwise - this will trigger on the BEL2 molecularActivity # translocation conversion elif ast.name in ["tloc", "translocation"]: ast = convert_tloc(ast) fus_flag = False for idx, arg in enumerate(ast.args): if arg.__class__.__name__ == "Function": # Fix substitution -> variation() if arg.name in ["sub", "substitution"]: ast.args[idx] = convert_sub(arg) elif arg.name in ["trunc", "truncation"]: ast.args[idx] = convert_trunc(arg) elif arg.name in ["pmod", "proteinModification"]: ast.args[idx] = convert_pmod(arg) elif arg.name in ["fus", "fusion"]: fus_flag = True # Recursively process Functions ast.args[idx] = convert(ast.args[idx]) if fus_flag: ast = convert_fus(ast) return ast def convert_tloc(ast): """Convert BEL1 tloc() to BEL2""" from_loc_arg = ast.args[1] to_loc_arg = ast.args[2] from_loc = Function("fromLoc", version=version, parent=ast) from_loc.add_argument(NSArg(from_loc_arg.namespace, from_loc_arg.value, parent=from_loc)) to_loc = Function("toLoc", version=version, parent=ast) to_loc.add_argument(NSArg(to_loc_arg.namespace, to_loc_arg.value, parent=to_loc)) ast.args[1] = from_loc ast.args[2] = to_loc return ast def convert_activity(ast): """Convert BEL1 activities to BEL2 act()""" if len(ast.args) > 1: logger.error(f"Activity should not have more than 1 argument {ast.to_string()}") p_arg = ast.args[0] # protein argument print("p_arg", p_arg) ma_arg = Function("ma", version=version) ma_arg.add_argument(StrArg(ast.name, ma_arg)) p_arg.change_parent_fn(ma_arg) ast = Function("activity", version=version) p_arg.change_parent_fn(ast) ast.add_argument(p_arg) ast.add_argument(ma_arg) return ast def convert_pmod(pmod): """Update BEL1 pmod() protein modification term""" if pmod.args[0].value in belspec["bel1_migration"]["protein_modifications"]: pmod.args[0].value = belspec["bel1_migration"]["protein_modifications"][pmod.args[0].value] return pmod def convert_fus(ast): """Convert BEL1 fus() to BEL2 fus()""" parent_fn_name = ast.name_short prefix_list = {"p": "p.", "r": "r.", "g": "c."} prefix = prefix_list[parent_fn_name] fus1_ns = ast.args[0].namespace fus1_val = ast.args[0].value arg_fus = ast.args[1] fus_args = [None, "?", "?"] for idx, arg in enumerate(arg_fus.args): fus_args[idx] = arg fus2_ns = fus_args[0].namespace fus2_val = fus_args[0].value if fus_args[1] == "?": fus1_range = fus_args[1] else: fus1_range = f'"{prefix}1_{fus_args[1].value}"' if fus_args[2] == "?": fus2_range = fus_args[2] else: fus2_range = f'"{prefix}{fus_args[2].value}_?"' fus = Function("fus", version=version, parent=ast) fus.args = [ NSArg(fus1_ns, fus1_val, fus), StrArg(fus1_range, fus), NSArg(fus2_ns, fus2_val, fus), StrArg(fus2_range, fus), ] # Remove BEL ast_args = ast.args ast_args.pop(0) ast_args.pop(0) if ast_args == [None]: ast_args = [] ast.args = [] ast.add_argument(fus) if len(ast_args) > 0: ast.args.extend(ast_args) return ast def convert_sub(sub): """Convert BEL1 sub() to BEL2 var()""" args = sub.args (ref_aa, pos, new_aa) = args parent_fn_name = sub.parent_function.name_short prefix_list = {"p": "p.", "r": "r.", "g": "c."} prefix = prefix_list[parent_fn_name] new_var_arg = f'"{prefix}{belspec["namespaces"]["AminoAcid"]["to_short"][ref_aa.value]}{pos.value}{belspec["namespaces"]["AminoAcid"]["to_short"][new_aa.value]}"' new_var = Function("var", version=version) new_var.add_argument(StrArg(new_var_arg, new_var)) return new_var def convert_trunc(trunc): """Convert BEL1 trunc() to BEL2 var()""" parent_fn_name = trunc.parent_function.name_short prefix_list = {"p": "p.", "r": "r.", "g": "c."} prefix = prefix_list[parent_fn_name] new_var_arg = f'"truncated at {trunc.args[0].value}"' new_var = Function("var", version=version) new_var.add_argument(StrArg(new_var_arg, new_var)) return new_var def main(): # Local import bel.lang.migrate_1_2 bel1 = "kin(p(HGNC:BRAF))" bel1 = "p(HGNC:PIK3CA, sub(E, 545, K))" # bel2 = 'p(HGNC:PIK3CA, var(p.Glu545Lys))' bel1 = "r(HGNC:BCR, fus(HGNC:JAK2, 1875, 2626), pmod(P))" bel2 = 'r(fus(HGNC:BCR, "r.1_1875", HGNC:JAK2, "r.2626_?"), pmod(Ph))' # bel1 = 'p(HGNC:MAPK1, pmod(P, Thr, 185))' # bel2 = 'p(HGNC:MAPK1, pmod(Ph, Thr, 185))' # bel1 = 'tloc(p(HGNC:EGFR), MESHCL:Cytoplasm, MESHCL:"Cell Nucleus")' # bel2 = 'tloc(p(HGNC:EGFR), fromLoc(MESHCL:Cytoplasm), toLoc(MESHCL:"Cell Nucleus"))' # bel1 = 'p(HGNC:ABCA1, trunc(1851))' # bel2 = 'p(HGNC:ABCA1, var("truncated at 1851"))' bel2 = bel.lang.migrate_1_2.migrate(bel1) print("BEL2", bel2) if __name__ == "__main__": main()
206146ddffedd60bf477a416ab75b3c14e9f720f
758bf41e46a3093f4923af603f1f7f8063408b9c
/website/testFromRemoteRepo/_bsch3398/museum/python/django/utils/timesince.py
55e53c65cfc601a4fa7399ed0b4d33d81b8588c3
[]
no_license
mpetyx/mpetyx.com
4033d97b21c9227a6ba505980fd0c1b57254e8fb
d50c379b4fe09e0135656573f7049225fc90ae36
refs/heads/master
2021-01-10T19:50:15.488371
2014-01-22T09:04:14
2014-01-22T09:04:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,698
py
import datetime from django.utils.tzinfo import LocalTimezone from django.utils.translation import ungettext, ugettext def timesince(d, now=None): """ Takes two datetime objects and returns the time between d and now as a nicely formatted string, e.g. "10 minutes". If d occurs after now, then "0 minutes" is returned. Units used are years, months, weeks, days, hours, and minutes. Seconds and microseconds are ignored. Up to two adjacent units will be displayed. For example, "2 weeks, 3 days" and "1 year, 3 months" are possible outputs, but "2 weeks, 3 hours" and "1 year, 5 days" are not. Adapted from http://blog.natbat.co.uk/archive/2003/Jun/14/time_since """ chunks = ( (60 * 60 * 24 * 365, lambda n: ungettext('year', 'years', n)), (60 * 60 * 24 * 30, lambda n: ungettext('month', 'months', n)), (60 * 60 * 24 * 7, lambda n: ungettext('week', 'weeks', n)), (60 * 60 * 24, lambda n: ungettext('day', 'days', n)), (60 * 60, lambda n: ungettext('hour', 'hours', n)), (60, lambda n: ungettext('minute', 'minutes', n)) ) # Convert datetime.date to datetime.datetime for comparison. if not isinstance(d, datetime.datetime): d = datetime.datetime(d.year, d.month, d.day) if now and not isinstance(now, datetime.datetime): now = datetime.datetime(now.year, now.month, now.day) if not now: if d.tzinfo: now = datetime.datetime.now(LocalTimezone(d)) else: now = datetime.datetime.now() # ignore microsecond part of 'd' since we removed it from 'now' delta = now - (d - datetime.timedelta(0, 0, d.microsecond)) since = delta.days * 24 * 60 * 60 + delta.seconds if since <= 0: # d is in the future compared to now, stop processing. return u'0 ' + ugettext('minutes') for i, (seconds, name) in enumerate(chunks): count = since // seconds if count != 0: break s = ugettext('%(number)d %(type)s') % {'number': count, 'type': name(count)} if i + 1 < len(chunks): # Now get the second item seconds2, name2 = chunks[i + 1] count2 = (since - (seconds * count)) // seconds2 if count2 != 0: s += ugettext(', %(number)d %(type)s') % {'number': count2, 'type': name2(count2)} return s def timeuntil(d, now=None): """ Like timesince, but returns a string measuring the time until the given time. """ if not now: if getattr(d, 'tzinfo', None): now = datetime.datetime.now(LocalTimezone(d)) else: now = datetime.datetime.now() return timesince(now, d)
df004da63a64bed312c2d45ad9d337333d93d167
2160b580f64693eb8a27afc58dbdff9363247e3f
/doc2dash/parsers/__init__.py
164faf6c4ec769dfc84c4a88ad42ba11ba703c48
[ "MIT" ]
permissive
pombredanne/doc2dash
fa65fc4428d03c1be9dbdfdb5b311d37c439c3ae
c2f342a74b596d3e0470f9ac69f73c9aef1fc7bd
refs/heads/master
2021-01-16T19:30:41.265173
2014-08-14T08:12:10
2014-08-14T08:13:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
from __future__ import absolute_import, division, print_function from . import pydoctor, sphinx, intersphinx DOCTYPES = [ intersphinx.InterSphinxParser, sphinx.SphinxParser, pydoctor.PyDoctorParser, ] def get_doctype(path): """ Gets the apropriate doctype for *path*. """ for dt in DOCTYPES: if dt.detect(path): return dt else: return None
6cd48226c2b5daa5312ca2232f47327b3926aa63
7e6864c5c48317a590ed6cc9b2acb85754bcda3b
/app/bin/back_end_scripts/minimax.py
7a7839692657faffc8427321758349942d25078c
[ "MIT" ]
permissive
michaelneuder/connect_four
f83d8c1adf03af14632ab1acb23cc79ea5a3f035
de2a1d7296ffddaee4282b722775225cdfbe6304
refs/heads/master
2021-01-20T10:06:56.505978
2017-06-05T23:04:34
2017-06-05T23:04:34
83,929,928
2
0
null
null
null
null
UTF-8
Python
false
false
8,084
py
#!/usr/bin/env python3 import numpy as np import random as rand class minimax(object): def __init__(self, current_board, move_number): self.board = current_board self.number_rows = 6 self.number_cols = 7 self.move_number = move_number self.right_diag_1 = [] self.right_diag_2 = [] self.right_diag_3 = [] self.right_diag_4 = [] self.right_diag_5 = [] self.right_diag_6 = [] self.left_diag_1 = [] self.left_diag_2 = [] self.left_diag_3 = [] self.left_diag_4 = [] self.left_diag_5 = [] self.left_diag_6 = [] self.diag_set = [] self.two_set = [] self.update_diags() def update_diags(self): self.right_diag_1 = [self.board[3,0],self.board[2,1],self.board[1,2],self.board[0,3]] self.right_diag_2 = [self.board[4,0],self.board[3,1],self.board[2,2],self.board[1,3], self.board[0,4]] self.right_diag_3 = [self.board[5,0],self.board[4,1],self.board[3,2],self.board[2,3], self.board[1,4],self.board[0,5]] self.right_diag_4 = [self.board[5,1],self.board[4,2],self.board[3,3],self.board[2,4], self.board[1,5],self.board[0,6]] self.right_diag_5 = [self.board[5,2],self.board[4,3],self.board[3,4],self.board[2,5], self.board[1,6]] self.right_diag_6 = [self.board[5,3],self.board[4,4],self.board[3,5],self.board[2,6]] self.left_diag_1 = [self.board[3,6],self.board[2,5],self.board[1,4],self.board[0,3]] self.left_diag_2 = [self.board[4,6],self.board[3,5],self.board[2,4],self.board[1,3], self.board[0,2]] self.left_diag_3 = [self.board[5,6],self.board[4,5],self.board[3,4],self.board[2,3], self.board[1,2],self.board[0,1]] self.left_diag_4 = [self.board[5,5],self.board[4,4],self.board[3,3],self.board[2,2], self.board[1,1],self.board[0,0]] self.left_diag_5 = [self.board[5,4],self.board[4,3],self.board[3,2],self.board[2,1], self.board[1,0]] self.left_diag_6 = [self.board[5,3],self.board[4,2],self.board[3,1],self.board[2,0]] self.diag_set = [self.right_diag_1, self.right_diag_2, self.right_diag_3, self.right_diag_4, self.right_diag_5, self.right_diag_6, self.left_diag_1, self.left_diag_2, self.left_diag_3, self.left_diag_4, self.left_diag_5, self.left_diag_6] def find_twos_rows(self, color): number_of_twos = 0 ''' checking for twos along the rows. this gets complicated, because we only want to count twos that could be part of a future connect four. thus we have to make sure that their is enough empty cells around each set of two before we count it. ---------------------------------------------------------------------- these are the options: 0011, 0101, 0110, 1001, 1010, 1100 ''' for row in range(self.number_rows): for col in range(self.number_cols-1): if( (col-2) > -1 and (col+2 >= self.number_cols or self.board[row][col+2] != color)): if(self.board[row][col] == self.board[row][col+1] == color and self.board[row][col-1] == self.board[row][col-2] == 0): number_of_twos += 1 elif( (col-1) > -1 and (col+2) < self.number_cols ): if(self.board[row][col] == self.board[row][col+2] == color and (self.board[row][col-1] == self.board[row][col+1] == 0)): number_of_twos += 1 elif( (col-1) > -1 and (col+2) < self.number_cols): if(self.board[row][col] == self.board[row][col+1] == color and (self.board[row][col-1] == self.board[row][col+2] == 0)): number_of_twos += 1 elif( (col+3) < self.number_cols): if(self.board[row][col] == self.board[row][col+3] == color and self.board[row][col+1] == self.board[row][col+2] == 0): number_of_twos += 1 elif(self.board[row][col] == self.board[row][col+2] == color and self.board[row][col+1] == self.board[row][col+3] == 0): number_of_twos += 1 elif(self.board[row][col] == self.board[row][col+1] == color and self.board[row][col+2] == self.board[row][col+3] == 0): number_of_twos += 1 return number_of_twos def find_twos_rows_test(self, color): ''' checking for twos along the rows. this gets complicated, because we only want to count twos that could be part of a future connect four. thus we have to make sure that their is enough empty cells around each set of two before we count it. ---------------------------------------------------------------------- these are the options: 0011, 0101, 0110, 1001, 1010, 1100 ''' number_of_twos = 0 set_to_check = [] for row in range(self.number_rows): for col in range(self.number_cols-3): set_to_check.append([self.board[row][col+i] for i in range(4)]) for set_ in set_to_check: num_color = 0 num_empty = 0 for cell in set_: if(cell == 0): num_empty += 1 elif(cell == color): num_color += 1 if(num_color == num_empty == 2): number_of_twos += 1 return number_of_twos def find_twos_cols(self, color): number_of_twos = 0 ''' checking for twos along the col. this is pretty easy as the only way a two in a row along a column can be apart of a connect four is if the piece immediately above the two is empty. ''' for col in range(self.number_cols): for row in range(self.number_rows): if(self.board[row][col] == self.board[row-1][col] == color and self.board[row-2][col] == 0): number_of_twos += 1 return number_of_twos def find_twos_diags(self, color): ''' this is similar to finding twos in rows. there are three options for two in a rows that have potential to be a win. 0011, 0110, 1100. these each are examined in the context of the diagonal. this is the reason that the diagonal lists are necessary ''' number_of_twos = 0 for diag in self.diag_set: diagonal_length = len(diag) for i in range(diagonal_length-1): if( (i+3) < diagonal_length): if(diag[i] == diag[i+1] == color and diag[i+2] == diag[i+3] == 0): number_of_twos += 1 print('found') elif( (i-1) > -1 and (i+2) < diagonal_length): if(diag[i] == diag[i+1] == color and diag[i-1] == diag[i+2] == 0): number_of_twos += 1 print('found') elif( (i-2) > -1): if(diag[i] == diag[i+1] == color and diag[i-1] == diag[i-2] == 0): number_of_twos += 1 print('found') return number_of_twos def evaluate_board(self): # (2 in a rows)*10 + (3 in a rows)*1000 + (4 in a row)*100000 evaluation = 10 return evaluation def main(): print("\nminimax ai algorithm --- connect four\n") sample_board = np.array([[0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,2,0,1,2,0], [0,1,2,1,2,2,2], [2,1,1,2,1,1,1]]) minimax_ = minimax(sample_board, 16) print(minimax_.find_twos_rows_test(1)) if __name__ == '__main__': main()
f69504729af79407f2cc3c37688aedfdbe190a0d
1719920a92f7194766624474b98d59ef8d6eddaf
/models/device_enrollment_configuration.py
9e22612e3cb2ffb4bf77a9608e129ccf5936870e
[ "MIT" ]
permissive
MIchaelMainer/msgraph-v10-models-python
cfa5e3a65ba675383975a99779763211ed9fa0a9
adad66363ebe151be2332f3ef74a664584385748
refs/heads/master
2020-03-19T12:51:06.370673
2018-06-08T00:16:12
2018-06-08T00:16:12
136,544,573
1
0
null
null
null
null
UTF-8
Python
false
false
3,747
py
# -*- coding: utf-8 -*- ''' # Copyright (c) Microsoft Corporation. All Rights Reserved. Licensed under the MIT License. See License in the project root for license information. # # This file was generated and any changes will be overwritten. ''' from __future__ import unicode_literals from ..model.enrollment_configuration_assignment import EnrollmentConfigurationAssignment from datetime import datetime from ..one_drive_object_base import OneDriveObjectBase class DeviceEnrollmentConfiguration(OneDriveObjectBase): def __init__(self, prop_dict={}): self._prop_dict = prop_dict @property def display_name(self): """ Gets and sets the displayName Returns: str: The displayName """ if "displayName" in self._prop_dict: return self._prop_dict["displayName"] else: return None @display_name.setter def display_name(self, val): self._prop_dict["displayName"] = val @property def description(self): """ Gets and sets the description Returns: str: The description """ if "description" in self._prop_dict: return self._prop_dict["description"] else: return None @description.setter def description(self, val): self._prop_dict["description"] = val @property def priority(self): """ Gets and sets the priority Returns: int: The priority """ if "priority" in self._prop_dict: return self._prop_dict["priority"] else: return None @priority.setter def priority(self, val): self._prop_dict["priority"] = val @property def created_date_time(self): """ Gets and sets the createdDateTime Returns: datetime: The createdDateTime """ if "createdDateTime" in self._prop_dict: return datetime.strptime(self._prop_dict["createdDateTime"].replace("Z", ""), "%Y-%m-%dT%H:%M:%S.%f") else: return None @created_date_time.setter def created_date_time(self, val): self._prop_dict["createdDateTime"] = val.isoformat()+"Z" @property def last_modified_date_time(self): """ Gets and sets the lastModifiedDateTime Returns: datetime: The lastModifiedDateTime """ if "lastModifiedDateTime" in self._prop_dict: return datetime.strptime(self._prop_dict["lastModifiedDateTime"].replace("Z", ""), "%Y-%m-%dT%H:%M:%S.%f") else: return None @last_modified_date_time.setter def last_modified_date_time(self, val): self._prop_dict["lastModifiedDateTime"] = val.isoformat()+"Z" @property def version(self): """ Gets and sets the version Returns: int: The version """ if "version" in self._prop_dict: return self._prop_dict["version"] else: return None @version.setter def version(self, val): self._prop_dict["version"] = val @property def assignments(self): """Gets and sets the assignments Returns: :class:`AssignmentsCollectionPage<onedrivesdk.request.assignments_collection.AssignmentsCollectionPage>`: The assignments """ if "assignments" in self._prop_dict: return AssignmentsCollectionPage(self._prop_dict["assignments"]) else: return None
e15ab783b8524095dfce9416304b9b29b70fb815
f9357dc6ebe6ae1af0b03a9afc5f765706b8d31f
/cv2_functions/cv2_minbox.py
9614fc7f0d142f6072a8812d1af97c5d594b277c
[]
no_license
cilame/any-whim
660acd966048655aa36886047fbc232539807881
1520accbe1506a133989a6c2be17572e7fb4693e
refs/heads/master
2023-08-17T05:10:56.348200
2023-08-13T16:45:11
2023-08-13T16:45:11
110,548,292
125
64
null
null
null
null
UTF-8
Python
false
false
913
py
import cv2 s = cv2.createBackgroundSubtractorMOG2(varThreshold=100) f = cv2.VideoCapture(0) while(1): a,v = f.read() g = s.apply(v) g = cv2.morphologyEx(g,cv2.MORPH_DILATE,(7,7),iterations=7) a,b,c = cv2.findContours(g,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for i in b: #print cv2.minAreaRect(i) x1,x2,x3,x4 = cv2.boxPoints(cv2.minAreaRect(i)) if sum((x1-x2)**2)>20 and sum((x2-x3)**2)>20: x1 = tuple(x1) x2 = tuple(x2) x3 = tuple(x3) x4 = tuple(x4) cv2.line(v,x1,x2,(0,255,0)) cv2.line(v,x2,x3,(0,255,0)) cv2.line(v,x3,x4,(0,255,0)) cv2.line(v,x4,x1,(0,255,0)) #if w>10 and h>10:cv2.rectangle(v,(x,y),(x+w,y+h),(0,255,0),1) cv2.imshow('nier1',v) cv2.imshow('nier',g) if cv2.waitKey(42)==ord(' '): break f.release() cv2.destroyAllWindows()
b58e705deed2f0b8a2254709321b6101b634b952
fcc6fa7905b6045a68b992c74e5301e00d5dd3d3
/users/tasks.py
bf40dc7db3c53264f1f01878dcefd90681f297b2
[]
no_license
alinzel/BookStore
cc394c9935155c7fda29aa105edd1e9914bd94aa
5dfbf13182ce19dfae4d7f8b443cd8e7a54d1204
refs/heads/master
2020-03-07T03:22:18.771701
2018-03-29T08:00:19
2018-03-29T08:00:19
127,233,714
1
0
null
null
null
null
UTF-8
Python
false
false
795
py
from __future__ import absolute_import,unicode_literals from celery import shared_task from django.conf import settings from django.core.mail import send_mail # 发送激活邮件 @shared_task # 共享任务 返回一个总是使用current_app中的任务实例的代理 def send_active_email(token, username, email): subject = '尚硅谷书城用户激活链接' # 标题 message = '你好' + username # 内容 sender = settings.EMAIL_FROM # 显示的发件人 receiver = [email] # 目的邮箱 # 激活链接 html_message = '<a href="http://127.0.0.1:8000/user/active/%s/">http://127.0.0.1:8000/user/active/</a>'%token # 发送邮件的链接 send_mail(subject, message, sender,receiver, html_message=html_message) # TODO 开启celery的命令 # celery -A bookstore worker -l info
230d26e5c2b5c4bc19665857dfe972ec6b36874b
b15d2787a1eeb56dfa700480364337216d2b1eb9
/accelbyte_py_sdk/api/platform/models/client_request_parameter.py
9f7b1f469cdc712522fbd02313e75c9d9297b6f3
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
6,030
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template file: ags_py_codegen # AccelByte Gaming Services Platform Service (4.32.1) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from ....core import Model class ClientRequestParameter(Model): """Client request parameter (ClientRequestParameter) Properties: currency_code: (currencyCode) OPTIONAL str language: (language) OPTIONAL str price: (price) OPTIONAL float region: (region) OPTIONAL str """ # region fields currency_code: str # OPTIONAL language: str # OPTIONAL price: float # OPTIONAL region: str # OPTIONAL # endregion fields # region with_x methods def with_currency_code(self, value: str) -> ClientRequestParameter: self.currency_code = value return self def with_language(self, value: str) -> ClientRequestParameter: self.language = value return self def with_price(self, value: float) -> ClientRequestParameter: self.price = value return self def with_region(self, value: str) -> ClientRequestParameter: self.region = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result: dict = {} if hasattr(self, "currency_code"): result["currencyCode"] = str(self.currency_code) elif include_empty: result["currencyCode"] = "" if hasattr(self, "language"): result["language"] = str(self.language) elif include_empty: result["language"] = "" if hasattr(self, "price"): result["price"] = float(self.price) elif include_empty: result["price"] = 0.0 if hasattr(self, "region"): result["region"] = str(self.region) elif include_empty: result["region"] = "" return result # endregion to methods # region static methods @classmethod def create( cls, currency_code: Optional[str] = None, language: Optional[str] = None, price: Optional[float] = None, region: Optional[str] = None, **kwargs, ) -> ClientRequestParameter: instance = cls() if currency_code is not None: instance.currency_code = currency_code if language is not None: instance.language = language if price is not None: instance.price = price if region is not None: instance.region = region return instance @classmethod def create_from_dict( cls, dict_: dict, include_empty: bool = False ) -> ClientRequestParameter: instance = cls() if not dict_: return instance if "currencyCode" in dict_ and dict_["currencyCode"] is not None: instance.currency_code = str(dict_["currencyCode"]) elif include_empty: instance.currency_code = "" if "language" in dict_ and dict_["language"] is not None: instance.language = str(dict_["language"]) elif include_empty: instance.language = "" if "price" in dict_ and dict_["price"] is not None: instance.price = float(dict_["price"]) elif include_empty: instance.price = 0.0 if "region" in dict_ and dict_["region"] is not None: instance.region = str(dict_["region"]) elif include_empty: instance.region = "" return instance @classmethod def create_many_from_dict( cls, dict_: dict, include_empty: bool = False ) -> Dict[str, ClientRequestParameter]: return ( {k: cls.create_from_dict(v, include_empty=include_empty) for k, v in dict_} if dict_ else {} ) @classmethod def create_many_from_list( cls, list_: list, include_empty: bool = False ) -> List[ClientRequestParameter]: return ( [cls.create_from_dict(i, include_empty=include_empty) for i in list_] if list_ else [] ) @classmethod def create_from_any( cls, any_: any, include_empty: bool = False, many: bool = False ) -> Union[ ClientRequestParameter, List[ClientRequestParameter], Dict[Any, ClientRequestParameter], ]: if many: if isinstance(any_, dict): return cls.create_many_from_dict(any_, include_empty=include_empty) elif isinstance(any_, list): return cls.create_many_from_list(any_, include_empty=include_empty) else: raise ValueError() else: return cls.create_from_dict(any_, include_empty=include_empty) @staticmethod def get_field_info() -> Dict[str, str]: return { "currencyCode": "currency_code", "language": "language", "price": "price", "region": "region", } @staticmethod def get_required_map() -> Dict[str, bool]: return { "currencyCode": False, "language": False, "price": False, "region": False, } # endregion static methods
5a8d87c8871f4b5879836b466e7049fd661da1ea
ca23b411c8a046e98f64b81f6cba9e47783d2584
/ncsnv3/main.py
d7a89ddfc89627cb854f233719729e3382012dce
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
pdybczak/google-research
1fb370a6aa4820a42a5d417a1915687a00613f9c
0714e9a5a3934d922c0b9dd017943a8e511eb5bc
refs/heads/master
2023-03-05T23:16:11.246574
2021-01-04T11:30:28
2021-01-04T11:30:28
326,629,357
1
0
Apache-2.0
2021-02-01T12:39:09
2021-01-04T09:17:36
Jupyter Notebook
UTF-8
Python
false
false
1,580
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training and evaluation for NCSNv3.""" from . import ncsn_lib from absl import app from absl import flags from ml_collections.config_flags import config_flags import tensorflow as tf FLAGS = flags.FLAGS config_flags.DEFINE_config_file( "config", None, "Training configuration.", lock_config=True) flags.DEFINE_string("workdir", None, "Work unit directory.") flags.DEFINE_string("mode", "train", "Running mode: train or eval") flags.DEFINE_string("eval_folder", "eval", "The folder name for storing evaluation results") flags.mark_flags_as_required(["workdir", "config"]) def main(argv): del argv tf.config.experimental.set_visible_devices([], "GPU") if FLAGS.mode == "train": ncsn_lib.train(FLAGS.config, FLAGS.workdir) elif FLAGS.mode == "eval": ncsn_lib.evaluate(FLAGS.config, FLAGS.workdir, FLAGS.eval_folder) else: raise ValueError(f"Mode {FLAGS.mode} not recognized.") if __name__ == "__main__": app.run(main)
20947ccf802631ec01474e52ab2310cf9b617690
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_redoubtable.py
8645cb26ee8dbbcd8fcdc345eeb5befad16d369c
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
#calss header class _REDOUBTABLE(): def __init__(self,): self.name = "REDOUBTABLE" self.definitions = [u'very strong, especially in character; producing respect and a little fear in others: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
3f96d8878c3bb4206095f84b4f67f59194a2984b
4af65b44b39816c7037ff928da1ae153f4d970e5
/mud/thing.py
37a9732599722b87d944c6e390898be6dba87f1c
[]
no_license
Cloudxtreme/mud-14
0745eda694ffeee79120fcfc82aab2da8b7a9655
f02d4ca0e8360b0924b86a3da99e5230c3028642
refs/heads/master
2021-05-28T06:14:37.121028
2014-12-01T08:00:27
2014-12-01T08:00:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
import mudclasses as mc import event as evt import english from types import TupleType # bug: permanence (sp?) is not yet handled
948cfd26f6231d12a4463589a8d9322ffb687ebf
be5e5aebd753ed1f376dc18ce411f0fac6d2f762
/natuurpunt_purchase_search/__init__.py
1503b4c0ebedce5264569792216f47998b67fa9c
[]
no_license
smart-solution/natuurpunt-purchase
7d9fcfdde769b6294d8dc705cecc99a177b4573c
0ac94cb68cee4ef464158720e04007ee12036179
refs/heads/master
2021-05-22T04:43:21.594422
2020-11-02T13:32:27
2020-11-02T13:32:27
39,186,322
0
2
null
2020-11-02T13:32:28
2015-07-16T08:42:31
Python
UTF-8
Python
false
false
926
py
# -*- coding: utf-8 -*- ############################################################################## # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import natuurpunt_purchase_search
cc8a8453dcbfc50cc508c0fffb18ca9c01acbe54
827b7ad1cdf882824bf13717bd0baa08cc852eaf
/src/python/pants/backend/python/dependency_inference/module_mapper.py
868969ac95364e4b502388856523007bee7f3316
[ "Apache-2.0" ]
permissive
cclauss/pants
e4be17df24c9a962a123b94c0782d0941862220a
4f39186f780310e73a708b3b589635dfa2e09696
refs/heads/main
2023-03-31T10:07:13.165248
2021-04-02T19:04:58
2021-04-02T19:04:58
354,131,355
0
0
Apache-2.0
2021-04-02T20:56:27
2021-04-02T20:56:26
null
UTF-8
Python
false
false
17,912
py
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import logging from collections import defaultdict from dataclasses import dataclass from pathlib import PurePath from typing import DefaultDict from pants.backend.python.target_types import ( ModuleMappingField, PythonRequirementsField, PythonSources, ) from pants.base.specs import AddressSpecs, DescendantAddresses from pants.core.util_rules.stripped_source_files import StrippedSourceFileNames from pants.engine.addresses import Address from pants.engine.rules import Get, MultiGet, collect_rules, rule from pants.engine.target import ExplicitlyProvidedDependencies, SourcesPathsRequest, Targets from pants.engine.unions import UnionMembership, UnionRule, union from pants.util.docutil import bracketed_docs_url from pants.util.frozendict import FrozenDict from pants.util.logging import LogLevel from pants.util.memo import memoized_method logger = logging.getLogger(__name__) @dataclass(frozen=True) class PythonModule: module: str @classmethod def create_from_stripped_path(cls, path: PurePath) -> PythonModule: module_name_with_slashes = ( path.parent if path.name == "__init__.py" else path.with_suffix("") ) return cls(module_name_with_slashes.as_posix().replace("/", ".")) # ----------------------------------------------------------------------------------------------- # First-party module mapping # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class FirstPartyPythonMappingImpl: """A mapping of module names to owning addresses that a specific implementation adds for Python import dependency inference. For almost every implementation, there should only be one address per module to avoid ambiguity. However, the built-in implementation allows for 2 addresses when `.pyi` type stubs are used. All ambiguous modules must be added to `ambiguous_modules` and not be included in `mapping`. """ mapping: FrozenDict[str, tuple[Address, ...]] ambiguous_modules: FrozenDict[str, tuple[Address, ...]] @union class FirstPartyPythonMappingImplMarker: """An entry point for a specific implementation of mapping module names to owning targets for Python import dependency inference. All implementations will be merged together. Any modules that show up in multiple implementations will be marked ambiguous. The addresses should all be file addresses, rather than BUILD addresses. """ @dataclass(frozen=True) class FirstPartyPythonModuleMapping: """A merged mapping of module names to owning addresses. This mapping may have been constructed from multiple distinct implementations, e.g. implementations for each codegen backends. """ mapping: FrozenDict[str, tuple[Address, ...]] ambiguous_modules: FrozenDict[str, tuple[Address, ...]] def addresses_for_module(self, module: str) -> tuple[tuple[Address, ...], tuple[Address, ...]]: """Return all unambiguous and ambiguous addresses. The unambiguous addresses should be 0-2, but not more. We only expect 2 if there is both an implementation (.py) and type stub (.pyi) with the same module name. """ unambiguous = self.mapping.get(module, ()) ambiguous = self.ambiguous_modules.get(module, ()) if unambiguous or ambiguous: return unambiguous, ambiguous # If the module is not found, try the parent, if any. This is to accommodate `from` # imports, where we don't care about the specific symbol, but only the module. For example, # with `from my_project.app import App`, we only care about the `my_project.app` part. # # We do not look past the direct parent, as this could cause multiple ambiguous owners to # be resolved. This contrasts with the third-party module mapping, which will try every # ancestor. if "." not in module: return (), () parent_module = module.rsplit(".", maxsplit=1)[0] unambiguous = self.mapping.get(parent_module, ()) ambiguous = self.ambiguous_modules.get(parent_module, ()) return unambiguous, ambiguous @rule(level=LogLevel.DEBUG) async def merge_first_party_module_mappings( union_membership: UnionMembership, ) -> FirstPartyPythonModuleMapping: all_mappings = await MultiGet( Get( FirstPartyPythonMappingImpl, FirstPartyPythonMappingImplMarker, marker_cls(), ) for marker_cls in union_membership.get(FirstPartyPythonMappingImplMarker) ) # First, record all known ambiguous modules. We will need to check that an implementation's # module is not ambiguous within another implementation. modules_with_multiple_implementations: DefaultDict[str, set[Address]] = defaultdict(set) for mapping_impl in all_mappings: for module, addresses in mapping_impl.ambiguous_modules.items(): modules_with_multiple_implementations[module].update(addresses) # Then, merge the unambiguous modules within each MappingImpls while checking for ambiguity # across the other implementations. modules_to_addresses: dict[str, tuple[Address, ...]] = {} for mapping_impl in all_mappings: for module, addresses in mapping_impl.mapping.items(): if module in modules_with_multiple_implementations: modules_with_multiple_implementations[module].update(addresses) elif module in modules_to_addresses: modules_with_multiple_implementations[module].update( {*modules_to_addresses[module], *addresses} ) else: modules_to_addresses[module] = addresses # Finally, remove any newly ambiguous modules from the previous step. for module in modules_with_multiple_implementations: if module in modules_to_addresses: modules_to_addresses.pop(module) return FirstPartyPythonModuleMapping( mapping=FrozenDict(sorted(modules_to_addresses.items())), ambiguous_modules=FrozenDict( (k, tuple(sorted(v))) for k, v in sorted(modules_with_multiple_implementations.items()) ), ) # This is only used to register our implementation with the plugin hook via unions. Note that we # implement this like any other plugin implementation so that we can run them all in parallel. class FirstPartyPythonTargetsMappingMarker(FirstPartyPythonMappingImplMarker): pass @rule(desc="Creating map of first party Python targets to Python modules", level=LogLevel.DEBUG) async def map_first_party_python_targets_to_modules( _: FirstPartyPythonTargetsMappingMarker, ) -> FirstPartyPythonMappingImpl: all_expanded_targets = await Get(Targets, AddressSpecs([DescendantAddresses("")])) python_targets = tuple(tgt for tgt in all_expanded_targets if tgt.has_field(PythonSources)) stripped_sources_per_target = await MultiGet( Get(StrippedSourceFileNames, SourcesPathsRequest(tgt[PythonSources])) for tgt in python_targets ) modules_to_addresses: DefaultDict[str, list[Address]] = defaultdict(list) modules_with_multiple_implementations: DefaultDict[str, set[Address]] = defaultdict(set) for tgt, stripped_sources in zip(python_targets, stripped_sources_per_target): for stripped_f in stripped_sources: module = PythonModule.create_from_stripped_path(PurePath(stripped_f)).module if module in modules_to_addresses: # We check if one of the targets is an implementation (.py file) and the other is # a type stub (.pyi file), which we allow. Otherwise, we have ambiguity. either_targets_are_type_stubs = len(modules_to_addresses[module]) == 1 and ( tgt.address.filename.endswith(".pyi") or modules_to_addresses[module][0].filename.endswith(".pyi") ) if either_targets_are_type_stubs: modules_to_addresses[module].append(tgt.address) else: modules_with_multiple_implementations[module].update( {*modules_to_addresses[module], tgt.address} ) else: modules_to_addresses[module].append(tgt.address) # Remove modules with ambiguous owners. for module in modules_with_multiple_implementations: modules_to_addresses.pop(module) return FirstPartyPythonMappingImpl( mapping=FrozenDict((k, tuple(sorted(v))) for k, v in sorted(modules_to_addresses.items())), ambiguous_modules=FrozenDict( (k, tuple(sorted(v))) for k, v in sorted(modules_with_multiple_implementations.items()) ), ) # ----------------------------------------------------------------------------------------------- # Third party module mapping # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class ThirdPartyPythonModuleMapping: mapping: FrozenDict[str, Address] ambiguous_modules: FrozenDict[str, tuple[Address, ...]] def address_for_module(self, module: str) -> tuple[Address | None, tuple[Address, ...]]: """Return the unambiguous owner (if any) and all ambiguous addresses.""" unambiguous = self.mapping.get(module) ambiguous = self.ambiguous_modules.get(module, ()) if unambiguous or ambiguous: return unambiguous, ambiguous # If the module is not found, recursively try the ancestor modules, if any. For example, # pants.task.task.Task -> pants.task.task -> pants.task -> pants if "." not in module: return None, () parent_module = module.rsplit(".", maxsplit=1)[0] return self.address_for_module(parent_module) @rule(desc="Creating map of third party targets to Python modules", level=LogLevel.DEBUG) async def map_third_party_modules_to_addresses() -> ThirdPartyPythonModuleMapping: all_targets = await Get(Targets, AddressSpecs([DescendantAddresses("")])) modules_to_addresses: dict[str, Address] = {} modules_with_multiple_owners: DefaultDict[str, set[Address]] = defaultdict(set) for tgt in all_targets: if not tgt.has_field(PythonRequirementsField): continue module_map = tgt.get(ModuleMappingField).value for python_req in tgt[PythonRequirementsField].value: modules = module_map.get( python_req.project_name, [python_req.project_name.lower().replace("-", "_")], ) for module in modules: if module in modules_to_addresses: modules_with_multiple_owners[module].update( {modules_to_addresses[module], tgt.address} ) else: modules_to_addresses[module] = tgt.address # Remove modules with ambiguous owners. for module in modules_with_multiple_owners: modules_to_addresses.pop(module) return ThirdPartyPythonModuleMapping( mapping=FrozenDict(sorted(modules_to_addresses.items())), ambiguous_modules=FrozenDict( (k, tuple(sorted(v))) for k, v in sorted(modules_with_multiple_owners.items()) ), ) # ----------------------------------------------------------------------------------------------- # module -> owners # ----------------------------------------------------------------------------------------------- @dataclass(frozen=True) class PythonModuleOwners: """The target(s) that own a Python module. If >1 targets own the same module, and they're implementations (vs .pyi type stubs), they will be put into `ambiguous` instead of `unambiguous`. `unambiguous` should never be > 2. """ unambiguous: tuple[Address, ...] ambiguous: tuple[Address, ...] = () def __post_init__(self) -> None: if self.unambiguous and self.ambiguous: raise AssertionError( "A module has both unambiguous and ambiguous owners, which is a bug in the " "dependency inference code. Please file a bug report at " "https://github.com/pantsbuild/pants/issues/new." ) @memoized_method def _unambiguous_via_includes( self, explicitly_provided: ExplicitlyProvidedDependencies ) -> bool: # NB: `self.ambiguous` is always file addresses, but we allow for their original BUILD # targets to disambiguate them. disambiguation_candidates = { *(addr.maybe_convert_to_build_target() for addr in self.ambiguous), *self.ambiguous, } return bool(disambiguation_candidates.intersection(explicitly_provided.includes)) @memoized_method def _remaining_after_ignores( self, explicitly_provided: ExplicitlyProvidedDependencies ) -> set[Address]: # NB: `self.ambiguous` is always file addresses, but we allow for their original BUILD # targets to disambiguate them. return { addr for addr in self.ambiguous if addr not in explicitly_provided.ignores and addr.maybe_convert_to_build_target() not in explicitly_provided.ignores } def maybe_warn_of_ambiguity( self, explicitly_provided_deps: ExplicitlyProvidedDependencies, original_address: Address, *, context: str, ) -> None: """If the module is ambiguous and the user did not disambiguate via explicitly provided dependencies, warn that dependency inference will not be used.""" if not self.ambiguous or self._unambiguous_via_includes(explicitly_provided_deps): return remaining_after_ignores = self._remaining_after_ignores(explicitly_provided_deps) if len(remaining_after_ignores) <= 1: return logger.warning( f"{context}, but Pants cannot safely infer a dependency because >1 target exports " f"this module, so it is ambiguous which to use: " f"{sorted(addr.spec for addr in remaining_after_ignores)}." f"\n\nPlease explicitly include the dependency you want in the `dependencies` " f"field of {original_address}, or ignore the ones you do not want by prefixing " f"with `!