blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
c21d74a662d5db8b34c6793c5b0def3026ab0cfe
8afb5afd38548c631f6f9536846039ef6cb297b9
/_MY_ORGS/Web-Dev-Collaborative/blog-research/ciriculumn/week.18-/W18D2_lectures/08-posts/app/routes.py
91d6b5ace00c8f67a076bc546d9f4e510c7630de
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
809
py
from flask import render_template, redirect from app import app from app.forms.login import LoginForm @app.route('/') def index(): return render_template('page.html', title='Welcome') @app.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): return redirect('/') return render_template('login.html', form=form) @app.route('/help') def help(): return render_template('page.html', title='Help') @app.route('/item/<int:id>') def item(id): if (id > 0 and id < 100): item = { "id": id, "name": f"Fancy Item {id}", "description": "Coming soon!", } return render_template('item.html', item=item) else: return '<h1>Sample App</h1><h2>Item Not Found</h2>'
a0c82a506c91a3a7c0b678adac1283adedd35094
6bd047eb1951601a5a7bab564eb2abba92c6c004
/prices/api/queries.py
0fdac2905d72924ea823efd6ca273a290b653fd8
[]
no_license
volgoweb/DDD_sandbox
6ab2b43d3fcad8eb2f802bd485e5dbc05eb2e10d
700c2848d5341ab267e69326bac2487657450d22
refs/heads/master
2021-01-01T15:46:13.244679
2017-07-11T06:18:36
2017-07-11T06:18:36
97,695,978
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
from utils.queries import IQuery class GetProductPricingForOneProduct(IQuery): def __init__(self, product_id: int): self.product_id = product_id @classmethod def get_query_type_name(cls): return 'prices.GetProductPricingForOneProduct' class GetProductPricingForManyProducts(IQuery): def __init__(self, product_id: int): self.product_id = product_id @classmethod def get_query_type_name(cls): return 'prices.GetProductPricingForManyProducts' class GetProductPricingForAllProducts(IQuery): @classmethod def get_query_type_name(cls): return 'prices.GetProductPricingForAllProducts'
54ab05db85f18373b1cd489a5310e729a167c100
08e039046e2b3c526b5fd2169e02d5c5bbe253c5
/0x04-python-more_data_structures/0-main.py
f37cdb42818fedc7a8af51018ae298fef65412fb
[]
no_license
VinneyJ/alx-higher_level_programming
22a976a22583334aff1f0c4120fb81117905e35b
0ea8719ec5f28c76faf06bb5e67c14abb71fa3d0
refs/heads/main
2023-07-31T15:44:30.390103
2021-10-01T21:27:31
2021-10-01T21:27:31
361,816,988
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
#!/usr/bin/python3 square_matrix_simple = __import__('0-square_matrix_simple').square_matrix_simple matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] new_matrix = square_matrix_simple(matrix) print(new_matrix) print(matrix)
bb3fb9eb21687447b680c05b829baec91643160f
b76ae361ab277923d0fed969b795074a1ecb400b
/project/RealDjango/venv/Scripts/django-admin.py
cfd7845dd7575e87f8a033bd3ad032b3f72ce470
[]
no_license
RobotNo42/old_coed
995df921e31d5a9b65f1609380235330edb546ad
59f82e5d58965dd5c6340f4daf4ef43d1d311252
refs/heads/master
2021-07-18T00:07:33.450173
2020-06-16T13:51:11
2020-06-16T13:51:11
180,384,457
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
#!D:\python\project\RealDjango\venv\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
eb439ef5321ace82cb57ceda8a14ba4f5978f5b8
52508ce70294ec29f84c9e551d8b92a7b402913d
/anyflow/flow.py
647b6d25ed535d940110f411ddcc5ba175e061f2
[ "MIT" ]
permissive
Cologler/anyflow-python
0f18003a39cb645c24aa5549df4ee39173977fff
cde20b0c74faf18cb7dc503072d4c2f99d5681de
refs/heads/master
2021-07-30T15:12:19.478682
2021-07-29T14:08:22
2021-07-29T14:08:22
241,824,800
0
0
MIT
2021-07-29T14:08:22
2020-02-20T07:53:25
Python
UTF-8
Python
false
false
2,957
py
# -*- coding: utf-8 -*- # # Copyright (c) 2020~2999 - Cologler <[email protected]> # ---------- # # ---------- from typing import Callable, Any, List from abc import ABC, abstractmethod from .err import Abort from .ctx import FlowContext #Next = Callable[[], Any] class MiddlewareInvoker: __slots__ = ('_ctx', '_factorys') def __init__(self, factorys: list, ctx: FlowContext): super().__init__() self._factorys = factorys self._ctx = ctx def invoke(self) -> Any: if self._factorys: return self.run_middleware(0) def run_middleware(self, index) -> Any: factory = self._factorys[index] middleware = factory(self._ctx) next = Next(self, index+1) return middleware(self._ctx, next) def has_next(self, next_index: int): 'return whether has the next middleware.' return len(self._factorys) > next_index class Next: __slots__ = ('_invoker', '_next_index', '_retvals') def __init__(self, invoker: MiddlewareInvoker, next_index: int): super().__init__() self._invoker = invoker self._next_index = next_index self._retvals = None def __call__(self, or_value=None): if not self._retvals: if self._invoker.has_next(self._next_index): rv = self._invoker.run_middleware(self._next_index) else: rv = or_value self._retvals = (rv, ) return self._retvals[0] @property def is_nop(self): return not self._invoker.has_next(self._next_index) Middleware = Callable[[FlowContext, Next], Any] MiddlewareFactory = Callable[[FlowContext], Middleware] class Flow: def __init__(self, *, ctx_cls=FlowContext, state: dict=None): super().__init__() if not issubclass(ctx_cls, FlowContext): raise TypeError(f'excepted subclass of FlowContext, got {ctx_cls}') self._ctx_cls = ctx_cls self._factorys = [] self.suppress_abort = False self._state = dict(state or ()) # make a clone def run(self, state: dict=None): ctx_state = self._state.copy() ctx_state.update(state or ()) ctx = self._ctx_cls(ctx_state) invoker = MiddlewareInvoker(self._factorys.copy(), ctx) try: return invoker.invoke() except Abort: if not self.suppress_abort: raise def use(self, middleware: Middleware=None): ''' *this method can use as decorator.* ''' if middleware is None: return lambda m: self.use(m) return self.use_factory(lambda _: middleware) def use_factory(self, middleware_factory: MiddlewareFactory=None): ''' *this method can use as decorator.* ''' if middleware_factory is None: return lambda mf: self.use_factory(mf) self._factorys.append(middleware_factory)
bec64a7169611c133f6effb658d194136f903149
feff273063b4c89bde3aa190b4e49c83ab1e5855
/memphis/view/layout.py
6a21cc666494b2107e8bc16e66c706a54a3bb83b
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
mcdonc/memphis
7d53b8f77f7bab7c20a258a9ab33d1cc663711a2
daef09507eacb32b235faf070a0146ffb5cf035f
refs/heads/master
2016-09-05T23:04:01.578991
2011-10-11T03:37:43
2011-10-11T03:37:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,147
py
""" layout implementation """ import sys, logging from zope import interface from pyramid.interfaces import IRequest, IRouteRequest from memphis import config from memphis.view.base import View from memphis.view.formatter import format from memphis.view.interfaces import ILayout from memphis.view.customize import LayerWrapper log = logging.getLogger('memphis.view') def queryLayout(request, context, name=''): """ query named layout for context """ while context is not None: layout = config.registry.queryMultiAdapter( (context, request), ILayout, name) if layout is not None: return layout context = getattr(context, '__parent__', None) return None class Layout(View): interface.implements(ILayout) name = '' template = None view = None viewcontext = None @property def __name__(self): return self.name def render(self, content, **kwargs): if self.template is None: return content kwargs.update({'view': self, 'content': content, 'context': self.context, 'request': self.request, 'format': format}) return self.template(**kwargs) def __call__(self, content, layout=None, view=None): if view is not None: self.view = view self.viewcontext = getattr(view, 'context', self.context) if layout is not None: self.view = layout.view or self.view self.viewcontext = layout.viewcontext or self.viewcontext result = self.render(content, **(self.update() or {})) if self.layout is None: return result parent = getattr(view, '__parent__', self.context) if self.name != self.layout: layout = queryLayout(self.request, parent, self.layout) if layout is not None: return layout(result, layout=self, view=view) else: if layout is not None: context = layout.context else: context = self.context parent = getattr(context, '__parent__', None) if parent is not None: layout = queryLayout(self.request, parent, self.layout) if layout is not None: return layout(result, view=view) log.warning("Can't find parent layout: '%s'"%self.layout) return self.render(result) def registerLayout( name='', context=None, parent='', klass=Layout, template = None, route=None, layer=''): if not klass or not issubclass(klass, Layout): raise ValueError("klass has to inherit from Layout class") discriminator = ('memphis.view:layout', name, context, route, layer) info = config.DirectiveInfo() info.attach( config.Action( LayerWrapper(registerLayoutImpl, discriminator), (klass, name, context, template, parent, route), discriminator = discriminator) ) def registerLayoutImpl(klass, name, context, template, parent, route_name): if klass in _registered: raise ValueError("Class can't be reused for different layouts") if not parent: layout = None elif parent == '.': layout = '' else: layout = parent # class attributes cdict = {'name': name, 'layout': layout} if template is not None: cdict['template'] = template if issubclass(klass, Layout) and klass is not Layout: layout_class = klass _registered.append(klass) for attr, value in cdict.items(): setattr(layout_class, attr, value) else: layout_class = type(str('Layout<%s>'%name), (Layout,), cdict) # register layout request_iface = IRequest if route_name is not None: request_iface = config.registry.getUtility(IRouteRequest,name=route_name) config.registry.registerAdapter( layout_class, (context, request_iface), ILayout, name) _registered = [] @config.addCleanup def cleanUp(): _registered[:] = []
d16ef364cf6106a88a1b28a9a96bdae89166f80c
778a3e1e70b0b2782d2a35f8818bbe799e6c7396
/Seventh_week_exersice/03Sum_prime_non_prime.py
def7d6757eba88c49c90e3f84af9077c2e5e6b72
[]
no_license
skafev/Python_basics
0088203207fe3960b26944e0940acaec40a8caaf
8bfc1a8b0dad3bf829fffbd539cebe3688f75974
refs/heads/main
2023-06-10T11:25:27.468914
2021-07-01T15:28:12
2021-07-01T15:28:12
382,078,056
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
number = input() not_prime = 0 prime = 0 while number != "stop": number = int(number) if number < 0: print("Number is negative.") elif number > 3: if number % 2 == 0 or number % 3 == 0: not_prime += number else: prime += number else: prime += number number = input() print(f"Sum of all prime numbers is: {prime}") print(f"Sum of all non prime numbers is: {not_prime}")
2c8269a6d5c4ddb8c4b445466174f74aecf370f6
857b051f99e8a42f94dd5895c7ac735e37867e94
/hakkimizda/urls.py
56836439053617eeb3e0ba317c7a1333be1e19df
[ "MIT" ]
permissive
kopuskopecik/projem
a88e4970ef23a4917e590e1a0a19ac7c49c86a73
738b0eeb2bf407b4ef54197cce1ce26ea67279c8
refs/heads/master
2021-06-22T10:04:44.523681
2020-12-25T19:56:10
2020-12-25T19:56:10
172,302,265
2
0
null
null
null
null
UTF-8
Python
false
false
171
py
from django.urls import path from django.conf.urls import url from .views import * app_name="hakkimizda" urlpatterns = [ path('hakkimizda/', hakkimizda, name="hak"), ]
1d6af3af9fa41162b76ba04790d68e5e149b3219
2ca07aecfa6ff25b0baae6dc9a707a284c2d1b6d
/trustzone_images/apps/bsp/build/scripts/genuses.py
44dde7dfd37d5c023ae14fb6e8d49ccd9fafb72d
[]
no_license
zhilangtaosha/msm8996-wp-1-0_test_device
ef05af263ba7955263ff91eb81d45b2437bc492e
6af9b44abbc4a367a9aaae26707079974c535f08
refs/heads/master
2023-03-19T02:42:09.581740
2021-02-21T01:20:19
2021-02-21T01:20:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,954
py
#=============================================================================== # # genuses # # GENERAL DESCRIPTION # Generates USES_FLAGS imformation from DATA file generate from build/ms. # # Copyright (c) 2009-2010 by Qualcomm Technologies, Incorporated. # All Rights Reserved. # QUALCOMM Proprietary/GTDR # #------------------------------------------------------------------------------- # # $Header: //components/rel/apps.tz/1.0.6/bsp/build/scripts/genuses.py#1 $ # $DateTime: 2016/12/02 01:50:16 $ # $Author: pwbldsvc $ # $Change: 11897059 $ # EDIT HISTORY FOR FILE # # This section contains comments describing changes made to the module. # Notice that changes are listed in reverse chronological order. # # when who what, where, why # -------- --- --------------------------------------------------------- # 04/02/10 sk Created # #=============================================================================== import os import subprocess import string import sys import re, string, os from array import array from optparse import OptionParser from datetime import datetime #=============================================================================== # parse_args # parse command line arguments #=============================================================================== def parse_args(): usage = "usage: %prog [options]" version = "%prog 1.0" parser = OptionParser(usage=usage, version=version) parser.add_option("-f", "--datfile", dest="dat_filename", help="Read preprocess data from FILE", metavar="FILE") parser.add_option("-o", "--outfile", dest="output_filename", help="Write output to FILE", metavar="FILE") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="print status messages to stdout") (options, args) = parser.parse_args() if options.dat_filename is None: parser.error("--datfile option must be defined") sys.exit(2) if options.output_filename is None: parser.error("--outfile option must be defined") sys.exit(2) return (options, args) #=============================================================================== # create_file_banner # creates a string that can be use as a banner for auto generated files #=============================================================================== def create_file_banner(fname, description="None", start_comment="#", end_comment="", start_block="", end_block="", style='none'): banner_str = \ '''$SB$SCM============================================================================$ECM $SCM Name: $ECM $SCM $FILE_NAME $ECM $SCM $SCM Description: $ECM $SCM $DESCRIPTION $ECM $SCM $ECM $SCM Copyright (c) $YEAR by QUALCOMM, Incorporated. All Rights Reserved. $ECM $SCM============================================================================$ECM $SCM $ECM $SCM *** AUTO GENERATED FILE - DO NOT EDIT $ECM $SCM $ECM $SCM GENERATED: $DATE $ECM $SCM============================================================================$ECM$EB ''' if style == 'C': start_comment = "#" end_comment = "" start_block = "/*\n" end_block = "\n*/" elif style == 'C++': start_comment = "//" end_comment = "" start_block = "" end_block = "" elif style == 'asm': start_comment = ";" end_comment = "" start_block = "" end_block = "" elif style == 'make' or style == 'shell': start_comment = "#" end_comment = "" start_block = "" end_block = "" elif style == 'dos': start_comment = "REM " end_comment = "" start_block = "" end_block = "" banner_str = banner_str.replace('$SCM', start_comment) banner_str = banner_str.replace('$ECM', end_comment) banner_str = banner_str.replace('$SB', start_block) banner_str = banner_str.replace('$EB', end_block) banner_str = banner_str.replace('$YEAR', str(datetime.now().strftime('%Y'))) banner_str = banner_str.replace('$DATE', str(datetime.now().ctime())) banner_str = banner_str.replace('$FILE_NAME', fname) banner_str = banner_str.replace('$DESCRIPTION', description) return banner_str def CleanLine(aLine): aLine = aLine.replace('(','{') aLine = aLine.replace(')','}') aLine = aLine.replace('\n','') aLine = aLine.replace(':=','=') aLine = aLine.replace('?=','=') return aLine def CleanVarName(aVarname): aVarname = aVarname.replace('.', '_') aVarname = aVarname.replace('export', '') aVarname = aVarname.replace('define', '') aVarname = re.sub('\s', '', aVarname) #get rid of whitespaces return aVarname def CleanVarValue(aVarvalue): aVarvalue = aVarvalue.strip() return aVarvalue def WriteData (options, file_handle, data, new_line="\n"): file_handle.write(data + new_line) if options.verbose: print data def main(): # get args from cmd line (options, args) = parse_args() uses = "USES" lines = open(options.dat_filename, 'r').readlines() total = "" banner = create_file_banner(os.path.split(options.output_filename)[1]) out_file = open(options.output_filename, 'w') WriteData(options, out_file, banner, new_line="") WriteData(options, out_file, "def exists(env):") WriteData(options, out_file, " return env.Detect('usesflags')") WriteData(options, out_file, "") WriteData(options, out_file, "def generate(env):") VarNameDict = {} #count = 0 for line in lines: line = line.lstrip() if line.find(uses, 0, 4)>-1: line = CleanLine(line) tempstr = line.split("=") VarName = tempstr[0] VarName = CleanVarName(VarName) VarValue = tempstr[1] VarValue = CleanVarValue(VarValue) if VarValue == "yes": vUsesFlag = True else: vUsesFlag = False if vUsesFlag == True: VarNameDict[VarName] = True # sort keys and write file #import pdb; pdb.set_trace() uses_flags = sorted(VarNameDict.iterkeys()) for uflag in uses_flags: WriteData(options, out_file, " env.Replace(%s = True)" % uflag) WriteData(options, out_file, " env.Replace(USES_FLAGS = %s)" % str(uses_flags)) WriteData(options, out_file, " return None") out_file.close() #run main()
c3973679874c6bcb06a9d97d54f6965242f7ef53
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_143/388.py
2c19f330a95780da7bb74471727f3b492214bb28
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
import math def solve(a, b, k): count = 0 i = 0 while i < a: j = 0 while j < b: if (i & j) < k: count += 1 j += 1 i += 1 return count name = "B-small-attempt0" fi = open(name + ".in", "r") fout = open(name + ".out", "w") numTestCases = int(fi.readline()) print "#TestCases: ", numTestCases for i in range(0, numTestCases): line = fi.readline().strip().split(" ") a = int(line[0]) b = int(line[1]) k = int(line[2]) fout.write("Case #" + str(i + 1) + ": " + str(solve(a, b, k)) + "\n") #print "Case #" + str(i + 1) + ": " + str(solve(a, b, k)) fi.close() fout.close()
f27cadf13a59eadb627295a3c642e84f8e57ccb1
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/cloud/hostrouteringressbytes15min.py
cc28259373b4b2613646e12c80ac99530e16d402
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
14,198
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class HostRouterIngressBytes15min(Mo): """ Mo doc not defined in techpub!!! """ meta = StatsClassMeta("cobra.model.cloud.HostRouterIngressBytes15min", "host router cloud ingress bytess") counter = CounterMeta("unicast", CounterCategory.COUNTER, "bytes", "host router ingress unicast bytes") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "unicastLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "unicastCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "unicastPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "unicastMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "unicastMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "unicastAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "unicastSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "unicastBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "unicastThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "unicastTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "unicastTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "unicastRate" meta._counters.append(counter) meta.moClassName = "cloudHostRouterIngressBytes15min" meta.rnFormat = "CDcloudHostRouterIngressBytes15min" meta.category = MoCategory.STATS_CURRENT meta.label = "current host router cloud ingress bytess stats in 15 minute" meta.writeAccessMask = 0x601 meta.readAccessMask = 0x601 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.cloud.HostRouterTunnelInfoHolder") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.cloud.HostRouterIngressBytes") meta.rnPrefixes = [ ('CDcloudHostRouterIngressBytes15min', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "unicastAvg", "unicastAvg", 54328, PropCategory.IMPLICIT_AVG) prop.label = "host router ingress unicast bytes average value" prop.isOper = True prop.isStats = True meta.props.add("unicastAvg", prop) prop = PropMeta("str", "unicastBase", "unicastBase", 54323, PropCategory.IMPLICIT_BASELINE) prop.label = "host router ingress unicast bytes baseline" prop.isOper = True prop.isStats = True meta.props.add("unicastBase", prop) prop = PropMeta("str", "unicastCum", "unicastCum", 54324, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "host router ingress unicast bytes cumulative" prop.isOper = True prop.isStats = True meta.props.add("unicastCum", prop) prop = PropMeta("str", "unicastLast", "unicastLast", 54322, PropCategory.IMPLICIT_LASTREADING) prop.label = "host router ingress unicast bytes current value" prop.isOper = True prop.isStats = True meta.props.add("unicastLast", prop) prop = PropMeta("str", "unicastMax", "unicastMax", 54327, PropCategory.IMPLICIT_MAX) prop.label = "host router ingress unicast bytes maximum value" prop.isOper = True prop.isStats = True meta.props.add("unicastMax", prop) prop = PropMeta("str", "unicastMin", "unicastMin", 54326, PropCategory.IMPLICIT_MIN) prop.label = "host router ingress unicast bytes minimum value" prop.isOper = True prop.isStats = True meta.props.add("unicastMin", prop) prop = PropMeta("str", "unicastPer", "unicastPer", 54325, PropCategory.IMPLICIT_PERIODIC) prop.label = "host router ingress unicast bytes periodic" prop.isOper = True prop.isStats = True meta.props.add("unicastPer", prop) prop = PropMeta("str", "unicastRate", "unicastRate", 54333, PropCategory.IMPLICIT_RATE) prop.label = "host router ingress unicast bytes rate" prop.isOper = True prop.isStats = True meta.props.add("unicastRate", prop) prop = PropMeta("str", "unicastSpct", "unicastSpct", 54329, PropCategory.IMPLICIT_SUSPECT) prop.label = "host router ingress unicast bytes suspect count" prop.isOper = True prop.isStats = True meta.props.add("unicastSpct", prop) prop = PropMeta("str", "unicastThr", "unicastThr", 54330, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "host router ingress unicast bytes thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("unicastThr", prop) prop = PropMeta("str", "unicastTr", "unicastTr", 54332, PropCategory.IMPLICIT_TREND) prop.label = "host router ingress unicast bytes trend" prop.isOper = True prop.isStats = True meta.props.add("unicastTr", prop) prop = PropMeta("str", "unicastTrBase", "unicastTrBase", 54331, PropCategory.IMPLICIT_TREND_BASE) prop.label = "host router ingress unicast bytes trend baseline" prop.isOper = True prop.isStats = True meta.props.add("unicastTrBase", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToHcloudIgw", "From fv:Ctx to hcloud:Igw", "cobra.model.hcloud.Igw")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToHcloudVgw", "From fv:Ctx to hcloud:Vgw", "cobra.model.hcloud.Vgw")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToCloudExtEPg", "From fvCtx (VRF) to cloudExtEPg", "cobra.model.cloud.ExtEPg")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToCloudRegion", "From fvCtx (VRF) to CloudRegion", "cobra.model.cloud.Region")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToHcloudCsr", "From fvCtx (VRF) to hcloudCsr (CSR)", "cobra.model.hcloud.Csr")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToHCloudEndPoint", "From fvCtx (VRF) to hcloud:EndPoint", "cobra.model.hcloud.EndPoint")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToHCloudCtx", "From fvCtx (VRF) to hcloudCtx (VPC)", "cobra.model.hcloud.Ctx")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToCloudCtxProfile", "From fvCtx (VRF) to cloudCtxProfile", "cobra.model.cloud.CtxProfile")) meta.deploymentQueryPaths.append(DeploymentPathMeta("FvCtxToCloudEPg", "From fvCtx (VRF) to cloud EPg", "cobra.model.cloud.EPg")) meta.deploymentQueryPaths.append(DeploymentPathMeta("CtxToRegion", "Vrf to cloud Region", "cobra.model.cloud.Region")) meta.deploymentQueryPaths.append(DeploymentPathMeta("CtxToNwIf", "Private Network to Interface", "cobra.model.nw.If")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
17480f6f7565ee7617480674a2fadf166e70810a
1f8a47641cb1c987f70dd7cf502d49e07ded52af
/backend/hss/hss/wsgi.py
1de8e14bb33a901652171821ff9561d31b1a8d19
[]
no_license
do-park/shawcheckredemption
0fda66e3c1958b1ea27258de2da51b6bb9ce92ef
8267e4d4ce4e815600bb4c21f7df878c8807d645
refs/heads/ft_front
2023-01-19T16:58:44.680144
2020-11-26T08:02:21
2020-11-26T08:02:21
316,159,702
1
1
null
2020-11-26T08:02:22
2020-11-26T07:55:14
null
UTF-8
Python
false
false
383
py
""" WSGI config for hss project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hss.settings') application = get_wsgi_application()
bdd0760e8844fd6ba461b3318c1347dc4022acd9
b090cb9bc30ac595675d8aa253fde95aef2ce5ea
/trunk/test/NightlyRun/test405.py
4234b88e576ef0f06697b7c02f12c1d1579361dc
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
eyhl/issm
5ae1500715c258d7988e2ef344c5c1fd15be55f7
1013e74c28ed663ebb8c9d398d9be0964d002667
refs/heads/master
2022-01-05T14:31:23.235538
2019-01-15T13:13:08
2019-01-15T13:13:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
931
py
#Test Name: SquareSheetShelfStressMHOPenalties import numpy as np from model import * from socket import gethostname from triangle import * from setmask import * from parameterize import * from setflowequation import * from solve import * md=triangle(model(),'../Exp/Square.exp',180000.) md=setmask(md,'../Exp/SquareShelf.exp','') md=parameterize(md,'../Par/SquareSheetShelf.py') md.extrude(5,1.) md=setflowequation(md,'SSA','../Exp/SquareHalfRight.exp','fill','HO','coupling','penalties') md.cluster=generic('name',gethostname(),'np',3) md=solve(md,'Stressbalance') #Fields and tolerances to track changes field_names =['Vx','Vy','Vz','Vel','Pressure'] field_tolerances=[5e-05,5e-05,5e-05,5e-05,1e-05] field_values=[\ md.results.StressbalanceSolution.Vx,\ md.results.StressbalanceSolution.Vy,\ md.results.StressbalanceSolution.Vz,\ md.results.StressbalanceSolution.Vel,\ md.results.StressbalanceSolution.Pressure,\ ]
147eafbcdb47571b8ec157075995bcb513a53efa
f167dffa2f767a0419aa82bf434852069a8baeb8
/lib/youtube_dl/extractor/kankan.py
a677ff44712794ef54f53a1afe9c55fbacad91e2
[ "MIT" ]
permissive
firsttris/plugin.video.sendtokodi
d634490b55149adfdcb62c1af1eb77568b8da3f5
1095c58e2bc21de4ab6fcb67a70e4f0f04febbc3
refs/heads/master
2023-08-18T10:10:39.544848
2023-08-15T17:06:44
2023-08-15T17:06:44
84,665,460
111
31
MIT
2022-11-11T08:05:21
2017-03-11T16:53:06
Python
UTF-8
Python
false
false
1,738
py
from __future__ import unicode_literals import re import hashlib from .common import InfoExtractor _md5 = lambda s: hashlib.md5(s.encode('utf-8')).hexdigest() class KankanIE(InfoExtractor): _VALID_URL = r'https?://(?:.*?\.)?kankan\.com/.+?/(?P<id>\d+)\.shtml' _TEST = { 'url': 'http://yinyue.kankan.com/vod/48/48863.shtml', 'md5': '29aca1e47ae68fc28804aca89f29507e', 'info_dict': { 'id': '48863', 'ext': 'flv', 'title': 'Ready To Go', }, 'skip': 'Only available from China', } def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) title = self._search_regex(r'(?:G_TITLE=|G_MOVIE_TITLE = )[\'"](.+?)[\'"]', webpage, 'video title') surls = re.search(r'surls:\[\'.+?\'\]|lurl:\'.+?\.flv\'', webpage).group(0) gcids = re.findall(r'http://.+?/.+?/(.+?)/', surls) gcid = gcids[-1] info_url = 'http://p2s.cl.kankan.com/getCdnresource_flv?gcid=%s' % gcid video_info_page = self._download_webpage( info_url, video_id, 'Downloading video url info') ip = self._search_regex(r'ip:"(.+?)"', video_info_page, 'video url ip') path = self._search_regex(r'path:"(.+?)"', video_info_page, 'video url path') param1 = self._search_regex(r'param1:(\d+)', video_info_page, 'param1') param2 = self._search_regex(r'param2:(\d+)', video_info_page, 'param2') key = _md5('xl_mp43651' + param1 + param2) video_url = 'http://%s%s?key=%s&key1=%s' % (ip, path, key, param2) return { 'id': video_id, 'title': title, 'url': video_url, }
93676b1ccd5b8f20a34473032ab5d4db03956a52
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5634947029139456_1/Python/AlonH/2014A1A.py
a02bf27c55c7c31dc651a2d0b8c8393d949d0274
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,292
py
def match(now,needed): now.sort() needed.sort() for i in range(len(now)): if now[i] != needed[i]: return True return False def count(ar,l): ret = [0]*l for i in range(l): for s in ar: ret[i] += int(s[i]) return(ret) def compare(n,o,l): ret = [0]*l for i in range(l): if n[i] != o[i]: ret[i] = 1 return tuple(ret) f = open("A-large.in","r") o = open("A-large-answers.txt","w") T = int(f.readline()) for t in range(1,T+1): inp = [int(a) for a in f.readline().split()] n = inp[0] l = inp[1] lifts = [0]*l start = [a for a in f.readline().split()] needed = [a for a in f.readline().split()] cnow = count(start,l) cneeded = count(needed,l) print("case",t,cnow,cneeded,start,needed) op = set([compare(start[0],n,l) for n in needed]) for i in range(1,n): op1 = set([compare(start[i],n,l) for n in needed]) op = op&op1 if len(op) == 0: o.write("Case #"+str(t)+": NOT POSSIBLE"+"\n") else: o.write("Case #"+str(t)+": "+str(min([a.count(1) for a in op]))+"\n") o.close() #o.write("Case #"+str(t)+": NOT POSSIBLE"+"\n") #o.write("Case #"+str(t)+": "+str(lifts.count(1))+"\n")
48d5dad900ecdf584f2ec639d5b62ce8f06d2c2c
82074ba616918ede605dec64b038546a7b07bd7d
/empowerb/middleware.py
85764001431cfbf3cedb9002fb6e1ccf8f38b859
[]
no_license
chetankhopade/EmpowerRM
b7ab639eafdfa57c054a0cf9da15c3d4b90bbd66
8d968592f5e0d160c56f31a4870e79c30240b514
refs/heads/main
2023-07-05T03:20:13.820049
2021-08-26T11:56:28
2021-08-26T11:56:28
399,354,317
0
0
null
null
null
null
UTF-8
Python
false
false
774
py
from _contextvars import ContextVar from django.utils.deprecation import MiddlewareMixin from empowerb.settings import DATABASES db_ctx = ContextVar('var') class WhichDatabaseIsTOUseMIddleware(MiddlewareMixin): """ Middleware to update the context var with the db alias """ @staticmethod def process_request(request): try: db_name_path = request.path.split('/')[1] db_name = db_name_path.split('_')[0] if '_' in db_name_path else db_name_path # set contextvar with the database name if dbname exist in DATABASES dict db_ctx.set(db_name) if db_name in DATABASES.keys() else db_ctx.set('NoOP') except Exception as ex: print(ex.__str__()) db_ctx.reset('NoOP')
628a26377a4ac11054ec002268c2916d3883eccf
601e6891504cc9da063e3ef9993e7b5f142bbe35
/examples/wifiStationsAndHosts.py
8e68f22b85c8a2a65ee1968f5506555a2831560b
[]
no_license
caiqiqi/mininet-wifi
b8a13f83e4fbadea20865faecf6719abf8e68437
547cf3c01d85b9bfb38b3e9df3b5c52119b5b5e2
refs/heads/master
2021-01-20T16:44:34.270734
2016-05-16T12:55:56
2016-05-16T12:55:56
58,878,807
0
0
null
2016-05-15T19:01:01
2016-05-15T19:01:01
null
UTF-8
Python
false
false
1,177
py
#!/usr/bin/python """ This example shows how work with wireless and wired media """ from mininet.net import Mininet from mininet.node import Controller, OVSKernelSwitch from mininet.cli import CLI from mininet.log import setLogLevel from mininet.link import TCLink def topology(): "Create a network." net = Mininet( controller=Controller, link=TCLink, switch=OVSKernelSwitch ) print "*** Creating nodes" ap1 = net.addBaseStation( 'ap1', ssid="simplewifi", mode="g", channel="5" ) sta1 = net.addStation( 'sta1', ip='192.168.0.1/24' ) sta2 = net.addStation( 'sta2', ip='192.168.0.2/24' ) h3 = net.addHost( 'h3', ip='192.168.0.3/24' ) h4 = net.addHost( 'h4', ip='192.168.0.4/24' ) c0 = net.addController('c0', controller=Controller, ip='127.0.0.1' ) print "*** Adding Link" net.addLink(sta1, ap1) net.addLink(sta2, ap1) net.addLink(h3, ap1) net.addLink(h4, ap1) print "*** Starting network" net.build() c0.start() ap1.start( [c0] ) print "*** Running CLI" CLI( net ) print "*** Stopping network" net.stop() if __name__ == '__main__': setLogLevel( 'info' ) topology()
4f9cdc759c20a19b123b187ed82e7d01eb37bd48
8827574a663cc9d18194eb355dce7ffb676e6d0b
/everest/transit.py
8958b3c59d794095e0ea42a5548d12f5aa0ef602
[ "MIT" ]
permissive
mirca/everest
70a79432f6cd2b604a64fc4c97c7513bbe2a6406
b96cc5cd1949b81ddc49fb74b90bf5a95c6fca14
refs/heads/master
2021-01-13T05:56:00.206244
2017-03-17T16:35:49
2017-03-17T16:35:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,317
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' :py:mod:`transit.py` - Transit models ------------------------------------- These are routines used to generate a transit model, primarily for transit injection/recovery tests. These are wrappers around :py:func:`pysyzygy.Transit`, with the added feature that the transit :py:obj:`depth` and the transit :py:obj:`duration` can be specified as input variables (as opposed to the planet-star radius ratio and the stellar density, which :py:mod:`pysyzygy` expects). ''' from __future__ import division, print_function, absolute_import, unicode_literals import numpy as np import matplotlib.pyplot as pl import pysyzygy as ps from scipy.optimize import fmin import logging log = logging.getLogger(__name__) class TransitModel(object): ''' ''' def __init__(self, name, sig_RpRs = 0.001, **kwargs): ''' ''' # The planet/transit model ID assert type(name) is str, "Arg `name` must be a string." self.name = name # The transit model self._transit = ps.Transit(**kwargs) # Compute the depth times = kwargs.get('times', None) if times is not None: t0 = times[0] else: t0 = kwargs.get('t0', 0.) self.depth = (1. - self._transit([t0]))[0] # Approximate variance on the depth self.var_depth = (2 * sig_RpRs) ** 2 # Save the kwargs self.params = kwargs def __call__(self, time): ''' ''' model = (self._transit(time) - 1) / self.depth return model def Get_RpRs(d, **kwargs): ''' Returns the value of the planet radius over the stellar radius for a given depth :py:obj:`d`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`. ''' def Depth(RpRs, **kwargs): return 1 - ps.Transit(RpRs = RpRs, **kwargs)([kwargs.get('t0', 0.)]) def DiffSq(r): return 1.e10 * (d - Depth(r, **kwargs)) ** 2 return fmin(DiffSq, [np.sqrt(d)], disp = False) def Get_rhos(dur, **kwargs): ''' Returns the value of the stellar density for a given transit duration :py:obj:`dur`, given the :py:class:`everest.pysyzygy` transit :py:obj:`kwargs`. ''' assert dur >= 0.01 and dur <= 0.5, "Invalid value for the duration." def Dur(rhos, **kwargs): t0 = kwargs.get('t0', 0.) time = np.linspace(t0 - 0.5, t0 + 0.5, 1000) try: t = time[np.where(ps.Transit(rhos = rhos, **kwargs)(time) < 1)] except: return 0. return t[-1] - t[0] def DiffSq(rhos): return (dur - Dur(rhos, **kwargs)) ** 2 return fmin(DiffSq, [0.2], disp = False) def Transit(time, t0 = 0., dur = 0.1, per = 3.56789, depth = 0.001, **kwargs): ''' A `Mandel-Agol <http://adsabs.harvard.edu/abs/2002ApJ...580L.171M>`_ transit model, but with the depth and the duration as primary input variables. :param numpy.ndarray time: The time array :param float t0: The time of first transit in units of :py:obj:`BJD` - 2454833. :param float dur: The transit duration in days. Don't go too crazy on this one -- very small \ or very large values will break the inverter. Default 0.1 :param float per: The orbital period in days. Default 3.56789 :param float depth: The fractional transit depth. Default 0.001 :param dict kwargs: Any additional keyword arguments, passed directly to :py:func:`everest.pysyzygy.Transit` :returns tmod: The transit model evaluated at the same times as the :py:obj:`time` array ''' # Note that rhos can affect RpRs, so we should really do this iteratively, # but the effect is pretty negligible! RpRs = Get_RpRs(depth, t0 = t0, per = per, **kwargs) rhos = Get_rhos(dur, t0 = t0, per = per, **kwargs) return ps.Transit(t0 = t0, per = per, RpRs = RpRs, rhos = rhos, **kwargs)(time) class TransitShape(object): ''' ''' def __init__(self, depth = 1, window = 0.5, **kwargs): ''' ''' kwargs.pop('t0', None) kwargs.pop('times', None) t = np.linspace(-window / 2, window / 2, 5000) trn = ps.Transit(t0 = 0., **kwargs) transit_model = trn(t) transit_model -= 1 transit_model *= depth / (1 - trn([0.])[0]) self.x = t self.y = transit_model def __call__(self, time, t0 = 0.): ''' ''' return np.interp(time, self.x + t0, self.y)
14679579a6dbc0f503f5b3d8562401165ce94756
91deb97afda334c5366e560325995cf6b5407bee
/src/command_modules/azure-cli-billing/azure/cli/command_modules/billing/custom.py
21965f255ffa9f5644f22068a40961f8ca75b5a3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
viananth/azure-cli
ab117c1b0b676026cbb57567544cd70630efe830
4d23492ed03e946cfc11bae23b29acb971fb137d
refs/heads/master
2021-05-23T05:13:51.414113
2017-08-17T16:58:10
2017-08-17T16:58:10
95,239,804
0
0
NOASSERTION
2019-03-19T18:45:16
2017-06-23T17:01:34
Python
UTF-8
Python
false
false
891
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- def cli_billing_list_invoices(client, generate_url=False): """List all available invoices of the subscription""" invoices = client.list(expand='downloadUrl' if generate_url else None) return list(invoices) def cli_billing_get_invoice(client, name=None): """Retrieve invoice of specific name of the subscription""" if name: return client.get(name) return client.get_latest() def cli_billing_list_periods(client): """List all available billing periods of the subscription""" return list(client.list())
1390b2d3b283c49021827414a5f0ca6601dd27e8
1cfafec5935522b386d40ab7bb7246f39da89fcc
/temp/20201221_naver_ai_handsonsummit.py
ff8784adba43b2a7a15adeb0447977ce5373c919
[]
no_license
madfalc0n/my_coding_labs
0d9e13e2d1579607d5481c6a78baa70a2c7c374a
b38fd988a5e3ebb8d8b66bf5a0b15eb3eaa20578
refs/heads/master
2021-07-03T17:33:16.801207
2021-06-18T06:24:09
2021-06-18T06:24:09
241,097,976
1
0
null
null
null
null
UTF-8
Python
false
false
549
py
import sys import requests client_id = "CID" client_secret = "CSECRET" lang = "Kor" # 언어 코드 ( Kor, Jpn, Eng, Chn ) url = "https://naveropenapi.apigw.ntruss.com/recog/v1/stt?lang=" + lang data = open('filepath', 'rb') headers = { "X-NCP-APIGW-API-KEY-ID": client_id, "X-NCP-APIGW-API-KEY": client_secret, "Content-Type": "application/octet-stream" } response = requests.post(url, data=data, headers=headers) rescode = response.status_code if(rescode == 200): print (response.text) else: print("Error : " + response.text)
67558e1d4c168ae6ffe706cae7b73d5b96991949
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_write_1/client-vpn-client-certificate-revocation-list_export.py
590e1a0b6582eaa6d0a43363fd3ba344c40e4825
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/export-client-vpn-client-certificate-revocation-list.html if __name__ == '__main__': """ import-client-vpn-client-certificate-revocation-list : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/import-client-vpn-client-certificate-revocation-list.html """ parameter_display_string = """ # client-vpn-endpoint-id : The ID of the Client VPN endpoint. """ add_option_dict = {} ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_one_parameter("ec2", "export-client-vpn-client-certificate-revocation-list", "client-vpn-endpoint-id", add_option_dict)
4c6a4945f123306bcdf31d8b8f17939c2b32cc2f
094304d0aa7cb6949c0f471d1c432dc7db5a4c2a
/VIRSCAN/vir_scan_db.py
1358ecd8d77cb2b4438e1bd9cfcaacc0392ee70c
[]
no_license
smallmeet/fangzhen
7f8e232b87841b88268d14133479846e48e33ba1
d0cbf09eba98c835a4ea013889a8cf0b34263d0d
refs/heads/master
2020-12-24T22:28:54.972613
2016-08-12T09:24:15
2016-08-12T09:24:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
from base_db import MysqlClient from get_conf import GetConf class VirScanMysqlClient: def __init__(self, conf): self.mysql_client = MysqlClient(conf) def insert_vir_scan(self, args): self.mysql_client.insert('PRO_VIR_SCAN_INSERT', args) def insert_apk_black_list(self, args): self.mysql_client.insert('PRO_APK_BLACK_LIST_INSERT', args) def update_apk_black_list(self, args): self.mysql_client.insert('PRO_APK_BLACK_LIST_UPDATE', args) def select_vir_scan(self, args): return self.mysql_client.select('PRO_VIR_SCAN_SELECT', args) def select_apk_black_list_info(self, args): return self.mysql_client.select('PRO_APK_BLACK_LIST_SELECT', args) def fetch_apk_black_list_info(self, args): return self.mysql_client.select('PRO_APK_BLACK_LIST_FETCH', args) if __name__ == '__main__': get_conf = GetConf('') mysql_client = VirScanMysqlClient(get_conf) # mysql_client.get_app_info() # mysql_client.insert_data()
e80086c7681aba8a3e9db60de523efc0dda13b05
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02886/s458066707.py
c314b1e82e4800300ac6e420a37e53e4fca14534
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
n=int(input()) d=list(map(int,input().split())) d2=[m**2 for m in d] print((sum(d)**2-sum(d2))//2)
022be4db452f8ecc1c423f41fa77963d1855a30e
9e21ee282d0a567b42a96f938f61d655eb2d5940
/chat_room/tests/test_base.py
1262db10f3b75ee65a9f2fb0e64f06f887ac4d2a
[]
no_license
smolynets/chat-interface
e0ac815639dd993f029f331a545c5c5932785569
3b66970c241eb1660b60a612aceffde36223eff4
refs/heads/master
2021-06-12T02:19:47.749561
2019-07-13T12:42:21
2019-07-13T12:42:21
191,516,912
0
0
null
2021-06-10T18:21:22
2019-06-12T07:06:21
Python
UTF-8
Python
false
false
1,496
py
