blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
3f83f46f9d7f4babfa8c81312e6fd61edc7c8c9a
cc52011cb420651cdd9d37af1ffbad68f935c7be
/junk/face_test.py
02765a052dfcd7d9789560f7bae2bde65f24a6ca
[]
no_license
fatpat314/mask_detection
0988a341fd47849977bbb7babdc0ed2fce928a6d
025b420014e8aac71d867e06ef9202a473e5357c
refs/heads/master
2022-12-20T05:43:44.700740
2020-09-28T08:19:56
2020-09-28T08:19:56
290,686,539
0
0
null
null
null
null
UTF-8
Python
false
false
13,137
py
import face_recognition import cv2 import numpy as np import os import glob # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the # other example, but it includes some basic performance tweaks to make things run a lot faster: # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam. # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) """img_dir = "images" data_path = os.path.join(img_dir, '*g') files = glob.glob(data_path) data = [] masked_faces_encodings = [] for fl in files: data.append(fl) masked_faces_images = face_recognition.load_image_file(fl) masked_faces_encoding = face_recognition.face_encodings(masked_faces_images) masked_faces_encodings.append(masked_faces_encoding) masked_faces = ["Masked"] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True print(masked_faces_encodings) while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame,(0,0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) # matches = face_recognition.compare_faces(masked_faces_encodings, face_encoding) name = "Unmasked" if name == "Unmasked": print("ALERT!!!!", "\a") # # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = masked_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(masked_faces_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = masked_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() print("IMG DATA: ", data)""" # Load a sample picture and learn how to recognize it. obama_image = face_recognition.load_image_file("face.jpeg") obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it. biden_image = face_recognition.load_image_file("face2.jpg") biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names known_face_encodings = [ obama_face_encoding, biden_face_encoding ] known_face_names = [ "Barack Obama", "Joe Biden" ] # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # tolerance=0.0 # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unmasked" if name == "Unmasked": print("ALERT!!!!", "\a") # # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() # import face_recognition # import cv2 # import numpy as np # # """Does this only need to trigger when it sees a face? Otherwise just keep looping through frames until a face a found. # Because the facial recognition is not able to recognized masked faces""" # # video_capture = cv2.VideoCapture(0) # # # Initialize some variables # face_locations = [] # face_encodings = [] # face_names = [] # process_this_frame = True # # while True: # # Grab a single frame of video # ret, frame = video_capture.read() # # # Resize frame of video to 1/4 size for faster face recognition processing # small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # # # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) # rgb_small_frame = small_frame[:, :, ::-1] # # # Only process every other frame of video to save time # if process_this_frame: # # Find all the faces and face encodings in the current frame of video # face_locations = face_recognition.face_locations(rgb_small_frame) # face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) # # face_names = [] # for face_encoding in face_encodings: # name = "Unmasked" # if name == "Unmasked": # print("ALERT!!!", '\a') # # process_this_frame = not process_this_frame # # # # Display the results # for (top, right, bottom, left), name in zip(face_locations, face_names): # # Scale back up face locations since the frame we detected in was scaled to 1/4 size # top *= 4 # right *= 4 # bottom *= 4 # left *= 4 # # # Draw a box around the face # cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # # # Draw a label with a name below the face # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) # font = cv2.FONT_HERSHEY_DUPLEX # cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # # # Display the resulting image # cv2.imshow('Video', frame) # # # Hit 'q' on the keyboard to quit! # if cv2.waitKey(1) & 0xFF == ord('q'): # break # # # Release handle to the webcam # video_capture.release() # cv2.destroyAllWindows() # # # # # # # # # # # # from PIL import Image # # import face_recognition # # import cv2 # # import sys # # # faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # # # # video_capture = cv2.VideoCapture(0) # # # # while True: # # ret, frame = video_capture.read() # # # # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # # faces = faceCascade.detectMultiScale( # # gray, # # scaleFactor=1.5, # # minNeighbors=5, # # minSize=(30, 30), # # flags=cv2.CASCADE_SCALE_IMAGE # # ) # # # # for (x, y, w, h) in faces: # # cv2.rectangle(frame, (x, y), (x+w, y+h), (0 ,255, 0), 2) # # # # cv2.imshow('FaceDetections', frame) # # # # if k%256 == 27: # # break # # # # elif k%256 -- 32: # # img_name = "facedetect_webcam_{}.png".format(img_counter) # # cv2.imwrite(img_name, frame) # # print("{} written!".format(img_name)) # # img_counter += 1 # # # # video_capture.release() # # cv2.destroyAllWindows() # # # # # # # cascPath = sys.argv[1] # # faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # # # # video_capture = cv2.VideoCapture(0) # # # # while True: # # # Capture frame-by-frame # # ret, frame = video_capture.read() # # # # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # # # # faces = faceCascade.detectMultiScale( # # gray, # # scaleFactor=1.1, # # minNeighbors=5, # # minSize=(30, 30), # # # flags=cv2.cv2.CV_HAAR_SCALE_IMAGE # # ) # # # # # Draw a rectangle around the faces # # for (x, y, w, h) in faces: # # cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # # # # # Display the resulting frame # # cv2.imshow('Video', frame) # # # # if cv2.waitKey(1) & 0xFF == ord('q'): # # break # # # # # When everything is done, release the capture # # video_capture.release() # # cv2.destroyAllWindows() # # # # # # # # # # # # # # # # # # # # masked_faces = face_recognition # # # # known_image = face_recognition.load_image_file("mask.jpeg") # # unknown_image = face_recognition.load_image_file("face.jpeg") # # # # try: # # known_image_encoding = face_recognition.face_encodings(known_image)[0] # # unknown_image_encoding = face_recognition.face_encodings(unknown_image)[0] # # except IndexError: # # print("I was not able to locate any faces in at least one of the images. Check the image files. Aborting...") # # quit() # # # # known_faces = [ # # known_image_encoding # # ] # # # # results = face_recognition.compare_faces(known_faces, unknown_image_encoding) # # # # print("Is the unknown face face.jpg {}".format(results[0])) # # print("Is the unknown face a new person that we have never seen before? {}".format(not True in results)) # # # # # # # # # # def face_rec(): # # # known_image = face_recognition.load_image_file("face.jpg") # # # unknown_image = face_recognition.load_image_file("face.jpeg") # # # # # # known_encoding = face_recognition.face_encodings(known_image)[0] # # # unknown_encoding = face_recognition.face_encodings(unknown_image)[0] # # # # # # results = face_recognition.compare_faces([known_encoding], unknown_encoding) # # # print(results) # # # return results # # # # # # # # # # image = face_recognition.load_image_file("group.jpg") # # face_locations = face_recognition.face_locations(image) # # print("I found {} face(s) in this photograth.".format(len(face_locations))) # # for face_location in face_locations: # # top, right, bottom, left = face_location # # print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # # face_image = image[top:bottom, left:right] # # pil_image = Image.fromarray(face_image) # # pil_image.show()
5d0f4cb826491c6d60bd55e2f82ff687aad64d45
9acbf0279c38d11e89f16831e9c43b49badabb00
/IPTVPlayer/tsiplayer/addons/resources/sites/hds_stream.py
9875340d9a861185488cd59312f8b1383ca23e95
[]
no_license
dgbkn/e2iPlayer
4f101b87bc5f67bf14690d012a62cbe8755ab82c
e5f413ea032eb9012569d9d149a368a3e73d9579
refs/heads/master
2023-05-15T05:01:18.204256
2021-06-06T18:03:42
2021-06-06T18:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,881
py
# -*- coding: utf-8 -*- # vStream https://github.com/Kodi-vStream/venom-xbmc-addons import re from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.gui.hoster import cHosterGui from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.gui.gui import cGui from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.inputParameterHandler import cInputParameterHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.outputParameterHandler import cOutputParameterHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.requestHandler import cRequestHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.parser import cParser from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.comaddon import progress # from resources.lib.util import cUtil # outils pouvant etre utiles SITE_IDENTIFIER = 'hds_stream' SITE_NAME = 'Hds-stream' SITE_DESC = 'Film streaming HD complet en vf. Des films et séries pour les fan de streaming hds.' URL_MAIN = 'https://hds.club/' MOVIE_MOVIES = (True, 'showMenuMovies') MOVIE_NEWS = (URL_MAIN + 'films/', 'showMovies') MOVIE_GENRES = (URL_MAIN, 'showGenres') MOVIE_EXCLUS = (URL_MAIN + 'tendance/', 'showMovies') # MOVIE_ANNEES = (True, 'showMovieYears') SERIE_SERIES = (True, 'showMenuTvShows') SERIE_NEWS = (URL_MAIN + 'series/', 'showMovies') URL_SEARCH = (URL_MAIN + '?s=', 'showMovies') URL_SEARCH_MOVIES = (URL_SEARCH[0], 'showMovies') URL_SEARCH_SERIES = (URL_SEARCH[0], 'showMovies') FUNCTION_SEARCH = 'showMovies' def load(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH[0]) oGui.addDir(SITE_IDENTIFIER, 'showSearch', 'Recherche', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_EXCLUS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_EXCLUS[1], 'Films (Populaire)', 'news.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_NEWS[1], 'Films (Derniers ajouts)', 'news.png', oOutputParameterHandler) # oOutputParameterHandler.addParameter('siteUrl', MOVIE_ANNEES[0]) # oGui.addDir(SITE_IDENTIFIER, MOVIE_ANNEES[1], 'Films (Par années)', 'annees.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_GENRES[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_GENRES[1], 'Films (Genres)', 'genres.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', SERIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, SERIE_NEWS[1], 'Séries (Derniers ajouts)', 'news.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMenuMovies(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH_MOVIES[0]) oGui.addDir(SITE_IDENTIFIER, URL_SEARCH_MOVIES[1], 'Recherche Films', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_EXCLUS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_EXCLUS[1], 'Films (Populaire)', 'news.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_NEWS[1], 'Films (Derniers ajouts)', 'news.png', oOutputParameterHandler) # oOutputParameterHandler.addParameter('siteUrl', MOVIE_ANNEES[0]) # oGui.addDir(SITE_IDENTIFIER, MOVIE_ANNEES[1], 'Films (Par années)', 'annees.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_GENRES[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_GENRES[1], 'Films (Genres)', 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMenuTvShows(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH_SERIES[0]) oGui.addDir(SITE_IDENTIFIER, URL_SEARCH_SERIES[1], 'Recherche Séries ', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', SERIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, SERIE_NEWS[1], 'Séries (Derniers ajouts)', 'news.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showSearch(): oGui = cGui() sSearchText = oGui.showKeyBoard() if (sSearchText != False): sUrl = URL_SEARCH[0] + sSearchText.replace(' ', '+') showMovies(sUrl) oGui.setEndOfDirectory() return def showGenres(): oGui = cGui() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') oParser = cParser() oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() sPattern = 'menu-item-object-genres.+?<a href="([^"]+)".*?>(.+?)<' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): genres = set(aResult[1]) genres = sorted(genres, key=lambda genre: genre[1]) oOutputParameterHandler = cOutputParameterHandler() for aEntry in genres: sUrl = aEntry[0] sTitle = aEntry[1] oOutputParameterHandler.addParameter('siteUrl', sUrl) oGui.addDir(SITE_IDENTIFIER, 'showMovies', sTitle, 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMovieYears(): oGui = cGui() oParser = cParser() oRequestHandler = cRequestHandler(URL_MAIN) sHtmlContent = oRequestHandler.request() sHtmlContent = oParser.abParse(sHtmlContent, '<h2>Films Par Années</h2>', '<h2>Films Par Genres</h2>') sPattern = '<li><a href="([^"]+)">([^<]+)<' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl = aEntry[0] sYear = aEntry[1] oOutputParameterHandler.addParameter('siteUrl', sUrl) oGui.addDir(SITE_IDENTIFIER, 'showMovies', sYear, 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMovies(sSearch=''): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') if sSearch: sUrl = sSearch sPattern = 'class="result-item">.*?href="([^"]+)"><img src="([^"]+).*?class="title"><a.*?>([^<]+).*?class="year">([^<]+).*?class="contenido"><p>([^<]+)</p>' elif 'tendance/' in sUrl: sPattern = 'id="post-[0-9].+?<img src="([^"]+)".+?class="data".+?href="([^"]+)">([^<]+).*?, ([^<]+)</span>' else: sPattern = 'id="post-[0-9].+?<img src="([^"]+)".+?class="data".+?href="([^"]+)">([^<]+).*?, ([^<]+)</span>.*?<div class="texto">([^<]*)</div>' oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == False): oGui.addText(SITE_IDENTIFIER) if (aResult[0] == True): total = len(aResult[1]) progress_ = progress().VScreate(SITE_NAME) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: progress_.VSupdate(progress_, total) if progress_.iscanceled(): break if sSearch: sUrl2 = aEntry[0] sThumb = aEntry[1] sTitle = aEntry[2] sYear = aEntry[3] sDesc = aEntry[4] else: sThumb = aEntry[0] if sThumb.startswith('//'): sThumb = 'https:' + sThumb sUrl2 = aEntry[1] sTitle = aEntry[2] sYear = aEntry[3] if 'tendance/' in sUrl: sDesc = '' else: sDesc = aEntry[4] sDisplayTitle = ('%s (%s)') % (sTitle, sYear) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('sDesc', sDesc) oOutputParameterHandler.addParameter('sYear', sYear) if '/series' in sUrl2: oGui.addTV(SITE_IDENTIFIER, 'showSxE', sTitle, '', sThumb, sDesc, oOutputParameterHandler) else: oGui.addMovie(SITE_IDENTIFIER, 'showHosters', sDisplayTitle, '', sThumb, sDesc, oOutputParameterHandler) progress_.VSclose(progress_) if not sSearch: sNextPage, sPaging = __checkForNextPage(sHtmlContent) if (sNextPage != False): oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', sNextPage) oGui.addNext(SITE_IDENTIFIER, 'showMovies', 'Page ' + sPaging, oOutputParameterHandler) oGui.setEndOfDirectory() def __checkForNextPage(sHtmlContent): oParser = cParser() sPattern = '>Page \d+ de (\d+)</span>.*?<span class="current.+?href=["\']([^"\']+/page/\d+)/["\'] class="inactive' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): sNumberMax = aResult[1][0][0] sNextPage = aResult[1][0][1] sNumberNext = re.search('page/([0-9]+)', sNextPage).group(1) sPaging = sNumberNext + '/' + sNumberMax return sNextPage, sPaging return False, 'none' def showSxE(): oGui = cGui() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sThumb = oInputParameterHandler.getValue('sThumb') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sDesc = oInputParameterHandler.getValue('sDesc') oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() sPattern = '<span class=\'title\'>([^<]+)|class=\'numerando\'>\d - ([^<]+).+?class=\'episodiotitle\'><a href=\'([^\']+)\'>([^<]+)' oParser = cParser() aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: if aEntry[0]: oGui.addText(SITE_IDENTIFIER, '[COLOR crimson]' + aEntry[0] + '[/COLOR]') else: sUrl = aEntry[2] EpTitle = aEntry[3] Ep = aEntry[1] sTitle = sMovieTitle + ' Episode' + Ep + EpTitle oOutputParameterHandler.addParameter('siteUrl', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('sDesc', sDesc) oGui.addEpisode(SITE_IDENTIFIER, 'showSeriesHosters', sTitle, '', sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showHosters(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') sDesc = oInputParameterHandler.getValue('sDesc') oRequest = cRequestHandler(sUrl) sHtmlContent = oRequest.request() sPattern = "class='dooplay_player_option' data-type='([^']+)' data-post='([^']+)' data-nume='([^']+)'" aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): url_main = GET_REAL_URLMAIN(sUrl) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl2 = url_main + 'wp-admin/admin-ajax.php' dType = aEntry[0] dPost = aEntry[1] dNum = aEntry[2] pdata = 'action=doo_player_ajax&post=' + dPost + '&nume=' + dNum + '&type=' + dType sHost = 'Serveur ' + dNum sTitle = ('%s [COLOR coral]%s[/COLOR]') % (sMovieTitle, sHost) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('referer', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sMovieTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('pdata', pdata) oGui.addLink(SITE_IDENTIFIER, 'showLink', sTitle, sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showSeriesHosters(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') sDesc = oInputParameterHandler.getValue('sDesc') oRequest = cRequestHandler(sUrl) sHtmlContent = oRequest.request() sPattern = "id='player-option-.+?data-type='([^']+)'.+?data-post='([^']+)'.+?data-nume='([^']+)'.+?'server'>([^.|^<]+)" aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): url_main = GET_REAL_URLMAIN(sUrl) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl2 = url_main + 'wp-admin/admin-ajax.php' dType = aEntry[0] dPost = aEntry[1] dNum = aEntry[2] pdata = 'action=doo_player_ajax&post=' + dPost + '&nume=' + dNum + '&type=' + dType if (aEntry[3]).startswith('Unknown'): sHost = 'Serveur ' + dNum else: sHost = aEntry[3].capitalize() sTitle = ('%s [COLOR coral]%s[/COLOR]') % (sMovieTitle, sHost) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('referer', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sMovieTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('pdata', pdata) oGui.addLink(SITE_IDENTIFIER, 'showLink', sTitle, sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showLink(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') referer = oInputParameterHandler.getValue('referer') pdata = oInputParameterHandler.getValue('pdata') oRequest = cRequestHandler(sUrl) oRequest.setRequestType(1) oRequest.addHeaderEntry('User-Agent', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:70.0) Gecko/20100101 Firefox/70.0') oRequest.addHeaderEntry('Referer', referer) oRequest.addHeaderEntry('Accept', '*/*') oRequest.addHeaderEntry('Accept-Language', 'fr-FR,fr;q=0.9,en-US;q=0.8,en;q=0.7') oRequest.addHeaderEntry('Content-Type', 'application/x-www-form-urlencoded') oRequest.addParametersLine(pdata) sHtmlContent = oRequest.request().replace('\\', '') sPattern = '(http[^"]+)' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): for aEntry in aResult[1]: sHosterUrl = aEntry oHoster = cHosterGui().checkHoster(sHosterUrl) if (oHoster != False): oHoster.setDisplayName(sMovieTitle) oHoster.setFileName(sMovieTitle) cHosterGui().showHoster(oGui, oHoster, sHosterUrl, sThumb) oGui.setEndOfDirectory() def GET_REAL_URLMAIN(url): sd = url.split('.') sdm = URL_MAIN.split('.') return URL_MAIN.replace(sdm[0], sd[0])
da6cdfe9ab180d0e96dc02d884b46c6a2f8a3e88
6e8f2e28479566dbaa338300b2d61f784ff83f97
/.history/code/preprocess_20210421153926.py
328dd81758da2a656921e2d8033defa2f29c1d4b
[]
no_license
eeng5/CV-final-project
55a7d736f75602858233ebc380c4e1d67ab2b866
580e28819560b86f6974959efb1d31ef138198fc
refs/heads/main
2023-04-09T21:28:21.531293
2021-04-21T19:57:22
2021-04-21T19:57:22
352,703,734
0
0
null
null
null
null
UTF-8
Python
false
false
7,518
py
import os import random import numpy as np from PIL import Image import tensorflow as tf import hyperparameters as hp class Datasets(): """ Class for containing the training and test sets as well as other useful data-related information. Contains the functions for preprocessing. """ def __init__(self, data_path, task, aug, generate): self.data_path = data_path self.emotions = ['angry', 'happy', 'disgust', 'sad', 'neutral', 'surprise', 'fear'] self.emotion_dict = self.createEmotionDict() self.task = task self.aug = aug if generate == 1: if self.aug == '1': self.createSimpleData() else: self.createComplexData() # Dictionaries for (label index) <--> (class name) self.idx_to_class = {} self.class_to_idx = {} # For storing list of classes self.classes = [""] * hp.num_classes # Setup data generators self.train_data = self.get_data( os.path.join(self.data_path, "train/"), False) self.test_data = self.get_data( os.path.join(self.data_path, "test/"), False) def cleanTestDirs(self,): for e in self.emotions: pathy = self.data_path+'test/'+e pics = 1 for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanTrainDirs(self,): for e in self.emotions: pathy = self.data_path+'train/'+e for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanAll(self,): self.cleanTestDirs() self.cleanTrainDirs() def createPixelArray(self, arr): arr = list(map(int, arr.split())) array = np.array(arr, dtype=np.uint8) array = array.reshape((48, 48)) return array def equalize_hist(self, img): img = cv2.equalizeHist(img) return img def showImages(self, imgs): _, axs = plt.subplots(1, len(imgs), figsize=(20, 20)) axs = axs.flatten() for img, ax in zip(imgs, axs): ax.imshow(img,cmap=plt.get_cmap('gray')) plt.show() def augmentIMG(self, img, task): imgs = [img] img1 = self.equalize_hist(img) imgs.append(img1) img2 = cv2.bilateralFilter(img1, d=9, sigmaColor=75, sigmaSpace=75) imgs.append(img2) if task == 3: kernel = np.array([[-1.0, -1.0, -1.0], [-1.0, 9, -1.0], [-1.0, -1.0, -1.0]]) img3 = cv2.filter2D(img2,-1,kernel) imgs.append(img3) img4 = self.equalize_hist(img3) imgs.append(img4) img5 = cv2.bilateralFilter(img4, d=9, sigmaColor=100, sigmaSpace=100) imgs.append(img5) img6 = cv2.flip(img, 1) # flip horizontally imgs.append(img6) return imgs def saveIMG(self, arr, num, folderLoc): im = Image.fromarray(arr) filename = folderLoc + "image_"+ num+".jpg" im.save(filename) def createTrain(self, task): path1 = self.data_path+"train.csv" df = pd.read_csv(path1) # CHANGE ME base_filename = data_path+"train/" # CHANGE ME for index, row in df.iterrows(): px = row['pixels'] emot = int(row['emotion']) emot_loc = self.emotion_dict[emot] filename = base_filename + emot_loc img = self.createPixelArray(px) img_arr = self.augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 self.saveIMG(i, num, filename) def createTest(self, task): path1 = data_path +"icml_face_data.csv" df = pd.read_csv(path1) # CHANGE ME base_filename = data_path + "test/" # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "PublicTest"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = self.emotion_dict[emot] filename = base_filename + emot_loc img = self.createPixelArray(px) img_arr = self.augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createEmotionDict(self,): emotionDict = {} emotionDict[0]="angry/" emotionDict[1]="disgust/" emotionDict[2]="fear/" emotionDict[3]="happy/" emotionDict[4]="sad/" emotionDict[5]="surprise/" emotionDict[6] = "neutral/" return emotionDict def createSimpleData(self,): self.cleanAll() print("Cleaning done") self.createTrain(1) print("Training Data Generation done") self.createTest(1) print("Testing Data Generation done") def createComplexData(self,): self.cleanAll() self.createTrain(3) self.createTest(3) def preprocess_fn(self, img): """ Preprocess function for ImageDataGenerator. """ img = img / 255. return img def get_data(self, path, shuffle): """ Returns an image data generator which can be iterated through for images and corresponding class labels. Arguments: path - Filepath of the data being imported, such as "../data/train" or "../data/test" shuffle - Boolean value indicating whether the data should be randomly shuffled. Returns: An iterable image-batch generator """ data_gen = tf.keras.preprocessing.image.ImageDataGenerator(preprocessing_function=self.preprocess_fn) # VGG must take images of size 224x224 img_size = hp.img_size classes_for_flow = None # Make sure all data generators are aligned in label indices if bool(self.idx_to_class): classes_for_flow = self.classes # Form image data generator from directory structure data_gen = data_gen.flow_from_directory( path, target_size=(img_size, img_size), class_mode='sparse', batch_size=hp.batch_size, shuffle=shuffle, classes=classes_for_flow) # Setup the dictionaries if not already done if not bool(self.idx_to_class): unordered_classes = [] for dir_name in os.listdir(path): if os.path.isdir(os.path.join(path, dir_name)): unordered_classes.append(dir_name) for img_class in unordered_classes: self.idx_to_class[data_gen.class_indices[img_class]] = img_class self.class_to_idx[img_class] = int(data_gen.class_indices[img_class]) self.classes[int(data_gen.class_indices[img_class])] = img_class return data_gen
c26cdbd6de229d90cf71d67bf49f6a27ab68512f
2d0bada349646b801a69c542407279cc7bc25013
/src/vai_optimizer/tensorflow/tf_nndct/utils/__init__.py
3274ff4b5eecc566b7b6ab5c8e5fb76d2336b986
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-3-Clause-Open-MPI", "LicenseRef-scancode-free-unknown", "Libtool-exception", "GCC-exception-3.1", "LicenseRef-scancode-mit-old-style", "OFL-1.1", "JSON", "LGPL-2.1-only", "LGPL-2.0-or-later", "ICU", "LicenseRef-scancode-other-permissive", "GPL-2.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-issl-2018", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-unicode", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-or-later", "Zlib", "BSD-Source-Code", "ClArtistic", "LicenseRef-scancode-unknown-license-reference", "ISC", "NCSA", "LicenseRef-scancode-proprietary-license", "GPL-2.0-only", "CC-BY-4.0", "FSFULLR", "Minpack", "Unlicense", "BSL-1.0", "NAIST-2003", "LicenseRef-scancode-protobuf", "LicenseRef-scancode-public-domain", "Libpng", "Spencer-94", "BSD-2-Clause", "Intel", "GPL-1.0-or-later", "MPL-2.0" ]
permissive
Xilinx/Vitis-AI
31e664f7adff0958bb7d149883ab9c231efb3541
f74ddc6ed086ba949b791626638717e21505dba2
refs/heads/master
2023-08-31T02:44:51.029166
2023-07-27T06:50:28
2023-07-27T06:50:28
215,649,623
1,283
683
Apache-2.0
2023-08-17T09:24:55
2019-10-16T21:41:54
Python
UTF-8
Python
false
false
616
py
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nndct_shared.utils import registry
4db1b6a570c6c09cb4abbde4d2d5b91439464880
86a563e6eff56cf96bfa3c6dcdfb706e68114530
/ch05/layer_naive.py
f4262f3f86dabc938f835840d0e9ffd66c61601c
[]
no_license
mingrammer/deep-learning-from-scratch
be322ee82fe5c8d2bcde3ac3e7d35792c5314d1f
4e158aa3f773ac7c60585f3f1627e94dac7a05ba
refs/heads/master
2021-01-01T06:36:44.414300
2017-08-10T17:15:55
2017-08-10T17:15:55
97,468,838
2
2
null
null
null
null
UTF-8
Python
false
false
519
py
class MulLayer: def __init__(self): self.x = None self.y = None def forward(self, x, y): self.x = x self.y = y out = x * y return out def backward(self, dout): dx = dout * self.y dy = dout * self.x return dx, dy class AddLayer: def __init__(self): pass def forward(self, x, y): out = x + y return out def backward(self, dout): dx = dout * 1 dy = dout * 1 return dx, dy
a6d693cdcbe37656bb5535ac4a05fe5cc9372d37
41d0bd94bbaec0299e6be6fc56a726545c1894cb
/sources/nytimes/__init__.py
6b17755df17000bfee582d94d3ef7ceaa7c83853
[ "Unlicense" ]
permissive
AB9IL/stream-sources
f86eec0552d0992e7ee02a39076e0a1042ebfe27
ede8bd3ad7d51723d489192d0a6c5b2ea31ffe56
refs/heads/master
2023-02-03T23:09:25.582012
2020-12-23T08:12:42
2020-12-23T08:12:42
319,333,418
0
0
Unlicense
2020-12-07T13:47:06
2020-12-07T13:47:05
null
UTF-8
Python
false
false
244
py
from sources.generic import FeedSource class Source(FeedSource): SOURCE = { 'name': 'The New York Times', 'url': 'https://www.nytimes.com', } FEED_URL = 'http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml'
57058094d1fac2a6430800baef3bfb044fb40353
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/app/plugin/core/searchtext/iterators/InstructionSearchAddressIterator.pyi
714c2a10a62f4d6f5eb1d692fba25f1bfdbdb764
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
1,144
pyi
from typing import Iterator import ghidra.program.model.address import java.lang import java.util import java.util.function class InstructionSearchAddressIterator(object, ghidra.program.model.address.AddressIterator): def __init__(self, __a0: ghidra.program.model.listing.InstructionIterator): ... def __iter__(self) -> Iterator[object]: ... def equals(self, __a0: object) -> bool: ... def forEach(self, __a0: java.util.function.Consumer) -> None: ... def forEachRemaining(self, __a0: java.util.function.Consumer) -> None: ... def getClass(self) -> java.lang.Class: ... def hasNext(self) -> bool: ... def hashCode(self) -> int: ... def iterator(self) -> java.util.Iterator: ... def next(self) -> object: ... def notify(self) -> None: ... def notifyAll(self) -> None: ... def remove(self) -> None: ... def spliterator(self) -> java.util.Spliterator: ... def toString(self) -> unicode: ... @overload def wait(self) -> None: ... @overload def wait(self, __a0: long) -> None: ... @overload def wait(self, __a0: long, __a1: int) -> None: ...
56be18a63c0d30a9e4ba2dae5d07aad985c61656
40c4b8b618d67fc48b862809b6e2835bb7cf76eb
/leetcode/65.py
e19e991fccbe8881504df78c7650cbe96eaad2ad
[]
no_license
berquist/ctci
9fa08ac724990eee32f8ad7cffc3517491570d41
f0a69d3e4dd1b73a43c96dcb7a9c7b9955c04c39
refs/heads/master
2022-08-18T01:53:16.994300
2022-08-15T00:36:07
2022-08-15T00:36:07
120,108,966
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
class Solution(object): def isNumber(self, s): """ :type s: str :rtype: bool """ # assert Solution().isNumber("0") == True # assert Solution().isNumber(" 0.1 ") == True # assert Solution().isNumber("abc") == False # assert Solution().isNumber("1 a") == False # assert Solution().isNumber("2e10") == True
101f05c1b708685c9f582744ecc1a14472bcf253
30b2b8a449558fc327daebf51096bf251ef6a8e9
/scripts/Assemble.py
389daba962491debc1e343d62c2dfc8ec94ca8d5
[ "Zlib", "MIT", "LicenseRef-scancode-public-domain" ]
permissive
ekg/shasta
0ac3462d0e3f73375a1b583967992b7e5deba1fd
e2fd3c3d79fb4cafe77c62f6af2fef46f7a04b01
refs/heads/master
2020-06-02T12:59:50.717211
2019-06-10T12:13:22
2019-06-10T12:13:22
191,161,600
0
0
NOASSERTION
2019-06-10T12:13:04
2019-06-10T12:13:03
null
UTF-8
Python
false
false
686
py
#!/usr/bin/python3 import shasta import GetConfig import ast # Read the config file. config = GetConfig.getConfig() # Create the Assembler. a = shasta.Assembler() # Set up the consensus caller. a.setupConsensusCaller(config['Assembly']['consensusCaller']) # Figure out if we should use marginPhase, and if so set it up. useMarginPhase = ast.literal_eval(config['Assembly']['useMarginPhase']) if useMarginPhase: a.setupMarginPhase() a.accessKmers() a.accessMarkers() a.accessMarkerGraphVertices() a.accessMarkerGraphEdges() a.accessAssemblyGraphEdges() a.accessAssemblyGraphEdgeLists() a.accessMarkerGraphVertexRepeatCounts() a.accessMarkerGraphEdgeConsensus() a.assemble()
7f2e99bfc97cb0b7fc22df73b15f8e1a322d6df3
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/exp-big-393.py
20bce7381a23b7eb2eaa3484512995b694ea0636
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
3,178
py
# Compute x**y def exp(x: int, y: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp2(x: int, y: int, x2: int, y2: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x $ID = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp3(x: int, y: int, x2: int, y2: int, x3: int, y3: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp4(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp5(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int, x5: int, y5: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) # Input parameter n:int = 42 n2:int = 42 n3:int = 42 n4:int = 42 n5:int = 42 # Run [0, n] i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch while i <= n: print(exp(2, i % 31)) i = i + 1
2cfadbdf605826104ecf7f24efa19f78691766cf
c11f92e6a1578338cf759b5e1624a53225642e79
/babi/user_data.py
8307f03bf2d4e55df9bd70db01a1dca7746c0fcf
[ "MIT" ]
permissive
pganssle/babi
c1d50df3bdb924316779ab82e996ad46baafb986
d20be693d2c067570f0a82e2c2baee34c827c3bd
refs/heads/master
2021-04-11T19:55:08.285937
2020-03-21T18:47:37
2020-03-21T18:47:37
249,049,571
0
0
MIT
2020-03-21T19:50:32
2020-03-21T19:50:32
null
UTF-8
Python
false
false
393
py
import os.path def _xdg(*path: str, env: str, default: str) -> str: return os.path.join( os.environ.get(env) or os.path.expanduser(default), 'babi', *path, ) def xdg_data(*path: str) -> str: return _xdg(*path, env='XDG_DATA_HOME', default='~/.local/share') def xdg_config(*path: str) -> str: return _xdg(*path, env='XDG_CONFIG_HOME', default='~/.config')
8e34a70a3f9397eeb53ec22828a93db95486d8b8
e458083d9e0f3564d3089de9febe3cad61733f47
/Weekdays/python_looping/python_loopings/iterative.py
a8a0cb3dacd9d0abb7f63a3db3305d1043195b89
[]
no_license
chavhanpunamchand/pythonYogeshSir
cd71d002927f8bbc8ad5ecff3282e0b7c6cfc13c
3ee675f188e2680cde9e04ad03f2f5c9f3d46ba0
refs/heads/master
2023-02-14T01:53:34.342147
2021-01-09T17:36:17
2021-01-09T17:36:17
293,258,859
0
0
null
null
null
null
UTF-8
Python
false
false
8,839
py
''' Iterative --> points do..while --atleast once --> thru flag--* --> not provided in python while --> may or may not range random random.randoint enumerate dict.keys dict.values dict.items for --> when u are sure about no of iterations in advance --> when u are not sure about no of iterations in advance --> read data from db--> read data from files--> while --> may or may not body execution --> condition and then body do..while --> atleast once body execution --> body then condition --> condition bypass it thru flag--> for -> loop -- Iterative --> statements --> execute the body as long as condition is satisfied for while do.while * --> not in python --> we need to explicitly --> implement this range(10) start--> 0 end=10 step=1 range(1,10) step=1 range(1,10,3) start -1 end 10 --> incr -->3 1 4 7 for(initialization;conditions;incremet/decrement) --> other lang //body for --> start stop step range --> seq --> start stop -> step ---> range(10) --> 0 10 1 --> 0-9 start -> include -- range(1,10) --> 1 10 1 -->1-9 stop --> dont include range(1,10,2) 1 10 2 -->1,3,5,7,9 step --> increment by list/set/tuple --> item --> simply element -- dict --> step1 1.dict --> keys --> based on keys using dict.get(key) -> value --> we need to retrive 2.dict.keys --keys --> based on keys using dict.get(key) -> value --> we need to retrive step2 packed = pickling = (10,20,30,40,50) values = (10,20,30) for item in dict.items() --> (key,value) unpacked--unpickling = 10,20,40,50 v1,v2,v3 = 10,20,30 for k,v in dict.items() --> key value 3.dict.items() -- pair --> for k,v in dict.items() --> unpacked 1 11 --> direct for i,k,v in enumerate(dict.items()) --> unpacked 0,1 11 --> direct for item in dict.items() --> packed (1,11) -> direct for i,item in enumerate(dict.items()) --> packed (1,11) -> direct step1 --> key -- we can retrive value step2 -- key,value -->direct step3 dict.values() --> only values --> u cannot retrive keys--based only values --> enumerate --> assign numbers to the --> counter --> 0,1,2,3 --> ''' import sys import random # i want to read the file print -> all lines- -> #body --> # fib -> series --> 0 1 1 2 3 5 8 ---> val = int(input('Enter Stop Point ')) # 5 #do --> atleast once --> num1 = 0 # 0 1 num2 = 1 #1 result = 0 #0 counter = 1 #1 # swap --> while (counter<=val): # true #final ans ---> 0,1,1,2 print(result,end=',') #1 counter +=1 # 4 num1 = num2 #1 num2 = result # 1 result = num1 + num2 #1+1 --> 2 sys.exit(0) while True: file = open('File') if not file.readlines(): # in case no lines break num1 = int(input('Enter NO -->')) num2 = int(input('Enter NO -->')) while num1 == num2: break while True: # do while --> atleast once num1 = int(input('Enter NO -->')) num2 = int(input('Enter NO -->')) if num1 == num2: break flag = 1 val = int(input('Enter Number : ')) while flag or val%2==0: # # when no is even print('inside body') #atleast once body execution happens # may or may not body execution val = int(input('Enter Number : ')) flag=0 # reset -> next time flag will not bypass--> execution print('Outside body -->') sys.exit(0) #do while kind of implementation --> while do.while --> with the help of flag flag = [0] # present num = int(input('Enter Number : ')) # once --> first --> gc --> atleast once -> do while --> implementation while not num%3==0 or flag: # loop will execute unless entered number is not divisible by 3 print('Inside Body') #gc --> always --> cannot-->depends on condition num = int(input('Enter Number : ')) flag.clear() #empty --> absent print("Divisible by 3 -->", num) sys.exit(0) #every iterator --> group of elements --> list,set,tuple,dict #while --> condition --> then body -> may or may not #do..while-->body first --> then condition --> atleast once ''' while condition: --> body may or may not execute --> always --> depends on condition body do body --> atleast once body will surely execute -- irrespective of condition while condition ''' #for item in range(1000): # if we are sure about no of iterations --> # if we are not sure about no of iteration in advance while True: # # start loop --> unless not break --> if num divisible by 3 --> when ??==? no--> num = int(input('Enter Number :')) if num%3==0: print('Number found',num) break sys.exit(0) sys.exit(0) #no of attempts --> no --> if u are not sure about of numbers---> while num = int(input('Enter Number : ')) # no of elements --> to reach to this condition ?? if num%3 == 0: print('Number Found -- >',num) sys.exit(0) values = [random.randint(1,100) for item in range(10)] # this line is exactly to --> 51 to 57 lines -> compressive--> short hand expression -- short cut print(values) # i want to print all those -- nums divisiable by 3--> #3 stop for item in values: #10 if item%3==0: print(item) break sys.exit(0) values = [] for item in range(10): # 10 times --> val = random.randint(1,100) # 1 - 100 --> both inclusive -> random no generates values.append(val) print(values) sys.exit(0) valuesList = list(range(1,20)) valuesSet = set(range(1,20)) valuesTuple = tuple(range(1,20)) valuesList1 = list(range(1,10)) # 9 -->1------> 9 1:11,2:12 --> key valuesList2 = list(range(11,20)) #9--> 11----> 19 -->value valuesDict = dict(zip(valuesList1,valuesList2)) for cnt,pair in enumerate(valuesDict.items()): print(cnt,pair) #0 (1,11) 1 (2,12) sys.exit(0) print('For List -->') for index,item in enumerate(valuesList): # if we want counter for the element print(index,item) # 0:1 --> 8:9 print('For Set --->') for index,item in enumerate(valuesSet): # enumerate --> assigns counter to the elements--> print(index,item) sys.exit(0) #values = [10,"A",True] # item ?? --? first int --> second --string--> 3rd --> boolean #list --> group of elements as single entity --> # array --> type of array --> object --> hom data elements print('Dict Items ->',valuesDict) print('using dict --> items() method --> unpacked') for key,val in valuesDict.items(): print(key,val) #1 11 print('using dict --> items() method --> packed --> tuple pairs') for pair in valuesDict.items(): print(pair) #tuple(1,11) (2,12) (3,13) sys.exit(0) print('using dict --> values() method') for val in valuesDict.values(): print(val) #only values --> 11 12 -----> 19 sys.exit(0) print('Tuple Iterations using for loop') for item in valuesTuple: print(item,end=' . ') #tuple elements sepereated by dot print('using dict.nothing which is bydefault --> keys()') for item in valuesDict: #default .keys() print('Key {}'.format(item),"Value {}".format(valuesDict.get(item))) #only keys --> 1 2 3 4------> 9 print('using dict --> keys() method') for key in valuesDict.keys(): # print('Key {}'.format(key),"Value {}".format(valuesDict.get(key))) #only keys --> 1 2 3 4------> 9 print('List Of Items ->',valuesList) print('List Iterations using for loop') for item in valuesList: print(item,end=' # ') #list elements sepearated by hash # print('Set Iterations using for loop') for item in valuesSet: print(item, end=' , ') # set elements sepearated by , #include--1 but not 10 val = range(1,20,2) #1 <10 ans = list(val) print(ans) for item in ans: print(item,end=',') sys.exit(0) val = range(10) # seq --> print(val,type(val)) rlist = set(range(10)) print(rlist)
3a0e1f78250db2e482d5eff70a0c07b7ee2c4b50
24a47669907cb008c3fea4265c4b6f37dddc54a4
/keras_/kerascv/models/sepreresnet.py
4331887dec1490c392c0c3197e65d35f06adb823
[ "MIT" ]
permissive
JHLee0513/imgclsmob
ee1f6b8c7f677ed0e8a23e26d3165d37fd8549b4
45abcc1d313b84fa3595e13f0e4fa04b5db6c75d
refs/heads/master
2020-04-22T14:13:25.337524
2019-02-12T18:26:09
2019-02-12T18:26:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,161
py
""" SE-PreResNet, implemented in Keras. Original paper: 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. """ __all__ = ['sepreresnet', 'sepreresnet18', 'sepreresnet34', 'sepreresnet50', 'sepreresnet50b', 'sepreresnet101', 'sepreresnet101b', 'sepreresnet152', 'sepreresnet152b', 'sepreresnet200', 'sepreresnet200b'] import os from keras import layers as nn from keras.models import Model from .common import conv1x1, se_block, is_channels_first, flatten from .preresnet import preres_block, preres_bottleneck_block, preres_init_block, preres_activation def sepreres_unit(x, in_channels, out_channels, strides, bottleneck, conv1_stride, name="sepreres_unit"): """ SE-PreResNet unit. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the convolution. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer of the block. name : str, default 'sepreres_unit' Unit name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor. """ identity = x if bottleneck: x, x_pre_activ = preres_bottleneck_block( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, conv1_stride=conv1_stride, name=name + "/body") else: x, x_pre_activ = preres_block( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, name=name + "/body") x = se_block( x=x, channels=out_channels, name=name + "/se") resize_identity = (in_channels != out_channels) or (strides != 1) if resize_identity: identity = conv1x1( x=x_pre_activ, in_channels=in_channels, out_channels=out_channels, strides=strides, name=name + "/identity_conv") x = nn.add([x, identity], name=name + "/add") return x def sepreresnet(channels, init_block_channels, bottleneck, conv1_stride, in_channels=3, in_size=(224, 224), classes=1000): """ SE-PreResNet model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer in units. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ input_shape = (in_channels, 224, 224) if is_channels_first() else (224, 224, in_channels) input = nn.Input(shape=input_shape) x = preres_init_block( x=input, in_channels=in_channels, out_channels=init_block_channels, name="features/init_block") in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 x = sepreres_unit( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, bottleneck=bottleneck, conv1_stride=conv1_stride, name="features/stage{}/unit{}".format(i + 1, j + 1)) in_channels = out_channels x = preres_activation( x=x, name="features/post_activ") x = nn.AvgPool2D( pool_size=7, strides=1, name="features/final_pool")(x) # x = nn.Flatten()(x) x = flatten(x) x = nn.Dense( units=classes, input_dim=in_channels, name="output")(x) model = Model(inputs=input, outputs=x) model.in_size = in_size model.classes = classes return model def get_sepreresnet(blocks, conv1_stride=True, model_name=None, pretrained=False, root=os.path.join('~', '.keras', 'models'), **kwargs): """ Create PreResNet or SE-PreResNet model with specific parameters. Parameters: ---------- blocks : int Number of blocks. conv1_stride : bool Whether to use stride in the first or the second convolution layer in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ if blocks == 18: layers = [2, 2, 2, 2] elif blocks == 34: layers = [3, 4, 6, 3] elif blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] elif blocks == 152: layers = [3, 8, 36, 3] elif blocks == 200: layers = [3, 24, 36, 3] else: raise ValueError("Unsupported SE-PreResNet with number of blocks: {}".format(blocks)) init_block_channels = 64 if blocks < 50: channels_per_layers = [64, 128, 256, 512] bottleneck = False else: channels_per_layers = [256, 512, 1024, 2048] bottleneck = True channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = sepreresnet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, conv1_stride=conv1_stride, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def sepreresnet18(**kwargs): """ SE-PreResNet-18 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=18, model_name="sepreresnet18", **kwargs) def sepreresnet34(**kwargs): """ SE-PreResNet-34 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=34, model_name="sepreresnet34", **kwargs) def sepreresnet50(**kwargs): """ SE-PreResNet-50 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, model_name="sepreresnet50", **kwargs) def sepreresnet50b(**kwargs): """ SE-PreResNet-50 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, conv1_stride=False, model_name="sepreresnet50b", **kwargs) def sepreresnet101(**kwargs): """ SE-PreResNet-101 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, model_name="sepreresnet101", **kwargs) def sepreresnet101b(**kwargs): """ SE-PreResNet-101 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, conv1_stride=False, model_name="sepreresnet101b", **kwargs) def sepreresnet152(**kwargs): """ SE-PreResNet-152 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, model_name="sepreresnet152", **kwargs) def sepreresnet152b(**kwargs): """ SE-PreResNet-152 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, conv1_stride=False, model_name="sepreresnet152b", **kwargs) def sepreresnet200(**kwargs): """ SE-PreResNet-200 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, model_name="sepreresnet200", **kwargs) def sepreresnet200b(**kwargs): """ SE-PreResNet-200 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, conv1_stride=False, model_name="sepreresnet200b", **kwargs) def _test(): import numpy as np import keras pretrained = False models = [ sepreresnet18, sepreresnet34, sepreresnet50, sepreresnet50b, sepreresnet101, sepreresnet101b, sepreresnet152, sepreresnet152b, sepreresnet200, sepreresnet200b, ] for model in models: net = model(pretrained=pretrained) # net.summary() weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) print("m={}, {}".format(model.__name__, weight_count)) assert (model != sepreresnet18 or weight_count == 11776928) assert (model != sepreresnet34 or weight_count == 21957204) assert (model != sepreresnet50 or weight_count == 28080472) assert (model != sepreresnet50b or weight_count == 28080472) assert (model != sepreresnet101 or weight_count == 49319320) assert (model != sepreresnet101b or weight_count == 49319320) assert (model != sepreresnet152 or weight_count == 66814296) assert (model != sepreresnet152b or weight_count == 66814296) assert (model != sepreresnet200 or weight_count == 71828312) assert (model != sepreresnet200b or weight_count == 71828312) if is_channels_first(): x = np.zeros((1, 3, 224, 224), np.float32) else: x = np.zeros((1, 224, 224, 3), np.float32) y = net.predict(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
1084dd65c5e897d08750a0765d039c5aa79fbda4
444a9480bce2035565332d4d4654244c0b5cd47b
/research/nlp/gpt2/src/utils/tensor_manipulations.py
8ff23330029fad9374e2b614e0f24e24d7e6f763
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
7,159
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ tensor manipulations """ from mindspore import Tensor from mindspore import dtype as mstype from mindspore.ops import operations as P def extract_string_from_tensor(input_ids, mode="single", config=None, tokenizer=None): """ Args: input_ids (Tensor): input sentences with shape [batch_size, seq_len]. mode (str): ["pair", "single"] "pair" for tasks with paired inputs `<bos> A <eos> B <eos>`, such as summarization task, the dataset format `<bos> Article <eos> Summary <eos>`, reading comprehension task, the dataset format `<bos> Passage Question <eos> Answer <eos>`. "single" for tasks with single input `<bos> A <eos>`, such as Language Modeling, Lambada task. config: the configuration of GPT-2 model. tokenizer: the tokenizer of GPT-2 model. Return: prompt_list (list): list of prompt_text reference_list (list): list of reference_text, or second part of text rest_list (list): list of rest_text, or rest part of text """ batch_size = config.batch_size seq_length = config.seq_length prompt_list = [""] * batch_size reference_list = [""] * batch_size eos_text = tokenizer.eos_token len_eos_text = len(eos_text) input_ids = P.Reshape()(input_ids, (batch_size, seq_length)) if mode == "pair": for batch_idx in range(batch_size): sentence_tensor = input_ids[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) reference_start = prompt_end + len_eos_text reference_end = sentence[reference_start:].find( eos_text, 0) + reference_start prompt_list[batch_idx] = sentence[prompt_start:prompt_end] reference_list[batch_idx] = sentence[reference_start:reference_end] return prompt_list, reference_list # For single output datasets such as WikiText, etc. if mode == "single": for batch_idx in range(batch_size): sentence_tensor = input_ids[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) prompt_list[batch_idx] = sentence[prompt_start:prompt_end] else: raise NotImplementedError('mode:{} not supported.'.format(mode)) return prompt_list def extract_single_token_logits(logits=None, seq_pos=None): """ Args logits: (batch_size,seq_length,vocab_size) e.g. when batchsize is 8, sequence length is 1024 and vocab_size is 50257, then logits is a Tensor with shape (8,1024,50257) seq_pos:(batch_size) list Return: output_logits: (batch_size,1,vocab_size) extract the logit to predict the last token. """ batch_size = logits.shape[0] for i in range(batch_size): logit = logits[i:i + 1:1, seq_pos[i]:seq_pos[i] + 1:1, ::] if i == 0: output_logits = logit else: output_logits = P.Concat()((output_logits, logit)) return output_logits def get_last_one_pos(input_mask: Tensor): """ Arg: input_mask (Tensor): (batch_size,seq_length) Return: pos (Tensor): (batch_size,) """ input_mask_ = P.Cast()(input_mask, mstype.float32) pos = P.ReduceSum(keep_dims=False)(input_mask_, axis=1) # (batch_size,) pos = P.Cast()(pos, mstype.int32) pos = pos - 1 return pos def get_next_one_pos(input_mask: Tensor): """ Arg: input_mask (Tensor): (batch_size,seq_length) """ input_mask_ = P.Cast()(input_mask, mstype.float32) pos = P.ReduceSum(keep_dims=False)(input_mask_, axis=1) # (batch_size,) pos = P.Cast()(pos, mstype.int32) return pos def add_last_token_mask(input_mask: Tensor, overflow_strategy: str = "shift"): """ add last token mask Args: input_mask: Tensor overflow_strategy: str Returns: Tensor """ pos = get_next_one_pos(input_mask).asnumpy() input_mask_np = input_mask.asnumpy() maximum_length = input_mask.shape[1] batch_size = input_mask.shape[0] for idx in range(batch_size): # not overflow if pos[idx] < maximum_length: input_mask_np[idx][pos[idx]] = 1 # overflow else: if overflow_strategy == "shift": continue if overflow_strategy == "truncate": continue else: raise ValueError("{} is not an option in ['shift','truncate'].".format(overflow_strategy)) return Tensor(input_mask_np, dtype=mstype.int32) def add_last_token(input_ids: Tensor, input_mask: Tensor, overflow_strategy: str = "shift", append_ids=None, next_token_pos=None): """ add last token Args: input_ids: Tensor input_mask: Tensor overflow_strategy: str append_ids: Any next_token_pos: Any Returns: Tensor """ # get positional list/numpy array if next_token_pos is None: pos = get_next_one_pos(input_mask).asnumpy() else: pos = next_token_pos # get numpy of inputs input_mask_np = input_mask.asnumpy() input_ids_np = input_ids.asnumpy() maximum_length = int(input_mask.shape[1]) batch_size = int(input_mask.shape[0]) for idx in range(batch_size): if append_ids[idx] == -1: continue # not overflow if pos[idx] < maximum_length: input_mask_np[idx][int(pos[idx])] = 1 input_ids_np[idx][int(pos[idx])] = append_ids[idx] # overflow else: if overflow_strategy == "shift": # shift one token left input_ids_np[idx][0:maximum_length - 1] = input_ids_np[idx][1:maximum_length] input_ids_np[idx][maximum_length - 1] = append_ids[idx] continue if overflow_strategy == "truncate": # do nothing continue else: raise ValueError("{} is not an option in ['shift','truncate'].".format(overflow_strategy)) return Tensor(input_ids_np, dtype=mstype.int32), Tensor(input_mask_np, dtype=mstype.int32)
8b38feee1e7984c093ab2477b1e6c94aa9ae5032
9b1446b26e81a79c303f9799fb6a91785c7adb03
/.history/Code/rearrange_20200119162227.py
a2b26cbc31714c4d2901c190ccccaf9a0c97fe88
[]
no_license
SamirIngley/CS1.2-Tweet-Gen
017ea15b1113881a156ff24682828bc654eb6c81
bcd95fa63e05849cbf8e36230d8e31032b99daaa
refs/heads/master
2020-12-14T20:19:57.733290
2020-08-04T23:19:23
2020-08-04T23:19:23
234,856,234
0
0
null
2020-06-05T21:13:04
2020-01-19T07:05:55
Python
UTF-8
Python
false
false
5,847
py
import random def random_rearrange(input_string): ''' Asks user for input of words, then rearranges those words in a random order ''' # input_string = input("enter words: ") words = input_string.split(' ') len_words = len(words) # print(words) word_list = [] for word in range(len_words): rand = random.randint(0,len_words-1) # print(rand) word_list.append(words[rand]) # print(word_list) space = ' ' sentence = space.join(word_list) print(sentence) return sentence def reverse_order(input_string): ''' Reverses the order or words inputted by user ''' # input_string = input("enter words: ") words = input_string.split(' ') print(words) length = len(words) - 1 word_list = [] for word in words: word_list.append(words[length]) length -= 1 print(word_list) space = ' ' sentence = space.join(word_list) print(sentence) return sentence def mad_libs(): nouns_string = input('Give me a noun: ') names_string = input('Give me a name: ') verbs_string = input('Give me two verbs: ') nouns = nouns_string.split(' ') names = names_string.split(' ') verbs = verbs_string.split(' ') print(verbs) print("One day I went to the store to buy myself a {}.".format(nouns[0])) print("'What's the matter with you {}?' The clerk asked.".format(names[0])) print("'This fits me well' I said") print("'Well go on then {} it out so you don't miss out.".format(verbs[0])) print("'Let me {} first and I'll give you what I have.'".format(verbs[1])) # def anagram(): # ''' handshake with each letter # rearrange to see every possible combination of words # ''' # word = input('Letters/word: ') # length = len(word) # current = None # temp = None # for letter in word: # current = letter # for letter2 in word: # temp = letter2 # if letter == letter2: # pass # else: def anagram(input_string): ''' takes a word and returns every possible combination of letters ''' word_string = input_string new_strings = [] linked_list = LinkedList() linked_list_swaps = LinkedList() linked_list.read() linked_list_swaps.read() for letter in input_string: linked_list.insert(letter) linked_list_swaps.insert(letter) linked_list.read() print(len(word_string)) index = 0 while index < len(word_string): for letter in word_string: for letter2 in word_string: linked_list_swaps.swap(letter, letter2) new_strings.append(linked_list.read() + "\n") linked_list_swaps.swap(letter2, letter) index += 1 linked_list_swaps.read() print(new_strings) return class Node(): def __init__(self, data=None, next_pointer=None): self.data = data self.next_pointer = next_pointer def get_data(self): return self.data def get_next(self): return self.next_pointer def set_next(self, next_node): self.next_pointer = next_node class LinkedList(): def __init__(self, head=None): self.head = head def insert(self, data): new_node = Node(data) new_node.set_next(self.head) self.head = new_node def delete(self, data): current = self.head previous = None found = False while current and found == False: if current.get_data() == data: found = True else: previous = current current = current.get_next() if current == None: return ValueError("does not exist") if previous == None: self.head = current.get_next() if found == True: previous.set_next(current.get_next()) def read(self): current = self.head read = [] while current: data = current.get_data() read.append(data) current = current.get_next() no_space = '' sentence = no_space.join(read) print(sentence) return def swap(self, data1, data2): node1 = None node2 = None current = self.head if data1 == data2: print("n/a") return while current: curr_data = current.get_data() if curr_data == data1: node1 = current elif curr_data == data2: node2 = current current = current.get_next() temp1 = node1.get_data() temp2 = node2.get_data() node1.data = temp2 node2.data = temp1 return def size(self): current = self.head counter = 0 while current: counter += 1 current = current.get_next() print(counter) return counter if __name__ == '__main__': input_string = 'hello yellow fellow' anagram_string = 'superduper' # random_rearrange(input_string) # reverse_order() # mad_libs() anagram(anagram_string) # linked_list = LinkedList() # linked_list.insert('a') # linked_list.insert('b') # linked_list.insert('c') # linked_list.insert('d') # linked_list.insert('e') # linked_list.insert('f') # linked_list.insert('g') # linked_list.insert('h') # linked_list.insert('i') # linked_list.insert('j') # linked_list.insert('k') # linked_list.read() # linked_list.delete('a') # linked_list.read() # print(range(linked_list.size())) # linked_list.swap([0],[10]) # linked_list.read()
