blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
830a140f3af9cb75dd17cf22df4d0529f9709007
8f1673c2abfed8f372e22fbd1c280486014b4466
/nmt/embeddings/fresh_embedding_test.py
02c77c2260cfcd5f01d846f377761ea8db571074
[ "Apache-2.0" ]
permissive
naivenlp/naivenmt-legacy
be670df40a98c0f28bdacb2a3acf9a5b06667966
bcceeec0a477eb09c4a8915e638a27dae6c95562
refs/heads/master
2021-10-27T02:55:33.160837
2019-04-15T14:39:06
2019-04-15T14:39:06
118,464,831
2
0
null
null
null
null
UTF-8
Python
false
false
931
py
import tensorflow as tf import numpy as np from nmt.embeddings.fresh_embedding import FreshEmbedding from nmt import misc_utils class FreshEmbeddingTest(tf.test.TestCase): def testFreshEmbedding(self): vocab_file = misc_utils.get_test_data('iwslt15.vocab.100.en') embedder = FreshEmbedding(vocab_file=vocab_file) inputs = np.array([ ['I', 'am', 'a', 'test'] ]) inputs = tf.constant(inputs,dtype=tf.string) length = np.array([4]) length = tf.constant(length,dtype=tf.int32) params = { 'batch_size': 1 } embedded = embedder.embedding(inputs, length, params) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) embedded = sess.run(embedded) print(embedded) if __name__ == '__main__': tf.test.main()
f2ea129609ab68de9af623d8b8c473e6eb333988
98f1a0bfa5b20a0b81e9e555d76e706c62d949c9
/examples/sparse/sign.py
61ba2104d673a953ad976e5b10a35c9c2232d0b9
[ "Apache-2.0" ]
permissive
dmlc/dgl
3a8fbca3a7f0e9adf6e69679ad62948df48dfc42
bbc8ff6261f2e0d2b5982e992b6fbe545e2a4aa1
refs/heads/master
2023-08-31T16:33:21.139163
2023-08-31T07:49:22
2023-08-31T07:49:22
130,375,797
12,631
3,482
Apache-2.0
2023-09-14T15:48:24
2018-04-20T14:49:09
Python
UTF-8
Python
false
false
3,804
py
""" [SIGN: Scalable Inception Graph Neural Networks] (https://arxiv.org/abs/2004.11198) This example shows a simplified version of SIGN: a precomputed 2-hops diffusion operator on top of symmetrically normalized adjacency matrix A_hat. """ import dgl.sparse as dglsp import torch import torch.nn as nn import torch.nn.functional as F from dgl.data import CoraGraphDataset from torch.optim import Adam ################################################################################ # (HIGHLIGHT) Take the advantage of DGL sparse APIs to implement the feature # diffusion in SIGN laconically. ################################################################################ def sign_diffusion(A, X, r): # Perform the r-hop diffusion operation. X_sign = [X] for _ in range(r): X = A @ X X_sign.append(X) return X_sign class SIGN(nn.Module): def __init__(self, in_size, out_size, r, hidden_size=256): super().__init__() # Note that theta and omega refer to the learnable matrices in the # original paper correspondingly. The variable r refers to subscript to # theta. self.theta = nn.ModuleList( [nn.Linear(in_size, hidden_size) for _ in range(r + 1)] ) self.omega = nn.Linear(hidden_size * (r + 1), out_size) def forward(self, X_sign): results = [] for i in range(len(X_sign)): results.append(self.theta[i](X_sign[i])) Z = F.relu(torch.cat(results, dim=1)) return self.omega(Z) def evaluate(g, pred): label = g.ndata["label"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] # Compute accuracy on validation/test set. val_acc = (pred[val_mask] == label[val_mask]).float().mean() test_acc = (pred[test_mask] == label[test_mask]).float().mean() return val_acc, test_acc def train(model, g, X_sign): label = g.ndata["label"] train_mask = g.ndata["train_mask"] optimizer = Adam(model.parameters(), lr=3e-3) for epoch in range(10): # Switch the model to training mode. model.train() # Forward. logits = model(X_sign) # Compute loss with nodes in training set. loss = F.cross_entropy(logits[train_mask], label[train_mask]) # Backward. optimizer.zero_grad() loss.backward() optimizer.step() # Switch the model to evaluating mode. model.eval() # Compute prediction. logits = model(X_sign) pred = logits.argmax(1) # Evaluate the prediction. val_acc, test_acc = evaluate(g, pred) print( f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test" f" acc: {test_acc:.3f}" ) if __name__ == "__main__": # If CUDA is available, use GPU to accelerate the training, use CPU # otherwise. dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load graph from the existing dataset. dataset = CoraGraphDataset() g = dataset[0].to(dev) # Create the sparse adjacency matrix A (note that W was used as the notation # for adjacency matrix in the original paper). indices = torch.stack(g.edges()) N = g.num_nodes() A = dglsp.spmatrix(indices, shape=(N, N)) # Calculate the symmetrically normalized adjacency matrix. I = dglsp.identity(A.shape, device=dev) A_hat = A + I D_hat = dglsp.diag(A_hat.sum(dim=1)) ** -0.5 A_hat = D_hat @ A_hat @ D_hat # 2-hop diffusion. r = 2 X = g.ndata["feat"] X_sign = sign_diffusion(A_hat, X, r) # Create SIGN model. in_size = X.shape[1] out_size = dataset.num_classes model = SIGN(in_size, out_size, r).to(dev) # Kick off training. train(model, g, X_sign)
7476db67d7a9a1e950e4e9ac795f4d9a8fc1af7d
bdf647d2f626578aa447258b7529f4acfdb2cfba
/tencentcloud/tke/v20180525/models.py
26b20dc4ac138734595287fda29734009f79bad4
[ "Apache-2.0" ]
permissive
psixdp/tencentcloud-sdk-python
2c93528b9d7a5cec1fa38c3dd140a277abf8d26e
7e0ec01ebb50cbfb92c60ed1f29a59b77199ccea
refs/heads/master
2020-06-30T22:12:23.331433
2019-08-02T03:16:09
2019-08-02T03:16:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
43,176
py
# -*- coding: utf8 -*- # Copyright (c) 2017-2018 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tencentcloud.common.abstract_model import AbstractModel class AddExistedInstancesRequest(AbstractModel): """AddExistedInstances请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param InstanceIds: 实例列表 :type InstanceIds: list of str :param InstanceAdvancedSettings: 实例额外需要设置参数信息 :type InstanceAdvancedSettings: :class:`tencentcloud.tke.v20180525.models.InstanceAdvancedSettings` :param EnhancedService: 增强服务。通过该参数可以指定是否开启云安全、云监控等服务。若不指定该参数,则默认开启云监控、云安全服务。 :type EnhancedService: :class:`tencentcloud.tke.v20180525.models.EnhancedService` :param LoginSettings: 节点登录信息(目前仅支持使用Password或者单个KeyIds) :type LoginSettings: :class:`tencentcloud.tke.v20180525.models.LoginSettings` :param SecurityGroupIds: 实例所属安全组。该参数可以通过调用 DescribeSecurityGroups 的返回值中的sgId字段来获取。若不指定该参数,则绑定默认安全组。(目前仅支持设置单个sgId) :type SecurityGroupIds: list of str """ self.ClusterId = None self.InstanceIds = None self.InstanceAdvancedSettings = None self.EnhancedService = None self.LoginSettings = None self.SecurityGroupIds = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.InstanceIds = params.get("InstanceIds") if params.get("InstanceAdvancedSettings") is not None: self.InstanceAdvancedSettings = InstanceAdvancedSettings() self.InstanceAdvancedSettings._deserialize(params.get("InstanceAdvancedSettings")) if params.get("EnhancedService") is not None: self.EnhancedService = EnhancedService() self.EnhancedService._deserialize(params.get("EnhancedService")) if params.get("LoginSettings") is not None: self.LoginSettings = LoginSettings() self.LoginSettings._deserialize(params.get("LoginSettings")) self.SecurityGroupIds = params.get("SecurityGroupIds") class AddExistedInstancesResponse(AbstractModel): """AddExistedInstances返回参数结构体 """ def __init__(self): """ :param FailedInstanceIds: 失败的节点ID :type FailedInstanceIds: list of str :param SuccInstanceIds: 成功的节点ID :type SuccInstanceIds: list of str :param TimeoutInstanceIds: 超时未返回出来节点的ID(可能失败,也可能成功) :type TimeoutInstanceIds: list of str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.FailedInstanceIds = None self.SuccInstanceIds = None self.TimeoutInstanceIds = None self.RequestId = None def _deserialize(self, params): self.FailedInstanceIds = params.get("FailedInstanceIds") self.SuccInstanceIds = params.get("SuccInstanceIds") self.TimeoutInstanceIds = params.get("TimeoutInstanceIds") self.RequestId = params.get("RequestId") class Cluster(AbstractModel): """集群信息结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param ClusterName: 集群名称 :type ClusterName: str :param ClusterDescription: 集群描述 :type ClusterDescription: str :param ClusterVersion: 集群版本(默认值为1.10.5) :type ClusterVersion: str :param ClusterOs: 集群系统。centos7.2x86_64 或者 ubuntu16.04.1 LTSx86_64,默认取值为ubuntu16.04.1 LTSx86_64 :type ClusterOs: str :param ClusterType: 集群类型,托管集群:MANAGED_CLUSTER,独立集群:INDEPENDENT_CLUSTER。 :type ClusterType: str :param ClusterNetworkSettings: 集群网络相关参数 :type ClusterNetworkSettings: :class:`tencentcloud.tke.v20180525.models.ClusterNetworkSettings` :param ClusterNodeNum: 集群当前node数量 :type ClusterNodeNum: int :param ProjectId: 集群所属的项目ID :type ProjectId: int """ self.ClusterId = None self.ClusterName = None self.ClusterDescription = None self.ClusterVersion = None self.ClusterOs = None self.ClusterType = None self.ClusterNetworkSettings = None self.ClusterNodeNum = None self.ProjectId = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.ClusterName = params.get("ClusterName") self.ClusterDescription = params.get("ClusterDescription") self.ClusterVersion = params.get("ClusterVersion") self.ClusterOs = params.get("ClusterOs") self.ClusterType = params.get("ClusterType") if params.get("ClusterNetworkSettings") is not None: self.ClusterNetworkSettings = ClusterNetworkSettings() self.ClusterNetworkSettings._deserialize(params.get("ClusterNetworkSettings")) self.ClusterNodeNum = params.get("ClusterNodeNum") self.ProjectId = params.get("ProjectId") class ClusterAdvancedSettings(AbstractModel): """集群高级配置 """ def __init__(self): """ :param IPVS: 是否启用IPVS :type IPVS: bool :param AsEnabled: 是否启用集群节点扩缩容 :type AsEnabled: bool :param ContainerRuntime: 集群使用的runtime类型,包括"docker"和"containerd"两种类型,默认为"docker" :type ContainerRuntime: str """ self.IPVS = None self.AsEnabled = None self.ContainerRuntime = None def _deserialize(self, params): self.IPVS = params.get("IPVS") self.AsEnabled = params.get("AsEnabled") self.ContainerRuntime = params.get("ContainerRuntime") class ClusterBasicSettings(AbstractModel): """描述集群的基本配置信息 """ def __init__(self): """ :param ClusterOs: 集群系统。centos7.2x86_64 或者 ubuntu16.04.1 LTSx86_64,默认取值为ubuntu16.04.1 LTSx86_64 :type ClusterOs: str :param ClusterVersion: 集群版本,默认值为1.10.5 :type ClusterVersion: str :param ClusterName: 集群名称 :type ClusterName: str :param ClusterDescription: 集群描述 :type ClusterDescription: str :param VpcId: 私有网络ID,形如vpc-xxx。创建托管空集群时必传。 :type VpcId: str :param ProjectId: 集群内新增资源所属项目ID。 :type ProjectId: int """ self.ClusterOs = None self.ClusterVersion = None self.ClusterName = None self.ClusterDescription = None self.VpcId = None self.ProjectId = None def _deserialize(self, params): self.ClusterOs = params.get("ClusterOs") self.ClusterVersion = params.get("ClusterVersion") self.ClusterName = params.get("ClusterName") self.ClusterDescription = params.get("ClusterDescription") self.VpcId = params.get("VpcId") self.ProjectId = params.get("ProjectId") class ClusterCIDRSettings(AbstractModel): """集群容器网络相关参数 """ def __init__(self): """ :param ClusterCIDR: 用于分配集群容器和服务 IP 的 CIDR,不得与 VPC CIDR 冲突,也不得与同 VPC 内其他集群 CIDR 冲突 :type ClusterCIDR: str :param IgnoreClusterCIDRConflict: 是否忽略 ClusterCIDR 冲突错误, 默认不忽略 :type IgnoreClusterCIDRConflict: bool :param MaxNodePodNum: 集群中每个Node上最大的Pod数量 :type MaxNodePodNum: int :param MaxClusterServiceNum: 集群最大的service数量 :type MaxClusterServiceNum: int """ self.ClusterCIDR = None self.IgnoreClusterCIDRConflict = None self.MaxNodePodNum = None self.MaxClusterServiceNum = None def _deserialize(self, params): self.ClusterCIDR = params.get("ClusterCIDR") self.IgnoreClusterCIDRConflict = params.get("IgnoreClusterCIDRConflict") self.MaxNodePodNum = params.get("MaxNodePodNum") self.MaxClusterServiceNum = params.get("MaxClusterServiceNum") class ClusterNetworkSettings(AbstractModel): """集群网络相关的参数 """ def __init__(self): """ :param ClusterCIDR: 用于分配集群容器和服务 IP 的 CIDR,不得与 VPC CIDR 冲突,也不得与同 VPC 内其他集群 CIDR 冲突 :type ClusterCIDR: str :param IgnoreClusterCIDRConflict: 是否忽略 ClusterCIDR 冲突错误, 默认不忽略 :type IgnoreClusterCIDRConflict: bool :param MaxNodePodNum: 集群中每个Node上最大的Pod数量(默认为256) :type MaxNodePodNum: int :param MaxClusterServiceNum: 集群最大的service数量(默认为256) :type MaxClusterServiceNum: int :param Ipvs: 是否启用IPVS(默认不开启) :type Ipvs: bool :param VpcId: 集群的VPCID(如果创建空集群,为必传值,否则自动设置为和集群的节点保持一致) :type VpcId: str :param Cni: 网络插件是否启用CNI(默认开启) :type Cni: bool """ self.ClusterCIDR = None self.IgnoreClusterCIDRConflict = None self.MaxNodePodNum = None self.MaxClusterServiceNum = None self.Ipvs = None self.VpcId = None self.Cni = None def _deserialize(self, params): self.ClusterCIDR = params.get("ClusterCIDR") self.IgnoreClusterCIDRConflict = params.get("IgnoreClusterCIDRConflict") self.MaxNodePodNum = params.get("MaxNodePodNum") self.MaxClusterServiceNum = params.get("MaxClusterServiceNum") self.Ipvs = params.get("Ipvs") self.VpcId = params.get("VpcId") self.Cni = params.get("Cni") class CreateClusterInstancesRequest(AbstractModel): """CreateClusterInstances请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群 ID,请填写 查询集群列表 接口中返回的 clusterId 字段 :type ClusterId: str :param RunInstancePara: CVM创建透传参数,json化字符串格式,详见[CVM创建实例](https://cloud.tencent.com/document/product/213/15730)接口。 :type RunInstancePara: str :param InstanceAdvancedSettings: 实例额外需要设置参数信息 :type InstanceAdvancedSettings: :class:`tencentcloud.tke.v20180525.models.InstanceAdvancedSettings` """ self.ClusterId = None self.RunInstancePara = None self.InstanceAdvancedSettings = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.RunInstancePara = params.get("RunInstancePara") if params.get("InstanceAdvancedSettings") is not None: self.InstanceAdvancedSettings = InstanceAdvancedSettings() self.InstanceAdvancedSettings._deserialize(params.get("InstanceAdvancedSettings")) class CreateClusterInstancesResponse(AbstractModel): """CreateClusterInstances返回参数结构体 """ def __init__(self): """ :param InstanceIdSet: 节点实例ID :type InstanceIdSet: list of str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.InstanceIdSet = None self.RequestId = None def _deserialize(self, params): self.InstanceIdSet = params.get("InstanceIdSet") self.RequestId = params.get("RequestId") class CreateClusterRequest(AbstractModel): """CreateCluster请求参数结构体 """ def __init__(self): """ :param ClusterCIDRSettings: 集群容器网络配置信息 :type ClusterCIDRSettings: :class:`tencentcloud.tke.v20180525.models.ClusterCIDRSettings` :param ClusterType: 集群类型,托管集群:MANAGED_CLUSTER,独立集群:INDEPENDENT_CLUSTER。 :type ClusterType: str :param RunInstancesForNode: CVM创建透传参数,json化字符串格式,详见[CVM创建实例](https://cloud.tencent.com/document/product/213/15730)接口。 :type RunInstancesForNode: list of RunInstancesForNode :param ClusterBasicSettings: 集群的基本配置信息 :type ClusterBasicSettings: :class:`tencentcloud.tke.v20180525.models.ClusterBasicSettings` :param ClusterAdvancedSettings: 集群高级配置信息 :type ClusterAdvancedSettings: :class:`tencentcloud.tke.v20180525.models.ClusterAdvancedSettings` :param InstanceAdvancedSettings: 节点高级配置信息 :type InstanceAdvancedSettings: :class:`tencentcloud.tke.v20180525.models.InstanceAdvancedSettings` :param ExistedInstancesForNode: 已存在实例的配置信息 :type ExistedInstancesForNode: list of ExistedInstancesForNode """ self.ClusterCIDRSettings = None self.ClusterType = None self.RunInstancesForNode = None self.ClusterBasicSettings = None self.ClusterAdvancedSettings = None self.InstanceAdvancedSettings = None self.ExistedInstancesForNode = None def _deserialize(self, params): if params.get("ClusterCIDRSettings") is not None: self.ClusterCIDRSettings = ClusterCIDRSettings() self.ClusterCIDRSettings._deserialize(params.get("ClusterCIDRSettings")) self.ClusterType = params.get("ClusterType") if params.get("RunInstancesForNode") is not None: self.RunInstancesForNode = [] for item in params.get("RunInstancesForNode"): obj = RunInstancesForNode() obj._deserialize(item) self.RunInstancesForNode.append(obj) if params.get("ClusterBasicSettings") is not None: self.ClusterBasicSettings = ClusterBasicSettings() self.ClusterBasicSettings._deserialize(params.get("ClusterBasicSettings")) if params.get("ClusterAdvancedSettings") is not None: self.ClusterAdvancedSettings = ClusterAdvancedSettings() self.ClusterAdvancedSettings._deserialize(params.get("ClusterAdvancedSettings")) if params.get("InstanceAdvancedSettings") is not None: self.InstanceAdvancedSettings = InstanceAdvancedSettings() self.InstanceAdvancedSettings._deserialize(params.get("InstanceAdvancedSettings")) if params.get("ExistedInstancesForNode") is not None: self.ExistedInstancesForNode = [] for item in params.get("ExistedInstancesForNode"): obj = ExistedInstancesForNode() obj._deserialize(item) self.ExistedInstancesForNode.append(obj) class CreateClusterResponse(AbstractModel): """CreateCluster返回参数结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.ClusterId = None self.RequestId = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.RequestId = params.get("RequestId") class DeleteClusterInstancesRequest(AbstractModel): """DeleteClusterInstances请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param InstanceIds: 主机InstanceId列表 :type InstanceIds: list of str :param InstanceDeleteMode: 集群实例删除时的策略:terminate(销毁实例,仅支持按量计费云主机实例) retain (仅移除,保留实例) :type InstanceDeleteMode: str """ self.ClusterId = None self.InstanceIds = None self.InstanceDeleteMode = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.InstanceIds = params.get("InstanceIds") self.InstanceDeleteMode = params.get("InstanceDeleteMode") class DeleteClusterInstancesResponse(AbstractModel): """DeleteClusterInstances返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteClusterRequest(AbstractModel): """DeleteCluster请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param InstanceDeleteMode: 集群实例删除时的策略:terminate(销毁实例,仅支持按量计费云主机实例) retain (仅移除,保留实例) :type InstanceDeleteMode: str """ self.ClusterId = None self.InstanceDeleteMode = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.InstanceDeleteMode = params.get("InstanceDeleteMode") class DeleteClusterResponse(AbstractModel): """DeleteCluster返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DescribeClusterInstancesRequest(AbstractModel): """DescribeClusterInstances请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群ID :type ClusterId: str :param Offset: 偏移量,默认0 :type Offset: int :param Limit: 最大输出条数,默认20 :type Limit: int :param InstanceIds: 需要获取的节点实例Id列表(默认为空,表示拉取集群下所有节点实例) :type InstanceIds: list of str """ self.ClusterId = None self.Offset = None self.Limit = None self.InstanceIds = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.InstanceIds = params.get("InstanceIds") class DescribeClusterInstancesResponse(AbstractModel): """DescribeClusterInstances返回参数结构体 """ def __init__(self): """ :param TotalCount: 集群中实例总数 :type TotalCount: int :param InstanceSet: 集群中实例列表 :type InstanceSet: list of Instance :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.InstanceSet = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("InstanceSet") is not None: self.InstanceSet = [] for item in params.get("InstanceSet"): obj = Instance() obj._deserialize(item) self.InstanceSet.append(obj) self.RequestId = params.get("RequestId") class DescribeClusterSecurityRequest(AbstractModel): """DescribeClusterSecurity请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群 ID,请填写 查询集群列表 接口中返回的 clusterId 字段 :type ClusterId: str """ self.ClusterId = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") class DescribeClusterSecurityResponse(AbstractModel): """DescribeClusterSecurity返回参数结构体 """ def __init__(self): """ :param UserName: 集群的账号名称 :type UserName: str :param Password: 集群的访问密码 :type Password: str :param CertificationAuthority: 集群访问CA证书 :type CertificationAuthority: str :param ClusterExternalEndpoint: 集群访问的地址 :type ClusterExternalEndpoint: str :param Domain: 集群访问的域名 :type Domain: str :param PgwEndpoint: 集群Endpoint地址 :type PgwEndpoint: str :param SecurityPolicy: 集群访问策略组 :type SecurityPolicy: list of str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.UserName = None self.Password = None self.CertificationAuthority = None self.ClusterExternalEndpoint = None self.Domain = None self.PgwEndpoint = None self.SecurityPolicy = None self.RequestId = None def _deserialize(self, params): self.UserName = params.get("UserName") self.Password = params.get("Password") self.CertificationAuthority = params.get("CertificationAuthority") self.ClusterExternalEndpoint = params.get("ClusterExternalEndpoint") self.Domain = params.get("Domain") self.PgwEndpoint = params.get("PgwEndpoint") self.SecurityPolicy = params.get("SecurityPolicy") self.RequestId = params.get("RequestId") class DescribeClustersRequest(AbstractModel): """DescribeClusters请求参数结构体 """ def __init__(self): """ :param ClusterIds: 集群ID列表(为空时, 表示获取账号下所有集群) :type ClusterIds: list of str :param Offset: 偏移量,默认0 :type Offset: int :param Limit: 最大输出条数,默认20 :type Limit: int :param Filters: 过滤条件,当前只支持按照单个条件ClusterName进行过滤 :type Filters: list of Filter """ self.ClusterIds = None self.Offset = None self.Limit = None self.Filters = None def _deserialize(self, params): self.ClusterIds = params.get("ClusterIds") self.Offset = params.get("Offset") self.Limit = params.get("Limit") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) class DescribeClustersResponse(AbstractModel): """DescribeClusters返回参数结构体 """ def __init__(self): """ :param TotalCount: 集群总个数 :type TotalCount: int :param Clusters: 集群信息列表 :type Clusters: list of Cluster :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.Clusters = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("Clusters") is not None: self.Clusters = [] for item in params.get("Clusters"): obj = Cluster() obj._deserialize(item) self.Clusters.append(obj) self.RequestId = params.get("RequestId") class DescribeExistedInstancesRequest(AbstractModel): """DescribeExistedInstances请求参数结构体 """ def __init__(self): """ :param ClusterId: 集群 ID,请填写查询集群列表 接口中返回的 ClusterId 字段(仅通过ClusterId获取需要过滤条件中的VPCID,比较状态时会使用该地域下所有集群中的节点进行比较。参数不支持同时指定InstanceIds和ClusterId。 :type ClusterId: str :param InstanceIds: 按照一个或者多个实例ID查询。实例ID形如:ins-xxxxxxxx。(此参数的具体格式可参考API简介的id.N一节)。每次请求的实例的上限为100。参数不支持同时指定InstanceIds和Filters。 :type InstanceIds: list of str :param Filters: 过滤条件,字段和详见[CVM查询实例](https://cloud.tencent.com/document/api/213/15728)如果设置了ClusterId,会附加集群的VPCID作为查询字段,在此情况下如果在Filter中指定了"vpc-id"作为过滤字段,指定的VPCID必须与集群的VPCID相同。 :type Filters: :class:`tencentcloud.tke.v20180525.models.Filter` :param VagueIpAddress: 实例IP进行过滤(同时支持内网IP和外网IP) :type VagueIpAddress: str :param VagueInstanceName: 实例名称进行过滤 :type VagueInstanceName: str :param Offset: 偏移量,默认为0。关于Offset的更进一步介绍请参考 API [简介](https://cloud.tencent.com/document/api/213/15688)中的相关小节。 :type Offset: int :param Limit: 返回数量,默认为20,最大值为100。关于Limit的更进一步介绍请参考 API [简介](https://cloud.tencent.com/document/api/213/15688)中的相关小节。 :type Limit: int """ self.ClusterId = None self.InstanceIds = None self.Filters = None self.VagueIpAddress = None self.VagueInstanceName = None self.Offset = None self.Limit = None def _deserialize(self, params): self.ClusterId = params.get("ClusterId") self.InstanceIds = params.get("InstanceIds") if params.get("Filters") is not None: self.Filters = Filter() self.Filters._deserialize(params.get("Filters")) self.VagueIpAddress = params.get("VagueIpAddress") self.VagueInstanceName = params.get("VagueInstanceName") self.Offset = params.get("Offset") self.Limit = params.get("Limit") class DescribeExistedInstancesResponse(AbstractModel): """DescribeExistedInstances返回参数结构体 """ def __init__(self): """ :param ExistedInstanceSet: 已经存在的实例信息数组。 注意:此字段可能返回 null,表示取不到有效值。 :type ExistedInstanceSet: list of ExistedInstance :param TotalCount: 符合条件的实例数量。 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.ExistedInstanceSet = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): if params.get("ExistedInstanceSet") is not None: self.ExistedInstanceSet = [] for item in params.get("ExistedInstanceSet"): obj = ExistedInstance() obj._deserialize(item) self.ExistedInstanceSet.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class EnhancedService(AbstractModel): """描述了实例的增强服务启用情况与其设置,如云安全,云监控等实例 Agent """ def __init__(self): """ :param SecurityService: 开启云安全服务。若不指定该参数,则默认开启云安全服务。 :type SecurityService: :class:`tencentcloud.tke.v20180525.models.RunSecurityServiceEnabled` :param MonitorService: 开启云监控服务。若不指定该参数,则默认开启云监控服务。 :type MonitorService: :class:`tencentcloud.tke.v20180525.models.RunMonitorServiceEnabled` """ self.SecurityService = None self.MonitorService = None def _deserialize(self, params): if params.get("SecurityService") is not None: self.SecurityService = RunSecurityServiceEnabled() self.SecurityService._deserialize(params.get("SecurityService")) if params.get("MonitorService") is not None: self.MonitorService = RunMonitorServiceEnabled() self.MonitorService._deserialize(params.get("MonitorService")) class ExistedInstance(AbstractModel): """已经存在的实例信息 """ def __init__(self): """ :param Usable: 实例是否支持加入集群(TRUE 可以加入 FALSE 不能加入)。 注意:此字段可能返回 null,表示取不到有效值。 :type Usable: bool :param UnusableReason: 实例不支持加入的原因。 注意:此字段可能返回 null,表示取不到有效值。 :type UnusableReason: str :param AlreadyInCluster: 实例已经所在的集群ID。 注意:此字段可能返回 null,表示取不到有效值。 :type AlreadyInCluster: str :param InstanceId: 实例ID形如:ins-xxxxxxxx。 :type InstanceId: str :param InstanceName: 实例名称。 注意:此字段可能返回 null,表示取不到有效值。 :type InstanceName: str :param PrivateIpAddresses: 实例主网卡的内网IP列表。 注意:此字段可能返回 null,表示取不到有效值。 :type PrivateIpAddresses: list of str :param PublicIpAddresses: 实例主网卡的公网IP列表。 注意:此字段可能返回 null,表示取不到有效值。 :type PublicIpAddresses: list of str :param CreatedTime: 创建时间。按照ISO8601标准表示,并且使用UTC时间。格式为:YYYY-MM-DDThh:mm:ssZ。 注意:此字段可能返回 null,表示取不到有效值。 :type CreatedTime: str :param InstanceChargeType: 实例计费模式。取值范围: PREPAID:表示预付费,即包年包月 POSTPAID_BY_HOUR:表示后付费,即按量计费 CDHPAID:CDH付费,即只对CDH计费,不对CDH上的实例计费。 注意:此字段可能返回 null,表示取不到有效值。 :type InstanceChargeType: str :param CPU: 实例的CPU核数,单位:核。 注意:此字段可能返回 null,表示取不到有效值。 :type CPU: int :param Memory: 实例内存容量,单位:GB。 注意:此字段可能返回 null,表示取不到有效值。 :type Memory: int :param OsName: 操作系统名称。 注意:此字段可能返回 null,表示取不到有效值。 :type OsName: str :param InstanceType: 实例机型。 注意:此字段可能返回 null,表示取不到有效值。 :type InstanceType: str """ self.Usable = None self.UnusableReason = None self.AlreadyInCluster = None self.InstanceId = None self.InstanceName = None self.PrivateIpAddresses = None self.PublicIpAddresses = None self.CreatedTime = None self.InstanceChargeType = None self.CPU = None self.Memory = None self.OsName = None self.InstanceType = None def _deserialize(self, params): self.Usable = params.get("Usable") self.UnusableReason = params.get("UnusableReason") self.AlreadyInCluster = params.get("AlreadyInCluster") self.InstanceId = params.get("InstanceId") self.InstanceName = params.get("InstanceName") self.PrivateIpAddresses = params.get("PrivateIpAddresses") self.PublicIpAddresses = params.get("PublicIpAddresses") self.CreatedTime = params.get("CreatedTime") self.InstanceChargeType = params.get("InstanceChargeType") self.CPU = params.get("CPU") self.Memory = params.get("Memory") self.OsName = params.get("OsName") self.InstanceType = params.get("InstanceType") class ExistedInstancesForNode(AbstractModel): """不同角色的已存在节点配置参数 """ def __init__(self): """ :param NodeRole: 节点角色,取值:MASTER_ETCD, WORKER。MASTER_ETCD只有在创建 INDEPENDENT_CLUSTER 独立集群时需要指定。 :type NodeRole: str :param ExistedInstancesPara: 已存在实例的重装参数 :type ExistedInstancesPara: :class:`tencentcloud.tke.v20180525.models.ExistedInstancesPara` """ self.NodeRole = None self.ExistedInstancesPara = None def _deserialize(self, params): self.NodeRole = params.get("NodeRole") if params.get("ExistedInstancesPara") is not None: self.ExistedInstancesPara = ExistedInstancesPara() self.ExistedInstancesPara._deserialize(params.get("ExistedInstancesPara")) class ExistedInstancesPara(AbstractModel): """已存在实例的重装参数 """ def __init__(self): """ :param InstanceIds: 集群ID :type InstanceIds: list of str :param InstanceAdvancedSettings: 实例额外需要设置参数信息 :type InstanceAdvancedSettings: :class:`tencentcloud.tke.v20180525.models.InstanceAdvancedSettings` :param EnhancedService: 增强服务。通过该参数可以指定是否开启云安全、云监控等服务。若不指定该参数,则默认开启云监控、云安全服务。 :type EnhancedService: :class:`tencentcloud.tke.v20180525.models.EnhancedService` :param LoginSettings: 节点登录信息(目前仅支持使用Password或者单个KeyIds) :type LoginSettings: :class:`tencentcloud.tke.v20180525.models.LoginSettings` :param SecurityGroupIds: 实例所属安全组。该参数可以通过调用 DescribeSecurityGroups 的返回值中的sgId字段来获取。若不指定该参数,则绑定默认安全组。(目前仅支持设置单个sgId) :type SecurityGroupIds: list of str """ self.InstanceIds = None self.InstanceAdvancedSettings = None self.EnhancedService = None self.LoginSettings = None self.SecurityGroupIds = None def _deserialize(self, params): self.InstanceIds = params.get("InstanceIds") if params.get("InstanceAdvancedSettings") is not None: self.InstanceAdvancedSettings = InstanceAdvancedSettings() self.InstanceAdvancedSettings._deserialize(params.get("InstanceAdvancedSettings")) if params.get("EnhancedService") is not None: self.EnhancedService = EnhancedService() self.EnhancedService._deserialize(params.get("EnhancedService")) if params.get("LoginSettings") is not None: self.LoginSettings = LoginSettings() self.LoginSettings._deserialize(params.get("LoginSettings")) self.SecurityGroupIds = params.get("SecurityGroupIds") class Filter(AbstractModel): """过滤器 """ def __init__(self): """ :param Name: 属性名称, 若存在多个Filter时,Filter间的关系为逻辑与(AND)关系。 :type Name: str :param Values: 属性值, 若同一个Filter存在多个Values,同一Filter下Values间的关系为逻辑或(OR)关系。 :type Values: list of str """ self.Name = None self.Values = None def _deserialize(self, params): self.Name = params.get("Name") self.Values = params.get("Values") class Instance(AbstractModel): """集群的实例信息 """ def __init__(self): """ :param InstanceId: 实例ID :type InstanceId: str :param InstanceRole: 节点角色, MASTER, WORKER, ETCD, MASTER_ETCD,ALL, 默认为WORKER :type InstanceRole: str :param FailedReason: 实例异常(或者处于初始化中)的原因 :type FailedReason: str :param InstanceState: 实例的状态(running 运行中,initializing 初始化中,failed 异常) :type InstanceState: str """ self.InstanceId = None self.InstanceRole = None self.FailedReason = None self.InstanceState = None def _deserialize(self, params): self.InstanceId = params.get("InstanceId") self.InstanceRole = params.get("InstanceRole") self.FailedReason = params.get("FailedReason") self.InstanceState = params.get("InstanceState") class InstanceAdvancedSettings(AbstractModel): """描述了k8s集群相关配置与信息。 """ def __init__(self): """ :param MountTarget: 数据盘挂载点, 默认不挂载数据盘. 已格式化的 ext3,ext4,xfs 文件系统的数据盘将直接挂载,其他文件系统或未格式化的数据盘将自动格式化为ext4 并挂载,请注意备份数据! 无数据盘或有多块数据盘的云主机此设置不生效。 :type MountTarget: str :param DockerGraphPath: dockerd --graph 指定值, 默认为 /var/lib/docker :type DockerGraphPath: str :param UserScript: base64 编码的用户脚本, 此脚本会在 k8s 组件运行后执行, 需要用户保证脚本的可重入及重试逻辑, 脚本及其生成的日志文件可在节点的 /data/ccs_userscript/ 路径查看, 如果要求节点需要在进行初始化完成后才可加入调度, 可配合 unschedulable 参数使用, 在 userScript 最后初始化完成后, 添加 kubectl uncordon nodename --kubeconfig=/root/.kube/config 命令使节点加入调度 :type UserScript: str :param Unschedulable: 设置加入的节点是否参与调度,默认值为0,表示参与调度;非0表示不参与调度, 待节点初始化完成之后, 可执行kubectl uncordon nodename使node加入调度. :type Unschedulable: int """ self.MountTarget = None self.DockerGraphPath = None self.UserScript = None self.Unschedulable = None def _deserialize(self, params): self.MountTarget = params.get("MountTarget") self.DockerGraphPath = params.get("DockerGraphPath") self.UserScript = params.get("UserScript") self.Unschedulable = params.get("Unschedulable") class LoginSettings(AbstractModel): """描述了实例登录相关配置与信息。 """ def __init__(self): """ :param Password: 实例登录密码。不同操作系统类型密码复杂度限制不一样,具体如下:<br><li>Linux实例密码必须8到16位,至少包括两项[a-z,A-Z]、[0-9] 和 [( ) ` ~ ! @ # $ % ^ & * - + = | { } [ ] : ; ' , . ? / ]中的特殊符号。<br><li>Windows实例密码必须12到16位,至少包括三项[a-z],[A-Z],[0-9] 和 [( ) ` ~ ! @ # $ % ^ & * - + = { } [ ] : ; ' , . ? /]中的特殊符号。<br><br>若不指定该参数,则由系统随机生成密码,并通过站内信方式通知到用户。 注意:此字段可能返回 null,表示取不到有效值。 :type Password: str :param KeyIds: 密钥ID列表。关联密钥后,就可以通过对应的私钥来访问实例;KeyId可通过接口DescribeKeyPairs获取,密钥与密码不能同时指定,同时Windows操作系统不支持指定密钥。当前仅支持购买的时候指定一个密钥。 注意:此字段可能返回 null,表示取不到有效值。 :type KeyIds: list of str :param KeepImageLogin: 保持镜像的原始设置。该参数与Password或KeyIds.N不能同时指定。只有使用自定义镜像、共享镜像或外部导入镜像创建实例时才能指定该参数为TRUE。取值范围:<br><li>TRUE:表示保持镜像的登录设置<br><li>FALSE:表示不保持镜像的登录设置<br><br>默认取值:FALSE。 注意:此字段可能返回 null,表示取不到有效值。 :type KeepImageLogin: str """ self.Password = None self.KeyIds = None self.KeepImageLogin = None def _deserialize(self, params): self.Password = params.get("Password") self.KeyIds = params.get("KeyIds") self.KeepImageLogin = params.get("KeepImageLogin") class RunInstancesForNode(AbstractModel): """不同角色的节点配置参数 """ def __init__(self): """ :param NodeRole: 节点角色,取值:MASTER_ETCD, WORKER。MASTER_ETCD只有在创建 INDEPENDENT_CLUSTER 独立集群时需要指定。 :type NodeRole: str :param RunInstancesPara: CVM创建透传参数,json化字符串格式,详见[CVM创建实例](https://cloud.tencent.com/document/product/213/15730)接口,传入公共参数外的其他参数即可,其中ImageId会替换为TKE集群OS对应的镜像。 :type RunInstancesPara: list of str """ self.NodeRole = None self.RunInstancesPara = None def _deserialize(self, params): self.NodeRole = params.get("NodeRole") self.RunInstancesPara = params.get("RunInstancesPara") class RunMonitorServiceEnabled(AbstractModel): """描述了 “云监控” 服务相关的信息 """ def __init__(self): """ :param Enabled: 是否开启[云监控](/document/product/248)服务。取值范围:<br><li>TRUE:表示开启云监控服务<br><li>FALSE:表示不开启云监控服务<br><br>默认取值:TRUE。 :type Enabled: bool """ self.Enabled = None def _deserialize(self, params): self.Enabled = params.get("Enabled") class RunSecurityServiceEnabled(AbstractModel): """描述了 “云安全” 服务相关的信息 """ def __init__(self): """ :param Enabled: 是否开启[云安全](/document/product/296)服务。取值范围:<br><li>TRUE:表示开启云安全服务<br><li>FALSE:表示不开启云安全服务<br><br>默认取值:TRUE。 :type Enabled: bool """ self.Enabled = None def _deserialize(self, params): self.Enabled = params.get("Enabled")
f77ea489f20c231434ca0f1caea9de519cf3ca2f