""" This test is inherited by tests of other apps. """ from django.urls import reverse from rest_framework.test import APIClient, APITestCase from rest_framework_simplejwt.settings import api_settings from ..models import User class APIRestAuthJWTClient(APIClient): """ APIRestAuthJWTClient class. Login with jwt tokens. """ def login(self, login_name="login", **credentials): """ Login method. Get tokens, if successful login. """ login_endpoint = reverse(login_name) login_response = self.post(login_endpoint, credentials, format="json") if login_response.status_code == 200: self.credentials( HTTP_AUTHORIZATION="{0} {1}".format( api_settings.defaults["AUTH_HEADER_TYPES"][0], login_response.data["access"] ) ) return True else: return False class APITestBaseClass(APITestCase): """ APITestBaseClass class. Get APITestBaseClass. """ def setUp(self): """ Creeate User. """ self.user = User.objects.create_user( username="test_user", email="[email protected]", password="password" ) self.user_two = User.objects.create_user( username="test2_user", email="[email protected]", password="password" ) client_class = APIRestAuthJWTClient
1547ae20bcab955d0bc53826f0c25ebaf5c0ca77
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2645/60768/316508.py
65bd1d2918995f2d545307313de4c81f073d0279
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
481
py
piles = eval(input()) h = int(input()) max_k = max(piles) min_k = int(sum(piles) / h) re = max_k for k in range(min_k, max_k + 1): time = 0 bananas = [i for i in piles] while len(bananas) > 0: for i in range(len(bananas)): bananas[i] = bananas[i] - k time += 1 if bananas[i] < 0: bananas[i] = 0 while 0 in bananas: bananas.remove(0) if time <= h: re = k break print(re)
3c78d94f96313789cdcab22a4e37af4d6683944f
dcda5ba16474dd8ff650e04e7f4a9bf700f6a9ff
/manage.py
e4582d9147c1e546b5dee4a9c82e5fcceb52ac75
[]
no_license
007vict/shopbyexample
2084d6e53faafb5c7e856cc8b3a5ff43bc3a82e2
bc7dcfe5818499731c3cbf956c9c0b95cf3791da
refs/heads/master
2022-12-21T13:05:08.425653
2019-04-10T10:30:41
2019-04-10T10:30:41
177,291,341
0
0
null
2022-12-08T04:58:00
2019-03-23T13:18:59
JavaScript
UTF-8
Python
false
false
547
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myshopbyexample.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
8a6f357264b2dbc8114efa7cb34e8a02b9be2820
63b814265ab49ebc2ed8e62577757991119be83b
/data-quality/kalman-filt.py
d10a0e87d25b724b1f8289d92c13e7a3168ac9bd
[]
no_license
wisecg/mjd-analysis
7de4e67c34c19215984f528f31f71a8e584e1e91
ca4f00a767f2dfe6d460b44c700e2b59fe0bb296
refs/heads/master
2020-12-07T21:28:34.376478
2017-08-28T15:20:17
2017-08-28T15:20:17
65,919,233
0
0
null
null
null
null
UTF-8
Python
false
false
1,108
py
""" The idea is to take plots like "gmax" and "gbase" in data-quality.cc and apply a Kalman filter to them, to look for "extrema" http://scipy-cookbook.readthedocs.io/items/KalmanFiltering.html Intro to Kalman filters: http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf Ben says: everything is “basically linear,” which in electronics engineering speak means made of gaussians so you model it with a bunch of kalman filters and that gives you a statistically robust way to look for discontinuities or other jumps its how they monitor parameters at like a gas turbine plant or jet engine or shit like that its called fault detection and is a big component of controls engineering its like wildly unexciting but sort of cool math but, like, say you want to monitor stability of a peak or whatever you can make a bunch of plots of that peak position and look at them by eye or you can have a filter that looks at the position vs time and says WOAH WTF BRO if it jumps kalman filters are markov chain way to do that and you know we roll markov style up in this bitch same with rates or whatever """
5509f28877444ba0ac97b513a2106dbc9ddd0995
ea0c0b8d67a42086f840149b3dbe1c0e4f58e56f
/members_area/migrations/0005_auto_20200129_2122.py
12832e8dc63b3301b343c645b65d640d95c3d93b
[ "MIT" ]
permissive
AzeezBello/raodoh
78b27e0886f8882144a4def160d9c3f53bcc6af9
296bd44069bd750557bf49995374601f5052d695
refs/heads/master
2022-05-03T05:07:21.632642
2020-02-26T10:16:08
2020-02-26T10:16:08
235,878,080
0
0
MIT
2022-04-22T23:01:27
2020-01-23T20:15:39
JavaScript
UTF-8
Python
false
false
481
py
# Generated by Django 2.2.9 on 2020-01-29 20:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('members_area', '0004_auto_20200128_2330'), ] operations = [ migrations.AlterField( model_name='lesson', name='course', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='members_area.Course'), ), ]
656bb960ef1d2fd531df0a667c4d97135b95bcb1
dd5ee6d1e88527cd22f1b64443320ba8ef751b59
/rlcard3/envs/mocsar.py
2b3edd2b9df42da117998cd3dd3b41bf88e15885
[ "MIT" ]
permissive
sorata2894/rlcard3
42a2587e3ab00f3a33c684fb76efbc334a835359
e9bbd36b789e670f96622a3a2ba8327f0d897561
refs/heads/master
2022-11-05T00:08:10.809055
2020-06-11T03:28:41
2020-06-11T03:28:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,854
py
""" Mocsár Environment File name: envs/gmocsar.py Author: József Varga Date created: 3/27/2020 """ from rlcard3 import models from rlcard3.envs.env import Env from rlcard3.games.mocsar.game import MocsarGame as Game from rlcard3.games.mocsar.utils import action_to_string, \ string_to_action, payoff_func, print_state, encode_to_obs from typing import List class MocsarEnv(Env): """ GinRummy Environment """ state_shape: List[int] # Dimensions of state numpy array def __init__(self, config): self.game = Game() self.state_shape = [3, 9, 14] super().__init__(config=config) def _extract_state(self, state): # 200213 don't use state ??? """ Extract useful information from state for RL. Must be implemented in the child class. numpy(3,9,14) Menaing: x,y,z z: 1/0, 1 means, the hand contains y amount of card. y: rank of cards in some hand. x=0: player's hand x=1: others hand x=2: target x>2: history, not implemented.... :param state: dict, the raw state :return: dict: 'obs':the extracted state, numpy.array, 'legal_actions': list of actions """ obs = encode_to_obs(state=state) extracted_state = {'obs': obs, 'legal_actions': self._get_legal_actions(), 'is_extract': True # State is extracted> } return extracted_state def get_payoffs(self): """ Get the payoffs of players. Must be implemented in the child class. First one scores 1, Last one scores 0. Other ith player scores 0.5 ^^i :return: A list of payoffs for each player. """ num_players = self.game.num_players # winnersben a győzelmek sorrendje van # List indexed by PlayerID instead of OrderId, pl [1,3,2,0] win_id = [self.game.players.winners.index(i) for i in range(num_players)] # win_id-ben, meg az, hogy az adott indexű játékos hányadik, pl [3,0,2,1], mivel a 0-ik indexű játékos utolsó=3 payoffs = [payoff_func(position=win_id[i], num_players=num_players) for i in range(num_players)] return payoffs def _decode_action(self, action_id): """ Decode Action id to the action in the game. :param action_id: The id of the action :return: The action that will be passed to the game engine. """ return action_to_string(action=action_id) def _get_legal_actions(self): """ Get all legal actions for current state. :return: A list of legal actions' id. """ return [string_to_action(action) for action in self.game.get_legal_actions()] def _load_model(self): """ Load pretrained/rule model :return: A Model object """ return models.load('mocsar-rule-v1', num_players=self.game.get_player_num()) def print_state(self, player: int): """ Print out the state of a given player :param player: Player Id to print """ state = self.game.get_state(player) print_state(state) def print_result(self, player): """ Print the game result when the game is over :param player: Player Id to print """ payoffs = self.get_payoffs() for player_ in self.game.players.players: print(f"Player {player_.__str__()} : points {payoffs[player_.player_id]}") @staticmethod def print_action(action: str): """ Print out an action in a nice form :param action: Code of the action """ if type(action) is tuple: action, _ = action print(f"\nAction code:{string_to_action(action)}, action:{action}")
afa233f76cb5afeb5878c1f8371c6ee8b5e88667
5ed795f324b1f94ded479a22f60580d9f41a114b
/dashboard/migrations/0007_auto_20190212_1753.py
231eeaf5940eeed0afb26eda070c777986ca996d
[]
no_license
ashutoshdev/Django-Main-news-wesbite
907f52a131e136072a585c903c906adb19457765
9a934255465d73ab12e16031fb99ad5847b65b55
refs/heads/master
2023-08-23T20:27:40.286701
2021-10-21T02:03:49
2021-10-21T02:03:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,404
py
# Generated by Django 2.0 on 2019-02-12 12:23 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('dashboard', '0006_rfcompany'), ] operations = [ migrations.CreateModel( name='DashboardCompany', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('companyname', models.TextField(default='', verbose_name='companyname')), ('bannerloads', models.PositiveIntegerField(default=0)), ('clicks', models.PositiveIntegerField(default=0)), ('date', models.DateField(auto_now_add=True)), ('time', models.TimeField(auto_now_add=True)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.AddField( model_name='rfcompany', name='date', field=models.DateField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='rfcompany', name='time', field=models.TimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), ]
76faf3fd6ac8be77e3a1174cf85ff9d069e4638a
96c970ebacd9ade1493f4d01537005788b43a49b
/pychron/experiment/tasks/experiment_actions.py
1449ab2015d4a6e355f16e188813b9cb6753b314
[ "Apache-2.0" ]
permissive
OSUPychron/pychron
d2da9051b68024200d0009de634da810ccef2a0d
fe0ba9daff9548fa8bebab26db66a1cefff7c1d6
refs/heads/master
2021-01-14T12:47:26.389887
2015-12-18T22:27:02
2015-12-18T22:27:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,537
py
# =============================================================================== # Copyright 2011 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from pyface.message_dialog import warning from pyface.tasks.task_window_layout import TaskWindowLayout from pychron.core.helpers.filetools import get_path from pychron.envisage.tasks.actions import PAction as Action, PTaskAction as TaskAction # ============= standard library imports ======================== import os # ============= local library imports ========================== from pychron.envisage.resources import icon from pychron.paths import paths EXP_ID = 'pychron.experiment.task' class ResetSystemHealthAction(Action): name = 'Reset System Health' dname = 'Reset System Health' def perform(self, event): from pychron.experiment.health.series import reset_system_health_series reset_system_health_series() class ExperimentAction(Action): task_id = EXP_ID # def _get_experimentor(self, event): # return self._get_service(event, 'pychron.experiment.experimentor.Experimentor') def _get_service(self, event, name): app = event.task.window.application return app.get_service(name) def _open_editor(self, event): application = event.task.window.application application.open_task(self.task_id) class ConfigureEditorTableAction(TaskAction): name = 'Configure Experiment Table' dname = 'Configure Experiment Table' method = 'configure_experiment_table' class BasePatternAction(TaskAction): _enabled = None def _task_changed(self): if self.task: if hasattr(self.task, 'open_pattern'): enabled = True if self.enabled_name: if self.object: enabled = bool(self._get_attr(self.object, self.enabled_name, False)) if enabled: self._enabled = True else: self._enabled = False def _enabled_update(self): """ reimplement ListeningAction's _enabled_update """ if self.enabled_name: if self.object: self.enabled = bool(self._get_attr(self.object, self.enabled_name, False)) else: self.enabled = False elif self._enabled is not None: self.enabled = self._enabled else: self.enabled = bool(self.object) class OpenPatternAction(BasePatternAction): name = 'Open Pattern...' dname = 'Open Pattern' method = 'open_pattern' class NewPatternAction(BasePatternAction): name = 'New Pattern...' dname = 'New Pattern' method = 'new_pattern' class SendTestNotificationAction(TaskAction): name = 'Send Test Notification' dname = 'Send Test Notification' method = 'send_test_notification' # accelerator = 'Ctrl+Shift+N' class DeselectAction(TaskAction): name = 'Deselect' dname = 'Deselect' method = 'deselect' tooltip = 'Deselect the selected run(s)' id = 'pychron.deselect' class UndoAction(TaskAction): name = 'Undo' dname = 'Undo' method = 'undo' accelerator = 'Ctrl+Z' class QueueConditionalsAction(Action): name = 'Edit Queue Conditionals' dname = 'Edit Queue Conditionals' def perform(self, event): task = event.task if hasattr(task, 'edit_queue_conditionals'): # edit the current queue's conditionals task.edit_queue_conditionals() else: # choose a conditionals file to edit from pychron.experiment.conditional.conditionals_edit_view import edit_conditionals dnames = None spec = task.application.get_service( 'pychron.spectrometer.base_spectrometer_manager.BaseSpectrometerManager') if spec: dnames = spec.spectrometer.detector_names edit_conditionals(None, detectors=dnames, app=task.application) class SystemConditionalsAction(Action): name = 'Edit System Conditionals' dname = 'Edit System Conditionals' def perform(self, event): from pychron.experiment.conditional.conditionals_edit_view import edit_conditionals task = event.task dnames = None spec = task.application.get_service( 'pychron.spectrometer.base_spectrometer_manager.BaseSpectrometerManager') if spec: dnames = spec.spectrometer.detector_names p = get_path(paths.spectrometer_dir, '.*conditionals', ('.yaml','.yml')) if p: edit_conditionals(p, detectors=dnames, app=task.application) else: warning(None, 'No system conditionals file at {}'.format(p)) def open_experiment(event, path): app = event.task.window.application task = event.task if task.id == EXP_ID: task.open(path) else: task = app.get_task(EXP_ID, False) if task.open(path): task.window.open() # class QueueAction(ExperimentAction): # def _open_experiment(self, event, path=None): # open_experiment(event, path) class NewExperimentQueueAction(ExperimentAction): description = 'Create a new experiment queue' name = 'New Experiment' dname = 'New Experiment' id = 'pychron.new_experiment' def perform(self, event): if event.task.id == EXP_ID: event.task.new() else: application = event.task.window.application win = application.create_window(TaskWindowLayout(EXP_ID)) task = win.active_task if task.new(): win.open() class OpenExperimentHistoryAction(Action): name = 'Experiment Launch History' dname = 'Experiment Launch History' def perform(self, event): from pychron.experiment.experiment_launch_history import ExperimentLaunchHistory elh = ExperimentLaunchHistory() elh.load() info = elh.edit_traits() if info.result: if elh.selected: open_experiment(event, elh.selected.path) class OpenLastExperimentQueueAction(ExperimentAction): description = 'Open last executed experiment' name = 'Open Last Experiment...' dname = 'Open Last Experiment' id = 'pychron.open_last_experiment' def __init__(self, *args, **kw): super(OpenLastExperimentQueueAction, self).__init__(*args, **kw) self.enabled = bool(self._get_last_experiment()) def perform(self, event): path = self._get_last_experiment() if path: open_experiment(event, path) else: warning(None, 'No last experiment available') # if os.path.isfile(paths.last_experiment): # with open(paths.last_experiment, 'r') as rfile: # path = fp.readline() # if os.path.isfile(path): # self._open_experiment(event, path) # else: # print 'asdfasdf', path # else: # warning(None, 'No last experiment available') def _get_last_experiment(self): if os.path.isfile(paths.last_experiment): with open(paths.last_experiment, 'r') as rfile: path = rfile.readline() if os.path.isfile(path): return path class OpenExperimentQueueAction(ExperimentAction): description = 'Open experiment' name = 'Open Experiment...' dname = 'Open Experiment' image = icon('project-open') id = 'pychron.open_experiment' def perform(self, event): path = '/Users/ross/Pychron_dev/experiments/Current Experiment.txt' # path = '/Users/ross/Pychrondata_dev/experiments/test.txt' open_experiment(event, path) # =============================================================================== # Utilities # =============================================================================== class SignalCalculatorAction(ExperimentAction): name = 'Signal Calculator' dname = 'Signal Calculator' def perform(self, event): obj = self._get_service(event, 'pychron.experiment.signal_calculator.SignalCalculator') app = event.task.window.application app.open_view(obj) class ResetQueuesAction(TaskAction): method = 'reset_queues' name = 'Reset Queues' dname = 'Reset Queues' class LastAnalysisRecoveryAction(Action): name = 'Recover Last Analysis' dname = 'Recover Last Analysis' def perform(self, event): from pychron.experiment.analysis_recovery import AnalysisRecoverer a = AnalysisRecoverer() a.recover_last_analysis() # ============= EOF ====================================
632bcfd9791ccbdc1e14fd7487c231c3e8ccd408
29b6a856a81a47ebab7bfdba7fe8a7b845123c9e
/dingtalk/python/alibabacloud_dingtalk/conv_file_1_0/models.py
4327631ff59f6b9e1c0b1d34a2c61fedcfc59b67
[ "Apache-2.0" ]
permissive
aliyun/dingtalk-sdk
f2362b6963c4dbacd82a83eeebc223c21f143beb
586874df48466d968adf0441b3086a2841892935
refs/heads/master
2023-08-31T08:21:14.042410
2023-08-30T08:18:22
2023-08-30T08:18:22
290,671,707
22
9
null
2021-08-12T09:55:44
2020-08-27T04:05:39
PHP
UTF-8
Python
false
false
30,852
py
# -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import Dict class GetSpaceHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class GetSpaceRequest(TeaModel): def __init__( self, open_conversation_id: str = None, union_id: str = None, ): self.open_conversation_id = open_conversation_id self.union_id = union_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.open_conversation_id is not None: result['openConversationId'] = self.open_conversation_id if self.union_id is not None: result['unionId'] = self.union_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('openConversationId') is not None: self.open_conversation_id = m.get('openConversationId') if m.get('unionId') is not None: self.union_id = m.get('unionId') return self class GetSpaceResponseBodySpace(TeaModel): def __init__( self, corp_id: str = None, create_time: str = None, modified_time: str = None, space_id: str = None, ): self.corp_id = corp_id self.create_time = create_time self.modified_time = modified_time self.space_id = space_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.corp_id is not None: result['corpId'] = self.corp_id if self.create_time is not None: result['createTime'] = self.create_time if self.modified_time is not None: result['modifiedTime'] = self.modified_time if self.space_id is not None: result['spaceId'] = self.space_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('corpId') is not None: self.corp_id = m.get('corpId') if m.get('createTime') is not None: self.create_time = m.get('createTime') if m.get('modifiedTime') is not None: self.modified_time = m.get('modifiedTime') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') return self class GetSpaceResponseBody(TeaModel): def __init__( self, space: GetSpaceResponseBodySpace = None, ): self.space = space def validate(self): if self.space: self.space.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.space is not None: result['space'] = self.space.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('space') is not None: temp_model = GetSpaceResponseBodySpace() self.space = temp_model.from_map(m['space']) return self class GetSpaceResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: GetSpaceResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.status_code, 'status_code') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = GetSpaceResponseBody() self.body = temp_model.from_map(m['body']) return self class SendHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class SendRequest(TeaModel): def __init__( self, dentry_id: str = None, open_conversation_id: str = None, space_id: str = None, union_id: str = None, ): self.dentry_id = dentry_id self.open_conversation_id = open_conversation_id self.space_id = space_id self.union_id = union_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.dentry_id is not None: result['dentryId'] = self.dentry_id if self.open_conversation_id is not None: result['openConversationId'] = self.open_conversation_id if self.space_id is not None: result['spaceId'] = self.space_id if self.union_id is not None: result['unionId'] = self.union_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('dentryId') is not None: self.dentry_id = m.get('dentryId') if m.get('openConversationId') is not None: self.open_conversation_id = m.get('openConversationId') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('unionId') is not None: self.union_id = m.get('unionId') return self class SendResponseBodyFile(TeaModel): def __init__( self, conversation_id: str = None, create_time: str = None, creator_id: str = None, extension: str = None, id: str = None, modified_time: str = None, modifier_id: str = None, name: str = None, parent_id: str = None, path: str = None, size: int = None, space_id: str = None, status: str = None, type: str = None, uuid: str = None, version: int = None, ): self.conversation_id = conversation_id self.create_time = create_time self.creator_id = creator_id self.extension = extension self.id = id self.modified_time = modified_time self.modifier_id = modifier_id self.name = name self.parent_id = parent_id self.path = path self.size = size self.space_id = space_id self.status = status self.type = type self.uuid = uuid self.version = version def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.conversation_id is not None: result['conversationId'] = self.conversation_id if self.create_time is not None: result['createTime'] = self.create_time if self.creator_id is not None: result['creatorId'] = self.creator_id if self.extension is not None: result['extension'] = self.extension if self.id is not None: result['id'] = self.id if self.modified_time is not None: result['modifiedTime'] = self.modified_time if self.modifier_id is not None: result['modifierId'] = self.modifier_id if self.name is not None: result['name'] = self.name if self.parent_id is not None: result['parentId'] = self.parent_id if self.path is not None: result['path'] = self.path if self.size is not None: result['size'] = self.size if self.space_id is not None: result['spaceId'] = self.space_id if self.status is not None: result['status'] = self.status if self.type is not None: result['type'] = self.type if self.uuid is not None: result['uuid'] = self.uuid if self.version is not None: result['version'] = self.version return result def from_map(self, m: dict = None): m = m or dict() if m.get('conversationId') is not None: self.conversation_id = m.get('conversationId') if m.get('createTime') is not None: self.create_time = m.get('createTime') if m.get('creatorId') is not None: self.creator_id = m.get('creatorId') if m.get('extension') is not None: self.extension = m.get('extension') if m.get('id') is not None: self.id = m.get('id') if m.get('modifiedTime') is not None: self.modified_time = m.get('modifiedTime') if m.get('modifierId') is not None: self.modifier_id = m.get('modifierId') if m.get('name') is not None: self.name = m.get('name') if m.get('parentId') is not None: self.parent_id = m.get('parentId') if m.get('path') is not None: self.path = m.get('path') if m.get('size') is not None: self.size = m.get('size') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('status') is not None: self.status = m.get('status') if m.get('type') is not None: self.type = m.get('type') if m.get('uuid') is not None: self.uuid = m.get('uuid') if m.get('version') is not None: self.version = m.get('version') return self class SendResponseBody(TeaModel): def __init__( self, file: SendResponseBodyFile = None, ): self.file = file def validate(self): if self.file: self.file.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.file is not None: result['file'] = self.file.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('file') is not None: temp_model = SendResponseBodyFile() self.file = temp_model.from_map(m['file']) return self class SendResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: SendResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.status_code, 'status_code') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = SendResponseBody() self.body = temp_model.from_map(m['body']) return self class SendByAppHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class SendByAppRequest(TeaModel): def __init__( self, dentry_id: str = None, space_id: str = None, union_id: str = None, ): self.dentry_id = dentry_id self.space_id = space_id self.union_id = union_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.dentry_id is not None: result['dentryId'] = self.dentry_id if self.space_id is not None: result['spaceId'] = self.space_id if self.union_id is not None: result['unionId'] = self.union_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('dentryId') is not None: self.dentry_id = m.get('dentryId') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('unionId') is not None: self.union_id = m.get('unionId') return self class SendByAppResponseBodyFile(TeaModel): def __init__( self, conversation_id: str = None, create_time: str = None, creator_id: str = None, extension: str = None, id: str = None, modified_time: str = None, modifier_id: str = None, name: str = None, parent_id: str = None, path: str = None, size: int = None, space_id: str = None, status: str = None, type: str = None, uuid: str = None, version: int = None, ): self.conversation_id = conversation_id self.create_time = create_time self.creator_id = creator_id self.extension = extension self.id = id self.modified_time = modified_time self.modifier_id = modifier_id self.name = name self.parent_id = parent_id self.path = path self.size = size self.space_id = space_id self.status = status self.type = type self.uuid = uuid self.version = version def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.conversation_id is not None: result['conversationId'] = self.conversation_id if self.create_time is not None: result['createTime'] = self.create_time if self.creator_id is not None: result['creatorId'] = self.creator_id if self.extension is not None: result['extension'] = self.extension if self.id is not None: result['id'] = self.id if self.modified_time is not None: result['modifiedTime'] = self.modified_time if self.modifier_id is not None: result['modifierId'] = self.modifier_id if self.name is not None: result['name'] = self.name if self.parent_id is not None: result['parentId'] = self.parent_id if self.path is not None: result['path'] = self.path if self.size is not None: result['size'] = self.size if self.space_id is not None: result['spaceId'] = self.space_id if self.status is not None: result['status'] = self.status if self.type is not None: result['type'] = self.type if self.uuid is not None: result['uuid'] = self.uuid if self.version is not None: result['version'] = self.version return result def from_map(self, m: dict = None): m = m or dict() if m.get('conversationId') is not None: self.conversation_id = m.get('conversationId') if m.get('createTime') is not None: self.create_time = m.get('createTime') if m.get('creatorId') is not None: self.creator_id = m.get('creatorId') if m.get('extension') is not None: self.extension = m.get('extension') if m.get('id') is not None: self.id = m.get('id') if m.get('modifiedTime') is not None: self.modified_time = m.get('modifiedTime') if m.get('modifierId') is not None: self.modifier_id = m.get('modifierId') if m.get('name') is not None: self.name = m.get('name') if m.get('parentId') is not None: self.parent_id = m.get('parentId') if m.get('path') is not None: self.path = m.get('path') if m.get('size') is not None: self.size = m.get('size') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('status') is not None: self.status = m.get('status') if m.get('type') is not None: self.type = m.get('type') if m.get('uuid') is not None: self.uuid = m.get('uuid') if m.get('version') is not None: self.version = m.get('version') return self class SendByAppResponseBody(TeaModel): def __init__( self, file: SendByAppResponseBodyFile = None, ): self.file = file def validate(self): if self.file: self.file.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.file is not None: result['file'] = self.file.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('file') is not None: temp_model = SendByAppResponseBodyFile() self.file = temp_model.from_map(m['file']) return self class SendByAppResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: SendByAppResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.status_code, 'status_code') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = SendByAppResponseBody() self.body = temp_model.from_map(m['body']) return self class SendLinkHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class SendLinkRequest(TeaModel): def __init__( self, dentry_id: str = None, open_conversation_id: str = None, space_id: str = None, union_id: str = None, ): self.dentry_id = dentry_id self.open_conversation_id = open_conversation_id self.space_id = space_id self.union_id = union_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.dentry_id is not None: result['dentryId'] = self.dentry_id if self.open_conversation_id is not None: result['openConversationId'] = self.open_conversation_id if self.space_id is not None: result['spaceId'] = self.space_id if self.union_id is not None: result['unionId'] = self.union_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('dentryId') is not None: self.dentry_id = m.get('dentryId') if m.get('openConversationId') is not None: self.open_conversation_id = m.get('openConversationId') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('unionId') is not None: self.union_id = m.get('unionId') return self class SendLinkResponseBodyFile(TeaModel): def __init__( self, conversation_id: str = None, create_time: str = None, creator_id: str = None, extension: str = None, id: str = None, modified_time: str = None, modifier_id: str = None, name: str = None, parent_id: str = None, path: str = None, size: int = None, space_id: str = None, status: str = None, type: str = None, uuid: str = None, version: int = None, ): self.conversation_id = conversation_id self.create_time = create_time self.creator_id = creator_id self.extension = extension self.id = id self.modified_time = modified_time self.modifier_id = modifier_id self.name = name self.parent_id = parent_id self.path = path self.size = size self.space_id = space_id self.status = status self.type = type self.uuid = uuid self.version = version def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.conversation_id is not None: result['conversationId'] = self.conversation_id if self.create_time is not None: result['createTime'] = self.create_time if self.creator_id is not None: result['creatorId'] = self.creator_id if self.extension is not None: result['extension'] = self.extension if self.id is not None: result['id'] = self.id if self.modified_time is not None: result['modifiedTime'] = self.modified_time if self.modifier_id is not None: result['modifierId'] = self.modifier_id if self.name is not None: result['name'] = self.name if self.parent_id is not None: result['parentId'] = self.parent_id if self.path is not None: result['path'] = self.path if self.size is not None: result['size'] = self.size if self.space_id is not None: result['spaceId'] = self.space_id if self.status is not None: result['status'] = self.status if self.type is not None: result['type'] = self.type if self.uuid is not None: result['uuid'] = self.uuid if self.version is not None: result['version'] = self.version return result def from_map(self, m: dict = None): m = m or dict() if m.get('conversationId') is not None: self.conversation_id = m.get('conversationId') if m.get('createTime') is not None: self.create_time = m.get('createTime') if m.get('creatorId') is not None: self.creator_id = m.get('creatorId') if m.get('extension') is not None: self.extension = m.get('extension') if m.get('id') is not None: self.id = m.get('id') if m.get('modifiedTime') is not None: self.modified_time = m.get('modifiedTime') if m.get('modifierId') is not None: self.modifier_id = m.get('modifierId') if m.get('name') is not None: self.name = m.get('name') if m.get('parentId') is not None: self.parent_id = m.get('parentId') if m.get('path') is not None: self.path = m.get('path') if m.get('size') is not None: self.size = m.get('size') if m.get('spaceId') is not None: self.space_id = m.get('spaceId') if m.get('status') is not None: self.status = m.get('status') if m.get('type') is not None: self.type = m.get('type') if m.get('uuid') is not None: self.uuid = m.get('uuid') if m.get('version') is not None: self.version = m.get('version') return self class SendLinkResponseBody(TeaModel): def __init__( self, file: SendLinkResponseBodyFile = None, ): self.file = file def validate(self): if self.file: self.file.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.file is not None: result['file'] = self.file.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('file') is not None: temp_model = SendLinkResponseBodyFile() self.file = temp_model.from_map(m['file']) return self class SendLinkResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: SendLinkResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.status_code, 'status_code') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = SendLinkResponseBody() self.body = temp_model.from_map(m['body']) return self
369e5de6978cd855314fe286b88ec95c0f367146
19bdbe1c4aa00ba9799764681f16e09f65d6ea2b
/np/lib/smtp.py
0065154141cf437ba3588749e4b816c5fc03783f
[]
no_license
invisibleroads/networkplanner
b4a3c7b3c0c169c3cd6610a6fb77125434dcb1c4
7ad8c0f2b4078f6cca681205e1671d060a937c18
refs/heads/master
2023-08-11T17:33:44.458438
2012-05-31T13:41:04
2012-05-31T13:41:04
961,674
2
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
'Routines for sending messages' # Import system modules import smtplib import email.message import email.utils import socket def sendMessage(fromByValue, toByValue, subject, body, headerByName=None): 'Send a message using SMTP' # Prepare message = email.message.Message() message.add_header('from', email.utils.formataddr((fromByValue['nickname'], fromByValue['email']))) message.add_header('to', email.utils.formataddr((toByValue['nickname'], toByValue['email']))) message.add_header('subject', subject) message.set_payload(body) if headerByName: for key, value in headerByName.iteritems(): message.add_header(key, value) # Connect to server if fromByValue['smtp'] == 'localhost': server = smtplib.SMTP('localhost') else: server = smtplib.SMTP_SSL(fromByValue['smtp'], 465) if len(fromByValue['username']): server.login(fromByValue['username'], fromByValue['password']) # Send mail try: server.sendmail(fromByValue['email'], toByValue['email'], message.as_string()) except socket.error, error: raise SMTPError(error) finally: server.quit() class SMTPError(Exception): pass
3fd599f2dd2b120dfc1fa457dd87c9056ade3f26
00a9295409b78a53ce790f7ab44931939f42c0e0
/FPGA/apio/iCEBreaker/FIR_Filter/sympy/venv/lib/python3.8/site-packages/sympy/multipledispatch/utils.py
11cea683ed08448b11c2efecaea1b7e234934cc4
[ "Apache-2.0" ]
permissive
klei22/Tech-OnBoarding-Class
c21f0762d2d640d5e9cb124659cded5c865b32d4
960e962322c37be9117e0523641f8b582a2beceb
refs/heads/master
2022-11-10T13:17:39.128342
2022-10-25T08:59:48
2022-10-25T08:59:48
172,292,871
2
3
Apache-2.0
2019-05-19T00:26:32
2019-02-24T03:50:35
C
UTF-8
Python
false
false
3,042
py
def expand_tuples(L): """ >>> from sympy.multipledispatch.utils import expand_tuples >>> expand_tuples([1, (2, 3)]) [(1, 2), (1, 3)] >>> expand_tuples([1, 2]) [(1, 2)] """ if not L: return [()] elif not isinstance(L[0], tuple): rest = expand_tuples(L[1:]) return [(L[0],) + t for t in rest] else: rest = expand_tuples(L[1:]) return [(item,) + t for t in rest for item in L[0]] # Taken from theano/theano/gof/sched.py # Avoids licensing issues because this was written by Matthew Rocklin def _toposort(edges): """ Topological sort algorithm by Kahn [1] - O(nodes + vertices) inputs: edges - a dict of the form {a: {b, c}} where b and c depend on a outputs: L - an ordered list of nodes that satisfy the dependencies of edges >>> from sympy.multipledispatch.utils import _toposort >>> _toposort({1: (2, 3), 2: (3, )}) [1, 2, 3] Closely follows the wikipedia page [2] [1] Kahn, Arthur B. (1962), "Topological sorting of large networks", Communications of the ACM [2] https://en.wikipedia.org/wiki/Toposort#Algorithms """ incoming_edges = reverse_dict(edges) incoming_edges = {k: set(val) for k, val in incoming_edges.items()} S = {v for v in edges if v not in incoming_edges} L = [] while S: n = S.pop() L.append(n) for m in edges.get(n, ()): assert n in incoming_edges[m] incoming_edges[m].remove(n) if not incoming_edges[m]: S.add(m) if any(incoming_edges.get(v, None) for v in edges): raise ValueError("Input has cycles") return L def reverse_dict(d): """Reverses direction of dependence dict >>> d = {'a': (1, 2), 'b': (2, 3), 'c':()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = {} for key in d: for val in d[key]: result[val] = result.get(val, tuple()) + (key, ) return result # Taken from toolz # Avoids licensing issues because this version was authored by Matthew Rocklin def groupby(func, seq): """ Group a collection by a key function >>> from sympy.multipledispatch.utils import groupby >>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank'] >>> groupby(len, names) # doctest: +SKIP {3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']} >>> iseven = lambda x: x % 2 == 0 >>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP {False: [1, 3, 5, 7], True: [2, 4, 6, 8]} See Also: ``countby`` """ d = dict() for item in seq: key = func(item) if key not in d: d[key] = list() d[key].append(item) return d
e7286393de85a9ea1daeff4f6a590f0d35dd069b
f50f1aa1f8f139d546db3230a1cb1f53043fd9e6
/hardware/mobile/ifuse/actions.py
4253ce5b51f00a7f0adaacfac0ba3a76d71890d3
[]
no_license
pars-linux/corporate2
7887961d1552d39bc3b0bef4a60fd3413d9b82bb
14d1eacfc824fb8d0bff8173e7ac06b36b88d10d
refs/heads/master
2020-05-26T15:02:12.005654
2017-02-27T03:07:14
2017-02-27T03:07:14
82,476,084
4
0
null
null
null
null
UTF-8
Python
false
false
557
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2009-2010 TUBITAK/UEKAE # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get def setup(): autotools.autoreconf("-vfi") autotools.configure() def build(): autotools.make("-j1") def install(): autotools.rawInstall("DESTDIR=%s" % get.installDIR()) pisitools.dodoc("AUTHORS", "COPYING", "README")
2da48d4fe2ab88ad57d4bc2ce4b47d37ade84327
00c14f5816c3ef6a9ff5652af89c27c12bcf023c
/example/jspm_0_17/jspm_0_17/urls.py
9ef86b2113613f0783470d90f157872b78c2522d
[ "MIT", "ISC" ]
permissive
ilyashupta/django-systemjs
148fd7de73aeb2cf562a07d3bb392436f3a78010
f4d26794c06449d4d3ae2a6f7ab0bc550b35b0c7
refs/heads/master
2023-04-27T14:41:45.265046
2016-09-19T09:15:35
2016-09-19T09:15:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
"""jspm_0_17 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin from django.views.generic import TemplateView urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^$', TemplateView.as_view(template_name='base.html')), ]
936fe33888460fe111915ebee493e4b636140d10
b42957e496e5c9447b858d7382caea83ce9ea431
/packtml/__init__.py
d3f0e325a23686c69f7eec073c983de5f0695885
[ "MIT" ]
permissive
PacktPublishing/Supervised-Machine-Learning-with-Python
153b9f5248fd4ca79896a277c7f703cf5899ac07
00d6ce2451547a73e6358d85937f8cbf2af762a4
refs/heads/master
2023-02-02T21:20:35.889344
2023-01-30T08:34:13
2023-01-30T08:34:13
187,639,872
5
3
null
null
null
null
UTF-8
Python
false
false
658
py
# -*- coding: utf-8 -*- import os # global namespace: from packtml import clustering from packtml import decision_tree from packtml import metrics from packtml import neural_net from packtml import recommendation from packtml import regression from packtml import utils # set the version packtml_location = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(packtml_location, "VERSION")) as vsn: __version__ = vsn.read().strip() # remove from global namespace del os del packtml_location del vsn __all__ = [ 'clustering', 'decision_tree', 'metrics', 'neural_net', 'recommendation', 'regression', 'utils' ]
286d4837a392a3730412cc78c44d91c56603e5b6
dd8227454b817ccf2ceb24b3dfd4260d4ded7a72
/scripts/item/consume_2434546.py
fd4214fd1a7ed1410ab093ba89cb8ce96fcf7213
[ "MIT" ]
permissive
Snewmy/swordie
0dd3c17808b064c2cb2bd9576b51daf01ae5d686
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
refs/heads/master
2023-06-30T21:14:05.225798
2021-07-06T14:32:39
2021-07-06T14:32:39
389,497,502
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
# Scribbler Damage Skin success = sm.addDamageSkin(2434546) if success: sm.chat("The Scribbler Damage Skin has been added to your account's damage skin collection.")