` or `!!` so that <=1 targets are left." f"\n\nAlternatively, you can remove the ambiguity by deleting/changing some of the " f"targets so that only 1 target exports this module. Refer to " f"{bracketed_docs_url('troubleshooting#import-errors-and-missing-dependencies')}." ) def disambiguated_via_ignores( self, explicitly_provided_deps: ExplicitlyProvidedDependencies ) -> Address | None: """If ignores in the `dependencies` field ignore all but one of the ambiguous owners, the remaining owner becomes unambiguous.""" if not self.ambiguous or self._unambiguous_via_includes(explicitly_provided_deps): return None remaining_after_ignores = self._remaining_after_ignores(explicitly_provided_deps) return list(remaining_after_ignores)[0] if len(remaining_after_ignores) == 1 else None @rule async def map_module_to_address( module: PythonModule, first_party_mapping: FirstPartyPythonModuleMapping, third_party_mapping: ThirdPartyPythonModuleMapping, ) -> PythonModuleOwners: third_party_address, third_party_ambiguous = third_party_mapping.address_for_module( module.module ) first_party_addresses, first_party_ambiguous = first_party_mapping.addresses_for_module( module.module ) # First, check if there was any ambiguity within the first-party or third-party mappings. Note # that even if there's ambiguity purely within either third-party or first-party, all targets # with that module become ambiguous. if third_party_ambiguous or first_party_ambiguous: ambiguous = {*third_party_ambiguous, *first_party_ambiguous, *first_party_addresses} if third_party_address: ambiguous.add(third_party_address) return PythonModuleOwners((), ambiguous=tuple(sorted(ambiguous))) # It's possible for a user to write type stubs (`.pyi` files) for their third-party # dependencies. We check if that happened, but we're strict in validating that there is only a # single third party address and a single first-party address referring to a `.pyi` file; # otherwise, we have ambiguous implementations. if third_party_address and not first_party_addresses: return PythonModuleOwners((third_party_address,)) first_party_is_type_stub = len(first_party_addresses) == 1 and first_party_addresses[ 0 ].filename.endswith(".pyi") if third_party_address and first_party_is_type_stub: return PythonModuleOwners((third_party_address, *first_party_addresses)) # Else, we have ambiguity between the third-party and first-party addresses. if third_party_address and first_party_addresses: return PythonModuleOwners( (), ambiguous=tuple(sorted((third_party_address, *first_party_addresses))) ) # We're done with looking at third-party addresses, and now solely look at first-party, which # was already validated for ambiguity. if first_party_addresses: return PythonModuleOwners(first_party_addresses) return PythonModuleOwners(()) def rules(): return ( *collect_rules(), UnionRule(FirstPartyPythonMappingImplMarker, FirstPartyPythonTargetsMappingMarker), )
8ee2d7c7cfec8a059e6c4f84dfb4a253e1464a52
89a90707983bdd1ae253f7c59cd4b7543c9eda7e
/python_cookbook/10/monkeypatching_modules_on_import1.py
89edccaa9b169b1d124990a2c3e05dd183a7d93b
[]
no_license
timothyshull/python_reference_code
692a7c29608cadfd46a6cc409a000023e95b9458
f3e2205dd070fd3210316f5f470d371950945028
refs/heads/master
2021-01-22T20:44:07.018811
2017-03-17T19:17:22
2017-03-17T19:17:22
85,346,735
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
from postimport import when_imported @when_imported('threading') def warn_threads(mod): print('Threads? Are you crazy?') if __name__ == '__main__': pass
8fb6bfee4530acca0b7936e56a0c29ede098296b
2be5b2a6f5172b37fde90b076504fa9fe4f93784
/nosmsd/management/commands/nosmsd_incoming.py
a31a1677e93343f07145d84bad79c89cede66b3e
[]
no_license
pedrokiefer/nosmsd
74b73e959b8482744531caf4f81e7515791a5ff3
e69d7f55d54f0f5e85eec16cde6da0cb64d63b5c
refs/heads/master
2021-01-14T13:17:11.680061
2014-11-25T13:34:31
2014-11-25T13:34:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
#!/usr/bin/env python # encoding=utf-8 # maintainer: rgaudin import sys from django.conf import settings from django.core.management.base import BaseCommand from django.utils import translation from nosmsd.nosmsd_incoming import handle as nohandle class Command(BaseCommand): def handle(self, *args, **options): translation.activate(settings.DEFAULT_LOCALE) args = (u"%s %s" % (sys.argv[0], u"nosmsd_incoming"),) + args nohandle(*args, DJANGO=True) translation.deactivate()
28ef3309ea1c0af7d7c199ff4dfdcf9e68caf048
4254c7f88b95c7aec20979691aecf63053c97570
/cfdm/core/bounds.py
b3d70390051fcf096b1fe5d9ae2ad1b2f42f5528
[ "MIT" ]
permissive
cofinoa/cfdm
2a1fc2069ef253c6eb4a71a4d1fa252295d9be1d
1e074dbc28054780a9ec667d61b9098b94956ea6
refs/heads/master
2020-05-07T08:39:24.996138
2019-04-08T14:34:56
2019-04-08T14:34:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,016
py
from builtins import super from . import abstract class Bounds(abstract.PropertiesData): '''A cell bounds component of a coordinate or domain ancillary construct of the CF data model. An array of cell bounds spans the same domain axes as its coordinate array, with the addition of an extra dimension whose size is that of the number of vertices of each cell. This extra dimension does not correspond to a domain axis construct since it does not relate to an independent axis of the domain. Note that, for climatological time axes, the bounds are interpreted in a special way indicated by the cell method constructs. .. versionadded:: 1.7.0 ''' def __init__(self, properties=None, data=None, source=None, copy=True, _use_data=True): '''**Initialization** :Parameters: properties: `dict`, optional Set descriptive properties. The dictionary keys are property names, with corresponding values. Ignored if the *source* parameter is set. *Parameter example:* ``properties={'standard_name': 'altitude'}`` Properties may also be set after initialisation with the `set_properties` and `set_property` methods. data: `Data`, optional Set the data. Ignored if the *source* parameter is set. The data also may be set after initialisation with the `set_data` method. source: optional Override the *properties* and *data* parameters with ``source.properties()`` and ``source.get_data(None)`` respectively. If *source* does not have one of these methods, then the corresponding parameter is not set. copy: `bool`, optional If False then do not deep copy input parameters prior to initialization. By default arguments are deep copied. ''' super().__init__(properties=properties, data=data, source=source, copy=copy) #--- End: def #--- End: class
aaf0fcdaee70b39287fea8239def89eee1d419c9
ba54b70f93fe7f9d114623d76b1ad3f88309d66f
/uvideo/forms.py
99e3e96d880007e37a2d6a8887d3860983e0d765
[]
no_license
loobinsk/newprj
9769b2f26092ce7dd8612fce37adebb307b01b8b
c6aa6a46973fb46375f4b05a86fe76207a8ae16d
refs/heads/master
2023-05-07T00:28:44.242163
2021-05-25T08:22:05
2021-05-25T08:22:05
370,617,690
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
#-*- coding: utf-8 -*- from django import forms from uvideo.models import UserVideo from django.template import loader, Context from gutils.forms import BootstrapFormMixin class UploadVideoWidget(forms.HiddenInput): def render(self, name, value, attrs=None): tmpl = loader.get_template('uvideo/video-upload-input.html') return tmpl.render(Context({ 'input': super(UploadVideoWidget, self).render(name, value, attrs=None), 'id': name, })) class UserVideoForm(BootstrapFormMixin, forms.ModelForm): class Meta: model = UserVideo fields = ['url']
736e9e1a22663053a31a445dbb2ce7cecb2841c3
232fc2c14942d3e7e28877b502841e6f88696c1a
/ding/interaction/config/base.py
446e260203ff8119d34f20748b6d29698b85da7d
[ "Apache-2.0" ]
permissive
shengxuesun/DI-engine
ebf84221b115b38b4b3fdf3079c66fe81d42d0f7
eb483fa6e46602d58c8e7d2ca1e566adca28e703
refs/heads/main
2023-06-14T23:27:06.606334
2021-07-12T12:36:18
2021-07-12T12:36:18
385,454,483
1
0
Apache-2.0
2021-07-13T02:56:27
2021-07-13T02:56:27
null
UTF-8
Python
false
false
432
py
# System configs GLOBAL_HOST = '0.0.0.0' LOCAL_HOST = '127.0.0.1' # General request DEFAULT_REQUEST_RETRIES = 5 DEFAULT_REQUEST_RETRY_WAITING = 1.0 # Slave configs MIN_HEARTBEAT_SPAN = 0.2 DEFAULT_HEARTBEAT_SPAN = 3.0 DEFAULT_SLAVE_PORT = 7236 # Master configs MIN_HEARTBEAT_CHECK_SPAN = 0.1 DEFAULT_HEARTBEAT_CHECK_SPAN = 1.0 DEFAULT_HEARTBEAT_TOLERANCE = 17.0 DEFAULT_MASTER_PORT = 7235 # Two-side configs DEFAULT_CHANNEL = 0
b2e4985b6430b407be3fe3d835729ebeb8aa2e69
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/era5_scripts/02_preprocessing/combine82/502-tideGauge.py
658865e7aebe194e5247d2a059242aa96349e091
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
2,117
py
# -*- coding: utf-8 -*- """ Created on Tue Apr 16 16:11:00 2020 -------------------------------------------- Load predictors for each TG and combine them -------------------------------------------- @author: Michael Tadesse """ import os import pandas as pd #define directories dir_in = '/lustre/fs0/home/mtadesse/eraFiveConcat' dir_out = '/lustre/fs0/home/mtadesse/ereaFiveCombine' def combine(): os.chdir(dir_in) #get names tg_list_name = os.listdir() #cd to where the actual file is os.chdir(dir_in) x = 502 y = 503 for t in range(x, y): tg_name = tg_list_name[t] print(tg_name, '\n') #looping through each TG folder os.chdir(tg_name) #defining the path for each predictor where = os.getcwd() csv_path = {'slp' : os.path.join(where, 'slp.csv'),\ "wnd_u": os.path.join(where, 'wnd_u.csv'),\ 'wnd_v' : os.path.join(where, 'wnd_v.csv')} first = True for pr in csv_path.keys(): print(tg_name, ' ', pr) #read predictor pred = pd.read_csv(csv_path[pr]) #remove unwanted columns pred.drop(['Unnamed: 0', 'Unnamed: 0.1'], axis = 1, inplace=True) #give predictor columns a name pred_col = list(pred.columns) for pp in range(len(pred_col)): if pred_col[pp] == 'date': continue pred_col[pp] = pr + str(pred_col[pp]) pred.columns = pred_col #merge all predictors if first: pred_combined = pred first = False else: pred_combined = pd.merge(pred_combined, pred, on = 'date') #saving pred_combined os.chdir(dir_out) pred_combined.to_csv('.'.join([tg_name, 'csv'])) os.chdir(dir_in) print('\n') #run script combine()
eb5d81611f58b26a2fceac11bd14ca8653373c86
18aee5d93a63eab684fe69e3aa0abd1372dd5d08
/python/paddle/optimizer/optimizer.py
5187a651b97830ab24fe04e8fa4ce452fea65510
[ "Apache-2.0" ]
permissive
Shixiaowei02/Paddle
8d049f4f29e281de2fb1ffcd143997c88078eadb
3d4d995f26c48f7792b325806ec3d110fc59f6fc
refs/heads/develop
2023-06-26T06:25:48.074273
2023-06-14T06:40:21
2023-06-14T06:40:21
174,320,213
2
1
Apache-2.0
2022-12-28T05:14:30
2019-03-07T10:09:34
C++
UTF-8
Python
false
false
66,327
py
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from collections import defaultdict import numpy as np import paddle import paddle.autograd as imperative_base from paddle import _C_ops from paddle.fluid import core from paddle.fluid.framework import ( Variable, _current_expected_place, default_main_program, device_guard, in_dygraph_mode, name_scope, ) from paddle.regularizer import L2Decay from ..fluid import framework, unique_name from ..fluid.backward import _get_no_grad_set_name, append_backward from ..fluid.framework import Parameter, program_guard from ..fluid.layer_helper import LayerHelper from .lr import LRScheduler __all__ = [] @framework.static_only def append_backward_new( loss_list, parameter_list=None, no_grad_set=None, callbacks=None, checkpoints=None, distop_context=None, ): from paddle.incubate.autograd.primx import Transform, orig2prim program = default_main_program() assert ( program.num_blocks == 1 ), "The append_backward_new interface is designed to process only one block." block = program.current_block() for el in loss_list: assert ( el.block == block ), 'variable in loss_list should be in current block of main program' orig2prim(block) ad = Transform(block) if parameter_list is None: parameter_list = program.global_block().all_parameters() param_dot, loss_dot = ad.linearize(parameter_list, loss_list) loss_bar, param_bar = ad.transpose(loss_dot, param_dot) # remove param_dot and their constructor ops op_indexes = [] for var in param_dot: if var is not None: op_index = block.ops.index(var.op) assert op_index >= 0 op_indexes.append(op_index) ad.erase_ops(sorted(op_indexes)) ad.erase_dots(param_dot) if len(parameter_list) == 1: params_and_grads = [(parameter_list, param_bar)] else: params_and_grads = [] for i, param in enumerate(parameter_list): params_and_grads.append((param, param_bar[i])) return params_and_grads class Optimizer: r"""Optimizer Base class. Define the common interface of an optimizer. User should not use this class directly, but need to use one of it's implementation. Args: learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``. It can be a float value or any subclass of ``LRScheduler`` . parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \ This parameter is required in dygraph mode. And you can specify different options for \ different parameter groups such as the learning rate, weight decay, etc, \ then the parameters are list of dict. Note that the learning_rate in paramter groups \ represents the scale of base learning_rate. \ The default value is None in static graph mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \ some derived class of ``GradientClipBase`` . There are three cliping strategies \ ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \ :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. Returns: Base class for optimizer. Examples: .. code-block:: python #Take the subclass adam as an example import paddle linear = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear(inp) loss = paddle.mean(out) adam = paddle.optimizer.Adam(learning_rate=0.1, parameters=linear.parameters()) loss.backward() adam.step() adam.clear_grad() #Take the subclass sgd as an example #optimize parameters in linear_1 and linear2 in different options. #Note that the learning_rate of linear_2 is 0.01. linear_1 = paddle.nn.Linear(10, 10) linear_2 = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear_1(inp) out = linear_2(out) loss = paddle.mean(out) sgd = paddle.optimizer.SGD( learning_rate=0.1, parameters=[{ 'params': linear_1.parameters() }, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1 }], weight_decay=0.01) loss.backward() sgd.step() sgd.clear_grad() """ @imperative_base.no_grad() def __init__( self, learning_rate, parameters=None, weight_decay=None, grad_clip=None, name=None, ): if parameters is not None: # paddle.Tensor is also iterable, so here we don't check whether # the input is iterable, if the input is paddle.Tensor, the # list(paddle.Tensor) will be a error value if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)): raise TypeError( "`parameters` argument given to the optimizer should be " "an iterable of paddle Tensors, but got argument type is `{}`.".format( type(parameters) ) ) if isinstance(parameters, dict): raise TypeError( "`parameters` argument should not get dict type, " "if parameter groups is needed, please set `parameters`" " as list of dict" ) self._parameter_list = list(parameters) else: self._parameter_list = None self._name = name if framework.in_dygraph_mode(): if self._parameter_list is None: raise AttributeError( "parameters argument given to the Optimizer should not be None in dygraph mode." ) if weight_decay is not None: if not isinstance(self._parameter_list[0], dict): for param in self._parameter_list: if ( hasattr(param, 'regularizer') and param.regularizer is not None ): logging.info( "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. " "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!" % weight_decay.__str__() ) break if not isinstance(learning_rate, (float, LRScheduler)): raise TypeError( "learning rate should be float or LRScheduler, got %s here" % type(learning_rate) ) if grad_clip is not None: if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase): raise TypeError( "'grad_clip' should be an instance of GradientClipBase's derived class" ) if isinstance(weight_decay, float): self.regularization = L2Decay(weight_decay) else: self.regularization = weight_decay self._grad_clip = grad_clip self._learning_rate = learning_rate self._dtype = None # Infer the dtype form parameter if self._parameter_list: if isinstance(self._parameter_list[0], dict): for param_group in self._parameter_list: assert ( 'params' in param_group ), 'params should be set in parameters if parameter groups are optimized in different options' self._dtype = self._parameter_list[0]['params'][0].dtype else: self._dtype = self._parameter_list[0].dtype # each program should have a independent learning rate # program -> tensor(learning_rate) self._learning_rate_map = {} # Dictionary of accumulators. Some optimizer subclasses need to # allocate and manage extra tensors associated with the parameters # to train. These tensors are called accumulators. # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...} self._accumulators = defaultdict(lambda: {}) self.helper = None self._opti_name_list = [] self._accumulators_holder = {} self._param_device_map = {} self.clear_gradients = self.clear_grad self._default_dict = { 'weight_decay': self.regularization, 'grad_clip': self._grad_clip, } self._param_groups = [] if self._parameter_list and isinstance(self._parameter_list[0], dict): for param_group in self._parameter_list: self._add_param_group(param_group.copy()) else: self._param_groups = self._parameter_list # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode. # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam]. self._use_multi_tensor = None self._param_dict = self._create_multi_tensor_dict() self._auxiliary_vars = {} self._already_create_accumulater = set() # create master gradients' states self._create_master_grad_states() def _create_master_grad_states(self): # master gradients states self._master_grads = {} self._master_grad = False def _set_auxiliary_var(self, key, val): self._auxiliary_vars[key] = val def _create_multi_tensor_dict(self): n = len(self._param_groups) if self._param_groups is not None else 1 return { 'FP32_LODTensor': [[] for _ in range(n)], 'FP16_LODTensor': [[] for _ in range(n)], } def _get_auxiliary_var(self, key): return self._auxiliary_vars.get(key, None) @framework.dygraph_only def state_dict(self): ''' Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict. If the optimizer never be called(minimize function), the state_dict is empty. Args: None Returns: state_dict(dict) : dict contains all the Tensor used by optimizer Examples: .. code-block:: python import paddle emb = paddle.nn.Embedding(10, 10) adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters()) state_dict = adam.state_dict() ''' state_dict = {} for k, v in self._accumulators.items(): for para_name, var_tmp in v.items(): state_dict[var_tmp.name] = var_tmp # if has master weight and then save master weight if hasattr(self, "_master_weights"): if len(self._master_weights) != 0: state_dict["master_weights"] = self._master_weights # global step if use lr decay if isinstance(self._learning_rate, LRScheduler): state_dict["LR_Scheduler"] = self._learning_rate.state_dict() return state_dict @framework.dygraph_only def set_state_dict(self, state_dict): ''' Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed. Args: state_dict(dict) : Dict contains all the Tensor needed by optimizer Return: None Examples: .. code-block:: python import paddle emb = paddle.nn.Embedding(10, 10) layer_state_dict = emb.state_dict() paddle.save(layer_state_dict, "emb.pdparams") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) opt_state_dict = adam.state_dict() paddle.save(opt_state_dict, "adam.pdopt") opti_state_dict = paddle.load("adam.pdopt") adam.set_state_dict(opti_state_dict) ''' if isinstance(self._learning_rate, LRScheduler): self._learning_rate.set_state_dict(state_dict["LR_Scheduler"]) # NOTE: exclude learning rate scheduler's state from # _accumulators_holder. state_dict = state_dict.copy() if "LR_Scheduler" in state_dict: state_dict.pop("LR_Scheduler") if "master_weights" in state_dict: if hasattr(self, "_master_weights"): self._master_weights = state_dict["master_weights"] state_dict.pop("master_weights") self._accumulators_holder = state_dict for k, v in self._accumulators.items(): for para_name, var_tmp in v.items(): assert ( var_tmp.name in state_dict ), f"optimizer Tensor {var_tmp.name} not found" var = var_tmp.value() tensor = var.get_tensor() model_np = np.array(tensor) load_para = state_dict[var_tmp.name] if isinstance(load_para, Variable): load_para_np = np.array(load_para) elif isinstance(load_para, core.eager.Tensor): load_para_np = np.array(load_para) elif isinstance(load_para, np.ndarray): load_para_np = load_para else: raise RuntimeError( "State dict type {} not supprt".format( str(type(load_para)) ) ) assert ( model_np.shape == load_para_np.shape ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format( model_np.name, model_np.shape, load_para_np.shape ) assert ( model_np.dtype == load_para_np.dtype ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {} but load tensor with dtype {}".format( model_np.name, model_np.dtype, load_para_np.dtype ) tensor.set(load_para_np, framework._current_expected_place()) def get_opti_var_name_list(self): return self._opti_name_list def _create_global_learning_rate(self): def do_create(): # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr _lr_dtype = ( paddle.get_default_dtype() if self._dtype is None else self._dtype ) _lr_dtype = ( paddle.float32 if ( ( paddle.get_default_dtype() != "float16" and _lr_dtype == paddle.float16 ) or ( paddle.get_default_dtype() != "bfloat16" and _lr_dtype == paddle.bfloat16 ) ) else _lr_dtype ) if isinstance(self._learning_rate, LRScheduler): lr_var = self._global_learning_rate() # only create global lr_var once if not isinstance(lr_var, framework.Variable): lr_name = unique_name.generate('learning_rate') self._learning_rate._var_name = lr_name lr_var = self.helper.create_global_variable( name=lr_name, shape=[], persistable=True, stop_gradient=True, dtype=_lr_dtype, ) main_prog = framework.default_main_program() main_prog.lr_scheduler = self._learning_rate main_prog.lr_var = lr_var self._learning_rate_map[ framework.default_main_program() ] = lr_var lr_value = float(self._learning_rate()) self.helper.set_variable_initializer( lr_var, initializer=paddle.nn.initializer.Constant(value=lr_value), ) elif isinstance(self._learning_rate, float): # only create global lr_var once lr = self._global_learning_rate() if isinstance(lr, framework.Variable): return else: self._learning_rate_map[ framework.default_main_program() ] = paddle.static.create_global_var( name=unique_name.generate("learning_rate"), shape=[], value=float(self._learning_rate), dtype=_lr_dtype, persistable=True, ) with paddle.fluid.framework.dygraph_guard_if_declarative(): do_create() @framework.dygraph_only def set_lr(self, value): """ :api_attr: imperative Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler, this API cannot be invoked, because it will lead to conflict. Args: value (float): the value of learning rate Returns: None Examples: .. code-block:: python import paddle linear = paddle.nn.Linear(10, 10) adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters()) # set learning rate manually by python float value lr_list = [0.2, 0.3, 0.4, 0.5, 0.6] for i in range(5): adam.set_lr(lr_list[i]) lr = adam.get_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.2 # current lr is 0.3 # current lr is 0.4 # current lr is 0.5 # current lr is 0.6 """ if not isinstance(value, (int, float)): raise TypeError( "The type of 'value' in optimizer.set_lr must be float, but received %s." % (type(value)) ) if isinstance(self._learning_rate, LRScheduler): raise RuntimeError( "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict." ) self._learning_rate = float(value) current_lr = self._global_learning_rate() if current_lr is not None: if in_dygraph_mode(): place = _current_expected_place() _C_ops.full_( current_lr, list(current_lr.shape), float(value), current_lr.dtype, place, ) else: global_block = framework.default_main_program().global_block() global_block.append_op( type='fill_constant', outputs={'Out': [current_lr]}, attrs={ 'dtype': current_lr.dtype, 'shape': list(current_lr.shape), 'value': float(value), }, stop_gradient=True, ) def get_lr(self): """ Get current learning rate of optimizer. If 'LRScheduler' is not used, the return value is all the same. If 'LRScheduler' is used, the return value is the current scheduled learing rete. Returns: float: The current learning rate of optimizer. Examples: .. code-block:: python # train on default dynamic graph mode import paddle import numpy as np emb = paddle.nn.Embedding(10, 3) ## example1: LRScheduler is not used, return the same value is all the same adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters()) for batch in range(10): input = paddle.randint(low=0, high=5, shape=[5]) out = emb(input) out.backward() print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01 adam.step() ## example2: StepDecay is used, return the scheduled learning rate scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1) adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters()) for batch in range(10): input = paddle.randint(low=0, high=5, shape=[5]) out = emb(input) out.backward() print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05... adam.step() scheduler.step() # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 10]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1) adam = paddle.optimizer.Adam(learning_rate=scheduler) adam.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for batch in range(10): print("Learning rate of step{}: {}", adam.get_lr()) # 0.5->0.05->0.005... out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')}) scheduler.step() """ if isinstance(self._learning_rate, float): return self._learning_rate else: return self._learning_rate() def _global_learning_rate(self, program=None): """ get global decayed learning rate :return: """ if program is None: program = framework.default_main_program() return self._learning_rate_map.get(program, None) def _append_optimize_op(self, block, param_and_grad): """append optimize operator to block and return all the added optimize_op""" raise NotImplementedError( "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\"" ) def _create_param_lr(self, param_and_grad): # create learning rate tensor for every parameter param = param_and_grad[0] if hasattr(param, 'optimize_attr'): param_lr = param.optimize_attr['learning_rate'] if type(param_lr) == Variable: return param_lr else: if param_lr == 1.0: return self._global_learning_rate() else: with default_main_program()._lr_schedule_guard( is_with_opt=True ), framework.name_scope('scale_with_param_lr'): return self._global_learning_rate() * param_lr else: return self._global_learning_rate() def _create_master_weight(self, param): if param.name in self._master_weights: var = self._master_weights[param.name] else: assert isinstance(self.helper, LayerHelper) var_name = param.name + "_fp32_master" var_name = unique_name.generate(var_name) var = paddle.static.create_global_var( name=var_name, shape=param.shape, value=0, dtype='float32', persistable=True, ) block = self.helper.startup_program.global_block() block.append_op( type="cast", inputs={"X": [param]}, outputs={"Out": [var]}, attrs={ "in_dtype": param.dtype, "out_dtype": core.VarDesc.VarType.FP32, }, ) self._master_weights[param.name] = var return var def _create_master_grad(self, grad): assert self._is_dtype_fp16_or_bf16(grad.dtype) if grad.name in self._master_grads: var = self._master_grads[grad.name] else: var_name = grad.name + "_fp32_master" var_name = unique_name.generate(var_name) var = grad.block.create_var( name=var_name, shape=grad.shape, value=0, dtype='float32', lod_level=grad.lod_level, persistable=grad.persistable, is_data=grad.is_data, ) self._master_grads[grad.name] = var return var def _create_accumulators(self, block, parameters): """Create all accumulators needed by the parameters Args: block: the block in which the loss tensor is present parameters: list of parameter tensors for the optimizer """ pass def _finish_update(self, block, parameters_and_grads): """Finish any custom updates needed before completing an optimization step Args: block: the block in which the loss tensor is present parameters: list of parameter tensors for the optimizer Returns: None """ pass def _add_accumulator( self, name, param, dtype=None, fill_value=0.0, shape=None, type=None, device=None, ): """Utility function to add an accumulator for a parameter Args: block: the block in which the loss tensor is present name: name of the accumulator param: parameter tensor for which accumulator is to be added dtype: data type of the accumulator tensor fill_value: value to initialize the accumulator tensor """ if self._name is not None: name = self._name + "_" + name if ( name in self._accumulators and param.name in self._accumulators[name] ): if framework.in_dygraph_mode(): return self._accumulators[name][param.name] raise Exception( "Accumulator {} already exists for parameter {}".format( name, param.name ) ) if shape is None: shape = param.shape assert isinstance(self.helper, LayerHelper) var_name = param.name + "_" + name var_name = unique_name.generate(var_name) self._opti_name_list.append(var_name) var = self.helper.create_global_variable( name=var_name, persistable=True, dtype=dtype or param.dtype, type=core.VarDesc.VarType.LOD_TENSOR, shape=shape, belong_to_optimizer=True, ) if device is None: device = self._get_device_for_param(param.name) if ( in_dygraph_mode() and (device == 'cpu' or isinstance(device, core.CPUPlace)) and (not core.is_compiled_with_xpu()) ): _C_ops.full_( var, var.shape, str(float(fill_value)), var.dtype, core.CPUPlace(), ) else: with device_guard(device): self.helper.set_variable_initializer( var, initializer=paddle.nn.initializer.Constant( value=float(fill_value) ), ) if framework.in_dygraph_mode(): if len(self._accumulators_holder) > 0: assert ( var_name in self._accumulators_holder ), "Optimizer set error, {} should in state dict".format( var_name ) var.set_value(self._accumulators_holder.pop(var_name)) self._accumulators[name][param.name] = var return var def _get_accumulator(self, name, param): """Utility function to fetch an accumulator for a parameter Args: name: name of the accumulator param: parameter tensor for which accumulator is to be fetched Returns: accumulator tensor for the parameter """ if self._name is not None: name = self._name + "_" + name if ( name not in self._accumulators or param.name not in self._accumulators[name] ): raise Exception( "Accumulator {} does not exist for parameter {}".format( name, param.name ) ) return self._accumulators[name][param.name] def _get_accumulator_master(self, name, param): """Utility function to fetch an accumulator for a parameter Args: name: name of the accumulator param: parameter variable for which accumulator is to be fetched Returns: accumulator variable for the parameter """ if self._name is not None: name = self._name + "_" + name find_master = self._multi_precision and self._is_dtype_fp16_or_bf16( param.dtype ) target_param = ( self._master_weights[param.name] if find_master else param ) target_name = target_param.name if ( name not in self._accumulators or target_name not in self._accumulators[name] ): raise Exception( "Accumulator {} does not exist for parameter {}".format( name, target_name ) ) return self._accumulators[name][target_name] def _update_param_device_map(self, parameters_and_grads, target_block): for param_and_grad in parameters_and_grads: if param_and_grad[0].stop_gradient is False: param_name = param_and_grad[0].name ops = target_block.ops device_attr_name = ( core.op_proto_and_checker_maker.kOpDeviceAttrName() ) for op in ops: input_arg_names = op.input_arg_names if param_name in input_arg_names: self._param_device_map[param_name] = op.attr( device_attr_name ) break def _get_device_for_param(self, param_name): device = None if param_name in self._param_device_map: device = self._param_device_map[param_name] return device def _create_optimization_pass( self, parameters_and_grads, param_group_idx=0 ): """Add optimization operators to update gradients to tensors. Args: parameters_and_grads(list(tuple(Tensor, Tensor))): a list of (tensor, gradient) pair to update. Returns: return_op_list: a list of operators that will complete one step of optimization. This will include parameter update ops, global step update ops and any other custom ops required by subclasses to manage their internal state. """ # This is a default implementation of create_optimization_pass that # can be shared by most optimizers. This implementation assumes that # the subclass will implement the _append_optimize_op method and the # _initialize_tensors method. The subclass can extend the # _create_accumulators method if it needs to create accumulators # for parameters and extend _finish_update method to add custom ops. # Allways called under program_guard use global block as loss block # But if current block is in control flow, append optimize op in the # grad block of current block global_block = framework.default_main_program().global_block() target_block = global_block current_block = framework.default_main_program().current_block() if current_block.idx != global_block.idx: assert ( current_block.backward_block_idx != -1 ), "current block is not global_block, but it doesn't have backward block." target_block = framework.default_main_program().blocks[ current_block.backward_block_idx ] start = len(target_block.ops) self.helper = LayerHelper(self.