b7a2a80843fa5141ffb9c7b4439f1d2ac713af30
/Version2/SystemKommandos.py
3eb10a56a4624476aab5ba3c18ba953ddb6bde07
[]
no_license
wunnox/python_grundlagen
df1bc2b9b1b561bd6733ccc25305e799a48e714e
fa84d7aae7332a7acbb3ba7ff0fe2216cc345fc0
refs/heads/master
2023-05-01T12:19:23.208445
2023-04-16T11:29:01
2023-04-16T11:29:01
222,099,539
2
3
null
2019-12-19T10:56:43
2019-11-16T12:57:54
Python
UTF-8
Python
false
false
323
py
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import print_function import os log = os.popen("ping -c 1 google.com").readlines() for zeile in log: print(zeile.replace("\n", "")) # oder if os.system("ping -c 1 google.com") == 0: print("IP ist erreichbar") else: print("IP ist NICHT erreichbar")
7f2cffad15097d2569d02638773032d76f757de4
8cbbec003a96286a70549c75233568c9fc668c12
/src/bioservices/services.py
f853f9840f0a2e9b2b4de0abca30ed64bd0e3206
[]
no_license
pjshort/bioservices
bce6e623b5d88bf9dbf6ca4a4cfb89a4106b6b5d
7f2f948a03089cb47f9dda3954f4c0697a0fddee
refs/heads/master
2020-12-11T03:47:26.414665
2014-11-22T14:41:44
2014-11-22T14:41:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
30,520
py
# -*- python -*- # # This file is part of bioservices software # # Copyright (c) 2013-2014 - EBI-EMBL # # File author(s): # https://github.com/cokelaer/bioservices # # Distributed under the GPLv3 License. # See accompanying file LICENSE.txt or copy at # http://www.gnu.org/licenses/gpl-3.0.html # # documentation: http://packages.python.org/bioservices # ############################################################################## #$Id$ """Modules with common tools to access web resources""" from __future__ import print_function import os import sys import socket import platform import json from bioservices.settings import BioServicesConfig # fixing compatiblity python 2 and 3 related to merging or urllib and urllib2 in python 3 try: #python 3 from urllib.request import urlopen from urllib.parse import urlparse, urlencode from urllib.error import HTTPError from urllib.request import Request except: from urllib import urlencode from urllib2 import urlopen, Request, HTTPError # This is a hack in case suds is already installed. # Indded, we want suds_jurko instead sys.path = [x for x in sys.path if 'suds-' not in x] import easydev from easydev import Logging __all__ = ["Service", "WSDLService", "RESTService", "BioServicesError", "REST"] class BioServicesError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) # could be part of easydev itself but for now, let us keep it here # inside bioservices class DevTools(object): """wrapper around useful functions. See easydev documentation for details. """ def check_range(self, a, b, value): easydev.check_range(a, b, value, strict=False) def transform_into_list(self, query): print("deprecated transform_to_list. use tolist instead") return easydev.tolist(query) def check_param_in_list(self, param, valid_values): easydev.check_param_in_list(param, valid_values) def swapdict(self, d): return easydev.swapdict(d) def tolist(self, query): return easydev.codecs.tolist(query) def list2string(self, query, sep=",", space=False): return easydev.codecs.list2string(query, sep=sep, space=space) def to_json(self, dictionary): return json.dumps(dictionary) class Service(Logging): """Base class for WSDL and REST classes .. seealso:: :class:`REST`, :class:`WSDLService` """ #: some useful response codes response_codes = { 200: 'OK', 201: 'Created', 400: 'Bad Request. There is a problem with your input', 404: 'Not found. The resource you requests does not exist', 406: "Not Acceptable. Usually headers issue", 410: 'Gone. The resource you requested was removed.', 415: "Unsupported Media Type", 500: 'Internal server error. Most likely a temporary problem', 503: 'Service not available. The server is being updated, try again later' } def __init__(self, name, url=None, verbose=True, requests_per_sec=3): """.. rubric:: Constructor :param str name: a name for this service :param str url: its URL :param bool verbose: prints informative messages if True (default is True) :param requests_per_sec: maximum number of requests per seconds are restricted to 3. You can change that value. If you reach the limit, an error is raise. The reason for this limitation is that some services (e.g.., NCBI) may black list you IP. If you need or can do more (e.g., ChEMBL does not seem to have restrictions), change the value. You can also have several instance but again, if you send too many requests at the same, your future requests may be retricted. Currently implemented for REST only All instances have an attribute called :attr:`~Service.logging` that is an instanceof the :mod:`logging` module. It can be used to print information, warning, error messages:: self.logging.info("informative message") self.logging.warning("warning message") self.logging.error("error message") The attribute :attr:`~Service.debugLevel` can be used to set the behaviour of the logging messages. If the argument verbose is True, the debugLebel is set to INFO. If verbose if False, the debugLevel is set to WARNING. However, you can use the :attr:`debugLevel` attribute to change it to one of DEBUG, INFO, WARNING, ERROR, CRITICAL. debugLevel=WARNING means that only WARNING, ERROR and CRITICAL messages are shown. """ super(Service, self).__init__(level=verbose) self.requests_per_sec = requests_per_sec self._url = url try: if self.url is not None: urlopen(self.url) except Exception as err: self.logging.warning("The URL (%s) provided cannot be reached." % self.url) self.name = name self._easyXMLConversion = True # used by HGNC where some XML contains non-utf-8 characters !! # should be able to fix it with requests once HGNC works again #self._fixing_unicode = False #self._fixing_encoding = "utf-8" self.devtools = DevTools() self.settings = BioServicesConfig() def _get_url(self): return self._url def _set_url(self, url): # something more clever here to check the URL e.g. starts with http if url is not None: url = url.rstrip("/") self._url = url url = property(_get_url, _set_url, doc="URL of this service") def _get_easyXMLConversion(self): return self._easyXMLConversion def _set_easyXMLConversion(self, value): if isinstance(value, bool) is False: raise TypeError("value must be a boolean value (True/False)") self._easyXMLConversion = value easyXMLConversion = property(_get_easyXMLConversion, _set_easyXMLConversion, doc="""If True, xml output from a request are converted to easyXML object (Default behaviour).""") def easyXML(self, res): """Use this method to convert a XML document into an :class:`~bioservices.xmltools.easyXML` object The easyXML object provides utilities to ease access to the XML tag/attributes. Here is a simple example starting from the following XML .. doctest:: >>> from bioservices import * >>> doc = "<xml> <id>1</id> <id>2</id> </xml>" >>> s = Service("name") >>> res = s.easyXML(doc) >>> res.findAll("id") [<id>1</id>, <id>2</id>] """ from bioservices import xmltools return xmltools.easyXML(res) def __str__(self): txt = "This is an instance of %s service" % self.name return txt def pubmed(self, Id): """Open a pubmed Id into a browser tab :param Id: a valid pubmed Id in string or integer format. The URL is a concatenation of the pubmed URL http://www.ncbi.nlm.nih.gov/pubmed/ and the provided Id. """ url = "http://www.ncbi.nlm.nih.gov/pubmed/" import webbrowser webbrowser.open(url + str(Id)) def on_web(self, url): """Open a URL into a browser""" import webbrowser webbrowser.open(url) def save_str_to_image(self, data, filename): """Save string object into a file converting into binary""" with open(filename,'wb') as f: import binascii try: #python3 newres = binascii.a2b_base64(bytes(data, "utf-8")) except: newres = binascii.a2b_base64(data) f.write(newres) class WSDLService(Service): """Class dedicated to the web services based on WSDL/SOAP protocol. .. seealso:: :class:`RESTService`, :class:`Service` """ _service = "WSDL" def __init__(self, name, url, verbose=True): """.. rubric:: Constructor :param str name: a name e.g. Kegg, Reactome, ... :param str url: the URL of the WSDL service :param bool verbose: prints informative messages The :attr:`serv` give access to all WSDL functionalities of the service. The :attr:`methods` is an alias to self.serv.methods and returns the list of functionalities. """ super(WSDLService, self).__init__(name, url, verbose=verbose) self.logging.info("Initialising %s service (WSDL)" % self.name) try: #: attribute to access to the methods provided by this WSDL service from suds.client import Client self.suds = Client(self.url) # reference to the service self.serv = self.suds.service self._update_settings() except Exception: self.logging.error("Could not connect to the service %s " % self.url) raise Exception def _update_settings(self): self.TIMEOUT = self.settings.TIMEOUT def wsdl_methods_info(self): methods = self.suds.wsdl.services[0].ports[0].methods.values() for method in methods: try: print('%s(%s) ' % ( method.name, ', '.join('type:%s: %s - element %s' % (part.type, part.name, part.element) for part in method.soap.input.body.parts))) except: print(method) def _get_methods(self): return [x.name for x in self.suds.wsdl.services[0].ports[0].methods.values()] wsdl_methods = property(_get_methods, doc="returns methods available in the WSDL service") def wsdl_create_factory(self, name, **kargs): params = self.suds.factory.create(name) # e.g., for eutils if "email" in dict(params).keys(): params.email = self.settings.params['user.email'][0] if "tool" in dict(params).keys(): import bioservices params.tool = "BioServices, " + bioservices.__version__ for k,v in kargs.items(): from suds import sudsobject keys = sudsobject.asdict(params).keys() if k in keys: params[k] = v else: msg = "{0} incorrect. Correct ones are {1}" self.logging.error(msg.format(k, keys)) return params def _get_timeout(self): return self.suds.options.timeout def _set_timeout(self, value): self.suds.set_options(timeout=value) self.settings.TIMEOUT = value TIMEOUT = property(_get_timeout, _set_timeout) class RESTbase(Service): _service = "REST" def __init__(self, name, url=None, verbose=True): super(RESTbase, self).__init__(name, url, verbose=verbose) self.logging.info("Initialising %s service (REST)" % self.name) self.last_response = None def http_get(self): # should return unicode raise NotImplementedError def http_post(self): raise NotImplementedError def http_put(self): raise NotImplementedError def http_delete(self): raise NotImplementedError class RESTService(RESTbase): """Class to manipulate REST service You can request an URL with this class that also inherits from :class:`Service`. For debugging: * last_response contains """ def __init__(self, name, url=None, verbose=True): """.. rubric:: Constructor :param str name: a name e.g. Kegg, Reactome, ... :param str url: the URL of the REST service :param str debugLevel: logging level. See :class:`Service`. """ super(RESTService, self).__init__(name, url, verbose=verbose) self.logging.error("Please use REST class instead of RESTService") self.trials = 5 self.timesleep = 1 def getUserAgent(self): self.logging.info('getUserAgent: Begin') try: import urllib2 urllib_agent = 'Python-urllib/%s' % urllib2.__version__ except: import urllib urllib_agent = 'Python-urllib/%s' % urllib.__version__ #clientRevision = '' clientVersion = '' user_agent = 'EBI-Sample-Client/%s (%s; Python %s; %s) %s' % ( clientVersion, os.path.basename(__file__), platform.python_version(), platform.system(), urllib_agent ) self.logging.info('getUserAgent: user_agent: ' + user_agent) self.logging.info('getUserAgent: End') return user_agent def request(self, path, format="xml", baseUrl=True): """Send a request via an URL to the web service. :param str path: the request will be formed as self.url+/+path :param str format: If the expected output is in XML format then it will be converted with :meth:`easyXML`. If the returned document is not in XML, format should be set to any other value. :param str baseUrl: By default, the path argument is appended to the :attr:`url` attribute (the main REST URL). However, sometimes, you would prefer to provide the entire URL yourself (e.g. in psicquic service) If so, set this baseUrl argument to False. .. note:: this is a HTTP GET request .. seealso:: for developers see also the :meth:`_request_timeout` if the site is down or busy. .. note:: you can set the timeout of the connection, which is 1000 seconds by default by changing the :attr:`timeout`. """ for i in range(0, self.trials): res = self._get_request(path, format=format, baseUrl=baseUrl) if res is not None: break import time self.logging.warning("request seemed to have failed.") if i!=self.trials-1: print("Trying again trial {}/{}".format(i+1, self.trials)) time.sleep(self.timesleep) return res def http_get(self, path, format="xml", baseUrl=True): return self.request(path, format=format, baseUrl=baseUrl) def _get_request(self, path, format="xml", baseUrl=True): if path.startswith(self.url): url = path elif baseUrl is False: url = path else: url = self.url + "/" + path self.logging.debug("REST.bioservices.%s request begins" % self.name) self.logging.debug("--Fetching url=%s" % url) if len(url)> 2000: print(url) raise ValueError("URL length (%s) exceeds 2000. Please use a differnt URL" % len(url)) try: res = urlopen(url).read() if format=="xml": if self.easyXMLConversion: #logging.warning("--Conversion to easyXML"), try: res = self.easyXML(res) except Exception as err: self.logging.warning(err.message) self.logging.warning("--Conversion to easyXML failed. returns the raw response"), self.last_response = res return res except socket.timeout: self.logging.warning("Time out. consider increasing the timeout attribute (currently set to {})".format(self.timeout)) except Exception as err: self.logging.debug(err.message) self.logging.debug("An exception occured while reading the URL") self.logging.debug(url) self.logging.debug("Error caught within bioservices. Invalid requested URL ? ") def requestPost(self, requestUrl, params, extra=None): """request with a POST method. :param str requestUrl: the entire URL to request :param dict params: the dictionary of parameter/value pairs :param str extra: an additional string to add after the params if needed. Could be usefule if a parameter/value can not be added to the dictionary. For instance is a parameter has several values Solved in requests module. .. todo:: parameter paranName with a list of values [v1,v2] can be interpreted as paramName=v1&paramName=v2 .. note:: this is a HTTP POST request .. note:: use only by ::`ncbiblast` service so far. """ requestData = urlencode(params) print(requestData) if extra is not None: requestData += extra # Concatenate the two parts. # Errors are indicated by HTTP status codes. try: # Set the HTTP User-agent. user_agent = self.getUserAgent() http_headers = {'User-Agent': user_agent} print(requestUrl) req = Request(requestUrl, None, http_headers) # Make the submission (HTTP POST). print(req) reqH = urlopen(req, requestData) jobId = reqH.read() reqH.close() except HTTPError as err: # Trap exception and output the document to get error message. print(sys.stderr, ex.read()) raise return jobId def urlencode(self, params): """Returns a string compatible with a URL request. :param dict params: a dictionary. Keys are parameters. The pair of key/value are converted into a single string by concatenated the "&key=value" string for each key/value in the dictionary. :: >>> params = {'a':1, 'b':2} >>> urlencode(params) "a=1&b=2" .. note:: returns "a=1&b=2" or "b=2&a=1" since dictionary are not ordered. Note that the first parameter is not preceded by a & sign that you will need to add. """ if isinstance(params, dict)is False: raise TypeError("Params must be a dictionary.") postData = urlencode(params) return postData import requests # replacement for urllib2 (2-3 times faster) from requests.models import Response import requests_cache # use caching wihh requests #import grequests # use asynchronous requests with gevent # Note that grequests should be imported after requests_cache. Otherwise, # one should use a session instance when calling grequests.get, which we do # here below class REST(RESTbase): """ The ideas (sync/async) and code using requests were inspired from the chembl python wrapper but significantly changed. Get one value:: >>> from bioservices import REST >>> s = REST("test", "https://www.ebi.ac.uk/chemblws") >>> res = s.get_one("targets/CHEMBL2476.json", "json") >>> res['organism'] u'Homo sapiens' The caching has two major interests. First one is that it speed up requests if you repeat requests. :: >>> s = REST("test", "https://www.ebi.ac.uk/chemblws") >>> s.CACHING = True >>> # requests will be stored in a local sqlite database >>> s.get_one("targets/CHEMBL2476") >>> # Disconnect your wiki and any network connections. >>> # Without caching you cannot fetch any requests but with >>> # the CACHING on, you can retrieve previous requests: >>> s.get_one("targets/CHEMBL2476") Advantages of requests over urllib requests length is not limited to 2000 characters http://www.g-loaded.eu/2008/10/24/maximum-url-length/ """ content_types = { 'bed': 'text/x-bed', 'default': "application/x-www-form-urlencoded", 'gff3': 'text/x-gff3', 'fasta': 'text/x-fasta', 'json': 'application/json', "jsonp": "text/javascript", "nh": "text/x-nh", 'phylip': 'text/x-phyloxml+xml', 'phyloxml': 'text/x-phyloxml+xml', 'seqxml': 'text/x-seqxml+xml', 'txt': 'text/plain', 'text': 'text/plain', 'xml': 'application/xml', 'yaml': 'text/x-yaml' } #special_characters = ['/', '#', '+'] def __init__(self, name, url=None, verbose=True, cache=False): super(REST, self).__init__(name, url, verbose=verbose) self.CACHE_NAME = self.name + "_bioservices_database" self._session = None self.settings.params['cache.on'][0] = cache if self.CACHING: #import requests_cache self.logging.info("Using local cache %s" % self.CACHE_NAME) requests_cache.install_cache(self.CACHE_NAME) def delete_cache(self): import os if os.path.exists(self.CACHE_NAME + '.sqlite'): msg = "You are about to delete this bioservices cache %s. proceed y/n" res = raw_input(msg % self.CACHE_NAME) if res == "y": os.remove(self.CACHE_NAME + '.sqlite') print("done") else: print("reply 'y' to delete the file") def clear_cache(self): from requests_cache import clear clear() def _get_session(self): if self._session is None: if self.CACHING is True: self._session = self._create_cache_session() else: self._session = self._create_session() return self._session session = property(_get_session) def _create_session(self): """Creates a normal session using HTTPAdapter max retries is defined in the :attr:`MAX_RETRIES` """ self.logging.debug("Creating session (uncached version)") self._session = requests.Session() adapter = requests.adapters.HTTPAdapter(max_retries=self.settings.MAX_RETRIES) #, pool_block=True does not work with asynchronous requests self._session.mount('http://', adapter) self._session.mount('https://', adapter) return self._session def _create_cache_session(self): """Creates a cached session using requests_cache package""" self.logging.debug("Creating session (cache version)") if not self._session: #import requests_cache self.logging.debug("No cached session created yet. Creating one") self._session = requests_cache.CachedSession(self.CACHE_NAME, backend='sqlite', fast_save=self.settings.FAST_SAVE) return self._session def _get_caching(self): return self.settings.params['cache.on'][0] def _set_caching(self, caching): self.devtools.check_param_in_list(caching, [True, False]) self.settings.params['cache.on'][0] = caching # reset the session, which will be automatically created if we # access to the session attribute self._session = None CACHING = property(_get_caching, _set_caching) def _get_timeout(self): return self.settings.TIMEOUT def _set_timeout(self, value): self.settings.TIMEOUT = value TIMEOUT = property(_get_timeout, _set_timeout) def _process_get_request(self, url, session, frmt, data=None, **kwargs): try: res = session.get(url, **kwargs) self.last_response = res res = self._interpret_returned_request(res, frmt) return res except Exception: return None def _interpret_returned_request(self, res, frmt): # must be a Response if isinstance(res, Response) is False: return res # if a response, there is a status code that should be ok if not res.ok: reason = res.reason self.logging.warning("status is not ok with {0}".format(reason)) return res.status_code if frmt == "json": try: return res.json() except: return res # finally return res.content def _apply(self, iterable, fn, *args, **kwargs): return [fn(x, *args, **kwargs) for x in iterable if x is not None] def _get_async(self, keys, frmt='json', params={}): # does not work under pyhon3 so local import import grequests session = self._get_session() try: # build the requests urls = self._get_all_urls(keys, frmt) self.logging.debug("grequests.get processing") rs = (grequests.get(url, session=session, params=params) for key,url in zip(keys, urls)) # execute them self.logging.debug("grequests.map call") ret = grequests.map(rs, size=min(self.settings.CONCURRENT, len(keys))) self.last_response = ret self.logging.debug("grequests.map call done") return ret except Exception as err: self.logging.warning("Error caught in async. " + err.message) return [] def _get_all_urls(self, keys, frmt=None): return ('%s/%s' % (self.url, query) for query in keys) def get_async(self, keys, frmt='json', params={}, **kargs): ret = self._get_async(keys, frmt, params=params, **kargs) return self._apply(ret, self._interpret_returned_request, frmt) def get_sync(self, keys, frmt='json', **kargs): return [self.get_one(key, frmt=frmt, **kargs) for key in keys] def http_get(self, query, frmt='json', params={}, **kargs): """ * query is the suffix that will be appended to the main url attribute. * query is either a string or a list of strings. * if list is larger than ASYNC_THRESHOLD, use asynchronous call. """ if isinstance(query, list) and len(query) > self.settings.ASYNC_THRESHOLD: self.logging.debug("Running async call for a list") return self.get_async(query, frmt, params=params, **kargs) if isinstance(query, list) and len(query) <= self.settings.ASYNC_THRESHOLD: self.logging.debug("Running sync call for a list") return [self.get_one(key, frmt, params=params, **kargs) for key in query] #return self.get_sync(query, frmt) # OTHERWISE self.logging.debug("Running http_get (single call mode)") #return self.get_one(**{'frmt': frmt, 'query': query, 'params':params}) return self.get_one(query, frmt, params=params, **kargs) def get_one(self, query, frmt='json', params={}, **kargs): """ if query starts with http:// do not use self.url """ if query is None: url = self.url else: if query.startswith("http"): # assume we do want to use self.url url = query else: url = '%s/%s' % (self.url, query) self.logging.debug(url) try: kargs['params'] = params kargs['timeout'] = self.TIMEOUT #res = self.session.get(url, **{'timeout':self.TIMEOUT, 'params':params}) res = self.session.get(url, **kargs) self.last_response = res res = self._interpret_returned_request(res, frmt) try: # for python 3 compatibility res = res.decode() except: pass return res except Exception as err: print(err) print("Issue while Your current timeout is {0}. Consider increasing it with"\ "settings.TIMEOUT attribute".format(self.settings.TIMEOUT)) def http_post(self, query, params=None, data=None, frmt='xml', headers=None, files=None, **kargs): # query and frmt are bioservices parameters. Others are post parameters # NOTE in requests.get you can use params parameter # BUT in post, you use data # only single post implemented for now unlike get that can be asynchronous # or list of queries if headers is None: headers = {} headers['User-Agent'] = self.getUserAgent() headers['Accept'] = self.content_types[frmt] self.logging.debug("Running http_post (single call mode)") kargs.update({'query':query}) kargs.update({'headers':headers}) kargs.update({'files':files}) kargs.update({'params':params}) kargs.update({'data':data}) kargs.update({'frmt':frmt}) return self.post_one(**kargs) def post_one(self, query, frmt='json', **kargs): if query is None: url = self.url else: url = '%s/%s' % (self.url, query) self.logging.debug(url) try: res = self.session.post(url, **kargs) self.last_response = res res = self._interpret_returned_request(res, frmt) try: return res.decode() except: return res except Exception as err: print(err) return None def getUserAgent(self): self.logging.info('getUserAgent: Begin') urllib_agent = 'Python-requests/%s' % requests.__version__ #clientRevision = '' clientVersion = '' user_agent = 'EBI-Sample-Client/%s (%s; Python %s; %s) %s' % ( clientVersion, os.path.basename(__file__), platform.python_version(), platform.system(), urllib_agent ) self.logging.info('getUserAgent: user_agent: ' + user_agent) self.logging.info('getUserAgent: End') return user_agent def get_headers(self, content='default'): """ :param str content: ste to default that is application/x-www-form-urlencoded so that it has the same behaviour as urllib2 (Sept 2014) """ headers = {} headers['User-Agent'] = self.getUserAgent() headers['Accept'] = self.content_types[content] headers['Content-Type'] = self.content_types[content] #"application/json;odata=verbose" required in reactome #headers['Content-Type'] = "application/json;odata=verbose" required in reactome return headers def debug_message(self): print(self.last_response.content) print(self.last_response.reason) print(self.last_response.status_code)
15eb72ad636edbf32a27501814ebe6ead6ccc591
3c750d4d60660fdf6ef84d7b7ab9663fb76d0fa1
/sopht/numeric/eulerian_grid_ops/poisson_solver_2d/scipy_fft_2d.py
c27c75ab0c351c35f8a07f4cc81135a2084dd26a
[ "MIT" ]
permissive
SophT-Team/SophT
25d157a17734600e9aa4f522b4574bfefe202bc7
99a094e0d6e635e5b2385a69bdee239a4d1fb530
refs/heads/main
2023-08-31T21:14:10.304592
2023-08-31T17:00:38
2023-08-31T17:00:38
498,451,510
2
2
MIT
2023-09-12T15:37:31
2022-05-31T18:25:12
Python
UTF-8
Python
false
false
457
py
"""Create reference FFT operations via scipy in 2D.""" import numpy as np from scipy.fft import irfftn, rfftn def fft_ifft_via_scipy_kernel_2d( fourier_field: np.ndarray, inv_fourier_field: np.ndarray, field: np.ndarray, num_threads: int = 1, ) -> None: """Perform reference FFT operations via scipy.""" fourier_field[...] = rfftn(field, workers=num_threads) inv_fourier_field[...] = irfftn(fourier_field, workers=num_threads)
0856f6a1b38760b3161698bc0ef30a8a3bca0ed4
360c777a2b77be466b1cf7c8fd74d6fd04f56b55
/migrations/versions/7844211fb55_.py
7d304f72a21244221e00963d026d4463433f0936
[ "MIT" ]
permissive
hreeder/nexus-auth
790a3b2623ddf443138a4b0f0af1380dbc4db8ae
8d51aef01647e32ba4a284f02de73a2caad7cf49
refs/heads/master
2021-01-10T10:08:37.190558
2016-02-29T12:27:21
2016-02-29T12:27:21
52,789,087
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
"""empty message Revision ID: 7844211fb55 Revises: c5242907c1e Create Date: 2014-07-30 10:23:03.502189 """ # revision identifiers, used by Alembic. revision = '7844211fb55' down_revision = 'c5242907c1e' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('character', sa.Column('lastKnownShip', sa.Integer(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('character', 'lastKnownShip') ### end Alembic commands ###
cf7ab34a660f56433f5b54ab6324670467ea001f
214dbac428fc8ad18d8775cd3ffd744068a77d24
/my_django_app/settings.py
9cc596a67ddf070aaa58ab4421bb25e912c69226
[]
no_license
nsalahdeen/DjangoProject
879c609fd5b53cf4be3a0ff5358d70adfbebbcf7
65a1bdcddb719e27ca67cd12aa47171f50370036
refs/heads/main
2023-04-20T04:25:20.608614
2021-05-04T15:51:50
2021-05-04T15:51:50
364,306,188
0
0
null
null
null
null
UTF-8
Python
false
false
3,341
py
""" Django settings for my_django_app project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = str(os.getenv('SECRET_KEY')) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'my_first_django_app', #my firstApp ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'my_django_app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ "/templates", Path.joinpath(BASE_DIR, "templates") ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'my_django_app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
e572940f400c4443799befdb71ed04fca2b087fd
0305c23d48ee6e17722124aed5f90f55f1a2f5ef
/examples/lightgbm_examples/classification.py
9924b8bca54a03c1e353420d2547fd5d7404cf68
[ "MIT" ]
permissive
mdjabc/hyperparameter_hunter
d20a01fa6a3493fdbb595f8b5615a9d9ff398770
bfbd1faf63272a62e6f971d7e9a0487d71aea8f6
refs/heads/master
2020-05-16T01:39:39.275129
2019-04-02T01:16:30
2019-04-02T01:16:30
182,608,190
1
0
MIT
2019-04-22T02:21:50
2019-04-22T02:21:49
null
UTF-8
Python
false
false
2,453
py
from hyperparameter_hunter import Environment, CVExperiment from hyperparameter_hunter import RandomForestOptimization, Real, Integer, Categorical import pandas as pd from sklearn.datasets import fetch_covtype from sklearn.metrics import f1_score from lightgbm import LGBMClassifier #################### Format DataFrame #################### # Be advised, this dataset (SKLearn's Forest Cover Types) can take a little while to download... # This is a multi-class classification task, in which the target is label-encoded. data = fetch_covtype(shuffle=True, random_state=32) train_df = pd.DataFrame(data.data, columns=["x_{}".format(_) for _ in range(data.data.shape[1])]) train_df["y"] = data.target #################### Set Up Environment #################### env = Environment( train_dataset=train_df, results_path="HyperparameterHunterAssets", target_column="y", metrics=dict(f1=lambda y_true, y_pred: f1_score(y_true, y_pred, average="micro")), cv_type="StratifiedKFold", cv_params=dict(n_splits=5, random_state=32), ) # Now that HyperparameterHunter has an active `Environment`, we can do two things: #################### 1. Perform Experiments #################### experiment = CVExperiment( model_initializer=LGBMClassifier, model_init_params=dict(boosting_type="gbdt", num_leaves=31, max_depth=-1, subsample=0.5), model_extra_params=dict( fit=dict( feature_name=train_df.columns.values[:-1].tolist(), categorical_feature=train_df.columns.values[11:-1].tolist(), ) ), ) # And/or... #################### 2. Hyperparameter Optimization #################### optimizer = RandomForestOptimization(iterations=10, random_state=32) optimizer.set_experiment_guidelines( model_initializer=LGBMClassifier, model_init_params=dict( boosting_type=Categorical(["gbdt", "dart"]), num_leaves=Integer(10, 40), max_depth=-1, subsample=Real(0.3, 0.7), ), model_extra_params=dict( fit=dict( feature_name=train_df.columns.values[:-1].tolist(), categorical_feature=train_df.columns.values[11:-1].tolist(), ) ), ) optimizer.go() # Notice, `optimizer` recognizes our earlier `experiment`'s hyperparameters fit inside the search # space/guidelines set for `optimizer`. # Then, when optimization is started, it automatically learns from `experiment`'s results # - without any extra work for us!
