blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0f57f25e6830e8a8a6c29f9389d56e4d28244ca4
8240abd177ece3a1cf2d753cc5694c1fec478709
/week1/codeingBat/list-1/11.py
cf2becfbba95f6796832323d11c3203f3efb0f6e
[]
no_license
DastanB/BF-Django
255001185d8a8318bd19b750fe662a7f86b64d92
adcd1d968b94ea5097fd3d03338f031d5497d463
refs/heads/master
2022-10-27T06:44:56.648527
2018-11-24T18:33:35
2018-11-24T18:33:35
147,125,321
1
1
null
2022-10-19T08:22:54
2018-09-02T22:07:22
Python
UTF-8
Python
false
false
52
py
def make_ends(nums): return [nums[0], nums[-1]]
8870bd24e5ffe301721b460d9d17fd2f21eb6d2a
904e75e2ceff81c18a432fe1b951b683e859cbed
/views/home.py
00e8a59f5996bfd50c7e509807307c71b893ddd0
[]
no_license
PUYUP/plutoborn
a42c65fa360de41a1236af00b5718948dc1b9940
e6b47b7f183fcff60fa803329e11c2e87de560ef
refs/heads/master
2022-12-05T17:06:10.049472
2020-08-19T09:12:45
2020-08-19T09:12:45
254,116,939
0
0
null
null
null
null
UTF-8
Python
false
false
9,622
py
import datetime from django.conf import settings from django.views import View from django.shortcuts import render, redirect from django.urls import reverse from django.core.exceptions import ValidationError, ObjectDoesNotExist from django.db.models import ( Count, Prefetch, Case, When, Value, BooleanField, IntegerField, F, Q, Subquery, OuterRef, CharField, Sum, FloatField, Max, DateTimeField) from django.contrib.auth.mixins import LoginRequiredMixin from django.utils import timezone from utils.generals import get_model from apps.market.utils.constant import PUBLISHED, NATIONAL from apps.tryout.utils.constant import PREFERENCE, TRUE_FALSE_NONE Simulation = get_model('tryout', 'Simulation') Bundle = get_model('market', 'Bundle') CMSBanner = get_model('cms', 'CMSBanner') CMSVideo = get_model('cms', 'CMSVideo') class HomeView(LoginRequiredMixin, View): login_url = '/login/' redirect_field_name = 'redirect_to' template_name = 'home.html' context = dict() def latest_simulation(self): user = self.request.user try: latest_simulation = Simulation.objects.filter(user_id=user.id).latest('date_created') except ObjectDoesNotExist: latest_simulation = None if not latest_simulation: return None packet = latest_simulation.packet chance = latest_simulation.chance theories = packet.questions.filter(theory__isnull=False) \ .values('theory', 'theory__pk', 'theory__label', 'theory__true_score', 'theory__false_score', 'theory__none_score', 'theory__scoring_type') \ .distinct() theories_params = dict() theories_total_score = list() for item in theories: theory_id = item['theory__pk'] scoring_type = item['theory__scoring_type'] at = 'theory_{}_true_count'.format(theory_id) af = 'theory_{}_false_count'.format(theory_id) an = 'theory_{}_none_count'.format(theory_id) at_s = 'theory_{}_true_score'.format(theory_id) af_s = 'theory_{}_false_score'.format(theory_id) an_s = 'theory_{}_none_score'.format(theory_id) ts = 'theory_{}_total_score'.format(theory_id) tn = 'theory_{}_verbose_name'.format(theory_id) pt_s = 'theory_{}_preference_score_total'.format(theory_id) # verbose name theories_params[tn] = Value(item['theory__label'], output_field=CharField()) # score by preference theories_params[pt_s] = Sum( Case( When( Q(answers__question__theory__id=theory_id) & Q(answers__question__theory__scoring_type=PREFERENCE) & Q(answers__choice__isnull=False), then=F('answers__choice__score') ), output_field=IntegerField(), default=Value(0) ) ) # count right choice theories_params[at] = Sum( Case( When( Q(answers__question__theory__id=theory_id) & Q(answers__choice__isnull=False) & Q(answers__choice__right_choice=True), then=Value(1) ), output_field=IntegerField(), default=Value(0) ) ) theories_params[at_s] = F(at) * item['theory__true_score'] # count false choice theories_params[af] = Sum( Case( When( Q(answers__question__theory__id=theory_id) & Q(answers__choice__isnull=False) & Q(answers__choice__right_choice=False), then=Value(1) ), output_field=IntegerField(), default=Value(0) ) ) theories_params[af_s] = F(af) * item['theory__false_score'] # count none choice theories_params[an] = Sum( Case( When( Q(answers__question__theory__id=theory_id) & Q(answers__choice__isnull=True), then=Value(1) ), output_field=IntegerField(), default=Value(0) ) ) theories_params[an_s] = F(an) * item['theory__none_score'] # sum all theory score if scoring_type == TRUE_FALSE_NONE: # sum all theory score theories_params[ts] = (F(at) * item['theory__true_score']) \ + (F(an) * item['theory__none_score']) \ - (F(af) * item['theory__false_score']) elif scoring_type == PREFERENCE: theories_params[ts] = F(pt_s) # prepare total score theories_total_score.append(F(ts)) simulations = Simulation.objects.filter(packet_id=packet.id, chance=chance) \ .annotate( **theories_params, total_score=sum(theories_total_score), current_score=Case( When(user_id=user.id, then=True), default=False, output_field=BooleanField() ), ).order_by('-total_score') theory_ids = [item['theory__pk'] for item in theories] simulation = simulations.filter(user_id=user.id).get() tgs = list() for tid in theory_ids: st = 'theory_{}_scoring_type'.format(tid) tn = 'theory_{}_verbose_name'.format(tid) ts = 'theory_{}_total_score'.format(tid) at_s = 'theory_{}_true_score'.format(tid) af_s = 'theory_{}_false_score'.format(tid) an_s = 'theory_{}_none_score'.format(tid) pt_s = 'theory_{}_preference_score_total'.format(tid) label = getattr(simulation, tn, None) true_score = getattr(simulation, at_s, 0) false_score = getattr(simulation, af_s, 0) none_score = getattr(simulation, an_s, 0) total_score = getattr(simulation, ts, 0) preference_total_score = getattr(item, pt_s, 0) scoring_type = getattr(item, st, None) tg = { 'label': label, 'true_score': true_score, 'false_score': false_score, 'none_score': none_score, 'total_score': total_score, 'preference_total_score': preference_total_score, 'scoring_type': scoring_type, } tgs.append(tg) simulation.theory_groups = tgs rank = simulations.filter(total_score__gt=simulation.total_score).count() + 1 return {'simulation': simulation, 'rank': rank} def get(self, request): user = request.user account = user.account # redirect to admin dashboard if user.is_staff: return redirect(reverse('dashboard')) if user.profile.is_empty: return redirect(reverse('profile')) simulation_stat = self.latest_simulation() settings.TIME_ZONE # 'UTC' aware_datetime = timezone.make_aware(timezone.datetime.today()) aware_datetime.tzinfo # <UTC> simulation_due = Bundle.objects.filter(start_date__gt=aware_datetime).first() bundles = Bundle.objects \ .annotate(total_packet=Count('packet', distinct=True)) \ .filter(status=PUBLISHED) \ .exclude(boughts__user_id=user.id)[:4] packets = user.acquireds \ .prefetch_related(Prefetch('packet'), Prefetch('user')) \ .select_related('packet', 'user') \ .annotate( question_total=Count('packet__questions', distinct=True), theory_total=Count('packet__questions__theory', distinct=True), x_start_date=Case( When(packet__bundle__start_date__isnull=False, then=F('packet__bundle__start_date')), default=F('packet__start_date'), ouput_field=DateTimeField() ), x_end_date=Case( When(packet__bundle__end_date__isnull=False, then=F('packet__bundle__end_date')), default=F('packet__end_date'), ouput_field=DateTimeField() ), x_simulation_type=Case( When(packet__bundle__simulation_type=NATIONAL, then=Value('Nasional')), default=Value('Umum'), output_field=CharField() ) )[:4] # CMS banners = CMSBanner.objects.filter(is_active=True).order_by('sort') videos = CMSVideo.objects.filter(is_active=True).order_by('sort') self.context['simulation_due'] = simulation_due self.context['simulation_stat'] = simulation_stat self.context['my_coins'] = account.coin_amounts self.context['my_points'] = account.points_amounts self.context['bundles'] = bundles self.context['packets'] = packets # CMS self.context['banners'] = banners self.context['videos'] = videos return render(request, self.template_name, self.context)
87952ccd9a2eb59e81b8c92ef355b23f757f7304
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part004399.py
ecb633d07fd632fb4d5e0042ffa3c812f780ceff
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
2,364
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher141684(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({0: 1}), [ (VariableWithCount('i2.2.1.0', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher141684._instance is None: CommutativeMatcher141684._instance = CommutativeMatcher141684() return CommutativeMatcher141684._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 141683 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp1 = subjects.popleft() subjects2 = deque(tmp1._args) # State 141685 if len(subjects2) >= 1: tmp3 = subjects2.popleft() subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.1', tmp3) except ValueError: pass else: pass # State 141686 if len(subjects2) >= 1 and subjects2[0] == Integer(2): tmp5 = subjects2.popleft() # State 141687 if len(subjects2) == 0: pass # State 141688 if len(subjects) == 0: pass # 0: x**2 yield 0, subst1 subjects2.appendleft(tmp5) subjects2.appendleft(tmp3) subjects.appendleft(tmp1) return yield from collections import deque
41704a03c9c525e5742496757d48362c163126ef
26ae248d7f1ca16c51c4f34c1f67ef19be162a4e
/targAssign.py
5ac00997505f5b61d411830f332333dfd23ee9a2
[]
no_license
csayres/astro598
0d87373904da8419b90665fb84d747cf49830ef6
676b7ae9ae08fbeca48ded0c6f980892e907972f
refs/heads/master
2020-11-24T05:42:13.775053
2019-12-14T09:22:10
2019-12-14T09:22:10
227,990,176
0
0
null
null
null
null
UTF-8
Python
false
false
5,555
py
import time from multiprocessing import Pool, cpu_count import pickle import numpy import matplotlib.pyplot as plt from keras.models import Sequential, load_model from keras.layers import Dense from kaiju import RobotGrid, utils nHexDia = 7 xCoords, yCoords = utils.hexFromDia(nHexDia) nPositioners = len(xCoords) print("using %i positioners"%nPositioners) nTargets = nPositioners nProcs = 10 # processors to use for multiprocessing batchSize = 100 # The number of samples to run through the network before the weights / gradient are updated epochs = 5 # The number of times to iterate through the complete sample of training data trainingRatio = 0.9 def getValidAssignments(seed): """seed is the random seed with which to initialze the RobotGrid return dictionary keyed by positioner id with the coordinates of the metrology fiber. These represent valid (non-collided) xy Fiber positions for each robot """ rg = RobotGrid(seed=seed) for ii, (xp, yp) in enumerate(zip(xCoords, yCoords)): rg.addRobot(robotID=ii, xPos=xp, yPos=yp) rg.initGrid() # give all robots an initial (radom) target configuration for robot in rg.robotDict.values(): # assigns a robot a target picked uniformly in xy # from its patrol annulus robot.setXYUniform() # decollide any colliding robots so that we have a completely # non-colliding target configuration rg.decollideGrid() targetPos = {} for robot in rg.robotDict.values(): targetPos[robot.id] = robot.metFiberPos[:-1] # xy coord, drop the z return targetPos def generateAssignments(nSeeds): p = Pool(nProcs) tstart = time.time() validAssignments = p.map(getValidAssignments, range(nSeeds)) tend = time.time() - tstart print("took %.2f seconds"%tend) p.close() pickle.dump(validAssignments, open("validAssign_%i.p"%nSeeds, "wb")) def target2NN(targetDict, shuffle=True): y = numpy.zeros((nPositioners, nTargets)) #n x 2, robot x target # shuffle targets x = [] shuffledInds = numpy.arange(nPositioners) if shuffle: numpy.random.shuffle(shuffledInds) for targetInd, robotInd in enumerate(shuffledInds): target = targetDict[robotInd] x.append(target[0]) # xvalue x.append(target[1]) # yvalue # x is flattened! y[robotInd, targetInd] = 1 x = numpy.array(x) # rows and columns of y sum to 1, total sums to nPositioners # print("sum of y", numpy.sum(y, axis=0), numpy.sum(y, axis=1), numpy.sum(y)) y = y.flatten() # consider normalizing by something? sum of the array will be 547 return x, y def form2NN(assignFile): """Take valid assignments from assignFile Format for use with the NN. Shuffle input targets """ numpy.random.seed(547) with open(assignFile, "rb") as f: validAssignments = pickle.load(f) # generate a big array # use reshape (nTargs, 2) to get original array X = [] # input n x [x1, y1, x2, y2, ... xn, yn] Y = [] # output for targetDict in validAssignments: x, y = target2NN(targetDict) X.append(x) Y.append(y) X = numpy.array(X) Y = numpy.array(Y) return X, Y def runNN(X, Y): """X is input array xy coords Y is output array, flattened nRobots x nTargets array indexing the answers """ # truncate? # X = X[:10000,:] # Y = Y[:10000,:] # normalize nTrials = X.shape[0] nInputs = X.shape[1] nHidden = int(nInputs*1.5) nOutputs = Y.shape[1] model = Sequential() model.add( Dense(nHidden, activation="relu", input_dim = nInputs, )) model.add( Dense(nOutputs, activation="softmax")) model.summary() model.compile(loss='categorical_crossentropy', # See: https://keras.io/losses/ optimizer='rmsprop', # See: https://keras.io/optimizers/ metrics=['accuracy'] ) # split the data into training and testing, 75% goes towards training split = int(numpy.floor(nTrials*trainingRatio)) X_train = X[:split, :] Y_train = Y[:split, :] X_test = X[split:, :] Y_test = Y[split:, :] history = model.fit(X_train, Y_train, batch_size=batchSize, epochs=epochs, verbose=1, validation_data=(X_test, Y_test)) model.save("targAssign.h5") def compareModeled(): model = load_model('targAssign.h5') newSeed = 2000000 # never used ii = 0 for seed in range(newSeed, newSeed+10): targDict = getValidAssignments(seed) x, yTrue = target2NN(targDict, shuffle=False) # import pdb; pdb.set_trace() print("xhape", x.shape) yFit = model.predict(numpy.array([x]), verbose=1) yFit = yFit.reshape(nPositioners, nTargets) yTrue = yTrue.reshape(nPositioners, nTargets) plt.figure() plt.imshow(yFit/numpy.sum(yFit)) plt.title("NN Model Fit %i"%ii) plt.ylabel("Positioner Index") plt.xlabel("Target Index") plt.savefig("model_%i.png"%ii) plt.close() ii += 1 plt.figure() plt.imshow(yTrue/numpy.sum(yTrue)) plt.title("True Assignment") plt.ylabel("Positioner Index") plt.xlabel("Target Index") plt.savefig("true.png") plt.close() if __name__ == "__main__": nSeeds = 1000000 generateAssignments(nSeeds) X, Y = form2NN("validAssign_%i.p"%nSeeds) runNN(X, Y) compareModeled()
2b5b147fd0ab404cd378d2b57cda206bc53c6ab4
1c6276c90ab97004e2435a539d011c5b9d08d134
/electrum/simple_config.py
83eec9befca8755f965b89e3090798660e730bf0
[ "MIT" ]
permissive
c4pt000/electrum-ravencoin-lite
020dedec4891293e9439f4692c0e5855466c249d
fe0f139a3708261467beb855700f56b5fbc7c2e9
refs/heads/main
2023-08-24T00:52:51.983733
2021-10-20T13:22:15
2021-10-20T13:22:15
406,919,123
0
1
null
null
null
null
UTF-8
Python
false
false
24,218
py
import json import threading import time import os import stat import ssl from decimal import Decimal from typing import Union, Optional from numbers import Real from copy import deepcopy from aiorpcx import NetAddress from . import util from . import constants from .util import base_units, base_unit_name_to_decimal_point, decimal_point_to_base_unit_name, UnknownBaseUnit, DECIMAL_POINT_DEFAULT from .util import format_satoshis, format_fee_satoshis from .util import user_dir, make_dir, NoDynamicFeeEstimates, quantize_feerate from .i18n import _ from .logging import get_logger, Logger FEE_ETA_TARGETS = [ 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, ] FEE_DEPTH_TARGETS = [ 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, ] #10, 5000000, 2000000, 10, 500000, 200000, 10] FEE_LN_ETA_TARGET = 520900 * 1000 #2 # note: make sure the network is asking for estimates for this target # satoshi per kbyte FEERATE_MAX_DYNAMIC = 520900 * 1000 FEERATE_WARNING_HIGH_FEE = 520900 * 1000 FEERATE_FALLBACK_STATIC_FEE = 520900 * 1000 FEERATE_DEFAULT_RELAY = 520900 * 1000 FEERATE_MAX_RELAY = 520900 * 1000 FEERATE_STATIC_VALUES = [ 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, 520900 * 1000, ] #1000, 2000, 5000, 10000, 20000, 30000, # 50000, 70000, 10, 150000, 200000, 300000] # Regtest feerate doesn't need Namecoin's 100x adjustment. FEERATE_REGTEST_HARDCODED = 180000 # for eclair compat FEE_RATIO_HIGH_WARNING = 0.05 # warn user if fee/amount for on-chain tx is higher than this _logger = get_logger(__name__) FINAL_CONFIG_VERSION = 3 class SimpleConfig(Logger): """ The SimpleConfig class is responsible for handling operations involving configuration files. There are two different sources of possible configuration values: 1. Command line options. 2. User configuration (in the user's config directory) They are taken in order (1. overrides config options set in 2.) """ def __init__(self, options=None, read_user_config_function=None, read_user_dir_function=None): if options is None: options = {} Logger.__init__(self) # This lock needs to be acquired for updating and reading the config in # a thread-safe way. self.lock = threading.RLock() self.mempool_fees = {} self.fee_estimates = {} self.fee_estimates_last_updated = {} self.last_time_fee_estimates_requested = 0 # zero ensures immediate fees # The following two functions are there for dependency injection when # testing. if read_user_config_function is None: read_user_config_function = read_user_config if read_user_dir_function is None: self.user_dir = user_dir else: self.user_dir = read_user_dir_function # The command line options self.cmdline_options = deepcopy(options) # don't allow to be set on CLI: self.cmdline_options.pop('config_version', None) # Set self.path and read the user config self.user_config = {} # for self.get in electrum_path() self.path = self.electrum_path() self.user_config = read_user_config_function(self.path) if not self.user_config: # avoid new config getting upgraded self.user_config = {'config_version': FINAL_CONFIG_VERSION} self._not_modifiable_keys = set() # config "upgrade" - CLI options self.rename_config_keys( self.cmdline_options, {'auto_cycle': 'auto_connect'}, True) # config upgrade - user config if self.requires_upgrade(): self.upgrade() self._check_dependent_keys() # units and formatting self.decimal_point = self.get('decimal_point', DECIMAL_POINT_DEFAULT) try: decimal_point_to_base_unit_name(self.decimal_point) except UnknownBaseUnit: self.decimal_point = DECIMAL_POINT_DEFAULT self.num_zeros = int(self.get('num_zeros', 0)) def electrum_path(self): # Read electrum_path from command line # Otherwise use the user's default data directory. path = self.get('electrum_path') if path is None: path = self.user_dir() make_dir(path, allow_symlink=False) if self.get('testnet'): path = os.path.join(path, 'testnet') make_dir(path, allow_symlink=False) elif self.get('regtest'): path = os.path.join(path, 'regtest') make_dir(path, allow_symlink=False) elif self.get('simnet'): path = os.path.join(path, 'simnet') make_dir(path, allow_symlink=False) self.logger.info(f"electrum-nmc directory {path}") return path def rename_config_keys(self, config, keypairs, deprecation_warning=False): """Migrate old key names to new ones""" updated = False for old_key, new_key in keypairs.items(): if old_key in config: if new_key not in config: config[new_key] = config[old_key] if deprecation_warning: self.logger.warning('Note that the {} variable has been deprecated. ' 'You should use {} instead.'.format(old_key, new_key)) del config[old_key] updated = True return updated def set_key(self, key, value, save=True): if not self.is_modifiable(key): self.logger.warning(f"not changing config key '{key}' set on the command line") return try: json.dumps(key) json.dumps(value) except: self.logger.info(f"json error: cannot save {repr(key)} ({repr(value)})") return self._set_key_in_user_config(key, value, save) def _set_key_in_user_config(self, key, value, save=True): with self.lock: if value is not None: self.user_config[key] = value else: self.user_config.pop(key, None) if save: self.save_user_config() def get(self, key, default=None): with self.lock: out = self.cmdline_options.get(key) if out is None: out = self.user_config.get(key, default) return out def _check_dependent_keys(self) -> None: if self.get('serverfingerprint'): if not self.get('server'): raise Exception("config key 'serverfingerprint' requires 'server' to also be set") self.make_key_not_modifiable('server') def requires_upgrade(self): return self.get_config_version() < FINAL_CONFIG_VERSION def upgrade(self): with self.lock: self.logger.info('upgrading config') self.convert_version_2() self.convert_version_3() self.set_key('config_version', FINAL_CONFIG_VERSION, save=True) def convert_version_2(self): if not self._is_upgrade_method_needed(1, 1): return self.rename_config_keys(self.user_config, {'auto_cycle': 'auto_connect'}) try: # change server string FROM host:port:proto TO host:port:s server_str = self.user_config.get('server') host, port, protocol = str(server_str).rsplit(':', 2) assert protocol in ('s', 't') int(port) # Throw if cannot be converted to int server_str = '{}:{}:s'.format(host, port) self._set_key_in_user_config('server', server_str) except BaseException: self._set_key_in_user_config('server', None) self.set_key('config_version', 2) def convert_version_3(self): if not self._is_upgrade_method_needed(2, 2): return base_unit = self.user_config.get('base_unit') if isinstance(base_unit, str): self._set_key_in_user_config('base_unit', None) map_ = {'nmc':8, 'mnmc':5, 'unmc':2, 'bits':2, 'noise':0} decimal_point = map_.get(base_unit.lower()) self._set_key_in_user_config('decimal_point', decimal_point) self.set_key('config_version', 3) def _is_upgrade_method_needed(self, min_version, max_version): cur_version = self.get_config_version() if cur_version > max_version: return False elif cur_version < min_version: raise Exception( ('config upgrade: unexpected version %d (should be %d-%d)' % (cur_version, min_version, max_version))) else: return True def get_config_version(self): config_version = self.get('config_version', 1) if config_version > FINAL_CONFIG_VERSION: self.logger.warning('config version ({}) is higher than latest ({})' .format(config_version, FINAL_CONFIG_VERSION)) return config_version def is_modifiable(self, key) -> bool: return (key not in self.cmdline_options and key not in self._not_modifiable_keys) def make_key_not_modifiable(self, key) -> None: self._not_modifiable_keys.add(key) def save_user_config(self): if self.get('forget_config'): return if not self.path: return path = os.path.join(self.path, "config") s = json.dumps(self.user_config, indent=4, sort_keys=True) try: with open(path, "w", encoding='utf-8') as f: f.write(s) os.chmod(path, stat.S_IREAD | stat.S_IWRITE) except FileNotFoundError: # datadir probably deleted while running... if os.path.exists(self.path): # or maybe not? raise def get_wallet_path(self, *, use_gui_last_wallet=False): """Set the path of the wallet.""" # command line -w option if self.get('wallet_path'): return os.path.join(self.get('cwd', ''), self.get('wallet_path')) if use_gui_last_wallet: path = self.get('gui_last_wallet') if path and os.path.exists(path): return path # default path util.assert_datadir_available(self.path) dirpath = os.path.join(self.path, "wallets") make_dir(dirpath, allow_symlink=False) new_path = os.path.join(self.path, "wallets", "default_wallet") # default path in pre 1.9 versions old_path = os.path.join(self.path, "electrum-nmc.dat") if os.path.exists(old_path) and not os.path.exists(new_path): os.rename(old_path, new_path) return new_path def remove_from_recently_open(self, filename): recent = self.get('recently_open', []) if filename in recent: recent.remove(filename) self.set_key('recently_open', recent) def set_session_timeout(self, seconds): self.logger.info(f"session timeout -> {seconds} seconds") self.set_key('session_timeout', seconds) def get_session_timeout(self): return self.get('session_timeout', 300) def save_last_wallet(self, wallet): if self.get('wallet_path') is None: path = wallet.storage.path self.set_key('gui_last_wallet', path) def impose_hard_limits_on_fee(func): def get_fee_within_limits(self, *args, **kwargs): fee = func(self, *args, **kwargs) if fee is None: return fee fee = min(FEERATE_MAX_DYNAMIC, fee) fee = max(FEERATE_DEFAULT_RELAY, fee) return fee return get_fee_within_limits def eta_to_fee(self, slider_pos) -> Optional[int]: """Returns fee in sat/kbyte.""" slider_pos = max(slider_pos, 0) slider_pos = min(slider_pos, len(FEE_ETA_TARGETS)) if slider_pos < len(FEE_ETA_TARGETS): num_blocks = FEE_ETA_TARGETS[slider_pos] fee = self.eta_target_to_fee(num_blocks) else: fee = self.eta_target_to_fee(1) return fee @impose_hard_limits_on_fee def eta_target_to_fee(self, num_blocks: int) -> Optional[int]: """Returns fee in sat/kbyte.""" if num_blocks == 1: fee = self.fee_estimates.get(2) if fee is not None: fee += fee / 2 fee = int(fee) else: fee = self.fee_estimates.get(num_blocks) return fee def fee_to_depth(self, target_fee: Real) -> int: """For a given sat/vbyte fee, returns an estimate of how deep it would be in the current mempool in vbytes. Pessimistic == overestimates the depth. """ depth = 0 for fee, s in self.mempool_fees: depth += s if fee <= target_fee: break return depth def depth_to_fee(self, slider_pos) -> int: """Returns fee in sat/kbyte.""" target = self.depth_target(slider_pos) return self.depth_target_to_fee(target) @impose_hard_limits_on_fee def depth_target_to_fee(self, target: int) -> int: """Returns fee in sat/kbyte. target: desired mempool depth in vbytes """ depth = 0 for fee, s in self.mempool_fees: depth += s if depth > target: break else: return 0 # add one sat/byte as currently that is # the max precision of the histogram fee += 1 # convert to sat/kbyte # return fee * 1000 000 000 return fee * 1000000000 def depth_target(self, slider_pos): slider_pos = max(slider_pos, 0) slider_pos = min(slider_pos, len(FEE_DEPTH_TARGETS)-1) return FEE_DEPTH_TARGETS[slider_pos] def eta_target(self, i): if i == len(FEE_ETA_TARGETS): return 1 return FEE_ETA_TARGETS[i] def fee_to_eta(self, fee_per_kb): import operator l = list(self.fee_estimates.items()) + [(1, self.eta_to_fee(4))] dist = map(lambda x: (x[0], abs(x[1] - fee_per_kb)), l) min_target, min_value = min(dist, key=operator.itemgetter(1)) if fee_per_kb < self.fee_estimates.get(25)/2: min_target = -1 return min_target def depth_tooltip(self, depth): return "%.1f MB from tip"%(depth/100) def eta_tooltip(self, x): if x < 0: return _('Low fee') elif x == 1: return _('In the next block') else: return _('Within {} blocks').format(x) def get_fee_status(self): dyn = self.is_dynfee() mempool = self.use_mempool_fees() pos = self.get_depth_level() if mempool else self.get_fee_level() fee_rate = self.fee_per_kb() target, tooltip = self.get_fee_text(pos, dyn, mempool, fee_rate) return tooltip + ' [%s]'%target if dyn else target + ' [Static]' def get_fee_text(self, pos, dyn, mempool, fee_rate): """Returns (text, tooltip) where text is what we target: static fee / num blocks to confirm in / mempool depth tooltip is the corresponding estimate (e.g. num blocks for a static fee) fee_rate is in sat/kbyte """ if fee_rate is None: rate_str = 'unknown' else: # fee_rate = fee_rate/1000 fee_rate = 1.000 rate_str = format_fee_satoshis(fee_rate) + ' noise/byte' if dyn: if mempool: depth = self.depth_target(pos) text = self.depth_tooltip(depth) else: eta = self.eta_target(pos) text = self.eta_tooltip(eta) tooltip = rate_str else: text = rate_str if mempool and self.has_fee_mempool(): depth = self.fee_to_depth(fee_rate) tooltip = self.depth_tooltip(depth) elif not mempool and self.has_fee_etas(): eta = self.fee_to_eta(fee_rate) tooltip = self.eta_tooltip(eta) else: tooltip = '' return text, tooltip def get_depth_level(self): maxp = len(FEE_DEPTH_TARGETS) - 1 return min(maxp, self.get('depth_level', 2)) def get_fee_level(self): maxp = len(FEE_ETA_TARGETS) # not (-1) to have "next block" return min(maxp, self.get('fee_level', 2)) def get_fee_slider(self, dyn, mempool): if dyn: if mempool: pos = self.get_depth_level() maxp = len(FEE_DEPTH_TARGETS) - 1 fee_rate = self.depth_to_fee(pos) else: pos = self.get_fee_level() maxp = len(FEE_ETA_TARGETS) # not (-1) to have "next block" fee_rate = self.eta_to_fee(pos) else: fee_rate = self.fee_per_kb(dyn=False) pos = self.static_fee_index(fee_rate) maxp = len(FEERATE_STATIC_VALUES) - 1 return maxp, pos, fee_rate def static_fee(self, i): return FEERATE_STATIC_VALUES[i] def static_fee_index(self, value): if value is None: raise TypeError('static fee cannot be None') dist = list(map(lambda x: abs(x - value), FEERATE_STATIC_VALUES)) return min(range(len(dist)), key=dist.__getitem__) def has_fee_etas(self): return len(self.fee_estimates) == 4 def has_fee_mempool(self): return bool(self.mempool_fees) def has_dynamic_fees_ready(self): if self.use_mempool_fees(): return self.has_fee_mempool() else: return self.has_fee_etas() def is_dynfee(self): return bool(self.get('dynamic_fees', True)) def use_mempool_fees(self): return bool(self.get('mempool_fees', False)) def _feerate_from_fractional_slider_position(self, fee_level: float, dyn: bool, mempool: bool) -> Union[int, None]: fee_level = max(fee_level, 0) fee_level = min(fee_level, 1) if dyn: max_pos = (len(FEE_DEPTH_TARGETS) - 1) if mempool else len(FEE_ETA_TARGETS) slider_pos = round(fee_level * max_pos) fee_rate = self.depth_to_fee(slider_pos) if mempool else self.eta_to_fee(slider_pos) else: max_pos = len(FEERATE_STATIC_VALUES) - 1 slider_pos = round(fee_level * max_pos) fee_rate = FEERATE_STATIC_VALUES[slider_pos] return fee_rate def fee_per_kb(self, dyn: bool=None, mempool: bool=None, fee_level: float=None) -> Union[int, None]: """Returns sat/kvB fee to pay for a txn. Note: might return None. fee_level: float between 0.0 and 1.0, representing fee slider position """ if constants.net is constants.BitcoinRegtest: return FEERATE_REGTEST_HARDCODED if dyn is None: dyn = self.is_dynfee() if mempool is None: mempool = self.use_mempool_fees() if fee_level is not None: return self._feerate_from_fractional_slider_position(fee_level, dyn, mempool) # there is no fee_level specified; will use config. # note: 'depth_level' and 'fee_level' in config are integer slider positions, # unlike fee_level here, which (when given) is a float in [0.0, 1.0] if dyn: if mempool: fee_rate = self.depth_to_fee(self.get_depth_level()) else: fee_rate = self.eta_to_fee(self.get_fee_level()) else: fee_rate = self.get('fee_per_kb', FEERATE_FALLBACK_STATIC_FEE) return fee_rate def fee_per_byte(self): """Returns sat/vB fee to pay for a txn. Note: might return None. """ fee_per_kb = self.fee_per_kb() return fee_per_kb / 1000 if fee_per_kb is not None else None def estimate_fee(self, size: Union[int, float, Decimal], *, allow_fallback_to_static_rates: bool = False) -> int: fee_per_kb = self.fee_per_kb() if fee_per_kb is None: if allow_fallback_to_static_rates: fee_per_kb = FEERATE_FALLBACK_STATIC_FEE else: raise NoDynamicFeeEstimates() return self.estimate_fee_for_feerate(fee_per_kb, size) @classmethod def estimate_fee_for_feerate(cls, fee_per_kb: Union[int, float, Decimal], size: Union[int, float, Decimal]) -> int: size = Decimal(size) fee_per_kb = Decimal(fee_per_kb) fee_per_byte = fee_per_kb / 1000 # to be consistent with what is displayed in the GUI, # the calculation needs to use the same precision: fee_per_byte = quantize_feerate(fee_per_byte) return round(fee_per_byte * size) def update_fee_estimates(self, key, value): self.fee_estimates[key] = value self.fee_estimates_last_updated[key] = time.time() def is_fee_estimates_update_required(self): """Checks time since last requested and updated fee estimates. Returns True if an update should be requested. """ now = time.time() return now - self.last_time_fee_estimates_requested > 60 def requested_fee_estimates(self): self.last_time_fee_estimates_requested = time.time() def get_video_device(self): device = self.get("video_device", "default") if device == 'default': device = '' return device def get_ssl_context(self): ssl_keyfile = self.get('ssl_keyfile') ssl_certfile = self.get('ssl_certfile') if ssl_keyfile and ssl_certfile: ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_context.load_cert_chain(ssl_certfile, ssl_keyfile) return ssl_context def get_ssl_domain(self): from .paymentrequest import check_ssl_config if self.get('ssl_keyfile') and self.get('ssl_certfile'): SSL_identity = check_ssl_config(self) else: SSL_identity = None return SSL_identity def get_netaddress(self, key: str) -> Optional[NetAddress]: text = self.get(key) if text: try: host, port = text.split(':') return NetAddress(host, port) except: pass def format_amount(self, x, is_diff=False, whitespaces=False): return format_satoshis( x, num_zeros=self.num_zeros, decimal_point=self.decimal_point, is_diff=is_diff, whitespaces=whitespaces, ) def format_amount_and_units(self, amount): return self.format_amount(amount) + ' '+ self.get_base_unit() def format_fee_rate(self, fee_rate): return format_fee_satoshis(fee_rate/1000, num_zeros=self.num_zeros) + ' noise/byte' def get_base_unit(self): return decimal_point_to_base_unit_name(self.decimal_point) def set_base_unit(self, unit): assert unit in base_units.keys() self.decimal_point = base_unit_name_to_decimal_point(unit) self.set_key('decimal_point', self.decimal_point, True) def get_decimal_point(self): return self.decimal_point def read_user_config(path): """Parse and store the user config settings in electrum-nmc.conf into user_config[].""" if not path: return {} config_path = os.path.join(path, "config") if not os.path.exists(config_path): return {} try: with open(config_path, "r", encoding='utf-8') as f: data = f.read() result = json.loads(data) except: _logger.warning(f"Cannot read config file. {config_path}") return {} if not type(result) is dict: return {} return result
63da4abf9140ef6028f7be93dad6d9462a3652ae
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20200414/codes/output/code081.py
b7717f8dce6a21d9f95ef23b3b3ed26b31bdeef3
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
200
py
import pygal chart = pygal.Line(stroke_style={'width': 5, 'dasharray': '3, 6', 'linecap': 'round', 'linejoin': 'round'}) chart.add('line', [.0002, .0005, .00035]) print(chart.render(is_unicode=True))
403f0e4f49753a0aec4176cc3333a60bd7a59334
55ab64b67d8abc02907eb43a54ff6c326ded6b72
/scripts/addon_library/local/uvpackmaster3/overlay.py
9f6fb0255008525ae59e25abc9636f43e1684ffc
[ "MIT" ]
permissive
Tilapiatsu/blender-custom_config
2f03b0bb234c3b098d2830732296d199c91147d0
00e14fc190ebff66cf50ff911f25cf5ad3529f8f
refs/heads/master
2023-08-16T14:26:39.990840
2023-08-16T01:32:41
2023-08-16T01:32:41
161,249,779
6
2
MIT
2023-04-12T05:33:59
2018-12-10T23:25:14
Python
UTF-8
Python
false
false
6,194
py
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import blf from .enums import OperationStatus, UvpmLogType from .utils import in_debug_mode, print_backtrace, get_prefs class TextOverlay: def __init__(self, text, color): self.coords = None self.text = text self.color = color def set_coords(self, coords): self.coords = coords def draw(self, ov_manager): if self.coords is None: return blf.color(ov_manager.font_id, *self.color) region_coord = ov_manager.context.region.view2d.view_to_region(self.coords[0], self.coords[1]) blf.position(ov_manager.font_id, region_coord[0], region_coord[1], 0) blf.draw(ov_manager.font_id, self.text) class OverlayManager: LINE_X_COORD = 10 LINE_Y_COORD = 35 LINE_TEXT_COLOR = (1, 1, 1, 1) def __init__(self, context, callback): prefs = get_prefs() self.font_size = prefs.font_size_text_output self.font_size_uv_overlay = prefs.font_size_uv_overlay self.line_distance = int(float(25) / 15 * self.font_size) self.font_id = 0 self.context = context handler_args = (self, context) self.__draw_handler = bpy.types.SpaceImageEditor.draw_handler_add(callback, handler_args, 'WINDOW', 'POST_PIXEL') def finish(self): if self.__draw_handler is not None: bpy.types.SpaceImageEditor.draw_handler_remove(self.__draw_handler, 'WINDOW') def print_text(self, coords, text, color, z_coord=0.0): blf.size(self.font_id, self.font_size, 72) blf.color(self.font_id, *color) blf.position(self.font_id, coords[0], coords[1], z_coord) blf.draw(self.font_id, text) blf.color(self.font_id, *(0, 0, 0, 1)) def __print_text_inline(self, line_num, text, color): x_coord = self.LINE_X_COORD y_coord = self.LINE_Y_COORD + line_num * self.line_distance self.print_text((x_coord, y_coord), text, color) def print_text_inline(self, text, color=LINE_TEXT_COLOR): self.__print_text_inline(self.next_line_num, text, color) self.next_line_num += 1 def callback_begin(self): self.next_line_num = 0 class EngineOverlayManager(OverlayManager): WARNING_COLOR = (1, 0.4, 0, 1) ERROR_COLOR = (1, 0, 0, 1) DISABLED_DEVICE_COLOR_MULTIPLIER = 0.7 INTEND_STR = ' ' OPSTATUS_TO_COLOR = { OperationStatus.ERROR : ERROR_COLOR, OperationStatus.WARNING : WARNING_COLOR, OperationStatus.CORRECT : OverlayManager.LINE_TEXT_COLOR } def __init__(self, op, dev_array): super().__init__(op.p_context.context, engine_overlay_manager_draw_callback) self.op = op self.dev_array = dev_array self.print_dev_progress = True self.p_context = op.p_context self.log_manager = op.log_manager self.font_id = 0 def print_dev_array(self): if self.dev_array is None: return for dev in reversed(self.dev_array): dev_color = self.LINE_TEXT_COLOR if self.print_dev_progress: progress_str = "{}% ".format(dev.bench_entry.progress) else: progress_str = '' if dev.settings.enabled: dev_status = "{}(iterations: {})".format(progress_str, dev.bench_entry.iter_count) else: dev_status = 'disabled' dev_color = tuple(self.DISABLED_DEVICE_COLOR_MULTIPLIER * c for c in dev_color) self.print_text_inline("{}{}: {}".format(self.INTEND_STR, dev.name, dev_status), color=dev_color) self.print_text_inline("[PACKING DEVICES]:") def print_list(self, header, list, color): for elem in reversed(list): self.print_text_inline("{}* {}".format(self.INTEND_STR, elem), color=color) self.print_text_inline("[{}]:".format(header), color=color) def engine_overlay_manager_draw_callback(self, context): try: self.callback_begin() status_str = self.log_manager.last_log(UvpmLogType.STATUS) if status_str is None: status_str = '' status_color = self.OPSTATUS_TO_COLOR[self.log_manager.operation_status()] hint_str = self.log_manager.last_log(UvpmLogType.HINT) if hint_str: status_str = "{} ({})".format(status_str, hint_str) self.print_text_inline('[STATUS]: ' + status_str, color=status_color) self.print_dev_array() log_print_metadata = (\ (UvpmLogType.INFO, 'INFO'), (UvpmLogType.WARNING,'WARNINGS'), (UvpmLogType.ERROR, 'ERRORS') ) for log_type, header in log_print_metadata: op_status = self.log_manager.LOGTYPE_TO_OPSTATUS[log_type] color = self.OPSTATUS_TO_COLOR[op_status] log_list = self.log_manager.log_list(log_type) if len(log_list) > 0: self.print_list(header, log_list, color) blf.size(self.font_id, self.font_size_uv_overlay, 72) if self.p_context.p_islands is not None: for p_island in self.p_context.p_islands: overlay = p_island.overlay() if overlay is not None: overlay.draw(self) except Exception as ex: if in_debug_mode(): print_backtrace(ex)
7a08037735251f82bbeb0a141dc986cc6be5b018
db9cc680a60997412eae035b257cc77efbcdcb06
/py3/leetcodeCN/tree/111. Minimum Depth of Binary Tree.py
32a79a0af7a51bccd7310bf7ea62463e9dd2d775
[]
no_license
Azson/machineLearning
9630b62c73b2388a57c630644dae3ffa8e4db236
35662ddf39d322009f074ce8981e5f5d27786819
refs/heads/master
2022-05-06T07:03:23.543355
2021-08-20T14:57:25
2021-08-20T14:57:25
179,935,258
3
3
null
2019-11-04T14:26:51
2019-04-07T08:07:08
Python
UTF-8
Python
false
false
482
py
#!/usr/bin/python # -*- coding: utf-8 -*- def minDepth(root): ls = [root] ans = 0 while len(ls) > 0: ans += 1 la = len(ls) for i in range(la): root = ls[i] if not (root.left and root.right): return ans+1 if root.left: ls.append(root.left) if root.right: ls.append(root.right) ls = ls[la:] return ans if __name__ == '__main__': pass
58efa655d1487cd5d3f26dbe92f3eb954bf9e877
ca42e62ce157095ace5fbaec0bf261a4fb13aa6a
/pyenv/lib/python3.6/site-packages/rest_framework/utils/serializer_helpers.py
4734332af888219ce4589dd089dcda9352ed0871
[ "Apache-2.0" ]
permissive
ronald-rgr/ai-chatbot-smartguide
58f1e7c76b00248923f5fe85f87c318b45e38836
c9c830feb6b66c2e362f8fb5d147ef0c4f4a08cf
refs/heads/master
2021-04-18T03:15:23.720397
2020-03-23T17:55:47
2020-03-23T17:55:47
249,500,344
0
0
Apache-2.0
2021-04-16T20:45:28
2020-03-23T17:35:37
Python
UTF-8
Python
false
false
4,617
py
from __future__ import unicode_literals import collections from collections import OrderedDict from django.utils.encoding import force_text from rest_framework.compat import unicode_to_repr class ReturnDict(OrderedDict): """ Return object from `serializer.data` for the `Serializer` class. Includes a backlink to the serializer instance for renderers to use if they need richer field information. """ def __init__(self, *args, **kwargs): self.serializer = kwargs.pop('serializer') super(ReturnDict, self).__init__(*args, **kwargs) def copy(self): return ReturnDict(self, serializer=self.serializer) def __repr__(self): return dict.__repr__(self) def __reduce__(self): # Pickling these objects will drop the .serializer backlink, # but preserve the raw data. return (dict, (dict(self),)) class ReturnList(list): """ Return object from `serializer.data` for the `SerializerList` class. Includes a backlink to the serializer instance for renderers to use if they need richer field information. """ def __init__(self, *args, **kwargs): self.serializer = kwargs.pop('serializer') super(ReturnList, self).__init__(*args, **kwargs) def __repr__(self): return list.__repr__(self) def __reduce__(self): # Pickling these objects will drop the .serializer backlink, # but preserve the raw data. return (list, (list(self),)) class BoundField(object): """ A field object that also includes `.value` and `.error` properties. Returned when iterating over a serializer instance, providing an API similar to Django forms and form fields. """ def __init__(self, field, value, errors, prefix=''): self._field = field self._prefix = prefix self.value = value self.errors = errors self.name = prefix + self.field_name def __getattr__(self, attr_name): return getattr(self._field, attr_name) @property def _proxy_class(self): return self._field.__class__ def __repr__(self): return unicode_to_repr('<%s value=%s errors=%s>' % ( self.__class__.__name__, self.value, self.errors )) def as_form_field(self): value = '' if (self.value is None or self.value is False) else self.value return self.__class__(self._field, value, self.errors, self._prefix) class NestedBoundField(BoundField): """ This `BoundField` additionally implements __iter__ and __getitem__ in order to support nested bound fields. This class is the type of `BoundField` that is used for serializer fields. """ def __init__(self, field, value, errors, prefix=''): if value is None or value is '': value = {} super(NestedBoundField, self).__init__(field, value, errors, prefix) def __iter__(self): for field in self.fields.values(): yield self[field.field_name] def __getitem__(self, key): field = self.fields[key] value = self.value.get(key) if self.value else None error = self.errors.get(key) if self.errors else None if hasattr(field, 'fields'): return NestedBoundField(field, value, error, prefix=self.name + '.') return BoundField(field, value, error, prefix=self.name + '.') def as_form_field(self): values = {} for key, value in self.value.items(): if isinstance(value, (list, dict)): values[key] = value else: values[key] = '' if (value is None or value is False) else force_text(value) return self.__class__(self._field, values, self.errors, self._prefix) class BindingDict(collections.MutableMapping): """ This dict-like object is used to store fields on a serializer. This ensures that whenever fields are added to the serializer we call `field.bind()` so that the `field_name` and `parent` attributes can be set correctly. """ def __init__(self, serializer): self.serializer = serializer self.fields = OrderedDict() def __setitem__(self, key, field): self.fields[key] = field field.bind(field_name=key, parent=self.serializer) def __getitem__(self, key): return self.fields[key] def __delitem__(self, key): del self.fields[key] def __iter__(self): return iter(self.fields) def __len__(self): return len(self.fields) def __repr__(self): return dict.__repr__(self.fields)
febdaae751915967a6fef3b5f718c6b4c230ab89
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/008_graph_algorithms/_exercises/templates/Cracking Coding Interviews - Mastering Algorithms/clone-graph-bfs.py
08c345f3dc7c721c8efea80633a287a2e51fb103
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
1,084
py
# c_ Node # ___ - val neighbors # ? ? # ? ? # # # Example Input: # # # 1 <---> 2 # # ^ ^ # # | | # # v v # # 4 <---> 3 # # # Example Output: # # # 1 <---> 2 # # ^ ^ # # | | # # v v # # 4 <---> 3 # # ___ clone node # queue _ # LIST # # visited _ # DICT # # ?.ap.. ? # # w__ le. ? > 0 # cur _ ?.po. 0 # # new_node _ N.. # # __ c.. __ v__.k.. # n.. _ v..|c.. # ____ # new_node _ N.. c__.v.. || # # neighbors _ n__.n.. # # v..|c.. _ n.. # # ___ i __ ra.. le. c__.n.. # __ c__.n..|? __ v__.k.. # n__.ap.. v..|c__.n..|? # ____ # q__.ap.. c__.n..|? # new_neighbor_node _ ? c__.n..|?.v.. || # n__.ap.. ? # v..|c__.n..|? _ ? # # r_ v..|n.. # # # # # node = Node(1, []) # node2 = Node(2, []) # node3 = Node(3, []) # node4 = Node(4, []) # # node.neighbors.append(node2) # node.neighbors.append(node4) # # node2.neighbors.append(node) # node2.neighbors.append(node3) # # node3.neighbors.append(node2) # node3.neighbors.append(node4) # # node4.neighbors.append(node) # node4.neighbors.append(node3)
9e484b15c88d0bde693c3cc2535cf40b53bbc640
5a0122509b4e7e15e556460d261d9d8a1cee76ad
/repository/base/docattachments_pb.py
ddad9c7ef5a420750f8e46c2777173bcc3458696
[]
no_license
cash2one/BHWGoogleProject
cec4d5353f6ea83ecec0d0325747bed812283304
18ecee580e284705b642b88c8e9594535993fead
refs/heads/master
2020-12-25T20:42:08.612393
2013-04-13T14:01:37
2013-04-13T14:01:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,677
py
# This file automatically generated by protocol-compiler from repository/base/docattachments.proto # DO NOT EDIT! from google3.net.proto import ProtocolBuffer import array import thread from google3.net.proto import _net_proto___parse__python __pychecker__ = """maxreturns=0 maxbranches=0 no-callinit unusednames=printElemNumber,debug_strs no-special""" from google3.net.proto.message_set import MessageSet class DocAttachments(ProtocolBuffer.ProtocolMessage): def __init__(self, contents=None): self.attachments_ = MessageSet() self.has_attachments_ = 0 if contents is not None: self.MergeFromString(contents) def attachments(self): return self.attachments_ def mutable_attachments(self): self.has_attachments_ = 1; return self.attachments_ def clear_attachments(self):self.has_attachments_ = 0; self.attachments_.Clear() def has_attachments(self): return self.has_attachments_ def MergeFrom(self, x): assert x is not self if (x.has_attachments()): self.mutable_attachments().MergeFrom(x.attachments()) def _CMergeFromString(self, s): _net_proto___parse__python.MergeFromString(self, 'DocAttachments', s) def _CEncode(self): return _net_proto___parse__python.Encode(self, 'DocAttachments') def _CToASCII(self, output_format): return _net_proto___parse__python.ToASCII(self, 'DocAttachments', output_format) def ParseASCII(self, s): _net_proto___parse__python.ParseASCII(self, 'DocAttachments', s) def ParseASCIIIgnoreUnknown(self, s): _net_proto___parse__python.ParseASCIIIgnoreUnknown(self, 'DocAttachments', s) def Equals(self, x): if x is self: return 1 if self.has_attachments_ != x.has_attachments_: return 0 if self.has_attachments_ and self.attachments_ != x.attachments_: return 0 return 1 def __eq__(self, other): return (other is not None) and (other.__class__ == self.__class__) and self.Equals(other) def __ne__(self, other): return not (self == other) def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_attachments_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: attachments not set.') elif not self.attachments_.IsInitialized(debug_strs): initialized = 0 return initialized def ByteSize(self): n = 0 n += self.lengthString(self.attachments_.ByteSize()) return n + 1 def Clear(self): self.clear_attachments() def OutputUnchecked(self, out): out.putVarInt32(10) out.putVarInt32(self.attachments_.ByteSize()) self.attachments_.OutputUnchecked(out) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: length = d.getVarInt32() tmp = ProtocolBuffer.Decoder(d.buffer(), d.pos(), d.pos() + length) d.skip(length) self.mutable_attachments().TryMerge(tmp) continue # tag 0 is special: it's used to indicate an error. # so if we see it we raise an exception. if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_attachments_: res+=prefix+"attachments <\n" res+=self.attachments_.__str__(prefix + " ", printElemNumber) res+=prefix+">\n" return res kattachments = 1 _TEXT = ( "ErrorCode", # 0 "attachments", # 1 ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, # 0 ProtocolBuffer.Encoder.STRING, # 1 ) # stylesheet for XML output _STYLE = \ """""" _STYLE_CONTENT_TYPE = \ """""" _SERIALIZED_DESCRIPTOR = array.array('B', [ 0x5a, 0x24, 0x72, 0x65, 0x70, 0x6f, 0x73, 0x69, 0x74, 0x6f, 0x72, 0x79, 0x2f, 0x62, 0x61, 0x73, 0x65, 0x2f, 0x64, 0x6f, 0x63, 0x61, 0x74, 0x74, 0x61, 0x63, 0x68, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x0a, 0x0e, 0x44, 0x6f, 0x63, 0x41, 0x74, 0x74, 0x61, 0x63, 0x68, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x13, 0x1a, 0x0b, 0x61, 0x74, 0x74, 0x61, 0x63, 0x68, 0x6d, 0x65, 0x6e, 0x74, 0x73, 0x20, 0x01, 0x28, 0x02, 0x30, 0x0b, 0x38, 0x02, 0x4a, 0x0a, 0x4d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x53, 0x65, 0x74, 0x14, ]) _net_proto___parse__python.RegisterType(_SERIALIZED_DESCRIPTOR.tostring()) __all__ = ['DocAttachments']
6581711d6a4c030829ec7b03eb6558cac005f100
6bb4291e34598a83d1cd4631abd04ae00df5290b
/api/test/utils/test_utils.py
9b440e5c4479bc56943a720ec1d824546f1bb28c
[]
no_license
Frost-Lee/order_scheduling
f1f2e69bc142a81869f70697b79cb7f2664d6b2e
825456c1b9a95011fe3530a2fb449dffd40f5246
refs/heads/main
2023-01-12T12:27:45.182521
2020-11-16T06:06:13
2020-11-16T06:06:13
312,620,540
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
import unittest from scheduler.utils import utils class TestUtils(unittest.TestCase): def test_aggregate_tuples(self): with self.assertRaisesRegex(AssertionError, 'index out of range'): utils.aggregate_tuples([('a', 'b', 1)], [2, 3], 0) utils.aggregate_tuples([('a', 'b', 1)], [1, 2], 3) self.assertEqual( set(utils.aggregate_tuples([('a', 'b', 1), ('a', 'b', 2)], [0, 1], 2)), set(('a', 'b', 3)) ) self.assertEqual( set(utils.aggregate_tuples([('a', 'b', 1), ('a', 'b', 2), ('b', 'c', 3)], [0, 1], 2)), set(('a', 'b', 3), ('b', 'c', 3)) )
486140921bdefd70a51c334abbc4653f45f45993
7967b7652dcf580d54fa891f560cdc82f1f1ca14
/shell/tinkerforge.header
09cdc5c5ce8dc225a07e272d7c79c5c3a120185a
[]
no_license
chuangke365/tfgenerators
1c3a75b2a463697b54a7e618f36d36593835ba17
05d76d03b3499e0449b5ee65f93eab14186c2153
refs/heads/master
2020-12-29T02:47:11.043814
2015-03-19T16:27:01
2015-03-19T16:27:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,302
header