880c458d3f3529d6d643d216ff4c6061674fcd20
18aee5d93a63eab684fe69e3aa0abd1372dd5d08
/test/legacy_test/test_jit_save_load.py
7f58638e7ac7ad178372817cd669397568a0e4c8
[ "Apache-2.0" ]
permissive
Shixiaowei02/Paddle
8d049f4f29e281de2fb1ffcd143997c88078eadb
3d4d995f26c48f7792b325806ec3d110fc59f6fc
refs/heads/develop
2023-06-26T06:25:48.074273
2023-06-14T06:40:21
2023-06-14T06:40:21
174,320,213
2
1
Apache-2.0
2022-12-28T05:14:30
2019-03-07T10:09:34
C++
UTF-8
Python
false
false
57,829
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import shutil import tempfile import unittest import numpy as np import paddle from paddle import fluid from paddle.fluid import unique_name from paddle.jit.api import to_static from paddle.jit.translated_layer import INFER_PARAMS_INFO_SUFFIX from paddle.nn import Linear from paddle.static import InputSpec BATCH_SIZE = 32 BATCH_NUM = 10 SEED = 10 def random_batch_reader(input_size, label_size): def _get_random_inputs_and_labels(input_size, label_size): np.random.seed(SEED) input = np.random.random(size=input_size).astype('float32') label = np.random.random(size=label_size).astype('int64') return input, label def __reader__(): for _ in range(BATCH_NUM): batch_input, batch_label = _get_random_inputs_and_labels( [BATCH_SIZE, input_size], [BATCH_SIZE, label_size] ) yield batch_input, batch_label return __reader__ class LinearNet(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static def forward(self, x): return self._linear(x) class LinearNetWithInputSpec(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static(input_spec=[InputSpec(shape=[None, 784], dtype='float32')]) def forward(self, x): return self._linear(x) class LinearNetNotDeclarative(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) def forward(self, x): return self._linear(x) class LinerNetWithLabel(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static( input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image"), InputSpec(shape=[None, 1], dtype='int64', name="label"), ] ) def forward(self, x, label): out = self._linear(x) loss = paddle.nn.functional.cross_entropy( out, label, reduction='none', use_softmax=False ) avg_loss = paddle.mean(loss) return out, avg_loss class LinerNetWithPruneInput(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static( input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image"), InputSpec(shape=[None, 1], dtype='int64', name="label"), ] ) def forward(self, x, label): out = self._linear(x) loss = paddle.nn.functional.cross_entropy( out, label, reduction='none', use_softmax=False ) avg_loss = paddle.mean(loss) return out class LinerNetWithUselessInput(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static( input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image"), InputSpec(shape=[None, 1], dtype='int64', name="label"), ] ) def forward(self, x, label): out = self._linear(x) return out class LinearNetReturnLoss(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @to_static def forward(self, x): y = self._linear(x) z = self._linear(y) loss = paddle.mean(z) return z, loss class LinearNetMultiInput(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear1 = Linear(in_size, out_size) self._linear2 = Linear(in_size, out_size) @to_static( input_spec=[ InputSpec([None, 8], dtype='float32'), InputSpec([None, 8], dtype='float32'), ] ) def forward(self, x, y): x_out = self._linear1(x) y_out = self._linear2(y) loss = paddle.mean(x_out + y_out) return x_out, y_out, loss class LinearNetMultiInput1(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear1 = Linear(in_size, out_size) self._linear2 = Linear(in_size, out_size) @to_static( input_spec=( InputSpec([None, 8], dtype='float32'), InputSpec([None, 8], dtype='float32'), ) ) def forward(self, x, y): x_out = self._linear1(x) y_out = self._linear2(y) loss = paddle.mean(x_out + y_out) return x_out, y_out, loss class MultiLoadingLinearNet(paddle.nn.Layer): def __init__(self, size, model_path): super().__init__() self._linear = Linear(size, size) self._load_linear1 = paddle.jit.load(model_path) self._load_linear2 = paddle.jit.load(model_path) @to_static def forward(self, x): tmp1 = self._linear(x) tmp2 = self._load_linear1(tmp1) tmp3 = self._load_linear2(tmp2) y = self._linear(tmp3) return y class LinearNetReturnHidden(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear_1 = Linear(in_size, out_size) self._linear_2 = Linear(in_size, out_size) @to_static def forward(self, x): y = self._linear_1(x) z = self._linear_2(y) loss = paddle.mean(z) return y, loss class LinearNetWithNestOut(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear_1 = Linear(in_size, out_size) self._linear_2 = Linear(in_size, out_size) @to_static def forward(self, x): y = self._linear_1(x) z = self._linear_2(y) out = y + z loss = paddle.mean(out) return y, [(z, loss), out] class LinearNetWithDictInput(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) @paddle.jit.to_static( input_spec=[ {'img': InputSpec(shape=[None, 8], dtype='float32', name='img')}, {'label': InputSpec(shape=[None, 1], dtype='int64', name='label')}, ] ) def forward(self, img, label): out = self._linear(img['img']) # not return loss to avoid prune output loss = paddle.nn.functional.cross_entropy(out, label['label']) return out class LinearNetWithDictInputNoPrune(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear = Linear(in_size, out_size) def forward(self, img): out = self._linear(img['img'] + img['img2']) return out class EmptyLayer(paddle.nn.Layer): def __init__(self): super().__init__() @paddle.jit.to_static def forward(self, x): return x class NoParamLayer(paddle.nn.Layer): def __init__(self): super().__init__() @paddle.jit.to_static def forward(self, x, y): return x + y class LinearNetWithMultiStaticFunc(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self._linear_0 = Linear(in_size, out_size) self._linear_1 = Linear(in_size, out_size) self._scale = paddle.to_tensor([9.9]) @paddle.jit.to_static def forward(self, x): return self._linear_0(x) @paddle.jit.to_static def forward_no_param(self, x): return x @paddle.jit.to_static def forward_general(self, x): return self._linear_0(x) + self._linear_1(x) * self._scale def train(layer, input_size=784, label_size=1): # create optimizer sgd = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=layer.parameters() ) # create data loader train_loader = fluid.io.DataLoader.from_generator(capacity=5) train_loader.set_batch_generator( random_batch_reader(input_size, label_size) ) # train for data in train_loader(): img, label = data label.stop_gradient = True cost = layer(img) loss = paddle.nn.functional.cross_entropy( cost, label, reduction='none', use_softmax=False ) avg_loss = paddle.mean(loss) avg_loss.backward() sgd.minimize(avg_loss) layer.clear_gradients() return [img], layer, avg_loss def train_with_label(layer, input_size=784, label_size=1): # create optimizer sgd = fluid.optimizer.SGDOptimizer( learning_rate=0.01, parameter_list=layer.parameters() ) # create data loader train_loader = fluid.io.DataLoader.from_generator(capacity=5) train_loader.set_batch_generator( random_batch_reader(input_size, label_size) ) # train for data in train_loader(): img, label = data label.stop_gradient = True out, avg_loss = layer(img, label) avg_loss.backward() sgd.minimize(avg_loss) layer.clear_gradients() return out class TestJitSaveLoad(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() self.model_path = os.path.join( self.temp_dir.name, "test_jit_save_load/model" ) # enable dygraph mode fluid.enable_dygraph() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) def tearDown(self): self.temp_dir.cleanup() def train_and_save_model(self, model_path=None): layer = LinearNet(784, 1) example_inputs, layer, _ = train(layer) final_model_path = model_path if model_path else self.model_path orig_input_types = [type(x) for x in example_inputs] paddle.jit.save( layer=layer, path=final_model_path, input_spec=example_inputs ) new_input_types = [type(x) for x in example_inputs] self.assertEqual(orig_input_types, new_input_types) return layer def test_save_load(self): # train and save model train_layer = self.train_and_save_model() # load model loaded_layer = paddle.jit.load(self.model_path) self.load_and_inference(train_layer, loaded_layer) self.load_dygraph_state_dict(train_layer) self.load_and_finetune(train_layer, loaded_layer) def load_and_inference(self, train_layer, infer_layer): train_layer.eval() infer_layer.eval() # inference & compare x = fluid.dygraph.to_variable( np.random.random((1, 784)).astype('float32') ) np.testing.assert_array_equal( train_layer(x).numpy(), infer_layer(x).numpy() ) def load_and_finetune(self, train_layer, load_train_layer): train_layer.train() load_train_layer.train() # train & compare img0, _, train_loss = train(train_layer) img1, _, load_train_loss = train(load_train_layer) np.testing.assert_array_equal( train_loss.numpy(), load_train_loss.numpy() ) def load_dygraph_state_dict(self, train_layer): train_layer.eval() # construct new model new_layer = LinearNet(784, 1) orig_state_dict = new_layer.state_dict() load_state_dict = paddle.load(self.model_path) for structured_name in orig_state_dict: self.assertTrue(structured_name in load_state_dict) new_layer.set_state_dict(load_state_dict) new_layer.eval() # inference & compare x = fluid.dygraph.to_variable( np.random.random((1, 784)).astype('float32') ) np.testing.assert_array_equal( train_layer(x).numpy(), new_layer(x).numpy() ) def test_load_dygraph_no_path(self): model_path = os.path.join( self.temp_dir.name, "test_jit_save_load.no_path/model_path" ) with self.assertRaises(ValueError): model_dict = paddle.load(model_path) def test_jit_load_no_path(self): path = os.path.join( self.temp_dir.name, "test_jit_save_load.no_path/model_path" ) with self.assertRaises(ValueError): loaded_layer = paddle.jit.load(path) class TestSaveLoadWithNestOut(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_nest_output(self): x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) net = LinearNetWithNestOut(8, 8) dy_outs = paddle.utils.flatten(net(x)) net = to_static(net, input_spec=[InputSpec([None, 8], name='x')]) model_path = os.path.join(self.temp_dir.name, "net_with_nest_out/model") paddle.jit.save(net, model_path) load_net = paddle.jit.load(model_path) load_outs = paddle.utils.flatten(load_net(x)) self.assertTrue(len(dy_outs) == 4) for dy_out, load_out in zip(dy_outs, load_outs): np.testing.assert_allclose( dy_out.numpy(), load_out.numpy(), rtol=1e-05 ) class TestSaveLoadWithDictInput(unittest.TestCase): def test_dict_input(self): # NOTE: This net cannot be executed, it is just # a special case for exporting models in model validation # We DO NOT recommend this writing way of Layer net = LinearNetWithDictInput(8, 8) # net.forward.concrete_program.inputs: # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, # {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, # {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)}) self.assertEqual(len(net.forward.concrete_program.inputs), 3) temp_dir = tempfile.TemporaryDirectory() path = os.path.join( temp_dir.name, "test_jit_save_load_with_dict_input/model" ) # prune inputs paddle.jit.save( layer=net, path=path, input_spec=[ {'img': InputSpec(shape=[None, 8], dtype='float32', name='img')} ], ) img = paddle.randn(shape=[4, 8], dtype='float32') loaded_net = paddle.jit.load(path) loaded_out = loaded_net(img) # loaded_net._input_spec(): # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)] self.assertEqual(len(loaded_net._input_spec()), 1) temp_dir.cleanup() class TestSaveLoadWithDictInputNoPrune(unittest.TestCase): def test_dict_input(self): net = LinearNetWithDictInputNoPrune(8, 8) temp_dir = tempfile.TemporaryDirectory() path = os.path.join( temp_dir.name, "test_jit_save_load_with_dict_input_no_prune/model" ) # prune inputs paddle.jit.save( layer=net, path=path, input_spec=[ { 'img': InputSpec( shape=[None, 8], dtype='float32', name='img' ), 'img2': InputSpec( shape=[None, 8], dtype='float32', name='img2' ), } ], ) img = paddle.randn(shape=[4, 8], dtype='float32') img2 = paddle.randn(shape=[4, 8], dtype='float32') loaded_net = paddle.jit.load(path) loaded_out = loaded_net(img, img2) self.assertEqual(len(loaded_net._input_spec()), 2) temp_dir.cleanup() class TestSaveLoadWithInputSpec(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_with_input_spec(self): net = LinearNetReturnLoss(8, 8) # set x.shape = [None, 8] net.forward = to_static( net.forward, input_spec=[InputSpec([None, 8], name='x')] ) model_path = os.path.join( self.temp_dir.name, "input_spec.output_spec/model" ) # check inputs and outputs self.assertTrue(len(net.forward.inputs) == 1) input_x = net.forward.inputs[0] self.assertTrue(input_x.shape == (-1, 8)) self.assertTrue(input_x.name == 'x') # 1. prune loss output_spec = net.forward.outputs[:1] paddle.jit.save(net, model_path, output_spec=output_spec) # 2. load to infer infer_layer = paddle.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) pred = infer_layer(x) def test_multi_in_out(self): net = LinearNetMultiInput(8, 8) model_path = os.path.join( self.temp_dir.name, "multi_inout.output_spec1/model" ) # 1. check inputs and outputs self.assertTrue(len(net.forward.inputs) == 2) input_x = net.forward.inputs[0] input_y = net.forward.inputs[1] self.assertTrue(input_x.shape == (-1, 8)) self.assertTrue(input_y.shape == (-1, 8)) # 2. prune loss output_spec = net.forward.outputs[:2] paddle.jit.save(net, model_path, output_spec=output_spec) # 3. load to infer infer_layer = paddle.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) y = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) # 4. predict pred_x, pred_y = infer_layer(x, y) # 1. prune y and loss model_path = os.path.join( self.temp_dir.name, "multi_inout.output_spec2/model" ) output_spec = net.forward.outputs[:1] paddle.jit.save(net, model_path, [input_x], output_spec=output_spec) # 2. load again infer_layer2 = paddle.jit.load(model_path) # 3. predict pred_xx = infer_layer2(x) # 4. assert pred_x == pred_xx np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05) def test_multi_in_out1(self): net = LinearNetMultiInput1(8, 8) model_path = os.path.join( self.temp_dir.name, "multi_inout1.output_spec1/model" ) # 1. check inputs and outputs self.assertTrue(len(net.forward.inputs) == 2) input_x = net.forward.inputs[0] input_y = net.forward.inputs[1] self.assertTrue(input_x.shape == (-1, 8)) self.assertTrue(input_y.shape == (-1, 8)) # 2. prune loss output_spec = net.forward.outputs[:2] paddle.jit.save(net, model_path, output_spec=output_spec) # 3. load to infer infer_layer = paddle.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) y = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) # 4. predict pred_x, pred_y = infer_layer(x, y) # 1. prune y and loss model_path = os.path.join( self.temp_dir.name, "multi_inout1.output_spec2/model" ) output_spec = net.forward.outputs[:1] paddle.jit.save(net, model_path, (input_x,), output_spec=output_spec) # 2. load again infer_layer2 = paddle.jit.load(model_path) # 3. predict pred_xx = infer_layer2(x) # 4. assert pred_x == pred_xx np.testing.assert_allclose(pred_x.numpy(), pred_xx.numpy(), rtol=1e-05) class TestJitSaveLoadConfig(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_output_spec(self): train_layer = LinearNetReturnLoss(8, 8) adam = fluid.optimizer.AdamOptimizer( learning_rate=0.1, parameter_list=train_layer.parameters() ) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) for i in range(10): out, loss = train_layer(x) loss.backward() adam.minimize(loss) train_layer.clear_gradients() model_path = os.path.join( self.temp_dir.name, "save_load_config.output_spec" ) output_spec = [out] paddle.jit.save( layer=train_layer, path=model_path, input_spec=[x], output_spec=output_spec, ) train_layer.eval() infer_layer = paddle.jit.load(model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) np.testing.assert_array_equal( train_layer(x)[0].numpy(), infer_layer(x).numpy() ) def test_save_no_support_config_error(self): layer = LinearNet(784, 1) path = os.path.join(self.temp_dir.name, "no_support_config_test") with self.assertRaises(ValueError): paddle.jit.save(layer=layer, path=path, model_filename="") def test_load_empty_model_filename_error(self): path = os.path.join(self.temp_dir.name, "error_model_filename_test") with self.assertRaises(ValueError): paddle.jit.load(path, model_filename="") def test_load_empty_params_filename_error(self): path = os.path.join(self.temp_dir.name, "error_params_filename_test") with self.assertRaises(ValueError): paddle.jit.load(path, params_filename="") def test_load_with_no_support_config(self): path = os.path.join(self.temp_dir.name, "no_support_config_test") with self.assertRaises(ValueError): paddle.jit.load(path, separate_params=True) class TestJitMultipleLoading(unittest.TestCase): def setUp(self): self.linear_size = 4 self.temp_dir = tempfile.TemporaryDirectory() self.model_path = os.path.join( self.temp_dir.name, "jit_multi_load/model" ) # enable dygraph mode fluid.enable_dygraph() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) # train and save base model self.train_and_save_orig_model() def tearDown(self): self.temp_dir.cleanup() def train_and_save_orig_model(self): layer = LinearNet(self.linear_size, self.linear_size) example_inputs, layer, _ = train(layer, self.linear_size, 1) paddle.jit.save( layer=layer, path=self.model_path, input_spec=example_inputs ) def test_load_model_retransform_inference(self): multi_loaded_layer = MultiLoadingLinearNet( self.linear_size, self.model_path ) state_dict = multi_loaded_layer.state_dict() name_set = set() for _, var in state_dict.items(): self.assertTrue(var.name not in name_set) name_set.add(var.name) class TestJitPruneModelAndLoad(unittest.TestCase): def setUp(self): self.linear_size = 4 self.temp_dir = tempfile.TemporaryDirectory() self.model_path = os.path.join( self.temp_dir.name, "jit_prune_model_and_load/model" ) # enable dygraph mode fluid.enable_dygraph() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) def tearDown(self): self.temp_dir.cleanup() def train_and_save(self): train_layer = LinearNetReturnHidden(8, 8) adam = fluid.optimizer.AdamOptimizer( learning_rate=0.1, parameter_list=train_layer.parameters() ) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) for i in range(10): hidden, loss = train_layer(x) loss.backward() adam.minimize(loss) train_layer.clear_gradients() output_spec = [hidden] paddle.jit.save( layer=train_layer, path=self.model_path, input_spec=[x], output_spec=output_spec, ) return train_layer def test_load_pruned_model(self): train_layer = self.train_and_save() train_layer.eval() infer_layer = paddle.jit.load(self.model_path) x = fluid.dygraph.to_variable( np.random.random((4, 8)).astype('float32') ) np.testing.assert_array_equal( train_layer(x)[0].numpy(), infer_layer(x).numpy() ) def test_load_var_not_in_extra_var_info(self): self.train_and_save() # chage extra var info var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX with open(var_info_path, 'rb') as f: extra_var_info = pickle.load(f) extra_var_info.clear() with open(var_info_path, 'wb') as f: pickle.dump(extra_var_info, f, protocol=2) with self.assertRaises(RuntimeError): paddle.jit.load(self.model_path) class TestJitSaveMultiCases(unittest.TestCase): def setUp(self): # enable dygraph mode fluid.enable_dygraph() # config seed paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def verify_inference_correctness( self, layer, model_path, with_label_and_loss=False, with_label=False ): layer.eval() loaded_layer = paddle.jit.load(model_path) loaded_layer.eval() # inference & compare x = paddle.to_tensor(np.random.random((1, 784)).astype('float32')) if with_label_and_loss: y = paddle.to_tensor(np.random.random((1, 1)).astype('int64')) pred, _ = layer(x, y) pred = pred.numpy() elif with_label: y = paddle.to_tensor(np.random.random((1, 1)).astype('int64')) pred = layer(x, y) pred = pred.numpy() else: pred = layer(x).numpy() loaded_pred = loaded_layer(x).numpy() np.testing.assert_array_equal( pred, loaded_pred, err_msg='Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'.format( pred, loaded_pred ), ) def test_no_prune_to_static_after_train(self): layer = LinearNet(784, 1) train(layer) model_path = os.path.join( self.temp_dir.name, "test_no_prune_to_static_after_train/model" ) paddle.jit.save(layer, model_path) self.verify_inference_correctness(layer, model_path) def test_no_prune_to_static_no_train(self): layer = LinearNetWithInputSpec(784, 1) model_path = os.path.join( self.temp_dir.name, "test_no_prune_to_static_no_train/model" ) paddle.jit.save(layer, model_path) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_after_train(self): layer = LinearNetNotDeclarative(784, 1) train(layer) model_path = os.path.join( self.temp_dir.name, "test_no_prune_no_to_static_after_train/model" ) paddle.jit.save( layer, model_path, input_spec=[InputSpec(shape=[None, 784], dtype='float32')], ) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_after_train_with_examples(self): layer = LinearNetNotDeclarative(784, 1) example_inputs, _, _ = train(layer) model_path = os.path.join( self.temp_dir.name, "test_no_prune_no_to_static_after_train_with_examples/model", ) paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs) self.verify_inference_correctness(layer, model_path) def test_no_prune_no_to_static_no_train(self): layer = LinearNetNotDeclarative(784, 1) model_path = os.path.join( self.temp_dir.name, "test_no_prune_no_to_static_no_train/model" ) paddle.jit.save( layer, model_path, input_spec=[InputSpec(shape=[None, 784], dtype='float32')], ) self.verify_inference_correctness(layer, model_path) def test_prune_to_static_after_train(self): layer = LinerNetWithLabel(784, 1) out = train_with_label(layer) model_path = os.path.join( self.temp_dir.name, "test_prune_to_static_after_train/model" ) paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image") ], output_spec=[out], ) self.verify_inference_correctness( layer, model_path, with_label_and_loss=True ) def test_prune_to_static_no_train(self): layer = LinerNetWithLabel(784, 1) model_path = os.path.join( self.temp_dir.name, "test_prune_to_static_no_train/model" ) # TODO: no train, cannot get output_spec var here # now only can use index output_spec = layer.forward.outputs[:1] paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image") ], output_spec=output_spec, ) self.verify_inference_correctness( layer, model_path, with_label_and_loss=True ) def test_prune_input_to_static_no_train(self): layer = LinerNetWithPruneInput(784, 1) model_path = os.path.join( self.temp_dir.name, "test_prune_input_to_static_no_train/model" ) paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image") ], ) self.verify_inference_correctness(layer, model_path, with_label=True) def test_prune_useless_input_to_static_no_train(self): layer = LinerNetWithUselessInput(784, 1) model_path = os.path.join( self.temp_dir.name, "test_prune_useless_input_to_static_no_train/model", ) paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image") ], ) self.verify_inference_correctness(layer, model_path, with_label=True) def test_no_prune_input_spec_name_warning(self): layer = LinearNetWithInputSpec(784, 1) train(layer) model_path = os.path.join( self.temp_dir.name, "test_no_prune_input_spec_name_warning/model" ) paddle.jit.save( layer, model_path, input_spec=[InputSpec(shape=[None, 784], dtype='float32')], ) paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name='feed_input') ], ) self.verify_inference_correctness(layer, model_path) def test_not_prune_output_spec_name_warning(self): layer = LinearNet(784, 1) train(layer) model_path = os.path.join( self.temp_dir.name, "test_not_prune_output_spec_name_warning/model" ) out = paddle.to_tensor(np.random.random((1, 1)).astype('float')) paddle.jit.save(layer, model_path, output_spec=[out]) self.verify_inference_correctness(layer, model_path) def test_prune_input_spec_name_error(self): layer = LinerNetWithLabel(784, 1) model_path = os.path.join( self.temp_dir.name, "test_prune_input_spec_name_error/model" ) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[InputSpec(shape=[None, 784], dtype='float32')], ) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[ InputSpec( shape=[None, 784], dtype='float32', name='feed_input' ) ], ) def test_prune_output_spec_name_error(self): layer = LinerNetWithLabel(784, 1) train_with_label(layer) model_path = os.path.join( self.temp_dir.name, "test_prune_to_static_after_train/model" ) out = paddle.to_tensor(np.random.random((1, 1)).astype('float')) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[ InputSpec(shape=[None, 784], dtype='float32', name="image") ], output_spec=[out], ) class TestJitSaveLoadEmptyLayer(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() self.model_path = os.path.join( self.temp_dir.name, "jit_save_load_empty_layer/model" ) # enable dygraph mode paddle.disable_static() def tearDown(self): self.temp_dir.cleanup() def test_save_load_empty_layer(self): layer = EmptyLayer() x = paddle.to_tensor(np.random.random(10).astype('float32')) out = layer(x) paddle.jit.save(layer, self.model_path) load_layer = paddle.jit.load(self.model_path) load_out = load_layer(x) np.testing.assert_array_equal(out, load_out) class TestJitSaveLoadNoParamLayer(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() self.model_path = os.path.join( self.temp_dir.name, "jit_save_load_no_param_layer/model" ) # enable dygraph mode paddle.disable_static() def tearDown(self): self.temp_dir.cleanup() def test_save_load_no_param_layer(self): layer = NoParamLayer() x = paddle.to_tensor(np.random.random(5).astype('float32')) y = paddle.to_tensor(np.random.random(5).astype('float32')) out = layer(x, y) paddle.jit.save(layer, self.model_path) load_layer = paddle.jit.load(self.model_path) load_out = load_layer(x, y) np.testing.assert_array_equal(out, load_out) class TestJitSaveLoadMultiMethods(unittest.TestCase): def setUp(self): # enable dygraph mode paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_inference(self): model_path_inference = os.path.join( self.temp_dir.name, "jit_save_load_multi_methods/model" ) IMAGE_SIZE = 224 layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10) inps = paddle.randn([1, IMAGE_SIZE]) result_origin = {} for func in dir(layer): if func.startswith('forward'): result_origin[func] = getattr(layer, func, None)(inps) paddle.jit.save(layer, model_path_inference) load_net = paddle.jit.load(model_path_inference) for func, result in result_origin.items(): self.assertTrue( float( (result - getattr(load_net, func, None)(inps)).abs().max() ) < 1e-5 ) def test_jit_save_load_multi_methods_inputspec(self): model_path = os.path.join( self.temp_dir.name, 'jit_save_load_multi_methods/model' ) layer = LinearNetWithMultiStaticFunc(784, 1) with self.assertRaises(ValueError): paddle.jit.save( layer, model_path, input_spec=[InputSpec(shape=[None, 784])] ) def test_parse_name(self): model_path_inference = os.path.join( self.temp_dir.name, "jit_save_load_parse_name/model" ) IMAGE_SIZE = 224 layer = LinearNet(IMAGE_SIZE, 1) inps = paddle.randn([1, IMAGE_SIZE]) layer(inps) paddle.jit.save(layer, model_path_inference) paddle.jit.save(layer, model_path_inference + '_v2') load_net = paddle.jit.load(model_path_inference) self.assertFalse(hasattr(load_net, 'v2')) class LayerSaved(paddle.nn.Layer): def __init__(self, in_size, out_size): super().