__class__.__name__) self._create_global_learning_rate() # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode if self._use_multi_tensor and self.__class__.__name__ in [ 'Momentum', 'Adam', ]: if ( len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0 and len(self._param_dict['FP16_LODTensor'][param_group_idx]) == 0 ): if isinstance(parameters_and_grads, list): assert param_group_idx == 0 self._multi_tensor_init( target_block, [ p[0] for p in parameters_and_grads if not p[0].stop_gradient ], param_group_idx, ) else: self._update_param_group(parameters_and_grads) self._multi_tensor_init( target_block, [ p[0] for p in parameters_and_grads['params'] if not p[0].stop_gradient ], param_group_idx, ) if framework.in_dygraph_mode(): self._append_optimize_multi_tensor_op( target_block, parameters_and_grads, param_group_idx=param_group_idx, ) else: self._update_param_device_map( parameters_and_grads, target_block ) # NOTE: Multi Tensor requires all parameters to be in the same device and program. # param_grad_list = [p_0,g_0,p_1,g_1,....] param_grad_list = [] for param_and_grad in parameters_and_grads: if ( not param_and_grad[0].stop_gradient and param_and_grad[1] is not None ): param_grad_list.append(param_and_grad[0]) param_grad_list.append(param_and_grad[1]) with param_grad_list[0].block.program._optimized_guard( param_grad_list ), name_scope("optimizer"): device = self._get_device_for_param(param_grad_list[0].name) with device_guard(device): self._append_optimize_multi_tensor_op( target_block, parameters_and_grads, param_group_idx=param_group_idx, ) else: if not framework.in_dygraph_mode(): params_grads_device_map = ( parameters_and_grads['params'] if isinstance(parameters_and_grads, dict) else parameters_and_grads ) self._update_param_device_map( params_grads_device_map, target_block ) if isinstance(parameters_and_grads, list): with paddle.fluid.framework.dygraph_guard_if_declarative(): self._create_accumulators( target_block, [ p[0] for p in parameters_and_grads if not p[0].stop_gradient ], ) else: params_acc_dict = parameters_and_grads.copy() params_acc_dict['params'] = [ p[0] for p in params_acc_dict['params'] if not p[0].stop_gradient ] with paddle.fluid.framework.dygraph_guard_if_declarative(): self._create_accumulators(target_block, params_acc_dict) if framework.in_dygraph_mode(): found_inf = self._get_auxiliary_var('found_inf') if found_inf: if isinstance(found_inf, core.eager.Tensor): self._set_auxiliary_var('found_inf', True) else: if isinstance(found_inf, core.eager.Tensor): self._set_auxiliary_var('found_inf', False) if isinstance(parameters_and_grads, list): for param_and_grad in parameters_and_grads: if param_and_grad[1] is None: continue if param_and_grad[0].stop_gradient is False: self._append_optimize_op( target_block, param_and_grad ) else: for param_and_grad in parameters_and_grads['params']: if param_and_grad[1] is None: continue if param_and_grad[0].stop_gradient is False: param_grad_dict = {} param_grad_dict['params'] = param_and_grad param_grad_dict.update( { k: v for k, v in parameters_and_grads.items() if k != 'params' } ) self._append_optimize_op( target_block, param_grad_dict ) else: for param_and_grad in parameters_and_grads: if param_and_grad[1] is None: continue with param_and_grad[0].block.program._optimized_guard( param_and_grad ), name_scope("optimizer"): if param_and_grad[0].stop_gradient is False: device = self._get_device_for_param( param_and_grad[0].name ) with device_guard(device): optimize_op = self._append_optimize_op( target_block, param_and_grad ) # Get custom finish ops for subclasses # FIXME: Need to fix this once we figure out how to handle dependencies self._finish_update(target_block, parameters_and_grads) end = len(target_block.ops) return target_block._slice_ops(start, end) def _append_dgc_ops(self, param_and_grad): pass def backward( self, loss, startup_program=None, parameters=None, no_grad_set=None, callbacks=None, ): """ The first part of ``minimize``, do auto-diff to append backward operations for the current program. Args: loss (Tensor): ``loss`` tensor to run optimizations. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameters``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Tensor`` or ``Tensor.name`` that don't need to be updated. The default value is None. callbacks (list, optional): list of callable objects to run when appending backward operator for one parameter. The default value is None. Return: list: list of (param, grad) tensor pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. Examples: .. code-block:: python import paddle x = paddle.arange(26, dtype="float32").reshape([2, 13]) linear = paddle.nn.Linear(13, 5) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.Adam(learning_rate = 0.01, parameters = linear.parameters()) out = linear(x) out.backward() adam.step() adam.clear_grad() """ act_no_grad_set = None if framework.in_dygraph_mode(): pass else: act_no_grad_set = self._get_no_grad_set(loss, no_grad_set) # Infer dtype by loss if None if self._dtype is None: self._dtype = loss.dtype if framework.in_dygraph_mode(): parameter_list = parameters if parameters else self._parameter_list # It is very time-consuming to call c++ functions in a loop on the python side. # We put this part of the code on the c++ side to improve the speed in eager mode. params_grads = [] grads = core.eager.get_all_grads(parameter_list) for index, grad in enumerate(grads): if grad is not None: params_grads.append((parameter_list[index], grad)) else: if callbacks is None: callbacks = [paddle.nn.clip.error_clip_callback] else: assert isinstance(callbacks, list) program = loss.block.program assert np.prod(loss.shape) == 1, ( "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. " "Maybe that you should call paddle.mean to process the current loss.".format( loss.shape ) ) parameter_list = parameters if parameters else self._parameter_list with program_guard(program, startup_program): from paddle.incubate.autograd.utils import prim_enabled if prim_enabled(): params_grads = append_backward_new( [loss], parameter_list, act_no_grad_set, callbacks ) else: params_grads = append_backward( loss, parameter_list, act_no_grad_set, callbacks ) # Note: since we can't use all_reduce_op now, # dgc_op should be the last op of one grad. self._append_dgc_ops(params_grads) return params_grads def apply_gradients(self, params_grads): """ Second part of `minimize`, appending optimization operators for given `params_grads` pairs. Args: params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. Examples: .. code-block:: python import paddle inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1) linear = paddle.nn.Linear(10, 10) out = linear(inp) loss = paddle.mean(out) optimizer = paddle.optimizer.Adam(learning_rate=0.1, parameters=linear.parameters()) params_grads = optimizer.backward(loss) optimizer.apply_gradients(params_grads) """ params_grads = sorted(params_grads, key=lambda x: x[0].name) # 'optimizer(grad_clip)' or 'set_gradient_clip' if self._grad_clip is not None: params_grads = self._grad_clip(params_grads) else: params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads) # Add regularization if any params_grads = self.append_regularization_ops( params_grads, self.regularization ) optimize_ops = self._create_optimization_pass(params_grads) return optimize_ops def _apply_optimize( self, loss, startup_program, params_grads, param_group_idx=0 ): """ Second part of `minimize`, appending optimization operators for given `params_grads` pairs. Args: loss (Tensor): loss tensor to run optimizations. startup_program (Program): startup_program for initializing parameters in `parameters`. params_grads (list): list of (param, grad) pair to do optimization. Returns: list: A list of operators appended to the current program. """ if framework.in_dygraph_mode(): with program_guard( framework.default_main_program(), framework.default_startup_program(), ): if isinstance(params_grads, list): if self._grad_clip is not None: params_grads = self._grad_clip(params_grads) params_grads = self.append_regularization_ops( params_grads, self.regularization ) else: grad_clip = params_grads['grad_clip'] if grad_clip is not None: params_grads['params'] = grad_clip( params_grads['params'] ) params_grads['params'] = self.append_regularization_ops( params_grads['params'], self.regularization ) optimize_ops = self._create_optimization_pass( params_grads, param_group_idx=param_group_idx ) else: assert param_group_idx == 0 program = loss.block.program with program_guard(program, startup_program): optimize_ops = self.apply_gradients(params_grads) return optimize_ops def _create_regularization_of_grad(self, param, grad, regularization=None): """Create and add backward regularization Operators Function helper of append_regularization_ops. """ # If no gradient or no regularization is specified, then we don't need to do anything if grad is None or ( ( not hasattr(param, 'regularizer') or (hasattr(param, 'regularizer') and param.regularizer is None) ) and regularization is None ): return grad regularization_term = None # when master_grad is true in amp training, grad will be fp32, but param maybe fp16. # we get master weight when master_grad is true to avoid type mismatch error. def get_target_param(param, grad): target_param = param if param.dtype != grad.dtype: find_master = ( self._multi_precision and self._is_dtype_fp16_or_bf16(param.dtype) ) if find_master and len(self._master_weights) != 0: target_param = self._master_weights[param.name] else: target_param = param.astype(grad.dtype) return target_param param = get_target_param(param, grad) if hasattr(param, 'regularizer') and param.regularizer is not None: # Add variable for regularization term in grad block regularization_term = param.regularizer(param, grad, grad.block) elif regularization is not None: regularization_term = regularization(param, grad, grad.block) assert regularization_term is not None if framework.in_dygraph_mode(): return _C_ops.add_n([grad, regularization_term]) else: new_grad = grad if grad.type == core.VarDesc.VarType.SELECTED_ROWS: # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization, # the grad's type and name will be changed. But the gradient's name # is used in ParallelExecutor Reduce mode, so I add a flag for # the new_grad here. new_grad = grad.block.create_var( name=grad.name + core.kNewGradSuffix(), dtype=param.dtype, shape=param.shape, lod_level=param.lod_level, type=core.VarDesc.VarType.LOD_TENSOR, ) inputs = {"X": [grad, regularization_term]} outputs = {"Out": [new_grad]} grad.block.append_op(type='sum', inputs=inputs, outputs=outputs) return new_grad def append_regularization_ops( self, parameters_and_grads, regularization=None ): r"""Create and add backward regularization Operators Creates and adds backward regularization operators in the BlockDesc. This will add gradients of the regularizer function to the gradients of the parameters and return these modified gradients. This is the same as implementing weight decay in optimizers for regularization. Args: parameters_and_grads: A list of (parameters, gradients) pairs that need to be regularized. regularization: A global regularizer. If the parameter is not set. It will be applied with regularizer. Returns: list[(Variable, Variable)]: list of (parameters, gradients) \ pair with the regularized gradient Raises: Exception: Unknown regularization type """ params_and_grads = [] if framework.in_dygraph_mode(): for param, grad in parameters_and_grads: new_grad = self._create_regularization_of_grad( param, grad, regularization ) params_and_grads.append((param, new_grad)) else: repeate_regularizer = False with framework.name_scope('regularization'): for param, grad in parameters_and_grads: if ( not repeate_regularizer and param.regularizer is not None and regularization is not None ): repeate_regularizer = True logging.info( "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. " "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!" % regularization.__str__() ) with param.block.program._optimized_guard([param, grad]): new_grad = self._create_regularization_of_grad( param, grad, regularization ) params_and_grads.append((param, new_grad)) return params_and_grads def _get_no_grad_set(self, loss, no_grad_set=None): no_grad_set = _get_no_grad_set_name(no_grad_set) parameters = loss.block.program.global_block().all_parameters() param_no_trainable = { param.name for param in parameters if param.stop_gradient is True } # If the parameter is no trainable, it should not have a gradient. no_grad_set.update(param_no_trainable) return no_grad_set @framework.non_static_only def clear_grad(self, set_to_zero=True): """ Clear the gradients of all optimized parameters for model. If not, new gradient will accumulat on previous gradient. There are two method to clear grad: set_to_zero or delete grad. Args: set_to_zero (bool, optional): If set grads to zero or not, default is True. Returns: None Examples: .. code-block:: python import paddle a = paddle.arange(26, dtype="float32").reshape([2, 13]) linear = paddle.nn.Linear(13, 5) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.Adam(learning_rate = 0.01, parameters = linear.parameters()) out = linear(a) out.backward() adam.step() adam.clear_grad() """ param_list = [] if self._parameter_list is None or not isinstance( self._parameter_list[0], dict ): for p in self._parameter_list: if not p.stop_gradient: param_list.append(p) else: for param_group in self._param_groups: for p in param_group['params']: if not p.stop_gradient: param_list.append(p) for p in param_list: p.clear_gradient(set_to_zero) @imperative_base.no_grad() def minimize( self, loss, startup_program=None, parameters=None, no_grad_set=None ): """ Add operations to minimize ``loss`` by updating ``parameters``. Args: loss (Tensor): A ``Tensor`` containing the value to minimize. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameters``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Tensor`` or ``Tensor.name`` that don't need to be updated. The default value is None. Returns: tuple: tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to indicate program pruning. If so, the program will be pruned by ``feed`` and ``fetch_list`` before run, see details in ``Executor``. Examples: .. code-block:: python import paddle linear = paddle.nn.Linear(10, 10) input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear(input) loss = paddle.mean(out) beta1 = paddle.to_tensor([0.9], dtype="float32") beta2 = paddle.to_tensor([0.99], dtype="float32") adam = paddle.optimizer.Adam(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01) loss.backward() adam.minimize(loss) adam.clear_grad() """ assert isinstance(loss, Variable), "The loss should be an Tensor." parameter_list = parameters if parameters else self._parameter_list params_grads = self.backward( loss, startup_program=startup_program, parameters=parameter_list, no_grad_set=no_grad_set, ) optimize_ops = self._apply_optimize( loss, startup_program=startup_program, params_grads=params_grads ) return optimize_ops, params_grads def _declarative_step(self): """ In declarative mode, we forward `call step` to `call apply_gradients` """ params = ( paddle.static.default_main_program().global_block().all_parameters() ) assert not isinstance( self._parameter_list[0], dict ), "Only list of parameters is supported while using optimizer in @paddle.jit.static." selected_params = {param.name for param in self._parameter_list} parameters = [param for param in params if param.trainable] parameters = list( filter( lambda x: x.name in selected_params and hasattr(x, "grad"), parameters, ) ) params_grads = [(param, param.grad) for param in parameters] optimize_ops = self.apply_gradients(params_grads) return @imperative_base.no_grad() @framework.non_static_only def step(self): """ Execute the optimizer and update parameters once. Returns: None Examples: .. code-block:: python import paddle a = paddle.arange(26, dtype="float32").reshape([2, 13]) linear = paddle.nn.Linear(13, 5) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.Adam(learning_rate = 0.01, parameters = linear.parameters()) out = linear(a) out.backward() adam.step() adam.clear_grad() """ if paddle.fluid.dygraph.base.in_declarative_mode(): self._declarative_step() return if not isinstance(self._param_groups[0], dict): params_grads = [] for param in self._param_groups: if param.stop_gradient: continue if param._grad_ivar() is not None: grad_var = param._grad_ivar() params_grads.append((param, grad_var)) self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads, param_group_idx=0, ) else: # optimize parameters in groups for idx, param_group in enumerate(self._param_groups): params_grads = defaultdict(lambda: []) for param in param_group['params']: if param.stop_gradient: continue if param._grad_ivar() is not None: grad_var = param._grad_ivar() params_grads['params'].append((param, grad_var)) params_grads.update( {k: v for k, v in param_group.items() if k != 'params'} ) self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads, param_group_idx=idx, ) def _add_param_group(self, param_group): """ Add a param group to parameter_list. Args: param_group (dict): The group of Tensors to be optimzed with different optimization options. """ params = param_group['params'] if isinstance(params, Parameter): param_group['params'] = [params] elif isinstance(params, set): raise TypeError( "optimizer parameters should be in ordered collections," "but received set, please use list instead." ) else: param_group['params'] = list(params) # Update optimization options for each groups for k, v in self._default_dict.items(): param_group.setdefault(k, v) param_set = set() for group in self._param_groups: param_set.update(set(group['params'])) if not param_set.isdisjoint(set(param_group['params'])): raise ValueError( "some parameters appear in more than one parameter group" ) for param in param_group['params']: weight_decay = param_group['weight_decay'] if isinstance(weight_decay, float): regularization = L2Decay(weight_decay) else: regularization = weight_decay param.regularizer = regularization param.optimize_attr['learning_rate'] = param_group.get( 'learning_rate', 1.0 ) self._param_groups.append(param_group) def _update_param_group(self, parameters): """ Update the param group with new entry Args: parameters (dict): The extra group of Tensors to be optimzed with different optimization options. Only used in child class. """ pass @framework.dygraph_only def _multi_tensor_init(self, target_block, parameters, param_group_idx): """ All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32). This function will be overridden in the corresponding optimizer file. Args: target_block: the block in which the loss tensor is present parameters: list of parameter tensors for the optimizer """ pass @framework.dygraph_only def _append_optimize_multi_tensor_op( self, target_block, parameters_and_grads, param_group_idx ): """ For Multi Tensor, append optimize merged_operator to block. """ pass def _is_dtype_fp16_or_bf16(self, dtype): """ check the dtype is fp16 or the dtype is bf16 :param dtype: instance of core.VarDesc.VarType :return: True if dtype is one of fp16 or bf16, False otherwise """ assert isinstance( dtype, core.VarDesc.VarType ), "The dtype should be an instance of core.VarDesc.VarType." return ( dtype == core.VarDesc.VarType.FP16 or dtype == core.VarDesc.VarType.BF16 )
5590c83b21209475b9f2d74cbf0f4aa8bc06fdf7
88023c9a62994e91291c67088156a2894cc26e9e
/corral/exceptions.py
6b957a785fc63342e2236f36930ddf95e737b7a0
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
toros-astro/corral
41e9d0224d734c4268bf5161d472b3c0375842f0
75474b38ff366330d33644461a902d07374a5bbc
refs/heads/master
2023-06-10T15:56:12.264725
2018-09-03T17:59:41
2018-09-03T17:59:41
44,282,921
6
5
BSD-3-Clause
2023-03-24T12:03:17
2015-10-14T23:56:40
Python
UTF-8
Python
false
false
1,745
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2016-2017, Cabral, Juan; Sanchez, Bruno & Berois, Martín # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. class ValidationError(Exception): pass class ImproperlyConfigured(ValueError): pass class DBError(Exception): pass
3314310b124324421bdc948e97abc2584f9cc2e0
30268e3918f8dc079a757e985fee374605c931b2
/api/tacticalrmm/winupdate/tasks.py
487b171e5b0bfbde2f2bdf9fc3fb94be0d93781c
[ "MIT" ]
permissive
doytsujin/tacticalrmm
e1be7ad7950bb95c4b37dd63ac03eb323115d866
7fb79e0bcce62dbb892fb36665ff6d7135d7bebf
refs/heads/master
2021-03-21T14:02:24.858487
2020-02-24T07:11:15
2020-02-24T07:11:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,999
py
from time import sleep from agents.models import Agent from .models import WinUpdate from tacticalrmm.celery import app @app.task def check_for_updates_task(pk, wait=False): if wait: sleep(60) agent = Agent.objects.get(pk=pk) resp = agent.salt_api_cmd( hostname=agent.salt_id, timeout=310, salt_timeout=300, func="win_wua.list", arg="skip_installed=False", ) data = resp.json() ret = data["return"][0][agent.salt_id] # if managed by wsus, nothing we can do until salt supports it if type(ret) is str: err = ["unknown failure", "2147352567", "2145107934"] if any(x in ret.lower() for x in err): agent.managed_by_wsus = True agent.save(update_fields=["managed_by_wsus"]) return f"{agent.hostname} managed by wsus" else: # if previously managed by wsus but no longer (i.e moved into a different OU in AD) # then we can use salt to manage updates if agent.managed_by_wsus and type(ret) is dict: agent.managed_by_wsus = False agent.save(update_fields=["managed_by_wsus"]) guids = [] for k in ret.keys(): guids.append(k) if not WinUpdate.objects.filter(agent=agent).exists(): for i in guids: WinUpdate( agent=agent, guid=i, kb=ret[i]["KBs"][0], mandatory=ret[i]["Mandatory"], title=ret[i]["Title"], needs_reboot=ret[i]["NeedsReboot"], installed=ret[i]["Installed"], downloaded=ret[i]["Downloaded"], description=ret[i]["Description"], severity=ret[i]["Severity"], ).save() else: for i in guids: # check if existing update install / download status has changed if WinUpdate.objects.filter(agent=agent).filter(guid=i).exists(): update = WinUpdate.objects.filter(agent=agent).get(guid=i) if ret[i]["Installed"] != update.installed: update.installed = not update.installed update.save(update_fields=["installed"]) if ret[i]["Downloaded"] != update.downloaded: update.downloaded = not update.downloaded update.save(update_fields=["downloaded"]) # otherwise it's a new update else: WinUpdate( agent=agent, guid=i, kb=ret[i]["KBs"][0], mandatory=ret[i]["Mandatory"], title=ret[i]["Title"], needs_reboot=ret[i]["NeedsReboot"], installed=ret[i]["Installed"], downloaded=ret[i]["Downloaded"], description=ret[i]["Description"], severity=ret[i]["Severity"], ).save() return "ok"
494aff1c24d6117476f11ab965437fac14f43806
20c80f722c451b64d05cc027b66a81e1976c3253
/commons/libs/pyblish/version.py
c978ffa548ff2ad57bbaba63dc1da19b5ff66f43
[]
no_license
flypotatojun/Barbarian
2d3fcb6fcb1b4495b6d62fc5e32634abf4638312
efe14dd24c65b4852997dad1290e503211bcc419
refs/heads/master
2021-07-18T01:43:14.443911
2017-10-24T03:37:43
2017-10-24T03:37:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
VERSION_MAJOR = 1 VERSION_MINOR = 4 VERSION_PATCH = 3 version_info = (VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH) version = '%i.%i.%i' % version_info __version__ = version __all__ = ['version', 'version_info', '__version__']
7003acb4f3816d60e19ac4b06f49d305dda66cfb
2cb120360192dfdf9afa233c8585232cb3df6e8c
/samples/tf_study/prettytensor/funcs/register.py
4d06d359b79901fe2eaade7d27002d9a528b7ee5
[]
no_license
CosmosShadow/MLPythonLib
6323583bca8c6ff5757465fb1a0d5c4f23deb56c
3a2da2601330a032b737ff0addf71f679eeee94b
refs/heads/master
2020-05-21T15:08:58.082575
2017-04-30T17:03:15
2017-04-30T17:03:15
44,087,820
1
0
null
null
null
null
UTF-8
Python
false
false
431
py
# coding: utf-8 import tensorflow as tf import prettytensor as pt import numpy as np import cmtf.data.data_mnist as data_mnist @pt.Register def leaky_relu(input_pt): return tf.select(tf.greater(input_pt, 0.0), input_pt, 0.01*input_pt) x = tf.Variable([1, 2, 3, -3, -2, -1], dtype=tf.float32) x_pretty = pt.wrap(x) y = x_pretty.leaky_relu() with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(sess.run(y))
9a9896bbf00e4f6f26308c7699d8939dd2d12b92
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/LongLivedChi0/LongLivedChi0ToNuLL_MSquark_1000_MChi_700_CTau1mm_to_1000mm_TuneCUETP8M1_13TeV_pythia8_cff.py
989f40b6f2ad7b491251cf3a1f09bb503852f142
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
41,743
py
COM_ENERGY = 13000 # GeV SQUARK_MASS = 1000 # GeV CHIZERO_MASS = 700 # GeV GLUINO_MASS = 5000 # GeV CROSS_SECTION = 0.02296 # pb CHIZERO1_CTAU = 1 # mm CHIZERO2_CTAU = 10 # mm CHIZERO3_CTAU = 100 # mm CHIZERO4_CTAU = 100 # mm SLHA_TABLE = """ # # ====================== # | THE SUSYHIT OUTPUT | # ====================== # # # ------------------------------------------------------ # | This is the output of the SUSY-HIT package | # | created by A.Djouadi, M.Muehlleitner and M.Spira. | # | In case of problems with SUSY-HIT email to | # | [email protected] | # | [email protected] | # | [email protected] | # ------------------------------------------------------ # # ------------------------------------------------------ # | SUSY Les Houches Accord - MSSM Spectrum + Decays | # | based on the decay programs | # | | # | SDECAY 1.5 | # | | # | Authors: M.Muhlleitner, A.Djouadi and Y.Mambrini | # | Ref.: Comput.Phys.Commun.168(2005)46 | # | [hep-ph/0311167] | # | | # | HDECAY 3.4 | # | | # | By: A.Djouadi,J.Kalinowski,M.Muhlleitner,M.Spira | # | Ref.: Comput.Phys.Commun.108(1998)56 | # | [hep-ph/9704448] | # | | # | | # | If not stated otherwise all DRbar couplings and | # | soft SUSY breaking masses are given at the scale | # | Q= 0.46577748E+03 # | | # ------------------------------------------------------ # # This file contains spectra and decay modes calculated by SUSYHIT in ~tomalin/susy_susyhit/ # with all SUSY masses set high, except for the u,d,s,c squark and all four neutralino masses, # and the gluino mass, which are set low by hand. Furthermore, the decay modes and width of the "neutralino1", # "neutralino2", "neutralino3" and "neutralino4" are set by hand to allow R-parity violating # decays to the chosen final states with the chosen lifetimes. The u,d,s,c squarks given by hand a 100% BR # to quark + neutralino. # BLOCK DCINFO # Decay Program information 1 SDECAY/HDECAY # decay calculator 2 1.5 /3.4 # version number # BLOCK SPINFO # Spectrum calculator information 1 SuSpect # RGE +Spectrum calculator 2 2.41 # version number # BLOCK MODSEL # Model selection 1 1 # #SUGRA # BLOCK SMINPUTS # Standard Model inputs 1 1.27934000E+02 # alpha_em^-1(M_Z)^MSbar 2 1.16639000E-05 # G_F [GeV^-2] 3 1.17200000E-01 # alpha_S(M_Z)^MSbar 4 9.11870000E+01 # M_Z pole mass 5 4.25000000E+00 # mb(mb)^MSbar 6 1.72500000E+02 # mt pole mass 7 1.77710000E+00 # mtau pole mass # BLOCK MINPAR # Input parameters - minimal models 1 1.00000000E+02 # m0 2 2.50000000E+02 # m_1 3 1.00000000E+01 # tanbeta(mZ) 4 1.00000000E+00 # sign(mu) 5 -1.00000000E+02 # A0 # BLOCK EXTPAR # Input parameters - non-minimal models 0 4.65777483E+02 # EWSB # BLOCK MASS # Mass Spectrum # PDG code mass particle 24 8.04847331E+01 # W+ 25 1.09932416E+02 # h 35 3.94935594E+02 # H 36 3.94525488E+02 # A 37 4.02953218E+02 # H+ 5 4.87877839E+00 # b-quark pole mass calculated from mb(mb)_Msbar 1000001 1.00000000e+03 # ~d_L 2000001 1.00000000e+03 # ~d_R 1000002 1.00000000e+03 # ~u_L 2000002 1.00000000e+03 # ~u_R 1000003 1.00000000e+03 # ~s_L 2000003 1.00000000e+03 # ~s_R 1000004 1.00000000e+03 # ~c_L 2000004 1.00000000e+03 # ~c_R 1000005 1.16777573E+05 # ~b_1 2000005 1.46086561E+05 # ~b_2 1000006 1.99615017E+05 # ~t_1 2000006 1.86391641E+05 # ~t_2 1000011 2.00774228E+05 # ~e_L 2000011 1.42820157E+05 # ~e_R 1000012 1.84853985E+05 # ~nu_eL 1000013 2.00774228E+05 # ~mu_L 2000013 1.42820157E+05 # ~mu_R 1000014 1.84853985E+05 # ~nu_muL 1000015 1.33342244E+05 # ~tau_1 2000015 2.04795115E+05 # ~tau_2 1000016 1.83966053E+05 # ~nu_tauL 1000021 5.00000000e+03 # ~g 1000022 7.00000000e+02 # ~chi_10 1000023 7.00000000e+02 # ~chi_20 1000025 7.00000000e+02 # ~chi_30 1000035 7.00000000e+02 # ~chi_40 1000024 1.79671182E+05 # ~chi_1+ 1000037 3.77983105E+05 # ~chi_2+ # BLOCK NMIX # Neutralino Mixing Matrix 1 1 9.85345167E-01 # N_11 1 2 -5.64225409E-02 # N_12 1 3 1.51059160E-01 # N_13 1 4 -5.56105151E-02 # N_14 2 1 1.06123308E-01 # N_21 2 2 9.39651214E-01 # N_22 2 3 -2.80885422E-01 # N_23 2 4 1.64002501E-01 # N_24 3 1 6.12835220E-02 # N_31 3 2 -9.07288796E-02 # N_32 3 3 -6.95178480E-01 # N_33 3 4 -7.10450196E-01 # N_34 4 1 1.18646854E-01 # N_41 4 2 -3.25023636E-01 # N_42 4 3 -6.44213777E-01 # N_43 4 4 6.82107887E-01 # N_44 # BLOCK UMIX # Chargino Mixing Matrix U 1 1 -9.11420712E-01 # U_11 1 2 4.11475741E-01 # U_12 2 1 4.11475741E-01 # U_21 2 2 9.11420712E-01 # U_22 # BLOCK VMIX # Chargino Mixing Matrix V 1 1 -9.70421546E-01 # V_11 1 2 2.41416701E-01 # V_12 2 1 2.41416701E-01 # V_21 2 2 9.70421546E-01 # V_22 # BLOCK STOPMIX # Stop Mixing Matrix 1 1 5.52988023E-01 # cos(theta_t) 1 2 8.33189202E-01 # sin(theta_t) 2 1 -8.33189202E-01 # -sin(theta_t) 2 2 5.52988023E-01 # cos(theta_t) # BLOCK SBOTMIX # Sbottom Mixing Matrix 1 1 9.30091013E-01 # cos(theta_b) 1 2 3.67329154E-01 # sin(theta_b) 2 1 -3.67329154E-01 # -sin(theta_b) 2 2 9.30091013E-01 # cos(theta_b) # BLOCK STAUMIX # Stau Mixing Matrix 1 1 2.84460080E-01 # cos(theta_tau) 1 2 9.58687886E-01 # sin(theta_tau) 2 1 -9.58687886E-01 # -sin(theta_tau) 2 2 2.84460080E-01 # cos(theta_tau) # BLOCK ALPHA # Higgs mixing -1.14188002E-01 # Mixing angle in the neutral Higgs boson sector # BLOCK HMIX Q= 4.65777483E+02 # DRbar Higgs Parameters 1 3.52164861E+02 # mu(Q) 2 9.75041102E+00 # tanbeta(Q) 3 2.45014641E+02 # vev(Q) 4 1.62371513E+05 # MA^2(Q) # BLOCK GAUGE Q= 4.65777483E+02 # The gauge couplings 1 3.60982135E-01 # gprime(Q) DRbar 2 6.46351672E-01 # g(Q) DRbar 3 1.09632112E+00 # g3(Q) DRbar # BLOCK AU Q= 4.65777483E+02 # The trilinear couplings 1 1 -6.83184382E+02 # A_u(Q) DRbar 2 2 -6.83184382E+02 # A_c(Q) DRbar 3 3 -5.06144038E+02 # A_t(Q) DRbar # BLOCK AD Q= 4.65777483E+02 # The trilinear couplings 1 1 -8.58985213E+02 # A_d(Q) DRbar 2 2 -8.58985213E+02 # A_s(Q) DRbar 3 3 -7.96595983E+02 # A_b(Q) DRbar # BLOCK AE Q= 4.65777483E+02 # The trilinear couplings 1 1 -2.53298464E+02 # A_e(Q) DRbar 2 2 -2.53298464E+02 # A_mu(Q) DRbar 3 3 -2.51542764E+02 # A_tau(Q) DRbar # BLOCK Yu Q= 4.65777483E+02 # The Yukawa couplings 1 1 0.00000000E+00 # y_u(Q) DRbar 2 2 0.00000000E+00 # y_c(Q) DRbar 3 3 8.78978125E-01 # y_t(Q) DRbar # BLOCK Yd Q= 4.65777483E+02 # The Yukawa couplings 1 1 0.00000000E+00 # y_d(Q) DRbar 2 2 0.00000000E+00 # y_s(Q) DRbar 3 3 1.39517330E-01 # y_b(Q) DRbar # BLOCK Ye Q= 4.65777483E+02 # The Yukawa couplings 1 1 0.00000000E+00 # y_e(Q) DRbar 2 2 0.00000000E+00 # y_mu(Q) DRbar 3 3 1.01147257E-01 # y_tau(Q) DRbar # BLOCK MSOFT Q= 4.65777483E+02 # The soft SUSY breaking masses at the scale Q 1 1.01486794E+02 # M_1 2 1.91565439E+02 # M_2 3 5.86284400E+02 # M_3 21 3.23226904E+04 # M^2_Hd 22 -1.24993993E+05 # M^2_Hu 31 1.95443359E+02 # M_eL 32 1.95443359E+02 # M_muL 33 1.94603750E+02 # M_tauL 34 1.35950985E+02 # M_eR 35 1.35950985E+02 # M_muR 36 1.33480599E+02 # M_tauR 41 5.45553618E+02 # M_q1L 42 5.45553618E+02 # M_q2L 43 4.97578078E+02 # M_q3L 44 5.27538927E+02 # M_uR 45 5.27538927E+02 # M_cR 46 4.23429537E+02 # M_tR 47 5.25444117E+02 # M_dR 48 5.25444117E+02 # M_sR 49 5.22139557E+02 # M_bR # # # # ================= # |The decay table| # ================= # # - The QCD corrections to the decays gluino -> squark + quark # squark -> gaugino + quark_prime # squark -> squark_prime + Higgs # squark -> gluino + quark # are included. # # - The multi-body decays for the inos, stops and sbottoms are included. # # - The loop induced decays for the gluino, neutralinos and stops # are included. # # - The SUSY decays of the top quark are included. # # # PDG Width DECAY 6 1.44633943E+00 # top decays # BR NDA ID1 ID2 1.00000000E+00 2 5 24 # BR(t -> b W+) # # PDG Width DECAY 1000021 7.60054186E+02 # gluino decays # BR NDA ID1 ID2 6.25000000E-02 2 1000001 -1 # BR(~g -> ~d_L db) 6.25000000E-02 2 -1000001 1 # BR(~g -> ~d_L* d ) 6.25000000E-02 2 2000001 -1 # BR(~g -> ~d_R db) 6.25000000E-02 2 -2000001 1 # BR(~g -> ~d_R* d ) 6.25000000E-02 2 1000002 -2 # BR(~g -> ~u_L ub) 6.25000000E-02 2 -1000002 2 # BR(~g -> ~u_L* u ) 6.25000000E-02 2 2000002 -2 # BR(~g -> ~u_R ub) 6.25000000E-02 2 -2000002 2 # BR(~g -> ~u_R* u ) 6.25000000E-02 2 1000003 -3 # BR(~g -> ~s_L sb) 6.25000000E-02 2 -1000003 3 # BR(~g -> ~s_L* s ) 6.25000000E-02 2 2000003 -3 # BR(~g -> ~s_R sb) 6.25000000E-02 2 -2000003 3 # BR(~g -> ~s_R* s ) 6.25000000E-02 2 1000004 -4 # BR(~g -> ~c_L cb) 6.25000000E-02 2 -1000004 4 # BR(~g -> ~c_L* c ) 6.25000000E-02 2 2000004 -4 # BR(~g -> ~c_R cb) 6.25000000E-02 2 -2000004 4 # BR(~g -> ~c_R* c ) # # PDG Width DECAY 1000006 5.20726800E+08 # stop1 decays # BR NDA ID1 ID2 6.94407916E-07 2 1000022 6 # BR(~t_1 -> ~chi_10 t ) 7.54006758E-07 2 1000023 6 # BR(~t_1 -> ~chi_20 t ) 1.74512689E-06 2 1000025 6 # BR(~t_1 -> ~chi_30 t ) 9.52699953E-07 2 1000035 6 # BR(~t_1 -> ~chi_40 t ) 1.56675416E-07 2 1000024 5 # BR(~t_1 -> ~chi_1+ b ) 1.30596297E-05 2 1000021 6 # BR(~t_1 -> ~g t ) 1.23218005E-11 2 1000005 37 # BR(~t_1 -> ~b_1 H+) -1.39984102E-12 2 2000005 37 # BR(~t_1 -> ~b_2 H+) 9.48532652E-01 2 1000005 24 # BR(~t_1 -> ~b_1 W+) 5.14499859E-02 2 2000005 24 # BR(~t_1 -> ~b_2 W+) # # PDG Width DECAY 2000006 7.43034077E+08 # stop2 decays # BR NDA ID1 ID2 1.17380400E-07 2 1000022 6 # BR(~t_2 -> ~chi_10 t ) 5.49682993E-07 2 1000023 6 # BR(~t_2 -> ~chi_20 t ) 9.14655161E-07 2 1000025 6 # BR(~t_2 -> ~chi_30 t ) 1.36777476E-06 2 1000035 6 # BR(~t_2 -> ~chi_40 t ) 1.06348847E-08 2 1000024 5 # BR(~t_2 -> ~chi_1+ b ) 8.72407685E-06 2 1000021 6 # BR(~t_2 -> ~g t ) 1.27939288E-12 2 1000005 37 # BR(~t_2 -> ~b_1 H+) -1.03472409E-12 2 2000005 37 # BR(~t_2 -> ~b_2 H+) 9.62083919E-01 2 1000005 24 # BR(~t_2 -> ~b_1 W+) 3.79043964E-02 2 2000005 24 # BR(~t_2 -> ~b_2 W+) # # PDG Width DECAY 1000005 1.45287195E+04 # sbottom1 decays # BR NDA ID1 ID2 5.66130593E-03 2 1000022 5 # BR(~b_1 -> ~chi_10 b ) 6.03025772E-02 2 1000023 5 # BR(~b_1 -> ~chi_20 b ) 1.44120022E-03 2 1000025 5 # BR(~b_1 -> ~chi_30 b ) 6.36747404E-03 2 1000035 5 # BR(~b_1 -> ~chi_40 b ) 9.26227443E-01 2 1000021 5 # BR(~b_1 -> ~g b ) # # PDG Width DECAY 2000005 7.36323181E+06 # sbottom2 decays # BR NDA ID1 ID2 1.43513479E-05 2 1000022 5 # BR(~b_2 -> ~chi_10 b ) 1.14591077E-05 2 1000023 5 # BR(~b_2 -> ~chi_20 b ) 9.50353235E-06 2 1000025 5 # BR(~b_2 -> ~chi_30 b ) 1.65018741E-05 2 1000035 5 # BR(~b_2 -> ~chi_40 b ) 1.56864744E-03 2 1000021 5 # BR(~b_2 -> ~g b ) -2.65633090E-12 2 1000005 25 # BR(~b_2 -> ~b_1 h ) -8.87029310E-11 2 1000005 35 # BR(~b_2 -> ~b_1 H ) -1.62921553E-10 2 1000005 36 # BR(~b_2 -> ~b_1 A ) 9.98379537E-01 2 1000005 23 # BR(~b_2 -> ~b_1 Z ) # # PDG Width DECAY 1000002 4.39789139E+00 # sup_L decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 2 # BR(~u_L -> ~chi_10 u) 2.50000000E-01 2 1000023 2 # BR(~u_L -> ~chi_20 u) 2.50000000E-01 2 1000025 2 # BR(~u_L -> ~chi_30 u) 2.50000000E-01 2 1000035 2 # BR(~u_L -> ~chi_40 u) # # PDG Width DECAY 2000002 2.35699810E+00 # sup_R decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 2 # BR(~u_R -> ~chi_10 u) 2.50000000E-01 2 1000023 2 # BR(~u_R -> ~chi_20 u) 2.50000000E-01 2 1000025 2 # BR(~u_R -> ~chi_30 u) 2.50000000E-01 2 1000035 2 # BR(~u_R -> ~chi_40 u) # # PDG Width DECAY 1000001 4.39789139E+00 # sdown_L decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 1 # BR(~d_L -> ~chi_10 d) 2.50000000E-01 2 1000023 1 # BR(~d_L -> ~chi_20 d) 2.50000000E-01 2 1000025 1 # BR(~d_L -> ~chi_30 d) 2.50000000E-01 2 1000035 1 # BR(~d_L -> ~chi_40 d) # # PDG Width DECAY 2000001 5.89249524E-01 # sdown_R decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 1 # BR(~d_R -> ~chi_10 d) 2.50000000E-01 2 1000023 1 # BR(~d_R -> ~chi_20 d) 2.50000000E-01 2 1000025 1 # BR(~d_R -> ~chi_30 d) 2.50000000E-01 2 1000035 1 # BR(~d_R -> ~chi_40 d) # # PDG Width DECAY 1000004 4.39789139E+00 # scharm_L decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 4 # BR(~c_L -> ~chi_10 c) 2.50000000E-01 2 1000023 4 # BR(~c_L -> ~chi_20 c) 2.50000000E-01 2 1000025 4 # BR(~c_L -> ~chi_30 c) 2.50000000E-01 2 1000035 4 # BR(~c_L -> ~chi_40 c) # # PDG Width DECAY 2000004 2.35699810E+00 # scharm_R decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 4 # BR(~c_R -> ~chi_10 c) 2.50000000E-01 2 1000023 4 # BR(~c_R -> ~chi_20 c) 2.50000000E-01 2 1000025 4 # BR(~c_R -> ~chi_30 c) 2.50000000E-01 2 1000035 4 # BR(~c_R -> ~chi_40 c) # # PDG Width DECAY 1000003 4.39789139E+00 # sstrange_L decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 3 # BR(~s_L -> ~chi_10 s) 2.50000000E-01 2 1000023 3 # BR(~s_L -> ~chi_20 s) 2.50000000E-01 2 1000025 3 # BR(~s_L -> ~chi_30 s) 2.50000000E-01 2 1000035 3 # BR(~s_L -> ~chi_40 s) # # PDG Width DECAY 2000003 5.89249524E-01 # sstrange_R decays # BR NDA ID1 ID2 2.50000000E-01 2 1000022 3 # BR(~s_R -> ~chi_10 s) 2.50000000E-01 2 1000023 3 # BR(~s_R -> ~chi_20 s) 2.50000000E-01 2 1000025 3 # BR(~s_R -> ~chi_30 s) 2.50000000E-01 2 1000035 3 # BR(~s_R -> ~chi_40 s) # # PDG Width DECAY 1000011 1.14957407E+03 # selectron_L decays # BR NDA ID1 ID2 1.77035178E-01 2 1000022 11 # BR(~e_L -> ~chi_10 e-) 7.24219211E-01 2 1000023 11 # BR(~e_L -> ~chi_20 e-) 2.31709727E-03 2 1000025 11 # BR(~e_L -> ~chi_30 e-) 4.85963722E-02 2 1000035 11 # BR(~e_L -> ~chi_40 e-) 4.78321411E-02 2 -1000024 12 # BR(~e_L -> ~chi_1- nu_e) # # PDG Width DECAY 2000011 7.40491593E+02 # selectron_R decays # BR NDA ID1 ID2 9.70905097E-01 2 1000022 11 # BR(~e_R -> ~chi_10 e-) 1.12621565E-02 2 1000023 11 # BR(~e_R -> ~chi_20 e-) 3.75567007E-03 2 1000025 11 # BR(~e_R -> ~chi_30 e-) 1.40770760E-02 2 1000035 11 # BR(~e_R -> ~chi_40 e-) # # PDG Width DECAY 1000013 1.14957407E+03 # smuon_L decays # BR NDA ID1 ID2 1.77035178E-01 2 1000022 13 # BR(~mu_L -> ~chi_10 mu-) 7.24219211E-01 2 1000023 13 # BR(~mu_L -> ~chi_20 mu-) 2.31709727E-03 2 1000025 13 # BR(~mu_L -> ~chi_30 mu-) 4.85963722E-02 2 1000035 13 # BR(~mu_L -> ~chi_40 mu-) 4.78321411E-02 2 -1000024 14 # BR(~mu_L -> ~chi_1- nu_mu) # # PDG Width DECAY 2000013 7.40491593E+02 # smuon_R decays # BR NDA ID1 ID2 9.70905097E-01 2 1000022 13 # BR(~mu_R -> ~chi_10 mu-) 1.12621565E-02 2 1000023 13 # BR(~mu_R -> ~chi_20 mu-) 3.75567007E-03 2 1000025 13 # BR(~mu_R -> ~chi_30 mu-) 1.40770760E-02 2 1000035 13 # BR(~mu_R -> ~chi_40 mu-) # # PDG Width DECAY 1000015 7.21371477E+02 # stau_1 decays # BR NDA ID1 ID2 8.79723524E-01 2 1000022 15 # BR(~tau_1 -> ~chi_10 tau-) 9.78394101E-02 2 1000023 15 # BR(~tau_1 -> ~chi_20 tau-) 1.36341837E-02 2 1000025 15 # BR(~tau_1 -> ~chi_30 tau-) 8.80288245E-03 2 1000035 15 # BR(~tau_1 -> ~chi_40 tau-) # # PDG Width DECAY 2000015 7.64810560E+07 # stau_2 decays # BR NDA ID1 ID2 3.47470450E-06 2 1000022 15 # BR(~tau_2 -> ~chi_10 tau-) 9.92864945E-06 2 1000023 15 # BR(~tau_2 -> ~chi_20 tau-) 4.16934434E-07 2 1000025 15 # BR(~tau_2 -> ~chi_30 tau-) 1.26535934E-06 2 1000035 15 # BR(~tau_2 -> ~chi_40 tau-) 8.63848274E-07 2 -1000024 16 # BR(~tau_2 -> ~chi_1- nu_tau) 1.21539693E-16 2 1000016 -37 # BR(~tau_2 -> ~nu_tauL H-) 4.76541501E-01 2 1000016 -24 # BR(~tau_2 -> ~nu_tauL W-) 3.62362808E-13 2 1000015 25 # BR(~tau_2 -> ~tau_1 h) 1.17492293E-13 2 1000015 35 # BR(~tau_2 -> ~tau_1 H) 1.71889290E-13 2 1000015 36 # BR(~tau_2 -> ~tau_1 A) 5.23442550E-01 2 1000015 23 # BR(~tau_2 -> ~tau_1 Z) # # PDG Width DECAY 1000012 1.01221547E+03 # snu_eL decays # BR NDA ID1 ID2 2.79372600E-01 2 1000022 12 # BR(~nu_eL -> ~chi_10 nu_e) 5.88214477E-01 2 1000023 12 # BR(~nu_eL -> ~chi_20 nu_e) 1.18495551E-02 2 1000025 12 # BR(~nu_eL -> ~chi_30 nu_e) 1.16194049E-01 2 1000035 12 # BR(~nu_eL -> ~chi_40 nu_e) 4.36931919E-03 2 1000024 11 # BR(~nu_eL -> ~chi_1+ e-) # # PDG Width DECAY 1000014 1.01221547E+03 # snu_muL decays # BR NDA ID1 ID2 2.79372600E-01 2 1000022 14 # BR(~nu_muL -> ~chi_10 nu_mu) 5.88214477E-01 2 1000023 14 # BR(~nu_muL -> ~chi_20 nu_mu) 1.18495551E-02 2 1000025 14 # BR(~nu_muL -> ~chi_30 nu_mu) 1.16194049E-01 2 1000035 14 # BR(~nu_muL -> ~chi_40 nu_mu) 4.36931919E-03 2 1000024 13 # BR(~nu_muL -> ~chi_1+ mu-) # # PDG Width DECAY 1000016 3.45589203E+07 # snu_tauL decays # BR NDA ID1 ID2 8.14339470E-06 2 1000022 16 # BR(~nu_tauL -> ~chi_10 nu_tau) 1.71457854E-05 2 1000023 16 # BR(~nu_tauL -> ~chi_20 nu_tau) 3.45401102E-07 2 1000025 16 # BR(~nu_tauL -> ~chi_30 nu_tau) 3.38692486E-06 2 1000035 16 # BR(~nu_tauL -> ~chi_40 nu_tau) 8.91121489E-08 2 1000024 15 # BR(~nu_tauL -> ~chi_1+ tau-) 7.73336712E-13 2 -1000015 -37 # BR(~nu_tauL -> ~tau_1+ H-) 9.99970889E-01 2 -1000015 -24 # BR(~nu_tauL -> ~tau_1+ W-) # # PDG Width DECAY 1000024 7.01833737E+09 # chargino1+ decays # BR NDA ID1 ID2 2.90894156E-07 2 1000002 -1 # BR(~chi_1+ -> ~u_L db) 2.56597205E-07 2 -1000001 2 # BR(~chi_1+ -> ~d_L* u ) 2.90894156E-07 2 1000004 -3 # BR(~chi_1+ -> ~c_L sb) 2.56597205E-07 2 -1000003 4 # BR(~chi_1+ -> ~s_L* c ) 1.08970890E-07 2 -1000005 6 # BR(~chi_1+ -> ~b_1* t ) 2.66850233E-09 2 -2000005 6 # BR(~chi_1+ -> ~b_2* t ) 2.21204331E-09 2 -1000015 16 # BR(~chi_1+ -> ~tau_1+ nu_tau) 7.01106740E-03 2 1000022 24 # BR(~chi_1+ -> ~chi_10 W+) 9.34913437E-01 2 1000023 24 # BR(~chi_1+ -> ~chi_20 W+) 3.08104751E-02 2 1000025 24 # BR(~chi_1+ -> ~chi_30 W+) 2.72637115E-02 2 1000035 24 # BR(~chi_1+ -> ~chi_40 W+) 8.35493242E-09 2 1000022 37 # BR(~chi_1+ -> ~chi_10 H+) 1.26441931E-10 2 1000023 37 # BR(~chi_1+ -> ~chi_20 H+) 4.50124336E-08 2 1000025 37 # BR(~chi_1+ -> ~chi_30 H+) 4.67335464E-08 2 1000035 37 # BR(~chi_1+ -> ~chi_40 H+) # # PDG Width DECAY 1000037 3.93890988E+10 # chargino2+ decays # BR NDA ID1 ID2 6.74883626E-09 2 1000002 -1 # BR(~chi_2+ -> ~u_L db) 1.96057175E-08 2 -1000001 2 # BR(~chi_2+ -> ~d_L* u ) 6.74883626E-09 2 1000004 -3 # BR(~chi_2+ -> ~c_L sb) 1.96057175E-08 2 -1000003 4 # BR(~chi_2+ -> ~s_L* c ) 1.15937825E-07 2 1000006 -5 # BR(~chi_2+ -> ~t_1 bb) 1.19037282E-07 2 2000006 -5 # BR(~chi_2+ -> ~t_2 bb) 1.11588460E-07 2 -1000005 6 # BR(~chi_2+ -> ~b_1* t ) 1.44625833E-08 2 -2000005 6 # BR(~chi_2+ -> ~b_2* t ) 1.34536540E-09 2 1000012 -11 # BR(~chi_2+ -> ~nu_eL e+ ) 1.34536540E-09 2 1000014 -13 # BR(~chi_2+ -> ~nu_muL mu+ ) 1.82588282E-09 2 1000016 -15 # BR(~chi_2+ -> ~nu_tau1 tau+) 3.47934204E-09 2 -1000011 12 # BR(~chi_2+ -> ~e_L+ nu_e) 3.47934204E-09 2 -1000013 14 # BR(~chi_2+ -> ~mu_L+ nu_mu) 1.18484354E-11 2 -1000015 16 # BR(~chi_2+ -> ~tau_1+ nu_tau) 3.76671403E-09 2 -2000015 16 # BR(~chi_2+ -> ~tau_2+ nu_tau) 2.03789007E-02 2 1000024 23 # BR(~chi_2+ -> ~chi_1+ Z ) 5.36373400E-03 2 1000022 24 # BR(~chi_2+ -> ~chi_10 W+) 4.86793289E-02 2 1000023 24 # BR(~chi_2+ -> ~chi_20 W+) 3.97860738E-01 2 1000025 24 # BR(~chi_2+ -> ~chi_30 W+) 5.27716802E-01 2 1000035 24 # BR(~chi_2+ -> ~chi_40 W+) 1.42885308E-08 2 1000024 25 # BR(~chi_2+ -> ~chi_1+ h ) 1.05312175E-08 2 1000024 35 # BR(~chi_2+ -> ~chi_1+ H ) 1.45322715E-08 2 1000024 36 # BR(~chi_2+ -> ~chi_1+ A ) 2.63246430E-09 2 1000022 37 # BR(~chi_2+ -> ~chi_10 H+) 2.29697208E-08 2 1000023 37 # BR(~chi_2+ -> ~chi_20 H+) 2.47791857E-09 2 1000025 37 # BR(~chi_2+ -> ~chi_30 H+) 3.81515982E-10 2 1000035 37 # BR(~chi_2+ -> ~chi_40 H+) # # These are edited by hand, allowing for R parity violating decays. # With lambda_122 and lambda_121 equal and non-zero, all the decay modes below would be allowed. # Each leptonic decay would be have a 12.5% BR, but we choose to have equal BR to 2*mu, 2*e and e+mu # final states. In addition, we then halve the total leptonic decay branching ratio, and force # the remaining neutralinos to decay to q qbar nu # # PDG Width DECAY 1000022 1.97812500e-13 # neutralino1 decays 4.15000000E-02 3 -12 -13 11 # BR(~chi_10 --> nu_ebar mu+ e-) 4.15000000E-02 3 12 13 -11 # BR(~chi_10 --> nu_e mu- e+) 8.35000000E-02 3 -12 -13 13 # BR(~chi_10 --> nu_ebar mu+ mu-) 8.35000000E-02 3 12 13 -13 # BR(~chi_10 --> nu_e mu- mu+) 8.35000000E-02 3 -14 -11 11 # BR(~chi_10 --> nu_mubar e+ e-) 8.35000000E-02 3 14 11 -11 # BR(~chi_10 --> nu_mu e- e+) 4.15000000E-02 3 -14 -11 13 # BR(~chi_10 --> nu_mubar e+ mu-) 4.15000000E-02 3 14 11 -13 # BR(~chi_10 --> nu_mu e- mu+) 2.50000000E-01 3 2 1 1 # BR(~chi_10 --> u d d) 2.50000000E-01 3 -2 -1 -1 # BR(~chi_10 --> ubar dbar dbar) # # PDG Width DECAY 1000023 1.97812500e-14 # neutralino2 decays # BR NDA ID1 ID2 4.15000000E-02 3 -12 -13 11 # BR(~chi_20 --> nu_ebar mu+ e-) 4.15000000E-02 3 12 13 -11 # BR(~chi_20 --> nu_e mu- e+) 8.35000000E-02 3 -12 -13 13 # BR(~chi_20 --> nu_ebar mu+ mu-) 8.35000000E-02 3 12 13 -13 # BR(~chi_20 --> nu_e mu- mu+) 8.35000000E-02 3 -14 -11 11 # BR(~chi_20 --> nu_mubar e+ e-) 8.35000000E-02 3 14 11 -11 # BR(~chi_20 --> nu_mu e- e+) 4.15000000E-02 3 -14 -11 13 # BR(~chi_20 --> nu_mubar e+ mu-) 4.15000000E-02 3 14 11 -13 # BR(~chi_20 --> nu_mu e- mu+) 2.50000000E-01 3 2 1 1 # BR(~chi_20 --> u d d) 2.50000000E-01 3 -2 -1 -1 # BR(~chi_20 --> ubar dbar dbar) # # PDG Width DECAY 1000025 1.97812500e-15 # neutralino3 decays # BR NDA ID1 ID2 4.15000000E-02 3 -12 -13 11 # BR(~chi_30 --> nu_ebar mu+ e-) 4.15000000E-02 3 12 13 -11 # BR(~chi_30 --> nu_e mu- e+) 8.35000000E-02 3 -12 -13 13 # BR(~chi_30 --> nu_ebar mu+ mu-) 8.35000000E-02 3 12 13 -13 # BR(~chi_30 --> nu_e mu- mu+) 8.35000000E-02 3 -14 -11 11 # BR(~chi_30 --> nu_mubar e+ e-) 8.35000000E-02 3 14 11 -11 # BR(~chi_30 --> nu_mu e- e+) 4.15000000E-02 3 -14 -11 13 # BR(~chi_30 --> nu_mubar e+ mu-) 4.15000000E-02 3 14 11 -13 # BR(~chi_30 --> nu_mu e- mu+) 2.50000000E-01 3 2 1 1 # BR(~chi_30 --> u d d) 2.50000000E-01 3 -2 -1 -1 # BR(~chi_30 --> ubar dbar dbar) # # PDG Width DECAY 1000035 1.97812500e-16 # neutralino4 decays # BR NDA ID1 ID2 4.15000000E-02 3 -12 -13 11 # BR(~chi_40 --> nu_ebar mu+ e-) 4.15000000E-02 3 12 13 -11 # BR(~chi_40 --> nu_e mu- e+) 8.35000000E-02 3 -12 -13 13 # BR(~chi_40 --> nu_ebar mu+ mu-) 8.35000000E-02 3 12 13 -13 # BR(~chi_40 --> nu_e mu- mu+) 8.35000000E-02 3 -14 -11 11 # BR(~chi_40 --> nu_mubar e+ e-) 8.35000000E-02 3 14 11 -11 # BR(~chi_40 --> nu_mu e- e+) 4.15000000E-02 3 -14 -11 13 # BR(~chi_40 --> nu_mubar e+ mu-) 4.15000000E-02 3 14 11 -13 # BR(~chi_40 --> nu_mu e- mu+) 2.50000000E-01 3 2 1 1 # BR(~chi_40 --> u d d) 2.50000000E-01 3 -2 -1 -1 # BR(~chi_40 --> ubar dbar dbar) # # PDG Width DECAY 25 4.37072897E-02 # h decays # BR NDA ID1 ID2 -8.48956100E-04 2 5 -5 # BR(h -> b bb ) 6.49196146E-03 2 -15 15 # BR(h -> tau+ tau- ) 2.29847114E-05 2 -13 13 # BR(h -> mu+ mu- ) 4.98236650E-05 2 3 -3 # BR(h -> s sb ) 1.74013922E-03 2 4 -4 # BR(h -> c cb ) 4.24426486E-03 2 21 21 # BR(h -> g g ) 1.30150434E-04 2 22 22 # BR(h -> gam gam ) 2.51876211E-05 2 22 23 # BR(h -> Z gam ) 2.91783758E-03 2 24 -24 # BR(h -> W+ W- ) 2.72932971E-04 2 23 23 # BR(h -> Z Z ) 1.09439297E-01 2 1000023 1000023 # BR(h -> ~chi_20 ~chi_20) 1.09439297E-01 2 1000025 1000025 # BR(h -> ~chi_30 ~chi_30) 1.09439297E-01 2 1000035 1000035 # BR(h -> ~chi_40 ~chi_40) 2.18878594E-01 2 1000023 1000025 # BR(h -> ~chi_20 ~chi_30) 2.18878594E-01 2 1000023 1000035 # BR(h -> ~chi_20 ~chi_40) 2.18878594E-01 2 1000025 1000035 # BR(h -> ~chi_30 ~chi_40) # # PDG Width DECAY 35 2.84187547E-01 # H decays # BR NDA ID1 ID2 -2.33594670E-03 2 5 -5 # BR(H -> b bb ) 2.73102816E-01 2 -15 15 # BR(H -> tau+ tau- ) 9.65523813E-04 2 -13 13 # BR(H -> mu+ mu- ) 1.60807869E-03 2 3 -3 # BR(H -> s sb ) 9.94771297E-06 2 4 -4 # BR(H -> c cb ) 1.77882571E-01 2 6 -6 # BR(H -> t tb ) 2.68203727E-03 2 21 21 # BR(H -> g g ) 3.98544353E-06 2 22 22 # BR(H -> gam gam ) 1.37343122E-06 2 23 22 # BR(H -> Z gam ) 7.97367629E-03 2 24 -24 # BR(H -> W+ W- ) 3.71979823E-03 2 23 23 # BR(H -> Z Z ) 3.65976272E-02 2 25 25 # BR(H -> h h ) 2.38721161E-20 2 36 36 # BR(H -> A A ) 4.40168535E-14 2 23 36 # BR(H -> Z A ) 1.63370566E-01 2 1000022 1000022 # BR(H -> ~chi_10 ~chi_10) 2.61257666E-02 2 1000023 1000023 # BR(H -> ~chi_20 ~chi_20) 2.61257666E-02 2 1000025 1000025 # BR(H -> ~chi_30 ~chi_30) 2.61257666E-02 2 1000035 1000035 # BR(H -> ~chi_40 ~chi_40) 3.30953487E-02 2 1000022 1000023 # BR(H -> ~chi_10 ~chi_20) 3.30953487E-02 2 1000022 1000025 # BR(H -> ~chi_10 ~chi_30) 3.30953487E-02 2 1000022 1000035 # BR(H -> ~chi_10 ~chi_40) 5.22515333E-02 2 1000023 1000025 # BR(H -> ~chi_20 ~chi_30) 5.22515333E-02 2 1000023 1000035 # BR(H -> ~chi_20 ~chi_40) 5.22515333E-02 2 1000025 1000035 # BR(H -> ~chi_30 ~chi_40) # # PDG Width DECAY 36 4.28802674E-01 # A decays # BR NDA ID1 ID2 -1.55405765E-03 2 5 -5 # BR(A -> b bb ) 1.81296101E-01 2 -15 15 # BR(A -> tau+ tau- ) 6.40899983E-04 2 -13 13 # BR(A -> mu+ mu- ) 1.06839001E-03 2 3 -3 # BR(A -> s sb ) 5.32911397E-06 2 4 -4 # BR(A -> c cb ) 3.51193321E-01 2 6 -6 # BR(A -> t tb ) 1.70530600E-03 2 21 21 # BR(A -> g g ) 5.57854613E-06 2 22 22 # BR(A -> gam gam ) 1.09623588E-06 2 23 22 # BR(A -> Z gam ) 4.28392098E-03 2 23 25 # BR(A -> Z h ) 3.93439429E-01 2 1000022 1000022 # BR(A -> ~chi_10 ~chi_10) 7.30805342E-03 2 1000023 1000023 # BR(A -> ~chi_20 ~chi_20) 7.30805342E-03 2 1000025 1000025 # BR(A -> ~chi_30 ~chi_30) 7.30805342E-03 2 1000035 1000035 # BR(A -> ~chi_40 ~chi_40) 7.14068293E-04 2 1000022 1000023 # BR(A -> ~chi_10 ~chi_20) 7.14068293E-04 2 1000022 1000025 # BR(A -> ~chi_10 ~chi_30) 7.14068293E-04 2 1000022 1000035 # BR(A -> ~chi_10 ~chi_40) 1.46161068E-02 2 1000023 1000025 # BR(A -> ~chi_20 ~chi_30) 1.46161068E-02 2 1000023 1000035 # BR(A -> ~chi_20 ~chi_40) 1.46161068E-02 2 1000025 1000035 # BR(A -> ~chi_30 ~chi_40) # # PDG Width DECAY 37 7.39768709E-01 # H+ decays # BR NDA ID1 ID2 1.29309542E-03 2 4 -5 # BR(H+ -> c bb ) 1.07332262E-01 2 -15 16 # BR(H+ -> tau+ nu_tau ) 3.79429727E-04 2 -13 14 # BR(H+ -> mu+ nu_mu ) 8.27534994E-06 2 2 -5 # BR(H+ -> u bb ) 2.99043681E-05 2 2 -3 # BR(H+ -> u sb ) 6.18051235E-04 2 4 -3 # BR(H+ -> c sb ) 8.87507918E-01 2 6 -5 # BR(H+ -> t bb ) 2.83098990E-03 2 24 25 # BR(H+ -> W+ h ) 7.37617799E-08 2 24 36 # BR(H+ -> W+ A ) """ import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", pythiaPylistVerbosity = cms.untracked.int32(0), filterEfficiency = cms.untracked.double(0.1875), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(COM_ENERGY), crossSection = cms.untracked.double(CROSS_SECTION), maxEventsToPrint = cms.untracked.int32(1000), SLHATableForPythia8 = cms.string('%s' % SLHA_TABLE), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring( 'SUSY:all = off', # Indirect neutralino production from squark decay. 'SUSY:gg2squarkantisquark = on', 'SUSY:qqbar2squarkantisquark= on', 'SUSY:qq2squarksquark = on', # Direct neutralino pair production via weak process. # 'SUSY:qqbar2chi0chi0 = on', # 'RHadrons:allow = on', # 'RHadrons:allowDecay = on', # 'RHadrons:setMasses = on', # Pythia calculates the lifetime from the width in the SLHA file, so this shouldn't matter. '1000022:tau0 = %.1f' % CHIZERO1_CTAU, '1000023:tau0 = %.1f' % CHIZERO2_CTAU, '1000025:tau0 = %.1f' % CHIZERO3_CTAU, '1000035:tau0 = %.1f' % CHIZERO4_CTAU, # Allow particles of any lifetime to decay in Pythia. (Unnecessary in Pythia8) # 'ParticleDecays:limitTau0 = off' ), parameterSets = cms.vstring( 'pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters' ) ) ) #== Veto events containing two neutralinos of different species. pairFilterChi1 = cms.EDFilter("MCParticlePairFilter", ParticleID1 = cms.untracked.vint32(1000022), ParticleID2 = cms.untracked.vint32(1000023,1000025,1000035) ) pairFilterChi2 = cms.EDFilter("MCParticlePairFilter", ParticleID1 = cms.untracked.vint32(1000023), ParticleID2 = cms.untracked.vint32(1000022,1000025,1000035) ) pairFilterChi3 = cms.EDFilter("MCParticlePairFilter", ParticleID1 = cms.untracked.vint32(1000025), ParticleID2 = cms.untracked.vint32(1000022,1000023,1000035) ) pairFilterChi4 = cms.EDFilter("MCParticlePairFilter", ParticleID1 = cms.untracked.vint32(1000035), ParticleID2 = cms.untracked.vint32(1000022,1000023,1000025) ) # Take logical AND of the NOT of each of the above filters, so selecting events with a pair of identical # neutralinos. pairFilterSequence = cms.Sequence(~pairFilterChi1 * ~pairFilterChi2 * ~pairFilterChi3 * ~pairFilterChi4) # N.B. If your PYUPDA tables introduces new exotic particles, you will need # to include: # from PhysicsTools.HepMCCandAlgos.genParticles_cfi import * genParticlesForFilter = genParticles.clone() genParticlesForFilter.abortOnUnknownPDGCode = cms.untracked.bool(False) #== Require event to contain at least one neutralino that decays leptonically. from GeneratorInterface.GenFilters.XtoFFbarFilter_cfi import * chiZeroToLLbarFilter = XtoFFbarFilter.clone( src = cms.InputTag("genParticlesForFilter"), # Specify PDG codes of exotics to be accepted by filter. idMotherX = cms.vint32(1000022,1000023,1000025,1000035), idMotherY = cms.vint32(), # Allowed PDG ID of daughter of X (don't specify anti-particle code) idDaughterF = cms.vint32(11,13), # Allowed PDG ID of daughter of Y (don't specify anti-particle code) idDaughterG = cms.vint32() # If this is set true, then parameter idMotherY is ignored, and instead set equal to idMotherX. # Furthermore, events are vetoed if they contain more than one species from the list idMotherX. # idYequalsX = cms.bool(False) ) ProductionFilterSequence = cms.Sequence(generator*pairFilterSequence*genParticlesForFilter*chiZeroToLLbarFilter)
d387d6b7108eb53681abf09eee7e082564d3f4cd
90a3c3ecfab0425f520115e049dc6e8476b72b7c
/toph/Set Union.py
6fdfa05cf4cd80906d7f77ed398ea2bb349d9a95
[]
no_license
Manash-git/Competitive-Programming
f3e5f7a9bc202ec0a4667fe7f033f0013c8dfd83
bf79517699285c135bc126c5fabfd724e586460f
refs/heads/master
2022-12-05T19:37:11.814718
2020-08-24T19:16:30
2020-08-24T19:16:30
108,683,246
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
# n = {1,2,5} # print(type(n)) # l= [1,5,6] # print(type(set(l))) # print(n | set(l)) # res = n | set(l) # for i in res: # print(i,end=" ") n,m = input().split() x = [int(i) for i in str(input()).split()] y = [int(i) for i in str(input()).split()] x= set(x) y= set(y) # print( set(x)| set(y)) res = sorted(list(x.union(y))) print(res) for i in res: print(i,end=" ") # for i in range(len(res)-1): # print(res[i], end=" ") # for i in range(len(res)): # if i==len(res)-1: # print(res[i]) # else: # print(res[i],end=" ")
52bfaf495d77c7025a801ef5061d4964459beaf2
1c6283303ceb883add8de4ee07c5ffcfc2e93fab
/Jinja2/lib/python3.7/site-packages/uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpteif_e2b2ecdbf1fa5e15d2f6d87dd1789f1c.py
cff9728ec94869fd282e2d1c193da41ec355c901
[]
no_license
pdobrinskiy/devcore
0f5b3dfc2f3bf1e44abd716f008a01c443e14f18
580c7df6f5db8c118990cf01bc2b986285b9718b
refs/heads/main
2023-07-29T20:28:49.035475
2021-09-14T10:02:16
2021-09-14T10:02:16
405,919,390
0
0
null
null
null
null
UTF-8
Python
false
false
58,370
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class RsvpteIf(Base): """Rsvp Neighbor (Device) level Configuration The RsvpteIf class encapsulates a list of rsvpteIf resources that are managed by the user. A list of resources can be retrieved from the server using the RsvpteIf.find() method. The list can be managed by using the RsvpteIf.add() and RsvpteIf.remove() methods. """ __slots__ = () _SDM_NAME = 'rsvpteIf' _SDM_ATT_MAP = { 'Active': 'active', 'ActualRestartTime': 'actualRestartTime', 'AdvertisedRestartTime': 'advertisedRestartTime', 'AuthenticationAlgorithm': 'authenticationAlgorithm', 'AuthenticationKeyForReceivedPackets': 'authenticationKeyForReceivedPackets', 'AuthenticationKeyForSentPackets': 'authenticationKeyForSentPackets', 'AuthenticationKeyIdentifier': 'authenticationKeyIdentifier', 'AutoGenerateAuthenticationKeyIdentifier': 'autoGenerateAuthenticationKeyIdentifier', 'BundleMessageThresholdTime': 'bundleMessageThresholdTime', 'CheckIntegrityForReceivedPackets': 'checkIntegrityForReceivedPackets', 'ConnectedVia': 'connectedVia', 'Count': 'count', 'DescriptiveName': 'descriptiveName', 'DutIp': 'dutIp', 'EnableBfdRegistration': 'enableBfdRegistration', 'EnableBundleMessageSending': 'enableBundleMessageSending', 'EnableBundleMessageThresholdTimer': 'enableBundleMessageThresholdTimer', 'EnableGracefulRestartHelperMode': 'enableGracefulRestartHelperMode', 'EnableGracefulRestartRestartingMode': 'enableGracefulRestartRestartingMode', 'EnableHelloExtension': 'enableHelloExtension', 'EnableRefreshReduction': 'enableRefreshReduction', 'Errors': 'errors', 'GenerateSequenceNumberBasedOnRealTime': 'generateSequenceNumberBasedOnRealTime', 'HandshakeRequired': 'handshakeRequired', 'HelloInterval': 'helloInterval', 'HelloTimeoutMultiplier': 'helloTimeoutMultiplier', 'InitialSequenceNumber': 'initialSequenceNumber', 'LabelReqRefCount': 'labelReqRefCount', 'LabelSpaceEnd': 'labelSpaceEnd', 'LabelSpaceStart': 'labelSpaceStart', 'Multiplier': 'multiplier', 'Name': 'name', 'NumberOfRestarts': 'numberOfRestarts', 'OurIp': 'ourIp', 'RecoveryTime': 'recoveryTime', 'RestartStartTime': 'restartStartTime', 'RestartUpTime': 'restartUpTime', 'SessionStatus': 'sessionStatus', 'StackedLayers': 'stackedLayers', 'StateCounts': 'stateCounts', 'Status': 'status', 'SummaryRefreshInterval': 'summaryRefreshInterval', 'UseSameAuthenticationKeyForPeer': 'useSameAuthenticationKeyForPeer', 'UsingGatewayIp': 'usingGatewayIp', } _SDM_ENUM_MAP = { 'status': ['configured', 'error', 'mixed', 'notStarted', 'started', 'starting', 'stopping'], } def __init__(self, parent, list_op=False): super(RsvpteIf, self).__init__(parent, list_op) @property def LearnedInfo(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100.LearnedInfo): An instance of the LearnedInfo class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100 import LearnedInfo if self._properties.get('LearnedInfo', None) is not None: return self._properties.get('LearnedInfo') else: return LearnedInfo(self) @property def Active(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active'])) @property def ActualRestartTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Actual Restart Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ActualRestartTime'])) @property def AdvertisedRestartTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Advertised Restart Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertisedRestartTime'])) @property def AuthenticationAlgorithm(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Authentication Algorithm """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AuthenticationAlgorithm'])) @property def AuthenticationKeyForReceivedPackets(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Authentication Key for Received Packets """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AuthenticationKeyForReceivedPackets'])) @property def AuthenticationKeyForSentPackets(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Authentication Key for Sent Packets """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AuthenticationKeyForSentPackets'])) @property def AuthenticationKeyIdentifier(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Authentication Key Identifier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AuthenticationKeyIdentifier'])) @property def AutoGenerateAuthenticationKeyIdentifier(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Auto Generate Authentication Key Identifier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AutoGenerateAuthenticationKeyIdentifier'])) @property def BundleMessageThresholdTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Bundle Message Threshold Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BundleMessageThresholdTime'])) @property def CheckIntegrityForReceivedPackets(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Check Integrity for Received Packets """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CheckIntegrityForReceivedPackets'])) @property def ConnectedVia(self): # type: () -> List[str] """DEPRECATED Returns ------- - list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*]): List of layers this layer is used to connect with to the wire. """ return self._get_attribute(self._SDM_ATT_MAP['ConnectedVia']) @ConnectedVia.setter def ConnectedVia(self, value): # type: (List[str]) -> None self._set_attribute(self._SDM_ATT_MAP['ConnectedVia'], value) @property def Count(self): # type: () -> int """ Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @property def DescriptiveName(self): # type: () -> str """ Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. """ return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName']) @property def DutIp(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): DUT IP """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DutIp'])) @property def EnableBfdRegistration(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable BFD Registration """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableBfdRegistration'])) @property def EnableBundleMessageSending(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Bundle Message Sending """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableBundleMessageSending'])) @property def EnableBundleMessageThresholdTimer(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Bundle Message Threshold Timer """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableBundleMessageThresholdTimer'])) @property def EnableGracefulRestartHelperMode(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Helper-Mode """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableGracefulRestartHelperMode'])) @property def EnableGracefulRestartRestartingMode(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Restarting-Mode """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableGracefulRestartRestartingMode'])) @property def EnableHelloExtension(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Hello Extension """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableHelloExtension'])) @property def EnableRefreshReduction(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Refresh Reduction """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableRefreshReduction'])) @property def Errors(self): """ Returns ------- - list(dict(arg1:str[None | /api/v1/sessions/1/ixnetwork//.../*],arg2:list[str])): A list of errors that have occurred """ return self._get_attribute(self._SDM_ATT_MAP['Errors']) @property def GenerateSequenceNumberBasedOnRealTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Generate Sequence Number Based on Real Time """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['GenerateSequenceNumberBasedOnRealTime'])) @property def HandshakeRequired(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Handshake Required """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HandshakeRequired'])) @property def HelloInterval(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Hello Interval (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HelloInterval'])) @property def HelloTimeoutMultiplier(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Hello Timeout Multiplier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['HelloTimeoutMultiplier'])) @property def InitialSequenceNumber(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Initial Sequence Number """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['InitialSequenceNumber'])) @property def LabelReqRefCount(self): # type: () -> int """ Returns ------- - number: Number of Label Req in RSVP-TE DG """ return self._get_attribute(self._SDM_ATT_MAP['LabelReqRefCount']) @LabelReqRefCount.setter def LabelReqRefCount(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['LabelReqRefCount'], value) @property def LabelSpaceEnd(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Label Space End """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LabelSpaceEnd'])) @property def LabelSpaceStart(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Label Space Start """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LabelSpaceStart'])) @property def Multiplier(self): # type: () -> int """ Returns ------- - number: Number of layer instances per parent instance (multiplier) """ return self._get_attribute(self._SDM_ATT_MAP['Multiplier']) @Multiplier.setter def Multiplier(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['Multiplier'], value) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NumberOfRestarts(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Number of Restarts """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['NumberOfRestarts'])) @property def OurIp(self): # type: () -> List[str] """ Returns ------- - list(str): Local IP """ return self._get_attribute(self._SDM_ATT_MAP['OurIp']) @property def RecoveryTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Recovery Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RecoveryTime'])) @property def RestartStartTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Restart Start Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RestartStartTime'])) @property def RestartUpTime(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Restart Up Time (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RestartUpTime'])) @property def SessionStatus(self): # type: () -> List[str] """ Returns ------- - list(str[down | notStarted | up]): Current state of protocol session: Not Started - session negotiation not started, the session is not active yet. Down - actively trying to bring up a protocol session, but negotiation is didn't successfully complete (yet). Up - session came up successfully. """ return self._get_attribute(self._SDM_ATT_MAP['SessionStatus']) @property def StackedLayers(self): # type: () -> List[str] """ Returns ------- - list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*]): List of secondary (many to one) child layer protocols """ return self._get_attribute(self._SDM_ATT_MAP['StackedLayers']) @StackedLayers.setter def StackedLayers(self, value): # type: (List[str]) -> None self._set_attribute(self._SDM_ATT_MAP['StackedLayers'], value) @property def StateCounts(self): """ Returns ------- - dict(total:number,notStarted:number,down:number,up:number): A list of values that indicates the total number of sessions, the number of sessions not started, the number of sessions down and the number of sessions that are up """ return self._get_attribute(self._SDM_ATT_MAP['StateCounts']) @property def Status(self): # type: () -> str """ Returns ------- - str(configured | error | mixed | notStarted | started | starting | stopping): Running status of associated network element. Once in Started state, protocol sessions will begin to negotiate. """ return self._get_attribute(self._SDM_ATT_MAP['Status']) @property def SummaryRefreshInterval(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Summary Refresh Interval (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['SummaryRefreshInterval'])) @property def UseSameAuthenticationKeyForPeer(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Use Same Authentication Key for Peer """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['UseSameAuthenticationKeyForPeer'])) @property def UsingGatewayIp(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Using Gateway IP """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['UsingGatewayIp'])) def update(self, ConnectedVia=None, LabelReqRefCount=None, Multiplier=None, Name=None, StackedLayers=None): # type: (List[str], int, int, str, List[str]) -> RsvpteIf """Updates rsvpteIf resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - ConnectedVia (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of layers this layer is used to connect with to the wire. - LabelReqRefCount (number): Number of Label Req in RSVP-TE DG - Multiplier (number): Number of layer instances per parent instance (multiplier) - Name (str): Name of NGPF element, guaranteed to be unique in Scenario - StackedLayers (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of secondary (many to one) child layer protocols Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, ConnectedVia=None, LabelReqRefCount=None, Multiplier=None, Name=None, StackedLayers=None): # type: (List[str], int, int, str, List[str]) -> RsvpteIf """Adds a new rsvpteIf resource on the server and adds it to the container. Args ---- - ConnectedVia (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of layers this layer is used to connect with to the wire. - LabelReqRefCount (number): Number of Label Req in RSVP-TE DG - Multiplier (number): Number of layer instances per parent instance (multiplier) - Name (str): Name of NGPF element, guaranteed to be unique in Scenario - StackedLayers (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of secondary (many to one) child layer protocols Returns ------- - self: This instance with all currently retrieved rsvpteIf resources using find and the newly added rsvpteIf resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained rsvpteIf resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ConnectedVia=None, Count=None, DescriptiveName=None, Errors=None, LabelReqRefCount=None, Multiplier=None, Name=None, OurIp=None, SessionStatus=None, StackedLayers=None, StateCounts=None, Status=None): """Finds and retrieves rsvpteIf resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve rsvpteIf resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all rsvpteIf resources from the server. Args ---- - ConnectedVia (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of layers this layer is used to connect with to the wire. - Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. - DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. - Errors (list(dict(arg1:str[None | /api/v1/sessions/1/ixnetwork//.../*],arg2:list[str]))): A list of errors that have occurred - LabelReqRefCount (number): Number of Label Req in RSVP-TE DG - Multiplier (number): Number of layer instances per parent instance (multiplier) - Name (str): Name of NGPF element, guaranteed to be unique in Scenario - OurIp (list(str)): Local IP - SessionStatus (list(str[down | notStarted | up])): Current state of protocol session: Not Started - session negotiation not started, the session is not active yet. Down - actively trying to bring up a protocol session, but negotiation is didn't successfully complete (yet). Up - session came up successfully. - StackedLayers (list(str[None | /api/v1/sessions/1/ixnetwork/topology/.../*])): List of secondary (many to one) child layer protocols - StateCounts (dict(total:number,notStarted:number,down:number,up:number)): A list of values that indicates the total number of sessions, the number of sessions not started, the number of sessions down and the number of sessions that are up - Status (str(configured | error | mixed | notStarted | started | starting | stopping)): Running status of associated network element. Once in Started state, protocol sessions will begin to negotiate. Returns ------- - self: This instance with matching rsvpteIf resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of rsvpteIf data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the rsvpteIf resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def Abort(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the abort operation on the server. Abort CPF control plane (equals to demote to kUnconfigured state). The IxNetwork model allows for multiple method Signatures with the same name while python does not. abort(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. abort(SessionIndices=list, async_operation=bool) ------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. abort(SessionIndices=string, async_operation=bool) -------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('abort', payload=payload, response_object=None) def GetLearnedInfo(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the getLearnedInfo operation on the server. Get Learned Info The IxNetwork model allows for multiple method Signatures with the same name while python does not. getLearnedInfo(async_operation=bool) ------------------------------------ - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. getLearnedInfo(SessionIndices=list, async_operation=bool) --------------------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. getLearnedInfo(SessionIndices=string, async_operation=bool) ----------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. getLearnedInfo(Arg2=list, async_operation=bool)list --------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('getLearnedInfo', payload=payload, response_object=None) def RestartDown(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the restartDown operation on the server. Stop and start interfaces and sessions that are in Down state. The IxNetwork model allows for multiple method Signatures with the same name while python does not. restartDown(async_operation=bool) --------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. restartDown(SessionIndices=list, async_operation=bool) ------------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. restartDown(SessionIndices=string, async_operation=bool) -------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('restartDown', payload=payload, response_object=None) def RestartNeighbor(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the restartNeighbor operation on the server. Restart Neighbor restartNeighbor(Arg2=list, async_operation=bool)list ---------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('restartNeighbor', payload=payload, response_object=None) def RsvpRestartNeighbor(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the rsvpRestartNeighbor operation on the server. Gracefully restart selected Neighbors The IxNetwork model allows for multiple method Signatures with the same name while python does