7f8d4393203d77170ee56f9dc35fd118af389dbf
69d8f3cf7c10640a692fa9175f5a63a5a7b54fcd
/naver_webtoon.py
2a03516c541bf495641c72d69deb1ef931d4df67
[]
no_license
baidoosik/crawling
bd89fd9f59ecb8921e765b03faadf1c55bd59c74
62669badf6ce84e0ac9e575b736e41051642ea9c
refs/heads/master
2021-06-21T19:25:30.175798
2017-07-30T15:02:55
2017-07-30T15:02:55
84,198,685
0
0
null
null
null
null
UTF-8
Python
false
false
2,083
py
from crawling import * def naver_webtoon(url): ep_headers = { 'referer': 'http://comic.naver.com/webtoon/' } html = req.get(url, headers=ep_headers).text soup = bfs(html, 'html.parser') webtoon_name = ''.join(soup.select('div.detail h2')[0].text.split()) ep_name = soup.select('.tit_area h3')[0].text result = [] n_result = [] file_list = [] max_width, max_height = 0, 0 for tag in soup.select('#comic_view_area img'): try: print(tag['src']) result.append(tag['src']) except KeyError: print('필요한 자료 크롤링 완료') break for img_url in result: print(img_url) if re.match(r'^http.*$', img_url): n_result.append(img_url) for img_url in n_result: img = req.get(img_url, headers=ep_headers).content img_name = os.path.basename(img_url) img_path = os.path.join(webtoon_name, ep_name, img_name) dir_path = os.path.dirname(img_path) if not os.path.exists(dir_path): os.makedirs(dir_path) if os.path.exists(img_path): pass else: with open(img_path, 'wb') as f: f.write(img) file_list.append(img_path) for img_url in file_list: with Image.open(img_url) as im: if max_width < im.width: max_width = im.width max_height = max_height + im.height size = (max_width, max_height) white = (255, 255, 255) now =math.ceil(time.time()) with Image.new('RGB', size, white) as canvas: height = 0 for filename in file_list: with Image.open(filename) as im: canvas.paste(im, box=(0, height)) height = height + im.height canvas.save('{}.png'.format(now)) if __name__ =='__main__': print('원하시는 웹툰의 url을 입력해 주세요!') req_url=input() print('으아아아 ~~요청하신 웹툰을 한 사진으로 만들어볼게요!!') naver_webtoon(req_url)
c63011b271a1d1a905c1b4a064dc8fb4dfb1f928
c957b4663cc4cb21e5172f23c6989031be8c3e5b
/python/830. Positions of Large Groups.py
a1f9bf5b13cad44b7186ef6646eebc9f05be1547
[]
no_license
gajanlee/leetcode
e061dc37af0f83bf2bce00c391c0b8a9f3177b22
0d3c8477f05604a059e58a8764ce0d8bd418edde
refs/heads/master
2018-12-26T06:12:24.995542
2018-10-30T05:03:27
2018-10-30T05:03:27
102,965,574
0
0
null
null
null
null
UTF-8
Python
false
false
1,365
py
""" In a string S of lowercase letters, these letters form consecutive groups of the same character. For example, a string like S = "abbxxxxzyy" has the groups "a", "bb", "xxxx", "z" and "yy". Call a group large if it has 3 or more characters. We would like the starting and ending positions of every large group. The final answer should be in lexicographic order. Example 1: Input: "abbxxxxzzy" Output: [[3,6]] Explanation: "xxxx" is the single large group with starting 3 and ending positions 6. Example 2: Input: "abc" Output: [] Explanation: We have "a","b" and "c" but no large group. Example 3: Input: "abcdddeeeeaabbbcd" Output: [[3,5],[6,9],[12,14]] Note: 1 <= S.length <= 1000 """ class Solution: def largeGroupPositions(self, S): """ :type S: str :rtype: List[List[int]] """ res = [] S += "#" last = "$" start = end = 0 for i, s in enumerate(S): if s == last: end += 1 elif end - start >= 2: res.append([start, end]) start = end = i else: start = end = i last = s return res # \1 是第一个分组括号 # {2,}代表字符串在长度2以上 return [[r.start(), r.end() - 1] for r in re.finditer(r'(\w)\1{2,}', S)]
26fb69f33707a68a52b9cf096ecea4d441b19610
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/9QbhjtbkXp3QZNuDu_4.py
0fdb756be15b9bb5f9a2c994e4cc0739f8aa07b5
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,027
py
""" In this challenge, you have to find the last 15 palindromes of all numbers starting from ten and up to a given limit, including the limit in the search. Given an integer `limit` being the upper limit of the range of interest, implement a function that returns the last 15 palindromes numbers lower **or equal** to `limit` as a list sorted ascendingly. ### Examples generate_palindromes(151) ➞ [ 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151 ] generate_palindromes(600) ➞ [ 454, 464, 474, 484, 494, 505, 515, 525, 535, 545, 555, 565, 575, 585, 595 ] generate_palindromes(999999) ➞ [ 985589, 986689, 987789, 988889, 989989, 990099, 991199, 992299, 993399, 994499, 995599, 996699, 997799, 998899, 999999 ] ### Notes N/A """ def generate_palindromes(limit): is_pal = lambda n: str(n) == str(n)[::-1] ans = [] while len(ans)<15: if is_pal(limit): ans = [limit] + ans limit-=1 return ans
8513a8e7ee09df250f1ac7d1b06dc0a64cd08208
2a6f4b01b5ef2729eef6b24cba926f90edace478
/vectorbt/utils/config.py
3ae73a71793ae3c6a482ea095078ea8b9839342b
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
nehcuh/vectorbt
c8c413f11a8e1503f75477e41fc30127c1300236
c0f307169b19a0f26c1992a9e29f4be380c1b220
refs/heads/master
2023-04-11T14:17:08.590766
2021-04-07T13:12:11
2021-04-07T13:12:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,664
py
"""Utilities for configuration.""" from copy import copy from collections import namedtuple import dill import inspect from vectorbt.utils import checks from vectorbt.utils.attr import deep_getattr def get_func_kwargs(func): """Get keyword arguments of the function.""" signature = inspect.signature(func) return { k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty } class atomic_dict(dict): """Dict that behaves like a single value when merging.""" pass def merge_dicts(*dicts): """Merge dicts.""" x, y = dicts[0], dicts[1] if x is None: x = {} if y is None: y = {} checks.assert_type(x, dict) checks.assert_type(y, dict) if len(x) == 0: z = y.copy() elif len(y) == 0: z = x.copy() else: z = {} overlapping_keys = [k for k in x if k in y] # order matters for k in overlapping_keys: if isinstance(x[k], dict) and isinstance(y[k], dict) and not isinstance(y[k], atomic_dict): z[k] = merge_dicts(x[k], y[k]) else: z[k] = y[k] for k in [k for k in x if k not in y]: z[k] = x[k] for k in [k for k in y if k not in x]: z[k] = y[k] if len(dicts) > 2: return merge_dicts(z, *dicts[2:]) return z def copy_dict(dct): """Copy dict using shallow-deep copy hybrid. Traverses all nested dicts and copies each value using shallow copy.""" dct_copy = dict() for k, v in dct.items(): if isinstance(v, dict): dct_copy[k] = copy_dict(v) else: dct_copy[k] = copy(v) return dct_copy _RaiseKeyError = object() DumpTuple = namedtuple('DumpTuple', ('cls', 'dumps')) class Pickleable: """Superclass that defines abstract properties and methods for pickle-able classes.""" def dumps(self, **kwargs): """Pickle to a string.""" raise NotImplementedError @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" raise NotImplementedError def save(self, fname, **kwargs): """Save dumps to a file.""" dumps = self.dumps(**kwargs) with open(fname, "wb") as f: f.write(dumps) @classmethod def load(cls, fname, **kwargs): """Load dumps from a file and create new instance.""" with open(fname, "rb") as f: dumps = f.read() return cls.loads(dumps, **kwargs) class Config(dict, Pickleable): """Extends dict with config features.""" def __init__(self, *args, frozen=False, read_only=False, **kwargs): super().__init__(*args, **kwargs) self._frozen = frozen self._read_only = read_only self._init_config = copy_dict(self) if not read_only else None @property def frozen(self): """Whether this dict's keys are frozen.""" return self._frozen @property def read_only(self): """Whether this dict is read-only.""" return self._read_only @property def init_config(self): """Initial config.""" return self._init_config def __setitem__(self, k, v): if self.read_only: raise TypeError("Config is read-only") if self.frozen: if k not in self: raise KeyError(f"Key '{k}' is not valid") super().__setitem__(k, v) def __delitem__(self, k): if self.read_only: raise TypeError("Config is read-only") super().__delitem__(k) def pop(self, k, v=_RaiseKeyError): if self.read_only: raise TypeError("Config is read-only") if v is _RaiseKeyError: return super().pop(k) return super().pop(k, v) def popitem(self): if self.read_only: raise TypeError("Config is read-only") return super().popitem() def clear(self): if self.read_only: raise TypeError("Config is read-only") return super().clear() def update(self, *args, force_update=False, **kwargs): other = dict(*args, **kwargs) if force_update: super().update(other) return if self.read_only: raise TypeError("Config is read-only") if self.frozen: for k in other: if k not in self: raise KeyError(f"Key '{k}' is not valid") super().update(other) def copy(self): return type(self)(self) def merge_with(self, other, **kwargs): """Merge this and other dict into a new config.""" return self.__class__(merge_dicts(self, other), **kwargs) def reset(self): """Reset to the initial config.""" if self.read_only: raise TypeError("Config is read-only") self.update(copy_dict(self.init_config), force_update=True) def dumps(self, **kwargs): """Pickle to a string.""" config = dict(frozen=self.frozen, read_only=self.read_only) for k, v in self.items(): if k in ('frozen', 'readonly'): raise ValueError(f"Keyword argument repeated: {k}") if isinstance(v, Pickleable): config[k] = DumpTuple(cls=v.__class__, dumps=v.dumps(**kwargs)) else: config[k] = v return dill.dumps(config, **kwargs) @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" config = dill.loads(dumps, **kwargs) for k, v in config.items(): if isinstance(v, DumpTuple): config[k] = v.cls.loads(v.dumps, **kwargs) return cls(**config) def __eq__(self, other): return checks.is_deep_equal(dict(self), dict(other)) class AtomicConfig(Config, atomic_dict): """Config that behaves like a single value when merging.""" pass class Configured(Pickleable): """Class with an initialization config. All operations are done using config rather than the instance, which makes it easier to pickle. !!! warning If the instance has writable attributes or depends upon global defaults, their values won't be copied over. Make sure to pass them explicitly to make the saved & loaded / copied instance resilient to changes in globals.""" def __init__(self, **config): self._config = Config(config, read_only=True) @property def config(self): """Initialization config.""" return self._config def copy(self, **new_config): """Create a new instance based on the config. !!! warning This "copy" operation won't return a copy of the instance but a new instance initialized with the same config.""" return self.__class__(**self.config.merge_with(new_config)) def dumps(self, **kwargs): """Pickle to a string.""" return self.config.dumps(**kwargs) @classmethod def loads(cls, dumps, **kwargs): """Unpickle from a string.""" return cls(**Config.loads(dumps, **kwargs)) def __eq__(self, other): """Objects are equal if their configs are equal.""" if type(self) != type(other): return False return self.config == other.config def getattr(self, attr_chain): """See `vectorbt.utils.attr.deep_getattr`.""" return deep_getattr(self, attr_chain) def update_config(self, *args, **kwargs): """Force-update the config.""" self.config.update(*args, **kwargs, force_update=True)
01e300e4ad3f48c320b5035e476c2a1eefe88cf8
75bb245280a749fcb1a74e94a62b78e4ceed16f0
/message_manager.py
6157da0ba6e39a61f90304e3c8d370c579e628bd
[]
no_license
cjlavan/rpi_set_wifi
72cee2a8e4531b52398ff28f2abec47a269202d6
7600d05d8c9fa0d6c96663e3e86ca33095f56e0b
refs/heads/master
2016-09-10T20:45:02.874265
2015-05-11T00:30:19
2015-05-11T00:30:19
35,393,561
0
0
null
null
null
null
UTF-8
Python
false
false
6,989
py
import requests import os import os.path import json from unipath import Path import datetime import time import wget import _SETTINGS import convert from message_queue import message_queue class message_manager: def __init__(self): self.new_messages = False self.BASE_DIR = os.path.dirname(os.path.abspath(__file__)) self.OUTPUT_DIR = Path(self.BASE_DIR).child('audio_output') os.chdir(self.OUTPUT_DIR) convert.remove_files(self.OUTPUT_DIR) self.latest_id = int(self.get_latest_msg_id_json()) self.new_messages = False self.MessageList = [] self.load_stored_message_json() self.DownloadMessageList = [] self.post_download_message_json() if self.new_messages: self.alert_new_messages() self.download_audio() self.new_messages = False def update_loop(self): while True: convert.remove_files(self.OUTPUT_DIR) self.post_download_message_json() if self.new_messages: self.alert_new_messages() self.download_audio() self.new_messages = False convert.remove_files(self.OUTPUT_DIR) time.sleep(10) # loads the initial json file to compare to what will be downloaded # reads the initial json file and converts it to a list of message objects def load_stored_message_json(self): os.chdir(self.OUTPUT_DIR) len_mes = 0 try: jsonData = open('stored_message_data.json') stored_data = json.load(jsonData) len_mes = len(stored_data) jsonData.close() except: with open('stored_message_data.json', 'w') as f: json.dump([], f) f.close() self.MessageList = [] print "length of len_mes: " + str(len_mes) for x in range (0,len_mes): m = { 'msg_id' : stored_data[x]["msg_id"], 'audio_file' : stored_data[x]["audio_file"], 'path' : self.OUTPUT_DIR, 'color' : stored_data[x]["color"], 'ts' : stored_data[x]["ts"], 'played' : stored_data[x]["played"] } self.MessageList.append(m) # print "appened message list with " + str(m['msg_id']) # posts to server reads incoming json into download message list def post_download_message_json(self): Downloaded_messages_json = (requests.post(_SETTINGS.url, data=json.dumps(_SETTINGS.payload))).text Downloaded_messages_json = json.loads(Downloaded_messages_json) settings = json.dumps(Downloaded_messages_json["settings"]) i = len(Downloaded_messages_json["data"]) with open("config.json","w") as myfile: myfile.write(settings) myfile.close() lookup_marker = 0 for x in range (i-1, 0, -1): if int(Downloaded_messages_json["data"][x]["msg_id"]) > self.latest_id: Downloaded_messages_json["data"][x].update({ 'ts': str(json.dumps(datetime.datetime.now(), default=self.get_iso_format)) }) m = { 'msg_id' : Downloaded_messages_json["data"][x]["msg_id"], 'audio_file' : "", 'download_link' : Downloaded_messages_json["data"][x]["audio_file"], 'path' : self.OUTPUT_DIR, 'color' : Downloaded_messages_json["data"][x]["color"], 'ts' : Downloaded_messages_json["data"][x]["ts"], 'played' : 0, } self.new_messages = True self.DownloadMessageList.append(m) # downloads audio for DownloadMessageList def download_audio(self): os.chdir(self.OUTPUT_DIR) i = len(self.DownloadMessageList) for x in range (0,i): message = self.DownloadMessageList[0] while not self.is_okay_to_work(): time.sleep(10) local_file_name = wget.download(message['download_link']) message['audio_file'] = local_file_name self.save_new_message(message) self.DownloadMessageList.remove(message) # checks to see if messages are being played # if no, then saves messages that has just been downloaded def save_new_message(self, message): while not self.is_okay_to_work(): time.sleep(10) convert.convert(self.OUTPUT_DIR) self.MessageList.append(message) if int(message['msg_id']) > self.latest_id: self.latest_id = int(message['msg_id']) self.write_message_data() def write_message_data(self): os.chdir(self.OUTPUT_DIR) while not self.is_okay_to_work: time.sleep(10) with open("stored_message_data.json","w") as output_file: output_string = json.dumps(self.MessageList) output_file.write(output_string) output_file.close() self.set_latest_msg_id_json() # helper methods # returns iso format time stamp def get_iso_format(self, obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: raise TypeError, 'Object of type %s with value of %s is not JSON serializable' \ % (type(obj), repr(obj)) def alert_new_messages(self): os.chdir(self.OUTPUT_DIR) with open('new_message_status.json',"w") as f: json.dump({'new_info':1}, f) f.close() def get_status_json(self): os.chdir(self.OUTPUT_DIR) try: with open('player_status.json') as f: data = json.load(f) f.close() return data['status'] except: with open('player_status.json',"w") as f: json.dump({'status':0}, f) f.close() return 0 def get_latest_msg_id_json(self): os.chdir(self.OUTPUT_DIR) try: with open('latest_id_status.json') as f: data = json.load(f) f.close() return data['latest_msg_id'] except: with open('latest_id_status.json',"w") as f: json.dump({'latest_msg_id':0}, f) f.close() return 0 def set_latest_msg_id_json(self): with open('latest_id_status.json',"w") as f: json.dump({'latest_msg_id':self.latest_id}, f) f.close() def is_okay_to_work(self): os.chdir(self.OUTPUT_DIR) if self.get_status_json() == 0: return True return False
83ffb508c04c0a8d5c6bd89beb8e65a071ecc567
5d0edf31b17c5375faf6126c1a7be8e79bfe2ab8
/buildout-cache/eggs/sc.photogallery-1.0b1-py2.7.egg/sc/photogallery/browser/view.py
105b30e6969b968feec9c890f33eeb3a1d0d8455
[]
no_license
renansfs/Plone_SP
27cba32ebd9fc03dae3941ec23cf1bf0a7b6667a
8a7bdbdb98c3f9fc1073c6061cd2d3a0ec80caf5
refs/heads/master
2021-01-15T15:32:43.138965
2016-08-24T15:30:19
2016-08-24T15:30:19
65,313,812
0
3
null
null
null
null
UTF-8
Python
false
false
3,418
py
# -*- coding: utf-8 -*- from plone import api from plone.dexterity.browser.view import DefaultView from plone.memoize import forever from plone.memoize.instance import memoizedproperty from sc.photogallery.config import HAS_ZIPEXPORT from sc.photogallery.interfaces import IPhotoGallerySettings from sc.photogallery.utils import last_modified from sc.photogallery.utils import PhotoGalleryMixin from zope.component import getMultiAdapter import os if HAS_ZIPEXPORT: from ftw.zipexport.generation import ZipGenerator from ftw.zipexport.interfaces import IZipRepresentation class View(DefaultView, PhotoGalleryMixin): """Slideshow view for Photo Gallery content type.""" def id(self): return id(self) @memoizedproperty def results(self): return self.context.listFolderContents() @property def is_empty(self): return len(self.results) == 0 def image(self, obj, scale='large'): """Return an image scale if the item has an image field. :param obj: [required] :type obj: content type object :param scale: the scale to be used :type scale: string """ scales = obj.restrictedTraverse('@@images') return scales.scale('image', scale) def localized_time(self, obj, long_format=False): """Return the object time in a user-friendly way. :param item: [required] :type item: content type object :param long_format: show long date format if True :type scale: string """ return api.portal.get_localized_time(obj.Date(), long_format) @property def can_download(self): """Check if original images can be explicitly downloaded, that is, if downloading is enabled globally and the current object allows it. """ record = IPhotoGallerySettings.__identifier__ + '.enable_download' enabled_globally = api.portal.get_registry_record(record) allow_download = self.context.allow_download return enabled_globally and allow_download def img_size(self, item): return '{0:.1f} MB'.format(item.size() / float(1024 * 1024)) @property def can_zipexport(self): """Check if original images can be downloaded as a ZIP file, that is, if ftw.zipexport is installed and downloading is allowed in the current object. """ return HAS_ZIPEXPORT and self.can_download @property def last_modified(self): return last_modified(self.context) def zip_url(self): base_url = self.context.absolute_url() url = '{0}/@@zip/{1}/{2}.zip'.format( base_url, str(self.last_modified), self.context.getId()) return url @forever.memoize def _zip_size(self, last_modified=None): if not HAS_ZIPEXPORT: return '{0:.1f} MB'.format(0) with ZipGenerator() as generator: for obj in [self.context, ]: repre = getMultiAdapter( (obj, self.request), interface=IZipRepresentation) for path, pointer in repre.get_files(): generator.add_file(path, pointer) zip_file = generator.generate() size = os.stat(zip_file.name).st_size return '{0:.1f} MB'.format(size / float(1024 * 1024)) def zip_size(self): return self._zip_size(self.last_modified)
ca1535c9186ea6b4058c35374d2cd992af6df474
a6106cedc42dcab94ccc4ee6d681372d2246ce5e
/python/활용자료/예제/07/ex7-7.py
12dd6228f533058e5632e76aac1e1c9cac3cc731
[]
no_license
leemyoungwoo/pybasic
a5a4b68d6b3ddd6f07ff84dc8df76da02650196f
481075f15613c5d8add9b8c4d523282510d146d2
refs/heads/master
2022-10-08T19:57:26.073431
2020-06-15T06:50:02
2020-06-15T06:50:02
267,502,565
1
0
null
null
null
null
UTF-8
Python
false
false
385
py
def circle_area(r) : area = r * r * 3.14 return area radius = int(input('원의 반지름을 입력하세요 : ')) result = circle_area(radius) print('반지름 : %d, 원의 면적 : %.2f' % (radius, result)) radius = int(input('원의 반지름을 입력하세요 : ')) result = circle_area(radius) print('반지름 : %d, 원의 면적 : %.2f' % (radius, result))
bf4ee2d02a325b438c10d2b86a54a4028c965b9b
3a6bf7337126c8b1883e76cf1f46cec0886f1447
/rssdl/rss.py
0280fcd0436b89dd40e7f313f365f2b62e554d0f
[ "Apache-2.0" ]
permissive
egustafson/rssdl
fc4265edd9138a54005b98bdfc1ea5dfb25707d5
2b42d8aa4a0d03d31629d8446e7336c6c1348e58
refs/heads/master
2020-12-24T06:57:21.265487
2017-09-15T20:59:58
2017-09-15T20:59:58
58,835,610
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
""" RSS DOM for RSSDL """ import feedparser class Feed(object): def __init__(self, href): self._href = href self._d = None def result(self): return self._d def parse(self): self._d = feedparser.parse(self._href) return self._d.status if 'status' in self._d else 0 def data(self): return self._d ## Local Variables: ## mode: python ## End:
b6719129deb3753fda7d1da2bf054ef2b0b7086b
bb4e132c5978a1edc2ef4fb78d1bb5a793809408
/dral_text/migrations/0005_auto_20180421_2332.py
2011d67aa3e519a34a52ebb3021d281bc28eafa0
[ "MIT" ]
permissive
n-romanova/dral-django
7335e581f1fffe0e2d42614678010ead5c9202f3
4af92a46e207cc8a427d2f8eafe688c61a73d39e
refs/heads/master
2020-08-31T03:11:37.199516
2019-10-03T17:19:05
2019-10-03T17:19:05
218,569,974
0
0
null
2019-10-30T16:15:47
2019-10-30T16:15:47
null
UTF-8
Python
false
false
707
py
# Generated by Django 2.0 on 2018-04-21 22:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dral_text', '0004_auto_20180421_2231'), ] operations = [ migrations.AddField( model_name='occurence', name='paraphrase', field=models.BooleanField(default=False), ), migrations.AddField( model_name='occurence', name='replace', field=models.BooleanField(default=False), ), migrations.AddField( model_name='occurence', name='zero', field=models.BooleanField(default=False), ), ]
803f3401202b20729ba63a9968b76cfb69eb1b03
c558d1da1aedf377e6cb6cf66c5136cfb7c32167
/python-new-trunk/sfapi2/sflib/runWithAnalysis.py
978d569bb74522ab578050a8fad567a9a6a3a256
[ "CC0-1.0" ]
permissive
raychorn/svn_molten-magma
46a8da015844b52fd2fc777225f11b1891b0000a
8aa2ff2340707eecae6514943e86f5afba9cd54a
refs/heads/main
2022-12-26T15:45:24.851522
2020-10-15T16:52:04
2020-10-15T16:52:04
304,358,985
0
0
null
null
null
null
UTF-8
Python
false
false
3,864
py
import os, sys import traceback from vyperlogix import misc from vyperlogix.misc import ioTimeAnalysis import types import SfStats sf_stats = SfStats.SfStats() def dummy(): pass def init_AnalysisDataPoint(name): ioTimeAnalysis.initIOTime(name) def begin_AnalysisDataPoint(name): ioTimeAnalysis.ioBeginTime(name) def end_AnalysisDataPoint(name): ioTimeAnalysis.ioEndTime(name) def count_query(): sf_stats.count_query() def runWithAnalysis(func=dummy,args=[],_ioElapsedTime=dummy): caller = misc.callersName() ioTimeAnalysis.initIOTime('%s::%s' % (__name__,caller)) ioTimeAnalysis.ioBeginTime('%s::%s' % (__name__,caller)) val = None try: if (len(args) == 0): val = func() else: val = func(args) except: exc_info = sys.exc_info() info_string = '\n'.join(traceback.format_exception(*exc_info)) print >>sys.stderr, '(%s) Reason: %s' % (misc.funcName(),info_string) ioTimeAnalysis.ioEndTime('%s::%s' % (__name__,caller)) ioTimeAnalysis.ioTimeAnalysisReport() _et = 0 _key_list = [k for k in ioTimeAnalysis._ioTime.keys() if (k.find('SOQL') > -1)] for _key in _key_list: _et += (0 if (len(_key) == 0) else ioTimeAnalysis._ioTime[_key][0]) if (_et > 0): _soql_per_sec = sf_stats.query_count / _et if (_soql_per_sec > 0): _ms_per_soql = 1000 / _soql_per_sec else: if (sf_stats.query_count == 0): print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide Zero by some number at this time; recommend using the functions that count queries from this module.' % (misc.funcName()) elif (): print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide by Zero at this time.' % (misc.funcName()) _ms_per_soql = -1 else: print >>sys.stderr, '(%s) 1.0 Cannot correctly report ms per SOQL because SOQL per Second because there is no reported elapsed time from SOQL activities.' % (misc.funcName()) try: v_ioElapsedTime = float(ioTimeAnalysis._ioElapsedTime) if (v_ioElapsedTime > 0): soql_per_sec = sf_stats.query_count / v_ioElapsedTime if (soql_per_sec > 0): ms_per_soql = 1000 / soql_per_sec else: print >>sys.stderr, '(%s) 2.0 Cannot correctly report ms per SOQL because SOQL per Second reported 0 and we cannot divide by Zero at this time.' % (misc.funcName()) ms_per_soql = -1 t_analysis_1 = '%-10.2f' % soql_per_sec t_analysis_2 = '%-10.4f' % ms_per_soql print >>sys.stdout, '(Apparent) SOQL per second = %s or %s ms per SOQL.' % (t_analysis_1.strip(),t_analysis_2.strip()) if (_et > 0): _t_analysis_1 = '%-10.2f' % _soql_per_sec _t_analysis_2 = '%-10.4f' % _ms_per_soql print >>sys.stdout, '(Actual) SOQL per second = %s or %s ms per SOQL.' % (_t_analysis_1.strip(),_t_analysis_2.strip()) else: print >>sys.stderr, 'Unable to perform Actual SOQL per second analysis because there is no reported elapsed time from SOQL activities.' else: print >>sys.stderr, 'Unable to perform Actual SOQL per second analysis because _ioElapsedTime is %4.2f.' % (v_ioElapsedTime) except: exc_info = sys.exc_info() info_string = '\n'.join(traceback.format_exception(*exc_info)) print >>sys.stderr, '(%s) Reason: %s' % (misc.funcName(),info_string) print >>sys.stdout, 'SOQL Count=%d' % sf_stats.query_count return val
9301a8e19c39fa597a374ec83ca5ac9308d25d56
e9032e64138d7b9dd90a330dfe4588e2c83f6667
/google/cloud/compute_v1/services/url_maps/pagers.py
1a5d42fc43ca21958c622ecbbf65987afbee0aa4
[ "Apache-2.0" ]
permissive
Ctfbuster/python-compute
6cff2418969009794c3fadadc4c45e20d7b40509
7a9e8324e08c46a93050908760b2b5aca054a863
refs/heads/main
2023-08-26T12:37:52.363526
2021-10-04T15:34:37
2021-10-04T15:34:37
412,884,620
0
0
Apache-2.0
2021-10-02T18:49:05
2021-10-02T18:49:03
null
UTF-8
Python
false
false
5,578
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import ( Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional, ) from google.cloud.compute_v1.types import compute class AggregatedListPager: """A pager for iterating through ``aggregated_list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.UrlMapsAggregatedList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``AggregatedList`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.UrlMapsAggregatedList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.UrlMapsAggregatedList], request: compute.AggregatedListUrlMapsRequest, response: compute.UrlMapsAggregatedList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.AggregatedListUrlMapsRequest): The initial request object. response (google.cloud.compute_v1.types.UrlMapsAggregatedList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.AggregatedListUrlMapsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.UrlMapsAggregatedList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[Tuple[str, compute.UrlMapsScopedList]]: for page in self.pages: yield from page.items.items() def get(self, key: str) -> Optional[compute.UrlMapsScopedList]: return self._response.items.get(key) def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response) class ListPager: """A pager for iterating through ``list`` requests. This class thinly wraps an initial :class:`google.cloud.compute_v1.types.UrlMapList` object, and provides an ``__iter__`` method to iterate through its ``items`` field. If there are more pages, the ``__iter__`` method will make additional ``List`` requests and continue to iterate through the ``items`` field on the corresponding responses. All the usual :class:`google.cloud.compute_v1.types.UrlMapList` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__( self, method: Callable[..., compute.UrlMapList], request: compute.ListUrlMapsRequest, response: compute.UrlMapList, *, metadata: Sequence[Tuple[str, str]] = () ): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.ListUrlMapsRequest): The initial request object. response (google.cloud.compute_v1.types.UrlMapList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = compute.ListUrlMapsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[compute.UrlMapList]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[compute.UrlMap]: for page in self.pages: yield from page.items def __repr__(self) -> str: return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