__init__() self.hidden = 100 self._linear_0 = Linear(in_size, self.hidden) self._linear_1_0 = Linear(self.hidden, self.hidden) self._linear_1_1 = Linear(self.hidden, self.hidden) self._linear_2 = Linear(self.hidden, out_size) self._scale = paddle.to_tensor([9.9]) @paddle.jit.to_static def forward(self, x): y = self._linear_0(x) # Multiple blocks if paddle.shape(x)[0] == 1: y = self._linear_1_0(y) else: y += self._linear_1_1(y + self._scale) return self._linear_2(y) class Net(paddle.nn.Layer): def __init__(self): super().__init__() self.fc1 = paddle.nn.Linear(4, 4) self.fc2 = paddle.nn.Linear(4, 4) self.bias = 0.4 self.flag = paddle.ones([2], dtype="int32") @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def log_softmax(self, input): return paddle.nn.functional.log_softmax(input, axis=-1) @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def forward(self, x): out = self.fc1(x) out = paddle.nn.functional.relu(out) out = paddle.mean(out) return out @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def infer(self, input): out = self.fc2(input) out = out + self.bias out = paddle.mean(out) return out # For extra Python float @paddle.jit.to_static(property=True) def fbias(self): return self.bias + 1 @paddle.jit.to_static(property=True) def down_sampling(self): return 4 @paddle.jit.to_static(property=True) def fstr(self): return "save str property" @paddle.jit.to_static(property=True) def ints(self): return [10, 20] @paddle.jit.to_static(property=True) def floats(self): return [1.1, 2.2] @paddle.jit.to_static(property=True) def strs(self): return ["hello", "world"] class NetTensor(paddle.nn.Layer): def __init__(self): super().__init__() self.fc1 = paddle.nn.Linear(4, 4) self.fc2 = paddle.nn.Linear(4, 4) self.bias = 0.4 self.flag = paddle.ones([2], dtype="int32") @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def forward(self, x): out = self.fc1(x) out = paddle.nn.functional.relu(out) out = paddle.mean(out) return out @paddle.jit.to_static(property=True) def fflag(self): return True class TestJitSaveCombineProperty(unittest.TestCase): def setUp(self): # enable dygraph mode paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_combine_property(self): model_path = os.path.join( self.temp_dir.name, "test_jit_save_combine/model" ) # Use new namespace with unique_name.guard(): net = Net() # save paddle.jit.save(net, model_path, combine_params=True) def test_jit_save_tensor_property(self): model_path = os.path.join( self.temp_dir.name, "test_jit_save_combine/model" ) # Use new namespace with unique_name.guard(): net = NetTensor() paddle.jit.save(net, model_path, combine_params=True) class LayerLoadFinetune(paddle.nn.Layer): def __init__(self, in_size, out_size, load_path): super().__init__() # Test duplicate name self._linear_0 = Linear(in_size, in_size) self._linear_1_0 = Linear(out_size, in_size) self._linear_1_1 = Linear(out_size, in_size) self._linear_2 = Linear(out_size, out_size) self._scale = paddle.to_tensor([9.9]) # Load multiple times self._load_l1 = paddle.jit.load(load_path) self._load_l2 = paddle.jit.load(load_path) @paddle.jit.to_static def forward(self, x): y = self._linear_0(x) y = self._load_l1(y) # Multiple blocks if paddle.shape(x)[0] == 1: y = self._linear_1_0(y) y = self._load_l1(y) else: y += self._linear_1_1(x + self._scale) y = self._load_l2(y) y = self._linear_1_0(y) y = self._load_l1(y) y = self._linear_1_0(y) # Use the same layer multiple times. y = self._load_l1(y) return y class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase): def setUp(self): # enable dygraph mode paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_save_load_finetune_load(self): model_path = os.path.join( self.temp_dir.name, "test_jit_save_load_save_without_running/model" ) IMAGE_SIZE = 224 inps0 = paddle.randn([1, IMAGE_SIZE]) inps1 = paddle.randn([2, IMAGE_SIZE]) # Use new namespace with unique_name.guard(): layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE) # save paddle.jit.save( layer_save, model_path, input_spec=[ paddle.static.InputSpec( shape=[None, IMAGE_SIZE], dtype='float32' ) ], ) result_00 = layer_save(inps0) result_01 = layer_save(inps1) # load and save without running with unique_name.guard(): layer_load = paddle.jit.load(model_path) paddle.jit.save( layer_load, model_path, input_spec=[ paddle.static.InputSpec( shape=[None, IMAGE_SIZE], dtype='float32' ) ], ) # reload layer_reload = paddle.jit.load(model_path) result_10 = layer_reload(inps0) result_11 = layer_reload(inps1) self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5) self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5) class TestJitSaveLoadFinetuneLoad(unittest.TestCase): def setUp(self): # enable dygraph mode paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_save_load_finetune_load(self): model_path = os.path.join( self.temp_dir.name, "test_jit_save_load_finetune_load/model" ) IMAGE_SIZE = 224 inps0 = paddle.randn([1, IMAGE_SIZE]) inps1 = paddle.randn([2, IMAGE_SIZE]) # Use new namespace with unique_name.guard(): layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE) layer_save(inps0) # save paddle.jit.save(layer_save, model_path) # load with unique_name.guard(): layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path) # train train(layer_load, input_size=IMAGE_SIZE) result_00 = layer_load(inps0) result_01 = layer_load(inps1) # save paddle.jit.save(layer_load, model_path) # load layer_finetune = paddle.jit.load(model_path) result_10 = layer_finetune(inps0) result_11 = layer_finetune(inps1) self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5) self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5) # NOTE(weixin): When there are multiple test functions in an # `unittest.TestCase`, functions will affect each other, # and there is a risk of random failure. # So divided into three TestCase: TestJitSaveLoadFunctionCase1, # TestJitSaveLoadFunctionCase2, TestJitSaveLoadFunctionCase3. class TestJitSaveLoadFunctionCase1(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_static_function(self): @paddle.jit.to_static def fun(inputs): return paddle.tanh(inputs) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_1/func' ) inps = paddle.rand([3, 6]) origin = fun(inps) paddle.jit.save(fun, path) load_func = paddle.jit.load(path) load_result = load_func(inps) self.assertTrue((load_result - origin).abs().max() < 1e-10) class TestJitSaveLoadFunctionCase2(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_function_input_spec(self): @paddle.jit.to_static( input_spec=[ InputSpec(shape=[None, 6], dtype='float32', name='x'), ] ) def fun(inputs): return paddle.nn.functional.relu(inputs) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_2/func' ) inps = paddle.rand([3, 6]) origin = fun(inps) paddle.jit.save(fun, path) load_func = paddle.jit.load(path) load_result = load_func(inps) self.assertTrue((load_result - origin).abs().max() < 1e-10) class TestJitSaveLoadFunctionCase3(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_function_function(self): def fun(inputs): return paddle.tanh(inputs) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_3/func' ) inps = paddle.rand([3, 6]) origin = fun(inps) paddle.jit.save( fun, path, input_spec=[ InputSpec(shape=[None, 6], dtype='float32', name='x'), ], ) load_func = paddle.jit.load(path) load_result = load_func(inps) self.assertTrue((load_result - origin).abs().max() < 1e-10) class TestJitSaveLoadFunctionWithParamCase1(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_function(self): class LinearNet(paddle.nn.Layer): def __init__(self): super().__init__() self._linear = paddle.nn.Linear(5, 6) def forward(self, x): return paddle.tanh(x) def anothor_forward(self, x): return self._linear(x) layer = LinearNet() inps = paddle.rand([3, 5]) origin = layer.anothor_forward(inps) func = paddle.jit.to_static( layer.anothor_forward, [paddle.static.InputSpec(shape=[-1, 5])] ) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_with_params_case1/func', ) paddle.jit.save(func, path) load_func = paddle.jit.load(path) load_result = load_func(inps) np.testing.assert_array_equal(load_result.numpy(), origin.numpy()) class TestJitSaveLoadFunctionWithParamCase2(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_function(self): class LinearNet(paddle.nn.Layer): def __init__(self): super().__init__() self._linear = paddle.nn.Linear(5, 6) def forward(self, x): return paddle.tanh(x) @paddle.jit.to_static(input_spec=[InputSpec(shape=[-1, 5])]) def anothor_forward(self, x): return self._linear(x) layer = LinearNet() inps = paddle.rand([3, 5]) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_with_params_case2/func', ) paddle.jit.save(layer.anothor_forward, path) origin_result = layer.anothor_forward(inps) load_func = paddle.jit.load(path) load_result = load_func(inps) np.testing.assert_array_equal( origin_result.numpy(), load_result.numpy() ) class TestJitSaveLoadFunctionWithParamCase3(unittest.TestCase): def setUp(self): paddle.disable_static() self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_save_load_function(self): class LinearNet(paddle.nn.Layer): def __init__(self): super().__init__() self._linear = paddle.nn.Linear(5, 6) def forward(self, x): return paddle.tanh(x) @paddle.jit.to_static def anothor_forward(self, x): return self._linear(x) layer = LinearNet() inps = paddle.rand([3, 5]) origin = layer.anothor_forward(inps) path = os.path.join( self.temp_dir.name, 'test_jit_save_load_function_with_params_case3/func', ) paddle.jit.save(layer.anothor_forward, path) load_func = paddle.jit.load(path) load_result = load_func(inps) np.testing.assert_array_equal(load_result.numpy(), origin.numpy()) class TestJitSaveLoadDataParallel(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def verify_inference_correctness(self, layer, path): layer.eval() loaded_layer = paddle.jit.load(path) loaded_layer.eval() # inference & compare x = paddle.to_tensor(np.random.random((1, 784)).astype('float32')) pred = layer(x).numpy() loaded_pred = loaded_layer(x).numpy() np.testing.assert_array_equal( pred, loaded_pred, err_msg='Result diff when load and inference:\nlayer result:\n{}\nloaded layer result:\n{}'.format( pred, loaded_pred ), ) def test_jit_save_data_parallel_with_inputspec(self): layer = LinearNetNotDeclarative(784, 1) layer = paddle.DataParallel(layer) path = os.path.join( self.temp_dir.name, "jit_save_data_parallel_with_inputspec/model" ) paddle.jit.save( layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])] ) self.verify_inference_correctness(layer, path) def test_jit_save_data_parallel_with_to_static(self): layer = LinearNetWithInputSpec(784, 1) layer = paddle.DataParallel(layer) path = os.path.join( self.temp_dir.name, "jit_save_data_parallel_with_to_static/model" ) paddle.jit.save(layer, path) self.verify_inference_correctness(layer, path) class InputSepcLayer(paddle.nn.Layer): ''' A layer with InputSpec to test InputSpec compatibility ''' @paddle.jit.to_static( input_spec=[ InputSpec(shape=[None, 8], dtype='float32', name='x'), InputSpec(shape=[None, 1], dtype='float64', name='y'), ] ) def forward(self, x, y): return x, y class TestInputSpecCompatibility(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def _assert_input_spec_layer_return(self, expect_layer, test_layer): input_x = paddle.uniform([8, 8], dtype='float32') input_y = paddle.uniform([8, 1], dtype='float64') expected_result = expect_layer(input_x, input_y) test_result = test_layer(input_x, input_y) np.testing.assert_allclose( expected_result[0].numpy(), test_result[0].numpy() ) np.testing.assert_allclose( expected_result[1].numpy(), test_result[1].numpy() ) def test_jit_save_compatible_input_sepc(self): layer = InputSepcLayer() save_dir = os.path.join( self.temp_dir.name, "jit_save_compatible_input_spec" ) path = save_dir + "/model" paddle.jit.save(layer=layer, path=path) no_input_spec_layer = paddle.jit.load(path) self._assert_input_spec_layer_return(layer, no_input_spec_layer) shutil.rmtree(save_dir) paddle.jit.save( layer=layer, path=path, input_spec=[ InputSpec(shape=[None, 8], dtype='float32', name='x'), InputSpec(shape=[None, 1], dtype='float64', name='y'), ], ) same_input_spec_layer = paddle.jit.load(path) self._assert_input_spec_layer_return(layer, same_input_spec_layer) shutil.rmtree(save_dir) paddle.jit.save( layer=layer, path=path, input_spec=[ InputSpec(shape=[8, 8], dtype='float32'), InputSpec(shape=[8, -1], dtype='float64'), ], ) compatible_input_spec_layer = paddle.jit.load(path) self._assert_input_spec_layer_return(layer, compatible_input_spec_layer) shutil.rmtree(save_dir) def test_jit_save_incompatible_input_sepc(self): layer = InputSepcLayer() save_dir = os.path.join( self.temp_dir.name, "jit_save_compatible_input_spec" ) path = save_dir + "/model" with self.assertRaises(ValueError): # type mismatch paddle.jit.save( layer=layer, path=path, input_spec=[ InputSpec(shape=[None, 8], dtype='float64'), InputSpec(shape=[None, 1], dtype='float64'), ], ) with self.assertRaises(ValueError): # shape len mismatch paddle.jit.save( layer=layer, path=path, input_spec=[ InputSpec(shape=[None, 8, 1], dtype='float32'), InputSpec(shape=[None, 1], dtype='float64'), ], ) with self.assertRaises(ValueError): # shape mismatch paddle.jit.save( layer=layer, path=path, input_spec=[ InputSpec(shape=[None, 8], dtype='float32'), InputSpec(shape=[None, 2], dtype='float64'), ], ) if os.path.exists(save_dir): shutil.rmtree(save_dir) class NotJitForward(paddle.nn.Layer): def __init__(self): super().__init__() def forward(self, x, y): return x + y class TestNotJitForward(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.temp_dir.cleanup() def test_jit_not_save_forward(self): layer = NotJitForward() save_dir = os.path.join(self.temp_dir.name, "jit_not_save_forward") path = save_dir + "/model" paddle.jit.save(layer=layer, path=path, skip_forward=True) self.assertTrue(not os.path.exists(path + ".pdmodel")) self.assertTrue(not os.path.exists(path + ".pdparam")) with self.assertRaises(ValueError): paddle.jit.load(path=path) shutil.rmtree(save_dir) if __name__ == '__main__': unittest.main()
0fdb86c8d95ec238f669e4cd793c8b90cee446f0
b48a1d5733d10c39a112698c2286ae1afb02f36a
/announce/management/commands/migrate_mailchimp_users.py
7cce1d4f3b7e6e48acb8b65b386b435c2095820c
[ "MIT" ]
permissive
p2pu/learning-circles
ecb317aaa8620cb076ce45c42d055e89e6586516
ae8de4df48aae0844fb50dca5c62c099b3b2b0a3
refs/heads/master
2023-08-19T19:18:09.198077
2023-08-10T09:23:58
2023-08-10T09:23:58
32,735,768
11
10
MIT
2023-08-10T09:30:04
2015-03-23T14:05:41
Python
UTF-8
Python
false
false
1,191
py
from django.core.management.base import BaseCommand, CommandError from django.contrib.auth.models import User from announce.mailchimp import archive_members, list_members, batch_subscribe from studygroups.models import Profile import requests import logging logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Synchronize mailchimp audience with users that opted in for communications' def handle(self, *args, **options): # get all mailchimp users mailchimp_members = list_members() filter_subscribed = lambda x: x.get('status') not in ['unsubscribed', 'cleaned'] mailchimp_members = filter(filter_subscribed, mailchimp_members) emails = [member.get('email_address').lower() for member in mailchimp_members] # add all members with communicagtion_opt_in == True to mailchimp subscribed = User.objects.filter(profile__communication_opt_in=True, is_active=True, profile__email_confirmed_at__isnull=False) to_sub = list(filter(lambda u: u.email.lower() not in emails, subscribed)) print('{} users will be added to the mailchimp list'.format(len(to_sub))) batch_subscribe(to_sub)
d1660437d7cc1d437db44a397725e49216966700
eefc47dcb8377239c34134024be8783a9e3b5f44
/bimdata_api_client/models/raw_system.py
3d6644047f00fe509b01b9df9dfbe5ddcdf9b50d
[]
no_license
Mike-FR/python-api-client
4fea5afcd942ebdf6dca174e2d38afaeed71eee4
54b2b090cbbf127cf8ac0f17c3492e6d0e1c7f29
refs/heads/master
2023-06-29T13:07:30.438434
2021-07-28T09:08:54
2021-07-28T09:08:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,617
py
# coding: utf-8 """ BIMData API BIMData API is a tool to interact with your models stored on BIMData’s servers. Through the API, you can manage your projects, the clouds, upload your IFC files and manage them through endpoints. # noqa: E501 The version of the OpenAPI document: v1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from bimdata_api_client.configuration import Configuration class RawSystem(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'uuid': 'str', 'name': 'str', 'description': 'str', 'object_type': 'str' } attribute_map = { 'uuid': 'uuid', 'name': 'name', 'description': 'description', 'object_type': 'object_type' } def __init__(self, uuid=None, name=None, description=None, object_type=None, local_vars_configuration=None): # noqa: E501 """RawSystem - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._uuid = None self._name = None self._description = None self._object_type = None self.discriminator = None self.uuid = uuid self.name = name self.description = description self.object_type = object_type @property def uuid(self): """Gets the uuid of this RawSystem. # noqa: E501 :return: The uuid of this RawSystem. # noqa: E501 :rtype: str """ return self._uuid @uuid.setter def uuid(self, uuid): """Sets the uuid of this RawSystem. :param uuid: The uuid of this RawSystem. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and uuid is None: # noqa: E501 raise ValueError("Invalid value for `uuid`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and uuid is not None and len(uuid) < 1): raise ValueError("Invalid value for `uuid`, length must be greater than or equal to `1`") # noqa: E501 self._uuid = uuid @property def name(self): """Gets the name of this RawSystem. # noqa: E501 :return: The name of this RawSystem. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this RawSystem. :param name: The name of this RawSystem. # noqa: E501 :type: str """ self._name = name @property def description(self): """Gets the description of this RawSystem. # noqa: E501 :return: The description of this RawSystem. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this RawSystem. :param description: The description of this RawSystem. # noqa: E501 :type: str """ self._description = description @property def object_type(self): """Gets the object_type of this RawSystem. # noqa: E501 :return: The object_type of this RawSystem. # noqa: E501 :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """Sets the object_type of this RawSystem. :param object_type: The object_type of this RawSystem. # noqa: E501 :type: str """ self._object_type = object_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RawSystem): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, RawSystem): return True return self.to_dict() != other.to_dict()
5afae695f4d0d8c66f3a8d64f55c514f3919824c
a00ed711e3e08b50ad6e91cc07a2cddc4a1de5ea
/airflow/providers/microsoft/azure/operators/data_factory.py
488ccbced070222c2fa5c3d5046514b7ee751015
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
ishiis/airflow
4305794e36b611d01f49e3f2401be3dc49782670
292440d54f4db84aaf0c5a98cf5fcf34303f2fa8
refs/heads/master
2022-07-30T00:51:28.806940
2022-07-14T12:07:11
2022-07-14T12:07:11
209,801,072
1
0
Apache-2.0
2019-09-20T13:47:26
2019-09-20T13:47:26
null
UTF-8
Python
false
false
9,684
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence from airflow.hooks.base import BaseHook from airflow.models import BaseOperator, BaseOperatorLink, XCom from airflow.providers.microsoft.azure.hooks.data_factory import ( AzureDataFactoryHook, AzureDataFactoryPipelineRunException, AzureDataFactoryPipelineRunStatus, ) if TYPE_CHECKING: from airflow.models.taskinstance import TaskInstanceKey from airflow.utils.context import Context class AzureDataFactoryPipelineRunLink(BaseOperatorLink): """Constructs a link to monitor a pipeline run in Azure Data Factory.""" name = "Monitor Pipeline Run" def get_link( self, operator, dttm=None, *, ti_key: Optional["TaskInstanceKey"] = None, ) -> str: if ti_key is not None: run_id = XCom.get_value(key="run_id", ti_key=ti_key) else: assert dttm run_id = XCom.get_one( key="run_id", dag_id=operator.dag.dag_id, task_id=operator.task_id, execution_date=dttm, ) conn = BaseHook.get_connection(operator.azure_data_factory_conn_id) subscription_id = conn.extra_dejson["extra__azure_data_factory__subscriptionId"] # Both Resource Group Name and Factory Name can either be declared in the Azure Data Factory # connection or passed directly to the operator. resource_group_name = operator.resource_group_name or conn.extra_dejson.get( "extra__azure_data_factory__resource_group_name" ) factory_name = operator.factory_name or conn.extra_dejson.get( "extra__azure_data_factory__factory_name" ) url = ( f"https://adf.azure.com/en-us/monitoring/pipelineruns/{run_id}" f"?factory=/subscriptions/{subscription_id}/" f"resourceGroups/{resource_group_name}/providers/Microsoft.DataFactory/" f"factories/{factory_name}" ) return url class AzureDataFactoryRunPipelineOperator(BaseOperator): """ Executes a data factory pipeline. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AzureDataFactoryRunPipelineOperator` :param azure_data_factory_conn_id: The connection identifier for connecting to Azure Data Factory. :param pipeline_name: The name of the pipeline to execute. :param wait_for_termination: Flag to wait on a pipeline run's termination. By default, this feature is enabled but could be disabled to perform an asynchronous wait for a long-running pipeline execution using the ``AzureDataFactoryPipelineRunSensor``. :param resource_group_name: The resource group name. If a value is not passed in to the operator, the ``AzureDataFactoryHook`` will attempt to use the resource group name provided in the corresponding connection. :param factory_name: The data factory name. If a value is not passed in to the operator, the ``AzureDataFactoryHook`` will attempt to use the factory name name provided in the corresponding connection. :param reference_pipeline_run_id: The pipeline run identifier. If this run ID is specified the parameters of the specified run will be used to create a new run. :param is_recovery: Recovery mode flag. If recovery mode is set to `True`, the specified referenced pipeline run and the new run will be grouped under the same ``groupId``. :param start_activity_name: In recovery mode, the rerun will start from this activity. If not specified, all activities will run. :param start_from_failure: In recovery mode, if set to true, the rerun will start from failed activities. The property will be used only if ``start_activity_name`` is not specified. :param parameters: Parameters of the pipeline run. These parameters are referenced in a pipeline via ``@pipeline().parameters.parameterName`` and will be used only if the ``reference_pipeline_run_id`` is not specified. :param timeout: Time in seconds to wait for a pipeline to reach a terminal status for non-asynchronous waits. Used only if ``wait_for_termination`` is True. :param check_interval: Time in seconds to check on a pipeline run's status for non-asynchronous waits. Used only if ``wait_for_termination`` is True. """ template_fields: Sequence[str] = ( "azure_data_factory_conn_id", "resource_group_name", "factory_name", "pipeline_name", "reference_pipeline_run_id", "parameters", ) template_fields_renderers = {"parameters": "json"} ui_color = "#0678d4" operator_extra_links = (AzureDataFactoryPipelineRunLink(),) def __init__( self, *, pipeline_name: str, azure_data_factory_conn_id: str = AzureDataFactoryHook.default_conn_name, wait_for_termination: bool = True, resource_group_name: Optional[str] = None, factory_name: Optional[str] = None, reference_pipeline_run_id: Optional[str] = None, is_recovery: Optional[bool] = None, start_activity_name: Optional[str] = None, start_from_failure: Optional[bool] = None, parameters: Optional[Dict[str, Any]] = None, timeout: int = 60 * 60 * 24 * 7, check_interval: int = 60, **kwargs, ) -> None: super().__init__(**kwargs) self.azure_data_factory_conn_id = azure_data_factory_conn_id self.pipeline_name = pipeline_name self.wait_for_termination = wait_for_termination self.resource_group_name = resource_group_name self.factory_name = factory_name self.reference_pipeline_run_id = reference_pipeline_run_id self.is_recovery = is_recovery self.start_activity_name = start_activity_name self.start_from_failure = start_from_failure self.parameters = parameters self.timeout = timeout self.check_interval = check_interval def execute(self, context: "Context") -> None: self.hook = AzureDataFactoryHook(azure_data_factory_conn_id=self.azure_data_factory_conn_id) self.log.info("Executing the %s pipeline.", self.pipeline_name) response = self.hook.run_pipeline( pipeline_name=self.pipeline_name, resource_group_name=self.resource_group_name, factory_name=self.factory_name, reference_pipeline_run_id=self.reference_pipeline_run_id, is_recovery=self.is_recovery, start_activity_name=self.start_activity_name, start_from_failure=self.start_from_failure, parameters=self.parameters, ) self.run_id = vars(response)["run_id"] # Push the ``run_id`` value to XCom regardless of what happens during execution. This allows for # retrieval the executed pipeline's ``run_id`` for downstream tasks especially if performing an # asynchronous wait. context["ti"].xcom_push(key="run_id", value=self.run_id) if self.wait_for_termination: self.log.info("Waiting for pipeline run %s to terminate.", self.run_id) if self.hook.wait_for_pipeline_run_status( run_id=self.run_id, expected_statuses=AzureDataFactoryPipelineRunStatus.SUCCEEDED, check_interval=self.check_interval, timeout=self.timeout, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ): self.log.info("Pipeline run %s has completed successfully.", self.run_id) else: raise AzureDataFactoryPipelineRunException( f"Pipeline run {self.run_id} has failed or has been cancelled." ) def on_kill(self) -> None: if self.run_id: self.hook.cancel_pipeline_run( run_id=self.run_id, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ) # Check to ensure the pipeline run was cancelled as expected. if self.hook.wait_for_pipeline_run_status( run_id=self.run_id, expected_statuses=AzureDataFactoryPipelineRunStatus.CANCELLED, check_interval=self.check_interval, timeout=self.timeout, resource_group_name=self.resource_group_name, factory_name=self.factory_name, ): self.log.info("Pipeline run %s has been cancelled successfully.", self.run_id) else: raise AzureDataFactoryPipelineRunException(f"Pipeline run {self.run_id} was not cancelled.")