not. rsvpRestartNeighbor(async_operation=bool) ----------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpRestartNeighbor(SessionIndices=list, async_operation=bool) -------------------------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpRestartNeighbor(SessionIndices=string, async_operation=bool) ---------------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('rsvpRestartNeighbor', payload=payload, response_object=None) def RsvpResumeHello(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the rsvpResumeHello operation on the server. Resume sending Hello messages from selected Neighbors The IxNetwork model allows for multiple method Signatures with the same name while python does not. rsvpResumeHello(async_operation=bool) ------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpResumeHello(SessionIndices=list, async_operation=bool) ---------------------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpResumeHello(SessionIndices=string, async_operation=bool) ------------------------------------------------------------ - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('rsvpResumeHello', payload=payload, response_object=None) def RsvpStartSRefresh(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the rsvpStartSRefresh operation on the server. Start sending SRefresh messages from selected Neighbors The IxNetwork model allows for multiple method Signatures with the same name while python does not. rsvpStartSRefresh(async_operation=bool) --------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStartSRefresh(SessionIndices=list, async_operation=bool) ------------------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStartSRefresh(SessionIndices=string, async_operation=bool) -------------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('rsvpStartSRefresh', payload=payload, response_object=None) def RsvpStopHello(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the rsvpStopHello operation on the server. Stop sending Hello messages from selected Neighbors The IxNetwork model allows for multiple method Signatures with the same name while python does not. rsvpStopHello(async_operation=bool) ----------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStopHello(SessionIndices=list, async_operation=bool) -------------------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStopHello(SessionIndices=string, async_operation=bool) ---------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('rsvpStopHello', payload=payload, response_object=None) def RsvpStopSRefresh(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the rsvpStopSRefresh operation on the server. Stop sending SRefresh messages from selected Neighbors The IxNetwork model allows for multiple method Signatures with the same name while python does not. rsvpStopSRefresh(async_operation=bool) -------------------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStopSRefresh(SessionIndices=list, async_operation=bool) ----------------------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. rsvpStopSRefresh(SessionIndices=string, async_operation=bool) ------------------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('rsvpStopSRefresh', payload=payload, response_object=None) def Start(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the start operation on the server. Start CPF control plane (equals to promote to negotiated state). The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=list, async_operation=bool) ------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=string, async_operation=bool) -------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def StartHello(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the startHello operation on the server. Start Hello startHello(Arg2=list, async_operation=bool)list ----------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('startHello', payload=payload, response_object=None) def StartSRefresh(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the startSRefresh operation on the server. Start SRefresh startSRefresh(Arg2=list, async_operation=bool)list -------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('startSRefresh', payload=payload, response_object=None) def Stop(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the stop operation on the server. Stop CPF control plane (equals to demote to PreValidated-DoDDone state). The IxNetwork model allows for multiple method Signatures with the same name while python does not. stop(async_operation=bool) -------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=list, async_operation=bool) ----------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=string, async_operation=bool) ------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None) def StopHello(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the stopHello operation on the server. Stop Hello stopHello(Arg2=list, async_operation=bool)list ---------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stopHello', payload=payload, response_object=None) def StopSRefresh(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the stopSRefresh operation on the server. Stop SRefresh stopSRefresh(Arg2=list, async_operation=bool)list ------------------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stopSRefresh', payload=payload, response_object=None) def get_device_ids(self, PortNames=None, Active=None, ActualRestartTime=None, AdvertisedRestartTime=None, AuthenticationAlgorithm=None, AuthenticationKeyForReceivedPackets=None, AuthenticationKeyForSentPackets=None, AuthenticationKeyIdentifier=None, AutoGenerateAuthenticationKeyIdentifier=None, BundleMessageThresholdTime=None, CheckIntegrityForReceivedPackets=None, DutIp=None, EnableBfdRegistration=None, EnableBundleMessageSending=None, EnableBundleMessageThresholdTimer=None, EnableGracefulRestartHelperMode=None, EnableGracefulRestartRestartingMode=None, EnableHelloExtension=None, EnableRefreshReduction=None, GenerateSequenceNumberBasedOnRealTime=None, HandshakeRequired=None, HelloInterval=None, HelloTimeoutMultiplier=None, InitialSequenceNumber=None, LabelSpaceEnd=None, LabelSpaceStart=None, NumberOfRestarts=None, RecoveryTime=None, RestartStartTime=None, RestartUpTime=None, SummaryRefreshInterval=None, UseSameAuthenticationKeyForPeer=None, UsingGatewayIp=None): """Base class infrastructure that gets a list of rsvpteIf device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - ActualRestartTime (str): optional regex of actualRestartTime - AdvertisedRestartTime (str): optional regex of advertisedRestartTime - AuthenticationAlgorithm (str): optional regex of authenticationAlgorithm - AuthenticationKeyForReceivedPackets (str): optional regex of authenticationKeyForReceivedPackets - AuthenticationKeyForSentPackets (str): optional regex of authenticationKeyForSentPackets - AuthenticationKeyIdentifier (str): optional regex of authenticationKeyIdentifier - AutoGenerateAuthenticationKeyIdentifier (str): optional regex of autoGenerateAuthenticationKeyIdentifier - BundleMessageThresholdTime (str): optional regex of bundleMessageThresholdTime - CheckIntegrityForReceivedPackets (str): optional regex of checkIntegrityForReceivedPackets - DutIp (str): optional regex of dutIp - EnableBfdRegistration (str): optional regex of enableBfdRegistration - EnableBundleMessageSending (str): optional regex of enableBundleMessageSending - EnableBundleMessageThresholdTimer (str): optional regex of enableBundleMessageThresholdTimer - EnableGracefulRestartHelperMode (str): optional regex of enableGracefulRestartHelperMode - EnableGracefulRestartRestartingMode (str): optional regex of enableGracefulRestartRestartingMode - EnableHelloExtension (str): optional regex of enableHelloExtension - EnableRefreshReduction (str): optional regex of enableRefreshReduction - GenerateSequenceNumberBasedOnRealTime (str): optional regex of generateSequenceNumberBasedOnRealTime - HandshakeRequired (str): optional regex of handshakeRequired - HelloInterval (str): optional regex of helloInterval - HelloTimeoutMultiplier (str): optional regex of helloTimeoutMultiplier - InitialSequenceNumber (str): optional regex of initialSequenceNumber - LabelSpaceEnd (str): optional regex of labelSpaceEnd - LabelSpaceStart (str): optional regex of labelSpaceStart - NumberOfRestarts (str): optional regex of numberOfRestarts - RecoveryTime (str): optional regex of recoveryTime - RestartStartTime (str): optional regex of restartStartTime - RestartUpTime (str): optional regex of restartUpTime - SummaryRefreshInterval (str): optional regex of summaryRefreshInterval - UseSameAuthenticationKeyForPeer (str): optional regex of useSameAuthenticationKeyForPeer - UsingGatewayIp (str): optional regex of usingGatewayIp Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
5b2cd57f8e2194ec3817a24a6915598c622ca1b2
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/sphinx/sphinx/sphinx/search/nl.py
485c32c00bfbebd3c13c6fc237cc638855547bc0
[ "LicenseRef-scancode-other-permissive", "BSD-3-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:691f5261422e51d9e03272aae70ab30a0ad6712d65759be6a8f9a41bd904a565 size 21944
ed8e7e07c105152f5bc9ba5fcc02fe65b2194e23
b0b9f05bcfb0e366955f70753bcbd0b7fc997e7a
/pairsWithSpecificSum.py
de68f3bf37ad2534a22358946844b725ef7cd5cc
[]
no_license
mave5/pmarp
ae691e8fb3d7dc4cd51928ec240b077f09b27774
52aa9919e6384226ba10242144ceb5801a995071
refs/heads/master
2022-10-20T12:52:08.587884
2017-10-23T00:19:36
2017-10-23T00:19:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
# Merging 2 Packages def get_indices_of_item_wights(arr, limit): if len(arr)==1: return [] #elif (len(arr)==2) and (arr[0]+arr[1]==limit): #print arr[0],arr[1],arr[0]+arr[1] #return [] comps={} for i in range(0,len(arr)): w=arr[i] j=comps.get(lim-w) if j is not None: return [j,i] else: comps[w]=i return [] arr = [4, 4] lim = 8 print get_indices_of_item_wights(arr,lim) #%% # find a pair with specific sum def findPairSum(arr,s): first=0 last=len(arr)-1 while(first<last): if (arr[first]+arr[last]>s): last-=1 elif arr[first]+arr[last]<s: first+=1 else: return arr[first],arr[last] return []
cbeac3af8c846564c43834c3869b02822384413f
53b6b52a41ec415fec2a2d97cad524b8e9f8a4dc
/7_4_1/size.py
eb3ae38464d0a5f32857506357853e2ba0709ef4
[]
no_license
xyalbino/pwk_exercises
56b8aa359b19487733c0a9b98b9d9ed668723365
c6af719381928164aee3c7ce8db685c7984269ec
refs/heads/master
2020-06-14T22:21:34.571883
2019-03-11T22:07:44
2019-03-11T22:07:44
195,143,280
1
0
null
2019-07-04T00:30:30
2019-07-04T00:30:30
null
UTF-8
Python
false
false
525
py
#!/usr/bin/env python import socket, sys if __name__ == '__main__': buff = "A" * 2606 + "B" * 4 + "C" * (3500 - 2606 - 4) try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_conn = sock.connect(("10.11.21.97", 110)) data = sock.recv(1024) print data sock.send("USER test\r\n") data = sock.recv(1024) print data sock.send("PASS {0}\r\n".format(buff)) data = sock.recv(1024) print data except socket.error: print("[x] Unable to connect...") finally: sock.close() sys.exit(0)
e4b6e1cda54c6b2fd375df3d4a64e7a4eae646c4
808b96265c56807d9b1ddcbd93af00988bc3d5c1
/main.py
8aca8d644d250287044cfd44e73b7f42b8313317
[]
no_license
shivamdattapurkayastha99/drs-system
b1af2d087d5ac04294dcad3fcdb921d22a4b4b27
d35f347e6a8030c47dc0604490e360e4e63c1534
refs/heads/master
2023-07-06T18:35:33.594613
2021-08-10T20:20:20
2021-08-10T20:20:20
394,772,200
0
0
null
null
null
null
UTF-8
Python
false
false
2,883
py
import tkinter import cv2 import PIL.Image,PIL.ImageTk from functools import partial import threading import imutils import time stream=cv2.VideoCapture('clip.mp4') def play(speed): print(f"You clicked on play.Speed is {speed}") frame1=stream.get(cv2.CAP_PROP_POS_FRAMES) stream.set(cv2.CAP_PROP_POS_FRAMES,frame1+speed) grabbed,frame=stream.read() frame=imutils.resize(frame,width=SET_WIDTH,height=SET_HEIGHT) frame=PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image=frame canvas.create_image(0,0,image=frame,anchor=tkinter.NW) canvas.create_text(120,25,fill="green",font="Times 20",text="Decision Pending") def out(): thread=threading.Thread(target=pending,args=("out",)) thread.daemon=1 thread.start() print("player is out") def not_out(): thread=threading.Thread(target=pending,args=("not out",)) thread.daemon=1 thread.start() print("player is not out") def pending(decision): frame=cv2.cvtColor(cv2.imread("pending.png"),cv2.COLOR_BGR2RGB) frame=imutils.resize(frame,width=SET_WIDTH,height=SET_HEIGHT) frame=PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image=frame canvas.create_image(0,0,image=frame,anchor=tkinter.NW) time.sleep(1) frame=cv2.cvtColor(cv2.imread("sponsor.png"),cv2.COLOR_BGR2RGB) frame=imutils.resize(frame,width=SET_WIDTH,height=SET_HEIGHT) frame=PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image=frame canvas.create_image(0,0,image=frame,anchor=tkinter.NW) time.sleep(1.5) if decision=='out': decisionImg='out.png' else: decisionImg='not_out.png' frame=cv2.cvtColor(cv2.imread(decisionImg),cv2.COLOR_BGR2RGB) frame=imutils.resize(frame,width=SET_WIDTH,height=SET_HEIGHT) frame=PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(frame)) canvas.image=frame canvas.create_image(0,0,image=frame,anchor=tkinter.NW) SET_WIDTH=650 SET_HEIGHT=368 window=tkinter.Tk() window.title("Shivam DRS") cv_img=cv2.cvtColor(cv2.imread("welcome.png"),cv2.COLOR_BGR2RGB) canvas=tkinter.Canvas(window,width=SET_WIDTH,height=SET_HEIGHT) photo=PIL.ImageTk.PhotoImage(image=PIL.Image.fromarray(cv_img)) image_on_canvas=canvas.create_image(0,0,ancho=tkinter.NW,image=photo) canvas.pack() btn=tkinter.Button(window,text="<<Previous(fast),width=50",command=partial(play,-25)) btn.pack() btn=tkinter.Button(window,text="<<Previous(slow),width=50",command=partial(play,-2)) btn.pack() btn=tkinter.Button(window,text="Next(fast)>>,width=50",command=partial(play,25)) btn.pack() btn=tkinter.Button(window,text="Next(slow)>>,width=50",command=partial(play,2)) btn.pack() btn=tkinter.Button(window,text="Give Out,width=50",command=out) btn.pack() btn=tkinter.Button(window,text="Give Not Out,width=50",command=not_out) btn.pack() window.mainloop()
f06b7547ea0124184f651ddac7e32fdb35e9020b
43a38158517d5010cedc73e29b8b2342c29bdabe
/pythonpath/mytools_Mri/ui/info.py
04290a487832b013870fbcdbf1384fae87643289
[ "Apache-2.0" ]
permissive
billyoc/MRI
31e14583b5de3fd6e5d770f60aaef25118c86c2b
22cfd8bdd28cbca589b9796a6a191ce220db763d
refs/heads/master
2021-01-17T06:47:11.945432
2013-03-27T05:49:37
2013-03-27T05:49:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,454
py
# Copyright 2011 Tsutomu Uchino # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback import operator try: set() except: from sets import Set as set import mytools_Mri import mytools_Mri.values from mytools_Mri.unovalues import TypeClass, TypeClassGroups, ParamMode try: long except: long = int class Info(object): def __init__(self, engine, config): self.engine = engine self.config = config # informations def get_properties_info(self, entry, config): try: txt = self.engine.get_properties_info(entry, config.property_only) if config.abbrev: abbr_old = mytools_Mri.values.ABBROLD abbr_new = mytools_Mri.values.ABBRNEW txt[:] = [(i[0], i[1].replace(abbr_old, abbr_new), i[2], i[3], i[4], i[5]) for i in txt] if config.sorted: try: txt.sort(key=operator.itemgetter(0)) except: _items = [(item[0], item) for item in txt] _items.sort() txt = [item for (key, item) in _items] if config.show_labels and not config.grid: txt.insert(0, ('(Name)', '(Value Type)', '(Value)', '(Info.)', '(Attr.)', '(Handle)')) mnlen = max([len(x[0]) for x in txt]) mtlen = max([len(x[1]) for x in txt]) mvlen = max([len(x[2]) for x in txt]) malen = max([len(x[4]) for x in txt]) if config.grid: #return ((t[0], t[1], t[2], t[3], t[4], t[5]) for t in txt) return [(t[0], t[1], t[2], t[3], t[4]) for t in txt] else: return ''.join([("%s %s %s %s %s %s \n" % (t[0].ljust(mnlen), t[1].ljust(mtlen), t[2].ljust(mvlen), t[3].ljust(8), t[4].ljust(malen), t[5].rjust(3))) for t in txt]) except Exception as e: print(e) return "error" def get_methods_info(self, entry, config): try: txt = self.engine.get_methods_info(entry) if config.abbrev: abbr_old = mytools_Mri.values.ABBROLD abbr_new = mytools_Mri.values.ABBRNEW txt[:] = [(i[0], i[1].replace(abbr_old, abbr_new), i[2].replace(abbr_old, abbr_new), i[3].replace(abbr_old, abbr_new), i[4].replace(abbr_old, abbr_new)) for i in txt] if config.sorted: try: txt.sort(key=operator.itemgetter(0)) except: _items = [(item[0], item) for item in txt] _items.sort() txt = [item for (key, item) in _items] mnlen = max([len(x[0]) for x in txt]) malen = max([len(x[1]) for x in txt]) mrlen = max([len(x[2]) for x in txt]) mdlen = max([len(x[3]) for x in txt]) if malen > 50: malen = 50 if config.show_labels and not config.grid: txt.insert(0, ('(Name)', '(Arguments)', '(Return Type)', '(DeclaringClass)', '(Exceptions)')) if config.grid: return [(i[0], i[1], i[2], i[3], i[4]) for i in txt] else: return ''.join([('%s %s %s %s %s \n' % (i[0].ljust(mnlen), i[1].ljust(malen), i[2].ljust(mrlen), i[3].ljust(mdlen), i[4])) for i in txt]) except Exception as e: print(e) return "error." def get_interfaces_listeners_info(self, entry, config): slist = [] iinfos = self.get_interfaces_info(entry, config) linfos = self.get_listeners_info(entry, config) for li in linfos: try: iinfos.remove(li) except: pass iinfos = list(set(iinfos)) linfos = list(set(linfos)) if config.sorted: iinfos.sort() linfos.sort() if config.grid: return [(i,) for i in iinfos] + [('',), ('Listeners',)] + [(i,) for i in linfos] else: return "\n".join(slist + [ "(Interfaces)", "\n".join(iinfos), '', "(Listeners)", "\n".join(linfos)]) def get_interfaces_info(self, entry, config): try: #return self.engine.get_interfaces_info(self.current_entry) return self.engine.all_interfaces_info(entry) except Exception as e: print(e) def get_listeners_info(self, entry, config): return self.engine.get_listeners_info(entry) def get_services_info(self, entry, config): services = [] v_services = [] try: services = self.engine.get_services_info(entry) if config.sorted: services.sort() if services and not config.grid: services.insert(0, '(Supported Service Names)') except: if config.grid: return (("com.sun.star.lang.XServiceInfo interface is not supported.\n",),) else: return "com.sun.star.lang.XServiceInfo interface is not supported.\n" try: v_services = self.engine.get_available_services_info(entry) if config.sorted: v_services.sort() if v_services and not config.grid: v_services.insert(0, '(Available Service Names)') except: pass if config.grid: if v_services: return [(i,) for i in services] + [('',), ('Available Service Names',)] + [(i,) for i in v_services] else: return [(i,) for i in services] else: if v_services: v = "\n" *2 + "\n".join(v_services) else: v = "" #return "\n".join(services) + (("\n" *2 + "\n".join(v_services)) if v_services else "") return "\n".join(services) + v def get_struct_name(self, entry, config): name = entry.type.getName().strip("[]") if config.grid: struct_name = ((name, ),) else: struct_name = '(Struct Name)\n%s' % name return struct_name def get_struct_info(self, entry, config): try: txt = self.engine.get_struct_info(entry) if config.abbrev: abbr_old = mytools_Mri.values.ABBROLD abbr_new = mytools_Mri.values.ABBRNEW txt[:] = [(i[0], i[1].replace(abbr_old, abbr_new), i[2], i[3]) for i in txt] if config.sorted: try: txt.sort(key=operator.itemgetter(0)) except: _items = [(item[0], item) for item in txt] _items.sort() txt = [item for (key, item) in _items] if config.show_labels and not config.grid: txt.insert(0, ('(Name)', '(Value Type)', '(Value)', '(AccessMode)')) mnlen = max([len(x[0]) for x in txt]) mtlen = max([len(x[1]) for x in txt]) mvlen = max([len(x[2]) for x in txt]) if mnlen < 12: mnlen = 12 if mtlen < 16: mtlen = 16 if config.grid: return [(t[0], t[1], t[2], '', t[3]) for t in txt] else: return ''.join(['%s %s %s %s\n' % ( t[0].ljust(mnlen), t[1].ljust(mtlen), t[2].ljust(mvlen), t[3]) for t in txt]) except Exception as e: print(("get_struct_info: " + str(e))) return "error" def get_struct_sequence_info(self, entry, config): """create information about sequence of structs.""" from mytools_Mri import Entry try: if entry.target is None: return 'void' if isinstance(entry.target, tuple) and len(entry.target) == 0: if config.grid: return (("empty", "", "", "", ""),) else: return "empty" n = entry.type.getName().count('[]') l = list(range(len(entry.target))) b = entry.target[:] if n > 1: for i in range(n -1): l, b = get_elements(l, b) elements = [] if len(entry.target) > 0: for t, m in zip(b, l): #entry = Entry(self, '', t) #self.engine.complete(entry) entry = self.engine.create(self, "", t) elements.append(('(%s)' % m, self.engine.get_struct_info(entry))) if config.abbrev: abbr_old = mytools_Mri.values.ABBROLD abbr_new = mytools_Mri.values.ABBRNEW elements[:] = [ (i[0], [(j[0], j[1].replace(abbr_old, abbr_new), j[2], j[3]) for j in i[1]]) for i in elements] length = [] for element in elements: length.append((max([len(x[0]) for x in element[1]]), max([len(x[1]) for x in element[1]]), max([len(x[2]) for x in element[1]]))) mnlen = max([x[0] for x in length]) mtlen = max([x[1] for x in length]) mvlen = max([x[2] for x in length]) if mnlen < 12: mnlen = 12 if mtlen < 16: mtlen = 16 #if config.show_labels: if config.show_labels and not config.grid: elements.insert(0, ('', [('(Name)', '(Value Type)', '(Value)', '(AccessMode)')])) if config.grid: data = [] adata = data.append for t in elements: adata((t[0], '', '', '', '')) #adata((i[0], i[1], i[2], '', i[3]) for i in t[1]) for i in t[1]: adata((i[0], i[1], i[2], '', i[3])) return data else: return "\n".join(["%s\n%s" % (t[0], "\n".join(["%s %s %s %s" % ( i[0].ljust(mnlen), i[1].ljust(mtlen), i[2].ljust(mvlen), i[3]) for i in t[1]] )) for t in elements]).lstrip() except Exception as e: print(("get_struct_sequence_info: " + str(e))) return '' def get_sequence_info(self, entry, config): if config.grid: return tuple(self.multi_array_string(entry, grid=True)) else: return "\n".join(self.multi_array_string(entry)) def multi_array_string(self, entry, ctype="", grid=False): value = entry.target type_name = entry.type.getName() n = type_name.count('[]') if ctype == '': ctype = type_name.strip('[]') if grid: if n == 1: format = "(%03d)" else: format = "(%s)" else: if n == 1: format = "(%03d) = %s" else: format = "(%s) = %s" l = range(len(value)) b = value[:] if n > 1: for i in range(n -1): l,b = get_elements(l,b) txt = [] if ctype == 'string': if grid: txt = [(format % m, t, "", "", "") for t,m in zip(b,l)] else: txt = [format % (m,t) for t,m in zip(b,l)] elif ctype in ['num', 'long', 'double', 'float', 'hyper', 'short']: if grid: txt = [(format % m, t, "", "", "") for t,m in zip(b,l)] else: txt = [format % (m,t) for t,m in zip(b,l)] elif ctype == 'enum': if grid: txt = [(format % m, t.value, "", "", "") for t,m in zip(b,l)] else: txt = [format % (m,t.value) for t,m in zip(b,l)] elif ctype == 'byte': try: if grid: txt = [(format % m, hex(t), "", "", "") for t,m in zip(b,l)] else: txt = [format % (m, hex(t)) for t,m in zip(b,l)] except: if grid: txt = [(format % m, hex(ord(t)), "", "", "") for t,m in zip(b,l)] else: txt = [format % (m,hex(ord(t))) for t,m in zip(b,l)] elif ctype == 'type': if grid: txt = [(format % m, t.typeName, "", "", "") for t, m in zip(b,l)] else: txt = [format % (m,t.typeName) for t,m in zip(b,l)] else: if grid: txt = [(format % m, t, "", "", "") for t, m in zip(b,l)] else: txt = [format % (m,t) for t,m in zip(b,l)] #return '\n'.join(txt) if len(txt) == 0: if grid: txt = (("empty", "", "", "", ""),) else: txt = ("empty",) return txt def get_elements(labels, values): a = [] l = [] for j in range(len(values)): p = labels[j] d = values[j] for i in range(len(d)): a.append(d[i]) l.append("%03d,%03d" % (p,i)) return (l, a) from mytools_Mri import CancelException class ExtendedInfo(Info): """ Supports to get or set property value. """ def make_property_value(self, property_info, old_value=None, method_info=None): """used to get new property value for callback.""" ARGS = TypeClassGroups.NUMERIC + [TypeClass.STRING, TypeClass.BOOLEAN] if property_info: prop_type = property_info.Type if prop_type is None: raise Exception("%s property has multiple types." % property_info.Name) prop_name = property_info.Name type_class = prop_type.typeClass type_name = prop_type.typeName elif method_info: prop_name = method_info.getName() return_type = method_info.getReturnType() type_class = return_type.getTypeClasss() type_name = return_type.getName() else: raise Exception() if type_class in ARGS: strvalue = self.engine.get_string_value(type_class, old_value) value, state = self.dlgs.dialog_input( "Input new value.","%s\ntype: %s\nvalue: %s" % (prop_name, type_name, strvalue)) if state: return self.engine.get_value(value, type_name, type_class) elif type_class == TypeClass.ENUM: # with Ref. button strvalue = self.main.engine.get_string_value(type_class, old_value) values = ','.join([i.Name for i in self.engine.for_name(type_name).getFields()]) value, state = self.dlgs.dialog_input2( "Input a new value.","%s\ntype: %s\nvalue: %s\nvalues: \n%s" % (prop_name, type_name, strvalue, values), '', type_name) if state: r = self.engine.get_value(value, type_name, type_class) return r raise CancelException('Unable to input value.') def get_arguments(self, method): """used for callback to get argument.""" if not method: raise Exception('illeagal method.') p_infos = method.getParameterInfos() n_infos = len(p_infos) method_name = method.Name if n_infos == 0: return () elif n_infos == 1: if method_name in ('getByIndex', 'getByName', 'getAccessibleChild', 'getByIdentifier'): state = False try: state, arg, ttype, key = self.get_arguments_for_special_methods(method) except Exception as e: print(e) traceback.print_exc() if state: return (arg, ) # check all arguments COMPATI_ARGS = TypeClassGroups.NUMERIC + [TypeClass.STRING, TypeClass.BOOLEAN, TypeClass.ENUM] compati = False for param in p_infos: if param.aType.getTypeClass() in COMPATI_ARGS and param.aMode == ParamMode.IN: compati = True else: compati = False break if not compati: raise Exception('unable to get arguments from input.') elements = [] for param in p_infos: elements.append('%s %s %s' % ( self.engine.get_mode_string(param.aMode), param.aType.Name, param.aName)) #arg = "( %s )" % ", ".join(elements) state, str_args = self.dlgs.dialog_elemental_input( elements, 'input arguments', "%s(\n\t%s\n )" % (method_name, ", \n\t".join(elements)), (method.getDeclaringClass().Name, method_name)) if not state: raise CancelException("canceled.") args = [] for param, element in zip(p_infos, str_args): args.append( self.engine.get_value(element, param.aType.getName(), param.aType.getTypeClass())) return args def get_arguments_for_special_methods(self, method): """ """ target = self.main.current.target method_name = method.Name if method_name == 'getByIndex': n = target.getCount() selected = self.dlgs.dialog_select(tuple(range(n))) if selected != None: ttype = target.getElementType() return (True, long(selected), ttype, "%s(%s)" % (method_name, selected)) elif method_name == 'getByName': names = target.getElementNames() selected = self.dlgs.dialog_select(names) if selected != None: ttype = target.getElementType() return (True, selected, ttype, "%s(\"%s\")" % (method_name, selected)) elif method_name == 'getAccessibleChild': n = target.getAccessibleChildCount() selected = self.dlgs.dialog_select(tuple(range(n))) if selected != None: return (True, long(selected), None, "%s(%s)" % (method_name, selected)) elif method_name == 'getByIdentifier': ids = target.getIdentifiers() selected = self.dlgs.dialog_select(tuple([str(i) for i in ids])) if selected is not None: ttype = target.getElementType() return (True, long(selected), ttype, "%s(%s)" % (method_name, selected)) return (False, None, None, None)
f30e390e9256b93999d1c3a66ed1a5ae6ada94e0
e262e64415335060868e9f7f73ab8701e3be2f7b
/.history/demo_20201106173944.py
6d65b718ae355669c834ddbbe48686434fa086b7
[]
no_license
Allison001/developer_test
6e211f1e2bd4287ee26fd2b33baf1c6a8d80fc63
b8e04b4b248b0c10a35e93128a5323165990052c
refs/heads/master
2023-06-18T08:46:40.202383
2021-07-23T03:31:54
2021-07-23T03:31:54
322,807,303
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
# a = 1 # if a==0: # print("a=0") # else: # print("a!0") # """ # x>1 (3x-5) # -1<=x<=1 (x+2) # x < -1 (5x+3) # """ # x = int(input("输入您的数字:")) # if x > 1: # print(3*x-5) # else: # if x >= -1: # print(x + 2) # else: # print(5*x+3) # 猜数字游戏 # import random # computet_num = random.randint(1,100) # while True: # people_num = int(input("请输入您的数字:")) # if people_num < computet_num: # print("大一点") # elif people_num > computet_num: # print("小一点") # else: # print("猜对了") # break # def fun1(a,b,c): # print("这是参数a:",a) # print("这是参数b:",b) # print("这是参数c:",c) # fun1(1,23,4) # def fun1(a): # # return "ac" # print("a") # fun1("c") # def fun1(a,b,c,d): # print(a,b,c,d) # fun1(10,13,d=13,c=90) # fun1 = lambda x: x+10 # print(fun1(5)) # def fun1(x): # return x+10 # print(fun1(5)) # fun1 = lambda x,y: x+y # print(fun1(10,12)) # list = ["ha"] # b = {"hah"} # c = "a" # d = ("a","v") # print(type(list)) # print(type(b)) # print(type(c)) # print(type(d)) lista = ["a","b","c"] # lista.append("b") # lista.insert(5,"e") # lista.remove("b") lista.pop(0) print(lista)
cec74534f2de9765f471aa6aae72fcbe7d53e3ac
0085acce00bbd20658f312f30575632b6272090d
/leetcode_python2/lc917_reverse_only_letters.py
edd5790198b06f867191c4684a3f882a2b368ac8
[]
no_license
garderobin/Leetcode
52fce8279e4963bc7824a19aae903ca6aad83867
ea10ce7fe465431399e444c6ecb0b7560b17e1e4
refs/heads/master
2021-01-17T14:43:49.423071
2018-11-12T00:55:47
2018-11-12T00:55:47
51,183,667
0
1
null
2018-11-12T00:55:48
2016-02-06T01:00:36
Java
UTF-8
Python
false
false
580
py
from abc import ABCMeta, abstractmethod class ReverseOnlyLetters: __metaclass__ = ABCMeta @abstractmethod def reverse_only_letters(self, S): """ :type S: str :rtype: str """ class ReverseOnlyLettersImpl1(ReverseOnlyLetters): """ Time: O(n) Space: O(n) """ def reverse_only_letters(self, S): letters, rs = [c for c in S if c.isalpha()], [] for c in S: if c.isalpha(): rs.append(letters.pop()) else: rs.append(c) return ''.join(rs)
2ab64215e6c7985e26ab397ec6fe152920e75e0f
01b6a10e92f3dae773f824065a5508b073fd6d62
/baekjoon/1837.py
8a5748cf6fa39529be2da4aa74086b2030da1c75
[]
no_license
jihongeek/Algo
213989dc86b5476939776c31b12b21fba48bff8d
8dfc9db33f611ff76c4943be9868847c3c0501b4
refs/heads/master
2023-08-28T23:32:42.448354
2023-08-12T11:26:08
2023-08-12T11:26:08
188,658,216
2
0
null
null
null
null
UTF-8
Python
false
false
80
py
from sys import stdin p,k = map(int,stdin.readline().strip()) for i in range()
b8466fc6eb726ee2342e5e499d2da3d64d0cb182
76938f270e6165514162856b2ed33c78e3c3bcb5
/lib/coginvasion/battle/TurretGag.py
f6649cdc3a30755cf243d311c6153058e48d7e42
[]
no_license
coginvasion/src
9a5ec682845cc4c9c013fcc35e9b379bd4360b6c
2d7fcdb0cd073050250cb51292ee48300a9fe19f
refs/heads/master
2021-01-19T06:50:11.786112
2015-11-08T12:28:52
2015-11-08T12:28:52
61,545,543
1
2
null
null
null
null
UTF-8
Python
false
false
4,296
py
# Embedded file name: lib.coginvasion.battle.TurretGag """ Filename: TurretGag.py Created by: DecodedLogic (10Aug15) """ from panda3d.core import CollisionSphere, CollisionNode, BitMask32, CollisionHandlerEvent, NodePath from direct.showbase.DirectObject import DirectObject from direct.interval.ProjectileInterval import ProjectileInterval from direct.actor.Actor import Actor from lib.coginvasion.globals import CIGlobals from lib.coginvasion.gags.GagManager import GagManager class TurretGag(DirectObject): def __init__(self, turret, collideEventName, gagName): DirectObject.__init__(self) self.turret = turret self.collideEventName = collideEventName self.eventName = 'turretGagSensor' + str(id(self)) + '-into' self.trackName = 'turretGagTrack' + str(id(self)) self.track = None self.gravityMult = 0.9 self.duration = 2.5 self.setClass(gagName) return def setClass(self, gagName): gagMgr = GagManager() self.gagClass = gagMgr.getGagByName(gagName) self.gag = None return def build(self): self.gagClass.build() self.gag = self.gagClass.getGag() self.gag.reparentTo(self.turret.getCannon()) self.gag.setY(5.2) self.gag.setHpr(90, -90, 90) if isinstance(self.gag, Actor): self.gag.loop('chan') def shoot(self, rangeVector): if not self.gag: return rangeNode = NodePath('Shoot Range') rangeNode.reparentTo(self.turret.getCannon()) rangeNode.setScale(render, 1) rangeNode.setPos(rangeVector) rangeNode.setHpr(90, -90, 90) self.gag.setScale(self.gag.getScale(render)) self.gag.setScale(self.gag.getScale(render)) self.gag.setPos(self.gag.getPos(render)) self.gag.reparentTo(render) self.gag.setHpr(rangeNode.getHpr(render)) base.audio3d.attachSoundToObject(self.gagClass.woosh, self.gag) self.gagClass.woosh.play() self.track = ProjectileInterval(self.gag, startPos=self.gag.getPos(render), endPos=rangeNode.getPos(render), gravityMult=self.gravityMult, duration=self.duration, name=self.trackName) self.track.setDoneEvent(self.track.getName()) self.acceptOnce(self.track.getDoneEvent(), self.cleanup) self.track.start() fireSfx = base.audio3d.loadSfx('phase_4/audio/sfx/MG_cannon_fire_alt.mp3') base.audio3d.attachSoundToObject(fireSfx, self.turret.getCannon()) fireSfx.play() if self.turret.isLocal(): self.buildCollisions() self.acceptOnce(self.eventName, self.handleCollision) def getGag(self): return self.gag def buildCollisions(self): pieSphere = CollisionSphere(0, 0, 0, 1) pieSensor = CollisionNode('turretGagSensor' + str(id(self))) pieSensor.addSolid(pieSphere) pieNP = self.gag.attachNewNode(pieSensor) pieNP.setCollideMask(BitMask32(0)) pieNP.node().setFromCollideMask(CIGlobals.WallBitmask | CIGlobals.FloorBitmask) event = CollisionHandlerEvent() event.set_in_pattern('%fn-into') event.set_out_pattern('%fn-out') base.cTrav.addCollider(pieNP, event) def handleCollision(self, entry): messenger.send(self.collideEventName, [entry, self]) def getID(self): return self.gagClass.getID() def getCollideEventName(self): return self.collideEventName def cleanup(self): if hasattr(self, 'collideEventName'): del self.collideEventName if self.track: self.track.finish() self.track = None if self.turret: if self.turret.entities and self in self.turret.entities: self.turret.entities.remove(self) self.turret = None self.ignore(self.eventName) self.duration = None self.gravityMult = None self.eventName = None self.trackName = None if self.gagClass: self.gagClass.cleanupGag() self.gagClass = None if self.gag: if isinstance(self.gag, Actor): self.gag.cleanup() self.gag.removeNode() self.gag = None return
23abc26505d01fa5cea8932a4626c30f652939e6
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
/expedient/src/python/expedient/clearinghouse/geni/planetlab/sfa-models.py
0b196d17769a39223a7fdf4a5aa52bdb1bd29381
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
dana-i2cat/felix
4a87af639e4c7db686bfa03f1ae4ce62711615e3
059ed2b3308bda2af5e1942dc9967e6573dd6a53
refs/heads/master
2021-01-02T23:12:43.840754
2016-02-04T10:04:24
2016-02-04T10:04:24
17,132,912
4
4
null
null
null
null
UTF-8
Python
false
false
16,040
py