e40a9f4648944ecbb580038b5267b736e6a1cc7a
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/TmasgxCm6iz3gTGHk_18.py
f0c40f2ac8ab47faef818d3f66b85e4ebaed9fb1
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
""" Write a function that returns the **length of the shortest contiguous sublist** whose sum of all elements **strictly exceeds** `n`. ### Examples min_length([5, 8, 2, -1, 3, 4], 9) ➞ 2 min_length([3, -1, 4, -2, -7, 2], 4) ➞ 3 # Shortest sublist whose sum exceeds 4 is: [3, -1, 4] min_length([1, 0, 0, 0, 1], 1) ➞ 5 min_length([0, 1, 1, 0], 2) ➞ -1 ### Notes * The sublist should be composed of **contiguous elements** from the original list. * If no such sublist exists, return `-1`. """ def min_length(lst, n): for i in range(1, len(lst) + 1): v = [lst[j:j + i] for j in range(0, len(lst) - i + 1)] for k in v: if sum(k) > n: return i return -1
5ebff17593beda1effd5a60635d6921fc7b98ab2
07cabeb47bd7c9a4e06e824ece28631c7d7441a1
/virtual/bin/easy_install
d66210d85b88436a51d477c4ceeb85a8a146d4c6
[ "MIT" ]
permissive
Jeffmusa/PITCH-POOL
bd2b27ea5bc5b47499c0b822c46ff518eae5f2f4
96654a3ba7fc3f4ba00d7fb617644cc9cd5ba041
refs/heads/master
2020-03-28T04:17:07.471479
2018-09-13T13:21:17
2018-09-13T13:21:17
147,705,197
0
2
null
null
null
null
UTF-8
Python
false
false
257
#!/home/vicklyne/Pitch/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
ed4725673a73387fa9143bfc3a1a63fd28e669a2
9cabdeb8dce5718e8f4f490f3684eba0eb1f2d2e
/contrib/devtools/github-merge.py
709b20287ca325e74972a29584e54ec67e442f2a
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
wolfoxonly/woo
fcfe275007cb102fff10239b0f722264dbbd40e2
a5fb13575afe855b58915bd8e15cbffb9015e5e2
refs/heads/master
2020-03-09T17:00:57.668308
2018-05-13T15:21:17
2018-05-13T15:21:17
127,590,136
0
0
null
null
null
null
UTF-8
Python
false
false
13,970
py
#!/usr/bin/env python3 # Copyright (c) 2016-2017 Woochain Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # This script will locally construct a merge commit for a pull request on a # github repository, inspect it, sign it and optionally push it. # The following temporary branches are created/overwritten and deleted: # * pull/$PULL/base (the current master we're merging onto) # * pull/$PULL/head (the current state of the remote pull request) # * pull/$PULL/merge (github's merge) # * pull/$PULL/local-merge (our merge) # In case of a clean merge that is accepted by the user, the local branch with # name $BRANCH is overwritten with the merged result, and optionally pushed. from __future__ import division,print_function,unicode_literals import os from sys import stdin,stdout,stderr import argparse import hashlib import subprocess import sys import json,codecs try: from urllib.request import Request,urlopen except: from urllib2 import Request,urlopen # External tools (can be overridden using environment) GIT = os.getenv('GIT','git') BASH = os.getenv('BASH','bash') # OS specific configuration for terminal attributes ATTR_RESET = '' ATTR_PR = '' COMMIT_FORMAT = '%h %s (%an)%d' if os.name == 'posix': # if posix, assume we can use basic terminal escapes ATTR_RESET = '\033[0m' ATTR_PR = '\033[1;36m' COMMIT_FORMAT = '%C(bold blue)%h%Creset %s %C(cyan)(%an)%Creset%C(green)%d%Creset' def git_config_get(option, default=None): ''' Get named configuration option from git repository. ''' try: return subprocess.check_output([GIT,'config','--get',option]).rstrip().decode('utf-8') except subprocess.CalledProcessError as e: return default def retrieve_pr_info(repo,pull): ''' Retrieve pull request information from github. Return None if no title can be found, or an error happens. ''' try: req = Request("https://api.github.com/repos/"+repo+"/pulls/"+pull) result = urlopen(req) reader = codecs.getreader('utf-8') obj = json.load(reader(result)) return obj except Exception as e: print('Warning: unable to retrieve pull information from github: %s' % e) return None def ask_prompt(text): print(text,end=" ",file=stderr) stderr.flush() reply = stdin.readline().rstrip() print("",file=stderr) return reply def get_symlink_files(): files = sorted(subprocess.check_output([GIT, 'ls-tree', '--full-tree', '-r', 'HEAD']).splitlines()) ret = [] for f in files: if (int(f.decode('utf-8').split(" ")[0], 8) & 0o170000) == 0o120000: ret.append(f.decode('utf-8').split("\t")[1]) return ret def tree_sha512sum(commit='HEAD'): # request metadata for entire tree, recursively files = [] blob_by_name = {} for line in subprocess.check_output([GIT, 'ls-tree', '--full-tree', '-r', commit]).splitlines(): name_sep = line.index(b'\t') metadata = line[:name_sep].split() # perms, 'blob', blobid assert(metadata[1] == b'blob') name = line[name_sep+1:] files.append(name) blob_by_name[name] = metadata[2] files.sort() # open connection to git-cat-file in batch mode to request data for all blobs # this is much faster than launching it per file p = subprocess.Popen([GIT, 'cat-file', '--batch'], stdout=subprocess.PIPE, stdin=subprocess.PIPE) overall = hashlib.sha512() for f in files: blob = blob_by_name[f] # request blob p.stdin.write(blob + b'\n') p.stdin.flush() # read header: blob, "blob", size reply = p.stdout.readline().split() assert(reply[0] == blob and reply[1] == b'blob') size = int(reply[2]) # hash the blob data intern = hashlib.sha512() ptr = 0 while ptr < size: bs = min(65536, size - ptr) piece = p.stdout.read(bs) if len(piece) == bs: intern.update(piece) else: raise IOError('Premature EOF reading git cat-file output') ptr += bs dig = intern.hexdigest() assert(p.stdout.read(1) == b'\n') # ignore LF that follows blob data # update overall hash with file hash overall.update(dig.encode("utf-8")) overall.update(" ".encode("utf-8")) overall.update(f) overall.update("\n".encode("utf-8")) p.stdin.close() if p.wait(): raise IOError('Non-zero return value executing git cat-file') return overall.hexdigest() def print_merge_details(pull, title, branch, base_branch, head_branch): print('%s#%s%s %s %sinto %s%s' % (ATTR_RESET+ATTR_PR,pull,ATTR_RESET,title,ATTR_RESET+ATTR_PR,branch,ATTR_RESET)) subprocess.check_call([GIT,'log','--graph','--topo-order','--pretty=format:'+COMMIT_FORMAT,base_branch+'..'+head_branch]) def parse_arguments(): epilog = ''' In addition, you can set the following git configuration variables: githubmerge.repository (mandatory), user.signingkey (mandatory), githubmerge.host (default: [email protected]), githubmerge.branch (no default), githubmerge.testcmd (default: none). ''' parser = argparse.ArgumentParser(description='Utility to merge, sign and push github pull requests', epilog=epilog) parser.add_argument('pull', metavar='PULL', type=int, nargs=1, help='Pull request ID to merge') parser.add_argument('branch', metavar='BRANCH', type=str, nargs='?', default=None, help='Branch to merge against (default: githubmerge.branch setting, or base branch for pull, or \'master\')') return parser.parse_args() def main(): # Extract settings from git repo repo = git_config_get('githubmerge.repository') host = git_config_get('githubmerge.host','[email protected]') opt_branch = git_config_get('githubmerge.branch',None) testcmd = git_config_get('githubmerge.testcmd') signingkey = git_config_get('user.signingkey') if repo is None: print("ERROR: No repository configured. Use this command to set:", file=stderr) print("git config githubmerge.repository <owner>/<repo>", file=stderr) sys.exit(1) if signingkey is None: print("ERROR: No GPG signing key set. Set one using:",file=stderr) print("git config --global user.signingkey <key>",file=stderr) sys.exit(1) host_repo = host+":"+repo # shortcut for push/pull target # Extract settings from command line args = parse_arguments() pull = str(args.pull[0]) # Receive pull information from github info = retrieve_pr_info(repo,pull) if info is None: sys.exit(1) title = info['title'].strip() body = info['body'].strip() # precedence order for destination branch argument: # - command line argument # - githubmerge.branch setting # - base branch for pull (as retrieved from github) # - 'master' branch = args.branch or opt_branch or info['base']['ref'] or 'master' # Initialize source branches head_branch = 'pull/'+pull+'/head' base_branch = 'pull/'+pull+'/base' merge_branch = 'pull/'+pull+'/merge' local_merge_branch = 'pull/'+pull+'/local-merge' devnull = open(os.devnull,'w') try: subprocess.check_call([GIT,'checkout','-q',branch]) except subprocess.CalledProcessError as e: print("ERROR: Cannot check out branch %s." % (branch), file=stderr) sys.exit(3) try: subprocess.check_call([GIT,'fetch','-q',host_repo,'+refs/pull/'+pull+'/*:refs/heads/pull/'+pull+'/*', '+refs/heads/'+branch+':refs/heads/'+base_branch]) except subprocess.CalledProcessError as e: print("ERROR: Cannot find pull request #%s or branch %s on %s." % (pull,branch,host_repo), file=stderr) sys.exit(3) try: subprocess.check_call([GIT,'log','-q','-1','refs/heads/'+head_branch], stdout=devnull, stderr=stdout) except subprocess.CalledProcessError as e: print("ERROR: Cannot find head of pull request #%s on %s." % (pull,host_repo), file=stderr) sys.exit(3) try: subprocess.check_call([GIT,'log','-q','-1','refs/heads/'+merge_branch], stdout=devnull, stderr=stdout) except subprocess.CalledProcessError as e: print("ERROR: Cannot find merge of pull request #%s on %s." % (pull,host_repo), file=stderr) sys.exit(3) subprocess.check_call([GIT,'checkout','-q',base_branch]) subprocess.call([GIT,'branch','-q','-D',local_merge_branch], stderr=devnull) subprocess.check_call([GIT,'checkout','-q','-b',local_merge_branch]) try: # Go up to the repository's root. toplevel = subprocess.check_output([GIT,'rev-parse','--show-toplevel']).strip() os.chdir(toplevel) # Create unsigned merge commit. if title: firstline = 'Merge #%s: %s' % (pull,title) else: firstline = 'Merge #%s' % (pull,) message = firstline + '\n\n' message += subprocess.check_output([GIT,'log','--no-merges','--topo-order','--pretty=format:%h %s (%an)',base_branch+'..'+head_branch]).decode('utf-8') message += '\n\nPull request description:\n\n ' + body.replace('\n', '\n ') + '\n' try: subprocess.check_call([GIT,'merge','-q','--commit','--no-edit','--no-ff','-m',message.encode('utf-8'),head_branch]) except subprocess.CalledProcessError as e: print("ERROR: Cannot be merged cleanly.",file=stderr) subprocess.check_call([GIT,'merge','--abort']) sys.exit(4) logmsg = subprocess.check_output([GIT,'log','--pretty=format:%s','-n','1']).decode('utf-8') if logmsg.rstrip() != firstline.rstrip(): print("ERROR: Creating merge failed (already merged?).",file=stderr) sys.exit(4) symlink_files = get_symlink_files() for f in symlink_files: print("ERROR: File %s was a symlink" % f) if len(symlink_files) > 0: sys.exit(4) # Put tree SHA512 into the message try: first_sha512 = tree_sha512sum() message += '\n\nTree-SHA512: ' + first_sha512 except subprocess.CalledProcessError as e: print("ERROR: Unable to compute tree hash") sys.exit(4) try: subprocess.check_call([GIT,'commit','--amend','-m',message.encode('utf-8')]) except subprocess.CalledProcessError as e: print("ERROR: Cannot update message.", file=stderr) sys.exit(4) print_merge_details(pull, title, branch, base_branch, head_branch) print() # Run test command if configured. if testcmd: if subprocess.call(testcmd,shell=True): print("ERROR: Running %s failed." % testcmd,file=stderr) sys.exit(5) # Show the created merge. diff = subprocess.check_output([GIT,'diff',merge_branch+'..'+local_merge_branch]) subprocess.check_call([GIT,'diff',base_branch+'..'+local_merge_branch]) if diff: print("WARNING: merge differs from github!",file=stderr) reply = ask_prompt("Type 'ignore' to continue.") if reply.lower() == 'ignore': print("Difference with github ignored.",file=stderr) else: sys.exit(6) else: # Verify the result manually. print("Dropping you on a shell so you can try building/testing the merged source.",file=stderr) print("Run 'git diff HEAD~' to show the changes being merged.",file=stderr) print("Type 'exit' when done.",file=stderr) if os.path.isfile('/etc/debian_version'): # Show pull number on Debian default prompt os.putenv('debian_chroot',pull) subprocess.call([BASH,'-i']) second_sha512 = tree_sha512sum() if first_sha512 != second_sha512: print("ERROR: Tree hash changed unexpectedly",file=stderr) sys.exit(8) # Sign the merge commit. print_merge_details(pull, title, branch, base_branch, head_branch) while True: reply = ask_prompt("Type 's' to sign off on the above merge, or 'x' to reject and exit.").lower() if reply == 's': try: subprocess.check_call([GIT,'commit','-q','--gpg-sign','--amend','--no-edit']) break except subprocess.CalledProcessError as e: print("Error while signing, asking again.",file=stderr) elif reply == 'x': print("Not signing off on merge, exiting.",file=stderr) sys.exit(1) # Put the result in branch. subprocess.check_call([GIT,'checkout','-q',branch]) subprocess.check_call([GIT,'reset','-q','--hard',local_merge_branch]) finally: # Clean up temporary branches. subprocess.call([GIT,'checkout','-q',branch]) subprocess.call([GIT,'branch','-q','-D',head_branch],stderr=devnull) subprocess.call([GIT,'branch','-q','-D',base_branch],stderr=devnull) subprocess.call([GIT,'branch','-q','-D',merge_branch],stderr=devnull) subprocess.call([GIT,'branch','-q','-D',local_merge_branch],stderr=devnull) # Push the result. while True: reply = ask_prompt("Type 'push' to push the result to %s, branch %s, or 'x' to exit without pushing." % (host_repo,branch)).lower() if reply == 'push': subprocess.check_call([GIT,'push',host_repo,'refs/heads/'+branch]) break elif reply == 'x': sys.exit(1) if __name__ == '__main__': main()
349da3c46b25c597a4fea4b6ffed199281d111b3
e61e664d95af3b93150cda5b92695be6551d2a7c
/vega/metrics/tensorflow/__init__.py
5eb861df8a3c94200471f2efbde2cb138194a48e
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
huawei-noah/vega
44aaf8bb28b45f707ed6cd4e871ba70fc0c04846
12e37a1991eb6771a2999fe0a46ddda920c47948
refs/heads/master
2023-09-01T20:16:28.746745
2023-02-15T09:36:59
2023-02-15T09:36:59
273,667,533
850
184
NOASSERTION
2023-02-15T09:37:01
2020-06-20T08:20:06
Python
UTF-8
Python
false
false
449
py
from vega.common.class_factory import ClassFactory from .metrics import Metrics ClassFactory.lazy_register("vega.metrics.tensorflow", { "segmentation_metric": ["trainer.metric:IoUMetric"], "classifier_metric": ["trainer.metric:accuracy"], "sr_metric": ["trainer.metric:PSNR", "trainer.metric:SSIM"], "forecast": ["trainer.metric:MSE", "trainer.metric:RMSE"], "r2score": ["trainer.metric:r2score", "trainer.metric:R2Score"], })
d9d15c7369252080d67b4a3db18eda581179e3b9
7950c4faf15ec1dc217391d839ddc21efd174ede
/contest/weekly-contest-266/5919.0_Vowels_of_All_Substrings.py
836bcb1c21e6f95554a3972b51237f0616b166fa
[]
no_license
lixiang2017/leetcode
f462ecd269c7157aa4f5854f8c1da97ca5375e39
f93380721b8383817fe2b0d728deca1321c9ef45
refs/heads/master
2023-08-25T02:56:58.918792
2023-08-22T16:43:36
2023-08-22T16:43:36
153,090,613
5
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
''' 41 / 51 个通过测试用例 状态:超出时间限制 brute force T: O(N^2) S: O(N) ''' class Solution: def countVowels(self, word: str) -> int: N = len(word) pre = [0] * (N + 1) for i, ch in enumerate(word): if ch in 'aeiou': pre[i + 1] = pre[i] + 1 else: pre[i + 1] = pre[i] ans = 0 for i in range(1, len(word) + 1): for j in range(i): ans += pre[i] - pre[j] return ans ''' "aba" 0112 ''' ''' 前缀和+前缀和 这是从双层暴力优化过来的 通过 296 ms 23.8 MB Python3 2021/11/07 19:48 T: O(3N) S: O(2N) ref: https://leetcode-cn.com/problems/vowels-of-all-substrings/solution/cqian-zhui-he-qian-zhui-he-by-answerer-360n/ ''' class Solution: def countVowels(self, word: str) -> int: N = len(word) pre = [0] * (N + 1) for i, ch in enumerate(word): if ch in 'aeiou': pre[i + 1] = pre[i] + 1 else: pre[i + 1] = pre[i] # presum of presum prepre = [0] * (N + 1) for i in range(1, N + 1): prepre[i] = prepre[i - 1] + pre[i] ans = 0 for i in range(N): ans += pre[i + 1] * (i + 1) - prepre[i] return ans ''' 乘法原理 T: O(N) S: O(1) 执行用时:92 ms, 在所有 Python3 提交中击败了100.00% 的用户 内存消耗:15.2 MB, 在所有 Python3 提交中击败了100.00% 的用户 通过测试用例:51 / 51 ''' class Solution: def countVowels(self, word: str) -> int: ans, N = 0, len(word) for i, ch in enumerate(word): if ch in 'aeiou': ans += (i + 1) * (N - i) return ans
958e5eceba3a97c5f73ae5f97c2f2d507c3228c4
8f8498bb6f56b19d45a1989c8113a077348c0a02
/백준/최소신장트리/행성 터널 - 프림.py
1b9cd115b4de9658e77fc0d211d97f40b0242f95
[]
no_license
gjtjdtn201/practice
a09b437c892b0b601e156c09cb1f053b52fab11b
ea45582b2773616b2b8f350b927559210009d89f
refs/heads/master
2021-01-01T13:29:46.640740
2020-11-28T00:55:37
2020-11-28T00:55:37
239,299,485
0
1
null
null
null
null
UTF-8
Python
false
false
800
py
import sys sys.stdin = open('행성 터널.txt') import sys input = sys.stdin.readline from heapq import heappush, heappop N = int(input()) star = [] for i in range(N): x, y, z = map(int, input().split()) star.append((x, y, z, i)) edges = [[] for _ in range(N)] for i in range(3): star.sort(key=lambda x: x[i]) for j in range(N-1): n1, n2 = star[j][3], star[j+1][3] cost = abs(star[j][i]-star[j+1][i]) edges[n1].append((cost, n2)) edges[n2].append((cost, n1)) mst = [False]*N ans = 0 q = [] heappush(q, (0, 0)) while q: cost, node = heappop(q) if mst[node]: continue ans += cost mst[node] = True for nxt_cost, nxt in edges[node]: if mst[nxt]: continue heappush(q, (nxt_cost, nxt)) print(ans)
05bbe819c737091fa9d1aff4a383a5ca8734dd1c
461cf2fd99330558ec96bf551cb1703e627868a0
/get_pages.py
b050961df0e6de3f1240f8bc48e06c5237fb092d
[]
no_license
abelsonlive/bcni-pra
408f72ba369ca164c5efb4442ebd2eaeb2c8dd78
fa51ae45382c45f15fe861060d6e90cc00c27590
refs/heads/master
2021-01-20T11:50:13.432486
2013-04-29T14:45:04
2013-04-29T14:45:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
import selenium from selenium import webdriver import time URL = "http://secure.phila.gov/paplpublicweb/GridView.aspx" b = webdriver.Firefox() b.get(URL) for i in range(2, 806): print i text = b.page_source.encode('utf-8') fp = "raw_pages/page%s.txt" % (i-1) print "writing", fp, "to file" with open(fp, "w") as text_file: text_file.write(text) try: next = b.find_element_by_xpath("//span[contains(text(),'%s')]" % (i)) except selenium.common.exceptions.NoSuchElementException or selenium.common.exceptions.StaleElementReferenceException: print "ERROR ERROR!!!" i = i - 1 print "trying again" next.click() time.sleep(2) b.close()
a73c7308d19a2723bbdb73a89ceca2790e0ddbea
3a10cda6dbdeee36b24591ada2c551ff2f179d19
/app/models/hour.py
1a14852b19fe5a1765504a13f12ccb678185c99c
[]
no_license
ttecles/weather_backend
a0d0c6317c3fde6c4ac6df17c7c9a5ea59299302
b4b2886a3f0a2b6b502bd38d0b98f017b01ef6b0
refs/heads/master
2023-02-19T12:31:52.295041
2021-01-26T08:56:34
2021-01-26T08:56:34
330,950,429
0
0
null
null
null
null
UTF-8
Python
false
false
763
py
from app import db class Hour(db.Model): __tablename__ = 'Hour' locality_id = db.Column(db.Integer, db.ForeignKey('Locality.id'), primary_key=True, nullable=False) date = db.Column(db.Date(), primary_key=True) # "2021-1-15" hour_data = db.Column(db.Time(), primary_key=True) # "13:00", temperature = db.Column(db.Integer) # -1, icon = db.Column(db.String(10)) # "6", text = db.Column(db.String(80)) # "Mostly cloudy", humidity = db.Column(db.Integer) # 89, wind = db.Column(db.Integer) # 4, wind_direction = db.Column(db.String(30)) # "Northwest", icon_wind = db.Column(db.String(10)) # "NO", pressure = db.Column(db.Integer) # 1016, locality = db.relationship("Locality", backref="hour_forecast")
8517ce3f417f877036d4b1f5d9af879c97c0a703
e02506da0c661c8241fed00efdd0d6b2f8b147df
/textattack/attack_recipes/seq2sick_cheng_2018_blackbox.py
8af6d15138de6bc314511c851970b1c226990123
[ "MIT" ]
permissive
SatoshiRobatoFujimoto/TextAttack
2592a828f128fd8bf0b8ce5578e9488df5b2ac97
a809a9bddddff9f41750949e26edde26c8af6cfa
refs/heads/master
2022-07-11T02:10:24.536157
2020-05-14T13:29:44
2020-05-14T13:29:44
263,941,825
1
0
MIT
2020-05-14T14:43:47
2020-05-14T14:43:46
null
UTF-8
Python
false
false
1,205
py
""" Cheng, Minhao, et al. Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples ArXiv, abs/1803.01128. This is a greedy re-implementation of the seq2sick attack method. It does not use gradient descent. """ from textattack.constraints.overlap import LevenshteinEditDistance from textattack.goal_functions import NonOverlappingOutput from textattack.search_methods import GreedyWordSwapWIR from textattack.transformations import WordSwapEmbedding def Seq2SickCheng2018BlackBox(model, goal_function='non_overlapping'): # # Goal is non-overlapping output. # goal_function = NonOverlappingOutput(model) # @TODO implement transformation / search method just like they do in # seq2sick. transformation = WordSwapEmbedding(max_candidates=50) # # In these experiments, we hold the maximum difference # on edit distance (ϵ) to a constant 30 for each sample. # # # Greedily swap words with "Word Importance Ranking". # attack = GreedyWordSwapWIR(goal_function, transformation=transformation, constraints=[], max_depth=10) return attack
f9791b2b58c0ed0961046f7b8a0dd4bb73d8450a
5410700e83210d003f1ffbdb75499062008df0d6
/leetcode/tree2Str.py
61ae648b31c803481fe3db7769a6109de4b7ac74
[]
no_license
lilyandcy/python3
81182c35ab8b61fb86f67f7796e057936adf3ab7
11ef4ace7aa1f875491163d036935dd76d8b89e0
refs/heads/master
2021-06-14T18:41:42.089534
2019-10-22T00:24:30
2019-10-22T00:24:30
144,527,289
1
0
null
null
null
null
UTF-8
Python
false
false
549
py
class Solution: def tree2str(self, t): """ :type t: TreeNode :rtype: str """ if t == None: return "" if t.left == None and t.right == None: return str(t.val) elif t.left == None: return str(t.val) + "()" + "(" + self.tree2str(t.right) + ")" elif t.right == None: return str(t.val) + "(" + self.tree2str(t.left) + ")" else: return str(t.val) + "(" + self.tree2str(t.left) + ")" + "(" + self.tree2str(t.right) + ")"
d3a92669d402c8e28659a759ac1a2d6cc27440b5
0add7953d3e3ce2df9e8265102be39b758579753
/built-in/MindSpore/Research/cv/image_classification/FaceAttribute_for_MindSpore/train.py
a269bece0a922cf7323ebe7a7e5a57abd9157391
[ "Apache-2.0" ]
permissive
Huawei-Ascend/modelzoo
ae161c0b4e581f8b62c77251e9204d958c4cf6c4
df51ed9c1d6dbde1deef63f2a037a369f8554406
refs/heads/master
2023-04-08T08:17:40.058206
2020-12-07T08:04:57
2020-12-07T08:04:57
319,219,518
1
1
Apache-2.0
2023-03-24T22:22:00
2020-12-07T06:01:32
Python
UTF-8
Python
false
false
8,476
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Face attribute train.""" import os import time import datetime import argparse import mindspore.nn as nn from mindspore import context from mindspore import Tensor from mindspore.nn.optim import Momentum from mindspore.communication.management import get_group_size, init, get_rank from mindspore.nn import TrainOneStepCell from mindspore.context import ParallelMode from mindspore.train.callback import ModelCheckpoint, RunContext, _InternalCallbackParam, CheckpointConfig from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.ops import operations as P from mindspore.common import dtype as mstype from src.FaceAttribute.resnet18 import get_resnet18 from src.FaceAttribute.loss_factory import get_loss from src.dataset_train import data_generator from src.lrsche_factory import warmup_step from src.logging import get_logger, AverageMeter from src.config import config devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid) class BuildTrainNetwork(nn.Cell): def __init__(self, network, criterion): super(BuildTrainNetwork, self).__init__() self.network = network self.criterion = criterion self.print = P.Print() def construct(self, input_data, label): logit0, logit1, logit2 = self.network(input_data) loss = self.criterion(logit0, logit1, logit2, label) return loss def parse_args(): parser = argparse.ArgumentParser('Face Attributes') parser.add_argument('--mindrecord_path', type=str, default='', help='dataset path, e.g. /home/data.mindrecord') parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load') parser.add_argument('--local_rank', type=int, default=0, help='current rank to support distributed') parser.add_argument('--world_size', type=int, default=8, help='current process number to support distributed') args, _ = parser.parse_known_args() return args def train(): # logger args = parse_args() # init distributed if args.world_size != 1: init() args.local_rank = get_rank() args.world_size = get_group_size() args.per_batch_size = config.per_batch_size args.dst_h = config.dst_h args.dst_w = config.dst_w args.workers = config.workers args.attri_num = config.attri_num args.classes = config.classes args.backbone = config.backbone args.loss_scale = config.loss_scale args.flat_dim = config.flat_dim args.fc_dim = config.fc_dim args.lr = config.lr args.lr_scale = config.lr_scale args.lr_epochs = config.lr_epochs args.weight_decay = config.weight_decay args.momentum = config.momentum args.max_epoch = config.max_epoch args.warmup_epochs = config.warmup_epochs args.log_interval = config.log_interval args.ckpt_path = config.ckpt_path if args.world_size == 1: args.per_batch_size = 256 else: args.lr = args.lr * 4. if args.world_size != 1: parallel_mode = ParallelMode.DATA_PARALLEL else: parallel_mode = ParallelMode.STAND_ALONE context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=args.world_size) # model and log save path args.outputs_dir = os.path.join(args.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.local_rank) loss_meter = AverageMeter('loss') # dataloader args.logger.info('start create dataloader') de_dataloader, steps_per_epoch, num_classes = data_generator(args) args.steps_per_epoch = steps_per_epoch args.num_classes = num_classes args.logger.info('end create dataloader') args.logger.save_args(args) # backbone and loss args.logger.important_info('start create network') create_network_start = time.time() network = get_resnet18(args) criterion = get_loss() # load pretrain model if os.path.isfile(args.pretrained): param_dict = load_checkpoint(args.pretrained) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load model {} success'.format(args.pretrained)) # optimizer and lr scheduler lr = warmup_step(args, gamma=0.1) opt = Momentum(params=network.trainable_params(), learning_rate=lr, momentum=args.momentum, weight_decay=args.weight_decay, loss_scale=args.loss_scale) train_net = BuildTrainNetwork(network, criterion) # mixed precision training criterion.add_flags_recursive(fp32=True) # package training process train_net = TrainOneStepCell(train_net, opt, sens=args.loss_scale) context.reset_auto_parallel_context() # checkpoint if args.local_rank == 0: ckpt_max_num = args.max_epoch train_config = CheckpointConfig(save_checkpoint_steps=args.steps_per_epoch, keep_checkpoint_max=ckpt_max_num) ckpt_cb = ModelCheckpoint(config=train_config, directory=args.outputs_dir, prefix='{}'.format(args.local_rank)) cb_params = _InternalCallbackParam() cb_params.train_network = train_net cb_params.epoch_num = ckpt_max_num cb_params.cur_epoch_num = 0 run_context = RunContext(cb_params) ckpt_cb.begin(run_context) train_net.set_train() t_end = time.time() t_epoch = time.time() old_progress = -1 i = 0 for step_i, (data, gt_classes) in enumerate(de_dataloader): data_tensor = Tensor(data, dtype=mstype.float32) gt_tensor = Tensor(gt_classes, dtype=mstype.int32) loss = train_net(data_tensor, gt_tensor) loss_meter.update(loss.asnumpy()[0]) # save ckpt if args.local_rank == 0: cb_params.cur_step_num = i + 1 cb_params.batch_num = i + 2 ckpt_cb.step_end(run_context) if i % args.steps_per_epoch == 0 and args.local_rank == 0: cb_params.cur_epoch_num += 1 # save Log if i == 0: time_for_graph_compile = time.time() - create_network_start args.logger.important_info('{}, graph compile time={:.2f}s'.format(args.backbone, time_for_graph_compile)) if i % args.log_interval == 0 and args.local_rank == 0: time_used = time.time() - t_end epoch = int(i / args.steps_per_epoch) fps = args.per_batch_size * (i - old_progress) * args.world_size / time_used args.logger.info('epoch[{}], iter[{}], {}, {:.2f} imgs/sec'.format(epoch, i, loss_meter, fps)) t_end = time.time() loss_meter.reset() old_progress = i if i % args.steps_per_epoch == 0 and args.local_rank == 0: epoch_time_used = time.time() - t_epoch epoch = int(i / args.steps_per_epoch) fps = args.per_batch_size * args.world_size * args.steps_per_epoch / epoch_time_used args.logger.info('=================================================') args.logger.info('epoch time: epoch[{}], iter[{}], {:.2f} imgs/sec'.format(epoch, i, fps)) args.logger.info('=================================================') t_epoch = time.time() i += 1 args.logger.info('--------- trains out ---------') if __name__ == "__main__": train()