655703818b71a380d0ddde23057a56603097cada
e41e2505ff0b0534017e85bda0e06493094d1498
/frontend/corona_REST/setting.py
6315adfe2d6fb9e632722dc0d095178b642a7331
[ "MIT" ]
permissive
luyuliu/COVID19-Dashboard
5d516f85284ca908321696bee405fdf1da5531d1
717f83e2767fa53367232e742c110515957a94fd
refs/heads/master
2023-09-04T11:59:37.076149
2021-11-12T20:32:46
2021-11-12T20:32:46
253,892,926
1
0
null
null
null
null
UTF-8
Python
false
false
1,538
py
DOMAIN = { 'ridership_actual': {'datasource': {'source': 'ridership_actual'}}, 'county_info': {'datasource': {'source': 'county_info'}}, 'census_occu_pop': {'datasource': {'source': 'census_occu_pop'}}, 'corona_cases_state_level': {'datasource': {'source': 'corona_cases_state_level'}}, 'census_occupation_population': {'datasource': {'source': 'census_occupation_population'}}, 'system_info': {'datasource': {'source': 'system_info'}}, 'other_ridership_hourly': {'datasource': {'source': 'other_ridership_hourly'}}, 'corona_cases_github': {'datasource': {'source': 'corona_cases_github'}}, 'other_ridership': {'datasource': {'source': 'other_ridership'}}, 'ridership': {'datasource': {'source': 'ridership'}}, 'census_occupation_industry': {'datasource': {'source': 'census_occupation_industry'}}, 'ridership_hourly': {'datasource': {'source': 'ridership_hourly'}}, 'aggregated_ridership_hourly': {'datasource': {'source': 'aggregated_ridership_hourly'}}, 'system_info_backup': {'datasource': {'source': 'system_info_backup'}}, 'google_trend': {'datasource': {'source': 'google_trend'}}, 'corona_cases_usafacts': {'datasource': {'source': 'corona_cases_usafacts'}}, 'census_transit_pop': {'datasource': {'source': 'census_transit_pop'}}, } MONGO_HOST = 'localhost' MONGO_PORT = 27017 MONGO_DBNAME = "corona" ALLOW_UNKNOWN=True X_DOMAINS='*' PAGINATION_LIMIT = 10000 PAGINATION_DEFAULT = 10000
aef9f80055a7aed0d9ee6b1f6e97282e910a9c59
a8b17b17f9b2a640013064c50e1cebc27a7a68de
/10-Merging-DataFrames-with-Pandas/04-case-study-Summer-Olympics/02-loading-ioc-codes-dataframe.py
6f36f6445cdf16c2b2857aa63e94ef5d965ab92a
[]
no_license
JohnnyFang/datacamp
20eae09752521f14006cb3fda600b10bd7b12398
0fa8fa7682c23b0eb07bd03e4b75f5b77aeafa75
refs/heads/master
2020-04-18T00:27:37.358176
2020-02-04T20:54:19
2020-02-04T20:54:19
167,078,316
1
0
null
null
null
null
UTF-8
Python
false
false
834
py
''' Read file_path into a DataFrame called ioc_codes. The identifier file_path has been pre-defined with the filename 'Summer Olympic medallists 1896 to 2008 - IOC COUNTRY CODES.csv'. Select only the columns 'Country' and 'NOC' from ioc_codes. Print the leading 5 and trailing 5 rows of the DataFrame ioc_codes (there are 200 rows in total). This has been done for you, so hit 'Submit Answer' to see the result! ''' # Import pandas import pandas as pd # Create the file path: file_path file_path = 'Summer Olympic medallists 1896 to 2008 - IOC COUNTRY CODES.csv' # Load DataFrame from file_path: ioc_codes ioc_codes = pd.read_csv(file_path) # Extract the relevant columns: ioc_codes ioc_codes = ioc_codes[['Country', 'NOC']] # Print first and last 5 rows of ioc_codes print(ioc_codes.head()) print(ioc_codes.tail())
a434c943b8afac2a3ba516952790983f4bebf8d9
def27d5864764b877b6786835ec97f2bd74c6ba8
/easy/HammingDistance.py
b9cb3fe45c35fdf770719e3a32aa986bf2a73a40
[]
no_license
bolan2014/leetcode
f6cf38a49a9250abeb36543ea2498062c58e811d
1c35fde3a65c4f216218f459736d4c39a29980d5
refs/heads/master
2021-04-09T16:59:41.494568
2017-05-10T03:47:14
2017-05-10T03:47:14
46,648,353
0
1
null
null
null
null
UTF-8
Python
false
false
466
py
class Solution(object): def hammingDistance(self, x, y): """ :type x: int :type y: int :rtype: int """ bix, biy = bin(x)[2:], bin(y)[2:] if len(bix) > len(biy): biy = (len(bix) - len(biy)) * '0' + biy else: bix = (len(biy) - len(bix)) * '0' + bix cnt = 0 for i in range(len(bix)): if bix[i] != biy[i]: cnt += 1 return cnt
c453f63b56b29011977ee32465c52b69a612a70d
630fe47bb5aa5e49b45ab101d87c2dd2c53d180f
/venv/Lib/site-packages/com/vmware/nsx/node/aaa/providers/vidm_client.py
b5c31723c754c80b2bea2a739a2388630213feb8
[]
no_license
shrivastava-himanshu/Leetcode_practice
467497a58d82ff3ae2569d5e610dc6f27a1f31d6
4c59799947c2b17bfd22ca2a08707ef85e84a913
refs/heads/main
2023-06-12T13:14:45.381839
2021-07-05T04:09:05
2021-07-05T04:09:05
367,546,005
0
0
null
null
null
null
UTF-8
Python
false
false
4,544
py
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2021 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx.node.aaa.providers.vidm. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class Status(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx.node.aaa.providers.vidm.status' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _StatusStub) self._VAPI_OPERATION_IDS = {} def get(self): """ Read AAA provider vIDM status :rtype: :class:`com.vmware.nsx.model_client.NodeAuthProviderVidmStatus` :return: com.vmware.nsx.model.NodeAuthProviderVidmStatus :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', None) class _StatusStub(ApiInterfaceStub): def __init__(self, config): # properties for get operation get_input_type = type.StructType('operation-input', {}) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/api/v1/node/aaa/providers/vidm/status', path_variables={ }, query_parameters={ }, content_type='application/json' ) operations = { 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeAuthProviderVidmStatus'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx.node.aaa.providers.vidm.status', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'Status': Status, }
debe5f15c52bb08f8beadfea06a498d86d7c81c4
27880c807b97b3b318d002a547680c6881acf460
/tests/argparse/special/test_overwrite.py
a4721283725798b1b7e6875be3aed206d66f9fc3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
sbrodehl/miniflask
a1ebb809d544fbc235044624af9193982f01aced
55b350b951ad2120ea13a986f742523206f407c6
refs/heads/master
2022-11-05T05:18:43.383396
2022-09-14T15:26:17
2022-09-14T15:26:17
252,498,534
0
0
null
2020-04-02T15:46:39
2020-04-02T15:46:39
null
UTF-8
Python
false
false
2,702
py
from pathlib import Path import pytest import miniflask # noqa: E402 def test_setup(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 2 modules.defaults.var_default_override_twice: 3 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults_override"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 12 modules.defaults.var_default_override_twice: 13 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override_twice(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults_override", "defaults_override_twice"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 12 modules.defaults.var_default_override_twice: 113 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override_conflict(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override"]) with pytest.raises(miniflask.exceptions.RegisterError): mf.parse_args([]) mf.event.print_all() def test_override_scoped_absolute(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override_scoped_absolute"]) mf.parse_args([]) mf.event.print_all() def test_override_scoped_relative(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override_scoped_relative"]) mf.parse_args([]) mf.event.print_all()
683cb94f99b944c57b75bcff395c4d70823f1021
27acd9eeb0d2b9b6326cc0477e7dbb84341e265c
/test/vraag4/src/isbn/156.py
5d83c65f74ee33e129c19964d85548161b6c4135
[]
no_license
VerstraeteBert/algos-ds
e0fe35bc3c5b7d8276c07250f56d3719ecc617de
d9215f11cdfa1a12a3b19ade3b95fa73848a636c
refs/heads/master
2021-07-15T13:46:58.790446
2021-02-28T23:28:36
2021-02-28T23:28:36
240,883,220
1
1
null
null
null
null
UTF-8
Python
false
false
1,113
py
def isISBN(code): if not ( isinstance(code, str) and len(code) == 13 and ( code.startswith('978') or code.startswith('979') ) and code.isdigit() ): return 0 controle=0 for i in range(12): if i%2: controle += 3* int(code[i]) else: controle += int(code[i]) cc = controle % 10 cc = (10 - cc) % 10 return cc == int(code[-1]) def overzicht(codes): groepen = {} for i in range(11): groepen[i] = 0 for code in codes: if not isISBN(code): groepen[10] += 1 else: groepen[int(code[3])] += 1 print('Engelstalige landen: {}'.format(groepen[0] + groepen[1])) print('Franstalige landen: {}'.format(groepen[2])) print('Duitstalige landen: {}'.format(groepen[3])) print('Japan: {}'.format(groepen[4])) print('Russischtalige landen: {}'.format(groepen[5])) print('China: {}'.format(groepen[7])) print('Overige landen: {}'.format(groepen[6] + groepen[8] + groepen[9])) print('Fouten: {}'.format(groepen[10]))
222e0833d388b0280d65ff78eb7ee790a0581964
a9e3f3ad54ade49c19973707d2beb49f64490efd
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/common/djangoapps/student/role_helpers.py
ffe0f2c9f20f8f9d2d6244b6ab63b737d5bbcf22
[ "AGPL-3.0-only", "AGPL-3.0-or-later", "MIT" ]
permissive
luque/better-ways-of-thinking-about-software
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
5809eaca7079a15ee56b0b7fcfea425337046c97
refs/heads/master
2021-11-24T15:10:09.785252
2021-11-22T12:14:34
2021-11-22T12:14:34
163,850,454
3
1
MIT
2021-11-22T12:12:31
2019-01-02T14:21:30
JavaScript
UTF-8
Python
false
false
1,412
py
""" Helpers for student roles """ from openedx.core.djangoapps.django_comment_common.models import ( FORUM_ROLE_ADMINISTRATOR, FORUM_ROLE_COMMUNITY_TA, FORUM_ROLE_GROUP_MODERATOR, FORUM_ROLE_MODERATOR, Role ) from common.djangoapps.student.roles import ( CourseBetaTesterRole, CourseInstructorRole, CourseStaffRole, GlobalStaff, OrgInstructorRole, OrgStaffRole ) def has_staff_roles(user, course_key): """ Return true if a user has any of the following roles Staff, Instructor, Beta Tester, Forum Community TA, Forum Group Moderator, Forum Moderator, Forum Administrator """ forum_roles = [FORUM_ROLE_COMMUNITY_TA, FORUM_ROLE_GROUP_MODERATOR, FORUM_ROLE_MODERATOR, FORUM_ROLE_ADMINISTRATOR] is_staff = CourseStaffRole(course_key).has_user(user) is_instructor = CourseInstructorRole(course_key).has_user(user) is_beta_tester = CourseBetaTesterRole(course_key).has_user(user) is_org_staff = OrgStaffRole(course_key.org).has_user(user) is_org_instructor = OrgInstructorRole(course_key.org).has_user(user) is_global_staff = GlobalStaff().has_user(user) has_forum_role = Role.user_has_role_for_course(user, course_key, forum_roles) if any([is_staff, is_instructor, is_beta_tester, is_org_staff, is_org_instructor, is_global_staff, has_forum_role]): return True return False
28a140f400a6d510811875a29923efe76038cf73
ebe422519443dbe9c4acd3c7fd527d05cf444c59
/evaluation_expression.py
ae02e8d4501a759bbab9c83d68ce0494a8051e94
[]
no_license
SaiSudhaV/coding_platforms
2eba22d72fdc490a65e71daca41bb3d71b5d0a7b
44d0f80104d0ab04ef93716f058b4b567759a699
refs/heads/master
2023-06-19T18:05:37.876791
2021-07-15T18:02:19
2021-07-15T18:02:19
355,178,342
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
class Solution: # @param A : list of strings # @return an integer def evalRPN(self, A): res, opr = [], ['+', '-', '*', '/'] for i in A: if i not in opr: res.append(i) elif len(res) >= 2: tem1 = str(res.pop()) tem2 = str(res.pop()) p = int(eval(tem2 + i + tem1)) res.append(p) return res.pop()
64b12d49a26a0628242f870670d9e5d34e02cb5e
f850e0f75a76c500f5ba8a9ab6fa6d5f40d22b23
/pyecharts_demo/demos/Bar/multiple_y_axes.py
e006b619f9172a4af780cb1631e85e41c4e503b7
[ "MIT" ]
permissive
jay20161013/pywebio-chart-gallery
805afa2643b0d330a4a2f80f1e0a8827e8f61afe
11fd8a70b2e9ff5482cf5924b110a11f3469edfc
refs/heads/master
2023-03-20T01:58:30.979109
2021-03-18T12:48:31
2021-03-18T12:48:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,851
py
from pywebio.output import put_html import pyecharts.options as opts from pyecharts.charts import Bar, Line """ Gallery 使用 pyecharts 1.0.0 参考地址: https://www.echartsjs.com/examples/editor.html?c=multiple-y-axis 目前无法实现的功能: 1、暂无 """ colors = ["#5793f3", "#d14a61", "#675bba"] x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] legend_list = ["蒸发量", "降水量", "平均温度"] evaporation_capacity = [ 2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3, ] rainfall_capacity = [ 2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3, ] average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2] bar = ( Bar(init_opts=opts.InitOpts(width="1260px", height="720px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="蒸发量", yaxis_data=evaporation_capacity, yaxis_index=0, color=colors[1], ) .add_yaxis( series_name="降水量", yaxis_data=rainfall_capacity, yaxis_index=1, color=colors[0] ) .extend_axis( yaxis=opts.AxisOpts( name="蒸发量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[1]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[2]) ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( type_="value", name="降水量", min_=0, max_=250, position="right", offset=80, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[0]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2] ) ) put_html(bar.overlap(line).render_notebook())
13a72f1e1d9a3d638183d21c021fdda9d81e2338
22d9d90aa171869bba3d31f2307abe58aadd3d1d
/qtim_tools/qtim_features/extract_features.py
bec0fcbfb0fe59a061988c379ed165343d2c6b95
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
liviust/qtim_tools
a790b66bf2d3cd1d5b8036a61a264be57614b47d
64d7d68b1335239f0d7707f8c1e28af71706e4ad
refs/heads/master
2020-05-27T21:19:22.480893
2017-02-28T22:30:14
2017-02-28T22:30:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,435
py
""" This 'learner' program, perhaps wrongly named, is the my current general utility function. It takes in a folder full of images and labels, parses them into numpy arrays, extracts features from those arrays, and writes them into an easily accessible .csv. As of yet, it does not do any learning.. """ # import import GLCM import morphology import statistics from qtim_tools.qtim_utilities import nifti_util import sys, getopt import glob import os import numpy as np import nibabel as nib import csv import fnmatch from shutil import copy, move from multiprocessing.pool import Pool from multiprocessing import freeze_support from functools import partial feature_dictionary = {'GLCM': GLCM, 'morphology': morphology, 'statistics': statistics} def generate_feature_list_batch(folder, features=['GLCM', 'morphology', 'statistics'], recursive=False, labels=False, label_suffix="-label", universal_label='', decisions=False, levels=255, normalize_intensities=True,mask_value=0, use_labels=[-1], erode=[0,0,0], filenames=True, featurenames=True, outfile='', overwrite=True, clear_file=True, write_empty=True, return_output=False, test=False): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) # This needs to be restructured, probably with a new method to iterate through images. Currently, this will not work # wtihout an output file. The conflict is between retaining the ability to append to files in real-time (to prevent # catastrophic errors from wasting eons of processing time) and having a conditional "outfile" parameter. if outfile != '': outfile = determine_outfile_name(outfile, overwrite) if clear_file: open(outfile, 'w').close() with open(outfile, 'ab') as writefile: csvfile = csv.writer(writefile, delimiter=',') csvfile.writerow(label_output[0,:]) imagepaths, label_images = generate_filename_list(folder, labels, label_suffix, recursive) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) for imagepath in imagepaths: print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath csvfile.writerow(empty_output[0,:]) continue print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=mask_value, normalize_intensities=normalize_intensities) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=mask_value, normalize_intensities=normalize_intensities))) index_output = np.vstack((index_output, index)) csvfile.writerow(np.hstack((index_output[-1,:], numerical_output[-1,:]))) final_output = np.hstack((index_output, numerical_output)) print 'Feature writing complete, writing output...' print '\n' for row in final_output: print row if return_output: return final_output def generate_feature_list_single(vol_filename, features=['GLCM', 'morphology', 'statistics'], labels=False, label_filename='',label_suffix="-label", decisions=False, levels=255, filenames=True, featurenames=True, outfile='', overwrite=True, write_empty=True, mask_value=0, test=False, use_labels=[-1], erode=0): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) if outfile != '': outfile = determine_outfile_name(outfile, overwrite) with open(outfile, 'ab') as writefile: csvfile = csv.writer(writefile, delimiter=',') csvfile.writerow(label_output[0,:]) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) final_output = write_image_method(vol_filename, label_filename, csvfile, total_features, features, feature_indexes, numerical_output, index_output, labels=False, label_suffix='-label', levels=100, mask_value=0, use_labels=[-1], erode=0, write_empty=False) print 'Feature writing complete, writing output...' print '\n' print final_output return final_output def generate_feature_list_parallel(folder, features=['GLCM', 'morphology', 'statistics'], recursive=False, labels=False, label_suffix="-label", decisions=False, levels=255, mask_value=0, use_labels=[-1], erode=[0,0,0], filenames=True, featurenames=True, outfile='', overwrite=True, clear_file=True, write_empty=True, return_output=False, test=False, processes=1): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) if outfile != '': outfile = determine_outfile_name(outfile, overwrite) if clear_file: open(outfile, 'w').close() imagepaths, label_images = generate_filename_list(folder, labels, label_suffix, recursive) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) subunits = [] sublength = np.floor(len(imagepaths) / processes) print 'Dividing data into ' + str(processes) + ' subgroups of length.. ' + str(int(sublength)) + ' units.' for i in xrange(processes - 1): subunits += [[imagepaths[int(i*sublength):int((i+1)*sublength)], label_images[int(i*sublength):int((i+1)*sublength)]]] subunits += [[imagepaths[int((processes - 1)*sublength):], label_images[int((processes - 1)*sublength):]]] subprocess = partial(generate_feature_list_chunk, total_features=total_features, feature_indexes=feature_indexes, label_output=label_output, features=features, labels=labels, label_suffix=label_suffix, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode, write_empty=write_empty, filenames=filenames) optimization_pool = Pool(processes) results = optimization_pool.map(subprocess, subunits) output_data = label_output[0,:] stitch_index = 0 for result in results: output_data = np.vstack((output_data, result)) final_output = output_data with open(outfile, 'wb') as writefile: csvfile = csv.writer(writefile, delimiter=',') for row in final_output: csvfile.writerow(row) print 'Feature writing complete, writing output...' print '\n' for row in final_output: print row if return_output: return final_output def generate_feature_list_chunk(data, total_features, feature_indexes, label_output, features=['GLCM', 'morphology', 'statistics'], labels=False, label_suffix="-label", levels=255, mask_value=0, use_labels=[-1], erode=[0,0,0], write_empty=True, filenames=True): imagepaths = data[0] label_images = data[1] numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) output_data = np.zeros((1, total_features + 1), dtype=object) for imagepath in imagepaths: print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath output_data = np.vstack(output_data, empty_output) continue print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0))) index_output = np.vstack((index_output, index)) output_data = np.vstack((output_data, (np.hstack((index_output[-1,:], numerical_output[-1,:]))))) return output_data def write_image_method(imagepath, label_images, csvfile, total_features, features, feature_indexes, numerical_output, index_output, labels=False, label_suffix='-label', levels=100, mask_value=0, use_labels=[-1], erode=0, write_empty=False): # This function is a bit clumsy. So many parameters.. print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath print 'Writing empty row in place of missing data...' csvfile.writerow(empty_output[0,:]) else: print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0))) index_output = np.vstack((index_output, index)) csvfile.writerow(np.hstack((index_output[-1,:], numerical_output[-1,:]))) return np.hstack((index_output, numerical_output)) def determine_outfile_name(outfile, overwrite=True): write_flag = False while not write_flag: if not os.path.isfile(outfile): write_flag = True continue if overwrite: write_flag = True else: split_outfile = str.split(outfile,'.') print split_outfile outfile = '.'.join(split_outfile[0:-1]) + '_new.' + split_outfile[-1] if not os.path.isfile(outfile): write_flag = True return outfile def generate_feature_indices(features=['GLCM', 'morphology', 'statistics'], featurenames=True): total_features = 0 feature_indexes = [0] for feature in features: total_features += feature_dictionary[feature].feature_count() if feature_indexes == [0]: feature_indexes = [0, feature_dictionary[feature].feature_count()] else: feature_indexes += [feature_indexes[-1] + feature_dictionary[feature].feature_count()] if featurenames: label_output = np.zeros((1, total_features+1), dtype=object) for feature_idx, feature in enumerate(features): label_output[0, (1+feature_indexes[feature_idx]):(1+feature_indexes[feature_idx+1])] = feature_dictionary[feature].featurename_strings() label_output[0,0] = 'index' return [total_features, feature_indexes, label_output] def generate_filename_list(folder, labels=False, label_suffix='-label', recursive=False): if recursive: imagepaths = [] for root, dirnames, filenames in os.walk(folder): for filename in fnmatch.filter(filenames, '*.nii*'): imagepaths.append(os.path.join(root, filename)) else: imagepaths = glob.glob(os.path.join(folder, "*.nii*")) # A bit redundant; this step and the previous step could probably be combined. imagepaths = [x for x in imagepaths if (x.endswith('.nii') or x.endswith('.nii.gz'))] if labels: label_images = [ x for x in imagepaths if label_suffix in x ] else: label_images = [] imagepaths = [ x for x in imagepaths if label_suffix not in x ] if imagepaths == []: raise ValueError("There are no .nii or .nii.gz images in the provided folder.") if labels and label_images == []: raise ValueError("There are no labels with the provided suffix in this folder. If you do not want to use labels, set the \'labels\' flag to \'False\'. If you want to change the label file suffix (default: \'-label\'), then change the \'label_suffix\' flag.") return [imagepaths, label_images] def generate_numpy_images(imagepath, labels=False, label_suffix='-label', label_images=[], mask_value=0, levels=255, use_labels=[-1], erode=0): image_list = [] unmodified_image_list = [] imagename_list = [] attributes_list = [] # nifti_util.save_alternate_nifti(imagepath, levels, mask_value=mask_value) image = nifti_util.nifti_2_numpy(imagepath) # This is likely redundant with the basic assert function in nifti_util if not nifti_util.assert_3D(image): print 'Warning: image at path ' + imagepath + ' has multiple time points or otherwise greater than 3 dimensions, and will be skipped.' return [[],[],[],[]] if labels: if label_suffix == '': label_path = label_images else: head, tail = os.path.split(imagepath) split_path = str.split(tail, '.') label_path = split_path[0] + label_suffix + '.' + '.'.join(split_path[1:]) label_path = os.path.join(head, label_path) if os.path.isfile(label_path): label_image = nifti_util.nifti_2_numpy(label_path) if label_image.shape != image.shape: print 'Warning: image and label do not have the same dimensions. Imaging padding support has not yet been added. This image will be skipped.' return [[],[],[],[]] # In the future: create an option to analyze each frame separately. if not nifti_util.assert_3D(label_image): print 'Warning: image at path ' + imagepath + ' has multiple time points or otherwise greater than 3 dimensions, and will be skipped.' return [[],[],[],[]] label_image = label_image.astype(int) label_indices = np.unique(label_image) if label_indices.size == 1: print 'Warning: image at path ' + imagepath + ' has an empty label-map, and will be skipped.' return[[],[],[],[]] # Will break if someone puts in '0' as a label to use. if use_labels[0] != -1: label_indices = np.array([0] + [x for x in label_indices if x in use_labels]) masked_images = nifti_util.mask_nifti(image, label_image, label_indices, mask_value=mask_value) for masked_image in masked_images: # nifti_util.check_tumor_histogram(masked_image, second_image_numpy=image, mask_value=mask_value, image_name = str.split(imagepath, '\\')[-1]) # nifti_util.check_image(masked_image, mode="maximal_slice") unmodified_image_list += [np.copy(masked_image)] masked_image = nifti_util.coerce_levels(masked_image, levels=levels, reference_image=image, method="divide", mask_value=mask_value) # nifti_util.check_image(masked_image, mode="maximal_slice") # It would be nice in the future to check if an image is too small to erode. Maybe a minimum-size parameter? # Or maybe a "maximum volume reduction by erosion?" Hmm.. masked_image = nifti_util.erode_label(masked_image, iterations=erode) # nifti_util.check_image(masked_image, mode="maximal_slice") image_list += [masked_image] filename = str.split(label_path, '\\')[-1] if label_indices.size == 2: imagename_list += [filename] else: split_filename = str.split(filename, '.') for labelval in label_indices[1:]: filename = split_filename[0] + '_' + str(int(labelval)) + '.' + split_filename[1] imagename_list += [filename] attributes_list += [nifti_util.return_nifti_attributes(imagepath)] * (label_indices.size - 1) print 'Finished... ' + str.split(imagepath, '\\')[-1] else: print 'Warning: image at path ' + imagepath + ' has no label-map, and will be skipped.' return[[],[],[],[]] else: image = nifti_util.coerce_levels(image, levels=levels, reference_image=image, method="divide", mask_value=mask_value) image_list += [image] unmodified_image_list += [image] imagename_list += [imagepath] attributes_list += [nifti_util.return_nifti_attributes(imagepath)] return [image_list, unmodified_image_list, imagename_list, attributes_list] def generate_feature_list_method(image, unmodified_image, attributes, features, feature_indexes='', total_features='', levels=-1, mask_value=0, normalize_intensities=False): if feature_indexes == '' or total_features == '': total_features = 0 feature_indexes = [0] for feature in features: total_features += feature_dictionary[feature].feature_count() if feature_indexes == [0]: feature_indexes = [0, feature_dictionary[feature].feature_count()] else: feature_indexes += [feature_indexes[-1] + feature_dictionary[feature].feature_count()] numerical_output = np.zeros((1, total_features), dtype=float) if (image != mask_value).sum() == 0: print 'Warning: image is empty, either because it could not survive erosion or because of another error. It will be skipped.' return numerical_output for feature_idx, feature in enumerate(features): if feature == 'GLCM': # nifti_util.check_tumor_histogram(image, mask_value) # nifti_util.check_image(image, mode="maximal_slice") glcm_image = np.copy(image) glcm_image = glcm_image.astype(int) levels += 1 print 'Calculating GLCM...' numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = GLCM.glcm_features(glcm_image, levels=levels) if feature == 'morphology': print 'Calculating morphology features...' numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = morphology.morphology_features(unmodified_image, attributes) if feature == 'statistics': # Should intensity statistics be eroded? Currently, they are not, as indicated by the "unmodified image" parameter. print 'Calculating statistical features...' if normalize_intensities: numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = statistics.statistics_features(glcm_image) else: numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = statistics.statistics_features(unmodified_image) print '\n' return numerical_output def test_method(): test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','MR_Tumor_Shape')) generate_feature_list_batch(folder=test_folder, features=['morphology', 'statistics'], labels=True, levels=100, outfile='test_feature_results_shape.csv',test=False, mask_value=0, erode=[0,0,0], overwrite=True) return def test_parallel(): test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_GLCM')) test_folder = '/home/administrator/data/tbData/tbType/TrainingSet' generate_feature_list_parallel(folder=test_folder, features=['GLCM','morphology', 'statistics'], labels=True, levels=100, outfile='lung_features_results_parallel_500.csv',test=False, mask_value=0, erode=[0,0,0], overwrite=True, processes=35) return def parse_command_line(argv): # This code should be run from the folder above the main "qtim_tools" folder using the command "python -m qtim_tools.qtim_features.test" # All niftis in this folder will be processed. The program searches for a nifti file, and then checks if there is a matching labelmap file with the suffix '-label'. # It currently loads from some built in data from the qtim_tools project, but you can change the filepath below to anywhere. test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_Intensity')) # If labels is set to False, the whole image will be processed. This can take a very long time for GLCM features especially, so it is best we stick to labels. labels = True # The only available features are 'GLCM', 'morphology', and 'statistics' for now. features = ['GLCM','morphology', 'statistics'] # In order for GLCM to work correctly, an image has to be reduced to a set amount of gray-levels. Using all available levels in an image will most likely produce a useless result. # More levels will result in more intensive computation. levels = 100 # This will save a spreadsheet of all requested feature results. outfile = 'test_feature_results_intensity.csv' # If your label is for some reason masked with a value other than zero, change this parameter. mask_value = 0 # The erode parameter will take [x,y,z] pixels off in each dimension. On many volumes, it is not useful to erode in the z (axial) slice because of high slice thickness. # Currently, the erode parameter only applies to GLCM. It does not apply to intensity statistic features, although maybe it should. erode = [0,0,0] # If overwrite is False, then the program will try to save to the chosen filename with '_copy' appended if the chosen filename already exists. overwrite = True extract_features.generate_feature_list_batch(folder=test_folder, features=features, labels=labels, levels=levels, outfile=outfile, mask_value=mask_value, erode=erode, overwrite=overwrite) def test(): # This code should be run from the folder above the main "qtim_tools" folder using the command "python -m qtim_tools.qtim_features.test" # All niftis in this folder will be processed. The program searches for a nifti file, and then checks if there is a matching labelmap file with the suffix '-label'. # It currently loads from some built in data from the qtim_tools project, but you can change the filepath below to anywhere. test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_Intensity')) # If labels is set to False, the whole image will be processed. This can take a very long time for GLCM features especially, so it is best we stick to labels. labels = True # The only available features are 'GLCM', 'morphology', and 'statistics' for now. features = ['GLCM','morphology', 'statistics'] # In order for GLCM to work correctly, an image has to be reduced to a set amount of gray-levels. Using all available levels in an image will most likely produce a useless result. # More levels will result in more intensive computation. levels = 100 # This will save a spreadsheet of all requested feature results. outfile = 'test_feature_results_intensity.csv' # If your label is for some reason masked with a value other than zero, change this parameter. mask_value = 0 # The erode parameter will take [x,y,z] pixels off in each dimension. On many volumes, it is not useful to erode in the z (axial) slice because of high slice thickness. # Currently, the erode parameter only applies to GLCM. It does not apply to intensity statistic features, although maybe it should. erode = [0,0,0] # If overwrite is False, then the program will try to save to the chosen filename with '_copy' appended if the chosen filename already exists. overwrite = True generate_feature_list_batch(folder=test_folder, features=features, labels=labels, levels=levels, outfile=outfile, mask_value=mask_value, erode=erode, overwrite=overwrite) def extract_features(folder, outfile, labels=True, features=['GLCM','morphology', 'statistics'], levels = 100, mask_value = 0, erode = [0,0,0], overwrite = True, label_suffix='-label', universal_label=''): generate_feature_list_batch(folder=folder, outfile=outfile, labels=labels, features=features, levels=levels, mask_value=mask_value, erode=erode, overwrite=overwrite, label_suffix=label_suffix, universal_label=universal_label) if __name__ == "__main__": np.set_printoptions(suppress=True, precision=2) # test_method() test_parallel()
ee0d1f6ab07282ef487a55f8caa50881541945c5
48a7b266737b62da330170ca4fe4ac4bf1d8b663
/molsysmt/form/string_pdb_text/extract.py
73bb0feea3ace5d705b0963185af3e24f5ad4607
[ "MIT" ]
permissive
uibcdf/MolSysMT
ddab5a89b8ec2377f383884c5169d147cab01322
c3d713ba63db24eb8a2426115cf8d9cb3665d225
refs/heads/main
2023-08-08T15:04:16.217967
2023-08-04T05:49:56
2023-08-04T05:49:56
137,937,243
15
3
MIT
2023-06-04T20:27:06
2018-06-19T19:38:44
Python
UTF-8
Python
false
false
812
py
from molsysmt._private.exceptions import NotImplementedMethodError from molsysmt._private.digestion import digest from molsysmt._private.variables import is_all @digest(form='string:pdb_text') def extract(item, atom_indices='all', structure_indices='all', copy_if_all=True): if is_all(atom_indices) and is_all(structure_indices): if copy_if_all: from copy import copy tmp_item = copy(item) else: tmp_item = item else: from . import to_molsysmt_MolSys from ..molsysmt_MolSys import to_string_pdb_text as molsysmt_MolSys_to_string_pdb_text tmp_item = to_molsysmt_MolSys(item, atom_indices=atom_indices, structure_indices=structure_indices) tmp_item = molsysmt_MolSys_to_string_pdb_text(tmp_item) return tmp_item
6394a2ecb06983781a9b4f36dfbe1b467f515d16
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/KCB_YCHF/KCB_YCHF_MM/OMS/YCHF_KCBYCHF_OMS_063.py
bf7954767971a8fe32cc9735084cfdcaf4130323
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,495
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test//xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test//service") from ServiceConfig import * from ARmainservice import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test//mysql") from CaseParmInsertMysql import * from SqlData_Transfer import * sys.path.append("/home/yhl2/workspace/xtp_test//utils") from QueryOrderErrorMsg import queryOrderErrorMsg from env_restart import * class YCHF_KCBYCHF_OMS_063(xtp_test_case): def setUp(self): #sql_transfer = SqlData_Transfer() #sql_transfer.transfer_fund_asset('YCHF_KCBYCHF_OMS_063') #clear_data_and_restart_all() #Api.trade.Logout() #Api.trade.Login() pass # def test_YCHF_KCBYCHF_OMS_063(self): title = '停止OMS服务(沪A五档即成转限价未成卖出)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '未成交', 'errorID': 0, 'errorMSG': queryOrderErrorMsg(0), '是否生成报单': '是', '是否是撤废': '否', # '是否是新股申购': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('688000', '1', '4', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '报单测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } print(stkparm['错误原因']) self.assertEqual(rs['报单测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':1, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_LIMIT'], 'price': stkparm['涨停价'], 'quantity': 300, 'position_effect':Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['报单测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) ## 还原可用资金 #sql_transfer = SqlData_Transfer() #sql_transfer.transfer_fund_asset('YW_KCB_BAK_000') #oms_restart() self.assertEqual(rs['报单测试结果'], True) # 211 if __name__ == '__main__': unittest.main()
382b4289c3b1bb000f2690f9c6f2a63fe5e1583c
f33885d6f1e963586f9e7b1e1a46a271d125e2e7
/ci/nur/fileutils.py
338149b414047c1411f8783359d43a434d120e33
[ "MIT" ]
permissive
nix-community/NUR
cad821a31d965ade9869c21f03edf9f7bb4cdf02
80012e6c2de5ea9c4101948b0d58c745e7813180
refs/heads/master
2023-09-03T05:05:30.497198
2023-09-03T04:32:01
2023-09-03T04:32:01
123,327,588
965
385
MIT
2023-09-12T07:10:52
2018-02-28T18:49:50
Python
UTF-8
Python
false
false
921
py
import json import os import shutil from contextlib import contextmanager from pathlib import Path from tempfile import NamedTemporaryFile from typing import Any, Generator, Union PathType = Union[str, Path] def to_path(path: PathType) -> Path: if isinstance(path, Path): return path else: return Path(path) def write_json_file(data: Any, path: PathType) -> None: path = to_path(path) f = NamedTemporaryFile(mode="w+", prefix=path.name, dir=str(path.parent)) with f as tmp_file: json.dump(data, tmp_file, indent=4, sort_keys=True) shutil.move(tmp_file.name, path) # NamedTemporaryFile tries to delete the file and fails otherwise open(tmp_file.name, "a").close() @contextmanager def chdir(dest: PathType) -> Generator[None, None, None]: previous = os.getcwd() os.chdir(dest) try: yield finally: os.chdir(previous)
a2455184714558aeedd27f30413d548c77e63c4b
7e260342bb04eba9bff4289da938e859b8d68b82
/contrib/scripts.py
d6d2ef643382ab83ba2df65618bc02d78d78ab2f
[ "MIT" ]
permissive
christopherjenness/fava
72c2d0e201f7792ac32a643be0479fa7623efc27
71c25d8a0ae08aa84150e33d464000d0161610ea
refs/heads/master
2020-04-28T15:29:34.446050
2019-03-12T17:58:03
2019-03-12T17:58:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,374
py
#!/usr/bin/env python3 """Various utilities.""" import json import os from beancount.query import query_env from beancount.query import query_parser import click import requests BASE_PATH = os.path.normpath( os.path.join(os.path.dirname(__file__), "../fava") ) LANGUAGES = ["de", "es", "fr", "nl", "pt", "ru", "zh-CN", "sk", "uk"] @click.group() def cli(): """Various utilities.""" def _env_to_list(attributes): for name in attributes.keys(): if isinstance(name, tuple): name = name[0] yield name @cli.command() def generate_bql_grammar_json(): """Generate a JSON file with BQL grammar attributes. The online code editor needs to have the list of available columns, functions, and keywords for syntax highlighting and completion. Should be run whenever the BQL changes.""" target_env = query_env.TargetsEnvironment() data = { "columns": sorted(set(_env_to_list(target_env.columns))), "functions": sorted(set(_env_to_list(target_env.functions))), "keywords": sorted({kw.lower() for kw in query_parser.Lexer.keywords}), } path = os.path.join( os.path.dirname(__file__), "../fava/static/javascript/codemirror/bql-grammar.json", ) with open(path, "w") as json_file: json.dump(data, json_file) @cli.command() def download_translations(): """Fetch updated translations from POEditor.com.""" token = os.environ.get("POEDITOR_TOKEN") if not token: raise click.UsageError( "The POEDITOR_TOKEN environment variable needs to be set." ) for language in LANGUAGES: download_from_poeditor(language, "po", token) download_from_poeditor(language, "mo", token) @cli.command() def upload_translations(): """Upload .pot message catalog to POEditor.com.""" token = os.environ.get("POEDITOR_TOKEN") if not token: raise click.UsageError( "The POEDITOR_TOKEN environment variable needs to be set." ) path = os.path.join(BASE_PATH, f"translations/messages.pot") click.echo(f"Uploading message catalog: {path}") data = { "api_token": token, "id": 90283, "updating": "terms", "sync_terms": 1, } files = {"file": open(path, "rb")} request = requests.post( "https://api.poeditor.com/v2/projects/upload", data=data, files=files ) click.echo("Done: " + str(request.json()["result"]["terms"])) def download_from_poeditor(language, format_, token): """Download .{po,mo}-file from POEditor and save to disk.""" click.echo(f'Downloading .{format_}-file for language "{language}"') language_short = language[:2] data = { "api_token": token, "id": 90283, "language": language, "type": format_, } request = requests.post( "https://api.poeditor.com/v2/projects/export", data=data ) url = request.json()["result"]["url"] content = requests.get(url).content folder = os.path.join( BASE_PATH, "translations", language_short, "LC_MESSAGES" ) if not os.path.exists(folder): os.makedirs(folder) path = os.path.join(folder, f"messages.{format_}") with open(path, "wb") as file_: file_.write(content) click.echo(f'Downloaded to "{path}"') if __name__ == "__main__": cli()
59778d5cfdb33ed8ffbcd1d7c0f2b05cd15a366d
5d22d9b2cb5cad7970c1055aeef55d2e2a5acb8e
/py/google/cj2014/round1A/FullBinaryTree.py
df737dafe506eb93570aed7b49ecc60662a2dc43
[ "MIT" ]
permissive
shhuan/algorithms
36d70f1ab23dab881bf1a15573fbca7b2a3f4235
2830c7e2ada8dfd3dcdda7c06846116d4f944a27
refs/heads/master
2021-05-07T14:21:15.362588
2017-11-07T08:20:16
2017-11-07T08:20:16
109,799,698
0
1
null
null
null
null
UTF-8
Python
false
false
2,055
py
# -*- coding: utf-8 -*- """ created by huash06 at 2015-04-08 10:48 """ __author__ = 'huash06' import sys import os import py.lib.Utils as Utils from datetime import datetime # sys.stdin = open('input/sample.txt', 'r') sys.stdin = open('input/B-large-practice.in', 'r') # sys.stdout = open('output/B-large-practice.out', 'w') MAXNN = 301 def count_node(graph, node, parent): cc = 1 for i in range(len(graph)): if i != parent and graph[node][i]: cc += count_node(graph, i, node) return cc def dfs(graph, node, parent, memo): """ 返回以node為根的子樹變成完全二叉樹時,剪掉的節點數量和剩餘的節點數量 :param graph: :param node: :param parent: :param memo: record calculated result :return: how many node in this full-binary tree rooted at node """ max1 = -1 max2 = -1 if memo[node][parent] == -1 or True: for child in graph[node]: if child != parent: nc = dfs(graph, child, node, memo) if nc > max1: max2 = max1 max1 = nc elif nc > max2: max2 = nc if max2 == -1: memo[node][parent] = 1 else: memo[node][parent] = 1 + max1 + max2 return memo[node][parent] T = int(sys.stdin.readline()) sys.setrecursionlimit(3000) # start_time = datetime.now() for ti in range(1, T + 1): N = int(sys.stdin.readline()) GRAPH = dict() for ei in range(1, N+1): GRAPH[ei] = list() for ni in range(N-1): S, T = map(int, sys.stdin.readline().strip().split(' ')) GRAPH[S].append(T) GRAPH[T].append(S) count = N memo = [[-1 for c in range(N+1)] for r in range(N+1)] for r in range(1, N+1): c = N - dfs(GRAPH, r, 0, memo) if c < count: count = c print('Case #{}: {}'.format(ti, count)) # end_time = datetime.now() # time_cost = end_time-start_time # print('Time Cost: {}s'.format(time_cost.seconds))
d34afd28088c387fc104acc632df1276df76726e
b2c070e09bff49241fcff98bcde825cfa96e93ca
/HackerEarth/Recursion/SubsetGeneration.py
9af011b3289a694f328f9d18d4a03292e2e93f09
[ "MIT" ]
permissive
Beryl2208/CI-2
dcb1b923f9c4f1f8b167c36c8b22a80522322c53
f671292dad2695e37458866442a6b951ba4e1a71
refs/heads/master
2022-12-26T19:11:28.559911
2020-10-06T06:27:51
2020-10-06T06:27:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
# Subset or Subsequence generation # Input - "abc", Output - "a", "b", "c", "ab", "ac", "abc", "bc" # Input - "abcd", Output - "a", "b", "c", "d", "ab", "ac", "ad", "abc", "acd", "abd", "abcd", "bc", "bcd", "bd", "cd" # "abc" "ab" "ac" "a" "bc" "b" "c" "" # \ / \ / \ / \ / # "ab" "a" "b" "" # \ / \ / # "a" "" # \ / # curr = "" # Options - # 1) Consider curr as a part of subset # 2) Do not consider curr as a part of subset def Subset(s, index = 0, curr = ''): if index == len(s): print(curr, end = ' ') return Subset(s, index + 1, curr + s[index]) Subset(s, index + 1, curr) Subset("abc") print() Subset("abcd") print()
2641b37d027fbff1ece30b7f2825fb2fcbd20653
7950c4faf15ec1dc217391d839ddc21efd174ede
/leetcode-cn/0150.0_Evaluate_Reverse_Polish_Notation.py
0a7404c8bbd5ea8d7d771e5b14d18c16066b3ef5
[]
no_license
lixiang2017/leetcode
f462ecd269c7157aa4f5854f8c1da97ca5375e39
f93380721b8383817fe2b0d728deca1321c9ef45
refs/heads/master
2023-08-25T02:56:58.918792
2023-08-22T16:43:36
2023-08-22T16:43:36
153,090,613
5
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
''' approach: Stack Time: O(N) Space: O(N) 执行用时:32 ms, 在所有 Python 提交中击败了60.21%的用户 内存消耗:14.3 MB, 在所有 Python 提交中击败了76.44%的用户 ''' class Solution(object): def evalRPN(self, tokens): """ :type tokens: List[str] :rtype: int """ stack = [] for token in tokens: stack.append(token) while len(stack) >= 3 and stack[-1] in ['+', '-', '*', '/']: operator = stack.pop() operand2 = int(stack.pop()) operand1 = int(stack.pop()) result = 0 if operator == '+': result = operand1 + operand2 elif operator == '-': result = operand1 - operand2 elif operator == '*': result = operand1 * operand2 elif operator == '/': # Note that division between two integers should truncate toward zero. result = int(operand1 * 1.0/ operand2) stack.append(result) return int(stack[-1])
0d049d8ba10dab9d75bd9355eb364b3565a2349b
6a7e9e0e9c08132166f566bd88ae1c46ff8f9c0a
/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/models/generic_container.py
f6e8fff7ae9f79d55e3c6619b9dd2ff2044fb9c6
[ "MIT" ]
permissive
ashirey-msft/azure-sdk-for-python
d92381d11c48f194ec9f989f5f803db614fb73f2
e04778e13306dad2e8fb044970215bad6296afb6
refs/heads/master
2020-03-23T06:05:39.283442
2018-09-15T00:18:26
2018-09-15T00:18:26
141,188,192
0
1
MIT
2018-07-16T20:02:52
2018-07-16T20:02:52
null
UTF-8
Python
false
false
2,678
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .protection_container import ProtectionContainer class GenericContainer(ProtectionContainer): """Base class for generic container of backup items. All required parameters must be populated in order to send to Azure. :param friendly_name: Friendly name of the container. :type friendly_name: str :param backup_management_type: Type of backup managemenent for the container. Possible values include: 'Invalid', 'AzureIaasVM', 'MAB', 'DPM', 'AzureBackupServer', 'AzureSql', 'AzureStorage', 'AzureWorkload', 'DefaultBackup' :type backup_management_type: str or ~azure.mgmt.recoveryservicesbackup.models.BackupManagementType :param registration_status: Status of registration of the container with the Recovery Services Vault. :type registration_status: str :param health_status: Status of health of the container. :type health_status: str :param container_type: Required. Constant filled by server. :type container_type: str :param fabric_name: Name of the container's fabric :type fabric_name: str :param extended_information: Extended information (not returned in List container API calls) :type extended_information: ~azure.mgmt.recoveryservicesbackup.models.GenericContainerExtendedInfo """ _validation = { 'container_type': {'required': True}, } _attribute_map = { 'friendly_name': {'key': 'friendlyName', 'type': 'str'}, 'backup_management_type': {'key': 'backupManagementType', 'type': 'str'}, 'registration_status': {'key': 'registrationStatus', 'type': 'str'}, 'health_status': {'key': 'healthStatus', 'type': 'str'}, 'container_type': {'key': 'containerType', 'type': 'str'}, 'fabric_name': {'key': 'fabricName', 'type': 'str'}, 'extended_information': {'key': 'extendedInformation', 'type': 'GenericContainerExtendedInfo'}, } def __init__(self, **kwargs): super(GenericContainer, self).__init__(**kwargs) self.fabric_name = kwargs.get('fabric_name', None) self.extended_information = kwargs.get('extended_information', None) self.container_type = 'GenericContainer'
0ec032d171d3f69969f5f45b107df6415097393f
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-6283.py
56c4dc6454c5bcb3750e15efea45835eab1b8d51
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,757
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> $Type: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
48ad1087d1425fbf659db1aec546c48a22425705
5491e80f7dc72a8091b16c26a5cfee93381ee30d
/Challenge202E_I_AM_BENDER_Binary_To_Text/challenge202E.py
a35a3a4915220b1f0ced3a8f61896c03fca380db
[]
no_license
tuipopenoe/DailyProgrammer
87167c2ae275c40c3b1a30ae14497a3289f8797f
8d42947b576b78456fa72cdf5b886cff9f32b769
refs/heads/master
2016-09-05T21:13:30.805504
2015-10-16T02:57:20
2015-10-16T02:57:20
21,139,505
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
#!/usr/bin/env python # Tui Popenoe # challenge202E.py - Binary to String import sys import binascii def i_am_bender(binary): return binascii.unhexlify('%x' % int(binary, 2)) def main(): if len(sys.argv) > 1: print(i_am_bender(sys.argv[1])) else: print(i_am_bender(sys.stdin.read())) if __name__ == '__main__': main()
5f91841d99dce028ef4112a7f1b5929f5529de42
729aa3af1e6de25c0e46192ef62aaf77cc622979
/comentarios/models.py
68e967afb7853be71fb6423710c8f2e8619ff015
[]
no_license
xuting1108/API-Pontos-Tur-sticos
8b583869006b8570c44eebfc885bb3db7eff4f1d
7a01434e806a7b3b1409f7c490071ba682525ad3
refs/heads/master
2022-11-19T15:09:48.057402
2020-06-15T21:38:00
2020-06-15T21:38:00
267,150,058
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
from django.db import models from django.contrib.auth.models import User class Comentario(models.Model): usuario = models.ForeignKey(User, on_delete=models.CASCADE) comentarios = models.TextField() data = models.DateTimeField(auto_now_add=True) aprovado = models.BooleanField(default=True) def __str__(self): return self.usuario.username
d5e1d94b0f4269311fc4634072447854264afac3
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/CDqMdrTvfn2Wa8igp_16.py
12713c2aa2161258166fab90eabe089a4b047990
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
""" Create a function that returns the next element in an **arithmetic sequence**. In an arithmetic sequence, each element is formed by adding the same constant to the previous element. ### Examples next_element([3, 5, 7, 9]) ➞ 11 next_element([-5, -6, -7]) ➞ -8 next_element([2, 2, 2, 2, 2]) ➞ 2 ### Notes All input arrays will contain **integers only**. """ def next_element(lst): a = lst[-1] - lst[-2] return lst[-1] + a
4f729df74aa3cb8e7f8acf86cf08033467732bf3
5982a9c9c9cb682ec9732f9eeb438b62c61f2e99
/Problem_234/my_bad_solution.py
d6896b10334da48b8afeefb2a9c1fcca30a0b44b
[]
no_license
chenshanghao/LeetCode_learning
6fdf98473be8f2240dd86d5586bbd1bbb95d6b0c
acf2395f3b946054009d4543f2a13e83402323d3
refs/heads/master
2021-10-23T05:23:01.970535
2019-03-15T05:08:54
2019-03-15T05:08:54
114,688,902
0
0
null
null
null
null
UTF-8
Python
false
false
470
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def isPalindrome(self, head): """ :type head: ListNode :rtype: bool """ val_list = [] while(head): val_list.append(head.val) head = head.next if val_list == val_list[::-1]: return True else: return False
67086c4670dfe4cb66c73ee192fb47a5a8183bcf
4597f9e8c2772f276904b76c334b4d181fa9f839
/Python/Compare-Version-Numbers.py
85b753029af257cf562da8fb4d2fb870da2c0e73
[]
no_license
xxw1122/Leetcode
258ee541765e6b04a95e225284575e562edc4db9
4c991a8cd024b504ceb0ef7abd8f3cceb6be2fb8
refs/heads/master
2020-12-25T11:58:00.223146
2015-08-11T02:10:25
2015-08-11T02:10:25
40,542,869
2
6
null
2020-09-30T20:54:57
2015-08-11T13:21:17
C++
UTF-8
Python
false
false
872
py
class Solution: # @param a, a string # @param b, a string # @return a boolean def compareVersion(self, version1, version2): seq1 = [] seq2 = [] if version1.find('.') >= 0: seq1 = version1.split('.') else: seq1.append(version1) if version2.find('.') >= 0: seq2 = version2.split('.') else: seq2.append(version2) for i in range(len(seq1)): seq1[i] = int(seq1[i]) for i in range(len(seq2)): seq2[i] = int(seq2[i]) maxlen = max(len(seq1), len(seq2)) for i in range(len(seq1), maxlen): seq1.append(0) for i in range(len(seq2), maxlen): seq2.append(0) if seq1 < seq2: return -1 elif seq1 > seq2: return 1 else: return 0
bd4bfd2045243258a2936d602e25e747bd5817ce
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_quivered.py
ae5ecb9ccecdd6d0e423ea42fa27b78863065fdc
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from xai.brain.wordbase.nouns._quiver import _QUIVER #calss header class _QUIVERED(_QUIVER, ): def __init__(self,): _QUIVER.__init__(self) self.name = "QUIVERED" self.specie = 'nouns' self.basic = "quiver" self.jsondata = {}
434c4bd312a9abd7b4c412e91f46470e4d93787a
3151fabc3eb907d6cd1bb17739c215a8e95a6370
/storagetest/pkgs/pts/compilebench/__init__.py
2b4e431708e278479b68217206765020f8856961
[ "MIT" ]
permissive
txu2k8/storage-test
a3afe96dc206392603f4aa000a7df428d885454b
62a16ec57d619f724c46939bf85c4c0df82ef47c
refs/heads/master
2023-03-25T11:00:54.346476
2021-03-15T01:40:53
2021-03-15T01:40:53
307,604,046
1
0
null
null
null
null
UTF-8
Python
false
false
1,040
py
#!/usr/bin/python # -*- coding: UTF-8 -*- """ @file : __init__.py.py @Time : 2020/11/12 18:27 @Author: Tao.Xu @Email : [email protected] """ from .compile_bench import * __all__ = ['CompileBench'] """ compilebench ============== https://oss.oracle.com/~mason/compilebench/ https://openbenchmarking.org/test/pts/compilebench Compilebench tries to age a filesystem by simulating some of the disk IO common in creating, compiling, patching, stating and reading kernel trees. It indirectly measures how well filesystems can maintain directory locality as the disk fills up and directories age. This current test is setup to use the makej mode with 10 initial directories Quick and dirty usage: (note the -d option changed in 0.6) 1. Untar compilebench 2. run commands: ./compilebench -D some_working_dir -i 10 -r 30 ./compilebench -D some_working_dir -i 10 --makej ./copmilebench -D some_working_dir -i 10 --makej -d /dev/xxx -t trace_file ./compilebench --help for more """ if __name__ == '__main__': pass
7741d2640a25fdf9bfc3c4d3a9f38b475e4ced61
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02753/s804894259.py
636735cbd5323d345ac8e012b55a33a9143478c1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
line = list(input()) line.sort() if line[0] == line[2]: print("No") else: print("Yes")
b280a2a7d4766e6375a02765b3244e920e0b405b
a0eb6744e6f7f509b96d21f0bc8b3f8387f6861c
/notebook/list_2d_sort.py
ed70c8ed858f38ef3ada5a56ba0468b997f515fc
[ "MIT" ]
permissive
nkmk/python-snippets
a6c66bdf999502e52f4795a3074ced63bf440817
f9dd286a9cf93f474e20371f8fffc4732cb3c4d5
refs/heads/master
2023-08-03T04:20:05.606293
2023-07-26T13:21:11
2023-07-26T13:21:11
98,900,570
253
77
MIT
2020-10-25T01:12:53
2017-07-31T14:54:47
Jupyter Notebook
UTF-8
Python
false
false
2,885
py