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2013-2014 Matthias Bolte <[email protected]> # # Version <<VERSION>> # # Redistribution and use in source and binary forms of this file, # with or without modification, are permitted. See the Creative # Commons Zero (CC0 1.0) License for more details. import sys import os import signal import time import shlex import socket import select import threading import subprocess import textwrap # error codes are also used as exit codes, valid values are [1..255] ERROR_INTERRUPTED = 1 ERROR_SYNTAX_ERROR = 2 ERROR_PYTHON_VERSION = 21 ERROR_ARGPARSE_MISSING = 22 ERROR_SOCKET_ERROR = 23 ERROR_OTHER_EXCEPTION = 24 ERROR_INVALID_PLACEHOLDER = 25 ERROR_AUTHENTICATION_ERROR = 26 IPCONNECTION_ERROR_OFFSET = 200 listen_mode = False enable_host = True enable_port = True enable_execute = True line_separator = '\n' group_terminator = '\n' # set from environment variable dry_run = False def fatal_error(message, exit_code): sys.stderr.write('tinkerforge: error: {0}\n'.format(message)) sys.exit(exit_code) if sys.hexversion < 0x02050000: fatal_error('requiring python 2.5 or newer', ERROR_PYTHON_VERSION) try: import argparse except ImportError: fatal_error('requiring python argparse module', ERROR_ARGPARSE_MISSING) class Context: abort = False async_exception = None host = None port = None secret = None item_separator = None group_separator = None no_symbolic_input = None no_symbolic_output = None timeout = None duration = None uid = None def output(self, string): sys.stdout.write(string) def duplicate(self): ctx = Context() ctx.host = self.host ctx.port = self.port ctx.secret = self.secret ctx.item_separator = self.item_separator ctx.group_separator = self.group_separator ctx.no_symbolic_input = self.no_symbolic_input ctx.no_symbolic_output = self.no_symbolic_output ctx.timeout = self.timeout ctx.duration = self.duration ctx.uid = self.uid return ctx class ParserExit(Exception): pass class FatalError(Exception): def __init__(self, message, exit_code): Exception.__init__(self, message) self.exit_code = exit_code self.message = message class Formatter(argparse.HelpFormatter): def _fill_text(self, text, width, indent): ps = [] for p in text.split('\n'): ps.append(textwrap.fill(p, width, initial_indent=indent, subsequent_indent=indent)) return '\n'.join(ps) class Parser(argparse.ArgumentParser): def __init__(self, ctx, prog, description=None, epilog=None): if not listen_mode: if len(prog) > 0: prog = 'tinkerforge ' + prog else: prog = 'tinkerforge' argparse.ArgumentParser.__init__(self, prog=prog, add_help=False, description=description, epilog=epilog, formatter_class=Formatter) self.ctx = ctx self.ctx.current_parser = self self.add_argument('--help', action='help', help='show this help message and exit') def _print_message(self, message, file=None): if message: self.ctx.output(message) def exit(self, status=0, message=None): if status == 0: if message: self.ctx.output(message) raise ParserExit else: if not message: message = 'unknown error' raise FatalError(message, ERROR_OTHER_EXCEPTION) def error(self, message): if not listen_mode: self.print_usage(sys.stderr) raise FatalError(message, ERROR_SYNTAX_ERROR) class ParserWithExecute(Parser): def __init__(self, ctx, prog): Parser.__init__(self, ctx, prog) if enable_execute: self.add_argument('--execute', type=str, help='shell command line to execute for each incoming response', metavar='<command>') def parse_args(self, args): namespace = argparse.Namespace() if not enable_execute: setattr(namespace, 'execute', None) return Parser.parse_args(self, args, namespace) class ParserWithExpectResponse(Parser): def __init__(self, ctx, prog): Parser.__init__(self, ctx, prog) self.add_argument('--expect-response', action='store_true', help='request response and wait for it') def handle_ipcon_exceptions(ipcon, function): try: function(ipcon) except Error as e: raise FatalError(e.description.lower(), IPCONNECTION_ERROR_OFFSET - e.value) except socket.error as e: raise FatalError(str(e).lower(), ERROR_SOCKET_ERROR) except Exception as e: raise FatalError(str(e).lower(), ERROR_OTHER_EXCEPTION) finally: try: ipcon.disconnect() except: pass def authenticate(ipcon, secret, message): # don't auto-reconnect on authentication error ipcon.set_auto_reconnect(False) try: ipcon.authenticate(secret) except: raise FatalError(message, ERROR_AUTHENTICATION_ERROR) ipcon.set_auto_reconnect(True) def connect_ipcon_and_call(ctx, function, timeout=None): def function_wrapper(ipcon): if timeout is not None: ipcon.set_timeout(timeout) ipcon.connect(ctx.host, ctx.port) if len(ctx.secret) > 0: def callback(connect_reason): if connect_reason == IPConnection.CONNECT_REASON_AUTO_RECONNECT: try: authenticate(ipcon, ctx.secret, 'could not authenticate after auto-reconnect') except FatalError as e: ctx.async_exception = e ipcon.register_callback(IPConnection.CALLBACK_CONNECTED, callback) authenticate(ipcon, ctx.secret, 'could not authenticate') function(ipcon) handle_ipcon_exceptions(IPConnection(), function_wrapper) def call_generic(ctx, name, functions, argv): parser = Parser(ctx, 'call ' + name) function_choices = sorted(functions.keys()) class ListFunctionsAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): ctx.output(line_separator.join(function_choices) + group_terminator) raise ParserExit() parser.add_argument('--list-functions', action=ListFunctionsAction, nargs=0, help='show functions of {0} and exit'.format(name)) parser.add_argument('uid', type=check_base58, help='uid of a ' + name, metavar='<uid>') parser.add_argument('function', choices=function_choices, help='{' + ', '.join(function_choices) + '}', metavar='<function>') parser.add_argument('args', nargs=argparse.REMAINDER, help='function specific arguments', metavar='<args>') args = parser.parse_args(argv) ctx.uid = args.uid functions[args.function](ctx, args.args) def dispatch_generic(ctx, name, callbacks, argv): parser = Parser(ctx, 'dispatch ' + name) callback_choices = sorted(callbacks.keys()) class ListCallbacksAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): ctx.output(line_separator.join(callback_choices) + group_terminator) raise ParserExit() parser.add_argument('--list-callbacks', action=ListCallbacksAction, nargs=0, help='show callbacks of {0} and exit'.format(name)) parser.add_argument('uid', type=check_base58, help='uid of a ' + name, metavar='<uid>') parser.add_argument('callback', choices=callback_choices, help='{' + ', '.join(callback_choices) + '}', metavar='<callback>') parser.add_argument('args', nargs=argparse.REMAINDER, help='callback specific arguments', metavar='<args>') args = parser.parse_args(argv) ctx.uid = args.uid callbacks[args.callback](ctx, args.args) def device_send_request(ctx, device_class, function_id, request_data, format_in, format_out, command, expect_response, names, symbols): if dry_run: return if command is not None: def handle_response(values): execute_response(ctx, command, names, values) else: def handle_response(values): output_response(ctx, names, values) def function(ipcon): device = device_class(ctx.uid, ipcon) if expect_response: device.set_response_expected(function_id, True) response = ipcon.send_request(device, function_id, request_data, format_in, format_out) if response is not None: if len(names) == 1: response = (response,) response = format_symbolic_output(ctx, response, symbols) handle_response(response) elif listen_mode: ctx.output(group_terminator) connect_ipcon_and_call(ctx, function, ctx.timeout / 1000.0) def device_callback(ctx, device_class, function_id, command, names): if dry_run: return if command is not None: def callback(*values): execute_response(ctx, command, names, values) else: is_first_callback = [True] def callback(*values): if len(names) > 1 and not listen_mode: if is_first_callback[0]: is_first_callback[0] = False else: ctx.output(ctx.group_separator) output_response(ctx, names, values) def function(ipcon): device = device_class(ctx.uid, ipcon) if ctx.duration == 0: exit_flag = [False] def callback_wrapper(*args, **kwargs): if not exit_flag[0]: callback(*args, **kwargs) exit_flag[0] = True device.registered_callbacks[function_id] = callback_wrapper while not exit_flag[0] and not ctx.abort: time.sleep(0.1) if ctx.async_exception is not None: raise ctx.async_exception elif ctx.duration < 0: device.registered_callbacks[function_id] = callback while not ctx.abort: time.sleep(1) if ctx.async_exception is not None: raise ctx.async_exception else: device.registered_callbacks[function_id] = callback # FIXME: if duration is large then it would be better to sleep # in multiple steps here time.sleep(ctx.duration / 1000.0) # FIXME: only checking for an exception after the complete sleep # is not good, sleep in shorter steps here to check for # exception more often if ctx.async_exception is not None: raise ctx.async_exception connect_ipcon_and_call(ctx, function) # length_is_fixed = False means length is maximum length def get_array_type_name(ctx, name, length, length_is_fixed=True): if length_is_fixed: if length < 7: return ctx.item_separator.join([name]*length) else: return '{0}{1}{0}{1}..{2}x..{1}{0}{1}{0}'.format(name, ctx.item_separator, length - 4) else: return ('[' + ctx.item_separator).join([name]*length) + ']'*(length - 1) def format_symbolic_output(ctx, values, symbols): if ctx.no_symbolic_output: return values translated_values = [] for vs in zip(values, symbols): if vs[1] is not None: try: translated_values.append(vs[1][vs[0]]) except KeyError: translated_values.append(vs[0]) else: translated_values.append(vs[0]) return tuple(translated_values) def check_base58(string): try: base58decode(string) except: msg = 'invalid base58 value: %r' % string raise argparse.ArgumentTypeError(msg) return string check_base58.__name__ = 'base58' def check_char(string): if len(string) != 1: msg = 'invalid char value: %r' % string raise argparse.ArgumentTypeError(msg) return string check_char.__name__ = 'char' def convert_int(string): try: return int(string, base=0) except (ValueError, TypeError): msg = 'invalid int value: %r' % string raise argparse.ArgumentTypeError(msg) convert_int.__name__ = 'int' def convert_bool(string): value = string.lower() if value == 'true': return True elif value == 'false': return False else: msg = 'invalid bool value: %r' % string raise argparse.ArgumentTypeError(msg) convert_bool.__name__ = 'bool' def create_string_checker(type, length): def check_string(string): try: value = type(string) except (ValueError, TypeError): name = getattr(type, '__name__', repr(type)) msg = 'invalid %s value: %r' % (name, string) raise argparse.ArgumentTypeError(msg) if len(value) > length: msg = 'string value is too long: %r' % value raise argparse.ArgumentTypeError(msg) return value check_string.__name__ = 'string' return check_string def create_symbol_converter(ctx, type, symbols, strict=False): def convert_symbol(string): if not ctx.no_symbolic_input: try: return symbols[string] except KeyError: pass try: value = type(string) except (ValueError, TypeError): name = getattr(type, '__name__', repr(type)) msg = 'invalid %s value: %r' % (name, string) raise argparse.ArgumentTypeError(msg) if strict and value not in symbols.values(): name = getattr(type, '__name__', repr(type)) msg = '%s value is out-of-range: %r' % (name, string) raise argparse.ArgumentTypeError(msg) return value convert_symbol.__name__ = getattr(type, '__name__', repr(type)) return convert_symbol # length_is_fixed = False means length is maximum length def create_array_converter(ctx, type, length, length_is_fixed=True): def convert_array(string): array = [] for item in string.split(ctx.item_separator): try: value = type(item) except (ValueError, TypeError, argparse.ArgumentTypeError): name = getattr(type, '__name__', repr(type)) msg = 'invalid %s value: %r' % (get_array_type_name(ctx, name, length, length_is_fixed), string) raise argparse.ArgumentTypeError(msg) array.append(value) if (length_is_fixed and len(array) != length) or \ (not length_is_fixed and (len(array) < 1 or len(array) > length)): name = getattr(type, '__name__', repr(type)) msg = 'invalid %s value: %r' % (get_array_type_name(ctx, name, length, length_is_fixed), string) raise argparse.ArgumentTypeError(msg) return array name = getattr(type, '__name__', repr(type)) convert_array.__name__ = get_array_type_name(ctx, name, length, length_is_fixed) return convert_array def execute_response(ctx, command, names, values): formatted_values = {} class Tuple(tuple): def __init__(self, *args): tuple.__init__(self, *args) def __str__(self): return ctx.item_separator.join(map(str, self)) for name, value in zip(names, values): if type(value) == tuple: formatted_values[name] = Tuple(value) elif type(value) == bool: formatted_values[name] = str(value).lower() else: formatted_values[name] = value try: formatted_command = command.format(**formatted_values) except KeyError as e: raise FatalError('invalid placeholder %s in format: %s' % (str(e).lower(), command), ERROR_INVALID_PLACEHOLDER) except Exception as e: raise FatalError('%s: %s' % (str(e).lower(), command), ERROR_OTHER_EXCEPTION) try: if listen_mode: try: output = subprocess.check_output(formatted_command, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: output = e.output ctx.output(output) else: subprocess.call(formatted_command, shell=True) except Exception as e: raise FatalError('%s: %s' % (str(e).lower(), formatted_command), ERROR_OTHER_EXCEPTION) def output_response(ctx, names, values): lines = [] for name, value in zip(names, values): if type(value) == tuple: lines.append('{0}={1}'.format(name, ctx.item_separator.join(map(str, value)))) elif type(value) == bool: lines.append('{0}={1}'.format(name, str(value).lower())) else: lines.append('{0}={1}'.format(name, value)) ctx.output(line_separator.join(lines) + group_terminator) def common_get_identity(ctx, prog_prefix, klass, argv): parser = ParserWithExecute(ctx, prog_prefix + ' get-identity') args = parser.parse_args(argv) device_send_request(ctx, klass, 255, (), '', '8s 8s c 3B 3B H', args.execute, False, ['uid', 'connected-uid', 'position', 'hardware-version', 'firmware-version', 'device-identifier'], [None, None, None, None, None, device_identifier_symbols])
076c5361b321dec4c40f27a6bcaae40a5b2d2e57
e811c41caa55559d3b482f26c31fcef02ec66138
/venv/Lib/site-packages/typed_ast/ast27.py
e11ebc20fa0017659085dcd93b58a00a972ffd12
[ "MIT" ]
permissive
1SouravGhosh/POC_REPO
929ea865d60a51597966ffcfc4a7a3a350a00f54
e486d9a1fe0e1215f24bac3aaf97517cda21a066
refs/heads/master
2022-11-01T09:53:56.443500
2019-02-17T16:21:48
2019-02-17T16:21:48
171,133,391
0
1
MIT
2022-10-22T04:17:54
2019-02-17T14:45:39
Python
UTF-8
Python
false
false
12,603
py
# -*- coding: utf-8 -*- """ ast27 ~~~ The `ast27` module helps Python applications to process trees of the Python abstract syntax grammar. The abstract syntax itself might change with each Python release; this module helps to find out programmatically what the current grammar looks like and allows modifications of it. The `ast27` module is similar to the builtin `ast` module on Python 2.7, except `ast27` runs on Python 3 and provides PEP 484 type comments as part of the AST. Specifically, these changes are made to the Python 2.7 AST: - The `FunctionDef`, `Assign`, `For`, and `With` classes all have a `type_comment` field which contains a `str` with the text of the associated type comment, if any. - `arguments` has a `type_comments` list of per-argument type comments. - `parse` has been augmented so it can parse function signature types when called with `mode=func_type`. - `Module` has a `type_ignores` field which contains a list of lines which have been `# type: ignore`d. - `Str` has a `kind` string field which preserves the original string prefix, so that `ast27.parse('br"test"').body[0].value.kind == 'br'`. An abstract syntax tree can be generated by using the `parse()` function from this module. The result will be a tree of objects whose classes all inherit from `ast27.AST`. A modified abstract syntax tree can be compiled into a Python code object using the built-in `compile()` function. Additionally various helper functions are provided that make working with the trees simpler. The main intention of the helper functions and this module in general is to provide an easy to use interface for libraries that work tightly with the python syntax (template engines for example). :copyright: Copyright 2008 by Armin Ronacher. :license: Python License. """ import _ast27 from _ast27 import * def parse(source, filename='<unknown>', mode='exec'): """ Parse the source into an AST node with type comments. Equivalent to compile(source, filename, mode, PyCF_ONLY_AST). """ return _ast27.parse(source, filename, mode) def literal_eval(node_or_string): """ Safely evaluate an expression node or a string containing a Python expression. The string or node provided may only consist of the following Python literal structures: strings, numbers, tuples, lists, dicts, booleans, and None. """ _safe_names = {'None': None, 'True': True, 'False': False} if isinstance(node_or_string, basestring): node_or_string = parse(node_or_string, mode='eval') if isinstance(node_or_string, Expression): node_or_string = node_or_string.body def _convert(node): if isinstance(node, Str): return node.s elif isinstance(node, Num): return node.n elif isinstance(node, Tuple): return tuple(map(_convert, node.elts)) elif isinstance(node, List): return list(map(_convert, node.elts)) elif isinstance(node, Dict): return dict((_convert(k), _convert(v)) for k, v in zip(node.keys, node.values)) elif isinstance(node, Name): if node.id in _safe_names: return _safe_names[node.id] elif isinstance(node, BinOp) and \ isinstance(node.op, (Add, Sub)) and \ isinstance(node.right, Num) and \ isinstance(node.right.n, complex) and \ isinstance(node.left, Num) and \ isinstance(node.left.n, (int, long, float)): left = node.left.n right = node.right.n if isinstance(node.op, Add): return left + right else: return left - right raise ValueError('malformed string') return _convert(node_or_string) def dump(node, annotate_fields=True, include_attributes=False): """ Return a formatted dump of the tree in *node*. This is mainly useful for debugging purposes. The returned string will show the names and the values for fields. This makes the code impossible to evaluate, so if evaluation is wanted *annotate_fields* must be set to False. Attributes such as line numbers and column offsets are not dumped by default. If this is wanted, *include_attributes* can be set to True. """ def _format(node): if isinstance(node, AST): fields = [(a, _format(b)) for a, b in iter_fields(node)] rv = '%s(%s' % (node.__class__.__name__, ', '.join( ('%s=%s' % field for field in fields) if annotate_fields else (b for a, b in fields) )) if include_attributes and node._attributes: rv += fields and ', ' or ' ' rv += ', '.join('%s=%s' % (a, _format(getattr(node, a))) for a in node._attributes) return rv + ')' elif isinstance(node, list): return '[%s]' % ', '.join(_format(x) for x in node) return repr(node) if not isinstance(node, AST): raise TypeError('expected AST, got %r' % node.__class__.__name__) return _format(node) def copy_location(new_node, old_node): """ Copy source location (`lineno` and `col_offset` attributes) from *old_node* to *new_node* if possible, and return *new_node*. """ for attr in 'lineno', 'col_offset': if attr in old_node._attributes and attr in new_node._attributes \ and hasattr(old_node, attr): setattr(new_node, attr, getattr(old_node, attr)) return new_node def fix_missing_locations(node): """ When you compile a node tree with compile(), the compiler expects lineno and col_offset attributes for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds these attributes recursively where not already set, by setting them to the values of the parent node. It works recursively starting at *node*. """ def _fix(node, lineno, col_offset): if 'lineno' in node._attributes: if not hasattr(node, 'lineno'): node.lineno = lineno else: lineno = node.lineno if 'col_offset' in node._attributes: if not hasattr(node, 'col_offset'): node.col_offset = col_offset else: col_offset = node.col_offset for child in iter_child_nodes(node): _fix(child, lineno, col_offset) _fix(node, 1, 0) return node def increment_lineno(node, n=1): """ Increment the line number of each node in the tree starting at *node* by *n*. This is useful to "move code" to a different location in a file. """ for child in walk(node): if 'lineno' in child._attributes: child.lineno = getattr(child, 'lineno', 0) + n return node def iter_fields(node): """ Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields`` that is present on *node*. """ for field in node._fields: try: yield field, getattr(node, field) except AttributeError: pass def iter_child_nodes(node): """ Yield all direct child nodes of *node*, that is, all fields that are nodes and all items of fields that are lists of nodes. """ for name, field in iter_fields(node): if isinstance(field, AST): yield field elif isinstance(field, list): for item in field: if isinstance(item, AST): yield item def get_docstring(node, clean=True): """ Return the docstring for the given node or None if no docstring can be found. If the node provided does not have docstrings a TypeError will be raised. """ if not isinstance(node, (FunctionDef, ClassDef, Module)): raise TypeError("%r can't have docstrings" % node.__class__.__name__) if node.body and isinstance(node.body[0], Expr) and \ isinstance(node.body[0].value, Str): if clean: import inspect return inspect.cleandoc(node.body[0].value.s) return node.body[0].value.s def walk(node): """ Recursively yield all descendant nodes in the tree starting at *node* (including *node* itself), in no specified order. This is useful if you only want to modify nodes in place and don't care about the context. """ from collections import deque todo = deque([node]) while todo: node = todo.popleft() todo.extend(iter_child_nodes(node)) yield node class NodeVisitor(object): """ A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found. This function may return a value which is forwarded by the `visit` method. This class is meant to be subclassed, with the subclass adding visitor methods. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `visit` method. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. Don't use the `NodeVisitor` if you want to apply changes to nodes during traversing. For this a special visitor exists (`NodeTransformer`) that allows modifications. """ def visit(self, node): """Visit a node.""" method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) return visitor(node) def generic_visit(self, node): """Called if no explicit visitor function exists for a node.""" for field, value in iter_fields(node): if isinstance(value, list): for item in value: if isinstance(item, AST): self.visit(item) elif isinstance(value, AST): self.visit(value) class NodeTransformer(NodeVisitor): """ A :class:`NodeVisitor` subclass that walks the abstract syntax tree and allows modification of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor methods to replace or remove the old node. If the return value of the visitor method is ``None``, the node will be removed from its location, otherwise it is replaced with the return value. The return value may be the original node in which case no replacement takes place. Here is an example transformer that rewrites all occurrences of name lookups (``foo``) to ``data['foo']``:: class RewriteName(NodeTransformer): def visit_Name(self, node): return copy_location(Subscript( value=Name(id='data', ctx=Load()), slice=Index(value=Str(s=node.id, kind='')), ctx=node.ctx ), node) Keep in mind that if the node you're operating on has child nodes you must either transform the child nodes yourself or call the :meth:`generic_visit` method for the node first. For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may also return a list of nodes rather than just a single node. Usually you use the transformer like this:: node = YourTransformer().visit(node) """ def generic_visit(self, node): for field, old_value in iter_fields(node): old_value = getattr(node, field, None) if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, AST): value = self.visit(value) if value is None: continue elif not isinstance(value, AST): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, AST): new_node = self.visit(old_value) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node
33c449dc19c9effe47b503bea32359f5b42fb142
f652cf4e0fa6fbfcca8d94cec5f942fd8bd021a0
/mbuild/__init__.py
bac5509ac8b9754a7fb64e88b372b76f045f4dc3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Jonestj1/mbuild
83317ab3a53f40ff6c9c69f6be542b8562602eee
411cc60d3ef496fa26541bb0b7ea8dcf8c7449e4
refs/heads/master
2021-01-20T19:45:11.563610
2017-02-13T18:16:12
2017-02-13T18:16:12
32,886,030
0
0
null
2015-03-25T19:24:50
2015-03-25T19:24:50
null
UTF-8
Python
false
false
339
py
from mbuild.box import Box from mbuild.coarse_graining import coarse_grain from mbuild.coordinate_transform import * from mbuild.compound import * from mbuild.pattern import * from mbuild.packing import * from mbuild.port import Port from mbuild.recipes import * from mbuild.formats import * from mbuild.version import version
ea8f72a37588594d3881ecbe62617f136c7c6869
a0c782c69420f513bd2d0c0fcea896f732b05cb2
/account_bank_statement_advanced/res_partner_bank.py
5f1063e39f9b4a98c855f959b4764797ab92eb80
[]
no_license
SVQTQ/noviat-apps
8b5116287681fabcefc5d456786c16c717de54ab
57ec751ccd4a3e32798ec8851c3501e809c09f91
refs/heads/8.0
2020-04-08T19:55:06.699350
2015-07-29T14:34:22
2015-07-29T14:34:22
32,148,042
0
0
null
2015-07-29T14:34:22
2015-03-13T09:45:48
Gettext Catalog
UTF-8
Python
false
false
3,843
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # # Copyright (c) 2014-2015 Noviat nv/sa (www.noviat.com). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import models, api import logging _logger = logging.getLogger(__name__) class res_partner_bank(models.Model): _inherit = 'res.partner.bank' def _acc_number_select(self, operator, number): """ The code below could be simplified if the Odoo standard accounting modules would store bank account numbers in the database in 'normalised' format (without spaces or other formatting characters (such as '-'). """ if operator in ['=', '=like', '=ilike']: op = '=' else: # operator in ['like', 'ilike'] op = 'LIKE' if len(number) == 12: """ Belgium BBAN is always 12 chars and subset of IBAN. Hence we can retrieve the IBAN from a BBAN lookup. TODO: extend logic to other countries """ select = \ "SELECT id FROM res_partner_bank WHERE " \ "(state='iban' AND SUBSTRING(acc_number FOR 2) = 'BE' AND " \ "REPLACE(acc_number, ' ', '') LIKE '%%'|| '%s' ||'%%' ) " \ % number # other countries if op == '=': select += "OR " \ "REPLACE(REPLACE(acc_number, ' ', ''), '-','') = '%s'" \ % number else: select += "OR " \ "REPLACE(REPLACE(acc_number, ' ', ''), '-','') " \ "LIKE '%%'|| '%s' ||'%%' " \ % number else: if op == '=': select = \ "SELECT id FROM res_partner_bank WHERE " \ "REPLACE(REPLACE(acc_number, ' ', ''), '-','') = '%s'" \ % number else: select = \ "SELECT id FROM res_partner_bank WHERE " \ "REPLACE(REPLACE(acc_number, ' ', ''), '-','') " \ "LIKE '%%'|| '%s' ||'%%' " \ % number return select @api.model def search(self, args, offset=0, limit=None, order=None, count=False): # _logger.warn('%s, search, args=%s', self._name, args) for i, arg in enumerate(args): if arg[0] == 'acc_number' and \ arg[1] in ['=', '=like', '=ilike', 'like', 'ilike']: number = arg[2].replace(' ', '').replace('-', '').upper() select = self._acc_number_select(arg[1], number) self._cr.execute(select) res = self._cr.fetchall() if res: rpb_ids = [x[0] for x in res] args[i] = ['id', 'in', rpb_ids] # _logger.warn('%s, search, args=%s', self._name, args) return super(res_partner_bank, self).search( args, offset, limit, order, count=count)
a80777a871d9539635a4e13543e35fe55d86461d
7f9a73533b3678f0e83dc559dee8a37474e2a289
/aws-serverless-for-deep-learning-first-steps-workshop/notebooks/deep-learning-inference/PIL/PixarImagePlugin.py
5ea32ba89be5253e3ad0e8349be1bdcb42bb2494
[ "MIT" ]
permissive
ryfeus/stepfunctions2processing
04a5e83ee9b74e029b79a3f19381ba6d9265fc48
0b74797402d39f4966cab278d9718bfaec3386c2
refs/heads/master
2022-10-08T16:20:55.459175
2022-09-09T05:54:47
2022-09-09T05:54:47
147,448,024
128
34
MIT
2022-01-04T18:56:47
2018-09-05T02:26:31
Python
UTF-8
Python
false
false
1,657
py
# # The Python Imaging Library. # $Id$ # # PIXAR raster support for PIL # # history: # 97-01-29 fl Created # # notes: # This is incomplete; it is based on a few samples created with # Photoshop 2.5 and 3.0, and a summary description provided by # Greg Coats <[email protected]>. Hopefully, "L" and # "RGBA" support will be added in future versions. # # Copyright (c) Secret Labs AB 1997. # Copyright (c) Fredrik Lundh 1997. # # See the README file for information on usage and redistribution. # from . import Image, ImageFile from ._binary import i16le as i16 # # helpers def _accept(prefix): return prefix[:4] == b"\200\350\000\000" ## # Image plugin for PIXAR raster images. class PixarImageFile(ImageFile.ImageFile): format = "PIXAR" format_description = "PIXAR raster image" def _open(self): # assuming a 4-byte magic label s = self.fp.read(4) if s != b"\200\350\000\000": raise SyntaxError("not a PIXAR file") # read rest of header s = s + self.fp.read(508) self._size = i16(s[418:420]), i16(s[416:418]) # get channel/depth descriptions mode = i16(s[424:426]), i16(s[426:428]) if mode == (14, 2): self.mode = "RGB" # FIXME: to be continued... # create tile descriptor (assuming "dumped") self.tile = [("raw", (0, 0) + self.size, 1024, (self.mode, 0, 1))] # # -------------------------------------------------------------------- Image.register_open(PixarImageFile.format, PixarImageFile, _accept) Image.register_extension(PixarImageFile.format, ".pxr")
cbb69a91ee6be1562c57094de5515967c74944d9
123d26781801473dc59d8be847dbac79d4b555df
/configs/swin/mask_rcnn_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco_fashion.py
8c91f897f95d7b08f2b9d121d6a71c791be11601
[ "Apache-2.0" ]
permissive
jireh-father/CBNetV2
c2ed5358a81dde7dff3b50614371afe6045553c0
0b62f8107d72691a02efb7c92fc6dfcf5d0d0262
refs/heads/main
2023-07-17T16:42:55.126767
2021-08-31T10:34:15
2021-08-31T10:34:15
398,468,051
0
0
Apache-2.0
2021-08-21T04:47:14
2021-08-21T04:47:14
null
UTF-8
Python
false
false
3,037
py
_base_ = [ '../_base_/models/mask_rcnn_swin_fpn_fashion.py', '../_base_/datasets/coco_instance_fashion.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, ape=False, drop_path_rate=0.2, patch_norm=True, use_checkpoint=False ), neck=dict(in_channels=[96, 192, 384, 768])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
8893df317f1c158e4400b4b8eb0be1430d608747
130e13bfad23961739613f78a7f3e59c67d28cac
/utility/resnet.py
e5a80a23b027647809fcf951058e2e1ada2ab564
[ "Apache-2.0" ]
permissive
dashmoment/aic_scene
981a0faca39b2079203d24a961a491905f0f2ca9
3e68c03f032b3979feb17b550a953e5aafc970c1
refs/heads/master
2021-07-12T05:47:35.491495
2017-09-29T09:53:54
2017-09-29T09:53:54
103,190,682
1
0
null
null
null
null
UTF-8
Python
false
false
10,689
py
import skimage.io # bug. need to import this before tensorflow import skimage.transform # bug. need to import this before tensorflow import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.training import moving_averages from resnet_config import Config import datetime import numpy as np import os import time MOVING_AVERAGE_DECAY = 0.9997 BN_DECAY = MOVING_AVERAGE_DECAY BN_EPSILON = 0.001 CONV_WEIGHT_DECAY = 0.00004 CONV_WEIGHT_STDDEV = 0.1 FC_WEIGHT_DECAY = 0.00004 FC_WEIGHT_STDDEV = 0.01 RESNET_VARIABLES = 'resnet_variables' UPDATE_OPS_COLLECTION = 'resnet_update_ops' # must be grouped with training op IMAGENET_MEAN_BGR = [103.062623801, 115.902882574, 123.151630838, ] tf.app.flags.DEFINE_integer('input_size', 224, "input image size") activation = tf.nn.relu def inference(x, is_training, num_classes=1000, num_blocks=[3, 4, 6, 3], # defaults to 50-layer network use_bias=False, # defaults to using batch norm bottleneck=True): c = {} c['bottleneck'] = bottleneck c['is_training'] = tf.convert_to_tensor(is_training, dtype='bool', name='is_training') c['ksize'] = 3 c['stride'] = 1 c['use_bias'] = use_bias c['fc_units_out'] = num_classes c['num_blocks'] = num_blocks c['stack_stride'] = 2 with tf.variable_scope('scale1'): c['conv_filters_out'] = 64 c['ksize'] = 7 c['stride'] = 2 x = conv(x, c) x = bn(x, c) x = activation(x) with tf.variable_scope('scale2'): x = _max_pool(x, ksize=3, stride=2) c['num_blocks'] = num_blocks[0] c['stack_stride'] = 1 c['block_filters_internal'] = 64 x = stack(x, c) with tf.variable_scope('scale3'): c['num_blocks'] = num_blocks[1] c['block_filters_internal'] = 128 c['stack_stride'] == 1 x = stack(x, c) with tf.variable_scope('scale4'): c['num_blocks'] = num_blocks[2] c['block_filters_internal'] = 256 x = stack(x, c) with tf.variable_scope('scale5'): c['num_blocks'] = num_blocks[3] c['block_filters_internal'] = 512 x = stack(x, c) # post-net avg_out = tf.reduce_mean(x, reduction_indices=[1, 2], name="avg_pool") if num_classes != None: with tf.variable_scope('fc'): x = fc(avg_out, c) return x, avg_out # This is what they use for CIFAR-10 and 100. # See Section 4.2 in http://arxiv.org/abs/1512.03385 def inference_small(x, is_training, num_blocks=3, # 6n+2 total weight layers will be used. use_bias=False, # defaults to using batch norm num_classes=10): c = {} c['is_training'] = tf.convert_to_tensor(is_training, dtype='bool', name='is_training') c['use_bias'] = use_bias c['fc_units_out'] = num_classes c['num_blocks'] = num_blocks c['num_classes'] = num_classes x, avg_out = inference_small_config(x, c) return x, avg_out def inference_small_config(x, c): c['bottleneck'] = False c['ksize'] = 3 c['stride'] = 1 with tf.variable_scope('scale1'): c['conv_filters_out'] = 16 c['block_filters_internal'] = 16 c['stack_stride'] = 1 x = conv(x, c) x = bn(x, c) x = activation(x) x = stack(x, c) with tf.variable_scope('scale2'): c['block_filters_internal'] = 32 c['stack_stride'] = 2 x = stack(x, c) with tf.variable_scope('scale3'): c['block_filters_internal'] = 64 c['stack_stride'] = 2 x = stack(x, c) # post-net avg_out = tf.reduce_mean(x, reduction_indices=[1, 2], name="avg_pool") if c['num_classes'] != None: with tf.variable_scope('fc'): x = fc(avg_out, c) return x, avg_out def _imagenet_preprocess(rgb): """Changes RGB [0,1] valued image to BGR [0,255] with mean subtracted.""" red, green, blue = tf.split(3, 3, rgb * 255.0) bgr = tf.concat(3, [blue, green, red]) bgr -= IMAGENET_MEAN_BGR return bgr def loss(logits, labels): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) cross_entropy_mean = tf.reduce_mean(cross_entropy) regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss_ = tf.add_n([cross_entropy_mean] + regularization_losses) tf.scalar_summary('loss', loss_) return loss_ def stack(x, c): for n in range(c['num_blocks']): s = c['stack_stride'] if n == 0 else 1 c['block_stride'] = s with tf.variable_scope('block%d' % (n + 1)): x = block(x, c) return x def block(x, c): filters_in = x.get_shape()[-1] # Note: filters_out isn't how many filters are outputed. # That is the case when bottleneck=False but when bottleneck is # True, filters_internal*4 filters are outputted. filters_internal is how many filters # the 3x3 convs output internally. m = 4 if c['bottleneck'] else 1 filters_out = m * c['block_filters_internal'] shortcut = x # branch 1 c['conv_filters_out'] = c['block_filters_internal'] if c['bottleneck']: with tf.variable_scope('a'): c['ksize'] = 1 c['stride'] = c['block_stride'] x = conv(x, c) x = bn(x, c) x = activation(x) with tf.variable_scope('b'): x = conv(x, c) x = bn(x, c) x = activation(x) with tf.variable_scope('c'): c['conv_filters_out'] = filters_out c['ksize'] = 1 c['stride'] == 1 x = conv(x, c) x = bn(x, c) else: with tf.variable_scope('A'): c['stride'] = c['block_stride'] c['ksize'] == 3 x = conv(x, c) x = bn(x, c) x = activation(x) with tf.variable_scope('B'): c['conv_filters_out'] = filters_out c['ksize'] == 3 print(c) c['stride'] = 1 assert c['stride'] == 1 x = conv(x, c) x = bn(x, c) with tf.variable_scope('shortcut'): if filters_out != filters_in or c['block_stride'] != 1: c['ksize'] = 1 c['stride'] = c['block_stride'] c['conv_filters_out'] = filters_out shortcut = conv(shortcut, c) shortcut = bn(shortcut, c) return activation(x + shortcut) def bn(x, c): x_shape = x.get_shape() params_shape = x_shape[-1:] if c['use_bias']: bias = _get_variable('bias', params_shape, initializer=tf.zeros_initializer()) return x + bias axis = list(range(len(x_shape) - 1)) beta = _get_variable('beta', params_shape, initializer=tf.zeros_initializer()) gamma = _get_variable('gamma', params_shape, initializer=tf.ones_initializer()) moving_mean = _get_variable('moving_mean', params_shape, initializer=tf.zeros_initializer(), trainable=False) moving_variance = _get_variable('moving_variance', params_shape, initializer=tf.ones_initializer(), trainable=False) # These ops will only be preformed when training. mean, variance = tf.nn.moments(x, axis) update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, BN_DECAY) update_moving_variance = moving_averages.assign_moving_average( moving_variance, variance, BN_DECAY) tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_mean) tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_variance) mean, variance = control_flow_ops.cond( c['is_training'], lambda: (mean, variance), lambda: (moving_mean, moving_variance)) x = tf.nn.batch_normalization(x, mean, variance, beta, gamma, BN_EPSILON) #x.set_shape(inputs.get_shape()) ?? return x def fc(x, c): num_units_in = x.get_shape()[1] num_units_out = c['fc_units_out'] weights_initializer = tf.truncated_normal_initializer( stddev=FC_WEIGHT_STDDEV) weights = _get_variable('weights', shape=[num_units_in, num_units_out], initializer=weights_initializer, weight_decay=FC_WEIGHT_STDDEV) biases = _get_variable('biases', shape=[num_units_out], initializer=tf.zeros_initializer()) x = tf.nn.xw_plus_b(x, weights, biases) return x def _get_variable(name, shape, initializer, weight_decay=0.0, dtype='float', trainable=True): "A little wrapper around tf.get_variable to do weight decay and add to" "resnet collection" if weight_decay > 0: regularizer = tf.contrib.layers.l2_regularizer(weight_decay) else: regularizer = None collections = [tf.GraphKeys.VARIABLES, RESNET_VARIABLES] return tf.get_variable(name, shape=shape, initializer=initializer, dtype=dtype, regularizer=regularizer, collections=collections) def conv(x, c): ksize = c['ksize'] stride = c['stride'] filters_out = c['conv_filters_out'] filters_in = x.get_shape()[-1] shape = [ksize, ksize, filters_in, filters_out] initializer = tf.truncated_normal_initializer(stddev=CONV_WEIGHT_STDDEV) weights = _get_variable('weights', shape=shape, dtype='float', initializer=initializer, weight_decay=CONV_WEIGHT_DECAY) return tf.nn.conv2d(x, weights, [1, stride, stride, 1], padding='SAME') def _max_pool(x, ksize=3, stride=2): return tf.nn.max_pool(x, ksize=[1, ksize, ksize, 1], strides=[1, stride, stride, 1], padding='SAME')
f95aaa24aa81978b09838def7e11466bbd207ccd
eb2d683106f2a2ee6d266dd7f8fcdb4f86adb8fb
/datas/PY_gal.py
965ade949ac6fdc78f2e7b6ed621377afd9b8f38
[]
no_license
minicloudsky/PythonCode
2fb001d524c8e59eefa66f476a1119ff27e7df36
298a6db80a74a3b5f7d75f6037306e9e06ffa092
refs/heads/master
2023-02-07T18:25:04.753928
2020-12-20T03:27:07
2020-12-20T03:27:07
106,422,450
0
0
null
2020-09-26T03:27:31
2017-10-10T13:41:28
Python
UTF-8
Python
false
false
31
py
import pygal hist = pygal.Bar()
4b3aa7a1ee58238dd8a25b2a149447be16633036
64267b1f7ca193b0fab949089b86bc7a60e5b859
/slehome/manage.py
1cb83a303a492fa808560a2831d6104bd01a8931
[]
no_license
hongdangodori/slehome
6a9f2b4526c2783932627b982df0540762570bff
3e558c78c3943dadf0ec485738a0cc98dea64353
refs/heads/master
2021-01-17T12:00:34.221088
2015-02-06T13:44:00
2015-02-06T13:44:00
28,847,585
1
0
null
null
null
null
UTF-8
Python
false
false
250
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "slehome.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
ffd91bb863c0a3f67d1d3ed0d36bcd76c48916d4
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-1270.py
d68c3965a130f64994c9d66a570265f0edd9655d
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,757
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [$Type] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
76ac2d60a69c2c9463da4ae6c4547c5b867dd6e8
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-network/azure/mgmt/network/v2018_12_01/models/topology_association.py
7832c4a1904ba784c50b3cf5aae97796eb260dd0
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,586
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TopologyAssociation(Model): """Resources that have an association with the parent resource. :param name: The name of the resource that is associated with the parent resource. :type name: str :param resource_id: The ID of the resource that is associated with the parent resource. :type resource_id: str :param association_type: The association type of the child resource to the parent resource. Possible values include: 'Associated', 'Contains' :type association_type: str or ~azure.mgmt.network.v2018_12_01.models.AssociationType """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'association_type': {'key': 'associationType', 'type': 'str'}, } def __init__(self, **kwargs): super(TopologyAssociation, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.resource_id = kwargs.get('resource_id', None) self.association_type = kwargs.get('association_type', None)
e5c53766c994f5d150cd47187531f1339035c92b
065acd70109d206c4021954e68c960a631a6c5e3
/shot_detector/utils/collections/sliding_windows/__init__.py
dbbbfbf2e08e76dc001cf31e3d17b64c790ba048
[]
permissive
w495/python-video-shot-detector
bf2e3cc8175687c73cd01cf89441efc349f58d4d
617ff45c9c3c96bbd9a975aef15f1b2697282b9c
refs/heads/master
2022-12-12T02:29:24.771610
2017-05-15T00:38:22
2017-05-15T00:38:22
37,352,923
20
3
BSD-3-Clause
2022-11-22T01:15:45
2015-06-13T01:33:27
Python
UTF-8
Python
false
false
347
py
# -*- coding: utf8 -*- """ Different kinds of sliding windows """ from __future__ import absolute_import, division, print_function from .base_sliding_window import BaseSlidingWindow from .delayed_sliding_window import DelayedSlidingWindow from .repeated_sliding_window import RepeatedSlidingWindow from .sliding_window import SlidingWindow
494209f5626eff8613f8403f2084829f49a30c87
1554150a9720ebf35cd11c746f69169b595dca10
/package_package/package/model/fuzzy_number.py
b64b535dfc851ec40ee6a38917dddbbf78b72a3a
[]
no_license
andrewili/shape-grammar-engine
37a809f8cf78b133f8f1c3f9cf13a7fbbb564713
2859d8021442542561bdd1387deebc85e26f2d03
refs/heads/master
2021-01-18T22:46:51.221257
2016-05-31T21:15:28
2016-05-31T21:15:28
14,129,359
1
0
null
null
null
null
UTF-8
Python
false
false
2,214
py
import numpy as np almost_equal = np.allclose class FuzzyNumber(object): def __init__(self, number_in): """Receives: number_in num """ method_name = '__init__' try: if not self._is_a_number(number_in): raise TypeError except TypeError: message = "The argument must be a number" self.__class__._print_error_message(method_name, message) else: self.value = number_in def _is_a_number(self, x): """Receives: x object Returns: value boolean. True if x is an int, a float, an np.int64, or an np.float64. False otherwise """ value = False if (type(x) == int or type(x) == float or type(x) == np.int64 or type(x) == np.float64 ): value = True return value def __eq__(self, other): return almost_equal(self.value, other.value) def __ge__(self, other): return ( almost_equal(self.value, other.value) or self.value > other.value) def __gt__(self, other): if almost_equal(self.value, other.value): value = False elif self.value > other.value: value = True else: value = False return value def __le__(self, other): return( almost_equal(self.value, other.value) or self.value < other.value) def __lt__(self, other): if almost_equal(self.value, other.value): value = False elif self.value < other.value: value = True else: value = False return value def __ne__(self, other): return not almost_equal(self.value, other.value) ### utility @classmethod def _print_error_message(cls, method_name, message): print '%s.%s:\n %s' % (cls.__name__, method_name, message) ### represent def __str__(self): return str(self.value) if __name__ == '__main__': import doctest doctest.testfile('tests/fuzzy_number_test.txt')
a9297cfbbfe53a5bdce5b575f72cd5880abbafce
2154d0221e29a86850a1b83e4302f6e3e3f7fa5d
/thread_example/simple_thread_example.py
6f5917fe97dff2fcaaacbf683f71542762a6a5f6
[]
no_license
aaqqxx/simple_for_life
3b8805c6791da6a3a7f42c069dc1ee7d2b8d3649
9ad6d61a56216d04250cd89aeaeda63c11942d0a
refs/heads/master
2020-04-04T09:18:59.396540
2015-04-28T11:22:55
2015-04-28T11:22:55
20,906,518
1
0
null
null
null
null
UTF-8
Python
false
false
268
py
# coding:utf-8 #!/usr/bin/env python __author__ = 'XingHua' """ """ import time, thread def timer(): print('hello') def test(): for i in range(0, 10): thread.start_new_thread(timer, ()) if __name__ == '__main__': test() time.sleep(10)
9009efdfe35f109ffbf2ed9bc2895223798d906d
2f42c6d1fddccc481354148393b9b44165826c04
/test/FsrAnalysis/PmvTreeMaker_cfg.py
19afc0d561fe2b2cedabc88728d5afeb0336515a
[]
no_license
senka/MultiBosons
2ef3dc86e9f0a90f911557638fe79631fef0b3d2
e8413aa280d85376a2f6dfe300bf52b78b4da437
refs/heads/master
2021-03-12T20:15:44.118577
2013-11-20T21:21:01
2013-11-20T21:21:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,460
py
import FWCore.ParameterSet.Config as cms import FWCore.ParameterSet.VarParsing as VarParsing import FWCore.ParameterSet.Types as CfgTypes import PhysicsTools.PythonAnalysis.LumiList as LumiList ## setup 'analysis' options options = VarParsing.VarParsing ('analysis') ## register customized options options.register("jsonFile", "Cert_160404-165542_7TeV_PromptReco_Collisions11_JSON.txt", # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.string, # string, int, or float "JSON file to be applied." ) options.register("globalTag", "GR_R_39X_V6::All", # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.string, # string, int, or float "Global tag to be used." ) options.register("isMC", False, # default value VarParsing.VarParsing.multiplicity.singleton, # singleton or list VarParsing.VarParsing.varType.bool, # string, int, or float "Is this MC?" ) options.setupTags(tag = "of%d", ifCond = "totalSections != 0", tagArg = "totalSections") options.setupTags(tag = "job%d", ifCond = "section != 0", tagArg = "section") ## setup any defaults you want options.maxEvents = 10 # -1 means all events #options.inputFiles = ["file:/uscmst1b_scratch/lpc1/3DayLifetime/veverka/mu/VGammaSkim_LyonSyncTest_Dec22ReReco_v2_DimuonSkim_1_of_4.root"] options.outputFile = "pmvTree.root" options.jsonFile = "Cert_160404-163869_7TeV_PromptReco_Collisions11_JSON_MuonPhys.txt" ## get and parse the command line arguments options.parseArguments() ## define the process process = cms.Process("TEST") ## Load standard sequence for crack corrections process.load('CalibCalorimetry.EcalTrivialCondModules.EcalTrivialCondRetriever_cfi') # process.load('Configuration.StandardSequences.Services_cff') # process.load('Configuration.StandardSequences.MagneticField_38T_cff') process.load('Configuration.StandardSequences.Geometry_cff') # process.load('Configuration.StandardSequences.Reconstruction_cff') # process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') ## Global tag # process.GlobalTag.globaltag = options.globalTag ## Message logger process.load("FWCore.MessageLogger.MessageLogger_cfi") process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(False) ) process.MessageLogger.cerr.FwkReport.reportEvery = 100 ## Enable LogInfo # process.MessageLogger.cerr.INFO.limit = 100 ## Enable LogDebug ### Remember to recompile with: ### scramv1 b USER_CXXFLAGS="-g\ -D=EDM_ML_DEBUG" #process.MessageLogger.debugModules = ["pmvTree"] #process.MessageLogger.cerr.threshold = "DEBUG" ### Geometry, Detector Conditions and Pythia Decay Tables (needed for the vertexing) #process.load("Configuration.StandardSequences.Geometry_cff") #process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") #process.GlobalTag.globaltag = options.globalTag #process.load("Configuration.StandardSequences.MagneticField_cff") #process.load("SimGeneral.HepPDTESSource.pythiapdt_cfi") process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring() + options.inputFiles ) # JSON file if not options.isMC and options.jsonFile != "": myLumis = \ LumiList.LumiList(filename = options.jsonFile ).getCMSSWString().split(',') process.source.lumisToProcess = \ CfgTypes.untracked(CfgTypes.VLuminosityBlockRange()) process.source.lumisToProcess.extend(myLumis) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(options.maxEvents) ) process.TFileService = cms.Service("TFileService", fileName = cms.string(options.outputFile) ) from ElectroWeakAnalysis.MultiBosons.Selectors.muonSelector_cfi \ import muonSelection_FsrApr082011_PixelMatchVeto as muonSelection from ElectroWeakAnalysis.MultiBosons.Selectors.diLeptonSelector_cfi \ import diMuonSelection_Fsr2011Apr11_PixelMatchVeto as diMuonSelection from ElectroWeakAnalysis.MultiBosons.Selectors.photonSelector_cfi \ import photonSelection_Fsr2011Apr11_PixelMatchVeto as photonSelection from ElectroWeakAnalysis.MultiBosons.Selectors.ZMuMuGammaSelector_cfi \ import ZMuMuGammaSelection_Fsr2011Apr11_PixelMatchVeto as ZMuMuGammaSelection process.selectedMuons = cms.EDFilter("VGammaMuonFilter", filterParams = muonSelection, src = cms.InputTag("cleanPatMuonsTriggerMatch","","PAT"), filter = cms.bool(True), verbosity = cms.untracked.uint32(2) ) process.goodDiMuons = cms.EDProducer("CandViewShallowClonePtrCombiner", #process.goodDiMuons = cms.EDProducer("CandViewShallowCloneCombiner", checkCharge = cms.bool(False), cut = cms.string("mass > 0"), ## dummy cut decay = cms.string("selectedMuons selectedMuons"), roles = cms.vstring("muon1", "muon2") ) process.selectedDiMuons = cms.EDFilter("VGammaDiLeptonFilter", filterParams = diMuonSelection, src = cms.InputTag("goodDiMuons"), filter = cms.bool(True), verbosity = cms.untracked.uint32(2) ) process.selectedPhotons = cms.EDFilter("VGammaPhotonFilter", filterParams = photonSelection, src = cms.InputTag("cleanPatPhotonsTriggerMatch"), filter = cms.bool(True), verbosity = cms.untracked.uint32(2) ) #process.vertexedDiMuons = cms.EDProducer("KalmanVertexFitCompositeCandProducer", #src = cms.InputTag("selectedDiMuons") #) process.goodZMuMuGammas = cms.EDProducer("CandViewShallowClonePtrCombiner", checkCharge = cms.bool(False), cut = cms.string("mass > 0"), ## dummy cut decay = cms.string("selectedDiMuons selectedPhotons"), roles = cms.vstring("dimuon", "photon") ) process.selectedZMuMuGammas = cms.EDFilter("ZMuMuGammaFilter", filterParams = ZMuMuGammaSelection, src = cms.InputTag("goodZMuMuGammas"), filter = cms.bool(True), verbosity = cms.untracked.uint32(2) ) ## Loosen the invariant mass window process.selectedZMuMuGammas.filterParams.minMass = 50 process.selectedZMuMuGammas.filterParams.maxMass = 130 process.selectionSequence = cms.Sequence( process.selectedMuons * process.goodDiMuons * process.selectedDiMuons * process.selectedPhotons * #process.vertexedDiMuons * process.goodZMuMuGammas * process.selectedZMuMuGammas ) #process.mmgTree = cms.EDAnalyzer("MuMuGammaTreeMaker", #photonSrc = cms.untracked.InputTag("selectedPhotons"), #muonSrc = cms.untracked.InputTag("selectedMuons"), #dimuonSrc = cms.untracked.InputTag("selectedDiMuons"), #beamSpotSrc = cms.untracked.InputTag("offlineBeamSpot"), #primaryVertexSrc = cms.untracked.InputTag("offlinePrimaryVertices"), #ebClusterSrc = cms.untracked.InputTag("islandBasicClusters", "islandBarrelBasicClusters"), #ebRecHitsSrc = cms.untracked.InputTag("ecalRecHit", "EcalRecHitsEB"), #eeRecHitsSrc = cms.untracked.InputTag("ecalRecHit", "EcalRecHitsEE"), #genParticleSrc = cms.untracked.InputTag("prunedGenParticles"), #isMC = cms.untracked.bool(False), #) process.load("ElectroWeakAnalysis.MultiBosons.FsrAnalysis.PmvTreeMaker_cfi") process.pmvTree.isMC = options.isMC ## Pileup if options.isMC: process.pmvTree.pileupInfoSrc = cms.untracked.InputTag("addPileupInfo") process.pmvTree.lumiReWeighting = cms.untracked.PSet( mcDistribution = cms.vdouble( ## from the gamma+jet sample (no filter) ## 21 numbers # 257141., 295755., 263008., 286909., 282291., 281067., # 295777., 297075., 250569., 299795., 256528., 248686., # 203484., 137833., 117686., 76877., 62815., 35462., # 8381., 10012., 4233. ## from the S4 gamma + jet sample (no filter) ## 51 numbers, use only first 36 # 1.15148e+06, 582849, 629204, 642292, 658930, 666227, # 668263, 649863, 623035, 588189, 528601, 478063, # 412804, 351588, 285862, 231776, 181493, 139729, # 104007, 77262, 55684, 39053, 27132, 18393, # 12278, 8039, 5393, 3301, 2152, 1321, # 875, 482, 317, 195, 98, 75, # 44, 22, 15, 5, 7, 2, # 0, 1, 0, 0, 0, 0, # 0, 0, 0, ## In-time Poisson smeared Distribution for Fall 2011 S6 MC ## see https://twiki.cern.ch/twiki/bin/viewauth/CMS/PileupMCReweightingUtilities#Sample_Input_Distributions 0.0145837, 0.025683, 0.0384606, 0.0494145, 0.0569311, 0.0611828, 0.0625346, 0.0614769, 0.0586775, 0.0554499, #10 0.0515491, 0.047621, 0.0439238, 0.0405691, 0.0374147, 0.034227, 0.0314377, 0.0288256, 0.026219, 0.0237271, #20 0.0213656, 0.0191874, 0.0169728, 0.0149206, 0.013039, 0.0112938, 0.00961247, 0.00819356, 0.00688805, 0.00571524, #30 0.00471123, 0.00386993, 0.00315452, 0.00254742, 0.00202471, 0.00157441, 0.00124581, 0.000955206, 0.000735305, 0.000557304, #40 0.000412503, 0.000305502, 0.000231002, 0.000165701, 0.000121201, 9.30006e-05, 6.40004e-05, 4.22003e-05, 2.85002e-05, 1.96001e-05, #50 # 1.59001e-05, 1.01001e-05, 8.50006e-06, 6.60004e-06, 2.70002e-06 #55 ), dataDistribution = cms.vdouble( ## The length has to be exactly the same as for the MC! ## From pileupCalc using the analysis_AN-12-048_HggMVA_2011B.json ##+ This is the intersection of the certified lumi and lumi in files ##+ for the AN-12-048 (Hgg MVA). ##+ https://twiki.cern.ch/twiki/bin/view/CMS/PileupJSONFileforData 270698, 1.92097e+06, 7.37936e+06, 1.97546e+07, 4.12105e+07, 7.15133e+07, 1.07744e+08, 1.45221e+08, 1.78943e+08, 2.04812e+08, 2.20301e+08, 2.24587e+08, 2.18333e+08, 2.033e+08, 1.81904e+08, 1.56775e+08, 1.30395e+08, 1.04822e+08, 8.15498e+07, 6.14711e+07, 4.49426e+07, 3.19021e+07, 2.20071e+07, 1.47669e+07, 9.64664e+06, 6.14038e+06, 3.81158e+06, 2.30915e+06, 1.36638e+06, 790299, 447122, 247617, 134324, 71422.1, 37247.5, 19064.2, 9582.2, 4732.54, 2298.06, 1097.78, 516.18, 239.035, 109.077, 49.0746, 21.7801, 9.54062, 4.127, 1.76384, 0.745197, 0.31138, ## From pileupCalc using the analysis_AN-12-048_HggMVA_2011A.json ##+ This is the intersection of the certified lumi and lumi in files ##+ for the AN-12-048 (Hgg MVA). ##+ https://twiki.cern.ch/twiki/bin/view/CMS/PileupJSONFileforData # 9.0421e+06, 4.18256e+07, 1.02775e+08, 1.78055e+08, 2.44227e+08, 2.82567e+08, # 2.86929e+08, 2.62667e+08, 2.20922e+08, 1.73072e+08, 1.27563e+08, 8.91129e+07, # 5.93253e+07, 3.77909e+07, 2.31054e+07, 1.3591e+07, 7.70586e+06, 4.21808e+06, # 2.23217e+06, 1.14338e+06, 567552, 273295, 127794, 58085.6, # 25686.5, 11061.4, 4642.54, 1900.61, 759.561, 296.542, # 113.18, 42.2575, 15.4443, 5.52873, 1.93966, 0.667283, # 0.225219, 0.0746155, 0.0242768, 0.00776057, 0.00243853, 0.000753497, # 0.000229053, 6.8528e-05, 2.01861e-05, 5.85673e-06, 1.67436e-06, 4.71841e-07, # 1.31119e-07, 3.59441e-08, ## From pileupCalc using the analysis_AN-12-048_HggMVA.json ##+ This is the intersection of the certified lumi and lumi in files ##+ for the AN-12-048 (Hgg MVA). ##+ https://twiki.cern.ch/twiki/bin/view/CMS/PileupJSONFileforData # 9.31279e+06, 4.37466e+07, 1.10154e+08, 1.9781e+08, 2.85437e+08, 3.5408e+08, # 6 # 3.94674e+08, 4.07888e+08, 3.99865e+08, 3.77884e+08, 3.47865e+08, 3.137e+08, # 12 # 2.77658e+08, 2.41091e+08, 2.05009e+08, 1.70366e+08, 1.38101e+08, 1.0904e+08,# 18 # 8.3782e+07, 6.26145e+07, 4.55102e+07, 3.21754e+07, 2.21349e+07, 1.4825e+07, # 24 # 9.67233e+06, 6.15145e+06, 3.81622e+06, 2.31105e+06, 1.36714e+06, 790595, # 30 # 447235, 247660, 134340, 71427.6, 37249.4, 19064.9, # 36 # 9582.42, 4732.62, 2298.08, 1097.79, 516.183, 239.036, # 42 # 109.078, 49.0747, 21.7801, 9.54063, 4.127, 1.76384, # 48 # 0.745197, 0.31138, # 50 ## from https://cms-service-dqm.web.cern.ch/cms-service-dqm/CAF/ ##+ certification/Collisions11/7TeV/PileUp/*.pileup_v2.root ##+ Run 2011A and 2011B combined # 1.34465e+07, 5.90653e+07, 1.40903e+08, 2.41301e+08, 3.33745e+08, 3.98711e+08, # 4.30106e+08, 4.32283e+08, 4.1382e+08, 3.82846e+08, 3.45164e+08, 3.04344e+08, # 2.62555e+08, 2.21331e+08, 1.81983e+08, 1.4569e+08, 1.13413e+08, 8.57789e+07, # 6.30124e+07, 4.49596e+07, 3.1169e+07, 2.10079e+07, 1.37759e+07, 8.79641e+06, # 5.47442e+06, 3.32378e+06, 1.97064e+06, 1.14204e+06, 647539, 359547, # 195673, 104460, 54745.2, 28185.6, 28005.5, 0.008, ## Run 2011A only # 1.29654e+07, 5.58514e+07, 1.29329e+08, 2.12134e+08, 2.76138e+08, 3.03604e+08, # 2.93258e+08, 2.55633e+08, 2.0497e+08, 1.53264e+08, 1.07936e+08, 7.21006e+07, # 4.5913e+07, 2.797e+07, 1.63426e+07, 9.17598e+06, 4.95861e+06, 2.58239e+06, # 1.2977e+06, 629975, 295784, 134470, 59260.1, 25343.9, # 10530.1, 4255.05, 1673.95, 641.776, 240.022, 87.6504, # 31.281, 10.9195, 3.73146, 1.24923, 0.602368, 0.008, ## Run 2011B only # 481142, 3.21393e+06, 1.15733e+07, 2.91676e+07, 5.76072e+07, 9.51074e+07, # 1.36849e+08, 1.7665e+08, 2.0885e+08, 2.29582e+08, 2.37228e+08, 2.32243e+08, # 2.16642e+08, 1.93361e+08, 1.6564e+08, 1.36514e+08, 1.08455e+08, 8.31965e+07, # 6.17147e+07, 4.43296e+07, 3.08733e+07, 2.08734e+07, 1.37166e+07, 8.77106e+06, # 5.46389e+06, 3.31952e+06, 1.96896e+06, 1.1414e+06, 647299, 359460, # 195642, 104449, 54741.4, 28184.3, 28004.9, 0, ## from estimatePileupD.py for golden JSON up to run 173244 # 2.66037e+07, 6.20837e+07, 1.28931e+08, 2.00545e+08, 2.5334e+08, 2.73133e+08, # 2.5988e+08, 2.23527e+08, 1.76897e+08, 1.30515e+08, 9.06582e+07, 5.972e+07, # 3.75081e+07, 2.2549e+07, 1.30131e+07, 7.2248e+06, 3.86533e+06, 1.99552e+06, # 995277, 480084, 224189, 101452, 44532.8, 18979.4, # 7860.96, 3167.1, 1242.31, 474.86, 177.025, 64.4158, # 22.8974, 7.95686, 2.70506, 0.900305, 0.293541, 0.0938176, # 0.02941, 0.0090478, 0.00273311, 0.000811054, 0.000236549, 6.78354e-05, ## from estimatePileupD.py for golden JSON for runs 160404-166861 # 1.00826e+07, 1.9655e+07, 4.58762e+07, 7.63478e+07, 9.9728e+07, 1.0842e+08, # 1.01847e+08, 8.48512e+07, 6.39051e+07, 4.41459e+07, 2.82916e+07, 1.69742e+07, # 9.60532e+06, 5.15841e+06, 2.64284e+06, 1.29755e+06, 612859, 279413, # 123331, 52841.1, 22026.7, 8951.4, 3552.86, 1379.43, # 524.638, 195.694, 71.6639, 25.7868, 9.12372, 3.17583, # 1.088, 0.36694, 0.121851, 0.0398426, 0.0128274, 0.00406596, # 0.00126871, 0.000389638, 0.000117757, 3.50154e-05, 1.02425e-05, 2.94689e-06, # 8.33821e-07, 2.32e-07, 6.34707e-08, 1.7073e-08, 4.51528e-09, 1.17408e-09, # 3.00169e-10, 2.00066e-07, 0, ## from estimatePileupD.py for golden JSON for runs 136033-166861 # 1.56121e+07, 2.87272e+07, 5.46463e+07, 8.25868e+07, 1.03348e+08, 1.10229e+08, # 1.02651e+08, 8.51755e+07, 6.40254e+07, 4.41874e+07, 2.8305e+07, 1.69782e+07, # 9.60647e+06, 5.15872e+06, 2.64292e+06, 1.29757e+06, 612863, 279414, # 123331, 52841.1, 22026.7, ## from estimatePileupD.py for golden JSON up to run 166502 #3.36441e+06, 6.50754e+06, 1.57837e+07, 2.75468e+07, 3.78054e+07, 4.31307e+07, #4.2414e+07, 3.68867e+07, 2.8917e+07, 2.07353e+07, 1.37572e+07, 8.52297e+06, #4.9674e+06, 2.74032e+06, 1.43822e+06, 721206, 346808, 160424, #71576.4, 30874.3, 12901.2, #5231.58, 2061.91, 790.889, ## from estimatePileupD.py for golden JSON up to run 165542 #4.49103e+06, 7.50711e+06, 1.7013e+07, 2.77526e+07, 3.56721e+07, 3.82648e+07, #3.55386e+07, 2.93206e+07, 2.18974e+07, 1.50169e+07, 9.56312e+06, 5.70622e+06, #3.21393e+06, 1.71936e+06, 878374, 430566, 203380, 92934.5, #41228.6, 17815.2, 7520.35,# 3109.37, 1262.01, 503.739, #198.015, 76.7276, 29.3217, 11.0527, 4.10876, 1.50569, #0.543606, 0.193229, 0.0675766, 0.0232364, 0.00785103, 0.0026052, #0.000848637, 0.000271282, 8.50798e-05, 2.61736e-05, 7.8975e-06, 2.33716e-06, #6.78371e-07, 1.93133e-07, 5.39384e-08, 1.47793e-08, 3.97367e-09, 1.04856e-09, #2.71605e-10, 6.92423e-08, 0, ## from estimatePileupD.py for golden JSON up to run 163869 #3.6124e+06, 5.7606e+06, 1.3047e+07, 2.12065e+07, 2.71345e+07, 2.89995e+07, #2.68765e+07, 2.21641e+07, 1.65695e+07, 1.13875e+07, 7.27332e+06, 4.35533e+06, #2.46294e+06, 1.32354e+06, 679618, 335115, 159402, 73447, #32906.5, 14384.3, 6152.9, #2581.8, 1064.77, 432.206, #172.826, 68.1079, 26.4529, 10.1234, 3.81552, 1.4155, #0.51655, 0.185307, 0.0653117, 0.0226036, 0.00767821, 0.00255903, #0.000836568, 0.000268193, 8.43057e-05, 2.59835e-05, 7.85175e-06, 2.32636e-06, #6.75872e-07, 1.92565e-07, 5.3812e-08, 1.47516e-08, 3.96773e-09, 1.0473e-09, #2.71346e-10, 5.26651e-08, 0. ) #mcFile = cms.FileInPath('pudist_G_Pt-15to3000_TuneZ2_Flat_7TeV_pythia6_Summer11.root'), #mcHist = cms.string('pudist'), #dataFile = cms.FileInPath('pudist_160404-163869_Cert_JSON.root'), #dataHist = cms.string('pileup'), ) process.p = cms.Path( process.selectionSequence * process.pmvTree ) process.options.wantSummary = False if __name__ == "__main__": import user