7cc2c7507b75fcd535a7e8e9c9b0457f48bd6414
e0b6f5bd451aa8af3273fbc948799637681342e1
/scripts/wm_representation/functions/IEM/Controls/trial_by_trial/trainT_testT_wm3_shuffles_refs.py
99a1066c8955feb220ec3514ad753bea566ad476
[]
no_license
davidbestue/encoding
6b304f6e7429f94f97bd562c7544d1fdccf7bdc1
c27319aa3bb652b3bfc6b7340044c0fda057bc62
refs/heads/master
2022-05-05T23:41:42.419252
2022-04-27T08:34:52
2022-04-27T08:34:52
144,248,690
0
0
null
null
null
null
UTF-8
Python
false
false
4,890
py
# -*- coding: utf-8 -*- """ Created on Mon Jul 1 18:24:32 2019 @author: David Bestue """ ####### ####### In this analysis: ####### I am doing the reconstruction training in the delay period and testing in each trial. No CV and No Shuffles ####### ############# Add to sys path the path where the tools folder is import sys, os #path_tools = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) ### same directory or one back options path_tools = os.path.abspath(os.path.join(os.getcwd(), os.pardir, os.pardir)) ### same directory or one back options sys.path.insert(1, path_tools) from tools import * ############# Namefiles for the savings. path_save_reconst_shuffs ='/home/david/Desktop/Reconstructions/IEM/recs_shuffs_references_IEM_trainT_testT_wm3.npy' ############# Testing options decoding_thing = 'T_alone' #'dist_alone' 'T_alone' ############# Training options training_item = 'T_alone' #'dist_alone' 'T_alone' cond_t = '1_7' #'1_7' '2_7' Distance_to_use = 'mix' #'close' 'far' training_time= 'delay' #'stim_p' 'delay' 'respo' tr_st=4 tr_end=6 ############# Elements for the loop Conditions=['1_0.2', '1_7', '2_0.2', '2_7'] Subjects=['d001', 'n001', 'b001', 'r001', 's001', 'l001'] brain_regions = ['visual','ips', 'pfc', 'broca'] ref_angle=180 Reconstructions_ = [] ## subjects x brain regiond --> ntrials x 16 x 720 matrix ############# Analysis ############# for Subject in Subjects: for Brain_region in brain_regions: enc_fmri_paths, enc_beh_paths, wm_fmri_paths, wm_beh_paths, masks = data_to_use( Subject, 'together', Brain_region) activity, behaviour = process_wm_task(wm_fmri_paths, masks, wm_beh_paths, nscans_wm=nscans_wm) behaviour['Condition'] = behaviour['Condition'].replace(['1.0_0.2', '1.0_7.0', '2.0_0.2','2.0_7.0' ], ['1_0.2', '1_7', '2_0.2', '2_7']) behaviour['brain_region'] = Brain_region ### ### print(Subject, Brain_region) Reconstructed_trials=[] ## ntrials x 16 x 720 matrix ### ### #angx = behaviour[decoding_thing].values #angles_shuffled = random.sample( list(angx), len(angx) ) ### ### for trial in range(len(behaviour)): activity_trial = activity[trial,:,:] beh_trial = behaviour.iloc[trial,:] session_trial = beh_trial.session_run ### ### Training ### if cond_t == '1_7': boolean_trials_training = np.array(behaviour['delay1']==7) * np.array(behaviour['order']==1) * np.array(behaviour['session_run']!=session_trial) elif cond_t == '2_7': boolean_trials_training = np.array(behaviour['delay1']==7) * np.array(behaviour['order']==2) * np.array(behaviour['session_run']!=session_trial) # activity_train_model = activity[boolean_trials_training, :, :] activity_train_model_TRs = np.mean(activity_train_model[:, tr_st:tr_end, :], axis=1) behavior_train_model = behaviour[boolean_trials_training] training_angles = behavior_train_model[['T', 'NT1', 'NT2']].values # Weights_matrix, Interc = Weights_matrix_LM_3items(activity_train_model_TRs, training_angles) Weights_matrix_t = Weights_matrix.transpose() ### ### Testing ### Reconstructed_TR = [] ## 16 x 720 matrix # for TR_ in range(nscans_wm): activity_TR = activity_trial[TR_, :] angle_trial = random.choice([0,90,180,270]) Inverted_encoding_model = np.dot( np.dot ( np.linalg.pinv( np.dot(Weights_matrix_t, Weights_matrix ) ), Weights_matrix_t), activity_TR) #Inverted_encoding_model_pos = Pos_IEM2(Inverted_encoding_model) IEM_hd = ch2vrep3(Inverted_encoding_model) #36 to 720 to_roll = int( (ref_angle - angle_trial)*(len(IEM_hd)/360) ) ## degrees to roll IEM_hd_aligned=np.roll(IEM_hd, to_roll) ## roll this degree ##vector of 720 Reconstructed_TR.append(IEM_hd_aligned) ## resconstr_trial = np.array(Reconstructed_TR) Reconstructed_trials.append(resconstr_trial) ## ## Reconstructions_.append(Reconstructed_trials) ######## final_rec = np.array(Reconstructions_) np.save(path_save_reconst_shuffs, final_rec) ############# Options de training times, the TRs used for the training will be different # training_time=='delay': # tr_st=4 # tr_end=6 # training_time=='stim_p': # tr_st=3 # tr_end=4 # training_time=='delay': # tr_st=4 # tr_end=6 # training_time=='respo': # if decoding_thing=='Target': # tr_st=8 # tr_end=9 # elif decoding_thing=='Distractor': # tr_st=11 # tr_end=12
98fa4703bd418ed584d3c0b4069f185a536db5ec
87e7f159b48ad4e2b784c8846bed37e1825fb375
/gamma/grd_batch_process.py
2438f8c31f8555e79c2e0e4fb469c0d34b7b1584
[]
no_license
whigg/GeorgeVI-surface-melt
0db560640209911d5ef432ebf1fdef49b1f9957a
0778de50fa747a4165273c9ef9edd65bf783fd34
refs/heads/master
2023-07-10T22:14:57.455070
2020-05-28T12:20:57
2020-05-28T12:20:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,982
py
#activate the gamma environment in the shell #gma #geoutils import os import os.path from os import path import subprocess from pyroSAR import identify #import faulthandler; faulthandler.enable() dem = "/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/data/DEM/REMA_resampled_10m.dem" dem_par = "/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/data/DEM/REMA_resampled_10m.dem_par" outdir = "/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/data/s1_grd/s1_grd_processed/grd_processed" rootdir = '/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/data/s1_grd/' study_area = '/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/study_area/study_area_square.shp' surplus_files = '/exports/csce/datastore/geos/groups/MSCGIS/s2002365/code/data/s1_grd/s1_grd_processed/to_be_deleted/' def unzip(): '''Unzips S1.zip files into .SAFE folders.''' for dirname in os.listdir(rootdir): if dirname.endswith(".zip"): filename = str(dirname)[:-4] #unzip S1 data to .SAFE file if not path.exists(f"{rootdir}{filename}.SAFE"): unzip = f"unzip {rootdir}{dirname} -d {rootdir}" os.system(unzip) print(f"{dirname} is now unzipped.") def mk_POEORB_dir(): '''creates the file structure needed for the orbit files. Make sure the correct orbit file is downloaded and placed inside the POEORB directory before running the processGRD() function. ''' for dirname in os.listdir(rootdir): if dirname.endswith(".SAFE"): if not path.exists(f"{rootdir}{dirname}/osv/"): os.makedirs(f"{rootdir}{dirname}/osv/") print("Directories for orbit files created.") def downloadOSV(): '''downloads the OSV file associated with each S1 image and places it into the correct file structure''' for dirname in os.listdir(rootdir): if dirname.endswith(".zip"): filename = str(dirname)[:-4] if path.exists(f"{rootdir}{filename}.SAFE/osv/"): scene = f"{rootdir}{dirname}" platform = str(dirname)[:3] year = str(dirname)[17:21] month = str(dirname)[21:23] day = str(dirname)[23:25] id = identify(scene) id.getOSV(osvdir=f'{rootdir}{filename}.SAFE/osv/', osvType='POE') #downloads OSV file as a zip file located in {rootdir}/POEORB/S1B/2019/05/ if day != "01": unzip = f"unzip {rootdir}{filename}.SAFE/osv/POEORB/{platform}/{year}/{month}/*.zip -d {rootdir}{filename}.SAFE/osv/POEORB" else: pre_month = int(month)-1 if pre_month > 9: orb_month = str(pre_month) else: orb_month = '0'+ str(pre_month) unzip = f"unzip {rootdir}{filename}.SAFE/osv/POEORB/{platform}/{year}/{orb_month}/*.zip -d {rootdir}{filename}.SAFE/osv/POEORB" os.system(unzip) else: print(f"Correct file structure for OSV files does not exist: {dirname}.") def processGRD(): '''Processes the Sentinel 1 data using the Gamma workflow''' for dirname in os.listdir(rootdir): if dirname.endswith(".SAFE"): #set directory and file names dir = f'{rootdir}{dirname}' if path.exists(f"{dir}/osv/POEORB/"): filename= str(dirname).lower().replace("_", "-")[:-10] filenameHH = filename.replace("1ssh","hh").replace("grdh","grd") #Generate MLI and GRD images and parameter files from a Sentinel-1 GRD product par_command= f"par_S1_GRD {dir}/measurement/{filenameHH}-001.tiff {dir}/annotation/{filenameHH}-001.xml {dir}/annotation/calibration/calibration-{filenameHH}-001.xml - {dir}/{filenameHH}_HH_grd.par {dir}/{filenameHH}_HH_grd - - - - -" os.system(par_command) # correct orb files must be allocated beforehand in SAFE folder (/osv/POEORB) for file in os.listdir(f'{dir}/osv/POEORB/'): if file.endswith("EOF"): orb = str(file) #Extract Sentinel-1 OPOD state vectors and copy into the ISP image parameter file opod = f"S1_OPOD_vec {dir}/{filenameHH}_HH_grd.par {dir}/osv/POEORB/{orb} -" os.system(opod) #Multi-looking of intensity (MLI) images multilook = f"multi_look_MLI {dir}/{filenameHH}_HH_grd {dir}/{filenameHH}_HH_grd.par {dir}/{filenameHH}_HH_grd_mli {dir}/{filenameHH}_HH_grd_mli.par 2 2 - - -" os.system(multilook) #Calculate terrain-geocoding lookup table and DEM derived data products gc_map = f"gc_map {dir}/{filenameHH}_HH_grd_mli.par - {dem_par} {dem} {dir}/{filename}_dem_seg_geo.par {dir}/{filename}_dem_seg_geo {dir}/{filename}_lut_init 1.0 1.0 - - - {dir}/{filename}_inc_geo - {dir}/{filename}_pix_geo {dir}/{filename}_ls_map_geo 8 2 -" os.system(gc_map) #Calculate terrain-based sigma0 and gammma0 normalization area in slant-range geometry pixel_area = f"pixel_area {dir}/{filenameHH}_HH_grd_mli.par {dir}/{filename}_dem_seg_geo.par {dir}/{filename}_dem_seg_geo {dir}/{filename}_lut_init {dir}/{filename}_ls_map_geo {dir}/{filename}_inc_geo - - - - {dir}/{filename}_pix_fine -" os.system(pixel_area) #Calculate product of two images: (image 1)*(image 2) mli_samples = subprocess.check_output(f"grep samples {dir}/{filenameHH}_HH_grd_mli.par", shell=True) mli_samples = str(mli_samples).replace("\n'","").split(' ')[-1][:-3] print("MLI Samples:", mli_samples) product = f"product {dir}/{filenameHH}_HH_grd_mli {dir}/{filename}_pix_fine {dir}/{filenameHH}_HH_grd_mli_pan {mli_samples} 1 1 -" os.system(product) #Geocoding of image data using a geocoding lookup table dem_samples = subprocess.check_output(f"grep width {dir}/{filename}_dem_seg_geo.par", shell=True) dem_samples = str(dem_samples).replace("\n'","").split(' ')[-1][:-3] print("DEM Samples:", dem_samples) geocode_back = f"geocode_back {dir}/{filenameHH}_HH_grd_mli_pan {mli_samples} {dir}/{filename}_lut_init {dir}/{filenameHH}_HH_grd_mli_pan_geo {dem_samples} - 2 - - - -" os.system(geocode_back) #Compute backscatter coefficient gamma (sigma0)/cos(inc) sigma2gamma = f"sigma2gamma {dir}/{filenameHH}_HH_grd_mli_pan_geo {dir}/{filename}_inc_geo {dir}/{filenameHH}_HH_grd_mli_norm_geo {dem_samples}" os.system(sigma2gamma) #Conversion of data between linear and dB scale linear_to_dB = f"linear_to_dB {dir}/{filenameHH}_HH_grd_mli_norm_geo {dir}/{filenameHH}_HH_grd_mli_norm_geo_db {dem_samples} 0 -99" os.system(linear_to_dB) #convert geocoded data with DEM parameter file to GeoTIFF format (dB) data2geotiff = f"data2geotiff {dir}/{filename}_dem_seg_geo.par {dir}/{filenameHH}_HH_grd_mli_norm_geo_db 2 {outdir}/{filenameHH}_HH_grd_mli_norm_geo_db.tif -99" os.system(data2geotiff) #Produce different types of geotiffs (unhash lines below if want to create them) #data2geotiff2 = f"data2geotiff {dir}/{filename}_dem_seg_geo.par {dir}/{filename}_inc_geo 2 {outdir}/{filename}_inc_geo.tif -99" #os.system(data2geotiff2) #data2geotiff3 = f"data2geotiff {dir}/{filename}_dem_seg_geo.par {dir}/{filename}_ls_map_geo 5 {outdir}/{filename}_ls_map_geo.tif 0" #os.system(data2geotiff3) print("I finished the scene") else: print(f"OSV files have not been downloaded: {dirname}.") def transform_geotiff(): #Tested and works '''Transforms geotiff into the UTM 19S projection (EPSG: 32719)''' for geotiff in os.listdir(outdir): if geotiff.endswith("db.tif"): filename= str(geotiff)[:-4] transform = f"gdalwarp -t_srs EPSG:32719 {outdir}/{filename}.tif {outdir}/{filename}_utm_19S.tif" os.system(transform) #gdal.Warp() print(f"{geotiff} transformed to EPSG 32719.") def crop_geotiff(): #Tested and works '''Crops transformed geotiff to the study area boundary''' for geotiff in os.listdir(outdir): if geotiff.endswith("_utm_19S.tif"): filename = str(geotiff)[:-4] print(filename) crop = f"gdalwarp -cutline {study_area} -crop_to_cutline {outdir}/{filename}.tif {outdir}/{filename}_cropped.tif" os.system(crop) print(f"{geotiff} cropped to study area.") def move_surplus_files(): #Tested and works (also need to work on it so it deletes per S1 scene, rather than the whole folder, to ensure safety.) '''Moves surplus files to other folder, from which they can then be deleted where necessary. Should only run once the previous steps have been run on all of the geotiffs in the folder.''' if any(File.endswith("_utm_19S_cropped.tif") for File in os.listdir(outdir)): for geotiff in os.listdir(outdir): if geotiff.endswith("geo_db.tif") or geotiff.endswith("_utm_19S.tif") or geotiff.endswith("geo.tif") or geotiff.endswith(".tif.ovr"): os.rename(f"{outdir}/{geotiff}", f"{surplus_files}{geotiff}") print(f"{geotiff} has been moved to the to_be_deleted folder.") elif geotiff.endswith("_utm_19S_cropped.tif"): print(f"{geotiff} is the final product (transformed and cropped).") else: print("The geotiff is yet to be cropped to the study area. Complete this step first, before removing the file from this folder.") elif any(File.endswith("_utm_19S.tif") for File in os.listdir(outdir)): for geotiff in os.listdir(outdir): if geotiff.endswith("geo_db.tif"): os.rename(f"{outdir}/{geotiff}", f"{surplus_files}{geotiff}") #os.remove(geotiff) elif geotiff.endswith("_utm_19S_cropped.tif"): print(f"{geotiff} is the final product (transformed and cropped).") else: print(f"{geotiff} is yet to be transformed into UTM Zone 19S. Complete this step first, before removing the file from this folder.") else: print("No surplus files exist in this directory.") '''Run the functions. Hash them out where necessary.''' #data preparation steps unzip() mk_POEORB_dir() downloadOSV() #data processing steps, transformation, crop, and move surplus files processGRD() transform_geotiff() crop_geotiff() move_surplus_files()
4f714d6172a078dceda6b04a5faec6a75aeec621
dc63e528012fb2f3e15b73e05c924236760d01b1
/cloudify_azure/resources/compute/virtualmachine/virtualmachine_utils.py
4a67d65a4df9ff6e52f6dd881668444d4f9e6848
[ "Apache-2.0" ]
permissive
cloudify-cosmo/cloudify-azure-plugin
515b6285b63c2a01ae4d666957541a1f08472410
361c48bc4abe38cf57354e8d36839137462ad345
refs/heads/master
2023-08-21T14:23:06.673284
2023-07-30T10:44:39
2023-07-30T10:44:39
36,666,947
4
14
Apache-2.0
2023-07-30T10:44:41
2015-06-01T14:42:32
Python
UTF-8
Python
false
false
3,521
py
# ####### # Copyright (c) 2016-2020 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cloudify import ctx def check_if_configuration_changed(ctx, update_payload, current_vm): for prop in ['location', 'tags', 'plan', 'availability_set', 'eviction_policy', 'billing_profile', 'priority', 'hardware_profile']: update_property_value = update_payload.get(prop) current_vm_property_value = current_vm.get(prop) if update_property_value and ordered( update_property_value) != ordered(current_vm_property_value): ctx.logger.info("{prop} changed.".format(prop=prop)) ctx.logger.info("update payload: {content}.".format( content=update_property_value)) ctx.logger.info("current configuration: {content}.".format( content=current_vm_property_value)) return True for prop in ['os_profile', 'storage_profile', 'network_profile']: if prop == 'network_profile' and update_payload.get(prop): update_property_value = update_payload.get(prop).as_dict() else: update_property_value = update_payload.get(prop, {}) current_vm_property_value = current_vm.get(prop, {}) if diff_dictionaries(update_property_value, current_vm_property_value): ctx.logger.info("{prop} changed.".format(prop=prop)) return True return False def diff_dictionaries(update_dict, current_conf_dict): """ Returns True if update_dict has changes in a key that doesn't appear in current_conf_dict. current_conf_dict can have additional keys and its not considered as a diff. """ for key in update_dict: if isinstance(update_dict.get(key), dict): res = diff_dictionaries(update_dict.get(key), current_conf_dict.get(key, {})) if res: return True elif ordered(update_dict.get(key)) != ordered( current_conf_dict.get(key)): ctx.logger.info( 'Changes found in diff_dictionaries: key={key}\n'.format( key=key)) ctx.logger.info( 'update_dict: {}'.format(ordered(update_dict.get(key)))) ctx.logger.info( 'current_conf_dict: {}'.format(ordered( current_conf_dict.get(key)))) return True return False def ordered(obj): """ This function will recursively sort any lists it finds (and convert dictionaries to lists of (key, value) pairs so that they're orderable) """ if isinstance(obj, dict): return sorted((k, ordered(v)) for k, v in obj.items()) if isinstance(obj, list): return sorted(ordered(x) for x in obj) if isinstance(obj, str): return obj.lower() if isinstance(obj, (int, float)): return str(obj) else: return obj
8eb20a63cf9ae7debe25c9b008d788862e5ee7da
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/78/usersdata/171/41777/submittedfiles/divisores.py
701949f8b9cb8bf36079078eda939d27b7fe7166
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
# -*- coding: utf-8 -*- import math n=int(input('digite n:')) a=int(input('digite a:')) b=int(input('digite b:')) d=a e=b f=a*b for i in range(1,n+1,1): d=a e=b f=a*b print(f)
ecf2e202398d9c58d9d5bcb9846dbebaf58a02aa
0ccab2965458454d6a4802b47d33310e43c10d8f
/classes/student.py
c9e7d33683deae9b858dc5fb04d7034fd00d39ca
[]
no_license
jazib-mahmood-attainu/Ambedkar_Batch
11e66125647b3b348d4567862f8fc20a3457b2f0
c99be9a401b8d00f6ca47398f48e90ead98f4898
refs/heads/main
2023-08-01T13:13:43.357769
2021-09-25T03:54:27
2021-09-25T03:54:27
390,405,238
16
10
null
null
null
null
UTF-8
Python
false
false
427
py
class Student: def __init__(self,roll,name,age): self.roll = roll self.name = name self.age = age def reads(self): print(self.name,"is reading") preeti = Student(10,"Preeti",24) print(preeti.name) print(preeti.roll) print(preeti.age) preeti.reads() print("**********") sapna = Student(11,"Sapna",19) print(sapna.name) print(sapna.roll) print(sapna.age) sapna.reads()
e2230aed752c8a73948aecc725580d22f370446b
1e9fed88ce4a623970f7e53143753a170d4bdcda
/aat/tests/test_strategy.py
37e4f8123735a0e70663ec060bc26eda308854e1
[ "Apache-2.0" ]
permissive
krusty45/aat
06dedbfe0abaf76c4a584ad441dc7badd093a939
a14b652f7ff90761d0e1198a85d8fc02efeff0eb
refs/heads/master
2020-06-24T09:34:30.981326
2019-07-09T19:34:22
2019-07-09T19:34:22
198,929,483
1
0
Apache-2.0
2019-07-26T02:07:57
2019-07-26T02:07:56
null
UTF-8
Python
false
false
453
py
# for coverage from ..strategy import * class TestStrategy: def setup(self): pass # setup() before each test method def teardown(self): pass # teardown() after each test method @classmethod def setup_class(cls): pass # setup_class() before any methods in this class @classmethod def teardown_class(cls): pass # teardown_class() after any methods in this class
8806780712e5054373bdc136bb537dece0d2b9ac
ffd2126e1ba5d1acea0bb0b3d011f4ccaf1c1f1f
/gia/gia/doctype/gia_sector/gia_sector.py
4a1e4524728a0939102446bd86307c02279f077f
[ "MIT" ]
permissive
alkuhlani/gia
fd55c65b0f430f24c7fbe3aef5ea911af8642702
9af9737cef7b0b947baa21f46c7be381c4fc9d98
refs/heads/master
2022-12-10T02:45:47.907158
2020-09-04T16:37:10
2020-09-04T16:37:10
276,495,714
0
1
null
null
null
null
UTF-8
Python
false
false
392
py
# -*- coding: utf-8 -*- # Copyright (c) 2020, Ahmed Mohammed Alkuhlani and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _, throw from frappe.model.document import Document class GIASector(Document): def validate(self): if not self.parent_gia_sector: frappe.throw(_("Please enter the parent"))
fd9166714314627d931b92e8df033ea9d4f2ffd2
54a5f5ec2c5edf924b7dc7730ee7cb2a38ac4a39
/DataFrame_manipulation_pandas/E01_Positional_and_labeled_indexing.py
aa09f4a045dbe19bc6a45b84a5dfebd5c0c513b2
[]
no_license
dajofischer/Datacamp
fac413ec178375cedceababaf84f6b47a61fc821
a03d16b8f342412f1ee077f2f196ee8404e2e21c
refs/heads/master
2020-04-05T08:38:25.361746
2019-03-27T20:55:57
2019-03-27T20:55:57
156,722,561
1
0
null
null
null
null
UTF-8
Python
false
false
247
py
# Assign the row position of election.loc['Bedford']: x x = 4 # Assign the column position of election['winner']: y y = 4 # Print the boolean equivalence print(election.iloc[x, y] == election.loc['Bedford', 'winner']) #nonsense text #nonsenes2
e33e3af781a4af593bf78acc8dc4120f93f12313
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/wellf.py
01d938845a41da448d3678520087a53125ba2d11
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
141
py
ii = [('RoscTTI3.py', 1), ('MedwTAI.py', 1), ('WadeJEB.py', 2), ('DibdTRL.py', 1), ('FitzRNS2.py', 1), ('HogaGMM2.py', 1), ('BeckWRE.py', 1)]
5651d66b1dd3f7adb98ce5c7bc17e2acfe92784a
174620e5937ac217cfdc46fa1f58493e9d59dfdd
/lib/default/lib/python2.7/site-packages/celery/concurrency/base.py
e0f2eb514c23941ee91fd0003917de8230cc1dac
[]
no_license
Saifinbox/CKANPROJECT
6552912317019ce7dca87a1367344dbf5d978062
89e1cac49b282106ff4595f54a4eb84bcc8d2ee9
refs/heads/master
2021-01-01T06:34:37.568829
2017-07-17T08:48:46
2017-07-17T08:48:46
97,453,740
1
0
null
null
null
null
UTF-8
Python
false
false
3,732
py
# -*- coding: utf-8 -*- """ celery.concurrency.base ~~~~~~~~~~~~~~~~~~~~~~~ TaskPool interface. """ from __future__ import absolute_import import logging import os import time from kombu.utils.encoding import safe_repr from celery.utils import timer2 from celery.utils.log import get_logger logger = get_logger('celery.concurrency') def apply_target(target, args=(), kwargs={}, callback=None, accept_callback=None, pid=None, **_): if accept_callback: accept_callback(pid or os.getpid(), time.time()) callback(target(*args, **kwargs)) class BasePool(object): RUN = 0x1 CLOSE = 0x2 TERMINATE = 0x3 Timer = timer2.Timer #: set to true if the pool can be shutdown from within #: a signal handler. signal_safe = True #: set to true if pool supports rate limits. #: (this is here for gevent, which currently does not implement #: the necessary timers). rlimit_safe = True #: set to true if pool requires the use of a mediator #: thread (e.g. if applying new items can block the current thread). requires_mediator = False #: set to true if pool uses greenlets. is_green = False _state = None _pool = None #: only used by multiprocessing pool uses_semaphore = False def __init__(self, limit=None, putlocks=True, forking_enable=True, **options): self.limit = limit self.putlocks = putlocks self.options = options self.forking_enable = forking_enable self._does_debug = logger.isEnabledFor(logging.DEBUG) def on_start(self): pass def did_start_ok(self): return True def on_stop(self): pass def on_apply(self, *args, **kwargs): pass def on_terminate(self): pass def on_soft_timeout(self, job): pass def on_hard_timeout(self, job): pass def maybe_handle_result(self, *args): pass def maintain_pool(self, *args, **kwargs): pass def terminate_job(self, pid): raise NotImplementedError( '%s does not implement kill_job' % (self.__class__, )) def restart(self): raise NotImplementedError( '%s does not implement restart' % (self.__class__, )) def stop(self): self.on_stop() self._state = self.TERMINATE def terminate(self): self._state = self.TERMINATE self.on_terminate() def start(self): self.on_start() self._state = self.RUN def close(self): self._state = self.CLOSE self.on_close() def on_close(self): pass def init_callbacks(self, **kwargs): pass def apply_async(self, target, args=[], kwargs={}, **options): """Equivalent of the :func:`apply` built-in function. Callbacks should optimally return as soon as possible since otherwise the thread which handles the result will get blocked. """ if self._does_debug: logger.debug('TaskPool: Apply %s (args:%s kwargs:%s)', target, safe_repr(args), safe_repr(kwargs)) return self.on_apply(target, args, kwargs, waitforslot=self.putlocks, **options) def _get_info(self): return {} @property def info(self): return self._get_info() @property def active(self): return self._state == self.RUN @property def num_processes(self): return self.limit @property def readers(self): return {} @property def writers(self): return {} @property def timers(self): return {}
42170e9a6ac498033863cd27ca0a6556bf1aa6c3
53dd5d2cfb79edc87f6c606bbfb7d0bedcf6da61
/.history/EMR/apriori_20190422135150.py
36ae75953708f032ec4b5b046220fb616cdb0b75
[]
no_license
cyc19950621/python
4add54894dc81187211aa8d45e5115903b69a182
d184b83e73334a37d413306d3694e14a19580cb0
refs/heads/master
2020-04-11T20:39:34.641303
2019-07-02T12:54:49
2019-07-02T12:54:49
162,078,640
0
0
null
null
null
null
UTF-8
Python
false
false
5,768
py