import pprint l_2d = [[20, 3, 100], [1, 200, 30], [300, 10, 2]] pprint.pprint(l_2d, width=20) # [[20, 3, 100], # [1, 200, 30], # [300, 10, 2]] pprint.pprint(sorted(l_2d), width=20) # [[1, 200, 30], # [20, 3, 100], # [300, 10, 2]] pprint.pprint([sorted(l) for l in l_2d], width=20) # [[3, 20, 100], # [1, 30, 200], # [2, 10, 300]] pprint.pprint([list(x) for x in zip(*[sorted(l) for l in zip(*l_2d)])], width=20) # [[1, 3, 2], # [20, 10, 30], # [300, 200, 100]] import numpy as np print(np.sort(l_2d)) # [[ 3 20 100] # [ 1 30 200] # [ 2 10 300]] print(np.sort(l_2d, axis=0)) # [[ 1 3 2] # [ 20 10 30] # [300 200 100]] print(type(np.sort(l_2d))) # <class 'numpy.ndarray'> print(np.sort(l_2d).tolist()) # [[3, 20, 100], [1, 30, 200], [2, 10, 300]] print(type(np.sort(l_2d).tolist())) # <class 'list'> l_2d_error = [[1, 2], [3, 4, 5]] # print(np.sort(l_2d_error)) # ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. pprint.pprint(sorted(l_2d, key=lambda x: x[1]), width=20) # [[20, 3, 100], # [300, 10, 2], # [1, 200, 30]] pprint.pprint(sorted(l_2d, key=lambda x: x[2]), width=20) # [[300, 10, 2], # [1, 200, 30], # [20, 3, 100]] import operator pprint.pprint(sorted(l_2d, key=operator.itemgetter(1)), width=20) # [[20, 3, 100], # [300, 10, 2], # [1, 200, 30]] pprint.pprint(sorted(l_2d, key=operator.itemgetter(2)), width=20) # [[300, 10, 2], # [1, 200, 30], # [20, 3, 100]] l_2d_dup = [[1, 3, 100], [1, 200, 30], [1, 3, 2]] pprint.pprint(l_2d_dup, width=20) # [[1, 3, 100], # [1, 200, 30], # [1, 3, 2]] pprint.pprint(sorted(l_2d_dup), width=20) # [[1, 3, 2], # [1, 3, 100], # [1, 200, 30]] pprint.pprint(sorted(l_2d_dup, key=operator.itemgetter(0, 2)), width=20) # [[1, 3, 2], # [1, 200, 30], # [1, 3, 100]] pprint.pprint(sorted(l_2d_dup, key=lambda x: (x[0], x[2])), width=20) # [[1, 3, 2], # [1, 200, 30], # [1, 3, 100]] import pandas as pd df = pd.DataFrame(l_2d_dup, columns=['A', 'B', 'C'], index=['X', 'Y', 'Z']) print(df) # A B C # X 1 3 100 # Y 1 200 30 # Z 1 3 2 print(df.sort_values('C')) # A B C # Z 1 3 2 # Y 1 200 30 # X 1 3 100 print(df.sort_values('Z', axis=1)) # A C B # X 1 100 3 # Y 1 30 200 # Z 1 2 3 print(df.sort_values(['A', 'C'])) # A B C # Z 1 3 2 # Y 1 200 30 # X 1 3 100 df = pd.DataFrame(l_2d_dup) print(df) # 0 1 2 # 0 1 3 100 # 1 1 200 30 # 2 1 3 2 print(df.sort_values(2)) # 0 1 2 # 2 1 3 2 # 1 1 200 30 # 0 1 3 100 print(df.sort_values(2, axis=1)) # 0 2 1 # 0 1 100 3 # 1 1 30 200 # 2 1 2 3 print(df.sort_values([0, 2])) # 0 1 2 # 2 1 3 2 # 1 1 200 30 # 0 1 3 100
8c5ed7790f16d81a0c36ea704e83ed858dde2f9b
71cb8d9eb437a9faf330931f3713ba5dc688405d
/analyze_data.py
20d0de521c42d33cccb15314658cdb6ae2767102
[ "MIT" ]
permissive
mattare2/perceptual-acoustic-similarity
294d967ab2cd47120d33e650f7488d37cec199ca
eced010ee2d1a36c6052c8afd1b8c4af709dc418
refs/heads/master
2021-01-18T11:26:36.763005
2015-04-21T07:21:22
2015-04-21T07:21:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,408
py
import csv import os from functools import partial from acousticsim.main import acoustic_similarity_mapping from acousticsim.helper import get_vowel_points from acousticsim.praat.wrapper import (to_pitch_praat, to_formants_praat, to_intensity_praat, to_mfcc_praat) from acousticsim.distance.point import point_distance, euclidean from acousticsim.distance.dct import dct_distance from acousticsim.distance.dtw import dtw_distance from acousticsim.distance.xcorr import xcorr_distance praat_path = r'C:\Users\michael\Documents\Praat\praatcon.exe' data_dir = r'C:\Users\michael\Documents\Data\ATI_new' model_dir = os.path.join(data_dir, 'Models') shadower_dir = os.path.join(data_dir, 'Shadowers') female_models = os.listdir(os.path.join(model_dir,'Female')) male_models = os.listdir(os.path.join(model_dir,'Male')) female_shadowers = os.listdir(os.path.join(shadower_dir,'Female')) male_shadowers = os.listdir(os.path.join(shadower_dir,'Male')) ## Representations # MFCC (acousticsim) # MFCC (Praat) # Formants (Praat) # Intensity (Praat) # Pitch (Praat) # AmpEnvs (acousticsim) ## Distance functions # DTW # XCorr # DCT # Vowel midpoint # Vowel third def callback(*value): print(*value) praat_mfcc = partial(to_mfcc_praat, praat_path ) praat_formants = partial(to_formants_praat, praat_path) praat_intensity = partial(to_intensity_praat, praat_path ) praat_pitch = partial(to_pitch_praat, praat_path ) def midpoint_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' begin,end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') if begin is None or end is None: print(one_textgrid) point_one = begin + ((end - begin)/2) base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' begin,end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') if begin is None or end is None: print(one_textgrid) point_two = begin + ((end - begin)/2) return point_distance(rep_one, rep_two, point_one, point_two) def third_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' begin,end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') point_one = begin + ((end - begin)/3) base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' begin,end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') point_two = begin + ((end - begin)/3) return point_distance(rep_one, rep_two, point_one, point_two) def vowel_dist(dist_func, rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' one_begin,one_end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' two_begin,two_end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') return dist_func(rep_one[one_begin, one_end], rep_two[two_begin, two_end]) def duration_distance(rep_one, rep_two): base, _ = os.path.splitext(rep_one._filepath) one_textgrid = base + '.TextGrid' one_begin,one_end = get_vowel_points(one_textgrid, tier_name = 'Vowel', vowel_label = 'V') if one_begin is None: one_begin = 0 if one_end is None: one_end = rep_one._duration one_durations = [one_begin, one_end - one_begin, rep_one._duration - one_end] base, _ = os.path.splitext(rep_two._filepath) two_textgrid = base + '.TextGrid' two_begin,two_end = get_vowel_points(two_textgrid, tier_name = 'Vowel', vowel_label = 'V') if two_begin is None: two_begin = 0 if two_end is None: two_end = rep_two._duration two_durations = [two_begin, two_end - two_begin, rep_two._duration - two_end] return euclidean(one_durations, two_durations) vowel_dtw = partial(vowel_dist,dtw_distance) vowel_dct = partial(vowel_dist,dct_distance) vowel_xcorr = partial(vowel_dist,xcorr_distance) def load_axb(): path_mapping = list() with open(os.path.join(data_dir,'axb.txt'),'r') as f: reader = csv.DictReader(f, delimiter = '\t') for line in reader: shadower = line['Shadower'][-3:] model = line['Model'][-3:] word = line['Word'] if model in female_models: model_path = os.path.join(model_dir, 'Female',model, '{}_{}.wav'.format(model,word)) else: model_path = os.path.join(model_dir, 'Male',model, '{}_{}.wav'.format(model,word)) if shadower in female_shadowers: baseline_path = os.path.join(shadower_dir, 'Female',shadower, '{}_{}_baseline.wav'.format(shadower,word)) shadowed_path = os.path.join(shadower_dir, 'Female',shadower, '{}_{}_shadowing{}.wav'.format(shadower,word, model)) else: baseline_path = os.path.join(shadower_dir, 'Male',shadower, '{}_{}_baseline.wav'.format(shadower,word)) shadowed_path = os.path.join(shadower_dir, 'Male',shadower, '{}_{}_shadowing{}.wav'.format(shadower,word, model)) path_mapping.append((baseline_path, model_path, shadowed_path)) return list(set(path_mapping)) def output_acousticsim(path_mapping, output, output_filename): with open(output_filename, 'w') as f: writer = csv.writer(f, delimiter = '\t') writer.writerow(['Shadower', 'Model', 'Word', 'BaseToModel', 'ShadToModel']) for pm in path_mapping: baseline_prod = os.path.basename(pm[0]) model_prod = os.path.basename(pm[1]) shad_prod = os.path.basename(pm[2]) shadower = shad_prod[:3] model,ext = os.path.splitext(model_prod) model, word = model.split('_') writer.writerow([shadower, model, word, output[(baseline_prod,model_prod)], output[(shad_prod,model_prod)]]) def get_mfcc_dtw(path_mapping): asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc', match_function = 'dtw', use_multi=True, num_cores = 6) return asim def get_mfcc_vowel_mid(path_mapping): asim = acoustic_similarity_mapping(path_mapping, rep = 'mfcc', match_function = midpoint_distance, use_multi=True, num_cores = 6, call_back = callback) return asim def convert_path_mapping(path_mapping): new_path_mapping = set() for mapping in path_mapping: new_path_mapping.add((mapping[0],mapping[1])) new_path_mapping.add((mapping[2],mapping[1])) return list(new_path_mapping) def calc_asim(path_mapping, rep, match_func, cache = None): asim, cache = acoustic_similarity_mapping(path_mapping, rep = rep, match_function = match_func, use_multi=True, num_cores = 4, cache = cache, return_rep = True) return asim, cache if __name__ == '__main__': rep_dict = {'mfcc': 'mfcc', 'mfcc_praat':praat_mfcc, 'ampenv': 'envelopes', 'pitch_praat': praat_pitch, 'intensity_praat': praat_intensity, 'formants_praat': praat_formants } dist_dict = {'dtw': 'dtw', 'dct': 'dct', 'xcorr': 'xcorr', 'dtw_vowel': vowel_dtw, 'dct_vowel': vowel_dct, 'xcorr_vowel': vowel_xcorr, 'midpoint': midpoint_distance, 'third': third_distance} path_mapping = load_axb() for_asim = convert_path_mapping(path_mapping) for k,v in rep_dict.items(): cache = None for k2,v2 in dist_dict.items(): if os.path.exists('{}_{}.txt'.format(k, k2)): continue print(k, k2) asim, cache = calc_asim(for_asim, v, v2, cache = cache) output_acousticsim(path_mapping, asim, '{}_{}.txt'.format(k, k2)) #Duration distance asim, cache = calc_asim(for_asim, v, duration_distance, cache = cache) output_acousticsim(path_mapping, asim, 'segmental_duration.txt')
e93bfd5399e5ab1d1e5fa8e1374a7859d94a0446
512b388a53022f561e2375b4621f78572d3b4f04
/clients/migrations/0010_auto_20200904_1044.py
cb1046a194005d2c79ecd0cc9708388a797fa99b
[]
no_license
Madoka09/Worker15
006d5ac44dc55c3ae7f72d3b8300f3567395cdff
181012d309052b2df3d4ef99a197e8acef73a185
refs/heads/master
2023-03-24T05:29:02.060796
2021-03-16T21:56:21
2021-03-16T21:56:21
336,394,683
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# Generated by Django 3.0.4 on 2020-09-04 15:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('clients', '0009_auto_20200903_2132'), ] operations = [ migrations.RenameField( model_name='clientsaddress', old_name='altern_phone', new_name='alternate_phone', ), ]
e8ad7c6fc7df5ae3504281a89fd22b8eadb6cdef
b75918b2ac1dfaf2c1219f40d63004900c9338b1
/tests/conftest.py
bdc760d2cb724f587868a0e459829b3640bca13f
[]
no_license
solashirai/ExplainableCourseRecommender
e0f036da9814a0187daa5635da0ff2f86386026d
6a2795cfc4536548ac3679b3d23b953e55a50a37
refs/heads/main
2023-04-14T14:27:36.054830
2021-04-19T02:29:48
2021-04-19T02:29:48
302,346,189
1
0
null
2021-04-18T16:13:48
2020-10-08T13:17:44
Python
UTF-8
Python
false
false
14,309
py
import pytest from escore.models import * from escore.services.course import GraphCourseQueryService from frex.stores import LocalGraph, RemoteGraph from escore.utils.path import DATA_DIR from escore.pipeline import RecommendCoursesPipeline from rdflib import URIRef, Namespace individual_ns = Namespace( "https://tw.rpi.edu/ontology-engineering/oe2020/course-recommender-individuals/" ) @pytest.fixture(scope="session") def course_graph() -> LocalGraph: return LocalGraph( file_paths=( (DATA_DIR / "courses.ttl").resolve(), (DATA_DIR / "scheduled_courses.ttl").resolve(), (DATA_DIR / "rpi_departments.ttl").resolve(), (DATA_DIR / "parsed_grad_requirements.ttl").resolve(), (DATA_DIR / "users.ttl").resolve(), ) ) @pytest.fixture(scope="session") def course_qs(course_graph) -> GraphCourseQueryService: return GraphCourseQueryService(queryable=course_graph) @pytest.fixture(scope="session") def course_rec_pipe(course_qs) -> RecommendCoursesPipeline: return RecommendCoursesPipeline(course_query_service=course_qs) @pytest.fixture(scope="session") def pl_course(csci_dept_code, csci_dept): return Course( uri=individual_ns['crs938c5b7e20ea7e1620a2dd6329e6f0af274b46c3'], course_code=CourseCode( uri=individual_ns['crsCodeed2eaaf90b6625c9f6a5731e3f1a933357cd88b2'], name="CSCI-4430", department_code=csci_dept_code, course_level=4430.0, cross_listed=tuple() ), name="Programming Languages", credits=4, department=csci_dept, description="This course is a study of the important concepts found in current programming languages. " "Topics include language processing (lexical analysis, parsing, type-checking, interpretation " "and compilation, run-time environment), the role of abstraction (data abstraction and control " "abstraction), programming paradigms (procedural, functional, object-oriented, logic-oriented, " "generic), and formal language definition.", special_tags=frozenset(), required_prerequisites=frozenset({ individual_ns['crsd930192130a654416bffd45ce16415ee608df66d'], individual_ns['crs9797fa54cb6f077d0e7cf31e23bdbafbbe00e8af'] }), corequisites=frozenset(), recommended_prerequisites=frozenset(), topics=frozenset({ TopicArea( uri=individual_ns['topic00001'], name='placeholder for topic', sub_topic_of=frozenset(), discipline='placeholder discipline' ), } ), offering_terms=("FALL",), offering_period="ANNUAL" ) @pytest.fixture(scope="session") def csci_dept_code(csci_dept): return DepartmentCode( uri=individual_ns['dptc0026'], name="CSCI", department=csci_dept ) @pytest.fixture(scope="session") def csci_dept(): return Department( uri=individual_ns['dpt0026'], name="Computer Science", offered_major_uris=tuple(), offered_degree_uris=tuple() ) @pytest.fixture(scope="session") def csci_major(csci_dept): return Major( uri=individual_ns['majCSCI'], name="Computer Science Major", department=csci_dept ) @pytest.fixture(scope="session") def csci_top_level_req(csci_dept): return Requirement( uri=individual_ns['reqfd44455d4e7c62e5f83dde9ab7da8583adbfd31e'], fulfilled_by_requirement_uris=frozenset(), sub_requirement_uris=frozenset({ individual_ns['req5f790f12a27e66b3f8c6534a79003cb5910d7fde'], individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], individual_ns['reqa323d5f642970db3393d958ea2e8c6510032e1e2'], individual_ns['reqae4289fd7815ec563f927cc14309b63a797ab630'], individual_ns['reqbbf0c827d4009fdd91575d3974c3e9be28909b6c'], individual_ns['reqe29978dd3d6ce495c371fda071f87f6c36f0739f'], }), share_credits_with_requirement_uris=frozenset({ individual_ns['req5f790f12a27e66b3f8c6534a79003cb5910d7fde'], individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], individual_ns['reqa323d5f642970db3393d958ea2e8c6510032e1e2'], individual_ns['reqae4289fd7815ec563f927cc14309b63a797ab630'], individual_ns['reqbbf0c827d4009fdd91575d3974c3e9be28909b6c'], individual_ns['reqe29978dd3d6ce495c371fda071f87f6c36f0739f'], }), restriction_requirement_uris=frozenset(), requires_credits=128, course_code_restriction=CourseCodeRestriction( uri=individual_ns['ccr79a36c1af79f9c7271a61771aab09de994fccd4f'], valid_course_code_names=frozenset(), required_special_tag_names=frozenset(), valid_department_code_names=frozenset(), ) ) @pytest.fixture(scope="session") def csci_option_req(): return Requirement( uri=individual_ns['req78e077dfe6014ee50f8fac4e06b2ae06333cc271'], requires_credits=16, share_credits_with_requirement_uris=frozenset({ individual_ns['reqfd44455d4e7c62e5f83dde9ab7da8583adbfd31e'], }), sub_requirement_uris=frozenset(), restriction_requirement_uris=frozenset(), fulfilled_by_requirement_uris=frozenset(), course_code_restriction=CourseCodeRestriction( uri=individual_ns['ccr5a9b245b2af51a7b021a10d532b88f33418a97ca'], valid_course_code_names=frozenset(), required_special_tag_names=frozenset(), valid_department_code_names=frozenset({'CSCI'}), min_level=4000 ) ) @pytest.fixture(scope="session") def csci_bs_deg(csci_major, csci_top_level_req): return Degree( uri=individual_ns['degBSInCSCI'], name='BS in Computer Science', major=csci_major, requirements=(csci_top_level_req,) ) @pytest.fixture(scope="session") def owen_pos(csci_major, csci_bs_deg): return PlanOfStudy( uri=individual_ns['pos9a8e6844c6ecbac12f9f92da68ac51c5bd67704f'], class_year=2021, planned_major=csci_major, planned_degree=csci_bs_deg, completed_course_sections=frozenset({ individual_ns["crsSec0838fe4beedeff7709d32d16ca67c9aa2373dba7"], individual_ns["crsSec0cf0d1a768ef7b1d580ac0aaf258257b8c766ecb"], individual_ns["crsSec0d060d8550b4d97fa0aa0188e75a213e37114cb5"], individual_ns["crsSec1d571602ec11f8e32dcde3b985cb277b68b7abb5"], individual_ns["crsSec40567fef852031bad43995aa8cab7c4877bc0a02"], individual_ns["crsSec4d3630ed52401a5362753db61595b8e1aec66bd8"], individual_ns["crsSec5241e24de4b9d40df379b7916e4698ac81354f6f"], individual_ns["crsSec5fd627bdf533aefd6f25ebb995fccc08e57f8dc2"], individual_ns["crsSec615e6c5aee4bbf92e6e193f86346602825bba571"], individual_ns["crsSec663dda052cc6e9647d255c294c71409b1883963f"], individual_ns["crsSec6a1c91448f2bdb49b519784e470a68c37318b45c"], individual_ns["crsSec79431f36805f7d501cc79356e3f69b26340e1d98"], individual_ns["crsSec8102566ff399c31b30351decb38ba3893db8e2f5"], individual_ns["crsSec8281ac09fc60458b13bdfef54b75f0b8e771837e"], individual_ns["crsSec8bb40720e14ff5d40a16d71efbfab65bbcd742eb"], individual_ns["crsSec99b5492130e02e1dcb08692178a020c1c2444195"], individual_ns["crsSecbc29e94fcaa333888baa92efb31dad194e1718b6"], individual_ns["crsSecc4b387e96f764565a80950390b36235fc00eabf1"], individual_ns["crsSeccb117aa26ddc5cf711c70466adcc656492e8a464"], individual_ns["crsSecce866dba24b0cdf1e707f40e0ee7fbb8de068406"], individual_ns["crsSecd5c95ece2b749c2e0beb1d2bfde0e23e5ad45d93"], individual_ns["crsSece04b10767b92aa4d53eb5a5b044ef13673b49448"], individual_ns["crsSece405364a6acf6b819c02915a204114f26ff8551f"], individual_ns["crsSecf5a9dafe85e39b30bdbd45b3371eeefd7520569d"], individual_ns["crsSecf603c709ea539acc6b9bb842d574c3d9eb7c17fa"], individual_ns["crsSecf7b40623128f286084d451d67cc7fb4b60b11c94"], individual_ns["crsSecf8b3e82fd2f512b3db0727642c6a1b7153581d47"], individual_ns["crsSecfb9210e5ca6bd4844b7bf9bdf1cb1c5956f81d08"], }), completed_courses=frozenset({ individual_ns["crsafed9cb99a22f3c1c24a461212de74c061147fdc"], individual_ns["crsd13b01ead0fba8b4aa112ce4a06999a774cf7b2d"], individual_ns["crs16512f1cf1a0772c4b025c3d6ec1edcd0d8fe1fb"], individual_ns["crsfb2686b704f12418fbb57e79c573d4bb0fd2f418"], individual_ns["crsbb2f79ec60f43618cd25567f87e71171d29aee83"], individual_ns["crs3040f719acb6d5f911e4a1e0efdae1aab16e71d5"], individual_ns["crs76deeb1ecf1123e7b7b6918afd3e7e9c65a5bbdc"], individual_ns["crsa9004db87efa99687062b8819ace3f59d4e235cd"], individual_ns["crs8e3b954b259c3b7c341a8839f81fb05deeff68ea"], individual_ns["crs938c5b7e20ea7e1620a2dd6329e6f0af274b46c3"], individual_ns["crs667378d70c52e4a84617225e20e380eb49540f42"], individual_ns["crsd930192130a654416bffd45ce16415ee608df66d"], individual_ns["crs11d22a217c292f1bd278d88b96fa770c9a6fa207"], individual_ns["crs66ece4f97b7ad555666d9477af785bcaa7a40e8a"], individual_ns["crs547b5ccb36b817d3e2df2a96a09aa18f678bc4e0"], individual_ns["crs4b79ba1b9717a21b3aff7a7d656a471eea21448a"], individual_ns["crs0f4511984f6fb0682b0185c2dc94b50dbc4efd2a"], individual_ns["crs70c201e1b37def5c83e4458b044028e8a44f91c7"], individual_ns["crs9797fa54cb6f077d0e7cf31e23bdbafbbe00e8af"], individual_ns["crs1f544a878959fae04cb9d08b258e527007df5491"], individual_ns["crs61c14eb096ee7002039fb8baee948b4495f08440"], individual_ns["crsb195823511b1f4a6f4b656734aab626993defec6"], individual_ns["crs8aabf92b49dce005f10db4d14605ad4d5eb920d7"], individual_ns["crs2a22ca2e61da1be778732a493f944011f5b30519"], individual_ns["crs72de52b44f46d5b08b2917495701f202699880ca"], individual_ns["crsc746a794a800d873f1e5deff86c0c58e25f94848"], individual_ns["crs622f7a32272ea2f04599f688790c2571325b949a"], individual_ns["crs7c03aa6fefaf99476e8158ef5943f5ee91ee6146"], }), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ) @pytest.fixture(scope="session") def placeholder_advisor(): return Advisor( uri=individual_ns['PLACEHOLDER-ADVISOR-URI'], name="Placeholder advisor name", advises_student_uris=tuple() ) @pytest.fixture(scope="session") def owen_student(owen_pos, placeholder_advisor): return Student( uri=individual_ns['usrowen'], study_plan=owen_pos, name="owen", class_year=2021, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='semantic web', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def blank_student(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='ontology engineering', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def bs2(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='artificial intelligence', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, ) @pytest.fixture(scope="session") def bs1(placeholder_advisor, csci_major, csci_bs_deg): return Student( uri=individual_ns['blank_user'], study_plan=PlanOfStudy( uri=individual_ns['blank_user_pos'], class_year=2023, planned_major=csci_major, planned_degree=csci_bs_deg, completed_courses=frozenset({}), completed_course_sections=frozenset({}), ongoing_course_sections=frozenset(), planned_courses=frozenset(), ), name="blank", class_year=2023, topics_of_interest=frozenset({TopicArea( uri=individual_ns['hardcodedUserInterest'], name='machine learning', sub_topic_of=frozenset(), discipline="placeholder discipline", )}), registered_courses=frozenset(), advisor=placeholder_advisor, )
c8bf10335c7c1e07b2176c968917ab7c4d5ace34
0f3a0be642cd6a2dd792c548cf7212176761e9b1
/pywps_services/r_mult.py
9910ee9228a37f667c6a73112163cb45b3e7d2ec
[]
no_license
huhabla/wps-grass-bridge
63a5d60735d372e295ec6adabe527eec9e72635a
aefdf1516a7517b1b745ec72e2d2481a78e10017
refs/heads/master
2021-01-10T10:10:34.246497
2014-01-22T23:40:58
2014-01-22T23:40:58
53,005,463
0
0
null
null
null
null
UTF-8
Python
false
false
3,141
py
# ################################################ # # This process was generated using GrassXMLtoPyWPS # # Author: Soeren Gebbert # # Mail: soerengebbert <at> googlemail <dot> com # # ################################################ # from pywps.Process import WPSProcess from PyWPSGrassModuleStarter import PyWPSGrassModuleStarter class r_mult(WPSProcess): def __init__(self): WPSProcess.__init__(self, identifier = 'r.mult', title = 'Multiplies a raster map with one or more raster maps', version = 1, statusSupported = True, storeSupported = True, metadata = [{'type': 'simple', 'title': 'raster'}, {'type': 'simple', 'title': 'math'}], abstract = 'http://grass.osgeo.org/grass70/manuals/html70_user/r.mult.html') # Literal and complex inputs self.addComplexInput(identifier = 'inputs', title = 'Raster maps to multiply', minOccurs = 1, maxOccurs = 1024, formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'image/png'}, {'mimeType': 'image/gif'}, {'mimeType': 'image/jpeg'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) self.addLiteralInput(identifier = 'grass_resolution_ns', title = 'Resolution of the mapset in north-south direction in meters or degrees', abstract = 'This parameter defines the north-south resolution of the mapset in meter or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_resolution_ew', title = 'Resolution of the mapset in east-west direction in meters or degrees', abstract = 'This parameter defines the east-west resolution of the mapset in meters or degrees, which should be used to process the input and output raster data. To enable this setting, you need to specify north-south and east-west resolution.', minOccurs = 0, maxOccurs = 1, type = type(0.0), allowedValues = '*') self.addLiteralInput(identifier = 'grass_band_number', title = 'Band to select for processing (default is all bands)', abstract = 'This parameter defines band number of the input raster files which should be processed. As default all bands are processed and used as single and multiple inputs for raster modules.', minOccurs = 0, maxOccurs = 1, type = type(0), allowedValues = '*') # complex outputs self.addComplexOutput(identifier = 'output', title = 'The result of the mathematical operation', formats = [{'mimeType': 'image/tiff'}, {'mimeType': 'image/geotiff'}, {'mimeType': 'application/geotiff'}, {'mimeType': 'application/x-geotiff'}, {'mimeType': 'application/x-erdas-hfa'}, {'mimeType': 'application/netcdf'}, {'mimeType': 'application/x-netcdf'}]) def execute(self): starter = PyWPSGrassModuleStarter() starter.fromPyWPS("r.mult", self.inputs, self.outputs, self.pywps) if __name__ == "__main__": process = r_mult() process.execute()
[ "soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202" ]
soerengebbert@23da3d23-e2f9-862c-be8f-f61c6c06f202
2d51dc8a47690b543abd5f2196e6d22032e34caf
de3b77cb0927f28cbd85e9142c2dfd7c8be7c27e
/tests/migrations/015_user_demographics_up.py
9e08957363737d8cf8968f4a19885fea3c67bec4
[ "MIT" ]
permissive
LoansBot/database
f3dcbccde59fdb80c876d2612f250662946588e6
eeaed26c2dcfdf0f9637b47ebe15cd1e000d8cc4
refs/heads/master
2021-07-02T22:07:18.683278
2021-06-02T04:09:38
2021-06-02T04:09:38
239,400,935
0
1
MIT
2021-06-02T04:14:31
2020-02-10T01:06:53
Python
UTF-8
Python
false
false
1,166
py
import unittest import helper class UpTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.connection = helper.setup_connection() cls.cursor = cls.connection.cursor() @classmethod def tearDownClass(cls): cls.cursor.close() cls.connection.rollback() helper.teardown_connection(cls.connection) def tearDown(self): self.connection.rollback() def test_user_demographics_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographics') ) def test_user_demographic_lookups_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_lookups') ) def test_user_demographic_views_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_views') ) def test_user_demographic_history_exist(self): self.assertTrue( helper.check_if_table_exist(self.cursor, 'user_demographic_history') ) if __name__ == '__main__': unittest.main()
1f25eaacf5c9ccac5ef060cdcaf3e75712ac30ba
4cc285b0c585241ff4404087e6fbb901195639be
/NeuralNetworkNumbers/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/nn/__init__.py
422cec64251f38906def1dec89cf3e9f3c1cb091
[]
no_license
strazhg/NeuralNetworksPython
815542f4ddbb86e918e657f783158f8c078de514
15038e44a5a6c342336c119cdd2abdeffd84b5b1
refs/heads/main
2023-04-16T18:51:29.602644
2021-04-27T14:46:55
2021-04-27T14:46:55
361,944,482
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:f9f44f6062a76ea4edc6b57e9980c88ed09cd53ee57337d2e7cebd8696fc0e2f size 6611
addd10e6193e7e8522a2c5f729c47c0dba75866f
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-5429.py
f003b6f244e54ff69c91f1a5eb2bd1fb0dbdf743
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,755
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 $TypedVar = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
6a244e5d202b43213040fc14188fe4cf309356c2
a7b78ab632b77d1ed6b7e1fa46c33eda7a523961
/src/foreign_if/python/UT/src/eigen/test_049.py
558da13e6a88495e2835d12cb1b59571e2a9938d
[ "BSD-2-Clause" ]
permissive
frovedis/frovedis
80b830da4f3374891f3646a2298d71a3f42a1b2d
875ae298dfa84ee9815f53db5bf7a8b76a379a6f
refs/heads/master
2023-05-12T20:06:44.165117
2023-04-29T08:30:36
2023-04-29T08:30:36
138,103,263
68
13
BSD-2-Clause
2018-12-20T10:46:53
2018-06-21T01:17:51
C++
UTF-8
Python
false
false
926
py
#!/usr/bin/env python import sys from frovedis.exrpc.server import FrovedisServer from frovedis.linalg import eigsh from scipy.sparse import csr_matrix desc = "Testing eigsh() for csr_matrix and which = 'SM': " # initializing the Frovedis server argvs = sys.argv argc = len(argvs) if argc < 2: print ('Please give frovedis_server calling command as the first argument \n' '(e.g. "mpirun -np 2 /opt/nec/frovedis/ve/bin/frovedis_server")') quit() FrovedisServer.initialize(argvs[1]) # sample square symmetric sparse matrix (6x6) mat = csr_matrix([[ 2.,-1., 0., 0.,-1., 0.], [-1., 3.,-1., 0.,-1., 0.], [ 0.,-1., 2.,-1., 0., 0.], [ 0., 0.,-1., 3.,-1.,-1], [-1.,-1., 0.,-1., 3., 0.], [ 0., 0., 0.,-1., 0., 1.]]) try: eigen_vals, eigen_vecs = eigsh(mat, k = 3, which = 'SM') print(desc, "Passed") except: print(desc, "Failed") FrovedisServer.shut_down()
f3b344d9bd81f498554471e88f34378fee094fa7
5a5e0a01efa6ef0961992e53bb4f64840f93150b
/RegressionVisualizer/manage.py
b5db558ef481979ffecd909114ebd0e5bdf372b6
[]
no_license
scotteskridge/RegressionApp
ed059e3205ab54061129779404345b55c0dee75c
68932a9c94235a1e8bd6cd71a765b545f2266189
refs/heads/master
2021-01-19T20:48:13.495541
2017-04-25T02:39:49
2017-04-25T02:39:56
88,555,025
0
0
null
null
null
null
UTF-8
Python
false
false
838
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "RegressionVisualizer.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise print(sys.argv) execute_from_command_line(sys.argv)
8469347fb48f63964d990558280d45cfb929ffc9
c237dfae82e07e606ba9385b336af8173d01b251
/lib/python/ZPublisher/Client.py
dba20da517921245ef45d6e504060b5b852fa055
[ "ZPL-2.0" ]
permissive
OS2World/APP-SERVER-Zope
242e0eec294bfb1ac4e6fa715ed423dd2b3ea6ff
dedc799bd7eda913ffc45da43507abe2fa5113be
refs/heads/master
2020-05-09T18:29:47.818789
2014-11-07T01:48:29
2014-11-07T01:48:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,145
py
#!/bin/sh """:" exec python $0 ${1+"$@"} """ #" ############################################################################## # # Copyright (c) 2001 Zope Corporation and Contributors. All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.0 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## """Bobo call interface This module provides tools for accessing web objects as if they were functions or objects with methods. It also provides a simple call function that allows one to simply make a single web request. Function -- Function-like objects that return both header and body data when called. Object -- Treat a URL as a web object with methods call -- Simple interface to call a remote function. The module also provides a command-line interface for calling objects. """ __version__='$Revision: 1.45 $'[11:-2] import sys, re, socket, mimetools from httplib import HTTP from os import getpid from time import time from random import random from base64 import encodestring from urllib import urlopen, quote from types import FileType, ListType, DictType, TupleType from string import translate, maketrans from urlparse import urlparse class Function: username=None password=None method=None timeout=60 def __init__(self,url, arguments=(),method=None,username=None,password=None, timeout=None, **headers): while url[-1:]=='/': url=url[:-1] self.url=url self.headers=headers if not headers.has_key('Host') and not headers.has_key('host'): headers['Host']=urlparse(url)[1] self.func_name=url[url.rfind('/')+1:] self.__dict__['__name__']=self.func_name self.func_defaults=() self.args=arguments if method is not None: self.method=method if username is not None: self.username=username if password is not None: self.password=password if timeout is not None: self.timeout=timeout mo = urlregex.match(url) if mo is not None: host,port,rurl=mo.group(1,2,3) if port: port=int(port[1:]) else: port=80 self.host=host self.port=port rurl=rurl or '/' self.rurl=rurl else: raise ValueError, url def __call__(self,*args,**kw): method=self.method if method=='PUT' and len(args)==1 and not kw: query=[args[0]] args=() else: query=[] for i in range(len(args)): try: k=self.args[i] if kw.has_key(k): raise TypeError, 'Keyword arg redefined' kw[k]=args[i] except IndexError: raise TypeError, 'Too many arguments' headers={} for k, v in self.headers.items(): headers[translate(k,dashtrans)]=v method=self.method if headers.has_key('Content-Type'): content_type=headers['Content-Type'] if content_type=='multipart/form-data': return self._mp_call(kw) else: content_type=None if not method or method=='POST': for v in kw.values(): if hasattr(v,'read'): return self._mp_call(kw) can_marshal=type2marshal.has_key for k,v in kw.items(): t=type(v) if can_marshal(t): q=type2marshal[t](k,v) else: q='%s=%s' % (k,quote(v)) query.append(q) url=self.rurl if query: query='&'.join(query) method=method or 'POST' if method == 'PUT': headers['Content-Length']=str(len(query)) if method != 'POST': url="%s?%s" % (url,query) query='' elif not content_type: headers['Content-Type']='application/x-www-form-urlencoded' headers['Content-Length']=str(len(query)) else: method=method or 'GET' if (self.username and self.password and not headers.has_key('Authorization')): headers['Authorization']=( "Basic %s" % encodestring('%s:%s' % (self.username,self.password)).replace( '\012','') ) try: h=HTTP() h.connect(self.host, self.port) h.putrequest(method, self.rurl) for hn,hv in headers.items(): h.putheader(translate(hn,dashtrans),hv) h.endheaders() if query: h.send(query) ec,em,headers=h.getreply() response =h.getfile().read() except: raise NotAvailable, RemoteException( NotAvailable,sys.exc_info()[1],self.url,query) if (ec - (ec % 100)) == 200: return (headers,response) self.handleError(query, ec, em, headers, response) def handleError(self, query, ec, em, headers, response): try: v=headers.dict['bobo-exception-value'] except: v=ec try: f=headers.dict['bobo-exception-file'] except: f='Unknown' try: l=headers.dict['bobo-exception-line'] except: l='Unknown' try: t=exceptmap[headers.dict['bobo-exception-type']] except: if ec >= 400 and ec < 500: t=NotFound elif ec == 503: t=NotAvailable else: t=ServerError raise t, RemoteException(t,v,f,l,self.url,query,ec,em,response) def _mp_call(self,kw, type2suffix={ type(1.0): ':float', type(1): ':int', type(1L): ':long', type([]): ':list', type(()): ':tuple', } ): # Call a function using the file-upload protcol # Add type markers to special values: d={} special_type=type2suffix.has_key for k,v in kw.items(): if ':' not in k: t=type(v) if special_type(t): d['%s%s' % (k,type2suffix[t])]=v else: d[k]=v else: d[k]=v rq=[('POST %s HTTP/1.0' % self.rurl),] for n,v in self.headers.items(): rq.append('%s: %s' % (n,v)) if self.username and self.password: c=encodestring('%s:%s' % (self.username,self.password)).replace('\012','') rq.append('Authorization: Basic %s' % c) rq.append(MultiPart(d).render()) rq='\r\n'.join(rq) try: sock=socket.socket(socket.AF_INET,socket.SOCK_STREAM) sock.connect((self.host,self.port)) sock.send(rq) reply=sock.makefile('rb') sock=None line=reply.readline() try: [ver, ec, em] = line.split(None, 2) except ValueError: raise 'BadReply','Bad reply from server: '+line if ver[:5] != 'HTTP/': raise 'BadReply','Bad reply from server: '+line ec=int(ec) em=em.strip() headers=mimetools.Message(reply,0) response=reply.read() finally: if 0: raise NotAvailable, ( RemoteException(NotAvailable,sys.exc_info()[1], self.url,'<MultiPart Form>')) if ec==200: return (headers,response) self.handleError('', ec, em, headers, response) class Object: """Surrogate object for an object on the web""" username=None password=None method=None timeout=None special_methods= 'GET','POST','PUT' def __init__(self, url, method=None,username=None,password=None, timeout=None, **headers): self.url=url self.headers=headers if not headers.has_key('Host') and not headers.has_key('host'): headers['Host']=urlparse(url)[1] if method is not None: self.method=method if username is not None: self.username=username if password is not None: self.password=password if timeout is not None: self.timeout=timeout def __getattr__(self, name): if name in self.special_methods: method=name url=self.url else: method=self.method url="%s/%s" % (self.url, name) f=Function(url, method=method, username=self.username, password=self.password, timeout=self.timeout) f.headers=self.headers return f def call(url,username=None, password=None, **kw): return apply(Function(url,username=username, password=password), (), kw) ############################################################################## # Implementation details below here urlregex=re.compile(r'http://([^:/]+)(:[0-9]+)?(/.+)?', re.I) dashtrans=maketrans('_','-') def marshal_float(n,f): return '%s:float=%s' % (n,f) def marshal_int(n,f): return '%s:int=%s' % (n,f) def marshal_long(n,f): value = '%s:long=%s' % (n, f) if value[-1] == 'L': value = value[:-1] return value def marshal_list(n,l,tname='list', lt=type([]), tt=type(())): r=[] for v in l: t=type(v) if t is lt or t is tt: raise TypeError, 'Invalid recursion in data to be marshaled.' r.append(marshal_whatever("%s:%s" % (n,tname) ,v)) return '&'.join(r) def marshal_tuple(n,l): return marshal_list(n,l,'tuple') type2marshal={ type(1.0): marshal_float, type(1): marshal_int, type(1L): marshal_long, type([]): marshal_list, type(()): marshal_tuple, } def marshal_whatever(k,v): try: q=type2marshal[type(v)](k,v) except KeyError: q='%s=%s' % (k,quote(str(v))) return q def querify(items): query=[] for k,v in items: query.append(marshal_whatever(k,v)) return query and '&'.join(query) or '' NotFound ='bci.NotFound' InternalError='bci.InternalError' BadRequest ='bci.BadRequest' Unauthorized ='bci.Unauthorized' ServerError ='bci.ServerError' NotAvailable ='bci.NotAvailable' exceptmap ={'AttributeError' :AttributeError, 'BadRequest' :BadRequest, 'EOFError' :EOFError, 'IOError' :IOError, 'ImportError' :ImportError, 'IndexError' :IndexError, 'InternalError' :InternalError, 'KeyError' :KeyError, 'MemoryError' :MemoryError, 'NameError' :NameError, 'NotAvailable' :NotAvailable, 'NotFound' :NotFound, 'OverflowError' :OverflowError, 'RuntimeError' :RuntimeError, 'ServerError' :ServerError, 'SyntaxError' :SyntaxError, 'SystemError' :SystemError, 'SystemExit' :SystemExit, 'TypeError' :TypeError, 'Unauthorized' :Unauthorized, 'ValueError' :ValueError, 'ZeroDivisionError':ZeroDivisionError} class RemoteException: def __init__(self,etype=None,evalue=None,efile=None,eline=None,url=None, query=None,http_code=None,http_msg=None, http_resp=None): """Contains information about an exception which occurs in a remote method call""" self.exc_type =etype self.exc_value =evalue self.exc_file =efile self.exc_line =eline self.url =url self.query =query self.http_code =http_code self.http_message=http_msg self.response =http_resp def __repr__(self): return '%s (File: %s Line: %s)\n%s %s for %s' % ( self.exc_value,self.exc_file,self.exc_line, self.http_code,self.http_message,self.url) class MultiPart: def __init__(self,*args): c=len(args) if c==1: name,val=None,args[0] elif c==2: name,val=args[0],args[1] else: raise ValueError, 'Invalid arguments' h={'Content-Type': {'_v':''}, 'Content-Transfer-Encoding': {'_v':''}, 'Content-Disposition': {'_v':''},} dt=type(val) b=t=None if dt==DictType: t=1 b=self.boundary() d=[] h['Content-Type']['_v']='multipart/form-data; boundary=%s' % b for n,v in val.items(): d.append(MultiPart(n,v)) elif (dt==ListType) or (dt==TupleType): raise ValueError, 'Sorry, nested multipart is not done yet!' elif dt==FileType or hasattr(val,'read'): if hasattr(val,'name'): fn=val.name.replace( '\\', '/') fn=fn[(fn.rfind('/')+1):] ex=(fn[(fn.rfind('.')+1):]).lower() if self._extmap.has_key(ex): ct=self._extmap[ex] else: ct=self._extmap[''] else: fn='' ct=self._extmap[None] if self._encmap.has_key(ct): ce=self._encmap[ct] else: ce='' h['Content-Disposition']['_v'] ='form-data' h['Content-Disposition']['name'] ='"%s"' % name h['Content-Disposition']['filename']='"%s"' % fn h['Content-Transfer-Encoding']['_v']=ce h['Content-Type']['_v'] =ct d=[] l=val.read(8192) while l: d.append(l) l=val.read(8192) else: h['Content-Disposition']['_v']='form-data' h['Content-Disposition']['name']='"%s"' % name d=[str(val)] self._headers =h self._data =d self._boundary=b self._top =t def boundary(self): return '%s_%s_%s' % (int(time()), getpid(), int(random()*1000000000)) def render(self): h=self._headers s=[] if self._top: for n,v in h.items(): if v['_v']: s.append('%s: %s' % (n,v['_v'])) for k in v.keys(): if k != '_v': s.append('; %s=%s' % (k, v[k])) s.append('\r\n') p=[] t=[] b=self._boundary for d in self._data: p.append(d.render()) t.append('--%s\n' % b) t.append(('\n--%s\n' % b).join(p)) t.append('\n--%s--\n' % b) t=''.join(t) s.append('Content-Length: %s\r\n\r\n' % len(t)) s.append(t) return ''.join(s) else: for n,v in h.items(): if v['_v']: s.append('%s: %s' % (n,v['_v'])) for k in v.keys(): if k != '_v': s.append('; %s=%s' % (k, v[k])) s.append('\r\n') s.append('\r\n') if self._boundary: p=[] b=self._boundary for d in self._data: p.append(d.render()) s.append('--%s\n' % b) s.append(('\n--%s\n' % b).join(p)) s.append('\n--%s--\n' % b) return ''.join(s) else: return ''.join(s+self._data) _extmap={'': 'text/plain', 'rdb': 'text/plain', 'html': 'text/html', 'dtml': 'text/html', 'htm': 'text/html', 'dtm': 'text/html', 'gif': 'image/gif', 'jpg': 'image/jpeg', 'exe': 'application/octet-stream', None : 'application/octet-stream', } _encmap={'image/gif': 'binary', 'image/jpg': 'binary', 'application/octet-stream': 'binary', } def ErrorTypes(code): if code >= 400 and code < 500: return NotFound if code >= 500 and code < 600: return ServerError return 'HTTP_Error_%s' % code usage=""" Usage: %s [-u username:password] url [name=value ...] where url is the web resource to call. The -u option may be used to provide a user name and password. Optional arguments may be provides as name=value pairs. In a name value pair, if a name ends in ":file", then the value is treated as a file name and the file is send using the file-upload protocol. If the file name is "-", then data are taken from standard input. The body of the response is written to standard output. The headers of the response are written to standard error. """ % sys.argv[0] def main(): import getopt user=None try: optlist, args = getopt.getopt(sys.argv[1:],'u:') url=args[0] u =filter(lambda o: o[0]=='-u', optlist) if u: [user, pw] = u[0][1].split(':') kw={} for arg in args[1:]: [name,v]=arg.split('=') if name[-5:]==':file': name=name[:-5] if v=='-': v=sys.stdin else: v=open(v, 'rb') kw[name]=v except: print usage sys.exit(1) # The "main" program for this module f=Function(url) if user: f.username, f.password = user, pw headers, body = apply(f,(),kw) sys.stderr.write(''.join(map(lambda h: "%s: %s\n" % h, headers.items())) +"\n\n") print body if __name__ == "__main__": main()
6cc1542064216d2c36184802c5ba5aaf719fec2f
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/ALCATEL-IND1-E-SERVICE-MIB.py
6ac2637b7fc0d24af9f67b9e0d9c926639877700
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
47,663
py
# # PySNMP MIB module ALCATEL-IND1-E-SERVICE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ALCATEL-IND1-E-SERVICE-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:17:28 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # softentIND1eService, = mibBuilder.importSymbols("ALCATEL-IND1-BASE", "softentIND1eService") ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ConstraintsIntersection") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") NotificationGroup, ModuleCompliance, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance", "ObjectGroup") Gauge32, Counter32, iso, NotificationType, ModuleIdentity, ObjectIdentity, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Counter64, Unsigned32, Integer32, TimeTicks, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "Counter32", "iso", "NotificationType", "ModuleIdentity", "ObjectIdentity", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Counter64", "Unsigned32", "Integer32", "TimeTicks", "Bits") RowStatus, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "DisplayString", "TextualConvention") alcatelIND1EServiceMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1)) if mibBuilder.loadTexts: alcatelIND1EServiceMIB.setLastUpdated('200705230000Z') if mibBuilder.loadTexts: alcatelIND1EServiceMIB.setOrganization('Alcatel-Lucent') if mibBuilder.loadTexts: alcatelIND1EServiceMIB.setContactInfo('Please consult with Customer Service to ensure the most appropriate version of this document is used with the products in question: Alcatel-Lucent, Enterprise Solutions Division (Formerly Alcatel Internetworking, Incorporated) 26801 West Agoura Road Agoura Hills, CA 91301-5122 United States Of America Telephone: North America +1 800 995 2696 Latin America +1 877 919 9526 Europe +31 23 556 0100 Asia +65 394 7933 All Other +1 818 878 4507 Electronic Mail: [email protected] World Wide Web: http://alcatel-lucent.com/wps/portal/enterprise File Transfer Protocol: ftp://ftp.ind.alcatel.com/pub/products/mibs') if mibBuilder.loadTexts: alcatelIND1EServiceMIB.setDescription('The parameters for configuration of the E-Service feature. The right to make changes in specification and other information contained in this document without prior notice is reserved. No liability shall be assumed for any incidental, indirect, special, or consequential damages whatsoever arising from or related to this document or the information contained herein. Vendors, end-users, and other interested parties are granted non-exclusive license to use this specification in connection with management of the products for which it is intended to be used. Copyright (C) 1995-2006 Alcatel-Lucent ALL RIGHTS RESERVED WORLDWIDE') class AlaEServiceUNIProfileProtocolTreatment(TextualConvention, Integer32): description = 'The behavior of the bridge in regards to the given protocols packets received on the UNI. Tunnel (1) enables the packets to be tunneled across the provider network. Discard (2) causes the packets to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("tunnel", 1), ("drop", 2), ("peer", 3)) alcatelIND1eServiceMIBObjects = ObjectIdentity((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1)) if mibBuilder.loadTexts: alcatelIND1eServiceMIBObjects.setStatus('current') if mibBuilder.loadTexts: alcatelIND1eServiceMIBObjects.setDescription('Branch For E-Service Managed Objects.') alcatelIND1EServiceMIBConformance = ObjectIdentity((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2)) if mibBuilder.loadTexts: alcatelIND1EServiceMIBConformance.setStatus('current') if mibBuilder.loadTexts: alcatelIND1EServiceMIBConformance.setDescription('Branch For E-Service Conformance Information.') alcatelIND1EServiceMIBGroups = ObjectIdentity((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1)) if mibBuilder.loadTexts: alcatelIND1EServiceMIBGroups.setStatus('current') if mibBuilder.loadTexts: alcatelIND1EServiceMIBGroups.setDescription('Branch For E-Service Units Of Conformance.') alcatelIND1EServiceMIBCompliances = ObjectIdentity((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 2)) if mibBuilder.loadTexts: alcatelIND1EServiceMIBCompliances.setStatus('current') if mibBuilder.loadTexts: alcatelIND1EServiceMIBCompliances.setDescription('Branch For E-Service Compliance Statements.') alaEService = MibIdentifier((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1)) alaEServiceInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 1)) alaEServiceMode = MibScalar((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("legacyMode", 1), ("eServiceMode", 2))).clone('legacyMode')).setMaxAccess("readwrite") if mibBuilder.loadTexts: alaEServiceMode.setStatus('current') if mibBuilder.loadTexts: alaEServiceMode.setDescription('The current mode configured for Vlan Stacking and Layer 2 tunnel configuration. legacyMode (1) indicates that the commands from AlcatelIND1VLANStacking.mib are to be used. eServiceMode (2) indicates the commands from this MIB are to be used.') alaEServiceSapProfileTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2), ) if mibBuilder.loadTexts: alaEServiceSapProfileTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileTable.setDescription('A table that contains service profiles containing performance and control attributes. An entry in this table is created when a new service profile is defined.') alaEServiceSapProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1), ).setIndexNames((1, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileID")) if mibBuilder.loadTexts: alaEServiceSapProfileEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileEntry.setDescription('A E-Service Service Profile entry.') alaEServiceSapProfileID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 31))) if mibBuilder.loadTexts: alaEServiceSapProfileID.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileID.setDescription('A label given to uniquely identify this profile. Must be at least one character long.') alaEServiceSapProfileCVLANTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("stackSVLAN", 1), ("translate", 2), ("changeCVLAN", 3))).clone('stackSVLAN')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileCVLANTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileCVLANTreatment.setDescription('The type of VLAN stacking operation to be performed on a customer frame entering this service. Stack Svlan (1) indicates that the SVLAN is to be pre-pended on the frame before any existing 802.1Q tag. Translate (2) means to replace the existing 802.1Q tag with the SVLAN. Change CVLAN (3) indicates that the customer tag is to remain on the frame but its value is to be changed to the supplied value.') alaEServiceSapProfileReplacementCVLAN = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileReplacementCVLAN.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileReplacementCVLAN.setDescription('The CVLAN ID to use when using the Change CVLAN treatment mode.') alaEServiceSapProfilePriorityMapMode = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3))).clone(namedValues=NamedValues(("notAssigned", 0), ("mapInnerPtoOuterP", 1), ("mapInnerDscpToOuterP", 2), ("fixedP", 3))).clone('fixedP')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfilePriorityMapMode.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfilePriorityMapMode.setDescription('This object describes the source of the value for the priority field of the SVLAN 802.1Q tag when pre-pended to the customer data frame.NotAssigned(0), MapInnerPtoOuterP (1) uses the priority field of the incoming frame when tagged to fill in the priority field of the SVLAN tag. mapInnerDscpToOuterP (2) uses the frames priority bits in its IP DSCP field to fill in the priority field of the SVLAN tag. FixedP (3) uses the supplied FixedPriorityValue to fill in the SVLAN tag priority bits.') alaEServiceSapProfileFixedPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 7))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileFixedPriority.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileFixedPriority.setDescription('This object describes the value of the priority field of the 802.1Q SVLAN tag pre-pended to customer data frames when the fixed priority mapping mode is selected.') alaEServiceSapProfileIngressBW = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 6), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileIngressBW.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileIngressBW.setDescription('This object describes this limit of ingress bandwidth for the traffic to which this profile is applied. If 0, no bandwidth limit is applied. This number represents traffic in units of 1,000,000 bits per second. Note that all CVLAN that belong to this SAP will share this aggregated limit.') alaEServiceSapProfileBandwidthShare = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("notApplicable", 0), ("shared", 1), ("notShared", 2))).clone('shared')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileBandwidthShare.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileBandwidthShare.setDescription('This object describes the use of the bandwidth limit in how it is applied across multiple ports of the SAP. If set to notApplicable(0), the SAP is not used. If set to Shared (1), all the ports that are part of the SAP will use aggregated bandwidth, sharing some part of the bandwidth limit. If set to notShared (2), each port will use its own bandwidth meter for this SAP. This value is not used if ingressBandwidth is 0.') alaEServiceSapProfileRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileRowStatus.setDescription('The status of this table entry.') alaEServiceSapProfileEgressBW = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 2, 1, 9), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfileEgressBW.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileEgressBW.setDescription('This object describes this limit of egress bandwidth for each UNI of the SAP to which this profile is applied. If 0, no bandwidth limit is applied. This number represents traffic in units of Megabits per second. Note that all CVLAN that belong to this SAP will share this aggregated limit.') alaEServiceUNIProfileTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3), ) if mibBuilder.loadTexts: alaEServiceUNIProfileTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileTable.setDescription('A table that contains service profiles containing performance and control attributes. An entry in this table is created when a new service profile is defined.') alaEServiceUNIProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1), ).setIndexNames((1, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileID")) if mibBuilder.loadTexts: alaEServiceUNIProfileEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileEntry.setDescription('A E-Service Service Profile entry.') alaEServiceUNIProfileID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 31))) if mibBuilder.loadTexts: alaEServiceUNIProfileID.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileID.setDescription('A label given to uniquely identify this profile. Must be at least one character long.') alaEServiceUNIProfileStpBpduTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 2), AlaEServiceUNIProfileProtocolTreatment().clone('tunnel')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfileStpBpduTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileStpBpduTreatment.setDescription('This object describes the behavior of the bridge in regards to the spanning tree protocol BPDU received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currnetly Peer is not supported for Spanning Tree') alaEServiceUNIProfile8021xTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 3), AlaEServiceUNIProfileProtocolTreatment().clone('drop')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfile8021xTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfile8021xTreatment.setDescription('This object describes the behavior of the bridge in regards to the IEEE 802.1x PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currnetly only drop is supported') alaEServiceUNIProfile8021ABTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 4), AlaEServiceUNIProfileProtocolTreatment().clone('drop')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfile8021ABTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfile8021ABTreatment.setDescription('This object describes the behavior of the bridge in regards to the IEEE 802.1AB PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currently only drop is supported') alaEServiceUNIProfile8023adTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 5), AlaEServiceUNIProfileProtocolTreatment().clone('peer')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfile8023adTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfile8023adTreatment.setDescription('This object describes the behavior of the bridge in regards to the IEEE 802.1ad PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currently only peer is supported') alaEServiceUNIProfileGvrpTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 6), AlaEServiceUNIProfileProtocolTreatment().clone('tunnel')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfileGvrpTreatment.setStatus('deprecated') if mibBuilder.loadTexts: alaEServiceUNIProfileGvrpTreatment.setDescription('This object describes the behavior of the bridge in regards to the GVRP PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currently peer is not supported for GVRP') alaEServiceUNIProfileAmapTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 7), AlaEServiceUNIProfileProtocolTreatment().clone('drop')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfileAmapTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileAmapTreatment.setDescription('This object describes the behavior of the bridge in regards to the Alcatel propietary AMAP PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currently drop is only supported') alaEServiceUNIProfileMvrpTreatment = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 8), AlaEServiceUNIProfileProtocolTreatment().clone('tunnel')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfileMvrpTreatment.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileMvrpTreatment.setDescription('This object describes the behavior of the bridge in regards to the MVRP PDU frames received on the UNI. Tunnel (1) enables the PDU to be tunneled across the provider network. Discard (2) causes the PDU of the protocol to be discarded and not enter the provider network. Peer (3) means that on this port the bridge is to participate in the protocol. Currently peer is not supported for MVRP') alaEServiceUNIProfileRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 3, 1, 9), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceUNIProfileRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileRowStatus.setDescription('The status of this table entry.') alaEServiceTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4), ) if mibBuilder.loadTexts: alaEServiceTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceTable.setDescription('A table that contains the services and their assigned SVLAN for the E-Service feature.') alaEServiceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4, 1), ).setIndexNames((1, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceID")) if mibBuilder.loadTexts: alaEServiceEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceEntry.setDescription('The svlan/ipmvlan-port association.') alaEServiceID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4, 1, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))) if mibBuilder.loadTexts: alaEServiceID.setStatus('current') if mibBuilder.loadTexts: alaEServiceID.setDescription('A label given to uniquely identify this Service. Must be at least one character long.') alaEServiceSVLAN = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSVLAN.setStatus('current') if mibBuilder.loadTexts: alaEServiceSVLAN.setDescription('The SVLAN number of the SVLAN chosen to the be transport for this service.') alaEServiceVlanType = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("unknown", 0), ("svlan", 1), ("ipmvlan", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceVlanType.setStatus('current') if mibBuilder.loadTexts: alaEServiceVlanType.setDescription('The type of the vlan this service is going to attach to. When creating the service, the type should match the vlanId specified in the request.') alaEServiceRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 4, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a service. When creating or deleting the service, the user needs to provide both the svlan and the vlantype objects.') alaEServiceSapTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5), ) if mibBuilder.loadTexts: alaEServiceSapTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapTable.setDescription("A table that contains the Service Access Points (Sap) listed by ID. This table is used to create, delete, and modify the SAP's profile") alaEServiceSapEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5, 1), ).setIndexNames((0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapID")) if mibBuilder.loadTexts: alaEServiceSapEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapEntry.setDescription('The list of SAP.') alaEServiceSapID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: alaEServiceSapID.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapID.setDescription('A Number given to uniquely identify the SAP.') alaEServiceSapServiceID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapServiceID.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapServiceID.setDescription('A label given to uniquely identify the Service this SAP is for. Must be at least one character long.') alaEServiceSapProfile = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5, 1, 3), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapProfile.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfile.setDescription('The string identifying the SAP Profile this sap is to use. If specified, must match an existing SAP Profile.') alaEServiceSapRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 5, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a sap. When creating the sap, the user needs to provide the service name in the same set request.') alaEServiceSapCvlanTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6), ) if mibBuilder.loadTexts: alaEServiceSapCvlanTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanTable.setDescription('A table that contains the Service Access Points (Sap) where the CVLANs are bound to their service.') alaEServiceSapCvlanEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6, 1), ).setIndexNames((0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapCvlanSapID"), (0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapCvlanCvlan")) if mibBuilder.loadTexts: alaEServiceSapCvlanEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanEntry.setDescription('The CVLAN to Sap binding.') alaEServiceSapCvlanSapID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: alaEServiceSapCvlanSapID.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanSapID.setDescription('A Number given to uniquely identify this SAP.') alaEServiceSapCvlanCvlan = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 4094))) if mibBuilder.loadTexts: alaEServiceSapCvlanCvlan.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanCvlan.setDescription('This object is the CVLAN ID that this binding is targeted at. The CVLAN ID may be 0, which indicates an all or untagged only mapping type.') alaEServiceSapCvlanMapType = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("single", 1), ("all", 2), ("untaggedOnly", 3))).clone('single')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapCvlanMapType.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanMapType.setDescription('This object is the mapping type that defines what CVLANs are mapped into this service. Multiple mappings can be defined for CVLAN to service, however only one all (2) or untaggedOnly (3) mapping entry can be created per UNI. A mapping type of Single (1) denotes a specific CVLAN value to bind to the service. A mapping type of All (2) denotes that all customer frames that do not map to any other SAP, will be mapped into this service. A mapping type of Untagged (3) denotes that only the untagged frames will be mapped into this service.') alaEServiceSapCvlanRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 6, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapCvlanRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a SAP.') alaEServicePortTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7), ) if mibBuilder.loadTexts: alaEServicePortTable.setStatus('current') if mibBuilder.loadTexts: alaEServicePortTable.setDescription('A table that contains the ports used by the EService feature. Both UNI and NNI are listed here.') alaEServicePortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1), ).setIndexNames((0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortID")) if mibBuilder.loadTexts: alaEServicePortEntry.setStatus('current') if mibBuilder.loadTexts: alaEServicePortEntry.setDescription('The list of ports being used by EService.') alaEServicePortID = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: alaEServicePortID.setStatus('current') if mibBuilder.loadTexts: alaEServicePortID.setDescription('The IfIndex of this UNI or NNI Port.') alaEServicePortType = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 3))).clone(namedValues=NamedValues(("uni", 1), ("nni", 3))).clone('uni')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortType.setStatus('current') if mibBuilder.loadTexts: alaEServicePortType.setDescription('The type of port for Vlan Stacking operation. uni (1) represents a customer facing port on which traffic may enter the E-Service. nni (2) respresents a provider network port over which the E-Service may be connected.') alaEServicePortVendorTpid = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 3), Integer32().clone(33024)).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortVendorTpid.setStatus('current') if mibBuilder.loadTexts: alaEServicePortVendorTpid.setDescription('he TPID for this port if type is NNI. It is used for the incoming data traffic parsing and it is substituted to the 802.1Q standard Tpid for the outgoing data traffic. This is used for compatibility with other vendor equipment. The default value is the standard value 0x8100.') alaEServicePortLegacyStpBpdu = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("notApplicable", 0), ("enable", 1), ("disable", 2))).clone('disable')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortLegacyStpBpdu.setStatus('current') if mibBuilder.loadTexts: alaEServicePortLegacyStpBpdu.setDescription('The legacy STP BPDU treatment for this port if NNI. It defines the type of processing applied to STP legacy BPDUs on network ports. Legacy BPDU refer to conventional/customer BPDUs with MAC address 01:80:c2:00:00:00 and its processing on network ports can be enabled/disabled by this object.By default the value is disabled i.e provider MAC BPDU with MAC address 01:80:c2:00:00:08 would be processed at network ports.') alaEServicePortLegacyGvrpPdu = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("notApplicable", 0), ("enable", 1), ("disable", 2))).clone('disable')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortLegacyGvrpPdu.setStatus('deprecated') if mibBuilder.loadTexts: alaEServicePortLegacyGvrpPdu.setDescription('The legacy GVRP PDU treatment for this port if NNI. It defines the type of processing applied to GVRP PDUs on network ports. ') alaEServicePortUniProfile = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 6), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 31))).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortUniProfile.setStatus('current') if mibBuilder.loadTexts: alaEServicePortUniProfile.setDescription('The label of an existing UNI profile that which contains various properties to be applied to this port if UNI.') alaEServicePortTransBridging = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2))).clone('disable')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortTransBridging.setStatus('current') if mibBuilder.loadTexts: alaEServicePortTransBridging.setDescription('The Transparent Bridging status for the nni Port.') alaEServicePortLegacyMvrpPdu = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("notApplicable", 0), ("enable", 1), ("disable", 2))).clone('disable')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortLegacyMvrpPdu.setStatus('current') if mibBuilder.loadTexts: alaEServicePortLegacyMvrpPdu.setDescription('The legacy MVRP PDU treatment for this port if NNI. It defines the type of processing applied to MVRP PDUs on network ports. ') alaEServicePortRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 7, 1, 9), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServicePortRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServicePortRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a binding') alaEServiceSapUniTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 8), ) if mibBuilder.loadTexts: alaEServiceSapUniTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniTable.setDescription('A table that contains the UNI that are bound to each SAP for classifying traffic into each EService. Not that writing to this table may create a new UNI.') alaEServiceSapUniEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 8, 1), ).setIndexNames((0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapUniSap"), (0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapUniUni")) if mibBuilder.loadTexts: alaEServiceSapUniEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniEntry.setDescription('The list of SAP-UNI bindings being used by EService.') alaEServiceSapUniSap = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 8, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: alaEServiceSapUniSap.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniSap.setDescription('The SAP ID that is configured onto this port.') alaEServiceSapUniUni = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 8, 1, 2), InterfaceIndex()) if mibBuilder.loadTexts: alaEServiceSapUniUni.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniUni.setDescription('The IfIndex of this UNI Port.') alaEServiceSapUniRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 8, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceSapUniRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a binding') alaEServiceNniSvlanTable = MibTable((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9), ) if mibBuilder.loadTexts: alaEServiceNniSvlanTable.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanTable.setDescription('A table that contains the SVLANs bound to each NNI for use by the EService feature.') alaEServiceNniSvlanEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9, 1), ).setIndexNames((0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceNniSvlanNni"), (0, "ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceNniSvlanSvlan")) if mibBuilder.loadTexts: alaEServiceNniSvlanEntry.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanEntry.setDescription('The list of NNI-SVLAN bindings being used by EService.') alaEServiceNniSvlanNni = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: alaEServiceNniSvlanNni.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanNni.setDescription('The IfIndex of this NNI Port.') alaEServiceNniSvlanSvlan = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(2, 4094))) if mibBuilder.loadTexts: alaEServiceNniSvlanSvlan.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanSvlan.setDescription('The SVLAN bound to this port. SVLAN cannot be 1.') alaEServiceNniSvlanRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceNniSvlanRowStatus.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanRowStatus.setDescription('The status of this table entry. The supported value for set are createAndGo (4) and destroy(6), to add or remove a binding') alaEServiceNniSvlanVpaType = MibTableColumn((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 1, 1, 9, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("stp", 1), ("erp", 2))).clone('stp')).setMaxAccess("readcreate") if mibBuilder.loadTexts: alaEServiceNniSvlanVpaType.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanVpaType.setDescription('The object is used to specify whether the VPA state is to be controlled by an ERP or a STP. By default VPA state is controlled by STP.') alcatelIND1EServiceMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 2, 1)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapUniGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapCvlanGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceNniSvlanGroup"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceInfoGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alcatelIND1EServiceMIBCompliance = alcatelIND1EServiceMIBCompliance.setStatus('current') if mibBuilder.loadTexts: alcatelIND1EServiceMIBCompliance.setDescription('Compliance statement for E-Service.') alaEServiceSapProfileGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 1)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileCVLANTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileReplacementCVLAN"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfilePriorityMapMode"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileFixedPriority"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileIngressBW"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileBandwidthShare"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileRowStatus"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfileEgressBW")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceSapProfileGroup = alaEServiceSapProfileGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapProfileGroup.setDescription('Collection of objects for management of E-Service Sap Profiles.') alaEServiceUNIProfileGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 2)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileStpBpduTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfile8021xTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfile8021ABTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfile8023adTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileGvrpTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileAmapTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileMvrpTreatment"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceUNIProfileRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceUNIProfileGroup = alaEServiceUNIProfileGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceUNIProfileGroup.setDescription('Collection of objects for management of EService UNI Profiles.') alaEServiceGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 3)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSVLAN"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceVlanType"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceGroup = alaEServiceGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceGroup.setDescription('Collection of objects for management of E-Services.') alaEServiceSapGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 4)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapServiceID"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapProfile"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceSapGroup = alaEServiceSapGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapGroup.setDescription('Collection of objects for management of E-Service SAPs.') alaEServiceSapCvlanGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 5)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapCvlanMapType"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapCvlanRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceSapCvlanGroup = alaEServiceSapCvlanGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapCvlanGroup.setDescription('Collection of objects for management of E-Service SAP CVLAN bindings.') alaEServicePortGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 6)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortType"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortVendorTpid"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortLegacyStpBpdu"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortLegacyGvrpPdu"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortUniProfile"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortTransBridging"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortLegacyMvrpPdu"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServicePortRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServicePortGroup = alaEServicePortGroup.setStatus('current') if mibBuilder.loadTexts: alaEServicePortGroup.setDescription('Collection of objects for management of E-Service Ports.') alaEServiceSapUniGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 7)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceSapUniRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceSapUniGroup = alaEServiceSapUniGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceSapUniGroup.setDescription('Collection of objects for management of E-Service SAP to UNI Binding.') alaEServiceNniSvlanGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 8)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceNniSvlanRowStatus"), ("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceNniSvlanVpaType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceNniSvlanGroup = alaEServiceNniSvlanGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceNniSvlanGroup.setDescription('Collection of objects for management of E-Service SVLAN to NNI Binding.') alaEServiceInfoGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6486, 801, 1, 2, 1, 50, 1, 2, 1, 9)).setObjects(("ALCATEL-IND1-E-SERVICE-MIB", "alaEServiceMode")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): alaEServiceInfoGroup = alaEServiceInfoGroup.setStatus('current') if mibBuilder.loadTexts: alaEServiceInfoGroup.setDescription('Collection of objects for management of E-Service Info Binding.') mibBuilder.exportSymbols("ALCATEL-IND1-E-SERVICE-MIB", alaEServiceUNIProfile8021xTreatment=alaEServiceUNIProfile8021xTreatment, alaEServiceNniSvlanEntry=alaEServiceNniSvlanEntry, alaEServiceUNIProfileGroup=alaEServiceUNIProfileGroup, alaEServicePortTable=alaEServicePortTable, alaEServiceUNIProfileAmapTreatment=alaEServiceUNIProfileAmapTreatment, alaEServiceTable=alaEServiceTable, alcatelIND1EServiceMIB=alcatelIND1EServiceMIB, alaEServiceSapCvlanCvlan=alaEServiceSapCvlanCvlan, alcatelIND1EServiceMIBCompliance=alcatelIND1EServiceMIBCompliance, alaEServiceUNIProfileTable=alaEServiceUNIProfileTable, alaEServicePortType=alaEServicePortType, alaEServiceUNIProfileMvrpTreatment=alaEServiceUNIProfileMvrpTreatment, alaEServiceNniSvlanVpaType=alaEServiceNniSvlanVpaType, alaEServiceInfo=alaEServiceInfo, alaEServicePortUniProfile=alaEServicePortUniProfile, alaEServiceSapProfileReplacementCVLAN=alaEServiceSapProfileReplacementCVLAN, alaEServiceSapProfileTable=alaEServiceSapProfileTable, alaEServiceSapProfileID=alaEServiceSapProfileID, alaEServiceSapEntry=alaEServiceSapEntry, alaEServiceUNIProfileStpBpduTreatment=alaEServiceUNIProfileStpBpduTreatment, alaEServicePortTransBridging=alaEServicePortTransBridging, alaEServicePortEntry=alaEServicePortEntry, alaEServiceSapUniSap=alaEServiceSapUniSap, alaEServiceSapProfileGroup=alaEServiceSapProfileGroup, alaEServiceSapProfileCVLANTreatment=alaEServiceSapProfileCVLANTreatment, alaEServiceSapProfileRowStatus=alaEServiceSapProfileRowStatus, alaEServiceRowStatus=alaEServiceRowStatus, alaEServiceSapProfileEgressBW=alaEServiceSapProfileEgressBW, alaEServicePortLegacyStpBpdu=alaEServicePortLegacyStpBpdu, alaEServiceSapRowStatus=alaEServiceSapRowStatus, alaEServiceUNIProfile8021ABTreatment=alaEServiceUNIProfile8021ABTreatment, alaEServiceSapCvlanGroup=alaEServiceSapCvlanGroup, alaEServiceSapUniEntry=alaEServiceSapUniEntry, alaEServicePortRowStatus=alaEServicePortRowStatus, alaEServiceNniSvlanRowStatus=alaEServiceNniSvlanRowStatus, alaEServiceSapTable=alaEServiceSapTable, alaEServiceNniSvlanSvlan=alaEServiceNniSvlanSvlan, alcatelIND1EServiceMIBGroups=alcatelIND1EServiceMIBGroups, alcatelIND1EServiceMIBConformance=alcatelIND1EServiceMIBConformance, alaEServiceUNIProfileID=alaEServiceUNIProfileID, alaEServiceSapProfilePriorityMapMode=alaEServiceSapProfilePriorityMapMode, alaEServiceSapServiceID=alaEServiceSapServiceID, alaEServiceID=alaEServiceID, alcatelIND1eServiceMIBObjects=alcatelIND1eServiceMIBObjects, alaEServiceSapUniTable=alaEServiceSapUniTable, alaEServiceNniSvlanGroup=alaEServiceNniSvlanGroup, AlaEServiceUNIProfileProtocolTreatment=AlaEServiceUNIProfileProtocolTreatment, alaEServiceSapProfileIngressBW=alaEServiceSapProfileIngressBW, alaEServiceVlanType=alaEServiceVlanType, alaEServiceUNIProfileEntry=alaEServiceUNIProfileEntry, alaEServiceSapID=alaEServiceSapID, alaEServiceSapProfileEntry=alaEServiceSapProfileEntry, alaEServiceSapProfileFixedPriority=alaEServiceSapProfileFixedPriority, alaEService=alaEService, alaEServiceSapCvlanRowStatus=alaEServiceSapCvlanRowStatus, alaEServicePortGroup=alaEServicePortGroup, alaEServiceInfoGroup=alaEServiceInfoGroup, alaEServiceEntry=alaEServiceEntry, alaEServiceSVLAN=alaEServiceSVLAN, alaEServiceMode=alaEServiceMode, alaEServiceSapUniGroup=alaEServiceSapUniGroup, alaEServiceSapUniUni=alaEServiceSapUniUni, alaEServiceNniSvlanTable=alaEServiceNniSvlanTable, alaEServiceSapProfile=alaEServiceSapProfile, alaEServiceUNIProfileRowStatus=alaEServiceUNIProfileRowStatus, alaEServicePortVendorTpid=alaEServicePortVendorTpid, alaEServicePortLegacyGvrpPdu=alaEServicePortLegacyGvrpPdu, alaEServiceSapCvlanEntry=alaEServiceSapCvlanEntry, alaEServicePortID=alaEServicePortID, alaEServiceSapGroup=alaEServiceSapGroup, alaEServicePortLegacyMvrpPdu=alaEServicePortLegacyMvrpPdu, alaEServiceUNIProfile8023adTreatment=alaEServiceUNIProfile8023adTreatment, alaEServiceSapProfileBandwidthShare=alaEServiceSapProfileBandwidthShare, PYSNMP_MODULE_ID=alcatelIND1EServiceMIB, alaEServiceNniSvlanNni=alaEServiceNniSvlanNni, alaEServiceSapCvlanSapID=alaEServiceSapCvlanSapID, alaEServiceGroup=alaEServiceGroup, alaEServiceSapUniRowStatus=alaEServiceSapUniRowStatus, alaEServiceSapCvlanMapType=alaEServiceSapCvlanMapType, alaEServiceSapCvlanTable=alaEServiceSapCvlanTable, alcatelIND1EServiceMIBCompliances=alcatelIND1EServiceMIBCompliances, alaEServiceUNIProfileGvrpTreatment=alaEServiceUNIProfileGvrpTreatment)
3475609803c5fec24d9602e8f2f214ff2e1146fa
0c66e605e6e4129b09ea14dbb6aa353d18aaa027
/diventi/products/migrations/0028_auto_20200119_1557.py
e26102391438dd63340bedc439d85503f7d4b02e
[ "Apache-2.0" ]
permissive
flavoi/diventi
58fbc8c947f387cbcc1ce607878a59a6f2b72313
c0b1efe2baa3ff816d6ee9a8e86623f297973ded
refs/heads/master
2023-07-20T09:32:35.897661
2023-07-11T19:44:26
2023-07-11T19:44:26
102,959,477
2
1
Apache-2.0
2023-02-08T01:03:17
2017-09-09T14:10:51
Python
UTF-8
Python
false
false
521
py
# Generated by Django 2.2.8 on 2020-01-19 14:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0027_auto_20191217_0738'), ] operations = [ migrations.AlterField( model_name='product', name='price', field=models.PositiveIntegerField(default=0, help_text='This price must be valued in euro cents. For example: 500 for 5.00€, 120 for 1.20€ etc.', verbose_name='price'), ), ]
6a31dadc459e9cff086a628b3036733ed01e6692
d4f28073663e228e8bd119a70d17a8a21fc849c9
/algorithms/libHIN/dataStructures.py
4fda0163757175cd407c888d0454542bb85622da
[]
no_license
wsgan001/embedding_graph
fe81fa6cd81265a1b371d5de0dc4889bf7572763
93b49015dd2610e4348b2f7e3dc90405bd803c36
refs/heads/master
2021-08-27T18:54:47.803771
2017-11-23T09:36:05
2017-11-23T09:36:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,748
py
## core data structures import networkx as nx import numpy as np import scipy.sparse as sp from .decomposition import get_calculation_method class Class: def __init__(self, lab_id, name, members): self.name = name self.id = lab_id self.index = -1 self.members = members # ids of members calculated using hierarchy of labels self.member_indices = [] self.train_indices = [] # indices of training instances with this label self.validate_indices = [] # indices of validate instances with this label self.test_indices = [] # indices of test instances with this label self.train_members = set() # ids of train members (intersection of basic_members and the train set) self.test_members = set() # ids of test members (intersection of basic_members and the test set) self.validate_members = set() # ids of validate members (intersection of basic_members and the validate set) self.not_test_members = set() def __repr__(self): return self.name def __str__(self): return self.name class HeterogeneousInformationNetwork: def __init__(self, network, label_delimiter, weight_tag=False, target_tag=True): self.label_list = [] # list of labels. self.labels_by_id = {} # IDs of each label self.graph = network self.target_tag = target_tag self.node_list = [] # List of all nodes in decomposition self.node_indices = {} # Indices of all nodes in decomposition self.basic_type = None # Basic node type (for decomposition) self.label_array = None self.label_matrix = None self.train_indices = [] self.validate_indices = [] self.test_indices = [] self.train_ids = set() self.validate_ids = set() self.test_ids = set() self.weighted = weight_tag ## include info on weighted edges self.decomposed = {} # Dictionary of all performed decompositions (self.decomposed['PAP'] is one) self.pairs = {} self.midpoints = {} self.validate_pprs = {} self.test_pprs = {} self.train_pprs = {} self.validate_distances = {} self.test_distances = {} self.midpoint_files = {} self.feature_vectors = {} if network != None: self.process_network(label_delimiter) def add_label(self, node, label_id, label_name=None): if label_name is None: label_name = str(label_id) if label_id in self.labels_by_id: if self.labels_by_id[label_id] not in self.graph.node[node]['labels']: self.graph.node[node]['labels'].append(self.labels_by_id[label_id]) self.labels_by_id[label_id].members.append(node) else: new_class = Class(label_id, label_name, [node]) self.label_list.append(new_class) self.labels_by_id[label_id] = new_class new_class.index = len(self.label_list) - 1 self.graph.node[node]['labels'].append(new_class) def process_network(self, label_delimiter): if self.target_tag: basic_types = set([self.graph.node[x]['type'] for x in self.graph.node if 'labels' in self.graph.node[x]]) if len(basic_types) != 1: ## tukej naredi, da enostavno sejvne grafek, to je uporabno za embedding raise Exception('Unclear target type!') self.basic_type = basic_types.pop() self.node_list = [x for x in self.graph.node if self.graph.node[x]['type'] == self.basic_type] try: self.node_list.sort(key=lambda x: float(x)) except ValueError: self.node_list.sort() self.node_indices = dict([(item, index) for index, item in enumerate(self.node_list)]) for node_id in self.node_list: if len(self.graph.node[node_id]['labels']) > 0: labels = self.graph.node[node_id]['labels'].split(label_delimiter) self.graph.node[node_id]['labels'] = [] for label in labels: self.add_label(node_id, label, label_name=label) for lab in self.label_list: if lab is not None: temp_list = [mem for mem in lab.members if self.graph.node[mem]['type'] == self.basic_type] lab.basic_members = set(temp_list) self.label_array = - np.ones((max([len(self.graph.node[node]['labels']) for node in self.node_list]), len(self.node_list))) for node in self.node_list: tmp = self.graph.node[node]['labels'] self.label_array[:len(tmp), self.node_indices[node]] = [label.index for label in tmp] self.create_label_matrix() def create_label_matrix(self, weights=None): self.label_matrix = np.zeros((len(self.node_list), len(self.label_list))) for i, label in enumerate(self.label_list): member_indices = [self.node_indices[x] for x in label.members] if weights == 'balanced': self.label_matrix[member_indices, i] = 1.0 / max(len(label.train_indices), 1) else: self.label_matrix[member_indices, i] = 1 def calculate_schema(self): schema = nx.MultiDiGraph() for node_start in self.graph.node: for node_end in self.graph[node_start]: for key in self.graph[node_start][node_end]: start_type = self.graph.node[node_start]['type'] end_type = self.graph.node[node_end]['type'] edge_type = self.graph[node_start][node_end][key]['type'] has_type = False if schema.has_edge(start_type, end_type): for key in schema[start_type][end_type]: if schema[start_type][end_type][key]['type'] == edge_type: has_type = True break # if schema[start_type][end_type]['type'] != edge_type: # raise Exception('Multiple edge types between equal node types are not supported!') if not has_type: schema.add_edge(start_type, end_type, type=edge_type) return schema def calculate_decomposition_candidates(self, max_decomposition_length=10): schema = self.calculate_schema() under_construction = [{'node_list': [self.basic_type], 'edge_list': []}] candidate_lists = [] for i in range(max_decomposition_length - 1): next_gens = [] for list_so_far in under_construction: if list_so_far['node_list'][-1] != self.basic_type or len(list_so_far['node_list']) == 1: current = list_so_far['node_list'][-1] for neighbor in schema[current]: if neighbor == self.basic_type: append_to = candidate_lists else: append_to = next_gens for key in schema[current][neighbor]: append_to.append({ 'node_list': list_so_far['node_list'] + [neighbor], 'edge_list': list_so_far['edge_list'] + [schema[current][neighbor][key]['type']] }) under_construction = next_gens return candidate_lists def split_to_indices(self, train_indices=(), validate_indices=(), test_indices=()): self.train_indices = train_indices self.validate_indices = validate_indices self.test_indices = test_indices self.train_ids = set([self.node_list[i] for i in self.train_indices]) self.validate_ids = set([self.node_list[i] for i in self.validate_indices]) self.test_ids = set([self.node_list[i] for i in self.test_indices]) # calculate test representatives: for train_index in self.train_indices: train_node = self.node_list[train_index] for label in self.graph.node[train_node]['labels']: label.train_indices.append(train_index) label.train_members.add(self.node_list[train_index]) label.not_test_members.add(self.node_list[train_index]) for validate_index in self.validate_indices: validate_node = self.node_list[validate_index] for label in self.graph.node[validate_node]['labels']: label.validate_indices.append(validate_index) label.validate_members.add(self.node_list[validate_index]) label.not_test_members.add(self.node_list[validate_index]) for test_index in self.test_indices: test_node = self.node_list[test_index] for label in self.graph.node[test_node]['labels']: label.test_indices.append(test_index) label.test_members.add(self.node_list[test_index]) for label in self.label_list: label.not_test_members_num = len(label.not_test_members) def split_to_parts(self,lst,n): return [lst[i::n] for i in range(n)] def decompose_from_iterator(self, name, weighing, summing ,generator=None, degrees=None, parallel=True,pool=None): classes = [lab for lab in self.label_list if lab and len(lab.not_test_members) > 0] universal_set = list(set(self.train_ids).union(self.validate_ids)) universal_inv = {} for i, item in enumerate(universal_set): universal_inv[item] = i universal_set = set(universal_set) label_matrix = np.zeros((len(universal_set), len(classes))) for i, label in enumerate(classes): label_matrix[[universal_inv[item] for item in label.not_test_members], i] = 1 nn = len(self.node_list) matrix = sp.csr_matrix((nn, nn)) n = len(universal_set) importance_calculator = get_calculation_method(weighing) if generator is None: raise Exception('No midpoint generator!') avgdegree = None if weighing != 'okapi': degrees = None avgdegree = None if degrees is not None: avgdegree = sum(degrees.values()) * 1.0 / len(degrees) i=0 tmp_container = [] bsize = 5 if parallel: ## parallel for edge type while True: tmp_container = list(next(generator) for _ in range(bsize)) if len(tmp_container) == 0: break pinput = [] for j in tmp_container: pinput.append((classes,universal_set,j,n)) results = pool.starmap(importance_calculator,pinput) ## construct main matrix for item, importances in zip(tmp_container, results): importance = np.sum(importances, axis=0) i1 = [self.node_indices[x] for x in item] i2 = [[x] for x in i1] to_add = sp.csr_matrix((nn, nn)) if len(i1) > 1000: ## split to prevent memory leaks when doing hadamand products parts_first = self.split_to_parts(i1,4) parts_second = self.split_to_parts(i2,4) for x in range(len(parts_first)): to_add[parts_first[x], parts_second[x]] = importance else: to_add[i2, i1] = importance to_add = to_add.tocsr() matrix += to_add else: ## non-parallel for item in generator: ## to za vsak class poracun importance importances = importance_calculator(classes, universal_set, item, n, degrees=degrees, avgdegree=avgdegree) importance = np.sum(importances, axis=0) i1 = [self.node_indices[x] for x in item] i2 = [[x] for x in i1] to_add = sp.csr_matrix((nn, nn)) to_add[i2, i1] = importance to_add = to_add.tocsr() # this prevents memory leaks matrix += to_add ## hadamand product self.decomposed[name] = matrix def midpoint_generator(self, node_sequence, edge_sequence): if len(node_sequence) % 2 == 0: raise Exception('In a split of length %i, a midpoint is not well defined!' % len(node_sequence)) middle_type = node_sequence[int(len(node_sequence) / 2)] # forward_sequence = %TODO: INVERSE SEQUENCES!!!!!!!!! for node in self.graph: if self.graph.node[node]['type'] == middle_type: points = [node] i = int(len(node_sequence)/2 + 1) while i < len(node_sequence): current_type = node_sequence[i] new_points = [] for point in points: new_points += [x for x in self.graph[point] if self.graph.node[x]['type'] == current_type] points = new_points i += 1 if len(points) > 1: yield points
5ae8895b70d3c766d80a1f22a634ad71a70d012e
ab1d0fcd4900e0a88d49999cbbde4b06cc441e5d
/Labs/Lab 5/lab05_soln/raytracer_main.py
9cd89a7bb62e8dba71c76dd33c177a47aecd373e
[]
no_license
ThomasMGilman/ETGG1803_ConceptsOf3DGraphicsAndMath
bf261b7ce16bb686e42b1a2600aa97b4f8984b65
fdf4e216b117769246154cd360b2c321f4581354
refs/heads/master
2020-03-29T23:14:05.715926
2018-09-26T17:18:25
2018-09-26T17:18:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,643
py
import raytracer import objects3d import time import pygame import math3d caseNum = 2 # Pygame setup if caseNum == 1: win_width = 700; win_height = 150; elif caseNum == 2: win_width = 800; win_height = 600; else: win_width = 300; win_height = 200; pygame.display.init() screen = pygame.display.set_mode((win_width, win_height)) clock = pygame.time.Clock() done = False # Raytracer setup if caseNum == 1: cameraPos = math3d.VectorN(0, 0, -20) cameraUp = math3d.VectorN(0, 1, 0) cameraCoi = math3d.VectorN(0, 0, 0) cameraNear = 3.2 cameraFov = 45.0 elif caseNum == 2: cameraPos = math3d.VectorN(5, 7, -20) cameraUp = math3d.VectorN(1, 10, 0).normalized() cameraCoi = math3d.VectorN(2, 5, 3) cameraNear = 1.5 cameraFov = 60.0 elif caseNum == 3: cameraPos = math3d.VectorN(-5, 7, -30) cameraUp = math3d.VectorN(0, 1, 0) cameraCoi = math3d.VectorN(2, 5, 3) cameraNear = 1.5 cameraFov = 60.0 camera = objects3d.Camera(cameraPos, cameraCoi, cameraUp, screen, cameraFov, cameraNear, True) sphere1 = objects3d.Sphere(math3d.VectorN(2,5,3), 7.0, math3d.VectorN(1,0,0)) plane1 = objects3d.Plane(math3d.VectorN(0,1,0), 5.0, math3d.VectorN(0,1,0)) plane2 = objects3d.Plane(math3d.VectorN(0.1,1,0), 4.0, math3d.VectorN(0,0,1)) box1 = objects3d.AABB(math3d.VectorN(2, 9, -6), math3d.VectorN(8, 15, 0), math3d.VectorN(1,1,0)) #mesh1 = objects3d.Polymesh("sword.obj", math3d.VectorN(-10,8,3), 1.0, math3d.VectorN(1.0,0.3,0.8)) rt = raytracer.Raytracer(camera) rt.addObject(sphere1) rt.addObject(plane1) rt.addObject(plane2) rt.addObject(box1) #rt.addObject(mesh1) totalTime = 0.0 currentLine = 0 print("\n+==============================================+") print("| PHASE II tests |") print("+==============================================+") if caseNum == 1: testPts = [(0, 0), (win_width - 1, win_height - 1), (win_width // 2, win_height // 2), (113, 23), (623,83)] else: testPts = [(0, 0), (win_width - 1, win_height - 1), (win_width // 2, win_height // 2), (113, 542), (723,11)] for pygamePos in testPts: camera.getViewplanePosition(pygamePos[0], pygamePos[1], True) # Game Loop while not done: # Update if currentLine < win_height: rt.renderOneLine(currentLine) currentLine += 1 dt = clock.tick() totalTime += dt # Input event = pygame.event.poll() if event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE): done = True # Draw (nothing to do!) pygame.display.flip() # Pygame shutdown pygame.display.quit()
c0c758ec3f45045fd732d1505955fd973d3253de
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc036/D/4119191.py
5214b136ffa3fbda10cfeb4ddda4f643d5080a9d
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
1,269
py
import sys stdin = sys.stdin sys.setrecursionlimit(10**5) def li(): return map(int, stdin.readline().split()) def li_(): return map(lambda x: int(x)-1, stdin.readline().split()) def lf(): return map(float, stdin.readline().split()) def ls(): return stdin.readline().split() def ns(): return stdin.readline().rstrip() def lc(): return list(ns()) def ni(): return int(stdin.readline()) def nf(): return float(stdin.readline()) def dfs(graph:list, par:int, cur:int, mod:int): children = [] for child in graph[cur]: if child == par: continue children.append(child) if len(children) == 0: return 2, 1 else: topall = 1 topwht = 1 for child in children: topallchild, topwhtchild = dfs(graph, cur, child, mod) topwht *= topallchild topwht %= mod topall *= topwhtchild topall %= mod return (topall+topwht)%mod, topwht n = ni() graph = [[] for _ in range(n)] MOD = 10**9+7 for _ in range(n-1): a,b = li_() graph[a].append(b) graph[b].append(a) ans, _ = dfs(graph, 0, 0, MOD) print(ans)
2a6b93697a823699f907bd04a3d16ae2b742d3dd
8b683dd48ad3021990ca5133ec24a1ab260b687c
/worm_plates/collect/refine_coords.py
c86eb3c3b422cbf802411536855a272433f692d0
[]
no_license
ver228/worm-eggs
fd4afa13cba12f6553c0e8225fb591d9ea3806f1
0b2db08d9d81c3b31d9ebcd593059db02b3ee2fe
refs/heads/master
2022-04-01T06:29:56.358944
2020-02-14T15:55:39
2020-02-14T15:55:39
240,544,952
0
0
null
null
null
null
UTF-8
Python
false
false
5,710
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 1 16:22:37 2019 @author: avelinojaver """ from pathlib import Path import pandas as pd import tables import tqdm import cv2 import numpy as np from skimage.feature import peak_local_max from scipy.spatial.distance import cdist from scipy.optimize import linear_sum_assignment #%% def correct_coords(img_, coords_, min_distance = 1, max_dist = 5): #%% peaks = peak_local_max(img_, min_distance = min_distance) peaks = peaks[:, ::-1] #remove `peaks` that is not close by to any `coord` by at most `max_dist` D = cdist(coords_, peaks) #peaks with an intensity smaller than the coords intensities will be spurious peaks_ints = img_[peaks[:, 1], peaks[:, 0]] cc = coords_.astype(np.int) coords_int = img_[cc[:, 1], cc[:, 0]] good = (D <= max_dist).any(axis=0) good &= peaks_ints >= coords_int.min() D = D[:, good] valid_peaks = peaks[good] #find the closest peaks closest_indexes = np.argmin(D, axis=1) #we will consider as an easy assigment if the closest peak is assigned to only one coord u_indexes = np.unique(closest_indexes) counts = np.bincount(closest_indexes)[u_indexes] easy_assigments = u_indexes[counts == 1] valid_pairs = [(ii, x) for ii, x in enumerate(closest_indexes) if x in easy_assigments] if len(valid_pairs) > 0: easy_rows, easy_cols = map(np.array, zip(*valid_pairs)) easy_cost = D[easy_rows, easy_cols] good = easy_cost<max_dist easy_rows = easy_rows[good] easy_cols = easy_cols[good] assert (D[easy_rows, easy_cols] <= max_dist).all() #now hard assigments are if a peak is assigned to more than one peak ambigous_rows = np.ones(D.shape[0], np.bool) ambigous_rows[easy_rows] = False ambigous_rows, = np.where(ambigous_rows) ambigous_cols = np.ones(D.shape[1], np.bool) ambigous_cols[easy_cols] = False ambigous_cols, = np.where(ambigous_cols) else: ambigous_rows = np.arange(D.shape[0]) ambigous_cols = np.arange(D.shape[1]) easy_rows = np.array([], dtype=np.int) easy_cols = np.array([], dtype=np.int) D_r = D[ambigous_rows][:, ambigous_cols] good = (D_r <= max_dist).any(axis=0) D_r = D_r[:, good] ambigous_cols = ambigous_cols[good] #for this one we use the hungarian algorithm for the assigment. This assigment is to slow over the whole matrix ri, ci = linear_sum_assignment(D_r) hard_rows, hard_cols = ambigous_rows[ri], ambigous_cols[ci] assert (D_r[ri, ci] == D[hard_rows, hard_cols]).all() hard_cost = D[hard_rows, hard_cols] good = hard_cost<max_dist hard_rows = hard_rows[good] hard_cols = hard_cols[good] #let's combine both and assign the corresponding peak rows = np.concatenate((easy_rows, hard_rows)) cols = np.concatenate((easy_cols, hard_cols)) new_coords = coords_.copy() new_coords[rows] = valid_peaks[cols] #coords that do not satisfy the close peak condition will not be changed return new_coords #%% if __name__ == '__main__': _debug = False min_distance = 2 max_dist = 5 r = max_dist*2+1 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(r, r)) src_root_dir = Path.home() / 'workspace/localization/data/worm_eggs_adam/' dst_root_dir = Path.home() / 'workspace/localization/data/worm_eggs_adam_refined/' src_files = [x for x in src_root_dir.rglob('*.hdf5') if not x.name.startswith('.')] for src_file in tqdm.tqdm(src_files): with pd.HDFStore(src_file, 'r') as fid: df = fid['/coords'] img = fid.get_node('/img')[:] #%% #create a mask using the known coordinates valid_mask = np.zeros_like(img) cols = df['cx'].astype(np.int) rows = df['cy'].astype(np.int) valid_mask[rows, cols] = 1 valid_mask = cv2.dilate(valid_mask, kernel) > 0 #then I will use the inverted maxima to to create local maxima corresponding to the refined eggs peaks img_peaks = ~img img_peaks -= img_peaks[valid_mask].min() img_peaks[~valid_mask] = 0 #img_peaks = cv2.blur(img_peaks, (1,1)) #%% #finaly use the correct coords function to assing each labelled coords to a local maxima cc = df[['cx','cy']].values new_coords = correct_coords(img_peaks, cc, min_distance, max_dist) coords = pd.DataFrame({'type_id':1, 'cx':new_coords[:,0], 'cy':new_coords[:,1]}) coords = coords.to_records(index=False) dst_file = str(src_file).replace(str(src_root_dir), str(dst_root_dir)) dst_file = Path(dst_file) dst_file.parent.mkdir(exist_ok=True, parents=True) with tables.File(str(dst_file), 'w') as fid: fid.create_carray('/', 'img', obj = img) fid.create_table('/', 'coords', obj = coords) #%% if _debug: #%% import matplotlib.pylab as plt fig, axs = plt.subplots(1, 2, sharex=True, sharey=True) axs[0].imshow(img, cmap = 'gray') axs[1].imshow(img_peaks, cmap = 'gray') for ax in axs: ax.plot(df['cx'], df['cy'], '.r') ax.plot(coords['cx'], coords['cy'], '.g') plt.show() #%% break
f58c19c5218fc279438b07e3ca1976d176013a3a
2868a3f3bca36328b4fcff5cce92f8adeb25b033
/+100ns/Co_optimized/step1_dc/set.py
25b40663a2257d720ef9bd0d368b0791db804c94
[]
no_license
linfranksong/TM-enzyme_input
1c2a5e12e69c48febd5b5900aa00fe2339d42298
6e46a5b2c451efb93761707b77917a98ca0bfedc
refs/heads/master
2022-03-19T19:49:09.373397
2019-12-04T00:11:59
2019-12-04T00:11:59
205,220,795
0
1
null
null
null
null
UTF-8
Python
false
false
2,131
py
import os dir = os.path.dirname(os.path.realpath(__file__)) + '/' #for a in [150,200,250,300,350,400,450,500,550,600]: for a in [150]: #for a in [200,250,300,350,400,450,500,550,600]: os.system("rm -r %s_dc_repe"%(a)) os.system("cp -r temp/ %s_dc_repe"%(a)) adir=dir+ "%s_dc_repe/"%(a) os.chdir(adir) os.system("sed -i 's/MMM/%s/g' */*pbs"%(a)) array= [0,0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078,1.0] for n in range(1,len(array)-1): i=array[n] os.system("rm -r %s"%(i)) os.system("cp -r files %s"%(i)) wdir=adir+"%s/"%(i) os.chdir(wdir) os.system("mv eq.in %s_eq.in"%(i)) os.system("mv us.in %s_us.in"%(i)) os.system("sed -i 's/XXX/%s/g' %s_eq.in"%(i,i)) os.system("sed -i 's/XXX/%s/g' %s_us.in"%(i,i)) os.system("sed -i 's/MMM/%s/g' dis.RST"%(a)) os.system("mv eq.pbs %s_eq.pbs"%(i)) os.system("mv us.pbs %s_us.pbs"%(i)) os.system("sed -i 's/XXX/%s/g' *.pbs"%(i)) os.system("sed -i 's/NNN/%s/g' *.pbs"%(array[n+1])) os.system("sed -i 's/PPP/%s/g' *.pbs"%(array[n-1])) os.chdir(adir) sdir=adir+"0/" os.chdir(sdir) i=0 os.system("cp /mnt/gs18/scratch/users/songlin3/run/glx-0904/+100ns/Co_optimized/step0_fep/%s_fep/1.0/%s_1.0_eq_center.rst ."%(a,a)) os.system("mv eq.in %s_eq.in"%(i)) os.system("mv us.in %s_us.in"%(i)) os.system("sed -i 's/XXX/%s/g' %s_eq.in"%(i,i)) os.system("sed -i 's/XXX/%s/g' %s_us.in"%(i,i)) os.system("mv eq.pbs %s_eq.pbs"%(i)) os.system("mv us.pbs %s_us.pbs"%(i)) os.system("sed -i 's/XXX/%s/g' *.pbs"%(i)) os.system("sed -i 's/MMM/%s/g' dis.RST"%(a)) os.system("sbatch 0_eq.pbs") sdir=adir+"1.0/" os.chdir(sdir) i=1.0 os.system("mv eq.in %s_eq.in"%(i)) os.system("mv us.in %s_us.in"%(i)) os.system("sed -i 's/XXX/%s/g' %s_eq.in"%(i,i)) os.system("sed -i 's/XXX/%s/g' %s_us.in"%(i,i)) os.system("mv eq.pbs %s_eq.pbs"%(i)) os.system("mv us.pbs %s_us.pbs"%(i)) os.system("sed -i 's/XXX/%s/g' *.pbs"%(i)) os.system("sed -i 's/MMM/%s/g' dis.RST"%(a)) os.system("sed -i 's/MMM/%s/g' center.in"%(a)) os.chdir(dir)
acd65c46ffa5dd3f4fa612a415887f694e67e27f
9a6c5607ae6f6305f1427fe5ee37ab8a0aa9b710
/0 Python Fundamental/25.c.filter.py
bf848a8ad7d8b4c95625bf195a090ed00fc3af2e
[]
no_license
raviitsoft/Python_Fundamental_DataScience
3796b957751a6d9125452bcf2aa409e64d7c8d8a
6f99fdd187646f0d28ffd4ddbe3ace4597c47967
refs/heads/master
2020-12-22T19:39:46.814043
2020-01-28T09:04:55
2020-01-28T09:04:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
ages = [5, 12, 17, 18, 24, 32] def myFunc(x): if x < 18: return False else: return True adults = filter(myFunc, ages) # print(adults) # print(list(adults)) ############################# z = filter(lambda a: True if a >= 18 else False, ages) print(list(z)) z = filter(lambda a: a >= 18, ages) print(list(z)) ############################ x = [1, 2, 3, 4, 5, 99] y = [1, 2, 6, 7, 8, 99] z = list(filter(lambda a: a in x, y)) # print(z) z = list(filter(lambda x: True if x<3 else False, x)) print(z) z = list(filter(lambda x: x<3, x)) print(z)
643b2ad8db2c458d77f96dff2374d2efa0c66723
a00ed711e3e08b50ad6e91cc07a2cddc4a1de5ea
/airflow/api_connexion/schemas/dag_warning_schema.py
9531eb6b36bc3833a39d24bcef895f01444f9bb6
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
ishiis/airflow
4305794e36b611d01f49e3f2401be3dc49782670
292440d54f4db84aaf0c5a98cf5fcf34303f2fa8
refs/heads/master
2022-07-30T00:51:28.806940
2022-07-14T12:07:11
2022-07-14T12:07:11
209,801,072
1
0
Apache-2.0
2019-09-20T13:47:26
2019-09-20T13:47:26
null
UTF-8
Python
false
false
1,705
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import List, NamedTuple from marshmallow import Schema, fields from marshmallow_sqlalchemy import SQLAlchemySchema, auto_field from airflow.models.dagwarning import DagWarning class DagWarningSchema(SQLAlchemySchema): """Import error schema""" class Meta: """Meta""" model = DagWarning dag_id = auto_field(data_key="dag_id", dump_only=True) warning_type = auto_field() message = auto_field() timestamp = auto_field(format="iso") class DagWarningCollection(NamedTuple): """List of dag warnings with metadata""" dag_warnings: List[DagWarning] total_entries: int class DagWarningCollectionSchema(Schema): """Import error collection schema""" dag_warnings = fields.List(fields.Nested(DagWarningSchema)) total_entries = fields.Int() dag_warning_schema = DagWarningSchema() dag_warning_collection_schema = DagWarningCollectionSchema()
bf1e15e32502c294cb2398b0ca3de70499a04222
8b5d58fc22888d2fb051a3c59936659ca347043a
/NtupleAnalysis/src/Hplus2tbAnalysis/work/plotting/plotHistograms.py
35ff6c7ca74f8f56b0ceca013609826b3d9da715
[]
no_license
attikis/HplusHW
c54f4429dd48e99b7e597043fa6d442d7a3573ba
e62ce79c914c6b5bfd1faa44ff94356fb55fe561
refs/heads/master
2020-06-15T22:00:43.733407
2019-07-05T10:30:07
2019-07-05T10:30:07
195,402,507
1
0
null
2019-07-05T12:02:22
2019-07-05T12:02:22
null
UTF-8
Python
false
false
9,600
py
#!/usr/bin/env python ''' Usage (single plot): ./plotHistograms.py -m <pseudo_mcrab_directory> <jsonfile> Usage (multiple plots): ./plotHistograms.py -m <pseudo_mcrab_directory> json/AfterAllSelections/*.json or ./plotHistograms.py -m <pseudo_mcrab_directory> json/AfterAllSelections/*.json json/AfterStandardSelections/*.json Last Used: ./plotHistograms.py -m Hplus2tbAnalysis_161128_082955/ json/AfterAllSelections/BjetPt.json or ./plotHistograms.py -m Hplus2tbAnalysis_161128_082955/ json/AfterAllSelections/*.json or ./plotHistograms.py -m Hplus2tbAnalysis_161128_082955/ json/AfterAllSelections/*/*.json ''' #================================================================================================ # Imports #================================================================================================ import os import sys from optparse import OptionParser import getpass import socket import json import HiggsAnalysis.NtupleAnalysis.tools.dataset as dataset import HiggsAnalysis.NtupleAnalysis.tools.tdrstyle as tdrstyle import HiggsAnalysis.NtupleAnalysis.tools.styles as styles import HiggsAnalysis.NtupleAnalysis.tools.plots as plots import HiggsAnalysis.NtupleAnalysis.tools.histograms as histograms import HiggsAnalysis.NtupleAnalysis.tools.aux as aux import ROOT #================================================================================================ # Main #================================================================================================ def Print(msg, printHeader=False): fName = __file__.split("/")[-1] if printHeader==True: print "=== ", fName print "\t", msg else: print "\t", msg return def Verbose(msg, printHeader=True, verbose=False): if not opts.verbose: return Print(msg, printHeader) return def GetLumi(datasetsMgr): Verbose("Determininig Integrated Luminosity") lumi = 0.0 for d in datasetsMgr.getAllDatasets(): if d.isMC(): continue else: lumi += d.getLuminosity() Verbose("Luminosity = %s (pb)" % (lumi), True ) return lumi def GetDatasetsFromDir(opts, json): Verbose("Getting datasets") if len(json["samples"])<1: Print("No samples defined in the JSON file. Exit", True) print __doc__ sys.exit() else: return dataset.getDatasetsFromMulticrabDirs([opts.mcrab], dataEra=json["dataEra"], searchMode=json["searchMode"], analysisName=json["analysis"], includeOnlyTasks="|".join(json["samples"]), optimizationMode=json["optMode"]) def Plot(jsonfile, opts): Verbose("Plotting") with open(os.path.abspath(jsonfile)) as jfile: j = json.load(jfile) Print("Plotting %s in %s" % (j["title"], j["saveDir"]), True) # Setup the style style = tdrstyle.TDRStyle() style.setGridX(j["gridX"]=="True") style.setGridY(j["gridY"]=="True") # Set ROOT batch mode boolean ROOT.gROOT.SetBatch(opts.batchMode) # Setup & configure the dataset manager datasetsMgr = GetDatasetsFromDir(opts, j) #datasetsMgr.loadLuminosities() datasetsMgr.updateNAllEventsToPUWeighted() if opts.verbose: datasetsMgr.PrintCrossSections() datasetsMgr.PrintLuminosities() # Set/Overwrite cross-sections for d in datasetsMgr.getAllDatasets(): if "ChargedHiggs" in d.getName(): datasetsMgr.getDataset(d.getName()).setCrossSection(1.0) plots.mergeRenameReorderForDataMC(datasetsMgr) # Print dataset information datasetsMgr.PrintInfo() # Get Integrated Luminosity lumi = GetLumi(datasetsMgr) # Plot the histogram DataMCPlot(datasetsMgr, j) return def DataMCPlot(datasetsMgr, json): Verbose("Creating Data-MC plot") # Create the Data-MC Plot p = plots.DataMCPlot(datasetsMgr, json["histogram"]) # Customise histograms before drawing (before being converted to TGraphs) if "drawStyle" in json: p.histoMgr.setHistoDrawStyleAll(json["drawStyle"]) if "rebinx" in json: p.histoMgr.forEachHisto(lambda h: h.getRootHisto().RebinX(json["rebinX"])) if "rebiny" in json: if json["rebinY"] != "None": p.histoMgr.forEachHisto(lambda h: h.getRootHisto().RebinY(json["rebinY"])) # Label size (optional. Commonly Used in counters) xlabelSize = None if "xlabelsize" in json: xlabelSize = json["xlabelsize"] ylabelSize = None if "ylabelsize" in json: ylabelSize = json["ylabelsize"] # Draw a customised plot saveName = os.path.join(json["saveDir"], json["title"]) plots.drawPlot(p, saveName, xlabel = json["xlabel"], ylabel = json["ylabel"], rebinX = json["rebinX"], rebinY = json["rebinY"], ratioYlabel = json["ratioYlabel"], ratio = json["ratio"]=="True", stackMCHistograms = json["stackMCHistograms"]=="True", ratioInvert = json["ratioInvert"]=="True", addMCUncertainty = json["addMCUncertainty"]=="True", addLuminosityText = json["addLuminosityText"]=="True", addCmsText = json["addCmsText"]=="True", cmsExtraText = json["cmsExtraText"], opts = json["opts"], opts2 = json["ratioOpts"], log = json["logY"]=="True", errorBarsX = json["errorBarsX"]=="True", moveLegend = json["moveLegend"], # cutLine = json["cutValue"], #cannot have this and "cutBox" defined cutBox = {"cutValue": json["cutValue"], "fillColor": json["cutFillColour"], "box": json["cutBox"]=="True", "line": json["cutLine"]=="True", "greaterThan": json["cutGreaterThan"]=="True"}, xlabelsize = xlabelSize, ylabelsize = ylabelSize, ) # Remove legend? if json["removeLegend"] == "True": p.removeLegend() # Additional text histograms.addText(json["extraText"].get("x"), json["extraText"].get("y"), json["extraText"].get("text"), json["extraText"].get("size") ) # Save in all formats chosen by user saveFormats = json["saveFormats"] for i, ext in enumerate(saveFormats): Print("%s" % saveName + ext, i==0) p.saveAs(saveName, formats=saveFormats) return def main(opts): Verbose("main function") jsonFiles = [] # For-loop: All system script arguments for arg in sys.argv[1:]: # Skip if not a json file if ".json" not in arg: continue # Sanity check - File exists if not os.path.exists(arg): Print("The JSON file \"%s\" does not seem to be a valid path.. Please check that the file exists. Exit" % (arg), True) sys.exit() # Load & append json file with open(os.path.abspath(arg)) as jsonFile: try: json.load(jsonFile) jsonFiles.append(arg) except ValueError, e: Print("Problem loading JSON file %s. Please check the file" % (arg)) sys.exit() # Sanity check - At least 1 json file found if len(jsonFiles) == 0: Print("No JSON files found. Please read the script instructions. Exit", True) print __doc__ sys.exit() # For-loop: All json files for j in jsonFiles: Print("Processing JSON file \"%s\"" % (j), True) Plot(j, opts) return #================================================================================================ # Main #================================================================================================ if __name__ == "__main__": # Default Settings global opts BATCHMODE = True VERBOSE = False parser = OptionParser(usage="Usage: %prog [options]" , add_help_option=False,conflict_handler="resolve") parser.add_option("-m", "--mcrab", dest="mcrab", action="store", help="Path to the multicrab directory for input") parser.add_option("-b", "--batchMode", dest="batchMode", action="store_false", default=BATCHMODE, help="Enables batch mode (canvas creation NOT generates a window) [default: %s]" % BATCHMODE) parser.add_option("-v", "--verbose", dest="verbose", action="store_true", default=VERBOSE, help="Enables verbose mode (for debugging purposes) [default: %s]" % VERBOSE) (opts, parseArgs) = parser.parse_args() # Require at least two arguments (script-name, path to multicrab) if opts.mcrab == None: Print("Not enough arguments passed to script execution. Printing docstring & EXIT.") print __doc__ sys.exit(0) # Call the main function main(opts) if not opts.batchMode: raw_input("=== plotHistograms.py: Press any key to quit ROOT ...")