3922747c24aeae6863311beb748f65358b035f73
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D95A/DIRDEBD95AUN.py
5415a9c13741232f73c37ae3b49aa4c18660d498
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
4,507
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD95AUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 1}, {ID: 'BUS', MIN: 0, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 2, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'FII', MIN: 0, MAX: 5, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'NAD', MIN: 0, MAX: 3, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'LIN', MIN: 1, MAX: 9999, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 2}, {ID: 'BUS', MIN: 0, MAX: 1}, {ID: 'FCA', MIN: 0, MAX: 1}, {ID: 'MOA', MIN: 0, MAX: 1, LEVEL: [ {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 2}, {ID: 'RFF', MIN: 0, MAX: 1}, ]}, {ID: 'FII', MIN: 1, MAX: 1, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'NAD', MIN: 0, MAX: 3, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'INP', MIN: 0, MAX: 1, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 2}, ]}, {ID: 'GIS', MIN: 0, MAX: 10, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 1}, {ID: 'LOC', MIN: 0, MAX: 2}, {ID: 'NAD', MIN: 0, MAX: 1}, {ID: 'RCS', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 10}, ]}, {ID: 'PRC', MIN: 0, MAX: 1, LEVEL: [ {ID: 'FTX', MIN: 1, MAX: 1}, ]}, {ID: 'SEQ', MIN: 1, MAX: 9999, LEVEL: [ {ID: 'MOA', MIN: 1, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 3}, {ID: 'PAI', MIN: 0, MAX: 1}, {ID: 'FCA', MIN: 0, MAX: 1}, {ID: 'FII', MIN: 0, MAX: 3, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'NAD', MIN: 0, MAX: 3, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 1}, {ID: 'COM', MIN: 0, MAX: 5}, ]}, {ID: 'INP', MIN: 0, MAX: 3, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 0, MAX: 2}, ]}, {ID: 'GIS', MIN: 0, MAX: 10, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 1}, {ID: 'LOC', MIN: 0, MAX: 2}, {ID: 'NAD', MIN: 0, MAX: 1}, {ID: 'RCS', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 10}, ]}, {ID: 'PRC', MIN: 0, MAX: 1, LEVEL: [ {ID: 'FTX', MIN: 0, MAX: 5}, {ID: 'DOC', MIN: 0, MAX: 9999, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 5}, {ID: 'DTM', MIN: 0, MAX: 5}, {ID: 'RFF', MIN: 0, MAX: 5}, {ID: 'NAD', MIN: 0, MAX: 2}, {ID: 'CUX', MIN: 0, MAX: 5, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'AJT', MIN: 0, MAX: 100, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 5}, ]}, {ID: 'DLI', MIN: 0, MAX: 1000, LEVEL: [ {ID: 'MOA', MIN: 1, MAX: 5}, {ID: 'PIA', MIN: 0, MAX: 5}, {ID: 'DTM', MIN: 0, MAX: 5}, {ID: 'CUX', MIN: 0, MAX: 5, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'AJT', MIN: 0, MAX: 10, LEVEL: [ {ID: 'MOA', MIN: 1, MAX: 1}, {ID: 'RFF', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 5}, ]}, ]}, ]}, {ID: 'GIS', MIN: 0, MAX: 1, LEVEL: [ {ID: 'MOA', MIN: 0, MAX: 5}, ]}, ]}, ]}, ]}, {ID: 'CNT', MIN: 0, MAX: 5}, {ID: 'AUT', MIN: 0, MAX: 5, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
bbf4965b241b4632e2d4a349b3869fba4cb9831f
ca23b411c8a046e98f64b81f6cba9e47783d2584
/poem/core/models_test.py
a0db94e4d47fae13658d07b17e82bce15a3e7851
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
pdybczak/google-research
1fb370a6aa4820a42a5d417a1915687a00613f9c
0714e9a5a3934d922c0b9dd017943a8e511eb5bc
refs/heads/master
2023-03-05T23:16:11.246574
2021-01-04T11:30:28
2021-01-04T11:30:28
326,629,357
1
0
Apache-2.0
2021-02-01T12:39:09
2021-01-04T09:17:36
Jupyter Notebook
UTF-8
Python
false
false
9,686
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests model architecture functions.""" import tensorflow.compat.v1 as tf from poem.core import common from poem.core import models tf.disable_v2_behavior() class ModelsTest(tf.test.TestCase): def test_simple_model_shapes(self): # Shape = [4, 2, 3]. input_features = tf.constant([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]], [[13.0, 14.0, 15.0], [16.0, 17.0, 18.0]], [[19.0, 20.0, 21.0], [22.0, 23.0, 24.0]]]) output_sizes = {'a': 8, 'b': [4, 3]} outputs, activations = models.simple_model( input_features, output_sizes, sequential_inputs=False, is_training=True, num_bottleneck_nodes=16) expected_global_variable_shapes = { 'SimpleModel/InputFC/Linear/weight:0': ([3, 1024]), 'SimpleModel/InputFC/Linear/bias:0': ([1024]), 'SimpleModel/InputFC/BatchNorm/gamma:0': ([1024]), 'SimpleModel/InputFC/BatchNorm/beta:0': ([1024]), 'SimpleModel/InputFC/BatchNorm/moving_mean:0': ([1024]), 'SimpleModel/InputFC/BatchNorm/moving_variance:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/Linear/weight:0': ([1024, 1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/Linear/bias:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/BatchNorm/gamma:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/BatchNorm/beta:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/BatchNorm/moving_mean:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_0/BatchNorm/moving_variance:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/Linear/weight:0': ([1024, 1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/Linear/bias:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/BatchNorm/gamma:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/BatchNorm/beta:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/BatchNorm/moving_mean:0': ([1024]), 'SimpleModel/FullyConnectedBlock_0/FC_1/BatchNorm/moving_variance:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/Linear/weight:0': ([1024, 1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/Linear/bias:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/BatchNorm/gamma:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/BatchNorm/beta:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/BatchNorm/moving_mean:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_0/BatchNorm/moving_variance:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/Linear/weight:0': ([1024, 1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/Linear/bias:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/BatchNorm/gamma:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/BatchNorm/beta:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/BatchNorm/moving_mean:0': ([1024]), 'SimpleModel/FullyConnectedBlock_1/FC_1/BatchNorm/moving_variance:0': ([1024]), 'SimpleModel/BottleneckLogits/weight:0': ([1024, 16]), 'SimpleModel/BottleneckLogits/bias:0': ([16]), 'SimpleModel/OutputLogits/a/weight:0': ([16, 8]), 'SimpleModel/OutputLogits/a/bias:0': ([8]), 'SimpleModel/OutputLogits/b/weight:0': ([16, 12]), 'SimpleModel/OutputLogits/b/bias:0': ([12]), } self.assertDictEqual( {var.name: var.shape.as_list() for var in tf.global_variables()}, expected_global_variable_shapes) self.assertCountEqual(outputs.keys(), ['a', 'b']) self.assertAllEqual(outputs['a'].shape.as_list(), [4, 2, 8]) self.assertAllEqual(outputs['b'].shape.as_list(), [4, 2, 4, 3]) self.assertCountEqual(activations.keys(), ['base_activations', 'bottleneck_activations']) self.assertAllEqual(activations['base_activations'].shape.as_list(), [4, 2, 1024]) self.assertAllEqual(activations['bottleneck_activations'].shape.as_list(), [4, 2, 16]) def test_simple_model_forward_pass(self): input_features = tf.constant([[1.0, 2.0, 3.0]]) output_sizes = {'a': 4} outputs, activations = models.simple_model( input_features, output_sizes, sequential_inputs=False, is_training=True, num_hidden_nodes=2, weight_initializer=tf.initializers.ones(), bias_initializer=tf.initializers.zeros(), weight_max_norm=0.0, use_batch_norm=False, dropout_rate=0.0, num_fcs_per_block=2, num_fc_blocks=3) with self.session() as sess: sess.run(tf.initializers.global_variables()) outputs_result, activations_result = sess.run([outputs, activations]) self.assertCountEqual(outputs_result.keys(), ['a']) self.assertAllClose(outputs_result['a'], [[1500.0, 1500.0, 1500.0, 1500.0]]) self.assertCountEqual(activations_result.keys(), ['base_activations']) self.assertAllClose(activations_result['base_activations'], [[750.0, 750.0]]) def test_get_simple_model(self): input_features = tf.constant([[1.0, 2.0, 3.0]]) output_sizes = {'a': 4} model_fn = models.get_model( base_model_type=common.BASE_MODEL_TYPE_SIMPLE, is_training=True, num_hidden_nodes=2, weight_initializer=tf.initializers.ones(), bias_initializer=tf.initializers.zeros(), weight_max_norm=0.0, use_batch_norm=False, dropout_rate=0.0, num_fcs_per_block=2, num_fc_blocks=3) outputs, activations = model_fn(input_features, output_sizes) with self.session() as sess: sess.run(tf.initializers.global_variables()) outputs_result, activations_result = sess.run([outputs, activations]) self.assertCountEqual(outputs_result.keys(), ['a']) self.assertAllClose(outputs_result['a'], [[1500.0, 1500.0, 1500.0, 1500.0]]) self.assertCountEqual(activations_result.keys(), ['base_activations']) self.assertAllClose(activations_result['base_activations'], [[750.0, 750.0]]) def test_get_simple_point_embedder(self): # Shape = [4, 2, 3]. input_features = tf.constant([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]], [[13.0, 14.0, 15.0], [16.0, 17.0, 18.0]], [[19.0, 20.0, 21.0], [22.0, 23.0, 24.0]]]) embedder_fn = models.get_embedder( base_model_type=common.BASE_MODEL_TYPE_SIMPLE, embedding_type=common.EMBEDDING_TYPE_POINT, num_embedding_components=3, embedding_size=16, is_training=True) outputs, activations = embedder_fn(input_features) self.assertCountEqual(outputs.keys(), [common.KEY_EMBEDDING_MEANS]) self.assertAllEqual(outputs[common.KEY_EMBEDDING_MEANS].shape.as_list(), [4, 2, 3, 16]) self.assertCountEqual(activations.keys(), ['base_activations']) self.assertAllEqual(activations['base_activations'].shape.as_list(), [4, 2, 1024]) def test_get_simple_gaussian_embedder(self): # Shape = [4, 2, 3]. input_features = tf.constant([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]], [[13.0, 14.0, 15.0], [16.0, 17.0, 18.0]], [[19.0, 20.0, 21.0], [22.0, 23.0, 24.0]]]) embedder_fn = models.get_embedder( base_model_type=common.BASE_MODEL_TYPE_SIMPLE, embedding_type=common.EMBEDDING_TYPE_GAUSSIAN, num_embedding_components=3, embedding_size=16, num_embedding_samples=32, is_training=True, weight_max_norm=0.0) outputs, activations = embedder_fn(input_features) self.assertCountEqual(outputs.keys(), [ common.KEY_EMBEDDING_MEANS, common.KEY_EMBEDDING_STDDEVS, common.KEY_EMBEDDING_SAMPLES, ]) self.assertAllEqual(outputs[common.KEY_EMBEDDING_MEANS].shape.as_list(), [4, 2, 3, 16]) self.assertAllEqual(outputs[common.KEY_EMBEDDING_STDDEVS].shape.as_list(), [4, 2, 3, 16]) self.assertAllEqual(outputs[common.KEY_EMBEDDING_SAMPLES].shape.as_list(), [4, 2, 3, 32, 16]) self.assertCountEqual(activations.keys(), ['base_activations']) self.assertAllEqual(activations['base_activations'].shape.as_list(), [4, 2, 1024]) if __name__ == '__main__': tf.test.main()
9f5061630659beed761f1e56fb5a1083b3bb3c3d
234c46d1249c9209f268417a19018afc12e378b4
/tests/modules/transformer/activation_layer_test.py
2af0338a92e9723143c9b963856628980b4971bc
[ "Apache-2.0" ]
permissive
allenai/allennlp
1f4bcddcb6f5ce60c7ef03a9a3cd6a38bdb987cf
80fb6061e568cb9d6ab5d45b661e86eb61b92c82
refs/heads/main
2023-07-07T11:43:33.781690
2022-11-22T00:42:46
2022-11-22T00:42:46
91,356,408
12,257
2,712
Apache-2.0
2022-11-22T00:42:47
2017-05-15T15:52:41
Python
UTF-8
Python
false
false
804
py
import torch import pytest from allennlp.common import Params from allennlp.modules.transformer import ActivationLayer @pytest.fixture def params_dict(): return { "hidden_size": 5, "intermediate_size": 3, "activation": "relu", } @pytest.fixture def params(params_dict): return Params(params_dict) @pytest.fixture def activation_layer(params): return ActivationLayer.from_params(params.duplicate()) def test_can_construct_from_params(activation_layer, params_dict): activation_layer = activation_layer assert activation_layer.dense.in_features == params_dict["hidden_size"] assert activation_layer.dense.out_features == params_dict["intermediate_size"] def test_forward_runs(activation_layer): activation_layer.forward(torch.randn(7, 5))
074aeca3d97502ed60c27a33d1803a45293f210c
c1ea75db1da4eaa485d39e9d8de480b6ed0ef40f
/app/api/app.py
bafb5b35fd82a3d3b5865aa651d5ecb12186e978
[ "Apache-2.0" ]
permissive
gasbarroni8/VideoCrawlerEngine
a4f092b0a851dc0487e4dcf4c98b62d6282a6180
994933d91d85bb87ae8dfba1295f7a69f6d50097
refs/heads/master
2023-04-06T07:59:29.269894
2021-02-10T16:09:15
2021-02-10T16:09:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,259
py
from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from fastapi.responses import HTMLResponse from .routers import include_routers from app.helper.middleware import include_exception_handler from helper.conf import get_conf from .helper import read_html_file from app.helper.middleware.proxy import ReverseProxyMiddleware from ..helper.middleware import include_middleware from urllib.parse import urljoin import os app = FastAPI() conf = get_conf('app') htmldist = { 'static': os.path.join(conf.html['dist'], 'static'), 'index': os.path.join(conf.html['dist'], 'index.html') } app.mount( '/static', StaticFiles(directory=htmldist['static']), name='dist' ) include_routers(app) include_exception_handler(app) proxy_pass_configures = [ { 'source': '/api/task/', 'pass': urljoin( conf.taskflow['gateway'].geturl(), '/api/v1/task/' ), }, { 'source': '/api/script/', 'pass': urljoin( conf.script['gateway'].geturl(), '/api/v1/script/' ), } ] include_middleware(app, ReverseProxyMiddleware(proxy_pass_configures)) @app.get('/') async def index(): return HTMLResponse(read_html_file(htmldist['index']))
13a95e0835eddd0fa3db784494dd57177d13927b
8fcdcec1bf0f194d23bba4acd664166a04dc128f
/packages/grid_control_update.py
d21546c84a97777c2b4b0811e15519a89314cefb
[]
no_license
grid-control/grid-control
e51337dd7e5d158644a8da35923443fb0d232bfb
1f5295cd6114f3f18958be0e0618ff6b35aa16d7
refs/heads/master
2022-11-13T13:29:13.226512
2021-10-01T14:37:59
2021-10-01T14:37:59
13,805,261
32
30
null
2023-02-19T16:22:47
2013-10-23T14:39:28
Python
UTF-8
Python
false
false
1,227
py
#!/usr/bin/env python # | Copyright 2014-2017 Karlsruhe Institute of Technology # | # | Licensed under the Apache License, Version 2.0 (the "License"); # | you may not use this file except in compliance with the License. # | You may obtain a copy of the License at # | # | http://www.apache.org/licenses/LICENSE-2.0 # | # | Unless required by applicable law or agreed to in writing, software # | distributed under the License is distributed on an "AS IS" BASIS, # | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # | See the License for the specific language governing permissions and # | limitations under the License. import os, sys def update_plugin_files(): base_dir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(base_dir) from hpfwk.hpf_plugin import create_plugin_file def _select(path): for pat in ['/share', '_compat_', '/requests', '/xmpp']: if pat in path: return False return True package_list = os.listdir(base_dir) package_list.sort() for package in package_list: package = os.path.abspath(os.path.join(base_dir, package)) if os.path.isdir(package): create_plugin_file(package, _select) if __name__ == '__main__': update_plugin_files()
0817e8833e06cdbb3dc7357bbdcedcc83fb04a46
73fcadae6177ab973f1aa3ffe874ac3fadb52312
/server/fta/utils/i18n.py
4f91cd88e9509cabeab6ce284564a7f4a93d9ea7
[ "MIT", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "BSL-1.0", "Apache-2.0" ]
permissive
huang1125677925/fta
352cd587aaca3d3149516345559d420c41d1caf4
a50a3c498c39b14e7df4a0a960c2a1499b1ec6bb
refs/heads/master
2023-03-18T16:08:40.904716
2019-02-22T09:35:23
2019-02-22T09:35:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,745
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa import logging import os.path import arrow import pytz as tz from babel import support from fta.utils.lazy import LazyString logger = logging.getLogger(__name__) class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class I18N(object): __metaclass__ = Singleton def __init__(self): # 全局唯一, 修改后可更改语言, 时区 self.cc_biz_id = None from fta import settings self.default_locale = settings.DEFAULT_LOCALE self.default_timezone = settings.DEFAULT_TIMEZONE self.translations = {} self.domain = None def set_biz(self, cc_biz_id): """change biz method """ self.cc_biz_id = cc_biz_id @property def translation_directories(self): """翻译文件夹 """ BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) yield os.path.join(BASE_DIR, 'locale') def locale_best_match(self, locale): """兼容不同编码 """ if locale.lower() in ['zh', 'zh_cn', 'zh-cn']: return 'zh_Hans_CN' return 'en' def get_locale(self): """ 根据业务ID获取语言 """ if not self.cc_biz_id: return self.default_locale try: from project.utils import query_cc locale = query_cc.get_app_by_id(self.cc_biz_id).get('Language') if locale: return self.locale_best_match(locale) else: return self.default_locale except Exception: return self.default_locale def get_timezone(self): try: timezone = self._get_timezone() except Exception: timezone = tz.timezone(self.default_timezone) return timezone def _get_timezone(self): """ 根据业务ID获取时区 """ if not self.cc_biz_id: return self.default_timezone try: from project.utils import query_cc timezone = query_cc.get_app_by_id(self.cc_biz_id).get('TimeZone') if timezone: return timezone else: return self.default_timezone except Exception: return self.default_timezone def get_translations(self): """get translation on the fly """ locale = self.get_locale() if locale not in self.translations: translations = support.Translations() for dirname in self.translation_directories: catalog = support.Translations.load( dirname, [locale], self.domain, ) translations.merge(catalog) if hasattr(catalog, 'plural'): translations.plural = catalog.plural logger.info('load translations, %s=%s', locale, translations) self.translations[locale] = translations return self.translations[locale] i18n = I18N() def gettext(string, **variables): """replace stdlib """ t = i18n.get_translations() if t is None: return string if not variables else string % variables s = t.ugettext(string) return s if not variables else s % variables def ngettext(singular, plural, n): t = i18n.get_translations() if t is None: return singular s = t.ngettext(singular, plural, n) return s def lazy_gettext(string, **variables): """Like :func:`gettext` but the string returned is lazy which means it will be translated when it is used as an actual string. Example:: hello = lazy_gettext(u'Hello World') @app.route('/') def index(): return unicode(hello) """ return LazyString(gettext, string, **variables) _ = gettext def arrow_localtime(value, timezone=None): """value必须是UTC时间, arrow转换成本地时间 """ value = arrow.get(value).replace(tzinfo="utc") if not timezone: timezone = i18n.get_timezone() value = value.to(timezone) return value def localtime(value, timezone=None): """value必须是UTC时间, datetime格式 """ value = arrow_localtime(value, timezone) value = value.datetime return value def arrow_now(): """当前时区时间, arrow格式 """ utcnow = arrow.utcnow() timezone = i18n.get_timezone() return utcnow.to(timezone) def now(): """当前时间, datetime格式 """ return arrow_now().datetime def lazy_join(iterable, word): value = '' is_first = True for i in iterable: if is_first: value = value + i is_first = False else: value = value + word + i return value
cef06aa93427891f9e1de15f76de7e4aa063276f
48ba8d0788e4ac7d4cacd7e7a2e2cf4f391c85ad
/Apple/rectangle_overlap.py
2fe9ccc6190a3b2c9e19a0c9399b0cd7700fb388
[]
no_license
rahulvshinde/Python_Playground
c28ac2dc0865e254caa5360c3bb97b4ff5f23b3a
7a03b765dd440654caba1e06af5b149f584e9f08
refs/heads/master
2023-04-19T17:25:55.993837
2021-05-17T01:15:30
2021-05-17T01:15:30
280,736,898
2
0
null
null
null
null
UTF-8
Python
false
false
886
py
""" A rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) are the coordinates of its bottom-left corner, and (x2, y2) are the coordinates of its top-right corner. Two rectangles overlap if the area of their intersection is positive. To be clear, two rectangles that only touch at the corner or edges do not overlap. Given two (axis-aligned) rectangles, return whether they overlap. Example 1: Input: rec1 = [0,0,2,2], rec2 = [1,1,3,3] Output: true Example 2: Input: rec1 = [0,0,1,1], rec2 = [1,0,2,1] Output: false Notes: Both rectangles rec1 and rec2 are lists of 4 integers. All coordinates in rectangles will be between -10^9 and 10^9. """ # rec1 = [0,0,2,2] # rec2 = [1,1,3,3] rec1 = [0,0,1,1] rec2 = [1,0,2,1] def rectOverlap(rec1, rec2): return rec1[0]<rec2[2] and rec2[0] <rec1[2] and rec1[1]< rec2[3] and rec2[1]<rec1[3] print(rectOverlap(rec1,rec2))
fdb935308c84e6e8df3718a147bb41f284314a06
5be8b0f2ee392abeee6970e7a6364ac9a5b8ceaa
/xiaojian/forth_phase/Django./day03/exersice/exersice/wsgi.py
3d56e7a2957ad8662abfa9118725486dff7fda08
[]
no_license
Wellsjian/20180826
424b65f828f0174e4d568131da01dafc2a36050a
0156ad4db891a2c4b06711748d2624080578620c
refs/heads/master
2021-06-18T12:16:08.466177
2019-09-01T10:06:44
2019-09-01T10:06:44
204,462,572
0
1
null
2021-04-20T18:26:03
2019-08-26T11:38:09
JavaScript
UTF-8
Python
false
false
394
py
""" WSGI config for exersice project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "exersice.settings") application = get_wsgi_application()
8bbb7896a9faa5e12fd9ed8815e374e5c0f9b90b
61afe17201589a61c39429602ca11e3fdacf47a9
/Chapter3/Day19/12.异常细分(了解).py
53a37128647faf14441789776924fc9aa2b738f8
[]
no_license
Liunrestrained/Python-
ec09315c50b395497dd9b0f83219fef6355e9b21
6b2cb4ae74c59820c6eabc4b0e98961ef3b941b2
refs/heads/main
2023-07-17T14:16:12.084304
2021-08-28T14:05:12
2021-08-28T14:05:12
399,408,426
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
import requests from requests import exceptions while True: url = input("下载链接") try: res = requests.get(url=url) print(res) except exceptions.MissingSchema as e: # 细分处理 print("URL架构不存在") except exceptions.InvalidSchema as e: # 细分处理 print("URL架构错误") except exceptions.InvalidURL as e: # 细分处理 print("URL地址格式错误") except exceptions.ConnectionError as e: # 细分处理 print("网络连接出错") except Exception as e: # 模糊处理 print("代码出现错误", e) # # 提示:如果想要写的简单一点,其实只写一个Exception捕获错误就可以了。
ce554e2695eb9840c6d0399b1f782c9eb8d9d10e
d30cb6a597f6a5fad9a01da77594a225daf9a211
/Lesson 4 - File Handling/project/attempt_1/suffix.py
34ed3d75c984c7bdfaaf0517676f8b2ac263c7dd
[]
no_license
jmwoloso/Python_2
290ef8b0c7db8347fa25cf39da26f39e218d9c68
06c45545ed064d0e9c4fd15cc81cf454cb079c9d
refs/heads/master
2020-04-24T02:18:34.058148
2015-08-02T21:02:02
2015-08-02T21:02:02
37,082,608
0
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
#!/usr/bin/python3 # A Program Used for Assigning Suffixes # suffix.py # # Created by: Jason Wolosonovich # 02-24-2015 # # Lesson 4 - Project 1, Attempt 1 """ Contains a dict that houses the extensions of many common file types. """ #global file_suffix_dict file_suffix_dict = { 1 : ".txt", 2 : ".doc", 3 : ".docx", 4 : ".png", 5 : ".jpeg", 6 : ".py", 7 : ".pyc", 8 : ".rtf", 9 : ".log", 10 : ".csv", 11 : ".dat", 12 : ".ppt", 13 : ".tar", 14 : ".tar.gz", 15 : ".mpg", 16 : ".mpeg", 17 : ".mp4", 18 : ".wmv", 19 : ".svg", 20 : ".xls", 21 : ".xlsx", 22 : ".accdb", 23 : ".db", 24 : ".bat", 25 : ".sql", 26 : ".tar.bz2", 27 : "" }
15ffd68d61b4a460ef95ddadae10b0d714791ef3
bc233c24523f05708dd1e091dca817f9095e6bb5
/bitmovin_api_sdk/models/dolby_digital_plus_downmixing_preferred_mode.py
dbe4b9349d8eabb5c12189d531b9a85ed63ac8e2
[ "MIT" ]
permissive
bitmovin/bitmovin-api-sdk-python
e3d6cf8eb8bdad62cb83ec77c0fc4950b06b9cdd
b0860c0b1be7747cf22ad060985504da625255eb
refs/heads/main
2023-09-01T15:41:03.628720
2023-08-30T10:52:13
2023-08-30T10:52:13
175,209,828
13
14
MIT
2021-04-29T12:30:31
2019-03-12T12:47:18
Python
UTF-8
Python
false
false
268
py
# coding: utf-8 from enum import Enum from six import string_types, iteritems from bitmovin_api_sdk.common.poscheck import poscheck_model class DolbyDigitalPlusDownmixingPreferredMode(Enum): LO_RO = "LO_RO" LT_RT = "LT_RT" PRO_LOGIC_II = "PRO_LOGIC_II"
db4947dd7f21941b4aac995c4fe2285f661d7466
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_noisy1448.py
ae49b0570c58881f82ac7b3f628b829ccd29533b
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,294
py
# qubit number=5 # total number=51 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[1]) # number=26 prog.cz(input_qubit[4],input_qubit[1]) # number=27 prog.h(input_qubit[1]) # number=28 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 prog.h(input_qubit[1]) # number=34 prog.cz(input_qubit[4],input_qubit[1]) # number=35 prog.z(input_qubit[4]) # number=46 prog.rx(0.8011061266653969,input_qubit[2]) # number=37 prog.h(input_qubit[1]) # number=36 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=48 prog.cz(input_qubit[1],input_qubit[0]) # number=49 prog.h(input_qubit[0]) # number=50 prog.x(input_qubit[0]) # number=39 prog.cx(input_qubit[1],input_qubit[0]) # number=40 prog.cx(input_qubit[0],input_qubit[1]) # number=42 prog.x(input_qubit[1]) # number=43 prog.cx(input_qubit[0],input_qubit[1]) # number=44 prog.x(input_qubit[2]) # number=11 prog.y(input_qubit[1]) # number=45 prog.x(input_qubit[3]) # number=12 prog.h(input_qubit[2]) # number=41 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.cx(input_qubit[1],input_qubit[0]) # number=22 prog.x(input_qubit[4]) # number=47 prog.x(input_qubit[0]) # number=23 prog.cx(input_qubit[1],input_qubit[0]) # number=24 prog.cx(input_qubit[0],input_qubit[1]) # number=30 prog.x(input_qubit[1]) # number=31 prog.cx(input_qubit[0],input_qubit[1]) # number=32 prog.x(input_qubit[2]) # number=15 prog.h(input_qubit[4]) # number=29 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = FakeVigo() sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy1448.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
2646f88f0590dd62b8ba725e67e06c4e9c20406e
b0fce7b572c78ee67ea0e2bd27e2837fffe66891
/setup.py
87b23bf3cfa596e1163e4cf81c7292a8ba217f97
[ "MIT" ]
permissive
ZizhouJia/pyson
300bd4c68cec3c0a42c5f3135e0447149ca86ebe
ba80336e6ec43456c0d1bf3e71109609b9489181
refs/heads/master
2020-08-15T07:55:24.704936
2019-11-29T08:46:35
2019-11-29T08:46:35
215,304,822
2
0
null
null
null
null
UTF-8
Python
false
false
725
py
import setuptools setuptools.setup( name="pypyson", version='0.01', description="A JSON like more powerful object notation for python", license="MIT License", author="ZizhouJia", author_email="[email protected]", url="http://github.com/ZizhouJia/pyson", packages=setuptools.find_packages(), install_requires=["antlr4-python3-runtime"], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Operating System :: OS Independent' ], data_files=[('pyson/init', ['pyson/init/checker_scheme.pyson'])], python_requires='>=3.6' )
1d831cb9cfb9b9f7db96f0499fe3f0d02ab6c4ee
6302d46032f704aa2c8bb6e2810c19e3bb90c1c4
/server/netflix_backend/movies_api/migrations/0002_auto_20210219_1954.py
7ccbe630791c36378645ba0357d4a4f295324d1c
[]
no_license
raghavendra-musubi/netflix-django-rest-react-redux
304d28f68e13e9962f31593441ae1b7b36743952
fe78061ccc1c27ff78697cb5f21d92a313b8a7c0
refs/heads/main
2023-03-09T21:32:30.409919
2021-02-24T19:03:32
2021-02-24T19:03:32
340,214,274
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
# Generated by Django 3.1.6 on 2021-02-19 19:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movies_api', '0001_initial'), ] operations = [ migrations.AlterField( model_name='movie', name='category_id', field=models.PositiveSmallIntegerField(choices=[(1, 'Adventure'), (2, 'Action'), (3, 'Thriller'), (4, 'Horror'), (5, 'Comedy'), (6, 'Musical'), (7, 'Romance'), (8, 'Drama'), (9, 'Fantasy')]), ), ]
353ab642a8ae08763c52fbf98af5efa618985a9d
fb8cbebdf034b2f478943752d5443afc82c6eef5
/tuirer/venv/lib/python3.6/site-packages/pygments/lexers/int_fiction.py
1265072250a996322b6fafbc8a93654c2281faf8
[]
no_license
fariasjr/CitiTuirer
f64e0ec93ef088f8140bb0961d2ad4ed3b59448a
deb3f7a9c2d45b8a7f54639037f097b99abdac11
refs/heads/master
2020-03-24T05:10:36.261050
2018-08-01T20:24:30
2018-08-01T20:24:30
142,477,521
0
0
null
null
null
null
UTF-8
Python
false
false
55,826
py
# -*- coding: utf-8 -*- """ pygments.lexers.int_fiction ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Lexers for interactive fiction languages. :copyright: Copyright 2006-2017 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import (RegexLexer, bygroups, default, include, this, using, words) from pygments.token import (Comment, Error, Generic, Keyword, Name, Number, Operator, Punctuation, String, Text) __all__ = ['Inform6Lexer', 'Inform6TemplateLexer', 'Inform7Lexer', 'Tads3Lexer'] class Inform6Lexer(RegexLexer): """ For `Inform 6 <http://inform-fiction.org/>`_ source code. .. versionadded:: 2.0 """ name = 'Inform 6' aliases = ['inform6', 'i6'] filenames = ['*.inf'] flags = re.MULTILINE | re.DOTALL | re.UNICODE _name = r'[a-zA-Z_]\w*' # Inform 7 maps these four character classes to their ASCII # equivalents. To support Inform 6 inclusions within Inform 7, # Inform6Lexer maps them too. _dash = u'\\-\u2010-\u2014' _dquote = u'"\u201c\u201d' _squote = u"'\u2018\u2019" _newline = u'\\n\u0085\u2028\u2029' tokens = { 'root': [ (r'\A(!%%[^%s]*[%s])+' % (_newline, _newline), Comment.Preproc, 'directive'), default('directive') ], '_whitespace': [ (r'\s+', Text), (r'![^%s]*' % _newline, Comment.Single) ], 'default': [ include('_whitespace'), (r'\[', Punctuation, 'many-values'), # Array initialization (r':|(?=;)', Punctuation, '#pop'), (r'<', Punctuation), # Second angle bracket in an action statement default(('expression', '_expression')) ], # Expressions '_expression': [ include('_whitespace'), (r'(?=sp\b)', Text, '#pop'), (r'(?=[%s%s$0-9#a-zA-Z_])' % (_dquote, _squote), Text, ('#pop', 'value')), (r'\+\+|[%s]{1,2}(?!>)|~~?' % _dash, Operator), (r'(?=[()\[%s,?@{:;])' % _dash, Text, '#pop') ], 'expression': [ include('_whitespace'), (r'\(', Punctuation, ('expression', '_expression')), (r'\)', Punctuation, '#pop'), (r'\[', Punctuation, ('#pop', 'statements', 'locals')), (r'>(?=(\s+|(![^%s]*))*[>;])' % _newline, Punctuation), (r'\+\+|[%s]{2}(?!>)' % _dash, Operator), (r',', Punctuation, '_expression'), (r'&&?|\|\|?|[=~><]?=|[%s]{1,2}>?|\.\.?[&#]?|::|[<>+*/%%]' % _dash, Operator, '_expression'), (r'(has|hasnt|in|notin|ofclass|or|provides)\b', Operator.Word, '_expression'), (r'sp\b', Name), (r'\?~?', Name.Label, 'label?'), (r'[@{]', Error), default('#pop') ], '_assembly-expression': [ (r'\(', Punctuation, ('#push', '_expression')), (r'[\[\]]', Punctuation), (r'[%s]>' % _dash, Punctuation, '_expression'), (r'sp\b', Keyword.Pseudo), (r';', Punctuation, '#pop:3'), include('expression') ], '_for-expression': [ (r'\)', Punctuation, '#pop:2'), (r':', Punctuation, '#pop'), include('expression') ], '_keyword-expression': [ (r'(from|near|to)\b', Keyword, '_expression'), include('expression') ], '_list-expression': [ (r',', Punctuation, '#pop'), include('expression') ], '_object-expression': [ (r'has\b', Keyword.Declaration, '#pop'), include('_list-expression') ], # Values 'value': [ include('_whitespace'), # Strings (r'[%s][^@][%s]' % (_squote, _squote), String.Char, '#pop'), (r'([%s])(@\{[0-9a-fA-F]{1,4}\})([%s])' % (_squote, _squote), bygroups(String.Char, String.Escape, String.Char), '#pop'), (r'([%s])(@.{2})([%s])' % (_squote, _squote), bygroups(String.Char, String.Escape, String.Char), '#pop'), (r'[%s]' % _squote, String.Single, ('#pop', 'dictionary-word')), (r'[%s]' % _dquote, String.Double, ('#pop', 'string')), # Numbers (r'\$[+%s][0-9]*\.?[0-9]*([eE][+%s]?[0-9]+)?' % (_dash, _dash), Number.Float, '#pop'), (r'\$[0-9a-fA-F]+', Number.Hex, '#pop'), (r'\$\$[01]+', Number.Bin, '#pop'), (r'[0-9]+', Number.Integer, '#pop'), # Values prefixed by hashes (r'(##|#a\$)(%s)' % _name, bygroups(Operator, Name), '#pop'), (r'(#g\$)(%s)' % _name, bygroups(Operator, Name.Variable.Global), '#pop'), (r'#[nw]\$', Operator, ('#pop', 'obsolete-dictionary-word')), (r'(#r\$)(%s)' % _name, bygroups(Operator, Name.Function), '#pop'), (r'#', Name.Builtin, ('#pop', 'system-constant')), # System functions (words(( 'child', 'children', 'elder', 'eldest', 'glk', 'indirect', 'metaclass', 'parent', 'random', 'sibling', 'younger', 'youngest'), suffix=r'\b'), Name.Builtin, '#pop'), # Metaclasses (r'(?i)(Class|Object|Routine|String)\b', Name.Builtin, '#pop'), # Veneer routines (words(( 'Box__Routine', 'CA__Pr', 'CDefArt', 'CInDefArt', 'Cl__Ms', 'Copy__Primitive', 'CP__Tab', 'DA__Pr', 'DB__Pr', 'DefArt', 'Dynam__String', 'EnglishNumber', 'Glk__Wrap', 'IA__Pr', 'IB__Pr', 'InDefArt', 'Main__', 'Meta__class', 'OB__Move', 'OB__Remove', 'OC__Cl', 'OP__Pr', 'Print__Addr', 'Print__PName', 'PrintShortName', 'RA__Pr', 'RA__Sc', 'RL__Pr', 'R_Process', 'RT__ChG', 'RT__ChGt', 'RT__ChLDB', 'RT__ChLDW', 'RT__ChPR', 'RT__ChPrintA', 'RT__ChPrintC', 'RT__ChPrintO', 'RT__ChPrintS', 'RT__ChPS', 'RT__ChR', 'RT__ChSTB', 'RT__ChSTW', 'RT__ChT', 'RT__Err', 'RT__TrPS', 'RV__Pr', 'Symb__Tab', 'Unsigned__Compare', 'WV__Pr', 'Z__Region'), prefix='(?i)', suffix=r'\b'), Name.Builtin, '#pop'), # Other built-in symbols (words(( 'call', 'copy', 'create', 'DEBUG', 'destroy', 'DICT_CHAR_SIZE', 'DICT_ENTRY_BYTES', 'DICT_IS_UNICODE', 'DICT_WORD_SIZE', 'false', 'FLOAT_INFINITY', 'FLOAT_NAN', 'FLOAT_NINFINITY', 'GOBJFIELD_CHAIN', 'GOBJFIELD_CHILD', 'GOBJFIELD_NAME', 'GOBJFIELD_PARENT', 'GOBJFIELD_PROPTAB', 'GOBJFIELD_SIBLING', 'GOBJ_EXT_START', 'GOBJ_TOTAL_LENGTH', 'Grammar__Version', 'INDIV_PROP_START', 'INFIX', 'infix__watching', 'MODULE_MODE', 'name', 'nothing', 'NUM_ATTR_BYTES', 'print', 'print_to_array', 'recreate', 'remaining', 'self', 'sender', 'STRICT_MODE', 'sw__var', 'sys__glob0', 'sys__glob1', 'sys__glob2', 'sys_statusline_flag', 'TARGET_GLULX', 'TARGET_ZCODE', 'temp__global2', 'temp__global3', 'temp__global4', 'temp_global', 'true', 'USE_MODULES', 'WORDSIZE'), prefix='(?i)', suffix=r'\b'), Name.Builtin, '#pop'), # Other values (_name, Name, '#pop') ], # Strings 'dictionary-word': [ (r'[~^]+', String.Escape), (r'[^~^\\@({%s]+' % _squote, String.Single), (r'[({]', String.Single), (r'@\{[0-9a-fA-F]{,4}\}', String.Escape), (r'@.{2}', String.Escape), (r'[%s]' % _squote, String.Single, '#pop') ], 'string': [ (r'[~^]+', String.Escape), (r'[^~^\\@({%s]+' % _dquote, String.Double), (r'[({]', String.Double), (r'\\', String.Escape), (r'@(\\\s*[%s]\s*)*@((\\\s*[%s]\s*)*[0-9])*' % (_newline, _newline), String.Escape), (r'@(\\\s*[%s]\s*)*\{((\\\s*[%s]\s*)*[0-9a-fA-F]){,4}' r'(\\\s*[%s]\s*)*\}' % (_newline, _newline, _newline), String.Escape), (r'@(\\\s*[%s]\s*)*.(\\\s*[%s]\s*)*.' % (_newline, _newline), String.Escape), (r'[%s]' % _dquote, String.Double, '#pop') ], 'plain-string': [ (r'[^~^\\({\[\]%s]+' % _dquote, String.Double), (r'[~^({\[\]]', String.Double), (r'\\', String.Escape), (r'[%s]' % _dquote, String.Double, '#pop') ], # Names '_constant': [ include('_whitespace'), (_name, Name.Constant, '#pop'), include('value') ], '_global': [ include('_whitespace'), (_name, Name.Variable.Global, '#pop'), include('value') ], 'label?': [ include('_whitespace'), (_name, Name.Label, '#pop'), default('#pop') ], 'variable?': [ include('_whitespace'), (_name, Name.Variable, '#pop'), default('#pop') ], # Values after hashes 'obsolete-dictionary-word': [ (r'\S\w*', String.Other, '#pop') ], 'system-constant': [ include('_whitespace'), (_name, Name.Builtin, '#pop') ], # Directives 'directive': [ include('_whitespace'), (r'#', Punctuation), (r';', Punctuation, '#pop'), (r'\[', Punctuation, ('default', 'statements', 'locals', 'routine-name?')), (words(( 'abbreviate', 'endif', 'dictionary', 'ifdef', 'iffalse', 'ifndef', 'ifnot', 'iftrue', 'ifv3', 'ifv5', 'release', 'serial', 'switches', 'system_file', 'version'), prefix='(?i)', suffix=r'\b'), Keyword, 'default'), (r'(?i)(array|global)\b', Keyword, ('default', 'directive-keyword?', '_global')), (r'(?i)attribute\b', Keyword, ('default', 'alias?', '_constant')), (r'(?i)class\b', Keyword, ('object-body', 'duplicates', 'class-name')), (r'(?i)(constant|default)\b', Keyword, ('default', 'expression', '_constant')), (r'(?i)(end\b)(.*)', bygroups(Keyword, Text)), (r'(?i)(extend|verb)\b', Keyword, 'grammar'), (r'(?i)fake_action\b', Keyword, ('default', '_constant')), (r'(?i)import\b', Keyword, 'manifest'), (r'(?i)(include|link)\b', Keyword, ('default', 'before-plain-string')), (r'(?i)(lowstring|undef)\b', Keyword, ('default', '_constant')), (r'(?i)message\b', Keyword, ('default', 'diagnostic')), (r'(?i)(nearby|object)\b', Keyword, ('object-body', '_object-head')), (r'(?i)property\b', Keyword, ('default', 'alias?', '_constant', 'property-keyword*')), (r'(?i)replace\b', Keyword, ('default', 'routine-name?', 'routine-name?')), (r'(?i)statusline\b', Keyword, ('default', 'directive-keyword?')), (r'(?i)stub\b', Keyword, ('default', 'routine-name?')), (r'(?i)trace\b', Keyword, ('default', 'trace-keyword?', 'trace-keyword?')), (r'(?i)zcharacter\b', Keyword, ('default', 'directive-keyword?', 'directive-keyword?')), (_name, Name.Class, ('object-body', '_object-head')) ], # [, Replace, Stub 'routine-name?': [ include('_whitespace'), (_name, Name.Function, '#pop'), default('#pop') ], 'locals': [ include('_whitespace'), (r';', Punctuation, '#pop'), (r'\*', Punctuation), (r'"', String.Double, 'plain-string'), (_name, Name.Variable) ], # Array 'many-values': [ include('_whitespace'), (r';', Punctuation), (r'\]', Punctuation, '#pop'), (r':', Error), default(('expression', '_expression')) ], # Attribute, Property 'alias?': [ include('_whitespace'), (r'alias\b', Keyword, ('#pop', '_constant')), default('#pop') ], # Class, Object, Nearby 'class-name': [ include('_whitespace'), (r'(?=[,;]|(class|has|private|with)\b)', Text, '#pop'), (_name, Name.Class, '#pop') ], 'duplicates': [ include('_whitespace'), (r'\(', Punctuation, ('#pop', 'expression', '_expression')), default('#pop') ], '_object-head': [ (r'[%s]>' % _dash, Punctuation), (r'(class|has|private|with)\b', Keyword.Declaration, '#pop'), include('_global') ], 'object-body': [ include('_whitespace'), (r';', Punctuation, '#pop:2'), (r',', Punctuation), (r'class\b', Keyword.Declaration, 'class-segment'), (r'(has|private|with)\b', Keyword.Declaration), (r':', Error), default(('_object-expression', '_expression')) ], 'class-segment': [ include('_whitespace'), (r'(?=[,;]|(class|has|private|with)\b)', Text, '#pop'), (_name, Name.Class), default('value') ], # Extend, Verb 'grammar': [ include('_whitespace'), (r'=', Punctuation, ('#pop', 'default')), (r'\*', Punctuation, ('#pop', 'grammar-line')), default('_directive-keyword') ], 'grammar-line': [ include('_whitespace'), (r';', Punctuation, '#pop'), (r'[/*]', Punctuation), (r'[%s]>' % _dash, Punctuation, 'value'), (r'(noun|scope)\b', Keyword, '=routine'), default('_directive-keyword') ], '=routine': [ include('_whitespace'), (r'=', Punctuation, 'routine-name?'), default('#pop') ], # Import 'manifest': [ include('_whitespace'), (r';', Punctuation, '#pop'), (r',', Punctuation), (r'(?i)global\b', Keyword, '_global'), default('_global') ], # Include, Link, Message 'diagnostic': [ include('_whitespace'), (r'[%s]' % _dquote, String.Double, ('#pop', 'message-string')), default(('#pop', 'before-plain-string', 'directive-keyword?')) ], 'before-plain-string': [ include('_whitespace'), (r'[%s]' % _dquote, String.Double, ('#pop', 'plain-string')) ], 'message-string': [ (r'[~^]+', String.Escape), include('plain-string') ], # Keywords used in directives '_directive-keyword!': [ include('_whitespace'), (words(( 'additive', 'alias', 'buffer', 'class', 'creature', 'data', 'error', 'fatalerror', 'first', 'has', 'held', 'initial', 'initstr', 'last', 'long', 'meta', 'multi', 'multiexcept', 'multiheld', 'multiinside', 'noun', 'number', 'only', 'private', 'replace', 'reverse', 'scope', 'score', 'special', 'string', 'table', 'terminating', 'time', 'topic', 'warning', 'with'), suffix=r'\b'), Keyword, '#pop'), (r'[%s]{1,2}>|[+=]' % _dash, Punctuation, '#pop') ], '_directive-keyword': [ include('_directive-keyword!'), include('value') ], 'directive-keyword?': [ include('_directive-keyword!'), default('#pop') ], 'property-keyword*': [ include('_whitespace'), (r'(additive|long)\b', Keyword), default('#pop') ], 'trace-keyword?': [ include('_whitespace'), (words(( 'assembly', 'dictionary', 'expressions', 'lines', 'linker', 'objects', 'off', 'on', 'symbols', 'tokens', 'verbs'), suffix=r'\b'), Keyword, '#pop'), default('#pop') ], # Statements 'statements': [ include('_whitespace'), (r'\]', Punctuation, '#pop'), (r'[;{}]', Punctuation), (words(( 'box', 'break', 'continue', 'default', 'give', 'inversion', 'new_line', 'quit', 'read', 'remove', 'return', 'rfalse', 'rtrue', 'spaces', 'string', 'until'), suffix=r'\b'), Keyword, 'default'), (r'(do|else)\b', Keyword), (r'(font|style)\b', Keyword, ('default', 'miscellaneous-keyword?')), (r'for\b', Keyword, ('for', '(?')), (r'(if|switch|while)', Keyword, ('expression', '_expression', '(?')), (r'(jump|save|restore)\b', Keyword, ('default', 'label?')), (r'objectloop\b', Keyword, ('_keyword-expression', 'variable?', '(?')), (r'print(_ret)?\b|(?=[%s])' % _dquote, Keyword, 'print-list'), (r'\.', Name.Label, 'label?'), (r'@', Keyword, 'opcode'), (r'#(?![agrnw]\$|#)', Punctuation, 'directive'), (r'<', Punctuation, 'default'), (r'move\b', Keyword, ('default', '_keyword-expression', '_expression')), default(('default', '_keyword-expression', '_expression')) ], 'miscellaneous-keyword?': [ include('_whitespace'), (r'(bold|fixed|from|near|off|on|reverse|roman|to|underline)\b', Keyword, '#pop'), (r'(a|A|an|address|char|name|number|object|property|string|the|' r'The)\b(?=(\s+|(![^%s]*))*\))' % _newline, Keyword.Pseudo, '#pop'), (r'%s(?=(\s+|(![^%s]*))*\))' % (_name, _newline), Name.Function, '#pop'), default('#pop') ], '(?': [ include('_whitespace'), (r'\(', Punctuation, '#pop'), default('#pop') ], 'for': [ include('_whitespace'), (r';', Punctuation, ('_for-expression', '_expression')), default(('_for-expression', '_expression')) ], 'print-list': [ include('_whitespace'), (r';', Punctuation, '#pop'), (r':', Error), default(('_list-expression', '_expression', '_list-expression', 'form')) ], 'form': [ include('_whitespace'), (r'\(', Punctuation, ('#pop', 'miscellaneous-keyword?')), default('#pop') ], # Assembly 'opcode': [ include('_whitespace'), (r'[%s]' % _dquote, String.Double, ('operands', 'plain-string')), (_name, Keyword, 'operands') ], 'operands': [ (r':', Error), default(('_assembly-expression', '_expression')) ] } def get_tokens_unprocessed(self, text): # 'in' is either a keyword or an operator. # If the token two tokens after 'in' is ')', 'in' is a keyword: # objectloop(a in b) # Otherwise, it is an operator: # objectloop(a in b && true) objectloop_queue = [] objectloop_token_count = -1 previous_token = None for index, token, value in RegexLexer.get_tokens_unprocessed(self, text): if previous_token is Name.Variable and value == 'in': objectloop_queue = [[index, token, value]] objectloop_token_count = 2 elif objectloop_token_count > 0: if token not in Comment and token not in Text: objectloop_token_count -= 1 objectloop_queue.append((index, token, value)) else: if objectloop_token_count == 0: if objectloop_queue[-1][2] == ')': objectloop_queue[0][1] = Keyword while objectloop_queue: yield objectloop_queue.pop(0) objectloop_token_count = -1 yield index, token, value if token not in Comment and token not in Text: previous_token = token while objectloop_queue: yield objectloop_queue.pop(0) class Inform7Lexer(RegexLexer): """ For `Inform 7 <http://inform7.com/>`_ source code. .. versionadded:: 2.0 """ name = 'Inform 7' aliases = ['inform7', 'i7'] filenames = ['*.ni', '*.i7x'] flags = re.MULTILINE | re.DOTALL | re.UNICODE _dash = Inform6Lexer._dash _dquote = Inform6Lexer._dquote _newline = Inform6Lexer._newline _start = r'\A|(?<=[%s])' % _newline # There are three variants of Inform 7, differing in how to # interpret at signs and braces in I6T. In top-level inclusions, at # signs in the first column are inweb syntax. In phrase definitions # and use options, tokens in braces are treated as I7. Use options # also interpret "{N}". tokens = {} token_variants = ['+i6t-not-inline', '+i6t-inline', '+i6t-use-option'] for level in token_variants: tokens[level] = { '+i6-root': list(Inform6Lexer.tokens['root']), '+i6t-root': [ # For Inform6TemplateLexer (r'[^%s]*' % Inform6Lexer._newline, Comment.Preproc, ('directive', '+p')) ], 'root': [ (r'(\|?\s)+', Text), (r'\[', Comment.Multiline, '+comment'), (r'[%s]' % _dquote, Generic.Heading, ('+main', '+titling', '+titling-string')), default(('+main', '+heading?')) ], '+titling-string': [ (r'[^%s]+' % _dquote, Generic.Heading), (r'[%s]' % _dquote, Generic.Heading, '#pop') ], '+titling': [ (r'\[', Comment.Multiline, '+comment'), (r'[^%s.;:|%s]+' % (_dquote, _newline), Generic.Heading), (r'[%s]' % _dquote, Generic.Heading, '+titling-string'), (r'[%s]{2}|(?<=[\s%s])\|[\s%s]' % (_newline, _dquote, _dquote), Text, ('#pop', '+heading?')), (r'[.;:]|(?<=[\s%s])\|' % _dquote, Text, '#pop'), (r'[|%s]' % _newline, Generic.Heading) ], '+main': [ (r'(?i)[^%s:a\[(|%s]+' % (_dquote, _newline), Text), (r'[%s]' % _dquote, String.Double, '+text'), (r':', Text, '+phrase-definition'), (r'(?i)\bas\b', Text, '+use-option'), (r'\[', Comment.Multiline, '+comment'), (r'(\([%s])(.*?)([%s]\))' % (_dash, _dash), bygroups(Punctuation, using(this, state=('+i6-root', 'directive'), i6t='+i6t-not-inline'), Punctuation)), (r'(%s|(?<=[\s;:.%s]))\|\s|[%s]{2,}' % (_start, _dquote, _newline), Text, '+heading?'), (r'(?i)[a(|%s]' % _newline, Text) ], '+phrase-definition': [ (r'\s+', Text), (r'\[', Comment.Multiline, '+comment'), (r'(\([%s])(.*?)([%s]\))' % (_dash, _dash), bygroups(Punctuation, using(this, state=('+i6-root', 'directive', 'default', 'statements'), i6t='+i6t-inline'), Punctuation), '#pop'), default('#pop') ], '+use-option': [ (r'\s+', Text), (r'\[', Comment.Multiline, '+comment'), (r'(\([%s])(.*?)([%s]\))' % (_dash, _dash), bygroups(Punctuation, using(this, state=('+i6-root', 'directive'), i6t='+i6t-use-option'), Punctuation), '#pop'), default('#pop') ], '+comment': [ (r'[^\[\]]+', Comment.Multiline), (r'\[', Comment.Multiline, '#push'), (r'\]', Comment.Multiline, '#pop') ], '+text': [ (r'[^\[%s]+' % _dquote, String.Double), (r'\[.*?\]', String.Interpol), (r'[%s]' % _dquote, String.Double, '#pop') ], '+heading?': [ (r'(\|?\s)+', Text), (r'\[', Comment.Multiline, '+comment'), (r'[%s]{4}\s+' % _dash, Text, '+documentation-heading'), (r'[%s]{1,3}' % _dash, Text), (r'(?i)(volume|book|part|chapter|section)\b[^%s]*' % _newline, Generic.Heading, '#pop'), default('#pop') ], '+documentation-heading': [ (r'\s+', Text), (r'\[', Comment.Multiline, '+comment'), (r'(?i)documentation\s+', Text, '+documentation-heading2'), default('#pop') ], '+documentation-heading2': [ (r'\s+', Text), (r'\[', Comment.Multiline, '+comment'), (r'[%s]{4}\s' % _dash, Text, '+documentation'), default('#pop:2') ], '+documentation': [ (r'(?i)(%s)\s*(chapter|example)\s*:[^%s]*' % (_start, _newline), Generic.Heading), (r'(?i)(%s)\s*section\s*:[^%s]*' % (_start, _newline), Generic.Subheading), (r'((%s)\t.