# Apriori算法 """ 由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换; 由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。 支持度 置信度 """ class apriori_algorithm: # 算法初始化 def __init__(self, minSupport, dataSet): self.minSupport = minSupport # 最小支持度 self.dataSet = dataSet # 数据集 # 生成单个物品的项集列表 def generateC1(self, dataSet): C1 = [] # 用于存放生成的单个物品的项集列表 # 遍历数据集 for data in dataSet: for item in data: if [item] not in C1: C1.append([item]) C1.sort() return C1 # 遍历数据集,和Ck对比,计数 def generateLk_by_Ck(self, dataSet, Ck, minSupport, support_data): """ Generate Lk by executing a delete policy from Ck. Args: data_set: 数据集 Ck: A set which contains all all frequent candidate k-itemsets. min_support: The minimum support. support_data: A dictionary. The key is frequent itemset and the value is support. Returns: Lk: A set which contains all all frequent k-itemsets. """ D = map(set, dataSet) C = map(frozenset, Ck) C1 = list(C) # 关于map对象的遍历,在内循环中遍历完最后一个元素后,再次访问时会放回空列表,所以外循环第二次进入的时候是空的,需要将其转为list处理 countData = dict() for d in D: # set遍历 for c in C1: if c.issubset(d): # 子集判断,并非元素判断 if c not in countData.keys(): # 将集合作为字典的键使用,c为[]型 countData[c] = 1 else: countData[c] += 1 numItems = float(len(list(dataSet))) returnList = [] supportData = dict() # 遍历前面得到的计数字典 for key in countData: support = countData[key] / numItems if support >= minSupport: returnList.insert(0, key) # insert() 函数用于将指定对象插入列表的指定位置 support_data[key] = support return returnList def generate_L(self, dataSet, k, min_support): """ Generate all frequent itemsets. Args: data_set:数据集 k: 频繁项集中含有的最多的元素 min_support: 最小支持度 Returns: L: 出现的所有频繁项集 support_data: 每个频繁项集对应的支持度 """ support_data = {} C1 = self.generateC1(dataSet) L1 = self.generateLk_by_Ck(dataSet, C1, min_support, support_data) Lksub1 = L1.copy() L = [] L.append(Lksub1) for i in range(2, k + 1): Ci = self.generateCK(Lksub1, i) Li = self.generateLk_by_Ck(dataSet, Ci, min_support, support_data) Lksub1 = Li.copy() L.append(Lksub1) return L, support_data # generateCK 候选频繁项集产生 参数 Lk频繁项集,k:项集元素个数 def generateCK(self, Lk, k): Ck = set() len_Lk = len(list(Lk)) list_Lk = list(Lk) for i in range(len_Lk): for j in range(1, len_Lk): l1 = list(list_Lk[i]) l2 = list(list_Lk[j]) l1.sort() l2.sort() if l1[0:k - 2] == l2[0:k - 2]: Ck_item = list_Lk[i] | list_Lk[j] if self.isCk(Ck_item, list_Lk): Ck.add(Ck_item) # Ck.add(Ck_item) return Ck # 频繁项集判断 def isCk(self, Ck_item, list_Lk): for item in Ck_item: sub_Ck = Ck_item - frozenset([item]) if sub_Ck not in list_Lk: return False return True # 生成关联规则 def generate_big_rules(self, L, support_data, min_conf): """ Generate big rules from frequent itemsets. Args: L: 所有频繁项集的列表 support_data: 每个频繁项集对应的支持度 min_conf: 最小可信度 """ big_rule_list = [] sub_set_list = [] for i in range(0, len(L)): for freq_set in L[i]: for sub_set in sub_set_list: if sub_set.issubset(freq_set): conf = support_data[freq_set] / support_data[freq_set - sub_set] big_rule = (freq_set - sub_set, sub_set, conf) if conf >= min_conf and big_rule not in big_rule_list: print(freq_set - sub_set, " => ", sub_set, "conf: ", conf) big_rule_list.append(big_rule) sub_set_list.append(freq_set) return big_rule_list if __name__ == '__main__': minS = 0.5 dataSet = [['这个','弄','鞍山', '挨打'], ['这个', '啊'], ['鞍山', '弄', '词典', '按错'], ['鞍山', '挨打','按下','爱玩']] apriori = apriori_algorithm(minSupport=minS, dataSet=dataSet) L, support_data = apriori.generate_L(dataSet, 1,minS) print(L) print(support_data) big_rule_list = apriori.generate_big_rules(L, support_data, 0.5)
aa13bd841c98bf69edc143608a0dcaf19c026204
4cfbc12903651dedbc799f53a8078433196e7919
/Pre Processing/Topic 7 - Kernal PCA/KERNEL_PCA_WITHOUT_SPLIT.py
6974fa581f4052b61770920b3c784ba26c4341c3
[]
no_license
gautam4941/Machine_Learning_Codes
78bf86ab3caf6ee329c88ff18d25927125627a2c
0009d12ca207a9b0431ea56decc293588eb447b1
refs/heads/main
2023-02-06T18:05:44.154641
2023-01-30T17:04:25
2023-01-30T17:04:25
353,594,523
0
5
null
null
null
null
UTF-8
Python
false
false
1,398
py
import pandas as pd data = pd.read_csv('Social_Network_Ads.csv') print( f"data :- \n{ data }\n" ) print( f"data.columns :- \n{ data.columns }\n" ) x = data.loc[ :, 'Gender' : 'EstimatedSalary' ] y = data.loc[ :, 'Purchased' ] print( f"x.isnull().sum() :- \n{ x.isnull().sum() }\n" ) print( f"y.isnull().sum() :- \n{ y.isnull().sum() }\n" ) print( f"x.dtypes :- \n{ x.dtypes }\n" ) print( f"y.dtypes :- \n{ y.dtypes }\n" ) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() x['Gender'] = le.fit_transform( x['Gender'] ) import matplotlib.pyplot as plt # plt.plot( x['Age'], x['EstimatedSalary'], linestyle = '', marker = '*' ) # plt.xlabel( 'Age' ) # plt.ylabel( 'EstimatedSalary' ) # plt.title( 'Age V/s Salary' ) # plt.show() from sklearn.decomposition import KernelPCA kpca = KernelPCA( n_components = 2, kernel = 'rbf' ) #n_components is the number of columns getting trained x = kpca.fit_transform( x ) print( f"After Kernal PCA, x :- \n{ x }\n" ) from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit( x, y ) y_pred = lr.predict( x ) new_x_test = x.T # plt.plot( x_test[0], x_test[1], linestyle = '', marker = '*' ) # plt.xlabel( 'Age' ) # plt.ylabel( 'EstimatedSalary' ) # plt.title( 'Age V/s Salary' ) # plt.show() print( f"lr.score( x_test, y_test ) = { lr.score( x, y ) }" )
9e8684300a753747f2ea81503addd0bd9141eee2
7ef5898dc861f7a5512953269db7b52d44f44bc5
/linkml/utils/validation.py
02ee97f62911680b3e797aa9db26dcd3bd75f727
[ "CC0-1.0" ]
permissive
balhoff/linkml
eb5c26e9d8ace3c2a7a6f2f36872b9c2af7b97df
b27c36b24437f68878806518264f55f0f418cb0b
refs/heads/main
2023-07-28T16:47:04.974232
2021-09-09T01:39:21
2021-09-09T01:39:21
404,550,589
0
0
CC0-1.0
2021-09-09T01:45:37
2021-09-09T01:45:37
null
UTF-8
Python
false
false
1,483
py
import json import sys from typing import Type, Union, TextIO import logging import click import jsonschema from linkml_runtime.linkml_model import SchemaDefinition from linkml_runtime.utils.yamlutils import as_dict, YAMLRoot from linkml_runtime.dumpers import json_dumper from linkml.generators.jsonschemagen import JsonSchemaGenerator import linkml.utils.datautils as datautils def _as_dict(inst): # TODO: replace this with linkml_runtime.dictutils when 1.0.14 is released inst_dict = json.loads(json_dumper.dumps(element=inst)) del inst_dict['@type'] return inst_dict def validate_object(data: YAMLRoot, schema: Union[str, TextIO, SchemaDefinition], target_class: Type[YAMLRoot] = None, closed: bool = True): """ validates instance data against a schema :param data: LinkML instance to be validates :param schema: LinkML schema :param target_class: class in schema to validate against :param closed: :return: """ if target_class is None: target_class = type(data) inst_dict = _as_dict(data) not_closed = not closed jsonschemastr = JsonSchemaGenerator(schema, mergeimports=True, top_class=target_class.class_name, not_closed=not_closed).serialize(not_closed=not_closed) jsonschema_obj = json.loads(jsonschemastr) return jsonschema.validate(inst_dict, schema=jsonschema_obj) if __name__ == '__main__': datautils.cli(sys.argv[1:])
9954328c0d050bb4d64a911f7461a367bf36a59f
8c50265b43add0e91e30245cc7af3c2558c248f5
/tests/python/gpu/test_tvm_bridge.py
5c87536bdbaea32571012424a4db77dab00c19ed
[ "BSD-3-Clause", "BSD-2-Clause-Views", "Zlib", "Apache-2.0", "BSD-2-Clause", "Intel" ]
permissive
awslabs/dynamic-training-with-apache-mxnet-on-aws
6a67f35d7e4b12fa8bba628bd03b2b031924e211
1063a979417fee8c820af73860eebd2a4f670380
refs/heads/master
2023-08-15T11:22:36.922245
2022-07-06T22:44:39
2022-07-06T22:44:39
157,440,687
60
19
Apache-2.0
2022-11-25T22:23:19
2018-11-13T20:17:09
Python
UTF-8
Python
false
false
2,440
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test TVM bridge, only enable this when TVM is available""" import logging import mxnet as mx import numpy as np import unittest def test_tvm_bridge(): # only enable test if TVM is available try: import tvm import tvm.contrib.mxnet import topi except ImportError: logging.warn("TVM bridge test skipped because TVM is missing...") return def check(target, dtype): shape = (20,) scale = tvm.var("scale", dtype="float32") x = tvm.placeholder(shape, dtype=dtype) y = tvm.placeholder(shape, dtype=dtype) z = tvm.compute(shape, lambda i: x[i] + y[i]) zz = tvm.compute(shape, lambda *i: z(*i) * scale.astype(dtype)) ctx = mx.gpu(0) if target == "cuda" else mx.cpu(0) target = tvm.target.create(target) # build the function with target: s = topi.generic.schedule_injective(zz) f = tvm.build(s, [x, y, zz, scale]) # get a mxnet version mxf = tvm.contrib.mxnet.to_mxnet_func(f, const_loc=[0, 1]) xx = mx.nd.uniform(shape=shape, ctx=ctx).astype(dtype) yy = mx.nd.uniform(shape=shape, ctx=ctx).astype(dtype) zz = mx.nd.empty(shape=shape, ctx=ctx).astype(dtype) # invoke myf: this runs in mxnet engine mxf(xx, yy, zz, 10.0) np.testing.assert_allclose( zz.asnumpy(), (xx.asnumpy() + yy.asnumpy()) * 10) for tgt in ["llvm", "cuda"]: for dtype in ["int8", "uint8", "int64", "float32", "float64"]: check(tgt, dtype) if __name__ == "__main__": import nose nose.runmodule()
6508b6eae18f254c28dd6343bef32cd4b4afd295
61fa932822d22ba480f7aa075573e688897ad844
/simulation/decai/simulation/data/imdb_data_loader.py
fbc6d62dc1165cc5a608c3003156977db751c917
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
microsoft/0xDeCA10B
a8f118fa1f89f387a0b83f297250fc1846521f41
4066eeb2b5298c259a7c19c4d42ca35ef22e0569
refs/heads/main
2023-07-26T08:09:34.718104
2023-01-25T12:47:17
2023-01-25T12:47:17
181,561,897
538
133
MIT
2023-07-19T03:10:38
2019-04-15T20:37:11
Python
UTF-8
Python
false
false
1,778
py
from dataclasses import dataclass, field from logging import Logger from typing import List import numpy as np from injector import ClassAssistedBuilder, Module, inject, provider, singleton from keras.datasets import imdb from .data_loader import DataLoader @inject @dataclass class ImdbDataLoader(DataLoader): """ Load data for sentiment analysis of IMDB reviews. https://keras.io/datasets/#imdb-movie-reviews-sentiment-classification """ _logger: Logger num_words: int = field(default=1000) def classifications(self) -> List[str]: return ["NEGATIVE", "POSITIVE"] def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple): self._logger.info("Loading IMDB review data using %d words.", self.num_words) (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=self.num_words) if train_size is not None: x_train, y_train = x_train[:train_size], y_train[:train_size] if test_size is not None: x_test, y_test = x_test[:test_size], y_test[:test_size] def get_features(data): result = np.zeros((len(data), self.num_words), dtype='int') for i, x in enumerate(data): for v in x: result[i, v] = 1 return result x_train = get_features(x_train) x_test = get_features(x_test) self._logger.info("Done loading IMDB review data.") return (x_train, y_train), (x_test, y_test) @dataclass class ImdbDataModule(Module): num_words: int = field(default=1000) @provider @singleton def provide_data_loader(self, builder: ClassAssistedBuilder[ImdbDataLoader]) -> DataLoader: return builder.build(num_words=self.num_words)
587af0a9afab30d6dbe975f04b48b2543833db22
51507929d5bf732e6e5b7085015b86d097fc404d
/python/core/keyset_writer.py
4e417f4417071723ba236115a738874609d779e8
[ "Apache-2.0" ]
permissive
jojodeco2/tink
a77be3fd6958070c131f4d556b349b69b65e11cb
46d4d5d6ff09f594c5460216c5b2cb11486076db
refs/heads/master
2020-08-04T04:46:05.526255
2019-10-01T10:21:02
2019-10-01T10:21:02
212,011,212
0
0
Apache-2.0
2019-10-01T04:18:08
2019-10-01T04:18:08
null
UTF-8
Python
false
false
3,498
py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Writes Keysets to file.""" from __future__ import absolute_import from __future__ import division from __future__ import google_type_annotations from __future__ import print_function import abc import io from google.protobuf import json_format from tink.proto import tink_pb2 from tink.python.core import tink_error class KeysetWriter(object): """Knows how to write keysets to some storage system.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def write(self, keyset: tink_pb2.Keyset) -> None: """Tries to write a tink_pb2.Keyset to some storage system.""" pass @abc.abstractmethod def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: """Tries to write an tink_pb2.EncryptedKeyset to some storage system.""" pass class JsonKeysetWriter(KeysetWriter): """Writes keysets in proto JSON wire format to some storage system. cf. https://developers.google.com/protocol-buffers/docs/encoding """ def __init__(self, text_io_stream: io.TextIOBase): self._io_stream = text_io_stream def write(self, keyset: tink_pb2.Keyset) -> None: if not isinstance(keyset, tink_pb2.Keyset): raise tink_error.TinkError('invalid keyset.') json_keyset = json_format.MessageToJson(keyset) # TODO(b/141106504) Needed for python 2.7 compatibility. StringIO expects # unicode, but MessageToJson outputs UTF-8. if isinstance(json_keyset, bytes): json_keyset = json_keyset.decode('utf-8') self._io_stream.write(json_keyset) self._io_stream.flush() def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: if not isinstance(encrypted_keyset, tink_pb2.EncryptedKeyset): raise tink_error.TinkError('invalid encrypted keyset.') json_keyset = json_format.MessageToJson(encrypted_keyset) # TODO(b/141106504) Needed for python 2.7 compatibility. StringIO expects # unicode, but MessageToJson outputs UTF-8. if isinstance(json_keyset, bytes): json_keyset = json_keyset.decode('utf-8') self._io_stream.write(json_keyset) self._io_stream.flush() class BinaryKeysetWriter(KeysetWriter): """Writes keysets in proto binary wire format to some storage system. cf. https://developers.google.com/protocol-buffers/docs/encoding """ def __init__(self, binary_io_stream: io.BufferedIOBase): self._io_stream = binary_io_stream def write(self, keyset: tink_pb2.Keyset) -> None: if not isinstance(keyset, tink_pb2.Keyset): raise tink_error.TinkError('invalid keyset.') self._io_stream.write(keyset.SerializeToString()) self._io_stream.flush() def write_encrypted(self, encrypted_keyset: tink_pb2.EncryptedKeyset) -> None: if not isinstance(encrypted_keyset, tink_pb2.EncryptedKeyset): raise tink_error.TinkError('invalid encrypted keyset.') self._io_stream.write(encrypted_keyset.SerializeToString()) self._io_stream.flush()
19b16e038e42e69f3f52b17764d02d98614b0c87
364b36d699d0a6b5ddeb43ecc6f1123fde4eb051
/_downloads_1ed/fig_XD_example.py
6e7d5247c12d7f1e576f8087307c0067916096aa
[]
no_license
astroML/astroml.github.com
eae3bfd93ee2f8bc8b5129e98dadf815310ee0ca
70f96d04dfabcd5528978b69c217d3a9a8bc370b
refs/heads/master
2022-02-27T15:31:29.560052
2022-02-08T21:00:35
2022-02-08T21:00:35
5,871,703
2
5
null
2022-02-08T21:00:36
2012-09-19T12:55:23
HTML
UTF-8
Python
false
false
3,918
py
""" Extreme Deconvolution example ----------------------------- Figure 6.11 An example of extreme deconvolution showing a simulated two-dimensional distribution of points, where the positions are subject to errors. The top two panels show the distributions with small (left) and large (right) errors. The bottom panels show the densities derived from the noisy sample (top-right panel) using extreme deconvolution; the resulting distribution closely matches that shown in the top-left panel. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from astroML.decorators import pickle_results from astroML.density_estimation import XDGMM from astroML.plotting.tools import draw_ellipse #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Sample the dataset N = 2000 np.random.seed(0) # generate the true data x_true = (1.4 + 2 * np.random.random(N)) ** 2 y_true = 0.1 * x_true ** 2 # add scatter to "true" distribution dx = 0.1 + 4. / x_true ** 2 dy = 0.1 + 10. / x_true ** 2 x_true += np.random.normal(0, dx, N) y_true += np.random.normal(0, dy, N) # add noise to get the "observed" distribution dx = 0.2 + 0.5 * np.random.random(N) dy = 0.2 + 0.5 * np.random.random(N) x = x_true + np.random.normal(0, dx) y = y_true + np.random.normal(0, dy) # stack the results for computation X = np.vstack([x, y]).T Xerr = np.zeros(X.shape + X.shape[-1:]) diag = np.arange(X.shape[-1]) Xerr[:, diag, diag] = np.vstack([dx ** 2, dy ** 2]).T #------------------------------------------------------------ # compute and save results @pickle_results("XD_toy.pkl") def compute_XD_results(n_components=10, n_iter=500): clf = XDGMM(n_components, n_iter=n_iter) clf.fit(X, Xerr) return clf clf = compute_XD_results(10, 500) sample = clf.sample(N) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 3.75)) fig.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, wspace=0.02, hspace=0.02) ax1 = fig.add_subplot(221) ax1.scatter(x_true, y_true, s=4, lw=0, c='k') ax2 = fig.add_subplot(222) ax2.scatter(x, y, s=4, lw=0, c='k') ax3 = fig.add_subplot(223) ax3.scatter(sample[:, 0], sample[:, 1], s=4, lw=0, c='k') ax4 = fig.add_subplot(224) for i in range(clf.n_components): draw_ellipse(clf.mu[i], clf.V[i], scales=[2], ax=ax4, ec='k', fc='gray', alpha=0.2) titles = ["True Distribution", "Noisy Distribution", "Extreme Deconvolution\n resampling", "Extreme Deconvolution\n cluster locations"] ax = [ax1, ax2, ax3, ax4] for i in range(4): ax[i].set_xlim(-1, 13) ax[i].set_ylim(-6, 16) ax[i].xaxis.set_major_locator(plt.MultipleLocator(4)) ax[i].yaxis.set_major_locator(plt.MultipleLocator(5)) ax[i].text(0.05, 0.95, titles[i], ha='left', va='top', transform=ax[i].transAxes) if i in (0, 1): ax[i].xaxis.set_major_formatter(plt.NullFormatter()) else: ax[i].set_xlabel('$x$') if i in (1, 3): ax[i].yaxis.set_major_formatter(plt.NullFormatter()) else: ax[i].set_ylabel('$y$') plt.show()
75683d574fd6fafc97d6262c264e53f43ff0a56b
19ee7dd974ba8b1731e9450c174df7630f63eaad
/Api/recognition/serializers.py
bc1cd767bbebc3dcfc9d20d425f5e7079f0f1748
[]
no_license
minjjjae/No-Mask-Trace-System
12d3a5a146f5526b9dbba5a8b75d6adc6c8a2e2b
61c76197d7ae921823b795effd9f267c92016a97
refs/heads/main
2023-01-19T08:35:19.643717
2020-11-28T05:27:52
2020-11-28T05:27:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
from recognition.models import Recognition from rest_framework import serializers class RecognitionSerializer(serializers.HyperlinkedModelSerializer): image = serializers.ImageField(max_length=None, use_url=True) class Meta: model = Recognition fields = ("pk", "encodeLst", "description", "created_at", "image")
2514e06398d1649d7e768e2219aa835bfc94e0c7
dffd7156da8b71f4a743ec77d05c8ba031988508
/joi/prelim/2019/yo1c/c.py
8fa22ad3e7acb87ef87d1e4727e8bf36c56ef603
[]
no_license
e1810/kyopro
a3a9a2ee63bc178dfa110788745a208dead37da6
15cf27d9ecc70cf6d82212ca0c788e327371b2dd
refs/heads/master
2021-11-10T16:53:23.246374
2021-02-06T16:29:09
2021-10-31T06:20:50
252,388,049
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
n, *a = map(int, open(0).read().split()) cnt = ans = 0 prev = 0 for i in a: if prev>i: ans = max(ans, cnt) cnt = 0 cnt += 1 prev = i print(max(ans, cnt))
daf6299762e39365d4e0099a36ae78a1a59bcd0a
6ec91b363b077bffd33f15300a0935124e9fb915
/Cracking_the_Code_Interview/Leetcode/3.String/290.Word_Pattern.py
766301dce21b1c686fdd7e0e347044af480ca094
[]
no_license
lzxyzq/Cracking_the_Coding_Interview
03232515ae8eb50394d46322d36b230d1a626fcf
79dee7dab41830c4ff9e38858dad229815c719a0
refs/heads/master
2023-06-05T19:52:15.595289
2021-06-23T22:46:02
2021-06-23T22:46:02
238,068,000
0
1
null
null
null
null
UTF-8
Python
false
false
1,531
py
''' @Author: your name @Date: 2020-06-09 17:21:16 @LastEditTime: 2020-06-10 12:19:27 @LastEditors: Please set LastEditors @Description: In User Settings Edit @FilePath: /Cracking_the_Code_Interview/Leetcode/String/290.Word_Pattern.py ''' # Given a pattern and a string str, find if str follows the same pattern. # Here follow means a full match, such that there is a bijection between a letter in pattern and a non-empty word in str. ''' Example 1: Input: pattern = "abba", str = "dog cat cat dog" Output: true Example 2: Input:pattern = "abba", str = "dog cat cat fish" Output: false Example 3: Input: pattern = "aaaa", str = "dog cat cat dog" Output: false Example 4: Input: pattern = "abba", str = "dog dog dog dog" Output: false ''' # Notes: # You may assume pattern contains only lowercase letters, and str contains lowercase letters that may be separated by a single space. # 1.split() # 2.等长len() # 3.hashmap key:pattern value:str class Solution: def wordPattern(self, pattern: str, str: str) -> bool: str = str.split() result = '' if len(str) != len(pattern): return False d = {} for i in range(len(pattern)): if str[i] not in d: if pattern[i] not in d.values(): d[str[i]] = pattern[i] else: return False result += d[str[i]] return result == pattern pattern = "abba" str = "dog cat cat dog" words = str.split(' ') tuple(zip(words, pattern))
6f7b09b3bc0afa1b87897d8811dee37992af9e92
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startPyquil1566.py
adf7d2e0df4b68ca67d20975984b7e68e9320ea4
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,272
py
# qubit number=5 # total number=52 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(0) # number=3 prog += H(1) # number=4 prog += X(1) # number=48 prog += H(1) # number=26 prog += CZ(4,1) # number=27 prog += H(1) # number=28 prog += H(2) # number=5 prog += H(3) # number=6 prog += H(4) # number=21 prog += H(1) # number=34 prog += CZ(4,1) # number=35 prog += Z(4) # number=46 prog += RX(0.8011061266653969,2) # number=37 prog += H(1) # number=36 prog += H(0) # number=1 prog += H(1) # number=2 prog += H(2) # number=7 prog += H(3) # number=8 prog += CNOT(1,0) # number=38 prog += X(0) # number=39 prog += CNOT(1,0) # number=40 prog += CNOT(0,1) # number=42 prog += X(1) # number=43 prog += CNOT(0,1) # number=44 prog += X(2) # number=11 prog += Y(1) # number=45 prog += X(3) # number=12 prog += H(2) # number=41 prog += CNOT(1,0) # number=22 prog += X(4) # number=47 prog += X(0) # number=23 prog += H(0) # number=49 prog += CZ(1,0) # number=50 prog += H(0) # number=51 prog += CNOT(0,1) # number=30 prog += X(1) # number=31 prog += CNOT(0,1) # number=32 prog += X(2) # number=15 prog += H(4) # number=29 prog += X(3) # number=16 prog += H(0) # number=17 prog += H(1) # number=18 prog += H(2) # number=19 prog += H(3) # number=20 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('5q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil1566.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
908076fe749518b81a5d792a64a0ac250dc8aa67
083ca3df7dba08779976d02d848315f85c45bf75
/LongestSubstringwithAtLeastKRepeatingCharacters5.py
424c18652d21975839cddc18e43a9e0b3e29a8f8
[]
no_license
jiangshen95/UbuntuLeetCode
6427ce4dc8d9f0f6e74475faced1bcaaa9fc9f94
fa02b469344cf7c82510249fba9aa59ae0cb4cc0
refs/heads/master
2021-05-07T02:04:47.215580
2020-06-11T02:33:35
2020-06-11T02:33:35
110,397,909
0
0
null
null
null
null
UTF-8
Python
false
false
954
py
class Solution: def longestSubstring(self, s, k): """ :type s: str :type k: int :rtype: int """ i = 0 res = 0 while i + k <= len(s): if i > 0 and s[i] == s[i - 1]: i += 1 continue m = {} mask = 0 max_index = i for j in range(i, len(s)): if s[j] not in m: m[s[j]] = 0 m[s[j]] += 1 t = ord(s[j]) - ord('a') if m[s[j]] < k: mask |= 1 << t else: mask &= ~(1 << t) if mask == 0: max_index = j res = max(res, j - i + 1) i = max_index + 1 return res if __name__ == '__main__': s = input() k = int(input()) solution = Solution() print(solution.longestSubstring(s, k))
7a7b0cb2ba35a1718311a5ace7ffe70e9f8f71bf
7b221a4981edad73991cf1e357274b46c4054eff
/stacks/XIAOMATECH/1.0/services/NIFI/package/scripts/nifi_cli.py
e82f05e871857ac17cf7d7bf280d1558ca7ca3dc
[ "Apache-2.0" ]
permissive
aries-demos/dataops
a4e1516ef6205ad1ac5f692822e577e22ee85c70
436c6e89a1fdd0593a17815d3ec79c89a26d48f1
refs/heads/master
2020-05-29T17:20:12.854005
2019-05-22T06:06:00
2019-05-22T06:06:00
189,270,801
2
3
Apache-2.0
2019-05-29T17:35:25
2019-05-29T17:35:24
null
UTF-8
Python
false
false
6,474
py
import json import time from resource_management.core import shell from resource_management.core.exceptions import Fail from resource_management.core.logger import Logger from resource_management.libraries.functions import format import nifi_toolkit_util_common def nifi_cli(command=None, subcommand=None, errors_retries=12, retries_pause=10, acceptable_errors=None, **command_args): """ Executes nifi cli command and returns its output. We need execute command several times because nifi becomes responsive after some among of time. On non super-fast vm it takes 1.5 minutes to get nifi responding for cli calls. Also some commands can produce different errors but after some time that errors disappear. In other works - this cli is hard to use in automated environments :). :param command: main cli command(nifi, registry, session, etc) :param subcommand: sub-command of main command(nifi list-reg-clients, etc) :param errors_retries: retries count on acceptable errors :param retries_pause: pause between call retries :param acceptable_errors: errors that is acceptable for retry("Connection refused" error always in this list) :param command_args: long version of command parameters :return: command output """ import params cli_env = {"JAVA_HOME": params.java_home} cli_script = nifi_toolkit_util_common.get_toolkit_script( "cli.sh", params.toolkit_tmp_dir, params.stack_version_buildnum) if errors_retries < 1: errors_retries = 1 if acceptable_errors is None: acceptable_errors = [] acceptable_errors.append("Connection refused") def do_retry(output): for acceptable_error in acceptable_errors: if acceptable_error in output: return True return False cmd = [cli_script, command] if subcommand is not None: cmd.append(subcommand) client_opts = nifi_toolkit_util_common.get_client_opts() if params.nifi_ssl_enabled: command_args.update(nifi_toolkit_util_common.get_client_opts()) command_args["proxiedEntity"] = params.nifi_initial_admin_id else: command_args["baseUrl"] = client_opts["baseUrl"] for arg_name, arg_value in command_args.iteritems(): cmd.append("--" + arg_name) cmd.append(arg_value) for _ in range(0, errors_retries): errors_retries -= 1 code, out = shell.call( cmd, sudo=True, env=cli_env, logoutput=False, quiet=True) if code != 0 and do_retry(out) and errors_retries != 0: time.sleep(retries_pause) continue elif code == 0: return out else: raise Fail("Failed to execute nifi cli.sh command") def _update_impl(client_name=None, client_id=None, client_url=None, existing_clients=None): old_name = None old_url = None if not client_id: if not client_name: raise Fail( "For client update 'client_name' or 'client_id' must be specified" ) for description, name, uuid, url in existing_clients: if name == client_name: client_id = uuid old_name = name old_url = url break else: for description, name, uuid, url in existing_clients: if uuid == client_id: old_name = name old_url = url arguments = {"registryClientId": client_id} do_update = False if client_name: if client_name != old_name: arguments["registryClientName"] = client_name do_update = True Logger.info( format( "Trying to update NIFI Client name '{old_name}' to '{client_name}'" )) if client_url: if client_url != old_url: arguments["registryClientUrl"] = client_url do_update = True Logger.info( format( "Trying update url from '{old_url}' to '{client_url}' for NIFI Client with name '{old_name}'" )) if do_update: nifi_cli(command="nifi", subcommand="update-reg-client", **arguments) Logger.info(format("NIFI Client '{old_name}' updated")) else: Logger.info(format("NIFI Client '{old_name}' is already up-to-date")) return client_id def create_reg_client(client_name, client_url): client_uuid = nifi_cli( command="nifi", subcommand="create-reg-client", registryClientName=client_name, registryClientUrl=client_url).strip() Logger.info( format("Created NIFI client '{client_name}' with url '{client_url}'")) return client_uuid def list_reg_clients(): acceptable_errors = ["Error retrieving registry clients"] Logger.info(format("Trying to retrieve NIFI clients...")) command_result = nifi_cli( command="nifi", subcommand="list-reg-clients", acceptable_errors=acceptable_errors, outputType="json") result_json = json.loads(command_result) result = [] if "registries" in result_json: for registry in result_json["registries"]: if "component" in registry: component = registry["component"] if "description" in component: description = component["description"] else: description = '' result.append((description, component["name"], component["id"], component["uri"])) Logger.info("Retrieved:" + str(len(result)) + " clients") return result def update_reg_client(client_name=None, client_id=None, client_url=None): existing_clients = list_reg_clients() return _update_impl( client_name=client_name, client_id=client_id, client_url=client_url, existing_clients=existing_clients) def create_or_update_reg_client(client_name, client_url): existing_clients = list_reg_clients() for _, name, uuid, _ in existing_clients: if name == client_name: return _update_impl( client_id=uuid, client_url=client_url, existing_clients=existing_clients) return create_reg_client(client_name, client_url)
cbb9422f0b2cd4ef151418716fb78d78a14bcad9
8ef8e6818c977c26d937d09b46be0d748022ea09
/cv/3d_detection/BEVFormer/pytorch/mmdetection3d/mmdet3d/datasets/nuscenes_dataset.py
47d6e15ed9aec63b17e5b80955dd4cb32ba04939
[ "Apache-2.0" ]
permissive
Deep-Spark/DeepSparkHub
eb5996607e63ccd2c706789f64b3cc0070e7f8ef
9d643e88946fc4a24f2d4d073c08b05ea693f4c5
refs/heads/master
2023-09-01T11:26:49.648759
2023-08-25T01:50:18
2023-08-25T01:50:18
534,133,249
7
6
Apache-2.0
2023-03-28T02:54:59
2022-09-08T09:07:01
Python
UTF-8
Python
false
false
26,116
py