731c66717f6fccb33365c99d8aac3d158051db66
d954e2f74d1186c8e35be8ea579656513d8d3b98
/rllib/algorithms/algorithm.py
9900c03202990821f5dfb9100ad1ead2f61353ee
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
vakker/ray
a865de214e60f9e62d61c03ae7ce55ad6030f84c
de238dd626a48a16c8b3cd006f3482db75f63a83
refs/heads/master
2023-01-23T22:30:44.839942
2022-10-23T01:05:48
2022-10-23T01:05:48
171,845,804
0
1
Apache-2.0
2023-01-14T08:01:04
2019-02-21T09:54:36
Python
UTF-8
Python
false
false
140,996
py
from collections import defaultdict import concurrent import copy from datetime import datetime import functools import gym import importlib import json import logging import math import numpy as np import os from packaging import version import pkg_resources import tempfile import time from typing import ( Callable, Container, DefaultDict, Dict, List, Optional, Set, Tuple, Type, Union, ) from ray.rllib.offline.offline_evaluator import OfflineEvaluator import tree import ray from ray._private.usage.usage_lib import TagKey, record_extra_usage_tag from ray.actor import ActorHandle from ray.air.checkpoint import Checkpoint import ray.cloudpickle as pickle from ray.exceptions import GetTimeoutError, RayActorError, RayError from ray.rllib.algorithms.algorithm_config import AlgorithmConfig from ray.rllib.algorithms.callbacks import DefaultCallbacks from ray.rllib.algorithms.registry import ALGORITHMS as ALL_ALGORITHMS from ray.rllib.env.env_context import EnvContext from ray.rllib.env.utils import _gym_env_creator from ray.rllib.evaluation.episode import Episode from ray.rllib.evaluation.metrics import ( collect_episodes, collect_metrics, summarize_episodes, ) from ray.rllib.evaluation.rollout_worker import RolloutWorker from ray.rllib.evaluation.worker_set import WorkerSet from ray.rllib.execution.common import ( STEPS_TRAINED_THIS_ITER_COUNTER, # TODO: Backward compatibility. ) from ray.rllib.execution.parallel_requests import AsyncRequestsManager from ray.rllib.execution.rollout_ops import synchronous_parallel_sample from ray.rllib.execution.train_ops import multi_gpu_train_one_step, train_one_step from ray.rllib.offline import get_offline_io_resource_bundles from ray.rllib.offline.estimators import ( OffPolicyEstimator, ImportanceSampling, WeightedImportanceSampling, DirectMethod, DoublyRobust, ) from ray.rllib.policy.policy import Policy from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID, SampleBatch, concat_samples from ray.rllib.utils import deep_update, FilterManager, merge_dicts from ray.rllib.utils.annotations import ( DeveloperAPI, ExperimentalAPI, OverrideToImplementCustomLogic, OverrideToImplementCustomLogic_CallToSuperRecommended, PublicAPI, override, ) from ray.rllib.utils.checkpoints import CHECKPOINT_VERSION, get_checkpoint_info from ray.rllib.utils.debug import update_global_seed_if_necessary from ray.rllib.utils.deprecation import ( DEPRECATED_VALUE, Deprecated, deprecation_warning, ) from ray.rllib.utils.error import ERR_MSG_INVALID_ENV_DESCRIPTOR, EnvError from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.from_config import from_config from ray.rllib.utils.metrics import ( NUM_AGENT_STEPS_SAMPLED, NUM_AGENT_STEPS_SAMPLED_THIS_ITER, NUM_AGENT_STEPS_TRAINED, NUM_ENV_STEPS_SAMPLED, NUM_ENV_STEPS_SAMPLED_THIS_ITER, NUM_ENV_STEPS_TRAINED, SYNCH_WORKER_WEIGHTS_TIMER, TRAINING_ITERATION_TIMER, ) from ray.rllib.utils.metrics.learner_info import LEARNER_INFO from ray.rllib.utils.policy import validate_policy_id from ray.rllib.utils.pre_checks.multi_agent import check_multi_agent from ray.rllib.utils.replay_buffers import MultiAgentReplayBuffer from ray.rllib.utils.spaces import space_utils from ray.rllib.utils.typing import ( AgentID, AlgorithmConfigDict, EnvCreator, EnvInfoDict, EnvType, EpisodeID, PartialAlgorithmConfigDict, PolicyID, PolicyState, ResultDict, SampleBatchType, TensorStructType, TensorType, ) from ray.tune.execution.placement_groups import PlacementGroupFactory from ray.tune.experiment.trial import ExportFormat from ray.tune.logger import Logger, UnifiedLogger from ray.tune.registry import ENV_CREATOR, _global_registry from ray.tune.resources import Resources from ray.tune.result import DEFAULT_RESULTS_DIR from ray.tune.trainable import Trainable from ray.util import log_once from ray.util.timer import _Timer tf1, tf, tfv = try_import_tf() logger = logging.getLogger(__name__) @DeveloperAPI def with_common_config(extra_config: PartialAlgorithmConfigDict) -> AlgorithmConfigDict: """Returns the given config dict merged with common agent confs. Args: extra_config: A user defined partial config which will get merged with a default AlgorithmConfig() object and returned as plain python dict. Returns: AlgorithmConfigDict: The merged config dict resulting from AlgorithmConfig() plus `extra_config`. """ return Algorithm.merge_trainer_configs( AlgorithmConfig().to_dict(), extra_config, _allow_unknown_configs=True ) @PublicAPI class Algorithm(Trainable): """An RLlib algorithm responsible for optimizing one or more Policies. Algorithms contain a WorkerSet under `self.workers`. A WorkerSet is normally composed of a single local worker (self.workers.local_worker()), used to compute and apply learning updates, and optionally one or more remote workers (self.workers.remote_workers()), used to generate environment samples in parallel. Each worker (remotes or local) contains a PolicyMap, which itself may contain either one policy for single-agent training or one or more policies for multi-agent training. Policies are synchronized automatically from time to time using ray.remote calls. The exact synchronization logic depends on the specific algorithm used, but this usually happens from local worker to all remote workers and after each training update. You can write your own Algorithm classes by sub-classing from `Algorithm` or any of its built-in sub-classes. This allows you to override the `execution_plan` method to implement your own algorithm logic. You can find the different built-in algorithms' execution plans in their respective main py files, e.g. rllib.algorithms.dqn.dqn.py or rllib.algorithms.impala.impala.py. The most important API methods a Algorithm exposes are `train()`, `evaluate()`, `save()` and `restore()`. """ # Whether to allow unknown top-level config keys. _allow_unknown_configs = False # List of top-level keys with value=dict, for which new sub-keys are # allowed to be added to the value dict. _allow_unknown_subkeys = [ "tf_session_args", "local_tf_session_args", "env_config", "model", "optimizer", "multiagent", "custom_resources_per_worker", "evaluation_config", "exploration_config", "replay_buffer_config", "extra_python_environs_for_worker", "input_config", "output_config", ] # List of top level keys with value=dict, for which we always override the # entire value (dict), iff the "type" key in that value dict changes. _override_all_subkeys_if_type_changes = [ "exploration_config", "replay_buffer_config", ] # List of keys that are always fully overridden if present in any dict or sub-dict _override_all_key_list = ["off_policy_estimation_methods"] _progress_metrics = [ "episode_reward_mean", "evaluation/episode_reward_mean", "num_env_steps_sampled", "num_env_steps_trained", ] @staticmethod def from_checkpoint( checkpoint: Union[str, Checkpoint], policy_ids: Optional[Container[PolicyID]] = None, policy_mapping_fn: Optional[Callable[[AgentID, EpisodeID], PolicyID]] = None, policies_to_train: Optional[ Union[ Container[PolicyID], Callable[[PolicyID, Optional[SampleBatchType]], bool], ] ] = None, ) -> "Algorithm": """Creates a new algorithm instance from a given checkpoint. Note: This method must remain backward compatible from 2.0.0 on. Args: checkpoint: The path (str) to the checkpoint directory to use or an AIR Checkpoint instance to restore from. policy_ids: Optional list of PolicyIDs to recover. This allows users to restore an Algorithm with only a subset of the originally present Policies. policy_mapping_fn: An optional (updated) policy mapping function to use from here on. policies_to_train: An optional list of policy IDs to be trained or a callable taking PolicyID and SampleBatchType and returning a bool (trainable or not?). If None, will keep the existing setup in place. Policies, whose IDs are not in the list (or for which the callable returns False) will not be updated. Returns: The instantiated Algorithm. """ checkpoint_info = get_checkpoint_info(checkpoint) # Not possible for (v0.1) (algo class and config information missing # or very hard to retrieve). if checkpoint_info["checkpoint_version"] == version.Version("0.1"): raise ValueError( "Cannot restore a v0 checkpoint using `Algorithm.from_checkpoint()`!" "In this case, do the following:\n" "1) Create a new Algorithm object using your original config.\n" "2) Call the `restore()` method of this algo object passing it" " your checkpoint dir or AIR Checkpoint object." ) if checkpoint_info["checkpoint_version"] < version.Version("1.0"): raise ValueError( "`checkpoint_info['checkpoint_version']` in `Algorithm.from_checkpoint" "()` must be 1.0 or later! You are using a checkpoint with " f"version v{checkpoint_info['checkpoint_version']}." ) state = Algorithm._checkpoint_info_to_algorithm_state( checkpoint_info=checkpoint_info, policy_ids=policy_ids, policy_mapping_fn=policy_mapping_fn, policies_to_train=policies_to_train, ) return Algorithm.from_state(state) @staticmethod def from_state(state: Dict) -> "Algorithm": """Recovers an Algorithm from a state object. The `state` of an instantiated Algorithm can be retrieved by calling its `get_state` method. It contains all information necessary to create the Algorithm from scratch. No access to the original code (e.g. configs, knowledge of the Algorithm's class, etc..) is needed. Args: state: The state to recover a new Algorithm instance from. Returns: A new Algorithm instance. """ algorithm_class: Type[Algorithm] = state.get("algorithm_class") if algorithm_class is None: raise ValueError( "No `algorithm_class` key was found in given `state`! " "Cannot create new Algorithm." ) # algo_class = get_algorithm_class(algo_class_name) # Create the new algo. config = state.get("config") if not config: raise ValueError("No `config` found in given Algorithm state!") new_algo = algorithm_class(config=config) # Set the new algo's state. new_algo.__setstate__(state) # Return the new algo. return new_algo @PublicAPI def __init__( self, config: Optional[Union[PartialAlgorithmConfigDict, AlgorithmConfig]] = None, env: Optional[Union[str, EnvType]] = None, logger_creator: Optional[Callable[[], Logger]] = None, **kwargs, ): """Initializes an Algorithm instance. Args: config: Algorithm-specific configuration dict. env: Name of the environment to use (e.g. a gym-registered str), a full class path (e.g. "ray.rllib.examples.env.random_env.RandomEnv"), or an Env class directly. Note that this arg can also be specified via the "env" key in `config`. logger_creator: Callable that creates a ray.tune.Logger object. If unspecified, a default logger is created. **kwargs: Arguments passed to the Trainable base class. """ # User provided (partial) config (this may be w/o the default # Algorithm's Config object). Will get merged with AlgorithmConfig() # in self.setup(). config = config or {} # Resolve AlgorithmConfig into a plain dict. # TODO: In the future, only support AlgorithmConfig objects here. if isinstance(config, AlgorithmConfig): config = config.to_dict() # Convert `env` provided in config into a concrete env creator callable, which # takes an EnvContext (config dict) as arg and returning an RLlib supported Env # type (e.g. a gym.Env). self._env_id, self.env_creator = self._get_env_id_and_creator( env or config.get("env"), config ) env_descr = ( self._env_id.__name__ if isinstance(self._env_id, type) else self._env_id ) # Placeholder for a local replay buffer instance. self.local_replay_buffer = None # Create a default logger creator if no logger_creator is specified if logger_creator is None: # Default logdir prefix containing the agent's name and the # env id. timestr = datetime.today().strftime("%Y-%m-%d_%H-%M-%S") logdir_prefix = "{}_{}_{}".format(str(self), env_descr, timestr) if not os.path.exists(DEFAULT_RESULTS_DIR): # Possible race condition if dir is created several times on # rollout workers os.makedirs(DEFAULT_RESULTS_DIR, exist_ok=True) logdir = tempfile.mkdtemp(prefix=logdir_prefix, dir=DEFAULT_RESULTS_DIR) # Allow users to more precisely configure the created logger # via "logger_config.type". if config.get("logger_config") and "type" in config["logger_config"]: def default_logger_creator(config): """Creates a custom logger with the default prefix.""" cfg = config["logger_config"].copy() cls = cfg.pop("type") # Provide default for logdir, in case the user does # not specify this in the "logger_config" dict. logdir_ = cfg.pop("logdir", logdir) return from_config(cls=cls, _args=[cfg], logdir=logdir_) # If no `type` given, use tune's UnifiedLogger as last resort. else: def default_logger_creator(config): """Creates a Unified logger with the default prefix.""" return UnifiedLogger(config, logdir, loggers=None) logger_creator = default_logger_creator # Metrics-related properties. self._timers = defaultdict(_Timer) self._counters = defaultdict(int) self._episode_history = [] self._episodes_to_be_collected = [] self._remote_workers_for_metrics = [] # Evaluation WorkerSet and metrics last returned by `self.evaluate()`. self.evaluation_workers: Optional[WorkerSet] = None # If evaluation duration is "auto", use a AsyncRequestsManager to be more # robust against eval worker failures. self._evaluation_async_req_manager: Optional[AsyncRequestsManager] = None # Initialize common evaluation_metrics to nan, before they become # available. We want to make sure the metrics are always present # (although their values may be nan), so that Tune does not complain # when we use these as stopping criteria. self.evaluation_metrics = { "evaluation": { "episode_reward_max": np.nan, "episode_reward_min": np.nan, "episode_reward_mean": np.nan, } } super().__init__(config=config, logger_creator=logger_creator, **kwargs) # Check, whether `training_iteration` is still a tune.Trainable property # and has not been overridden by the user in the attempt to implement the # algos logic (this should be done now inside `training_step`). try: assert isinstance(self.training_iteration, int) except AssertionError: raise AssertionError( "Your Algorithm's `training_iteration` seems to be overridden by your " "custom training logic! To solve this problem, simply rename your " "`self.training_iteration()` method into `self.training_step`." ) @OverrideToImplementCustomLogic @classmethod def get_default_config(cls) -> AlgorithmConfigDict: return AlgorithmConfig().to_dict() @OverrideToImplementCustomLogic_CallToSuperRecommended @override(Trainable) def setup(self, config: PartialAlgorithmConfigDict): # Setup our config: Merge the user-supplied config (which could # be a partial config dict with the class' default). self.config = self.merge_trainer_configs( self.get_default_config(), config, self._allow_unknown_configs ) self.config["env"] = self._env_id # Validate the framework settings in config. self.validate_framework(self.config) # Set Algorithm's seed after we have - if necessary - enabled # tf eager-execution. update_global_seed_if_necessary(self.config["framework"], self.config["seed"]) self.validate_config(self.config) self._record_usage(self.config) self.callbacks = self.config["callbacks"]() log_level = self.config.get("log_level") if log_level in ["WARN", "ERROR"]: logger.info( "Current log_level is {}. For more information, " "set 'log_level': 'INFO' / 'DEBUG' or use the -v and " "-vv flags.".format(log_level) ) if self.config.get("log_level"): logging.getLogger("ray.rllib").setLevel(self.config["log_level"]) # Create local replay buffer if necessary. self.local_replay_buffer = self._create_local_replay_buffer_if_necessary( self.config ) # Create a dict, mapping ActorHandles to sets of open remote # requests (object refs). This way, we keep track, of which actors # inside this Algorithm (e.g. a remote RolloutWorker) have # already been sent how many (e.g. `sample()`) requests. self.remote_requests_in_flight: DefaultDict[ ActorHandle, Set[ray.ObjectRef] ] = defaultdict(set) self.workers: Optional[WorkerSet] = None self.train_exec_impl = None # Offline RL settings. input_evaluation = self.config.get("input_evaluation") if input_evaluation is not None and input_evaluation is not DEPRECATED_VALUE: ope_dict = {str(ope): {"type": ope} for ope in input_evaluation} deprecation_warning( old="config.input_evaluation={}".format(input_evaluation), new='config["evaluation_config"]' '["off_policy_estimation_methods"]={}'.format( ope_dict, ), error=True, help="Running OPE during training is not recommended.", ) self.config["off_policy_estimation_methods"] = ope_dict # Deprecated way of implementing Trainer sub-classes (or "templates" # via the `build_trainer` utility function). # Instead, sub-classes should override the Trainable's `setup()` # method and call super().setup() from within that override at some # point. # Old design: Override `Trainer._init`. _init = False try: self._init(self.config, self.env_creator) _init = True # New design: Override `Trainable.setup()` (as indented by tune.Trainable) # and do or don't call `super().setup()` from within your override. # By default, `super().setup()` will create both worker sets: # "rollout workers" for collecting samples for training and - if # applicable - "evaluation workers" for evaluation runs in between or # parallel to training. # TODO: Deprecate `_init()` and remove this try/except block. except NotImplementedError: pass # Only if user did not override `_init()`: if _init is False: # - Create rollout workers here automatically. # - Run the execution plan to create the local iterator to `next()` # in each training iteration. # This matches the behavior of using `build_trainer()`, which # has been deprecated. try: self.workers = WorkerSet( env_creator=self.env_creator, validate_env=self.validate_env, policy_class=self.get_default_policy_class(self.config), trainer_config=self.config, num_workers=self.config["num_workers"], local_worker=True, logdir=self.logdir, ) # WorkerSet creation possibly fails, if some (remote) workers cannot # be initialized properly (due to some errors in the RolloutWorker's # constructor). except RayActorError as e: # In case of an actor (remote worker) init failure, the remote worker # may still exist and will be accessible, however, e.g. calling # its `sample.remote()` would result in strange "property not found" # errors. if e.actor_init_failed: # Raise the original error here that the RolloutWorker raised # during its construction process. This is to enforce transparency # for the user (better to understand the real reason behind the # failure). # - e.args[0]: The RayTaskError (inside the caught RayActorError). # - e.args[0].args[2]: The original Exception (e.g. a ValueError due # to a config mismatch) thrown inside the actor. raise e.args[0].args[2] # In any other case, raise the RayActorError as-is. else: raise e # By default, collect metrics for all remote workers. self._remote_workers_for_metrics = self.workers.remote_workers() # TODO (avnishn): Remove the execution plan API by q1 2023 # Function defining one single training iteration's behavior. if self.config["_disable_execution_plan_api"]: # Ensure remote workers are initially in sync with the local worker. self.workers.sync_weights() # LocalIterator-creating "execution plan". # Only call this once here to create `self.train_exec_impl`, # which is a ray.util.iter.LocalIterator that will be `next`'d # on each training iteration. else: self.train_exec_impl = self.execution_plan( self.workers, self.config, **self._kwargs_for_execution_plan() ) # Now that workers have been created, update our policies # dict in config[multiagent] (with the correct original/ # unpreprocessed spaces). self.config["multiagent"][ "policies" ] = self.workers.local_worker().policy_dict # Evaluation WorkerSet setup. # User would like to setup a separate evaluation worker set. # Update with evaluation settings: user_eval_config = copy.deepcopy(self.config["evaluation_config"]) # Merge user-provided eval config with the base config. This makes sure # the eval config is always complete, no matter whether we have eval # workers or perform evaluation on the (non-eval) local worker. eval_config = merge_dicts(self.config, user_eval_config) self.config["evaluation_config"] = eval_config if self.config.get("evaluation_num_workers", 0) > 0 or self.config.get( "evaluation_interval" ): logger.debug(f"Using evaluation_config: {user_eval_config}.") # Validate evaluation config. self.validate_config(eval_config) # Set the `in_evaluation` flag. eval_config["in_evaluation"] = True # Evaluation duration unit: episodes. # Switch on `complete_episode` rollouts. Also, make sure # rollout fragments are short so we never have more than one # episode in one rollout. if eval_config["evaluation_duration_unit"] == "episodes": eval_config.update( { "batch_mode": "complete_episodes", "rollout_fragment_length": 1, } ) # Evaluation duration unit: timesteps. # - Set `batch_mode=truncate_episodes` so we don't perform rollouts # strictly along episode borders. # Set `rollout_fragment_length` such that desired steps are divided # equally amongst workers or - in "auto" duration mode - set it # to a reasonably small number (10), such that a single `sample()` # call doesn't take too much time and we can stop evaluation as soon # as possible after the train step is completed. else: eval_config.update( { "batch_mode": "truncate_episodes", "rollout_fragment_length": 10 if self.config["evaluation_duration"] == "auto" else int( math.ceil( self.config["evaluation_duration"] / (self.config["evaluation_num_workers"] or 1) ) ), } ) self.config["evaluation_config"] = eval_config _, env_creator = self._get_env_id_and_creator( eval_config.get("env"), eval_config ) # Create a separate evaluation worker set for evaluation. # If evaluation_num_workers=0, use the evaluation set's local # worker for evaluation, otherwise, use its remote workers # (parallelized evaluation). self.evaluation_workers: WorkerSet = WorkerSet( env_creator=env_creator, validate_env=None, policy_class=self.get_default_policy_class(self.config), trainer_config=eval_config, num_workers=self.config["evaluation_num_workers"], # Don't even create a local worker if num_workers > 0. local_worker=False, logdir=self.logdir, ) if self.config["enable_async_evaluation"]: self._evaluation_async_req_manager = AsyncRequestsManager( workers=self.evaluation_workers.remote_workers(), max_remote_requests_in_flight_per_worker=1, return_object_refs=True, ) self._evaluation_weights_seq_number = 0 self.reward_estimators: Dict[str, OffPolicyEstimator] = {} ope_types = { "is": ImportanceSampling, "wis": WeightedImportanceSampling, "dm": DirectMethod, "dr": DoublyRobust, } for name, method_config in self.config["off_policy_estimation_methods"].items(): method_type = method_config.pop("type") if method_type in ope_types: deprecation_warning( old=method_type, new=str(ope_types[method_type]), error=True, ) method_type = ope_types[method_type] elif isinstance(method_type, str): logger.log(0, "Trying to import from string: " + method_type) mod, obj = method_type.rsplit(".", 1) mod = importlib.import_module(mod) method_type = getattr(mod, obj) if isinstance(method_type, type) and issubclass( method_type, OfflineEvaluator ): # TODO(kourosh) : Add an integration test for all these # offline evaluators. policy = self.get_policy() if issubclass(method_type, OffPolicyEstimator): method_config["gamma"] = self.config["gamma"] self.reward_estimators[name] = method_type(policy, **method_config) else: raise ValueError( f"Unknown off_policy_estimation type: {method_type}! Must be " "either a class path or a sub-class of ray.rllib." "offline.estimators.off_policy_estimator::OffPolicyEstimator" ) # Run `on_algorithm_init` callback after initialization is done. self.callbacks.on_algorithm_init(algorithm=self) # TODO: Deprecated: In your sub-classes of Trainer, override `setup()` # directly and call super().setup() from within it if you would like the # default setup behavior plus some own setup logic. # If you don't need the env/workers/config/etc.. setup for you by super, # simply do not call super().setup() from your overridden method. def _init(self, config: AlgorithmConfigDict, env_creator: EnvCreator) -> None: raise NotImplementedError @OverrideToImplementCustomLogic def get_default_policy_class(self, config: AlgorithmConfigDict) -> Type[Policy]: """Returns a default Policy class to use, given a config. This class will be used inside RolloutWorkers' PolicyMaps in case the policy class is not provided by the user in any single- or multi-agent PolicySpec. This method is experimental and currently only used, iff the Trainer class was not created using the `build_trainer` utility and if the Trainer sub-class does not override `_init()` and create it's own WorkerSet in `_init()`. """ return getattr(self, "_policy_class", None) @override(Trainable) def step(self) -> ResultDict: """Implements the main `Trainer.train()` logic. Takes n attempts to perform a single training step. Thereby catches RayErrors resulting from worker failures. After n attempts, fails gracefully. Override this method in your Trainer sub-classes if you would like to handle worker failures yourself. Otherwise, override only `training_step()` to implement the core algorithm logic. Returns: The results dict with stats/infos on sampling, training, and - if required - evaluation. """ # Do we have to run `self.evaluate()` this iteration? # `self.iteration` gets incremented after this function returns, # meaning that e. g. the first time this function is called, # self.iteration will be 0. evaluate_this_iter = ( self.config["evaluation_interval"] is not None and (self.iteration + 1) % self.config["evaluation_interval"] == 0 ) # Results dict for training (and if appolicable: evaluation). results: ResultDict = {} local_worker = ( self.workers.local_worker() if hasattr(self.workers, "local_worker") else None ) # Parallel eval + training: Kick off evaluation-loop and parallel train() call. if evaluate_this_iter and self.config["evaluation_parallel_to_training"]: ( results, train_iter_ctx, ) = self._run_one_training_iteration_and_evaluation_in_parallel() # - No evaluation necessary, just run the next training iteration. # - We have to evaluate in this training iteration, but no parallelism -> # evaluate after the training iteration is entirely done. else: results, train_iter_ctx = self._run_one_training_iteration() # Sequential: Train (already done above), then evaluate. if evaluate_this_iter and not self.config["evaluation_parallel_to_training"]: results.update(self._run_one_evaluation(train_future=None)) # Attach latest available evaluation results to train results, # if necessary. if not evaluate_this_iter and self.config["always_attach_evaluation_results"]: assert isinstance( self.evaluation_metrics, dict ), "Trainer.evaluate() needs to return a dict." results.update(self.evaluation_metrics) if hasattr(self, "workers") and isinstance(self.workers, WorkerSet): # Sync filters on workers. self._sync_filters_if_needed( from_worker=self.workers.local_worker(), workers=self.workers, timeout_seconds=self.config[ "sync_filters_on_rollout_workers_timeout_s" ], ) # TODO (avnishn): Remove the execution plan API by q1 2023 # Collect worker metrics and add combine them with `results`. if self.config["_disable_execution_plan_api"]: episodes_this_iter, self._episodes_to_be_collected = collect_episodes( local_worker, self._remote_workers_for_metrics, self._episodes_to_be_collected, timeout_seconds=self.config["metrics_episode_collection_timeout_s"], ) results = self._compile_iteration_results( episodes_this_iter=episodes_this_iter, step_ctx=train_iter_ctx, iteration_results=results, ) # Check `env_task_fn` for possible update of the env's task. if self.config["env_task_fn"] is not None: if not callable(self.config["env_task_fn"]): raise ValueError( "`env_task_fn` must be None or a callable taking " "[train_results, env, env_ctx] as args!" ) def fn(env, env_context, task_fn): new_task = task_fn(results, env, env_context) cur_task = env.get_task() if cur_task != new_task: env.set_task(new_task) fn = functools.partial(fn, task_fn=self.config["env_task_fn"]) self.workers.foreach_env_with_context(fn) return results @PublicAPI def evaluate( self, duration_fn: Optional[Callable[[int], int]] = None, ) -> dict: """Evaluates current policy under `evaluation_config` settings. Note that this default implementation does not do anything beyond merging evaluation_config with the normal trainer config. Args: duration_fn: An optional callable taking the already run num episodes as only arg and returning the number of episodes left to run. It's used to find out whether evaluation should continue. """ # Call the `_before_evaluate` hook. self._before_evaluate() # Sync weights to the evaluation WorkerSet. if self.evaluation_workers is not None: self.evaluation_workers.sync_weights( from_worker=self.workers.local_worker() ) self._sync_filters_if_needed( from_worker=self.workers.local_worker(), workers=self.evaluation_workers, timeout_seconds=self.config[ "sync_filters_on_rollout_workers_timeout_s" ], ) self.callbacks.on_evaluate_start(algorithm=self) if self.config["custom_eval_function"]: logger.info( "Running custom eval function {}".format( self.config["custom_eval_function"] ) ) metrics = self.config["custom_eval_function"](self, self.evaluation_workers) if not metrics or not isinstance(metrics, dict): raise ValueError( "Custom eval function must return " "dict of metrics, got {}.".format(metrics) ) else: if ( self.evaluation_workers is None and self.workers.local_worker().input_reader is None ): raise ValueError( "Cannot evaluate w/o an evaluation worker set in " "the Trainer or w/o an env on the local worker!\n" "Try one of the following:\n1) Set " "`evaluation_interval` >= 0 to force creating a " "separate evaluation worker set.\n2) Set " "`create_env_on_driver=True` to force the local " "(non-eval) worker to have an environment to " "evaluate on." ) # How many episodes/timesteps do we need to run? # In "auto" mode (only for parallel eval + training): Run as long # as training lasts. unit = self.config["evaluation_duration_unit"] eval_cfg = self.config["evaluation_config"] rollout = eval_cfg["rollout_fragment_length"] num_envs = eval_cfg["num_envs_per_worker"] auto = self.config["evaluation_duration"] == "auto" duration = ( self.config["evaluation_duration"] if not auto else (self.config["evaluation_num_workers"] or 1) * (1 if unit == "episodes" else rollout) ) agent_steps_this_iter = 0 env_steps_this_iter = 0 # Default done-function returns True, whenever num episodes # have been completed. if duration_fn is None: def duration_fn(num_units_done): return duration - num_units_done logger.info(f"Evaluating current policy for {duration} {unit}.") metrics = None all_batches = [] # No evaluation worker set -> # Do evaluation using the local worker. Expect error due to the # local worker not having an env. if self.evaluation_workers is None: # If unit=episodes -> Run n times `sample()` (each sample # produces exactly 1 episode). # If unit=ts -> Run 1 `sample()` b/c the # `rollout_fragment_length` is exactly the desired ts. iters = duration if unit == "episodes" else 1 for _ in range(iters): batch = self.workers.local_worker().sample() agent_steps_this_iter += batch.agent_steps() env_steps_this_iter += batch.env_steps() if self.reward_estimators: all_batches.append(batch) metrics = collect_metrics( self.workers.local_worker(), keep_custom_metrics=eval_cfg["keep_per_episode_custom_metrics"], timeout_seconds=eval_cfg["metrics_episode_collection_timeout_s"], ) # Evaluation worker set only has local worker. elif self.config["evaluation_num_workers"] == 0: # If unit=episodes -> Run n times `sample()` (each sample # produces exactly 1 episode). # If unit=ts -> Run 1 `sample()` b/c the # `rollout_fragment_length` is exactly the desired ts. iters = duration if unit == "episodes" else 1 for _ in range(iters): batch = self.evaluation_workers.local_worker().sample() agent_steps_this_iter += batch.agent_steps() env_steps_this_iter += batch.env_steps() if self.reward_estimators: all_batches.append(batch) # Evaluation worker set has n remote workers. else: # How many episodes have we run (across all eval workers)? num_units_done = 0 _round = 0 while True: units_left_to_do = duration_fn(num_units_done) if units_left_to_do <= 0: break _round += 1 try: batches = ray.get( [ w.sample.remote() for i, w in enumerate( self.evaluation_workers.remote_workers() ) if i * (1 if unit == "episodes" else rollout * num_envs) < units_left_to_do ], timeout=self.config["evaluation_sample_timeout_s"], ) except GetTimeoutError: logger.warning( "Calling `sample()` on your remote evaluation worker(s) " "resulted in a timeout (after the configured " f"{self.config['evaluation_sample_timeout_s']} seconds)! " "Try to set `evaluation_sample_timeout_s` in your config" " to a larger value." + ( " If your episodes don't terminate easily, you may " "also want to set `evaluation_duration_unit` to " "'timesteps' (instead of 'episodes')." if unit == "episodes" else "" ) ) break _agent_steps = sum(b.agent_steps() for b in batches) _env_steps = sum(b.env_steps() for b in batches) # 1 episode per returned batch. if unit == "episodes": num_units_done += len(batches) # Make sure all batches are exactly one episode. for ma_batch in batches: ma_batch = ma_batch.as_multi_agent() for batch in ma_batch.policy_batches.values(): assert np.sum(batch[SampleBatch.DONES]) # n timesteps per returned batch. else: num_units_done += ( _agent_steps if self._by_agent_steps else _env_steps ) if self.reward_estimators: # TODO: (kourosh) This approach will cause an OOM issue when # the dataset gets huge (should be ok for now). all_batches.extend(batches) agent_steps_this_iter += _agent_steps env_steps_this_iter += _env_steps logger.info( f"Ran round {_round} of parallel evaluation " f"({num_units_done}/{duration if not auto else '?'} " f"{unit} done)" ) if metrics is None: metrics = collect_metrics( self.evaluation_workers.local_worker(), self.evaluation_workers.remote_workers(), keep_custom_metrics=self.config["keep_per_episode_custom_metrics"], timeout_seconds=eval_cfg["metrics_episode_collection_timeout_s"], ) metrics[NUM_AGENT_STEPS_SAMPLED_THIS_ITER] = agent_steps_this_iter metrics[NUM_ENV_STEPS_SAMPLED_THIS_ITER] = env_steps_this_iter # TODO: Remove this key at some point. Here for backward compatibility. metrics["timesteps_this_iter"] = env_steps_this_iter # Compute off-policy estimates estimates = defaultdict(list) # for each batch run the estimator's fwd pass for name, estimator in self.reward_estimators.items(): for batch in all_batches: estimate_result = estimator.estimate( batch, split_batch_by_episode=self.config[ "ope_split_batch_by_episode" ], ) estimates[name].append(estimate_result) # collate estimates from all batches if estimates: metrics["off_policy_estimator"] = {} for name, estimate_list in estimates.items(): avg_estimate = tree.map_structure( lambda *x: np.mean(x, axis=0), *estimate_list ) metrics["off_policy_estimator"][name] = avg_estimate # Evaluation does not run for every step. # Save evaluation metrics on trainer, so it can be attached to # subsequent step results as latest evaluation result. self.evaluation_metrics = {"evaluation": metrics} # Trigger `on_evaluate_end` callback. self.callbacks.on_evaluate_end( algorithm=self, evaluation_metrics=self.evaluation_metrics ) # Also return the results here for convenience. return self.evaluation_metrics @ExperimentalAPI def _evaluate_async( self, duration_fn: Optional[Callable[[int], int]] = None, ) -> dict: """Evaluates current policy under `evaluation_config` settings. Uses the AsyncParallelRequests manager to send frequent `sample.remote()` requests to the evaluation RolloutWorkers and collect the results of these calls. Handles worker failures (or slowdowns) gracefully due to the asynch'ness and the fact that other eval RolloutWorkers can thus cover the workload. Important Note: This will replace the current `self.evaluate()` method as the default in the future. Args: duration_fn: An optional callable taking the already run num episodes as only arg and returning the number of episodes left to run. It's used to find out whether evaluation should continue. """ # How many episodes/timesteps do we need to run? # In "auto" mode (only for parallel eval + training): Run as long # as training lasts. unit = self.config["evaluation_duration_unit"] eval_cfg = self.config["evaluation_config"] rollout = eval_cfg["rollout_fragment_length"] num_envs = eval_cfg["num_envs_per_worker"] auto = self.config["evaluation_duration"] == "auto" duration = ( self.config["evaluation_duration"] if not auto else (self.config["evaluation_num_workers"] or 1) * (1 if unit == "episodes" else rollout) ) # Call the `_before_evaluate` hook. self._before_evaluate() # Put weights only once into object store and use same object # ref to synch to all workers. self._evaluation_weights_seq_number += 1 weights_ref = ray.put(self.workers.local_worker().get_weights()) # TODO(Jun): Make sure this cannot block for e.g. 1h. Implement solution via # connectors. self._sync_filters_if_needed( from_worker=self.workers.local_worker(), workers=self.evaluation_workers, timeout_seconds=eval_cfg.get("sync_filters_on_rollout_workers_timeout_s"), ) if self.config["custom_eval_function"]: raise ValueError( "`custom_eval_function` not supported in combination " "with `enable_async_evaluation=True` config setting!" ) if self.evaluation_workers is None and ( self.workers.local_worker().input_reader is None or self.config["evaluation_num_workers"] == 0 ): raise ValueError( "Evaluation w/o eval workers (calling Algorithm.evaluate() w/o " "evaluation specifically set up) OR evaluation without input reader " "OR evaluation with only a local evaluation worker " "(`evaluation_num_workers=0`) not supported in combination " "with `enable_async_evaluation=True` config setting!" ) agent_steps_this_iter = 0 env_steps_this_iter = 0 logger.info(f"Evaluating current policy for {duration} {unit}.") all_batches = [] # Default done-function returns True, whenever num episodes # have been completed. if duration_fn is None: def duration_fn(num_units_done): return duration - num_units_done def remote_fn(worker, w_ref, w_seq_no): # Pass in seq-no so that eval workers may ignore this call if no update has # happened since the last call to `remote_fn` (sample). worker.set_weights(weights=w_ref, weights_seq_no=w_seq_no) batch = worker.sample() metrics = worker.get_metrics() return batch, metrics, w_seq_no rollout_metrics = [] # How many episodes have we run (across all eval workers)? num_units_done = 0 _round = 0 errors = [] while len(self._evaluation_async_req_manager.workers) > 0: units_left_to_do = duration_fn(num_units_done) if units_left_to_do <= 0: break _round += 1 # Use the AsyncRequestsManager to get ready evaluation results and # metrics. self._evaluation_async_req_manager.call_on_all_available( remote_fn=remote_fn, fn_args=[weights_ref, self._evaluation_weights_seq_number], ) ready_requests = self._evaluation_async_req_manager.get_ready() batches = [] i = 0 for actor, requests in ready_requests.items(): for req in requests: try: batch, metrics, seq_no = ray.get(req) # Ignore results, if the weights seq-number does not match (is # from a previous evaluation step) OR if we have already reached # the configured duration (e.g. number of episodes to evaluate # for). if seq_no == self._evaluation_weights_seq_number and ( i * (1 if unit == "episodes" else rollout * num_envs) < units_left_to_do ): batches.append(batch) rollout_metrics.extend(metrics) except RayError as e: errors.append(e) self._evaluation_async_req_manager.remove_workers(actor) i += 1 _agent_steps = sum(b.agent_steps() for b in batches) _env_steps = sum(b.env_steps() for b in batches) # 1 episode per returned batch. if unit == "episodes": num_units_done += len(batches) # Make sure all batches are exactly one episode. for ma_batch in batches: ma_batch = ma_batch.as_multi_agent() for batch in ma_batch.policy_batches.values(): assert np.sum(batch[SampleBatch.DONES]) # n timesteps per returned batch. else: num_units_done += _agent_steps if self._by_agent_steps else _env_steps if self.reward_estimators: all_batches.extend(batches) agent_steps_this_iter += _agent_steps env_steps_this_iter += _env_steps logger.info( f"Ran round {_round} of parallel evaluation " f"({num_units_done}/{duration if not auto else '?'} " f"{unit} done)" ) num_recreated_workers = 0 if errors: num_recreated_workers = self.try_recover_from_step_attempt( error=errors[0], worker_set=self.evaluation_workers, ignore=eval_cfg.get("ignore_worker_failures"), recreate=eval_cfg.get("recreate_failed_workers"), ) metrics = summarize_episodes( rollout_metrics, keep_custom_metrics=eval_cfg["keep_per_episode_custom_metrics"], ) metrics["num_recreated_workers"] = num_recreated_workers metrics[NUM_AGENT_STEPS_SAMPLED_THIS_ITER] = agent_steps_this_iter metrics[NUM_ENV_STEPS_SAMPLED_THIS_ITER] = env_steps_this_iter # TODO: Remove this key at some point. Here for backward compatibility. metrics["timesteps_this_iter"] = env_steps_this_iter if self.reward_estimators: # Compute off-policy estimates metrics["off_policy_estimator"] = {} total_batch = concat_samples(all_batches) for name, estimator in self.reward_estimators.items(): estimates = estimator.estimate(total_batch) metrics["off_policy_estimator"][name] = estimates # Evaluation does not run for every step. # Save evaluation metrics on trainer, so it can be attached to # subsequent step results as latest evaluation result. self.evaluation_metrics = {"evaluation": metrics} # Trigger `on_evaluate_end` callback. self.callbacks.on_evaluate_end( algorithm=self, evaluation_metrics=self.evaluation_metrics ) # Return evaluation results. return self.evaluation_metrics @OverrideToImplementCustomLogic @DeveloperAPI def training_step(self) -> ResultDict: """Default single iteration logic of an algorithm. - Collect on-policy samples (SampleBatches) in parallel using the Trainer's RolloutWorkers (@ray.remote). - Concatenate collected SampleBatches into one train batch. - Note that we may have more than one policy in the multi-agent case: Call the different policies' `learn_on_batch` (simple optimizer) OR `load_batch_into_buffer` + `learn_on_loaded_batch` (multi-GPU optimizer) methods to calculate loss and update the model(s). - Return all collected metrics for the iteration. Returns: The results dict from executing the training iteration. """ # Collect SampleBatches from sample workers until we have a full batch. if self._by_agent_steps: train_batch = synchronous_parallel_sample( worker_set=self.workers, max_agent_steps=self.config["train_batch_size"] ) else: train_batch = synchronous_parallel_sample( worker_set=self.workers, max_env_steps=self.config["train_batch_size"] ) train_batch = train_batch.as_multi_agent() self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps() self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps() # Use simple optimizer (only for multi-agent or tf-eager; all other # cases should use the multi-GPU optimizer, even if only using 1 GPU). # TODO: (sven) rename MultiGPUOptimizer into something more # meaningful. if self.config.get("simple_optimizer") is True: train_results = train_one_step(self, train_batch) else: train_results = multi_gpu_train_one_step(self, train_batch) # Update weights and global_vars - after learning on the local worker - on all # remote workers. global_vars = { "timestep": self._counters[NUM_ENV_STEPS_SAMPLED], } with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]: self.workers.sync_weights(global_vars=global_vars) return train_results @staticmethod def execution_plan(workers, config, **kwargs): raise NotImplementedError( "It is not longer recommended to use Trainer's `execution_plan` method/API." " Set `_disable_execution_plan_api=True` in your config and override the " "`Trainer.training_step()` method with your algo's custom " "execution logic." ) @PublicAPI def compute_single_action( self, observation: Optional[TensorStructType] = None, state: Optional[List[TensorStructType]] = None, *, prev_action: Optional[TensorStructType] = None, prev_reward: Optional[float] = None, info: Optional[EnvInfoDict] = None, input_dict: Optional[SampleBatch] = None, policy_id: PolicyID = DEFAULT_POLICY_ID, full_fetch: bool = False, explore: Optional[bool] = None, timestep: Optional[int] = None, episode: Optional[Episode] = None, unsquash_action: Optional[bool] = None, clip_action: Optional[bool] = None, # Deprecated args. unsquash_actions=DEPRECATED_VALUE, clip_actions=DEPRECATED_VALUE, # Kwargs placeholder for future compatibility. **kwargs, ) -> Union[ TensorStructType, Tuple[TensorStructType, List[TensorType], Dict[str, TensorType]], ]: """Computes an action for the specified policy on the local worker. Note that you can also access the policy object through self.get_policy(policy_id) and call compute_single_action() on it directly. Args: observation: Single (unbatched) observation from the environment. state: List of all RNN hidden (single, unbatched) state tensors. prev_action: Single (unbatched) previous action value. prev_reward: Single (unbatched) previous reward value. info: Env info dict, if any. input_dict: An optional SampleBatch that holds all the values for: obs, state, prev_action, and prev_reward, plus maybe custom defined views of the current env trajectory. Note that only one of `obs` or `input_dict` must be non-None. policy_id: Policy to query (only applies to multi-agent). Default: "default_policy". full_fetch: Whether to return extra action fetch results. This is always set to True if `state` is specified. explore: Whether to apply exploration to the action. Default: None -> use self.config["explore"]. timestep: The current (sampling) time step. episode: This provides access to all of the internal episodes' state, which may be useful for model-based or multi-agent algorithms. unsquash_action: Should actions be unsquashed according to the env's/Policy's action space? If None, use the value of self.config["normalize_actions"]. clip_action: Should actions be clipped according to the env's/Policy's action space? If None, use the value of self.config["clip_actions"]. Keyword Args: kwargs: forward compatibility placeholder Returns: The computed action if full_fetch=False, or a tuple of a) the full output of policy.compute_actions() if full_fetch=True or we have an RNN-based Policy. Raises: KeyError: If the `policy_id` cannot be found in this Trainer's local worker. """ if clip_actions != DEPRECATED_VALUE: deprecation_warning( old="Trainer.compute_single_action(`clip_actions`=...)", new="Trainer.compute_single_action(`clip_action`=...)", error=True, ) clip_action = clip_actions if unsquash_actions != DEPRECATED_VALUE: deprecation_warning( old="Trainer.compute_single_action(`unsquash_actions`=...)", new="Trainer.compute_single_action(`unsquash_action`=...)", error=True, ) unsquash_action = unsquash_actions # `unsquash_action` is None: Use value of config['normalize_actions']. if unsquash_action is None: unsquash_action = self.config["normalize_actions"] # `clip_action` is None: Use value of config['clip_actions']. elif clip_action is None: clip_action = self.config["clip_actions"] # User provided an input-dict: Assert that `obs`, `prev_a|r`, `state` # are all None. err_msg = ( "Provide either `input_dict` OR [`observation`, ...] as " "args to Trainer.compute_single_action!" ) if input_dict is not None: assert ( observation is None and prev_action is None and prev_reward is None and state is None ), err_msg observation = input_dict[SampleBatch.OBS] else: assert observation is not None, err_msg # Get the policy to compute the action for (in the multi-agent case, # Trainer may hold >1 policies). policy = self.get_policy(policy_id) if policy is None: raise KeyError( f"PolicyID '{policy_id}' not found in PolicyMap of the " f"Trainer's local worker!" ) local_worker = self.workers.local_worker() # Check the preprocessor and preprocess, if necessary. pp = local_worker.preprocessors[policy_id] if pp and type(pp).__name__ != "NoPreprocessor": observation = pp.transform(observation) observation = local_worker.filters[policy_id](observation, update=False) # Input-dict. if input_dict is not None: input_dict[SampleBatch.OBS] = observation action, state, extra = policy.compute_single_action( input_dict=input_dict, explore=explore, timestep=timestep, episode=episode, ) # Individual args. else: action, state, extra = policy.compute_single_action( obs=observation, state=state, prev_action=prev_action, prev_reward=prev_reward, info=info, explore=explore, timestep=timestep, episode=episode, ) # If we work in normalized action space (normalize_actions=True), # we re-translate here into the env's action space. if unsquash_action: action = space_utils.unsquash_action(action, policy.action_space_struct) # Clip, according to env's action space. elif clip_action: action = space_utils.clip_action(action, policy.action_space_struct) # Return 3-Tuple: Action, states, and extra-action fetches. if state or full_fetch: return action, state, extra # Ensure backward compatibility. else: return action @PublicAPI def compute_actions( self, observations: TensorStructType, state: Optional[List[TensorStructType]] = None, *, prev_action: Optional[TensorStructType] = None, prev_reward: Optional[TensorStructType] = None, info: Optional[EnvInfoDict] = None, policy_id: PolicyID = DEFAULT_POLICY_ID, full_fetch: bool = False, explore: Optional[bool] = None, timestep: Optional[int] = None, episodes: Optional[List[Episode]] = None, unsquash_actions: Optional[bool] = None, clip_actions: Optional[bool] = None, # Deprecated. normalize_actions=None, **kwargs, ): """Computes an action for the specified policy on the local Worker. Note that you can also access the policy object through self.get_policy(policy_id) and call compute_actions() on it directly. Args: observation: Observation from the environment. state: RNN hidden state, if any. If state is not None, then all of compute_single_action(...) is returned (computed action, rnn state(s), logits dictionary). Otherwise compute_single_action(...)[0] is returned (computed action). prev_action: Previous action value, if any. prev_reward: Previous reward, if any. info: Env info dict, if any. policy_id: Policy to query (only applies to multi-agent). full_fetch: Whether to return extra action fetch results. This is always set to True if RNN state is specified. explore: Whether to pick an exploitation or exploration action (default: None -> use self.config["explore"]). timestep: The current (sampling) time step. episodes: This provides access to all of the internal episodes' state, which may be useful for model-based or multi-agent algorithms. unsquash_actions: Should actions be unsquashed according to the env's/Policy's action space? If None, use self.config["normalize_actions"]. clip_actions: Should actions be clipped according to the env's/Policy's action space? If None, use self.config["clip_actions"]. Keyword Args: kwargs: forward compatibility placeholder Returns: The computed action if full_fetch=False, or a tuple consisting of the full output of policy.compute_actions_from_input_dict() if full_fetch=True or we have an RNN-based Policy. """ if normalize_actions is not None: deprecation_warning( old="Trainer.compute_actions(`normalize_actions`=...)", new="Trainer.compute_actions(`unsquash_actions`=...)", error=True, ) unsquash_actions = normalize_actions # `unsquash_actions` is None: Use value of config['normalize_actions']. if unsquash_actions is None: unsquash_actions = self.config["normalize_actions"] # `clip_actions` is None: Use value of config['clip_actions']. elif clip_actions is None: clip_actions = self.config["clip_actions"] # Preprocess obs and states. state_defined = state is not None policy = self.get_policy(policy_id) filtered_obs, filtered_state = [], [] for agent_id, ob in observations.items(): worker = self.workers.local_worker() preprocessed = worker.preprocessors[policy_id].transform(ob) filtered = worker.filters[policy_id](preprocessed, update=False) filtered_obs.append(filtered) if state is None: continue elif agent_id in state: filtered_state.append(state[agent_id]) else: filtered_state.append(policy.get_initial_state()) # Batch obs and states obs_batch = np.stack(filtered_obs) if state is None: state = [] else: state = list(zip(*filtered_state)) state = [np.stack(s) for s in state] input_dict = {SampleBatch.OBS: obs_batch} # prev_action and prev_reward can be None, np.ndarray, or tensor-like structure. # Explicitly check for None here to avoid the error message "The truth value of # an array with more than one element is ambiguous.", when np arrays are passed # as arguments. if prev_action is not None: input_dict[SampleBatch.PREV_ACTIONS] = prev_action if prev_reward is not None: input_dict[SampleBatch.PREV_REWARDS] = prev_reward if info: input_dict[SampleBatch.INFOS] = info for i, s in enumerate(state): input_dict[f"state_in_{i}"] = s # Batch compute actions actions, states, infos = policy.compute_actions_from_input_dict( input_dict=input_dict, explore=explore, timestep=timestep, episodes=episodes, ) # Unbatch actions for the environment into a multi-agent dict. single_actions = space_utils.unbatch(actions) actions = {} for key, a in zip(observations, single_actions): # If we work in normalized action space (normalize_actions=True), # we re-translate here into the env's action space. if unsquash_actions: a = space_utils.unsquash_action(a, policy.action_space_struct) # Clip, according to env's action space. elif clip_actions: a = space_utils.clip_action(a, policy.action_space_struct) actions[key] = a # Unbatch states into a multi-agent dict. unbatched_states = {} for idx, agent_id in enumerate(observations): unbatched_states[agent_id] = [s[idx] for s in states] # Return only actions or full tuple if state_defined or full_fetch: return actions, unbatched_states, infos else: return actions @PublicAPI def get_policy(self, policy_id: PolicyID = DEFAULT_POLICY_ID) -> Policy: """Return policy for the specified id, or None. Args: policy_id: ID of the policy to return. """ return self.workers.local_worker().get_policy(policy_id) @PublicAPI def get_weights(self, policies: Optional[List[PolicyID]] = None) -> dict: """Return a dictionary of policy ids to weights. Args: policies: Optional list of policies to return weights for, or None for all policies. """ return self.workers.local_worker().get_weights(policies) @PublicAPI def set_weights(self, weights: Dict[PolicyID, dict]): """Set policy weights by policy id. Args: weights: Map of policy ids to weights to set. """ self.workers.local_worker().set_weights(weights) @PublicAPI def add_policy( self, policy_id: PolicyID, policy_cls: Optional[Type[Policy]] = None, policy: Optional[Policy] = None, *, observation_space: Optional[gym.spaces.Space] = None, action_space: Optional[gym.spaces.Space] = None, config: Optional[PartialAlgorithmConfigDict] = None, policy_state: Optional[PolicyState] = None, policy_mapping_fn: Optional[Callable[[AgentID, EpisodeID], PolicyID]] = None, policies_to_train: Optional[ Union[ Container[PolicyID], Callable[[PolicyID, Optional[SampleBatchType]], bool], ] ] = None, evaluation_workers: bool = True, workers: Optional[List[Union[RolloutWorker, ActorHandle]]] = None, ) -> Optional[Policy]: """Adds a new policy to this Algorithm. Args: policy_id: ID of the policy to add. IMPORTANT: Must not contain characters that are also not allowed in Unix/Win filesystems, such as: `<>:"/\|?