*?[%s])+' % (_start, _newline), using(this, state='+main')), (r'[^%s\[]+|[%s\[]' % (_newline, _newline), Text), (r'\[', Comment.Multiline, '+comment'), ], '+i6t-not-inline': [ (r'(%s)@c( .*?)?([%s]|\Z)' % (_start, _newline), Comment.Preproc), (r'(%s)@([%s]+|Purpose:)[^%s]*' % (_start, _dash, _newline), Comment.Preproc), (r'(%s)@p( .*?)?([%s]|\Z)' % (_start, _newline), Generic.Heading, '+p') ], '+i6t-use-option': [ include('+i6t-not-inline'), (r'(\{)(N)(\})', bygroups(Punctuation, Text, Punctuation)) ], '+i6t-inline': [ (r'(\{)(\S[^}]*)?(\})', bygroups(Punctuation, using(this, state='+main'), Punctuation)) ], '+i6t': [ (r'(\{[%s])(![^}]*)(\}?)' % _dash, bygroups(Punctuation, Comment.Single, Punctuation)), (r'(\{[%s])(lines)(:)([^}]*)(\}?)' % _dash, bygroups(Punctuation, Keyword, Punctuation, Text, Punctuation), '+lines'), (r'(\{[%s])([^:}]*)(:?)([^}]*)(\}?)' % _dash, bygroups(Punctuation, Keyword, Punctuation, Text, Punctuation)), (r'(\(\+)(.*?)(\+\)|\Z)', bygroups(Punctuation, using(this, state='+main'), Punctuation)) ], '+p': [ (r'[^@]+', Comment.Preproc), (r'(%s)@c( .*?)?([%s]|\Z)' % (_start, _newline), Comment.Preproc, '#pop'), (r'(%s)@([%s]|Purpose:)' % (_start, _dash), Comment.Preproc), (r'(%s)@p( .*?)?([%s]|\Z)' % (_start, _newline), Generic.Heading), (r'@', Comment.Preproc) ], '+lines': [ (r'(%s)@c( .*?)?([%s]|\Z)' % (_start, _newline), Comment.Preproc), (r'(%s)@([%s]|Purpose:)[^%s]*' % (_start, _dash, _newline), Comment.Preproc), (r'(%s)@p( .*?)?([%s]|\Z)' % (_start, _newline), Generic.Heading, '+p'), (r'(%s)@\w*[ %s]' % (_start, _newline), Keyword), (r'![^%s]*' % _newline, Comment.Single), (r'(\{)([%s]endlines)(\})' % _dash, bygroups(Punctuation, Keyword, Punctuation), '#pop'), (r'[^@!{]+?([%s]|\Z)|.' % _newline, Text) ] } # Inform 7 can include snippets of Inform 6 template language, # so all of Inform6Lexer's states are copied here, with # modifications to account for template syntax. Inform7Lexer's # own states begin with '+' to avoid name conflicts. Some of # Inform6Lexer's states begin with '_': these are not modified. # They deal with template syntax either by including modified # states, or by matching r'' then pushing to modified states. for token in Inform6Lexer.tokens: if token == 'root': continue tokens[level][token] = list(Inform6Lexer.tokens[token]) if not token.startswith('_'): tokens[level][token][:0] = [include('+i6t'), include(level)] def __init__(self, **options): level = options.get('i6t', '+i6t-not-inline') if level not in self._all_tokens: self._tokens = self.__class__.process_tokendef(level) else: self._tokens = self._all_tokens[level] RegexLexer.__init__(self, **options) class Inform6TemplateLexer(Inform7Lexer): """ For `Inform 6 template <http://inform7.com/sources/src/i6template/Woven/index.html>`_ code. .. versionadded:: 2.0 """ name = 'Inform 6 template' aliases = ['i6t'] filenames = ['*.i6t'] def get_tokens_unprocessed(self, text, stack=('+i6t-root',)): return Inform7Lexer.get_tokens_unprocessed(self, text, stack) class Tads3Lexer(RegexLexer): """ For `TADS 3 <http://www.tads.org/>`_ source code. """ name = 'TADS 3' aliases = ['tads3'] filenames = ['*.t'] flags = re.DOTALL | re.MULTILINE _comment_single = r'(?://(?:[^\\\n]|\\+[\w\W])*$)' _comment_multiline = r'(?:/\*(?:[^*]|\*(?!/))*\*/)' _escape = (r'(?:\\(?:[\n\\<>"\'^v bnrt]|u[\da-fA-F]{,4}|x[\da-fA-F]{,2}|' r'[0-3]?[0-7]{1,2}))') _name = r'(?:[_a-zA-Z]\w*)' _no_quote = r'(?=\s|\\?>)' _operator = (r'(?:&&|\|\||\+\+|--|\?\?|::|[.,@\[\]~]|' r'(?:[=+\-*/%!&|^]|<<?|>>?>?)=?)') _ws = r'(?:\\|\s|%s|%s)' % (_comment_single, _comment_multiline) _ws_pp = r'(?:\\\n|[^\S\n]|%s|%s)' % (_comment_single, _comment_multiline) def _make_string_state(triple, double, verbatim=None, _escape=_escape): if verbatim: verbatim = ''.join(['(?:%s|%s)' % (re.escape(c.lower()), re.escape(c.upper())) for c in verbatim]) char = r'"' if double else r"'" token = String.Double if double else String.Single escaped_quotes = r'+|%s(?!%s{2})' % (char, char) if triple else r'' prefix = '%s%s' % ('t' if triple else '', 'd' if double else 's') tag_state_name = '%sqt' % prefix state = [] if triple: state += [ (r'%s{3,}' % char, token, '#pop'), (r'\\%s+' % char, String.Escape), (char, token) ] else: state.append((char, token, '#pop')) state += [ include('s/verbatim'), (r'[^\\<&{}%s]+' % char, token) ] if verbatim: # This regex can't use `(?i)` because escape sequences are # case-sensitive. `<\XMP>` works; `<\xmp>` doesn't. state.append((r'\\?<(/|\\\\|(?!%s)\\)%s(?=[\s=>])' % (_escape, verbatim), Name.Tag, ('#pop', '%sqs' % prefix, tag_state_name))) else: state += [ (r'\\?<!([^><\\%s]|<(?!<)|\\%s%s|%s|\\.)*>?' % (char, char, escaped_quotes, _escape), Comment.Multiline), (r'(?i)\\?<listing(?=[\s=>]|\\>)', Name.Tag, ('#pop', '%sqs/listing' % prefix, tag_state_name)), (r'(?i)\\?<xmp(?=[\s=>]|\\>)', Name.Tag, ('#pop', '%sqs/xmp' % prefix, tag_state_name)), (r'\\?<([^\s=><\\%s]|<(?!<)|\\%s%s|%s|\\.)*' % (char, char, escaped_quotes, _escape), Name.Tag, tag_state_name), include('s/entity') ] state += [ include('s/escape'), (r'\{([^}<\\%s]|<(?!<)|\\%s%s|%s|\\.)*\}' % (char, char, escaped_quotes, _escape), String.Interpol), (r'[\\&{}<]', token) ] return state def _make_tag_state(triple, double, _escape=_escape): char = r'"' if double else r"'" quantifier = r'{3,}' if triple else r'' state_name = '%s%sqt' % ('t' if triple else '', 'd' if double else 's') token = String.Double if double else String.Single escaped_quotes = r'+|%s(?!%s{2})' % (char, char) if triple else r'' return [ (r'%s%s' % (char, quantifier), token, '#pop:2'), (r'(\s|\\\n)+', Text), (r'(=)(\\?")', bygroups(Punctuation, String.Double), 'dqs/%s' % state_name), (r"(=)(\\?')", bygroups(Punctuation, String.Single), 'sqs/%s' % state_name), (r'=', Punctuation, 'uqs/%s' % state_name), (r'\\?>', Name.Tag, '#pop'), (r'\{([^}<\\%s]|<(?!<)|\\%s%s|%s|\\.)*\}' % (char, char, escaped_quotes, _escape), String.Interpol), (r'([^\s=><\\%s]|<(?!<)|\\%s%s|%s|\\.)+' % (char, char, escaped_quotes, _escape), Name.Attribute), include('s/escape'), include('s/verbatim'), include('s/entity'), (r'[\\{}&]', Name.Attribute) ] def _make_attribute_value_state(terminator, host_triple, host_double, _escape=_escape): token = (String.Double if terminator == r'"' else String.Single if terminator == r"'" else String.Other) host_char = r'"' if host_double else r"'" host_quantifier = r'{3,}' if host_triple else r'' host_token = String.Double if host_double else String.Single escaped_quotes = (r'+|%s(?!%s{2})' % (host_char, host_char) if host_triple else r'') return [ (r'%s%s' % (host_char, host_quantifier), host_token, '#pop:3'), (r'%s%s' % (r'' if token is String.Other else r'\\?', terminator), token, '#pop'), include('s/verbatim'), include('s/entity'), (r'\{([^}<\\%s]|<(?!<)|\\%s%s|%s|\\.)*\}' % (host_char, host_char, escaped_quotes, _escape), String.Interpol), (r'([^\s"\'<%s{}\\&])+' % (r'>' if token is String.Other else r''), token), include('s/escape'), (r'["\'\s&{<}\\]', token) ] tokens = { 'root': [ (u'\ufeff', Text), (r'\{', Punctuation, 'object-body'), (r';+', Punctuation), (r'(?=(argcount|break|case|catch|continue|default|definingobj|' r'delegated|do|else|for|foreach|finally|goto|if|inherited|' r'invokee|local|nil|new|operator|replaced|return|self|switch|' r'targetobj|targetprop|throw|true|try|while)\b)', Text, 'block'), (r'(%s)(%s*)(\()' % (_name, _ws), bygroups(Name.Function, using(this, state='whitespace'), Punctuation), ('block?/root', 'more/parameters', 'main/parameters')), include('whitespace'), (r'\++', Punctuation), (r'[^\s!"%-(*->@-_a-z{-~]+', Error), # Averts an infinite loop (r'(?!\Z)', Text, 'main/root') ], 'main/root': [ include('main/basic'), default(('#pop', 'object-body/no-braces', 'classes', 'class')) ], 'object-body/no-braces': [ (r';', Punctuation, '#pop'), (r'\{', Punctuation, ('#pop', 'object-body')), include('object-body') ], 'object-body': [ (r';', Punctuation), (r'\{', Punctuation, '#push'), (r'\}', Punctuation, '#pop'), (r':', Punctuation, ('classes', 'class')), (r'(%s?)(%s*)(\()' % (_name, _ws), bygroups(Name.Function, using(this, state='whitespace'), Punctuation), ('block?', 'more/parameters', 'main/parameters')), (r'(%s)(%s*)(\{)' % (_name, _ws), bygroups(Name.Function, using(this, state='whitespace'), Punctuation), 'block'), (r'(%s)(%s*)(:)' % (_name, _ws), bygroups(Name.Variable, using(this, state='whitespace'), Punctuation), ('object-body/no-braces', 'classes', 'class')), include('whitespace'), (r'->|%s' % _operator, Punctuation, 'main'), default('main/object-body') ], 'main/object-body': [ include('main/basic'), (r'(%s)(%s*)(=?)' % (_name, _ws), bygroups(Name.Variable, using(this, state='whitespace'), Punctuation), ('#pop', 'more', 'main')), default('#pop:2') ], 'block?/root': [ (r'\{', Punctuation, ('#pop', 'block')), include('whitespace'), (r'(?=[[\'"<(:])', Text, # It might be a VerbRule macro. ('#pop', 'object-body/no-braces', 'grammar', 'grammar-rules')), # It might be a macro like DefineAction. default(('#pop', 'object-body/no-braces')) ], 'block?': [ (r'\{', Punctuation, ('#pop', 'block')), include('whitespace'), default('#pop') ], 'block/basic': [ (r'[;:]+', Punctuation), (r'\{', Punctuation, '#push'), (r'\}', Punctuation, '#pop'), (r'default\b', Keyword.Reserved), (r'(%s)(%s*)(:)' % (_name, _ws), bygroups(Name.Label, using(this, state='whitespace'), Punctuation)), include('whitespace') ], 'block': [ include('block/basic'), (r'(?!\Z)', Text, ('more', 'main')) ], 'block/embed': [ (r'>>', String.Interpol, '#pop'), include('block/basic'), (r'(?!\Z)', Text, ('more/embed', 'main')) ], 'main/basic': [ include('whitespace'), (r'\(', Punctuation, ('#pop', 'more', 'main')), (r'\[', Punctuation, ('#pop', 'more/list', 'main')), (r'\{', Punctuation, ('#pop', 'more/inner', 'main/inner', 'more/parameters', 'main/parameters')), (r'\*|\.{3}', Punctuation, '#pop'), (r'(?i)0x[\da-f]+', Number.Hex, '#pop'), (r'(\d+\.(?!\.)\d*|\.\d+)([eE][-+]?\d+)?|\d+[eE][-+]?\d+', Number.Float, '#pop'), (r'0[0-7]+', Number.Oct, '#pop'), (r'\d+', Number.Integer, '#pop'), (r'"""', String.Double, ('#pop', 'tdqs')), (r"'''", String.Single, ('#pop', 'tsqs')), (r'"', String.Double, ('#pop', 'dqs')), (r"'", String.Single, ('#pop', 'sqs')), (r'R"""', String.Regex, ('#pop', 'tdqr')), (r"R'''", String.Regex, ('#pop', 'tsqr')), (r'R"', String.Regex, ('#pop', 'dqr')), (r"R'", String.Regex, ('#pop', 'sqr')), # Two-token keywords (r'(extern)(%s+)(object\b)' % _ws, bygroups(Keyword.Reserved, using(this, state='whitespace'), Keyword.Reserved)), (r'(function|method)(%s*)(\()' % _ws, bygroups(Keyword.Reserved, using(this, state='whitespace'), Punctuation), ('#pop', 'block?', 'more/parameters', 'main/parameters')), (r'(modify)(%s+)(grammar\b)' % _ws, bygroups(Keyword.Reserved, using(this, state='whitespace'), Keyword.Reserved), ('#pop', 'object-body/no-braces', ':', 'grammar')), (r'(new)(%s+(?=(?:function|method)\b))' % _ws, bygroups(Keyword.Reserved, using(this, state='whitespace'))), (r'(object)(%s+)(template\b)' % _ws, bygroups(Keyword.Reserved, using(this, state='whitespace'), Keyword.Reserved), ('#pop', 'template')), (r'(string)(%s+)(template\b)' % _ws, bygroups(Keyword, using(this, state='whitespace'), Keyword.Reserved), ('#pop', 'function-name')), # Keywords (r'(argcount|definingobj|invokee|replaced|targetobj|targetprop)\b', Name.Builtin, '#pop'), (r'(break|continue|goto)\b', Keyword.Reserved, ('#pop', 'label')), (r'(case|extern|if|intrinsic|return|static|while)\b', Keyword.Reserved), (r'catch\b', Keyword.Reserved, ('#pop', 'catch')), (r'class\b', Keyword.Reserved, ('#pop', 'object-body/no-braces', 'class')), (r'(default|do|else|finally|try)\b', Keyword.Reserved, '#pop'), (r'(dictionary|property)\b', Keyword.Reserved, ('#pop', 'constants')), (r'enum\b', Keyword.Reserved, ('#pop', 'enum')), (r'export\b', Keyword.Reserved, ('#pop', 'main')), (r'(for|foreach)\b', Keyword.Reserved, ('#pop', 'more/inner', 'main/inner')), (r'(function|method)\b', Keyword.Reserved, ('#pop', 'block?', 'function-name')), (r'grammar\b', Keyword.Reserved, ('#pop', 'object-body/no-braces', 'grammar')), (r'inherited\b', Keyword.Reserved, ('#pop', 'inherited')), (r'local\b', Keyword.Reserved, ('#pop', 'more/local', 'main/local')), (r'(modify|replace|switch|throw|transient)\b', Keyword.Reserved, '#pop'), (r'new\b', Keyword.Reserved, ('#pop', 'class')), (r'(nil|true)\b', Keyword.Constant, '#pop'), (r'object\b', Keyword.Reserved, ('#pop', 'object-body/no-braces')), (r'operator\b', Keyword.Reserved, ('#pop', 'operator')), (r'propertyset\b', Keyword.Reserved, ('#pop', 'propertyset', 'main')), (r'self\b', Name.Builtin.Pseudo, '#pop'), (r'template\b', Keyword.Reserved, ('#pop', 'template')), # Operators (r'(__objref|defined)(%s*)(\()' % _ws, bygroups(Operator.Word, using(this, state='whitespace'), Operator), ('#pop', 'more/__objref', 'main')), (r'delegated\b', Operator.Word), # Compiler-defined macros and built-in properties (r'(__DATE__|__DEBUG|__LINE__|__FILE__|' r'__TADS_MACRO_FORMAT_VERSION|__TADS_SYS_\w*|__TADS_SYSTEM_NAME|' r'__TADS_VERSION_MAJOR|__TADS_VERSION_MINOR|__TADS3|__TIME__|' r'construct|finalize|grammarInfo|grammarTag|lexicalParent|' r'miscVocab|sourceTextGroup|sourceTextGroupName|' r'sourceTextGroupOrder|sourceTextOrder)\b', Name.Builtin, '#pop') ], 'main': [ include('main/basic'), (_name, Name, '#pop'), default('#pop') ], 'more/basic': [ (r'\(', Punctuation, ('more/list', 'main')), (r'\[', Punctuation, ('more', 'main')), (r'\.{3}', Punctuation), (r'->|\.\.', Punctuation, 'main'), (r'(?=;)|[:)\]]', Punctuation, '#pop'), include('whitespace'), (_operator, Operator, 'main'), (r'\?', Operator, ('main', 'more/conditional', 'main')), (r'(is|not)(%s+)(in\b)' % _ws, bygroups(Operator.Word, using(this, state='whitespace'), Operator.Word)), (r'[^\s!"%-_a-z{-~]+', Error) # Averts an infinite loop ], 'more': [ include('more/basic'), default('#pop') ], # Then expression (conditional operator) 'more/conditional': [ (r':(?!:)', Operator, '#pop'), include('more') ], # Embedded expressions 'more/embed': [ (r'>>', String.Interpol, '#pop:2'), include('more') ], # For/foreach loop initializer or short-form anonymous function 'main/inner': [ (r'\(', Punctuation, ('#pop', 'more/inner', 'main/inner')), (r'local\b', Keyword.Reserved, ('#pop', 'main/local')), include('main') ], 'more/inner': [ (r'\}', Punctuation, '#pop'), (r',', Punctuation, 'main/inner'), (r'(in|step)\b', Keyword, 'main/inner'), include('more') ], # Local 'main/local': [ (_name, Name.Variable, '#pop'), include('whitespace') ], 'more/local': [ (r',', Punctuation, 'main/local'), include('more') ], # List 'more/list': [ (r'[,:]', Punctuation, 'main'), include('more') ], # Parameter list 'main/parameters': [ (r'(%s)(%s*)(?=:)' % (_name, _ws), bygroups(Name.Variable, using(this, state='whitespace')), '#pop'), (r'(%s)(%s+)(%s)' % (_name, _ws, _name), bygroups(Name.Class, using(this, state='whitespace'), Name.Variable), '#pop'), (r'\[+', Punctuation), include('main/basic'), (_name, Name.Variable, '#pop'), default('#pop') ], 'more/parameters': [ (r'(:)(%s*(?=[?=,:)]))' % _ws, bygroups(Punctuation, using(this, state='whitespace'))), (r'[?\]]+', Punctuation), (r'[:)]', Punctuation, ('#pop', 'multimethod?')), (r',', Punctuation, 'main/parameters'), (r'=', Punctuation, ('more/parameter', 'main')), include('more') ], 'more/parameter': [ (r'(?=[,)])', Text, '#pop'), include('more') ], 'multimethod?': [ (r'multimethod\b', Keyword, '#pop'), include('whitespace'), default('#pop') ], # Statements and expressions 'more/__objref': [ (r',', Punctuation, 'mode'), (r'\)', Operator, '#pop'), include('more') ], 'mode': [ (r'(error|warn)\b', Keyword, '#pop'), include('whitespace') ], 'catch': [ (r'\(+', Punctuation), (_name, Name.Exception, ('#pop', 'variables')), include('whitespace') ], 'enum': [ include('whitespace'), (r'token\b', Keyword, ('#pop', 'constants')), default(('#pop', 'constants')) ], 'grammar': [ (r'\)+', Punctuation), (r'\(', Punctuation, 'grammar-tag'), (r':', Punctuation, 'grammar-rules'), (_name, Name.Class), include('whitespace') ], 'grammar-tag': [ include('whitespace'), (r'"""([^\\"<]|""?(?!")|\\"+|\\.|<(?!<))+("{3,}|<<)|' r'R"""([^\\"]|""?(?!")|\\"+|\\.)+"{3,}|' r"'''([^\\'<]|''?(?!')|\\'+|\\.|<(?!<))+('{3,}|<<)|" r"R'''([^\\']|''?(?!')|\\'+|\\.)+'{3,}|" r'"([^\\"<]|\\.|<(?!<))+("|<<)|R"([^\\"]|\\.)+"|' r"'([^\\'<]|\\.|<(?!<))+('|<<)|R'([^\\']|\\.)+'|" r"([^)\s\\/]|/(?![/*]))+|\)", String.Other, '#pop') ], 'grammar-rules': [ include('string'), include('whitespace'), (r'(\[)(%s*)(badness)' % _ws, bygroups(Punctuation, using(this, state='whitespace'), Keyword), 'main'), (r'->|%s|[()]' % _operator, Punctuation), (_name, Name.Constant), default('#pop:2') ], ':': [ (r':', Punctuation, '#pop') ], 'function-name': [ (r'(<<([^>]|>>>|>(?!>))*>>)+', String.Interpol), (r'(?=%s?%s*[({])' % (_name, _ws), Text, '#pop'), (_name, Name.Function, '#pop'), include('whitespace') ], 'inherited': [ (r'<', Punctuation, ('#pop', 'classes', 'class')), include('whitespace'), (_name, Name.Class, '#pop'), default('#pop') ], 'operator': [ (r'negate\b', Operator.Word, '#pop'), include('whitespace'), (_operator, Operator), default('#pop') ], 'propertyset': [ (r'\(', Punctuation, ('more/parameters', 'main/parameters')), (r'\{', Punctuation, ('#pop', 'object-body')), include('whitespace') ], 'template': [ (r'(?=;)', Text, '#pop'), include('string'), (r'inherited\b', Keyword.Reserved), include('whitespace'), (r'->|\?|%s' % _operator, Punctuation), (_name, Name.Variable) ], # Identifiers 'class': [ (r'\*|\.{3}', Punctuation, '#pop'), (r'object\b', Keyword.Reserved, '#pop'), (r'transient\b', Keyword.Reserved), (_name, Name.Class, '#pop'), include('whitespace'), default('#pop') ], 'classes': [ (r'[:,]', Punctuation, 'class'), include('whitespace'), (r'>', Punctuation, '#pop'), default('#pop') ], 'constants': [ (r',+', Punctuation), (r';', Punctuation, '#pop'), (r'property\b', Keyword.Reserved), (_name, Name.Constant), include('whitespace') ], 'label': [ (_name, Name.Label, '#pop'), include('whitespace'), default('#pop') ], 'variables': [ (r',+', Punctuation), (r'\)', Punctuation, '#pop'), include('whitespace'), (_name, Name.Variable) ], # Whitespace and comments 'whitespace': [ (r'^%s*#(%s|[^\n]|(?<=\\)\n)*\n?' % (_ws_pp, _comment_multiline), Comment.Preproc), (_comment_single, Comment.Single), (_comment_multiline, Comment.Multiline), (r'\\+\n+%s*#?|\n+|([^\S\n]|\\)+' % _ws_pp, Text) ], # Strings 'string': [ (r'"""', String.Double, 'tdqs'), (r"'''", String.Single, 'tsqs'), (r'"', String.Double, 'dqs'), (r"'", String.Single, 'sqs') ], 's/escape': [ (r'\{\{|\}\}|%s' % _escape, String.Escape) ], 's/verbatim': [ (r'<<\s*(as\s+decreasingly\s+likely\s+outcomes|cycling|else|end|' r'first\s+time|one\s+of|only|or|otherwise|' r'(sticky|(then\s+)?(purely\s+)?at)\s+random|stopping|' r'(then\s+)?(half\s+)?shuffled|\|\|)\s*>>', String.Interpol), (r'<<(%%(_(%s|\\?.)|[\-+ ,#]|\[\d*\]?)*\d*\.?\d*(%s|\\?.)|' r'\s*((else|otherwise)\s+)?(if|unless)\b)?' % (_escape, _escape), String.Interpol, ('block/embed', 'more/embed', 'main')) ], 's/entity': [ (r'(?i)&(#(x[\da-f]+|\d+)|[a-z][\da-z]*);?', Name.Entity) ], 'tdqs': _make_string_state(True, True), 'tsqs': _make_string_state(True, False), 'dqs': _make_string_state(False, True), 'sqs': _make_string_state(False, False), 'tdqs/listing': _make_string_state(True, True, 'listing'), 'tsqs/listing': _make_string_state(True, False, 'listing'), 'dqs/listing': _make_string_state(False, True, 'listing'), 'sqs/listing': _make_string_state(False, False, 'listing'), 'tdqs/xmp': _make_string_state(True, True, 'xmp'), 'tsqs/xmp': _make_string_state(True, False, 'xmp'), 'dqs/xmp': _make_string_state(False, True, 'xmp'), 'sqs/xmp': _make_string_state(False, False, 'xmp'), # Tags 'tdqt': _make_tag_state(True, True), 'tsqt': _make_tag_state(True, False), 'dqt': _make_tag_state(False, True), 'sqt': _make_tag_state(False, False), 'dqs/tdqt': _make_attribute_value_state(r'"', True, True), 'dqs/tsqt': _make_attribute_value_state(r'"', True, False), 'dqs/dqt': _make_attribute_value_state(r'"', False, True), 'dqs/sqt': _make_attribute_value_state(r'"', False, False), 'sqs/tdqt': _make_attribute_value_state(r"'", True, True), 'sqs/tsqt': _make_attribute_value_state(r"'", True, False), 'sqs/dqt': _make_attribute_value_state(r"'", False, True), 'sqs/sqt': _make_attribute_value_state(r"'", False, False), 'uqs/tdqt': _make_attribute_value_state(_no_quote, True, True), 'uqs/tsqt': _make_attribute_value_state(_no_quote, True, False), 'uqs/dqt': _make_attribute_value_state(_no_quote, False, True), 'uqs/sqt': _make_attribute_value_state(_no_quote, False, False), # Regular expressions 'tdqr': [ (r'[^\\"]+', String.Regex), (r'\\"*', String.Regex), (r'"{3,}', String.Regex, '#pop'), (r'"', String.Regex) ], 'tsqr': [ (r"[^\\']+", String.Regex), (r"\\'*", String.Regex), (r"'{3,}", String.Regex, '#pop'), (r"'", String.Regex) ], 'dqr': [ (r'[^\\"]+', String.Regex), (r'\\"?', String.Regex), (r'"', String.Regex, '#pop') ], 'sqr': [ (r"[^\\']+", String.Regex), (r"\\'?", String.Regex), (r"'", String.Regex, '#pop') ] } def get_tokens_unprocessed(self, text, **kwargs): pp = r'^%s*#%s*' % (self._ws_pp, self._ws_pp) if_false_level = 0 for index, token, value in ( RegexLexer.get_tokens_unprocessed(self, text, **kwargs)): if if_false_level == 0: # Not in a false #if if (token is Comment.Preproc and re.match(r'%sif%s+(0|nil)%s*$\n?' % (pp, self._ws_pp, self._ws_pp), value)): if_false_level = 1 else: # In a false #if if token is Comment.Preproc: if (if_false_level == 1 and re.match(r'%sel(if|se)\b' % pp, value)): if_false_level = 0 elif re.match(r'%sif' % pp, value): if_false_level += 1 elif re.match(r'%sendif\b' % pp, value): if_false_level -= 1 else: token = Comment yield index, token, value
de87b1312d042de25ad09e1c1273fad0b0bc68a4
fa4b2b4ce915b4e58737f65efe7d18d1f45cbe27
/home/migrations/0001_initial.py
6f7e2af882d3cea72915015cbf036f11d7df263e
[]
no_license
Wishez/cosmeticsyou-v2.0
0fde09158944415b2471cb07dcf1e2cd1df85923
a0f6a1b11622cb36a5084781ad35f4eed2778f66
refs/heads/master
2022-12-26T12:47:53.693887
2020-10-12T20:22:30
2020-10-12T20:27:54
293,092,688
0
0
null
null
null
null
UTF-8
Python
false
false
15,946
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-10 15:37 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Callback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('callback_name', models.CharField(max_length=30, verbose_name=b'\xd0\x98\xd0\xbc\xd1\x8f')), ('callback_phone', models.CharField(max_length=30, verbose_name=b'\xd0\xa2\xd0\xb5\xd0\xbb\xd0\xb5\xd1\x84\xd0\xbe\xd0\xbd')), ('callback_message', models.TextField(max_length=250, verbose_name=b'\xd0\x9a\xd0\xbe\xd0\xbc\xd0\xbc\xd0\xb5\xd0\xbd\xd1\x82\xd0\xb0\xd1\x80\xd0\xb8\xd0\xb9')), ], options={ 'verbose_name': '\u041e\u0431\u0440\u0430\u0442\u043d\u044b\u0439 \u0432\u044b\u0437\u043e\u0432', 'verbose_name_plural': '\u041e\u0431\u0440\u0430\u0442\u043d\u044b\u0435 \u0432\u044b\u0437\u043e\u0432\u044b', }, ), migrations.CreateModel( name='Program', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('img', models.FileField(blank=True, null=True, upload_to=b'uploads/program/', verbose_name=b'\xd0\x98\xd0\xb7\xd0\xbe\xd0\xb1\xd1\x80\xd0\xb0\xd0\xb6\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5 \xd0\xbf\xd1\x80\xd0\xbe\xd0\xb3\xd1\x80\xd0\xb0\xd0\xbc\xd0\xbc\xd1\x8b')), ('title', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x97\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xbe\xd0\xba')), ('p', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x9f\xd0\xb0\xd1\x80\xd0\xb0\xd0\xb3\xd1\x80\xd0\xb0\xd1\x84 \xd0\xbf\xd0\xbe\xd0\xb4 \xd0\xb7\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xba\xd0\xbe\xd0\xbc')), ('offer_1', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x9f\xd1\x80\xd0\xb5\xd0\xb4\xd0\xbb\xd0\xbe\xd0\xb6\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5 1 (\xd0\xbf\xd0\xbe\xd0\xb4-\xd0\xb7\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xbe\xd0\xba)')), ('action_1_1', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_1_2', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_1_3', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_1_4', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('offer_2', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x9f\xd1\x80\xd0\xb5\xd0\xb4\xd0\xbb\xd0\xbe\xd0\xb6\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5 (\xd0\xbf\xd0\xbe\xd0\xb4-\xd0\xb7\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xbe\xd0\xba)')), ('action_2_1', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_2_2', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_3', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_4', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_5', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_2_6', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_7', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_8', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_9', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_2_10', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_11', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_2_12', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('offer_3', models.CharField(blank=True, max_length=300, null=True, verbose_name=b'\xd0\x9f\xd1\x80\xd0\xb5\xd0\xb4\xd0\xbb\xd0\xbe\xd0\xb6\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5 3 (\xd0\xbf\xd0\xbe\xd0\xb4-\xd0\xb7\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xbe\xd0\xba)')), ('action_3_1', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_3_2', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_3', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_4', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_5', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_3_6', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_7', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_8', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_9', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_3_10', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_11', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_3_12', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('offer_4', models.CharField(blank=True, max_length=300, null=True, verbose_name=b'\xd0\x9f\xd1\x80\xd0\xb5\xd0\xb4\xd0\xbb\xd0\xbe\xd0\xb6\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5 4 (\xd0\xbf\xd0\xbe\xd0\xb4-\xd0\xb7\xd0\xb0\xd0\xb3\xd0\xbe\xd0\xbb\xd0\xbe\xd0\xb2\xd0\xbe\xd0\xba)')), ('action_4_1', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_4_2', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_3', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_4', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_5', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_4_6', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_7', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_8', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_9', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd0\xb5')), ('action_4_10', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_11', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ('action_4_12', models.CharField(blank=True, max_length=350, null=True, verbose_name=b'\xd0\x94\xd0\xb5\xd0\xb9\xd1\x81\xd1\x82\xd0\xb2\xd0\xb8\xd0\xb5 \xd0\xb4\xd0\xbb\xd1\x8f \xd0\xb2\xd1\x8b\xd0\xbf\xd0\xbe\xd0\xbb\xd0\xbd\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f')), ], options={ 'verbose_name': '\u0421\u0442\u0430\u0440\u0442\u043e\u0432\u0430\u044f \u043f\u0440\u043e\u0433\u0440\u0430\u043c\u043c\u0430', 'verbose_name_plural': '\u0421\u0442\u0430\u0440\u0442\u043e\u0432\u044b\u0435 \u043f\u0440\u043e\u0433\u0440\u0430\u043c\u043c\u044b', }, ), migrations.CreateModel( name='Slider', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('slide_1', models.FileField(blank=True, null=True, upload_to=b'uploads/slider/', verbose_name=b'\xd0\xa1\xd0\xbb\xd0\xb0\xd0\xb9\xd0\xb4')), ('slide_2', models.FileField(blank=True, null=True, upload_to=b'uploads/slider/', verbose_name=b'\xd0\xa1\xd0\xbb\xd0\xb0\xd0\xb9\xd0\xb4')), ('slide_3', models.FileField(blank=True, null=True, upload_to=b'uploads/slider/', verbose_name=b'\xd0\xa1\xd0\xbb\xd0\xb0\xd0\xb9\xd0\xb4')), ('slide_4', models.FileField(blank=True, null=True, upload_to=b'uploads/slider/', verbose_name=b'\xd0\xa1\xd0\xbb\xd0\xb0\xd0\xb9\xd0\xb4')), ('slide_5', models.FileField(blank=True, null=True, upload_to=b'uploads/slider/', verbose_name=b'\xd0\xa1\xd0\xbb\xd0\xb0\xd0\xb9\xd0\xb4')), ], options={ 'verbose_name': '\u0421\u043b\u0430\u0439\u0434\u0435\u0440', 'verbose_name_plural': '\u0421\u043b\u0430\u0439\u0434\u044b', }, ), ]
f1852414a1506a6b10a1010751f35b8c44e0caba
7104726233d98dd714a445f4f516bce954680f7f
/PuThresholdTuning/python/runForest_PbPb_MIX_75X_PUThresholdVarR020.py
8fd43dffcd346d87d79593e728a23b559bab3f6a
[ "CC0-1.0" ]
permissive
mverwe/JetRecoValidation
7b09dada9a797b0ccf39064bdbc801639a8dd229
ee8b3fd94bac16390b367dc5030489738ff67958
refs/heads/master
2021-01-10T06:54:12.312670
2016-02-25T10:35:19
2016-02-25T10:35:19
43,553,652
0
0
null
null
null
null
UTF-8
Python
false
false
10,822
py
import FWCore.ParameterSet.Config as cms process = cms.Process('HiForest') process.options = cms.untracked.PSet( # wantSummary = cms.untracked.bool(True) #SkipEvent = cms.untracked.vstring('ProductNotFound') ) ################################################################################ # HiForest labelling info ################################################################################ process.load("HeavyIonsAnalysis.JetAnalysis.HiForest_cff") process.HiForest.inputLines = cms.vstring("HiForest V3",) import subprocess version = subprocess.Popen(["(cd $CMSSW_BASE/src && git describe --tags)"], stdout=subprocess.PIPE, shell=True).stdout.read() if version == '': version = 'no git info' process.HiForest.HiForestVersion = cms.untracked.string(version) ################################################################################ # Input source ################################################################################ process.source = cms.Source("PoolSource", duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = cms.untracked.vstring( "/store/user/twang/Pyquen_DiJet_pt40_5020GeV_GEN_SIM_PU_20150813/Pyquen_DiJet_pt40_5020GeV_step3_RECODEBUG_20150813/3179e0200600a67eea51209589c07fdd/step3_RECODEBUG_RAW2DIGI_L1Reco_RECO_PU_100_1_ppt.root" #"/store/relval/CMSSW_7_5_0_pre5/RelValPhotonJets_Pt_10_13_HI/GEN-SIM-RECO/MCHI2_75_V2-v2/00000/BAA0D4EC-AF0B-E511-95A6-02163E011865.root" )) #root://cmsxrootd.fnal.gov// # Number of events we want to process, -1 = all events process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(10)) ##################################################################################### # Load Global Tag, Geometry, etc. ##################################################################################### process.load('Configuration.StandardSequences.Services_cff') process.load('Configuration.Geometry.GeometryDB_cff') process.load('Configuration.StandardSequences.MagneticField_38T_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.load('Configuration.StandardSequences.Digi_cff') process.load('Configuration.StandardSequences.SimL1Emulator_cff') process.load('Configuration.StandardSequences.DigiToRaw_cff') process.load('Configuration.StandardSequences.RawToDigi_cff') #process.load('Configuration.StandardSequences.ReconstructionHeavyIons_cff') process.load('FWCore.MessageService.MessageLogger_cfi') # PbPb 53X MC from Configuration.AlCa.GlobalTag_condDBv2 import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '75X_mcRun2_HeavyIon_v5', '') #process.GlobalTag.toGet.extend([ # cms.PSet(record = cms.string("HeavyIonRcd"), # tag = cms.string("CentralityTable_HFtowers200_HydjetDrum5_v750x02_mc"), # connect = cms.string("frontier://FrontierProd/CMS_CONDITIONS"), # label = cms.untracked.string("HFtowersHydjetDrum5") # ), #]) from HeavyIonsAnalysis.Configuration.CommonFunctions_cff import * #overrideGT_PbPb2760(process) overrideJEC_PbPb2760(process) process.load("RecoHI.HiCentralityAlgos.CentralityBin_cfi") process.centralityBin.Centrality = cms.InputTag("hiCentrality") process.centralityBin.centralityVariable = cms.string("HFtowers") process.centralityBin.nonDefaultGlauberModel = cms.string("HydjetDrum5") ################################################################################ # Define tree output ################################################################################ process.TFileService = cms.Service("TFileService", fileName=cms.string("HiForest.root")) ################################################################################ # Additional Reconstruction and Analysis: Main Body ################################################################################ #begin: MV edits ## PF jets process.load('HiRecoPFJets_PuThreshold_cff') ##creates sequence hiRecoPFJets process.load('akPu2PFJetSequence5_cff') process.load('akPu2PFJetSequence10_cff') process.load('akPu2PFJetSequence15_cff') process.load('akPu2PFJetSequence20_cff') process.load('akPu2PFJetSequence25_cff') process.jetSequencesPF = cms.Sequence(process.hiRecoPFJets2 *process.akPu2PFJetSequence5 +process.akPu2PFJetSequence10 +process.akPu2PFJetSequence15 +process.akPu2PFJetSequence20 +process.akPu2PFJetSequence25 ) ## Calo jets process.load('HiRecoCaloJets_PuThreshold_cff') ##creates sequence hiRecoPFJets process.load('akPu2CaloJetSequence2_cff') process.load('akPu2CaloJetSequence4_cff') process.load('akPu2CaloJetSequence6_cff') process.load('akPu2CaloJetSequence8_cff') process.load('akPu2CaloJetSequence10_cff') process.jetSequencesCalo = cms.Sequence(process.hiRecoCaloJets2 +process.akPu2CaloJetSequence2 +process.akPu2CaloJetSequence4 +process.akPu2CaloJetSequence6 +process.akPu2CaloJetSequence8 +process.akPu2CaloJetSequence10 ) #end: MV edits process.load('HeavyIonsAnalysis.EventAnalysis.hievtanalyzer_mc_cfi') process.hiEvtAnalyzer.doMC = cms.bool(False) #the gen info dataformat has changed in 73X, we need to update hiEvtAnalyzer code process.load('HeavyIonsAnalysis.EventAnalysis.hltanalysis_cff') process.load('HeavyIonsAnalysis.JetAnalysis.HiGenAnalyzer_cfi') ##################################################################################### # To be cleaned process.load('HeavyIonsAnalysis.JetAnalysis.ExtraTrackReco_cff') process.load('HeavyIonsAnalysis.JetAnalysis.TrkAnalyzers_MC_cff') process.load("HeavyIonsAnalysis.TrackAnalysis.METAnalyzer_cff") process.load("HeavyIonsAnalysis.JetAnalysis.pfcandAnalyzer_cfi") process.load('HeavyIonsAnalysis.JetAnalysis.rechitanalyzer_cfi') process.rechitAna = cms.Sequence(process.rechitanalyzer+process.pfTowers) process.pfcandAnalyzer.skipCharged = False process.pfcandAnalyzer.pfPtMin = 0 ##################################################################################### ######################### # Track Analyzer ######################### process.anaTrack.qualityStrings = cms.untracked.vstring(['highPurity','tight','loose']) process.pixelTrack.qualityStrings = cms.untracked.vstring('highPurity') process.hiTracks.cut = cms.string('quality("highPurity")') # set track collection to iterative tracking process.anaTrack.trackSrc = cms.InputTag("hiGeneralTracks") # clusters missing in recodebug - to be resolved process.anaTrack.doPFMatching = False process.pixelTrack.doPFMatching = False process.anaTrack.doSimVertex = True process.anaTrack.doSimTrack = True # process.ppTrack.fillSimTrack = True process.load("SimTracker.TrackAssociation.trackingParticleRecoTrackAsssociation_cff") process.tpRecoAssocGeneralTracks = process.trackingParticleRecoTrackAsssociation.clone() process.tpRecoAssocGeneralTracks.label_tr = cms.InputTag("hiGeneralTracks") process.quickTrackAssociatorByHits.ComponentName = cms.string('quickTrackAssociatorByHits') ##################### # Photons ##################### process.load('HeavyIonsAnalysis.PhotonAnalysis.ggHiNtuplizer_cfi') process.ggHiNtuplizer.genParticleSrc = cms.InputTag("genParticles") ##################### # muons ###################### #process.load("HeavyIonsAnalysis.MuonAnalysis.hltMuTree_cfi") #process.hltMuTree.doGen = cms.untracked.bool(True) #process.load("RecoHI.HiMuonAlgos.HiRecoMuon_cff") #process.muons.JetExtractorPSet.JetCollectionLabel = cms.InputTag("akVs3PFJets") #process.globalMuons.TrackerCollectionLabel = "hiGeneralTracks" #process.muons.TrackExtractorPSet.inputTrackCollection = "hiGeneralTracks" #process.muons.inputCollectionLabels = ["hiGeneralTracks", "globalMuons", "standAloneMuons:UpdatedAtVtx", "tevMuons:firstHit", "tevMuons:picky", "tevMuons:dyt"] # HYDJET RECO file didn't have ak2GenJets and ak6GenJets as input, so removed them # and ran our own hiGenJets sequence from RecoHI.HiJetAlgos.HiGenJets_cff import ak2HiGenJets, ak3HiGenJets, ak4HiGenJets from RecoJets.Configuration.GenJetParticles_cff import genParticlesForJets genParticlesForJets.ignoreParticleIDs += cms.vuint32( 12,14,16) process.hiSelectGenJets = cms.Sequence( genParticlesForJets + ak2HiGenJets + ak3HiGenJets + ak4HiGenJets ) process.anaTrack.doSimTrack = cms.untracked.bool(False) process.HiGenParticleAna.genParticleSrc = cms.untracked.InputTag("genParticles") process.load("GeneratorInterface.HiGenCommon.HeavyIon_cff") process.ana_step = cms.Path(process.heavyIon* process.hltanalysis * #temp process.hltobject * process.centralityBin * process.hiEvtAnalyzer* process.HiGenParticleAna* #process.hiGenJetsCleaned* process.quickTrackAssociatorByHits* #process.tpRecoAssocGeneralTracks + #used in HiPFJetAnalyzer process.hiSelectGenJets + process.jetSequencesPF + process.jetSequencesCalo + process.ggHiNtuplizer + process.pfcandAnalyzer + process.rechitAna + #temp process.hltMuTree + process.HiForest + # process.cutsTPForFak + # process.cutsTPForEff + process.anaTrack #process.pixelTrack ) process.load('HeavyIonsAnalysis.JetAnalysis.EventSelection_cff') process.phltJetHI = cms.Path( process.hltJetHI ) #process.pcollisionEventSelection = cms.Path(process.collisionEventSelection) # process.pHBHENoiseFilter = cms.Path( process.HBHENoiseFilter ) #should be put back in later #process.pHBHENoiseFilterResultProducer = cms.Path( process.HBHENoiseFilterResultProducer ) process.phfCoincFilter = cms.Path(process.hfCoincFilter ) process.phfCoincFilter3 = cms.Path(process.hfCoincFilter3 ) process.pprimaryVertexFilter = cms.Path(process.primaryVertexFilter ) #process.phltPixelClusterShapeFilter = cms.Path(process.siPixelRecHits*process.hltPixelClusterShapeFilter ) process.phiEcalRecHitSpikeFilter = cms.Path(process.hiEcalRecHitSpikeFilter ) process.pAna = cms.EndPath(process.skimanalysis) # Customization
3ae943c05939e10eb7593fa7d5be7c5f831a76c5
19d47d47c9614dddcf2f8d744d883a90ade0ce82
/pynsxt/swagger_client/models/aws_gateway_amis_list_result.py
5882e38c27c689298103233daa9be4d54349462e
[]
no_license
darshanhuang1/pynsxt-1
9ed7c0da9b3a64e837a26cbbd8b228e811cee823
fb1091dff1af7f8b8f01aec715682dea60765eb8
refs/heads/master
2020-05-25T14:51:09.932853
2018-05-16T12:43:48
2018-05-16T12:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,184
py
# coding: utf-8 """ NSX API VMware NSX REST API # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.aws_gateway_ami_info import AwsGatewayAmiInfo # noqa: F401,E501 from swagger_client.models.list_result import ListResult # noqa: F401,E501 from swagger_client.models.resource_link import ResourceLink # noqa: F401,E501 from swagger_client.models.self_resource_link import SelfResourceLink # noqa: F401,E501 class AwsGatewayAmisListResult(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { '_self': 'SelfResourceLink', 'links': 'list[ResourceLink]', 'schema': 'str', 'cursor': 'str', 'sort_ascending': 'bool', 'sort_by': 'str', 'result_count': 'int', 'results': 'list[AwsGatewayAmiInfo]' } attribute_map = { '_self': '_self', 'links': '_links', 'schema': '_schema', 'cursor': 'cursor', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', 'result_count': 'result_count', 'results': 'results' } def __init__(self, _self=None, links=None, schema=None, cursor=None, sort_ascending=None, sort_by=None, result_count=None, results=None): # noqa: E501 """AwsGatewayAmisListResult - a model defined in Swagger""" # noqa: E501 self.__self = None self._links = None self._schema = None self._cursor = None self._sort_ascending = None self._sort_by = None self._result_count = None self._results = None self.discriminator = None if _self is not None: self._self = _self if links is not None: self.links = links if schema is not None: self.schema = schema if cursor is not None: self.cursor = cursor if sort_ascending is not None: self.sort_ascending = sort_ascending if sort_by is not None: self.sort_by = sort_by if result_count is not None: self.result_count = result_count if results is not None: self.results = results @property def _self(self): """Gets the _self of this AwsGatewayAmisListResult. # noqa: E501 :return: The _self of this AwsGatewayAmisListResult. # noqa: E501 :rtype: SelfResourceLink """ return self.__self @_self.setter def _self(self, _self): """Sets the _self of this AwsGatewayAmisListResult. :param _self: The _self of this AwsGatewayAmisListResult. # noqa: E501 :type: SelfResourceLink """ self.__self = _self @property def links(self): """Gets the links of this AwsGatewayAmisListResult. # noqa: E501 The server will populate this field when returing the resource. Ignored on PUT and POST. # noqa: E501 :return: The links of this AwsGatewayAmisListResult. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this AwsGatewayAmisListResult. The server will populate this field when returing the resource. Ignored on PUT and POST. # noqa: E501 :param links: The links of this AwsGatewayAmisListResult. # noqa: E501 :type: list[ResourceLink] """ self._links = links @property def schema(self): """Gets the schema of this AwsGatewayAmisListResult. # noqa: E501 :return: The schema of this AwsGatewayAmisListResult. # noqa: E501 :rtype: str """ return self._schema @schema.setter def schema(self, schema): """Sets the schema of this AwsGatewayAmisListResult. :param schema: The schema of this AwsGatewayAmisListResult. # noqa: E501 :type: str """ self._schema = schema @property def cursor(self): """Gets the cursor of this AwsGatewayAmisListResult. # noqa: E501 Opaque cursor to be used for getting next page of records (supplied by current result page) # noqa: E501 :return: The cursor of this AwsGatewayAmisListResult. # noqa: E501 :rtype: str """ return self._cursor @cursor.setter def cursor(self, cursor): """Sets the cursor of this AwsGatewayAmisListResult. Opaque cursor to be used for getting next page of records (supplied by current result page) # noqa: E501 :param cursor: The cursor of this AwsGatewayAmisListResult. # noqa: E501 :type: str """ self._cursor = cursor @property def sort_ascending(self): """Gets the sort_ascending of this AwsGatewayAmisListResult. # noqa: E501 :return: The sort_ascending of this AwsGatewayAmisListResult. # noqa: E501 :rtype: bool """ return self._sort_ascending @sort_ascending.setter def sort_ascending(self, sort_ascending): """Sets the sort_ascending of this AwsGatewayAmisListResult. :param sort_ascending: The sort_ascending of this AwsGatewayAmisListResult. # noqa: E501 :type: bool """ self._sort_ascending = sort_ascending @property def sort_by(self): """Gets the sort_by of this AwsGatewayAmisListResult. # noqa: E501 Field by which records are sorted # noqa: E501 :return: The sort_by of this AwsGatewayAmisListResult. # noqa: E501 :rtype: str """ return self._sort_by @sort_by.setter def sort_by(self, sort_by): """Sets the sort_by of this AwsGatewayAmisListResult. Field by which records are sorted # noqa: E501 :param sort_by: The sort_by of this AwsGatewayAmisListResult. # noqa: E501 :type: str """ self._sort_by = sort_by @property def result_count(self): """Gets the result_count of this AwsGatewayAmisListResult. # noqa: E501 Count of results found (across all pages), set only on first page # noqa: E501 :return: The result_count of this AwsGatewayAmisListResult. # noqa: E501 :rtype: int """ return self._result_count @result_count.setter def result_count(self, result_count): """Sets the result_count of this AwsGatewayAmisListResult. Count of results found (across all pages), set only on first page # noqa: E501 :param result_count: The result_count of this AwsGatewayAmisListResult. # noqa: E501 :type: int """ self._result_count = result_count @property def results(self): """Gets the results of this AwsGatewayAmisListResult. # noqa: E501 Aws Gateway amis list # noqa: E501 :return: The results of this AwsGatewayAmisListResult. # noqa: E501 :rtype: list[AwsGatewayAmiInfo] """ return self._results @results.setter def results(self, results): """Sets the results of this AwsGatewayAmisListResult. Aws Gateway amis list # noqa: E501 :param results: The results of this AwsGatewayAmisListResult. # noqa: E501 :type: list[AwsGatewayAmiInfo] """ self._results = results def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AwsGatewayAmisListResult): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0907267e98b96a3bfb69062100eb901fb42b8d3d
f7463bd0ab18b41611d5ac725f65d3db3a3a7a1d
/Generation Python - A Beginner's Course/13_Functions/13.5(return_v2)/7.py
05f6fc472054d62e8f0ac4d289c449cf867dab43
[]
no_license
Sergey-Laznenko/Stepik
f81c5aeead3fbd20628129d60ccce92b34724b97
5e1a1a76c3f6ed487cf8fc847913c890c8eac840
refs/heads/master
2022-12-28T19:01:48.670540
2020-10-18T15:23:58
2020-10-18T15:23:58
279,022,462
1
0
null
null
null
null
UTF-8
Python
false
false
561
py
def is_palindrome(a): if str(a) == str(a)[::-1]: return True else: return False def is_prime(b): if b in (0, 1): return False if b % 2 == 0: return False for i in range(3, round(b ** (1 / 2) + 1), 2): if b % i == 0: return False return True def is_even(c): if c % 2 == 0: return True else: return False pws = input().split(':') a = pws[0] b = pws[1] c = pws[2] if is_palindrome(a) == is_prime(b) == is_even(c): print('True') else: print('False')
ad8ea5912f2475677a294ad6b496f6e6354dab53
f7fe9c722b8fa7ed6e66080053706a495fffb2d8
/tensorflow/python/distribute/failure_handling/failure_handling.py
0acb76e8a30174efd1c32a7cf020cdaea0d941c2
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
Poet-LiBai/tensorflow
832d9d8ddb58b5560ba19119cf107bbe857208e7
f354ef21ae067a73fbc2ab45a7a5ceda4b0a1ff4
refs/heads/master
2022-05-02T04:06:27.411162
2022-04-21T02:45:39
2022-04-21T02:49:33
155,213,121
0
0
Apache-2.0
2018-10-29T13:04:55
2018-10-29T13:04:55
null
UTF-8
Python
false
false
35,947
py