92636880ee00dcdaf6082a42f6967c44fa8b6054
9bcd8a8de7e34ab52f44070c171e2e12e52e9775
/setup.py
c7ab57d1d127894b45df406d8c76bdb98355363e
[ "BSD-2-Clause" ]
permissive
miracle2k/localtodo
c419bf5cd8aa5fd6092420577c6155a3d418cd1d
8598a073d9fe466832b6a952a0b1dc20603d0e7d
refs/heads/master
2022-04-30T13:36:50.211348
2022-03-21T18:45:16
2022-03-21T18:45:16
5,198,753
0
0
null
null
null
null
UTF-8
Python
false
false
754
py
#!/usr/bin/env python # coding: utf-8 from setuptools import setup setup( name='localtodo', url='https://github.com/miracle2k/localtodo', version='1.0', license='BSD', author=u'Michael Elsdörfer', author_email='[email protected]', description= '.gitignore local todo files, but sync them through Dropbox.', py_modules=['localtodo'], install_requires=['docopt==0.4.1'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python' ], entry_points="""[console_scripts]\nlocaltodo = localtodo:run\n""", )
805535843094f8434fa9cfb5c22c4c9c99ef2185
2c2d2405929b026ac4de77d34538cec623dee5eb
/codes/SRN/models/modules/loss.py
844e09818490d48d1b9b375b12a65032b32c4075
[]
no_license
greitzmann/DASR
9d709cf031561897722f1553842af05fca36855e
f85b22ada54344fd0d94ba31ae596427cb9b5c5b
refs/heads/master
2023-01-01T12:26:11.563140
2020-10-15T16:03:26
2020-10-15T16:03:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,636
py
import random import torch import torch.nn as nn import sys from PerceptualSimilarity.models import util as ps # Define GAN loss: [vanilla | lsgan | wgan-gp] class GANLoss(nn.Module): def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0): super(GANLoss, self).__init__() self.gan_type = gan_type.lower() self.real_label_val = real_label_val self.fake_label_val = fake_label_val if self.gan_type == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif self.gan_type == 'lsgan': self.loss = nn.MSELoss() elif self.gan_type == 'wgan-gp': def wgan_loss(input, target): # target is boolean return -1 * input.mean() if target else input.mean() self.loss = wgan_loss else: raise NotImplementedError('GAN type [{:s}] is not found'.format(self.gan_type)) def get_target_label(self, input, target_is_real): if self.gan_type == 'wgan-gp': return target_is_real if target_is_real: return torch.empty_like(input).fill_(self.real_label_val) else: return torch.empty_like(input).fill_(self.fake_label_val) def forward(self, input, target_is_real): target_label = self.get_target_label(input, target_is_real) loss = self.loss(input, target_label) return loss class GradientPenaltyLoss(nn.Module): def __init__(self, device=torch.device('cpu')): super(GradientPenaltyLoss, self).__init__() self.register_buffer('grad_outputs', torch.Tensor()) self.grad_outputs = self.grad_outputs.to(device) def get_grad_outputs(self, input): if self.grad_outputs.size() != input.size(): self.grad_outputs.resize_(input.size()).fill_(1.0) return self.grad_outputs def forward(self, interp, interp_crit): grad_outputs = self.get_grad_outputs(interp_crit) grad_interp = torch.autograd.grad(outputs=interp_crit, inputs=interp, \ grad_outputs=grad_outputs, create_graph=True, retain_graph=True, only_inputs=True)[0] grad_interp = grad_interp.view(grad_interp.size(0), -1) grad_interp_norm = grad_interp.norm(2, dim=1) loss = ((grad_interp_norm - 1)**2).mean() return loss class PerceptualLossLPIPS(nn.Module): def __init__(self): super(PerceptualLossLPIPS, self).__init__() self.loss_network = ps.PerceptualLoss(use_gpu=torch.cuda.is_available()) def forward(self, x, y): return self.loss_network.forward(x, y, normalize=True).mean() class PerceptualLoss(nn.Module): def __init__(self, rotations=False, flips=False): super(PerceptualLoss, self).__init__() self.loss = PerceptualLossLPIPS() self.rotations = rotations self.flips = flips def forward(self, x, y): if self.rotations: k_rot = random.choice([-1, 0, 1]) x = torch.rot90(x, k_rot, [2, 3]) y = torch.rot90(y, k_rot, [2, 3]) if self.flips: if random.choice([True, False]): x = torch.flip(x, (2,)) y = torch.flip(y, (2,)) if random.choice([True, False]): x = torch.flip(x, (3,)) y = torch.flip(y, (3,)) return self.loss(x, y) def generator_loss(labels, wasserstein=False, weights=None): if not isinstance(labels, list): labels = (labels,) if weights is None: weights = [1.0 / len(labels)] * len(labels) loss = 0.0 for label, weight in zip(labels, weights): if wasserstein: loss += weight * torch.mean(-label) else: loss += weight * torch.mean(-torch.log(label + 1e-8)) return loss def discriminator_loss(reals, fakes, wasserstein=False, grad_penalties=None, weights=None): if not isinstance(reals, list): reals = (reals,) if not isinstance(fakes, list): fakes = (fakes,) if weights is None: weights = [1.0 / len(fakes)] * len(fakes) loss = 0.0 if wasserstein: if not isinstance(grad_penalties, list): grad_penalties = (grad_penalties,) for real, fake, weight, grad_penalty in zip(reals, fakes, weights, grad_penalties): loss += weight * (-real.mean() + fake.mean() + grad_penalty) else: for real, fake, weight in zip(reals, fakes, weights): loss += weight * (-torch.log(real + 1e-8).mean() - torch.log(1 - fake + 1e-8).mean()) return loss if __name__ == '__main__': a = PerceptualLossLPIPS()
ce1b27305c6bd0b8a926dbe2218abbb8f297e24b
5cde21d3eb1667152d4aa7fe489f15339db89551
/maple/community/process/__init__.py
1e2c945b04a925467c68181e7a269746fc3c10b2
[]
no_license
SunmoonSan/PythonDaily
cce0b82c9bfe8e57dc26d8bcb722e165302cf4b0
c0a95c2ece1b3cb6ef00d1b096fef14892de1ce6
refs/heads/master
2022-04-02T13:08:41.692131
2020-01-19T12:48:38
2020-01-19T12:48:38
115,420,499
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @desc : Created by San on 2019/12/13 17:23
8838064973dcf235bd1744d1dadead87051a80ea
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_widest.py
8492170c13955906272fe657ccf1e56cec9420c8
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
from xai.brain.wordbase.adjectives._wide import _WIDE #calss header class _WIDEST(_WIDE, ): def __init__(self,): _WIDE.__init__(self) self.name = "WIDEST" self.specie = 'adjectives' self.basic = "wide" self.jsondata = {}
0ee0fecb3d4df02cb0dc4970912acd258cfee73d
549f00e84cf77f08b2d72b3a298174143e23222e
/pytest_echo.py
025e4f09603e8814d066cc041fb8926ac1650558
[ "MIT" ]
permissive
hugovk/pytest-echo
9a94c6a246ae1803dd6b391f56c35a7d0472f209
939793448e7d7e80a356aafc4dbb58bbedbe7e2c
refs/heads/master
2020-08-10T05:26:13.397571
2018-04-22T17:12:07
2018-04-22T17:12:07
214,268,306
0
0
MIT
2019-10-10T19:27:28
2019-10-10T19:27:28
null
UTF-8
Python
false
false
5,239
py
# -*- coding: utf-8 -*- from __future__ import print_function import fnmatch import os from pprint import pformat import pkg_resources from pkg_resources import DistributionNotFound __version__ = '1.6.0' def get_installed_distributions(): """ Return a list of installed Distribution objects. """ return [d for d in pkg_resources.working_set] def get_attr(obj, attr, default='NOT FOUND'): """Recursive get object's attribute. May use dot notation. >>> class C(object): ... pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1 >>> get_attr([0,1,2], '2') 2 >>> get_attr([0,1,(21, 22)], '2.1') 22 >>> get_attr({'key': 11}, 'key') 11 >>> get_attr({'key': {'key': 11}}, 'key.key') 11 """ if '.' not in attr: try: if hasattr(obj, attr): return getattr(obj, attr, default) elif isinstance(obj, (list, tuple, set)): return obj[int(attr)] elif isinstance(obj, dict): return obj[attr] else: return default except Exception as e: # pragma: no cover return str(e) else: L = attr.split('.') return get_attr(get_attr(obj, L[0], default), '.'.join(L[1:]), default) def get_module_attribute(path): """ Returns a attribute value base on it's full path. The `attribute` can be either a module attribute (ie. os.path.curdir) or a object attribute (ie. linecache.cache.__class__) Warning: Be careful when use thi function as it load any module in the path and this will execute any module's level code :param path: full path to the attribute :return: >>> print(get_module_attribute('linecache.cache.__class__')) <... 'dict'> >>> print(get_module_attribute('os.path.curdir')) '.' >>> print(get_module_attribute('wrong')) ('Unable to load %s', 'wrong') """ parts = path.split('.') parent = "" pkg = None try: for i, part in enumerate(parts): try: if parent: module_name = "%s.%s" % (parent, parts[i]) else: module_name = parts[i] pkg = __import__(module_name, fromlist=[parent]) parent = module_name except ImportError: if hasattr(pkg, part): return pformat(get_attr(pkg, ".".join(parts[i:]))) raise Exception('Unable to load %s', path) except Exception as e: return str(e) def get_env(var_name): if '*' in var_name: targets = [(key, value) for key, value in os.environ.items() if fnmatch.fnmatch(key, var_name)] else: targets = [(var_name, os.environ.get(var_name, "<not set>"))] return targets def get_version(package_name): if '*' in package_name: targets = [(i.key, i.version) for i in get_installed_distributions() if fnmatch.fnmatch(i.key, package_name)] else: targets = [(package_name, _get_version(package_name))] return targets def _get_version(package_name): try: import pkg_resources return pkg_resources.require(package_name)[0].version except (ImportError, AttributeError, TypeError, DistributionNotFound): pass try: pkg = __import__(package_name) except ImportError: return '<unable to load package>' for attr_name in ('get_version', '__version__', 'VERSION', 'version'): if hasattr(pkg, attr_name): attr = getattr(pkg, attr_name) if callable(attr): return attr() else: return attr def pytest_report_header(config): ret = [] if config.option.echo_envs: ret.append("Environment:") data = [] for k in config.option.echo_envs: data.extend(get_env(k)) ret.append("\n".join([" %s: %s" % (k, v) for k, v in sorted(data)])) if config.option.echo_versions: ret.append("Package version:") data = [] for k in config.option.echo_versions: data.extend(get_version(k)) ret.append("\n".join([" %s: %s" % (k, v) for k, v in sorted(data)])) if config.option.echo_attribues: ret.append("Inspections:") ret.append("\n".join([" %s: %s" % (k, get_module_attribute(k)) for k in config.option.echo_attribues])) if ret: return "\n".join(ret) def pytest_addoption(parser): group = parser.getgroup("general") group.addoption('--echo-env', action='append', dest="echo_envs", default=[], help="environment to print") group.addoption('--echo-version', action='append', dest="echo_versions", default=[], help="package version to print") group.addoption('--echo-attr', action='append', dest="echo_attribues", default=[], help="attribute to print (full path)")
9c68f21e289ac893f938e83bb2be5f054a2a7561
2f6c3e78de825b14cc6d471ba231724d819b7436
/tasks/ogle.py
2c1ff53316fd09c5f8108a519f3f81fdfee981f0
[ "MIT" ]
permissive
astrocatalogs/supernovae
3f685d447b56c741081acffc6de0c9818149bb47
9585d2ae053f15fa91ab5900b5ae962c6a508037
refs/heads/master
2023-03-12T12:19:01.300505
2023-03-10T16:45:53
2023-03-10T16:45:53
62,802,442
42
18
MIT
2023-03-14T20:39:37
2016-07-07T11:42:13
Python
UTF-8
Python
false
false
6,846
py
"""Import tasks for OGLE. """ import os import re from astrocats.catalog.utils import is_number, jd_to_mjd, pbar, uniq_cdl from bs4 import BeautifulSoup, NavigableString, Tag from decimal import Decimal from ..supernova import SUPERNOVA def do_ogle(catalog): task_str = catalog.get_current_task_str() basenames = [ 'transients', 'transients/2015', 'transients/2014b', 'transients/2014', 'transients/2013', 'transients/2012' ] oglenames = [] ogleupdate = [True, False, False, False, False] for b, bn in enumerate(pbar(basenames, task_str)): if catalog.args.update and not ogleupdate[b]: continue filepath = os.path.join(catalog.get_current_task_repo(), 'OGLE-') filepath += bn.replace('/', '-') + '-transients.html' htmltxt = catalog.load_url( 'http://ogle.astrouw.edu.pl/ogle4/' + bn + '/transients.html', filepath) if not htmltxt: continue soup = BeautifulSoup(htmltxt, 'html5lib') links = soup.findAll('a') breaks = soup.findAll('br') datalinks = [] datafnames = [] for a in links: if a.has_attr('href'): if '.dat' in a['href']: datalinks.append('http://ogle.astrouw.edu.pl/ogle4/' + bn + '/' + a['href']) datafnames.append( bn.replace('/', '-') + '-' + a['href'].replace('/', '-')) ec = -1 reference = 'OGLE-IV Transient Detection System' refurl = 'http://ogle.astrouw.edu.pl/ogle4/transients/transients.html' for bi, br in enumerate(pbar(breaks, task_str)): sibling = br.nextSibling if 'Ra,Dec=' in sibling: line = sibling.replace('\n', '').split('Ra,Dec=') name = line[0].strip() ec += 1 if 'NOVA' in name or 'dupl' in name: continue if name in oglenames: continue oglenames.append(name) name = catalog.add_entry(name) mySibling = sibling.nextSibling atelref = '' claimedtype = '' while 'Ra,Dec=' not in mySibling: if isinstance(mySibling, NavigableString): if not claimedtype and 'class=' in str(mySibling): claimedtype = re.sub(r'\([^)]*\)', '', str(mySibling).split('=')[-1]) claimedtype = claimedtype.replace('SN', '').strip() if claimedtype == '-': claimedtype = '' if isinstance(mySibling, Tag): atela = mySibling if (atela and atela.has_attr('href') and 'astronomerstelegram' in atela['href']): atelref = atela.contents[0].strip() atelurl = atela['href'] mySibling = mySibling.nextSibling if mySibling is None: break # nextSibling = sibling.nextSibling # if ((isinstance(nextSibling, Tag) and # nextSibling.has_attr('alt') and # nextSibling.contents[0].strip() != 'NED')): # radec = nextSibling.contents[0].strip().split() # else: # radec = line[-1].split() # ra = radec[0] # dec = radec[1] fname = os.path.join(catalog.get_current_task_repo(), 'OGLE/') + datafnames[ec] csvtxt = catalog.load_url(datalinks[ec], fname) lcdat = csvtxt.splitlines() sources = [ catalog.entries[name].add_source( name=reference, url=refurl) ] catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, sources[0]) if atelref and atelref != 'ATel#----': sources.append(catalog.entries[name].add_source( name=atelref, url=atelurl)) sources = uniq_cdl(sources) if name.startswith('OGLE'): if name[4] == '-': if is_number(name[5:9]): catalog.entries[name].add_quantity( SUPERNOVA.DISCOVER_DATE, name[5:9], sources) else: if is_number(name[4:6]): catalog.entries[name].add_quantity( SUPERNOVA.DISCOVER_DATE, '20' + name[4:6], sources) # RA and Dec from OGLE pages currently not reliable # catalog.entries[name].add_quantity(SUPERNOVA.RA, ra, sources) # catalog.entries[name].add_quantity(SUPERNOVA.DEC, dec, # sources) if claimedtype and claimedtype != '-': catalog.entries[name].add_quantity(SUPERNOVA.CLAIMED_TYPE, claimedtype, sources) elif ('SN' not in name and SUPERNOVA.CLAIMED_TYPE not in catalog.entries[name]): catalog.entries[name].add_quantity(SUPERNOVA.CLAIMED_TYPE, 'Candidate', sources) for row in lcdat: row = row.split() mjd = str(jd_to_mjd(Decimal(row[0]))) magnitude = row[1] if float(magnitude) > 90.0: continue e_mag = row[2] upperlimit = False if e_mag == '-1' or float(e_mag) > 10.0: e_mag = '' upperlimit = True catalog.entries[name].add_photometry( time=mjd, u_time='MJD', band='I', magnitude=magnitude, e_magnitude=e_mag, system='Vega', source=sources, upperlimit=upperlimit) if catalog.args.update: catalog.journal_entries() if catalog.args.travis and bi >= catalog.TRAVIS_QUERY_LIMIT: break catalog.journal_entries() return
ed5aaf4d9c069dfae5c52ce541ca6227e507404e
358aaf68f3c60ebbbd86b3bc66d4e6c098bcb39e
/fonts/tsvga_et4000_8x16.py
ec50d5db6c710d173aebde5e57c209dc19065ccd
[ "MIT" ]
permissive
ccccmagicboy/st7735_mpy
d2de0046abd81978d5176dace45a40758377af82
b15f1bde69fbe6e0eb4931c57e71c136d8e7f024
refs/heads/master
2022-08-28T23:18:04.353733
2020-05-28T04:19:21
2020-05-28T04:19:21
254,869,035
7
0
null
null
null
null
UTF-8
Python
false
false
6,759
py
"""converted from ..\fonts\TSVGA_ET4000_8x16.bin """ WIDTH = 8 HEIGHT = 16 FIRST = 0x20 LAST = 0x7f _FONT =\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x18\x3c\x3c\x3c\x18\x18\x18\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x66\x66\x66\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x6c\x6c\xfe\x6c\x6c\x6c\xfe\x6c\x6c\x00\x00\x00\x00'\ b'\x18\x18\x7c\xc6\xc2\xc0\x7c\x06\x06\x86\xc6\x7c\x18\x18\x00\x00'\ b'\x00\x00\x00\x00\xc2\xc6\x0c\x18\x30\x60\xc6\x86\x00\x00\x00\x00'\ b'\x00\x00\x38\x6c\x6c\x38\x76\xdc\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x30\x30\x30\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x0c\x18\x30\x30\x30\x30\x30\x30\x18\x0c\x00\x00\x00\x00'\ b'\x00\x00\x30\x18\x0c\x0c\x0c\x0c\x0c\x0c\x18\x30\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x66\x3c\xff\x3c\x66\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x18\x18\x7e\x18\x18\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x18\x18\x30\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x02\x06\x0c\x18\x30\x60\xc0\x80\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xce\xde\xf6\xe6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x18\x38\x78\x18\x18\x18\x18\x18\x18\x7e\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\x06\x0c\x18\x30\x60\xc0\xc6\xfe\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\x06\x06\x3c\x06\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x0c\x1c\x3c\x6c\xcc\xfe\x0c\x0c\x0c\x1e\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc0\xc0\xc0\xfc\x06\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x38\x60\xc0\xc0\xfc\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc6\x06\x06\x0c\x18\x30\x30\x30\x30\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\x7c\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\x7e\x06\x06\x06\x0c\x78\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x18\x18\x00\x00\x00\x18\x18\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x18\x18\x00\x00\x00\x18\x18\x30\x00\x00\x00\x00'\ b'\x00\x00\x00\x06\x0c\x18\x30\x60\x30\x18\x0c\x06\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7e\x00\x00\x7e\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x60\x30\x18\x0c\x06\x0c\x18\x30\x60\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\x0c\x18\x18\x18\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xde\xde\xde\xdc\xc0\x7c\x00\x00\x00\x00'\ b'\x00\x00\x10\x38\x6c\xc6\xc6\xfe\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x7c\x66\x66\x66\x66\xfc\x00\x00\x00\x00'\ b'\x00\x00\x3c\x66\xc2\xc0\xc0\xc0\xc0\xc2\x66\x3c\x00\x00\x00\x00'\ b'\x00\x00\xf8\x6c\x66\x66\x66\x66\x66\x66\x6c\xf8\x00\x00\x00\x00'\ b'\x00\x00\xfe\x66\x62\x68\x78\x68\x60\x62\x66\xfe\x00\x00\x00\x00'\ b'\x00\x00\xfe\x66\x62\x68\x78\x68\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x3c\x66\xc2\xc0\xc0\xde\xc6\xc6\x66\x3a\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xfe\xc6\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x3c\x18\x18\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x1e\x0c\x0c\x0c\x0c\x0c\xcc\xcc\xcc\x78\x00\x00\x00\x00'\ b'\x00\x00\xe6\x66\x66\x6c\x78\x78\x6c\x66\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\xf0\x60\x60\x60\x60\x60\x60\x62\x66\xfe\x00\x00\x00\x00'\ b'\x00\x00\xc6\xee\xfe\xfe\xd6\xc6\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xc6\xe6\xf6\xfe\xde\xce\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x7c\x60\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\xc6\xd6\xde\x7c\x0c\x0e\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x7c\x6c\x66\x66\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\x60\x38\x0c\x06\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x7e\x7e\x5a\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x6c\x38\x10\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xd6\xd6\xd6\xfe\xee\x6c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\x6c\x7c\x38\x38\x7c\x6c\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x66\x66\x66\x66\x3c\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc6\x86\x0c\x18\x30\x60\xc2\xc6\xfe\x00\x00\x00\x00'\ b'\x00\x00\x3c\x30\x30\x30\x30\x30\x30\x30\x30\x3c\x00\x00\x00\x00'\ b'\x00\x00\x00\x80\xc0\xe0\x70\x38\x1c\x0e\x06\x02\x00\x00\x00\x00'\ b'\x00\x00\x3c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x3c\x00\x00\x00\x00'\ b'\x10\x38\x6c\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x00\x00'\ b'\x30\x30\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x78\x0c\x7c\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x00\xe0\x60\x60\x78\x6c\x66\x66\x66\x66\x7c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc0\xc0\xc0\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x1c\x0c\x0c\x3c\x6c\xcc\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xfe\xc0\xc0\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x38\x6c\x64\x60\xf0\x60\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x76\xcc\xcc\xcc\xcc\xcc\x7c\x0c\xcc\x78\x00'\ b'\x00\x00\xe0\x60\x60\x6c\x76\x66\x66\x66\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x18\x18\x00\x38\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x06\x06\x00\x0e\x06\x06\x06\x06\x06\x06\x66\x66\x3c\x00'\ b'\x00\x00\xe0\x60\x60\x66\x6c\x78\x78\x6c\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x38\x18\x18\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xec\xfe\xd6\xd6\xd6\xd6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xdc\x66\x66\x66\x66\x66\x66\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xdc\x66\x66\x66\x66\x66\x7c\x60\x60\xf0\x00'\ b'\x00\x00\x00\x00\x00\x76\xcc\xcc\xcc\xcc\xcc\x7c\x0c\x0c\x1e\x00'\ b'\x00\x00\x00\x00\x00\xdc\x76\x66\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\x60\x38\x0c\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x10\x30\x30\xfc\x30\x30\x30\x30\x36\x1c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xcc\xcc\xcc\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x66\x66\x66\x66\x66\x3c\x18\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\xd6\xd6\xd6\xfe\x6c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\x6c\x38\x38\x38\x6c\xc6\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\xc6\xc6\xc6\xc6\x7e\x06\x0c\xf8\x00'\ b'\x00\x00\x00\x00\x00\xfe\xcc\x18\x30\x60\xc6\xfe\x00\x00\x00\x00'\ b'\x00\x00\x0e\x18\x18\x18\x70\x18\x18\x18\x18\x0e\x00\x00\x00\x00'\ b'\x00\x00\x18\x18\x18\x18\x00\x18\x18\x18\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x70\x18\x18\x18\x0e\x18\x18\x18\x18\x70\x00\x00\x00\x00'\ b'\x00\x00\x76\xdc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x10\x38\x6c\xc6\xc6\xc6\xfe\x00\x00\x00\x00\x00'\ FONT = memoryview(_FONT)
f0d990d45a27fde720efb4dff618a7fd5ef391b2
8600ea155f279e5a8dfe5a1926038511f6b6a7ea
/sale_crm/wizard/__init__.py
7c43908361fc6be916f06247bd16776a8e4c1776
[]
no_license
MarkNorgate/addons-EAD
c2fff89ab16fce3ba19fbe433ee5863705a6f4e5
840f28642b5d328e4b86839c413e5164622295a5
refs/heads/master
2020-04-23T22:11:00.164438
2015-07-22T12:24:53
2015-07-22T12:24:53
39,501,011
0
0
null
null
null
null
UTF-8
Python
false
false
1,090
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import makesale import makecase # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
a468ccdf43c987d187ed161205454ce4aef48536
7aa6a5e94c9dea6686a55f316b78a91e8e301ad0
/31-nato-dictionary/codewars_unittest/__init__.py
67596a1dec6777ad40ea468b610619eb0038ff53
[]
no_license
marinasupernova/codewars
3ede0d61693462551112bee1019c34396d91b2d9
fcea73a6cf564159a7fc776edc47cf57fab121df
refs/heads/main
2023-04-26T07:17:56.149954
2021-05-31T06:01:13
2021-05-31T06:01:13
345,687,012
0
0
null
null
null
null
UTF-8
Python
false
false
44
py
from .test_runner import CodewarsTestRunner
54e305cc17a0c2232390a83ffbdeb8ed103b393e
219d7cf7cf00b778ff1a5709406c144fcf2132f3
/First Steps in Coding - Lab/07. Projects Creation.py
7ca4becdbaa4bc97c0ff32e779c16f999679df79
[]
no_license
SilviaKoynova/Softuni-Programming-Basics-Python
e8e175419383815c65c4e110fdb2b752d940e887
0dfef0850f2cb8471dfee1af89f137be4e887cb8
refs/heads/main
2023-07-13T00:35:09.389302
2021-08-27T07:43:45
2021-08-27T07:43:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
name = input() projects = int(input()) need_hours = projects * 3 print(f"The architect {name} will need {need_hours} hours to complete {projects} project/s.")
736887a4862a68ddb38a06f891def851858936db
9d8acc20d2ee1d1957849dfb71c22e0dae2d8c5c
/baomoicrawl/venv/Lib/site-packages/twisted/test/test_ftp_options.py
ef567bbb49bfce24ee4cb271b1a59b1a8730dd7a
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
thuy4tbn99/TranTruongThuy_17021178_Nhom4_Crawler
b0fdedee2942a12d9f64dfed93f43802dc5ab340
87c8c07433466bbc43a24ea089f75baeb467c356
refs/heads/master
2022-11-27T21:36:33.917491
2020-08-10T23:24:42
2020-08-10T23:24:42
286,583,216
0
0
null
null
null
null
UTF-8
Python
false
false
2,765
py
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.tap.ftp}. """ from twisted.trial.unittest import TestCase from twisted.cred import credentials, error from twisted.tap.ftp import Options from twisted.python import versions from twisted.python.filepath import FilePath class FTPOptionsTests(TestCase): """ Tests for the command line option parser used for C{twistd ftp}. """ usernamePassword = (b'iamuser', b'thisispassword') def setUp(self): """ Create a file with two users. """ self.filename = self.mktemp() f = FilePath(self.filename) f.setContent(b':'.join(self.usernamePassword)) self.options = Options() def test_passwordfileDeprecation(self): """ The C{--password-file} option will emit a warning stating that said option is deprecated. """ self.callDeprecated( versions.Version("Twisted", 11, 1, 0), self.options.opt_password_file, self.filename) def test_authAdded(self): """ The C{--auth} command-line option will add a checker to the list of checkers """ numCheckers = len(self.options['credCheckers']) self.options.parseOptions(['--auth', 'file:' + self.filename]) self.assertEqual(len(self.options['credCheckers']), numCheckers + 1) def test_authFailure(self): """ The checker created by the C{--auth} command-line option returns a L{Deferred} that fails with L{UnauthorizedLogin} when presented with credentials that are unknown to that checker. """ self.options.parseOptions(['--auth', 'file:' + self.filename]) checker = self.options['credCheckers'][-1] invalid = credentials.UsernamePassword(self.usernamePassword[0], 'fake') return (checker.requestAvatarId(invalid) .addCallbacks( lambda ignore: self.fail("Wrong password should raise error"), lambda err: err.trap(error.UnauthorizedLogin))) def test_authSuccess(self): """ The checker created by the C{--auth} command-line option returns a L{Deferred} that returns the avatar id when presented with credentials that are known to that checker. """ self.options.parseOptions(['--auth', 'file:' + self.filename]) checker = self.options['credCheckers'][-1] correct = credentials.UsernamePassword(*self.usernamePassword) return checker.requestAvatarId(correct).addCallback( lambda username: self.assertEqual(username, correct.username) )
9562bc0b7e2dcc38f7a84b31462b6d5fd5598619
3c898b1aec7009110c63504d5a56e31914625d1b
/acrylamid/filters/rstx_youtube.py
1866872d0d44360221e12addf431c60a545739b3
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
MagicSword/acrylamid
e294b151ed6305f37fc5a5fdd4f1f0fb999a22f7
6f34bc5fb2175af1103aec7a910ef48a6842de03
refs/heads/master
2021-01-16T21:30:58.564719
2012-06-22T16:00:50
2012-06-22T16:45:38
4,817,948
1
0
null
null
null
null
UTF-8
Python
false
false
1,988
py
# -*- encoding: utf-8 -*- # # Copyright 2012 posativ <[email protected]>. All rights reserved. # License: BSD Style, 2 clauses. see acrylamid/__init__.py from docutils import nodes from docutils.parsers.rst import Directive, directives match = ['youtube', 'yt'] def align(argument): return directives.choice(argument, ('left', 'center', 'right')) class YouTube(Directive): """reStructuredText directive that creates an embed object to display a video from Youtube (:options: are optional). Usage example:: .. youtube:: ZPJlyRv_IGI :start: 34 :align: center :height: 1280 :width: 720 :ssl: """ required_arguments = 1 optional_arguments = 0 option_spec = { 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'border': directives.length_or_unitless, 'align': align, 'start': int, 'ssl': directives.flag, } has_content = False def run(self): alignments = { 'left': '0', 'center': '0 auto', 'right': '0 0 0 auto', } uri = ('https://' if 'ssl' in self.options else 'http://') \ + 'www.youtube-nocookie.com/embed/' + self.arguments[0] self.options['uri'] = uri self.options['align'] = alignments[self.options.get('align', 'center')] self.options.setdefault('width', '680px') self.options.setdefault('height', '382px') self.options.setdefault('border', 0) self.options.setdefault('start', 0) YT_EMBED = """<iframe width="%(width)s" height="%(height)s" src="%(uri)s" \ frameborder="%(border)s" style="display: block; margin: %(align)s;" \ start="%(start)i" class="video" allowfullscreen></iframe>""" return [nodes.raw('', YT_EMBED % self.options, format='html')] def makeExtension(): return YouTube
b9cea96bd1fe04ff6d961295ea869a78c3e571e4
dfab6798ece135946aebb08f93f162c37dd51791
/core/luban/db/models.py
e30723a4165928648d1c38b81f47e476985bd1ca
[]
no_license
yxqd/luban
405f5f7dcf09015d214079fe7e23d644332be069
00f699d15c572c8bf160516d582fa37f84ac2023
refs/heads/master
2020-03-20T23:08:45.153471
2012-05-18T14:52:43
2012-05-18T14:52:43
137,831,650
0
0
null
null
null
null
UTF-8
Python
false
false
1,608
py
# -*- Python -*- # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2011 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # example base class of model # from sqlalchemy.ext.declarative import declarative_base # Base = declarative_base() # XXX: thinking of use metaclass... class ModelCollector: def __new__(cls, name, bases, attributes, **kwds): # the created class created = super().__new__(cls, name, bases, attributes, **kwds) model_registry.register(created) return created class ModelRegistry: def __init__(self): self.models = {} return def register(self, cls): self.models[cls.__name__] = cls return def __getattr__(self, name): return self.models[name] model_registry = ModelRegistry() # method to load all db models in a python sub-package def loadModels(subpkg): # the implementation just import all sub modules in the sub-pkg # recursively path = subpkg.__path__ import os import pkgutil prefix = subpkg.__name__ + '.' for loader, module_name, is_pkg in pkgutil.walk_packages(path, prefix): found = loader.find_module(module_name) if not found: print ("%s not found" % module_name) else: mod = found.load_module(module_name) continue return # End of file
3e488c1e6d8440ad53c140620d92ef2e370ce8d9
444a9480bce2035565332d4d4654244c0b5cd47b
/research/cv/crnn_seq2seq_ocr/export.py
5e3a5b228456dd05aac02549e97f25cb124b1625
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
2,428
py
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ export. """ import os import numpy as np from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.attention_ocr import AttentionOCRInfer from src.model_utils.config import config from src.model_utils.device_adapter import get_device_id def get_model(): '''generate model''' context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id()) # Network network = AttentionOCRInfer(config.eval_batch_size, int(config.img_width / 4), config.encoder_hidden_size, config.decoder_hidden_size, config.decoder_output_size, config.max_length, config.dropout_p) checkpoint_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), config.checkpoint_path) ckpt = load_checkpoint(checkpoint_path) load_param_into_net(network, ckpt) network.set_train(False) print("Checkpoint loading Done!") sos_id = config.characters_dictionary.go_id images = Tensor(np.zeros((config.eval_batch_size, 3, config.img_height, config.img_width), dtype=np.float32)) decoder_hidden = Tensor(np.zeros((1, config.eval_batch_size, config.decoder_hidden_size), dtype=np.float16)) decoder_input = Tensor((np.ones((config.eval_batch_size, 1)) * sos_id).astype(np.int32)) inputs = (images, decoder_input, decoder_hidden) export(network, *inputs, file_name=config.file_name, file_format=config.file_format) if __name__ == '__main__': get_model()
38eaa72b941d96798a70a6dda2b4584e8d01c6e4
031dbb2a3ea47a0483db310db9f98796cc83c500
/787_Cheapest Flights Within K Stops.py
6023db6bc0143b13eabbfbbe62dfaa8852018733
[]
no_license
Shwan-Yu/Data_Structures_and_Algorithms
429fb127983e32931f2168f44ef1484c1cc4c87f
9126c2089e41d4d7fd3a204115eba2b5074076ad
refs/heads/master
2020-03-27T11:46:59.947303
2019-08-23T15:15:21
2019-08-23T15:15:21
146,507,496
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
class Solution(object): def findCheapestPrice(self, n, flights, src, dst, K): """ :type n: int :type flights: List[List[int]] :type src: int :type dst: int :type K: int :rtype: int """ if not flights: return 0 dp = [float("inf")] * n dp[src] = 0 for k in range(K+1): dp_cur = dp[:] for (a, i, price) in flights: dp_cur[i] = min(dp_cur[i], dp[a] + price) dp = dp_cur return dp[dst] if dp[dst] != float("inf") else -1
17f42d961d07ae670ad5a9895a53fe22b9e5e27b
3def27e101ca346af6b30247769719f5cd5a27c0
/indiaos/config/docs.py
95939bb230467499359e5175e7a089a84d88ecaa
[ "MIT" ]
permissive
anto-christo/indiaos
9fb94527092570981288b42a05001cf33b61b522
4b029cf86e49dcabad852312293e6fa5116d4155
refs/heads/master
2020-09-13T19:50:15.187112
2019-11-20T08:30:13
2019-11-20T08:30:13
222,887,034
1
0
NOASSERTION
2019-11-20T08:24:27
2019-11-20T08:24:26
null
UTF-8
Python
false
false
313
py
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/indiaos" # docs_base_url = "https://[org_name].github.io/indiaos" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "IndiaOS"
bfcf8014c00faabd8828474c77a4d96497ba9a38