*` or a dot `.` or space ` ` at the end of the ID. policy_cls: The Policy class to use for constructing the new Policy. Note: Only one of `policy_cls` or `policy` must be provided. policy: The Policy instance to add to this algorithm. If not None, the given Policy object will be directly inserted into the Algorithm's local worker and clones of that Policy will be created on all remote workers as well as all evaluation workers. Note: Only one of `policy_cls` or `policy` must be provided. observation_space: The observation space of the policy to add. If None, try to infer this space from the environment. action_space: The action space of the policy to add. If None, try to infer this space from the environment. config: The config overrides for the policy to add. policy_state: Optional state dict to apply to the new policy instance, right after its construction. policy_mapping_fn: An optional (updated) policy mapping function to use from here on. Note that already ongoing episodes will not change their mapping but will use the old mapping till the end of the episode. policies_to_train: An optional list of policy IDs to be trained or a callable taking PolicyID and SampleBatchType and returning a bool (trainable or not?). If None, will keep the existing setup in place. Policies, whose IDs are not in the list (or for which the callable returns False) will not be updated. evaluation_workers: Whether to add the new policy also to the evaluation WorkerSet. workers: A list of RolloutWorker/ActorHandles (remote RolloutWorkers) to add this policy to. If defined, will only add the given policy to these workers. Returns: The newly added policy (the copy that got added to the local worker). If `workers` was provided, None is returned. """ validate_policy_id(policy_id, error=True) # Worker list is explicitly provided -> Use only those workers (local or remote) # specified. if workers is not None: # Call static utility method. WorkerSet.add_policy_to_workers( workers, policy_id, policy_cls, policy, observation_space=observation_space, action_space=action_space, config=config, policy_state=policy_state, policy_mapping_fn=policy_mapping_fn, policies_to_train=policies_to_train, ) # Add to all our regular RolloutWorkers and maybe also all evaluation workers. else: self.workers.add_policy( policy_id, policy_cls, policy, observation_space=observation_space, action_space=action_space, config=config, policy_state=policy_state, policy_mapping_fn=policy_mapping_fn, policies_to_train=policies_to_train, ) # Add to evaluation workers, if necessary. if evaluation_workers is True and self.evaluation_workers is not None: self.evaluation_workers.add_policy( policy_id, policy_cls, policy, observation_space=observation_space, action_space=action_space, config=config, policy_state=policy_state, policy_mapping_fn=policy_mapping_fn, policies_to_train=policies_to_train, ) # Return newly added policy (from the local rollout worker). return self.get_policy(policy_id) @PublicAPI def remove_policy( self, policy_id: PolicyID = DEFAULT_POLICY_ID, *, policy_mapping_fn: Optional[Callable[[AgentID], PolicyID]] = None, policies_to_train: Optional[ Union[ Container[PolicyID], Callable[[PolicyID, Optional[SampleBatchType]], bool], ] ] = None, evaluation_workers: bool = True, ) -> None: """Removes a new policy from this Algorithm. Args: policy_id: ID of the policy to be removed. policy_mapping_fn: An optional (updated) policy mapping function to use from here on. Note that already ongoing episodes will not change their mapping but will use the old mapping till the end of the episode. policies_to_train: An optional list of policy IDs to be trained or a callable taking PolicyID and SampleBatchType and returning a bool (trainable or not?). If None, will keep the existing setup in place. Policies, whose IDs are not in the list (or for which the callable returns False) will not be updated. evaluation_workers: Whether to also remove the policy from the evaluation WorkerSet. """ def fn(worker): worker.remove_policy( policy_id=policy_id, policy_mapping_fn=policy_mapping_fn, policies_to_train=policies_to_train, ) self.workers.foreach_worker(fn) if evaluation_workers and self.evaluation_workers is not None: self.evaluation_workers.foreach_worker(fn) @DeveloperAPI def export_policy_model( self, export_dir: str, policy_id: PolicyID = DEFAULT_POLICY_ID, onnx: Optional[int] = None, ) -> None: """Exports policy model with given policy_id to a local directory. Args: export_dir: Writable local directory. policy_id: Optional policy id to export. onnx: If given, will export model in ONNX format. The value of this parameter set the ONNX OpSet version to use. If None, the output format will be DL framework specific. Example: >>> from ray.rllib.algorithms.ppo import PPO >>> # Use an Algorithm from RLlib or define your own. >>> algo = PPO(...) # doctest: +SKIP >>> for _ in range(10): # doctest: +SKIP >>> algo.train() # doctest: +SKIP >>> algo.export_policy_model("/tmp/dir") # doctest: +SKIP >>> algo.export_policy_model("/tmp/dir/onnx", onnx=1) # doctest: +SKIP """ self.get_policy(policy_id).export_model(export_dir, onnx) @DeveloperAPI def export_policy_checkpoint( self, export_dir: str, filename_prefix=DEPRECATED_VALUE, # deprecated arg, do not use anymore policy_id: PolicyID = DEFAULT_POLICY_ID, ) -> None: """Exports Policy checkpoint to a local directory and returns an AIR Checkpoint. Args: export_dir: Writable local directory to store the AIR Checkpoint information into. policy_id: Optional policy ID to export. If not provided, will export "default_policy". If `policy_id` does not exist in this Algorithm, will raise a KeyError. Raises: KeyError if `policy_id` cannot be found in this Algorithm. Example: >>> from ray.rllib.algorithms.ppo import PPO >>> # Use an Algorithm from RLlib or define your own. >>> algo = PPO(...) # doctest: +SKIP >>> for _ in range(10): # doctest: +SKIP >>> algo.train() # doctest: +SKIP >>> algo.export_policy_checkpoint("/tmp/export_dir") # doctest: +SKIP """ # `filename_prefix` should not longer be used as new Policy checkpoints # contain more than one file with a fixed filename structure. if filename_prefix != DEPRECATED_VALUE: deprecation_warning( old="Algorithm.export_policy_checkpoint(filename_prefix=...)", error=True, ) policy = self.get_policy(policy_id) if policy is None: raise KeyError(f"Policy with ID {policy_id} not found in Algorithm!") policy.export_checkpoint(export_dir) @DeveloperAPI def import_policy_model_from_h5( self, import_file: str, policy_id: PolicyID = DEFAULT_POLICY_ID, ) -> None: """Imports a policy's model with given policy_id from a local h5 file. Args: import_file: The h5 file to import from. policy_id: Optional policy id to import into. Example: >>> from ray.rllib.algorithms.ppo import PPO >>> algo = PPO(...) # doctest: +SKIP >>> algo.import_policy_model_from_h5("/tmp/weights.h5") # doctest: +SKIP >>> for _ in range(10): # doctest: +SKIP >>> algo.train() # doctest: +SKIP """ self.get_policy(policy_id).import_model_from_h5(import_file) # Sync new weights to remote workers. self._sync_weights_to_workers(worker_set=self.workers) @override(Trainable) def save_checkpoint(self, checkpoint_dir: str) -> str: """Exports AIR Checkpoint to a local directory and returns its directory path. The structure of an Algorithm checkpoint dir will be as follows:: policies/ pol_1/ policy_state.pkl pol_2/ policy_state.pkl rllib_checkpoint.json algorithm_state.pkl Note: `rllib_checkpoint.json` contains a "version" key (e.g. with value 0.1) helping RLlib to remain backward compatible wrt. restoring from checkpoints from Ray 2.0 onwards. Args: checkpoint_dir: The directory where the checkpoint files will be stored. Returns: The path to the created AIR Checkpoint directory. """ state = self.__getstate__() # Extract policy states from worker state (Policies get their own # checkpoint sub-dirs). policy_states = {} if "worker" in state and "policy_states" in state["worker"]: policy_states = state["worker"].pop("policy_states", {}) # Add RLlib checkpoint version. state["checkpoint_version"] = CHECKPOINT_VERSION # Write state (w/o policies) to disk. state_file = os.path.join(checkpoint_dir, "algorithm_state.pkl") with open(state_file, "wb") as f: pickle.dump(state, f) # Write rllib_checkpoint.json. with open(os.path.join(checkpoint_dir, "rllib_checkpoint.json"), "w") as f: json.dump( { "type": "Algorithm", "checkpoint_version": str(state["checkpoint_version"]), "ray_version": ray.__version__, "ray_commit": ray.__commit__, }, f, ) # Write individual policies to disk, each in their own sub-directory. for pid, policy_state in policy_states.items(): # From here on, disallow policyIDs that would not work as directory names. validate_policy_id(pid, error=True) policy_dir = os.path.join(checkpoint_dir, "policies", pid) os.makedirs(policy_dir, exist_ok=True) policy = self.get_policy(pid) policy.export_checkpoint(policy_dir, policy_state=policy_state) return checkpoint_dir @override(Trainable) def load_checkpoint(self, checkpoint: Union[Dict, str]) -> None: # Checkpoint is provided as a directory name. # Restore from the checkpoint file or dir. if isinstance(checkpoint, str): checkpoint_info = get_checkpoint_info(checkpoint) checkpoint_data = Algorithm._checkpoint_info_to_algorithm_state( checkpoint_info ) # Checkpoint is a checkpoint-as-dict -> Restore state from it as-is. else: checkpoint_data = checkpoint self.__setstate__(checkpoint_data) @override(Trainable) def log_result(self, result: ResultDict) -> None: # Log after the callback is invoked, so that the user has a chance # to mutate the result. # TODO: Remove `trainer` arg at some point to fully deprecate the old signature. self.callbacks.on_train_result(algorithm=self, result=result) # Then log according to Trainable's logging logic. Trainable.log_result(self, result) @override(Trainable) def cleanup(self) -> None: # Stop all workers. if hasattr(self, "workers") and self.workers is not None: self.workers.stop() if hasattr(self, "evaluation_workers") and self.evaluation_workers is not None: self.evaluation_workers.stop() @OverrideToImplementCustomLogic @classmethod @override(Trainable) def default_resource_request( cls, config: PartialAlgorithmConfigDict ) -> Union[Resources, PlacementGroupFactory]: # Default logic for RLlib Algorithms: # Create one bundle per individual worker (local or remote). # Use `num_cpus_for_driver` and `num_gpus` for the local worker and # `num_cpus_per_worker` and `num_gpus_per_worker` for the remote # workers to determine their CPU/GPU resource needs. # Convenience config handles. cf = dict(cls.get_default_config(), **config) eval_cf = cf["evaluation_config"] local_worker = { "CPU": cf["num_cpus_for_driver"], "GPU": 0 if cf["_fake_gpus"] else cf["num_gpus"], } rollout_workers = [ { "CPU": cf["num_cpus_per_worker"], "GPU": cf["num_gpus_per_worker"], **cf["custom_resources_per_worker"], } for _ in range(cf["num_workers"]) ] bundles = [local_worker] + rollout_workers if cf["evaluation_interval"]: # Evaluation workers. # Note: The local eval worker is located on the driver CPU. bundles += [ { "CPU": eval_cf.get( "num_cpus_per_worker", cf["num_cpus_per_worker"] ), "GPU": eval_cf.get( "num_gpus_per_worker", cf["num_gpus_per_worker"] ), **eval_cf.get( "custom_resources_per_worker", cf["custom_resources_per_worker"] ), } for _ in range(cf["evaluation_num_workers"]) ] # In case our I/O reader/writer requires conmpute resources. bundles += get_offline_io_resource_bundles(cf) # Return PlacementGroupFactory containing all needed resources # (already properly defined as device bundles). return PlacementGroupFactory( bundles=bundles, strategy=config.get("placement_strategy", "PACK"), ) @DeveloperAPI def _before_evaluate(self): """Pre-evaluation callback.""" pass @staticmethod def _get_env_id_and_creator( env_specifier: Union[str, EnvType, None], config: PartialAlgorithmConfigDict ) -> Tuple[Optional[str], EnvCreator]: """Returns env_id and creator callable given original env id from config. Args: env_specifier: An env class, an already tune registered env ID, a known gym env name, or None (if no env is used). config: The Algorithm's (maybe partial) config dict. Returns: Tuple consisting of a) env ID string and b) env creator callable. """ # Environment is specified via a string. if isinstance(env_specifier, str): # An already registered env. if _global_registry.contains(ENV_CREATOR, env_specifier): return env_specifier, _global_registry.get(ENV_CREATOR, env_specifier) # A class path specifier. elif "." in env_specifier: def env_creator_from_classpath(env_context): try: env_obj = from_config(env_specifier, env_context) except ValueError: raise EnvError( ERR_MSG_INVALID_ENV_DESCRIPTOR.format(env_specifier) ) return env_obj return env_specifier, env_creator_from_classpath # Try gym/PyBullet/Vizdoom. else: return env_specifier, functools.partial( _gym_env_creator, env_descriptor=env_specifier ) elif isinstance(env_specifier, type): env_id = env_specifier # .__name__ if config.get("remote_worker_envs"): # Check gym version (0.22 or higher?). # If > 0.21, can't perform auto-wrapping of the given class as this # would lead to a pickle error. gym_version = pkg_resources.get_distribution("gym").version if version.parse(gym_version) >= version.parse("0.22"): raise ValueError( "Cannot specify a gym.Env class via `config.env` while setting " "`config.remote_worker_env=True` AND your gym version is >= " "0.22! Try installing an older version of gym or set `config." "remote_worker_env=False`." ) @ray.remote(num_cpus=1) class _wrapper(env_specifier): # Add convenience `_get_spaces` and `_is_multi_agent` # methods: def _get_spaces(self): return self.observation_space, self.action_space def _is_multi_agent(self): from ray.rllib.env.multi_agent_env import MultiAgentEnv return isinstance(self, MultiAgentEnv) return env_id, lambda cfg: _wrapper.remote(cfg) else: return env_id, lambda cfg: env_specifier(cfg) # No env -> Env creator always returns None. elif env_specifier is None: return None, lambda env_config: None else: raise ValueError( "{} is an invalid env specifier. ".format(env_specifier) + "You can specify a custom env as either a class " '(e.g., YourEnvCls) or a registered env id (e.g., "your_env").' ) def _sync_filters_if_needed( self, from_worker: RolloutWorker, workers: WorkerSet, timeout_seconds: Optional[float] = None, ): if ( from_worker and self.config.get("observation_filter", "NoFilter") != "NoFilter" ): FilterManager.synchronize( from_worker.filters, workers.remote_workers(), update_remote=self.config["synchronize_filters"], timeout_seconds=timeout_seconds, ) logger.debug("synchronized filters: {}".format(from_worker.filters)) @DeveloperAPI def _sync_weights_to_workers( self, *, worker_set: Optional[WorkerSet] = None, workers: Optional[List[RolloutWorker]] = None, ) -> None: """Sync "main" weights to given WorkerSet or list of workers.""" assert worker_set is not None # Broadcast the new policy weights to all evaluation workers. logger.info("Synchronizing weights to workers.") weights = ray.put(self.workers.local_worker().get_state()) worker_set.foreach_worker(lambda w: w.set_state(ray.get(weights))) @classmethod @override(Trainable) def resource_help(cls, config: AlgorithmConfigDict) -> str: return ( "\n\nYou can adjust the resource requests of RLlib agents by " "setting `num_workers`, `num_gpus`, and other configs. See " "the DEFAULT_CONFIG defined by each agent for more info.\n\n" "The config of this agent is: {}".format(config) ) @classmethod def merge_trainer_configs( cls, config1: AlgorithmConfigDict, config2: PartialAlgorithmConfigDict, _allow_unknown_configs: Optional[bool] = None, ) -> AlgorithmConfigDict: """Merges a complete Algorithm config dict with a partial override dict. Respects nested structures within the config dicts. The values in the partial override dict take priority. Args: config1: The complete Algorithm's dict to be merged (overridden) with `config2`. config2: The partial override config dict to merge on top of `config1`. _allow_unknown_configs: If True, keys in `config2` that don't exist in `config1` are allowed and will be added to the final config. Returns: The merged full algorithm config dict. """ config1 = copy.deepcopy(config1) if "callbacks" in config2 and type(config2["callbacks"]) is dict: deprecation_warning( "callbacks dict interface", "a class extending rllib.algorithms.callbacks.DefaultCallbacks; " "see `rllib/examples/custom_metrics_and_callbacks.py` for an example.", error=True, ) if _allow_unknown_configs is None: _allow_unknown_configs = cls._allow_unknown_configs return deep_update( config1, config2, _allow_unknown_configs, cls._allow_unknown_subkeys, cls._override_all_subkeys_if_type_changes, cls._override_all_key_list, ) @staticmethod def validate_framework(config: PartialAlgorithmConfigDict) -> None: """Validates the config dictionary wrt the framework settings. Args: config: The config dictionary to be validated. """ _tf1, _tf, _tfv = None, None, None _torch = None framework = config["framework"] tf_valid_frameworks = {"tf", "tf2", "tfe"} if framework not in tf_valid_frameworks and framework != "torch": return elif framework in tf_valid_frameworks: _tf1, _tf, _tfv = try_import_tf() else: _torch, _ = try_import_torch() def check_if_correct_nn_framework_installed(): """Check if tf/torch experiment is running and tf/torch installed.""" if framework in tf_valid_frameworks: if not (_tf1 or _tf): raise ImportError( ( "TensorFlow was specified as the 'framework' " "inside of your config dictionary. However, there was " "no installation found. You can install TensorFlow " "via `pip install tensorflow`" ) ) elif framework == "torch": if not _torch: raise ImportError( ( "PyTorch was specified as the 'framework' inside " "of your config dictionary. However, there was no " "installation found. You can install PyTorch via " "`pip install torch`" ) ) def resolve_tf_settings(): """Check and resolve tf settings.""" if _tf1 and config["framework"] in ["tf2", "tfe"]: if config["framework"] == "tf2" and _tfv < 2: raise ValueError( "You configured `framework`=tf2, but your installed " "pip tf-version is < 2.0! Make sure your TensorFlow " "version is >= 2.x." ) if not _tf1.executing_eagerly(): _tf1.enable_eager_execution() # Recommend setting tracing to True for speedups. logger.info( f"Executing eagerly (framework='{config['framework']}')," f" with eager_tracing={config['eager_tracing']}. For " "production workloads, make sure to set eager_tracing=True" " in order to match the speed of tf-static-graph " "(framework='tf'). For debugging purposes, " "`eager_tracing=False` is the best choice." ) # Tf-static-graph (framework=tf): Recommend upgrading to tf2 and # enabling eager tracing for similar speed. elif _tf1 and config["framework"] == "tf": logger.info( "Your framework setting is 'tf', meaning you are using " "static-graph mode. Set framework='tf2' to enable eager " "execution with tf2.x. You may also then want to set " "eager_tracing=True in order to reach similar execution " "speed as with static-graph mode." ) check_if_correct_nn_framework_installed() resolve_tf_settings() @OverrideToImplementCustomLogic_CallToSuperRecommended @DeveloperAPI def validate_config(self, config: AlgorithmConfigDict) -> None: """Validates a given config dict for this Algorithm. Users should override this method to implement custom validation behavior. It is recommended to call `super().validate_config()` in this override. Args: config: The given config dict to check. Raises: ValueError: If there is something wrong with the config. """ model_config = config.get("model") if model_config is None: config["model"] = model_config = {} # Use DefaultCallbacks class, if callbacks is None. if config["callbacks"] is None: config["callbacks"] = DefaultCallbacks # Check, whether given `callbacks` is a callable. if not callable(config["callbacks"]): raise ValueError( "`callbacks` must be a callable method that " "returns a subclass of DefaultCallbacks, got " f"{config['callbacks']}!" ) # Multi-GPU settings. simple_optim_setting = config.get("simple_optimizer", DEPRECATED_VALUE) if simple_optim_setting != DEPRECATED_VALUE: deprecation_warning(old="simple_optimizer", error=False) # Validate "multiagent" sub-dict and convert policy 4-tuples to # PolicySpec objects. policies, is_multi_agent = check_multi_agent(config) framework = config.get("framework") # Multi-GPU setting: Must use MultiGPUTrainOneStep. if config.get("num_gpus", 0) > 1: if framework in ["tfe", "tf2"]: raise ValueError( "`num_gpus` > 1 not supported yet for " "framework={}!".format(framework) ) elif simple_optim_setting is True: raise ValueError( "Cannot use `simple_optimizer` if `num_gpus` > 1! " "Consider not setting `simple_optimizer` in your config." ) config["simple_optimizer"] = False # Auto-setting: Use simple-optimizer for tf-eager or multiagent, # otherwise: MultiGPUTrainOneStep (if supported by the algo's execution # plan). elif simple_optim_setting == DEPRECATED_VALUE: # tf-eager: Must use simple optimizer. if framework not in ["tf", "torch"]: config["simple_optimizer"] = True # Multi-agent case: Try using MultiGPU optimizer (only # if all policies used are DynamicTFPolicies or TorchPolicies). elif is_multi_agent: from ray.rllib.policy.dynamic_tf_policy import DynamicTFPolicy from ray.rllib.policy.torch_policy import TorchPolicy default_policy_cls = self.get_default_policy_class(config) if any( (p.policy_class or default_policy_cls) is None or not issubclass( p.policy_class or default_policy_cls, (DynamicTFPolicy, TorchPolicy), ) for p in config["multiagent"]["policies"].values() ): config["simple_optimizer"] = True else: config["simple_optimizer"] = False else: config["simple_optimizer"] = False # User manually set simple-optimizer to False -> Error if tf-eager. elif simple_optim_setting is False: if framework in ["tfe", "tf2"]: raise ValueError( "`simple_optimizer=False` not supported for " "framework={}!".format(framework) ) # Check model config. # If no preprocessing, propagate into model's config as well # (so model will know, whether inputs are preprocessed or not). if config["_disable_preprocessor_api"] is True: model_config["_disable_preprocessor_api"] = True # If no action flattening, propagate into model's config as well # (so model will know, whether action inputs are already flattened or # not). if config["_disable_action_flattening"] is True: model_config["_disable_action_flattening"] = True # Prev_a/r settings. prev_a_r = model_config.get("lstm_use_prev_action_reward", DEPRECATED_VALUE) if prev_a_r != DEPRECATED_VALUE: deprecation_warning( "model.lstm_use_prev_action_reward", "model.lstm_use_prev_action and model.lstm_use_prev_reward", error=True, ) model_config["lstm_use_prev_action"] = prev_a_r model_config["lstm_use_prev_reward"] = prev_a_r # Check batching/sample collection settings. if config["batch_mode"] not in ["truncate_episodes", "complete_episodes"]: raise ValueError( "`batch_mode` must be one of [truncate_episodes|" "complete_episodes]! Got {}".format(config["batch_mode"]) ) # Store multi-agent batch count mode. self._by_agent_steps = ( self.config["multiagent"].get("count_steps_by") == "agent_steps" ) # Metrics settings. if ( config.get("metrics_smoothing_episodes", DEPRECATED_VALUE) != DEPRECATED_VALUE ): deprecation_warning( old="metrics_smoothing_episodes", new="metrics_num_episodes_for_smoothing", error=True, ) config["metrics_num_episodes_for_smoothing"] = config[ "metrics_smoothing_episodes" ] if config.get("min_iter_time_s", DEPRECATED_VALUE) != DEPRECATED_VALUE: deprecation_warning( old="min_iter_time_s", new="min_time_s_per_iteration", error=True, ) config["min_time_s_per_iteration"] = config["min_iter_time_s"] or 0 if config.get("min_time_s_per_reporting", DEPRECATED_VALUE) != DEPRECATED_VALUE: deprecation_warning( old="min_time_s_per_reporting", new="min_time_s_per_iteration", error=True, ) config["min_time_s_per_iteration"] = config["min_time_s_per_reporting"] or 0 if ( config.get("min_sample_timesteps_per_reporting", DEPRECATED_VALUE) != DEPRECATED_VALUE ): deprecation_warning( old="min_sample_timesteps_per_reporting", new="min_sample_timesteps_per_iteration", error=True, ) config["min_sample_timesteps_per_iteration"] = ( config["min_sample_timesteps_per_reporting"] or 0 ) if ( config.get("min_train_timesteps_per_reporting", DEPRECATED_VALUE) != DEPRECATED_VALUE ): deprecation_warning( old="min_train_timesteps_per_reporting", new="min_train_timesteps_per_iteration", error=True, ) config["min_train_timesteps_per_iteration"] = ( config["min_train_timesteps_per_reporting"] or 0 ) if config.get("collect_metrics_timeout", DEPRECATED_VALUE) != DEPRECATED_VALUE: # TODO: Warn once all algos use the `training_iteration` method. # deprecation_warning( # old="collect_metrics_timeout", # new="metrics_episode_collection_timeout_s", # error=False, # ) config["metrics_episode_collection_timeout_s"] = config[ "collect_metrics_timeout" ] if config.get("timesteps_per_iteration", DEPRECATED_VALUE) != DEPRECATED_VALUE: deprecation_warning( old="timesteps_per_iteration", new="`min_sample_timesteps_per_iteration` OR " "`min_train_timesteps_per_iteration`", error=True, ) config["min_sample_timesteps_per_iteration"] = ( config["timesteps_per_iteration"] or 0 ) config["timesteps_per_iteration"] = DEPRECATED_VALUE # Evaluation settings. # Deprecated setting: `evaluation_num_episodes`. if config.get("evaluation_num_episodes", DEPRECATED_VALUE) != DEPRECATED_VALUE: deprecation_warning( old="evaluation_num_episodes", new="`evaluation_duration` and `evaluation_duration_unit=episodes`", error=True, ) config["evaluation_duration"] = config["evaluation_num_episodes"] config["evaluation_duration_unit"] = "episodes" config["evaluation_num_episodes"] = DEPRECATED_VALUE # If `evaluation_num_workers` > 0, warn if `evaluation_interval` is # None (also set `evaluation_interval` to 1). if config["evaluation_num_workers"] > 0 and not config["evaluation_interval"]: logger.warning( f"You have specified {config['evaluation_num_workers']} " "evaluation workers, but your `evaluation_interval` is None! " "Therefore, evaluation will not occur automatically with each" " call to `Algorithm.train()`. Instead, you will have to call " "`Algorithm.evaluate()` manually in order to trigger an " "evaluation run." ) # If `evaluation_num_workers=0` and # `evaluation_parallel_to_training=True`, warn that you need # at least one remote eval worker for parallel training and # evaluation, and set `evaluation_parallel_to_training` to False. elif config["evaluation_num_workers"] == 0 and config.get( "evaluation_parallel_to_training", False ): logger.warning( "`evaluation_parallel_to_training` can only be done if " "`evaluation_num_workers` > 0! Setting " "`evaluation_parallel_to_training` to False." ) config["evaluation_parallel_to_training"] = False # If `evaluation_duration=auto`, error if # `evaluation_parallel_to_training=False`. if config["evaluation_duration"] == "auto": if not config["evaluation_parallel_to_training"]: raise ValueError( "`evaluation_duration=auto` not supported for " "`evaluation_parallel_to_training=False`!" ) # Make sure, it's an int otherwise. elif ( not isinstance(config["evaluation_duration"], int) or config["evaluation_duration"] <= 0 ): raise ValueError( "`evaluation_duration` ({}) must be an int and " ">0!".format(config["evaluation_duration"]) ) @staticmethod @ExperimentalAPI def validate_env(env: EnvType, env_context: EnvContext) -> None: """Env validator function for this Algorithm class. Override this in child classes to define custom validation behavior. Args: env: The (sub-)environment to validate. This is normally a single sub-environment (e.g. a gym.Env) within a vectorized setup. env_context: The EnvContext to configure the environment. Raises: Exception in case something is wrong with the given environment. """ pass def try_recover_from_step_attempt(self, error, worker_set, ignore, recreate) -> int: """Try to identify and remove any unhealthy workers (incl. eval workers). This method is called after an unexpected remote error is encountered from a worker during the call to `self.step()`. It issues check requests to all current workers and removes any that respond with error. If no healthy workers remain, an error is raised. Returns: The number of remote workers recreated. """ # @ray.remote RolloutWorker failure. if isinstance(error, RayError): # Try to recover w/o the failed worker. if ignore or recreate: logger.exception( "Error in training or evaluation attempt! Trying to recover." ) # Error out. else: logger.warning( "Worker crashed during training or evaluation! " "To try to continue without failed " "worker(s), set `ignore_worker_failures=True`. " "To try to recover the failed worker(s), set " "`recreate_failed_workers=True`." ) raise error # Any other exception. else: # Allow logs messages to propagate. time.sleep(0.5) raise error removed_workers, new_workers = [], [] # Search for failed workers and try to recover (restart) them. if recreate: removed_workers, new_workers = worker_set.recreate_failed_workers( local_worker_for_synching=self.workers.local_worker() ) elif ignore: removed_workers = worker_set.remove_failed_workers() # If `worker_set` is the main training WorkerSet: `self.workers`. if worker_set is getattr(self, "workers", None): # Call the `on_worker_failures` callback. self.on_worker_failures(removed_workers, new_workers) # Recreate execution_plan iterator. if not self.config.get("_disable_execution_plan_api") and callable( self.execution_plan ): logger.warning("Recreating execution plan after failure") self.train_exec_impl = self.execution_plan( worker_set, self.config, **self._kwargs_for_execution_plan() ) elif self._evaluation_async_req_manager is not None and worker_set is getattr( self, "evaluation_workers", None ): self._evaluation_async_req_manager.remove_workers(removed_workers) self._evaluation_async_req_manager.add_workers(new_workers) return len(new_workers) def on_worker_failures( self, removed_workers: List[ActorHandle], new_workers: List[ActorHandle] ): """Called after a worker failure is detected. Args: removed_workers: List of removed workers. new_workers: List of new workers. """ pass @override(Trainable) def _export_model( self, export_formats: List[str], export_dir: str ) -> Dict[str, str]: ExportFormat.validate(export_formats) exported = {} if ExportFormat.CHECKPOINT in export_formats: path = os.path.join(export_dir, ExportFormat.CHECKPOINT) self.export_policy_checkpoint(path) exported[ExportFormat.CHECKPOINT] = path if ExportFormat.MODEL in export_formats: path = os.path.join(export_dir, ExportFormat.MODEL) self.export_policy_model(path) exported[ExportFormat.MODEL] = path if ExportFormat.ONNX in export_formats: path = os.path.join(export_dir, ExportFormat.ONNX) self.export_policy_model(path, onnx=int(os.getenv("ONNX_OPSET", "11"))) exported[ExportFormat.ONNX] = path return exported def import_model(self, import_file: str): """Imports a model from import_file. Note: Currently, only h5 files are supported. Args: import_file: The file to import the model from. Returns: A dict that maps ExportFormats to successfully exported models. """ # Check for existence. if not os.path.exists(import_file): raise FileNotFoundError( "`import_file` '{}' does not exist! Can't import Model.".format( import_file ) ) # Get the format of the given file. import_format = "h5" # TODO(sven): Support checkpoint loading. ExportFormat.validate([import_format]) if import_format != ExportFormat.H5: raise NotImplementedError else: return self.import_policy_model_from_h5(import_file) @PublicAPI def __getstate__(self) -> Dict: """Returns current state of Algorithm, sufficient to restore it from scratch. Returns: The current state dict of this Algorithm, which can be used to sufficiently restore the algorithm from scratch without any other information. """ # Add config to state so complete Algorithm can be reproduced w/o it. state = { "algorithm_class": type(self), "config": self.config, } if hasattr(self, "workers"): state["worker"] = self.workers.local_worker().get_state() # TODO: Experimental functionality: Store contents of replay buffer # to checkpoint, only if user has configured this. if self.local_replay_buffer is not None and self.config.get( "store_buffer_in_checkpoints" ): state["local_replay_buffer"] = self.local_replay_buffer.get_state() if self.train_exec_impl is not None: state["train_exec_impl"] = self.train_exec_impl.shared_metrics.get().save() else: state["counters"] = self._counters return state @PublicAPI def __setstate__(self, state) -> None: """Sets the algorithm to the provided state. Args: state: The state dict to restore this Algorithm instance to. `state` may have been returned by a call to an Algorithm's `__getstate__()` method. """ # TODO (sven): Validate that our config and the config in state are compatible. # For example, the model architectures may differ. # Also, what should the behavior be if e.g. some training parameter # (e.g. lr) changed? if hasattr(self, "workers") and "worker" in state: self.workers.local_worker().set_state(state["worker"]) remote_state = ray.put(state["worker"]) for r in self.workers.remote_workers(): r.set_state.remote(remote_state) if self.evaluation_workers: # If evaluation workers are used, also restore the policies # there in case they are used for evaluation purpose. for r in self.evaluation_workers.remote_workers(): r.set_state.remote(remote_state) # If necessary, restore replay data as well. if self.local_replay_buffer is not None: # TODO: Experimental functionality: Restore contents of replay # buffer from checkpoint, only if user has configured this. if self.config.get("store_buffer_in_checkpoints"): if "local_replay_buffer" in state: self.local_replay_buffer.set_state(state["local_replay_buffer"]) else: logger.warning( "`store_buffer_in_checkpoints` is True, but no replay " "data found in state!" ) elif "local_replay_buffer" in state and log_once( "no_store_buffer_in_checkpoints_but_data_found" ): logger.warning( "`store_buffer_in_checkpoints` is False, but some replay " "data found in state!" ) if self.train_exec_impl is not None: self.train_exec_impl.shared_metrics.get().restore(state["train_exec_impl"]) elif "counters" in state: self._counters = state["counters"] @staticmethod def _checkpoint_info_to_algorithm_state( checkpoint_info: dict, policy_ids: Optional[Container[PolicyID]] = None, policy_mapping_fn: Optional[Callable[[AgentID, EpisodeID], PolicyID]] = None, policies_to_train: Optional[ Union[ Container[PolicyID], Callable[[PolicyID, Optional[SampleBatchType]], bool], ] ] = None, ) -> Dict: """Converts a checkpoint info or object to a proper Algorithm state dict. The returned state dict can be used inside self.__setstate__(). Args: checkpoint_info: A checkpoint info dict as returned by `ray.rllib.utils.checkpoints.get_checkpoint_info( [checkpoint dir or AIR Checkpoint])`. policy_ids: Optional list/set of PolicyIDs. If not None, only those policies listed here will be included in the returned state. Note that state items such as filters, the `is_policy_to_train` function, as well as the multi-agent `policy_ids` dict will be adjusted as well, based on this arg. policy_mapping_fn: An optional (updated) policy mapping function to include in the returned state. policies_to_train: An optional list of policy IDs to be trained or a callable taking PolicyID and SampleBatchType and returning a bool (trainable or not?) to include in the returned state. Returns: The state dict usable within the `self.__setstate__()` method. """ if checkpoint_info["type"] != "Algorithm": raise ValueError( "`checkpoint` arg passed to " "`Algorithm._checkpoint_info_to_algorithm_state()` must be an " f"Algorithm checkpoint (but is {checkpoint_info['type']})!" ) with open(checkpoint_info["state_file"], "rb") as f: state = pickle.load(f) # New checkpoint format: Policies are in separate sub-dirs. # Note: Algorithms like ES/ARS don't have a WorkerSet, so we just return # the plain state here. if ( checkpoint_info["checkpoint_version"] > version.Version("0.1") and state.get("worker") is not None ): worker_state = state["worker"] # Retrieve the set of all required policy IDs. policy_ids = set( policy_ids if policy_ids is not None else worker_state["policy_ids"] ) # Remove those policies entirely from filters that are not in # `policy_ids`. worker_state["filters"] = { pid: filter for pid, filter in worker_state["filters"].items() if pid in policy_ids } # Remove policies from multiagent dict that are not in `policy_ids`. policies_dict = state["config"]["multiagent"]["policies"] policies_dict = { pid: spec for pid, spec in policies_dict.items() if pid in policy_ids } state["config"]["multiagent"]["policies"] = policies_dict # Prepare local `worker` state to add policies' states into it, # read from separate policy checkpoint files. worker_state["policy_states"] = {} for pid in policy_ids: policy_state_file = os.path.join( checkpoint_info["checkpoint_dir"], "policies", pid, "policy_state.pkl", ) if not os.path.isfile(policy_state_file): raise ValueError( "Given checkpoint does not seem to be valid! No policy " f"state file found for PID={pid}. " f"The file not found is: {policy_state_file}." ) with open(policy_state_file, "rb") as f: worker_state["policy_states"][pid] = pickle.load(f) if policy_mapping_fn is not None: worker_state["policy_mapping_fn"] = policy_mapping_fn if policies_to_train is not None: worker_state["is_policy_to_train"] = policies_to_train return state @DeveloperAPI def _create_local_replay_buffer_if_necessary( self, config: PartialAlgorithmConfigDict ) -> Optional[MultiAgentReplayBuffer]: """Create a MultiAgentReplayBuffer instance if necessary. Args: config: Algorithm-specific configuration data. Returns: MultiAgentReplayBuffer instance based on algorithm config. None, if local replay buffer is not needed. """ if not config.get("replay_buffer_config") or config["replay_buffer_config"].get( "no_local_replay_buffer" or config.get("no_local_replay_buffer") ): return buffer_type = config["replay_buffer_config"]["type"] return from_config(buffer_type, config["replay_buffer_config"]) @DeveloperAPI def _kwargs_for_execution_plan(self): kwargs = {} if self.local_replay_buffer is not None: kwargs["local_replay_buffer"] = self.local_replay_buffer return kwargs def _run_one_training_iteration(self) -> Tuple[ResultDict, "TrainIterCtx"]: """Runs one training iteration (self.iteration will be +1 after this). Calls `self.training_step()` repeatedly until the minimum time (sec), sample- or training steps have been reached. Returns: The results dict from the training iteration. """ # In case we are training (in a thread) parallel to evaluation, # we may have to re-enable eager mode here (gets disabled in the # thread). if ( self.config.get("framework") in ["tf2", "tfe"] and not tf.executing_eagerly() ): tf1.enable_eager_execution() results = None # Create a step context ... with TrainIterCtx(algo=self) as train_iter_ctx: # .. so we can query it whether we should stop the iteration loop (e.g. # when we have reached `min_time_s_per_iteration`). num_recreated = 0 while not train_iter_ctx.should_stop(results): # Try to train one step. try: # TODO (avnishn): Remove the execution plan API by q1 2023 with self._timers[TRAINING_ITERATION_TIMER]: if self.config["_disable_execution_plan_api"]: results = self.training_step() else: results = next(self.train_exec_impl) # In case of any failures, try to ignore/recover the failed workers. except Exception as e: num_recreated += self.try_recover_from_step_attempt( error=e, worker_set=self.workers, ignore=self.config["ignore_worker_failures"], recreate=self.config["recreate_failed_workers"], ) results["num_recreated_workers"] = num_recreated return results, train_iter_ctx def _run_one_evaluation( self, train_future: Optional[concurrent.futures.ThreadPoolExecutor] = None, ) -> ResultDict: """Runs evaluation step via `self.evaluate()` and handling worker failures. Args: train_future: In case, we are training and avaluating in parallel, this arg carries the currently running ThreadPoolExecutor object that runs the training iteration Returns: The results dict from the evaluation call. """ eval_results = { "evaluation": { "episode_reward_max": np.nan, "episode_reward_min": np.nan, "episode_reward_mean": np.nan, } } eval_func_to_use = ( self._evaluate_async if self.config["enable_async_evaluation"] else self.evaluate ) num_recreated = 0 try: if self.config["evaluation_duration"] == "auto": assert ( train_future is not None and self.config["evaluation_parallel_to_training"] ) unit = self.config["evaluation_duration_unit"] eval_results = eval_func_to_use( duration_fn=functools.partial( self._automatic_evaluation_duration_fn, unit, self.config["evaluation_num_workers"], self.config["evaluation_config"], train_future, ) ) # Run `self.evaluate()` only once per training iteration. else: eval_results = eval_func_to_use() # In case of any failures, try to ignore/recover the failed evaluation workers. except Exception as e: num_recreated = self.try_recover_from_step_attempt( error=e, worker_set=self.evaluation_workers, ignore=self.config["evaluation_config"].get("ignore_worker_failures"), recreate=self.config["evaluation_config"].get( "recreate_failed_workers" ), ) # `self._evaluate_async` handles its own worker failures and already adds # this metric, but `self.evaluate` doesn't. if "num_recreated_workers" not in eval_results["evaluation"]: eval_results["evaluation"]["num_recreated_workers"] = num_recreated # Add number of healthy evaluation workers after this iteration. eval_results["evaluation"]["num_healthy_workers"] = ( len(self.evaluation_workers.remote_workers()) if self.evaluation_workers is not None else 0 ) return eval_results def _run_one_training_iteration_and_evaluation_in_parallel( self, ) -> Tuple[ResultDict, "TrainIterCtx"]: """Runs one training iteration and one evaluation step in parallel. First starts the training iteration (via `self._run_one_training_iteration()`) within a ThreadPoolExecutor, then runs the evaluation step in parallel. In auto-duration mode (config.evaluation_duration=auto), makes sure the evaluation step takes roughly the same time as the training iteration. Returns: The accumulated training and evaluation results. """ with concurrent.futures.ThreadPoolExecutor() as executor: train_future = executor.submit(lambda: self._run_one_training_iteration()) # Pass the train_future into `self._run_one_evaluation()` to allow it # to run exactly as long as the training iteration takes in case # evaluation_duration=auto. results = self._run_one_evaluation(train_future) # Collect the training results from the future. train_results, train_iter_ctx = train_future.result() results.update(train_results) return results, train_iter_ctx @staticmethod def _automatic_evaluation_duration_fn( unit, num_eval_workers, eval_cfg, train_future, num_units_done ): # Training is done and we already ran at least one # evaluation -> Nothing left to run. if num_units_done > 0 and train_future.done(): return 0 # Count by episodes. -> Run n more # (n=num eval workers). elif unit == "episodes": return num_eval_workers # Count by timesteps. -> Run n*m*p more # (n=num eval workers; m=rollout fragment length; # p=num-envs-per-worker). else: return ( num_eval_workers * eval_cfg["rollout_fragment_length"] * eval_cfg["num_envs_per_worker"] ) def _compile_iteration_results( self, *, episodes_this_iter, step_ctx, iteration_results=None ): # Return dict. results: ResultDict = {} iteration_results = iteration_results or {} # Evaluation results. if "evaluation" in iteration_results: results["evaluation"] = iteration_results.pop("evaluation") # Custom metrics and episode media. results["custom_metrics"] = iteration_results.pop("custom_metrics", {}) results["episode_media"] = iteration_results.pop("episode_media", {}) results["num_recreated_workers"] = iteration_results.pop( "num_recreated_workers", 0 ) # Learner info. results["info"] = {LEARNER_INFO: iteration_results} # Calculate how many (if any) of older, historical episodes we have to add to # `episodes_this_iter` in order to reach the required smoothing window. episodes_for_metrics = episodes_this_iter[:] missing = self.config["metrics_num_episodes_for_smoothing"] - len( episodes_this_iter ) # We have to add some older episodes to reach the smoothing window size. if missing > 0: episodes_for_metrics = self._episode_history[-missing:] + episodes_this_iter assert ( len(episodes_for_metrics) <= self.config["metrics_num_episodes_for_smoothing"] ) # Note that when there are more than `metrics_num_episodes_for_smoothing` # episodes in `episodes_for_metrics`, leave them as-is. In this case, we'll # compute the stats over that larger number. # Add new episodes to our history and make sure it doesn't grow larger than # needed. self._episode_history.extend(episodes_this_iter) self._episode_history = self._episode_history[ -self.config["metrics_num_episodes_for_smoothing"] : ] results["sampler_results"] = summarize_episodes( episodes_for_metrics, episodes_this_iter, self.config["keep_per_episode_custom_metrics"], ) # TODO: Don't dump sampler results into top-level. results.update(results["sampler_results"]) results["num_healthy_workers"] = len(self.workers.remote_workers()) # Train-steps- and env/agent-steps this iteration. for c in [ NUM_AGENT_STEPS_SAMPLED, NUM_AGENT_STEPS_TRAINED, NUM_ENV_STEPS_SAMPLED, NUM_ENV_STEPS_TRAINED, ]: results[c] = self._counters[c] if self._by_agent_steps: results[NUM_AGENT_STEPS_SAMPLED + "_this_iter"] = step_ctx.sampled results[NUM_AGENT_STEPS_TRAINED + "_this_iter"] = step_ctx.trained # TODO: For CQL and other algos, count by trained steps. results["timesteps_total"] = self._counters[NUM_AGENT_STEPS_SAMPLED] # TODO: Backward compatibility. results[STEPS_TRAINED_THIS_ITER_COUNTER] = step_ctx.trained else: results[NUM_ENV_STEPS_SAMPLED + "_this_iter"] = step_ctx.sampled results[NUM_ENV_STEPS_TRAINED + "_this_iter"] = step_ctx.trained # TODO: For CQL and other algos, count by trained steps. results["timesteps_total"] = self._counters[NUM_ENV_STEPS_SAMPLED] # TODO: Backward compatibility. results[STEPS_TRAINED_THIS_ITER_COUNTER] = step_ctx.trained # TODO: Backward compatibility. results["agent_timesteps_total"] = self._counters[NUM_AGENT_STEPS_SAMPLED] # Process timer results. timers = {} for k, timer in self._timers.items(): timers["{}_time_ms".format(k)] = round(timer.mean * 1000, 3) if timer.has_units_processed(): timers["{}_throughput".format(k)] = round(timer.mean_throughput, 3) results["timers"] = timers # Process counter results. counters = {} for k, counter in self._counters.items(): counters[k] = counter results["counters"] = counters # TODO: Backward compatibility. results["info"].update(counters) return results def __repr__(self): return type(self).__name__ def _record_usage(self, config): """Record the framework and algorithm used. Args: config: Algorithm config dict. """ record_extra_usage_tag(TagKey.RLLIB_FRAMEWORK, config["framework"]) record_extra_usage_tag(TagKey.RLLIB_NUM_WORKERS, str(config["num_workers"])) alg = self.__class__.__name__ # We do not want to collect user defined algorithm names. if alg not in ALL_ALGORITHMS: alg = "USER_DEFINED" record_extra_usage_tag(TagKey.RLLIB_ALGORITHM, alg) @Deprecated(new="Algorithm.compute_single_action()", error=True) def compute_action(self, *args, **kwargs): return self.compute_single_action(*args, **kwargs) @Deprecated(new="construct WorkerSet(...) instance directly", error=False) def _make_workers( self, *, env_creator: EnvCreator, validate_env: Optional[Callable[[EnvType, EnvContext], None]], policy_class: Type[Policy], config: AlgorithmConfigDict, num_workers: int, local_worker: bool = True, ) -> WorkerSet: return WorkerSet( env_creator=env_creator, validate_env=validate_env, policy_class=policy_class, trainer_config=config, num_workers=num_workers, local_worker=local_worker, logdir=self.logdir, ) @staticmethod @Deprecated(new="Algorithm.validate_config()", error=True) def _validate_config(config, trainer_or_none): assert trainer_or_none is not None return trainer_or_none.validate_config(config) # TODO: Create a dict that throw a deprecation warning once we have fully moved # to AlgorithmConfig() objects (some algos still missing). COMMON_CONFIG: AlgorithmConfigDict = AlgorithmConfig(Algorithm).to_dict() class TrainIterCtx: def __init__(self, algo: Algorithm): self.algo = algo def __enter__(self): # Before first call to `step()`, `results` is expected to be None -> # Start with self.failures=-1 -> set to 0 before the very first call # to `self.step()`. self.failures = -1 self.time_start = time.time() self.sampled = 0 self.trained = 0 self.init_env_steps_sampled = self.algo._counters[NUM_ENV_STEPS_SAMPLED] self.init_env_steps_trained = self.algo._counters[NUM_ENV_STEPS_TRAINED] self.init_agent_steps_sampled = self.algo._counters[NUM_AGENT_STEPS_SAMPLED] self.init_agent_steps_trained = self.algo._counters[NUM_AGENT_STEPS_TRAINED] self.failure_tolerance = self.algo.config[ "num_consecutive_worker_failures_tolerance" ] return self def __exit__(self, *args): pass def should_stop(self, results): # Before first call to `step()`. if results is None: # Fail after n retries. self.failures += 1 if self.failures > self.failure_tolerance: raise RuntimeError( "More than `num_consecutive_worker_failures_tolerance=" f"{self.failure_tolerance}` consecutive worker failures! " "Exiting." ) # Continue to very first `step()` call or retry `step()` after # a (tolerable) failure. return False # Stopping criteria: Only when using the `training_iteration` # API, b/c for the `exec_plan` API, the logic to stop is # already built into the execution plans via the # `StandardMetricsReporting` op. elif self.algo.config["_disable_execution_plan_api"]: if self.algo._by_agent_steps: self.sampled = ( self.algo._counters[NUM_AGENT_STEPS_SAMPLED] - self.init_agent_steps_sampled ) self.trained = ( self.algo._counters[NUM_AGENT_STEPS_TRAINED] - self.init_agent_steps_trained ) else: self.sampled = ( self.algo._counters[NUM_ENV_STEPS_SAMPLED] - self.init_env_steps_sampled ) self.trained = ( self.algo._counters[NUM_ENV_STEPS_TRAINED] - self.init_env_steps_trained ) min_t = self.algo.config["min_time_s_per_iteration"] min_sample_ts = self.algo.config["min_sample_timesteps_per_iteration"] min_train_ts = self.algo.config["min_train_timesteps_per_iteration"] # Repeat if not enough time has passed or if not enough # env|train timesteps have been processed (or these min # values are not provided by the user). if ( (not min_t or time.time() - self.time_start >= min_t) and (not min_sample_ts or self.sampled >= min_sample_ts) and (not min_train_ts or self.trained >= min_train_ts) ): return True else: return False # No errors (we got results != None) -> Return True # (meaning: yes, should stop -> no further step attempts). else: return True
162eb2ee34fdecebf7be87ac009e79c0a715e25f
77077a391973d1f8c05647d08fc135facd04fc5e
/xlsxwriter/test/app/test_app02.py
fa347d734560186995daf0fad3e57c79c5129178
[ "BSD-2-Clause-Views" ]
permissive
DeltaEpsilon7787/XlsxWriter
28fb1012eaa42ea0f82e063f28c0c548ca016c5e
550b9c5bd678c861dcc9f6f4072b33a69566e065
refs/heads/main
2023-08-02T09:14:10.657395
2021-09-06T10:51:56
2021-09-06T10:51:56
384,948,081
0
0
NOASSERTION
2021-07-11T12:57:26
2021-07-11T12:57:25
null
UTF-8
Python
false
false
2,234