''' Created on Jul 4, 2010 @author: jnaous ''' from django.db import models from expedient.clearinghouse.resources.models import Resource, Sliver from expedient.clearinghouse.geni.models import GENIAggregate, GENISliceInfo from xml.etree import cElementTree as et import calendar from exceptions import RSpecParsingException, NameConflictException import logging logger = logging.getLogger("PlanetLabModels") def get_start_duration(start_time=None, end_time=None): """ Get the start_time and duration in POSIX seconds from the epoch. @keyword start_time: Optional. A start time for the whole network. Default = None. @type start_time: C{datetime.datetime} instance @keyword end_time: Optional. An end time for the whole network. Default = None. @type end_time: C{datetime.datetime} instance @return: a tuple (start_time, duration) @rtype: (int or None, int or None) """ if start_time: start_time_sec = calendar.timegm(start_time.timetuple()) if end_time: duration = end_time - start_time duration = duration.total_seconds() else: duration = None else: start_time_sec = None duration = None return (start_time_sec, duration) class PlanetLabSliceInfo(GENISliceInfo): """ Subclasses L{GENIAggregateSliceInfo} to specify additional attributes for PlanetLab RSpecs """ start_time = models.DateTimeField(blank=True, null=True) end_time = models.DateTimeField(blank=True, null=True) class PlanetLabNetwork(Resource): """ PlanetLab NetSpec. """ def __unicode__(self): return u"PlanetLabNetwork %s" % self.name @classmethod def get_from_elem(cls, pl_aggregate, network_elem): """ Create or update the NetSpec in the DB from the Element C{network_elem} that is found in an RSpec. If the same name is in another aggregate, a L{NameConflictException} is raised. @param pl_aggregate: The PlanetLabAggregate to which this network belongs. @type pl_aggregate: L{PlanetLabAggregate} @param network_elem: a NetSpec element from an RSpec. @type network_elem: C{xml.etree.ElementTree.Element} """ name = network_elem.get("name") if not name: raise RSpecParsingException("Could not find NetSpec name.") try: net = cls.objects.get(name=name) except cls.DoesNotExist: net = cls.objects.create( name=name, aggregate=pl_aggregate) if net.aggregate.pk != pl_aggregate.pk: raise NameConflictException( "Network %s is in a different aggregate." % name) if net.available == False: net.available = True net.update_timestamp() net.save() # Update the nodes in the network current_node_pks = set( net.nodes.filter(available=True).values_list("pk", flat=True)) new_node_pks = set() node_elems = network_elem.findall(".//NodeSpec") for node_elem in node_elems: node = PlanetLabNode.get_from_elem(net, node_elem) new_node_pks.add(node.pk) logger.debug("Added %s." % node) # set available to False for old nodes old_node_pks = current_node_pks - new_node_pks for pk in old_node_pks: node = PlanetLabNode.objects.get(pk=pk) node.available = False node.update_timestamp() node.save() logger.debug("Set %s to unavailable." % node) return net def get_as_elem(self, slice=None): """ Get the PlanetLabNetwork as ElementTree element so it can be added to the RSpec and dumped as XML. @keyword slice: Optional. Slice for which we are producing this RSpec. Specifying the slice will set the <sliver /> tag for PlanetLab nodes that are part of the slice. @type slice: L{expedient.clearinghouse.slice.models.Slice}. @return: the NetSpec element @rtype: C{xml.etree.ElementTree.Element} """ # see if this network has a sliver in the slice. netspec = et.Element("NetSpec", dict( name=self.name, )) if slice: try: sliver = slice.sliver_set.get(resource__pk=self.pk) net_sliver = sliver.as_leaf_class() stime, duration = get_start_duration( net_sliver.start_time, net_sliver.end_time) netspec["start_time"] = "%s" % stime netspec["duration"] = "%s" % duration except Sliver.DoesNotExist: pass for rsc_type in ["node"]: #, "link"]: # Do all the DB ops in one go to be efficient. If we do this for # each node, then we can get really slow. if slice: # Get the IDs of all the planetlab nodes that are in the slice filter_key = "planetlab%s__network" % rsc_type rsc_ids = slice.resource_set.filter( **{filter_key: self}).values_list("pk", flat=True) # get the wanted sliver info as tuples sliver_info_tuples = slice.sliver_set.filter( resource__pk__in=rsc_ids, ).values_list("resource_id", "start_time", "end_time") # now make the resource ids dictionary keys sliver_info = {} for t in sliver_info_tuples: sliver_info[t[0]] = t[1:] else: rsc_ids = [] sliver_info = {} rsc_set_elem = et.SubElement(netspec, "%ss" % rsc_type) for rsc in getattr(self, "%ss" % rsc_type).all(): rsc_elem = rsc.get_as_elem() if rsc.pk in rsc_ids: # Add sliver tag et.SubElement(rsc_elem, "sliver") # add start/duration stime, duration = get_start_duration( *sliver_info_tuples[rsc.pk]) rsc_elem["start_time"] = "%s" % stime rsc_elem["duration"] = "%s" % duration rsc_set_elem.append(rsc_elem) return netspec #class PlanetLabLink(Resource): # """ # A PlanetLab Rspec LinkSpec. # """ # type = models.CharField(max_length=60) # init_params = models.TextField(default="") # bw = models.IntegerField("Bandwidth") # min_alloc = models.IntegerField("Minimum allocation") # max_alloc = models.IntegerField("Maximum allocation") # network = models.ForeignKey(PlanetLabNetwork, related_name="links") # # def get_as_elem(self): # """ # Return the link as an ElementTree element. # # @return: the LinkSpec element # @rtype: C{xml.etree.ElementTree.Element} # """ # return et.Element("LinkSpec", dict( # name = self.name, # type = self.type, # init_params = self.init_params, # bw = self.bw, # min_alloc = self.min_alloc, # max_alloc = self.max_alloc, # )) class PlanetLabNode(Resource): ''' A PlanetLab node. ''' type = models.CharField(max_length=60) init_params = models.TextField(default="") cpu_min = models.IntegerField() cpu_share = models.IntegerField() cpu_pct = models.IntegerField() disk_max = models.IntegerField() network = models.ForeignKey(PlanetLabNetwork, related_name="nodes") def __unicode__(self): return u"PlanetLabNode %s" % self.name @classmethod def get_from_elem(cls, network, node_elem): """ Create or update the planetlab node in the DB from the Element C{node_elem} that is found in an RSpec. If the same name is in another aggregate, a L{NameConflictException} is raised. @param network: The PlanetLabNetwork to which this node belongs. @type network: L{PlanetLabNetwork} @param node_elem: a NodeSpec element from an RSpec. @type node_elem: C{xml.etree.ElementTree.Element} """ name = node_elem.get("name") if not name: raise RSpecParsingException("Could not find NodeSpec name.") try: node = cls.objects.get(name=name) if node.aggregate.pk != network.aggregate.pk: raise NameConflictException( "Node %s is in a different aggregate." % name) if not node.available: node.available = True node.update_timestamp() except cls.DoesNotExist: node = cls(name=name, aggregate=network.aggregate, available=True) for attr in ["type", "init_params"]: setattr(node, attr, node_elem.get(attr, "")) for attr in ["cpu_min", "cpu_share", "cpu_pct", "disk_max"]: setattr(node, attr, node_elem.get(attr, 0)) node.network = network node.save() # Update the ifaces on the node current_iface_pks = set( node.interfaces.filter(available=True).values_list("pk", flat=True)) new_iface_pks = set() iface_elems = node_elem.findall(".//IfaceSpec") for iface_elem in iface_elems: iface = PlanetLabInterface.get_from_elem(node, iface_elem) new_iface_pks.add(iface.pk) logger.debug("Added %s" % iface) # set available to False for old interfaces old_iface_pks = current_iface_pks - new_iface_pks for pk in old_iface_pks: iface = PlanetLabInterface.objects.get(pk=pk) iface.available = False iface.save() logger.debug("Set %s to unavailable" % iface) return node def get_as_elem(self): """ Return the node as an ElementTree element. @return: the NodeSpec element @rtype: C{xml.etree.ElementTree.Element} """ node_elem = et.Element("NodeSpec", dict( name = self.name, type = self.type, init_params = self.init_params, cpu_min = self.cpu_min, cpu_share = self.cpu_share, cpu_pct = self.cpu_pct, disk_max = self.disk_max, )) net_if = et.SubElement(node_elem, "net_if") for iface in self.planetlabinterface_set.all(): net_if.append(iface.get_as_elem()) return node_elem class PlanetLabInterface(models.Model): ''' A PlanetLab Interface (IfSpec) ''' name = models.CharField(max_length=200) addr = models.CharField("Address", max_length=200) type = models.CharField(max_length=60) init_params = models.TextField(default="") min_rate = models.IntegerField("Minimum Throughput") max_rate = models.IntegerField("Maximum Throughput") max_kbyte = models.IntegerField() ip_spoof = models.BooleanField("Spoof IP Address?") available = models.BooleanField(default=True) # link = models.ForeignKey(PlanetLabLink, related_name="endpoints") node = models.ForeignKey(PlanetLabNode, related_name="interfaces") def __unicode__(self): return u"PlanetLabInterface %s" % self.name @classmethod def get_from_elem(cls, node, iface_elem): """ Create or update the planetlab interface in the DB from the Element C{iface_elem} that is found in an RSpec. @param node: The PlanetLabNode to which this interface belongs. @type network: L{PlanetLabNode} @param iface_elem: a IfaceSpec element from an RSpec. @type iface_elem: C{xml.etree.ElementTree.Element} """ name = iface_elem.get("name") if not name: raise RSpecParsingException("Could not find IfaceSpec name.") try: iface = cls.objects.get(name=name, node=node) except cls.DoesNotExist: iface = cls(name=name, node=node) for attr in ["addr", "type", "init_params"]: setattr(iface, attr, iface_elem.get(attr, "")) for attr in ["min_rate", "max_rate", "max_kbyte"]: setattr(iface, attr, iface_elem.get(attr, 0)) for attr in ["ip_spoof"]: setattr(iface, attr, iface_elem.get(attr, False)) iface.available = True iface.save() return iface def get_as_elem(self): """ Return the interface as an ElementTree element. @return: the IfSpec element @rtype: C{xml.etree.ElementTree.Element} """ return et.Element("IfSpec", dict( name = self.name, addr = self.addr, type = self.type, init_params = self.init_params, min_rate = self.min_rate, max_rate = self.max_rate, max_kbyte = self.max_kbyte, ip_spoof = self.ip_spoof, )) #class PlanetLabLinkSliver(Sliver): # start_time = models.DateTimeField() # end_time = models.DateTimeField() class PlanetLabNodeSliver(Sliver): start_time = models.DateTimeField() end_time = models.DateTimeField() class PlanetLabNetworkSliver(Sliver): start_time = models.DateTimeField() end_time = models.DateTimeField() class PlanetLabAggregate(GENIAggregate): information = \ """ A PlanetLab Aggregate exposed through the GENI API. """ class Meta: verbose_name = "PlanetLab GENI-API Aggregate" def __unicode__(self): return u"PlanetLab GENI-API Aggregate at %s" % self.url def _to_rspec(self, slice): """ See L{GENIAggregate._to_rspec}. """ info = slice.planetlabsliceinfo stime, duration = get_start_duration(info.start_time, info.end_time) rspec = et.Element("RSpec", dict( start_time="%s" % stime, duration = "%s" % duration, )) for net in PlanetLabNetwork.objects.filter(aggregate__pk=self): rspec.append(net.get_as_elem(slice)) return rspec def _list_resources(self): """ See L{GENIAggregate._list_resources}. """ rspec = self.proxy.ListResources( [self.get_am_cred()], {"geni_compressed": False, "geni_available": True}) logger.debug("Got rspec:\n%s" % rspec) root = et.fromstring(rspec) current_net_pks = set( PlanetLabNetwork.objects.filter( available=True, aggregate__pk=self.pk).values_list( "pk", flat=True)) logger.debug("Current_net_pks: %s" % current_net_pks) new_net_pks = set() network_elems = root.findall(".//NetSpec") for network_elem in network_elems: network = PlanetLabNetwork.get_from_elem(self, network_elem) new_net_pks.add(network.pk) logger.debug("Added %s" % network) # set available to False for old networks old_net_pks = current_net_pks - new_net_pks for pk in old_net_pks: net = PlanetLabNetwork.objects.get(pk=pk) net.available = False net.save() logger.debug("Set %s to unavailable." % network) def add_to_slice(self, slice, next): """ Create a PlanetLabSliceInfo instance for this slice if none exists. """ info, created = PlanetLabSliceInfo.objects.get_or_create(slice=slice) slice.aggregate.add(self) return next
96e2fee44e3bc7e5c5602c9a487d8a04b807a7a8
c67f2d0677f8870bc1d970891bbe31345ea55ce2
/zippy/benchmarks/src/micro/function-call2.py
48b9f47030ccbdc325c255fd7103349718f10ba7
[ "BSD-3-Clause" ]
permissive
securesystemslab/zippy
a5a1ecf5c688504d8d16128ce901406ffd6f32c2
ff0e84ac99442c2c55fe1d285332cfd4e185e089
refs/heads/master
2022-07-05T23:45:36.330407
2018-07-10T22:17:32
2018-07-10T22:17:32
67,824,983
324
27
null
null
null
null
UTF-8
Python
false
false
485
py
# zwei 10/10/13 # function calls import time def emptyFunction(arg): return arg def callFunctions(num): count = 0 for i in xrange(num): ret = emptyFunction(i) count += 1 return count def measure(): print("Start timing...") start = time.time() sum = callFunctions(1000000000) #1000000 print("Number of calls ", sum) duration = "%.3f\n" % (time.time() - start) print("function-call: " + duration) #warm up for run in xrange(10000): callFunctions(50000) measure()
c09bdad7664c65fe8d8e3cb86ec8865551e304a9
1c6e5c808c1a3e6242e40b15ae711574e670c3b6
/food_management/constants/enums.py
82bfebbb5237fed3541c3c18fdce86151e5b05c3
[]
no_license
KatakamVedaVandhana/smart_food_management-vandhana
dbe195994c110471d0ae7a5a53adef1441e86466
19e410a2aa792b22889a2dfed599312ba6b5a7ad
refs/heads/master
2023-07-09T05:43:17.491313
2020-06-15T06:44:00
2020-06-15T06:44:00
269,609,923
0
0
null
null
null
null
UTF-8
Python
false
false
1,043
py
import enum from ib_common.constants import BaseEnumClass class CodeLanguage(BaseEnumClass, enum.Enum): python = "PYTHON" c_language = "C" c_plus_plus = "CPP" python36 = "PYTHON36" python37 = "PYTHON37" python38 = "PYTHON38" python38_datascience = "PYTHON38_DATASCIENCE" python38_aiml = "PYTHON38_AIML" class CategoryType(BaseEnumClass, enum.Enum): indian_bread = "Indian-Bread" curry = "Curry" rice = "Rice" class UnitType(BaseEnumClass, enum.Enum): pieces = "pieces" cups = "cups" laddles = "laddles" class TypeOfMeal(BaseEnumClass, enum.Enum): breakfast = "Breakfast" lunch = "Lunch" dinner = "Dinner" class CourseType(BaseEnumClass, enum.Enum): half_meal = 'Half-meal' full_meal = 'Full-meal' custom_meal = 'Custom-meal' skip_meal = 'Skip-meal' class RatingType(BaseEnumClass, enum.Enum): one = 1 two = 2 three = 3 four = 4 five = 5 class BaseUnitType(BaseEnumClass, enum.Enum): pieces = 'pieces' kilogram = 'kg'
b16fadb21431c33e8e177f4b007b85063c3e167a
9f52ac141023dcddb4fbe88b881feaca5be6328f
/ros/build/styx_msgs/catkin_generated/pkg.develspace.context.pc.py
18610254de217a4132dbf9fb576247ad636a13ec
[ "MIT" ]
permissive
uniquetrij/CarND-T3-P4-Capstone
9b6613339eb33421112130e7b37f46aaaa88a298
82f85af8c5554b51afca3c282f6230d3733a376a
refs/heads/master
2020-03-18T11:53:58.175809
2018-06-08T05:54:29
2018-06-08T05:54:29
134,696,861
0
1
null
null
null
null
UTF-8
Python
false
false
512
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/anupam/Desktop/CarND-T3-P4-Capstone/ros/devel/include".split(';') if "/home/anupam/Desktop/CarND-T3-P4-Capstone/ros/devel/include" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "styx_msgs" PROJECT_SPACE_DIR = "/home/anupam/Desktop/CarND-T3-P4-Capstone/ros/devel" PROJECT_VERSION = "0.0.0"
1300873c8a24b12df81df6006a135fe297dab299
7095bd6c7df3e36beeaf6f2fff321c1994778817
/try_django/src/blog/migrations/0003_auto_20190609_1303.py
8b419d2c612ca7e259bd41fb33966cc36ccff5fd
[]
no_license
bajpaiNikhil/dev-blog
4c6f0b5d6a96cc2552acd91b44e3fe74629bdaed
b2a3823931520292cabaeba94bd8161265f143b0
refs/heads/master
2020-06-02T08:39:12.043844
2019-07-04T03:25:37
2019-07-04T03:25:37
191,102,800
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
# Generated by Django 2.2 on 2019-06-09 07:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_blogpost_slug'), ] operations = [ migrations.AlterField( model_name='blogpost', name='slug', field=models.SlugField(default='my-slug', unique=True), ), ]
3d325135422a83e7942d4164fb53d194a67e4d51
f13acd0d707ea9ab0d2f2f010717b35adcee142f
/AtCoder_Virtual_Contest/20181228-AtCoder Run/abc060/a.py
e46e119bb58a491f4e1804883c6cc27488c5b02f
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
KATO-Hiro/AtCoder
126b9fe89fa3a7cffcbd1c29d42394e7d02fa7c7
bf43320bc1af606bfbd23c610b3432cddd1806b9
refs/heads/master
2023-08-18T20:06:42.876863
2023-08-17T23:45:21
2023-08-17T23:45:21
121,067,516
4
0
CC0-1.0
2023-09-14T21:59:38
2018-02-11T00:32:45
Python
UTF-8
Python
false
false
224
py
# -*- coding: utf-8 -*- def main(): a, b, c = map(str, input().split()) if a[-1] == b[0] and b[-1] == c[0]: print('YES') else: print('NO') if __name__ == '__main__': main()
27595488cbfbd204c5edd5aa32464d6815764993
4e67c2edd71493a98a3f13e5b2073c1d05b1b656
/Semestre 01/LogicaProgramacao/Aula 04.08.2020/Decrescente.py
eb1b31d2b5274617cd7fd88602938f3541556159
[]
no_license
felipellima83/UniCEUB
05991d7a02b13cd4e236f3be3a34726af2dc1504
dbc44866545b5247d1b5f76ec6e9b7778e54093e
refs/heads/master
2023-07-08T19:04:19.830473
2021-08-12T12:33:49
2021-08-12T12:33:49
249,958,282
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
#Professor: Antônio Barbosa Junior #Disciplina: Lógica de programação #Aluno: Felipe Ferreira Lima e Lima #Matrícula: 22001310 #Data: 08/04/2020 #Exercício 06 soma = 0 i = 0 lista = range(7, -1, -1) # ou lista = [7,6,5,4,3,2,1,0] for x in lista: print(x, end=" ")
38c43c83964024b74479add7f0bcda934ea9529c
6aa3c372bd2b058be406955768b3fc2047b580e6
/modules/datastructures/TrainData_DelphesDomAda.py
fdfbc32b890f974127958ad46519ae415b4a7411
[]
no_license
mverzett/DeepJet-1
b1aa1491bba284adfa78208237c48ef37fbe4ab3
04efbac1a6e4bef97a7ca1bc64345cc048f7ce20
refs/heads/master
2021-03-30T15:35:20.059508
2018-02-20T17:28:07
2018-02-20T17:28:07
120,431,339
0
0
null
2018-02-06T09:25:49
2018-02-06T09:25:49
null
UTF-8
Python
false
false
1,988
py
''' Created on 21 Feb 2017 @author: jkiesele ''' from TrainDataDeepJetDelphes import TrainDataDeepJetDelphes, fileTimeOut class TrainData_DelphesDomAda(TrainDataDeepJetDelphes): ''' example data structure - basis for further developments ''' def __init__(self): ''' Constructor ''' TrainDataDeepJetDelphes.__init__(self) self.addBranches(['jet_pt', 'jet_eta']) #consider jet pt and eta self.addBranches(['track_pt'], 6) #consider the pt of the first 6 tracks self.addBranches(['track_releta', 'track_sip3D', 'track_sip2D'], 10) #all those for the first 10 tracks self.registerBranches(['isMC','isTtbar']) #creates label weights per batch #due to normalisation, two are sufficient for 3 labels (B, C UDSG) #self.generatePerBatch=None #[[0.2,5.],[0.2,5.]] def readFromRootFile(self,filename,TupleMeanStd, weighter): import numpy Tuple = self.readTreeFromRootToTuple(filename) mclabel=Tuple['isMC'].view(numpy.ndarray) mclabel=mclabel.reshape(mclabel.shape[0],1) proclabel=Tuple['isTtbar'].view(numpy.ndarray) proclabel=proclabel.reshape(mclabel.shape[0],1) weights,x_all,alltruth, notremoves =self.getFlavourClassificationData(filename,TupleMeanStd, weighter) if self.remove: #print('remove') mclabel=mclabel[notremoves > 0] proclabel=proclabel[notremoves > 0] domaintruth_datamc=numpy.hstack((mclabel,alltruth)) labeltruth=domaintruth_datamc #domaintruth_ttbarqcd=numpy.hstack((proclabel,alltruth)) self.w=[weights] #the label fraction weights are computed on the fly self.x=[x_all, alltruth] #the truth self.y=[labeltruth,domaintruth_datamc]
f3acdac3cec7c99140af2bf68d17ebb3f6c47ebd
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03112/s044499237.py
d133af3812b23eda812e0e4e272d7974e8c817c9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
# なぜかうまくいかない import sys, re, os from collections import deque, defaultdict, Counter from math import ceil, sqrt, hypot, factorial, pi, sin, cos, radians from itertools import permutations, combinations, product, accumulate from operator import itemgetter, mul from copy import deepcopy from string import ascii_lowercase, ascii_uppercase, digits from fractions import gcd from bisect import bisect, bisect_right, bisect_left def input(): return sys.stdin.readline().strip() def INT(): return int(input()) def MAP(): return map(int, input().split()) def S_MAP(): return map(str, input().split()) def LIST(): return list(map(int, input().split())) def S_LIST(): return list(map(str, input().split())) sys.setrecursionlimit(10 ** 9) INF = float('inf') mod = 10 ** 9 + 7 A, B, Q = MAP() S = [INT() for i in range(A)] T = [INT() for i in range(B)] X = [INT() for i in range(Q)] S.insert(0, -INF) S.append(INF) T.insert(0, -INF) T.append(INF) for x in X: s = bisect(S, x) t = bisect(T, x) # print(s, t) # a = min(x - S[s-1], S[s] - x) # b = min(x - T[t-1], T[t] - x) res = INF for a in [S[s-1], S[s]]: for b in [T[t-1], T[t]]: res = min(res, min(abs(a - x) + abs(b - a), abs(x - b) + abs(b - a))) print(res)
813c88604e0dc63335d38bbdd5c9a2ca78a1b246
0ae8d4aa8171d46e3dab71adaa26127c01360b87
/дом_школа_дом.py
19d65a403b75da4c938d24ecbea83163a3581925
[]
no_license
dasherinuk/classwork
f004f7587157171cdb1c65b1eb13a721feb6c00b
8b2efc055409576c59da878d293d8df6fd9ffb8e
refs/heads/master
2023-06-04T16:08:53.299460
2021-06-19T09:18:20
2021-06-19T09:18:20
297,706,987
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
rides=int(input("Enter amount of rides")) if rides%2==0: print("school") else: print("home")
41cc2e1bdbdc341bf991d5e4a6e225b13acba6cb
6710c52d04e17facbc9fb35a7df313f7a2a7bd53
/0234. Palindrome Linked List.py
38f97dc46d5f45578be5aaebb55f90e98ad5532b
[]
no_license
pwang867/LeetCode-Solutions-Python
535088fbe747a453360457728cc22cf336020bd2
188befbfb7080ba1053ee1f7187b177b64cf42d2
refs/heads/master
2022-11-13T16:20:28.211707
2020-06-28T06:01:14
2020-06-28T06:01:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,333
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None # time O(n), space O(1) in place class Solution(object): def isPalindrome(self, head): """ :type head: ListNode :rtype: bool """ if not head or not head.next: return True pre, cur = None, head fast = head.next while fast and fast.next: fast = fast.next.next copy = cur.next cur.next = pre # reverse the first half pre, cur = cur, copy if fast: # original list has even length if cur.val != cur.next.val: return False return self.isSameList(pre, cur.next.next) else: # odd length return self.isSameList(pre, cur.next) def isSameList(self, head1, head2): while head1 and head2: if head1.val != head2.val: return False head1 = head1.next head2 = head2.next return not head1 and not head2 """ Given a singly linked list, determine if it is a palindrome. Example 1: Input: 1->2 Output: false Example 2: Input: 1->2->2->1 Output: true Follow up: Could you do it in O(n) time and O(1) space? """
029c81b549e9282b6f68c0739e2079610361cce5
72246a70e272dfc279b1b4945c232f16900bb963
/To_write_in_the_txt_file.py
8ea3d0ff35b684318fb43fac57e91870fad16a2e
[]
no_license
stheartsachu/Python_basics_and_data_base_operations
bb15f4b06e404b8c3456061478e1a86fcb541fed
6441eb247336cf5a0e935efc43f48d12aa32affe
refs/heads/master
2020-06-25T09:09:59.021325
2019-07-28T09:35:07
2019-07-28T09:35:07
199,268,012
1
0
null
null
null
null
UTF-8
Python
false
false
436
py
# Let us simplify the code # by using the "with" Keyword. # write to a text file with open('t.txt','w') as f : f.write('HEllo World ! ') f.close() # It will be Closed automaticallly # f = open('t.txt', mode = 'w') # w = create and write # r = read(default) # a = append # x = create if not exist # with = with satement is used tp wrap the execution of a block of code # within methods defined by a context manger
9468f8e04cd8b22575a8e8a5cb5f2154b120d75d
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/12315011.py
1eaf65a06d4accb4b62d4c0891406e399fbd51c4
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,789
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/12315011.py generated: Wed, 25 Jan 2017 15:25:15 # # Event Type: 12315011 # # ASCII decay Descriptor: {[B+ -> K+ pi+ pi- e+ mu-]cc,[B+ -> K+ pi+ pi- e- mu+]cc} # from Configurables import Generation Generation().EventType = 12315011 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bu_Kpipiemu=DecProdCut.dec" Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb" Generation().SignalRepeatedHadronization.SignalPIDList = [ 521,-521 ] # Ad-hoc particle gun code from Configurables import ParticleGun pgun = ParticleGun("ParticleGun") pgun.SignalPdgCode = 521 pgun.DecayTool = "EvtGenDecay" pgun.GenCutTool = "DaughtersInLHCb" from Configurables import FlatNParticles pgun.NumberOfParticlesTool = "FlatNParticles" pgun.addTool( FlatNParticles , name = "FlatNParticles" ) from Configurables import MomentumSpectrum pgun.ParticleGunTool = "MomentumSpectrum" pgun.addTool( MomentumSpectrum , name = "MomentumSpectrum" ) pgun.MomentumSpectrum.PdgCodes = [ 521,-521 ] pgun.MomentumSpectrum.InputFile = "$PGUNSDATAROOT/data/Ebeam4000GeV/MomentumSpectrum_521.root" pgun.MomentumSpectrum.BinningVariables = "pteta" pgun.MomentumSpectrum.HistogramPath = "h_pteta" from Configurables import BeamSpotSmearVertex pgun.addTool(BeamSpotSmearVertex, name="BeamSpotSmearVertex") pgun.VertexSmearingTool = "BeamSpotSmearVertex" pgun.EventType = 12315011
158692323da657d0cf8086a5b00d0b90d3d7c5a8
bd4812ba7af196d2e866cbf2935b2e7308d95066
/python/leetcode/024_swap_nodes_in_pairs.py
d79edba96ef1dc07ede242c6bafa8a371bfe4052
[ "Apache-2.0" ]
permissive
yxun/notebook
f507201e15c4376f0655121724254c0d5275c3b1
00eb1953d872a9a93a13d7cf23d8e4ed641d1ce7
refs/heads/master
2023-09-01T03:50:48.142295
2023-08-17T12:11:25
2023-08-17T12:11:25
207,569,654
2
2
Apache-2.0
2023-08-17T12:11:26
2019-09-10T13:38:49
Java
UTF-8
Python
false
false
1,334
py
#%% """ - Swap Nodes in Pairs - https://leetcode.com/problems/swap-nodes-in-pairs/ - Medium Given a linked list, swap every two adjacent nodes and return its head. You may not modify the values in the list's nodes, only nodes itself may be changed. Example: Given 1->2->3->4, you should return the list as 2->1->4->3. """ #%% class ListNode: def __init__(self, data=0, next=None): self.data = data self.next = next #%% class S1: def swapPairs(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head tmp = head.next head.next = self.swapPairs(head.next.next) tmp.next = head return tmp #%% class S2: def swapPairs(self, head): """ :type head: ListNode :rtype: ListNode """ if head == None or head.next == None: return head dummy = ListNode(-1) dummy.next = head cur = dummy while cur.next and cur.next.next: next_one, next_two, next_three = cur.next, cur.next.next, cur.next.next.next cur.next = next_two next_two.next = next_one next_one.next = next_three cur = next_one return dummy.next
11887d383e22055fe0ed0193394c2562e3d244b0
48934047ac284e2a9a745f00b5ec84b3d72382bf
/nyasha/blog/migrations/0005_auto__add_tag.py
e8afe3b0236239eb264ac782548a67fad230695b
[ "WTFPL" ]
permissive
Apkawa/nyasha
e36f4281c33eb6135320391349e2dadee3c01666
0d126e93be273ba73b005a793340501377485c3e
refs/heads/master
2020-04-28T20:53:47.312077
2012-06-12T21:49:20
2012-06-12T21:49:20
1,100,616
4
1
null
null
null
null
UTF-8
Python
false
false
7,518
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Tag' db.create_table('blog_tag', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=42)), )) db.send_create_signal('blog', ['Tag']) # Adding M2M table for field tags on 'Post' db.create_table('blog_post_tags', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('post', models.ForeignKey(orm['blog.post'], null=False)), ('tag', models.ForeignKey(orm['blog.tag'], null=False)) )) db.create_unique('blog_post_tags', ['post_id', 'tag_id']) def backwards(self, orm): # Deleting model 'Tag' db.delete_table('blog_tag') # Removing M2M table for field tags on 'Post' db.delete_table('blog_post_tags') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'blog.comment': { 'Meta': {'unique_together': "(('post', 'number'),)", 'object_name': 'Comment'}, 'body': ('django.db.models.fields.TextField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'from_client': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'number': ('django.db.models.fields.IntegerField', [], {}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'comments'", 'to': "orm['blog.Post']"}), 'reply_to': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['blog.Comment']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'blog.post': { 'Meta': {'unique_together': "(('id', 'user'),)", 'object_name': 'Post'}, 'body': ('django.db.models.fields.TextField', [], {}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'from_client': ('django.db.models.fields.CharField', [], {'max_length': '256', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['blog.Tag']", 'symmetrical': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'blog.recommend': { 'Meta': {'unique_together': "(('post', 'user'),)", 'object_name': 'Recommend'}, 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['blog.Post']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'recommends_user'", 'to': "orm['auth.User']"}) }, 'blog.subscribed': { 'Meta': {'unique_together': "(('user', 'subscribe_user'),)", 'object_name': 'Subscribed'}, 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'subscribe_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'subscribed'", 'to': "orm['auth.User']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'me_subscribe'", 'to': "orm['auth.User']"}) }, 'blog.tag': { 'Meta': {'object_name': 'Tag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '42'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['blog']
85dcc5969e56bb08a2daeb27e23d432d34c58286
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02718/s147463629.py
e093f018cdb275a578db1fcc576e49cebc099eb6
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
# 161 B N,M = list(map(int, input().split())) A = list(map(int, input().split())) list.sort(A, reverse=True) print('Yes') if A[M-1] >= (sum(A)/(4*M)) else print('No')
1ebc38c9e5488846563e087b28f5172fb47bfd2c
fce15571b2b65769758d4885deb4365153672a47
/task_queue/redis_impl.py
280a7be2d96fe3b835fdcdecc0303fe4016e773c
[ "MIT" ]
permissive
xlui/eFuture
239f66c698390af9d4c5b82b32eed81e36c177e8
9bb9e8faca561ca5ccfb16de5401b6acd2ec692d
refs/heads/py
2021-06-02T23:52:08.224564
2019-08-24T04:57:24
2019-08-24T04:57:24
149,577,756
0
0
MIT
2021-03-20T00:10:07
2018-09-20T08:35:32
Python
UTF-8
Python
false
false
1,624
py
import datetime import uuid from log import logger from task_queue import connection, QUEUE_KEY def push(message: str, date: datetime.datetime): """Push a message into redis zset :param message: message content :param date: the date this message to be consumed :return: None """ msg_id = str(uuid.uuid4()) pipeline = connection.pipeline() pipeline.set(msg_id, message) pipeline.zadd(QUEUE_KEY, { msg_id: date.timestamp() }) pipeline.execute() logger.info(f'Save a new future email: [message: {message}, date: {date}]') def pop(): """Check the first task in redis(which is the task with the smallest score) if the score(timestamp) is smaller or equal to current timestamp, the task should be take out and done. :return: True if task is take out, and False if it is not the time. """ task = connection.zrange(QUEUE_KEY, 0, 0) if not task: return False, 'No emails now!' msg_id = task[0] timestamp = connection.zscore(QUEUE_KEY, msg_id) now = datetime.datetime.now().timestamp() if timestamp < now or abs(timestamp - now) <= 1e-6: message = connection.get(msg_id) pipeline = connection.pipeline() pipeline.zrem(QUEUE_KEY, msg_id) pipeline.delete(msg_id) pipeline.execute() return True, message return False, "It's too early now!" if __name__ == '__main__': now = datetime.datetime.now() logger.debug('push hello') push('hello', now + datetime.timedelta(seconds=10)) while True: b, m = pop() if b: logger.debug(m)
cbbfba9bdb63e74a1c7c05035f325aa7f0d7af7e
c49e35bc834c259cc0d7ab2165dbd48e12f6d1b6
/model/word_attn_classifier.py
c5ac2ca9a9d5b3b24f2e003883f3afb2027270a6
[ "MIT" ]
permissive
kenchan0226/dual_view_review_sum
f18997bce101ee3ac70d96813d75c6cb29ac921c
2ff1c7323b98f0a8ca1dfb0341806e05b87faf52
refs/heads/master
2023-03-02T10:00:26.315254
2021-02-03T02:13:27
2021-02-03T02:13:27
266,673,121
19
4
null
null
null
null
UTF-8
Python
false
false
3,184
py
import torch import torch.nn as nn from torch.nn import init from model.attention import Attention class WordAttnClassifier(nn.Module): def __init__(self, query_hidden_size, memory_bank_size, num_classes, attn_mode, dropout=0.0, ordinal=False, hr_enc=False): super(WordAttnClassifier, self).__init__() self.memory_bank_size = memory_bank_size self.query_hidden_size = query_hidden_size self.num_classes = num_classes self.hr_enc = hr_enc # for word level memory bank self._query_vector = nn.Parameter(torch.zeros(1, query_hidden_size)) init.uniform_(self._query_vector, -0.1, 0.1) self.attention_layer = Attention(query_hidden_size, memory_bank_size, coverage_attn=False, attn_mode=attn_mode) # for sent level memory bank if self.hr_enc: self._sent_query_vector = nn.Parameter(torch.zeros(1, query_hidden_size)) init.uniform_(self._sent_query_vector, -0.1, 0.1) self.sent_attention_layer = Attention(query_hidden_size, memory_bank_size, coverage_attn=False, attn_mode=attn_mode) self.ordinal = ordinal self.expanded_memory_size = memory_bank_size if not hr_enc else 2 * memory_bank_size if ordinal: self.classifier = nn.Sequential(nn.Linear(self.expanded_memory_size, self.expanded_memory_size), nn.Dropout(p=dropout), nn.ReLU(), nn.Linear(self.expanded_memory_size, num_classes), nn.Sigmoid()) else: self.classifier = nn.Sequential(nn.Linear(self.expanded_memory_size, self.expanded_memory_size), nn.Dropout(p=dropout), nn.ReLU(), nn.Linear(self.expanded_memory_size, num_classes), nn.LogSoftmax(dim=1)) def forward(self, encoder_memory_bank, src_mask, sent_memory_bank=None, sent_mask=None): """ :param encoder_hidden_states: [batch, src_len, memory_bank_size] :param sent_memory_bank: [batch, sent_num, memory_bank_size] :return: """ batch_size = encoder_memory_bank.size(0) query_vector_expanded = self._query_vector.expand(batch_size, self.query_hidden_size) # [batch, query_hidden_size] context, attn_dist, _ = self.attention_layer(query_vector_expanded, encoder_memory_bank, src_mask) attn_dist_tuple = (attn_dist, None) if self.hr_enc: sent_query_vector_expanded = self._sent_query_vector.expand(batch_size, self.query_hidden_size) # [batch, query_hidden_size] sent_context, sent_attn_dist, _ = self.sent_attention_layer(sent_query_vector_expanded, sent_memory_bank, sent_mask) # [batch, 2 * memory_bank_size] context = torch.cat([context, sent_context], dim=1) attn_dist_tuple = (attn_dist, sent_attn_dist) logit = self.classifier(context) return logit, attn_dist_tuple
257d9c5993e931be92ff8bd92ceacd54ed6c9727
3869cbd5ee40e2bab5ca08b80b48115a7b4c1d5a
/Python-3/basic_examples/strings/string_expandtabs.py
c31cbcf03990c262555129f083b6bf6e26bbd25b
[ "MIT" ]
permissive
Tecmax/journaldev
0774c441078816f22edfd68286621493dd271803
322caa8e88d98cfe7c71393bcd2a67cf77368884
refs/heads/master
2020-07-08T04:05:03.028015
2019-08-12T09:17:48
2019-08-12T09:17:48
203,559,030
0
1
MIT
2019-08-21T10:13:47
2019-08-21T10:13:47
null
UTF-8
Python
false
false
559
py
s = 'A\tB\tC\tD' print(s) print(s.expandtabs()) s = 'ABCD\tE\tF' print(s) print(s.expandtabs()) s = 'ABCDEFGHIJK\tG' print(s.expandtabs()) s = 'ABCDEFGHIJK\t\tG' print(s.expandtabs()) s = 'ABC\tD' print(s) print(s.expandtabs()) print(s.expandtabs(tabsize=0)) print(s.expandtabs(tabsize=1)) print(s.expandtabs(tabsize=2)) print(s.expandtabs(tabsize=3)) print(s.expandtabs(tabsize=4)) print(s.expandtabs(tabsize=5)) print(s.expandtabs(tabsize=6)) print(s.expandtabs(tabsize=7)) s = 'ABC\tD' print(s.expandtabs(tabsize=-1)) print(s.expandtabs(tabsize=-3))
1e21acec2110266a609612328d221ff317740237
fff80cdaf12712704f36038479f50418253f42f3
/redex/tools/python/file_extract.py
51555fbbeb5606571a2b01d6e5c97431b3c873f0
[ "MIT" ]
permissive
rudolfkopriva/Facebook
1ea0cfbc116f68ae0317332eeb9155461af5645a
56e4c6a83f992bb01849ad353004b28409e53eef
refs/heads/master
2023-02-14T01:54:36.519860
2021-01-05T02:09:26
2021-01-05T02:09:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
46,013
py