da54cb56e69ca730156156ca70a720cfbd7723ea
/others/coffee_plackett/mindsdb_acc.py
78dfe064c969ce8ad89c969d29d4efe3ffbc3f23
[ "MIT" ]
permissive
setohe0909/mindsdb-examples
b4f7908aa0c96fc0ea0721931f95bc4960bc2867
04fc9b4ad9bb8e960a996e1c4eab1e6054bca8ff
refs/heads/master
2022-11-27T00:21:16.114913
2020-08-06T15:33:17
2020-08-06T15:33:17
296,442,864
1
0
MIT
2020-09-17T21:08:52
2020-09-17T21:08:51
null
UTF-8
Python
false
false
237
py
from mindsdb_native import Predictor mdb = Predictor(name='coffee_predictor') mdb.learn(from_data='data.tsv', to_predict=['Coffe_Malt', 'Chocolat', 'Gold', 'Medium_Barley', 'Dark_Barley', 'Dandelion', 'Beets', 'Chicory_Roots', 'Figs'])
484d7007aa18126e562a439f5ddb39f19a4e0ea8
908655251066427f654ee33ebdf804f9f302fcc3
/Tests/CartPoleAST/CartPoleNdRewardt/MultiCartPoleNd_RLNonInter.py
7bde5b51f00c93349bfd677128345b1493e7a0c2
[]
no_license
maxiaoba/MCTSPO
be567f80f1dcf5c35ac857a1e6690e1ac599a59d
eedfccb5a94e089bd925b58f3d65eef505378bbc
refs/heads/main
2023-07-05T02:20:16.752650
2021-07-06T06:04:40
2021-07-06T06:04:40
381,811,407
0
0
null
null
null
null
UTF-8
Python
false
false
4,181
py
import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" #just use CPU # from garage.tf.algos.trpo import TRPO from garage.baselines.zero_baseline import ZeroBaseline from mylab.envs.tfenv import TfEnv from garage.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy from garage.tf.policies.gaussian_lstm_policy import GaussianLSTMPolicy from garage.tf.optimizers.conjugate_gradient_optimizer import ConjugateGradientOptimizer, FiniteDifferenceHvp from garage.misc import logger from mylab.rewards.ast_reward import ASTReward from mylab.envs.ast_env import ASTEnv from mylab.simulators.policy_simulator import PolicySimulator from CartPoleNd.cartpole_nd import CartPoleNdEnv from mylab.algos.trpo import TRPO import os.path as osp import argparse # from example_save_trials import * import tensorflow as tf import joblib import math import numpy as np import mcts.BoundedPriorityQueues as BPQ import csv # Logger Params parser = argparse.ArgumentParser() parser.add_argument('--exp_name', type=str, default="cartpole") parser.add_argument('--n_trial', type=int, default=5) parser.add_argument('--trial_start', type=int, default=0) parser.add_argument('--n_itr', type=int, default=2500) parser.add_argument('--batch_size', type=int, default=4000) parser.add_argument('--snapshot_mode', type=str, default="gap") parser.add_argument('--snapshot_gap', type=int, default=500) parser.add_argument('--log_dir', type=str, default='./Data/AST/RLNonInter') parser.add_argument('--args_data', type=str, default=None) args = parser.parse_args() top_k = 10 max_path_length = 100 interactive = False tf.set_random_seed(0) sess = tf.Session() sess.__enter__() # Instantiate the env env_inner = CartPoleNdEnv(nd=10,use_seed=False) data = joblib.load("../CartPole/Data/Train/itr_50.pkl") policy_inner = data['policy'] reward_function = ASTReward() simulator = PolicySimulator(env=env_inner,policy=policy_inner,max_path_length=max_path_length) env = TfEnv(ASTEnv(interactive=interactive, simulator=simulator, sample_init_state=False, s_0=[0.0, 0.0, 0.0 * math.pi / 180, 0.0], reward_function=reward_function, )) # Create policy policy = GaussianLSTMPolicy(name='lstm_policy', env_spec=env.spec, hidden_dim=128, use_peepholes=True) with open(osp.join(args.log_dir, 'total_result.csv'), mode='w') as csv_file: fieldnames = ['step_count'] for i in range(top_k): fieldnames.append('reward '+str(i)) writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for trial in range(args.trial_start,args.trial_start+args.n_trial): # Create the logger log_dir = args.log_dir+'/'+str(trial) tabular_log_file = osp.join(log_dir, 'process.csv') text_log_file = osp.join(log_dir, 'text.txt') params_log_file = osp.join(log_dir, 'args.txt') logger.set_snapshot_dir(log_dir) logger.set_snapshot_mode(args.snapshot_mode) logger.set_snapshot_gap(args.snapshot_gap) logger.log_parameters_lite(params_log_file, args) if trial > args.trial_start: old_log_dir = args.log_dir+'/'+str(trial-1) logger.pop_prefix() logger.remove_text_output(osp.join(old_log_dir, 'text.txt')) logger.remove_tabular_output(osp.join(old_log_dir, 'process.csv')) logger.add_text_output(text_log_file) logger.add_tabular_output(tabular_log_file) logger.push_prefix("["+args.exp_name+'_trial '+str(trial)+"]") np.random.seed(trial) params = policy.get_params() sess.run(tf.variables_initializer(params)) baseline = ZeroBaseline(env_spec=env.spec) optimizer = ConjugateGradientOptimizer(hvp_approach=FiniteDifferenceHvp(base_eps=1e-5)) top_paths = BPQ.BoundedPriorityQueue(top_k) algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=args.batch_size, step_size=0.1, n_itr=args.n_itr, store_paths=True, optimizer= optimizer, max_path_length=max_path_length, top_paths = top_paths, plot=False, ) algo.train(sess=sess, init_var=False) row_content = dict() row_content['step_count'] = args.n_itr*args.batch_size i = 0 for (r,action_seq) in algo.top_paths: row_content['reward '+str(i)] = r i += 1 writer.writerow(row_content)
5e58b6483a21d1dcda87883dadabb128dcf9cdbe
4ed038a638725ac77731b0b97ddd61aa37dd8d89
/cairis/gui/SecurityPatternDialog.py
08a80cb3e41d28e481cae171536b5d583ce0b767
[ "Apache-2.0" ]
permissive
RachelLar/cairis_update
0b784101c4aff81ff0390328eb615e335301daa2
0b1d6d17ce49bc74887d1684e28c53c1b06e2fa2
refs/heads/master
2021-01-19T06:25:47.644993
2016-07-11T20:48:11
2016-07-11T20:48:11
63,103,727
0
0
null
null
null
null
UTF-8
Python
false
false
3,874
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import wx from cairis.core.armid import * from SecurityPatternPanel import SecurityPatternPanel from cairis.core.SecurityPatternParameters import SecurityPatternParameters import DialogClassParameters class SecurityPatternDialog(wx.Dialog): def __init__(self,parent,parameters): wx.Dialog.__init__(self,parent,parameters.id(),parameters.label(),style=wx.DEFAULT_DIALOG_STYLE|wx.MAXIMIZE_BOX|wx.THICK_FRAME|wx.RESIZE_BORDER,size=(400,500)) self.thePatternName = '' self.thePatternContext = '' self.thePatternProblem = '' self.thePatternSolution = '' self.theConcernAssociations = [] self.theRequirements = [] self.thePatternId = -1 self.panel = 0 self.buildControls(parameters) self.commitVerb = 'Add' def buildControls(self,parameters): mainSizer = wx.BoxSizer(wx.VERTICAL) self.panel = SecurityPatternPanel(self) self.panel.buildControls(parameters.createFlag()) mainSizer.Add(self.panel,1,wx.EXPAND) self.SetSizer(mainSizer) wx.EVT_BUTTON(self,SECURITYPATTERN_BUTTONCOMMIT_ID,self.onCommit) def load(self,pattern): self.thePatternId = pattern.id() self.panel.loadControls(pattern) self.commitVerb = 'Edit' def onCommit(self,evt): commitLabel = self.commitVerb + ' security pattern' nameCtrl = self.FindWindowById(SECURITYPATTERN_TEXTNAME_ID) contextCtrl = self.FindWindowById(SECURITYPATTERN_TEXTCONTEXT_ID) problemCtrl = self.FindWindowById(SECURITYPATTERN_TEXTPROBLEM_ID) solutionCtrl = self.FindWindowById(SECURITYPATTERN_TEXTSOLUTION_ID) concernsCtrl = self.FindWindowById(SECURITYPATTERN_LISTPATTERNSTRUCTURE_ID) reqsCtrl = self.FindWindowById(SECURITYPATTERN_LISTREQUIREMENTS_ID) self.thePatternName = nameCtrl.GetValue() self.thePatternContext = contextCtrl.GetValue() self.thePatternProblem = problemCtrl.GetValue() self.thePatternSolution = solutionCtrl.GetValue() self.theConcernAssociations = concernsCtrl.associations() self.theRequirements = reqsCtrl.requirements() if len(self.thePatternName) == 0: dlg = wx.MessageDialog(self,'Pattern name cannot be empty',commitLabel,wx.OK) dlg.ShowModal() dlg.Destroy() return if len(self.thePatternContext) == 0: dlg = wx.MessageDialog(self,'Context cannot be empty',commitLabel,wx.OK) dlg.ShowModal() dlg.Destroy() return if len(self.thePatternProblem) == 0: dlg = wx.MessageDialog(self,'Problem cannot be empty',commitLabel,wx.OK) dlg.ShowModal() dlg.Destroy() return elif (len(self.thePatternSolution) == 0): dlg = wx.MessageDialog(self,'Solution cannot be empty',commitLabel,wx.OK) dlg.ShowModal() dlg.Destroy() return else: self.EndModal(SECURITYPATTERN_BUTTONCOMMIT_ID) def parameters(self): parameters = SecurityPatternParameters(self.thePatternName,self.thePatternContext,self.thePatternProblem,self.thePatternSolution,self.theRequirements,self.theConcernAssociations) parameters.setId(self.thePatternId) return parameters
a683c1f4c81d2952675346854e2f80efb8473601
37ba3d21dcb6edd21e48dbb7f12591ac3590ab64
/python_problems_competitive/ten_kinds_of_people.py
4ef27f518e9cd247adcaa9041da10f96bc2643ec
[]
no_license
Hygens/hackerearth_hackerrank_solutions
2feaedec255a85792d305bb8ff35675254a03f2a
86cc4c9ca4d5246f24db8cda93400f1d7ee00882
refs/heads/master
2021-07-06T15:56:28.906533
2020-04-28T22:45:56
2020-04-28T22:45:56
55,160,498
1
2
null
2020-10-01T06:48:09
2016-03-31T15:15:36
Python
UTF-8
Python
false
false
331
py
r,c = map(int,input().split(' ')) l = [] for i in range(r): l.append(list(input().strip())) n = int(input().strip()) for _ in range(n): r1,c1,r2,c2 = map(int,input().split(' ')) if l[r1-1][c1-1]==l[r2-1][c2-1]=='0': print('binary') elif l[r1-1][c1-1]==l[r2-1][c2-1]=='1': print('decimal') else: print('neither')
2e6d525f0693ba26ecf20429238d8ba878370522
bc441bb06b8948288f110af63feda4e798f30225
/resource_package_tools_sdk/model/container/ingress_rule_pb2.py
e7533ea4ef040c1f29394bd3dd0d9f6cdf9fbc34
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
4,319
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: ingress_rule.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from resource_package_tools_sdk.model.container import http_ingress_path_pb2 as resource__package__tools__sdk_dot_model_dot_container_dot_http__ingress__path__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='ingress_rule.proto', package='container', syntax='proto3', serialized_options=_b('ZCgo.easyops.local/contracts/protorepo-models/easyops/model/container'), serialized_pb=_b('\n\x12ingress_rule.proto\x12\tcontainer\x1a\x42resource_package_tools_sdk/model/container/http_ingress_path.proto\"y\n\x0bIngressRule\x12\x0c\n\x04host\x18\x01 \x01(\t\x12)\n\x04http\x18\x02 \x01(\x0b\x32\x1b.container.IngressRule.Http\x1a\x31\n\x04Http\x12)\n\x05paths\x18\x01 \x03(\x0b\x32\x1a.container.HTTPIngressPathBEZCgo.easyops.local/contracts/protorepo-models/easyops/model/containerb\x06proto3') , dependencies=[resource__package__tools__sdk_dot_model_dot_container_dot_http__ingress__path__pb2.DESCRIPTOR,]) _INGRESSRULE_HTTP = _descriptor.Descriptor( name='Http', full_name='container.IngressRule.Http', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='paths', full_name='container.IngressRule.Http.paths', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=173, serialized_end=222, ) _INGRESSRULE = _descriptor.Descriptor( name='IngressRule', full_name='container.IngressRule', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='host', full_name='container.IngressRule.host', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='http', full_name='container.IngressRule.http', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_INGRESSRULE_HTTP, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=101, serialized_end=222, ) _INGRESSRULE_HTTP.fields_by_name['paths'].message_type = resource__package__tools__sdk_dot_model_dot_container_dot_http__ingress__path__pb2._HTTPINGRESSPATH _INGRESSRULE_HTTP.containing_type = _INGRESSRULE _INGRESSRULE.fields_by_name['http'].message_type = _INGRESSRULE_HTTP DESCRIPTOR.message_types_by_name['IngressRule'] = _INGRESSRULE _sym_db.RegisterFileDescriptor(DESCRIPTOR) IngressRule = _reflection.GeneratedProtocolMessageType('IngressRule', (_message.Message,), { 'Http' : _reflection.GeneratedProtocolMessageType('Http', (_message.Message,), { 'DESCRIPTOR' : _INGRESSRULE_HTTP, '__module__' : 'ingress_rule_pb2' # @@protoc_insertion_point(class_scope:container.IngressRule.Http) }) , 'DESCRIPTOR' : _INGRESSRULE, '__module__' : 'ingress_rule_pb2' # @@protoc_insertion_point(class_scope:container.IngressRule) }) _sym_db.RegisterMessage(IngressRule) _sym_db.RegisterMessage(IngressRule.Http) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
3fa376f3ef087cee256d7492675fdc21898a7b95
92c724afcc40c9e4d86af24b1b493e10fc8a994d
/src/figures/exploratory/exploratory_plots.py
f99cbafd230e2935a17d634a4cf0fd989b289b41
[ "MIT" ]
permissive
willgdjones/GTEx
48d7551c765700d0db34bb8f6e01f7f2a55bec6c
c56a5d548978545ab8a98e74236d52343113e9e6
refs/heads/master
2021-09-13T13:21:12.928226
2018-02-06T16:42:41
2018-02-06T16:42:41
90,028,785
2
0
null
null
null
null
UTF-8
Python
false
false
3,241
py
import pickle import numpy as np import matplotlib.pyplot as plt import seaborn import h5py GTEx_directory = '/hps/nobackup/research/stegle/users/willj/GTEx' retrained_mean_features = {} with h5py.File(GTEx_directory + '/small_data/new_retrained_inceptionet_aggregations.hdf5','r') as f: expression = f['lung']['256']['expression'].value for s in ['128','256','512','1024','2048','4096']: size_retrained_mean_features = f['lung'][s]['mean'].value retrained_mean_features[s] = size_retrained_mean_features expression_IDs = f['lung']['256']['expression_IDs'].value raw_mean_features = {} with h5py.File(GTEx_directory + '/small_data/new_raw_inceptionet_aggregations.hdf5','r') as f: for s in ['128','256','512','1024','2048','4096']: size_raw_mean_features = f['lung'][s]['mean'].value size_raw_mean_features[size_raw_mean_features < 0] = 0 raw_mean_features[s] = size_raw_mean_features # Comparing variation for each patch size # f, a = plt.subplots(1,6, figsize=(35,5)) # f.suptitle("Image feature variation. Lung, patch-size 256",size=30) # for (i,s) in enumerate(['128','256','512','1024','2048','4096']): # a[i].hist(np.std(retrained_mean_features[s],axis=0),bins=100) # a[i].set_title("Patch-size {}".format(s),size=20) # plt.tight_layout() # plt.subplots_adjust(top=0.80) # plt.savefig('figures/exploratory/plots/feature_variation.eps',format='eps', dpi=600) # Comparing variation when concatenating all features together # plt.figure() # concatenated_features = np.vstack([retrained_mean_features['128'], retrained_mean_features['256'], retrained_mean_features['512'], retrained_mean_features['1024'], retrained_mean_features['2048'], retrained_mean_features['4096']]) # plt.hist(np.std(concatenated_features,axis=0),bins=100) # cutoff = min(np.std(concatenated_features[:,np.argsort(np.std(concatenated_features,axis=0))[-500:]],axis=0)) # plt.plot([cutoff, cutoff], [0, 300],c='red') # plt.title("Histogram of variance from concatenated features across patch-sizes",size=11) # plt.xlabel("Variance") # plt.ylabel("Counts") # plt.tight_layout() # plt.savefig('figures/exploratory/plots/concatenated_feature_variation.eps',format='eps', dpi=600) # Histogram of expression means. # Include cutoff for top 500 # plt.figure() # plt.hist(np.mean(expression,axis=0),bins=100) # cutoff = min(np.mean(expression[:,np.argsort(np.mean(expression,axis=0))[-1000:]],axis=0)) # plt.plot([cutoff, cutoff], [0, 4500],c='red') # plt.title("Histogram of mean gene expression") # plt.xlabel("Mean expression") # plt.ylabel("Count") # plt.tight_layout() # plt.savefig('figures/exploratory/plots/mean_expression_histogram.eps',format='eps', dpi=600) # # # Histogram of expression standard deviation. # # Include cutoff for top 1000 # plt.figure() # plt.hist(np.std(expression,axis=0),bins=100) # cutoff = min(np.std(expression[:,np.argsort(np.std(expression,axis=0))[-1000:]],axis=0)) # plt.plot([cutoff, cutoff], [0, 2500],c='red') # plt.title("Histogram of gene expression standard deviation") # plt.xlabel("Expression standard devation") # plt.ylabel("Count") # plt.tight_layout() # plt.savefig('figures/exploratory/plots/std_expression_histogram.eps',format='eps', dpi=600)
7c36ac1c024cf960649d2e0a49ddbbd0087fdc2f
a849caca4cc7b66bb3ca93552da873c1415f435d
/Lab Exercise 1.6.2020/fermi.py
0fb3f6a5b5b8d5291e9c7c3a08e24662cec98290
[]
no_license
nmessa/Python
5215b957dc73ece422a0f4cc65752c387a437d34
1a32ca1f59aa5a3f89453b6e42d4336e6e8fb961
refs/heads/master
2021-07-11T04:45:08.222102
2020-09-17T17:32:07
2020-09-17T17:32:07
199,273,131
0
1
null
null
null
null
UTF-8
Python
false
false
2,182
py
## Game of Fermi Version 0.5 ## Author: ## Date: 1/6/2020 ## The goal of the game is for the player to guess the digits in ## the three positions in the least number of tries. For each guess, ## the player provides three digits for position 1, 2, and 3. ## The program replies with a hint consisting of Fermi, Pico, and Nano. ## If the digit guess for a given position is correct, then the reply is Fermi. ## If the digit guessed for a given position is in a different position, then ## the reply is Pico. If the digit guessed for a given position does not match ## any of the three digits, then the reply is Nano. from random import * #Create variables numbers = [1,2,3,4,5,6,7,8,9] again = True while again: win = False #Build the secret number of 3 unique numbers from 1 to 9 secret = [] while len(secret) < 3: temp = choice(numbers) if temp not in secret: secret.append(temp) numGuesses = 0 #keep track of numbers guessed #Play a round while not win: #initialize counter and phrases list count = 0 phrases = [] #Get number guess from user temp = input("Enter 3 numbers (1 - 9)seperated by spaces: ").split() #Build a list that represents the number guessed #Add code here #update number of guesses #Add code here #Algorithm to test number and generate 3 phrases #Add code here #Print the result of algorithm execution for p in phrases: print(p, end = ' ') print() #Check to see if you won if phrases.count('Fermi') == 3: #this means you won print('You won in', numGuesses, 'guesses') win = True answer = input("Play again (y/n)? ") if answer == 'n': again = False ## Sample Output ## Enter 3 numbers (1 - 9): 6 3 5 ## Nano Pico Nano ## Enter 3 numbers (1 - 9): 3 4 2 ## Pico Pico Nano ## Enter 3 numbers (1 - 9): 4 3 7 ## Fermi Pico Nano ## Enter 3 numbers (1 - 9): 4 8 3 ## Fermi Fermi Fermi ## You won in 4 guesses
ef7250bd0abdff76776b5c47208d55fca1b57e6b
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/farm.py
230a7720738a0d70a94d4b11e691cbfc733a27b7
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
1,923
py
ii = [('EmerRN.py', 4), ('CookGHP3.py', 2), ('LyelCPG2.py', 1), ('MarrFDI.py', 4), ('GodwWSL2.py', 1), ('SadlMLP.py', 1), ('WilbRLW4.py', 1), ('RennJIT.py', 2), ('AubePRP2.py', 6), ('CookGHP.py', 3), ('MartHSI2.py', 22), ('LeakWTI2.py', 6), ('KembFJ1.py', 4), ('WilkJMC3.py', 5), ('WilbRLW5.py', 2), ('LeakWTI3.py', 16), ('MarrFDI3.py', 21), ('TennAP.py', 1), ('PeckJNG.py', 24), ('KnowJMM.py', 1), ('AubePRP.py', 18), ('ChalTPW2.py', 4), ('AdamWEP.py', 1), ('FitzRNS3.py', 1), ('WilbRLW2.py', 4), ('ClarGE2.py', 6), ('GellWPT2.py', 1), ('WilkJMC2.py', 7), ('CarlTFR.py', 3), ('SeniNSP.py', 47), ('CoopJBT2.py', 1), ('RoscTTI3.py', 2), ('KiddJAE.py', 1), ('AdamHMM.py', 2), ('BailJD1.py', 4), ('RoscTTI2.py', 5), ('CoolWHM.py', 3), ('ClarGE.py', 10), ('LandWPA.py', 1), ('IrviWVD.py', 2), ('LyelCPG.py', 2), ('GilmCRS.py', 3), ('DaltJMA.py', 11), ('CrocDNL.py', 10), ('MedwTAI.py', 1), ('LandWPA2.py', 3), ('WadeJEB.py', 8), ('FerrSDO2.py', 2), ('SoutRD2.py', 1), ('LeakWTI4.py', 13), ('LeakWTI.py', 15), ('MedwTAI2.py', 7), ('BachARE.py', 41), ('SoutRD.py', 1), ('WheeJPT.py', 4), ('MereHHB3.py', 9), ('HowiWRL2.py', 22), ('MereHHB.py', 42), ('WilkJMC.py', 4), ('MartHRW.py', 13), ('MackCNH.py', 6), ('WestJIT.py', 1), ('FitzRNS4.py', 13), ('CoolWHM3.py', 4), ('DequTKM.py', 1), ('BentJRP.py', 4), ('EdgeMHT.py', 3), ('FerrSDO.py', 3), ('RoscTTI.py', 3), ('ThomGLG.py', 1), ('KembFJ2.py', 4), ('LewiMJW.py', 4), ('MackCNH2.py', 6), ('JacoWHI2.py', 4), ('HaliTBC.py', 1), ('WilbRLW3.py', 5), ('AinsWRR2.py', 3), ('MereHHB2.py', 24), ('BrewDTO.py', 1), ('JacoWHI.py', 17), ('ClarGE3.py', 22), ('RogeSIP.py', 3), ('MartHRW2.py', 4), ('DibdTRL.py', 1), ('FitzRNS2.py', 14), ('HogaGMM2.py', 1), ('MartHSI.py', 28), ('EvarJSP.py', 8), ('DwigTHH.py', 1), ('SadlMLP2.py', 1), ('BowrJMM2.py', 6), ('BowrJMM3.py', 1), ('BeckWRE.py', 2), ('TaylIF.py', 1), ('WordWYR.py', 3), ('KeigTSS.py', 7), ('WaylFEP.py', 28), ('ClarGE4.py', 23)]
ef31a019c6a45e981d10734a870eb4e44043c0d3
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/pkgs/bokeh-0.11.1-py27_0/lib/python2.7/site-packages/bokeh/command/subcommands/tests/test_info.py
42f6e6e775b0cc0b11df05470c21ff00bfa6d4cd
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
1,238
py
from __future__ import absolute_import import bokeh.command.subcommands.info as scinfo from bokeh.command.bootstrap import main def test_create(): import argparse from bokeh.command.subcommand import Subcommand obj = scinfo.Info(parser=argparse.ArgumentParser()) assert isinstance(obj, Subcommand) def test_name(): assert scinfo.Info.name == "info" def test_help(): assert scinfo.Info.help == "print information about Bokeh and Bokeh server configuration" def test_args(): assert scinfo.Info.args == ( ('--static', dict( action='store_true', help="Print the locations of BokehJS static files", )), ) def test_run(capsys): main(["bokeh", "info"]) out, err = capsys.readouterr() lines = out.split("\n") assert len(lines) == 5 assert lines[0].startswith("Python version") assert lines[1].startswith("IPython version") assert lines[2].startswith("Bokeh version") assert lines[3].startswith("BokehJS static") assert lines[4] == "" assert err == "" def test_run_static(capsys): main(["bokeh", "info", "--static"]) out, err = capsys.readouterr() assert err == "" assert out.endswith('/bokeh/server/static\n')
38a80c15f2ce13d2c78e5913a3b1aadf4fc2e70a
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/benchmarks/sieve-457.py
99bc8c55e3be4471951f624dbaca0a87b6c3a62a
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
2,586
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if ($ID.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 # Data v:Vector = None i:int = 0 # Crunch v = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
de584c4eb19bb366f817c87559e42f7c262ffe1d
64a2e19c11929e9077a8c99e8d388de279e512e9
/testRunner/runner.py
0278655d701a52dba205cd68ffe58b706039b381
[]
no_license
wallaceok/appiumn_auto
60f8a2b152a27c39cabf12529345909979527115
e543a662897c0eedfafdea64297947aa6de45539
refs/heads/master
2020-12-24T06:00:26.338592
2016-11-08T10:04:04
2016-11-08T10:04:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,471
py
__author__ = 'Administrator' # -*- coding: utf-8 -*- import sys sys.path.append("..") import datetime import xlsxwriter import time import unittest from common import reportPhone from testRunner.runnerBase import TestInterfaceCase, ga from testCase.Home import testHome from testCase.work import testContact from testCase.web.comment import testComment from testBLL import email as b_email from testBLL import server from testBLL import adbCommon from testMode import email as memail from testBLL import report as b_report from testBLL import appBase from testBLL import apkBase from testMode import report as m_report from common.variable import GetVariable as common from common import dataToString import os PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) def get_email(): m_email = memail.GetEmail() m_email.file = PATH( '../email.ini' ) email = b_email.read_email(m_email) return email def get_app_msg(f=r"D:\app\appium_study\img\t.apk"): return apkBase.apkInfo(f).get_app_msg() def get_common_report(start_test_time, endtime, starttime): mreport = m_report.GetReport() b_get_hp_info = appBase.get_phone_info() raw = appBase.get_men_total(r"d:\men.log") app_msg = get_app_msg(PATH( '../img/t.apk')) mreport.test_sum = common.test_sum mreport.test_failed = common.test_failed mreport.test_success = common.test_success mreport.test_sum_date = str((endtime - starttime).seconds-6) +"秒" mreport.app_name = app_msg[0] mreport.app_size = app_msg[1] mreport.phone_name = b_get_hp_info["phone_name"] +" " + b_get_hp_info["phone_model"] mreport.phone_rel =b_get_hp_info["release"] mreport.phone_pix = appBase.get_app_pix() mreport.phone_raw = reportPhone.phone_raw(raw/1024) print(common.MEN) avg_men = appBase.get_avg_raw(common.MEN) # 获取每次占用内存多少 mreport.phone_avg_use_raw = avg_men mreport.phone_max_use_raw = reportPhone.phone_max_use_raw(common.MEN) mreport.phone_cpu = appBase.get_cpu_kel() mreport.phone_avg_use_cpu = reportPhone.phone_avg_use_cpu(common.CPU) mreport.phone_avg_max_use_cpu = reportPhone.phone_avg_max_use_cpu(common.CPU) mreport.app_version = app_msg[2] mreport.test_date = start_test_time mreport.fps_max = reportPhone.fps_max(common.FPS) mreport.fps_avg = reportPhone.fps_avg(common.FPS) b_report.OperateReport().set_report(mreport) def get_common_web_report(start_test_time, endtime, starttime): pass def runnerCaseWeb(): suite = unittest.TestSuite() starttime = datetime.datetime.now() suite.addTest(TestInterfaceCase.parametrize(testComment)) unittest.TextTestRunner(verbosity=2).run(suite) def runnerCaseApp(): start_test_time = dataToString.getStrTime(time.localtime(), "%Y-%m-%d %H:%M %p") suite = unittest.TestSuite() starttime = datetime.datetime.now() suite.addTest(TestInterfaceCase.parametrize(testHome)) # suite.addTest(TestInterfaceCase.parametrize(testContact)) unittest.TextTestRunner(verbosity=2).run(suite) endtime = datetime.datetime.now() get_common_report(start_test_time, endtime, starttime) report() def report(): workbook = xlsxwriter.Workbook('GetReport.xlsx') worksheet = workbook.add_worksheet("测试总况") worksheet2 = workbook.add_worksheet("测试详情") print(common.RRPORT) b_OperateReport = b_report.OperateReport(wd=workbook, data=common.RRPORT) b_OperateReport.init(worksheet) b_OperateReport.detail(worksheet2) b_OperateReport.close() b_email.send_mail(get_email()) if __name__ == '__main__': if ga.selenium_appium == common.APPIUM and ga.platformName == common.ANDROID : if adbCommon.attached_devices(): appium_server = server.AppiumServer(ga.appiumJs, ga.Remote,ga.selenium_appium) appium_server.start_server() while not appium_server.is_runnnig(): time.sleep(2) runnerCaseApp() appium_server.stop_server() else: print(u"设备不存在") if ga.selenium_appium == common.SELENIUM: appium_server = server.AppiumServer(ga.selenium_jar, ga.sel_remote, ga.selenium_appium) appium_server.start_server() while not appium_server.is_runnnig(): time.sleep(2) runnerCaseWeb() appium_server.stop_server()
ca4b7e3b02e3f9d8bd800d4002d8a1a7aaa44271
0b7add5d8583ba3bb02faf4fd5c356fd578f2fcc
/compileProtobuf/dstPb/RightInputProto_pb2.py
6c7f725c3da07982fafe4f3b3735e4d2df9ca053
[]
no_license
cappuccino213/IMCIS2Performance
281f052f1a5dddb4956b3e7127781d2395c07e04
74528e0606f78459f6f3bfcf38d4fdf176a36f90
refs/heads/master
2023-03-27T20:44:57.266345
2021-03-29T07:56:56
2021-03-29T07:56:56
352,560,398
1
0
null
null
null
null
UTF-8
Python
false
true
3,095
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: RightInputProto.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='RightInputProto.proto', package='', syntax='proto3', serialized_options=b'\252\002\037TomTaw.eWordIMCIS.WebAPI.Models', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x15RightInputProto.proto\"K\n\x0fRightInputProto\x12\x0f\n\x07roleUID\x18\x01 \x01(\t\x12\x0f\n\x07userUID\x18\x02 \x01(\t\x12\x16\n\x0eisSuperManager\x18\x03 \x01(\tB\"\xaa\x02\x1fTomTaw.eWordIMCIS.WebAPI.Modelsb\x06proto3' ) _RIGHTINPUTPROTO = _descriptor.Descriptor( name='RightInputProto', full_name='RightInputProto', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='roleUID', full_name='RightInputProto.roleUID', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='userUID', full_name='RightInputProto.userUID', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='isSuperManager', full_name='RightInputProto.isSuperManager', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=25, serialized_end=100, ) DESCRIPTOR.message_types_by_name['RightInputProto'] = _RIGHTINPUTPROTO _sym_db.RegisterFileDescriptor(DESCRIPTOR) RightInputProto = _reflection.GeneratedProtocolMessageType('RightInputProto', (_message.Message,), { 'DESCRIPTOR' : _RIGHTINPUTPROTO, '__module__' : 'RightInputProto_pb2' # @@protoc_insertion_point(class_scope:RightInputProto) }) _sym_db.RegisterMessage(RightInputProto) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
a1ca652bbcbc6fe3ceebec0c3c56a8205ba2449f
3597ecf8a014dbd6f7d998ab59919a94aff8011d
/front-web/src/www/application/modules/treatment/block/actions.py
18cc3477c9e71c71e2a949ed2b6fbd5799dbce77
[]
no_license
duytran92-cse/nas-genomebrowser
f42b8ccbb7c5245bde4e52a0feed393f4b5f6bf1
d0240ad5edc9cfa8e7f89db52090d7d733d2bb8a
refs/heads/master
2022-10-24T05:26:01.760241
2020-06-14T19:01:35
2020-06-14T19:01:35
272,264,694
0
0
null
null
null
null
UTF-8
Python
false
false
4,214
py
from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.conf import settings from notasquare.urad_web import actions, page_contexts, widgets from notasquare.urad_web_material import renderers from application.modules.common import page_contexts, actions as common_actions, components as common_components from application.themes.genopedia import renderers as genopedia_renderers from application.themes.genopedia import widgets as genopedia_widgets from application import constants from . import components class Update(actions.crud.UpdateAction, common_actions.BaseAction): def create_form(self): treatment_block = components.TreatmentBlockStore(self.get_container()).get(self.params['block_id']) kind = treatment_block['data']['record']['kind'] form = widgets.form.Form() form.renderer = renderers.widgets.form.HorizontalFormRenderer() if kind == 'general_text': form.add_field(widgets.field.Textbox('title')) form.add_field(widgets.field.Textarea('text')) form.renderer.add_section('General - Text') form.renderer.add_field('title', 'Title') form.renderer.add_field('text', 'Text', rows=15) if kind == 'general_publications': form.add_field(widgets.field.List('publications', { 'pmid': widgets.field.Textbox('pmid'), 'doi': widgets.field.Textbox('doi'), 'pmc': widgets.field.Textbox('pmc'), 'title': widgets.field.Textarea('title'), 'authors': widgets.field.Textarea('authors'), 'journal': widgets.field.Textarea('journal') })) form.renderer.add_section('General - Publications') form.renderer.add_field('publications', 'Publications', columns=[ {'id': 'pmid', 'label': 'PMID', 'width': '10%'}, {'id': 'doi', 'label': 'DOI', 'width': '10%'}, {'id': 'pmc', 'label': 'PMC', 'width': '10%'}, {'id': 'title', 'label': 'Title', 'width': '30%'}, {'id': 'authors', 'label': 'Authors', 'width': '15%'}, {'id': 'journal', 'label': 'Journal', 'width': '15%'}, ]) if kind == 'general_alias': # Show effect & risk form.add_field(widgets.field.List('alias', { 'id': widgets.field.Textbox('id'), 'alias': widgets.field.Textbox('alias') })) form.renderer.add_section('Variation - Alias') form.renderer.add_field('alias', 'Alias', columns=[ {'id': 'alias', 'label': 'Alias', 'width': '50%'} ]) form.renderer.set_field_renderer('textbox', renderers.widgets.field.TextboxRenderer()) form.renderer.set_field_renderer('textarea', renderers.widgets.field.TextareaRenderer()) form.renderer.set_field_renderer('combobox', renderers.widgets.field.ComboboxRenderer()) form.renderer.set_field_renderer('list', renderers.widgets.field.ListRenderer()) return form def load_form(self, form): result = components.TreatmentBlockStore(self.get_container()).get(self.params['block_id']) if result['status'] == 'ok': record = result['data']['record'] form.set_things({ 'page': 'treatment', 'page_title': record['treatment_title'] }) form.set_form_data(record) else: form.add_message('danger', "Can't load form") def process_form_data(self, data): # print "POST-Params-Update:", self.params data['new_version'] = True res = components.TreatmentBlockStore(self.get_container()).update(data, self.params['block_id']) rs = components.TreatmentBlockStore(self.get_container()).helper(res['data']['pk']) self.params['page_title'] = rs['data']['record']['title'] return res def handle_on_success(self, messages): return HttpResponseRedirect('/treatment/%s' % (self.params["page_title"]))
2acbb3b79b0a4861189cb1c43f2d7fd5049f0132
fc2447b91cbee82e74e939092ec1903678f3217a
/PythonPractice/hm_py/hm_oop/oop_single.py
4b09ef3d411106af86bc146dc8c60d1ee2a315ee
[]
no_license
yglj/learngit
0eac654e7c49f2ede064b720e6ee621a702193b4
74fb4b93d5726c735b64829cafc99878d8082121
refs/heads/master
2022-12-24T10:01:56.705046
2019-05-27T21:04:08
2019-05-27T21:04:08
146,157,116
0
1
null
2022-12-12T07:01:25
2018-08-26T06:28:20
HTML
UTF-8
Python
false
false
924
py
# 单例设计模式 # 类只有创建唯一个对象实例 # 应用场景: 打印机,回收站,音乐播放对象 # __new__() object提供的内置静态方法,作用:为对象分配空间,返回对象引用 class MusicPlayer: __init_flag = False instance = None def __new__(cls, *args): if cls.instance is None: # 利用__new__只分配一次对象空间,来实现单例 print('创建对象时,自动分配空间') cls.instance = super().__new__(cls) # print(instance) return cls.instance # 返回对象引用 return cls.instance def __init__(self): # 让初始化动作只执行一次:利用标志位控制 if MusicPlayer.__init_flag: return print('初始化对象,分配实例对象属性') MusicPlayer.__init_flag = True m = MusicPlayer() print('-' * 30) m2 = MusicPlayer()
1e75dd937e7a1e842472c37a23b9269408e82317
c0340c511cff5b40b4681c4d3238d807624c0323
/results/correlations/plot_byLanguage/plotByLanguage_Combined.py
9578733a8e10cb798dc13acd08a5f49b86cbdb51
[]
no_license
m-hahn/grammar-optim
5fa7ade47d2ad91f517c887ee2c65af24059069d
07a1a80692a504bcafc8120a21c4dc9066b495ee
refs/heads/master
2022-08-30T06:54:42.749264
2022-08-05T12:09:28
2022-08-05T12:09:28
156,456,167
13
2
null