# Copyright (c) OpenMMLab. All rights reserved. import tempfile from os import path as osp import mmcv import numpy as np import pyquaternion from nuscenes.utils.data_classes import Box as NuScenesBox from ..core import show_result from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes from .builder import DATASETS from .custom_3d import Custom3DDataset from .pipelines import Compose @DATASETS.register_module() class NuScenesDataset(Custom3DDataset): r"""NuScenes Dataset. This class serves as the API for experiments on the NuScenes Dataset. Please refer to `NuScenes Dataset <https://www.nuscenes.org/download>`_ for data downloading. Args: ann_file (str): Path of annotation file. pipeline (list[dict], optional): Pipeline used for data processing. Defaults to None. data_root (str): Path of dataset root. classes (tuple[str], optional): Classes used in the dataset. Defaults to None. load_interval (int, optional): Interval of loading the dataset. It is used to uniformly sample the dataset. Defaults to 1. with_velocity (bool, optional): Whether include velocity prediction into the experiments. Defaults to True. modality (dict, optional): Modality to specify the sensor data used as input. Defaults to None. box_type_3d (str, optional): Type of 3D box of this dataset. Based on the `box_type_3d`, the dataset will encapsulate the box to its original format then converted them to `box_type_3d`. Defaults to 'LiDAR' in this dataset. Available options includes. - 'LiDAR': Box in LiDAR coordinates. - 'Depth': Box in depth coordinates, usually for indoor dataset. - 'Camera': Box in camera coordinates. filter_empty_gt (bool, optional): Whether to filter empty GT. Defaults to True. test_mode (bool, optional): Whether the dataset is in test mode. Defaults to False. eval_version (bool, optional): Configuration version of evaluation. Defaults to 'detection_cvpr_2019'. use_valid_flag (bool, optional): Whether to use `use_valid_flag` key in the info file as mask to filter gt_boxes and gt_names. Defaults to False. """ NameMapping = { 'movable_object.barrier': 'barrier', 'vehicle.bicycle': 'bicycle', 'vehicle.bus.bendy': 'bus', 'vehicle.bus.rigid': 'bus', 'vehicle.car': 'car', 'vehicle.construction': 'construction_vehicle', 'vehicle.motorcycle': 'motorcycle', 'human.pedestrian.adult': 'pedestrian', 'human.pedestrian.child': 'pedestrian', 'human.pedestrian.construction_worker': 'pedestrian', 'human.pedestrian.police_officer': 'pedestrian', 'movable_object.trafficcone': 'traffic_cone', 'vehicle.trailer': 'trailer', 'vehicle.truck': 'truck' } DefaultAttribute = { 'car': 'vehicle.parked', 'pedestrian': 'pedestrian.moving', 'trailer': 'vehicle.parked', 'truck': 'vehicle.parked', 'bus': 'vehicle.moving', 'motorcycle': 'cycle.without_rider', 'construction_vehicle': 'vehicle.parked', 'bicycle': 'cycle.without_rider', 'barrier': '', 'traffic_cone': '', } AttrMapping = { 'cycle.with_rider': 0, 'cycle.without_rider': 1, 'pedestrian.moving': 2, 'pedestrian.standing': 3, 'pedestrian.sitting_lying_down': 4, 'vehicle.moving': 5, 'vehicle.parked': 6, 'vehicle.stopped': 7, } AttrMapping_rev = [ 'cycle.with_rider', 'cycle.without_rider', 'pedestrian.moving', 'pedestrian.standing', 'pedestrian.sitting_lying_down', 'vehicle.moving', 'vehicle.parked', 'vehicle.stopped', ] # https://github.com/nutonomy/nuscenes-devkit/blob/57889ff20678577025326cfc24e57424a829be0a/python-sdk/nuscenes/eval/detection/evaluate.py#L222 # noqa ErrNameMapping = { 'trans_err': 'mATE', 'scale_err': 'mASE', 'orient_err': 'mAOE', 'vel_err': 'mAVE', 'attr_err': 'mAAE' } CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier') def __init__(self, ann_file, pipeline=None, data_root=None, classes=None, load_interval=1, with_velocity=True, modality=None, box_type_3d='LiDAR', filter_empty_gt=True, test_mode=False, eval_version='detection_cvpr_2019', use_valid_flag=False): self.load_interval = load_interval self.use_valid_flag = use_valid_flag super().__init__( data_root=data_root, ann_file=ann_file, pipeline=pipeline, classes=classes, modality=modality, box_type_3d=box_type_3d, filter_empty_gt=filter_empty_gt, test_mode=test_mode) self.with_velocity = with_velocity self.eval_version = eval_version from nuscenes.eval.detection.config import config_factory self.eval_detection_configs = config_factory(self.eval_version) if self.modality is None: self.modality = dict( use_camera=False, use_lidar=True, use_radar=False, use_map=False, use_external=False, ) def get_cat_ids(self, idx): """Get category distribution of single scene. Args: idx (int): Index of the data_info. Returns: dict[list]: for each category, if the current scene contains such boxes, store a list containing idx, otherwise, store empty list. """ info = self.data_infos[idx] if self.use_valid_flag: mask = info['valid_flag'] gt_names = set(info['gt_names'][mask]) else: gt_names = set(info['gt_names']) cat_ids = [] for name in gt_names: if name in self.CLASSES: cat_ids.append(self.cat2id[name]) return cat_ids def load_annotations(self, ann_file): """Load annotations from ann_file. Args: ann_file (str): Path of the annotation file. Returns: list[dict]: List of annotations sorted by timestamps. """ data = mmcv.load(ann_file, file_format='pkl') data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp'])) data_infos = data_infos[::self.load_interval] self.metadata = data['metadata'] self.version = self.metadata['version'] return data_infos def get_data_info(self, index): """Get data info according to the given index. Args: index (int): Index of the sample data to get. Returns: dict: Data information that will be passed to the data preprocessing pipelines. It includes the following keys: - sample_idx (str): Sample index. - pts_filename (str): Filename of point clouds. - sweeps (list[dict]): Infos of sweeps. - timestamp (float): Sample timestamp. - img_filename (str, optional): Image filename. - lidar2img (list[np.ndarray], optional): Transformations from lidar to different cameras. - ann_info (dict): Annotation info. """ info = self.data_infos[index] # standard protocol modified from SECOND.Pytorch input_dict = dict( sample_idx=info['token'], pts_filename=info['lidar_path'], sweeps=info['sweeps'], timestamp=info['timestamp'] / 1e6, ) if self.modality['use_camera']: image_paths = [] lidar2img_rts = [] for cam_type, cam_info in info['cams'].items(): image_paths.append(cam_info['data_path']) # obtain lidar to image transformation matrix lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation']) lidar2cam_t = cam_info[ 'sensor2lidar_translation'] @ lidar2cam_r.T lidar2cam_rt = np.eye(4) lidar2cam_rt[:3, :3] = lidar2cam_r.T lidar2cam_rt[3, :3] = -lidar2cam_t intrinsic = cam_info['cam_intrinsic'] viewpad = np.eye(4) viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic lidar2img_rt = (viewpad @ lidar2cam_rt.T) lidar2img_rts.append(lidar2img_rt) input_dict.update( dict( img_filename=image_paths, lidar2img=lidar2img_rts, )) if not self.test_mode: annos = self.get_ann_info(index) input_dict['ann_info'] = annos return input_dict def get_ann_info(self, index): """Get annotation info according to the given index. Args: index (int): Index of the annotation data to get. Returns: dict: Annotation information consists of the following keys: - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): 3D ground truth bboxes - gt_labels_3d (np.ndarray): Labels of ground truths. - gt_names (list[str]): Class names of ground truths. """ info = self.data_infos[index] # filter out bbox containing no points if self.use_valid_flag: mask = info['valid_flag'] else: mask = info['num_lidar_pts'] > 0 gt_bboxes_3d = info['gt_boxes'][mask] gt_names_3d = info['gt_names'][mask] gt_labels_3d = [] for cat in gt_names_3d: if cat in self.CLASSES: gt_labels_3d.append(self.CLASSES.index(cat)) else: gt_labels_3d.append(-1) gt_labels_3d = np.array(gt_labels_3d) if self.with_velocity: gt_velocity = info['gt_velocity'][mask] nan_mask = np.isnan(gt_velocity[:, 0]) gt_velocity[nan_mask] = [0.0, 0.0] gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1) # the nuscenes box center is [0.5, 0.5, 0.5], we change it to be # the same as KITTI (0.5, 0.5, 0) gt_bboxes_3d = LiDARInstance3DBoxes( gt_bboxes_3d, box_dim=gt_bboxes_3d.shape[-1], origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d) anns_results = dict( gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d, gt_names=gt_names_3d) return anns_results def _format_bbox(self, results, jsonfile_prefix=None): """Convert the results to the standard format. Args: results (list[dict]): Testing results of the dataset. jsonfile_prefix (str): The prefix of the output jsonfile. You can specify the output directory/filename by modifying the jsonfile_prefix. Default: None. Returns: str: Path of the output json file. """ nusc_annos = {} mapped_class_names = self.CLASSES print('Start to convert detection format...') for sample_id, det in enumerate(mmcv.track_iter_progress(results)): annos = [] boxes = output_to_nusc_box(det, self.with_velocity) sample_token = self.data_infos[sample_id]['token'] boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes, mapped_class_names, self.eval_detection_configs, self.eval_version) for i, box in enumerate(boxes): name = mapped_class_names[box.label] if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2: if name in [ 'car', 'construction_vehicle', 'bus', 'truck', 'trailer', ]: attr = 'vehicle.moving' elif name in ['bicycle', 'motorcycle']: attr = 'cycle.with_rider' else: attr = NuScenesDataset.DefaultAttribute[name] else: if name in ['pedestrian']: attr = 'pedestrian.standing' elif name in ['bus']: attr = 'vehicle.stopped' else: attr = NuScenesDataset.DefaultAttribute[name] nusc_anno = dict( sample_token=sample_token, translation=box.center.tolist(), size=box.wlh.tolist(), rotation=box.orientation.elements.tolist(), velocity=box.velocity[:2].tolist(), detection_name=name, detection_score=box.score, attribute_name=attr) annos.append(nusc_anno) nusc_annos[sample_token] = annos nusc_submissions = { 'meta': self.modality, 'results': nusc_annos, } mmcv.mkdir_or_exist(jsonfile_prefix) res_path = osp.join(jsonfile_prefix, 'results_nusc.json') print('Results writes to', res_path) mmcv.dump(nusc_submissions, res_path) return res_path def _evaluate_single(self, result_path, logger=None, metric='bbox', result_name='pts_bbox'): """Evaluation for a single model in nuScenes protocol. Args: result_path (str): Path of the result file. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. metric (str, optional): Metric name used for evaluation. Default: 'bbox'. result_name (str, optional): Result name in the metric prefix. Default: 'pts_bbox'. Returns: dict: Dictionary of evaluation details. """ from nuscenes import NuScenes from nuscenes.eval.detection.evaluate import NuScenesEval output_dir = osp.join(*osp.split(result_path)[:-1]) nusc = NuScenes( version=self.version, dataroot=self.data_root, verbose=False) eval_set_map = { 'v1.0-mini': 'mini_val', 'v1.0-trainval': 'val', } nusc_eval = NuScenesEval( nusc, config=self.eval_detection_configs, result_path=result_path, eval_set=eval_set_map[self.version], output_dir=output_dir, verbose=False) nusc_eval.main(render_curves=False) # record metrics metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json')) detail = dict() metric_prefix = f'{result_name}_NuScenes' for name in self.CLASSES: for k, v in metrics['label_aps'][name].items(): val = float('{:.4f}'.format(v)) detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val for k, v in metrics['label_tp_errors'][name].items(): val = float('{:.4f}'.format(v)) detail['{}/{}_{}'.format(metric_prefix, name, k)] = val for k, v in metrics['tp_errors'].items(): val = float('{:.4f}'.format(v)) detail['{}/{}'.format(metric_prefix, self.ErrNameMapping[k])] = val detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score'] detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap'] return detail def format_results(self, results, jsonfile_prefix=None): """Format the results to json (standard format for COCO evaluation). Args: results (list[dict]): Testing results of the dataset. jsonfile_prefix (str): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. Returns: tuple: Returns (result_files, tmp_dir), where `result_files` is a dict containing the json filepaths, `tmp_dir` is the temporal directory created for saving json files when `jsonfile_prefix` is not specified. """ assert isinstance(results, list), 'results must be a list' assert len(results) == len(self), ( 'The length of results is not equal to the dataset len: {} != {}'. format(len(results), len(self))) if jsonfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() jsonfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None # currently the output prediction results could be in two formats # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...) # 2. list of dict('pts_bbox' or 'img_bbox': # dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)) # this is a workaround to enable evaluation of both formats on nuScenes # refer to https://github.com/open-mmlab/mmdetection3d/issues/449 if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]): result_files = self._format_bbox(results, jsonfile_prefix) else: # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict result_files = dict() for name in results[0]: print(f'\nFormating bboxes of {name}') results_ = [out[name] for out in results] tmp_file_ = osp.join(jsonfile_prefix, name) result_files.update( {name: self._format_bbox(results_, tmp_file_)}) return result_files, tmp_dir def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, result_names=['pts_bbox'], show=False, out_dir=None, pipeline=None): """Evaluation in nuScenes protocol. Args: results (list[dict]): Testing results of the dataset. metric (str | list[str], optional): Metrics to be evaluated. Default: 'bbox'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str, optional): The prefix of json files including the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. show (bool, optional): Whether to visualize. Default: False. out_dir (str, optional): Path to save the visualization results. Default: None. pipeline (list[dict], optional): raw data loading for showing. Default: None. Returns: dict[str, float]: Results of each evaluation metric. """ result_files, tmp_dir = self.format_results(results, jsonfile_prefix) if isinstance(result_files, dict): results_dict = dict() for name in result_names: print('Evaluating bboxes of {}'.format(name)) ret_dict = self._evaluate_single(result_files[name]) results_dict.update(ret_dict) elif isinstance(result_files, str): results_dict = self._evaluate_single(result_files) if tmp_dir is not None: tmp_dir.cleanup() if show or out_dir: self.show(results, out_dir, show=show, pipeline=pipeline) return results_dict def _build_default_pipeline(self): """Build the default pipeline for this dataset.""" pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=dict(backend='disk')), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, file_client_args=dict(backend='disk')), dict( type='DefaultFormatBundle3D', class_names=self.CLASSES, with_label=False), dict(type='Collect3D', keys=['points']) ] return Compose(pipeline) def show(self, results, out_dir, show=False, pipeline=None): """Results visualization. Args: results (list[dict]): List of bounding boxes results. out_dir (str): Output directory of visualization result. show (bool): Whether to visualize the results online. Default: False. pipeline (list[dict], optional): raw data loading for showing. Default: None. """ assert out_dir is not None, 'Expect out_dir, got none.' pipeline = self._get_pipeline(pipeline) for i, result in enumerate(results): if 'pts_bbox' in result.keys(): result = result['pts_bbox'] data_info = self.data_infos[i] pts_path = data_info['lidar_path'] file_name = osp.split(pts_path)[-1].split('.')[0] points = self._extract_data(i, pipeline, 'points').numpy() # for now we convert points into depth mode points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR, Coord3DMode.DEPTH) inds = result['scores_3d'] > 0.1 gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy() show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR, Box3DMode.DEPTH) pred_bboxes = result['boxes_3d'][inds].tensor.numpy() show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR, Box3DMode.DEPTH) show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir, file_name, show) def output_to_nusc_box(detection, with_velocity=True): """Convert the output to the box class in the nuScenes. Args: detection (dict): Detection results. - boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox. - scores_3d (torch.Tensor): Detection scores. - labels_3d (torch.Tensor): Predicted box labels. Returns: list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes. """ box3d = detection['boxes_3d'] scores = detection['scores_3d'].numpy() labels = detection['labels_3d'].numpy() box_gravity_center = box3d.gravity_center.numpy() box_dims = box3d.dims.numpy() box_yaw = box3d.yaw.numpy() # our LiDAR coordinate system -> nuScenes box coordinate system nus_box_dims = box_dims[:, [1, 0, 2]] box_list = [] for i in range(len(box3d)): quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i]) if with_velocity: velocity = (*box3d.tensor[i, 7:9], 0.0) else: velocity = (0, 0, 0) # velo_val = np.linalg.norm(box3d[i, 7:9]) # velo_ori = box3d[i, 6] # velocity = ( # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0) box = NuScenesBox( box_gravity_center[i], nus_box_dims[i], quat, label=labels[i], score=scores[i], velocity=velocity) box_list.append(box) return box_list def lidar_nusc_box_to_global(info, boxes, classes, eval_configs, eval_version='detection_cvpr_2019'): """Convert the box from ego to global coordinate. Args: info (dict): Info for a specific sample data, including the calibration information. boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes. classes (list[str]): Mapped classes in the evaluation. eval_configs (object): Evaluation configuration object. eval_version (str, optional): Evaluation version. Default: 'detection_cvpr_2019' Returns: list: List of standard NuScenesBoxes in the global coordinate. """ box_list = [] for box in boxes: # Move box to ego vehicle coord system box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation'])) box.translate(np.array(info['lidar2ego_translation'])) # filter det in ego. cls_range_map = eval_configs.class_range radius = np.linalg.norm(box.center[:2], 2) det_range = cls_range_map[classes[box.label]] if radius > det_range: continue # Move box to global coord system box.rotate(pyquaternion.Quaternion(info['ego2global_rotation'])) box.translate(np.array(info['ego2global_translation'])) box_list.append(box) return box_list
ef18e320c181d7603f6cc50f8b4c007b64c977e5
b8d2f095a4b7ea567ccc61ee318ba879318eec3d
/二分查找/287. 寻找重复数.py
69bdb06bf5dbca40a1db1643ecf3e21552f93868
[]
no_license
f1amingo/leetcode-python
a3ef78727ae696fe2e94896258cfba1b7d58b1e3
b365ba85036e51f7a9e018767914ef22314a6780
refs/heads/master
2021-11-10T16:19:27.603342
2021-09-17T03:12:59
2021-09-17T03:12:59
205,813,698
1
0
null
null
null
null
UTF-8
Python
false
false
621
py
from typing import List class Solution: # 从[1, n]中猜一个数,再遍历一遍原数组 def findDuplicate(self, nums: List[int]) -> int: n = len(nums) - 1 lt, rt = 1, n while lt < rt: mid = (lt + rt) // 2 count = 0 for num in nums: if num <= mid: count += 1 if count > mid: rt = mid else: lt = mid + 1 return lt assert Solution().findDuplicate([1, 3, 4, 2, 2]) == 2 assert Solution().findDuplicate([3, 1, 3, 4, 2]) == 3
028d4012be6e2dba637d5afdafcded11bfba6024
fd8d33572656edf9e1133a72ad4e2fa090f90a5f
/packages/OpenCV/nodes/OpenCV___YUV_YV120/OpenCV___YUV_YV120___METACODE.py
fd27f158254de61c8a19e271393e77c1740baba6
[ "MIT" ]
permissive
ChristianHohlfeld/Ryven
a01c2eafa79a80883a9490efb5f043fd35f53484
53bf7e57a7b0fa25a704cd0d2214a7f76096d4dd
refs/heads/master
2022-12-12T22:03:57.122034
2020-08-31T13:45:45
2020-08-31T13:45:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
from NIENV import * import cv2 # USEFUL # self.input(index) <- access to input data # self.outputs[index].set_val(val) <- set output data port value # self.main_widget <- access to main widget class %NODE_TITLE%_NodeInstance(NodeInstance): def __init__(self, parent_node: Node, flow, configuration=None): super(%NODE_TITLE%_NodeInstance, self).__init__(parent_node, flow, configuration) # self.special_actions['action name'] = {'method': M(self.action_method)} self.img_unYUV_YV12 = None self.img_YUV_YV12 = None self.initialized() def update_event(self, input_called=-1): self.img_unYUV_YV12 = self.input(0) self.img_YUV_YV12 = cv2.cvtColor(self.img_unYUV_YV12,cv2.COLOR_BGRA2YUV_YV12) #self.cnvt=cv2.imshow('gray_image',self.img_YUV_I420) self.main_widget.show_image(self.img_YUV_YV12) self.set_output_val(0, self.img_YUV_YV12) def get_data(self): data = {} # ... return data def set_data(self, data): pass # ... def remove_event(self): pass
ce4f4de3c6cd53f78a77f8f7d171a222a593ea7e
4a28e3e3afb28c0455ea21cfb983c3a8284dc5dd
/Reverse.py
bc387ecd0eea4a1c2e6fe9318772782e900f4b58
[]
no_license
omdeshmukh20/Python-3-Programming
60f6bc4e627de9d643a429e64878a636f3875cae
9fb4c7fa54bc26d18b69141493c7a72e0f68f7d0
refs/heads/main
2023-08-28T04:37:27.001888
2021-10-29T17:03:34
2021-10-29T17:03:34
370,008,995
0
0
null
null
null
null
UTF-8
Python
false
false
674
py
#Discription: Accept Number From User And Return Reverse Of That Number Using For-Loop #Date: 14/08/21 #Author : Om Deshmukh # Reverse Operation def Reverse(iValue1): iDigit = 0 iRev = 0 if iValue1 < 0: exit("Invalid Input! | Note : Give Input Greater Than 0") for _ in range(iValue1): if iValue1 == 0: break iDigit = iValue1 % 10 iRev = (iRev * 10) + iDigit iValue1 = iValue1 // 10 return iRev # Entry Point def main(): iNo1 = int(input("Enter The Number : ")) iRet = Reverse(iNo1) print("Reverse Number is : ", iRet) # Code Starter if __name__ == "__main__": main()
4497e161d8e06316103a36d717fe15e66be3c951
3b504a983f1807ae7c5af51078bfab8c187fc82d
/client/input/InputSubsystem/JoyInput.py
03a21fda604012c74ea881e2b4fdb3fcfdc8f167
[]
no_license
SEA-group/wowp_scripts
7d35fd213db95ea6b3dbd1ec6d3e0f13de86ba58
2fe54a44df34f2dcaa6860a23b835dcd8dd21402
refs/heads/master
2021-09-07T23:10:13.706605
2018-03-02T17:23:48
2018-03-02T17:23:48
117,280,141
0
0
null
null
null
null
UTF-8
Python
false
false
6,816
py
# Embedded file name: scripts/client/input/InputSubsystem/JoyInput.py import Keys import BWPersonality import InputMapping import math from MathExt import * from consts import ROLL_AXIS, VERTICAL_AXIS, HORIZONTAL_AXIS, FORCE_AXIS, FLAPS_AXIS, INPUT_SYSTEM_STATE from input.InputSubsystem.InputSubsystemBase import InputSubsystemBase import GameEnvironment BASE_SMOOTH_WINDOW = 10 class ProxyCamStrategy(object): @staticmethod def rotateCursor(*args): pass class JoystickExpertInput(InputSubsystemBase): def __init__(self, profile): self._profile = profile self.__isRawForceAxis = True self.__smoothStack = {} self.__lastSmoothWin = {} class JoyEvent: def __init__(self): self.deviceId = None self.axis = None self.value = None return self.__joyEvent = JoyEvent() def pushLastEvent(self): for deviceId in BWPersonality.axis: for axis in BWPersonality.axis[deviceId]: self.__joyEvent.deviceId = deviceId self.__joyEvent.axis = axis self.__joyEvent.value = BWPersonality.axis[deviceId][axis] self.processJoystickEvent(self.__joyEvent) def restart(self): self.__smoothStack = {} self.__lastSmoothWin = {} def dispose(self): self._profile = None return @property def __cameraStrategy(self): cam = GameEnvironment.getCamera() if cam is not None: return cam.getDefualtStrategies['CameraStrategyNormal'] else: return ProxyCamStrategy def processJoystickEvent(self, event): jSet = InputMapping.g_instance.joystickSettings rValue = 0.0 vValue = 0.0 hValue = 0.0 fValue = 0.0 if event.axis == jSet.ROLL_AXIS and (event.deviceId == jSet.ROLL_DEVICE or 0 == jSet.ROLL_DEVICE): rValue = -event.value if jSet.INVERT_ROLL else event.value rawValue = rValue if abs(rValue) <= jSet.ROLL_DEAD_ZONE: self._profile.sendData(ROLL_AXIS, 0.0, -rawValue) else: rValue = self.__signalSmoothing(jSet.ROLL_AXIS, rValue, jSet.ROLL_SMOOTH_WINDOW) rValue = self.__signalDiscrete(jSet.ROLL_SENSITIVITY, rValue, event.deviceId, event.axis) rValue = math.copysign((abs(rValue) - jSet.ROLL_DEAD_ZONE) / (1.0 - jSet.ROLL_DEAD_ZONE), rValue) rValue = InputMapping.translateAxisValue(jSet.AXIS_X_CURVE, rValue) rValue = clamp(-1.0, -rValue, 1.0) self._profile.sendData(ROLL_AXIS, rValue, -rawValue) elif event.axis == jSet.VERTICAL_AXIS and (event.deviceId == jSet.VERTICAL_DEVICE or 0 == jSet.VERTICAL_DEVICE): vValue = -event.value if jSet.INVERT_VERTICAL else event.value rawValue = vValue if abs(vValue) <= jSet.VERTICAL_DEAD_ZONE: self._profile.sendData(VERTICAL_AXIS, 0.0, rawValue) else: vValue = self.__signalSmoothing(jSet.VERTICAL_AXIS, vValue, jSet.VERTICAL_SMOOTH_WINDOW) vValue = self.__signalDiscrete(jSet.VERTICAL_SENSITIVITY, vValue, event.deviceId, event.axis) vValue = math.copysign((abs(vValue) - jSet.VERTICAL_DEAD_ZONE) / (1 - jSet.VERTICAL_DEAD_ZONE), vValue) vValue = InputMapping.translateAxisValue(jSet.AXIS_Y_CURVE, vValue) vValue = clamp(-1.0, -vValue, 1.0) self._profile.sendData(VERTICAL_AXIS, vValue, -rawValue) elif event.axis == jSet.HORIZONTAL_AXIS and (event.deviceId == jSet.HORIZONTAL_DEVICE or 0 == jSet.HORIZONTAL_DEVICE): hValue = event.value if jSet.INVERT_HORIZONTAL else -event.value rawValue = hValue if abs(hValue) <= jSet.HORIZONTAL_DEAD_ZONE: self._profile.sendData(HORIZONTAL_AXIS, 0.0, rawValue) else: hValue = self.__signalSmoothing(jSet.HORIZONTAL_AXIS, hValue, jSet.HORIZONTAL_SMOOTH_WINDOW) hValue = self.__signalDiscrete(jSet.HORIZONTAL_SENSITIVITY, hValue, event.deviceId, event.axis) hValue = InputMapping.translateAxisValue(jSet.AXIS_Z_CURVE, hValue) hValue = math.copysign((abs(hValue) - jSet.HORIZONTAL_DEAD_ZONE) / (1 - jSet.HORIZONTAL_DEAD_ZONE), hValue) if InputMapping.g_instance.currentProfileType == INPUT_SYSTEM_STATE.GAMEPAD_DIRECT_CONTROL: hValue *= -1 hValue = clamp(-1.0, hValue, 1.0) self._profile.sendData(HORIZONTAL_AXIS, hValue, rawValue) elif event.axis == jSet.FORCE_AXIS and (event.deviceId == jSet.FORCE_DEVICE or 0 == jSet.FORCE_DEVICE): fValue = -event.value if jSet.INVERT_FORCE else event.value rawValue = fValue if self.__isRawForceAxis: fValue = self.__renormalization(fValue) self._profile.sendData(FORCE_AXIS, fValue, rawValue) self.__cameraStrategy.rotateCursor(vValue * 0.01, hValue * 0.01) def setCursorCamera(self, isCursorCamera): pass def setRawForceAxis(self, value): self.__isRawForceAxis = value def __renormalization(self, x): maxForce = InputMapping.g_instance.joystickSettings.POINT_OF_NORMAL_THRUST deadZone = InputMapping.g_instance.joystickSettings.FORCE_DEAD_ZONE if deadZone > 1: deadZone = 1 if x > deadZone: return 1 if maxForce < x <= deadZone: return 0 return clamp(-1.0, (x + 1.0) / (max(-0.99, maxForce) + 1.0) - 1.0, 0.0) def __signalDiscrete(self, discrete, value, deviceId, axis): SENSITIVITY = 14 * discrete joyDPI = BigWorld.getJoystickResolution(deviceId, axis) / pow(2.0, math.floor(SENSITIVITY)) halfSingleSignal = 0.5 / joyDPI if abs(value) < 0.25 * halfSingleSignal or abs(value) > 1.0 - 0.25 * halfSingleSignal: return value absValue = math.floor(abs(value) * joyDPI) / joyDPI + halfSingleSignal return math.copysign(absValue, value) def __signalSmoothing(self, axis, value, win, e = 0.99): if self.__lastSmoothWin.get(axis, None) != win: self.__lastSmoothWin[axis] = win if self.__smoothStack.get(axis, None): self.__smoothStack[axis] = [] window = max(int(BASE_SMOOTH_WINDOW * win), 1) self.__smoothStack.setdefault(axis, []).append(value) if len(self.__smoothStack[axis]) > window: self.__smoothStack[axis].pop(0) val = math.copysign(1.0, value) if abs(value) >= e else sum(self.__smoothStack[axis]) / len(self.__smoothStack[axis]) return val
6259b00f99bd0193a97019a733fdc7d17fd4e74b
916773e4af7367022067abf2e92bc8ab7302b1e5
/trunk/prodRoot/desktopApp/test/imap/imapServer.py
270d663e89626782dde57cc0a1ac2653dc86f92d
[]
no_license
weijia/ufs
814ac76a9a44a931803971cb4edcefd79c87d807
c43cdae2dfe89b747b6970138ccdf9ddf7f766b3
refs/heads/master
2016-09-01T18:35:33.754862