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2021, John McNamara, [email protected] # import unittest from io import StringIO from ..helperfunctions import _xml_to_list from ...app import App class TestAssembleApp(unittest.TestCase): """ Test assembling a complete App file. """ def test_assemble_xml_file(self): """Test writing an App file.""" self.maxDiff = None fh = StringIO() app = App() app._set_filehandle(fh) app._add_part_name('Sheet1') app._add_part_name('Sheet2') app._add_heading_pair(('Worksheets', 2)) app._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <Properties xmlns="http://schemas.openxmlformats.org/officeDocument/2006/extended-properties" xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes"> <Application>Microsoft Excel</Application> <DocSecurity>0</DocSecurity> <ScaleCrop>false</ScaleCrop> <HeadingPairs> <vt:vector size="2" baseType="variant"> <vt:variant> <vt:lpstr>Worksheets</vt:lpstr> </vt:variant> <vt:variant> <vt:i4>2</vt:i4> </vt:variant> </vt:vector> </HeadingPairs> <TitlesOfParts> <vt:vector size="2" baseType="lpstr"> <vt:lpstr>Sheet1</vt:lpstr> <vt:lpstr>Sheet2</vt:lpstr> </vt:vector> </TitlesOfParts> <Company> </Company> <LinksUpToDate>false</LinksUpToDate> <SharedDoc>false</SharedDoc> <HyperlinksChanged>false</HyperlinksChanged> <AppVersion>12.0000</AppVersion> </Properties> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
884954af9fd64a0f3d0508d1272327e2ed3bedf5
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03013/s813541273.py
bdbeb4a2fbfb0352ad56b6b9937305511b1f8a7c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
N, M = map(int, input().split(' ')) broken_list = [] if M > 0: for i in range(M): broken_list.append(int(input())) broken_set =set(broken_list) nums = [0] * (N + 1) nums[0] = 1 if 1 not in broken_set: nums[1] = 1 for i in range(2, N + 1): nums[i] = nums[i - 1] + nums[i - 2] if i in broken_set: nums[i] = 0 print(nums[N] % 1000000007)
276a93f98115025f9db6a4c5e6df42b82e9feccc
db274b14aa63f4cf40b1e496ffeef918d8654f69
/manage.py
d6262ef4e1dd3c3abaf89b085aa2ffe2f3d672f2
[]
no_license
mahmudgithub/demo_pactics_project_seven
02f98d8373dfa3e9b5d8e06d2e5f01a030d48291
4a8aa330a6abfb5e12916c368bd849190788127a
refs/heads/master
2022-03-28T11:58:34.185598
2020-01-29T06:35:22
2020-01-29T06:35:22
236,919,480
2
0
null
null
null
null
UTF-8
Python
false
false
629
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project_g.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
4159cf0257ad3d20a29b9c1d3308026f6be5c1cf
1925c535d439d2d47e27ace779f08be0b2a75750
/leetcode/best_time_to_buy_and_sell_stock_4.py
1d58d8730fa45eba6ecf813ee448ef105a05236d
[]
no_license
arthurDz/algorithm-studies
ee77d716041671c4b8bb757d8d96f3d10b6589f7
1e4d23dd0c40df34f58d71c7ca3e6491be732075
refs/heads/master
2023-04-27T12:17:06.209278
2021-04-30T20:16:18
2021-04-30T20:16:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,462
py
# Say you have an array for which the ith element is the price of a given stock on day i. # Design an algorithm to find the maximum profit. You may complete at most k transactions. # Note: # You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again). # Example 1: # Input: [2,4,1], k = 2 # Output: 2 # Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2. # Example 2: # Input: [3,2,6,5,0,3], k = 2 # Output: 7 # Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4. # Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3. def maxProfit(k, prices): if not prices or k < 0: return 0 minimum = prices[0] profit = 0 for key, v in enumerate(prices): minimum = min(minimum, v) if k == 1: profit = max(profit, v - minimum) else: profit = max(profit, v - minimum + maxProfit(k - 1, prices[key + 1:])) return profit def maxProfit(k, prices): n = len(prices) if n < 2: return 0 # k is big enougth to cover all ramps. if k >= n / 2: return sum(i - j for i, j in zip(prices[1:], prices[:-1]) if i - j > 0) globalMax = [[0] * n for _ in xrange(k + 1)] for i in xrange(1, k + 1): # The max profit with i transations and selling stock on day j. localMax = [0] * n for j in xrange(1, n): profit = prices[j] - prices[j - 1] localMax[j] = max( # We have made max profit with (i - 1) transations in # (j - 1) days. # For the last transation, we buy stock on day (j - 1) # and sell it on day j. globalMax[i - 1][j - 1] + profit, # We have made max profit with (i - 1) transations in # (j - 1) days. # For the last transation, we buy stock on day j and # sell it on the same day, so we have 0 profit, apparently # we do not have to add it. globalMax[i - 1][j - 1], # + 0, # We have made profit in (j - 1) days. # We want to cancel the day (j - 1) sale and sell it on # day j. localMax[j - 1] + profit) globalMax[i][j] = max(globalMax[i][j - 1], localMax[j]) return globalMax[k][-1]
7d721c03caa26629e29120c9c88caf4b817914fe
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/codeInsight/smartEnter/colonAfterFinalCaseClauseWithPrecedingIncompleteCaseClause.py
ff245238744da24b5bebf8391bf5e8c4d1ab488c
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
83
py
match x: case 1: pass case case 3: pass case<caret>
f2af3503bf7206c6d28a8f29b727061a682f9706
3bafaed1d12e4e1fb221a11998a7b9a858b04644
/App/migrations/0013_auto_20201230_1553.py
fb1ff2ce8bdd568a36fb4d395ecb6cc782160ba0
[]
no_license
nian-20/AtroBOM
8c96e9247292b5f4a3a4f22b7d93a8749f7ed80c
0370636238e722489b3fddc3a65d4e9ceb7cbfb0
refs/heads/master
2023-08-15T09:13:10.042024
2021-09-30T19:12:03
2021-09-30T19:12:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
# Generated by Django 3.1.4 on 2020-12-30 12:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('App', '0012_auto_20201230_1544'), ] operations = [ migrations.AlterField( model_name='rate', name='rate', field=models.CharField(blank=True, max_length=10, null=True, verbose_name=' ضریب مصرف '), ), ]
50a143d4fe47cc7b13e7ca802246ee09743ff7a8
2d82d4c6574bd6d32f2cf1c781615f7951f55f66
/muntjac/event/dd/acceptcriteria/and_.py
255229b61f9d197892bc0c331d353dba4488b0e7
[ "Apache-2.0" ]
permissive
metaperl/muntjac
f83f745ee03942a61af92ee7fba7285aa9c46f3c
8db97712edd81b4d25deaaa48587d2a08010f2c8
refs/heads/master
2021-01-15T22:04:25.057862
2012-11-09T03:52:59
2012-11-09T03:52:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
960
py
# @MUNTJAC_COPYRIGHT@ # @MUNTJAC_LICENSE@ """A compound criterion that accepts the drag if all of its criteria accepts the drag.""" from muntjac.event.dd.acceptcriteria.client_side_criterion import \ ClientSideCriterion class And(ClientSideCriterion): """A compound criterion that accepts the drag if all of its criteria accepts the drag. @see: L{Or} """ def __init__(self, *criteria): """@param criteria: criteria of which the And criterion will be composed """ self.criteria = criteria def paintContent(self, target): super(And, self).paintContent(target) for crit in self.criteria: crit.paint(target) def accept(self, dragEvent): for crit in self.criteria: if not crit.accept(dragEvent): return False return True def getIdentifier(self): return 'com.vaadin.event.dd.acceptcriteria.And'
73a3cec53ce6d0265522dccd62a747fdbcca6834
f023692f73992354a0b7823d9c49ae730c95ab52
/AtCoderBeginnerContest/1XX/157/D.py
b0ded2ec31985f6eebca56e6df87d7327321da26
[]
no_license
corutopi/AtCorder_python
a959e733f9a3549fab7162023e414ac2c99c4abe
a2c78cc647076071549e354c398155a65d5e331a
refs/heads/master
2023-08-31T09:40:35.929155
2023-08-20T06:19:35
2023-08-20T06:19:35
197,030,129
1
0
null
2022-06-22T04:06:28
2019-07-15T15:57:34
Python
UTF-8
Python
false
false
2,140
py
import sys sys.setrecursionlimit(10 ** 6) # from decorator import stop_watch # # # @stop_watch def solve(N, M, K, ABs, CDs): friend_map = [[] for _ in range(N + 1)] for a, b in ABs: friend_map[a].append(b) friend_map[b].append(a) block_map = [[] for _ in range(N + 1)] for c, d in CDs: block_map[c].append(d) block_map[d].append(c) def dfs(group_num, members, now_n): belongs[now_n] = group_num members.append(now_n) for f in friend_map[now_n]: if belongs[f] == -1: members = dfs(group_num, members, f) return members friend_groups = [] belongs = [-1] * (N + 1) for i in range(1, N + 1): if belongs[i] == -1: m = dfs(len(friend_groups), [], i) m.sort() friend_groups.append(m) ans = '' for n in range(1, N + 1): block = 0 group = friend_groups[belongs[n]] for b in block_map[n]: if belongs[n] == belongs[b]: block += 1 ans += ' ' + str(len(group) - len(friend_map[n]) - block - 1) print(ans[1:]) if __name__ == '__main__': # # handmade test # N, M, K = 2 * 10 ** 5, 10 ** 5, 10 ** 5 # ABs = [[1, i] for i in range(2, 10 ** 5 + 2)] # CDs = [[i, i + 1] for i in range(2, 10 ** 5 + 2)] # # handmade random # import random # N, M, K = 20, 10, 10 # ABs = [] # while True: # if len(ABs) == M: # break # a = random.randint(1, N - 1) # b = random.randint(a + 1, N) # if not [a, b] in ABs: # ABs.append([a, b]) # CDs = [] # while True: # if len(CDs) == K: # break # c = random.randint(1, N - 1) # d = random.randint(c + 1, N) # if not [c, d] in ABs and not [c, d] in CDs: # CDs.append([c, d]) # print(N, M, K) # print(ABs) # print(CDs) N, M, K = map(int, input().split()) ABs = [[int(i) for i in input().split()] for _ in range(M)] CDs = [[int(i) for i in input().split()] for _ in range(K)] solve(N, M, K, ABs, CDs)
6aa7e3d975d5bf066350200717a911882e17e7eb
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02572/s151845218.py
31aa5234e9d20d7b4ae01fd2cf130eac5d0d9908
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
N = int(input()) #入力する整数 A = list(map(int,input().split())) #入力する数列A SUMA = sum(A) #数列の和 MOD = 10**9 + 7 # mod C = [0] * (N-1) #累積和数列 for i in range(N-1): #\sum_{j = i+1}^{N}を求めて数列に代入する SUMA -= A[i] C[i] = SUMA ans = 0 #求める答え for i in range(N-1): ans += A[i]*C[i] ans %= MOD #その都度modで割った余りにする print(ans) #答えを出力する
0225bd6623519534724f02704f9d1bdca8fa82b6
210af68aec4713e8cbe8dc988d509090815e6ff4
/0x04-python-more_data_structures/9-multiply_by_2.py
adcaf10fe0fc6a3ad8467a5cb752a4816fcc9910
[]
no_license
mahdibz97/holbertonschool-higher_level_programming
8e383d474438ba563311f829a763ce8733931c1a
7184a1eadcaf76f33135c00effe4390b1c227cbd
refs/heads/master
2022-12-19T12:29:44.678292
2020-09-25T07:56:44
2020-09-25T07:56:44
259,281,398
0
0
null
null
null
null
UTF-8
Python
false
false
153
py
#!/usr/bin/python3 def multiply_by_2(a_dictionary): new = {} for i in a_dictionary.keys(): new[i] = (a_dictionary[i] * 2) return new
b67f2769bfefa0625cc6527943ef1b7faf9c0f9a
ff1fe0e31e863ab69e2434b574115fed782d76ad
/set.py
e37f9c7d1e8de9534208c0ced057cebe0e3f014c
[]
no_license
tasnuvaleeya/python_programming
cd7200e0dc0c4ec6bd23c4f9360fc251a7c4a516
45a577634e53a1c4cab927eb770cde01a00571ce
refs/heads/master
2021-04-12T02:47:46.011445
2018-03-17T14:54:09
2018-03-17T14:54:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
groceries = {'cereal', 'milk','rice', 'beer', 'beer'} if 'milk' in groceries: print('you already have milk') else: print('oh yes u need milk')
9f46f7e89e19b7e65cfb7e37c5e03e9be0b2d4fe
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/speech-text-file/gTTS/build/lib/gtts/tokenizer/symbols.py
3d40893c51295eda1b689b6f438f7089a38dc848
[ "LicenseRef-scancode-other-permissive" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:a7c43c0c9dfa06ad8af4ec38d5a26b50deffacc6f2b881170eb8a37576f6d970 size 278
79c19d888d893e972115162a390efd937500f92b
90f39575e1164e928359dd9afb602999bf68a71c
/valuenode.py
b747c749b403c752a05962ee9c650c90a253b6e9
[]
no_license
sachinjose/Programming_Language
bcf4cbaa147f236b29be4b97936d3540b6e399fe
1d5749e7339a95b25ce37a93987b447e7e46e85c
refs/heads/main
2023-06-01T23:56:39.824175
2021-06-17T04:39:55
2021-06-17T04:39:55
374,157,153
0
0
null
null
null
null
UTF-8
Python
false
false
17,381
py
from strings_with_arrows import * import string import os import math import constants from error import * from position import * from lexer import * from nodes import * from rtresult import * ######################################################## ## Value ######################################################## ##for storing numbers and operating on them with other numbers. class Value: def __init__(self): self.set_pos() self.set_context() def set_pos(self, pos_start = None, pos_end = None): ## if we face an error we need to know where the error is in self.pos_start = pos_start self.pos_end = pos_end return self def set_context(self, context=None):##Context for error handling self.context = context return self def added_to(self, other): return None, self.illegal_operation(other) def subbed_by(self, other): return None, self.illegal_operation(other) def multed_by(self, other): return None, self.illegal_operation(other) def dived_by(self, other): return None, self.illegal_operation(other) def powed_by(self, other): return None, self.illegal_operation(other) def get_comparison_eq(self, other): return None, self.illegal_operation(other) def get_comparison_ne(self, other): return None, self.illegal_operation(other) def get_comparison_lt(self, other): return None, self.illegal_operation(other) def get_comparison_gt(self, other): return None, self.illegal_operation(other) def get_comparison_lte(self, other): return None, self.illegal_operation(other) def get_comparison_gte(self, other): return None, self.illegal_operation(other) def anded_by(self, other): return None, self.illegal_operation(other) def ored_by(self, other): return None, self.illegal_operation(other) def notted(self): return None, self.illegal_operation(other) def execute(self, args): return RTResult().failure(self.illegal_operation()) def copy(self): raise Exception('No copy method defined') def is_true(self): return False def illegal_operation(self, other=None): if not other: other = self return RTError(self.pos_start, other.pos_end,'Illegal operation',self.context) class String(Value): def __init__(self, value): super().__init__() self.value = value def added_to(self, other): ##concatenate if isinstance(other, String): return String(self.value + other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def multed_by(self, other):##repeat the string other.values number of time if isinstance(other, Number): return String(self.value * other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def is_true(self): return len(self.value) > 0 def copy(self): copy = String(self.value) copy.set_pos(self.pos_start, self.pos_end) copy.set_context(self.context) return copy def __str__(self): return self.value def __repr__(self): return f'"{self.value}"' class Number(Value): def __init__(self,value): self.value = value self.set_pos() self.set_context() def added_to(self,other): if isinstance(other, Number): ##check if the value that we are operating on is a number return Number(self.value + other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def subbed_by(self,other): if isinstance(other, Number): ##check if the value that we are operating on is a number return Number(self.value - other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def multed_by(self,other): if isinstance(other, Number): ##check if the value that we are operating on is a number return Number(self.value * other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def dived_by(self,other): if isinstance(other, Number): ##check if the value that we are operating on is a number if other.value == 0: return None, return Number(self.value / other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def powed_by(self, other): if isinstance(other, Number): ##return poer return Number(self.value ** other.value).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_eq(self, other): if isinstance(other, Number): ## comparison operator == return Number(int(self.value == other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_ne(self, other): if isinstance(other, Number): ## comparison for != return Number(int(self.value != other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_lt(self, other): if isinstance(other, Number): ##compairon for < return Number(int(self.value < other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_gt(self, other): if isinstance(other, Number): ##comparion for > return Number(int(self.value > other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_lte(self, other): if isinstance(other, Number): ##comparison for less than or equal to <= return Number(int(self.value <= other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def get_comparison_gte(self, other): if isinstance(other, Number): ##comparison for greater than or equal to >= return Number(int(self.value >= other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def anded_by(self, other): if isinstance(other, Number): ##comparison for and return Number(int(self.value and other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def ored_by(self, other): if isinstance(other, Number): ##comparison for or return Number(int(self.value or other.value)).set_context(self.context), None else: return None, Value.illegal_operation(self, other) def notted(self): ##comparison for not function if self.value == 0: return Number(1).set_context(self.context), None else : return Number(0).set_context(self.context), None def is_true(self): return self.value != 0 def copy(self): copy = Number(self.value) copy.set_pos(self.set_pos,self.pos_end) copy.set_context(self.context) return copy def __repr__(self): return str(self.value) Number.null = Number(0) Number.true = Number(1) Number.false = Number(0) Number.math_PI = Number(math.pi) class BaseFunction(Value): def __init__(self, name): super().__init__() self.name = name or "<anonymous>" ##anonymous if it doesnt have a name def generate_new_context(self): ##new context for new function new_context = Context(self.name, self.context, self.pos_start) new_context.symbol_table = SymbolTable(new_context.parent.symbol_table) return new_context def check_args(self, arg_names, args): ##check if there are the correct numbr of arguments res = RTResult() if len(args) > len(arg_names): return res.failure(RTError(self.pos_start, self.pos_end,f"{len(args) - len(arg_names)} too many args passed into {self}",self.context)) if len(args) < len(arg_names): return res.failure(RTError(self.pos_start, self.pos_end,f"{len(arg_names) - len(args)} too few args passed into {self}",self.context)) return res.success(None) def populate_args(self, arg_names, args, exec_ctx): ##put all arguments to symbol table for i in range(len(args)): arg_name = arg_names[i] arg_value = args[i] arg_value.set_context(exec_ctx) exec_ctx.symbol_table.set(arg_name, arg_value) def check_and_populate_args(self, arg_names, args, exec_ctx): ##check the args and populate them res = RTResult() res.register(self.check_args(arg_names, args)) if res.error: return res self.populate_args(arg_names, args, exec_ctx) return res.success(None) class Function(BaseFunction): def __init__(self, name, body_node, arg_names, should_auto_return): super().__init__(name) self.body_node = body_node self.arg_names = arg_names self.should_auto_return = should_auto_return def execute(self, args): ##execute functions res = RTResult() interpreter = Interpreter() exec_ctx = self.generate_new_context() res.register(self.check_and_populate_args(self.arg_names, args, exec_ctx)) if res.error: return res value = res.register(interpreter.visit(self.body_node, exec_ctx)) if res.should_return() and res.func_return_value == None: return res ret_value = (value if self.should_auto_return else None) or res.func_return_value or Number.null return res.success(ret_value) def copy(self): copy = Function(self.name, self.body_node, self.arg_names, self.should_auto_return) copy.set_context(self.context) copy.set_pos(self.pos_start, self.pos_end) return copy def __repr__(self): return f"<function {self.name}>" class BuiltInFunction(BaseFunction): def __init__(self, name): super().__init__(name) def execute(self, args): res = RTResult() exec_ctx = self.generate_new_context() ##create new exec context method_name = f'execute_{self.name}' ##create seperate function for every method = getattr(self, method_name, self.no_visit_method) res.register(self.check_and_populate_args(method.arg_names, args, exec_ctx)) if res.should_return(): return res return_value = res.register(method(exec_ctx)) if res.should_return(): return res return res.success(return_value) def no_visit_method(self, node, context): ## if method ist defined raise Exception(f'No execute_{self.name} method defined') def copy(self): copy = BuiltInFunction(self.name) copy.set_context(self.context) copy.set_pos(self.pos_start, self.pos_end) return copy def __repr__(self): return f"<built-in function {self.name}>" ##################################### def execute_print(self, exec_ctx): print(str(exec_ctx.symbol_table.get('value'))) ##print from symbol table return RTResult().success(Number.null) execute_print.arg_names = ['value'] ## we get the arg_name methods from the method def execute_print_ret(self, exec_ctx): return RTResult().success(String(str(exec_ctx.symbol_table.get('value')))) ##return value that should be printed execute_print_ret.arg_names = ['value'] def execute_input(self, exec_ctx): ##take inpute text = input() return RTResult().success(String(text)) execute_input.arg_names = [] def execute_input_int(self, exec_ctx): while True: text = input() try: number = int(text) break except ValueError: print(f"'{text}' must be an integer. Try again!") return RTResult().success(Number(number)) execute_input_int.arg_names = [] def execute_clear(self, exec_ctx): os.system('cls' if os.name == 'nt' else 'cls') ##clear the terminal return RTResult().success(Number.null) execute_clear.arg_names = [] def execute_is_number(self, exec_ctx): is_number = isinstance(exec_ctx.symbol_table.get("value"), Number) return RTResult().success(Number.true if is_number else Number.false) execute_is_number.arg_names = ["value"] def execute_is_string(self, exec_ctx): is_number = isinstance(exec_ctx.symbol_table.get("value"), String) return RTResult().success(Number.true if is_number else Number.false) execute_is_string.arg_names = ["value"] def execute_is_list(self, exec_ctx): is_number = isinstance(exec_ctx.symbol_table.get("value"), List) return RTResult().success(Number.true if is_number else Number.false) execute_is_list.arg_names = ["value"] def execute_is_function(self, exec_ctx): is_number = isinstance(exec_ctx.symbol_table.get("value"), BaseFunction) return RTResult().success(Number.true if is_number else Number.false) execute_is_function.arg_names = ["value"] def execute_append(self, exec_ctx): list_ = exec_ctx.symbol_table.get("list") value = exec_ctx.symbol_table.get("value") if not isinstance(list_, List): return RTResult().failure(RTError(self.pos_start, self.pos_end,"First argument must be list",exec_ctx)) list_.elements.append(value) return RTResult().success(Number.null) execute_append.arg_names = ["list", "value"] def execute_pop(self, exec_ctx): list_ = exec_ctx.symbol_table.get("list") index = exec_ctx.symbol_table.get("index") if not isinstance(list_, List): return RTResult().failure(RTError( self.pos_start, self.pos_end, "First argument must be list", exec_ctx )) if not isinstance(index, Number): return RTResult().failure(RTError( self.pos_start, self.pos_end, "Second argument must be number", exec_ctx )) try: element = list_.elements.pop(index.value) except: return RTResult().failure(RTError( self.pos_start, self.pos_end, 'Element at this index could not be removed from list because index is out of bounds', exec_ctx )) return RTResult().success(element) execute_pop.arg_names = ["list", "index"] def execute_extend(self, exec_ctx): listA = exec_ctx.symbol_table.get("listA") listB = exec_ctx.symbol_table.get("listB") if not isinstance(listA, List): return RTResult().failure(RTError( self.pos_start, self.pos_end, "First argument must be list", exec_ctx )) if not isinstance(listB, List): return RTResult().failure(RTError( self.pos_start, self.pos_end, "Second argument must be list", exec_ctx )) listA.elements.extend(listB.elements) return RTResult().success(Number.null) execute_extend.arg_names = ["listA", "listB"] def execute_len(self, exec_ctx): ##length of a list list_ = exec_ctx.symbol_table.get("list") if not isinstance(list_, List): return RTResult().failure(RTError( self.pos_start, self.pos_end, "Argument must be list", exec_ctx )) return RTResult().success(Number(len(list_.elements))) execute_len.arg_names = ["list"] def execute_run(self, exec_ctx): fn = exec_ctx.symbol_table.get("fn") ##get file name from symbol table if not isinstance(fn, String):##raise error if it isnt a string return RTResult().failure(RTError(self.pos_start, self.pos_end,"Second argument must be string",exec_ctx)) fn = fn.value try: with open(fn, "r") as f: ##open file in readmode and assign it to variable f script = f.read() ##script content of faile except Exception as e: return RTResult().failure(RTError(self.pos_start, self.pos_end,f"Failed to load script \"{fn}\"\n" + str(e),exec_ctx)) _, error = run(fn, script) if error: return RTResult().failure(RTError(self.pos_start, self.pos_end,f"Failed to finish executing script \"{fn}\"\n" +error.as_string(),exec_ctx)) return RTResult().success(Number.null) execute_run.arg_names = ["fn"] BuiltInFunction.print = BuiltInFunction("print") BuiltInFunction.print_ret = BuiltInFunction("print_ret") BuiltInFunction.input = BuiltInFunction("input") BuiltInFunction.input_int = BuiltInFunction("input_int") BuiltInFunction.clear = BuiltInFunction("clear") BuiltInFunction.is_number = BuiltInFunction("is_number") BuiltInFunction.is_string = BuiltInFunction("is_string") BuiltInFunction.is_list = BuiltInFunction("is_list") BuiltInFunction.is_function = BuiltInFunction("is_function") BuiltInFunction.append = BuiltInFunction("append") BuiltInFunction.pop = BuiltInFunction("pop") BuiltInFunction.extend = BuiltInFunction("extend") BuiltInFunction.len = BuiltInFunction("len") BuiltInFunction.run = BuiltInFunction("run") class List(Value): def __init__(self, elements): super().__init__() self.elements = elements def added_to(self, other): new_list = self.copy() new_list.elements.append(other) return new_list, None def subbed_by(self, other): if isinstance(other, Number): new_list = self.copy() try: ##if the element doesnt exist new_list.elements.pop(other.value) return new_list, None except: return None, RTError(other.pos_start, other.pos_end,'Element at this index could not be removed from list because index is out of bounds',self.context) else: return None, Value.illegal_operation(self, other) def dived_by(self, other): if isinstance(other, Number): try: return self.elements[other.value], None except: return None, RTError(other.pos_start, other.pos_end,'Element at this index could not be retrieved from list because index is out of bounds',self.context) else: return None, Value.illegal_operation(self, other) def copy(self): copy = List(self.elements) copy.set_pos(self.pos_start, self.pos_end) copy.set_context(self.context) return copy def __repr__(self): return f'[{", ".join([str(x) for x in self.elements])}]'
4b063dac8fbb9c047f40f60e35b317e14d6ab716
ba2f34ff8a7b2c36ae88a2f02ca495ad084bb6ab
/Cryptanalysis/break_autokey.py
aecc051205c004e9a18d31b229c6ec47d72a3899
[ "MIT" ]
permissive
BlackLuny/cyberweapons
bc05e07cdc67f58c9cf68178762eb541c8c0cc55
dfd4623f323ba702bae7c9f71132b4584636d2e5
refs/heads/master
2021-05-16T07:28:35.651835
2017-09-16T21:04:50
2017-09-16T21:04:50
103,801,285
1
0
null
2017-09-17T03:50:18
2017-09-17T03:50:18
null
UTF-8
Python
false
false
2,037
py
from ngram_score import ngram_score from pycipher import Autokey import re from itertools import permutations qgram = ngram_score('quadgrams.txt') trigram = ngram_score('trigrams.txt') ctext = 'isjiqymdebvuzrvwhmvysibugzhyinmiyeiklcvioimbninyksmmnjmgalvimlhspjxmgfiraqlhjcpvolqmnyynhpdetoxemgnoxl' ctext = re.sub(r'[^A-Z]','',ctext.upper()) # keep a list of the N best things we have seen, discard anything else class nbest(object): def __init__(self,N=1000): self.store = [] self.N = N def add(self,item): self.store.append(item) self.store.sort(reverse=True) self.store = self.store[:self.N] def __getitem__(self,k): return self.store[k] def __len__(self): return len(self.store) #init N=100 for KLEN in range(3,20): rec = nbest(N) for i in permutations('ABCDEFGHIJKLMNOPQRSTUVWXYZ',3): key = ''.join(i) + 'A'*(KLEN-len(i)) pt = Autokey(key).decipher(ctext) score = 0 for j in range(0,len(ctext),KLEN): score += trigram.score(pt[j:j+3]) rec.add((score,''.join(i),pt[:30])) next_rec = nbest(N) for i in range(0,KLEN-3): for k in xrange(N): for c in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': key = rec[k][1] + c fullkey = key + 'A'*(KLEN-len(key)) pt = Autokey(fullkey).decipher(ctext) score = 0 for j in range(0,len(ctext),KLEN): score += qgram.score(pt[j:j+len(key)]) next_rec.add((score,key,pt[:30])) rec = next_rec next_rec = nbest(N) bestkey = rec[0][1] pt = Autokey(bestkey).decipher(ctext) bestscore = qgram.score(pt) for i in range(N): pt = Autokey(rec[i][1]).decipher(ctext) score = qgram.score(pt) if score > bestscore: bestkey = rec[i][1] bestscore = score print bestscore,'autokey, klen',KLEN,':"'+bestkey+'",',Autokey(bestkey).decipher(ctext)
bff7768f9a5f3a84f3142fcac45842c549f8bd13
d5b60325d88d59bb3c6cde58036514921abfd6e9
/DjangoChat/DjangoChat/wsgi.py
c2d57315e9c4b78413c290b4da11fa09adacfd85
[]
no_license
dagrishin/DjangoChat
472044874bbd1a91efe5a7e6611af02aa485acd1
d800fff81ac3632752e3486a90c062dde4b18780
refs/heads/master
2022-12-22T06:56:57.676392
2020-09-29T07:14:50
2020-09-29T07:14:50
299,532,590
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" WSGI config for DjangoChat project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DjangoChat.settings") application = get_wsgi_application()
7cc166e065fe935c41d23495250403d7dcdf2d32
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/pytorch/source/caffe2/python/workspace_test.py
93bcb115e685bccfd0f46ea8cc663fdb6cd3d849
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
26,342
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import os import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core, test_util, workspace, model_helper, brew import caffe2.python.hypothesis_test_util as htu import hypothesis.strategies as st from hypothesis import given class TestWorkspace(unittest.TestCase): def setUp(self): self.net = core.Net("test-net") self.testblob_ref = self.net.ConstantFill( [], "testblob", shape=[1, 2, 3, 4], value=1.0) workspace.ResetWorkspace() def testRootFolder(self): self.assertEqual(workspace.ResetWorkspace(), True) self.assertEqual(workspace.RootFolder(), ".") self.assertEqual( workspace.ResetWorkspace("/tmp/caffe-workspace-test"), True) self.assertEqual(workspace.RootFolder(), "/tmp/caffe-workspace-test") def testWorkspaceHasBlobWithNonexistingName(self): self.assertEqual(workspace.HasBlob("non-existing"), False) def testRunOperatorOnce(self): self.assertEqual( workspace.RunOperatorOnce( self.net.Proto().op[0].SerializeToString() ), True ) self.assertEqual(workspace.HasBlob("testblob"), True) blobs = workspace.Blobs() self.assertEqual(len(blobs), 1) self.assertEqual(blobs[0], "testblob") def testGetOperatorCost(self): op = core.CreateOperator( "Conv2D", ["X", "W"], ["Y"], stride_h=1, stride_w=1, pad_t=1, pad_l=1, pad_b=1, pad_r=1, kernel=3, ) X = np.zeros((1, 8, 8, 8)) W = np.zeros((1, 1, 3, 3)) workspace.FeedBlob("X", X) workspace.FeedBlob("W", W) flops, _ = workspace.GetOperatorCost(op.SerializeToString(), ["X", "W"]) self.assertEqual(flops, 1152) def testRunNetOnce(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) self.assertEqual(workspace.HasBlob("testblob"), True) def testCurrentWorkspaceWrapper(self): self.assertNotIn("testblob", workspace.C.Workspace.current.blobs) self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) self.assertEqual(workspace.HasBlob("testblob"), True) self.assertIn("testblob", workspace.C.Workspace.current.blobs) workspace.ResetWorkspace() self.assertNotIn("testblob", workspace.C.Workspace.current.blobs) def testRunPlan(self): plan = core.Plan("test-plan") plan.AddStep(core.ExecutionStep("test-step", self.net)) self.assertEqual( workspace.RunPlan(plan.Proto().SerializeToString()), True) self.assertEqual(workspace.HasBlob("testblob"), True) def testRunPlanInBackground(self): plan = core.Plan("test-plan") plan.AddStep(core.ExecutionStep("test-step", self.net)) background_plan = workspace.RunPlanInBackground(plan) while not background_plan.is_done(): pass self.assertEqual(background_plan.is_succeeded(), True) self.assertEqual(workspace.HasBlob("testblob"), True) def testConstructPlanFromSteps(self): step = core.ExecutionStep("test-step-as-plan", self.net) self.assertEqual(workspace.RunPlan(step), True) self.assertEqual(workspace.HasBlob("testblob"), True) def testResetWorkspace(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) self.assertEqual(workspace.HasBlob("testblob"), True) self.assertEqual(workspace.ResetWorkspace(), True) self.assertEqual(workspace.HasBlob("testblob"), False) def testTensorAccess(self): ws = workspace.C.Workspace() """ test in-place modification """ ws.create_blob("tensor").feed(np.array([1.1, 1.2, 1.3])) tensor = ws.blobs["tensor"].tensor() tensor.data[0] = 3.3 val = np.array([3.3, 1.2, 1.3]) np.testing.assert_array_equal(tensor.data, val) np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val) """ test in-place initialization """ tensor.init([2, 3], core.DataType.INT32) for x in range(2): for y in range(3): tensor.data[x, y] = 0 tensor.data[1, 1] = 100 val = np.zeros([2, 3], dtype=np.int32) val[1, 1] = 100 np.testing.assert_array_equal(tensor.data, val) np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val) """ strings cannot be initialized from python """ with self.assertRaises(RuntimeError): tensor.init([3, 4], core.DataType.STRING) """ feed (copy) data into tensor """ val = np.array([[b'abc', b'def'], [b'ghi', b'jkl']], dtype=np.object) tensor.feed(val) self.assertEquals(tensor.data[0, 0], b'abc') np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val) val = np.array([1.1, 10.2]) tensor.feed(val) val[0] = 5.2 self.assertEquals(tensor.data[0], 1.1) """ fetch (copy) data from tensor """ val = np.array([1.1, 1.2]) tensor.feed(val) val2 = tensor.fetch() tensor.data[0] = 5.2 val3 = tensor.fetch() np.testing.assert_array_equal(val, val2) self.assertEquals(val3[0], 5.2) def testFetchFeedBlob(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) fetched = workspace.FetchBlob("testblob") # check if fetched is correct. self.assertEqual(fetched.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched, 1.0) fetched[:] = 2.0 self.assertEqual(workspace.FeedBlob("testblob", fetched), True) fetched_again = workspace.FetchBlob("testblob") self.assertEqual(fetched_again.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched_again, 2.0) def testFetchFeedBlobViaBlobReference(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) fetched = workspace.FetchBlob(self.testblob_ref) # check if fetched is correct. self.assertEqual(fetched.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched, 1.0) fetched[:] = 2.0 self.assertEqual(workspace.FeedBlob(self.testblob_ref, fetched), True) fetched_again = workspace.FetchBlob("testblob") # fetch by name now self.assertEqual(fetched_again.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched_again, 2.0) def testFetchFeedBlobTypes(self): for dtype in [np.float16, np.float32, np.float64, np.bool, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16]: try: rng = np.iinfo(dtype).max * 2 except ValueError: rng = 1000 data = ((np.random.rand(2, 3, 4) - 0.5) * rng).astype(dtype) self.assertEqual(workspace.FeedBlob("testblob_types", data), True) fetched_back = workspace.FetchBlob("testblob_types") self.assertEqual(fetched_back.shape, (2, 3, 4)) self.assertEqual(fetched_back.dtype, dtype) np.testing.assert_array_equal(fetched_back, data) def testFetchFeedBlobBool(self): """Special case for bool to ensure coverage of both true and false.""" data = np.zeros((2, 3, 4)).astype(np.bool) data.flat[::2] = True self.assertEqual(workspace.FeedBlob("testblob_types", data), True) fetched_back = workspace.FetchBlob("testblob_types") self.assertEqual(fetched_back.shape, (2, 3, 4)) self.assertEqual(fetched_back.dtype, np.bool) np.testing.assert_array_equal(fetched_back, data) def testGetBlobSizeBytes(self): for dtype in [np.float16, np.float32, np.float64, np.bool, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16]: data = np.random.randn(2, 3).astype(dtype) self.assertTrue(workspace.FeedBlob("testblob_sizeBytes", data), True) self.assertEqual( workspace.GetBlobSizeBytes("testblob_sizeBytes"), 6 * np.dtype(dtype).itemsize) strs1 = np.array([b'Hello World!', b'abcd']) strs2 = np.array([b'element1', b'element2']) strs1_len, strs2_len = 0, 0 for str in strs1: strs1_len += len(str) for str in strs2: strs2_len += len(str) self.assertTrue(workspace.FeedBlob("testblob_str1", strs1), True) self.assertTrue(workspace.FeedBlob("testblob_str2", strs2), True) # size of blob "testblob_str1" = size_str1 * meta_.itemsize() + strs1_len # size of blob "testblob_str2" = size_str2 * meta_.itemsize() + strs2_len self.assertEqual( workspace.GetBlobSizeBytes("testblob_str1") - workspace.GetBlobSizeBytes("testblob_str2"), strs1_len - strs2_len) def testFetchFeedBlobZeroDim(self): data = np.empty(shape=(2, 0, 3), dtype=np.float32) self.assertEqual(workspace.FeedBlob("testblob_empty", data), True) fetched_back = workspace.FetchBlob("testblob_empty") self.assertEqual(fetched_back.shape, (2, 0, 3)) self.assertEqual(fetched_back.dtype, np.float32) def testFetchFeedLongStringTensor(self): # long strings trigger array of object creation strs = np.array([ b' '.join(10 * [b'long string']), b' '.join(128 * [b'very long string']), b'small \0\1\2 string', b"Hello, world! I have special \0 symbols \1!"]) workspace.FeedBlob('my_str_tensor', strs) strs2 = workspace.FetchBlob('my_str_tensor') self.assertEqual(strs.shape, strs2.shape) for i in range(0, strs.shape[0]): self.assertEqual(strs[i], strs2[i]) def testFetchFeedShortStringTensor(self): # small strings trigger NPY_STRING array strs = np.array([b'elem1', b'elem 2', b'element 3']) workspace.FeedBlob('my_str_tensor_2', strs) strs2 = workspace.FetchBlob('my_str_tensor_2') self.assertEqual(strs.shape, strs2.shape) for i in range(0, strs.shape[0]): self.assertEqual(strs[i], strs2[i]) def testFetchFeedPlainString(self): # this is actual string, not a tensor of strings s = b"Hello, world! I have special \0 symbols \1!" workspace.FeedBlob('my_plain_string', s) s2 = workspace.FetchBlob('my_plain_string') self.assertEqual(s, s2) def testFetchBlobs(self): s1 = b"test1" s2 = b"test2" workspace.FeedBlob('s1', s1) workspace.FeedBlob('s2', s2) fetch1, fetch2 = workspace.FetchBlobs(['s1', 's2']) self.assertEquals(s1, fetch1) self.assertEquals(s2, fetch2) def testFetchFeedViaBlobDict(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) fetched = workspace.blobs["testblob"] # check if fetched is correct. self.assertEqual(fetched.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched, 1.0) fetched[:] = 2.0 workspace.blobs["testblob"] = fetched fetched_again = workspace.blobs["testblob"] self.assertEqual(fetched_again.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched_again, 2.0) self.assertTrue("testblob" in workspace.blobs) self.assertFalse("non_existant" in workspace.blobs) self.assertEqual(len(workspace.blobs), 1) for key in workspace.blobs: self.assertEqual(key, "testblob") class TestMultiWorkspaces(unittest.TestCase): def setUp(self): workspace.SwitchWorkspace("default") workspace.ResetWorkspace() def testCreateWorkspace(self): self.net = core.Net("test-net") self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0) self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True ) self.assertEqual(workspace.HasBlob("testblob"), True) self.assertEqual(workspace.SwitchWorkspace("test", True), None) self.assertEqual(workspace.HasBlob("testblob"), False) self.assertEqual(workspace.SwitchWorkspace("default"), None) self.assertEqual(workspace.HasBlob("testblob"), True) try: # The following should raise an error. workspace.SwitchWorkspace("non-existing") # so this should never happen. self.assertEqual(True, False) except RuntimeError: pass workspaces = workspace.Workspaces() self.assertTrue("default" in workspaces) self.assertTrue("test" in workspaces) @unittest.skipIf(not workspace.has_gpu_support and not workspace.has_hip_support, "No gpu support.") class TestWorkspaceGPU(test_util.TestCase): def setUp(self): workspace.ResetWorkspace() self.net = core.Net("test-net") self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0) self.net.RunAllOnGPU() def testFetchBlobGPU(self): self.assertEqual( workspace.RunNetOnce(self.net.Proto().SerializeToString()), True) fetched = workspace.FetchBlob("testblob") # check if fetched is correct. self.assertEqual(fetched.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched, 1.0) fetched[:] = 2.0 self.assertEqual(workspace.FeedBlob("testblob", fetched), True) fetched_again = workspace.FetchBlob("testblob") self.assertEqual(fetched_again.shape, (1, 2, 3, 4)) np.testing.assert_array_equal(fetched_again, 2.0) def testGetGpuPeerAccessPattern(self): pattern = workspace.GetGpuPeerAccessPattern() self.assertEqual(type(pattern), np.ndarray) self.assertEqual(pattern.ndim, 2) self.assertEqual(pattern.shape[0], pattern.shape[1]) self.assertEqual(pattern.shape[0], workspace.NumGpuDevices()) @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") class TestWorkspaceIDEEP(test_util.TestCase): def testFeedFetchBlobIDEEP(self): arr = np.random.randn(2, 3).astype(np.float32) workspace.FeedBlob( "testblob_ideep", arr, core.DeviceOption(caffe2_pb2.IDEEP)) fetched = workspace.FetchBlob("testblob_ideep") np.testing.assert_array_equal(arr, fetched) class TestImmedibate(test_util.TestCase): def testImmediateEnterExit(self): workspace.StartImmediate(i_know=True) self.assertTrue(workspace.IsImmediate()) workspace.StopImmediate() self.assertFalse(workspace.IsImmediate()) def testImmediateRunsCorrectly(self): workspace.StartImmediate(i_know=True) net = core.Net("test-net") net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0) self.assertEqual( workspace.ImmediateBlobs(), ["testblob"]) content = workspace.FetchImmediate("testblob") # Also, the immediate mode should not invade the original namespace, # so we check if this is so. with self.assertRaises(RuntimeError): workspace.FetchBlob("testblob") np.testing.assert_array_equal(content, 1.0) content[:] = 2.0 self.assertTrue(workspace.FeedImmediate("testblob", content)) np.testing.assert_array_equal( workspace.FetchImmediate("testblob"), 2.0) workspace.StopImmediate() with self.assertRaises(RuntimeError): content = workspace.FetchImmediate("testblob") def testImmediateRootFolder(self): workspace.StartImmediate(i_know=True) # for testing we will look into the _immediate_root_folder variable # but in normal usage you should not access that. self.assertTrue(len(workspace._immediate_root_folder) > 0) root_folder = workspace._immediate_root_folder self.assertTrue(os.path.isdir(root_folder)) workspace.StopImmediate() self.assertTrue(len(workspace._immediate_root_folder) == 0) # After termination, immediate mode should have the root folder # deleted. self.assertFalse(os.path.exists(root_folder)) class TestCppEnforceAsException(test_util.TestCase): def testEnforce(self): op = core.CreateOperator("Relu", ["X"], ["Y"]) with self.assertRaises(RuntimeError): workspace.RunOperatorOnce(op) class TestCWorkspace(htu.HypothesisTestCase): def test_net_execution(self): ws = workspace.C.Workspace() self.assertEqual(ws.nets, {}) self.assertEqual(ws.blobs, {}) net = core.Net("test-net") net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0) ws.create_net(net) # If we do not specify overwrite, this should raise an error. with self.assertRaises(RuntimeError): ws.create_net(net) # But, if we specify overwrite, this should pass. ws.create_net(net, True) # Overwrite can also be a kwarg. ws.create_net(net, overwrite=True) self.assertIn("testblob", ws.blobs) self.assertEqual(len(ws.nets), 1) net_name = net.Proto().name self.assertIn("test-net", net_name) net = ws.nets[net_name].run() blob = ws.blobs["testblob"] np.testing.assert_array_equal( np.ones((1, 2, 3, 4), dtype=np.float32), blob.fetch()) @given(name=st.text(), value=st.floats(min_value=-1, max_value=1.0)) def test_operator_run(self, name, value): ws = workspace.C.Workspace() op = core.CreateOperator( "ConstantFill", [], [name], shape=[1], value=value) ws.run(op) self.assertIn(name, ws.blobs) np.testing.assert_allclose( [value], ws.blobs[name].fetch(), atol=1e-4, rtol=1e-4) @given(blob_name=st.text(), net_name=st.text(), value=st.floats(min_value=-1, max_value=1.0)) def test_net_run(self, blob_name, net_name, value): ws = workspace.C.Workspace() net = core.Net(net_name) net.ConstantFill([], [blob_name], shape=[1], value=value) ws.run(net) self.assertIn(blob_name, ws.blobs) self.assertNotIn(net_name, ws.nets) np.testing.assert_allclose( [value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4) @given(blob_name=st.text(), net_name=st.text(), plan_name=st.text(), value=st.floats(min_value=-1, max_value=1.0)) def test_plan_run(self, blob_name, plan_name, net_name, value): ws = workspace.C.Workspace() plan = core.Plan(plan_name) net = core.Net(net_name) net.ConstantFill([], [blob_name], shape=[1], value=value) plan.AddStep(core.ExecutionStep("step", nets=[net], num_iter=1)) ws.run(plan) self.assertIn(blob_name, ws.blobs) self.assertIn(net.Name(), ws.nets) np.testing.assert_allclose( [value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4) @given(blob_name=st.text(), net_name=st.text(), value=st.floats(min_value=-1, max_value=1.0)) def test_net_create(self, blob_name, net_name, value): ws = workspace.C.Workspace() net = core.Net(net_name) net.ConstantFill([], [blob_name], shape=[1], value=value) ws.create_net(net).run() self.assertIn(blob_name, ws.blobs) self.assertIn(net.Name(), ws.nets) np.testing.assert_allclose( [value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4) @given(name=st.text(), value=htu.tensor(), device_option=st.sampled_from(htu.device_options)) def test_array_serde(self, name, value, device_option): ws = workspace.C.Workspace() ws.create_blob(name).feed(value, device_option=device_option) self.assertIn(name, ws.blobs) blob = ws.blobs[name] np.testing.assert_equal(value, ws.blobs[name].fetch()) serde_blob = ws.create_blob("{}_serde".format(name)) serde_blob.deserialize(blob.serialize(name)) np.testing.assert_equal(value, serde_blob.fetch()) @given(name=st.text(), value=st.text()) def test_string_serde(self, name, value): value = value.encode('ascii', 'ignore') ws = workspace.C.Workspace() ws.create_blob(name).feed(value) self.assertIn(name, ws.blobs) blob = ws.blobs[name] self.assertEqual(value, ws.blobs[name].fetch()) serde_blob = ws.create_blob("{}_serde".format(name)) serde_blob.deserialize(blob.serialize(name)) self.assertEqual(value, serde_blob.fetch()) def test_exception(self): ws = workspace.C.Workspace() with self.assertRaises(TypeError): ws.create_net("...") class TestPredictor(unittest.TestCase): def _create_model(self): m = model_helper.ModelHelper() y = brew.fc(m, "data", "y", dim_in=4, dim_out=2, weight_init=('ConstantFill', dict(value=1.0)), bias_init=('ConstantFill', dict(value=0.0)), axis=0) m.net.AddExternalOutput(y) return m # Use this test with a bigger model to see how using Predictor allows to # avoid issues with low protobuf size limit in Python # # def test_predictor_predefined(self): # workspace.ResetWorkspace() # path = 'caffe2/caffe2/test/assets/' # with open(path + 'squeeze_predict_net.pb') as f: # self.predict_net = f.read() # with open(path + 'squeeze_init_net.pb') as f: # self.init_net = f.read() # self.predictor = workspace.Predictor(self.init_net, self.predict_net) # inputs = [np.zeros((1, 3, 256, 256), dtype='f')] # outputs = self.predictor.run(inputs) # self.assertEqual(len(outputs), 1) # self.assertEqual(outputs[0].shape, (1, 1000, 1, 1)) # self.assertAlmostEqual(outputs[0][0][0][0][0], 5.19026289e-05) def test_predictor_memory_model(self): workspace.ResetWorkspace() m = self._create_model() workspace.FeedBlob("data", np.zeros([4], dtype='float32')) self.predictor = workspace.Predictor( workspace.StringifyProto(m.param_init_net.Proto()), workspace.StringifyProto(m.net.Proto())) inputs = np.array([1, 3, 256, 256], dtype='float32') outputs = self.predictor.run([inputs]) np.testing.assert_array_almost_equal( np.array([[516, 516]], dtype='float32'), outputs) class TestTransform(htu.HypothesisTestCase): @given(input_dim=st.integers(min_value=1, max_value=10), output_dim=st.integers(min_value=1, max_value=10), batch_size=st.integers(min_value=1, max_value=10)) def test_simple_transform(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim) conv = brew.conv(m, fc2, "conv", dim_in=output_dim, dim_out=output_dim, use_cudnn=True, engine="CUDNN", kernel=3) conv.Relu([], conv)\ .Softmax([], "pred") \ .LabelCrossEntropy(["label"], ["xent"]) \ .AveragedLoss([], "loss") transformed_net_proto = workspace.ApplyTransform( "ConvToNNPack", m.net.Proto()) self.assertEqual(transformed_net_proto.op[2].engine, "NNPACK") @given(input_dim=st.integers(min_value=1, max_value=10), output_dim=st.integers(min_value=1, max_value=10), batch_size=st.integers(min_value=1, max_value=10)) def test_registry_invalid(self, input_dim, output_dim, batch_size): m = model_helper.ModelHelper() brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim) with self.assertRaises(RuntimeError): workspace.ApplyTransform( "definitely_not_a_real_transform", m.net.Proto()) @given(value=st.floats(min_value=-1, max_value=1)) def test_apply_transform_if_faster(self, value): init_net = core.Net("init_net") init_net.ConstantFill([], ["data"], shape=[5, 5, 5, 5], value=value) init_net.ConstantFill([], ["conv_w"], shape=[5, 5, 3, 3], value=value) init_net.ConstantFill([], ["conv_b"], shape=[5], value=value) self.assertEqual( workspace.RunNetOnce(init_net.Proto().SerializeToString()), True) m = model_helper.ModelHelper() conv = brew.conv(m, "data", "conv", dim_in=5, dim_out=5, kernel=3, use_cudnn=True, engine="CUDNN") conv.Relu([], conv)\ .Softmax([], "pred") \ .AveragedLoss([], "loss") self.assertEqual( workspace.RunNetOnce(m.net.Proto().SerializeToString()), True) proto = workspace.ApplyTransformIfFaster( "ConvToNNPack", m.net.Proto(), init_net.Proto()) self.assertEqual( workspace.RunNetOnce(proto.SerializeToString()), True) proto = workspace.ApplyTransformIfFaster( "ConvToNNPack", m.net.Proto(), init_net.Proto(), warmup_runs=10, main_runs=100, improvement_threshold=2.0) self.assertEqual( workspace.RunNetOnce(proto.SerializeToString()), True) if __name__ == '__main__': unittest.main()
10ea87ac6afba40de0a3d96e81db5dc69ef6df3d
7c3ad63b17b868672ff14e798bb965109c10d403
/src/kNN_single.py
6b257b9b63560794a04b98462bedff7409e85679
[]
no_license
ternaus/kaggle_liberty
87cc6e5259e1ea4ce69726a83e4e642db85d8e22
5eb17b6bf1f6f6f6f4f6eab880592547ad41007d
refs/heads/master
2016-09-11T02:13:22.121760
2015-08-26T22:23:47
2015-08-26T22:23:47
39,865,075
4
1
null
null
null
null
UTF-8
Python
false
false
1,025
py
from __future__ import division __author__ = 'Vladimir Iglovikov' from operator import itemgetter from sklearn import metrics from gini_normalized import normalized_gini import numpy as np import pandas as pd from sklearn.grid_search import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import StandardScaler import time joined = pd.read_csv('../data/joined.csv') train = joined[joined['Hazard'] != -1] test = joined[joined['Hazard'] == -1] y = train['Hazard'] X = train.drop(['Hazard', 'Id'], 1) X_test = test.drop(['Hazard', 'Id'], 1) scaler = StandardScaler() print 'scaling train' X = scaler.fit_transform(X) print 'scaling test' X_test = scaler.transform(X_test) clf = KNeighborsRegressor(n_neighbors=550) print 'fitting' clf.fit(X, y) print 'predicting' prediction = clf.predict(X_test) submission = pd.DataFrame() submission['Id'] = test['Id'] submission['Hazard'] = prediction submission.to_csv('kNN/kNN_{timestamp}.csv'.format(timestamp=time.time()), index=False)
01a1ef6dc25aacb7b99e3bb2d2e912e04233c3cc
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_outgoes.py
710d7af255478e9b9f5ce4bf9bc34b044eb81186
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
#calss header class _OUTGOES(): def __init__(self,): self.name = "OUTGOES" self.definitions = outgo self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['outgo']
5a6960680cae86c401d945eb77b50e792096b7ac
464850ba426263b17084fc71363ca14b8278b15e
/80.py
c539164e19aa8d461121a1829efe084c3408f060
[]
no_license
eng-arvind/python
8442c30ec10f979f913b354458b4f910539d8728
249f5f35f245a3f1742b10310de37ca6c6023af2
refs/heads/master
2020-12-23T06:40:16.911269
2020-02-02T18:42:01
2020-02-02T18:42:01
237,069,973
1
0
null
null
null
null
UTF-8
Python
false
false
231
py
n = 7 for i in range(n): for j in range(n): if i + j == n//2 or i - j == n//2 or i + j == (n//2)*3 or j - i == n//2: print("*", end="") else: print(end=" ") print()
fb3b2fd6f3497e8dd1ded9a6c54a330aac22db31
3fa1b23746232975b3b014db2f525007a3b49991
/anna_code/demographics/rct_consented/subset_values_to_randomized_people.py
a4791706554ee798896de773f5da39c3e0e96e89
[]
no_license
AshleyLab/myheartcounts
ba879e10abbde085b5c9550f0c13ab3f730d7d03
0f80492f7d3fc53d25bdb2c69f14961326450edf
refs/heads/master
2021-06-17T05:41:58.405061
2021-02-28T05:33:08
2021-02-28T05:33:08
32,551,526
7
1
null
2020-08-17T22:37:43
2015-03-19T23:25:01
OpenEdge ABL
UTF-8
Python
false
false
325
py
import pandas as pd import sys import pdb data=pd.read_csv(sys.argv[1],header=None,sep='\t') subjects=pd.read_csv('subjects.txt',header=None) subset=data[data[0].isin(subjects[0])] #nums=pd.to_numeric(subset[1],errors='coerce') #mean_val=nums.mean() #print(mean_val) #std_val=nums.std() #print(std_val) pdb.set_trace()