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module for `WorkerPreemptionHandler`. This is currently under development and the API is subject to change. WorkerPreemptionHandler reduces loss of training progress caused by termination (preemption or maintenance) of workers in multi-worker synchronous training and avoid surfacing an error indistinguishable from application errors to the job scheduler or users. """ import os import signal import sys import threading import time from tensorflow.python.distribute import multi_worker_util from tensorflow.python.distribute.failure_handling import gce_util from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_management _INITIAL_RUN_COUNT_KEY = 'RUN_TO_CHECKPOINT' _FINAL_RUN_COUNT_KEY = 'LAST_RUN_TO_CHECKPOINT' # This key is used to guarantee that only one worker (and it's the earliest # one that receives a preemption signal) sets _received_own_sigterm, # leads the step resolution, and controls the grace period timeline. _PREEMPTION_WORKER_KEY = 'TERMINATED_WORKER' _ACKNOWLEDGE_KEY = 'RECEIVED_SIGNAL' _ITERATION_VARIABLE = 'checkpointed_runs' _STOP_WATCHING_CLUSTER_VALUE = 'STOP_WATCHER' def _mwms_write_checkpoint_dir(checkpoint_dir, task_type, task_id, cluster_spec): """Returns checkpoint_dir for chief and a temp dir for any other worker.""" dirpath = os.path.dirname(checkpoint_dir) base = os.path.basename(checkpoint_dir) if not multi_worker_util.is_chief( cluster_spec=cluster_spec, task_type=task_type, task_id=task_id): base_dirpath = 'workertemp_' + str(task_id) dirpath = os.path.join(dirpath, base_dirpath) gfile.MakeDirs(dirpath) return os.path.join(dirpath, base) # TODO(wxinyi): rename time_till_termination to grace_period. class TerminationConfig(object): """Configurations to customize for a platform other than Google's Borg or GCP. A TerminationConfig can be created and passed to the `WorkerPreemptionHandler` to provide customization based on the platform. It will deliver three pieces of information: * How to decide if there is a termination event soon The termination notification and how to fetch it varies across platforms. Thus we accept a user-defined function, `termination_watcher_function`, and execute it repeatedly to check for termination notification. `termination_watcher_function` should be a function that returns True if a termination notification has been made available and False otherwise. And the function should be lightweight and non-blocking so that we can clean up the resources properly if no termination signal is ever raised until training finishes. * How to exit the program We are asking for an `exit_fn` to execute after saving the checkpoint to exit the training program gracefully. For MultiWorkerMirroredStrategy, a restart is inevitable to reset the program's state. However, you can configure the `exit_fn` to facilitate the restart and make the training experience smooth. How so? Maybe your platform has an agreement to a RESTART_CODE that’s recognized as a program auto-restart signal, or you may have a coordinating script that starts up the training, in which you can configure the program to auto-restart if it ever exits with this RESTART_CODE. In both cases, you can configure `exit_fn` to be `sys.exit(RESTART_CODE)` and then wouldn’t even notice that the training has been interrupted and restarted. * How long do we have from receiving a termination event notice till the actual termination. Some platforms have the gap time as long as, say, one hour. In this case, you might want to utilize this time for training as much as possible until you have to save a checkpoint and exit. We can utilize this information if you pass it through the `time_till_termination` argument. *The default behavior*: If you are training with Google’s Borg system or GCP, we automatically detect the platform and make the right configuration for you. Besides these two platforms, the default behavior on an unrecognized platform is: * If `termination_event` is `None`, we will treat `signal.SIGTERM` as a termination event. * If `exit_fn` not configured, we exit the program with an arbitrary code 42. * If `time_till_termination` is not configured, the default is 0, and we will wrap up the current training step, save a checkpoint, and exit the program as soon as we receive the termination signal. """ def __init__(self, termination_watcher_function=None, exit_fn=None, time_till_termination=None): self.termination_watcher_function = termination_watcher_function self.exit_fn = exit_fn self.time_till_termination = time_till_termination # TODO(wxinyi): configure the exit function based on device type (GPU or TPU). class GCPTerminationConfig(TerminationConfig): """Configurations for GCP GPU VM.""" def __init__( # pylint: disable=super-init-not-called self, termination_watcher_function=None, exit_fn=None, time_till_termination=None): self.termination_watcher_function = termination_watcher_function or gce_util.termination_watcher_function_gce self.exit_fn = exit_fn or gce_util.gce_exit_fn self.time_till_termination = time_till_termination or gce_util.GRACE_PERIOD_GCE class BorgTerminationConfig(TerminationConfig): """Configurations for Borg.""" def __init__( # pylint: disable=super-init-not-called self, termination_watcher_function=None, exit_fn=None, time_till_termination=None): self.termination_watcher_function = termination_watcher_function default_exit_fn = lambda: sys.exit(42) self.exit_fn = exit_fn or default_exit_fn self.time_till_termination = time_till_termination or 0 def _complete_config_for_environement(platform_device, termination_config): """Complete un-filled fields of TerminationConfig based on platform.""" if platform_device is gce_util.PlatformDevice.GCE_GPU: return GCPTerminationConfig(termination_config.termination_watcher_function, termination_config.exit_fn, termination_config.time_till_termination) else: # The default we chose are the same as the ones used by Borg. So we just # return this. return BorgTerminationConfig( termination_config.termination_watcher_function, termination_config.exit_fn, termination_config.time_till_termination) # Implementation: # Each worker will create its own WorkerPreemptionHandler instance, and the # instances communicate through coordination services. Each # WorkerPreemptionHandler conduct three tasks in parallel: # - Watches out for its own preemption signal. (_poll_termination_signal_thread) # - Watches out for a step key from the coordination service made available # by any member in the cluster (_cluster_wise_termination_watcher_thread) # - The main thread for training. # # The life cycle of a WorkerPreemptionHandler is as below: # # It starts two threads as two watcher as described above. And it starts # training. Each time before it starts a training step, it will check if any # information has been made available by the two watchers: The # _poll_termination_signal_thread will be in charge of the _received_own_sigterm # event, the _cluster_wise_termination_watcher_thread will be in charge of the # _received_checkpoint_step event. # # If at any point the local worker receives a preemption signal, # _poll_termination_signal_thread will set _received_own_sigterm. # Next time before it attempts to run a training step, it will deal with the # event, by setting its current finished step + 1 as the step after which a # checkpoint should be saved and make it available to all the workers through # the coordination service. It will then continue training. # # This step key will be picked up by the other watcher, # _cluster_wise_termination_watcher_thread, both on the worker to be preempted # and other workers. And it will set the _received_checkpoint_step event. # Now, if there is a long grace period before the training # has to terminate (e.g., an hour), we would like to keep training and save a # checkpoint again right before the termination. Thus this watcher thread will # move on to watch out for a final step-to-save key. Otherwise, # it has finished all the task to do. # # Back to the main training thread. Again, before the next training step, the # WorkerPreemptionHandler found that _received_checkpoint_step is set. If the # local worker has not finished the required step after which to save a # checkpoint, it will not do anything. Continue training and it will revisit # after another step. If the step is met, then it will save a checkpoint, # which requires participation of all workers. # # After this checkpoint is saved, if there is NO long grace period, all workers # will just exit. If there is, all workers will enter a grace period countdown # phase (_final_checkpoint_countdown) and clear the _received_checkpoint_step # event. They will then continue training. # # For the worker to be preempted, during this countdown period, it will check # whether the grace period is almost ending before its every step. If not, # nothing needs to be done. If so, it will again set a step-to-save key and made # it available to all workers. This is still watched by # _cluster_wise_termination_watcher_thread and gestured by # _received_checkpoint_step. A similar process is repeated: all workers save # a checkpoint at an agreed step. And after they finish saving, they recognize # that they have finished a countdown period for an extended grace period, and # they all exit. # # When the program restarts and WorkerPreemptionHandler object is created, it # will restore the checkpoint. class WorkerPreemptionHandler(object): """Preemption and error handler for synchronous training. The API helps coordinate all workers to save a checkpoint upon receiving a preemption signal and helps propagate accurate error messages during training. When the program recovers from preemption, the checkpoint that is passed to initialize a `WorkerPreemptionHandler` object will be loaded automatically. Right after the initialization, a thread starts to watch out for a termination signal for any member in the cluster, but the signal will only be handled (which includes aligning the step to save a checkpoint, saving a checkpoint, and exiting with a platform recognized restart code) after entering a `WorkerPreemptionHandler.run` call. Example usage: ```python strategy = tf.distribute.MultiWorkerMirroredStrategy() with strategy.scope(): dataset, model, optimizer = ... fh_checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model) worker_preemption_watcher = tf.distribute.WorkerPreemptionHandler( cluster_resolver, fh_checkpoint, checkpoint_directory) # `worker_preemption_watcher.total_runs` will be restored to its # checkpointed value when training is restored after interruption. for epoch in range(worker_preemption_watcher.total_runs // STEPS_PER_EPOCH, num_epochs): for step in range(worker_preemption_watcher.total_runs % STEPS_PER_EPOCH, num_steps): # distributed_train_step is a function wrapped by strategy.run loss += worker_preemption_watcher.run(distributed_train_step, args=(next(dataset),)) ``` `WorkerPreemptionHandler` will create a CheckpointManager to manage the checkpoint and only one CheckpointManager should be active in a particular directory at a time. Thus, if the user would like to save a checkpoint for purpose other than fault tolerance, e.g., for evaluation, they should save it in a directory different from the one passed to a `WorkerPreemptionHandler`. This API targets multi-client distributed training, and right now only `tf.distribute.MultiWorkerMirroredStrategy` is supported. """ def __init__(self, cluster_resolver, checkpoint, checkpoint_dir, termination_config=TerminationConfig()): """Creates the failure handler. Args: cluster_resolver: a `tf.distribute.cluster_resolver.ClusterResolver`. You may also get it through the `cluster_resolver` attribute of the strategy in use. checkpoint: a `tf.train.Checkpoint` that will be saved upon preemption and loaded upon restart by the `WorkerPreemptionHandler` API automatically. checkpoint_dir: a directory for the `WorkerPreemptionHandler` to play with checkpoints. `WorkerPreemptionHandler` will create a `tf.train.CheckpointManager` to manage the passed-in `checkpoint`. Since only one `tf.train.CheckpointManager` should be active in a particular directory at a time, this `checkpoint_dir` arg should preferably be separated from where the user saves their checkpoint for non-fault tolerance purpose. termination_config: a `TerminationConfig` object to configure for a platform other than Google Borg or GCP. """ self._cluster_resolver = cluster_resolver self._checkpoint = checkpoint self._id_in_cluster = str( multi_worker_util.id_in_cluster( self._cluster_resolver.cluster_spec(), self._cluster_resolver.task_type, self._cluster_resolver.task_id)) # The number of calls to `WorkerPreemptionHandler.run` when the latest # checkpoint was saved. self._checkpointed_runs = variables.Variable( initial_value=constant_op.constant(0, dtype=dtypes.int64), trainable=False, name=_ITERATION_VARIABLE) if not hasattr(self._checkpoint, _ITERATION_VARIABLE): setattr(self._checkpoint, _ITERATION_VARIABLE, self._checkpointed_runs) # Make CheckpointManagers. MultiWorkerMirroredStrategy requires different # setup on chief and on other workers. self._read_checkpoint_manager = checkpoint_management.CheckpointManager( checkpoint, directory=checkpoint_dir, max_to_keep=1) if multi_worker_util.is_chief( cluster_spec=cluster_resolver.cluster_spec(), task_type=cluster_resolver.task_type, task_id=cluster_resolver.task_id): self._write_checkpoint_manager = self._read_checkpoint_manager else: self._write_checkpoint_manager = checkpoint_management.CheckpointManager( checkpoint, _mwms_write_checkpoint_dir(checkpoint_dir, cluster_resolver.task_type, cluster_resolver.task_id, cluster_resolver.cluster_spec()), max_to_keep=1) self._read_checkpoint_manager.restore_or_initialize() # grace period countdown. Set to True for all workers once they finish # timing saving a checkpoint. Once entering this phase, new # preemption/maintenance notice will not be handled, since the whole cluster # goes down as the worker who first initiates the grace period goes down. self._final_checkpoint_countdown = False self._estimated_run_time = 0 # An internal step counter that's restored to checkpointed_iterations when # training is restored. It increments by one every time # `WorkerPreemptionHandler.run` is called. Note that in this case, the # user must pass a single-step training function to # `WorkerPreemptionHandler.run` instead of a multiple-step one. self._run_counter = self._checkpointed_runs.numpy() # The worker itself has received preeption signal. self._received_own_sigterm = threading.Event() # Some member (could be oneself) has received preemption signal, and the # step number to save a checkpoint has been aligned. self._received_checkpoint_step = threading.Event() self._platform_device = gce_util.detect_platform() completed_termination_config = _complete_config_for_environement( self._platform_device, termination_config) self._termination_watcher_function = completed_termination_config.termination_watcher_function self._exit_fn = completed_termination_config.exit_fn self._grace_period = completed_termination_config.time_till_termination # When training is interrupted, we explicitly call the cleanup methods for # the thread watching for local worker's termination signal and the thread # watching for clusterwise information before we save a checkpoint and exit. # In the final chapter of the training where no interruption is encountered, # we rely on __del__ to clean up. However, there is no guarantee when or # whether __del__ is executed, thus we make the threads daemon to avoid it # preventing program from exit. self._cluster_wise_termination_watcher_thread = threading.Thread( target=self._watch_step_to_save_key, name='PeerTerminationWatcher-%s' % self._id_in_cluster, daemon=True) logging.info('Start watcher for peer\'s signal.') self._cluster_wise_termination_watcher_thread.start() self._poll_termination_signal_thread = None if completed_termination_config.termination_watcher_function: self._start_polling_for_termination_signal() else: self._start_watching_for_signal() def _start_watching_for_signal(self): signal.signal(signal.SIGTERM, self._sigterm_handler_fn) def _start_polling_for_termination_signal(self): self._poll_termination_signal_thread_should_stop = threading.Event() self._poll_termination_signal_thread = threading.Thread( target=self._poll_termination_signal, name='WorkerTerminationSignalWatcher-%s' % self._id_in_cluster, daemon=True) logging.info('Start polling for termination signal.') self._poll_termination_signal_thread.start() def _poll_termination_signal(self): """Poll maintenance notice and notify peers if receiving one.""" while True: if self._poll_termination_signal_thread_should_stop.is_set( ) or self._final_checkpoint_countdown: return if self._termination_watcher_function(): break time.sleep(1) self._maybe_set_received_own_sigterm() def _maybe_set_received_own_sigterm(self): """Claim earliest preemption if no one else has done it before.""" try: context.context().set_config_key_value(_PREEMPTION_WORKER_KEY, self._id_in_cluster) logging.info('Member %s has received termination notice.', self._id_in_cluster) self._received_own_sigterm_time = time.time() self._received_own_sigterm.set() # This is to handle the case that a worker has received termination # notice but hasn't come to the next step to set the step key. Other # workers might receive a termination notice too, and attempt to set the # config key again, which causes this error. This can be safely ignored # since checkpoint should be saved as early as the earliest call is made. except errors.AlreadyExistsError: logging.info('Member %s has received termination notice. But some other ' 'worker has received it as well! Leaving' ' it to them to decide when to checkpoint. ', self._id_in_cluster) return def _stop_poll_termination_signal_thread(self): if self._poll_termination_signal_thread: self._poll_termination_signal_thread_should_stop.set() self._poll_termination_signal_thread.join() self._poll_termination_signal_thread = None logging.info('Shut down watcher for one\'s own termination signal') def _stop_cluster_wise_termination_watcher_thread(self): """Stop the thread that is _watch_step_to_save_key.""" if self._cluster_wise_termination_watcher_thread: try: context.context().set_config_key_value(_INITIAL_RUN_COUNT_KEY, _STOP_WATCHING_CLUSTER_VALUE) except (errors.AlreadyExistsError, errors.UnavailableError): # We'll ignore any error in the process of setting this key. There # certainly will be a AlreadyExistError since all workers are trying to # push this key. Or some worker might have exited already, leading to a # errors.UnavailableError or errors.AbortedError. pass try: context.context().set_config_key_value(_FINAL_RUN_COUNT_KEY, _STOP_WATCHING_CLUSTER_VALUE) except (errors.AlreadyExistsError, errors.UnavailableError): pass finally: self._cluster_wise_termination_watcher_thread.join() self._cluster_wise_termination_watcher_thread = None logging.info('Shut down watcher for peer\'s termination signal.') def __del__(self): self._stop_cluster_wise_termination_watcher_thread() self._stop_poll_termination_signal_thread() @property def total_runs(self): """Returns the number of times `WorkerPreemptionHandler.run` is called. This value tracks the number of all calls to `WorkerPreemptionHandler.run` including those before the program is restarted and the training is restored. The user can compute their total number of iterations by: `worker_preemption_watcher.run * number_of_steps_in_train_function`, while for tf.distribute.MultiWorkerMirroredStrategy users, `number_of_steps_in_train_function` should be one. """ return self._run_counter def run(self, distributed_train_function, *args, **kwargs): """Runs a training function with error and preemption handling. This function handles the preemption signal from any peer in the cluster by saving the training progress and exiting gracefully. (Specifically, when running on Borg, it exits with a special code so that the cluster automatically restarts the training after the down worker is back.) It will also propagate any program error encountered during execution of `distributed_train_function` to all workers so that they can raise the same error. The `distributed_train_function` argument should be a distributed train function (i.e., containing a call to `tf.distribute.Strategy.run`). For `tf.distribute.MultiWorkerMirroredStrategy` users, we recommend passing in a single-step `distributed_train_function` to `WorkerPreemptionHandler.run` so that the checkpoint can be saved in time in case a preemption signal or maintenance notice is sent. Besides the preemption and error handling part, `WorkerPreemptionHandler.run(distributed_train_function, *args, **kwargs)` has the same effect and output as `distributed_train_function(*args, **kwargs)`. `distributed_train_function` can return either some or no result. The following is a shortened example: ```python @tf.function def distributed_train_step(iterator): # A distributed single-step training function. def step_fn(inputs): # A per-replica single-step training function. x, y = inputs ... return loss per_replica_losses = strategy.run(step_fn, args=(next(iterator),)) return strategy.reduce( tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None) for epoch in range(worker_preemption_watcher.total_runs // STEPS_PER_EPOCH, EPOCHS_TO_RUN): iterator = iter(multi_worker_dataset) total_loss = 0.0 num_batches = 0 for step in range(worker_preemption_watcher.total_runs % STEPS_PER_EPOCH, STEPS_PER_EPOCH): total_loss += worker_preemption_watcher.run(distributed_train_step) num_batches += 1 train_loss = total_loss / num_batches print('Epoch: %d, train_loss: %f.' %(epoch.numpy(), train_loss)) train_accuracy.reset_states() ``` Args: distributed_train_function: A (single-step) distributed training function. *args: args for `distributed_train_function`. **kwargs: kwargs for `distributed_train_function`. Raises: Program error encountered by any member in the cluster encounters one while executing the `distributed_train_function`, or any error from the program error propagation process. Returns: Result of running the `distributed_train_function`. """ # TODO(wxinyi): after we support use with TPUStrategy, we should expand the # API doc to state that `distributed_train_function` does not need to be a # single-step training function, since a multi-step host-training loop is # the dominant use case for TPU user. Besides, passing in a multi-step # `distributed_train_function` will require the user to track their own # training steps. try: self._checkpoint_if_preempted() run_begin_time = time.time() result = distributed_train_function(*args, **kwargs) new_run_time = time.time() - run_begin_time self._run_counter += 1 # Update the average run time with the new run. self._estimated_run_time = self._estimated_run_time + ( new_run_time - self._estimated_run_time) / self._run_counter except errors.OpError as e: logging.info('Propagating error to cluster: %r: %s', e, e) try: context.context().report_error_to_cluster(e.error_code, e.message) except Exception as ex: # pylint: disable=broad-except logging.info('Ignoring error during error propagation: %r:%s', ex, ex) raise return result def _save_checkpoint(self): """Saves the checkpoint and exit program.""" logging.info('WorkerPreemptionHandler: Starting saving a checkpoint.') self._checkpointed_runs.assign(self.total_runs) start_time = time.monotonic() self._write_checkpoint_manager.save() # All workers need to participate in saving a checkpoint to avoid # deadlock. They need to write to different paths so that they would not # override each other. We make temporary directories for non-chief # workers to write to, and clean them up afterward. if not multi_worker_util.is_chief( cluster_spec=self._cluster_resolver.cluster_spec(), task_type=self._cluster_resolver.task_type, task_id=self._cluster_resolver.task_id): gfile.DeleteRecursively( os.path.dirname(self._write_checkpoint_manager.directory)) end_time = time.monotonic() logging.info('Checkpoint finished at path %s', self._write_checkpoint_manager.directory) self._checkpoint_time = end_time - start_time def _checkpoint_if_preempted(self): """Checkpoint if any worker has received a preemption signal. This function handles preemption signal reported by any worker in the cluster. The current implementation relies on the fact that all workers in a MultiWorkerMirroredStrategy training cluster have a step number difference maximum of 1. - If the signal comes from the worker itself (i.e., where this failure handler sits), the worker will notify all peers to checkpoint after they finish CURRENT_STEP+1 steps, where CURRENT_STEP is the step this worker has just finished. And the worker will wait for all peers to acknowledge that they have received its preemption signal and the final-step number before the worker proceeds on training the final step. - If the signal comes from another member in the cluster but NO final-step info is available, proceed on training, because it will be available after finishing the next step. - If the signal comes from some other member in the cluster, and final-step info is available, if the worker has not finished these steps yet, keep training; otherwise, checkpoint and exit with a cluster-recognized restart code. """ if self._final_checkpoint_countdown: run_count_config_key = _FINAL_RUN_COUNT_KEY else: run_count_config_key = _INITIAL_RUN_COUNT_KEY if self._received_checkpoint_step.is_set(): run_count_key = context.context().get_config_key_value( run_count_config_key) if run_count_key == str(self._run_counter): self._save_checkpoint() if self._time_to_exit(): self._stop_poll_termination_signal_thread() self._stop_cluster_wise_termination_watcher_thread() logging.info('WorkerPreemptionHandler: checkpoint saved. Exiting.') self._exit_fn() else: logging.info('Continue training for the grace period.') self._final_checkpoint_countdown = True self._received_checkpoint_step.clear() elif self._received_own_sigterm.is_set(): # Only the worker who gets termination signal first among the cluster # will enter this branch. The following will happen in chronological # order: # 1. The worker just receives a preemption signal and enters this branch # for the first time. It will set a step-to-checkpoint and let the cluster # know. # 2. If there is a long grace period, it will also set # _final_checkpoint_countdown, so that during this grace period, it will # re-enter this branch to check if grace period is ending. # 3. If it is, set a step-to-checkpoint key again. if self._final_checkpoint_countdown: if self._target_time_for_termination < time.time(): logging.info( 'Grace period almost ended. Final call to save a checkpoint!') else: return step_to_save_at = str(self._run_counter + 1) logging.info('Termination caught in main thread on preempted worker') context.context().set_config_key_value(run_count_config_key, step_to_save_at) logging.info('%s set to %s', run_count_config_key, step_to_save_at) n_workers = multi_worker_util.worker_count( self._cluster_resolver.cluster_spec(), self._cluster_resolver.task_type) for i in range(n_workers): context.context().get_config_key_value( f'{_ACKNOWLEDGE_KEY}_{run_count_config_key}_{i}') logging.info('Sigterm acknowledgement from replica %d received', i) self._setup_countdown_if_has_grace_period_and_not_already_counting_down() def _time_to_exit(self): """Return whether to exit: exit if no grace period or grace period ends.""" # we should directly exit in either of the two cases: # 1. if no grace period is provided; # 2. if there is a grace period, and we're in countdown period. This, # together with the fact that _received_checkpoint_step is set (again), # means it's time to exit: when there is a grace period, a worker # receives preemption signal and sets the step key. Then all workers # receive the step key and set their local _received_checkpoint_step # event, enters this branch in _checkpoint_if_preempted, make a # checkpoint. Then they set _final_checkpoint_countdown to True, clear # _received_checkpoint_step, and continue training. New preemption # signals anywhere in the cluster will not be handled, because # _PREEMPTION_WORKER_KEY is occupied. The only chance that # _received_checkpoint_step gets set again is when the worker who has # received the preemption signal earlier decide it's time to do a final # checkpoint (by checking if it already passes # _target_time_for_termination). It will upload a final step key. All # workers receive this key and again set _received_checkpoint_step. So, # if we found out that _received_checkpoint_step is set, and also # _final_checkpoint_countdown is true, it's checkpoint and exit time. return (self._grace_period <= 0) or self._final_checkpoint_countdown def _setup_countdown_if_has_grace_period_and_not_already_counting_down(self): """Set up at the beginning of a countdown period for long grace period.""" if self._grace_period > 0 and not self._final_checkpoint_countdown: # A factor to provide more buffer / inaccuracy. # TODO(wxinyi): update buffer_factor as needed. Maybe deduct a constant. buffer_factor = 3 # Timing by 2 since while the preempted worker needs to do 1 extra step # when time_till_final_call <=0, other workers might need to do x step # where 0<x<2 self._target_time_for_termination = ( self._received_own_sigterm_time + self._grace_period - buffer_factor * self._estimated_run_time * 2) def _sigterm_handler_fn(self, signum, frame): """Upload the to-be-preempted worker's id to coordination service.""" del signum, frame self._maybe_set_received_own_sigterm() def _watch_step_to_save_key(self): """Watch out for step-to-save config key and acknowledge. All workers, including the one to be preempted, execute this function to get step-to-save. """ step_value = context.context().get_config_key_value(_INITIAL_RUN_COUNT_KEY) # get_config_key_value does not return until it gets some result. Thus at # the time to clean up, we upload a _STOP_WATCHING_CLUSTER_VALUE as the # value so we can join the thread executing _watch_step_to_save_key. if step_value != _STOP_WATCHING_CLUSTER_VALUE: # This must be set before we set the ack key below, otherwise its value # in _checkpoint_if_preempted may be outdated. self._received_checkpoint_step.set() ack_key = f'{_ACKNOWLEDGE_KEY}_{_INITIAL_RUN_COUNT_KEY}_{self._id_in_cluster}' context.context().set_config_key_value(ack_key, '1') logging.info( 'WorkerPreemptionHandler: %s set, ' 'preemption awareness acknowledged', ack_key) # If a positive grace_period is not configured, we get the # _INITIAL_RUN_COUNT_KEY and then we're done. _checkpoint_if_preempted # will save a checkpoint and then exit. Otherwise, we need to move on to # wait for the _FINAL_RUN_COUNT_KEY, the one that the preempted worker # will set after we utilize the extended grace period to train, so that # a final checkpoint should be made right before the termination. if self._grace_period > 0: # Continue to wait until a final call is made. final_step_value = context.context().get_config_key_value( _FINAL_RUN_COUNT_KEY) if final_step_value != _STOP_WATCHING_CLUSTER_VALUE: ack_key = f'{_ACKNOWLEDGE_KEY}_{_FINAL_RUN_COUNT_KEY}_{self._id_in_cluster}' context.context().set_config_key_value(ack_key, '1') logging.info('WorkerPreemptionHandler: %s acknowledged, final ' 'checkpoint timing received.', ack_key) self._received_checkpoint_step.set()
70cb3d09402bd71b84303f0fe648479b8846a4b2
e93d1931789c99922a6b5ff3cf7e3bfe1c8bce3d
/blog/urls.py
feda7193e8da66168c2c798b1763fd13b33d3f73
[]
no_license
nhutphong/djangoblog
2653fcc34285788e7b34048acc7a078c88536c5c
e4bf2a0d43727c248b2a2006910a68063f99f186
refs/heads/master
2023-03-16T10:59:51.700275
2022-10-18T03:40:39
2022-10-18T03:40:39
237,549,725
1
0
null
2022-03-12T01:04:49
2020-02-01T02:23:09
Python
UTF-8
Python
false
false
1,089
py
from django.urls import path from django.contrib.auth.decorators import login_required from .views import ( ArticleListView, ArticleCreateView, ArticleDetailView, ArticleUpdateView, ArticleDeleteView, PaginationListView, SearchResultsView, ) from . import views_filter app_name = 'articles' urlpatterns = [ #/blog/ path('demo/', views_filter.demo, name='demo-list'), path('filter/', views_filter.filter_test, name='filter-list'), path('pagination/', PaginationListView.as_view(), name='pagination-list'), path('timkiem/', SearchResultsView.as_view(), name='search-results'), path('', ArticleListView.as_view(), name='article-list'), path('create/', ArticleCreateView.as_view(), name='article-create'), path('<slug:slug>/', ArticleDetailView.as_view(), name='article-detail'), path( '<slug:slug>/update/', ArticleUpdateView.as_view(), name='article-update' ), path( '<slug:slug>/delete/', ArticleDeleteView.as_view(), name='article-delete' ) ]
b2675f662be96e49ab8d4e0c301e40732a490cef
24d070c6410fdf7212c4c37c2fadc932cd4e8aec
/trac/wiki/test.py
b5941785692974b8d7b29d2432aee83ae302c289
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
clubturbo/Trac-1.4.2
4f111e8df9e8007a0e02080bec560361b25fc11c
254ce54a3c2fb86b4f31810ddeabbd4ff8b54a78
refs/heads/master
2023-01-20T16:20:44.724154
2020-12-03T08:57:08
2020-12-03T08:57:08
317,922,011
0
0
null
null
null
null
UTF-8
Python
false
false
8,528
py
# -*- coding: utf-8 -*- # # Copyright (C) 2004-2020 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at https://trac.edgewall.org/log/. import difflib import io import os import re import unittest # Python 2.7 `assertMultiLineEqual` calls `safe_repr(..., short=True)` # which breaks our custom failure display in WikiTestCase. try: from unittest.util import safe_repr except ImportError: pass else: unittest.case.safe_repr = lambda obj, short=False: safe_repr(obj, False) from trac.test import EnvironmentStub, MockRequest from trac.util.datefmt import datetime_now, to_utimestamp, utc from trac.util.text import strip_line_ws, to_unicode from trac.web.chrome import web_context from trac.wiki.formatter import (HtmlFormatter, InlineHtmlFormatter, OutlineFormatter) class WikiTestCase(unittest.TestCase): generate_opts = {} def __init__(self, title, input, expected, file, line, setup=None, teardown=None, context=None, default_data=False, enable_components=None, disable_components=None, env_path='', destroying=False): unittest.TestCase.__init__(self, 'test') self.title = title self.input = input self.expected = expected if file.endswith('.pyc'): file = file.replace('.pyc', '.py') self.file = file self.line = line self._setup = setup self._teardown = teardown self._context = context self.context = None self._env_kwargs = {'default_data': default_data, 'enable': enable_components, 'disable': disable_components, 'path': env_path, 'destroying': destroying} def _create_env(self): env = EnvironmentStub(**self._env_kwargs) # -- intertrac support env.config.set('intertrac', 'genshi.title', "Genshi's Trac") env.config.set('intertrac', 'genshi.url', "https://genshi.edgewall.org") env.config.set('intertrac', 't', 'trac') env.config.set('intertrac', 'th.title', "Trac Hacks") env.config.set('intertrac', 'th.url', "http://trac-hacks.org") # -- safe schemes env.config.set('wiki', 'safe_schemes', 'data,file,ftp,http,https,svn,svn+ssh,' 'rfc-2396.compatible,rfc-2396+under_score') return env def setUp(self): self.env = self._create_env() self.req = MockRequest(self.env, script_name='/') context = self._context if context: if isinstance(self._context, tuple): context = web_context(self.req, *self._context) else: context = web_context(self.req, 'wiki', 'WikiStart') self.context = context # Remove the following lines in order to discover # all the places were we should use the req.href # instead of env.href self.env.href = self.req.href self.env.abs_href = self.req.abs_href self.env.db_transaction( "INSERT INTO wiki VALUES(%s,%s,%s,%s,%s,%s,%s)", ('WikiStart', 1, to_utimestamp(datetime_now(utc)), 'joe', '--', 'Entry page', 0)) if self._setup: self._setup(self) def tearDown(self): self.env.reset_db() if self._teardown: self._teardown(self) def test(self): """Testing WikiFormatter""" formatter = self.formatter() v = unicode(formatter.generate(**self.generate_opts)) v = v.replace('\r', '').replace(u'\u200b', '') # FIXME: keep ZWSP v = strip_line_ws(v, leading=False) try: self.assertEqual(self.expected, v) except AssertionError as e: msg = to_unicode(e) match = re.match(r"u?'(.*)' != u?'(.*)'", msg) if match: g1 = ["%s\n" % x for x in match.group(1).split(r'\n')] g2 = ["%s\n" % x for x in match.group(2).split(r'\n')] expected = ''.join(g1) actual = ''.join(g2) wiki = repr(self.input).replace(r'\n', '\n') diff = ''.join(list(difflib.unified_diff(g1, g2, 'expected', 'actual'))) # Tip: sometimes, 'expected' and 'actual' differ only by # whitespace, so it can be useful to visualize them, e.g. # expected = expected.replace(' ', '.') # actual = actual.replace(' ', '.') def info(*args): return '\n========== %s: ==========\n%s' % args msg = info('expected', expected) msg += info('actual', actual) msg += info('wiki', ''.join(wiki)) msg += info('diff', diff) raise AssertionError( # See below for details '%s\n\n%s:%s: "%s" (%s flavor)' \ % (msg, self.file, self.line, self.title, formatter.flavor)) def formatter(self): return HtmlFormatter(self.env, self.context, self.input) def shortDescription(self): return 'Test ' + self.title class OneLinerTestCase(WikiTestCase): def formatter(self): return InlineHtmlFormatter(self.env, self.context, self.input) class EscapeNewLinesTestCase(WikiTestCase): generate_opts = {'escape_newlines': True} def formatter(self): return HtmlFormatter(self.env, self.context, self.input) class OutlineTestCase(WikiTestCase): def formatter(self): class Outliner(object): flavor = 'outliner' def __init__(self, env, context, input): self.outliner = OutlineFormatter(env, context) self.input = input def generate(self): out = io.StringIO() self.outliner.format(self.input, out) return out.getvalue() return Outliner(self.env, self.context, self.input) def wikisyntax_test_suite(data=None, setup=None, file=None, teardown=None, context=None, default_data=False, enable_components=None, disable_components=None, env_path=None, destroying=False): suite = unittest.TestSuite() def add_test_cases(data, filename): tests = re.compile('^(%s.*)$' % ('=' * 30), re.MULTILINE).split(data) next_line = 1 line = 0 for title, test in zip(tests[1::2], tests[2::2]): title = title.lstrip('=').strip() if line != next_line: line = next_line if not test or test == '\n': continue next_line += len(test.split('\n')) - 1 if 'SKIP' in title or 'WONTFIX' in title: continue blocks = test.split('-' * 30 + '\n') if len(blocks) < 5: blocks.extend([None] * (5 - len(blocks))) input, page, oneliner, page_escape_nl, outline = blocks[:5] for cls, expected in [ (WikiTestCase, page), (OneLinerTestCase, oneliner and oneliner[:-1]), (EscapeNewLinesTestCase, page_escape_nl), (OutlineTestCase, outline)]: if expected: tc = cls(title, input, expected, filename, line, setup, teardown, context, default_data, enable_components, disable_components, env_path, destroying) suite.addTest(tc) if data: add_test_cases(data, file) else: if os.path.exists(file): with open(file, 'r') as fobj: data = fobj.read().decode('utf-8') add_test_cases(data, file) else: print('no ' + file) return suite
[ "jonn@mindhunterx" ]
jonn@mindhunterx
71574601ac2b63d3341288b90ea931c5e3941b71
13a32b92b1ba8ffb07e810dcc8ccdf1b8b1671ab
/home--tommy--mypy/mypy/lib/python2.7/site-packages/scikits/statsmodels/tools/decorators.py
b67ab7f9182886af449a828b1f8d2348ab11ea16
[ "Unlicense" ]
permissive
tommybutler/mlearnpy2
8ec52bcd03208c9771d8d02ede8eaa91a95bda30
9e5d377d0242ac5eb1e82a357e6701095a8ca1ff
refs/heads/master
2022-10-24T23:30:18.705329
2022-10-17T15:41:37
2022-10-17T15:41:37
118,529,175
0
2
Unlicense
2022-10-15T23:32:18
2018-01-22T23:27:10
Python
UTF-8
Python
false
false
7,973
py
from numpy.testing import * import warnings __all__ = ['resettable_cache','cache_readonly', 'cache_writable'] class CacheWriteWarning(UserWarning): pass class ResettableCache(dict): """ Dictionary whose elements mey depend one from another. If entry `B` depends on entry `A`, changing the values of entry `A` will reset the value of entry `B` to a default (None); deleteing entry `A` will delete entry `B`. The connections between entries are stored in a `_resetdict` private attribute. Parameters ---------- reset : dictionary, optional An optional dictionary, associated a sequence of entries to any key of the object. items : var, optional An optional dictionary used to initialize the dictionary Examples -------- >>> reset = dict(a=('b',), b=('c',)) >>> cache = resettable_cache(a=0, b=1, c=2, reset=reset) >>> assert_equal(cache, dict(a=0, b=1, c=2)) >>> print "Try resetting a" >>> cache['a'] = 1 >>> assert_equal(cache, dict(a=1, b=None, c=None)) >>> cache['c'] = 2 >>> assert_equal(cache, dict(a=1, b=None, c=2)) >>> cache['b'] = 0 >>> assert_equal(cache, dict(a=1, b=0, c=None)) >>> print "Try deleting b" >>> del(cache['a']) >>> assert_equal(cache, {}) """ def __init__(self, reset=None, **items): self._resetdict = reset or {} dict.__init__(self, **items) def __setitem__(self, key, value): dict.__setitem__(self, key, value) for mustreset in self._resetdict.get(key, []): self[mustreset] = None def __delitem__(self, key): dict.__delitem__(self, key) for mustreset in self._resetdict.get(key, []): del(self[mustreset]) resettable_cache = ResettableCache class CachedAttribute(object): def __init__(self, func, cachename=None, resetlist=None): self.fget = func self.name = func.__name__ self.cachename = cachename or '_cache' self.resetlist = resetlist or () def __get__(self, obj, type=None): if obj is None: return self.fget # Get the cache or set a default one if needed _cachename = self.cachename _cache = getattr(obj, _cachename, None) if _cache is None: setattr(obj, _cachename, resettable_cache()) _cache = getattr(obj, _cachename) # Get the name of the attribute to set and cache name = self.name _cachedval = _cache.get(name, None) # print "[_cachedval=%s]" % _cachedval if _cachedval is None: # Call the "fget" function _cachedval = self.fget(obj) # Set the attribute in obj # print "Setting %s in cache to %s" % (name, _cachedval) try: _cache[name] = _cachedval except KeyError: setattr(_cache, name, _cachedval) # Update the reset list if needed (and possible) resetlist = self.resetlist if resetlist is not (): try: _cache._resetdict[name] = self.resetlist except AttributeError: pass # else: # print "Reading %s from cache (%s)" % (name, _cachedval) return _cachedval def __set__(self, obj, value): errmsg = "The attribute '%s' cannot be overwritten" % self.name warnings.warn(errmsg, CacheWriteWarning) class CachedWritableAttribute(CachedAttribute): # def __set__(self, obj, value): _cache = getattr(obj, self.cachename) name = self.name try: _cache[name] = value except KeyError: setattr(_cache, name, value) class _cache_readonly(object): """ Decorator for CachedAttribute """ def __init__(self, cachename=None, resetlist=None): self.func = None self.cachename = cachename self.resetlist = resetlist or None def __call__(self, func): return CachedAttribute(func, cachename=self.cachename, resetlist=self.resetlist) cache_readonly = _cache_readonly() class cache_writable(_cache_readonly): """ Decorator for CachedWritableAttribute """ def __call__(self, func): return CachedWritableAttribute(func, cachename=self.cachename, resetlist=self.resetlist) #this has been copied from nitime a long time ago #TODO: ceck whether class has change in nitime class OneTimeProperty(object): """A descriptor to make special properties that become normal attributes. This is meant to be used mostly by the auto_attr decorator in this module. Author: Fernando Perez, copied from nitime """ def __init__(self,func): """Create a OneTimeProperty instance. Parameters ---------- func : method The method that will be called the first time to compute a value. Afterwards, the method's name will be a standard attribute holding the value of this computation. """ self.getter = func self.name = func.func_name def __get__(self,obj,type=None): """This will be called on attribute access on the class or instance. """ if obj is None: # Being called on the class, return the original function. This way, # introspection works on the class. #return func #print 'class access' return self.getter val = self.getter(obj) #print "** auto_attr - loading '%s'" % self.name # dbg setattr(obj, self.name, val) return val if __name__ == "__main__": ### Tests resettable_cache ---------------------------------------------------- reset = dict(a=('b',), b=('c',)) cache = resettable_cache(a=0, b=1, c=2, reset=reset) assert_equal(cache, dict(a=0, b=1, c=2)) # print "Try resetting a" cache['a'] = 1 assert_equal(cache, dict(a=1, b=None, c=None)) cache['c'] = 2 assert_equal(cache, dict(a=1, b=None, c=2)) cache['b'] = 0 assert_equal(cache, dict(a=1, b=0, c=None)) # print "Try deleting b" del(cache['a']) assert_equal(cache, {}) ### --------------------------------------------------------------------------- class Example(object): # def __init__(self): self._cache = resettable_cache() self.a = 0 # @cache_readonly def b(self): return 1 @cache_writable(resetlist='d') def c(self): return 2 @cache_writable(resetlist=('e', 'f')) def d(self): return self.c + 1 # @cache_readonly def e(self): return 4 @cache_readonly def f(self): return self.e + 1 ex = Example() print "(attrs : %s)" % str(ex.__dict__) print "(cached : %s)" % str(ex._cache) print "Try a :", ex.a print "Try accessing/setting a readonly attribute" assert_equal(ex.__dict__, dict(a=0, _cache={})) print "Try b #1:", ex.b b = ex.b assert_equal(b, 1) assert_equal(ex.__dict__, dict(a=0, _cache=dict(b=1,))) # assert_equal(ex.__dict__, dict(a=0, b=1, _cache=dict(b=1))) ex.b = -1 print "Try dict", ex.__dict__ assert_equal(ex._cache, dict(b=1,)) # print "Try accessing/resetting a cachewritable attribute" c = ex.c assert_equal(c, 2) assert_equal(ex._cache, dict(b=1, c=2)) d = ex.d assert_equal(d, 3) assert_equal(ex._cache, dict(b=1, c=2, d=3)) ex.c = 0 assert_equal(ex._cache, dict(b=1, c=0, d=None, e=None, f=None)) d = ex.d assert_equal(ex._cache, dict(b=1, c=0, d=1, e=None, f=None)) ex.d = 5 assert_equal(ex._cache, dict(b=1, c=0, d=5, e=None, f=None))
9da746164e40ff74bb887fd59775557656eb228e
21e87dc5abaf8c8dfe7adfb72c38648f415d038c
/16_developer_tools/11_compileall/example/subfolder2/c.py
4713d0f8c91464a958dcfae43283a515af70bba3
[]
no_license
ariesduanmu/python3_standard_library
f2badbb6047b6003ddeccb77ba2892074510f0ff
905ae53d0970be442bcf3d2a9dc3eadbc58367e5
refs/heads/master
2022-04-23T21:05:52.862076
2020-04-23T16:44:14
2020-04-23T16:44:14
241,277,069
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
# -*- coding: utf-8 -*- # @Author: Li Qin # @Date: 2020-02-24 09:30:22 # @Last Modified by: Li Qin # @Last Modified time: 2020-02-24 09:30:56 def minus(a, b): return a-b
d06b868fa88c5d499dd32895fd542a19fc18deb0
eed7b5aa4861086d34e539e7bbfeff4286506692
/src/Game/Effects/spend_power.py
2286d1f6e407736c8ea6bf6088203090a386bc5c
[]
no_license
dfwarden/DeckBuilding
0be2ccb68fc9a69c8eaa1d8acedeaa7cebef1a31
0b5a7573a3cf33430fe61e4ff8a8a7a0ae20b258
refs/heads/master
2021-01-18T09:52:51.880892
2015-02-03T03:21:17
2015-02-03T03:21:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
class SpendPower: """ Represents an effect to spend power this turn """ def __init__(self, power): """ Initialize the Effect with the power to spend """ self.power = power def perform(self, context): """ Perform the Game Effect """ context.owner.spendPower(self.power)
5309fa1188f170b8efbe4b43b64fe524a1b8e1e9
db8ab70de135d8bddc2c6df865b98ed76c2b92ee
/model/toxic_comment_classifier.py
f0bf2a9509d6372736d134cd7b3551e2797e332d
[]
no_license
boyuan12/ToxicBlockPlus
718af4970f27e9eba9c454268a75c53c007f7737
f90a46b9748a8d4dcdfc9e8c19279cc6aeed46c5
refs/heads/main
2023-02-26T21:20:56.878995
2021-02-09T01:15:34
2021-02-09T01:15:34
335,865,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,278
py
from typing import List from bentoml import api, artifacts, env, BentoService from bentoml.frameworks.keras import KerasModelArtifact from bentoml.service.artifacts.common import PickleArtifact from bentoml.adapters import DataframeInput, JsonOutput from keras.preprocessing import text, sequence import numpy as np import pandas as pd list_of_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] max_text_length = 400 @env(pip_packages=['tensorflow==1.14.0', 'keras==2.3.1', 'pandas', 'numpy']) @artifacts([PickleArtifact('x_tokenizer'), KerasModelArtifact('model')]) class ToxicCommentClassification(BentoService): def tokenize_df(self, df): comments = df['comment_text'].values tokenized = self.artifacts.x_tokenizer.texts_to_sequences(comments) input_data = sequence.pad_sequences(tokenized, maxlen=max_text_length) return input_data @api(input=DataframeInput(), output=JsonOutput(), batch=True) def predict(self, df: pd.DataFrame) -> List[str]: input_data = self.tokenize_df(df) prediction = self.artifacts.model.predict(input_data) result = [] for i in prediction: result.append(list_of_classes[np.argmax(i)]) return result
434bfb4f4cc27692073954c84c66e1218f428b56
af47e1dd1405ebd5267e7f8cf22f7b4429fcef00
/scattertext/termscoring/g2.py
7ba2d01a83690dfca816ad03c8a93d0365684bad
[ "MIT", "CC-BY-NC-SA-4.0", "LicenseRef-scancode-proprietary-license", "Apache-2.0" ]
permissive
JasonKessler/scattertext
72ce3b35d71af595f7797de845ba93b4bb0091b4
b41e3a875faf6dd886e49e524345202432db1b21
refs/heads/master
2023-05-11T06:42:51.108527
2023-05-06T19:23:59
2023-05-06T19:23:59
63,827,736
2,187
303
Apache-2.0
2023-05-06T19:24:00
2016-07-21T01:47:12
Python
UTF-8
Python
false
false
4,143
py
import numpy as np import pandas as pd from scipy.stats import chi2 from statsmodels.stats.multitest import fdrcorrection from scattertext.termscoring.CorpusBasedTermScorer import CorpusBasedTermScorer def g2_term(O, E): res = O.astype(np.float64) * (np.log(O) - np.log(E)) res[O == 0] = 0 return res def sign(a: np.array) -> np.array: return np.nan_to_num(a / np.abs(a), 0) def qchisq(alpha: np.array, df: int) -> np.array: return chi2.ppf(1 - alpha, df=df) # qchisq(alpha, df=1, lower.tail=FALSE) class G2(CorpusBasedTermScorer): """ G^2 (log likelihood ratio)s from (Rayson and Garside 2000) A direct translation of the R function from (Evert 2023) Stephanie Evert. 2023. Measuring Keyness. https://osf.io/x8z9n. G2.term <- function (O, E) { res <- O * log(O / E) res[O == 0] <- 0 res } G2 <- function (f1, f2, N1, N2, alpha=NULL, correct=TRUE) { stopifnot(length(f1) == length(f2)) ## observed and expected contingency tables N <- N1 + N2 R1 <- f1 + f2 O11 <- f1; E11 <- R1 * N1 / N O12 <- f2; E12 <- R1 * N2 / N O21 <- N1 - f1; E21 <- N1 - E11 O22 <- N2 - f2; E22 <- N2 - E12 ## log-likelihood statistic (simplest formula) G2 <- 2 * (G2.term(O11, E11) + G2.term(O12, E12) + G2.term(O21, E21) + G2.term(O22, E22)) res <- sign(O11 - E11) * G2 # set sign to distinguish positive vs. negative keywords ## weed out non-significant items if alpha is specified if (!is.null(alpha)) { if (correct) alpha <- alpha / length(f1) theta <- qchisq(alpha, df=1, lower.tail=FALSE) res[G2 < theta] <- 0 # set to 0 if not significant at level alpha } res } """ def _set_scorer_args(self, **kwargs): self.alpha_ = kwargs.get('alpha', None) self.correct_ = kwargs.get('correct', True) def get_score_df(self, label_append=''): N1, N2, f1, f2 = self._get_ns_and_fs(()) gsquare, res = self._get_g2_and_res(N1, N2, f1, f2) df = pd.DataFrame({ 'G2': gsquare, 'Score': res, 'P': chi2.sf(gsquare, df=1), }) return df.assign( CorrectedP = lambda df: fdrcorrection(pvals=df.P.values, alpha=0.05, method='indep')[1] ) def get_scores(self, *args) -> pd.Series: N1, N2, f1, f2 = self._get_ns_and_fs(args) gsquare, res = self._get_g2_and_res(N1, N2, f1, f2) ## weed out non-significant items if alpha is specified if self.alpha_ is not None: alpha = self.alpha_ if self.correct_: alpha = alpha / len(f1) theta = qchisq(alpha, df=1) res[gsquare < theta] = 0 # set to 0 if not significant at level alpha return pd.Series(res, index=self._get_terms()) def _get_g2_and_res(self, N1, N2, f1, f2): N = N1 + N2 R1 = f1 + f2 E11, E12, E21, E22, O11, O12, O21, O22 = self.__get_contingency_table(N, N1, N2, R1, f1, f2) ## log-likelihood statistic (simplest formula) gsquare = 2 * (g2_term(O11, E11) + g2_term(O12, E12) + g2_term(O21, E21) + g2_term(O22, E22)) res = sign(O11 - E11) * gsquare # set sign to distinguish positive vs. negative keywords return gsquare, res def __get_contingency_table(self, N, N1, N2, R1, f1, f2): O11 = f1 E11 = R1 * N1 / N O12 = f2 E12 = R1 * N2 / N O21 = N1 - f1 E21 = N1 - E11 O22 = N2 - f2 E22 = N2 - E12 return E11, E12, E21, E22, O11, O12, O21, O22 def _get_ns_and_fs(self, args): cat_X, ncat_X = self._get_cat_and_ncat(self._get_X()) N1 = self._get_cat_size() N2 = self._get_ncat_size() if len(args) == 0: f1 = cat_X.sum(axis=0).A1 f2 = ncat_X.sum(axis=0).A1 else: f1, f2 = self.__get_f1_f2_from_args(args) f1 = np.array(f1).astype(np.float64) f2 = np.array(f2).astype(np.float64) return N1, N2, f1, f2 def get_name(self): return 'G2'
2ef11f6cdbf8403c0d448a2d67022c40b83c6620
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=3.5_rd=0.8_rw=0.06_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=60/sched.py
48c7bde40359bfb09d24223c9a5ccb1161b938c2
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
-X FMLP -Q 0 -L 3 104 400 -X FMLP -Q 0 -L 3 78 300 -X FMLP -Q 0 -L 3 69 300 -X FMLP -Q 0 -L 3 64 300 -X FMLP -Q 1 -L 2 62 250 -X FMLP -Q 1 -L 2 54 175 -X FMLP -Q 1 -L 2 49 300 -X FMLP -Q 2 -L 2 49 150 -X FMLP -Q 2 -L 2 43 150 -X FMLP -Q 2 -L 2 37 250 -X FMLP -Q 3 -L 1 35 250 -X FMLP -Q 3 -L 1 34 100 -X FMLP -Q 3 -L 1 30 150 22 100 21 200 8 175
2b0b60fa7dc054457ed41a697b42028cc176aa8f
e10a6d844a286db26ef56469e31dc8488a8c6f0e
/ml_debiaser/randomized_threshold.py
11e80f5069ecc7299769e3dd9478b15431da9356
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Jimmy-INL/google-research
54ad5551f97977f01297abddbfc8a99a7900b791
5573d9c5822f4e866b6692769963ae819cb3f10d
refs/heads/master
2023-04-07T19:43:54.483068
2023-03-24T16:27:28
2023-03-24T16:32:17
282,682,170
1
0
Apache-2.0
2020-07-26T15:50:32
2020-07-26T15:50:31
null
UTF-8
Python
false
false
10,142
py
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for debiasing ML models.""" import math from typing import Optional import numpy as np class RandomizedThreshold: """Threshold optimizer (RTO) to debias models via postprocessing. See: https://arxiv.org/abs/2106.12887. This is a solver to the following optimiation problem: minimize gamma/2 ||x||^2 - y^Tx s.t. x satisfying DP constraints with tolerance eps and parameter rho. There are no assumptions about y in this code but, in general, y should be the predictions of the original classifier. """ def __init__(self, gamma: float = 1.0, eps: float = 0.0, rho: Optional[float] = None ) -> None: """Instantiate object. Args: gamma: The regularization parameter gamma (for randomization). Set this to 1 if the goal is to minmize l2 difference from the original scores. eps: Tolerance parameter for bias between 0 and 1 inclusive. rho: The rho parameter in the post-hoc rule. If None, rho = E[y]. """ if eps < 0: raise ValueError('eps must be non-negative.') if gamma <= 0: raise ValueError('gamma must be a strictly positive number.') if rho is not None and rho <= 0: raise ValueError('rho must be either None or a strictly positive number.') self.num_groups = 1 self.gamma = gamma self.eps = eps self.rho = rho self.avrg_y_score = 0 # model paramters (Lagrange dual variables) self.lambdas = [] self.mus = [] def fit(self, y_orig: np.ndarray, group_feature: np.ndarray, sgd_steps: int = 10_000, full_gradient_epochs: int = 1_000, verbose: bool = True, batch_size: int = 256, ignore_warnings: bool = False ) -> None: """Debias predictions w.r.t. the sensitive class in each demographic group. IMPORTANT: If this is used for postprocessing a classifier, the scores y_orig need to be rescaled linearly to [-1, +1]. Training proceeds in two rounds. First is SGD. Second is full gradient descent. Full gradient descent is recommended when debiasing deep neural nets because the scores are concentrated around the extremes so high preciseion might be needed. Because the loss is smooth, lr in full gradient method does not need tuning. It can be set to gamma / 2.0. Args: y_orig: A vector of the original probability scores. If this is used for debiasing binary classifiers, y_orig = 2 * p(y=1) - 1. group_feature: An array containing the group id of each instance starting from group 0 to group K-1. sgd_steps: Number of minibatch steps in SGD. full_gradient_epochs: Number of epochs in full gradient descent phase. verbose: Set to True to display progress. batch_size: Size of minibatches in SGD. ignore_warnings: Set to True to suppress warnings. """ if min(y_orig) >= 0: # use this to catch a common bug self.yscale = 'positive' else: self.yscale = 'negative' y_orig = np.array(y_orig) num_groups = len(set(group_feature)) # number of demographic groups # warnings against common bugs/errors if (min(y_orig) < -1 or max(y_orig) > 1) and not ignore_warnings: print('Warning: the scores y_orig are not in the range [-1, +1]. ' 'To suppress this message, set ignore_warnings=True.') if self.yscale == 'positive' and not ignore_warnings: print('Warning: if this is for postprocessing a binary classifier, ' 'the scores need to be rescaled to [-1, +1]. To suppress this ' 'message, set ignore_warnings=True.') # assert that group_feature is of the right form and no group is empty if min(group_feature) != 0 or (max(group_feature) != num_groups - 1): raise ValueError('group_feature should be in {0, 1, .. K-1} where ' 'K is the nubmer of groups. Some groups are missing.') self.num_groups = num_groups eps0 = self.eps / 2.0 gamma = self.gamma # Store group membership ids in a dictionary. xk_groups = {k: [] for k in range(num_groups)} for i in range(len(group_feature)): xk_groups[group_feature[i]].append(i) self.avrg_y_score = float(sum(y_orig))/len(y_orig) if self.rho is None: # by default: self.rho = E[y] in [0, 1] not [-1, 1] if self.yscale == 'positive': self.rho = self.avrg_y_score else: self.rho = self.avrg_y_score / 2.0 + 0.5 # The parameters we optimize in the algorithm are lambdas and mus. # lambdas_final and mus_final are running averages (final output). lambdas = np.zeros((num_groups,)) mus = np.zeros((num_groups,)) lambdas_final = np.zeros_like(lambdas) # running averages mus_final = np.zeros_like(mus) # running averages # SGD is carried out in each group separately due to decomposition of the # optimization problem. num_samples_sgd = sgd_steps * batch_size lr = gamma * math.sqrt(1.0 / num_samples_sgd) # Begin the projected SGD phase. if verbose: print('SGD phase started:') for k in range(num_groups): if verbose: print('Group %d.\t\t%02d%%'%(k, int(100*k/num_groups)), end='\r') idx = np.array(list(xk_groups[k])) # instance IDs in group k group_size = len(idx) for _ in range(sgd_steps): # random.randint is 10x faster than random.choice. batch_ids = np.random.randint(0, group_size, batch_size) batch_ids = idx[batch_ids] # The code below is a faster implementation of: # xi_arg = y_orig[batch_ids] - (lambdas[k] - mus[k]) # xi_gradient = xi_arg/gamma # xi_gradient = np.maximum(xi_gradient, 0.) # xi_gradient = np.minimum(xi_gradient, 1.) lambda_minus_mu = lambdas[k] - mus[k] xi_arg = np.maximum(y_orig[batch_ids], lambda_minus_mu) xi_arg = np.minimum(xi_arg, gamma + lambda_minus_mu) mean_xi = (np.mean(xi_arg) - lambda_minus_mu) / gamma lambda_gradient = eps0 + self.rho - mean_xi mu_gradient = eps0 - self.rho + mean_xi # stochastic gradient descent if eps0 > 1e-3: lambdas[k] = max(0, lambdas[k] - lr * batch_size * lambda_gradient) mus[k] = max(0, mus[k] - lr * batch_size * mu_gradient) else: # If self.eps=0, we can drop mus and optimize lambdas only but # lambdas will not be constrained to be non-negative in this case. lambdas[k] = lambdas[k] - lr * batch_size * lambda_gradient # lambdas_final and mus_final are running averages. lambdas_final[k] += lambdas[k] / sgd_steps mus_final[k] += mus[k] / sgd_steps # Now switch to full gradient descent. # Because the objective is smooth, lr = gamma / 2 works. if verbose and full_gradient_epochs: print('\nFull gradient descent phase started:') for k in range(num_groups): if verbose: print('Group {}.'.format(k)) idx = np.array(list(xk_groups[k])) for _ in range(full_gradient_epochs): lambda_minus_mu = lambdas_final[k] - mus_final[k] xi_arg = np.maximum(y_orig[idx], lambda_minus_mu) xi_arg = np.minimum(xi_arg, gamma + lambda_minus_mu) mean_xi = (np.mean(xi_arg) - lambda_minus_mu) / gamma full_grad_lambda = eps0 + self.rho - mean_xi full_grad_mu = eps0 - self.rho + mean_xi if eps0 > 1e-3: lambdas_final[k] = max(0, lambdas_final[k] - 0.5*gamma*full_grad_lambda) mus_final[k] = max(0, mus_final[k] - 0.5*gamma*full_grad_mu) else: lambdas_final[k] = lambdas_final[k] - 0.5*gamma*full_grad_lambda self.lambdas = lambdas_final self.mus = mus_final def predict(self, y_orig: np.ndarray, group_feature: np.ndarray, ignore_warnings: bool = False ) -> np.ndarray: """Debiases the predictions. Given the original scores y, post-process them such that the predictions satisfy the desired fairness criteria. Args: y_orig: Original classifier scores. If this is for postprocessing binary classifiers, y_orig = 2 * p(y = 1) - 1. group_feature: An array containing the group id of each instance starting from group 0 to group K-1. ignore_warnings: Set to True to suppress warnings. Returns: y_new_prob: y_new_prob[i] is the probability of predicting the positive class for instance i. """ if (((min(y_orig) >= 0 and self.yscale == 'negative') or (min(y_orig) < 0 and self.yscale == 'positive')) and not ignore_warnings): print('Warning: the scores seem to have a different scale from the ' 'training data. ' 'If the data is scaled in [0, 1], e.g. for preprocessing, or ' 'in [-1, +1], e.g. for postprocessing, make sure that test labels ' 'are scaled similarly.') num_examples = len(y_orig) # number of training examples gamma = self.gamma lambdas = self.lambdas mus = self.mus y_new_prob = np.zeros((num_examples,)) for i in range(num_examples): k = group_feature[i] if y_orig[i] < (lambdas[k] - mus[k]): y_new_prob[i] = 0 elif y_orig[i] < (lambdas[k] - mus[k]) + gamma: y_new_prob[i] = (1.0 / gamma) * (y_orig[i] - (lambdas[k] - mus[k])) else: y_new_prob[i] = 1.0 return y_new_prob