null
null
null
UTF-8
Python
false
false
8,378
py
source("./readGrammarsPerLanguage_Combined.py") D$LanguageNumeric = as.numeric(D$Language_Ordered) D$FamilyPrint = as.character(D$Family) D = D %>% mutate(FamilyPrint = ifelse(FamilyPrint == "Malayo-Sumbawan", "Mal.-Sum.", as.character(FamilyPrint))) D = D %>% mutate(FamilyPrint = ifelse(FamilyPrint == "Sino-Tibetan", "Sin.-Tib.", as.character(FamilyPrint))) D = D %>% mutate(FamilyPrint = ifelse(FamilyPrint == "Viet-Muong", "Viet-M.", as.character(FamilyPrint))) DFam = D %>% group_by(FamilyPrint) %>% summarise(Start = min(LanguageNumeric), End = max(LanguageNumeric), Mean = mean(LanguageNumeric)) DFam$yOffset = 0.2*(1:(nrow(DFam))) D$yOffset=NULL D = merge(D, DFam %>% select(FamilyPrint, yOffset), by=c("FamilyPrint")) DLang = unique(D %>% select(Language_Ordered, iso_Ordered, LanguageNumeric, yOffset)) D = D %>% mutate(CoarseDependency = recode(CoarseDependency, lifted_case=1, lifted_cop=2, aux=3, nmod=4, acl=5, lifted_mark=6, obl=7, xcomp=8)) plot_orders_real = ggplot(D %>% filter(Type == "Real Languages"), aes(x = 1, y = LanguageNumeric+yOffset, group=CoarseDependency)) + geom_point(aes(fill=DirB, colour = DirB, size =1), position = position_dodge(width=2.0)) + # scale_color_gradient() + #values=c("blue", "green")) + theme_classic() + #theme_bw() + theme(axis.text.x=element_blank(), #element_text(size=9, angle=0, vjust=0.3), axis.text.y=element_blank(),axis.ticks=element_blank(), plot.title=element_text(size=11)) + theme(axis.title=element_blank()) + theme(legend.position="none") + labs(x=NULL) + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) plot_orders_eff = ggplot(D %>% filter(Type == "Efficiency"), aes(x = 1, y = LanguageNumeric+yOffset, group=CoarseDependency)) + geom_point(aes(fill=DirB, colour = DirB, size =1), position = position_dodge(width=2.0)) + # scale_color_gradient() + #values=c("blue", "green")) + theme_classic() + theme(axis.text.x=element_blank(), #element_text(size=9, angle=0, vjust=0.3), axis.text.y=element_blank(),axis.ticks=element_blank(), plot.title=element_text(size=11)) + theme(axis.title=element_blank()) + theme(legend.position="none") + labs(x=NULL) + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) plot_orders_surp = ggplot(D %>% filter(Type == "Predictability"), aes(x = 1, y = LanguageNumeric+yOffset, group=CoarseDependency)) + geom_point(aes(fill=DirB, colour = DirB, size =1), position = position_dodge(width=2.0)) + # scale_color_gradient() + #values=c("blue", "green")) + theme_classic() + theme(axis.text.x=element_blank(), #element_text(size=9, angle=0, vjust=0.3), axis.text.y=element_blank(),axis.ticks=element_blank(), plot.title=element_text(size=11)) + theme(axis.title=element_blank()) + theme(legend.position="none") + labs(x=NULL) + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) plot_orders_pars = ggplot(D %>% filter(Type == "Parseability"), aes(x = 1, y = LanguageNumeric+yOffset, group=CoarseDependency)) + geom_point(aes(fill=DirB, colour = DirB, size =1), position = position_dodge(width=2.0)) + # scale_color_gradient() + #values=c("blue", "green")) + theme_classic() + theme(axis.text.x=element_blank(), #element_text(size=9, angle=0, vjust=0.3), axis.text.y=element_blank(),axis.ticks=element_blank(), plot.title=element_text(size=11)) + theme(axis.title=element_blank()) + theme(legend.position="none") + labs(x=NULL) + scale_x_continuous(breaks = NULL) + scale_y_continuous(breaks = NULL) plot_langs = ggplot(DLang) plot_langs = plot_langs + theme_classic() plot_langs = plot_langs + theme(axis.text.x=element_blank(), #element_text(size=9, angle=0, vjust=0.3), axis.text.y=element_blank(), plot.title=element_text(size=11)) plot_langs = plot_langs + geom_text(aes(x=1.2 + 0.07, y=LanguageNumeric+yOffset, label=iso_Ordered), hjust=1, size=3, colour="grey30") plot_langs = plot_langs + theme(axis.title=element_blank()) plot_langs = plot_langs + xlim(-2.0, 1.35) plot_langs = plot_langs + geom_segment(data=DFam, aes(x=0, y=Start+yOffset, xend=0.5, yend=Start+yOffset)) plot_langs = plot_langs + geom_segment(data=DFam, aes(x=0, y=End+yOffset, xend=0.5, yend=End+yOffset)) plot_langs = plot_langs + geom_segment(data=DFam, aes(x=0, y=Start+yOffset, xend=0, yend=End+yOffset)) plot_langs = plot_langs + geom_text(data=DFam, aes(x=-0.1, y=Mean+yOffset , label=FamilyPrint), hjust=1, size=3, colour="grey30") plot_langs = plot_langs + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_blank(), plot.margin=unit(c(0,0,0,0), "mm"), axis.ticks = element_blank()) + labs(x=NULL) library("gridExtra") plot_orders_real = plot_orders_real + theme( plot.margin=unit(c(0,0,0,0), "mm")) plot_orders_eff = plot_orders_eff + theme( plot.margin=unit(c(0,0,0,0), "mm")) plot_orders_surp = plot_orders_surp + theme( plot.margin=unit(c(0,0,0,0), "mm")) plot_orders_pars = plot_orders_pars + theme( plot.margin=unit(c(0,0,0,0), "mm")) plot = grid.arrange(plot_langs, plot_orders_real, plot_orders_eff, plot_orders_surp, plot_orders_pars, nrow=1, widths=c(1, 1.2, 1.2, 1.2, 1.2)) ggsave(plot=plot, "../figures/pred-eff-pred-pars-families.pdf", width=6, height=8) plot_langs2 = plot_langs + annotate("text", label="", x=1, y=58.5, size=6) plot_orders_real2 = plot_orders_real + annotate("text", label="Real", x=1, y=58.5, size=6) plot_orders_real2 = plot_orders_real2 + geom_point(data=data.frame(num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=NA, y=56.7, colour=NA, fill=NA), color="black", fill=NA, size=4.5, shape=21) plot_orders_real2 = plot_orders_real2 + geom_text(data=data.frame(CoarseDependency=unique(D$CoarseDependency), num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=CoarseDependency, y=56.55, label=as.character(num))) plot_orders_real2 plot_orders_eff2 = plot_orders_eff + annotate("text", label="Efficiency", x=1, y=58.5, size=5) plot_orders_eff2 = plot_orders_eff2 + geom_point(data=data.frame(num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=NA, y=56.7, colour=NA, fill=NA), color="black", fill=NA, size=4.5, shape=21) plot_orders_eff2 = plot_orders_eff2 + geom_text(data=data.frame(CoarseDependency=unique(D$CoarseDependency), num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=CoarseDependency, y=56.55, label=as.character(num))) plot_orders_eff2 plot_orders_surp2 = plot_orders_surp + annotate("text", label="Predictability", x=1, y=58.5, size=5) plot_orders_surp2 = plot_orders_surp2 + geom_point(data=data.frame(num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=NA, y=56.7, colour=NA, fill=NA), color="black", fill=NA, size=4.5, shape=21) plot_orders_surp2 = plot_orders_surp2 + geom_text(data=data.frame(CoarseDependency=unique(D$CoarseDependency), num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=CoarseDependency, y=56.55, label=as.character(num))) plot_orders_surp2 plot_orders_pars2 = plot_orders_pars + annotate("text", label="Parseability", x=1, y=58.5, size=5) plot_orders_pars2 = plot_orders_pars2 + geom_point(data=data.frame(num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=NA, y=56.7, colour=NA, fill=NA), color="black", fill=NA, size=4.5, shape=21) plot_orders_pars2 = plot_orders_pars2 + geom_text(data=data.frame(CoarseDependency=unique(D$CoarseDependency), num=c(1,2,3,4,5,6,7,8)), aes(x=0.25 * num - 0.12, group=CoarseDependency, y=56.55, label=as.character(num))) plot_orders_pars2 plot = grid.arrange(plot_langs2, plot_orders_real2, plot_orders_eff2, plot_orders_surp2, plot_orders_pars2, nrow=1, widths=c(1, 1.2, 1.2, 1.2, 1.2)) plot ggsave(plot=plot, "../figures/pred-eff-pred-pars-families-2.pdf", width=6, height=8) D2 = (D %>% select(Family, Language, CoarseDependency, DirB, Type) %>% spread(Type, DirB) %>% rename(Real = 'Real Languages') %>% rename(Predicted = Efficiency)) D2$Agree = (D2$Real == D2$Predicted) #summary(glmer(Agree ~ (1|CoarseDependency) + (1|Family), data=D2, family="binomial")) mean(D2$Agree)
e6cc8b2f9f4f193759e2a16a4b7d84f28a162423
d87483a2c0b50ed97c1515d49d62c6e9feaddbe0
/.history/get_positions_20210205021452.py
db0322e005440ad0d993a22856f8587be75cdf25
[ "MIT" ]
permissive
HopperKremer/hoptrader
0d36b6e33922414003cf689fb81f924da076a54b
406793c10bc888648290fd15c7c2af62cf8c6c67
refs/heads/main
2023-06-12T15:51:00.910310
2021-07-06T16:15:41
2021-07-06T16:15:41
334,754,936
0
2
null
null
null
null
UTF-8
Python
false
false
1,840
py
# Buy top tickers from Financhill import requests from tda import auth, client from tda.orders.equities import equity_buy_market, equity_buy_limit from tda.orders.common import Duration, Session import os, sys import time from selenium import webdriver import json currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) import config # stored in parent directory for security token_path = "token" c = auth.client_from_token_file(token_path, config.api_key) # positions = c.get_account(config.tda_acct_num, c.Account.Fields.POSITIONS) # account_info = c.get_account(config.tda_acct_num, fields=[c.Account.Fields.POSITIONS]).json() # print(account_info) # positions = c.Account.Fields.POSITIONS # r = c.get_account(config.tda_acct_num, fields=positions) # stocks = r.json()['securitiesAccount']['positions'] # # stocks = json.dumps(r.json(), indent=4) # for stock in stocks: # print('--------------------------------') # print(stock['instrument']['symbol']) # orders = c.Order.Status.FILLED # r = c.get_orders_by_path(config.tda_acct_num, status = client.Client.Order.Status.WORKING) # res = c.get_orders_by_path(config.tda_acct_num, status = orders) # res = s = c.get_account(config.tda_acct_num, fields=c.Account.Fields.POSITIONS) # data = r.json() # print(r.json()) orders = client.Client.Account.Fields.ORDERS r = c.get_account(config.tda_acct_num, fields=orders) print(json.dumps(r.json(), indent=4))#queued orders would appear here, if not blank list l = r.json()['securitiesAccount']['orderStrategies'] canceled_orders = [i['orderId'] for i in l if i['status'] == 'CANCELED'] print('canceled', canceled_orders) id for order_id in canceled_orders: g = c.get_order(order_id, config.tda_acct_num) print(json.dumps(g.json(), indent=4))
dc816389c06442347a202791e2f3ecfc4e43a317
2cd06e44dd79b45708ddf010c31289458d850b94
/test/functional/feature_maxuploadtarget.py
b5a44cbc6b5cb6b89aca3c4c47d2ce7ef4634a00
[ "MIT" ]
permissive
adymoloca/flocoin
bc66233e5b3b1af294ca6719b4a26f8829d682e4
d9244577577dede975c852f6fcfe1afba4d71a57
refs/heads/master
2023-08-21T23:51:28.266695
2021-10-06T01:40:10
2021-10-06T01:40:10
408,609,250
0
0
MIT
2021-09-30T10:11:53
2021-09-20T21:45:28
C++
UTF-8
Python
false
false
6,653
py
#!/usr/bin/env python3 # Copyright (c) 2015-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test behavior of -maxuploadtarget. * Verify that getdata requests for old blocks (>1week) are dropped if uploadtarget has been reached. * Verify that getdata requests for recent blocks are respected even if uploadtarget has been reached. * Verify that the upload counters are reset after 24 hours. """ from collections import defaultdict import time from test_framework.messages import CInv, MSG_BLOCK, msg_getdata from test_framework.p2p import P2PInterface from test_framework.test_framework import FlocoinTestFramework from test_framework.util import assert_equal, mine_large_block class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.block_receive_map = defaultdict(int) def on_inv(self, message): pass def on_block(self, message): message.block.calc_sha256() self.block_receive_map[message.block.sha256] += 1 class MaxUploadTest(FlocoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [[ "-maxuploadtarget=800", "-acceptnonstdtxn=1", "-peertimeout=9999", # bump because mocktime might cause a disconnect otherwise ]] self.supports_cli = False # Cache for utxos, as the listunspent may take a long time later in the test self.utxo_cache = [] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2*60*60*24*7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].generate(130) # p2p_conns[0] will only request old blocks # p2p_conns[1] will only request new blocks # p2p_conns[2] will test resetting the counters p2p_conns = [] for _ in range(3): p2p_conns.append(self.nodes[0].add_p2p_connection(TestP2PConn())) # Now mine a big block mine_large_block(self.nodes[0], self.utxo_cache) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2*60*60*24) # Mine one more block, so that the prior block looks old mine_large_block(self.nodes[0], self.utxo_cache) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() big_new_block = int(big_new_block, 16) # p2p_conns[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = msg_getdata() getdata_request.inv.append(CInv(MSG_BLOCK, big_old_block)) max_bytes_per_day = 800*1024*1024 daily_buffer = 144 * 4000000 max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 576MB will be reserved for relaying new blocks, so expect this to # succeed for ~235 tries. for i in range(success_count): p2p_conns[0].send_and_ping(getdata_request) assert_equal(p2p_conns[0].block_receive_map[big_old_block], i+1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for _ in range(3): p2p_conns[0].send_message(getdata_request) p2p_conns[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) self.log.info("Peer 0 disconnected after downloading old block too many times") # Requesting the current block on p2p_conns[1] should succeed indefinitely, # even when over the max upload target. # We'll try 800 times getdata_request.inv = [CInv(MSG_BLOCK, big_new_block)] for i in range(800): p2p_conns[1].send_and_ping(getdata_request) assert_equal(p2p_conns[1].block_receive_map[big_new_block], i+1) self.log.info("Peer 1 able to repeatedly download new block") # But if p2p_conns[1] tries for an old block, it gets disconnected too. getdata_request.inv = [CInv(MSG_BLOCK, big_old_block)] p2p_conns[1].send_message(getdata_request) p2p_conns[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) self.log.info("Peer 1 disconnected after trying to download old block") self.log.info("Advancing system time on node to clear counters...") # If we advance the time by 24 hours, then the counters should reset, # and p2p_conns[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) p2p_conns[2].sync_with_ping() p2p_conns[2].send_and_ping(getdata_request) assert_equal(p2p_conns[2].block_receive_map[big_old_block], 1) self.log.info("Peer 2 able to download old block") self.nodes[0].disconnect_p2ps() self.log.info("Restarting node 0 with download permission and 1MB maxuploadtarget") self.restart_node(0, ["[email protected]", "-maxuploadtarget=1"]) # Reconnect to self.nodes[0] peer = self.nodes[0].add_p2p_connection(TestP2PConn()) #retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(MSG_BLOCK, big_new_block)] for i in range(20): peer.send_and_ping(getdata_request) assert_equal(peer.block_receive_map[big_new_block], i+1) getdata_request.inv = [CInv(MSG_BLOCK, big_old_block)] peer.send_and_ping(getdata_request) self.log.info("Peer still connected after trying to download old block (download permission)") peer_info = self.nodes[0].getpeerinfo() assert_equal(len(peer_info), 1) # node is still connected assert_equal(peer_info[0]['permissions'], ['download']) if __name__ == '__main__': MaxUploadTest().main()
ea8bcdc0b183def68c8745950edbbf13533c588d
65b708f0646ea090a4e9bc615cd37fd799bd9bce
/venv/Scripts/pip3-script.py
307f938a7427296d42bf18912a97aeee71dc9f96
[]
no_license
chrisna2/python-web-scrapping
af803079586c7b798365d23f5667a24d0c6633e8
92e74b4985006246f543de87ff26673b94e8c0a8
refs/heads/master
2020-07-08T14:40:32.959560
2019-08-23T03:19:47
2019-08-23T03:19:47
203,703,270
1
0
null
null
null
null
UTF-8
Python
false
false
416
py
#!D:\tyn_dev\workspace_pycham\web-scrapping\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
fb7d5bf4a453cf483c36820ec233a56926f63930
c7e765a9bed33d3bfb21774e3995bf4a09e04add
/adminmgr/media/code/A2/python/task/BD_1117_1375_1419_1525.py
ea86b27f17cbd91f3957294e879438d4f68c005f
[ "Apache-2.0" ]
permissive
IamMayankThakur/test-bigdata
13dd2ac7fb76c9baed6c3a0aa943057a22e2d237
7f507918c7bec31c92eedcd94491a83486623049
refs/heads/master
2022-05-03T00:59:44.127494
2022-02-10T19:50:16
2022-02-10T19:50:16
201,585,028
10
4
Apache-2.0
2022-04-22T23:39:45
2019-08-10T05:34:09
Python
UTF-8
Python
false
false
2,562
py
from __future__ import print_function import re import sys from operator import add from pyspark.sql import * def calcRank(BatBowl, rank): n = len(BatBowl) for i in BatBowl: yield (i, float(rank)/float(n)) checking = 1 def batbowlKeyValue(x): lol = x.split(',') return lol[0],lol[1] def batbowlRank(x): lol = x.split(',') return lol[1],float(lol[2])/float(lol[3]) if __name__ == "__main__" : if len(sys.argv) != 4: sys.exit(-1) spark = SparkSession.builder.appName("Bowlerrank").getOrCreate() lol = spark.read.text(sys.argv[1]).rdd.map(lambda x : x[0]) lol2 = lol.map(lambda x: batbowlKeyValue(x)).distinct().groupByKey().cache() lol_temp = lol.map(lambda x: batbowlRank(x)).distinct().groupByKey() bowr = lol_temp.map(lambda x : (x[0], max(sum(x[1]),1.00))) itcount = 0 bowr_temp = bowr noi = int(sys.argv[2]) if (noi <= 0) : while True: lol3 = lol2.join(bowr).flatMap(lambda x : calcRank(x[1][0], x[1][1])) perc = int(sys.argv[3]) if(perc!=0): bowr = lol3.reduceByKey(add).mapValues(lambda deadpool : deadpool*(float(perc/100)) + 1-(float(perc/100))) else: bowr = lol3.reduceByKey(add).mapValues(lambda deadpool : deadpool*0.8 + 0.2) #for wolverine, iron_man in bowr.collect(): # print("%s has rank: %s." % (wolverine, iron_man)) temp = bowr.join(bowr_temp) temp2 = temp.collect() flag = 0 for i in temp2: if(abs(i[1][0]-i[1][1])<0.0001): flag = flag + 1 else: break itcount = itcount + 1 bowr_temp = bowr if flag==len(temp2): break else: t = int(sys.argv[2]) for _ in range(t): lol3 = lol2.join(bowr).flatMap(lambda x : calcRank(x[1][0], x[1][1])) perc = int(sys.argv[3]) if(perc!=0): bowr = lol3.reduceByKey(add).mapValues(lambda deadpool : deadpool*(float(perc)/100.00) + 1-(float(perc)/100.00)) else: bowr = lol3.reduceByKey(add).mapValues(lambda deadpool : deadpool*0.8 + 0.2) bowr = bowr.sortBy(lambda x : (-x[1],x[0])) for wolverine, iron_man in bowr.collect(): print("%s,%.12f" % (wolverine, iron_man)) #print("...................................",itcount,"...............................................") spark.stop()
7a3f9d1a7437cf258fd93efcfdfa3f3a3316d099
45ca434bdb9e48fdbb2cda0e7fdd9a76474117b0
/aliyun-python-sdk-cdn/aliyunsdkcdn/request/v20141111/SetFileCacheExpiredConfigRequest.py
55bd0c22970cd64217840720fb797559c0c97d7f
[ "Apache-2.0" ]
permissive
wanyanzhenjiang/aliyun-openapi-python-sdk
e41e9937ad3f851e5a58f6bea95663e88f7fee13
4a5bf1b35f2395d047ead4444ea46721976bdd24
refs/heads/master
2020-12-30T10:37:55.789911
2017-07-27T06:55:15
2017-07-27T06:55:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,989
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class SetFileCacheExpiredConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cdn', '2014-11-11', 'SetFileCacheExpiredConfig') def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_DomainName(self): return self.get_query_params().get('DomainName') def set_DomainName(self,DomainName): self.add_query_param('DomainName',DomainName) def get_CacheContent(self): return self.get_query_params().get('CacheContent') def set_CacheContent(self,CacheContent): self.add_query_param('CacheContent',CacheContent) def get_TTL(self): return self.get_query_params().get('TTL') def set_TTL(self,TTL): self.add_query_param('TTL',TTL) def get_Weight(self): return self.get_query_params().get('Weight') def set_Weight(self,Weight): self.add_query_param('Weight',Weight)
dc4e498d5e94244fea4ccc62a2671836d7858c62
438f8490be1fa3818daad38254a77bb11ba367b3
/project/settings.py
6b500d837b395a5d1f67ad16fa8a0d8088cd6b65
[]
no_license
n7ey233/maximanat
2ea0b3c80729dd10e6023b053523ebe7e6ba22d8
812d7396fe64af85f86e2dd5e257935bde8719e2
refs/heads/master
2020-04-13T10:13:01.382912
2018-12-28T06:31:19
2018-12-28T06:31:19
163,133,576
0
0
null
null
null
null
UTF-8
Python
false
false
3,284
py
""" Django settings for project project. Generated by 'django-admin startproject' using Django 2.1.3. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-@xf882li3g_x28_oqt5(=fj8b$*2*9*$hm3(17g^#(klc7pgg' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'maximanat.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
5b161e0a9d07b0bddab72ace77e7c27caff8d41a
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/89/usersdata/202/62093/submittedfiles/matriz1.py
f2273f8e67d6acee35c26497ab06b264203a4c29
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
774
py
# -*- coding: utf-8 -*- import numpy as np def cortel1(a): for i in range(0,a.shape[0],1): for i in range (0,a.shape[1],1): if a[i,j]==1: return i def cortel2(a): for j in range(0,a.shape[1],1): for i in range (0,a.shape[0],1): if a[i,j]==1: return j def cortec1(a): for j in range (0,a.shape[1],1): for i in range(0,a.shape[0],1): if a[i,j]==1: c2=j return c2 linhas=int(input('linhas:')) colunas=int(input('colunas:')) a=np.zeros((linhas,colunas)) for i in range(0,a.shape[0],1): for j in range (0,a.shape[1],1): a[i,j]=int(input('valor:')) l1=cortel1(a) l2=cortel2(a) c1=cortec1(a) c2=cortec2(a) print(a[l1:l2+1,c1:c2+1])
dcb9a544cce84c43cf9b3d7b349db60e8139ccde
9ce822c07edef943dc519a7ab3916f5a667e114a
/location_and_settings/location_and_settings/doctype/location_list/test_location_list.py
28da20eda77448d48672ee27fa1509ed7b30bbe6
[ "MIT" ]
permissive
hrgadeha/location_and_setting
250fec37c2e63ce7c31b41ac52e50bea1e333392
770a7a719ce66bfe699dc805839a972063ff8ab6
refs/heads/master
2020-04-25T03:43:09.423485
2019-02-28T12:09:31
2019-02-28T12:09:31
172,486,490
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Hardik Gadesha and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestLocationList(unittest.TestCase): pass
943046ca83cc744a00369e1e7ddfec263a7dc795
ad23b164febd12d5c6d97cfbcd91cf70e2914ab3
/webtestdata/wsgi.py
882a4bbee8f33c55053afc3819608ab439306db9
[]
no_license
wawj901124/webtestdata
9eedf9a01dec2c157725299bda9a42e8d357ef0b
54f6412566fce07ece912760c5caea73ede819cb
refs/heads/master
2022-12-09T14:18:38.125191
2021-04-25T07:54:07
2021-04-25T07:54:07
175,773,318
1
1
null
2022-12-08T02:39:15
2019-03-15T07:49:16
Python
UTF-8
Python
false
false
399
py
""" WSGI config for webtestdata project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "webtestdata.settings") application = get_wsgi_application()
345e69a557ad41d9aae7895d883495769eee2017
41b4702e359e3352116eeecf2bdf59cb13c71cf2
/full_model_walker_param/utils/env_utils.py
110ef30017c069549d041f0bfb487b464dfec838
[]
no_license
CaralHsi/Multi-Task-Batch-RL
b0aad53291c1713fd2d89fa4fff4a85c98427d4d
69d29164ab7d82ec5e06a929ed3b96462db21853
refs/heads/master
2022-12-22T19:23:45.341092
2020-10-01T00:05:36
2020-10-01T00:05:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,899
py
import os from gym import Env from gym.spaces import Box, Discrete, Tuple import numpy as np from env.hopper import HopperVelEnv from env.half_cheetah import HalfCheetahVelEnv from env.ant_goal import AntGoalEnv from env.ant_dir import AntDirEnv from env.humanoid_dir import HumanoidDirEnv from env.humanoid_dir_openai import HumanoidDirEnvOpenAI from env.humanoid_goal_ndone import HumanoidGoalEnvNDone from env.walker_param import Walker2DRandParamsEnv def get_dim(space): if isinstance(space, Box): return space.low.size elif isinstance(space, Discrete): return space.n elif isinstance(space, Tuple): return sum(get_dim(subspace) for subspace in space.spaces) elif hasattr(space, 'flat_dim'): return space.flat_dim else: raise TypeError("Unknown space: {}".format(space)) class ProxyEnv(Env): def __init__(self, wrapped_env): self._wrapped_env = wrapped_env self.action_space = self._wrapped_env.action_space self.observation_space = self._wrapped_env.observation_space @property def wrapped_env(self): return self._wrapped_env def reset(self, **kwargs): return self._wrapped_env.reset(**kwargs) def step(self, action): return self._wrapped_env.step(action) def render(self, *args, **kwargs): return self._wrapped_env.render(*args, **kwargs) @property def horizon(self): return self._wrapped_env.horizon def terminate(self): if hasattr(self.wrapped_env, "terminate"): self.wrapped_env.terminate() def __getattr__(self, attr): if attr == '_wrapped_env': raise AttributeError() return getattr(self._wrapped_env, attr) def __getstate__(self): """ This is useful to override in case the wrapped env has some funky __getstate__ that doesn't play well with overriding __getattr__. The main problematic case is/was gym's EzPickle serialization scheme. :return: """ return self.__dict__ def __setstate__(self, state): self.__dict__.update(state) def __str__(self): return '{}({})'.format(type(self).__name__, self.wrapped_env) class NormalizedBoxEnv(ProxyEnv): """ Normalize action to in [-1, 1]. Optionally normalize observations and scale reward. """ def __init__( self, env, reward_scale=1., obs_mean=None, obs_std=None, ): ProxyEnv.__init__(self, env) self._should_normalize = not (obs_mean is None and obs_std is None) if self._should_normalize: if obs_mean is None: obs_mean = np.zeros_like(env.observation_space.low) else: obs_mean = np.array(obs_mean) if obs_std is None: obs_std = np.ones_like(env.observation_space.low) else: obs_std = np.array(obs_std) self._reward_scale = reward_scale self._obs_mean = obs_mean self._obs_std = obs_std ub = np.ones(self._wrapped_env.action_space.shape) self.action_space = Box(-1 * ub, ub) def estimate_obs_stats(self, obs_batch, override_values=False): if self._obs_mean is not None and not override_values: raise Exception("Observation mean and std already set. To " "override, set override_values to True.") self._obs_mean = np.mean(obs_batch, axis=0) self._obs_std = np.std(obs_batch, axis=0) def _apply_normalize_obs(self, obs): return (obs - self._obs_mean) / (self._obs_std + 1e-8) def step(self, action): lb = self._wrapped_env.action_space.low ub = self._wrapped_env.action_space.high scaled_action = lb + (action + 1.) * 0.5 * (ub - lb) scaled_action = np.clip(scaled_action, lb, ub) wrapped_step = self._wrapped_env.step(scaled_action) next_obs, reward, done, info = wrapped_step if self._should_normalize: next_obs = self._apply_normalize_obs(next_obs) return next_obs, reward * self._reward_scale, done, info def __str__(self): return "Normalized: %s" % self._wrapped_env def domain_to_env(name): from gym.envs.mujoco import HalfCheetahEnv, \ InvertedPendulumEnv, HumanoidEnv, \ HopperEnv, AntEnv, Walker2dEnv return { 'invertedpendulum': InvertedPendulumEnv, 'humanoid': HumanoidEnv, 'halfcheetah': HalfCheetahEnv, 'halfcheetah-vel': HalfCheetahVelEnv, 'hopper': HopperEnv, 'hopper-vel': HopperVelEnv, 'ant': AntEnv, 'ant-goal': AntGoalEnv, 'ant-dir': AntDirEnv, 'humanoid-dir':HumanoidDirEnv, 'humanoid-openai-dir': HumanoidDirEnvOpenAI, 'humanoid-ndone-goal': HumanoidGoalEnvNDone, 'walker2d': Walker2dEnv, 'walker-param': Walker2DRandParamsEnv, }[name] def domain_to_epoch(name): return { 'invertedpendulum': 300, 'humanoid': 9000, 'halfcheetah': 5000, 'halfcheetah-vel': 50, 'hopper': 50, 'hopper-vel': 50, 'ant-goal': 590, 'ant-dir': 590, 'ant': 5000, 'humanoid-dir':590, 'humanoid-openai-dir':590, 'humanoid-ndone-goal': 590, 'walker2d': 5000, 'walker-param': 390, }[name] def domain_to_num_goals(name): return { 'halfcheetah-vel': 32, 'hopper-vel': 16, 'ant-goal': 32, 'ant-dir': 32, 'humanoid-dir': 32, 'humanoid-openai-dir': 10, 'humanoid-ndone-goal': 10, 'walker-param': 32, }[name] def env_producer(domain, seed, goal=None): env = domain_to_env(domain)(goal=goal) env.seed(seed) env = NormalizedBoxEnv(env) return env
3973203794a335401a2e5cfa6e3206483a4d7116
d26b3bbf0192cc334e5ac431c753ebcbf2baeb1a
/l10n_cn_hr_payroll/__init__.py
6adc439b170cc365b31453ea0481a8ba0709b7a9
[]
no_license
davgit/Xero-2
1d566357174d15d4f3b15cc849ce9f32f0c9ef3a
6477d844fde3f3b8f91d21b15ee7f8986a505de5
refs/heads/master
2021-01-21T20:49:47.585328
2013-02-16T08:13:22
2013-02-16T08:13:22
22,778,180
1
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2011 OpenERP SA (<http://openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # ############################################################################## import l10n_cn_hr_payroll # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
07ccbaa13946f30e8d2d81bdcc3c948f8adb3036
5eff9df4d276e83c68ce843d58868499858f701a
/Interview/Trees/binary_tree_traversal.py
e5a7ce276633e535f5c96cfc7a75b9b0cfffea65
[]
no_license
arunraman/Code-Katas
b6723deb00caed58f0c9a1cafdbe807e39e96961
7fe3582fa6acf59a2620fe73e1e14bd8635bbee8
refs/heads/master
2023-03-04T17:27:44.037145
2023-03-02T21:09:53
2023-03-02T21:09:53
25,232,784
0
0
null
null
null
null
UTF-8
Python
false
false
851
py
from binarytree import Node as Treenode class Solution(): def preOrder(self, root): if root == None: return print root.value, self.preOrder(root.left) self.preOrder(root.right) def inOrder(self, root): if root == None: return self.inOrder(root.left) print root.value, self.inOrder(root.right) def postOrder(self, root): if root == None: return self.postOrder(root.left) self.postOrder(root.right) print root.value, S = Solution() root = Treenode(1) root.left = Treenode(2) root.right = Treenode(3) root.left.left = Treenode(8) root.left.right = Treenode(12) root.right.left = Treenode(3) root.right.right = Treenode(25) print root S.preOrder(root) print "\n" S.inOrder(root) print "\n" S.postOrder(root)
7c522e09e37bfa9cd52933f4b3a202340868c5d4
8c95e2185100db97f74d948407f9f6ac563905e5
/metronotation/routemap.py
8a6691a352602ddc2fcb031cd4e836d9009a1748
[ "MIT" ]
permissive
kitao/metro-notation
c5fec21fccba4ef2a21c3294575fd29498ff8ebc
34a9d2ca9fe17452c8eb5426636484f7cc29c605
refs/heads/main
2023-08-20T15:02:04.631092
2021-10-30T04:28:17
2021-10-30T04:28:17
321,700,124
4
0
null
null
null
null
UTF-8
Python
false
false
6,037
py
LAYER_TP = 0 LAYER_MD = 1 LAYER_BT = 2 LAYER_TM = 3 LAYER_BM = 4 LAYER_AL = 5 DIR_UP = (0, -1) DIR_DN = (0, 1) DIR_LT = (-1, 0) DIR_RT = (1, 0) DIR_LU = (-1, -1) DIR_RD = (1, 1) LETTER_TABLE = [ ("R", (LAYER_TP, DIR_UP, 1)), ("M", (LAYER_MD, DIR_DN, 1)), ("L", (LAYER_BT, DIR_DN, 1)), ("U", (LAYER_TP, DIR_RT, 1)), ("E", (LAYER_MD, DIR_LT, 1)), ("D", (LAYER_BT, DIR_LT, 1)), ("F", (LAYER_TP, DIR_RD, 1)), ("S", (LAYER_MD, DIR_RD, 1)), ("B", (LAYER_BT, DIR_LU, 1)), # ("R2", (LAYER_TP, DIR_UP, 2)), ("M2", (LAYER_MD, DIR_DN, 2)), ("L2", (LAYER_BT, DIR_DN, 2)), ("U2", (LAYER_TP, DIR_RT, 2)), ("E2", (LAYER_MD, DIR_LT, 2)), ("D2", (LAYER_BT, DIR_LT, 2)), ("F2", (LAYER_TP, DIR_RD, 2)), ("S2", (LAYER_MD, DIR_RD, 2)), ("B2", (LAYER_BT, DIR_LU, 2)), # ("R'", (LAYER_TP, DIR_DN, 1)), ("M'", (LAYER_MD, DIR_UP, 1)), ("L'", (LAYER_BT, DIR_UP, 1)), ("U'", (LAYER_TP, DIR_LT, 1)), ("E'", (LAYER_MD, DIR_RT, 1)), ("D'", (LAYER_BT, DIR_RT, 1)), ("F'", (LAYER_TP, DIR_LU, 1)), ("S'", (LAYER_MD, DIR_LU, 1)), ("B'", (LAYER_BT, DIR_RD, 1)), # ("R2'", (LAYER_TP, DIR_DN, 2)), ("M2'", (LAYER_MD, DIR_UP, 2)), ("L2'", (LAYER_BT, DIR_UP, 2)), ("U2'", (LAYER_TP, DIR_LT, 2)), ("E2'", (LAYER_MD, DIR_RT, 2)), ("D2'", (LAYER_BT, DIR_RT, 2)), ("F2'", (LAYER_TP, DIR_LU, 2)), ("S2'", (LAYER_MD, DIR_LU, 2)), ("B2'", (LAYER_BT, DIR_RD, 2)), # ("Rw", (LAYER_TM, DIR_UP, 1)), ("Lw", (LAYER_BM, DIR_DN, 1)), ("Uw", (LAYER_TM, DIR_RT, 1)), ("Dw", (LAYER_BM, DIR_LT, 1)), ("Fw", (LAYER_TM, DIR_RD, 1)), ("Bw", (LAYER_BM, DIR_LU, 1)), # ("Rw2", (LAYER_TM, DIR_UP, 2)), ("Lw2", (LAYER_BM, DIR_DN, 2)), ("Uw2", (LAYER_TM, DIR_RT, 2)), ("Dw2", (LAYER_BM, DIR_LT, 2)), ("Fw2", (LAYER_TM, DIR_RD, 2)), ("Bw2", (LAYER_BM, DIR_LU, 2)), # ("Rw'", (LAYER_TM, DIR_DN, 1)), ("Lw'", (LAYER_BM, DIR_UP, 1)), ("Uw'", (LAYER_TM, DIR_LT, 1)), ("Dw'", (LAYER_BM, DIR_RT, 1)), ("Fw'", (LAYER_TM, DIR_LU, 1)), ("Bw'", (LAYER_BM, DIR_RD, 1)), # ("Rw2'", (LAYER_TM, DIR_DN, 2)), ("Lw2'", (LAYER_BM, DIR_UP, 2)), ("Uw2'", (LAYER_TM, DIR_LT, 2)), ("Dw2'", (LAYER_BM, DIR_RT, 2)), ("Fw2'", (LAYER_TM, DIR_LU, 2)), ("Bw2'", (LAYER_BM, DIR_RD, 2)), # ("x", (LAYER_AL, DIR_UP, 1)), ("x'", (LAYER_AL, DIR_DN, 1)), ("y", (LAYER_AL, DIR_RT, 1)), ("y'", (LAYER_AL, DIR_LT, 1)), ("z", (LAYER_AL, DIR_RD, 1)), ("z'", (LAYER_AL, DIR_LU, 1)), ] LETTER_TABLE.sort(key=lambda x: len(x[0]), reverse=True) CUBE_RF = 0 CUBE_OF = 1 CUBE_BF = 2 CUBE_GF = 3 CUBE_WF = 4 CUBE_YF = 5 CUBE_RB = 6 CUBE_OB = 7 CUBE_BB = 8 CUBE_GB = 9 CUBE_WB = 10 CUBE_YB = 11 CUBE_TABLE = { "R": CUBE_RF, "O": CUBE_OF, "B": CUBE_BF, "G": CUBE_GF, "W": CUBE_WF, "Y": CUBE_YF, "r": CUBE_RB, "o": CUBE_OB, "b": CUBE_BB, "g": CUBE_GB, "w": CUBE_WB, "y": CUBE_YB, } class Node: def __init__(self, letters, layer, direction, distance): self.letters = letters self.layer = layer self.direction = direction self.distance = distance self.is_start_hit = False self.is_end_hit = False def from_letters(letters): for l, n in LETTER_TABLE: if letters.startswith(l): return Node(l, *n), letters[len(l) :] raise ValueError class Route: def __init__(self, nodes): x = y = 0 min_x = min_y = 0 max_x = max_y = 0 route_count = {(0, 0): 1} last_direction = (0, 0) last_layer = -1 for node in nodes: if ( node.direction == last_direction and node.layer == last_layer or node.direction[0] + last_direction[0] == 0 and node.direction[1] + last_direction[1] == 0 ): raise ValueError last_direction = node.direction last_layer = node.layer for i in range(node.distance): x += node.direction[0] y += node.direction[1] min_x = min(x, min_x) min_y = min(y, min_y) max_x = max(x, max_x) max_y = max(y, max_y) if (x, y) in route_count: route_count[(x, y)] += 1 else: route_count[(x, y)] = 1 for pos, count in route_count.items(): if count >= 3 or count >= 2 and pos != (0, 0) and pos != (x, y): raise ValueError self.nodes = nodes self.width = max_x - min_x self.height = max_y - min_y self.start_x = -min_x self.start_y = -min_y nodes[0].is_start_hit = route_count[(0, 0)] > 1 nodes[-1].is_end_hit = route_count[(x, y)] > 1 def from_letters(letters): try: nodes = [] rest = letters while rest: node, rest = Node.from_letters(rest) nodes.append(node) route = Route(nodes) except ValueError: raise ValueError(letters) return route class RouteMap: def __init__(self, name, cube, routes): self.name = name self.cube = cube self.routes = routes self.width = sum([route.width for route in routes]) self.height = max([route.height for route in routes]) for route in routes: route.start_y += (self.height - route.height) / 2 def from_letters(name, cube, letters): if not cube: cube = "w" * 21 elif len(cube) != 21: raise ValueError(cube) try: cube = [CUBE_TABLE[c] for c in cube] except KeyError: raise ValueError(cube) name = name or "no name" routes = [Route.from_letters(l) for l in letters.split()] return RouteMap(name, cube, routes)