#! /usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import binascii import re import string import struct import sys from io import BytesIO, StringIO SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2 def dump_memory(base_addr, data, num_per_line, outfile): data_len = len(data) hex_string = binascii.hexlify(data) addr = base_addr ascii_str = "" i = 0 concat = None if data_len > 0: if isinstance(hex_string[0], int): concat = lambda a, b: chr(a) + chr(b) # noqa: E731 else: concat = lambda a, b: a + b # noqa: E731 while i < data_len: outfile.write("0x%8.8x: " % (addr + i)) bytes_left = data_len - i if bytes_left >= num_per_line: curr_data_len = num_per_line else: curr_data_len = bytes_left hex_start_idx = i * 2 hex_end_idx = hex_start_idx + curr_data_len * 2 curr_hex_str = hex_string[hex_start_idx:hex_end_idx] # 'curr_hex_str' now contains the hex byte string for the # current line with no spaces between bytes t = iter(curr_hex_str) # Print hex bytes separated by space outfile.write(" ".join(concat(a, b) for a, b in zip(t, t))) # Print two spaces outfile.write(" ") # Calculate ASCII string for bytes into 'ascii_str' ascii_str = "" for j in range(i, i + curr_data_len): ch = data[j] if isinstance(ch, int): ch = chr(ch) if ch in string.printable and ch not in string.whitespace: ascii_str += "%c" % (ch) else: ascii_str += "." # Print ASCII representation and newline outfile.write(ascii_str) i = i + curr_data_len outfile.write("\n") def last_char_is_newline(s): if s: return s[-1] == "\n" return False def hex_escape(s): return "".join(escape(c) for c in s) def escape(c): if isinstance(c, int): c = chr(c) if c in string.printable: if c == "\n": return "\\n" if c == "\t": return "\\t" if c == "\r": return "\\r" return c c = ord(c) if c <= 0xFF: return "\\x" + "%02.2x" % (c) elif c <= "\uffff": return "\\u" + "%04.4x" % (c) else: return "\\U" + "%08.8x" % (c) class FileEncode: """Encode binary data to a file""" def __init__(self, f, b="=", addr_size=0): """Initialize with an open binary file and optional byte order and address byte size. """ self.file = f self.addr_size = addr_size self.set_byte_order(b) def align_to(self, align): curr_pos = self.file.tell() delta = curr_pos % align if delta: pad = align - delta if pad != 0: self.seek(pad, SEEK_CUR) def seek(self, offset, whence=SEEK_SET): if self.file: return self.file.seek(offset, whence) raise ValueError def tell(self): if self.file: return self.file.tell() raise ValueError def set_byte_order(self, b): '''Set the byte order, valid values are "big", "little", "swap", "native", "<", ">", "@", "="''' if b == "big": self.byte_order = ">" elif b == "little": self.byte_order = "<" elif b == "swap": # swap what ever the current byte order is if struct.pack("H", 1).startswith("\x00"): self.byte_order = "<" else: self.byte_order = ">" elif b == "native": self.byte_order = "=" elif b == "<" or b == ">" or b == "@" or b == "=": self.byte_order = b else: raise ValueError("Invalid byte order specified: '%s'" % (b)) def put_c_string(self, value): self.file.write(value) self.put_sint8(0) def put_sint8(self, value): """Encode a int8_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "b", value)) def put_uint8(self, value): """Encode a uint8_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "B", value)) def put_sint16(self, value): """Encode a int16_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "h", value)) def put_uint16(self, value): """Encode a uint16_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "H", value)) def put_sint32(self, value): """Encode a int32_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "i", value)) def put_uint32(self, value): """Encode a uint32_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "I", value)) def put_sint64(self, value): """Encode a int64_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "q", value)) def put_uint64(self, value): """Encode a uint64_t into the file at the current file position""" self.file.write(struct.pack(self.byte_order + "Q", value)) def put_uleb128(self, value): """Encode a ULEB128 into the file at the current file position""" while value >= 0x80: self.put_uint8(0x80 | (value & 0x7F)) value >>= 7 self.put_uint8(value) def put_sleb128(self, value): if value < 0: uvalue = (1 - value) * 2 else: uvalue = value * 2 while True: byte = value & 0x7F value >>= 7 uvalue >>= 7 if uvalue != 0: byte = byte | 0x80 self.put_uint8(byte) if uvalue == 0: break def put_address(self, value): if self.addr_size == 0: raise ValueError self.put_uint_size(self.addr_size, value) def put_uint_size(self, size, value): """Encode a unsigned integer into the file at the current file position as an integer whose byte size is "size".""" if size == 1: return self.put_uint8(value) if size == 2: return self.put_uint16(value) if size == 4: return self.put_uint32(value) if size == 8: return self.put_uint64(value) print("error: integers of size %u are not supported" % (size)) def fixup_uint_size(self, size, value, offset): """Fixup one unsigned integer in the file at "offset" bytes from the start of the file. The current file position will be saved and restored.""" saved_offset = self.file.tell() self.file.seek(offset) self.put_uint_size(size, value) self.file.seek(saved_offset) class FileExtract: """Decode binary data from a file""" def __init__(self, f, b="=", addr_size=0): """Initialize with an open binary file and optional byte order and address byte size """ self.file = f self.offsets = [] self.addr_size = addr_size self.set_byte_order(b) def get_size(self): pos = self.file.tell() self.file.seek(0, SEEK_END) len = self.file.tell() self.file.seek(pos, SEEK_SET) return len def align_to(self, align): curr_pos = self.file.tell() delta = curr_pos % align if delta: pad = align - delta if pad != 0: self.seek(pad, SEEK_CUR) def get_addr_size(self): return self.addr_size def set_addr_size(self, addr_size): self.addr_size = addr_size def set_byte_order(self, b): '''Set the byte order, valid values are "big", "little", "swap", "native", "<", ">", "@", "="''' if b == "big": self.byte_order = ">" elif b == "little": self.byte_order = "<" elif b == "swap": # swap what ever the current byte order is if struct.pack("H", 1).startswith("\x00"): self.byte_order = "<" else: self.byte_order = ">" elif b == "native": self.byte_order = "=" elif b == "<" or b == ">" or b == "@" or b == "=": self.byte_order = b else: print("Invalid byte order specified: '%s'" % (b)) def seek(self, offset, whence=SEEK_SET): if self.file: return self.file.seek(offset, whence) raise ValueError def tell(self): if self.file: return self.file.tell() raise ValueError def read_data(self, byte_size): bytes = self.read_size(byte_size) if len(bytes) == byte_size: return FileExtract( StringIO(bytes.decode("utf-8")), self.byte_order, self.addr_size ) return None def read_size(self, byte_size): s = self.file.read(byte_size) if len(s) != byte_size: return None return s def push_offset_and_seek(self, offset, whence=SEEK_SET): '''Push the current file offset and seek to "offset"''' self.offsets.append(self.file.tell()) self.file.seek(offset, whence) def pop_offset_and_seek(self): """Pop a previously pushed file offset and set the file position.""" if len(self.offsets) > 0: self.file.seek(self.offsets.pop(), SEEK_SET) def get_sint8(self, fail_value=0): """Extract a int8_t from the current file position.""" s = self.read_size(1) return self._unpack("b", s) if s else fail_value def get_uint8(self, fail_value=0): """Extract and return a uint8_t from the current file position.""" s = self.read_size(1) return self._unpack("B", s) if s else fail_value def get_sint16(self, fail_value=0): """Extract a int16_t from the current file position.""" s = self.read_size(2) return self._unpack("h", s) if s else fail_value def get_uint16(self, fail_value=0): """Extract a uint16_t from the current file position.""" s = self.read_size(2) return self._unpack("H", s) if s else fail_value def get_sint32(self, fail_value=0): """Extract a int32_t from the current file position.""" s = self.read_size(4) return self._unpack("i", s) if s else fail_value def get_uint32(self, fail_value=0): """Extract a uint32_t from the current file position.""" s = self.read_size(4) return self._unpack("I", s) if s else fail_value def get_sint64(self, fail_value=0): """Extract a int64_t from the current file position.""" s = self.read_size(8) return self._unpack("q", s) if s else fail_value def get_uint64(self, fail_value=0): """Extract a uint64_t from the current file position.""" s = self.read_size(8) return self._unpack("Q", s) if s else fail_value def _unpack(self, format_suffix, s): return struct.unpack(self.byte_order + format_suffix, s)[0] def get_address(self, fail_value=0): if self.addr_size == 0: print("error: invalid addr size...") raise ValueError else: return self.get_uint_size(self.addr_size, fail_value) def get_sint_size(self, size, fail_value=0): """Extract a signed integer from the current file position whose size is "size" bytes long.""" if size == 1: return self.get_sint8(fail_value) if size == 2: return self.get_sint16(fail_value) if size == 4: return self.get_sint32(fail_value) if size == 8: return self.get_sint64(fail_value) print("error: integer of size %u is not supported" % (size)) return fail_value def get_uint_size(self, size, fail_value=0): """Extract a unsigned integer from the current file position whose size is "size" bytes long.""" if size == 1: return self.get_uint8(fail_value) if size == 2: return self.get_uint16(fail_value) if size == 4: return self.get_uint32(fail_value) if size == 8: return self.get_uint64(fail_value) print("error: integer of size %u is not supported" % (size)) return fail_value def get_fixed_length_c_string( self, n, fail_value="", isprint_only_with_space_padding=False ): """Extract a fixed length C string from the current file position.""" s = self.read_size(n) if s: (cstr,) = struct.unpack(self.byte_order + ("%i" % n) + "s", s) # Strip trialing NULLs cstr = cstr.strip(b"\0") if isprint_only_with_space_padding: for c in cstr: if c in string.printable or ord(c) == 0: continue return fail_value return cstr else: return fail_value def get_c_string(self): """Extract a NULL terminated C string from the current position.""" cstr = "" byte = self.get_uint8() while byte != 0: cstr += "%c" % byte byte = self.get_uint8() return cstr def get_n_sint8(self, n, fail_value=0): """Extract "n" int8_t values from the current position as a list.""" s = self.read_size(n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "b", s) else: return (fail_value,) * n def get_n_uint8(self, n, fail_value=0): """Extract "n" uint8_t values from the current position as a list.""" s = self.read_size(n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "B", s) else: return (fail_value,) * n def get_n_sint16(self, n, fail_value=0): """Extract "n" int16_t values from the current position as a list.""" s = self.read_size(2 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "h", s) else: return (fail_value,) * n def get_n_uint16(self, n, fail_value=0): """Extract "n" uint16_t values from the current position as a list.""" s = self.read_size(2 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "H", s) else: return (fail_value,) * n def get_n_sint32(self, n, fail_value=0): """Extract "n" int32_t values from the current position as a list.""" s = self.read_size(4 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "i", s) else: return (fail_value,) * n def get_n_uint32(self, n, fail_value=0): """Extract "n" uint32_t values from the current position as a list.""" s = self.read_size(4 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "I", s) else: return (fail_value,) * n def get_n_sint64(self, n, fail_value=0): """Extract "n" int64_t values from the current position as a list.""" s = self.read_size(8 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "q", s) else: return (fail_value,) * n def get_n_uint64(self, n, fail_value=0): """Extract "n" uint64_t values from the current position as a list.""" s = self.read_size(8 * n) if s: return struct.unpack(self.byte_order + ("%u" % n) + "Q", s) else: return (fail_value,) * n def get_uleb128p1(self, fail_value=0): return self.get_uleb128(fail_value) - 1 def get_uleb128(self, fail_value=0): """Extract a ULEB128 number""" byte = self.get_uint8() # Quick test for single byte ULEB if byte & 0x80: result = byte & 0x7F shift = 7 while byte & 0x80: byte = self.get_uint8() result |= (byte & 0x7F) << shift shift += 7 return result else: return byte # Simple one byte ULEB128 value... def get_sleb128(self, fail_value=0): result = 0 shift = 0 size = 64 byte = 0 bytecount = 0 while 1: bytecount += 1 byte = self.get_uint8() result |= (byte & 0x7F) << shift shift += 7 if (byte & 0x80) == 0: break # Sign bit of byte is 2nd high order bit (0x40) if shift < size and (byte & 0x40): result |= -(1 << shift) return result def dump(self, start=0, end=-1): if end == -1: self.seek(start, SEEK_END) # Seek to end to get size n = self.tell() - start else: n = end - start self.seek(start, SEEK_SET) bytes = self.read_size(n) dump_memory(0, bytes, 32, sys.stdout) def main(): uleb_tests = [ (struct.pack("B", 0x02), 2), (struct.pack("B", 0x7F), 127), (struct.pack("2B", 0x80, 0x01), 128), (struct.pack("2B", 0x81, 0x01), 129), (struct.pack("2B", 0x82, 0x01), 130), (struct.pack("2B", 0xB9, 0x64), 12857), ] sleb_tests = [ (struct.pack("B", 0x02), 2), (struct.pack("B", 0x7E), -2), (struct.pack("2B", 0xFF, 0x00), 127), (struct.pack("2B", 0x81, 0x7F), -127), (struct.pack("2B", 0x80, 0x01), 128), (struct.pack("2B", 0x80, 0x7F), -128), (struct.pack("2B", 0x81, 0x01), 129), (struct.pack("2B", 0xFF, 0x7E), -129), ] num_errors = 0 print("Running unit tests...", end="") for (s, check_n) in sleb_tests: e = FileExtract(BytesIO(s)) n = e.get_sleb128() if n != check_n: num_errors += 1 print("\nerror: sleb128 extraction failed for %i (got %i)" % (check_n, n)) dump_memory(0, s, 32, sys.stdout) for (s, check_n) in uleb_tests: e = FileExtract(BytesIO(s)) n = e.get_uleb128() if n != check_n: num_errors += 1 print("\nerror: uleb128 extraction failed for %i (got %i)" % (check_n, n)) dump_memory(0, s, 32, sys.stdout) if num_errors == 0: print("ok") else: print("%u errors" % (num_errors)) print if __name__ == "__main__": main() class AutoParser: """A class that enables easy parsing of binary files. This class is designed to be sublcassed and clients must provide a list of items in the constructor. Each item in the items list is a dictionary that describes each attribute that should be added to the class when it is decoded. A quick example for a C structure: struct load_command { uint32_t cmd; /* type of load command */ uint32_t cmdsize; /* total size of command in bytes */ }; The python code would look like: class load_command(file_extract.AutoParser): items = [ { 'name':'cmd', 'type':'u32' }, { 'name':'cmdsize', 'type':'u32'}, ] def __init__(self, data): AutoParser.__init__(self, self.items, data) Decoding a single load_command from a file involves opening a file and creating a FileExtract object, and then decoding the load_command object: file = open(path) data = file_extract.FileExtract(file, '=', 4) lc = load_command(data) The 'lc' object now has two properties: lc.cmd lc.cmdsize Item dictionaries are very easy to define and have quite a many options to ensure it is very easy to parse a binary file by defining many subclasses of file_extract.AutoParser and combining them together. Item dictionaries can contain the following keys: KEY NAME DESCRIPTION ============== ============================================================ 'name' A string name of the attribute to add to this class when decoding. If an item has no name, it will not be added to this object when it is being decoded. Omitting the name is handy when you have padding where you might need to decode some bytes that are part of the on disk representation of the binary object, but don't need the value represented in the object itself. 'type' A string name for the type of the data to decode. See "Builin Types" table below for valid typename values. Either 'class' An AutoParser sublcass class that will be used to decode this item by constructing it with the data at the current offset. This allows you to compose a AutoParser object that is contained within another AutoParser object. 'condition' A function that takes two arguments: the current AutoParser object that is in the process of being decoded and the FileExtract object. The function returns True if this item is present and should be decoded, and False if it should be skipped. The condition is evaluated before the value is decoded and stops the type/class/decode from decoding the object. This can be used to only decode a value if a previous attribute is a specific value. If a 'default' key is present in the item dictionary, then the 'default' value will be set as the the value for this item, otherwise the attribute will not be added to this object: condition_passed = item['condition'](AutoParser, FileExtract) 'default' The default value for the current item that will be set if the 'condition' callback function returns False. 'decode' A function that take a single file_extract.FileExtract object argument and returns the value for this item. value = item['decode'](FileExtract) 'align' An integer that gives the file offset alignment for this item. This alignment can be any number and the file position will be advanced to the next aligned offset if needed prior to reading the value 'attr_count' A string that specifies the name of an attribute that has already been decoded in this object. This indicates that the value for this item is a list whose size is the integer value of the attribute that was already decoded in a previous item in this object. 'attr_offset' An integer that this item's value is contained within the file at the specified offset. A seek will be performed on the file before reading the value of this object. The file position will be pushed onto a stack, a seek will be performed, the item's value will be read, and then the file position will be restored. 'attr_offset_size' A string name of an existing attribute that contains the end offset of the data for this object. This is useful when a list of items is contained in the file and the count of the items is not specified, just the end offset. This is often used with the 'attr_offset' key/value pair. The type/class/decode will be continually called until the file offset exceeds the offset + 'attr_offset_size'. String tables are good example of when this is used as they string table offset and size are often specified, but no the number of strings in the string table. 'attr_offset_whence' A string name that specifies the type of seek to perform on the 'attr_offset' value. This can be one of "item", "file", "eof", "curr". "item" specifies the offset is relative to the starting offset of this object. "file" specifies that the offset is relative to the start of the file. "eof" specifies that the offset is relative to the end of tile. "curr" specifies that the offset is relative to the current file position. 'validate' A function pointer that will be called after the value has been extracted. The function is called with the extracted value and should return None if the value is valid, or return an error string if the value is not valid: error = item['validate'](value) if error: raise ValueError(error) 'value_fixup' A function pointer that will be called after the item's value has been decoded. The function will be called with one argument, the decoded value, and returns the fixed value: value = item['value_fixup'](value) 'debug' A string value that is printed prior to decoding the item's value. The printed string value is prefixed by the current file offset and allows debugging of where a value is being decoded within the file. This helps debug the decoding of items. 'switch' The string name of an attribute that was already decoded in this object. The attribute value will be used as a key into the 'cases' item key/value pair in the items supplied to the AutoParser object. If the attribute value is not found in the 'cases' dictionary, then 'default' will be used as the key into the 'cases' dictionary. See 'cases' below. See "Switch Example" below for more information. 'cases' A dictionary of values to items arrays. The 'switch' key above specifies the name of an attribute in this object that will be used as the key into the dictionary specified in this key/value pair. The items that are found during the lookup will then be decoded into this object. See "Switch Example" below for more information. 'dump' A function pointer that is called to dump the value. The function gets called with the value and the file: def dump(value, file): ... 'dump_list' A function pointer that is called to dump a list of values. The function gets called with the value and the file: def dump_list(value, prefix, flat, file): ... EXAMPLE 1 If you have a structure that has a count followed by an array of items whose size is the value of count: struct NumberArray { uint32_t count; uint32_t numbers[]; }; This would be respresented by the following items: class NumberArray(AutoParser): items = [ {'type':'u32', 'name':'count'}, {'type':'u32', 'name':'numbers', 'attr_count' : 'count'}, ] def __init__(self, data): AutoParser.__init__(self, self.items, data) The second item named 'numbers' will be decoded as a list of 'obj.count' u32 values as the 'attr_count' specifies the name of an attribute that has already been decoded into the object 'obj' and contains the count. EXAMPLE 2 Sometimes a structure contains an offset and a count of objects. In the example below SymtabInfo contains the offset and count of Symbol objects that appear later in the file: struct SymtabInfo { uint32_t symtab_offset; uint32_t num_symbols; } struct Symbol { ...; }; The symbol table can be decoded by combinging the two things together into the same object when decoding: class Symbol(AutoParser): ... class SymtabInfo(AutoParser): items = [ {'type' : 'u32', 'name' : 'symtab_offset'}, {'type' : 'u32', 'name' : 'num_symbols' }, {'class' : Symbol, 'name' : 'symbols', 'attr_offset' : 'symtab_offset', 'attr_count' : 'num_symbols' } ] def __init__(self, data): AutoParser.__init__(self, self.items, data) """ type_regex = re.compile(r"([^\[]+)\[([0-9]+)\]") default_formats = { "u8": "%#2.2x", "u16": "%#4.4x", "u32": "%#8.8x", "u64": "%#16.16x", "addr": "%#16.16x", "cstr": '"%s"', } read_value_callbacks = { "u8": lambda data: data.get_uint8(), "u16": lambda data: data.get_uint16(), "u32": lambda data: data.get_uint32(), "u64": lambda data: data.get_uint64(), "s8": lambda data: data.get_sint8(), "s16": lambda data: data.get_sint16(), "s32": lambda data: data.get_sint32(), "s64": lambda data: data.get_sint64(), "addr": lambda data: data.get_address(), "uleb": lambda data: data.get_uleb128(), "sleb": lambda data: data.get_sleb128(), "ulebp1": lambda data: data.get_uleb128p1(), } def __init__(self, items, data, context=None): self.__offset = data.tell() self.items = items self.context = context # Any object you want to store for future usage self.max_name_len = 0 self.extract_items(items, data) self.__len = data.tell() - self.__offset def __len__(self): return self.__len def get_list_header_lines(self): """When an object of this type is in a list, print out this string before printing out any items""" return None def get_dump_header(self): """Override in subclasses to print this string out before any items are dumped. This is a good place to put a description of the item represented by this class and possible to print out a table header in case the items are a list""" return None def get_dump_prefix(self): """Override in subclasses to print out a string before each item in this class""" return None def get_dump_flat(self): return False def get_offset(self): return self.__offset def extract_items(self, items, data): for item in items: offset_pushed = False if "attr_offset" in item: offset = getattr(self, item["attr_offset"]) if "attr_offset_whence" in item: offset_base = item["attr_offset_whence"] if offset_base == "item": # Offset from the start of this item data.push_offset_and_seek(offset + self.get_offset()) offset_pushed = True elif offset_base == "file": # Offset from the start of the file data.push_offset_and_seek(offset, SEEK_SET) offset_pushed = True elif offset_base == "eof": # Offset from the end of the file data.push_offset_and_seek(offset, SEEK_END) offset_pushed = True elif offset_base == "curr": # Offset from the current file position data.push_offset_and_seek(offset, SEEK_CUR) offset_pushed = True else: raise ValueError( '"attr_offset_whence" can be one of "item", ' '"file", "eof", "curr" (defaults to "file")' ) else: # Default to offset from the start of the file data.push_offset_and_seek(offset, SEEK_SET) offset_pushed = True if "debug" in item: print("%#8.8x: %s" % (self.__offset, item["debug"])) continue if "switch" in item: if "cases" not in item: raise ValueError( 'items with a "switch" key/value pair, ' 'must have a "cases" key/value pair' ) cases = item["cases"] switch_value = getattr(self, item["switch"]) if switch_value in cases: case_items = cases[switch_value] elif "default" in cases: case_items = cases["default"] else: raise ValueError("unhandled switch value %s" % (str(switch_value))) self.extract_items(case_items, data) continue # Check if this item is just an alignment directive? condition_passed = True if "condition" in item: condition_passed = item["condition"](self, data) if "align" in item: if condition_passed: data.align_to(item["align"]) count = self.read_count_from_item(item) value_fixup = None # If there is a value fixup key, then call the function with the # data and the value. The return value will be a fixed up value # and the function also has the ability to modify the data stream # (set the byte order, address byte size, etc). if "value_fixup" in item: value_fixup = item["value_fixup"] if "attr_offset_size" in item: # the number of items is inferred by parsing up until # attr_offset + attr_offset_size, so we create a new # FileExtract object that only contains the data we need and # extract using that data. attr_offset_size = getattr(self, item["attr_offset_size"]) item_data = data.read_data(attr_offset_size) if item_data is None: raise ValueError("failed to get item data") value = self.decode_value( item_data, item, condition_passed, value_fixup ) else: if count is None: value = self.decode_value(data, item, condition_passed, value_fixup) else: value = [] for _ in range(count): value.append( self.decode_value(data, item, condition_passed, value_fixup) ) if "validate" in item: error = item["validate"](value) if error is not None: raise ValueError("error: %s" % (error)) if "name" in item and value is not None: name = item["name"] setattr(self, name, value) name_len = len(name) if self.max_name_len < name_len: self.max_name_len = name_len if offset_pushed: data.pop_offset_and_seek() def decode_value(self, data, item, condition_passed, value_fixup): # If the item has a 'condition' key, then this is a function # that we pass "self" to in order to determine if this value # is available. If the callback returns False, then we set the # value to the default value read_value = True if not condition_passed: if "default" in item: v = item["default"] else: v = None read_value = False if read_value: if "type" in item: v = self.read_type(data, item) elif "class" in item: v = item["class"](data) elif "decode" in item: v = item["decode"](data) else: raise ValueError( 'item definitions must have a "type" or ' '"class" or "decode" field' ) # Let the item fixup each value if needed and possibly # adjust the byte size or byte order. if value_fixup is not None: v = value_fixup(data, v) return v def dump_item(self, prefix, f, item, print_name, parent_path, flat): if "switch" in item: cases = item["cases"] switch_value = getattr(self, item["switch"]) if switch_value in cases: case_items = cases[switch_value] elif "default" in cases: case_items = cases["default"] for case_item in case_items: self.dump_item(prefix, f, case_item, print_name, parent_path, flat) return # We skip printing an item if any of the following are true: # - If there is no name (padding) # - If there is a 'dump' value key/value pair with False as the value if "name" not in item or "dump" in item and item["dump"] is False: return name = item["name"] if not hasattr(self, name): return value = getattr(self, name) value_is_list = type(value) is list # If flat is None set its value automatically if flat is None: flat = self.get_dump_flat() if value_is_list: if "table_header" in item: table_header = item["table_header"] f.write(table_header) if not last_char_is_newline(table_header): f.write("\n") print_name = False flat = True if prefix is None: prefix = self.get_dump_prefix() flat_list = value_is_list and "flat" in item and item["flat"] if prefix and flat_list is False: f.write(prefix) if print_name: if not flat_list: if flat: f.write(name) f.write("=") else: f.write("%-*s" % (self.max_name_len, name)) f.write(" = ") if "dump" in item: item["dump"](value, f) return elif "dump_list" in item: item["dump_list"](value, prefix, flat, f) return else: if value_is_list: if parent_path is None: item_path = name else: item_path = parent_path + "." + name self.dump_values(f, item, value, print_name, item_path, prefix) else: if "dump_width" in item: dump_width = item["dump_width"] strm = StringIO() self.dump_value(strm, item, value, print_name, parent_path) s = strm.getvalue() f.write(s) s_len = len(s) if s_len < dump_width: f.write(" " * (dump_width - s_len)) else: self.dump_value(f, item, value, print_name, parent_path) if not flat_list: if flat: f.write(" ") else: f.write("\n") def dump_value(self, f, item, value, print_name, parent_path): if value is None: f.write("<NULL>") return if "stringify" in item: f.write("%s" % item["stringify"](value)) return if "type" in item: itemtype = item["type"] if "format" in item: format = item["format"] elif itemtype in self.default_formats: format = self.default_formats[itemtype] else: format = None if format: f.write(format % (value)) else: if itemtype.startswith("cstr"): f.write('"') f.write(hex_escape(value)) f.write('"') else: f.write(str(value)) elif "class" in item: value.dump(prefix=None, print_name=print_name, f=f, parent_path=parent_path) else: raise ValueError( "item's with names must have a 'type' or " "'class' key/value pair" ) def dump_values(self, f, item, values, print_name, parent_path, prefix): if len(values) == 0: if "flat" in item and item["flat"]: if prefix: f.write(prefix) if parent_path: f.write(parent_path) f.write("[]\n") return flat = self.get_dump_flat() if flat is False and "flat" in item: flat = item["flat"] count = len(values) if count > 0: index_width = 1 w = count while w > 10: index_width += 1 w /= 10 if isinstance(values[0], AutoParser): first = values[0] table_header_lines = first.get_list_header_lines() if table_header_lines: f.write("\n") print_name = False flat = True for line in table_header_lines: f.write(" " * (index_width + 3)) f.write(line) index_format = "[%%%uu]" % (index_width) if prefix is None: prefix = "" for (i, value) in enumerate(values): if flat: if prefix: f.write(prefix) if parent_path: f.write(parent_path) f.write(index_format % (i)) f.write(" = ") else: format = "\n%s%s" + index_format + "\n" f.write(format % (prefix, parent_path, i)) self.dump_value(f, item, value, print_name, parent_path) f.write("\n") def dump( self, prefix=None, f=sys.stdout, print_name=True, parent_path=None, flat=None ): header = self.get_dump_header() if header: f.write(header) if not last_char_is_newline(header): f.write("\n") for item in self.items: self.dump_item(prefix, f, item, print_name, parent_path, flat) def read_count_from_item(self, item): if "attr_count" in item: # If 'attr_count' is in the dictionary. If so, it means that # there is already an attribute in this object that has the # count in it and we should ready that many of the type count = getattr(self, item["attr_count"]) # If there is an 'attr_count_fixup' key, it is a function that # will fixup the count value if "attr_count_fixup" in item: count = item["attr_count_fixup"](count) return count elif "count" in item: return item["count"] return None def read_builtin_type(self, data, typename, item): if typename in self.read_value_callbacks: return self.read_value_callbacks[typename](data) if typename == "cstr": count = self.read_count_from_item(item) if count is None: return data.get_c_string() else: return data.get_fixed_length_c_string(count) if typename == "bytes": if "attr_size" in item: size = getattr(self, item["attr_size"]) return data.read_size(size) else: raise ValueError( "'bytes' must have either a 'count' or a " "'attr_count' key/value pair" ) raise ValueError("invalid 'type' value %s" % (typename)) def read_type(self, data, item): typename = item["type"] if "[" in typename: match = self.type_regex.match(typename) if not match: raise ValueError( "item type array must be a valid type " "followed by [] with a decimal number " "as the size" ) basetype = match.group(1) count = int(match.group(2)) if basetype == "cstr": return data.get_fixed_length_c_string(count) result = [] for _ in range(count): result.append(self.read_builtin_type(data, basetype, item)) return result else: return self.read_builtin_type(data, typename, item)
63f26a8db8b11444b2c37dda05f8b04c536308c0
5fe709d0643394168dd919bbc721adabebe60a97
/profiler/translation/seq2seq/models/gnmt.py
b3bc9147c44775f20a46b6cbce1d24d4ee9b4917
[ "MIT" ]
permissive
vibhatha/pipedream
8232b67366a0dd84e41fd496c9b2e8b86dbfdd89
af6b811f5d01a68e9eb91065e5242fc1a075f279
refs/heads/master
2020-12-20T18:21:35.337352
2020-07-06T04:54:23
2020-07-06T04:54:23
236,167,878
0
0
MIT
2020-01-25T12:34:04
2020-01-25T12:34:03
null
UTF-8
Python
false
false
2,830
py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch.nn as nn from mlperf_compliance import mlperf_log from seq2seq.utils import gnmt_print import seq2seq.data.config as config from seq2seq.models.seq2seq_base import Seq2Seq from seq2seq.models.encoder import ResidualRecurrentEncoder from seq2seq.models.decoder import ResidualRecurrentDecoder import torchmodules.torchgraph as torchgraph class GNMT(Seq2Seq): """ GNMT v2 model """ def __init__(self, vocab_size, hidden_size=512, num_layers=8, bias=True, dropout=0.2, batch_first=False, math='fp32', share_embedding=False): """ Constructor for the GNMT v2 model. :param vocab_size: size of vocabulary (number of tokens) :param hidden_size: internal hidden size of the model :param num_layers: number of layers, applies to both encoder and decoder :param bias: globally enables or disables bias in encoder and decoder :param dropout: probability of dropout (in encoder and decoder) :param batch_first: if True the model uses (batch,seq,feature) tensors, if false the model uses (seq, batch, feature) :param math: arithmetic type, 'fp32' or 'fp16' :param share_embedding: if True embeddings are shared between encoder and decoder """ super(GNMT, self).__init__(batch_first=batch_first) gnmt_print(key=mlperf_log.MODEL_HP_NUM_LAYERS, value=num_layers) gnmt_print(key=mlperf_log.MODEL_HP_HIDDEN_SIZE, value=hidden_size) gnmt_print(key=mlperf_log.MODEL_HP_DROPOUT, value=dropout) if share_embedding: embedder = nn.Embedding(vocab_size, hidden_size, padding_idx=config.PAD) else: embedder = None self.encoder = ResidualRecurrentEncoder(vocab_size, hidden_size, num_layers, bias, dropout, batch_first, embedder) self.decoder = ResidualRecurrentDecoder(vocab_size, hidden_size, num_layers, bias, dropout, batch_first, math, embedder) def forward(self, input_encoder, input_enc_len, input_decoder): context = self.encode(input_encoder, input_enc_len) hidden = None if isinstance(context, torchgraph.TensorWrapper): hidden = torchgraph.TensorWrapper(hidden, "hidden", context.graph_creator) context = (context, input_enc_len, hidden) output, _, _ = self.decode(input_decoder, context) return output
b221ad4641f6d3b0f304e77820b72eeb21327c1a
f4bf81d4e80468331a09401dbaeef12465aca853
/lib/python/helpers/profiler/run_profiler.py
d1054a5f28c84804105642bc0bdc2a81ea369adb
[]
no_license
nottyo/intellibot
45c41d673608a0a1291c6387f9d33ef449f18837
0547d987deaad90260abe33db5284eae9704eb9b
refs/heads/master
2020-12-30T23:59:29.795725
2017-04-10T07:53:59
2017-04-10T07:53:59
86,574,980
1
0
null
2017-03-29T11:37:54
2017-03-29T11:37:53
null
UTF-8
Python
false
false
5,121
py
import os import sys import time import traceback from socket import AF_INET from socket import SOCK_STREAM from socket import socket from _prof_imports import ProfilerResponse from prof_io import ProfWriter, ProfReader from prof_util import generate_snapshot_filepath, stats_to_response, get_snapshot_basepath, save_main_module, execfile base_snapshot_path = os.getenv('PYCHARM_SNAPSHOT_PATH') remote_run = bool(os.getenv('PYCHARM_REMOTE_RUN', '')) def StartClient(host, port): """ connects to a host/port """ s = socket(AF_INET, SOCK_STREAM) MAX_TRIES = 100 i = 0 while i < MAX_TRIES: try: s.connect((host, port)) except: i += 1 time.sleep(0.2) continue return s sys.stderr.write("Could not connect to %s: %s\n" % (host, port)) sys.stderr.flush() traceback.print_exc() sys.exit(1) # TODO: is it safe? class Profiler(object): def __init__(self): try: import vmprof_profiler self.profiling_backend = vmprof_profiler.VmProfProfile() self.profiling_backend.basepath = get_snapshot_basepath(base_snapshot_path, remote_run) print('Starting vmprof profiler\n') except ImportError: try: import yappi_profiler self.profiling_backend = yappi_profiler.YappiProfile() print('Starting yappi profiler\n') except ImportError: import cProfile self.profiling_backend = cProfile.Profile() print('Starting cProfile profiler\n') def connect(self, host, port): s = StartClient(host, port) self.initializeNetwork(s) def initializeNetwork(self, sock): try: sock.settimeout(None) # infinite, no timeouts from now on - jython does not have it except: pass self.writer = ProfWriter(sock) self.reader = ProfReader(sock, self) self.reader.start() time.sleep(0.1) # give threads time to start def process(self, message): if hasattr(message, 'save_snapshot'): self.save_snapshot(message.id, generate_snapshot_filepath(message.save_snapshot.filepath, remote_run, self.snapshot_extension()), remote_run) else: raise AssertionError("Unknown request %s" % dir(message)) def run(self, file): m = save_main_module(file, 'run_profiler') globals = m.__dict__ try: globals['__builtins__'] = __builtins__ except NameError: pass # Not there on Jython... self.start_profiling() try: execfile(file, globals, globals) # execute the script finally: self.stop_profiling() self.save_snapshot(0, generate_snapshot_filepath(base_snapshot_path, remote_run, self.snapshot_extension()), remote_run) def start_profiling(self): self.profiling_backend.enable() def stop_profiling(self): self.profiling_backend.disable() def get_stats(self): self.profiling_backend.create_stats() return self.profiling_backend.stats def has_tree_stats(self): return hasattr(self.profiling_backend, 'tree_stats_to_response') def tree_stats_to_response(self, filename, response): return self.profiling_backend.tree_stats_to_response(filename, response) def snapshot_extension(self): if hasattr(self.profiling_backend, 'snapshot_extension'): return self.profiling_backend.snapshot_extension() return '.pstat' def dump_snapshot(self, filename): dir = os.path.dirname(filename) if not os.path.exists(dir): os.makedirs(dir) self.profiling_backend.dump_stats(filename) return filename def save_snapshot(self, id, filename, send_stat=False): self.stop_profiling() if filename is not None: filename = self.dump_snapshot(filename) print('Snapshot saved to %s' % filename) if not send_stat: response = ProfilerResponse(id=id, snapshot_filepath=filename) else: response = ProfilerResponse(id=id) stats_to_response(self.get_stats(), response) if self.has_tree_stats(): self.tree_stats_to_response(filename, response) self.writer.addCommand(response) self.start_profiling() if __name__ == '__main__': host = sys.argv[1] port = int(sys.argv[2]) file = sys.argv[3] del sys.argv[0] del sys.argv[0] del sys.argv[0] profiler = Profiler() try: profiler.connect(host, port) except: sys.stderr.write("Could not connect to %s: %s\n" % (host, port)) traceback.print_exc() sys.exit(1) # add file path to sys.path sys.path.insert(0, os.path.split(file)[0]) profiler.run(file)