0397c9f0d2e40acf497622b8b4cb2e5299202bba
471ea669e21abdb4e4915610b4b5eb43ea3cffe9
/剑指Offer/31.整数中1出现的次数.py
d663b71492aabfba5cd8ae82b899c772a9d0eb39
[]
no_license
JiahuaLink/nowcoder-leetcode
26aed099e215cfc1d8e8afffc62fafa26b26b06f
0155fc33511cbe892f58550d561d3aa3efcd56b9
refs/heads/master
2023-07-09T03:05:31.227720
2021-08-03T06:50:36
2021-08-03T06:50:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
883
py
# 方法一:判断整数每个数字 class Solution: def NumberOf1Between1AndN_Solution(self, n): count = 0 for i in range(1, n+1): temp = i while(temp): if temp%10 == 1: count += 1 temp /= 10 return count # 方法二:将整数转为字符串逐位判断 class Solution: def NumberOf1Between1AndN_Solution(self, n): count = 0 for i in range(1, n+1): s = str(i) for j in s: if j == '1': count += 1 return count # 方法三:将整数转为字符串,组合含有‘1’的字符串,再统计‘1’的个数 def NumberOf1Between1AndN_Solution(self, n): a = map(str, range(n+1)) ones = [i for i in a if '1' in i] return ''.join(ones).count('1')
3220c6fedfbdef66c2d1bc9c9c4a39bc047ce8ae
40c2bce56832d97797c115f60d1e0459fd4ebf93
/Eclipse_Project_2/Section_1_5/database.py
3c56f2e590f4f519ae6e0c1a2f4d52010d0af71a
[]
no_license
amanoj319319319/Eclipse_Python_LastSeleniumTest
0be2e7f615160248f329b4df0e9d109612b29560
4d0978e4c2dfe9c3a9d4b429f7ff6340278c0252
refs/heads/master
2023-04-27T09:14:38.726807
2021-05-19T08:18:40
2021-05-19T08:18:40
267,038,244
0
0
null
2021-05-19T08:17:45
2020-05-26T12:35:36
Python
UTF-8
Python
false
false
6,224
py
#connecting to the database using database credentials and finding version of the database ''' import cx_Oracle con=cx_Oracle.connect('system/Manoj319319319') if con!=None: print ("successfully connected") print ("Version is:-",con.version) else: print ("connection failed") ''' #creating a table name in the database ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj319319319') query="create table employees(eno number,ename varchar2(10),esal number(10,2))" cursor=con.cursor() cursor.execute(query) print ("Table created succesfully") except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #deleted a particular table name in the database ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj319319319') query="drop table employees" cursor=con.cursor() cursor.execute(query) print ("Table dropped succesfully") except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #creating a table in the database ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj319319319') query="create table employees(eno number,ename varchar2(10),esal number(10,2))" cursor=con.cursor() cursor.execute(query) print ("Table created succesfully") except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #Inserting multiple values to the required paramters in the employees table ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() query = "insert into employees values(:eno,:ename,:esal)" records=[(101,"manoj",10000),(102,"anki",20000),(103,"jyothi",30000)] cursor.executemany(query,records) con.commit() print ("Record Inserted succesfully") except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #Reading input from the console ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() while True: eno=int(input("Enter employee number:-")) ename =(input("Enter employee name:-")) esal = float(input("Enter employee salary:-")) query = "insert into employees values(%d,'%s',%f)" cursor.execute(query %(eno,ename,esal)) con.commit() print ("Records Inserted succesfully") option=input("Do you want to insert one more record[yes/no]") if option == "no": break except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #Updating records in the database using SQL query #The employees whose salary was less than 5000,i i had to increment Rs 1000 to their existing salary ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() increment=float(input("Enter increment amount:-")) salaryrange=float(input("Enter salary range:-")) query="update employees set esal=esal+%f where esal<%f" cursor.execute(query %(increment, salaryrange)) con.commit() print ("Records are updated successfully") except Exception as e: print (e) finally: if cursor: cursor.close() if con: con.close() ''' #Deleting records from the employees table based on their salary ranges #in the temployees table whose salary was greater than 5000 they were deleted from the table by me ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() cutoff=float(input("Enter cutoff amount:-")) query="delete from employees where esal>%f" cursor.execute(query %(cutoff)) con.commit() print ("Records are deleted successfully") except Exception as e: print (e) finally: if cursor:#if cursor means if cursor is not equal to None cursor.close() if con: con.close() ''' ''' DDL coommands are ;;; table created , table dropped DML Commnds are ;;;; insert operation , update operation , delete operation (for doing this , commit() method is must) ''' #desc employees #select * from employees; #how to use fetchone() method to retrive data from the table ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() query="select * from employees" cursor.execute(query) row=cursor.fetchone() while row is not None: print(row) row = cursor.fetchone() except Exception as e: if con: con.rollback() print ("There is a problem:-",e) finally: if cursor:#if cursor means if cursor is not equal to None cursor.close() if con: con.close() ''' #how to use fetchall() method to retrive data from the table ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() query="select * from employees" cursor.execute(query) rows=cursor.fetchall() print (rows) for row in rows: print ("Employee number is:-",row[0]) print("Employee name is:-", row[1]) print("Employee salary is:-", row[2]) print ("***************") except Exception as e: if con: con.rollback() print ("There is a problem:-",e) finally: if cursor:#if cursor means if cursor is not equal to None cursor.close() if con: con.close() ''' #how to use fetchmany() method to retrive data from the table ''' import cx_Oracle try: con=cx_Oracle.connect('system/Manoj320320320') cursor=con.cursor() query="select * from employees" cursor.execute(query) n=int(input("How many rows do you want:-")) data = cursor.fetchmany(n) for row in data: print ("Employee number is:-",row[0]) print("Employee name is:-", row[1]) print("Employee salary is:-", row[2]) print ("***************") except Exception as e: if con: con.rollback() print ("There is a problem:-",e) finally: if cursor:#if cursor means if cursor is not equal to None cursor.close() if con: con.close() '''
57c166495a5ba9c4d4d739bff152b1a67f6e3fea
5ceea4106e0df754ae581c1f5e2d16082d7b6386
/hackerRank/Algorithms/Implementation/bon-appetit.py
0da733b5b6475b0511073b0a9b33e4e31f2c3664
[]
no_license
vikramlance/Python-Programming
b0d4bd70145bfaa7a66434656c5970fbc57e8bd3
4094961e3c613e33f2d8a6d30281c60ed09d8c80
refs/heads/master
2022-06-17T00:58:50.646615
2022-06-03T03:39:35
2022-06-03T03:39:35
53,989,511
1
0
null
null
null
null
UTF-8
Python
false
false
250
py
''' https://www.hackerrank.com/challenges/bon-appetit ''' n,k=raw_input().split() n=int(n) k=int(k) a=map(int, raw_input().split()) b=int(raw_input()) if (2*b== (sum(a) - a[k])): print "Bon Appetit" else: print ( b - ((sum(a) - a[k])//2))
76f8185eb90a42766f86ea066b38f022fd6156e5
131688c1006670be2bab5ce062521ce9b79b64af
/week2/design_hashset.py
ff2fc0f9e3e5b52cdb2f8f1875abad001dd4aa75
[ "MIT" ]
permissive
ravichalla/wallbreaker
4e3dc98ff02fd8a7bace2466c071c65a37124426
0d587f12c60df5e4bca47f9183484a69d284d1f5
refs/heads/master
2020-06-08T05:44:35.510146
2020-01-29T02:25:19
2020-01-29T02:25:19
193,169,833
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
class MyHashSet: def __init__(self): self.capacity = 5000 self.arr = [None] * self.capacity def add(self, key): hash_val = hash(key) % self.capacity if self.arr[hash_val] == None: self.arr[hash_val] = [key] else: if key not in self.arr[hash_val]: self.arr[hash_val].append(key) def remove(self, key) -> None: hash_val = hash(key) % self.capacity if self.arr[hash_val] == None: return for ind in range(len(self.arr[hash_val])): if self.arr[hash_val][ind] == key: del self.arr[hash_val][ind] return def contains(self, key): hash_val = hash(key) % self.capacity if self.arr[hash_val] == None: return False else: for h_key in self.arr[hash_val]: if h_key == key: return True return False
3c8d65c57a7bdbf95d8cdf533395ad17aa5f6a99
03e115c1937ec7bd1e249f82db0225828eaaa186
/2-GUI (tkinter)/3imagenes.py
5d2a2f4a214587d17e084764b7496fb9400deb31
[]
no_license
mivargas/Master-python
236c04205637ddd44d1cc879de2b7c48418153f9
9d1c04a8d658aa0dd8620ed792fa2133adfa57e7
refs/heads/master
2023-03-06T13:35:58.177058
2021-02-16T00:06:00
2021-02-16T00:06:00
321,731,390
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
from tkinter import * from PIL import Image, ImageTk ventana = Tk() ventana.geometry("700x500") Label(ventana, text="HOLA SOY MIGUEL").pack(anchor=W) imagen = Image.open("./imagenes/labsxd.png") render = ImageTk.PhotoImage(imagen) Label(ventana, image=render).pack(anchor=E) ventana.mainloop()
5c02e94311a37dbaf15d56d180884328cdaf081d
761a20a79420bc6da491c5a487f6cf218f598b66
/DemoTest/graphicsTkinter003.py
d8eb0e19c8eb84a4b963313d1955a8126b63903c
[]
no_license
namexiaohuihui/linuxlogin
50b21e247d2e06c479907aa2f94f4b5979b4025d
ad8ffce5e87624f40f89eedc0229ba70cd66699b
refs/heads/master
2020-03-24T16:56:06.313441
2018-08-03T14:06:48
2018-08-03T14:06:48
142,843,487
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
# -*- coding: utf-8 -*- """ @__author__ :DingDong @file: graphicsTkinter001.py @time: 2018/5/17 21:37 @Entry Name:operating """ from tkinter import * from tkinter.messagebox import showinfo def reply(name): showinfo(title='弹窗',message='你的名字: %s !' % name) top = Tk() top.title('账号登陆') # top.iconbitma('1178420.gif') Label(top,text='请输入你的名字 :').pack(side=TOP) ent = Entry(top) ent.pack(side=TOP) btn = Button(top,text='登陆',command=lambda :reply(ent.get())) btn.pack(side=TOP) top.mainloop()
aef37705f286e46903ffcd71491000c635addd56
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/531LonelyPixelI.py
85d2ad88ff367da5b050933632ef6d2bb1308b12
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
913
py
# coding=utf-8 ''' Created on 2017�4�11� @author: Administrator ''' class Solution(object): def findLonelyPixel(self, picture): """ :type picture: List[List[str]] :rtype: int """ if picture: rows = [0] * len(picture) cols = [0] * len(picture[0]) for row in range(len(picture)): for col in range(len(picture[row])): if picture[row][col] == "B": rows[row] += 1 cols[col] += 1 ans = 0 for row in range(len(picture)): for col in range(len(picture[row])): if rows[row] == 1 and cols[col] == 1 and picture[row][col] == "B": ans += 1 return ans else: return 0 picture = ["BBB"] print Solution().findLonelyPixel(picture)
b09d2c84b36ef30c97f1bc81ce017ce57b4ec3d9
7f863ca7ed47981f69e42fc1add75ba4acad921a
/code-lab/DSA - Long Hike(Fractional Knapsack).py
f4d12e06067fcbb5aa404a68e6bcd836d7d613b3
[ "CC0-1.0" ]
permissive
Nahid-Hassan/fullstack-software-development
e9f920be9a999c78f156e6102683b93a50c4e597
892ffb33e46795061ea63378279a6469de317b1a
refs/heads/main
2023-08-19T14:16:57.801056
2021-09-29T15:34:35
2021-09-29T15:34:35
376,595,866
0
0
null
null
null
null
UTF-8
Python
false
false
1,049
py
weights = 1 weights_values = [(14, 2), (20, 4), (18, 3)] def knapsack_slow(weights_values, weights): values_by_weights = [(x / y, y) for x, y in weights_values] values_by_weights.sort(reverse=True) # print(values_by_weights) print(values_by_weights) bags = [] for i in range(len(values_by_weights)): if sum(bags) == weights: break if values_by_weights[i][1] <= weights - sum(bags): bags.append(values_by_weights[i][1]) # weights -= values_by_weights[i][1] else: # temp = values_by_weights[i][1] bags.append(weights) print(weights + '----------') return bags def knapsack_fast(weights_values, weights): bags = [] volume = 0 temp_weights = weights values_by_weights = [(x/y, y) for x, y in weights_values] values_by_weights.sort() for i in range(len(weights_values)): if weights == 0: return (bags, volume) if values_by_weights[i][1]: pass
f1033a3a96ab29a179996c21324e2e9a90a9b91e
8ecd899a8558ad0a644ecefa28faf93e0710f6fb
/ABC163/ABC163_A.py
bb4bb6c963e85231718a3704fce4761be0b06a79
[]
no_license
yut-inoue/AtCoder_ABC
b93885547049788d452e86b442a4a9f5ee191b0e
3d2c4b2b2f8871c75f86040ad07ccd7736ad3dbe
refs/heads/master
2021-07-03T09:09:20.478613
2021-02-21T13:20:31
2021-02-21T13:20:31
227,140,718
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
r=int(input()) #a,b=map(int,input().split()) #l=list(map(int,input().split())) #l=[list(map(int,input().split())) for i in range(n)] ans=2*r*3.14159 print('{:.5f}'.format(ans))
bdd60ed37f1b70cbf11c34d6e1db1b4d9f5d6caa
ef0917d016a1a2b60b2ccbb18325eadab37b61a8
/Mplayer_Reproductor.py
8e3074068ccd5aa85d1863d99f949ea05e5a9ca3
[]
no_license
sugar-activities/4355-activity
a8dcab94e01c5e45b78196a69df4391e48263e04
acefbd1ea5eabaf2783326bb1c9e2bd8f4255007
refs/heads/master
2021-01-19T23:14:25.746896
2017-04-21T05:54:35
2017-04-21T05:54:35
88,936,742
0
0
null
null
null
null
UTF-8
Python
false
false
11,529
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Mplayer_Reproductor.py por: # Flavio Danesse <[email protected]> # CeibalJAM! - Uruguay # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import gobject, time, os, subprocess, platform from gettext import gettext as _ UPDATE_TIME = 30 STDOUT = "/tmp/jamediaout%d" % time.time() STDERR = "/dev/null" MPLAYER = "mplayer" if "olpc" in platform.platform(): MPLAYER = "./mplayer" class Mplayer_Reproductor(gobject.GObject): __gsignals__ = {"cambio_estado":(gobject.SIGNAL_RUN_FIRST, gobject.TYPE_NONE, (gobject.TYPE_STRING,)), "update_progress":(gobject.SIGNAL_RUN_FIRST, gobject.TYPE_NONE, (gobject.TYPE_FLOAT,)), "video":(gobject.SIGNAL_RUN_FIRST, gobject.TYPE_NONE, (gobject.TYPE_BOOLEAN,)), "mplayer_info":(gobject.SIGNAL_RUN_FIRST, gobject.TYPE_NONE, (gobject.TYPE_STRING,))} ''' Posibles estados: "playing Audio_Video", "paused Audio_Video", "stoped Audio_Video", "playing Radio", "playing TV", None ''' def __init__(self, id_pantalla): self.__gobject_init__() self.ejecutable = MPLAYER self.id_pantalla = id_pantalla self.tipo_de_datos = None self.mplayer = None self.salida = None self.entrada = None self.Actualizador = False self.pista_actual = None self.estado= None self.progress= 0.0 #self.name_origen= None estado= property(self.get_estado, self.set_estado) progress= property(self.get_progress, self.set_progress) ''' estructura= "%s -wid %i -slave -idle -nolirc -quiet −volume 100" % (self.ejecutable, self.id_pantalla) self.mplayer= subprocess.Popen(estructura, shell=True, stdin=subprocess.PIPE, stdout=open(STDOUT,"w+b"), stderr=open(STDERR,"r+b"), universal_newlines=True) self.entrada= self.mplayer.stdin self.salida= open(STDOUT,"r")''' self.set_estado(None) # ----------- Propiedades ----------- def get_estado(self): return self.estado def set_estado(self, valor= None): self.estado = valor self.emit("cambio_estado", self.get_estado()) def get_progress(self): return self.progress def set_progress(self, valor): self.progress = valor self.emit("update_progress", self.get_progress()) # ----------- Propiedades ----------- # ------------------------ ACTUALIZACIONES De REPRODUCCION ------------------------ def update_progress(self): if not self.entrada.closed: self.entrada.write("%s 0\n" % ("get_percent_pos")) self.entrada.flush() linea = self.salida.readline() if linea: if "ANS_PERCENT_POSITION" in linea: self.get_progress_in_mplayer(linea) elif "Video: no video" in linea or "Audio only file format detected" in linea: self.emit("video", False) elif "Cache" in linea: self.get_progress_cache_in_mplayer(linea) elif "Movie-Aspect" in linea: self.emit("video", True) elif "Starting playback" in linea: #self.emit("cambio_estado", self.get_estado()) pass elif "Position:" in linea or "VO:" in linea or "AO:" in linea: # AO: [pulse] 22050Hz 2ch s16le (2 bytes per sample) # VO: [xv] 540x360 => 540x360 Planar YV12 #self.emit("mplayer_info", linea) pass elif "Resolving" in linea or "Connecting" in linea: #self.emit("mplayer_info", linea) pass elif "Name" in linea: #self.name_origen= linea.split(": ")[-1] pass elif "Playing" in linea: #self.name_origen= linea.split("Playing ")[-1] pass elif "Opening" in linea or "AUDIO" in linea or "Selected" in linea \ or "Genre" in linea or "Website" in linea or "Bitrate" in linea: ''' Opening video decoder: [ffmpeg] FFmpeg's libavcodec codec family Selected video codec: [ffh264] vfm: ffmpeg (FFmpeg H.264) Opening audio decoder: [faad] AAC (MPEG2/4 Advanced Audio Coding) AUDIO: 44100 Hz, 2 ch, s16le, 119.9 kbit/8.50% (ratio: 14989->176400) Selected audio codec: [faad] afm: faad (FAAD AAC (MPEG-2/MPEG-4 Audio))''' #self.emit("mplayer_info", linea) pass else: ''' mplayer: Symbol `ff_codec_bmp_tags' has different size in shared object, consider re-linking eos/Beautiful Liar - Beyonce ft Shakira. stream 0: video (h264), -vid 0 [lavf] stream 1: audio (aac), -aid 0 VIDEOopen: No such file or directory [MGA] Couldn't open: /dev/mga_vid open: No such file or directory [MGA] Couldn't open: /dev/mga_vid [VO_TDFXFB] Can't open /dev/fb0: Permission denied. [VO_3DFX] Unable to open /dev/3dfx. Failed to open VDPAU backend libvdpau_nvidia.so: cannot open shared object file: No such file or directo========================================================================== ========================================================================== ========================================================================== ========================================================================== AO: [pulse] 44100Hz 2ch s16le (2 bytes per sample) Starting playback... VO: [xv] 320x240 => 320x240 Planar YV12''' pass return True def get_progress_in_mplayer(self, linea): try: if "Cache size" in linea: return try: progress = float(linea[linea.index('=')+1:-1]) if self.get_progress()!= progress: self.set_progress(progress) if self.get_progress() >= 100.0: self.set_estado("stoped Audio_Video") except Exception, e: print "Error en Progreso de Reproducción: %s" % (e) #print linea except Exception, e: print "Error en Progreso de Reproducción: %s" % (e) #print linea def get_progress_cache_in_mplayer(self, linea): if "Cache not responding" in linea: return try: if "Cache size" in linea: return try: progress = float((linea.split(": ")[-1]).split("%")[0])/20*100 except: return if self.get_progress()!= progress: self.set_progress(progress) #self.emit("mplayer_info", "Cargando Caché") except Exception, e: print "Error en Carga de Caché: %s" % (e) #print linea # ------------------------ ACTUALIZACIONES De REPRODUCCION ------------------------ # ------------------------ REPRODUCCION ------------------------------------------- def seek(self, valor): if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False self.entrada.write('seek %s 1 0\n' % (float(valor))) self.entrada.flush() self.set_estado("playing Audio_Video") self.Actualizador = gobject.timeout_add(UPDATE_TIME, self.update_progress) def play(self, direccion, tipo_de_datos): self.tipo_de_datos = tipo_de_datos if tipo_de_datos == "Radio": self.play_radio(direccion) elif tipo_de_datos == "TV": self.play_tv(direccion) elif tipo_de_datos == "Audio_Video": self.play_Audio_Video(direccion) def play_Audio_Video(self, direccion): self.pista_actual = "%s%s%s" % ("\"", direccion, "\"") self.play_archivo(self.pista_actual) def play_archivo(self, direccion): ejecutable_cache_pantalla = "%s -cache %i -wid %i" % (self.ejecutable, 1024, self.id_pantalla) estructura= "%s -slave -idle -nolirc -rtc -nomouseinput -noconsolecontrols -nojoystick" % (ejecutable_cache_pantalla) self.mplayer = subprocess.Popen(estructura, shell=True, stdin=subprocess.PIPE, stdout=open(STDOUT,"w+b"), stderr=open(STDOUT,"r+b"), universal_newlines=True) self.entrada = self.mplayer.stdin self.salida = open(STDOUT,"r") self.entrada.write("loadfile %s 0\n" % direccion) self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False self.Actualizador = gobject.timeout_add(UPDATE_TIME, self.update_progress) self.pista_actual = direccion self.set_estado("playing Audio_Video") self.emit("mplayer_info", self.pista_actual) def play_radio(self, direccion): ejecutable_cache_pantalla = "%s -cache %i" % (self.ejecutable, 32) estructura= "%s -slave -idle -nolirc -quiet -rtc -nomouseinput -noconsolecontrols -nojoystick" % (ejecutable_cache_pantalla) self.mplayer= subprocess.Popen(estructura, shell=True, stdin=subprocess.PIPE, stdout=open(STDOUT,"w+b"), stderr=open(STDOUT,"r+b"), universal_newlines=True) self.entrada= self.mplayer.stdin self.salida= open(STDOUT,"r") self.entrada.write("loadfile %s 0\n" % direccion) self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False #self.Actualizador= gobject.timeout_add(UPDATE_TIME, self.update_progress) self.pista_actual= direccion self.set_estado("playing Radio") self.emit("mplayer_info", self.pista_actual) def play_tv(self, direccion): ejecutable_cache_pantalla = "%s -cache %i -wid %i" % (self.ejecutable, 1024, self.id_pantalla) estructura= "%s -slave -idle -nolirc -quiet -rtc -nomouseinput -noconsolecontrols -nojoystick" % (ejecutable_cache_pantalla) self.mplayer= subprocess.Popen(estructura, shell=True, stdin=subprocess.PIPE, stdout=open(STDOUT,"w+b"), stderr=open(STDOUT,"r+b"), universal_newlines=True) self.entrada= self.mplayer.stdin self.salida= open(STDOUT,"r") self.entrada.write("loadfile %s 0\n" % direccion) self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False #self.Actualizador= gobject.timeout_add(UPDATE_TIME, self.update_progress) self.pista_actual= direccion self.set_estado("playing TV") self.emit("mplayer_info", self.pista_actual) def pause_play(self): try: if self.entrada: if self.get_estado() == "playing Audio_Video": # pausa self.entrada.write('pause 0\n') self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False self.set_estado("paused Audio_Video") self.emit("mplayer_info", _("Reproducción Pausada")) elif self.get_estado() == "paused Audio_Video": self.entrada.write('pause 0\n') # hace unpause self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False self.Actualizador = gobject.timeout_add(UPDATE_TIME, self.update_progress) self.set_estado("playing Audio_Video") self.emit("mplayer_info", "%s: %s" % (_("Reproduciendo"), self.pista_actual)) except Exception, e: print "HA OCURRIDO UN ERROR EN PAUSE_PLAY DEL REPRODUCTOR", e def quit(self, widget=None): try: if self.entrada: self.entrada.write('%s 0\n' % "quit") self.entrada.flush() if self.Actualizador: gobject.source_remove(self.Actualizador) self.Actualizador = False except Exception, e: print "HA OCURRIDO UN ERROR EN QUIT DEL REPRODUCTOR", e self.set_progress(0.0) if os.path.exists(STDOUT): os.unlink(STDOUT) self.pista_actual = None self.set_estado(None) self.emit("mplayer_info", _("Reproducción Detenida")) # ------------------------ REPRODUCCION -------------------------------------------
abc19a89f586d28d24cd2468c387a49113282b1c
03520abb58a66aeed9a556d53e3a21006af02dde
/named_storms/migrations/0079_nsempsa_covered_data_snapshot.py
73c0e3338456b81ae6bf6fe88566507a8f794e9c
[]
no_license
flackdl/cwwed
23ce1d1a5e48a57ee2cb3229860f1b97ccc81636
0a1454897d397cd5e1652643616abe883ccc853b
refs/heads/master
2023-07-21T20:05:35.093270
2023-06-29T15:29:26
2023-06-29T15:29:26
118,942,664
1
0
null
2023-09-12T21:56:59
2018-01-25T17:06:47
Python
UTF-8
Python
false
false
530
py
# Generated by Django 2.2.6 on 2019-10-17 17:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('named_storms', '0078_auto_20191017_1705'), ] operations = [ migrations.AddField( model_name='nsempsa', name='covered_data_snapshot', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='named_storms.NamedStormCoveredDataSnapshot'), ), ]
a5c3f6f93d1f5122a502c4bff3c84593cf568c96
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_201/2402.py
f7e5ebea73232aadb5a3d4e17099e09452301ea6
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,266
py
def increment_by_value(d, l, index, value): if index in d: d[index] += value else: d[index] = value l.append(index) l.sort() def occupy(s): num_stalls, num_people = [int(x) for x in s.split(" ")] free, free_index = dict(), [] free[num_stalls] = 1 free_index.append(num_stalls) count = 0 while 1: #print("free ", free) #print("free index ", free_index) length = free_index[-1] num_served = free[length] free[length] = 0 free_index.remove(length) #print("serving ", num_served, " people") if length % 2 == 0: increment_by_value(free, free_index, length // 2, num_served) increment_by_value(free, free_index, length // 2 - 1, num_served) max, min = length // 2, length // 2 - 1 else: increment_by_value(free, free_index, length // 2, num_served * 2) #free[length // 2] += 1 max, min = length // 2, length // 2 count += num_served if count >= num_people: return max, min def main(): l = int(input()) for i in range(l): max, min= occupy(input()) print("Case #{}: {} {}".format(i + 1, max, min)) main()
cfbf28112e456f0999b8c8dc64ea310f31fb5227
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/pirates/leveleditor/worldData/del_fuego_building_int_tattoo.py
615b94089f0e48bcfbf591d8fc665740418ee377
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
3,540
py
from pandac.PandaModules import Point3, VBase3, Vec4 objectStruct = { 'Objects': { '1153434880.63dzlu0': { 'Type': 'Building Interior', 'Name': '', 'AdditionalData': [ 'interior_spanish_store_tattoo'], 'Instanced': True, 'Objects': { '1201136836.84dxschafe': { 'Type': 'Door Locator Node', 'Name': 'door_locator', 'Hpr': VBase3(-180.0, 0.0, 0.0), 'Pos': Point3(-7.141, -11.488, 0.0060000000000000001), 'Scale': VBase3(1.0, 1.0, 1.0) } }, 'Visual': { 'Model': 'models/buildings/interior_spanish_npc' } } }, 'Node Links': [], 'Layers': { 'Collisions': [ '1184008208.59kmuller', '1184016064.62kmuller', '1184013852.84kmuller', '1185822696.06kmuller', '1184006140.32kmuller', '1184002350.98kmuller', '1184007573.29kmuller', '1184021176.59kmuller', '1184005963.59kmuller', '1188324241.31akelts', '1184006537.34kmuller', '1184006605.81kmuller', '1187139568.33kmuller', '1188324186.98akelts', '1184006730.66kmuller', '1184007538.51kmuller', '1184006188.41kmuller', '1184021084.27kmuller', '1185824396.94kmuller', '1185824250.16kmuller', '1185823630.52kmuller', '1185823760.23kmuller', '1185824497.83kmuller', '1185824751.45kmuller', '1187739103.34akelts', '1188323993.34akelts', '1184016538.29kmuller', '1185822200.97kmuller', '1184016225.99kmuller', '1195241421.34akelts', '1195242796.08akelts', '1184020642.13kmuller', '1195237994.63akelts', '1184020756.88kmuller', '1184020833.4kmuller', '1185820992.97kmuller', '1185821053.83kmuller', '1184015068.54kmuller', '1184014935.82kmuller', '1185821432.88kmuller', '1185821701.86kmuller', '1195240137.55akelts', '1195241539.38akelts', '1195238422.3akelts', '1195238473.22akelts', '1185821453.17kmuller', '1184021269.96kmuller', '1185821310.89kmuller', '1185821165.59kmuller', '1185821199.36kmuller', '1185822035.98kmuller', '1184015806.59kmuller', '1185822059.48kmuller', '1185920461.76kmuller', '1194984449.66akelts', '1185824206.22kmuller', '1184003446.23kmuller', '1184003254.85kmuller', '1184003218.74kmuller', '1184002700.44kmuller', '1186705073.11kmuller', '1187658531.86akelts', '1186705214.3kmuller', '1185824927.28kmuller', '1184014204.54kmuller', '1184014152.84kmuller'] }, 'ObjectIds': { '1153434880.63dzlu0': '["Objects"]["1153434880.63dzlu0"]', '1201136836.84dxschafe': '["Objects"]["1153434880.63dzlu0"]["Objects"]["1201136836.84dxschafe"]' } } extraInfo = { 'camPos': Point3(-1202.78, 260.68599999999998, 149.845), 'camHpr': VBase3(-98.880099999999999, -28.781600000000001, 0), 'focalLength': 1.3999999761599999 }
cf7a5c949b145a86634b083e8acd0620cef804a3
de4817e9c0f16283c4c6f9dcec3a0c36f49adf0f
/pytest_cases/plugin.py
b79d808e778403f49ecb8187fb7308ad67041226
[ "BSD-3-Clause" ]
permissive
yashtodi94/python-pytest-cases
3422cd4f399543b5add22d8631980b20bb92d68a
81bd5b3d2a7b358e8d9f97dae77654f6bc9c7999
refs/heads/master
2020-06-27T18:22:06.798892
2019-07-31T07:40:56
2019-07-31T07:40:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
42,492
py
from collections import OrderedDict, namedtuple from copy import copy from distutils.version import LooseVersion from warnings import warn from functools import partial import pytest from pytest_cases.common import get_pytest_nodeid, get_pytest_function_scopenum, \ is_function_node, get_param_names, get_pytest_scopenum, get_param_argnames_as_list from pytest_cases.main_fixtures import NOT_USED, is_fixture_union_params, UnionFixtureAlternative, apply_id_style try: # python 3.3+ from inspect import signature except ImportError: from funcsigs import signature try: # python 3.3+ type hints from typing import Optional, List, Tuple, Union, Iterable from _pytest.python import CallSpec2 except ImportError: pass _DEBUG = False # @hookspec(firstresult=True) # @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_collection(session): # override the fixture manager's method session._fixturemanager.getfixtureclosure = partial(getfixtureclosure, session._fixturemanager) class FixtureDefsCache(object): """ The object plays a role of 'cache' for fixture definitions. """ __slots__ = 'fm', 'nodeid', 'cached_fix_defs' def __init__(self, fm, nodeid): self.fm = fm self.nodeid = nodeid self.cached_fix_defs = dict() def get_fixture_defs(self, fixname): try: # try to retrieve it from cache fixdefs = self.cached_fix_defs[fixname] except KeyError: # otherwise get it and store for next time fixdefs = self.fm.getfixturedefs(fixname, self.nodeid) self.cached_fix_defs[fixname] = fixdefs return fixdefs class FixtureClosureNode(object): __slots__ = 'parent', 'fixture_defs', \ 'split_fixture_name', 'split_fixture_discarded_names', 'children', \ '_as_list', 'all_fixture_defs' def __init__(self, parent_node=None): self.parent = parent_node # these will be set after closure has been built self.fixture_defs = None self.split_fixture_name = None self.split_fixture_discarded_names = [] self.children = OrderedDict() # this will be created after the first time the object is converted to a list (cache) self._as_list = None self.all_fixture_defs = None # ------ tree def get_leaves(self): if self.has_split(): return [n for c in self.children.values() for n in c.get_leaves()] else: return [self] # ------ def to_str(self, indent_nb=0, with_children=True, with_discarded=True): """ Provides a string representation, either with all the subtree (default) or without (with_children=False) You can also remove the "discarded" information for clarity with with_discarded=False :param indent_nb: :param with_children: :param with_discarded: :return: """ indent = " " * indent_nb if not self.is_closure_built(): str_repr = "<pending, incomplete>" else: str_repr = "%s(%s)" % (indent, ",".join([("%s" % f) for f in self.fixture_defs.keys()])) if with_discarded: str_repr += " (discarded: %s)" % self.split_fixture_discarded_names if self.has_split() and with_children: children_str_prefix = "\n%s - " % indent children_str = children_str_prefix + children_str_prefix.join([c.to_str(indent_nb=indent_nb + 1) for c in self.children.values()]) str_repr = str_repr + " split: " + self.split_fixture_name + children_str return str_repr def __repr__(self): return self.to_str() # ---- list facade def __iter__(self): return iter(self.to_list()) def __getitem__(self, item): return self.to_list()[item] def __setitem__(self, key, value): # This is called in Pytest 4+. TODO how should we behave ? warn("WARNING the new order is not taken into account !!") pass def index(self, *args): return self.to_list().index(*args) def to_list(self): """ Converts self to a list to get all fixture names, and caches the result. The first time this is called, a non-none arg2fixturedefs object Must be provided to sort the fixture names according to scope. TODO maybe this sorting should actually be propagated down the tree so that it is done per branch :param arg2fixturedefs: :return: """ if self._as_list is None: # crawl the tree to get the list of unique fixture names fixturenames_closure = self._to_list() if LooseVersion(pytest.__version__) >= LooseVersion('3.5.0'): # sort by scope def sort_by_scope(arg_name): try: fixturedefs = self.get_all_fixture_defs()[arg_name] except KeyError: return get_pytest_function_scopenum() else: return fixturedefs[-1].scopenum fixturenames_closure.sort(key=sort_by_scope) self._as_list = fixturenames_closure return self._as_list def _to_list(self): """ Returns a list of all fixture names used (with no redundancy) """ lst = [] self._append_to(lst) # eliminate redundancy unique_lst = _make_unique(lst) # TODO remove for efficiency assert set(unique_lst) == set(lst) return unique_lst def _append_to(self, lst): """Appends all fixture names of this subtree to the given list""" # first append the fixture names lst += list(self.fixture_defs.keys()) # then if there is a split at this node if self.has_split(): # add the split fixture > not needed anymore # lst.append(self.split_fixture_name) # add all children for c in self.children.values(): c._append_to(lst) # ---- def get_all_fixture_defs(self): if self.all_fixture_defs is None: # collect self.all_fixture_defs = self._get_all_fixture_defs() return self.all_fixture_defs def _get_all_fixture_defs(self): all = OrderedDict() for k, v in self.fixture_defs.items(): if v is not None: all[k] = v for c in self.children.values(): all.update(c.get_all_fixture_defs()) return all # ---- utils to build the closure def build_closure(self, fixture_defs_mgr, # type: FixtureDefsCache initial_fixture_names # type: Iterable[str] ): self._build_closure(fixture_defs_mgr, initial_fixture_names) def is_closure_built(self): return self.fixture_defs is not None def already_knows_fixture(self, fixture_name): """ Return True if this fixture is known by this node or one of its parents """ if fixture_name in self.fixture_defs: return True elif self.parent is None: return False else: return self.parent.already_knows_fixture(fixture_name) def _build_closure(self, fixture_defs_mgr, # type: FixtureDefsCache initial_fixture_names # type: Iterable[str] ): """ :param arg2fixturedefs: set of fixtures already known by the parent node :return: nothing (the input arg2fixturedefs is modified) """ # Grab all dependencies of all fixtures present at this node and add them to either this or to nodes below. # -- first switch this object from 'pending' to 'under construction' if needed # (indeed we now authorize and use the possibility to call this twice. see split() ) if self.fixture_defs is None: self.fixture_defs = OrderedDict() # -- then for all pending, add them with their dependencies pending_fixture_names = list(initial_fixture_names) while len(pending_fixture_names) > 0: fixname = pending_fixture_names.pop(0) # if the fixture is already known in this node or above, do not care if self.already_knows_fixture(fixname): continue # else grab the fixture definition(s) for this fixture name for this test node id fixturedefs = fixture_defs_mgr.get_fixture_defs(fixname) if not fixturedefs: # fixture without definition: add it self.add_required_fixture(fixname, None) else: # the actual definition is the last one _fixdef = fixturedefs[-1] _params = _fixdef.params if _params is not None and is_fixture_union_params(_params): # create an UNION fixture # transform the _params into a list of names alternative_f_names = UnionFixtureAlternative.to_list_of_fixture_names(_params) # if there are direct dependencies that are not the union members, add them to pending non_member_dependencies = [f for f in _fixdef.argnames if f not in alternative_f_names] pending_fixture_names += non_member_dependencies # propagate WITH the pending self.split_and_build(fixture_defs_mgr, fixname, fixturedefs, alternative_f_names, pending_fixture_names) # empty the pending pending_fixture_names = [] else: # normal fixture self.add_required_fixture(fixname, fixturedefs) # add all dependencies in the to do list dependencies = _fixdef.argnames # - append: was pytest default # pending_fixture_names += dependencies # - prepend: makes much more sense pending_fixture_names = list(dependencies) + pending_fixture_names # ------ tools to add new fixture names during closure construction def add_required_fixture(self, new_fixture_name, new_fixture_defs): """ Adds some required fixture names to this node. Returns True if new fixtures were added here (not in child)""" if self.already_knows_fixture(new_fixture_name): return elif not self.has_split(): # add_required_fixture locally if new_fixture_name not in self.fixture_defs: self.fixture_defs[new_fixture_name] = new_fixture_defs else: # add_required_fixture in each child for c in self.children.values(): c.add_required_fixture(new_fixture_name, new_fixture_defs) def split_and_build(self, fixture_defs_mgr, # type: FixtureDefsCache split_fixture_name, # type: str split_fixture_defs, # type: Tuple[FixtureDefinition] alternative_fixture_names, # type: List[str] pending_fixtures_list # ): """ Declares that this node contains a union with alternatives (child nodes=subtrees) """ if self.has_split(): raise ValueError("This should not happen anymore") # # propagate the split on the children: split each of them # for n in self.children.values(): # n.split_and_build(fm, nodeid, split_fixture_name, split_fixture_defs, alternative_fixture_names) else: # add the split (union) name to known fixtures self.add_required_fixture(split_fixture_name, split_fixture_defs) # remember it self.split_fixture_name = split_fixture_name # create the child nodes for f in alternative_fixture_names: # create the child node new_c = FixtureClosureNode(self) self.children[f] = new_c # set the discarded fixture names new_c.split_fixture_discarded_names = [g for g in alternative_fixture_names if g != f] # perform the propagation: # create a copy of the pending fixtures list and prepend the fixture used pending_for_child = copy(pending_fixtures_list) # (a) first propagate all child's dependencies new_c._build_closure(fixture_defs_mgr, [f]) # (b) then the ones required by parent new_c._build_closure(fixture_defs_mgr, pending_for_child) def has_split(self): return self.split_fixture_name is not None def get_not_always_used(self): """Returns the list of fixtures used by this subtree, that are not always used""" results_list = [] # initial list is made of fixtures that are in the children initial_list = self.gather_all_required(include_parents=False) for c in self.get_leaves(): j = 0 for i in range(len(initial_list)): fixture_name = initial_list[j] if fixture_name not in c.gather_all_required(): del initial_list[j] results_list.append(fixture_name) else: j += 1 return results_list def gather_all_required(self, include_children=True, include_parents=True): """ Returns a list of all fixtures required by the subtree at this node :param include_children: :return: """ # first the fixtures required by this node required = list(self.fixture_defs.keys()) # then the ones required by the parents if include_parents and self.parent is not None: required = required + self.parent.gather_all_required(include_children=False) # then the ones from all the children if include_children: for child in self.children.values(): required = required + child.gather_all_required(include_parents=False) return required def requires(self, fixturename): """ Returns True if the fixture with this name is required by the subtree at this node :param fixturename: :return: """ return fixturename in self.gather_all_required() def gather_all_discarded(self): """ Returns a list of all fixture names discarded during splits from the parent node down to this node. Note: this does not include the split done at this node if any, nor all of its subtree. :return: """ discarded = list(self.split_fixture_discarded_names) if self.parent is not None: discarded = discarded + self.parent.gather_all_discarded() return discarded # ------ tools to see the tree as a list of alternatives def print_alternatives(self): return FixtureClosureNode.print_alternatives_list(*self.get_alternatives()) @staticmethod def print_alternatives_list(filters_list, fixtures_list): for f, p in zip(filters_list, fixtures_list): print(f, p) def get_alternatives(self): """ Returns the alternatives - a list of dictionaries union_fixture_name: value representing the filters on this alternative - a list of tuples of fixture names used by each alternative - a list of tuples of discarded fixture names in each alternative :return: """ if self.has_split(): partitions_list = [] filters_list = [] discarded_list = [] for k, c in self.children.items(): child_filters_dct, child_partitions, child_discarded = c.get_alternatives() for f_dct, p, d in zip(child_filters_dct, child_partitions, child_discarded): # append a partition for this child: # - filter _f_dct = f_dct.copy() _f_dct[self.split_fixture_name] = k filters_list.append(_f_dct) # - fixtures used partitions_list.append(_make_unique(list(self.fixture_defs.keys()) + p)) # - fixtures not used. discarded_list.append(_make_unique(self.split_fixture_discarded_names + [df for df in d if df not in self.fixture_defs.keys()])) return filters_list, partitions_list, discarded_list else: # return a single partition containing all fixture names return [dict()], [list(self.fixture_defs.keys())], [list(self.split_fixture_discarded_names)] def merge(new_items, into_list): """ Appends items from `new_items` into `into_list`, only if they are not already there. :param new_items: :param into_list: :return: """ at_least_one_added = False for l in new_items: if l not in into_list: into_list.append(l) at_least_one_added = True return at_least_one_added def getfixtureclosure(fm, fixturenames, parentnode, ignore_args=()): # first retrieve the normal pytest output for comparison kwargs = dict() if LooseVersion(pytest.__version__) >= LooseVersion('4.6.0'): # new argument "ignore_args" in 4.6+ kwargs['ignore_args'] = ignore_args if LooseVersion(pytest.__version__) >= LooseVersion('3.7.0'): # three outputs initial_names, ref_fixturenames, ref_arg2fixturedefs = \ fm.__class__.getfixtureclosure(fm, fixturenames, parentnode, **kwargs) else: # two outputs ref_fixturenames, ref_arg2fixturedefs = fm.__class__.getfixtureclosure(fm, fixturenames, parentnode) # now let's do it by ourselves. parentid = parentnode.nodeid # Create closure # -- auto-use fixtures _init_fixnames = fm._getautousenames(parentid) # -- required fixtures/params. # ********* fix the order of initial fixtures: indeed this order may not be the right one ************ # this only works when pytest version is > 3.4, otherwise the parent node is a Module if is_function_node(parentnode): # grab all the parametrization on that node and fix the order. # Note: on pytest >= 4 the list of param_names is probably the same than the `ignore_args` input param_names = get_param_names(parentnode) sorted_fixturenames = sort_according_to_ref_list(fixturenames, param_names) # ********** merge(sorted_fixturenames, _init_fixnames) else: # we cannot sort yet merge(fixturenames, _init_fixnames) # Finally create the closure tree if _DEBUG: print("Creating closure for %s:" % parentid) fixture_defs_mger = FixtureDefsCache(fm, parentid) fixturenames_closure_node = FixtureClosureNode() fixturenames_closure_node.build_closure(fixture_defs_mger, _init_fixnames) if _DEBUG: print("Closure for %s completed:" % parentid) print(fixturenames_closure_node) # sort the fixture names (note: only in recent pytest) fixturenames_closure_node.to_list() # FINALLY compare with the previous behaviour TODO remove when in 'production' ? if len(ignore_args) == 0: assert fixturenames_closure_node.get_all_fixture_defs() == ref_arg2fixturedefs # if fixturenames_closure_node.has_split(): # # order might be changed # assert set((str(f) for f in fixturenames_closure_node)) == set(ref_fixturenames) # else: # # same order # if len(p_markers) < 2: # assert list(fixturenames_closure_node) == ref_fixturenames # else: # NOW different order happens all the time because of the "prepend" strategy in the closure building # which makes much more sense/intuition. assert set((str(f) for f in fixturenames_closure_node)) == set(ref_fixturenames) # and store our closure in the node # note as an alternative we could return a custom object in place of the ref_fixturenames # store_union_closure_in_node(fixturenames_closure_node, parentnode) if LooseVersion(pytest.__version__) >= LooseVersion('3.7.0'): our_initial_names = sorted_fixturenames # initial_names return our_initial_names, fixturenames_closure_node, ref_arg2fixturedefs else: return fixturenames_closure_node, ref_arg2fixturedefs # ------------ hack to store and retrieve our custom "closure" object # def store_union_closure_in_node(fixturenames_closure_node, parentnode): # parentnode.advanced_fixture_closure = fixturenames_closure_node def retrieve_union_closure_from_metafunc(metafunc): return metafunc.fixturenames # --------------------------------------- @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_generate_tests(metafunc): """ We use this hook to replace the 'partial' function of `metafunc` with our own below, before it is called by pytest :param metafunc: :return: """ # override the parametrize method. # Note we could do it in a static way in pytest_sessionstart or plugin init hook, but we would need to save the metafunc.parametrize = partial(parametrize, metafunc) # now let pytest parametrize the call as usual _ = yield class UnionParamz(namedtuple('UnionParamz', ['union_fixture_name', 'alternative_names', 'ids', 'scope', 'kwargs'])): """ Represents some parametrization to be applied, for a union fixture """ __slots__ = () def __str__(self): return "[UNION] %s=[%s], ids=%s, scope=%s, kwargs=%s" \ "" % (self.union_fixture_name, ','.join([str(a) for a in self.alternative_names]), self.ids, self.scope, self.kwargs) class NormalParamz(namedtuple('NormalParamz', ['argnames', 'argvalues', 'indirect', 'ids', 'scope', 'kwargs'])): """ Represents some parametrization to be applied """ __slots__ = () def __str__(self): return "[NORMAL] %s=[%s], indirect=%s, ids=%s, scope=%s, kwargs=%s" \ "" % (self.argnames, self.argvalues, self.indirect, self.ids, self.scope, self.kwargs) def parametrize(metafunc, argnames, argvalues, indirect=False, ids=None, scope=None, **kwargs): """ This alternate implementation of metafunc.parametrize creates a list of calls that is not just the cartesian product of all parameters (like the pytest behaviour). Instead, it offers an alternate list of calls takinginto account all union fixtures. For this, it replaces the `metafunc._calls` attribute with a `CallsReactor` instance, and feeds it with all parameters and parametrized fixtures independently (not doing any cross-product). The resulting `CallsReactor` instance is then able to dynamically behave like the correct list of calls, lazy-creating that list when it is used. """ # create our special container object if needed if not isinstance(metafunc._calls, CallsReactor): # first call: should be an empty list if len(metafunc._calls) > 0: raise ValueError("This should not happen - please file an issue") metafunc._calls = CallsReactor(metafunc) # grab it calls_reactor = metafunc._calls # detect union fixtures if is_fixture_union_params(argvalues): if ',' in argnames or not isinstance(argnames, str): raise ValueError("Union fixtures can not be parametrized") union_fixture_name = argnames union_fixture_alternatives = argvalues if indirect is False or len(kwargs) > 0: raise ValueError("indirect cannot be set on a union fixture, as well as unknown kwargs") # add a union parametrization in the queue (but do not apply it now) calls_reactor.append(UnionParamz(union_fixture_name, union_fixture_alternatives, ids, scope, kwargs)) else: # add a normal parametrization in the queue (but do not apply it now) calls_reactor.append(NormalParamz(argnames, argvalues, indirect, ids, scope, kwargs)) # put our object back in place - not needed anymore # metafunc._calls = calls_reactor class CallsReactor: """ This object replaces the list of calls that was in `metafunc._calls`. It behaves like a list, but it actually builds that list dynamically based on all parametrizations collected from the custom `metafunc.parametrize` above. There are therefore three steps: - when `metafunc.parametrize` is called, this object gets called on `add_union` or `add_param`. A parametrization order gets stored in `self._pending` - when this object is first read as a list, all parametrization orders in `self._pending` are transformed into a tree in `self._tree`, and `self._pending` is discarded. This is done in `create_tree_from_pending_parametrization`. - finally, the list is built from the tree using `self._tree.to_call_list()`. This will also be the case in subsequent usages of this object. """ __slots__ = 'metafunc', '_pending', '_call_list' def __init__(self, metafunc): self.metafunc = metafunc self._pending = [] self._call_list = None # -- methods to provising parametrization orders without executing them -- def append(self, parametrization # type: Union[UnionParamz, NormalParamz] ): self._pending.append(parametrization) def print_parametrization_list(self): """Helper method to print all pending parametrizations in this reactor """ print("\n".join([str(p) for p in self._pending])) # -- list facade -- def __iter__(self): return iter(self.calls_list) def __getitem__(self, item): return self.calls_list[item] @property def calls_list(self): """ Returns the list of calls. This property relies on self._tree, that is lazily created on first access, based on `self.parametrizations`. :return: """ if self._call_list is None: # create the definitive tree. self.create_call_list_from_pending_parametrizations() return self._call_list # --- tree creation (executed once the first time this object is used as a list) def create_call_list_from_pending_parametrizations(self): """ Takes all parametrization operations that are pending in `self._pending`, and creates a parametrization tree out of them. self._pending is set to None afterwards :return: """ # temporarily remove self from the _calls field, we'll need to change it bak_calls = self.metafunc._calls assert bak_calls is self # grab the fixtures closure tree created previously (see getfixtureclosure above) fix_closure_tree = retrieve_union_closure_from_metafunc(self.metafunc) # ------ parametrize the calls -------- # create a dictionary of pending things to parametrize, and only keep the first parameter in case of several pending_items = [(get_param_argnames_as_list(p[0])[0], p) for p in self._pending] pending = OrderedDict(pending_items) if _DEBUG: print() print("---- pending parametrization ----") self.print_parametrization_list() print("---------------------------------") print() print("Applying all of them in the closure tree nodes:") calls, nodes = self._process_node(fix_closure_tree, pending.copy(), []) self._cleanup_calls_list(fix_closure_tree, calls, nodes, pending) if _DEBUG: print("\n".join(["%s[%s]: funcargs=%s, params=%s" % (get_pytest_nodeid(self.metafunc), c.id, c.funcargs, c.params) for c in calls])) print() self._call_list = calls # put back self as the _calls facade self.metafunc._calls = bak_calls # forget about all parametrizations now - this wont happen again self._pending = None def _cleanup_calls_list(self, fix_closure_tree, calls, nodes, pending): """ Cleans the calls list so that all calls contain a value for all parameters. This is basically about adding "NOT_USED" parametrization everywhere relevant. :param calls: :param nodes: :param pending: :return: """ nb_calls = len(calls) if nb_calls != len(nodes): raise ValueError("This should not happen !") # function_scope_num = get_pytest_function_scopenum() for i in range(nb_calls): c, n = calls[i], nodes[i] # A/ set to "not used" all parametrized fixtures that were not used in some branches for fixture, p_to_apply in pending.items(): if fixture not in c.params and fixture not in c.funcargs: # parametrize with a single "not used" value and discard the id if isinstance(p_to_apply, UnionParamz): c_with_dummy = self._parametrize_calls([c], p_to_apply.union_fixture_name, [NOT_USED], indirect=True, discard_id=True, scope=p_to_apply.scope, **p_to_apply.kwargs) else: _nb_argnames = len(get_param_argnames_as_list(p_to_apply.argnames)) if _nb_argnames > 1: _vals = [(NOT_USED,) * _nb_argnames] else: _vals = [NOT_USED] c_with_dummy = self._parametrize_calls([c], p_to_apply.argnames, _vals, indirect=p_to_apply.indirect, discard_id=True, scope=p_to_apply.scope, **p_to_apply.kwargs) assert len(c_with_dummy) == 1 calls[i] = c_with_dummy[0] c = calls[i] # B/ some non-parametrized fixtures may also need to be explicitly deactivated in some callspecs # otherwise they will be setup/teardown. # # For this we use a dirty hack: we add a parameter with they name in the callspec, it seems to be propagated # in the `request`. TODO is there a better way? # for fixture in list(fix_closure_tree): # for fixture_name, fixdef in self.metafunc._arg2fixturedefs.items(): for fixture_name in fix_closure_tree.get_not_always_used(): fixdef = self.metafunc._arg2fixturedefs[fixture_name] if fixture_name not in c.params and fixture_name not in c.funcargs: if not n.requires(fixture_name): # explicitly add it as discarded by creating a parameter value for it. c.params[fixture_name] = NOT_USED c.indices[fixture_name] = 1 c._arg2scopenum[fixture_name] = get_pytest_scopenum(fixdef[-1].scope) else: # explicitly add it as active c.params[fixture_name] = 'used' c.indices[fixture_name] = 0 c._arg2scopenum[fixture_name] = get_pytest_scopenum(fixdef[-1].scope) def _parametrize_calls(self, init_calls, argnames, argvalues, discard_id=False, indirect=False, ids=None, scope=None, **kwargs): """Parametrizes the initial `calls` with the provided information and returns the resulting new calls""" # make a backup so that we can restore the metafunc at the end bak = self.metafunc._calls # place the initial calls on the metafunc self.metafunc._calls = init_calls if init_calls is not None else [] # parametrize the metafunc. Since we replaced the `parametrize` method on `metafunc` we have to call super self.metafunc.