d8886e88937323eb625f4951e4a73b8b82235212
8a42be3f930d8a215394a96ad2e91c95c3b7ff86
/Build/Instalation/GeneralDb/Marathon/MarathonTests_1.1/LargeFile_Edit/TestCases/V65_Changes/Diff_TwoLayouts1.py
f446d02edef1afedb4cb381315227b3bf6fde9a1
[]
no_license
java-tools/jrec
742e741418c987baa4350390d126d74c0d7c4689
9ece143cdd52832804eca6f3fb4a1490e2a6f891
refs/heads/master
2021-09-27T19:24:11.979955
2017-11-18T06:35:31
2017-11-18T06:35:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,811
py
useFixture(default) def test(): from Modules import commonBits java_recorded_version = '1.6.0_03' if window('Record Editor'): commonBits.selectOldFilemenu(select_menu, 'Utilities', 'Compare Menu') click('*2') click('Choose File') if window('Open'): select(commonBits.selectPane(), 'Ams_LocDownload_20041228_Extract.txt') click('Open') close() commonBits.setRecordLayout(select, 'ams Store') click('Right') select('TabbedPane', '') click('Choose File') if window('Open'): select(commonBits.selectPane(), 'Ams_LocDownload_20041228_Extract2.txt') click('Open') close() commonBits.setRecordLayout(select, 'ams Store') click('Right') select('TabbedPane', '') click('Right') select('TabbedPane', '') click('Compare') select('Table', 'cell:Loc Name,11(Highpoint City)') assert_p('Table', 'Text', 'St Marys', 'Loc Name,12') select('Table', 'cell:Loc Name,14(Bass Hill)') assert_p('Table', 'Content', '[[, , , , , , , , , , , , ], [, Inserted, 1, TAR, 5839, DC, DC - Taras Ave, , 30-68 Taras Ave, Altona North, 3025, VIC, A], [, , , , , , , , , , , , ], [, Inserted, 2, TAR, 5850, DC, VIC West Ad Support, , Lot 2 Little Boundary Rd, Laverton, 3028, VIC, A], [, Old, 4, TAR, 5035, ST, Rockdale, Building B, Portside DC, 2-8 Mc Pherson Street, Botany, 2019, NSW, A], [, New, 6, , 5096, , Canberra Civic, Target Canberra, Canberra City Centre, Akuna Ave, Canberra, 2601, ACT, ], [, Old, 5, TAR, 5037, ST, Miranda, Westfield Shoppingtown, Cnr. Urunga Pde & The Kingsway, Miranda, 2228, NSW, A], [, New, 7, , 5012, , Ringwood, Ringwood, Seymour Street, Ringwood, 3134, VIC, ], [, Old, 6, TAR, 5052, ST, Eastwood, Marayong Offsite Reserve, 11 Melissa Place, Marayong, 2148, NSW, A], [, New, 8, , 5030, , Epping, Epping Plaza Shopping Centre, Cnr. High & Cooper Streets, Epping, 3076, VIC, ], [, Old, 7, TAR, 5055, ST, Leichhardt, Marketown, Marion Street, Leichhardt, 2040, NSW, A], [, New, 9, , 5054, , Highpoint City, Laverton, Lot 2, Cnr Lt Boundry & Old Geelong Road, Laverton, 3028, VIC, ], [, Old, 8, TAR, 5060, ST, St Marys, St. Mary\'s, Charles Hackett Drive, St Mary\'s, 2760, NSW, A], [, New, 10, , 5062, , Castletown, Townsville, Cnr. Woolcock St. & Kings Road, Townsville, 4810, QLD, ], [, Old, 9, TAR, 5070, ST, Bass Hill, Bass Hill Plaza, 753 Hume Highway, Bass Hill, 2197, NSW, A], [, New, 11, , 5138, , Cairns Central, Cairns, Cnr. McLeod & Aplin Streets, Cairns, 4870, QLD, ], [, Old, 10, TAR, 5074, ST, Campbelltown, Campbelltown Mall, 303 Queen Street, Campbelltown, 2560, NSW, A], [, New, 12, , 5141, , The Willows, Thuringowa Central, Cnr Thuringowa Drive & Range Rd, Thuringowa Central, 4817, QLD, ], [, Old, 11, TAR, 5078, ST, Warringah Mall, Frenchs Forest, Units 2-3, 14 Aquatic Drive, Frenchs Forest, 2086, NSW, A], [, New, 13, , 5146, , Palmerston, Palmerston Shopping Centre, Temple Terrace, Palmerston, 0830, NT, ], [, Old, 12, TAR, 5081, ST, Ashfield, Ashfield Mall, Knox Street, Ashfield, 2131, NSW, A], [, New, 14, , 5002, , Coffs Harbour, Coffs Harbour, Cnr. Park Beach Road & Pacific Hwy, Coffs Harbour, 2450, , ], [, Old, 13, TAR, 5085, ST, Roselands, Condell park, Unit 2, 39-41 Allingham Street, Condell Park, 2200, NSW, A], [, New, 15, , 5966, DC, Huntingwood DC, Huntingwood DC, 35 Huntingwood Drive, Huntingwood, 2148, , ], [, , , , , , , , , , , , ], [, Inserted, 16, TAR, 5967, DC, Hendra DC, Hendra DC, Cnr Headly Ave & Nudgee Road, Hendra, 4011, QLD, A], [, , , , , , , , , , , , ], [, Inserted, 17, TAR, 5968, DC, Beverly DC, Beverly DC, 117 Main Street, Beverly, 5009, SA, A]]') select('Table', 'cell:Loc Name,14(Bass Hill)') click('All Included Lines') select('Table', 'cell:Loc Addr Ln1,8(Marayong)') assert_p('Table', 'Content', '[[, , , , , , , , , , , , ], [, Inserted, 1, TAR, 5839, DC, DC - Taras Ave, , 30-68 Taras Ave, Altona North, 3025, VIC, A], [, , , , , , , , , , , , ], [, Inserted, 2, TAR, 5850, DC, VIC West Ad Support, , Lot 2 Little Boundary Rd, Laverton, 3028, VIC, A], [, Old, 1, TAR, 5015, ST, Bankstown, Bankstown, Unit 2, 39-41 Allingham Street, Condell Park, 2200, NSW, A], [, New, 3, , , , , , , , , , ], [, Old, 2, TAR, 5019, ST, Penrith, Penrith, 58 Leland Street, Penrith, 2750, NSW, A], [, New, 4, , , , , , , , , , ], [, Old, 3, TAR, 5033, ST, Blacktown, Marayong, Dock 2, 11 Melissa Place, Marayong, 2148, NSW, A], [, New, 5, , , , , , , , , , ], [, Old, 4, TAR, 5035, ST, Rockdale, Building B, Portside DC, 2-8 Mc Pherson Street, Botany, 2019, NSW, A], [, New, 6, , 5096, , Canberra Civic, Target Canberra, Canberra City Centre, Akuna Ave, Canberra, 2601, ACT, ], [, Old, 5, TAR, 5037, ST, Miranda, Westfield Shoppingtown, Cnr. Urunga Pde & The Kingsway, Miranda, 2228, NSW, A], [, New, 7, , 5012, , Ringwood, Ringwood, Seymour Street, Ringwood, 3134, VIC, ], [, Old, 6, TAR, 5052, ST, Eastwood, Marayong Offsite Reserve, 11 Melissa Place, Marayong, 2148, NSW, A], [, New, 8, , 5030, , Epping, Epping Plaza Shopping Centre, Cnr. High & Cooper Streets, Epping, 3076, VIC, ], [, Old, 7, TAR, 5055, ST, Leichhardt, Marketown, Marion Street, Leichhardt, 2040, NSW, A], [, New, 9, , 5054, , Highpoint City, Laverton, Lot 2, Cnr Lt Boundry & Old Geelong Road, Laverton, 3028, VIC, ], [, Old, 8, TAR, 5060, ST, St Marys, St. Mary\'s, Charles Hackett Drive, St Mary\'s, 2760, NSW, A], [, New, 10, , 5062, , Castletown, Townsville, Cnr. Woolcock St. & Kings Road, Townsville, 4810, QLD, ], [, Old, 9, TAR, 5070, ST, Bass Hill, Bass Hill Plaza, 753 Hume Highway, Bass Hill, 2197, NSW, A], [, New, 11, , 5138, , Cairns Central, Cairns, Cnr. McLeod & Aplin Streets, Cairns, 4870, QLD, ], [, Old, 10, TAR, 5074, ST, Campbelltown, Campbelltown Mall, 303 Queen Street, Campbelltown, 2560, NSW, A], [, New, 12, , 5141, , The Willows, Thuringowa Central, Cnr Thuringowa Drive & Range Rd, Thuringowa Central, 4817, QLD, ], [, Old, 11, TAR, 5078, ST, Warringah Mall, Frenchs Forest, Units 2-3, 14 Aquatic Drive, Frenchs Forest, 2086, NSW, A], [, New, 13, , 5146, , Palmerston, Palmerston Shopping Centre, Temple Terrace, Palmerston, 0830, NT, ], [, Old, 12, TAR, 5081, ST, Ashfield, Ashfield Mall, Knox Street, Ashfield, 2131, NSW, A], [, New, 14, , 5002, , Coffs Harbour, Coffs Harbour, Cnr. Park Beach Road & Pacific Hwy, Coffs Harbour, 2450, , ], [, Old, 13, TAR, 5085, ST, Roselands, Condell park, Unit 2, 39-41 Allingham Street, Condell Park, 2200, NSW, A], [, New, 15, , 5966, DC, Huntingwood DC, Huntingwood DC, 35 Huntingwood Drive, Huntingwood, 2148, , ], [, , , , , , , , , , , , ], [, Inserted, 16, TAR, 5967, DC, Hendra DC, Hendra DC, Cnr Headly Ave & Nudgee Road, Hendra, 4011, QLD, A], [, , , , , , , , , , , , ], [, Inserted, 17, TAR, 5968, DC, Beverly DC, Beverly DC, 117 Main Street, Beverly, 5009, SA, A]]') select('Table', 'cell:Loc Addr Ln1,8(Marayong)') close()
[ "bruce_a_martin@b856f413-25aa-4700-8b60-b3441822b2ec" ]
bruce_a_martin@b856f413-25aa-4700-8b60-b3441822b2ec
4f5f6cf6b975bc75e55183392098c5035bdaf30d
a742bd051641865d2e5b5d299c6bc14ddad47f22
/algorithm/牛客网/55-链表中环的入口节点.py
cb9f7c566cc7b629c3e7d7a7aef88c03f3a1a921
[]
no_license
lxconfig/UbuntuCode_bak
fb8f9fae7c42cf6d984bf8231604ccec309fb604
3508e1ce089131b19603c3206aab4cf43023bb19
refs/heads/master
2023-02-03T19:10:32.001740
2020-12-19T07:27:57
2020-12-19T07:27:57
321,351,481
0
0
null
null
null
null
UTF-8
Python
false
false
1,604
py
""" 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null。 思路: 双指针法 快指针先走两步,慢指针走一步 当两个指针又相遇了,此时指向的节点可能是环的入口节点 再次让慢指针回到链表头,然后和快指针一起走,再次相遇时,就是环的入口节点 否则,快指针不存在时,表示没有环 或: 先让快指针走n步,n=链表的长度 之后再让快指针和慢指针一起走,直到相遇,此时就是环的入口节点 """ class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def EntryNodeOfLoop(self, pHead): # 运行时间:22ms 占用内存:5864k if not pHead: return None fast = slow = pHead while fast and fast.next: fast = fast.next.next slow = slow.next if fast == slow: break if not fast or not fast.next: return None slow = pHead while fast != slow: fast = fast.next slow = slow.next return fast.val if __name__ == "__main__": solution = Solution() a = ListNode(1) b = ListNode(2) c = ListNode(3) d = ListNode(4) e = ListNode(5) f = ListNode(6) a.next= b b.next = c c.next = d d.next = e e.next = c # f.next = d print(solution.EntryNodeOfLoop(a))
0c602c4d5aba8185e74b266e1050df2cd0ec026c
111082d7fd02a5f64cd1784b923a109cc95dc557
/dj_rulitool/wsgi.py
7ac1fe5349618d888f4dc721c11e7dfd58b406e3
[]
no_license
270466585/dj_rulitool
ba65a6ef1bc44b599f19ac1172d86e8d4b2a12af
0d2e97454c66d30537780d81b2a0b4b2f953b2ed
refs/heads/master
2020-04-14T20:25:36.592762
2019-01-04T10:28:18
2019-01-04T10:28:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
""" WSGI config for dj_rulitool project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dj_rulitool.settings") application = get_wsgi_application()
5224d8389d28f53149bb9a84556ad05b34511670
32711a21edff968fdbf9fa9baf0e0f8373d0e131
/authapp/forms.py
fa7e7e88283332593f25f77dbbd8f2f33b5d24c6
[]
no_license
acid-n/GeekShop
ca836a4daeb97754fafd44d36e705f0e160c8d4d
9749debe92e6ded46ed01082fbdb497a5f8485fa
refs/heads/master
2023-01-15T15:29:18.172547
2020-11-25T18:34:39
2020-11-25T18:34:39
296,569,582
0
0
null
2020-10-04T18:39:29
2020-09-18T09:02:03
JavaScript
UTF-8
Python
false
false
2,620
py
import hashlib import random from django import forms from django.contrib.auth.forms import AuthenticationForm, UserCreationForm, UserChangeForm from authapp.models import ShopUser, ShopUserProfile class ShopUserLoginForm(AuthenticationForm): class Meta: model = ShopUser fields = ('username', 'password') def __init__(self, *args, **kwargs): super(ShopUserLoginForm, self).__init__(*args, **kwargs) for field_name, field in self.fields.items(): field.widget.attrs['class'] = "form-control" field.help_text = '' class ShopUserRegisterForm(UserCreationForm): class Meta: model = ShopUser fields = ('username', 'first_name', 'password1', 'password2', 'email', 'avatar', 'age') def __init__(self, *args, **kwargs): super(ShopUserRegisterForm, self).__init__(*args, **kwargs) for field_name, field in self.fields.items(): field.widget.attrs['class'] = "form-control" field.help_text = '' def clean_age(self): data = self.cleaned_data['age'] if data < 18: raise forms.ValidationError("Вы слишком молоды") return data def save(self, **kwargs): user = super(ShopUserRegisterForm, self).save() user.is_active = False salt = hashlib.sha1(str(random.random()).encode('utf8')).hexdigest()[:6] user.activation_key = hashlib.sha1((user.email + salt).encode('utf8')).hexdigest() user.save() return user class ShopUserEditForm(UserChangeForm): class Meta: model = ShopUser fields = ('username', 'first_name', 'email', 'avatar', 'age') def __init__(self, *args, **kwargs): super(ShopUserEditForm, self).__init__(*args, **kwargs) for field_name, field in self.fields.items(): field.widget.attrs['class'] = "form-control" field.help_text = '' if field_name == 'password': field.widget = forms.HiddenInput() def clean_age(self): data = self.cleaned_data['age'] if data < 18: raise forms.ValidationError("Вы слишком молоды") return data class ShopUserProfileEditForm(forms.ModelForm): class Meta: model = ShopUserProfile fields = ('tagline', 'about_me', 'gender') def __init__(self, *args, **kwargs): super(ShopUserProfileEditForm, self).__init__(*args, **kwargs) for field_name, field in self.fields.items(): field.widget.attrs['class'] = "form-control" field.help_text = ''
6ac6c0894bfa4d2f46e20bd466eb57471523bfb5
ed78041a12c60e46bb0c4d347c47536e84307a96
/app/__init__.py
ea59f07f74501ccfe1fe861e921ef187326337da
[]
no_license
Garfield247/news_nlp
4875842af4249def6ffdc65a6e5896b02610dd8d
e18d178824ea9bf11d3895c58037a211f4b21cb6
refs/heads/master
2022-12-11T21:00:36.967826
2019-03-15T02:32:46
2019-03-15T02:32:46
161,159,779
0
0
null
2022-12-08T04:52:15
2018-12-10T10:48:41
JavaScript
UTF-8
Python
false
false
945
py
# -*- coding: utf-8 -*- from flask import Flask, render_template from app.config import config from app.extensions import config_extensions from app.views import config_blueprint # 封装一个方法,专门用于创建Flask实例 def create_app(config_name): # development # 创建应用实例 app = Flask(__name__) # 初始化配置 app.config.from_object(config.get(config_name) or config['default']) # 调用初始化函数 config[config_name].init_app(app) # 配置扩展 config_extensions(app) # 配置蓝本 config_blueprint(app) # 错误页面定制 config_errorhandler(app) # 返回应用实例 return app def config_errorhandler(app): # 如果在蓝本定制,只针对本蓝本的错误有效, # 可以使用app_errorhandler定制全局有效的错误显示 @app.errorhandler(404) def page_not_found(e): return render_template('errors/404.html')
09997d079fdba85719df5fe4ccf2d3f6d5988d74
0e9789668dcfeeedacf78aa9917bb95ec9a5f763
/preprocessing/load_data.py
5ff6f999bcc4fb4aae3d0baad46dc27ccc9be878
[]
no_license
mma1979/Simple-Sentence-Similarity
76151619bcdfd39054f8b6cbe1e26af99d0f6a37
dfacb34c325df771056f34f85c7927148d69691c
refs/heads/master
2022-04-11T00:15:07.415752
2020-01-28T13:06:42
2020-01-28T13:06:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,926
py
import os import pandas as pd import requests import tensorflow as tf def load_sts_dataset(filename): """ Loads a subset of the STS dataset into a DataFrame. In particular both sentences and their human rated similarity score. :param filename: :return: """ sent_pairs = [] with tf.gfile.GFile(filename, "r") as f: for line in f: ts = line.strip().split("\t") sent_pairs.append((ts[5], ts[6], float(ts[4]))) return pd.DataFrame(sent_pairs, columns=["sent_1", "sent_2", "sim"]) def download_and_load_sts_data(): sts_dataset = tf.keras.utils.get_file( fname="Stsbenchmark.tar.gz", origin="http://ixa2.si.ehu.es/stswiki/images/4/48/Stsbenchmark.tar.gz", extract=True) sts_dev = load_sts_dataset(os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-dev.csv")) sts_test = load_sts_dataset(os.path.join(os.path.dirname(sts_dataset), "stsbenchmark", "sts-test.csv")) return sts_dev, sts_test def download_sick_dataset(url): response = requests.get(url).text lines = response.split("\n")[1:] lines = [l.split("\t") for l in lines if len(l) > 0] lines = [l for l in lines if len(l) == 5] df = pd.DataFrame(lines, columns=["idx", "sent_1", "sent_2", "sim", "label"]) df['sim'] = pd.to_numeric(df['sim']) return df def download_and_load_sick_dataset(): sick_train = download_sick_dataset( "https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_train.txt") sick_dev = download_sick_dataset( "https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_trial.txt") sick_test = download_sick_dataset( "https://raw.githubusercontent.com/alvations/stasis/master/SICK-data/SICK_test_annotated.txt") sick_all = sick_train.append(sick_test).append(sick_dev) return sick_all, sick_train, sick_test, sick_dev
cfe30dfb145e5c7610d9b424ad9cb71f37e95724
09e63e204cf3f70b0f878fe237f231af0786611e
/LifeQA/LSTM_QA.py
2e7249b817077a5418b4be8df812dcb9c1c1f866
[]
no_license
shubham14/Machine_learning_research
8f00788366abf2d330afe8914e48d4279fcd8aea
b134e4e6b1e6c110fad8cb38b033c92c34d3c8ce
refs/heads/master
2022-11-08T13:24:58.722027
2019-11-10T09:21:28
2019-11-10T09:21:28
132,386,307
3
2
null
2022-10-17T15:36:25
2018-05-07T00:16:38
Python
UTF-8
Python
false
false
3,186
py
# -*- coding: utf-8 -*- """ Created on Tue Oct 16 16:55:06 2018 @author: Shubham """ import numpy as np from keras import backend as K from keras.layers import Embedding from keras.layers import LSTM, Input, merge, Lambda from keras.layers.wrappers import Bidirectional from keras.layers.convolutional import Convolution1D from keras.models import Model class Model: def __init__(self, margin, enc_timesteps, dec_timesteps, margin, hidden_dim, embedding_file, vocab_size): self.margin = margin self.enc_timesteps = enc_timesteps self.dec_timesteps = dec_timesteps self.hidden_dim = hidden_dim self.embedding_file = embedding_file self.vocab_size = vocab_size def cosine_similarity(self): dot = lambda a, b: K.batch_dot(a, b, axes=1) return lambda x: dot(x[0], x[1]) / K.maximum(K.sqrt(dot(x[0], x[0]) * dot(x[1], x[1])), K.epsilon()) def build_model(self): # initialize the question and answer shapes and datatype question = Input(shape=(self.enc_timesteps,), dtype='int32', name='question_base') answer = Input(shape=(self.dec_timesteps,), dtype='int32', name='answer') answer_good = Input(shape=(self.dec_timesteps,), dtype='int32', name='answer_good_base') answer_bad = Input(shape=(self.dec_timesteps,), dtype='int32', name='answer_bad_base') weights = np.load(self.embedding_file) qa_embedding = Embedding(input_dim=self.vocab_size, output_dim=weights.shape[1],mask_zero=True,weights=[weights]) bi_lstm = Bidirectional(LSTM(activation='tanh', dropout=0.2, units=self.hidden_dim, return_sequences=False)) # embed the question and pass it through bilstm question_embedding = qa_embedding(question) question_enc_1 = bi_lstm(question_embedding) # embed the answer and pass it through bilstm answer_embedding = qa_embedding(answer) answer_enc_1 = bi_lstm(answer_embedding) # get the cosine similarity similarity = self.get_cosine_similarity() question_answer_merged = merge(inputs=[question_enc_1, answer_enc_1], mode=similarity, output_shape=lambda _: (None, 1)) lstm_model = Model(name="bi_lstm", inputs=[question, answer], outputs=question_answer_merged) good_similarity = lstm_model([question, answer_good]) bad_similarity = lstm_model([question, answer_bad]) loss = merge( [good_similarity, bad_similarity], mode=lambda x: K.relu(margin - x[0] + x[1]), output_shape=lambda x: x[0]) training_model = Model(inputs=[question, answer_good, answer_bad], outputs=loss, name='training_model') training_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer="rmsprop") prediction_model = Model(inputs=[question, answer_good], outputs=good_similarity, name='prediction_model') prediction_model.compile(loss=lambda y_true, y_pred: y_pred, optimizer="rmsprop") return training_model, prediction_model
a5c8acc3f261fc484e471a9c6729ba0a2951f7ea
6cc37dfc44880f57823bb9523ea5f8206d5e3f22
/python_OOP/labs_and_homeworks/09_decorators_exercise/07_execution_time.py
672ebddef602603926ee47bec252adbc7b08d114
[]
no_license
dimitar-daskalov/SoftUni-Courses
70d265936fd86712a7bfe0586ec6ebd1c7384f77
2054bc58ffb5f41ed86f5d7c98729b101c3b1368
refs/heads/main
2023-05-31T06:44:35.498399
2021-07-11T10:16:08
2021-07-11T10:16:08
322,896,365
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
import time def exec_time(func): def wrapper(*args): start = time.time() func(*args) end = time.time() time_spend = end - start return time_spend return wrapper @exec_time def loop(start, end): total = 0 for x in range(start, end): total += x return total print(loop(1, 10000000)) @exec_time def concatenate(strings): result = "" for string in strings: result += string return result print(concatenate(["a" for i in range(1000000)]))
488718466f0f0e87ffa34be480e9e92c0c8df57a
9a701c23ef6e70dc3704f012ffbb1e2689f7a8cb
/Lib/zDogPy/box.py
5006b0c8963abce56336c69e361803f02212a395
[ "MIT" ]
permissive
gferreira/zdogpy
a832db713524d1343b85de1c8215511f438a2e41
41304e5db7cc2e145d43b6b2f7d77d25ec3c8b08
refs/heads/master
2020-05-30T07:50:24.621323
2019-09-11T09:30:59
2019-09-11T09:30:59
189,606,401
7
2
null
null
null
null
UTF-8
Python
false
false
3,196
py
'''Box composite shape''' from importlib import reload import zDogPy.anchor reload(zDogPy.anchor) import zDogPy.shape reload(zDogPy.shape) import zDogPy.rect reload(zDogPy.rect) from zDogPy.boilerplate import hexToRGB, TAU from zDogPy.anchor import Anchor from zDogPy.shape import Shape from zDogPy.rect import Rect # ------- # BoxRect # ------- class BoxRect(Rect): def copyGraph(self): pass # --- # Box # --- class Box(Anchor): frontFace = None rearFace = None leftFace = None rightFace = None topFace = None bottomFace = None def __init__(self, width=1, height=1, depth=1, stroke=1, fill=True, color=True, frontFace=True, rearFace=True, leftFace=True, rightFace=True, topFace=True, bottomFace=True, **kwargs): self.width = width self.height = height self.depth = depth self.stroke = stroke self.fill = fill self.color = color self.frontFace = frontFace self.rearFace = rearFace self.leftFace = leftFace self.rightFace = rightFace self.topFace = topFace self.bottomFace = bottomFace Anchor.__init__(self, **kwargs) self.updatePath() def updatePath(self): self.setFace('frontFace', { 'width' : self.width, 'height' : self.height, 'translate' : { 'z': self.depth / 2 }, }) self.setFace('rearFace', { 'width' : self.width, 'height' : self.height, 'translate' : { 'z': -self.depth / 2 }, }) self.setFace('leftFace', { 'width' : self.depth, 'height' : self.height, 'translate' : { 'x': -self.width / 2 }, 'rotate' : { 'y': -TAU / 4 }, }) self.setFace('rightFace', { 'width' : self.depth, 'height' : self.height, 'translate' : { 'x': self.width / 2 }, 'rotate' : { 'y': TAU / 4 }, }) self.setFace('topFace', { 'width' : self.width, 'height' : self.depth, 'translate' : { 'y': -self.height / 2 }, 'rotate' : { 'x': -TAU / 4 }, }) self.setFace('bottomFace', { 'width' : self.width, 'height' : self.depth, 'translate' : { 'y': self.height / 2 }, 'rotate' : { 'x': -TAU / 4 }, }) def setFace(self, faceName, options): attr = getattr(self, faceName) rectProperty = faceName + 'Rect' # remove if False (??) if not attr: # self.removeChild(rectProperty) return if isinstance(attr, tuple): color = attr elif type(attr) is str: color = hexToRGB(attr) else: color = self.color rect = BoxRect(**options) rect.stroke = self.stroke rect.fill = self.fill rect.color = color # rect.backface = self.backface # rect.front = self.front # rect.visible = self.visible rect.updatePath() self.addChild(rect)
a4536f0fe2f8a612a01725277078ce3b79778683
5707a6e95d6388a320416d7c06c275daf61e3406
/Unidad2/ej1.py
54e6a486f22b1ad338b6cbaf6b579ebbc1bebc68
[]
no_license
hectorrdz98/lenguajes-y-automatas-1
ed3406e8a7b7eaad489c530146cddac5a972bc81
0004c4696a92cdd33a86a24f82d0f9b7e01e455c
refs/heads/master
2022-01-21T21:24:21.819330
2019-05-29T12:42:42
2019-05-29T12:42:42
167,203,004
0
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
""" Autor: Hector Rodriguez """ """ Este codigo lee el archivo doc.txt (debe estar al mismo nivel de carpeta que este archivo) y muestra en consola para cada linea del documento que tipo de elemento o a que categoría pertenece. Estas son mis condiciones: 1.- Entero: Números de 0-9 2.- Flotante: Números de 0-9 seguido de un . y más números de 0-9 3.- Variable: Conjunto de letras de la A-Z mayúsculas y minúsculas, _ y dígitos de 0-9 que no debe iniciar con 0-9 4.- String: Cadena de carateres que inicia y cierra con " 5.- Aritmética: Expresión con entero, flotante o variable seguida de un * + - / ^ y luego otro entero, flotante o variable no pueden haber dos * + - / ^ juntos o terminar la expresión con * + - / ^ 6.- Relacional: Expresión con entero, flotante o variable seguida de un < > y un posible = o un != o == y luego otro entero, flotante o variable no pueden haber dos < > y un posible = o un != o == juntos o terminar la expresión con < > y un posible = o un != o == """ import re # Regex necesarias RegexPatterns = { 'entero': r'^[\-|\+]?\d+$', 'flotante': r'^[\-|\+]?\d+\.\d+$', 'variable': r'^[a-zA-Z_]\w{0,29}$', 'string': r'^\"[^\"]*\"$', 'aritmetica': r'^(\d+|\d+\.\d+|[a-zA-Z_]\w{0,29})([\*\/\+\-\^](\d+|\d+\.\d+|[a-zA-Z_]\w{0,29}))+$', 'relacional': r'^(\d+|\d+\.\d+|[a-zA-Z_]\w{0,29})(([\<\>]\=?|[\!\=]=)(\d+|\d+\.\d+|[a-zA-Z_]\w{0,29}))+$' } try: with open('doc.txt', encoding='utf-8') as file: for line in file: flag = False for regexName, regex in RegexPatterns.items(): foundRegex = re.findall(regex, line) if line != '\n': if foundRegex != []: flag = True print('{}: es {}'.format(line[0:len(line)-1], regexName)) break if not flag and line != '\n': print('{}: no lo conozco'.format(line[0:len(line)-1])) except Exception as e: print('Error al abrir el archivo: {}'.format(e))
[ "=" ]
=
33b9a0b28178626117cfa52bbee000bdf746fae2
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/QcswPnY2cAbrfwuWE_1.py
3dc657a83394c0074459ebb833c7727b69c41094
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
def filter_factorials(n): def is_fact(x): i=1 while(True): if x%i<1:x//=i else:break i+=1 return x==1 return[i for i in n if is_fact(i)]
4f8410227745a3f05d1ded00c637145222b001f5
acf03baf55e36dc2a9a5ecd697ec5cb15446ae32
/vng_api_common/decorators.py
eeb5d658ccfe42cff1208a7c375b34363017ad85
[]
no_license
GemeenteUtrecht/vng-api-common
b6eb55121dc44c72179cbcd63896bbc020dc3975
97786cac041d867468007f9b9a9703d21644391a
refs/heads/master
2021-06-29T01:53:11.647065
2019-07-18T12:04:39
2019-07-18T12:05:27
198,412,309
0
0
null
2019-07-23T10:57:53
2019-07-23T10:57:52
null
UTF-8
Python
false
false
279
py
from typing import Any from django.db.models.base import ModelBase def field_default(field: str, default: Any): def decorator(cls: ModelBase): model_field = cls._meta.get_field(field) model_field.default = default return cls return decorator
d52897974dca71896f8010946a8b51fba5aaf253
7d78a18fcb8f34cc84e9439bd19cf491e3e0ec49
/Code/Particle_Identification/msc-hpc/OLD/OLD/round1/feedforward_python/model/model1/feed_forward_1_dropout_window_sum.py
f0f09278e5686de8562c923232116972c2fce202
[]
no_license
PsycheShaman/MSc-thesis
62767951b67b922ce5a21cad5bdb258998b7d2ea
34504499df64c7d6cc7c89af9618cd58d6378e8e
refs/heads/master
2022-03-12T07:17:57.309357
2019-12-10T21:17:39
2019-12-10T21:17:39
151,471,442
4
0
null
null
null
null
UTF-8
Python
false
false
8,372
py
print("==============================================================================================") print("starting........................................................................................") import glob import numpy as np print("imported glob, np........................................................................................") x_files = glob.glob("/scratch/vljchr004/data/msc-thesis-data/ff/x_*.pkl") y_files = glob.glob("/scratch/vljchr004/data/msc-thesis-data/ff/y_*.pkl") #x_files = glob.glob("C:\\Users\\gerhard\\Documents\\msc-thesis-data\\ff\\x_*.pkl") #y_files = glob.glob("C:\\Users\\gerhard\\Documents\\msc-thesis-data\\ff\\y_*.pkl") import pickle print("loading first x pickle........................................................................................") with open(x_files[0], 'rb') as x_file0: x = pickle.load(x_file0) print("loading first y pickle........................................................................................") with open(y_files[0], 'rb') as y_file0: y = pickle.load(y_file0) print("recursively adding x pickles........................................................................................") for i in x_files[1:]: #for i in x_files[1:2]: with open(i,'rb') as x_file: xi = pickle.load(x_file) x = np.concatenate((x,xi),axis=0) print("recursively adding y pickles........................................................................................") for i in y_files[1:]: #for i in y_files[1:2]: with open(i,'rb') as y_file: yi = pickle.load(y_file) y = np.concatenate((y,yi),axis=None) nz = np.array([np.count_nonzero(i) for i in x]) zeros = np.where(nz==0) x = np.delete(x,zeros,axis=0) y = np.delete(y,zeros) #oversample electrons elec = np.where(y==1) pion = np.where(y!=1) electrons_x = x[elec,:] electrons_y = y[elec] electrons_x = np.squeeze(electrons_x) x = np.concatenate((electrons_x,x,electrons_x),axis=0) y = np.concatenate((electrons_y,y,electrons_y),axis=None) mu = np.mean(x) x = np.true_divide(x,mu) x_add = np.array([np.array((np.sum(i[0:2]),np.sum(i[3:5]),np.sum(i[6:8]),np.sum(i[9:11]), np.sum(i[12:14]), np.sum(i[15:17]),np.sum(i[18:20]),np.sum(i[21:23]))) for i in x]) x = np.hstack((x,x_add)) from tensorflow.keras.utils import to_categorical #y = to_categorical(y) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=123456) import tensorflow from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation num_classes = 2 epochs = 100 y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) model1_dropout_0_5 = Sequential([ Dense(256, input_shape=(32,)), Activation('relu'), Dropout(0.5), Dense(128), Activation('relu'), Dropout(0.5), Dense(128), Activation('relu'), Dropout(0.5), Dense(64), Activation('relu'), Dropout(0.5), Dense(2), Activation('softmax') ]) model1_dropout_0_5.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model1_dropout_0_5.fit(x_train, y_train, #batch_size=batch_size, epochs=epochs, validation_split=0.15, shuffle=True, verbose=2) import matplotlib.pyplot as plt # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.close() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig('/home/vljchr004/msc-hpc/feedforward_python/fig/feed_forward_1_dropout_0_5_history.png', bbox_inches='tight') model1_dropout_0_5.probs = model1_dropout_0_5.predict_proba(x_test) import numpy as np np.savetxt("/home/vljchr004/msc-hpc/feedforward_python/results/feed_forward_1__dropout_0_5_results.csv", np.array(model1_dropout_0_5.probs), fmt="%s") model1_dropout_0_5.save('/home/vljchr004/msc-hpc/feedforward_python/feed_forward_1__dropout_0_5.h5') # creates a HDF5 file 'my_model.h5' del model1_dropout_0_5 model1_dropout_0_8 = Sequential([ Dense(256, input_shape=(32,)), Activation('relu'), Dropout(0.8), Dense(128), Activation('relu'), Dropout(0.8), Dense(128), Activation('relu'), Dropout(0.8), Dense(64), Activation('relu'), Dropout(0.8), Dense(2), Activation('softmax') ]) model1_dropout_0_8.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model1_dropout_0_8.fit(x_train, y_train, #batch_size=batch_size, epochs=epochs, validation_split=0.15, shuffle=True, verbose=2) import matplotlib.pyplot as plt # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig('/home/vljchr004/msc-hpc/feedforward_python/fig/feed_forward_1_dropout_0_8_history.png', bbox_inches='tight') model1_dropout_0_8.probs = model1_dropout_0_8.predict_proba(x_test) import numpy as np np.savetxt("/home/vljchr004/msc-hpc/feedforward_python/results/feed_forward_1__dropout_0_8_results.csv", np.array(model1_dropout_0_8.probs), fmt="%s") model1_dropout_0_8.save('/home/vljchr004/msc-hpc/feedforward_python/feed_forward_1__dropout_0_8.h5') # creates a HDF5 file 'my_model.h5' del model1_dropout_0_8 model1_dropout_0_8_0_5 = Sequential([ Dense(256, input_shape=(32,)), Activation('relu'), Dropout(0.8), Dense(128), Activation('relu'), Dropout(0.8), Dense(128), Activation('relu'), Dropout(0.5), Dense(64), Activation('relu'), Dropout(0.5), Dense(2), Activation('softmax') ]) model1_dropout_0_8_0_5.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) history = model1_dropout_0_8_0_5.fit(x_train, y_train, #batch_size=batch_size, epochs=epochs, validation_split=0.15, shuffle=True, verbose=2) import matplotlib.pyplot as plt # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig('/home/vljchr004/msc-hpc/feedforward_python/fig/feed_forward_1_dropout_0_8_0_5_history2.png', bbox_inches='tight') # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.savefig('/home/vljchr004/msc-hpc/feedforward_python/fig/feed_forward_1_dropout_0_8_0_5_history2.png', bbox_inches='tight') model1_dropout_0_8_0_5.probs = model1_dropout_0_8_0_5.predict_proba(x_test) import numpy as np np.savetxt("/home/vljchr004/msc-hpc/feedforward_python/results/feed_forward_1__dropout_0_8_0_5_results.csv", np.array(model1_dropout_0_8_0_5.probs), fmt="%s") model1_dropout_0_8_0_5.save('/home/vljchr004/msc-hpc/feedforward_python/feed_forward_1__dropout_0_8_0_5.h5') # creates a HDF5 file 'my_model.h5' del model1_dropout_0_8_0_5
07e7f05c86afb0643a2049ea590bf26c009ad663
ec6f8a634c607e65300bf9812c79dbf780c351d0
/raspberrypi_files/field4off.py
6f2ec758df0e1d77b337b75f96e84b9be40755e0
[]
no_license
prateek-chouhan05/Home-automatation-system
ccbcd8edaba74ac5564c49187517a2991b4163db
aafc3eebe45bdc075f04403b63e44e67ab0c2bc7
refs/heads/master
2023-07-09T13:56:28.028748
2020-11-09T06:29:13
2020-11-09T06:29:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
125
py
import RPi.GPIO as GPIO GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(23, GPIO.OUT) GPIO.output(23, GPIO.HIGH)