63d46a52a9c3929779b4d498745424b1505a9754
17f29e8f3eab9deb724b10bc7e61c73f1fca21c6
/backend/home/migrations/0004_auto_20200320_0813.py
8596cdb6cafc9245c067cfa29396a8d0c4ff6f09
[]
no_license
crowdbotics-apps/mobilemobapp-dev-2035
91df345e8f6e42760c4156a7dd73a6d8b17250e0
041b1c20c4a14b4595fbcca943cdf46dec445497
refs/heads/master
2022-04-12T06:06:17.910111
2020-03-20T08:13:11
2020-03-20T08:13:11
248,153,145
0
0
null
null
null
null
UTF-8
Python
false
false
1,311
py
# Generated by Django 2.2.11 on 2020-03-20 08:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0003_customtext_test'), ] operations = [ migrations.CreateModel( name='Test', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('test', models.BigIntegerField()), ], ), migrations.CreateModel( name='Testing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('test', models.BigIntegerField()), ], ), migrations.CreateModel( name='Testtt', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('testt', models.BinaryField()), ], ), migrations.RemoveField( model_name='customtext', name='test', ), migrations.AddField( model_name='customtext', name='name', field=models.BinaryField(blank=True, null=True), ), ]
53ff44496cb0984d03f5da6f7271f4c8652cc91d
14561adc9918f32b7f9334fa4dde08a3bfa17c26
/pipeline/Bacteria_denovo/Bacteria_denovo.pipeline.py
d4951738835c6a9781c9201f9ea8cd6c6fcab482
[]
no_license
ZhikunWu/awesome-metagenomic
b932169f505d39864a91067283ad7ce954280923
71183f262aa539a3983af4de47f7cc69be8cf7a6
refs/heads/master
2021-10-08T00:00:00.181593
2018-12-06T02:07:42
2018-12-06T02:07:42
111,966,593
2
0
null
null
null
null
UTF-8
Python
false
false
2,029
py
#!/usr/bin/env python import yaml import os import sys IN_PATH = config["IN_PATH"] PIPE_DIR = config["PIPE_DIR"] THREADS = config["THREADS"] ThreadFold = config["ThreadFold"] SAMPLES = config["SAMPLES"] PROJECTS = config["PROJECTS"] include: PIPE_DIR + "/Nano_QualityControl.rule.py" include: PIPE_DIR + "/GenePridiction.rule.py" rule all: input: expand(IN_PATH + "/clean/{sample}.fastq", sample=SAMPLES), expand(IN_PATH + "/qualityControl/raw/nanoQC/{sample}/nanoQC.html", sample=SAMPLES), expand(IN_PATH + "/qualityControl/raw/NanoPlot/{sample}/NanoPlot-report.html", sample=SAMPLES), expand(IN_PATH + '/annotation/{project}/Prokka/assembly.faa', project=PROJECTS), expand(IN_PATH + "/annotation/{project}/tRNAscan/assembly_tRNA_gene.fna", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/RepeatMasker/assembly.fasta.out", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/RepeatModeler/assembly_RepeatModeler.txt", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/LTRFinder/LTR.txt", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/TandemRepeatFinder/TandemRepeat.txt", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/LTRFinder/finder.scn", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/LTRretriever/assembly.fasta.mod.pass.list", project=PROJECTS), expand(IN_PATH + "/assembly/{project}/assembly.fasta.mod.out.LAI", project=PROJECTS), expand(IN_PATH + "/assembly/{project}/assembly_index.esq", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/LTRharvest/assembly_ltrharvest.gff3", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/LTRharvest/assembly_ltrdigest.gff3", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/RepeatScout/seq_freq.txt", project=PROJECTS), expand(IN_PATH + "/annotation/{project}/RepeatScout/seq_repeat.txt", project=PROJECTS),
fa959aa6f4a922c56b0970dcb74658e61c42d1f2
4ef98e50c40dc9f79ac9e422a208427f034f804d
/maps/models.py
1e2a9a1d04f3ff48376a6325fbc92a1d1d52468a
[]
no_license
couleurmate/DeweyMaps
5bd4eef11d429a7f252b8fb3141a7a47697154b4
063e9e7e412d57d2fdaf976728aaff66eb5fd38a
refs/heads/master
2021-01-17T04:51:22.226762
2015-07-05T10:38:57
2015-07-05T10:38:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,404
py
from django.contrib.gis.db import models from closet.models import Subcategory class Marker(models.Model): name = models.CharField(blank=False, max_length=255) position = models.PointField(geography=True, blank=False) comment = models.TextField(blank=True, null=False, default="") subcategories = models.ManyToManyField(Subcategory) web = models.URLField(default="") phone = models.CharField(max_length=15, default="") adress = models.CharField(max_length=1000, default="") public = models.BooleanField(default=True) created = models.DateTimeField(auto_now_add=True) objects = models.GeoManager() def __str__(self): return self.name @property def content(self): return self.comment @property def lat(self): return self.position.y @property def lon(self): return self.position.x @property def popup(self): tpl = """<h5>{0.name}</h5>""" if self.adress != "": tpl += "<em>Adresse</em> : {0.adress}<br><br>" if self.phone != "": tpl += "<em>Téléphone</em> : {0.phone}<br><br>" if self.web != "": tpl += '<b><a target="_blank" href="{0.web}">Site web</a></b><br><br>' tpl += "{0.comment}<br><br>" tpl += '<a href="http://dewey.be/contact.html">Signaler un problème</a>' return tpl.format(self)
1093b9c3c57519cf4dc597bf6df497b6e31fe0fe
e15f86312db3109bbda053063557693518af4ead
/pcsk9/select_fam.py
35318362eec5e7e8604254ceeeedd5879854dcdc
[]
no_license
heichiyidui/dev
3aecf0f92e4af4184b4eae2b1935f281b7746c86
73c20c19928eb94d9aec10f0d307604b147b8088
refs/heads/master
2020-12-29T01:54:24.236229
2016-07-01T14:51:01
2016-07-01T14:51:01
35,271,765
1
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
#!/usr/bin/env python3 # tail -n +2 plink.genome | awk '{print $2,$4}' > t.in edges = [] ifile =open('t.in') for line in ifile: cols = line[:-1].split() edges.append([cols[0],cols[1]]) ifile.close() import collections node_dgres = collections.Counter() nodes_1 = [x[0] for x in edges] nodes_2 = [x[1] for x in edges] node_dgres.update(nodes_1) node_dgres.update(nodes_2) # lets remove nodes according to their connection degrees to_remove_list = [] for l in range(10000): if edges == []: break # find the most connected node to_remove_id = node_dgres.most_common(1)[0][0] to_remove_list.append(to_remove_id) # update edge set new_edges = [x for x in edges if to_remove_id not in x] edges = new_edges # update node connection degree node_dgres = collections.Counter() nodes_1 = [x[0] for x in edges] nodes_2 = [x[1] for x in edges] node_dgres.update(nodes_1) node_dgres.update(nodes_2) for id in to_remove_list: print(id)
fd038588e1514db2ce8a3b98d9a04bf9c08b8692
9c3c83007c5bf0f36635b0045b2aad7f8a11ac11
/novice/04-05/graphql/venv/lib/python3.6/site-packages/graphql/utils/value_from_ast.py
7ad52bca43bf423c08c5f077dd51404ba8164137
[ "MIT" ]
permissive
septiannurtrir/praxis-academy
bc58f9484db36b36c202bf90fdfd359482b72770
1ef7f959c372ae991d74ccd373123142c2fbc542
refs/heads/master
2021-06-21T17:04:58.379408
2019-09-13T16:46:08
2019-09-13T16:46:08
203,007,994
1
0
MIT
2021-03-20T01:43:24
2019-08-18T13:38:23
Python
UTF-8
Python
false
false
2,920
py
from ..language import ast from ..type import ( GraphQLEnumType, GraphQLInputObjectType, GraphQLList, GraphQLNonNull, GraphQLScalarType, ) # Necessary for static type checking if False: # flake8: noqa from ..language.ast import Node from ..type.definition import GraphQLType from typing import Dict, Union, Optional, List def value_from_ast(value_ast, type, variables=None): # type: (Optional[Node], GraphQLType, Optional[Dict[str, Union[List, Dict, int, float, bool, str, None]]]) -> Union[List, Dict, int, float, bool, str, None] """Given a type and a value AST node known to match this type, build a runtime value.""" if isinstance(type, GraphQLNonNull): # Note: we're not checking that the result of coerceValueAST is non-null. # We're assuming that this query has been validated and the value used here is of the correct type. return value_from_ast(value_ast, type.of_type, variables) if value_ast is None: return None if isinstance(value_ast, ast.Variable): variable_name = value_ast.name.value if not variables or variable_name not in variables: return None # Note: we're not doing any checking that this variable is correct. We're assuming that this query # has been validated and the variable usage here is of the correct type. return variables.get(variable_name) if isinstance(type, GraphQLList): item_type = type.of_type if isinstance(value_ast, ast.ListValue): return [ value_from_ast(item_ast, item_type, variables) for item_ast in value_ast.values ] else: return [value_from_ast(value_ast, item_type, variables)] if isinstance(type, GraphQLInputObjectType): fields = type.fields if not isinstance(value_ast, ast.ObjectValue): return None field_asts = {} for field_ast in value_ast.fields: field_asts[field_ast.name.value] = field_ast obj = {} for field_name, field in fields.items(): if field_name not in field_asts: if field.default_value is not None: # We use out_name as the output name for the # dict if exists obj[field.out_name or field_name] = field.default_value continue field_ast = field_asts[field_name] field_value_ast = field_ast.value field_value = value_from_ast(field_value_ast, field.type, variables) # We use out_name as the output name for the # dict if exists obj[field.out_name or field_name] = field_value return type.create_container(obj) assert isinstance(type, (GraphQLScalarType, GraphQLEnumType)), "Must be input type" return type.parse_literal(value_ast)
7e5dbb102fab53228104ce9a43c6407ab1972c45
50989266203628be7649d152392f4a1789997b90
/lisp.py
9c96a7942a34631c24cce5c62058308aa3242b27
[]
no_license
cheery/snakelisp
b2820819959be4ed0b62a60c511b15623ae5589e
c62c0401e7d8cbd63afb8a7242850f7740420614
refs/heads/master
2020-05-15T08:53:26.443191
2014-09-16T15:55:43
2014-09-16T15:55:43
23,539,541
1
0
null
null
null
null
UTF-8
Python
false
false
6,257
py
#!/usr/bin/env python from pythonboot.blip import ListNode, TextNode, MarkNode, isList, isText, isMark, open_list import json import transpiler from cps import Call, Lambda, Assign, Variable, Constant, Environ, null, true, false import subprocess import sys import re # call = Call([arguments]), call[i] # lambda = Lambda([arguments], body), lambda[i] # Assign(var, val, body) # Variable(name, value) # Constant(value) def main(): path = sys.argv[1] mks = [] env = Environ() ret = env.new_argument("cont", False) env = env.new_environ() ret = env.new_argument('cont', False) exprs = open_list(path).strip_rec() #exprs = list(open_list("base.sl")) + list(open_list(path)) program = env.close(compile_list(exprs, env, ret)) program = program.coalesce() snakesource = "snakelisp.c" rootdecl = re.compile(r'newRoot\("(.+)",') with open(snakesource) as fd: src = fd.read() c_roots = dict((decl, "(root+{})".format(i)) for i, decl in enumerate(rootdecl.findall(src))) c_api = { "uncallable-hook": "&uncallable_hook", "type-error-hook": "&type_error_hook", } c_use = set() for var in env.seal(): if var.name in c_roots: var.c_handle = c_roots[var.name] continue var.c_handle = c_api[var.name] c_use.add(var.c_handle) cdefns = ["extern value_t {};".format(value[1:]) for value in c_use] #import visuals #visuals.create_graph("demo.png", program) source = transpiler.transpile(program, cdefns, path) open(path+'.c', 'w').write(source) subprocess.call(["gcc", path+'.c', snakesource, "-I.", "-lm"]) constants = {'null': null, 'true':true, 'false':false} def compile(expr, env, k): if isList(expr, 'include') and isText(expr[0]): return compile_list(open_list(expr[0].text).strip_rec(), env, k) if isList(expr, 'let') and isText(expr[0]): var = env.get_local(expr[0].text) return compile(expr[1], env, (lambda val: Assign(var, val, retrieve(k, val)))) if isList(expr, 'set') and isText(expr[0]): var = env.lookup(expr[0].text) return compile(expr[1], env, (lambda val: Assign(var, val, retrieve(k, val)))) if isList(expr, 'cond'): return compile_cond(expr, env, k) if isList(expr, 'while'): return compile_while(expr, env, k) if isList(expr, 'func'): env = env.new_environ() ret = env.new_argument('cont', False) for sym in expr[0]: assert sym.label == '' env.new_argument(sym.text) return retrieve(k, env.close(compile_list(expr[1:], env, ret))) if isList(expr, 'infix') and len(expr) == 3: return compile(ListNode([expr[1], expr[0], expr[2]]), env, k) if isList(expr, ''): params = [] seq = list(expr) def next_parameter(param): params.append(param) if len(seq) > 0: return compile(seq.pop(0), env, next_parameter) else: callee = params.pop(0) return Call([callee, lift(k)] + params) return compile(seq.pop(0), env, next_parameter) #if expr.group == 'integer': # return retrieve(k, Constant(expr.value)) #if expr.group == 'double': # return retrieve(k, Constant(expr.value)) if isText(expr, "string"): return retrieve(k, Constant(expr.text)) if isText(expr, ''): if expr.text[:1].isdigit(): return retrieve(k, Constant(int(expr.text))) if expr.text in constants: param = constants[expr.text] else: param = env.lookup(expr.text) return retrieve(k, param) raise Exception("what is {}?".format(expr)) def compile_list(exprs, env, k): seq = list(exprs) def next_parameter(param): if len(seq) > 1: return compile(seq.pop(0), env, next_parameter) else: return compile(seq.pop(0), env, k) if len(exprs) == 0: return retrieve(k, null) return next_parameter(null) def retrieve(k, param): if callable(k): return k(param) else: return Call([k, param]) def lift(k): if callable(k): x = Variable() return Lambda([x], k(x)) else: return k def compile_cond(expr, env, k): seq = list(expr[0:]) if len(seq) == 0: return retrieve(k, null) def next_cond(k): if len(seq) == 0: return retrieve(k, null) head = seq.pop(0) if len(seq) == 0 and isList(head, 'else'): return compile_list(head[0:], env, k) if isList(head, 'else'): raise Exception("invalid cond expression") return compile(head[0], env, (lambda truth: pick(env, k, truth, enclose(head[1:], env), lambdaCont(next_cond)))) return next_cond(k) def compile_while(expr, env, k): self = Variable() seq = expr[1:] def compile_body(k): return compile_list(expr[1:], env, (lambda _: Call([self, lift(k)]))) cont = Variable() looplambda = Lambda([cont], compile(expr[0], env, (lambda truth: pick(env, cont, truth, lambdaCont(compile_body), lambdaNull())))) return Assign(self, looplambda, Call([self, lift(k)]), True) def pick(env, k, truth, yes, no): return Call([env.new_implicit('pick'), lift(k), truth, yes, no]) def lambdaNull(): cont = Variable() return Lambda([cont], Call([cont, null])) def lambdaCont(func): cont = Variable() return Lambda([cont], func(cont)) def enclose(exprs, env): cont = Variable() return Lambda([cont], compile_list(exprs, env, cont)) #def open_list(path): # with open(path, 'r') as fd: # plop = json.load(fd) # return decodeJson(plop) # #def decodeJson(node): # if node["type"] == "list": # return ListNode([decodeJson(a) for a in node["list"]], node["label"] or '').strip() # elif node["type"] == 'text': # return TextNode(node["text"], node["label"] or '') # elif node["type"] == 'mark': # return MarkNode(node["label"] or '') # else: # raise Exception("unknown {}".format(node)) if __name__ == '__main__': main()
992f8823515ccee3a140f890755137552e8928d4
438ee853669a67cd46537f6d02cf356d05e03681
/doctor_dashboard/urls.py
47694bb78b753fc56cdb14fe68d5c7380a309fe8
[]
no_license
tngeene/doc_appointment
a6648bed5c3d1d27e25131945910c5c425468fa1
6d1f320db03ad9fcc42b09e19a0d0a73e5af233a
refs/heads/master
2023-02-22T05:37:36.510685
2021-01-19T11:46:01
2021-01-19T11:46:01
324,834,090
0
1
null
null
null
null
UTF-8
Python
false
false
424
py
from django.urls import path, include app_name = "doctor_dashboard" urlpatterns = [ path('', include('doctor_dashboard.routes.index')), path('appointments/', include('doctor_dashboard.routes.appointments')), # path('doctors/', include('doctor_dashboard.routes.doctors')), # path('patients/', include('doctor_dashboard.routes.patients')), path('events/', include('doctor_dashboard.routes.events')), ]
d29ecd2dab536aba7307bb95697055dbc30cf2aa
711756b796d68035dc6a39060515200d1d37a274
/output_cog_tags/initial_3377.py
561d811f19c812512cfb3db4c9e030dcd1210575
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
4,331
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog1_Anch" not in marker_sets: s=new_marker_set('Cog1_Anch') marker_sets["Cog1_Anch"]=s s= marker_sets["Cog1_Anch"] mark=s.place_marker((262, 533, 768), (0, 0, 1), 21.9005) if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((911, 601, 823), (1, 0.5, 0), 21.9005) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((932, 878, 424), (1, 0.5, 0), 21.9005) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((897, 147, 198), (1, 0.5, 0), 21.9005) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((654, 184, 344), (1, 0.87, 0), 21.9005) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((563, 71, 808), (1, 0.87, 0), 21.9005) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((515, 319, 492), (1, 0.87, 0), 21.9005) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((194, 440, 798), (0.97, 0.51, 0.75), 21.9005) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((535, 777, 166), (0.97, 0.51, 0.75), 21.9005) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((143, 239, 358), (0.97, 0.51, 0.75), 21.9005) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((320, 498, 370), (0.39, 0.31, 0.14), 21.9005) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((288, 147, 63), (0.39, 0.31, 0.14), 21.9005) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((949, 360, 485), (0.39, 0.31, 0.14), 21.9005) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((436, 819, 284), (0.6, 0.31, 0.64), 21.9005) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((44, 825, 43), (0.6, 0.31, 0.64), 21.9005) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((11, 479, 395), (0.6, 0.31, 0.64), 21.9005) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((991, 520, 392), (0.89, 0.1, 0.1), 21.9005) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((788, 680, 50), (0.89, 0.1, 0.1), 21.9005) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((475, 141, 883), (0.89, 0.1, 0.1), 21.9005) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((184, 381, 961), (0.3, 0.69, 0.29), 21.9005) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((694, 467, 322), (0.3, 0.69, 0.29), 21.9005) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
fc0bbcd096df9fe751b943cfd1fd20e466ee4baf
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/Poppler/PageLayout.py
605c3665f4dee50e741e5800be5b7e77e834cdc8
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
13,686
py
# encoding: utf-8 # module gi.repository.Poppler # from /usr/lib64/girepository-1.0/Poppler-0.18.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gobject as __gobject class PageLayout(__gobject.GEnum): # no doc def as_integer_ratio(self): # real signature unknown; restored from __doc__ """ Return integer ratio. Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator. >>> (10).as_integer_ratio() (10, 1) >>> (-10).as_integer_ratio() (-10, 1) >>> (0).as_integer_ratio() (0, 1) """ pass def bit_length(self): # real signature unknown; restored from __doc__ """ Number of bits necessary to represent self in binary. >>> bin(37) '0b100101' >>> (37).bit_length() 6 """ pass def conjugate(self, *args, **kwargs): # real signature unknown """ Returns self, the complex conjugate of any int. """ pass def from_bytes(self, *args, **kwargs): # real signature unknown """ Return the integer represented by the given array of bytes. bytes Holds the array of bytes to convert. The argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol. byteorder The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. signed Indicates whether two's complement is used to represent the integer. """ pass def to_bytes(self, *args, **kwargs): # real signature unknown """ Return an array of bytes representing an integer. length Length of bytes object to use. An OverflowError is raised if the integer is not representable with the given number of bytes. byteorder The byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. signed Determines whether two's complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised. """ pass def __abs__(self, *args, **kwargs): # real signature unknown """ abs(self) """ pass def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __and__(self, *args, **kwargs): # real signature unknown """ Return self&value. """ pass def __bool__(self, *args, **kwargs): # real signature unknown """ self != 0 """ pass def __ceil__(self, *args, **kwargs): # real signature unknown """ Ceiling of an Integral returns itself. """ pass def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __divmod__(self, *args, **kwargs): # real signature unknown """ Return divmod(self, value). """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __float__(self, *args, **kwargs): # real signature unknown """ float(self) """ pass def __floordiv__(self, *args, **kwargs): # real signature unknown """ Return self//value. """ pass def __floor__(self, *args, **kwargs): # real signature unknown """ Flooring an Integral returns itself. """ pass def __format__(self, *args, **kwargs): # real signature unknown pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getnewargs__(self, *args, **kwargs): # real signature unknown pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __index__(self, *args, **kwargs): # real signature unknown """ Return self converted to an integer, if self is suitable for use as an index into a list. """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __int__(self, *args, **kwargs): # real signature unknown """ int(self) """ pass def __invert__(self, *args, **kwargs): # real signature unknown """ ~self """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lshift__(self, *args, **kwargs): # real signature unknown """ Return self<<value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mod__(self, *args, **kwargs): # real signature unknown """ Return self%value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass def __neg__(self, *args, **kwargs): # real signature unknown """ -self """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __or__(self, *args, **kwargs): # real signature unknown """ Return self|value. """ pass def __pos__(self, *args, **kwargs): # real signature unknown """ +self """ pass def __pow__(self, *args, **kwargs): # real signature unknown """ Return pow(self, value, mod). """ pass def __radd__(self, *args, **kwargs): # real signature unknown """ Return value+self. """ pass def __rand__(self, *args, **kwargs): # real signature unknown """ Return value&self. """ pass def __rdivmod__(self, *args, **kwargs): # real signature unknown """ Return divmod(value, self). """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __rfloordiv__(self, *args, **kwargs): # real signature unknown """ Return value//self. """ pass def __rlshift__(self, *args, **kwargs): # real signature unknown """ Return value<<self. """ pass def __rmod__(self, *args, **kwargs): # real signature unknown """ Return value%self. """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return value*self. """ pass def __ror__(self, *args, **kwargs): # real signature unknown """ Return value|self. """ pass def __round__(self, *args, **kwargs): # real signature unknown """ Rounding an Integral returns itself. Rounding with an ndigits argument also returns an integer. """ pass def __rpow__(self, *args, **kwargs): # real signature unknown """ Return pow(value, self, mod). """ pass def __rrshift__(self, *args, **kwargs): # real signature unknown """ Return value>>self. """ pass def __rshift__(self, *args, **kwargs): # real signature unknown """ Return self>>value. """ pass def __rsub__(self, *args, **kwargs): # real signature unknown """ Return value-self. """ pass def __rtruediv__(self, *args, **kwargs): # real signature unknown """ Return value/self. """ pass def __rxor__(self, *args, **kwargs): # real signature unknown """ Return value^self. """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Returns size in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __sub__(self, *args, **kwargs): # real signature unknown """ Return self-value. """ pass def __truediv__(self, *args, **kwargs): # real signature unknown """ Return self/value. """ pass def __trunc__(self, *args, **kwargs): # real signature unknown """ Truncating an Integral returns itself. """ pass def __xor__(self, *args, **kwargs): # real signature unknown """ Return self^value. """ pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the real part of a complex number""" value_name = property(lambda self: object(), lambda self, v: None, lambda self: None) # default value_nick = property(lambda self: object(), lambda self, v: None, lambda self: None) # default ONE_COLUMN = 2 SINGLE_PAGE = 1 TWO_COLUMN_LEFT = 3 TWO_COLUMN_RIGHT = 4 TWO_PAGE_LEFT = 5 TWO_PAGE_RIGHT = 6 UNSET = 0 __class__ = type __dict__ = None # (!) real value is "mappingproxy({'__module__': 'gi.repository.Poppler', '__dict__': <attribute '__dict__' of 'PageLayout' objects>, '__doc__': None, '__gtype__': <GType PopplerPageLayout (94391899009456)>, '__enum_values__': {0: <enum POPPLER_PAGE_LAYOUT_UNSET of type Poppler.PageLayout>, 1: <enum POPPLER_PAGE_LAYOUT_SINGLE_PAGE of type Poppler.PageLayout>, 2: <enum POPPLER_PAGE_LAYOUT_ONE_COLUMN of type Poppler.PageLayout>, 3: <enum POPPLER_PAGE_LAYOUT_TWO_COLUMN_LEFT of type Poppler.PageLayout>, 4: <enum POPPLER_PAGE_LAYOUT_TWO_COLUMN_RIGHT of type Poppler.PageLayout>, 5: <enum POPPLER_PAGE_LAYOUT_TWO_PAGE_LEFT of type Poppler.PageLayout>, 6: <enum POPPLER_PAGE_LAYOUT_TWO_PAGE_RIGHT of type Poppler.PageLayout>}, '__info__': gi.EnumInfo(PageLayout), 'UNSET': <enum POPPLER_PAGE_LAYOUT_UNSET of type Poppler.PageLayout>, 'SINGLE_PAGE': <enum POPPLER_PAGE_LAYOUT_SINGLE_PAGE of type Poppler.PageLayout>, 'ONE_COLUMN': <enum POPPLER_PAGE_LAYOUT_ONE_COLUMN of type Poppler.PageLayout>, 'TWO_COLUMN_LEFT': <enum POPPLER_PAGE_LAYOUT_TWO_COLUMN_LEFT of type Poppler.PageLayout>, 'TWO_COLUMN_RIGHT': <enum POPPLER_PAGE_LAYOUT_TWO_COLUMN_RIGHT of type Poppler.PageLayout>, 'TWO_PAGE_LEFT': <enum POPPLER_PAGE_LAYOUT_TWO_PAGE_LEFT of type Poppler.PageLayout>, 'TWO_PAGE_RIGHT': <enum POPPLER_PAGE_LAYOUT_TWO_PAGE_RIGHT of type Poppler.PageLayout>})" __enum_values__ = { 0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, } __gtype__ = None # (!) real value is '<GType PopplerPageLayout (94391899009456)>' __info__ = gi.EnumInfo(PageLayout)
82f573ab57442baca38130076f8b17ddd1163034
a665f561b103a51404785f35d0026c60f0083cb4
/0x05-python-exceptions/101-safe_function.py
38683ee508361b035c621dad79ea63525fad197f
[]
no_license
Joshua-Enrico/holbertonschool-higher_level_programming
c5f3c9ab55167ea2e7ea3b31dd8edf2e22a18bde
8c1559f9c772b60186e899e17c67d299f88de726
refs/heads/main
2023-07-31T17:45:16.723947
2021-09-23T00:29:25
2021-09-23T00:29:25
361,960,411
1
5
null
null
null
null
UTF-8
Python
false
false
235
py
#!/usr/bin/python3 def safe_function(fct, *args): try: div = fct(*args) return div except Exception as error: import sys print("Exception: {}".format(error), file=sys.stderr) return None
d4c44550df6570a3c03d89d628513a25c2868572
0ae589f33fbf37a6af830dd7494cc576f267f202
/scenario/settings.py
ea8db96a3b7c5d412a773b2d60a74cbfa2abfd55
[]
no_license
vamsi9477/sosioHosting
85be712762738604625a13569f85aa986c31d5b0
42dbe2171a32b4cf40d202f16d89c49db9b3c10e
refs/heads/master
2020-04-05T01:09:02.486917
2018-11-06T18:03:07
2018-11-06T18:03:07
156,425,173
0
0
null
null
null
null
UTF-8
Python
false
false
3,136
py
""" Django settings for scenario project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*l#4^7y1%o0r9p01f)lz7mcdw-nc9#2iet=ak3ma9rj53f+zyh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'sc1.apps.Sc1Config', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'scenario.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'scenario.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
eeedc6e06be66be4ba83b0914b71cabc517a8dc2
ad010f3ecdaa260b2d8732b8b784d58b3c812b9e
/spider_admin_pro/config/yaml_config.py
a43dc91138192f1c70a92ea9429b25cabd30f721
[]
no_license
laashub-soa/spider-admin-pro
52261816015afa672176423f38d0206f9bbafa15
5faefebd25ad6a163a6a7d18076dc10adba7d970
refs/heads/master
2023-08-14T01:24:15.659796
2021-09-27T04:15:52
2021-09-27T04:15:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,533
py
# -*- coding: utf-8 -*- ################################# # 读取用户自定义变量 ################################# import os import yaml from spider_admin_pro.config import env_config from spider_admin_pro.logger import logger config_file = os.path.join(os.getcwd(), 'config.yml') logger.info('config_file: %s', config_file) if os.path.exists(config_file): f = open(config_file, "rb") config = yaml.safe_load(f) f.close() else: config = {} # flask 服务配置 FLASK_PORT = config.get('PORT', env_config.FLASK_PORT) FLASK_HOST = config.get('HOST', env_config.FLASK_HOST) # 登录账号密码 BASIC_AUTH_USERNAME = config.get('USERNAME', env_config.BASIC_AUTH_USERNAME) BASIC_AUTH_PASSWORD = config.get('PASSWORD', env_config.BASIC_AUTH_PASSWORD) BASIC_AUTH_JWT_KEY = config.get('JWT_KEY', env_config.BASIC_AUTH_JWT_KEY) # token过期时间,单位天 BASIC_AUTH_EXPIRES = config.get('EXPIRES', env_config.BASIC_AUTH_EXPIRES) # scrapyd地址, 结尾不要加斜杆 SCRAPYD_SERVER = config.get('SCRAPYD', env_config.SCRAPYD_SERVER) # 调度器 调度历史存储设置 # mysql or sqlite and other, any database for peewee support SCHEDULE_HISTORY_DATABASE_URL = config.get('SCHEDULE_HISTORY_DATABASE_URL', env_config.SCHEDULE_HISTORY_DATABASE_URL) # 调度器 定时任务存储地址 JOB_STORES_DATABASE_URL = config.get('JOB_STORES_DATABASE_URL', env_config.JOB_STORES_DATABASE_URL) # 日志文件夹 LOG_DIR = config.get("LOG_DIR", env_config.LOG_DIR)
096bc1c7152955fc7efee92dc96b6923843848ec
ee41311a11a1c6baedafd9a914d5a1f8330fe8a9
/SANEF_LIVE/venv/Lib/site-packages/anaconda_navigator/widgets/tabs/tests/test_environments_tab.py
2e4d36bd2647c721b4161cbc2957d1664db066a3
[]
no_license
sethnanati/CodeRepoPython
2dffb7263620bd905bf694f348485d894a9513db
b55e66611d19b35e9926d1b1387320cf48e177c8
refs/heads/master
2023-07-07T11:16:12.958401
2021-02-13T10:09:48
2021-02-13T10:09:48
376,531,283
0
0
null
null
null
null
UTF-8
Python
false
false
3,911
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2016-2017 Anaconda, Inc. # # May be copied and distributed freely only as part of an Anaconda or # Miniconda installation. # ----------------------------------------------------------------------------- """Tests for environments tab.""" # yapf: disable # Standard library imports import sys # Third party imports from qtpy.QtCore import Qt import pytest # Local imports from anaconda_navigator.api.conda_api import CondaAPI from anaconda_navigator.utils.fixtures import tmpfile, tmpfolder from anaconda_navigator.widgets.dialogs import MessageBoxError from anaconda_navigator.widgets.tabs.environments import EnvironmentsTab # yapf: enable tmpfile tmpfolder PY3 = sys.version_info >= (3, 4) xfail = pytest.mark.xfail @pytest.fixture() def env_tab(qtbot, tmpfile): widget = EnvironmentsTab() qtbot.addWidget(widget) widget.show() widget.setup_tab(metadata={}) widget.load_environment() with qtbot.waitSignal(widget.sig_status_updated) as blocker: blocker return widget, qtbot, tmpfile MessageBoxError.exec_ = lambda *args: True class TestEnvironmentsTab: def package_version(self, pkg, name='root'): api = CondaAPI() return api.package_version(name=name, pkg=pkg, build=True) def remove_env(self, widget): worker = widget.packages_widget.remove_environment( name='navigatortest' ) worker.communicate() # run create @xfail def test_bad_create(self, env_tab): # analysis:ignore widget, qtbot, tmpfile = env_tab with open(tmpfile, 'w') as f: raw = "name: navigatortest\ndependencies:\n- not-real=0.0.0=py36_0" f.write(raw) worker = widget.packages_widget.import_yaml( name="navigatortest", yaml=tmpfile ) with qtbot.waitSignal(widget.sig_error_popped_up, timeout=5000): with qtbot.waitSignal(worker.sig_finished, timeout=5000): worker.name = "navigatortest" worker.sig_finished.connect(widget._environment_created) @xfail def test_ipython_option(self, env_tab, tmpfolder): widget, qtbot, tmpfile = env_tab pyver = 'python={0}'.format(self.package_version('python')) self.remove_env(widget) worker = widget.packages_widget.create_environment( name='navigatortest', packages=[pyver] ) worker.name = 'navigatortest' worker.communicate() # run create widget._environment_created(worker, "", "") widget.menu_list.exec_ = lambda *args: True qtbot.mouseClick( widget.list_environments.currentItem().button_options, Qt.LeftButton ) is_action_enabled = widget.menu_list.actions()[2].isEnabled() assert not is_action_enabled worker = widget.packages_widget.api.conda_install( name='navigatortest', pkgs=['jupyter-core'] ) worker.communicate() qtbot.mouseClick( widget.list_environments.currentItem().button_options, Qt.LeftButton ) assert not widget.menu_list.actions()[2].isEnabled() worker = widget.packages_widget.api.conda_install( name='navigatortest', pkgs=['ipython'] ) worker.communicate() qtbot.mouseClick( widget.list_environments.currentItem().button_options, Qt.LeftButton ) assert widget.menu_list.actions()[2].isEnabled() worker = widget.packages_widget.remove_environment( name='navigatortest' ) worker.communicate() # run create self.remove_env(widget)
2ab57e0a422988c3ab9c0a083d6d0b87670ebc16
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_116/ch117_2020_03_23_21_27_19_174351.py
cc5e23b34f33ab76256d64d25a4ac3b24699c59a
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
from math import sin def snell_descartes(n1,n2,θ1): sin(θ2)=n1*(sin(θ1))/n2 return θ2
013f62d1095057fe79083d89f83110ecb8c70f3f
dc99d95671170444cd7bf02e37da6ecda4a5f19e
/apps/courses/views.py
744bef09fd1699bd93842b7c1d3d4a04ab7d3ca9
[]
no_license
bbright3493/python_real_war
734d49ed9f7e1800d24dc754424a07b69d7d8c1f
6e43bb7d814920222f3310bd6fd9f04cb3d5bbf1
refs/heads/master
2020-03-30T06:08:40.249185
2018-10-22T07:33:41
2018-10-22T07:33:41
150,841,381
0
0
null
null
null
null
UTF-8
Python
false
false
24,305
py
# -*- coding: utf-8 -*- import json from django.shortcuts import render, HttpResponse from django.views.generic.base import View from pure_pagination import Paginator, EmptyPage, PageNotAnInteger from utils.mixin_utils import LoginRequiredMixin from .models import Course, Lesson, ChoiceQuestion, Video, ProgramQuestion, ChoiceBank, ProgramUpload, CourseCategory, \ Faq from .models import CourseDirection, KnowledgePoint from article.models import Article from operation.models import UserCourse, UserPass, UserErrorChoice from integral.models import UserIntergral, IntergralDemand from .forms import ProgramUploadForm from project.models import ProjectShow # Create your views here. class CourseListView(View): """ 课程列表页 """ def get(self, request): all_category = CourseCategory.objects.all() all_direction = CourseDirection.objects.all() click_direction = request.GET.get("direction", "all") click_category = request.GET.get("category", "all") click_degree = request.GET.get("degree", "all") click_sort = request.GET.get("sort", "new") print(click_direction) if click_direction == "all": if click_category == "all": if click_degree == "all": all_course = Course.objects.all().order_by("-add_time") if click_sort == "hot": all_course = Course.objects.all().order_by("-students") else: all_course = Course.objects.filter(degree=click_degree).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: if click_degree == "all": all_course = Course.objects.filter(coursecategory__category=click_category).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: all_course = Course.objects.filter(coursecategory__category=click_category, degree=click_category).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: all_course = Course.objects.filter(direction=click_direction) print("all:", all_course) if click_category == "all": if click_degree == "all": all_course = all_course.order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: all_course = all_course.filter(degree=click_degree).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: if click_degree == "all": all_course = all_course.filter(coursecategory__category=click_category).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") else: all_course = all_course.filter(coursecategory__category=click_category, degree=click_category).order_by("-add_time") if click_sort == "hot": all_course = all_course.order_by("-students") try: page = request.GET.get('page', 1) except PageNotAnInteger: page = 1 p = Paginator(all_course, 6, request=request) courses = p.page(page) print(type(courses)) print("session:", request.session.get('Linux', default="Html")) return render(request, 'course_list.html', { "all_direction": all_direction, "all_course": courses, "all_category": all_category, "click_direction": click_direction, "click_category": click_category, "click_degree": click_degree, "click_sort": click_sort, }) class CourseLevelView(View): """ 课程关卡列表页 显示关卡时同时查询用户关卡信息 需要显示用户对应关卡对学习情况 """ def get(self, request, course_id): course = Course.objects.get(id=int(course_id)) # 查询用户是否已经关联了该课程 try: user_course = UserCourse.objects.get(user=request.user, course=course) except: user_course = UserCourse(user=request.user, course=course) user_course.save() students = UserCourse.objects.all().count() course.students = int(students) course.save() all_level = Lesson.objects.filter(course=course_id).order_by("add_time") this_level = Lesson.objects.filter(course=course_id).first() # 对该课程对所有关卡 查询对应对用户关卡表 如果没有 则新建 for level in all_level: try: cur_user_level = UserPass.objects.get(user=request.user, lesson=level) except: cur_user_level = UserPass(user=request.user, lesson=level) cur_user_level.save() user_levels = UserPass.objects.filter(user=request.user, lesson__course=course).order_by("lesson") # # 下一关关卡 # try: # next_level = Lesson.objects.filter(course=course_id).order_by("add_time")[Level_num+1] # except IndexError: # next_level = Lesson.objects.filter(course=course_id).order_by("add_time")[Level_num] # # # 开通下一关关卡 # if this_level.pass_level: # next_level.pass_level = True last_level = Lesson.objects.filter(course=course_id).last() projects = ProjectShow.objects.filter(course=course) return render(request, 'course_level.html', locals()) class CourseDetailView(View): """ 关卡详情页 """ def get(self, request, course_id, lesson_id): course = Course.objects.get(id=course_id) # 查询用户课程状态 如果是未学习 则将状态改为正在学习 user_course = UserCourse.objects.get(user=request.user, course=course) if user_course.study_status == 1: user_course.study_status = 2 user_course.save() lesson = Lesson.objects.get(id=lesson_id) try: user_lesson = UserPass.objects.get(user=request.user, lesson=lesson) except: user_lesson = UserPass(user=request.user, lesson=lesson) user_lesson.save() print(lesson) # user_intergral = UserIntergral.objects.get(user=request.user) extend_demand = IntergralDemand.objects.get(lesson_id=int(lesson_id), demand='extend_download') # explain_demand = IntergralDemand.objects.get(lesson_id=int(lesson_id), demand='pro_explain') all_vedio = Video.objects.filter(lesson_id=lesson_id) all_article = Article.objects.filter(lesson=lesson).order_by('no') choice_bank = lesson.get_choice_bank() program_bank = lesson.get_program_bank() faqs = Faq.objects.filter(lesson=lesson) knowledge_points = KnowledgePoint.objects.filter(lesson=lesson) lesson_projects = ProjectShow.objects.filter(lesson=lesson) return render(request, 'course_detail.html', locals()) class ChoiceQuestionAnswerView(View): """ 选择题题目 """ def get(self, request, course_id, lesson_id, choice_id): lesson_choices = ChoiceQuestion.objects.filter(lesson_id=int(lesson_id)) this_question = ChoiceQuestion.objects.get(id=choice_id) all_question_num = ChoiceQuestion.objects.filter(lesson_id=int(lesson_id)).count() is_last = False if int(choice_id) == all_question_num: is_last = True return render(request, 'choice_answer.html', locals()) class ChoiceQuestionView(View): """ 选择题题目 """ def get(self, request, course_id, lesson_id, choice_id): lesson_choices = ChoiceQuestion.objects.filter(lesson_id=int(lesson_id)) this_question = ChoiceQuestion.objects.get(id=choice_id) all_question_num = ChoiceQuestion.objects.filter(lesson_id=int(lesson_id)).count() print(all_question_num) if int(this_question.question_num) == 1: request.session['right_count'] = 0 request.session['error'] = [] is_last = False if this_question.question_num == all_question_num: is_last = True next_question = this_question else: next_question = ChoiceQuestion.objects.get(question_num=this_question.question_num+1, choicebank=this_question.choicebank) return render(request, 'choice_pra.html', locals()) class NextQuestionView(View): """ 下一题 """ def post(self, request): this_question = request.POST.get("practice_num", 1) user_answer = request.POST.get("user_answer", "") if int(user_answer) != -1: # 得到本题的正确答案 right = ChoiceQuestion.objects.get(id=int(this_question)) right_answer = right.answer if int(user_answer) + 1 == right_answer: print("答对本题") request.session['right_count'] = request.session.get('right_count', default=0) + 1 else: print("本题错误") l = request.session['error'] l.append(right.id) request.session['error'] = l user_pass = UserPass.objects.get(user=request.user, lesson=right.lesson) # 判断是否第一次提交答案 if user_pass.choice_status == 0: user_course = UserCourse.objects.get(user=request.user, course=right.lesson.course) # 判断是否开通课程vip或者关卡vip if user_course.course_status == 2 or user_pass.status == 2: error_question = UserErrorChoice() error_question.user = request.user error_question.choice = right error_question.user_answer = int(user_answer) + 1 error_question.save() value = {"status": "success"} print("session", request.session['right_count']) return HttpResponse(json.dumps(value), content_type='application/json') else: return HttpResponse('{"status":"fail", "msg":"没有进行选择"}', content_type='application/json') class ChoiceResultView(View): """ 选择题结果 """ def get(self, request, course_id, lesson_id): right_nums = request.session.get('right_count', default=0) user_errors = request.session.get('error', default=[]) errors = [] for error in user_errors: errors.append(ChoiceQuestion.objects.get(id=int(error))) print("right_nums:", right_nums) all_question_num = ChoiceQuestion.objects.filter(lesson_id=int(lesson_id)).count() print("all_num:", all_question_num) right_rate = int(int(right_nums) / float(all_question_num) * 100) print(right_rate) lesson = Lesson.objects.get(id=lesson_id) course = Course.objects.get(id=course_id) # 保存提交状态 只有开通了vip的用户才修改该状态 user_pass = UserPass.objects.get(user=request.user, lesson=lesson) user_course = UserCourse.objects.get(user=request.user, course=course) if user_pass.choice_status == 0 and (user_pass.status == 2 or user_course.course_status == 2): user_pass.choice_status = 1 user_pass.save() return render(request, 'choice_result.html', locals()) class ProgramView(View): """ 编程题 """ def get(self, request, course_id, lesson_id, program_id): # program_file = ProgramQuestion.objects.get(course=int(course_id), lesson=int(lesson_id), id=int(program_id)) program = ProgramQuestion.objects.get(id=program_id) all_question_num = ProgramQuestion.objects.filter(program_bank=program.program_bank).count() if int(program.question_num) == 1: request.session['right_count_program'] = 0 request.session['error_program'] = [] is_last = False #判断是否最后一题 if program.question_num == all_question_num: is_last = True next_program = program else: next_program = ProgramQuestion.objects.get(question_num=program.question_num+1, program_bank=program.program_bank ) try: program_result = ProgramUpload.objects.get(programquestion_id=int(program_id), user=request.user) except ProgramUpload.DoesNotExist: program_result = ProgramUpload.objects.all() print(program_result) return render(request, 'program.html', locals()) class ProgramingView(View): """ 编程题的编程页面 """ def get(self, request, course_id, lesson_id, program_id): # program_file = ProgramQuestion.objects.get(course=int(course_id), lesson=int(lesson_id), id=int(program_id)) program = ProgramQuestion.objects.get(id=program_id) try: program_result = ProgramUpload.objects.get(programquestion_id=int(program_id), user=request.user) except ProgramUpload.DoesNotExist: program_result = ProgramUpload.objects.all() print(program_result) return render(request, 'program_start.html', locals()) class ProgramingCommitView(View): """ 代码提交的处理 """ def post(self, request): user_answer = request.POST.get("code", "") program_id = request.POST.get("program_id", "") print(user_answer) program_question = ProgramQuestion.objects.get(id=int(program_id)) if program_question.result == user_answer: value = {"status": "success", "result": "ok"} else: value = {"status": "success", "result": "error"} return HttpResponse(json.dumps(value), content_type='application/json') class NextProgramView(View): """ 下一题 """ def post(self, request): this_question_num = request.POST.get("practice_num", 1) this_question_id = request.POST.get("practice_id", 1) result = request.POST.get("result", "") this_program = ProgramQuestion.objects.get(id=this_question_id) if int(result) == 1: print("答对本题") request.session['right_count_program'] = request.session.get('right_count_program', default=0) + 1 else: print("本题错误") l = request.session['error_program'] l.append(this_program.id) request.session['error_program'] = l value = {"status": "success"} print("session", request.session['right_count_program']) return HttpResponse(json.dumps(value), content_type='application/json') class ProgramCommitView(View): """ 编程题 """ def get(self, request, course_id, lesson_id, program_id): # program_file = ProgramQuestion.objects.get(course=int(course_id), lesson=int(lesson_id), id=int(program_id)) try: program_result = ProgramUpload.objects.get(programquestion_id=int(program_id), user=request.user) except ProgramUpload.DoesNotExist: program_result = ProgramUpload.objects.all() print(program_result) return render(request, 'program-commit.html', { # "program_file": program_file, "program_result": program_result, "program_id": program_id, }) class ProgramUploadView(View): """ 编程项目上传 """ def post(self, request): file_obj = request.FILES.get('file') image_obj = request.FILES.get('image') learned_obj = request.POST.get('learn') programId_obj = request.POST.get('programId') program = ProgramQuestion.objects.get(id=int(programId_obj)) # user = request.user if file_obj and image_obj: program_result = ProgramUpload() program_result.programquestion = program program_result.user = request.user program_result.upload = file_obj program_result.image = image_obj program_result.learned = learned_obj program_result.is_complete = True program_result.save() return HttpResponse('{"status":"success"}', content_type='application/json') else: return HttpResponse('{"status":"fail"}', content_type='application/json') class ProgramResultView(View): """ 编程题结果 """ def get(self, request, course_id, lesson_id): right_nums = request.session.get('right_count_program', default=0) user_errors = request.session.get('error_program', default=[]) errors = [] for error in user_errors: errors.append(ProgramQuestion.objects.get(id=int(error))) errors = list(set(errors)) print("right_nums:", right_nums) all_question_num = ProgramQuestion.objects.filter(lesson_id=int(lesson_id)).count() print("all_num:", all_question_num) right_rate = int(int(right_nums) / float(all_question_num) * 100) print(right_rate) lesson = Lesson.objects.get(id=lesson_id) course = Course.objects.get(id=course_id) return render(request, 'program_result.html', locals()) class PostView(View): def post(self, request): import time import os from programing import settings file_obj = request.FILES.get('file') image_obj = request.FILES.get('image') if file_obj: # 处理附件上传到方法 request_set = {} print('file--obj', file_obj) # user_home_dir = "upload/%s" % (request.user.userprofile.id) accessory_dir = settings.BASE_DIR if not os.path.isdir(accessory_dir): os.mkdir(accessory_dir) upload_file = "%s/%s" % (accessory_dir, file_obj.name) recv_size = 0 with open(upload_file, 'wb') as new_file: for chunk in file_obj.chunks(): new_file.write(chunk) order_id = time.strftime("%Y%m%d%H%M%S", time.localtime()) # cache.set(order_id, upload_file) return HttpResponse(order_id) class CompleteView(View): """ 关卡完成 """ def post(self, request): course_id = request.POST.get("course_id", 1) lesson_id = request.POST.get("lesson_id", 1) print(type(int(course_id)), int(course_id)) this_lesson = Lesson.objects.get(course_id=int(course_id), id=int(lesson_id)) print(this_lesson) this_lesson.pass_level = True last_level = Lesson.objects.filter(course=int(course_id)).last() print(last_level) choice_bank = ChoiceBank.objects.get(lesson=int(lesson_id)) print(choice_bank) program_question = ProgramQuestion.objects.get(lesson=int(lesson_id)) if choice_bank.is_complete == True and program_question.is_complete == True: if int(lesson_id) != last_level.id: next_level = Lesson.objects.filter(course=int(course_id)).order_by("-add_time")[int(lesson_id) + 1] print("next:", next_level) next_level.open_level = True this_lesson.pass_level = True this_lesson.save() next_level.save() else: this_lesson.pass_level = True this_lesson.save() value = {"status": "success", "msg": "已完成"} return HttpResponse(json.dumps(value), content_type='application/json') else: value = {"status": "fail", "msg": "你还没有完成全部任务"} return HttpResponse(json.dumps(value), content_type='application/json') # class ProjectShowView(View): # """ # 项目展示 # """ # # def get(self, request): # all_category = CourseCategory.objects.all() # # click_category = request.GET.get("category", "all") # click_course = request.GET.get("course", "all") # click_level = request.GET.get("level", "all") # all_level = Lesson.objects.filter(course__name=click_course) # # if click_category == "all": # print("category:", click_category) # all_project = ProgramUpload.objects.filter(is_show=True).order_by("-add_time") # all_course = Course.objects.filter() # else: # all_course = Course.objects.filter(coursecategory__category=click_category) # if click_course == "all": # # all_project = ProgramUpload.objects.filter(lesson__course__coursecategory__category=click_category, # is_show=True) # else: # if click_level == "all": # # all_project = ProgramUpload.objects.filter(lesson__course__coursecategory__category=click_category, # lesson__course__name=click_course, # is_show=True) # else: # # all_project = ProgramUpload.objects.filter(lesson__course__coursecategory__category=click_category, # lesson__course__name=click_course, # lesson__name=click_level, # is_show=True) # # 对课程进行分页 # try: # page = request.GET.get('page', 1) # except PageNotAnInteger: # page = 1 # # p = Paginator(all_project, 6, request=request) # projects = p.page(page) # # return render(request, "project_show.html", { # "all_category": all_category, # "click_category": click_category, # "all_course": all_course, # "click_course": click_course, # "all_level": all_level, # "click_level": click_level, # "projects": projects, # # }) # class ProjectResultView(View): # """ # 项目展示结果 # """ # # def get(self, request, lesson): # try: # program_result = ProgramUpload.objects.get(lesson__name=lesson, user=request.user) # except ProgramUpload.DoesNotExist: # program_result = ProgramUpload.objects.all() # print(program_result) # return render(request, "project_result.html", { # "program_result": program_result # }) class DownloadUrlView(View): """链接下载""" def post(self, request): course_id = request.POST.get("course_id", 1) lesson_id = request.POST.get("lesson_id", 1) type = request.POST.get("type", "") user_intergral = UserIntergral.objects.get(user=request.user) demand_intergral = IntergralDemand.objects.get(lesson_id=int(lesson_id), demand=type) if user_intergral.grade >= demand_intergral.intergral: user_intergral.grade = user_intergral.grade - demand_intergral.intergral user_intergral.save() demand_intergral.download_count += 1 demand_intergral.save() value = {"status": "success", "re_url": demand_intergral.url} return HttpResponse(json.dumps(value), content_type='application/json') else: value = {"status": "fail", "msg": "您的积分不足,请充值!"} return HttpResponse(json.dumps(value), content_type='application/json')
382ec61b5d92e38174ded2840080940b3653dd40
d72505a7961bf7f96094a6c7013f3c794495044b
/client.py
4856fbb4f78c0f80314f35362b41858153512a26
[]
no_license
520hacker/websocket-connetions-benchmark
fa6ce757ec9cd68c5bcd60a5421700af6ae4814b
af609d775742cfeca5714133cddea32c8b0c51c0
refs/heads/master
2020-06-05T19:20:43.277616
2019-02-13T08:08:55
2019-02-13T08:08:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,821
py
#!/usr/bin/env python #-*- coding:utf-8 -*- # debug in python 3.6 #__author__ == 'ipcpu' import websocket import time import threading import json import multiprocessing from threadpool import ThreadPool, makeRequests #修改成自己的websocket地址 WS_URL = "ws://10.140.12.45:8888/" #定义进程数 processes=5 #定义线程数(每个文件可能限制1024个,可以修改fs.file等参数) thread_num=5000 def on_message(ws, message): print(message) pass def on_error(ws, error): print(error) pass def on_close(ws): print("### closed ###") pass def on_open(ws): def send_trhead(): #设置你websocket的内容 send_info = {"cmd": "refresh", "data": {"room_id": "58", "wx_user_id": 56431}} #每隔10秒发送一下数据使链接不中断 while True: time.sleep(10) ws.send(json.dumps(send_info)) t = threading.Thread(target=send_trhead) t.start() def on_start(num): time.sleep(num%20) websocket.enableTrace(True) ws = websocket.WebSocketApp(WS_URL + str(num), on_message=on_message, on_error=on_error, on_close=on_close) ws.on_open = on_open ws.run_forever() def thread_web_socket(): #线程池 pool = ThreadPool(thread_num) num = list() #设置开启线程的数量 for ir in range(thread_num): num.append(ir) requests = makeRequests(on_start, num) [pool.putRequest(req) for req in requests] pool.wait() if __name__ == "__main__": #进程池 pool = multiprocessing.Pool(processes=processes) #设置开启进程的数量 for i in range(processes): pool.apply_async(thread_web_socket) pool.close() pool.join()