__class__.parametrize(self.metafunc, argnames, argvalues, indirect=indirect, ids=ids, scope=scope, **kwargs) # extract the result new_calls = self.metafunc._calls # If the user wants to discard the newly created id, remove the last id in all these callspecs in this node if discard_id: for callspec in new_calls: callspec._idlist.pop(-1) # restore the metafunc and return the new calls self.metafunc._calls = bak return new_calls def _process_node(self, current_node, pending, calls): """ Routine to apply all the parametrization orders in `pending` that are relevant to `current_node`, to the `calls` (a list of pytest CallSpec2). It returns a tuple containing a list of calls and a list of same length containing which leaf node each one corresponds to. :param current_node: the closure tree node we're focusing on :param pending: a list of parametrization orders to apply :param calls: :return: a tuple (calls, nodes) of two lists of the same length. So that for each CallSpec calls[i], you can see the corresponding leaf node in nodes[i] """ # (1) first apply all non-split fixtures at this node fixtures_at_this_node = [f for f in current_node.fixture_defs.keys() if f is not current_node.split_fixture_name] # dirty hack if we want to preserve pytest legacy order when there are no children # if current_node.parent is None and not current_node.has_split(): # # legacy compatibility: use pytest parametrization order even if it is wrong # # see https://github.com/pytest-dev/pytest/issues/5054 # # else: # # rather trust the order we computed from the closure # fixtures_to_process = fixtures_at_this_node for fixturename in fixtures_at_this_node: try: # pop it from pending - do not rely the order in pending but rather the order in the closure node p_to_apply = pending.pop(fixturename) except KeyError: # not a parametrized fixture continue else: if isinstance(p_to_apply, UnionParamz): raise ValueError("This should not happen !") elif isinstance(p_to_apply, NormalParamz): # ******** Normal parametrization ********** if _DEBUG: print("[Node %s] Applying parametrization for NORMAL %s" "" % (current_node.to_str(with_children=False, with_discarded=False), p_to_apply.argnames)) calls = self._parametrize_calls(calls, p_to_apply.argnames, p_to_apply.argvalues, indirect=p_to_apply.indirect, ids=p_to_apply.ids, scope=p_to_apply.scope, **p_to_apply.kwargs) else: raise TypeError("Invalid parametrization type: %s" % p_to_apply.__class__) # (2) then if there is a split apply it, otherwise return if not current_node.has_split(): nodes = [current_node] * len(calls) return calls, nodes else: try: # pop it from pending - do not trust the order in pending. p_to_apply = pending.pop(current_node.split_fixture_name) except KeyError: # not a parametrized fixture raise ValueError("Error: fixture union parametrization not present") else: if isinstance(p_to_apply, NormalParamz): raise ValueError("This should not happen !") elif isinstance(p_to_apply, UnionParamz): # ******** Union parametrization ********** if _DEBUG: print("[Node %s] Applying parametrization for UNION %s" "" % (current_node.to_str(with_children=False, with_discarded=False), p_to_apply.union_fixture_name)) # always use 'indirect' since that's a fixture. calls = self._parametrize_calls(calls, p_to_apply.union_fixture_name, p_to_apply.alternative_names, indirect=True, ids=p_to_apply.ids, scope=p_to_apply.scope, **p_to_apply.kwargs) # Change the ids for callspec in calls: callspec._idlist[-1] = apply_id_style(callspec._idlist[-1], p_to_apply.union_fixture_name, p_to_apply.alternative_names[0].idstyle) # now move to the children nodes_children = [None] * len(calls) for i in range(len(calls)): active_alternative = calls[i].params[p_to_apply.union_fixture_name] child_node = current_node.children[active_alternative.fixture_name] child_pending = pending.copy() # place the childs parameter in the first position if it is in the list # not needed anymore - already automatic # try: # child_pending.move_to_end(child_alternative, last=False) # except KeyError: # # not in the list: the child alternative is a non-parametrized fixture # pass calls[i], nodes_children[i] = self._process_node(child_node, child_pending, [calls[i]]) # finally flatten the list if needed calls = flatten_list(calls) nodes_children = flatten_list(nodes_children) return calls, nodes_children def _make_unique(lst): _set = set() def _first_time_met(v): if v not in _set: _set.add(v) return True else: return False return [v for v in lst if _first_time_met(v)] def flatten_list(lst): return [v for nested_list in lst for v in nested_list] def sort_according_to_ref_list(fixturenames, param_names): """ Sorts items in the first list, according to their position in the second. Items that are not in the second list stay in the same position, the others are just swapped. A new list is returned. :param fixturenames: :param param_names: :return: """ cur_indices = [] for pname in param_names: cur_indices.append(fixturenames.index(pname)) target_indices = sorted(cur_indices) sorted_fixturenames = list(fixturenames) for old_i, new_i in zip(cur_indices, target_indices): sorted_fixturenames[new_i] = fixturenames[old_i] return sorted_fixturenames _OPTION_NAME = 'with_reorder' _SKIP = 'skip' _NORMAL = 'normal' _OPTIONS = { _NORMAL: """(default) the usual reordering done by pytest to optimize setup/teardown of session- / module- / class- fixtures, as well as all the modifications made by other plugins (e.g. pytest-reorder)""", _SKIP: """skips *all* reordering, even the one done by pytest itself or installed plugins (e.g. pytest-reorder)""" } # @hookspec(historic=True) def pytest_addoption(parser): group = parser.getgroup('pytest-cases ordering', 'pytest-cases reordering options', after='general') help_str = """String specifying one of the reordering alternatives to use. Should be one of : - %s""" % ("\n - ".join(["%s: %s" % (k, v) for k, v in _OPTIONS.items()])) group.addoption( '--%s' % _OPTION_NAME.replace('_', '-'), type=str, default='normal', help=help_str ) # @hookspec(historic=True) def pytest_configure(config): # validate the config allowed_values = ('normal', 'skip') reordering_choice = config.getoption(_OPTION_NAME) if reordering_choice not in allowed_values: raise ValueError("[pytest-cases] Wrong --%s option: %s. Allowed values: %s" "" % (_OPTION_NAME, reordering_choice, allowed_values)) @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_collection_modifyitems(session, config, items): """ An alternative to the `reorder_items` function in fixtures.py (https://github.com/pytest-dev/pytest/blob/master/src/_pytest/fixtures.py#L209) We basically set back the previous order once the pytest ordering routine has completed. TODO we should set back an optimal ordering, but current PR https://github.com/pytest-dev/pytest/pull/3551 will probably not be relevant to handle our "union" fixtures > need to integrate the NOT_USED markers in the method :param session: :param config: :param items: :return: """ ordering_choice = config.getoption(_OPTION_NAME) if ordering_choice == _SKIP: # remember initial order initial_order = copy(items) yield # put back the initial order but keep the filter to_return = [None] * len(items) i=0 for item in initial_order: if item in items: to_return[i] = item i += 1 assert i == len(items) items[:] = to_return else: # do nothing yield
cf38d83b92adeb028ec0a5e36ef6ed766d954ac0
0e4d09b2a1b93aaa6d623d16905854d993a934ae
/Python/Django/surprise_me/surprise_me/settings.py
f424efc942cbefeba7f250e60cd038b1cc08d43a
[]
no_license
freefaller69/DojoAssignments
ee7f6308b02041be3244f795422e0e044d4a41b2
f40426ac448026c1172048665f36024ad22f0d81
refs/heads/master
2021-01-17T10:23:39.419514
2017-07-25T00:50:41
2017-07-25T00:50:41
84,012,790
0
1
null
null
null
null
UTF-8
Python
false
false
3,253
py
""" Django settings for surprise_me project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '%*yk4s@mw!nm_8^^jkde_l^vdqldj2=v@dzqj&h6%z9l$t2b$=' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'apps.surprise', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'surprise_me.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'surprise_me.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
a8ba2d5c8302ea20dac6cf2c653d709d5b012a3b
c35d5713b9991efeb0f8a2665c91c74127138594
/bufferbloat.py
4e0431721722d6c7a93a6b3fc70e29396676f8fa
[]
no_license
vs9390/bufferbloat
70849c13f24e0f7744a7852e8ed838a6235dbd0f
cc5341b5f0c0f835e6ec2e3d536abd2d80a5b096
refs/heads/master
2020-04-21T14:16:58.228215
2019-02-07T19:30:32
2019-02-07T19:30:32
169,629,667
0
0
null
null
null
null
UTF-8
Python
false
false
5,038
py
#!/usr/bin/python "CS144 In-class exercise: Buffer Bloat" from mininet.topo import Topo from mininet.node import CPULimitedHost from mininet.link import TCLink from mininet.net import Mininet from mininet.node import RemoteController from mininet.log import lg, info from mininet.util import dumpNodeConnections from mininet.cli import CLI from monitor import monitor_qlen from subprocess import Popen, PIPE from time import sleep, time from multiprocessing import Process from argparse import ArgumentParser import sys import os # Parse arguments parser = ArgumentParser(description="BufferBloat tests") parser.add_argument('--bw-host', '-B', dest="bw_host", type=float, action="store", help="Bandwidth of host links", required=True) parser.add_argument('--bw-net', '-b', dest="bw_net", type=float, action="store", help="Bandwidth of network link", required=True) parser.add_argument('--delay', dest="delay", type=float, help="Delay in milliseconds of host links", default=10) parser.add_argument('--dir', '-d', dest="dir", action="store", help="Directory to store outputs", default="results", required=True) parser.add_argument('-n', dest="n", type=int, action="store", help="Number of nodes in star.", required=True) parser.add_argument('--nflows', dest="nflows", action="store", type=int, help="Number of flows per host (for TCP)", required=True) parser.add_argument('--maxq', dest="maxq", action="store", help="Max buffer size of network interface in packets", default=500) parser.add_argument('--cong', dest="cong", help="Congestion control algorithm to use", default="reno") parser.add_argument('--diff', help="Enabled differential service", action='store_true', dest="diff", default=False) # Expt parameters args = parser.parse_args() class StarTopo(Topo): "Star topology for Buffer Bloat experiment" def __init__(self, n=2, cpu=None, bw_host=1000, bw_net=1.5, delay=10, maxq=None, diff=False): # Add default members to class. super(StarTopo, self ).__init__() # Create switch and host nodes for i in xrange(n): self.addHost( 'h%d' % (i+1), cpu=cpu ) self.addSwitch('s0', fail_mode='open') self.addLink('h1', 's0', bw=bw_host, max_queue_size=int(maxq) ) for i in xrange(1, n): self.addLink('h%d' % (i+1), 's0', bw=bw_host) def ping_latency(net): "(Incomplete) verify link latency" h1 = net.getNodeByName('h1') h1.sendCmd('ping -c 2 10.0.0.2') result = h1.waitOutput() print "Ping result:" print result.strip() def bbnet(): "Create network and run Buffer Bloat experiment" print "starting mininet ...." # Seconds to run iperf; keep this very high seconds = 3600 start = time() # Reset to known state topo = StarTopo(n=args.n, bw_host=args.bw_host, delay='%sms' % args.delay, bw_net=args.bw_net, maxq=args.maxq, diff=args.diff) net = Mininet(topo=topo, host=CPULimitedHost, link=TCLink, autoPinCpus=True, controller=lambda name: RemoteController("c0", ip="0.0.0.0", port=6653)) # c0 = net.addController('c0', controller=RemoteController, ip="127.0.0.1", port=6653) net.start() dumpNodeConnections(net.hosts) net.pingAll() print args.diff if args.diff: print "Differentiate Traffic Between iperf and wget" os.system("bash tc_cmd_diff.sh") else: print "exec tc_cmd.sh" os.system("bash tc_cmd.sh %s" % args.maxq) sleep(2) ping_latency(net) print "Initially, the delay between two hosts is around %dms" % (int(args.delay)*2) h2 = net.getNodeByName('h2') h1 = net.getNodeByName('h1') h1.cmd('cd ./http/; nohup python2.7 ./webserver.py &') h1.cmd('cd ../') h2.cmd('iperf -s -w 16m -p 5001 -i 1 > iperf-recv.txt &') CLI( net ) h1.cmd("sudo pkill -9 -f webserver.py") h2.cmd("rm -f index.html*") Popen("killall -9 cat", shell=True).wait() if __name__ == '__main__': bbnet()
[ "None" ]
None
781728cd41d7b2d6039a59dec118afaea02aea57
df3e3e937e85ae03bc6714bf9aa487d9338d44fd
/mpmp/exceptions.py
feb76e4c5975c4adf3db8b9f293ccc2c91ce9877
[ "BSD-3-Clause" ]
permissive
mayala1925/mpmp
9a6b4be43f9bc29874e9c0cdfa0866d70b61263c
7bd4d49e4acd745447dc0018ac121d1a45e8bfbc
refs/heads/master
2023-08-16T13:23:08.019630
2021-10-13T23:09:07
2021-10-13T23:09:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,675
py
""" Exceptions specific to pan-cancer prediction experiments """ class ResultsFileExistsError(Exception): """ Custom exception to raise when the results file already exists for the given gene and cancer type. This allows calling scripts to choose how to handle this case (e.g. to print an error message and continue, or to abort execution). """ pass class NoTrainSamplesError(Exception): """ Custom exception to raise when there are no train samples in a cross-validation fold for a given cancer type. This allows calling scripts to choose how to handle this case (e.g. to print an error message and continue, or to abort execution). """ pass class NoTestSamplesError(Exception): """ Custom exception to raise when there are no test samples in a cross-validation fold for a given cancer type. This allows calling scripts to choose how to handle this case (e.g. to print an error message and continue, or to abort execution). """ pass class OneClassError(Exception): """ Custom exception to raise when there is only one class present in the test set for the given cancer type. This allows calling scripts to choose how to handle this case (e.g. to print an error message and continue, or to abort execution). """ pass class GenesNotFoundError(Exception): """ Custom exception to raise when genes provided for classification are not part of existing datasets with oncogene/TSG info. This allows calling scripts to choose how to handle this case (e.g. to print an error message and continue, or to abort execution). """ pass
2bc1432323a455395c7e8d97b4f3896a33278eb9
c1c00ced90d47b9425fa11b6e0e5148a26a70085
/tests/test_cli.py
d3438f75559b5b4993b1f8da97e7d6b0531eb024
[ "MIT" ]
permissive
destos/Patterner
a8e90e30f0f2ca9411beb39e4cb8ef9e25fedc23
3e32468e843ec817b94da9df543c891ca69927fc
refs/heads/master
2020-04-25T14:44:23.872391
2019-02-27T05:50:01
2019-02-27T05:50:01
172,852,064
3
1
null
null
null
null
UTF-8
Python
false
false
718
py
"""Sample integration test module using pytest-describe and expecter.""" # pylint: disable=redefined-outer-name,unused-variable,expression-not-assigned import pytest from click.testing import CliRunner from expecter import expect from patterner.cli import main @pytest.fixture def runner(): return CliRunner() def describe_cli(): def describe_conversion(): def when_integer(runner): result = runner.invoke(main, ['42']) expect(result.exit_code) == 0 expect(result.output) == "12.80165\n" def when_invalid(runner): result = runner.invoke(main, ['foobar']) expect(result.exit_code) == 0 expect(result.output) == ""
7581ff553d9d2380b9a3fa8d04bc19aa2433dd6d
664c3ced94ab0e9a5bac547028db59a3ca1f2074
/10. Use classes to create active objects /EG10-07 Time Tracker with exception handler.py
6ab5ddc9eaa23b6a53954e815d434c237f056033
[ "MIT" ]
permissive
nikcbg/Begin-to-Code-with-Python
2b1283a7818e26d3471677b51d1832cde52c4ddc
a72fdf18ca15f564be895c6394a91afc75fc3e2c
refs/heads/master
2021-06-23T23:09:36.009442
2021-06-23T11:17:24
2021-06-23T11:17:24
209,285,197
0
0
MIT
2021-03-17T07:48:09
2019-09-18T10:50:51
Python
UTF-8
Python
false
false
6,121
py
# EG10-07 Time Tracker with exception handler import pickle from BTCInput import * # Create the contact class class Contact: min_session_length = 0.5 max_session_length = 3.5 @staticmethod def validate_session_length(session_length): ''' Validates a session length and returns True if the session is valid or False if not ''' if session_length < Contact.min_session_length: return False if session_length > Contact.max_session_length: return False return True def __init__(self, name, address, telephone): self.name = name self.address = address self.telephone = telephone self.hours_worked = 0 def get_hours_worked(self): ''' Gets the hours worked for this contact ''' return self.hours_worked def add_session(self, session_length): ''' Adds the value of the parameter onto the hours spent with this contact Raises an exception if the session length is invalid ''' if not Contact.validate_session_length(session_length): raise Exception('Invalid session length') self.hours_worked = self.hours_worked + session_length return def new_contact(): ''' Reads in a new contact and stores it ''' print('Create new contact') # add the data attributes name=read_text('Enter the contact name: ') address=read_text('Enter the contact address: ') telephone=read_text('Enter the contact phone: ') # create a new instance new_contact=Contact(name=name,address=address,telephone=telephone) # add the new contact to the contact list contacts.append(new_contact) def find_contact(search_name): ''' Finds the contact with the matching name Returns a contact instance or None if there is no contact with the given name ''' # remove any whitespace from around the search name search_name = search_name.strip() # convert the search name to lower case search_name = search_name.lower() for contact in contacts: # get the name out of the contact name=contact.name # remove any whitespace from around the name name=name.strip() # convert the name to lower case name = name.lower() # see if the names match if name.startswith(search_name): # return the contact that was found return contact # if we get here no contact was found # with the given name return None def display_contact(): ''' Reads in a name to search for and then displays the content information for that name or a message indicating that the name was not found ''' print('Find contact') search_name = read_text('Enter the contact name: ') contact=find_contact(search_name) if contact!=None: # Found a contact print('Name:', contact.name) print('Address:', contact.address) print('Telephone:', contact.telephone) print('Hours on the case:', contact.get_hours_worked()) else: print('This name was not found.') def edit_contact(): ''' Reads in a name to search for and then allows the user to edit the details of that contact If there is no contact the funciton displays a message indicating that the name was not found ''' print('Edit contact') search_name=read_text('Enter the contact name: ') contact=find_contact(search_name) if contact!=None: # Found a contact print('Name: ',contact.name) new_name=read_text('Enter new name or . to leave unchanged: ') if new_name!='.': contact.name=new_name new_address=read_text('Enter new address or . to leave unchanged: ') if new_address!='.': contact.address=new_address new_phone=read_text('Enter new telephone or . to leave unchanged: ') if new_phone!='.': contact.telephone=new_phone else: print('This name was not found.') def add_session_to_contact(): ''' Reads in a name to search for and then allows the user to add a session spent working for that contact ''' print('add session') search_name=read_text('Enter the contact name: ') contact=find_contact(search_name) if contact!=None: # Found a contact print('Name: ',contact.name) print('Previous hours worked:',contact.get_hours_worked()) session_length=read_float(prompt='Session length: ') try: contact.add_session(session_length) print('Updated hours worked:', contact.get_hours_worked()) except Exception as e: print('Add hours failed:',e) else: print('This name was not found.') def save_contacts(file_name): ''' Saves the contacts to the given filename Contacts are stored in binary as pickled file Exceptions will be raised if the save fails ''' print('save contacts') with open(file_name,'wb') as out_file: pickle.dump(contacts,out_file) def load_contacts(file_name): ''' Loads the contacts from the given filename Contacts are stored in binary as pickled file Exceptions will be raised if the load fails ''' global contacts print('Load contacts') with open(file_name,'rb') as input_file: contacts=pickle.load(input_file) menu='''Time Tracker 1. New Contact 2. Find Contact 3. Edit Contact 4. Add Session 5. Exit Program Enter your command: ''' filename='contacts.pickle' try: load_contacts(filename) except: print('Contacts file not found') contacts=[] while True: command=read_int_ranged(prompt=menu,min_value=1,max_value=5) if command==1: new_contact() elif command==2: display_contact() elif command==3: edit_contact() elif command==4: add_session_to_contact() elif command==5: save_contacts(filename) break
8fda8333924bdd0b3d4d4a1fc03469652dc5986d
df823d33423d37251c49b4be12ee022170138071
/python/mycurses.py
198e2605f0b0559ffdd2ed3200c896e81e5f5c89
[]
no_license
von/sandbox
ca2a87870f0f5e3153cb33fd940f1b4cb9da7985
5e47e93c32bc85f986f39b1d4df8a384c7ff0019
refs/heads/main
2023-04-30T02:14:36.466490
2023-04-18T14:11:54
2023-04-18T14:11:54
331,739
4
1
null
null
null
null
UTF-8
Python
false
false
722
py
#!/usr/bin/env python3 import curses import os def main(stdscr): win1 = curses.newwin(3, 30, 2,0) win1.border() win2 = curses.newwin(10, 30, 10,0) win2.border() stdscr.addstr(0,0, "Testing...") win1.addstr(0,0, "Foobar") win2.addstr(0,0, "I win") stdscr.refresh() win1.refresh() win2.refresh() stdscr.getch() win2.clear() win2.addstr(0,0, "2..3..") win2.refresh() stdscr.getch() ls = os.popen("ls") for i,line in enumerate(ls): try: win2.addstr(i, 0, line.encode("utf-8")) except curses.error: # Assume we've hit the end of the window break win2.refresh() stdscr.getch() curses.wrapper(main)
4d97fad9266a037d603b5a43d20dff72f6a5cdfc
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/PORMain/pirates/shipparts/WheelInteractive.py
ac3fc5be3f7f39bac48476e6aa630f9acf8c2189
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
620
py
from pirates.interact.SimpleInteractive import SimpleInteractive from pirates.piratesbase import PLocalizer class WheelInteractive(SimpleInteractive): def __init__(self, ship): self.ship = ship wheel = ship.model.locators.find('**/location_wheel') if not wheel: wheel = ship.model.root.attachNewNode('dummyWheel') SimpleInteractive.__init__(self, wheel, 'wheel-%s' % ship.doId, PLocalizer.InteractWheel) def interactionAllowed(self, avId): return self.ship.canTakeWheel(avId) def requestInteraction(self, avId): self.ship.requestPilot(avId)
97149269400558d93a4ef6ec0d73377a66d2b056
4bd555bc662b8182a2e7644976bfdb00ed5e1ebe
/PythonistaAppTemplate/PythonistaKit.framework/pylib/encodings/base64_codec.py
731c567665b73aafb55074d0d5ffc115ec9270e3
[]
no_license
fhelmli/homeNOWG2
a103df1ef97194dec9501dbda87ec1f7c111fb4a
e794fd87b296544542fd9dc7ac94c981c6312419
refs/heads/master
2020-04-04T13:40:20.417769
2019-01-30T21:41:04
2019-01-30T21:41:04
155,970,686
0
0
null
null
null
null
UTF-8
Python
false
false
10,227
py
#\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo """ Python 'base64_codec' Codec - base64 content transfer encoding Unlike most of the other codecs which target Unicode, this codec will return Python string objects for both encode and decode. Written by Marc-Andre Lemburg ([email protected]). """ import codecs, base64 ### Codec APIs def base64_encode(input,errors='strict'): """ Encodes the object input and returns a tuple (output object, length consumed). errors defines the error handling to apply. It defaults to 'strict' handling which is the only currently supported error handling for this codec. """ assert errors == 'strict' output = base64.encodestring(input) return (output, len(input)) def base64_decode(input,errors='strict'): """ Decodes the object input and returns a tuple (output object, length consumed). input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects and memory mapped files are examples of objects providing this slot. errors defines the error handling to apply. It defaults to 'strict' handling which is the only currently supported error handling for this codec. """ assert errors == 'strict' output = base64.decodestring(input) return (output, len(input)) class Codec(codecs.Codec): def encode(self, input,errors='strict'): return base64_encode(input,errors) def decode(self, input,errors='strict'): return base64_decode(input,errors) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): assert self.errors == 'strict' return base64.encodestring(input) class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): assert self.errors == 'strict' return base64.decodestring(input) class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='base64', encode=base64_encode, decode=base64_decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamwriter=StreamWriter, streamreader=StreamReader, )
184b601a9277e7e6f8aa27a0c38c389b529ad172
59b3dce3c770e70b2406cc1dd623a2b1f68b8394
/python_3/lessons/Timing_Computations/src/ count_thirtyone_days.py
682d87d1e84181941930cc296f2428ddc1f00032
[]
no_license
patrickbeeson/python-classes
04ed7b54fc4e1152a191eeb35d42adc214b08e39
b5041e71badd1ca2c013828e3b2910fb02e9728f
refs/heads/master
2020-05-20T07:17:36.693960
2015-01-23T14:41:46
2015-01-23T14:41:46
29,736,517
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
from datetime import datetime, timedelta now = datetime.now() delta = timedelta(31) delivery = now + delta print("Today: %s" % now.strftime("%d")) print("Delivery: %s" % delivery.strftime("%d"))
b9c8c3198ea3b91ca79b7666122aeba124f8d46b
8be217fe977aa0bcd9e375c75b0fb522f5bf0101
/mergetwosortedlists21.py
0065e807191a8350423dd2e81ae12019e30106ab
[]
no_license
blueones/LeetcodePractices
c63a5e773bebea17e988e8bb4962e012d7d402ba
194375ba0c07e420f420aafec98aede2f9f5d8fa
refs/heads/master
2021-07-14T14:21:55.389334
2021-01-24T22:13:21
2021-01-24T22:13:21
230,814,709
0
1
null
2020-02-25T02:58:04
2019-12-29T23:18:25
Python
UTF-8
Python
false
false
947
py
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: beforeN = ListNode(0) dummyN = beforeN if l1 == None and l2 == None: return None while l1 or l2: #print("here?") if l1 and l2: if l1.val >= l2.val: beforeN.next = l2 l2 = l2.next else: beforeN.next = l1 l1 = l1.next elif l1 == None: beforeN.next = l2 break elif l2 == None: beforeN.next = l1 break beforeN = beforeN.next return dummyN.next sunnyNode = ListNode(1) sunnyNode2 = None print(Solution().mergeTwoLists(sunnyNode,sunnyNode2))
d8d742854ec7842465b985ad93830852b7b6d3a1
8d14d526969d8e970254f08563ff2c6e6583dd35
/Python/2019/Hafta20191122/venv/Scripts/easy_install-script.py
530572ec9997ac842f173dfe02dcf73848586a38
[]
no_license
osmanraifgunes/MedipolCodes
c29db62896162c4b1a2c8c274877fff63149f826
943b014269e9a7b529e74741ce14447dbd7d5df5
refs/heads/master
2023-01-09T10:31:02.907945
2020-06-09T18:05:04
2020-06-09T18:05:04
218,612,787
6
13
null
2023-01-07T18:58:55
2019-10-30T19:59:16
Python
UTF-8
Python
false
false
453
py
#!C:\code\MedipolCodes\Python\Hafta20191122\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
699c75b97c7a8afdb70e4ce79f91ad7f94158668
95a2bb2ef56ca80ad7cb51d67a42242bf18fa337
/jump/models.py
b17ca1bff68351cf244316d1a03fec9d36836f23
[]
no_license
zhangxianbo/soms
ac2183c0a285fe56456461101ecc78ca314c3929
0ba1802b0e2e9111e0f1855480723be8e2941bcd
refs/heads/master
2021-04-09T15:46:14.086425
2016-07-14T08:15:21
2016-07-14T08:15:21
62,615,511
0
0
null
null
null
null
UTF-8
Python
false
false
1,671
py
#coding=utf-8 from django.db import models from datetime import datetime # Create your models here. class Host(models.Model): hostid = models.AutoField(primary_key=True) idc = models.CharField('机房',max_length=50) addr = models.CharField('机架等标识',max_length=50) sn = models.CharField('序列号',max_length=30,blank=True) ip = models.GenericIPAddressField('ip地址') port = models.IntegerField() online = models.CharField('在线状态',max_length=10) use = models.CharField('用途',max_length=50,blank=True) switch = models.CharField('交换机',max_length=50,blank=True) comment = models.CharField('备注',max_length=100, blank=True, null=True) def __unicode__(self): return u' %s' % (self.ip) class User(models.Model): userid = models.AutoField(primary_key=True) username = models.CharField('用户名',max_length=20) password = models.CharField('密码',max_length=100,blank=True) #ip = models.ManyToManyField(Host) name = models.CharField('姓名',max_length=50,blank=True) email = models.EmailField('邮箱',max_length=50,blank=True) update_time = models.DateTimeField('更新时间',default=datetime.now) def __unicode__(self): return u'%s' % (self.username) class Meta: ordering = ['username'] class Userhost(models.Model): #uid = models.OneToOneField(User) #hid = models.ManyToManyField(Host) uid = models.ForeignKey(User) hid = models.ForeignKey(Host) permcode = models.CharField('权限位',max_length=10,blank=True) def __unicode__(self): return u'%s %s %s' % (self.uid,self.hid,self.permcode)
cffdbd0ab90b9b59ef7a69aff564ea1323fbe6b4
3181efe062a6745fc2e5d182260b8e94ce6c5701
/0MyProject_Quant/海龟反转策略/4_2.方向过滤参数自动选择及策略回测_并行.py
2c92a341e8f5ec2c95609c7db032528948d0fb42
[]
no_license
LibreChou/PythonLearning
e240fddc559dc8614d4db95e79d047b18cc1be52
562ded21e84b68f43c539c65b91aed3a880162ce
refs/heads/master
2023-03-12T12:18:33.501881
2021-03-04T11:33:42
2021-03-04T11:33:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,317
py
# Author:Zhang Yuan import warnings warnings.filterwarnings('ignore') from MyPackage import * import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import seaborn as sns import statsmodels.api as sm from scipy import stats #------------------------------------------------------------ __mypath__ = MyPath.MyClass_Path("") # 路径类 mylogging = MyDefault.MyClass_Default_Logging(activate=True, filename=__mypath__.get_desktop_path()+"\\方向过滤策略回测.log") # 日志记录类,需要放在上面才行 myfile = MyFile.MyClass_File() # 文件操作类 myword = MyFile.MyClass_Word() # word生成类 myexcel = MyFile.MyClass_Excel() # excel生成类 mytime = MyTime.MyClass_Time() # 时间类 myplt = MyPlot.MyClass_Plot() # 直接绘图类(单个图窗) mypltpro = MyPlot.MyClass_PlotPro() # Plot高级图系列 myfig = MyPlot.MyClass_Figure(AddFigure=False) # 对象式绘图类(可多个图窗) myfigpro = MyPlot.MyClass_FigurePro(AddFigure=False) # Figure高级图系列 mynp = MyArray.MyClass_NumPy() # 多维数组类(整合Numpy) mypd = MyArray.MyClass_Pandas() # 矩阵数组类(整合Pandas) mypdpro = MyArray.MyClass_PandasPro() # 高级矩阵数组类 myDA = MyDataAnalysis.MyClass_DataAnalysis() # 数据分析类 myDefault = MyDefault.MyClass_Default_Matplotlib() # 画图恢复默认设置类 # myMql = MyMql.MyClass_MqlBackups() # Mql备份类 # myBaidu = MyWebCrawler.MyClass_BaiduPan() # Baidu网盘交互类 # myImage = MyImage.MyClass_ImageProcess() # 图片处理类 myBT = MyBackTest.MyClass_BackTestEvent() # 事件驱动型回测类 myBTV = MyBackTest.MyClass_BackTestVector() # 向量型回测类 myML = MyMachineLearning.MyClass_MachineLearning() # 机器学习综合类 mySQL = MyDataBase.MyClass_MySQL(connect=False) # MySQL类 mySQLAPP = MyDataBase.MyClass_SQL_APPIntegration() # 数据库应用整合 myWebQD = MyWebCrawler.MyClass_QuotesDownload(tushare=False) # 金融行情下载类 myWebR = MyWebCrawler.MyClass_Requests() # Requests爬虫类 myWebS = MyWebCrawler.MyClass_Selenium(openChrome=False) # Selenium模拟浏览器类 myWebAPP = MyWebCrawler.MyClass_Web_APPIntegration() # 爬虫整合应用类 myEmail = MyWebCrawler.MyClass_Email() # 邮箱交互类 myReportA = MyQuant.MyClass_ReportAnalysis() # 研报分析类 myFactorD = MyQuant.MyClass_Factor_Detection() # 因子检测类 myKeras = MyDeepLearning.MyClass_tfKeras() # tfKeras综合类 myTensor = MyDeepLearning.MyClass_TensorFlow() # Tensorflow综合类 myMT5 = MyMql.MyClass_ConnectMT5(connect=False) # Python链接MetaTrader5客户端类 myMT5Pro = MyMql.MyClass_ConnectMT5Pro(connect=False) # Python链接MT5高级类 myMT5Indi = MyMql.MyClass_MT5Indicator() # MT5指标Python版 myDefault.set_backend_default("Pycharm") # Pycharm下需要plt.show()才显示图 #------------------------------------------------------------ ''' # 1.根据前面 信号利润过滤测试 输出的文档,解析文档名称,读取参数,选择极值。 # 2.一个特定的策略参数作为一个目录,存放该下面所有指标的结果。 # 3.不同名称的指标会自动判断极值,且输出图片。最后会输出表格文档,整理这些极值。 # 4.由于不是大型计算,并行是一次性所有并行。 # 5.并行运算注意内存释放,并且不要一次性都算完,这样容易爆内存。分组进行并行。 ''' ''' # 说明 # 这里的策略回测是建立在前面已经对指标的范围过滤做了参数选择。 # 前面对每个具体策略都通过指标过滤方式,算出了各个指标过滤效果的极值。我们根据极值对应的指标值做回测。 # 画的图中,分别展示 过滤前训练集价格和指标、过滤前训练集策略、过滤后全集价格和指标、过滤后全集策略以及训练集策略。 # 方向过滤作用到整个样本。 # 并行以品种来并行,以时间框来分组。 # 由于指标较多,并行运算时间长,防止出错输出日志。 ''' #%% from MyPackage.MyProjects.向量化策略测试.Direct_Filter import Auto_Choose_DFilter_Param choo_para = Auto_Choose_DFilter_Param() myDefault.set_backend_default("agg") #%% ******需要修改****** choo_para.symbol_list = myMT5Pro.get_main_symbol_name_list() choo_para.total_folder = "F:\\工作---策略研究\\公开的海龟策略\\_海龟反转研究" choo_para.core_num = -1 #%% from MyPackage.MyProjects.向量化策略测试.Direct_Filter import Direct_Filter_BackTest rf_bt = Direct_Filter_BackTest() myplt.set_backend("agg") # agg 后台输出图片,不占pycharm内存 #%% rf_bt.symbol_list = choo_para.symbol_list rf_bt.total_folder = choo_para.total_folder rf_bt.core_num = -1 #%% ******修改函数****** # 策略的当期信号(不用平移):para_list策略参数,默认-1为lag_trade,-2为holding。 def stratgy_signal(dataframe, para_list=list or tuple): return myBTV.stra.turtle_reverse(dataframe, para_list[0], price_arug= ["High", "Low", "Close"]) rf_bt.stratgy_signal = stratgy_signal #%% # ---多进程必须要在这里执行 if __name__ == '__main__': # --- print("开始方向过滤参数自动选择:") choo_para.main_func() print("开始方向过滤策略回测:") rf_bt.main_func()
7c5b13fc736557163c95d289141ff4870117e2e0
b5a9469cb779031936bb613719397d7b3c279626
/backend/apps/privacy/sitemaps.py
2bc9aa6eae410f25322fcf965d670fd616158b73
[]
no_license
arsavit/Cidsfg_copy
a34858d63749db0e821cb2f26b1eb31c4565c0f9
0145e9f1a397899b03a8d767fb96f1d238ec21f9
refs/heads/main
2023-07-08T11:18:10.042595
2021-08-11T08:09:27
2021-08-11T08:09:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
from django.contrib.sitemaps import Sitemap from .models import Privacy class PrivacySitemap(Sitemap): """ Получение страницы ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ """ changefreq = 'weekly' priority = 0.9 location = '/privacy/' def items(self): return Privacy.objects.all().order_by('-id')[:1] def lastmod(self, obj): return obj.updated
8da58df298c3f417894362409649e16ba045b26b
11806ceb316950e41725f8acb2d7e5ecea6036a1
/biomass/core.py
fb61327fbf5acde1d04b4780683f21c215b7631e
[ "Apache-2.0" ]
permissive
TrendingTechnology/biomass
82cb65892c467cc236ce212caa9ff21cc9812e22
2e2b262f6d99834d2d1b44a1304fcf5395b566ef
refs/heads/master
2023-05-28T03:50:38.016708
2021-06-01T04:40:23
2021-06-01T04:40:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,116
py
"""BioMASS core functions""" import multiprocessing import os from dataclasses import dataclass from importlib import import_module from pathlib import Path from typing import Any, Optional from .analysis import InitialConditionSensitivity, ParameterSensitivity, ReactionSensitivity from .dynamics import SignalingSystems from .estimation import GeneticAlgorithmContinue, GeneticAlgorithmInit from .exec_model import ModelObject __all__ = ["Model", "optimize", "optimize_continue", "run_simulation", "run_analysis"] @dataclass class Model(object): """ The BioMASS model object. Attributes ---------- pkg_name: str Path (dot-sepalated) to a biomass model directory. Use '__package__'. """ pkg_name: str def _load_model(self) -> Any: try: biomass_model = import_module(self.pkg_name) return biomass_model except ImportError: p = Path(self.pkg_name.replace(".", os.sep)) print(f"cannot import '{p.name}' from '{p.parent}'.") def create(self, show_info: bool = False) -> ModelObject: """ Build a biomass model. Parameters ---------- show_info : bool (default: False) Set to 'True' to print the information related to model size. Examples -------- >>> from biomass import Model >>> import your_model >>> model = Model(your_model.__package__).create() """ model = ModelObject(self.pkg_name.replace(".", os.sep), self._load_model()) if model.sim.normalization: for obs_name in model.obs: if ( isinstance(model.sim.normalization[obs_name]["timepoint"], int) and not model.sim.t[0] <= model.sim.normalization[obs_name]["timepoint"] <= model.sim.t[-1] ): raise ValueError("Normalization timepoint must lie within sim.t.") if not model.sim.normalization[obs_name]["condition"]: model.sim.normalization[obs_name]["condition"] = model.sim.conditions else: for c in model.sim.normalization[obs_name]["condition"]: if c not in model.sim.conditions: raise ValueError( f"Normalization condition '{c}' is not defined in sim.conditions." ) if show_info: model_name = Path(model.path).name print( f"{model_name} information\n" + ("-" * len(model_name)) + "------------\n" f"{len(model.species):d} species\n" f"{len(model.parameters):d} parameters, " f"of which {len(model.sp.idx_params):d} to be estimated" ) return model def _check_optional_arguments( end: Optional[int], options: Optional[dict], ) -> None: if options is None: pass elif isinstance(options, dict): if options["local_search_method"].lower() not in ["mutation", "powell", "de"]: raise ValueError( f"'{options['local_search_method']}': " "Invalid local_search_method. Should be one of ['mutation', 'Powell', 'DE']" ) elif ( isinstance(end, int) and options["local_search_method"].lower() == "de" and options["workers"] != 1 ): raise AssertionError( "daemonic processes are not allowed to have children. Set options['workers'] to 1." ) else: raise TypeError("options must be dict or None.") def optimize( model: ModelObject, start: int, end: Optional[int] = None, options: Optional[dict] = None, ) -> None: """ Estimate model parameters from experimental data. Parameters ---------- model : ModelObject Model for parameter estimation. start : int Index of parameter set to estimate. end : int, optional When `end` is specified, parameter sets from `start` to `end` will be estimated. options : dict, optional * popsize : int (default: 5) A multiplier for setting the total population size. The population has popsize * len(search_param) individuals. * max_generation : int (default: 10000) Stop optimization if Generation > max_generation. * initial_threshold : float (default: 1e12) Threshold on objective function value used to generate initial population. Default value is 1e12 (numerically solvable). * allowable_error : float (default: 0.0) Stop optimization if Best Fitness <= allowable_error. * local_search_method : str (default: 'mutation') Method used in local search. Should be one of * 'mutation' : NDM/MGG * 'Powell' : Modified Powell method * 'DE' : Differential Evolution (strategy: best2bin) * n_children : int (default: 200) (method='mutation') The number of children generated in NDM/MGG. * maxiter : int (default: 10) (method='Powell' or 'DE') The maximum number of iterations over which the entire population is evolved. * workers : int (default: -1 if `end` is None else 1) (method='DE') The population is subdivided into workers sections and evaluated in parallel (uses multiprocessing.Pool). Supply -1 to use all available CPU cores. Set workers to 1 when searching multiple parameter sets simultaneously. * overwrite : bool (default: False) If True, the out/n folder will be overwritten. Examples -------- >>> from biomass.models import Nakakuki_Cell_2010 >>> from biomass import Model, optimize >>> model = Model(Nakakuki_Cell_2010.__package__).create() >>> optimize( ... model=model, start=1, end=10, ... options={ ... 'max_generation': 10000, ... 'allowable_error': 0.5 ... } ... ) """ if options is None: options = {} options.setdefault("popsize", 5) options.setdefault("max_generation", 10000) options.setdefault("initial_threshold", 1e12) options.setdefault("allowable_error", 0.0) options.setdefault("local_search_method", "mutation") options.setdefault("n_children", 200) options.setdefault("maxiter", 10) options.setdefault("workers", -1 if end is None else 1) options.setdefault("overwrite", False) _check_optional_arguments(end, options) ga_init = GeneticAlgorithmInit(model, **options) if end is None: ga_init.run(int(start)) else: n_proc = max(1, multiprocessing.cpu_count() - 1) with multiprocessing.Pool(processes=n_proc) as p: for _ in p.imap_unordered( ga_init.run, range(int(start), int(end) + 1), ): pass def optimize_continue( model: ModelObject, start: int, end: Optional[int] = None, options: Optional[dict] = None, ) -> None: """ Continue running optimization from where you stopped in the last parameter search. Parameters ---------- model : ModelObject Model for parameter estimation. start : int Index of parameter set to estimate. end : int, optional When `end` is specified, parameter sets from `start` to `end` will be estimated. options : dict, optional * popsize : int (default: 5) A multiplier for setting the total population size. The population has popsize * len(search_param) individuals. * max_generation : int (default: 15000) Stop optimization if Generation > max_generation. * initial_threshold : float (default: 1e12) Threshold on objective function value used to generate initial population. Default value is 1e12 (numerically solvable). * allowable_error : float (default: 0.0) Stop optimization if Best Fitness <= allowable_error. * local_search_method : str (default: 'mutation') Method used in local search. Should be one of * 'mutation' : NDM/MGG * 'Powell' : Modified Powell method * 'DE' : Differential Evolution (strategy: best2bin) * n_children : int (default: 200) (method='mutation') The number of children generated in NDM/MGG. * maxiter : int (default: 10) (method='Powell' or 'DE') The maximum number of iterations over which the entire population is evolved. * workers : int (default: -1 if `end` is None else 1) (method='DE') The population is subdivided into workers sections and evaluated in parallel (uses multiprocessing.Pool). Supply -1 to use all available CPU cores. Set workers to 1 when searching multiple parameter sets simultaneously. * p0_bounds : list of floats (default: [0.1, 10.0]) Generate initial population using best parameter values in the last parameter search. - lower_bound = po_bounds[0] * best_parameter_value - upper_bound = p0_bounds[1] * best_parameter_value Examples -------- >>> from biomass.models import Nakakuki_Cell_2010 >>> from biomass import Model, optimize_continue >>> model = Model(Nakakuki_Cell_2010.__package__).create() >>> optimize_continue( ... model=model, start=1, end=10, ... options={ ... 'max_generation': 20000, ... 'allowable_error': 0.5 ... } ... ) """ if options is None: options = {} options.setdefault("popsize", 5) options.setdefault("max_generation", 15000) options.setdefault("initial_threshold", 1e12) options.setdefault("allowable_error", 0.0) options.setdefault("local_search_method", "mutation") options.setdefault("n_children", 200) options.setdefault("maxiter", 10) options.setdefault("workers", -1 if end is None else 1) options.setdefault("p0_bounds", [0.1, 10.0]) _check_optional_arguments(end, options) ga_continue = GeneticAlgorithmContinue(model, **options) if end is None: ga_continue.run(int(start)) else: n_proc = max(1, multiprocessing.cpu_count() - 1) with multiprocessing.Pool(processes=n_proc) as p: for _ in p.imap_unordered( ga_continue.run, range(int(start), int(end) + 1), ): pass def run_simulation( model: ModelObject, *, viz_type: str = "original", show_all: bool = False, stdev: bool = False, save_format: str = "pdf", param_range: Optional[dict] = None, ) -> None: """ Simulate ODE model with estimated parameter values. Parameters ---------- model : ModelObject Model for simulation. viz_type : str * 'average': The average of simulation results with parameter sets in "out/". * 'best': The best simulation result in "out/", simulation with "best_fit_param". * 'original': Simulation with the default parameters and initial values defined in "set_model.py". * 'n(=1,2,...)': Use the parameter set in "out/n/". * 'experiment' Draw the experimental data written in observable.py without simulation results. show_all : bool Whether to show all simulation results. stdev : bool If True, the standard deviation of simulated values will be shown (only available for 'average' visualization type). save_format : str (default: "pdf") Either "png" or "pdf", indicating whether to save figures as png or pdf format. param_range : dict, optional * orientation : str (default: 'portrait') Either 'portrait' or 'landscape'. * distribution : str (default: 'boxenplot') Either 'boxplot' or 'boxenplot'. * scatter : bool (default: False) If True, draw a stripplot. Examples -------- >>> from biomass.models import Nakakuki_Cell_2010 >>> from biomass import Model, run_simulation >>> model = Model(Nakakuki_Cell_2010.__package__).create() >>> run_simulation( ... model, ... viz_type='average', ... show_all=False, ... stdev=True, ... save_format="png", ... ) """ if viz_type not in ["best", "average", "original", "experiment"] and not viz_type.isdecimal(): raise ValueError( "Available viz_type are: 'best','average','original','experiment','n(=1, 2, ...)'" ) if save_format not in ["pdf", "png"]: raise ValueError("save_format must be either 'pdf' or 'png'.") if param_range is None: param_range = {} param_range.setdefault("orientation", "portrait") param_range.setdefault("distribution", "boxenplot") param_range.setdefault("scatter", False) if param_range["orientation"] not in ["portrait", "landscape"]: raise ValueError("Available param_range['orientation'] are: 'portrait' or 'landscape'.") if param_range["distribution"] not in ["boxplot", "boxenplot"]: raise ValueError("Available param_range['distribution'] are: 'boxplot' or 'boxenplot'.") if not isinstance(param_range["scatter"], bool): raise TypeError("param_range['scatter'] must be a boolean.") SignalingSystems(model).simulate_all( viz_type=viz_type, show_all=show_all, stdev=stdev, save_format=save_format, param_range=param_range, ) def run_analysis( model: ModelObject, *, target: str, metric: str = "integral", style: str = "barplot", save_format: str = "pdf", options: Optional[dict] = None, ) -> None: """ Employ sensitivity analysis to identify critical parameters, species or reactions in the complex biological network. The sensitivity S(y,x) was calculated according to the following equation: S(y,x) = d ln(yi) / d ln (xj), where yi is the signaling metric and xj is each nonzero species, parameter value or reaction rate. Parameters --------- model : ModelObject Model for sensitivity analysis. target : str * 'reaction' * 'initial_condition' * 'parameter' metric : str (default: 'integral') * 'maximum' : The maximum value. * 'minimum' : The minimum value. * 'argmax' : The time to reach the maximum value. * 'argmin' : The time to reach the minimum value. * 'timepoint' : The simulated value at the time point set via options['timepoint']. * 'duration' : The time it takes to decline below the threshold set via options['duration']. * 'integral' : The integral of concentration over the observation time. style : str (default: 'barplot') * 'barplot' * 'heatmap' save_format : str (default: "pdf") Either "png" or "pdf", indicating whether to save figures as png or pdf format. options : dict, optional * show_indices : bool (default: True) (target == 'reaction') Set to True to put reaction index on each bar. * excluded_params : list of strings (target == 'parameter') List of parameters which are not used for analysis. * excluded_initials : list of strings (target == 'initial_condition') List of species which are not used for analysis. * timepoint : int (default: model.sim.t[-1]) (metric=='timepoint') Which timepoint to use. * duration : float (default: 0.5) (metric=='duration') 0.1 for 10% of its maximum. Examples -------- >>> from biomass.models import Nakakuki_Cell_2010 >>> from biomass import Model, run_analysis >>> model = Model(Nakakuki_Cell_2010.__package__).create() >>> # Parameters >>> run_analysis( ... model, ... target='parameter', ... options = { ... 'excluded_params': [ ... 'a', 'Vn', 'Vc', 'Ligand', 'EGF', 'HRG', 'no_ligand' ... ] ... } ... ) >>> # Initial condition >>> run_analysis(model, target='initial_condition') >>> # Reaction >>> run_analysis(model, target='reaction') """ if save_format not in ["pdf", "png"]: raise ValueError("save_format must be either 'pdf' or 'png'.") if options is None: options = {} options.setdefault("show_indices", True) options.setdefault("excluded_params", []) options.setdefault("excluded_initials", []) options.setdefault("timepoint", model.sim.t[-1]) options.setdefault("duration", 0.5) if not model.sim.t[0] <= options["timepoint"] <= model.sim.t[-1]: raise ValueError("options['timepooint'] must lie within sim.t.") if not 0.0 < options["duration"] < 1.0: raise ValueError("options['duration'] must lie within (0, 1).") if target == "reaction": ReactionSensitivity(model).analyze( metric=metric, style=style, save_format=save_format, options=options, ) elif target == "parameter": ParameterSensitivity(model).analyze( metric=metric, style=style, save_format=save_format, options=options, ) elif target == "initial_condition": InitialConditionSensitivity(model).analyze( metric=metric, style=style, save_format=save_format, options=options, ) else: raise ValueError( "Available targets are: '{}".format( "', '".join(["reaction", "parameter", "initial_condition"]) + "'." ) )
9d9a806f2ec508f3d202103ff17d592e98259b7b
26f23588e80acc2b28d4cc70a8fbcf78c5b33a20
/PythonSkills/decorator/basic02.py
ac7856a1b7b8a973b0e4280108fd34948670b37e
[]