e54de02e976647aa74f068b06084f0e6aa09524f
0e60ed9251cd6e2ccc9645c45783a53fdabc22aa
/backend/home/migrations/0003_auto_20200613_0652.py
3f900f39b9ebe293952dd7350fd52cfd4ad1297b
[]
no_license
crowdbotics-apps/mobile-13-dev-5964
7b522691afd94b4e7662ba5244abb1a8ab6768a3
dee9594b7a96748c4c729d77145a01c592339e01
refs/heads/master
2022-10-22T08:47:30.634185
2020-06-13T07:29:34
2020-06-13T07:29:34
271,942,482
0
0
null
null
null
null
UTF-8
Python
false
false
972
py
# Generated by Django 2.2.13 on 2020-06-13 06:52 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("home", "0002_load_initial_data"), ] operations = [ migrations.AddField( model_name="customtext", name="caasdc", field=models.ManyToManyField( blank=True, related_name="customtext_caasdc", to="home.HomePage" ), ), migrations.AddField( model_name="customtext", name="sacscs", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="customtext_sacscs", to=settings.AUTH_USER_MODEL, ), ), ]
a72bf1e2b39f2476cd8b658a62118d236cf164a7
4f026ddcf8f058d884f15259f0e42c2178eb2157
/roomlistwatcher/common/messaging/filters.py
787b395ad5017aa059aacbf980e915a82a2ffff0
[ "MIT" ]
permissive
dnguyen0304/roomlistwatcher
afd95e5f601f77fc8d7c4cd4307e60f36b53162c
7ac4d5172de22dd8906662da521995c8e06c2617
refs/heads/master
2021-01-20T22:55:04.289589
2017-11-16T04:09:49
2017-11-16T04:09:49
101,829,306
0
0
null
2017-11-16T04:09:49
2017-08-30T02:38:56
Python
UTF-8
Python
false
false
382
py
# -*- coding: utf-8 -*- import abc class StringFilter(object): __metaclass__ = abc.ABCMeta @abc.abstractmethod def filter(self, string): """ Parameters ---------- string : str Returns ------- str If the data should not be filtered. Otherwise None. """ raise NotImplementedError
b23f2e5fe1e974e3f9b11f5b20f431a35ee516d3
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/nlp/FairSeq_Transformer_ID0496_for_PyTorch/fairseq/models/fconv.py
3d524589bb9294a89f9681571921b19673ccb18c
[ "MIT", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
29,338
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqIncrementalDecoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, BeamableMM, GradMultiply, LearnedPositionalEmbedding, LinearizedConvolution, ) @register_model('fconv') class FConvModel(FairseqEncoderDecoderModel): """ A fully convolutional model, i.e. a convolutional encoder and a convolutional decoder, as described in `"Convolutional Sequence to Sequence Learning" (Gehring et al., 2017) <https://arxiv.org/abs/1705.03122>`_. Args: encoder (FConvEncoder): the encoder decoder (FConvDecoder): the decoder The Convolutional model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.fconv_parser :prog: """ @classmethod def hub_models(cls): def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } return { 'conv.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2'), 'conv.wmt14.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2'), 'conv.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2'), } def __init__(self, encoder, decoder): super().__init__(encoder, decoder) self.encoder.num_attention_layers = sum(layer is not None for layer in decoder.attention) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-layers', type=str, metavar='EXPR', help='encoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-layers', type=str, metavar='EXPR', help='decoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', help='decoder output embedding dimension') parser.add_argument('--decoder-attention', type=str, metavar='EXPR', help='decoder attention [True, ...]') parser.add_argument('--share-input-output-embed', action='store_true', help='share input and output embeddings (requires' ' --decoder-out-embed-dim and --decoder-embed-dim' ' to be equal)') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted (in case there are any new ones) base_architecture(args) encoder_embed_dict = None if args.encoder_embed_path: encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path) utils.print_embed_overlap(encoder_embed_dict, task.source_dictionary) decoder_embed_dict = None if args.decoder_embed_path: decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path) utils.print_embed_overlap(decoder_embed_dict, task.target_dictionary) encoder = FConvEncoder( dictionary=task.source_dictionary, embed_dim=args.encoder_embed_dim, embed_dict=encoder_embed_dict, convolutions=eval(args.encoder_layers), dropout=args.dropout, max_positions=args.max_source_positions, ) decoder = FConvDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, embed_dict=decoder_embed_dict, convolutions=eval(args.decoder_layers), out_embed_dim=args.decoder_out_embed_dim, attention=eval(args.decoder_attention), dropout=args.dropout, max_positions=args.max_target_positions, share_embed=args.share_input_output_embed, ) return FConvModel(encoder, decoder) class FConvEncoder(FairseqEncoder): """ Convolutional encoder consisting of `len(convolutions)` layers. Args: dictionary (~fairseq.data.Dictionary): encoding dictionary embed_dim (int, optional): embedding dimension embed_dict (str, optional): filename from which to load pre-trained embeddings max_positions (int, optional): maximum supported input sequence length convolutions (list, optional): the convolutional layer structure. Each list item `i` corresponds to convolutional layer `i`. Layers are given as ``(out_channels, kernel_width, [residual])``. Residual connections are added between layers when ``residual=1`` (which is the default behavior). dropout (float, optional): dropout to be applied before each conv layer """ def __init__( self, dictionary, embed_dim=512, embed_dict=None, max_positions=1024, convolutions=((512, 3),) * 20, dropout=0.1, ): super().__init__(dictionary) self.dropout = dropout self.num_attention_layers = None num_embeddings = len(dictionary) self.padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) if embed_dict: self.embed_tokens = utils.load_embedding(embed_dict, self.dictionary, self.embed_tokens) self.embed_positions = PositionalEmbedding( max_positions, embed_dim, self.padding_idx, ) convolutions = extend_conv_spec(convolutions) in_channels = convolutions[0][0] self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.residuals = [] layer_in_channels = [in_channels] for _, (out_channels, kernel_size, residual) in enumerate(convolutions): if residual == 0: residual_dim = out_channels else: residual_dim = layer_in_channels[-residual] self.projections.append(Linear(residual_dim, out_channels) if residual_dim != out_channels else None) if kernel_size % 2 == 1: padding = kernel_size // 2 else: padding = 0 self.convolutions.append( ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout, padding=padding) ) self.residuals.append(residual) in_channels = out_channels layer_in_channels.append(out_channels) self.fc2 = Linear(in_channels, embed_dim) def forward(self, src_tokens, src_lengths): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (tuple): a tuple with two elements, where the first element is the last encoder layer's output and the second element is the same quantity summed with the input embedding (used for attention). The shape of both tensors is `(batch, src_len, embed_dim)`. - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens) x = F.dropout(x, p=self.dropout, training=self.training) input_embedding = x # project to size of convolution x = self.fc1(x) # used to mask padding in input encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # -> T x B if not encoder_padding_mask.any(): encoder_padding_mask = None # B x T x C -> T x B x C x = x.transpose(0, 1) residuals = [x] # temporal convolutions for proj, conv, res_layer in zip(self.projections, self.convolutions, self.residuals): if res_layer > 0: residual = residuals[-res_layer] residual = residual if proj is None else proj(residual) else: residual = None if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) x = F.dropout(x, p=self.dropout, training=self.training) if conv.kernel_size[0] % 2 == 1: # padding is implicit in the conv x = conv(x) else: padding_l = (conv.kernel_size[0] - 1) // 2 padding_r = conv.kernel_size[0] // 2 x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r)) x = conv(x) x = F.glu(x, dim=2) if residual is not None: x = (x + residual) * math.sqrt(0.5) residuals.append(x) # T x B x C -> B x T x C x = x.transpose(1, 0) # project back to size of embedding x = self.fc2(x) if encoder_padding_mask is not None: encoder_padding_mask = encoder_padding_mask.t() # -> B x T x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) # scale gradients (this only affects backward, not forward) x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers)) # add output to input embedding for attention y = (x + input_embedding) * math.sqrt(0.5) return { 'encoder_out': (x, y), 'encoder_padding_mask': encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out['encoder_out'] is not None: encoder_out['encoder_out'] = ( encoder_out['encoder_out'][0].index_select(0, new_order), encoder_out['encoder_out'][1].index_select(0, new_order), ) if encoder_out['encoder_padding_mask'] is not None: encoder_out['encoder_padding_mask'] = \ encoder_out['encoder_padding_mask'].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return self.embed_positions.max_positions() class AttentionLayer(nn.Module): def __init__(self, conv_channels, embed_dim, bmm=None): super().__init__() # projects from output of convolution to embedding dimension self.in_projection = Linear(conv_channels, embed_dim) # projects from embedding dimension to convolution size self.out_projection = Linear(embed_dim, conv_channels) self.bmm = bmm if bmm is not None else torch.bmm def forward(self, x, target_embedding, encoder_out, encoder_padding_mask): residual = x # attention x = (self.in_projection(x) + target_embedding) * math.sqrt(0.5) x = self.bmm(x, encoder_out[0]) # don't attend over padding if encoder_padding_mask is not None: x = x.float().masked_fill( encoder_padding_mask.unsqueeze(1), float('-inf') ).type_as(x) # FP16 support: cast to float and back # softmax over last dim sz = x.size() x = F.softmax(x.view(sz[0] * sz[1], sz[2]), dim=1) x = x.view(sz) attn_scores = x x = self.bmm(x, encoder_out[1]) # scale attention output (respecting potentially different lengths) s = encoder_out[1].size(1) if encoder_padding_mask is None: x = x * (s * math.sqrt(1.0 / s)) else: s = s - encoder_padding_mask.type_as(x).sum(dim=1, keepdim=True) # exclude padding s = s.unsqueeze(-1) x = x * (s * s.rsqrt()) # project back x = (self.out_projection(x) + residual) * math.sqrt(0.5) return x, attn_scores def make_generation_fast_(self, beamable_mm_beam_size=None, **kwargs): """Replace torch.bmm with BeamableMM.""" if beamable_mm_beam_size is not None: del self.bmm self.add_module('bmm', BeamableMM(beamable_mm_beam_size)) class FConvDecoder(FairseqIncrementalDecoder): """Convolutional decoder""" def __init__( self, dictionary, embed_dim=512, embed_dict=None, out_embed_dim=256, max_positions=1024, convolutions=((512, 3),) * 20, attention=True, dropout=0.1, share_embed=False, positional_embeddings=True, adaptive_softmax_cutoff=None, adaptive_softmax_dropout=0, ): super().__init__(dictionary) self.register_buffer('version', torch.Tensor([2])) self.dropout = dropout self.need_attn = True convolutions = extend_conv_spec(convolutions) in_channels = convolutions[0][0] if isinstance(attention, bool): # expand True into [True, True, ...] and do the same with False attention = [attention] * len(convolutions) if not isinstance(attention, list) or len(attention) != len(convolutions): raise ValueError('Attention is expected to be a list of booleans of ' 'length equal to the number of layers.') num_embeddings = len(dictionary) padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) if embed_dict: self.embed_tokens = utils.load_embedding(embed_dict, self.dictionary, self.embed_tokens) self.embed_positions = PositionalEmbedding( max_positions, embed_dim, padding_idx, ) if positional_embeddings else None self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.attention = nn.ModuleList() self.residuals = [] layer_in_channels = [in_channels] for i, (out_channels, kernel_size, residual) in enumerate(convolutions): if residual == 0: residual_dim = out_channels else: residual_dim = layer_in_channels[-residual] self.projections.append(Linear(residual_dim, out_channels) if residual_dim != out_channels else None) self.convolutions.append( LinearizedConv1d(in_channels, out_channels * 2, kernel_size, padding=(kernel_size - 1), dropout=dropout) ) self.attention.append(AttentionLayer(out_channels, embed_dim) if attention[i] else None) self.residuals.append(residual) in_channels = out_channels layer_in_channels.append(out_channels) self.adaptive_softmax = None self.fc2 = self.fc3 = None if adaptive_softmax_cutoff is not None: assert not share_embed self.adaptive_softmax = AdaptiveSoftmax(num_embeddings, in_channels, adaptive_softmax_cutoff, dropout=adaptive_softmax_dropout) else: self.fc2 = Linear(in_channels, out_embed_dim) if share_embed: assert out_embed_dim == embed_dim, \ "Shared embed weights implies same dimensions " \ " out_embed_dim={} vs embed_dim={}".format(out_embed_dim, embed_dim) self.fc3 = nn.Linear(out_embed_dim, num_embeddings) self.fc3.weight = self.embed_tokens.weight else: self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout) def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused): if encoder_out is not None: encoder_padding_mask = encoder_out['encoder_padding_mask'] encoder_out = encoder_out['encoder_out'] # split and transpose encoder outputs encoder_a, encoder_b = self._split_encoder_out(encoder_out, incremental_state) if self.embed_positions is not None: pos_embed = self.embed_positions(prev_output_tokens, incremental_state) else: pos_embed = 0 if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] x = self._embed_tokens(prev_output_tokens, incremental_state) # embed tokens and combine with positional embeddings x += pos_embed x = F.dropout(x, p=self.dropout, training=self.training) target_embedding = x # project to size of convolution x = self.fc1(x) # B x T x C -> T x B x C x = self._transpose_if_training(x, incremental_state) # temporal convolutions avg_attn_scores = None num_attn_layers = len(self.attention) residuals = [x] for proj, conv, attention, res_layer in zip(self.projections, self.convolutions, self.attention, self.residuals): if res_layer > 0: residual = residuals[-res_layer] residual = residual if proj is None else proj(residual) else: residual = None x = F.dropout(x, p=self.dropout, training=self.training) x = conv(x, incremental_state) x = F.glu(x, dim=2) # attention if attention is not None: x = self._transpose_if_training(x, incremental_state) x, attn_scores = attention(x, target_embedding, (encoder_a, encoder_b), encoder_padding_mask) if not self.training and self.need_attn: attn_scores = attn_scores / num_attn_layers if avg_attn_scores is None: avg_attn_scores = attn_scores else: avg_attn_scores.add_(attn_scores) x = self._transpose_if_training(x, incremental_state) # residual if residual is not None: x = (x + residual) * math.sqrt(0.5) residuals.append(x) # T x B x C -> B x T x C x = self._transpose_if_training(x, incremental_state) # project back to size of vocabulary if not using adaptive softmax if self.fc2 is not None and self.fc3 is not None: x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.fc3(x) return x, avg_attn_scores def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) encoder_out = utils.get_incremental_state(self, incremental_state, 'encoder_out') if encoder_out is not None: encoder_out = tuple(eo.index_select(0, new_order) for eo in encoder_out) utils.set_incremental_state(self, incremental_state, 'encoder_out', encoder_out) def max_positions(self): """Maximum output length supported by the decoder.""" return self.embed_positions.max_positions() if self.embed_positions is not None else float('inf') def upgrade_state_dict(self, state_dict): if utils.item(state_dict.get('decoder.version', torch.Tensor([1]))[0]) < 2: # old models use incorrect weight norm dimension for i, conv in enumerate(self.convolutions): # reconfigure weight norm nn.utils.remove_weight_norm(conv) self.convolutions[i] = nn.utils.weight_norm(conv, dim=0) state_dict['decoder.version'] = torch.Tensor([1]) return state_dict def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def _embed_tokens(self, tokens, incremental_state): if incremental_state is not None: # keep only the last token for incremental forward pass tokens = tokens[:, -1:] return self.embed_tokens(tokens) def _split_encoder_out(self, encoder_out, incremental_state): """Split and transpose encoder outputs. This is cached when doing incremental inference. """ cached_result = utils.get_incremental_state(self, incremental_state, 'encoder_out') if cached_result is not None: return cached_result # transpose only once to speed up attention layers encoder_a, encoder_b = encoder_out encoder_a = encoder_a.transpose(1, 2).contiguous() result = (encoder_a, encoder_b) if incremental_state is not None: utils.set_incremental_state(self, incremental_state, 'encoder_out', result) return result def _transpose_if_training(self, x, incremental_state): if incremental_state is None: x = x.transpose(0, 1) return x def extend_conv_spec(convolutions): """ Extends convolutional spec that is a list of tuples of 2 or 3 parameters (kernel size, dim size and optionally how many layers behind to look for residual) to default the residual propagation param if it is not specified """ extended = [] for spec in convolutions: if len(spec) == 3: extended.append(spec) elif len(spec) == 2: extended.append(spec + (1,)) else: raise Exception('invalid number of parameters in convolution spec ' + str(spec) + '. expected 2 or 3') return tuple(extended) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, 0, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx): m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, 0, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, dropout=0): """Weight-normalized Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features) nn.init.normal_(m.weight, mean=0, std=math.sqrt((1 - dropout) / in_features)) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m) def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs): """Weight-normalized Conv1d layer optimized for decoding""" m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) def ConvTBC(in_channels, out_channels, kernel_size, dropout=0, **kwargs): """Weight-normalized Conv1d layer""" from fairseq.modules import ConvTBC m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) @register_model_architecture('fconv', 'fconv') def base_architecture(args): args.dropout = getattr(args, 'dropout', 0.1) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 512) args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_layers = getattr(args, 'encoder_layers', '[(512, 3)] * 20') args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 512) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_layers = getattr(args, 'decoder_layers', '[(512, 3)] * 20') args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 256) args.decoder_attention = getattr(args, 'decoder_attention', 'True') args.share_input_output_embed = getattr(args, 'share_input_output_embed', False) @register_model_architecture('fconv', 'fconv_iwslt_de_en') def fconv_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 256) args.encoder_layers = getattr(args, 'encoder_layers', '[(256, 3)] * 4') args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 256) args.decoder_layers = getattr(args, 'decoder_layers', '[(256, 3)] * 3') args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 256) base_architecture(args) @register_model_architecture('fconv', 'fconv_wmt_en_ro') def fconv_wmt_en_ro(args): args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 512) base_architecture(args) @register_model_architecture('fconv', 'fconv_wmt_en_de') def fconv_wmt_en_de(args): convs = '[(512, 3)] * 9' # first 9 layers have 512 units convs += ' + [(1024, 3)] * 4' # next 4 layers have 1024 units convs += ' + [(2048, 1)] * 2' # final 2 layers use 1x1 convolutions args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) args.encoder_layers = getattr(args, 'encoder_layers', convs) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) args.decoder_layers = getattr(args, 'decoder_layers', convs) args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 512) base_architecture(args) @register_model_architecture('fconv', 'fconv_wmt_en_fr') def fconv_wmt_en_fr(args): convs = '[(512, 3)] * 6' # first 6 layers have 512 units convs += ' + [(768, 3)] * 4' # next 4 layers have 768 units convs += ' + [(1024, 3)] * 3' # next 3 layers have 1024 units convs += ' + [(2048, 1)] * 1' # next 1 layer uses 1x1 convolutions convs += ' + [(4096, 1)] * 1' # final 1 layer uses 1x1 convolutions args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 768) args.encoder_layers = getattr(args, 'encoder_layers', convs) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', 768) args.decoder_layers = getattr(args, 'decoder_layers', convs) args.decoder_out_embed_dim = getattr(args, 'decoder_out_embed_dim', 512) base_architecture(args)
76950567499f25a761480d17cfaa528a71dd1eda
522f4b1b18416443062ec53157340fb2d6f43b1b
/ch4/automate_possible_keys.py
028d5a70faf14dc5253f9c385bc41c6c444e2c5d
[]
no_license
thewchan/impractical_python
fd3f3d82c6f45d1fd0dea55611bc8d5369c8982c
9963df374b7de5b3eb1faa58e45de7857c3fc792
refs/heads/master
2021-05-22T00:41:05.491349
2020-04-04T02:18:16
2020-04-04T02:18:16
252,884,952
0
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
""" Pseudo-code ask for length of key initiate possible integers get sum of positive integers get negative integers merge into 1 string get permutation loop through permutation and sum up abs values eliminate those with sum not equal to sum of positive integers print out list of tuples """ from itertools import permutations while True: key_len = input("Enter length of key: ") try: key_len = int(key_len) except ValueError: print("Please enter a number.") continue break positive_integers = list(range(key_len + 1)) positive_integers.pop(0) print( "Possible key values (not including direction): ", *positive_integers, ) negative_integers = [-1 * x for x in positive_integers] all_integers = positive_integers + negative_integers raw_perms = list(permutations(all_integers, key_len)) filtered_perms = [] for perm in raw_perms: abs_perm = [abs(x) for x in perm] set_perm = set(abs_perm) if len(set_perm) == len(perm): filtered_perms.append(perm) print("Valid key combinations:\n", *filtered_perms, sep='\n') print(f"Number of valid key combinations: {len(filtered_perms)}")
a5846c31c6b2366554d3e964fe1fab8ed55f1bb7
f228b0cbe141d23ad918f9fe7a40674ca8d7c963
/First_project.py
c59b3f5d3eea312d6cae46c1d93c796c070a73e0
[]
no_license
Vazimax/My_first_project
a990996e753a979f8bc0393ce97837be55e84418
36b8c61a9e05ed9b35b5364521f79c906036415d
refs/heads/main
2023-01-23T06:04:43.082815
2020-11-24T18:47:02
2020-11-24T18:47:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
def odd_even_project() : number = input("Enter a number :") while number != "x": try: number = int(number) if number%2 == 0 : print("It's an even number =)") else : print("It's an odd number :)") except ValueError: print("Please Enter a valid number") number = input("Enter a number again , and if you wanna exit press 'x' :")
416028c8780dd01160c0b6dd3d29eb7302eda7ca
3b5ee9aa584bfca56dabc19d75717f6104c0dc95
/gaia/compute_synthetic_decam_fluxes.py
c4888f1d885e08e3fbaada340ff8434fa33f40ce
[]
no_license
rongpu/desi-misc
95690ca99962940fd4a793d523edf4d2ce68b4c3
c700344ebf8f74391fcce69a47e4ca57fc4b34f8
refs/heads/master
2023-09-01T00:49:07.399914
2023-08-11T17:10:40
2023-08-11T17:10:40
173,173,912
2
0
null
null
null
null
UTF-8
Python
false
false
2,939
py
# Convert the files from .csv.gz to .fits from __future__ import division, print_function import sys, os, glob, time, warnings, gc import numpy as np import matplotlib.pyplot as plt from astropy.table import Table, vstack, hstack, join import fitsio from multiprocessing import Pool from gaiaxpy import generate, PhotometricSystem output_dir = '/global/cfs/cdirs/desi/users/rongpu/data/gaia_dr3/xp_synthetic_decam_photometry' fns = sorted(glob.glob('/pscratch/sd/r/rongpu/gaia_dr3/xp_continuous_mean_spectrum/XpContinuousMeanSpectrum_*.fits')) print(len(fns)) def do_something(fn): output_fn = os.path.join(output_dir, os.path.basename(fn).replace('XpContinuousMeanSpectrum_', 'XpSyntheticDECam_')) if os.path.isfile(output_fn): print(output_fn, 'already exists!') return None cat = Table(fitsio.read(fn)) # Workaround to make the multidimensional arrays pandas-compatible cat = vstack([cat, cat[:1].copy()]) for col in ['bp_coefficients', 'bp_coefficient_errors', 'bp_coefficient_correlations', 'rp_coefficients', 'rp_coefficient_errors', 'rp_coefficient_correlations']: tmp = list(np.array(cat[col])) tmp.pop() tmp += [np.array([0])] cat[col] = tmp cat = cat[:-1] print(len(cat)) cat = cat.to_pandas() phot_system = PhotometricSystem.DECam photom = generate(cat, photometric_system=phot_system, save_file=False) photom = Table.from_pandas(photom) print(np.allclose(photom['Decam_mag_g'], (-2.5*np.log10(photom['Decam_flux_g']))-56.1), np.allclose(photom['Decam_mag_r'], (-2.5*np.log10(photom['Decam_flux_r']))-56.1), np.allclose(photom['Decam_mag_i'], (-2.5*np.log10(photom['Decam_flux_i']))-56.1), np.allclose(photom['Decam_mag_z'], (-2.5*np.log10(photom['Decam_flux_z']))-56.1), np.allclose(photom['Decam_mag_Y'], (-2.5*np.log10(photom['Decam_flux_Y']))-56.1)) for col in ['Decam_flux_g', 'Decam_flux_r', 'Decam_flux_i', 'Decam_flux_z', 'Decam_flux_Y', 'Decam_flux_error_g', 'Decam_flux_error_r', 'Decam_flux_error_i', 'Decam_flux_error_z', 'Decam_flux_error_Y']: photom[col.replace('Decam_', '')] = photom[col] * 10**31.44 print(np.allclose(photom['Decam_mag_g'], (22.5-2.5*np.log10(photom['flux_g']))), np.allclose(photom['Decam_mag_r'], (22.5-2.5*np.log10(photom['flux_r']))), np.allclose(photom['Decam_mag_i'], (22.5-2.5*np.log10(photom['flux_i']))), np.allclose(photom['Decam_mag_z'], (22.5-2.5*np.log10(photom['flux_z']))), np.allclose(photom['Decam_mag_Y'], (22.5-2.5*np.log10(photom['flux_Y'])))) photom = photom[['source_id', 'flux_g', 'flux_r', 'flux_i', 'flux_z', 'flux_Y', 'flux_error_g', 'flux_error_r', 'flux_error_i', 'flux_error_z', 'flux_error_Y']] photom.write(output_fn) return None n_process = 16 with Pool(processes=n_process) as pool: res = pool.map(do_something, fns, chunksize=1)
76c636adc6a52dcef38e9fc2977e6afa5a920185
a0de3a09c857fab7281e4ca4a70a256a4a3575cb
/als.py
b35a28e27cad3706c3bcf527164858c394b50fad
[]
no_license
poker-HuDL/machine-learning
16fcda0ef7221f6d534b1fa929550894bc775c8a
8cfae1e944faa67244f18d03d10ca7dd7323be19
refs/heads/master
2022-02-27T01:03:19.122602
2019-11-07T09:56:16
2019-11-07T09:56:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,658
py
#coding=utf-8 from collections import defaultdict from random import random from itertools import product, chain from time import time def load_movie_ratings(): f = open("boston/movie_ratings.csv") lines = iter(f) col_names = ", ".join(next(lines)[:-1].split(",")[:-1]) print("The column names are: %s." % col_names) data = [[float(x) if i == 2 else int(x) for i, x in enumerate(line[:-1].split(",")[:-1])] for line in lines] f.close() return data class Matrix(object): def __init__(self, data): self.data = data self.shape = (len(data), len(data[0])) def row(self, row_no): return Matrix([self.data[row_no]]) def col(self, col_no): m = self.shape[0] return Matrix([[self.data[i][col_no]] for i in range(m)]) @property def is_square(self): return self.shape[0] == self.shape[1] @property def transpose(self): data = list(map(list, zip(*self.data))) return Matrix(data) # 生成一个长度为n的单位阵 def _eye(self, n): return [[0 if i != j else 1 for j in range(n)] for i in range(n)] @property def eye(self): assert self.is_squre, "The matrix has to be squre" data = self._eye(self.shape[0]) return Matrix(data) # 高斯消元 def gaussian_elimination(self, aug_matrix): n = len(aug_matrix) m = len(aug_matrix[0]) # From top to bottom. for col_idx in range(n): # Check if element on the diagonal is zero. if aug_matrix[col_idx][col_idx] == 0: row_idx = col_idx # Find a row whose element has same column index with # the element on the diagonal is not zero. while row_idx < n and aug_matrix[row_idx][col_idx] == 0: row_idx += 1 # Add this row to the row of the element on the diagonal. for i in range(col_idx, m): aug_matrix[col_idx][i] += aug_matrix[row_idx][i] # Elimiate the non-zero element. for i in range(col_idx + 1, n): # Skip the zero element. if aug_matrix[i][col_idx] == 0: continue # Elimiate the non-zero element. k = aug_matrix[i][col_idx] / aug_matrix[col_idx][col_idx] for j in range(col_idx, m): aug_matrix[i][j] -= k * aug_matrix[col_idx][j] # From bottom to top. for col_idx in range(n - 1, -1, -1): # Elimiate the non-zero element. for i in range(col_idx): # Skip the zero element. if aug_matrix[i][col_idx] == 0: continue # Elimiate the non-zero element. k = aug_matrix[i][col_idx] / aug_matrix[col_idx][col_idx] for j in chain(range(i, col_idx + 1), range(n, m)): aug_matrix[i][j] -= k * aug_matrix[col_idx][j] # Iterate the element on the diagonal. for i in range(n): k = 1 / aug_matrix[i][i] aug_matrix[i][i] *= k for j in range(n, m): aug_matrix[i][j] *= k return aug_matrix # 矩阵求逆 def _inverse(self, data): n = len(data) unit_matrix = self._eye(n) aug_matrix = [a + b for a, b in zip(self.data, unit_matrix)] ret = self.gaussian_elimination(aug_matrix) return list(map(lambda x: x[n:], ret)) # 矩阵求逆,原理:https://baike.baidu.com/item/%E9%AB%98%E6%96%AF%E6%B6%88%E5%85%83%E6%B3%95/619561?fr=aladdin @property def inverse(self): assert self.is_square, "The matrix has to be square!" data = self._inverse(self.data) return Matrix(data) def row_mul(self, row_A, row_B): return sum(x[0] * x[1] for x in zip(row_A, row_B)) def _mat_mul(self, row_A, B): row_pairs = product([row_A], B.transpose.data) return [self.row_mul(*row_pair) for row_pair in row_pairs] def mat_mul(self, B): assert self.shape[1] == B.shape[0], "A's column count does not match B's row count!" return Matrix([self._mat_mul(row_A, B) for row_A in self.data]) def _mean(self, data): m = len(data) n = len(data[0]) ret = [0 for _ in range(n)] for row in data: for j in range(n): ret[j] += row[j] / m return ret def mean(self, data): return Matrix(self._mean(self.data)) # 统计程序运行时间函数 # fn代表运行的函数 def run_time(fn): def fun(): start = time() fn() ret = time() - start if ret < 1e-6: unit = "ns" ret *= 1e9 elif ret < 1e-3: unit = "us" ret *= 1e6 elif ret < 1: unit = "ms" ret *= 1e3 else: unit = "s" print("Total run time is %.1f %s\n" % (ret, unit)) return fun() class ALS(object): # 初始化,存储用户ID、物品ID、用户ID与用户矩阵列号的对应关系、物品ID # 与物品矩阵列号的对应关系、用户已经看过哪些物品、评分矩阵的Shape以及RMSE def __init__(self): self.user_ids = None self.item_ids = None self.user_ids_dict = None self.item_ids_dict = None self.user_matrix = None self.item_matrix = None self.user_items = None self.shape = None self.rmse = None # 对训练数据进行处理,得到用户ID、物品ID、用户ID与用户矩阵列号的对应关系、物 # 品ID与物品矩阵列号的对应关系、评分矩阵的Shape、评分矩阵及评分矩阵的转置。 def process_data(self, X): self.user_ids = tuple((set(map(lambda x: x[0], X)))) self.user_ids_dict = dict(map(lambda x: x[::-1], enumerate(self.user_ids))) self.item_ids = tuple((set(map(lambda x: x[1], X)))) self.item_ids_dict = dict(map(lambda x: x[::-1], enumerate(self.item_ids))) self.shape = (len(self.user_ids), len(self.item_ids)) ratings = defaultdict(lambda : defaultdict(int)) ratings_T = defaultdict(lambda : defaultdict(int)) for row in X: user_id, item_id, rating = row ratings[user_id][item_id] = rating ratings_T[item_id][user_id] = rating err_msg = "Length of user_ids %d and ratings %d not match!" % ( len(self.user_ids), len(ratings)) assert len(self.user_ids) == len(ratings), err_msg err_msg = "Length of item_ids %d and ratings_T %d not match!" % ( len(self.item_ids), len(ratings_T)) assert len(self.item_ids) == len(ratings_T), err_msg return ratings, ratings_T # 用户矩阵乘以评分矩阵,实现稠密矩阵与稀疏矩阵的矩阵乘法,得到用户矩阵与评分矩阵的乘积。 def users_mul_ratings(self, users, ratings_T): def f(users_row, item_id): user_ids = iter(ratings_T[item_id].keys()) scores = iter(ratings_T[item_id].values()) col_nos = map(lambda x: self.user_ids_dict[x], user_ids) _users_row = map(lambda x: users_row[x], col_nos) return sum(a * b for a, b in zip(_users_row, scores)) ret = [[f(users_row, item_id) for item_id in self.item_ids] for users_row in users.data] return Matrix(ret) # 物品矩阵乘以评分矩阵,实现稠密矩阵与稀疏矩阵的矩阵乘法,得到物品矩阵与评分矩阵的乘积。 def items_mul_ratings(self, items, ratings): def f(items_row, user_id): item_ids = iter(ratings[user_id].keys()) scores = iter(ratings[user_id].values()) col_nos = map(lambda x: self.item_ids_dict[x], item_ids) _items_row = map(lambda x: items_row[x], col_nos) return sum(a * b for a, b in zip(_items_row, scores)) ret = [[f(items_row, user_id) for user_id in self.user_ids] for items_row in items.data] return Matrix(ret) # 生成随机矩阵 def gen_random_matrix(self, n_rows, n_colums): data = [[random() for _ in range(n_colums)] for _ in range(n_rows)] return Matrix(data) # 计算RMSE def get_rmse(self, ratings): m, n = self.shape mse = 0.0 n_elements = sum(map(len, ratings.values())) for i in range(m): for j in range(n): user_id = self.user_ids[i] item_id = self.item_ids[j] rating = ratings[user_id][item_id] if rating > 0: user_row = self.user_matrix.col(i).transpose item_col = self.item_matrix.col(j) rating_hat = user_row.mat_mul(item_col).data[0][0] square_error = (rating - rating_hat) ** 2 mse += square_error / n_elements return mse ** 0.5 # 训练模型 # 1.数据预处理 # 2.变量k合法性检查 # 3.生成随机矩阵U # 4.交替计算矩阵U和矩阵I,并打印RMSE信息,直到迭代次数达到max_iter # 5.保存最终的RMSE def fit(self, X, k, max_iter=10): ratings, ratings_T = self.process_data(X) self.user_items = {k: set(v.keys()) for k,v in ratings.items()} m, n = self.shape error_msg = "Parameter k must be less than the rank of original matrix" assert k < min(m, n), error_msg self.user_matrix = self.gen_random_matrix(k, m) for i in range(max_iter): if i % 2: items = self.item_matrix self.user_matrix = self.items_mul_ratings( items.mat_mul(items.transpose).inverse.mat_mul(items), ratings ) else: users = self.user_matrix self.item_matrix = self.users_mul_ratings( users.mat_mul(users.transpose).inverse.mat_mul(users), ratings_T ) rmse = self.get_rmse(ratings) print("Iterations: %d, RMSE: %.6f" % (i + 1, rmse)) self.rmse = rmse # 预测一个用户 def _predict(self, user_id, n_items): users_col = self.user_matrix.col(self.user_ids_dict[user_id]) users_col = users_col.transpose items_col = enumerate(users_col.mat_mul(self.item_matrix).data[0]) items_scores = map(lambda x: (self.item_ids[x[0]], x[1]), items_col) viewed_items = self.user_items[user_id] items_scores = filter(lambda x: x[0] not in viewed_items, items_scores) return sorted(items_scores, key=lambda x: x[1], reverse=True)[:n_items] # 预测多个用户 def predict(self, user_ids, n_items=10): return [self._predict(user_id, n_items) for user_id in user_ids] def format_prediction(item_id, score): return "item_id:%d score:%.2f" % (item_id, score) @run_time def main(): print("Tesing the accuracy of ALS...") X = load_movie_ratings() model = ALS() model.fit(X, k=3, max_iter=5) print("Showing the predictions of users...") user_ids = range(1, 5) predictions = model.predict(user_ids, n_items=2) for user_id, prediction in zip(user_ids, predictions): _prediction = [format_prediction(item_id, score) for item_id, score in prediction] print("User id:%d recommedation: %s" % (user_id, _prediction))
167e0aa64ce2767420af626e5aa6e2b676c439ca
7c74e87d80ef98f9758eda322a00209e7cb493ae
/leader/src/main/market/utils/QuitContainer.py
4aa38f2d1b09ec560235078f356e2f230a209832
[]
no_license
rorymcstay/car
f95e8623b34e1f36078b1aa789d46d6fc0897c36
b1640253d06b165b999af47b889a07b865b9809e
refs/heads/master
2020-05-07T16:03:40.158430
2019-09-15T13:15:49
2019-09-15T13:15:49
180,664,010
1
0
null
2019-04-23T23:24:42
2019-04-10T21:07:06
Python
UTF-8
Python
false
false
92
py
""" Contains methods for cleaning up containers """ def quit_container(container): pass