no_license
Timehsw/PythonCouldbeEverything
aa31b3e32bf68b49fe8e96b971637353a8ef644f
85d4f1a2c93c7b1edc34ceb9e8bb3c8d7beb30e9
refs/heads/master
2021-01-01T15:38:25.253094
2018-01-22T06:49:05
2018-01-22T06:49:05
97,661,530
5
2
null
null
null
null
UTF-8
Python
false
false
698
py
# -*- coding: utf-8 -*- ''' Created by hushiwei on 2018/1/7. 学习装饰器 闭包 函数里面可以定义函数 函数可以被传递赋值 函数可以被返回 那么装饰器就是,在函数之前额外做些事情 ''' ''' 装饰器 有参函数 ''' def a_new_decorator(a_func): def wrapTheFunction(*args,**kwargs): print "I am doing some boring work before execution a_func()" a_func(*args,**kwargs) print "I am doing some boring work after execution a_func()" return wrapTheFunction @a_new_decorator def a_function_requiring_decoration(name="hushiwei"): print "I am %s"%name a_function_requiring_decoration("Mike")
627bcc579421c9e68946a4001c3726b2fc02b966
e7b665624c1134f7a6b3ab7c043cfa5ec83227bb
/CycleGAN/__init__.py
c73deef2fd0626ca2afa3252d2b902d7958b1f51
[]
no_license
zhijie-ai/GAN
46f896909d1f5caedb7725cf44d328e24f4ad699
5e64b416209058721c582c3b71a1e9ca25cf169d
refs/heads/master
2022-10-26T10:28:08.279901
2019-08-26T14:09:15
2019-08-26T14:09:15
204,423,289
1
3
null
2022-10-07T00:52:36
2019-08-26T07:45:08
Python
UTF-8
Python
false
false
622
py
#---------------------------------------------- # -*- encoding=utf-8 -*- # # __author__:'xiaojie' # # CreateTime: # # 2019/7/5 22:13 # # # # 天下风云出我辈, # # 一入江湖岁月催。 # # 皇图霸业谈笑中, # # 不胜人生一场醉。 # #---------------------------------------------- # CycleGAN的分别用keras和tf的2种实现方式
dcb95199ae8b2d00c2e425403a3da419cc0d1c69
c8a41e7b2caa015903dc5aff2d8e34a5cbd34b8d
/python/itertools/compress-the-string.py
0208eec6cbcbd5eed48a9fa26c1a73150292dc0a
[]
no_license
mauricioabreu/hacker-rank
bad197fec3582979df148a8212d330097191c2b7
3d2aaae53f438e4ef8d9382cc0c22003248c6787
refs/heads/master
2021-01-10T07:25:23.869714
2018-06-16T23:17:51
2018-06-16T23:17:51
46,177,986
6
1
null
2016-08-27T16:18:36
2015-11-14T14:38:13
Python
UTF-8
Python
false
false
212
py
from itertools import groupby chars = raw_input().strip() groups = [] for key, value in groupby(chars): groups.append((len(list(value)), int(key))) print ' '.join(['(%s, %s)' % (k, v) for k, v in groups])
0db8f21a975d0dc646839485352d0b6cf4df4064
4d66852253aaff5ee93ab73f41a531dd4a0b615d
/baseline_midsf.py
e37424d670ee6649c54e0d648617910e620d2ad2
[]
no_license
zsc19/CaBERT-SLU
ed030ed01809f0ca6f93505d483a9d6750a48442
ee1a46cf7c69ab5662a47ce9e65735cf877b1ea9
refs/heads/main
2023-08-10T19:30:21.793823
2021-09-17T14:18:25
2021-09-17T14:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,880
py
"""For model training and inference Data input should be a single sentence. """ import random import torch import torch.nn as nn from torch.autograd import Variable from torch.optim import Adam, RMSprop from transformers import BertTokenizer, BertModel, BertConfig from keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split import pickle import copy import numpy as np import collections from tqdm import tqdm from collections import Counter, defaultdict from model import MULTI from all_data_slot import get_dataloader from config import opt from utils import * def train(**kwargs): # attributes for k, v in kwargs.items(): setattr(opt, k, v) np.random.seed(0) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') torch.backends.cudnn.enabled = False print('Dataset to use: ', opt.train_path) print('Dictionary to use: ', opt.dic_path_with_tokens) print('Data Type: ', opt.datatype) print('Use pretrained weights: ', opt.retrain) # dataset with open(opt.dic_path_with_tokens, 'rb') as f: dic = pickle.load(f) with open(opt.slot_path, 'rb') as f: slot_dic = pickle.load(f) with open(opt.train_path, 'rb') as f: train_data = pickle.load(f) if opt.datatype == "mixatis" or opt.datatype == "mixsnips": # ATIS Dataset X_train, y_train, _ = zip(*train_data) X_test, y_test, _ = zip(*test_data) elif opt.datatype == "semantic": # Semantic parsing Dataset X, y = zip(*train_data) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) elif opt.datatype == "e2e" or opt.datatype == "sgd": # Microsoft Dialogue Dataset / SGD Dataset all_data = [] dialogue_id = {} dialogue_counter = 0 counter = 0 for data in train_data: for instance in data: all_data.append(instance) dialogue_id[counter] = dialogue_counter counter += 1 dialogue_counter += 1 indices = np.random.permutation(len(all_data)) train = np.array(all_data)[indices[:int(len(all_data)*0.7)]]#[:10000] test = np.array(all_data)[indices[int(len(all_data)*0.7):]]#[:100] train_loader = get_dataloader(train, len(dic), len(slot_dic), opt) val_loader = get_dataloader(test, len(dic), len(slot_dic), opt) # model config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = MULTI(opt, len(dic), len(slot_dic)) if opt.model_path: model.load_state_dict(torch.load(opt.model_path)) print("Pretrained model has been loaded.\n") else: print("Train from scratch...") model = model.to(device) # optimizer, criterion # param_optimizer = list(model.named_parameters()) # no_decay = ['bias', 'gamma', 'beta'] # optimizer_grouped_parameters = [ # {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], # 'weight_decay_rate': 0.01}, # {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], # 'weight_decay_rate': 0.0} # ] # optimizer = BertAdam(optimizer_grouped_parameters,lr=opt.learning_rate_bert, warmup=.1) optimizer = Adam(model.parameters(), weight_decay=0.01, lr=opt.learning_rate_classifier) if opt.data_mode == 'single': criterion = nn.CrossEntropyLoss().to(device) else: criterion = nn.BCEWithLogitsLoss(reduction='sum').to(device) criterion2 = nn.CrossEntropyLoss(reduction='sum').to(device) best_loss = 100 best_accuracy = 0 best_f1 = 0 # Start training for epoch in range(opt.epochs): print("====== epoch %d / %d: ======"% (epoch+1, opt.epochs)) # Training Phase total_train_loss = 0 total_P = 0 total_R = 0 total_F1 = 0 total_acc = 0 model.train() ccounter = 0 for (captions_t, masks, labels, slot_labels) in tqdm(train_loader): captions_t = captions_t.to(device) masks = masks.to(device) labels = labels.to(device) slot_labels = slot_labels.to(device) slot_labels = slot_labels.reshape(-1) optimizer.zero_grad() encoder_logits, decoder_logits, slot_logits = model(captions_t) train_loss = criterion(encoder_logits, labels) decoder_logits = decoder_logits.view(-1, len(dic)) slabels = labels.unsqueeze(1) slabels = slabels.repeat(1, opt.maxlen, 1) slabels = slabels.view(-1, len(dic)) train_loss += criterion(decoder_logits, slabels) train_loss += criterion2(slot_logits, slot_labels) train_loss.backward() optimizer.step() total_train_loss += train_loss P, R, F1, acc = f1_score_intents(encoder_logits, labels) total_P += P total_R += R total_F1 += F1 total_acc += acc ccounter += 1 print('Average train loss: {:.4f} '.format(total_train_loss / train_loader.dataset.num_data)) precision = total_P / ccounter recall = total_R / ccounter f1 = total_F1 / ccounter print(f'P = {precision:.4f}, R = {recall:.4f}, F1 = {f1:.4f}') print('Accuracy: ', total_acc/train_loader.dataset.num_data) # Validation Phase total_val_loss = 0 total_P = 0 total_R = 0 total_F1 = 0 total_acc = 0 model.eval() ccounter = 0 stats = defaultdict(Counter) for (captions_t, masks, labels, slot_labels) in val_loader: captions_t = captions_t.to(device) masks = masks.to(device) labels = labels.to(device) slot_labels = slot_labels.to(device) slot_labels = slot_labels.reshape(-1) with torch.no_grad(): encoder_logits, decoder_logits, slot_logits = model(captions_t) val_loss = criterion(encoder_logits, labels) decoder_logits = decoder_logits.view(-1, len(dic)) slabels = labels.unsqueeze(1) slabels = slabels.repeat(1, opt.maxlen, 1) slabels = slabels.view(-1, len(dic)) val_loss += criterion(decoder_logits, slabels) total_val_loss += val_loss P, R, F1, acc = f1_score_intents(encoder_logits, labels) total_P += P total_R += R total_F1 += F1 total_acc += acc ccounter += 1 _, index = torch.topk(slot_logits, k=1, dim=-1) evaluate_iob(index, slot_labels, slot_dic, stats) print('========= Validation =========') print('Average val loss: {:.4f} '.format(total_val_loss / val_loader.dataset.num_data)) precision = total_P / ccounter recall = total_R / ccounter f1 = total_F1 / ccounter print(f'P = {precision:.4f}, R = {recall:.4f}, F1 = {f1:.4f}') print('Accuracy: ', total_acc/val_loader.dataset.num_data) val_acc = total_acc/val_loader.dataset.num_data # print slot stats p_slot, r_slot, f1_slot = prf(stats['total']) print('========= Slot =========') print(f'Slot Score: P = {p_slot:.4f}, R = {r_slot:.4f}, F1 = {f1_slot:.4f}') # for label in stats: # if label != 'total': # p, r, f1 = prf(stats[label]) # print(f'{label:4s}: P = {p:.4f}, R = {r:.4f}, F1 = {f1:.4f}') if f1 > best_f1: print('saving with loss of {}'.format(total_val_loss), 'improved over previous {}'.format(best_loss)) best_loss = total_val_loss best_accuracy = val_acc best_f1 = f1 best_stats = copy.deepcopy(stats) torch.save(model.state_dict(), 'checkpoints/best_{}_{}_baseline.pth'.format(opt.datatype, opt.data_mode)) print() print('Best total val loss: {:.4f}'.format(total_val_loss)) print('Best Test Accuracy: {:.4f}'.format(best_accuracy)) print('Best F1 Score: {:.4f}'.format(best_f1)) p_slot, r_slot, f1_slot = prf(best_stats['total']) print('Final evaluation on slot filling of the validation set:') print(f'Overall: P = {p_slot:.4f}, R = {r_slot:.4f}, F1 = {f1_slot:.4f}') ##################################################################### def test(**kwargs): # attributes for k, v in kwargs.items(): setattr(opt, k, v) np.random.seed(0) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') torch.backends.cudnn.enabled = False print('Dataset to use: ', opt.train_path) print('Dictionary to use: ', opt.dic_path) # dataset with open(opt.dic_path, 'rb') as f: dic = pickle.load(f) reverse_dic = {v: k for k,v in dic.items()} with open(opt.slot_path, 'rb') as f: slot_dic = pickle.load(f) with open(opt.train_path, 'rb') as f: train_data = pickle.load(f) if opt.test_path: with open(opt.test_path, 'rb') as f: test_data = pickle.load(f) if opt.datatype == "atis": # ATIS Dataset X_train, y_train, _ = zip(*train_data) X_test, y_test, _ = zip(*test_data) elif opt.datatype == "semantic": # Semantic parsing Dataset X, y = zip(*train_data) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) elif opt.datatype == "e2e" or opt.datatype == "sgd": # Microsoft Dialogue Dataset / SGD Dataset all_data = [] dialogue_id = {} dialogue_counter = 0 counter = 0 for data in train_data: for instance in data: all_data.append(instance) dialogue_id[counter] = dialogue_counter counter += 1 dialogue_counter += 1 indices = np.random.permutation(len(all_data)) X_train = np.array(all_data)[indices[:int(len(all_data)*0.7)]]#[:10000] X_test = np.array(all_data)[indices[int(len(all_data)*0.7):]]#[:100] X_train, mask_train = load_data(X_train) X_test, mask_test = load_data(X_test) # model config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = MULTI(opt, len(dic), len(slot_dic)) if opt.model_path: model.load_state_dict(torch.load(opt.model_path)) print("Pretrained model has been loaded.\n") model = model.to(device) tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) # Store embeddings if opt.test_mode == "embedding": train_loader = get_dataloader(X_train, y_train, mask_train, opt) results = collections.defaultdict(list) model.eval() for i, (captions_t, labels, masks) in enumerate(train_loader): captions_t = captions_t.to(device) labels = labels.to(device) masks = masks.to(device) with torch.no_grad(): hidden_states, pooled_output, outputs = model(captions_t, masks) print("Saving Data: %d" % i) for ii in range(len(labels)): key = labels[ii].data.cpu().item() embedding = pooled_output[ii].data.cpu().numpy().reshape(-1) word_embeddings = hidden_states[-1][ii].data.cpu().numpy() tokens = tokenizer.convert_ids_to_tokens(captions_t[ii].data.cpu().numpy()) tokens = [token for token in tokens if token != "[CLS]" and token != "[SEP]" and token != "[PAD]"] original_sentence = " ".join(tokens) results[key].append((original_sentence, embedding, word_embeddings)) torch.save(results, embedding_path) # Run test classification elif opt.test_mode == "data": # Single instance # index = np.random.randint(0, len(X_test), 1)[0] # input_ids = X_test[index] # attention_masks = mask_test[index] # print(" ".join(tokenizer.convert_ids_to_tokens(input_ids))) # captions_t = torch.LongTensor(input_ids).unsqueeze(0).to(device) # mask = torch.LongTensor(attention_masks).unsqueeze(0).to(device) # with torch.no_grad(): # pooled_output, outputs = model(captions_t, mask) # print("Predicted label: ", reverse_dic[torch.max(outputs, 1)[1].item()]) # print("Real label: ", reverse_dic[y_test[index]]) # Validation Phase test_loader = get_dataloader(X_test, y_test, mask_test, len(dic), opt) error_ids = [] pred_labels = [] real_labels = [] test_corrects = 0 totals = 0 model.eval() for i, (captions_t, labels, masks) in enumerate(test_loader): print('predict batches: ', i) captions_t = captions_t.to(device) labels = labels.to(device) masks = masks.to(device) with torch.no_grad(): _, pooled_output, outputs = model(captions_t, masks) co, to = calc_score(outputs, labels) test_corrects += co totals += to if opt.data_mode == 'single': idx = torch.max(outputs, 1)[1] != labels wrong_ids = [tokenizer.convert_ids_to_tokens(caption, skip_special_tokens=True) for caption in captions_t[idx]] error_ids += wrong_ids pred_labels += [reverse_dic[label.item()] for label in torch.max(outputs, 1)[1][idx]] real_labels += [reverse_dic[label.item()] for label in labels[idx]] else: for i, logits in enumerate(outputs): log = torch.sigmoid(logits) correct = (labels[i][torch.where(log>0.5)[0]]).sum() total = len(torch.where(labels[i]==1)[0]) if correct != total: wrong_caption = tokenizer.convert_ids_to_tokens(captions_t[i], skip_special_tokens=True) error_ids.append(wrong_caption) pred_ls = [reverse_dic[p] for p in torch.where(log>0.5)[0].detach().cpu().numpy()] real_ls = [reverse_dic[i] for i, r in enumerate(labels[i].detach().cpu().numpy()) if r == 1] pred_labels.append(pred_ls) real_labels.append(real_ls) with open('error_analysis/{}_{}.txt'.format(opt.datatype, opt.data_mode), 'w') as f: f.write('----------- Wrong Examples ------------\n') for i, (caption, pred, real) in enumerate(zip(error_ids, pred_labels, real_labels)): f.write(str(i)+'\n') f.write(' '.join(caption)+'\n') f.write('Predicted label: {}\n'.format(pred)) f.write('Real label: {}\n'.format(real)) f.write('------\n') test_acc = test_corrects.double() / test_loader.dataset.num_data if opt.data_mode == 'single' else test_corrects.double() / totals print('Test accuracy: {:.4f}'.format(test_acc)) # User defined elif opt.test_mode == "user": while True: print("Please input the sentence: ") text = input() print("\n======== Predicted Results ========") print(text) text = "[CLS] " + text + " [SEP]" tokenized_text = tokenizer.tokenize(text) tokenized_ids = np.array(tokenizer.convert_tokens_to_ids(tokenized_text))[np.newaxis,:] input_ids = pad_sequences(tokenized_ids, maxlen=opt.maxlen, dtype="long", truncating="post", padding="post").squeeze(0) attention_masks = [float(i>0) for i in input_ids] captions_t = torch.LongTensor(input_ids).unsqueeze(0).to(device) mask = torch.LongTensor(attention_masks).unsqueeze(0).to(device) with torch.no_grad(): pooled_output, outputs = model(captions_t, mask) print("Predicted label: ", reverse_dic[torch.max(outputs, 1)[1].item()]) print("=================================") if __name__ == '__main__': import fire fire.Fire()
ec3c3e9a1609b3241c9287dcf01219c6d607eeb7
d12b53101c289a1d752862e20ffc079e3ab4e057
/2.0/overturn.py
a15642ab7a89395e9a8230990f94277a71dc0b9f
[]
no_license
UCAS007/adavanced-aritificial-intelligence
13708985b65fe0d27ed1fe93e05eb54ddef9949d
d88fcc8f5a59f290a866a04db6bcbe133bdc3ba3
refs/heads/master
2021-01-10T15:21:07.819354
2016-05-03T14:03:00
2016-05-03T14:03:00
45,598,387
7
2
null
null
null
null
UTF-8
Python
false
false
4,038
py
""" Fmax=0.995512 Perceptron """ import pickle from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier,Perceptron from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import metrics import jieba import mydataset import os import csv,codecs import preprocessing as pp import time def train(): trainFileName='train.pkl' testFileName='test.pkl' pipelineFileName='pipeline.pkl' if(os.path.exists(trainFileName)): fin=open(trainFileName,'r') trainData=pickle.load(fin) trainClass=pickle.load(fin) fin.close() else: trainText=mydataset.getAllTrainTextList() i=0; N=trainText.__len__() trainData=[] trainClass=[] for (tag,text) in trainText: i=i+1 if(i%5000==0): print('i=%08d finished %5.5f%% using jieba to cut the text\n'%(i,i*100.0/N)) trainData.append(text) trainClass.append(tag) fout=open(trainFileName,'w') pickle.dump(trainData,fout) pickle.dump(trainClass,fout) fout.close() #if(os.path.exists(pipelineFileName)): if(False): fin=open(pipelineFileName,'r') pipeline=pickle.load(fin) fin.close() else: pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', Perceptron()), ]) #pipeline.set_params(vect__max_df=0.6,clf__alpha=1e-07,clf__penalty='l2',tfidf__norm='l1',tfidf__use_idf=True,vect__ngram_range=(1,2)) pipeline.set_params(vect__max_df=0.6,tfidf__norm='l1',tfidf__use_idf=True,vect__ngram_range=(1,2)) trainNum=trainData.__len__() pipeline.fit(trainData[0:trainNum],trainClass[0:trainNum]) fout=open(pipelineFileName,'w') pickle.dump(pipeline,fout) fout.close() #################################### output train result trainNum=trainData.__len__() #print 'train result '+"#"*30 prec=pipeline.predict(trainData[0:trainNum]) expected=trainClass[0:trainNum] #print("Classification report for classifier:\n%s\n" #% (metrics.classification_report(expected, prec))) TP=0.0 TN=0.0 FP=0.0 FN=0.0 N=trainData.__len__() for i in range(0,trainNum): if(prec[i]==expected[i]): if(prec[i]==u'1'): TP=TP+1 else: TN=TN+1 else: if(prec[i]==u'1'): FP=FP+1 else: FN=FN+1 P=TP/(TP+FP) R=TP/(TP+FN) F=2*P*R/(P+R) #print('train result: P=%f,R=%f,F=%f\n'%(P,R,F)) return F,pipeline ############################################# output test result if __name__ == '__main__' : trainFileName='train.pkl' testFileName='test.pkl' pipelineFileName='pipeline.pkl' bestPipelineFileName='bestPipeline.pkl' Fmax=0 for i in range(1,10): print ('i=%d \n'%(i)) t1=time.time() F,pipeline=train() t2=time.time() print (t2-t1).__str__()+'s' if(F>Fmax): Fmax=F bestPipeline=pipeline print('Fmax=%f \n'%(Fmax)) fout=open(bestPipelineFileName,'w') pickle.dump(bestPipeline,fout) fout.close() print('Fmax=%f \n' % (Fmax)) if(os.path.exists(testFileName)): fin=open(testFileName,'r') testText=pickle.load(fin) fin.close() else: testText=mydataset.getTestTextList() fout=open(testFileName,'w') pickle.dump(testText,fout) fout.close() outputFileName='../output/upload.csv' fileOutput=codecs.open(outputFileName,'w','utf-8') prec=pipeline.predict(testText) N=800001 for i in prec: fileOutput.write(N.__str__()+','+i+'\n') N=N+1 fileOutput.close() os.system("mplayer ~/music/alert.mp3")
069240fe041da4600557e9ba6ab166a4c5a27da8
0c6bd6305cbd128fe7426f66ec9bf4d01fb9b40c
/backend_apps_web_based/flask/RESTful_api_part3/test.py
fe6c099a291d13fe3bef662c606846c898e25092
[]
no_license
yennanliu/web_development
08dbffc549214952f7b02dc29837474b0ad6e980
8dc6b224040b3953999d5e8d4a7f26d8e92ca931
refs/heads/master
2021-05-24T03:12:24.344381
2020-12-30T09:31:15
2020-12-30T09:31:15
72,651,027
1
1
null
null
null
null
UTF-8
Python
false
false
1,281
py
import sys, os, json, requests import pytest, unittest from flask_sqlalchemy import SQLAlchemy # main flask app from app import app db = SQLAlchemy(app) def TestHelloworld(): response = requests.get('http://0.0.0.0:5000/') assert response.status_code == 200 def TestApi(): response = requests.get('http://0.0.0.0:5000/product/api/v1.0/products') print (response) assert response.status_code == 200 class TestDB(unittest.TestCase): # setup and tear down # executed prior to each test def setUp(self): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False app.config['DEBUG'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + 'database.db' self.app = app.test_client() db.drop_all() db.create_all() self.assertEqual(app.debug, False) # executed after each test def tearDown(self): db.session.remove() db.drop_all() # tests def test_main_page(self): response = self.app.get('/', follow_redirects=True) self.assertEqual(response.status_code, 200) # test models # TODO, will update this when creating DB via db model if __name__ == "__main__": TestHelloworld() TestApi() unittest.main()
e35602b4e63050a98f36b2620a2b840278beb790
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02972/s165580953.py
33b7efe88d0ed61cd2af5b945b54fc7bd16ee28d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
590
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Created: Jul, 13, 2020 08:25:55 by Nobody # $Author$ # $Date$ # $URL$ __giturl__ = "$URL$" from sys import stdin input = stdin.readline def main(): N = int(input()) A = [-1]+list(map(int, input().split())) D = [-1]*(N+1) for i in range(N, 0, -1): if i > int(N/2): D[i] = A[i] else: temp_sum = 0 for j in range(N//i, 1, -1): temp_sum += D[i*j] D[i] = (temp_sum % 2) ^ A[i] print(sum(D[1:])) for i in range(1, N+1): if D[i]: print(i) if(__name__ == '__main__'): main()
57ba84aabc962427d8bb568812dcabaa61ca840a
e705de3a44a7cc922e93c76c3aa6e6108222e538
/problems/0128_longest_consecutive_sequence.py
5e3a863543e3dfb214407f3bf1547862272121e1
[]
no_license
sokazaki/leetcode_solutions
34d4877dc7d13dc80ef067211a316c48c6269eca
42cf52eeef537806c9e3ec7a6e5113c53d0f18a3
refs/heads/master
2021-06-21T22:23:25.403545
2021-02-21T16:47:19
2021-02-21T16:47:19
193,951,202
0
1
null
null
null
null
UTF-8
Python
false
false
826
py
# O(N) Solution with Hashmap import unittest def longestConsecutive(nums): nums = set(nums) res = 0 while nums: first = last = nums.pop() while first-1 in nums: first -= 1 nums.remove(first) while last+1 in nums: last += 1 nums.remove(last) res = max(res, last-first+1) return res class Test(unittest.TestCase): def test_longestConsecutive(self): self.assertEqual(longestConsecutive([100,4,200,1,3,2]), 4) self.assertEqual(longestConsecutive([100,4,200,1,33,2]), 2) self.assertEqual(longestConsecutive([1,44,200,1,3,2]), 3) self.assertEqual(longestConsecutive([]), 0) self.assertEqual(longestConsecutive([100,44,200,11,33,2]), 1) if __name__ == "__main__": unittest.main()
4dc955342c28aac7a9bf9c2f0272ce450110998e
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/formatter/indentInComprehensions.py
7e88b6b3d3bd6218119837995f02a78b214acc0d
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
31
py
attrs = [e.attr for e in items]
06a59e43096e806dd20c21c29f851772da55e59a
e2a0d262b5a3c26a30ed02c78cb905363df9241c
/com/11_class2.py
2d657a02b7bdf2f9b0f1bb5a9fc78a3329a1a38c
[]
no_license
Kyeongrok/python_selinium
75b158f0c46aa5d2b7b627dd4a6775c3c6ab66ef
233c90b3294949813cc910a8b0b2f5fed7df80a9
refs/heads/master
2020-04-01T03:35:06.925347
2018-10-27T05:03:51
2018-10-27T05:03:51
152,827,717
0
0
null
null
null
null
UTF-8
Python
false
false
389
py
class people(): name = "kyeongrok" def sayHello(self): print("hello") def leftHand(self): print("i'm left hand") def rightHand(self): print("i'm right hand") def setName(self, name): self.name = name kyeongrok = people() kyeongrok.setName("iu") print(kyeongrok.name) kyeongrok.sayHello() kyeongrok.leftHand() kyeongrok.rightHand()
90dfd10d500b640ee62fc6fd0666c4b2d4804062
9fb51c3fc9e3d2b3a4267bc1ecfc826109d0b60d
/test/LaneDetectionTest.py
319478eb6ad1c3e17bce3cff37e2b897ccec2494
[]
no_license
g41903/LaneDetection
6b929dcac664d003851cf4b60eaa124fffe5908d
1cfba5940ff25274147252f1169e737954ad29f4
refs/heads/master
2021-01-19T06:36:54.047242
2016-07-27T16:52:51
2016-07-27T16:52:51
64,326,062
1
2
null
null
null
null
UTF-8
Python
false
false
20,631
py
# ipm.py import numpy as np import cv2 import cv # # focal length # fu = 0.0 # fv = 0.0 # # # optical center # center_u = 0.0 # center_v = 0.0 # # # extrinsic parameters # pitch = 0.0 # yaw = 0.0 # # height of the camera in mm # h = 0.0 # # # ROI (region of interest) # ROILeft = 0 # ROIRight = 0 # ROITop = 0 # ROIBottom = 0 # # # ipm size # ipm_width = 0 # ipm_height = 0 # # # intermediate variables # # sin and cos use radians, not degrees # c1 = 0.0 # c2 = 0.0 # s1 = 0.0 # s2 = 0.0 # # # distances (in the world frame) - to - pixels ratio # ratio_x = 0 # ratio_y = 0 # focal length fu = 750.0 fv = 720.0 # optical center center_u = 658 center_v = 372 # extrinsic parameters pitch = 9.0 yaw = 0 # height of the camera in mm h = 790 # ROI (region of interest) ROILeft = 0 ROIRight = 1100 ROITop = 500 ROIBottom = 719 # ipm size ipm_width = 600 ipm_height = 800 # intermediate variables # sin and cos use radians, not degrees c1 = 1.0 c2 = 1.0 s1 = 1.0 s2 = 1.0 # distances (in the world frame) - to - pixels ratio ratio_x = 10 ratio_y = 10 # transformation of a point from image frame [u v] to world frame [x y] offset_x=0.0 offset_y=0.0 def image2ground(uv): dummy_data = np.array([ -c2 / fu, s1 * s2 / fv, center_u * c2 / fu - center_v * s1 * s2 / fv - c1 * s2, s2 / fu, s1 * c2 / fv, -center_u * s2 / fu - center_v * s1 * c2 / fv - c1 * c2, 0, c1 / fv, -center_v * c1 / fv + s1, 0, -c1 / h / fv, center_v * c1 / h / fv - s1 / h ]) # static cv::Mat transformation_image2ground = cv::Mat(4, 3, CV_32F, dummy_data); # Mat object was needed because C/C++ lacked a standard/native implementation of matrices. # However, numpy's array is a perfect replacement for that functionality. # Hence, the cv2 module accepts numpy.arrays wherever a matrix is # indicated in the docs. transformation_image2ground = dummy_data.reshape((4, 3)) transformation_image2ground=np.asmatrix(transformation_image2ground) # Construct the image frame coordinates # dummy_data2 = [uv.x, uv.y, 1] image_coordinate=np.matrix([[uv[0]],[uv[1]],[1]]) # Find the world frame coordinates world_coordinate = transformation_image2ground * image_coordinate # Normalize the vector # the indexing of matrix elements starts from 0 #?? world_coordinate.at<float>(3, 0); # print(world_coordinate) world_coordinate = world_coordinate / (world_coordinate[3][0]) return (world_coordinate[0][0], world_coordinate[1][0]) # transformation of a point from world frame [x y] to image frame [u v] def ground2image(xy): dummy_data = np.array([ c2 * fu + center_u * c1 * s2, center_u * c1 * c2 - s2 * fu, -center_u * s1, s2 * (center_v * c1 - fv * s1), c2 * (center_v * c1 - fv * s1), -fv * c1 - center_v * s1, c1 * s2, c1 * c2, -s1, c1 * s2, c1 * c2, -s1 ]) transformation_ground2image = dummy_data.reshape(4, 3) # Construct the image frame coordinates dummy_data2 = [xy.x, xy.y, -h] world_coordinate = dummy_data2.reshape((3, 1)) # Find the world frame coordinates image_coordinate = np.multiply( transformation_ground2image, world_coordinate) # Normalize the vector # the indexing of matrix elements starts from 0 image_coordinate = image_coordinate / image_coordinate[3, 0] return (image_coordinate[0, 0], image_coordinate[0, 1]) def ipm2image(uv): x_world = offset_x + u * ratio_x y_world = offset_y + (ipm_height - v) * ratio_y return ground2image((x_world, y_world)) def getIPM(input, ipm_width, ipm_height): # Input Quadilateral or Image plane coordinates imageQuad = np.empty([4, 2]) # World plane coordinates groundQuad = np.empty([4, 2]) # Output Quadilateral ipmQuad = np.empty([4, 2]) # Lambda Matrix lambda_mat = np.empty([3, 3]) # The 4 points that select quadilateral on the input , from top-left in clockwise order # These four pts are the sides of the rect box used as input imageQuad=np.array([[ROILeft,ROITop],[ROIRight,ROITop],[ROIRight,ROIBottom],[ROILeft,ROIBottom]],np.float32) # The world coordinates of the 4 points for i in range(0, 4): groundQuad[i] = image2ground(imageQuad[i]) offset_x = groundQuad[0][0] offset_y = groundQuad[3][1] # float ground_width = (groundQuad[1][0]-groundQuad[0][0]) //top-right.x - top-left.x # float ground_length = (groundQuad[0][1]-groundQuad[4][1]) //top-left.y - bottom-left.y ratio_x = (groundQuad[1][0] - groundQuad[0][0]) / ipm_width ratio_y = (groundQuad[0][1] - groundQuad[3][1]) / ipm_height # Compute coordinates of the bottom two points in the ipm image frame x_bottom_left = (groundQuad[3][0] - groundQuad[0][0]) / ratio_x x_bottom_right = (groundQuad[2][0] - groundQuad[0][0]) / ratio_y # The 4 points where the mapping is to be done , from top-left in # clockwise order ipmQuad=np.array([[0,0],[ipm_width-1,0],[x_bottom_right,ipm_height-1],[x_bottom_left,ipm_height-1]],np.float32) # Get the Perspective Transform Matrix i.e. lambda lambda_mat = cv2.getPerspectiveTransform(imageQuad, ipmQuad) # Apply the Perspective Transform just found to the src image ipm = cv2.warpPerspective(input, lambda_mat, (ipm_width, ipm_height)) return ipm # misc.py # // parameters for white pixel extraction hueMinValue = 0 hueMaxValue = 255 satMinValue = 0 satMaxValue = 15 volMinValue = 240 volMaxValue = 255 lightMinValue = 190 lightMaxValue = 255 # // extraction of white pixels thres_white_init = 0.5 thres_exposure_max = 1500 thres_exposure_min = 1200 # // This function takes an angle in the range [-3*pi, 3*pi] and # // wraps it to the range [-pi, pi]. def wrapTheta(theta): if theta > np.pi: return theta - 2 * np.pi elif theta < -np.pi: return theta + 2 * np.pi return theta # // Construct a new image using only one single channel of the input image # // if color_image is set to 1, create a color image; otherwise a single-channel image is returned. # // 0 - B; 1 - G; 2 - R def getSingleChannel(input, channel, color_image): spl = cv2.split(input) if color_image == 0: return spl[channel] # emptyMat = thresholded channels = np.empty(input.shape) # Only show color blue channel if channel == 0: input[:, :, 1] = 0 input[:, :, 2] = 0 channels = input elif channel == 1: # Only show color green channel input[:, :, 0] = 0 input[:, :, 2] = 0 channels = input else: # Only show colorred channel input[:, :, 0] = 0 input[:, :, 1] = 0 channels = input print "channels:", channels.shape output = channels return output # // Show different channels of an image def showChannels(input): # cv2.imshow("B",getSingleChannel(input,0,True)) #b # cv2.imshow("G",getSingleChannel(input,1,True)) #g # cv2.imshow("R",getSingleChannel(input,2,True)) #r # greyMat = thresholded # greyMat=cv2.cvtColor(input,cv2.COLOR_BGR2GRAY) # cv2.imshow("GREY",greyMat) #grey-scale print "Hello" def edgeDetection(rgb_frame, detect_method, debug_mode): singleChannel = getSingleChannel(rgb_frame, 0, False) # // First apply Gaussian filtering blurred_ipm = cv2.GaussianBlur(singleChannel, (5, 5), 0) cv2.imshow("blurred_ipm:",blurred_ipm) if debug_mode: cv2.imshow('Blurred ipm:', blurred_ipm) # // Edge detection # // adaptive thresholding outperforms canny and other filtering methods max_value = 255 adaptiveMethod = cv2.ADAPTIVE_THRESH_GAUSSIAN_C thresholdType = cv2.THRESH_BINARY_INV blockSize = 11 C = 5 detection_edge=cv2.adaptiveThreshold(blurred_ipm,max_value,adaptiveMethod,thresholdType,blockSize,C) # detection_edge = np.zeros(blurred_ipm.shape, np.uint8) # detection_edge = cv2.adaptiveThreshold( # blurred_ipm, max_value, adaptiveMethod, thresholdType, blockSize, C) if debug_mode: cv2.imshow('Detection edge:', detection_edge) return detection_edge def testShowChannels(): img = cv2.imread( '/Users/g41903/Desktop/MIT/Media Lab/LaneDetection/LaneView.jpg', cv2.CV_8UC1) edgeDetection(img, 0, 0) cv2.waitKey(0) cv2.destroyAllWindows() # showChannels(img) # cv2.waitKey(0) # cv2.imshow("image",img) # testShowChannels() # // Extract white pixels from a RGB image# def extractWhitePixel(rgb_frame,extract_method,debug_mode): if extract_method=='HSV': # Convert BGR to HSV hsv_frame=cv2.cvtColor(rgb_frame,cv2.COLOR_BGR2HSV) # define range of color in HSV min_color=np.array([hueMinValue,satMinValue,volMinValue]) max_color=np.array([hueMaxValue,satMaxValue,volMaxValue]) # Threshold the HSV image to get only specific color threshold_frame = cv2.inRange(hsv_frame, min_color, max_color) return threshold_frame # cv2.imshow('frame',rgb_frame) # cv2.imshow('mask',mask) # cv2.imshow('res',res) elif extract_method=='HLS': # Convert BGR to HLS hls_frame=cv2.cvtColor(rgb_frame,cv2.COLOR_BGR2HLS) # define range of color in HSV min_color=np.array([hueMinValue,satMinValue,volMinValue]) max_color=np.array([hueMaxValue,satMaxValue,volMaxValue]) # Threshold the HSV image to get only specific color mask = cv2.inRange(hls_frame, min_color, max_color) # Bitwise-AND mask and original image res = cv2.bitwise_and(rgb_frame,rgb_frame, mask= mask) cv2.imshow('frame',rgb_frame) cv2.imshow('mask',mask) cv2.imshow('res',res) return res elif extract_method=='ADAPTIVE': # Get a single channel singleChannel=getSingleChannel(rgb_frame,0,False) # Extraction of white pixels minVal,maxVal,minLoc,maxLoc=cv2.minMaxLoc(singleChannel) # min,max=minMaxLoc(singleChannel) thresholded=np.zeros(singleChannel.shape, np.uint8) #adaptive thresholding maxValue=255 thres_count=0 thres_adaptive=thres_white_init thres_upper_bound=1 thres_lower_bound=0 type=cv2.THRESH_BINARY while thres_count<10: thres_count+=1 thresh=min+(max-min)*thres_adaptive thresholded=cv2.threshold(singleChannel,thresh,maxValue,type) s=np.sum(singleChannel,axis=0)/255 if s>thres_exposure_max: thres_lower_bound=thres_adaptive thres_adaptive=(thres_upper_bound+thres_lower_bound)/2 elif s<thres_exposure_min: thres_upper_bound=thres_adaptive thres_adaptive=(thres_upper_bound+thres_lower_bound)/2 else: break return thresholded def testExtractWhitePixel(): # hueMinValue=110 # satMinValue=50 # volMinValue=50 # hueMaxValue=130 # satMaxValue=255 # volMaxValue=255 cap = cv2.VideoCapture(0) while(1): # Take each frame _, frame = cap.read() extractWhitePixel(frame,'HSV',True) k = cv2.waitKey(5) & 0xFF if k == 27: break cv2.destroyAllWindows() # testExtractWhitePixel() # /** @function Dilation */ def Dilation(src,dilation_elem,dilation_size,debug_mode,title): dilation_type=0 if dilation_elem==0: dilation_type=cv2.MORPH_RECT elif dilation_elem==1: dilation_type=cv2.MORPH_CROSS elif dilation_elem==2: dilation_type=cv2.MORPH_ELLIPSE element=cv2.getStructuringElement(dilation_type,(int(2*dilation_size+1),int(2*dilation_size+1))) dilation_dst=0 dilation_dst=cv2.dilate(src,element,iterations=1) if debug_mode: cv2.imshow(title,dilation_dst) return dilation_dst # // TODO: curve fitting # void fitCurve(cv::Mat lane_boundaries, cv::Mat ipm_rgb) # { # std::vector<Point> filtered_points; # int count = 0; # for (int y = 0; y < lane_boundaries.rows; y++) # { # for (int x = 0; x < lane_boundaries.cols; x++) # { # // cout << lane_boundaries.at<uchar>(y, x) << " "; # // In OpenCV, x and y are inverted when trying to access an element # if (lane_boundaries.at<uchar>(y, x) == 255) # { # Point pt(x, y); # filtered_points.push_back(pt); # } # } # } # def fitCurve(lane_boundaries,ipm_rgb): # for y in range(0,lane_boundaries.rows): # for x in range(0,lane_boundaries.cols): # if point # std::vector<double> coefficients = polyFit(filtered_points); # double c1 = coefficients[0]; # double c2 = coefficients[1]; # double c3 = coefficients[2]; # cout << "c1 = " << c1 << "\tc2 = " << c2 << "\tc3 = " << c3 << endl; # // cout << "filtered_points.size() = " << filtered_points.size() << "\tapproxCurve.size() = " << approxCurve.size() << endl; # std::vector<Point> testCurve; # for (int x=0; x<lane_boundaries.cols; x++) # { # int appro_y = c1 + c2 * x + c3 * pow(x, 2); # Point pt(x, appro_y); # // cout << "appro_y = " << appro_y << endl; # testCurve.push_back(pt); # } # Scalar color = Scalar( 255, 0, 0 ); # polylines(ipm_rgb, testCurve, false, color); # imshow("Curve detection", ipm_rgb); # // polylines(ipm_rgb, filtered_points, false, color); # // imshow("check input to curve detection", ipm_rgb); # imshow("lane_boundaries", lane_boundaries); # } # LaneDetectTest.py # // input image size image_width = 1280 image_height = 720 # // Hough transform thres_num_points = 200 # // clustering of lines thres_cluster_delta_angle = 10 thres_cluster_delta_rho = 20 # // if two lanes are parallel and of certain distance, then left and right lanes are both detected. Pick the left one thres_parallel_delta_angle = 3 thres_parallel_delta_rho =150 # // if two lanes are converging. Pick the right one thres_converge_delta_angle = 10 thres_converge_delta_rho = 60 # // method for edge detection detect_method = 10 dilation_white_size = 3 # // method for white pixel extraction extract_method = 'HSV' dilation_element = 0.5 dilation_edge_size = 0.5 # /* # This is the main function for lane detection. It takes an image as input and returns a vector of lines. # Each element in the returned vector contains rho and theta of the detected lane in the ground plane. # rho - the angle between the detected lane and the heading of the robot (i.e., the camera). # theta - the distance from the origin (bottom left of the ground plane) to the detected lane # */ def getLanes(input, isDebug): clusters=np.empty(shape=(2,2),dtype=float) if input.size == 0: print "Error: Input image is empty.Function getLanes(input) aborts." return clusters # Verify size of input images. rows = input.shape[0] cols = input.shape[1] if rows is not image_height and cols is not image_width: print "Warning: forced resizing of input images" size = (image_height, image_width) np.resize(input, size) # Get inverse projection mapping ipm_rgb = getIPM(input, ipm_width, ipm_height) # Edge detection detection_edge = edgeDetection(ipm_rgb, detect_method, False) cv2.imshow('Final Detection Edge: ',detection_edge) dilated_edges=Dilation(detection_edge,dilation_element,dilation_edge_size,isDebug,"Dilated Edges") cv2.imshow('Final dilated edges: ', dilated_edges) # Get white pixels white_pixels = extractWhitePixel(ipm_rgb, extract_method, False) cv2.imshow('Final white pixels: ',white_pixels) # Dilation of the white pixels dilated_white_pixels = Dilation( white_pixels, dilation_element, dilation_white_size, isDebug, "Dilated White Pixels") cv2.imshow('Final dilated white pixels: ', dilated_white_pixels) # dilated_white_pixels=0 # cv2.dilate(white_pixels, dilated_white_pixels, dilation_white_size, isDebug, "Dilated White Pixels") # combine edge detection and white pixel extraction lane_boundaries = cv2.bitwise_and(dilated_white_pixels, dilated_edges) cv2.imshow('Final lane_boundaries: ', lane_boundaries) if isDebug: cv2.imshow("Bitwise and", lane_boundaries) # HoughLines: First parameter, Input image should be a binary image, so # apply threshold or use canny edge detection before finding applying # hough transform. Second and third parameters are \rho and \theta # accuracies respectively. Fourth argument is the threshold, which means # minimum vote it should get for it to be considered as a line. lines = cv2.HoughLines(lane_boundaries, 1, np.pi / 180, thres_num_points) # Result cleanning: make sure the distance rho is always positive. # rho_theta_pairs are list of [rho,theta] generated from the picture rho_theta_pairs = lines[0] for i in range(0, len(rho_theta_pairs)): # if rho in the ith [rho,theta] pairs is smaller than 0 if rho_theta_pairs[i][0] < 0: rho_theta_pairs[i][0] = -rho_theta_pairs[i][0] rho_theta_pairs[i][1] = np.pi + rho_theta_pairs[i][1] # ?? what does wrapTheta means # In case theta is over pi or less then -pi: If the theta is over pi, then it will be deducted by 2pi, if it's less then -pi, it will add up 2pi rho_theta_pairs[i][1] = wrapTheta(rho_theta_pairs[i][1]); # Show results before clustering if True: ipm_duplicate = ipm_rgb for i in range(0, len(rho_theta_pairs)): rho = rho_theta_pairs[i][0] theta = rho_theta_pairs[i][1] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a))) pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a))) img = np.zeros((1280,760,3), np.uint8) cv2.line(img,pt1, pt2, (0, 255, 0), 3) cv2.imshow('Show Line:',img) # print len(lines[0]) # // cluster lines into groups and take averages, in order to remove duplicate segments of the same line # // TODO: need a robust way of distinguishing the left and right lanes num_of_lines = 0 # for i in range(0, len(rho_theta_pairs)): # rho = rho_theta_pairs[i][0] # theta = rho_theta_pairs[i][1] # if isDebug: # print "Now it's debugging" # a = np.cos(theta) # b = np.sin(theta) # custer_found = False # # # Match this line with existing clusters # for j in range(0, len(clusters)): # avg_line = clusters[j] / num_of_lines[j] # avg_rho = avg_line[0] # avg_theta = avg_line[1] # # if abs(rho - avg_rho) < thres_cluster_delta_rho and abs(theta - avg_theta) / np.pi * 180 < thres_cluster_delta_angle: # clusters[j] += lines[i] # num_of_lines[j] += 1 # clusters_found = True # break # if cluster_found: # pass # else: # #?? not sure how does clusters look like and how push_back applied to clusters # # clusters.push_back(lines[i]) # # num_of_lines.push_back(1); # clusters = lines[i] # num_of_lines = 1 # for i in range(0, len(clusters)): # clusters[i] = clusters[i] / num_of_lines[i] # rho = clusters[i][0] # theta = clusters[i][1] # a = np.cos(theta) # b = np.sin(theta) # x0 = a * rho # y0 = b * rho # pt1 = (cv.Round(x0 + 1000 * (-b)), cv.Round(y0 + 1000 * (a))) # pt2 = (cv.Round(x0 - 1000 * (-b)), cv.Round(y0 - 1000 * (a))) # ipm_rgb = cv2.line(pt1, pt2(0, 255, 0), 3) # # if isDebug: # cv2.imshow("Hough Line Transform After Clustering", ipm_rgb) # print len(clusters), "clusters found." # return clusters def testShowChannels(): img = cv2.imread( './LaneView3.jpg', 1) edgeDetection(img, 0, 0) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == '__main__': input = cv2.imread('../data/LaneView3.jpg', 1) cv2.imshow('Origin input:', input) getLanes(input, True) print("Finished") cv2.waitKey(0) cv2.destroyAllWindows() # testShowChannels()
042eb90c4d3065ab75fc8c59d35336f3d37f6d12
cc08f8eb47ef92839ba1cc0d04a7f6be6c06bd45
/Personal/JaipurCity/smart_city/models.py
4edef2ae9219cc2bf12785fae1060189c82a680f
[]
no_license
ProsenjitKumar/PycharmProjects
d90d0e7c2f4adc84e861c12a3fcb9174f15cde17
285692394581441ce7b706afa3b7af9e995f1c55
refs/heads/master
2022-12-13T01:09:55.408985
2019-05-08T02:21:47
2019-05-08T02:21:47
181,052,978
1
1
null
2022-12-08T02:31:17
2019-04-12T17:21:59
null
UTF-8
Python
false
false
2,081
py
from django.contrib.gis.db import models from django.contrib.gis.geos import Point class SmartRestaurant(models.Model): restaurant = models.CharField(max_length=254) rating = models.FloatField() type = models.CharField(max_length=254) cuisines = models.CharField(max_length=254) cost = models.CharField(max_length=254) address = models.CharField(max_length=254) features = models.CharField(max_length=254) latitude = models.FloatField() longitude = models.FloatField() point = models.PointField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.restaurant class Fort(models.Model): title = models.CharField(max_length=254) rating = models.FloatField() category = models.CharField(max_length=254) descriptio = models.CharField(max_length=254) latitude = models.FloatField() longitude = models.FloatField() point = models.PointField() def __str__(self): return self.title class Hospital55(models.Model): hospital_n = models.CharField(max_length=255) hospital_r = models.FloatField() contact_nu = models.CharField(max_length=255) address = models.CharField(max_length=255) latitude = models.FloatField() longitude = models.FloatField() point = models.PointField() def __str__(self): return self.hospital_n class Market(models.Model): market_nam = models.CharField(max_length=255) rating = models.FloatField() location = models.CharField(max_length=255) latitude = models.FloatField() longitude = models.FloatField() point = models.PointField() def __str__(self): return self.market_nam class PoliceStation(models.Model): police_sta = models.CharField(max_length=255) rating = models.FloatField() contact_nu = models.CharField(max_length=255) address = models.CharField(max_length=255) latitude = models.FloatField() longitude = models.FloatField() point = models.PointField() def __str__(self): return self.police_sta
4b208c47d8b238082b1f0e0926b8ca03994e7acb
50a20e25c1cb7ac05b0d7eb05bf174973a866a4b
/Day20/Day20.py
a80a573319bf5001f8c8df8dc3bb1248856c81d2
[]
no_license
bakkerjangert/AoC_2016
1733b15bbb762d9fff0c986e33d404c5b7148591
3ccafab3f6d8b8efb4bf7de0549e22a4bd4de527
refs/heads/master
2023-02-04T06:09:32.862621
2020-12-18T14:39:00
2020-12-18T14:39:00
322,620,456
0
0
null
null
null
null
UTF-8
Python
false
false
956
py
import numpy as np import pylab as plt with open('input.txt') as f: lines = f.read().splitlines() start = [] end = [] for line in lines: start.append(int(line.split('-')[0])) end.append(int(line.split('-')[1])) # for i in range(len(start)): # print(start[i], '-', end[i]) ips = np.array([start, end]) ips = ips.transpose() ips = np.sort(ips, axis=0) # print(ips) # print(len(ips[:,0])) i = 0 while i + 1 < len(ips[:, 0]): print(f'{ips[i + 1, 0]} < {ips[i, 1]} < {ips[i + 1, 1]}') if ips[i + 1, 0] <= ips[i, 1] <= ips[i + 1, 1]: ips[i, 1] = ips[i + 1, 1] ips = np.delete(ips, i + 1, 0) elif ips[i + 1, 1] <= ips[i, 1]: ips = np.delete(ips, i + 1, 0) else: i += 1 print(ips) print(len(ips[:,0])) print(f'the answer to part 1 is {ips[0, 1] + 1}') #part b count = 0 for i in range(len(ips[:,0]) - 1): count += (ips[i + 1, 0] - ips[i, 1] - 1) print(f'the answer to part 2 is {count}')
316c6f696121e8eb21ad87bd9966d1689f929134
37cfcdfa3b8f1499f5899d2dfa2a48504a690abd
/test/functional/p2p_disconnect_ban.py
1886e64fb2499ff15b887e636597f96dd7018069
[ "MIT" ]
permissive
CJwon-98/Pyeongtaekcoin
28acc53280be34b69c986198021724181eeb7d4d
45a81933a98a7487f11e57e6e9315efe740a297e
refs/heads/master
2023-08-17T11:18:24.401724
2021-10-14T04:32:55
2021-10-14T04:32:55
411,525,736
0
0
null
null
null
null
UTF-8
Python
false
false
5,354
py
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Pyeongtaekcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test node disconnect and ban behavior""" import time from test_framework.test_framework import PyeongtaekcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, connect_nodes_bi, wait_until, ) class DisconnectBanTest(PyeongtaekcoinTestFramework): def set_test_params(self): self.num_nodes = 2 def run_test(self): self.log.info("Test setban and listbanned RPCs") self.log.info("setban: successfully ban single IP address") assert_equal(len(self.nodes[1].getpeerinfo()), 2) # node1 should have 2 connections to node0 at this point self.nodes[1].setban(subnet="127.0.0.1", command="add") wait_until(lambda: len(self.nodes[1].getpeerinfo()) == 0, timeout=10) assert_equal(len(self.nodes[1].getpeerinfo()), 0) # all nodes must be disconnected at this point assert_equal(len(self.nodes[1].listbanned()), 1) self.log.info("clearbanned: successfully clear ban list") self.nodes[1].clearbanned() assert_equal(len(self.nodes[1].listbanned()), 0) self.nodes[1].setban("127.0.0.0/24", "add") self.log.info("setban: fail to ban an already banned subnet") assert_equal(len(self.nodes[1].listbanned()), 1) assert_raises_rpc_error(-23, "IP/Subnet already banned", self.nodes[1].setban, "127.0.0.1", "add") self.log.info("setban: fail to ban an invalid subnet") assert_raises_rpc_error(-30, "Error: Invalid IP/Subnet", self.nodes[1].setban, "127.0.0.1/42", "add") assert_equal(len(self.nodes[1].listbanned()), 1) # still only one banned ip because 127.0.0.1 is within the range of 127.0.0.0/24 self.log.info("setban remove: fail to unban a non-banned subnet") assert_raises_rpc_error(-30, "Error: Unban failed", self.nodes[1].setban, "127.0.0.1", "remove") assert_equal(len(self.nodes[1].listbanned()), 1) self.log.info("setban remove: successfully unban subnet") self.nodes[1].setban("127.0.0.0/24", "remove") assert_equal(len(self.nodes[1].listbanned()), 0) self.nodes[1].clearbanned() assert_equal(len(self.nodes[1].listbanned()), 0) self.log.info("setban: test persistence across node restart") self.nodes[1].setban("127.0.0.0/32", "add") self.nodes[1].setban("127.0.0.0/24", "add") # Set the mocktime so we can control when bans expire old_time = int(time.time()) self.nodes[1].setmocktime(old_time) self.nodes[1].setban("192.168.0.1", "add", 1) # ban for 1 seconds self.nodes[1].setban("2001:4d48:ac57:400:cacf:e9ff:fe1d:9c63/19", "add", 1000) # ban for 1000 seconds listBeforeShutdown = self.nodes[1].listbanned() assert_equal("192.168.0.1/32", listBeforeShutdown[2]['address']) # Move time forward by 3 seconds so the third ban has expired self.nodes[1].setmocktime(old_time + 3) assert_equal(len(self.nodes[1].listbanned()), 3) self.stop_node(1) self.start_node(1) listAfterShutdown = self.nodes[1].listbanned() assert_equal("127.0.0.0/24", listAfterShutdown[0]['address']) assert_equal("127.0.0.0/32", listAfterShutdown[1]['address']) assert_equal("/19" in listAfterShutdown[2]['address'], True) # Clear ban lists self.nodes[1].clearbanned() connect_nodes_bi(self.nodes, 0, 1) self.log.info("Test disconnectnode RPCs") self.log.info("disconnectnode: fail to disconnect when calling with address and nodeid") address1 = self.nodes[0].getpeerinfo()[0]['addr'] node1 = self.nodes[0].getpeerinfo()[0]['addr'] assert_raises_rpc_error(-32602, "Only one of address and nodeid should be provided.", self.nodes[0].disconnectnode, address=address1, nodeid=node1) self.log.info("disconnectnode: fail to disconnect when calling with junk address") assert_raises_rpc_error(-29, "Node not found in connected nodes", self.nodes[0].disconnectnode, address="221B Baker Street") self.log.info("disconnectnode: successfully disconnect node by address") address1 = self.nodes[0].getpeerinfo()[0]['addr'] self.nodes[0].disconnectnode(address=address1) wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 1, timeout=10) assert not [node for node in self.nodes[0].getpeerinfo() if node['addr'] == address1] self.log.info("disconnectnode: successfully reconnect node") connect_nodes_bi(self.nodes, 0, 1) # reconnect the node assert_equal(len(self.nodes[0].getpeerinfo()), 2) assert [node for node in self.nodes[0].getpeerinfo() if node['addr'] == address1] self.log.info("disconnectnode: successfully disconnect node by node id") id1 = self.nodes[0].getpeerinfo()[0]['id'] self.nodes[0].disconnectnode(nodeid=id1) wait_until(lambda: len(self.nodes[0].getpeerinfo()) == 1, timeout=10) assert not [node for node in self.nodes[0].getpeerinfo() if node['id'] == id1] if __name__ == '__main__': DisconnectBanTest().main()
6f136cc6daa5a8670845de0e72b5aa253d75137b
de5dc978e0a5b9fc4ecbbdd00c1cebe57c465775
/wso2_apim_storeclient/models/__init__.py
5c4b27271173e651942c4c622035cbca741cb8fe
[]
no_license
junetigerlee/python-wso2-apim-storeclient
8c3502dfd039eca0093c218cb6ac1183c050edb5
60c84988a2417a0104aaa53ed082902012d6247d
refs/heads/master
2021-01-01T16:12:12.197633
2017-07-25T06:21:21
2017-07-25T06:21:21
97,787,392
0
0
null
null
null
null
UTF-8
Python
false
false
2,500
py
# coding: utf-8 """ WSO2 API Manager - Store This specifies a **RESTful API** for WSO2 **API Manager** - Store. Please see [full swagger definition](https://raw.githubusercontent.com/wso2/carbon-apimgt/v6.0.4/components/apimgt/org.wso2.carbon.apimgt.rest.api.store/src/main/resources/store-api.yaml) of the API which is written using [swagger 2.0](http://swagger.io/) specification. OpenAPI spec version: 0.11.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import # import models into model package from .api import API from .api_info import APIInfo from .api_info_object_with_basic_api_details_ import APIInfoObjectWithBasicAPIDetails_ from .api_list import APIList from .api_object import APIObject from .api_object_business_information import APIObjectBusinessInformation from .api_object_endpoint_ur_ls import APIObjectEndpointURLs from .api_object_environment_ur_ls import APIObjectEnvironmentURLs from .application import Application from .application_1 import Application1 from .application_2 import Application2 from .application_3 import Application3 from .application_info import ApplicationInfo from .application_info_object_with_basic_application_details import ApplicationInfoObjectWithBasicApplicationDetails from .application_key import ApplicationKey from .application_key_details import ApplicationKeyDetails from .application_key_generate_request import ApplicationKeyGenerateRequest from .application_key_generation_request_object import ApplicationKeyGenerationRequestObject from .application_list import ApplicationList from .description_of_individual_errors_that_may_have_occurred_during_a_request_ import DescriptionOfIndividualErrorsThatMayHaveOccurredDuringARequest_ from .document import Document from .document_1 import Document1 from .document_list import DocumentList from .error import Error from .error_list_item import ErrorListItem from .error_object_returned_with_4_xx_http_status import ErrorObjectReturnedWith4XXHTTPStatus from .subscription import Subscription from .subscription_1 import Subscription1 from .subscription_2 import Subscription2 from .subscription_list import SubscriptionList from .tag import Tag from .tag_1 import Tag1 from .tag_list import TagList from .tier import Tier from .tier_1 import Tier1 from .tier_list import TierList from .token import Token from .token_details_for_invoking_ap_is import TokenDetailsForInvokingAPIs