2012-08-14T09:02:40
2012-08-14T09:02:40
3,439,945
0
0
null
null
null
null
UTF-8
Python
false
false
16,361
py
from twisted.mail import imap4, maildir from twisted.internet import reactor, defer, protocol from twisted.cred import portal, checkers, credentials from twisted.cred import error as credError from twisted.python import filepath from zope.interface import implements import time, os, random, pickle MAILBOXDELIMITER = "." class IMAPUserAccount(object): implements(imap4.IAccount) def __init__(self, userDir): self.dir = userDir self.mailboxCache = {} # make sure Inbox exists inbox = self._getMailbox("Inbox", create=True) def listMailboxes(self, ref, wildcard): for box in os.listdir(self.dir): yield box, self._getMailbox(box) def select(self, path, rw=True): "return an object implementing IMailbox for the given path" return self._getMailbox(path) def _getMailbox(self, path, create=False): """ Helper function to get a mailbox object at the given path, optionally creating it if it doesn't already exist. """ # According to the IMAP spec, Inbox is case-insensitive pathParts = path.split(MAILBOXDELIMITER) if pathParts[0].lower() == 'inbox': pathParts[0] = 'Inbox' path = MAILBOXDELIMITER.join(pathParts) if not self.mailboxCache.has_key(path): fullPath = os.path.join(self.dir, path) if not os.path.exists(fullPath): if create: maildir.initializeMaildir(fullPath) else: raise KeyError, "No such mailbox" self.mailboxCache[path] = IMAPMailbox(fullPath) return self.mailboxCache[path] def create(self, path): "create a mailbox at path and return it" self._getMailbox(path, create=True) def delete(self, path): "delete the mailbox at path" raise imap4.MailboxException("Permission denied.") def rename(self, oldname, newname): "rename a mailbox" oldPath = os.path.join(self.dir, oldname) newPath = os.path.join(self.dir, newname) os.rename(oldPath, newPath) def isSubscribed(self, path): "return a true value if user is subscribed to the mailbox" return self._getMailbox(path).metadata.get('subscribed', False) def subscribe(self, path): "mark a mailbox as subscribed" box = self._getMailbox(path) box.metadata['subscribed'] = True box.saveMetadata() return True def unsubscribe(self, path): "mark a mailbox as unsubscribed" box = self._getMailbox(path) box.metadata['subscribed'] = False box.saveMetadata() return True class ExtendedMaildir(maildir.MaildirMailbox): """ Extends maildir.MaildirMailbox to expose more of the underlying filename data """ def __iter__(self): "iterates through the full paths of all messages in the maildir" return iter(self.list) def __len__(self): return len(self.list) def __getitem__(self, i): return self.list[i] def deleteMessage(self, filename): index = self.list.index(filename) os.remove(filename) del(self.list[index]) class IMAPMailbox(object): implements(imap4.IMailbox) def __init__(self, path): self.maildir = ExtendedMaildir(path) self.metadataFile = os.path.join(path, '.imap-metadata.pickle') if os.path.exists(self.metadataFile): self.metadata = pickle.load(file(self.metadataFile, 'r+b')) else: self.metadata = {} self.initMetadata() self.listeners = [] self._assignUIDs() def initMetadata(self): if not self.metadata.has_key('flags'): self.metadata['flags'] = {} # dict of message IDs to flags if not self.metadata.has_key('uidvalidity'): # create a unique integer ID to identify this version of # the mailbox, so the client could tell if it was deleted # and replaced by a different mailbox with the same name self.metadata['uidvalidity'] = random.randint(1000000, 9999999) if not self.metadata.has_key('uids'): self.metadata['uids'] = {} if not self.metadata.has_key('uidnext'): self.metadata['uidnext'] = 1 # next UID to be assigned def saveMetadata(self): pickle.dump(self.metadata, file(self.metadataFile, 'w+b')) def _assignUIDs(self): # make sure every message has a uid for messagePath in self.maildir: messageFile = os.path.basename(messagePath) if not self.metadata['uids'].has_key(messageFile): self.metadata['uids'][messageFile] = self.metadata['uidnext'] self.metadata['uidnext'] += 1 self.saveMetadata() def getHierarchicalDelimiter(self): return MAILBOXDELIMITER def getFlags(self): "return list of flags supported by this mailbox" return [r'\Seen', r'\Unseen', r'\Deleted', r'\Flagged', r'\Answered', r'\Recent'] def getMessageCount(self): return len(self.maildir) def getRecentCount(self): return 0 def getUnseenCount(self): def messageIsUnseen(filename): filename = os.path.basename(filename) uid = self.metadata['uids'].get(filename) flags = self.metadata['flags'].get(uid, []) if not r'\Seen' in flags: return True return len(filter(messageIsUnseen, self.maildir)) def isWriteable(self): return True def getUIDValidity(self): return self.metadata['uidvalidity'] def getUID(self, messageNum): filename = os.path.basename(self.maildir[messageNum-1]) return self.metadata['uids'][filename] def getUIDNext(self): return self.folder.metadata['uidnext'] def _uidMessageSetToSeqDict(self, messageSet): """ take a MessageSet object containing UIDs, and return a dictionary mapping sequence numbers to filenames """ # if messageSet.last is None, it means 'the end', and needs to # be set to a sane high number before attempting to iterate # through the MessageSet if not messageSet.last: messageSet.last = self.metadata['uidnext'] allUIDs = [] for filename in self.maildir: shortFilename = os.path.basename(filename) allUIDs.append(self.metadata['uids'][shortFilename]) allUIDs.sort() seqMap = {} for uid in messageSet: # the message set covers a span of UIDs. not all of them # will necessarily exist, so check each one for validity if uid in allUIDs: sequence = allUIDs.index(uid)+1 seqMap[sequence] = self.maildir[sequence-1] return seqMap def _seqMessageSetToSeqDict(self, messageSet): """ take a MessageSet object containing message sequence numbers, and return a dictionary mapping sequence number to filenames """ # if messageSet.last is None, it means 'the end', and needs to # be set to a sane high number before attempting to iterate # through the MessageSet if not messageSet.last: messageSet.last = len(self.maildir)-1 seqMap = {} for messageNo in messageSet: seqMap[messageNo] = self.maildir[messageNo-1] return seqMap def fetch(self, messages, uid): if uid: messagesToFetch = self._uidMessageSetToSeqDict(messages) else: messagesToFetch = self._seqMessageSetToSeqDict(messages) for seq, filename in messagesToFetch.items(): uid = self.getUID(seq) flags = self.metadata['flags'].get(uid, []) yield seq, MaildirMessage(file(filename).read(), uid, flags) def addListener(self, listener): self.listeners.append(listener) return True def removeListener(self, listener): self.listeners.remove(listener) return True def requestStatus(self, path): return imap4.statusRequestHelper(self, path) def addMessage(self, msg, flags=None, date=None): if flags is None: flags = [] return self.maildir.appendMessage(msg).addCallback( self._addedMessage, flags) def _addedMessage(self, _, flags): # the first argument is the value returned from # MaildirMailbox.appendMessage. It doesn't contain any meaningful # information and can be discarded. Using the name "_" is a Twisted # idiom for unimportant return values. self._assignUIDs() messageFile = os.path.basename(self.maildir[-1]) messageID = self.metadata['uids'][messageFile] self.metadata['flags'][messageID] = flags self.saveMetadata() def store(self, messageSet, flags, mode, uid): if uid: messages = self._uidMessageSetToSeqDict(messageSet) else: messages = self._seqMessageSetToSeqDict(messageSet) setFlags = {} for seq, filename in messages.items(): uid = self.getUID(seq) if mode == 0: # replace flags messageFlags = self.metadata['flags'][uid] = flags else: messageFlags = self.metadata['flags'].setdefault(uid, []) for flag in flags: # mode 1 is append, mode -1 is delete if mode == 1 and not messageFlags.count(flag): messageFlags.append(flag) elif mode == -1 and messageFlags.count(flag): messageFlags.remove(flag) setFlags[seq] = messageFlags self.saveMetadata() return setFlags def expunge(self): "remove all messages marked for deletion" removed = [] for filename in self.maildir: uid = self.metadata['uids'].get(os.path.basename(filename)) if r"\Deleted" in self.metadata['flags'].get(uid, []): self.maildir.deleteMessage(filename) # you could also throw away the metadata here removed.append(uid) return removed def destroy(self): "complete remove the mailbox and all its contents" raise imap4.MailboxException("Permission denied.") from cStringIO import StringIO import email class MaildirMessagePart(object): implements(imap4.IMessagePart) def __init__(self, mimeMessage): self.message = mimeMessage self.data = str(self.message) def getHeaders(self, negate, *names): """ Return a dict mapping header name to header value. If *names is empty, match all headers; if negate is true, return only headers _not_ listed in *names. """ if not names: names = self.message.keys() headers = {} if negate: for header in self.message.keys(): if header.upper() not in names: headers[header.lower()] = self.message.get(header, '') else: for name in names: headers[name.lower()] = self.message.get(name, '') return headers def getBodyFile(self): "return a file-like object containing this message's body" bodyData = str(self.message.get_payload()) return StringIO(bodyData) def getSize(self): return len(self.data) def getInternalDate(self): return self.message.get('Date', '') def isMultipart(self): return self.message.is_multipart() def getSubPart(self, partNo): return MaildirMessagePart(self.message.get_payload(partNo)) class MaildirMessage(MaildirMessagePart): implements(imap4.IMessage) def __init__(self, messageData, uid, flags): self.data = messageData self.message = email.message_from_string(self.data) self.uid = uid self.flags = flags def getUID(self): return self.uid def getFlags(self): return self.flags class MailUserRealm(object): implements(portal.IRealm) avatarInterfaces = { imap4.IAccount: IMAPUserAccount, } def __init__(self, baseDir): self.baseDir = baseDir def requestAvatar(self, avatarId, mind, *interfaces): for requestedInterface in interfaces: if self.avatarInterfaces.has_key(requestedInterface): # make sure the user dir exists (avatarId is username) userDir = os.path.join(self.baseDir, avatarId) if not os.path.exists(userDir): os.mkdir(userDir) # return an instance of the correct class avatarClass = self.avatarInterfaces[requestedInterface] avatar = avatarClass(userDir) # null logout function: take no arguments and do nothing logout = lambda: None return defer.succeed((requestedInterface, avatar, logout)) # none of the requested interfaces was supported raise KeyError("None of the requested interfaces is supported") def passwordFileToDict(filename): passwords = {} for line in file(filename): if line and line.count(':'): username, password = line.strip().split(':') passwords[username] = password return passwords class CredentialsChecker(object): implements(checkers.ICredentialsChecker) credentialInterfaces = (credentials.IUsernamePassword, credentials.IUsernameHashedPassword) def __init__(self, passwords): "passwords: a dict-like object mapping usernames to passwords" self.passwords = passwords def requestAvatarId(self, credentials): """ check to see if the supplied credentials authenticate. if so, return an 'avatar id', in this case the name of the IMAP user. The supplied credentials will implement one of the classes in self.credentialInterfaces. In this case both IUsernamePassword and IUsernameHashedPassword have a checkPassword method that takes the real password and checks it against the supplied password. """ username = credentials.username if self.passwords.has_key(username): realPassword = self.passwords[username] checking = defer.maybeDeferred( credentials.checkPassword, realPassword) # pass result of checkPassword, and the username that was # being authenticated, to self._checkedPassword checking.addCallback(self._checkedPassword, username) return checking else: raise credError.UnauthorizedLogin("No such user") def _checkedPassword(self, matched, username): if matched: # password was correct return username else: raise credError.UnauthorizedLogin("Bad password") class IMAPServerProtocol(imap4.IMAP4Server): "Subclass of imap4.IMAP4Server that adds debugging." debug = True def lineReceived(self, line): if self.debug: print "CLIENT:", line imap4.IMAP4Server.lineReceived(self, line) def sendLine(self, line): imap4.IMAP4Server.sendLine(self, line) if self.debug: print "SERVER:", line class IMAPFactory(protocol.Factory): protocol = IMAPServerProtocol portal = None # placeholder def buildProtocol(self, address): p = self.protocol() p.portal = self.portal p.factory = self return p if __name__ == "__main__": import sys dataDir = sys.argv[1] portal = portal.Portal(MailUserRealm(dataDir)) passwordFile = os.path.join(dataDir, 'passwords.txt') passwords = passwordFileToDict(passwordFile) passwordChecker = CredentialsChecker(passwords) portal.registerChecker(passwordChecker) factory = IMAPFactory() factory.portal = portal reactor.listenTCP(143, factory) reactor.run()
f817dc9cd7b0ee5cb3fb0d8da067107e84fabd08
c380976b7c59dadaccabacf6b541124c967d2b5a
/.history/src/data/data_20191021130626.py
54a8374208393201a7d3ecf5fa63dc428630f047
[ "MIT" ]
permissive
bkraft4257/kaggle_titanic
b83603563b4a3c995b631e8142fe72e1730a0e2e
f29ea1773773109a867278c001dbd21a9f7b21dd
refs/heads/master
2020-08-17T12:45:28.653402
2019-11-15T16:20:04
2019-11-15T16:20:04
215,667,760
0
0
null
null
null
null
UTF-8
Python
false
false
4,770
py
import pandas as pd import numpy as np from typing import Union from pathlib import Path from nameparser import HumanName class ExtractData: def __init__(self, filename: Union[str, Path], age_bins = None, drop_columns=None): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.filename = filename self.drop_columns = drop_columns self.all_label_columns = ["survived"] self.all_feature_columns = [ "pclass", "name", "sex", "age", "sibsp", "parch", "ticket", "fare", "cabin", "embarked", ] self.Xy_raw = None self.extract_raw() def extract_raw(self): """ Extracts data from a CSV file. Returns: pd.DataFrame -- [description] """ Xy_raw = pd.read_csv(self.filename) Xy_raw.columns = Xy_raw.columns.str.lower().str.replace(" ", "_") Xy_raw = Xy_raw.rename(columns={"age": "age_known"}) Xy_raw["pclass"] = Xy_raw["pclass"].astype("category") self.Xy_raw = Xy_raw.set_index("passengerid") class TransformData: title_translator = { "Mlle.": "Mrs.", "Mme.": "Mrs.", "Sir.": "Mr.", "Ms.": "Mrs.", "Rev.": "Mr.", "": "Mr.", "Col.": "Mr.", "Capt.": "Mr.", "Lady.": "Mrs.", "the Countess. of": "Mrs.", } def __init__( self, raw_data, adult_age_threshold_min=13, age_bins = None, Xy_age_estimate=None, drop_columns=None, ): # """Extract Training Data from file or Path # Arguments: # filename {[str]} -- Filename of CSV data file containing data. # drop_columns -- Columns in dataframe that should be dropped. # """ if age_bins is None: age_bins = [0,10,20,30, 40, 50, 60, np.inf] if drop_columns is None: drop_columns = ["age", "cabin", "name", "ticket"] self.raw = raw_data self.adult_age_threshold_min = adult_age_threshold_min self.Xy_age_estimate = Xy_age_estimate self.age_bins = age_bins self.Xy = self.raw.Xy_raw.copy() self.extract_title() self.extract_last_name() self.extract_cabin_number() self.extract_cabin_prefix() self.estimate_age() self.calc_is_child() self.calc_is_travelling_alone() def calc_is_travelling_alone(self): self.Xy["is_travelling_alone"] = (self.Xy.sibsp == 0) & (self.Xy.parch == 0) def calc_is_child(self): self.Xy["is_child"] = self.Xy.age < self.adult_age_threshold_min def extract_cabin_number(self): self.Xy["cabin_number"] = self.Xy.ticket.str.extract("(\d+)$") def extract_cabin_prefix(self): self.Xy["cabin_prefix"] = self.Xy.ticket.str.extract("^(.+) ") def extract_title(self): """[summary] """ self.Xy["title"] = ( self.Xy.name.apply(lambda x: HumanName(x).title) .replace(self.title_translator) .replace({"\.": ""}, regex=True) ) def extract_last_name(self): self.Xy["last_name"] = self.Xy.name.apply(lambda x: HumanName(x).last) def calc_age_bins(self): self.Xy['age_bin'] = pd.cut(Xy.age, bins=[0,10,20,30, 40, 50, 60, np.inf]) def clean(self,): """Clean data to remove missing data and "unnecessary" features. Arguments: in_raw_df {pd.DataFrame} -- Dataframe containing all columns and rows Kaggle Titanic Training Data set """ self.Xy = self.Xy_raw.drop(self.drop_columns, axis=1) def estimate_age(self, groupby_columns=["sex", "title"]): """[summary] Keyword Arguments: groupby {list} -- [description] (default: {['sex','title']}) """ if self.Xy_age_estimate is None: Xy_age_estimate = ( self.Xy.groupby(groupby_columns).age_known.mean().to_frame().round(1) ) Xy_age_estimate = Xy_age_estimate.rename( columns={"age_known": "age_estimate"} ) out_df = self.Xy.reset_index().merge(Xy_age_estimate, on=groupby_columns) out_df["age"] = out_df["age_known"].fillna(out_df["age_estimate"]) self.Xy = out_df self.Xy_age_estimate = Xy_age_estimate
c42757ed648fb8b964c0e0ab2fa9c6969b1b2058
cc4c8bec896c2d0a6ac4c1f0e01f73d8157f891a
/util/__deprecated.aggregate_variants_n_depth_to_table.py
9819ed136498e9b69c83b545a2d93ff6258dd946
[]
no_license
NCIP/ctat-mutations-benchmarking
fe6a79007d6a22e4301b130a55f982d835b57691
1a8fe28860c3d216ba0acfe888b300dc3235c79a
refs/heads/main
2023-05-29T21:00:57.730494
2021-05-12T17:53:20
2021-05-12T17:53:20
366,363,093
1
0
null
null
null
null
UTF-8
Python
false
false
9,110
py
#!/usr/bin/env python import os,sys,argparse import subprocess import numpy as np import pandas as pd import re import pickle import csv csv.field_size_limit(100000000) def configure_vcf(vcf, column_name, chr_idx=0, coord_idx=1, refallele_idx=3, varallele_idx=4): ''' Configure the vcf file to prepare for merging with other data ''' print('Loading {} VCF: {}'.format(column_name, vcf)) df = pd.read_csv(vcf, sep='\t', header=None, comment='#',engine='python') ## Remove "chr" if in front of chromosome number df.loc[:,chr_idx] = df.loc[:,chr_idx].map(str) df.loc[:,chr_idx] = df.loc[:,0].map(lambda x: x.lstrip('chr')) df=df.replace({chr_idx: {"X":"23","Y":"24","MT":"25","M":"25"}}) df["CHROMPOS"] = df.iloc[:,chr_idx] + ':' +df.iloc[:,coord_idx].map(str) ## set column name to SNP ref:alt df[column_name] = df.iloc[:,refallele_idx].map(str) + ':' +df.iloc[:,varallele_idx].map(str) ## use column names from the VCF format. df.rename(columns={chr_idx:'CHROM',coord_idx:'POS', refallele_idx:'REF', varallele_idx:'VAR'}, inplace=True) print(df.head()) return df def add_variant_attribute_from_vcf(df, vcf_filename, column_name, **kwargs): # check for pickle file and load pickle_path = os.path.basename(vcf_filename) + ".pickle" print(pickle_path) var_attribute_df = None if (os.path.exists(pickle_path)): print('Loading Pickle: {}'.format(pickle_path)) inPickle = open(pickle_path,'rb') var_attribute_df = pickle.load(inPickle) inPickle.close() # if not found, read and create the pickle else: print('Creating Pickle: {}'.format(pickle_path)) var_attribute_df = configure_vcf(vcf_filename, column_name, **kwargs) outPickle = open(pickle_path, 'wb') pickle.dump(var_attribute_df, outPickle) outPickle.close() var_attribute_df = var_attribute_df[['CHROMPOS', column_name]] df = pd.merge(df, var_attribute_df, how='left', on='CHROMPOS') # Check print(df.head()) return df def check_if_chr_bam(filename): cmd = 'samtools idxstats '+ filename +'| cut -f1' output = (subprocess.check_output(cmd, shell=True)) print(output) m_chr = re.findall(r'Y\\n(.*)\\n', str(output))[0].split('\\n')[0] ## seems brittle... //TODO: more rigorous way? chr_prefix_flag = 'chr' in str(output) print('****',chr_prefix_flag, m_chr) return chr_prefix_flag, m_chr def add_depth_info(df, bam_filename, column_name): print(df.head()) ######################################################################### # Create a bed file of SNP locations, used to extract coverage depth info. ######################################################################## df_bed = df[['CHROM', 'POS']].copy() df_bed.columns = ['Chr', 'Pos'] # using different ones for the bed print(df_bed.head()) df_bed['Pos'] = df_bed['Pos'].map(int) # store positions as integers. df_bed['Pos-1'] = (df_bed['Pos']-1) ## Check if "chr" in front of chromosome name in the bam file chr_prefix_flag, m_chr_pred = check_if_chr_bam(bam_filename) if chr_prefix_flag: df_bed['Chr'] = 'chr' + df_bed['Chr'].map(str) # add chr at the beginning of chr names # back-convert X,Y,M from numeric vals used earlier df_bed['Chr'] = df_bed.loc[:,'Chr'].replace('23','X') #replace chr23 with chrX df_bed['Chr'] = df_bed.loc[:,'Chr'].replace('24','Y') #replace chr24 with chrY df_bed['Chr'] = df_bed.loc[:,'Chr'].replace('25', m_chr_pred) #replace chr25 with chrM # sort by chr, pos df_bed = df_bed.sort_values(['Chr', 'Pos'], ascending=[True, True]) # make bed file containing target sites for depth calc bed_filename = os.path.basename(bam_filename) + ".{}_count.variants_pos.bed".format(len(df_bed)) if os.path.exists(bed_filename): print("-reusing bed file: {}".format(bed_filename)) else: df_bed.to_csv(bed_filename, sep ='\t', index=False, header=False, na_rep='NA', columns=['Chr', 'Pos-1', 'Pos']) print('Bed File created: {}'.format(bed_filename)) # make depth file depth_filename = bed_filename + ".depth" if os.path.exists(depth_filename): print("-reusing depth file: {}".format(depth_filename)) else: cmd = "samtools depth -b {} {} > {}".format(bed_filename, bam_filename, depth_filename) subprocess.check_call(cmd, shell=True) print("Depth file created: {}".format(depth_filename)) # Merge depth values with SNP values df_depth = pd.read_csv(depth_filename, sep='\t', header=None, low_memory=False) if chr_prefix_flag: df_depth.loc[:,0] = df_depth.loc[:,0].map(lambda x: x.lstrip('chr')) df_depth=df_depth.replace({0: {"X":"23", "Y":"24", "MT":"25", "M":"25"} }) df_depth["CHROMPOS"] = df_depth.iloc[:,0].map(str) + ':' +df_depth.iloc[:,1].map(str) df_depth[column_name] = df_depth.iloc[:,2] ## simplify to just the 2 columns we want df_depth = df_depth[['CHROMPOS',column_name]] ## merge into the original data frame df = pd.merge(df, df_depth, how='left', on='CHROMPOS') return df def restrict_regions(input_vcf_file, restrict_regions_bed_file): restricted_vcf_file = input_vcf_file + ".restricted.vcf" cmd = "bcftools filter -T {} {} -o {}".format(restrict_regions_bed_file, input_vcf_file, restricted_vcf_file) subprocess.check_call(cmd, shell=True) return restricted_vcf_file def main(): ## Input arguments parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description = "Convert vcf file to benchmarking input file\n") parser.add_argument('--pred_vcf', required = True, dest = 'pred_vcf', help="input prediction vcf") parser.add_argument('--truth_vcf', required = True, help="reference truth set vcf") parser.add_argument('--pred_bam', required = True , dest = 'bam_file', help="Alignment file of reads with the reference") parser.add_argument('--out', required = True , dest = 'out_file', help="Output filename") parser.add_argument('--exome_bam', help="Alignment file of the exome with the reference") parser.add_argument("--restrict_regions_bed", help="bed file containing regions to restrict analysis to. (ie. high confidence regions)") ## filtering options. parser.add_argument('--dbsnp', dest = 'dbsnp', help="input dbsnp file") parser.add_argument('--rnaediting', dest = 'rnaediting', help="input rnaediting file") parser.add_argument('--cosmic', dest = 'cosmic', help="input cosmic file") args = parser.parse_args() pred_vcf = args.pred_vcf truth_vcf = args.truth_vcf ## apply region restrictions to input vcfs if args.restrict_regions_bed: pred_vcf = restrict_regions(pred_vcf, args.restrict_regions_bed) truth_vcf = restrict_regions(truth_vcf, args.restrict_regions_bed) ## Load input vcfs to python df df_pred = configure_vcf(pred_vcf,'RNA_SNP') ## load prediction vcf df_ref = configure_vcf(truth_vcf,'Ref_SNP') ## merge dfs df = pd.merge(pd.DataFrame(df_pred, columns = ['CHROMPOS','CHROM', 'POS', 'RNA_SNP']), pd.DataFrame(df_ref, columns = ['CHROMPOS', 'CHROM' ,'POS', 'Ref_SNP']), on=['CHROMPOS', 'CHROM', 'POS'] ,how='outer') #-------------------------------------- # Merge with the DBSNP vcf file to see common variants #-------------------------------------- if args.dbsnp: df = add_variant_attribute_from_vcf(df, args.dbsnp, 'dbsnp_SNP') #-------------------------------------- # Merge with the rnaediting vcf file #-------------------------------------- if args.rnaediting: # rnaediting column idxs are slightly off from expected vcf formatting, requires slight adjustment. df = add_variant_attribute_from_vcf(df, args.rnaediting, 'rnaediting_SNP', refallele_idx=2, varallele_idx=3) #-------------------------------------- # Merge with the COSMIC vcf file #-------------------------------------- if args.cosmic: df = add_variant_attribute_from_vcf(df, args.cosmic, 'cosmic_SNP') print('VCFs loaded.') ## get rna-seq depth info df = add_depth_info(df, args.bam_file, 'RNAseq_Depth') if args.exome_bam: df = add_depth_info(df, args.exome_bam, "Exome_Depth") ## make filtering a separate script. ##filter out the indels #if args.filter_indels : # print('Filtering Indels ... ') # mask = (df['RNA_SNP'].astype(str).str.len() <= 3) & (df['Ref_SNP'].astype(str).str.len() <= 3) # df = df.loc[mask] df.to_csv(args.out_file,sep = '\t', index=False, na_rep='NA') print('Done!') if __name__ == '__main__': main()
0684d234e85f6b170a94bbdd8fe260adcc0f1b90
0296bc69a0d9608ed826ad7a719395f019df098f
/old_modules/render_model_1.py
9fc3f68c9e69607c41d3e1a6f72240c17d64ea5e
[]
no_license
jcn16/Blender_HDRmap_render
c0486a77e04c5b41a6f75f123dbdb3d10c682367
50e6cdb79fef83081de9830e7105dd425a235a9e
refs/heads/main
2023-07-19T22:22:53.622052
2021-08-20T06:29:10
2021-08-20T06:29:10
377,757,283
2
0
null
null
null
null
UTF-8
Python
false
false
7,746
py
from math import radians, sin, cos, pi import mathutils, bpy, argparse, random, time, os,logging def generate_rand(a=0, b=1, only_positive=False): x = (random.random()-0.5) * 2*b if abs(x) < a or (only_positive and x<0): return generate_rand(a, b, only_positive) else: return x def point_at(obj, target, roll=0): """ Rotate obj to look at target :arg obj: the object to be rotated. Usually the camera :arg target: the location (3-tuple or Vector) to be looked at :arg roll: The angle of rotation about the axis from obj to target in radians. Based on: https://blender.stackexchange.com/a/5220/12947 (ideasman42) """ if not isinstance(target, mathutils.Vector): target = mathutils.Vector(target) loc = obj.location # direction points from the object to the target direction = target - loc quat = direction.to_track_quat('-Z', 'Y') # /usr/share/blender/scripts/addons/add_advanced_objects_menu/arrange_on_curve.py quat = quat.to_matrix().to_4x4() rollMatrix = mathutils.Matrix.Rotation(roll, 4, 'Z') # remember the current location, since assigning to obj.matrix_world changes it loc = loc.to_tuple() obj.matrix_world = quat * rollMatrix obj.location = loc # init & params logger = logging.getLogger() logger.setLevel(logging.ERROR) random.seed(time.time()) light_num_low, light_num_high = 6, 12 light_loc_low, light_loc_high = 3, 6 #context = bpy.context model_path = '/media/jcn/新加卷/JCN/CLOTHES/Human_model/衬衫裙子/model_3' model = "model_3.obj" render_path = "/media/jcn/新加卷/JCN/CLOTHES/Results/2/%08d.png" quat_file = "/media/jcn/新加卷/JCN/CLOTHES/Results/2/result.txt" # Delete default cube bpy.data.objects['Cube'].select = True bpy.ops.object.delete() for obj in bpy.data.objects: bpy.data.objects[obj.name].select = True bpy.ops.object.delete() # rendering process # create a scene #scene = bpy.data.scenes.new("Scene") scene = bpy.context.scene context=bpy.context # create a camera camera_data = bpy.data.cameras.new("Camera") camera = bpy.data.objects.new("Camera", camera_data) distance, alpha, beta, gamma = 4.5, 1.0, 89.0, 0.0 alpha, beta, gamma = radians(alpha), radians(beta), radians(gamma) camera.location = mathutils.Vector((distance*cos(beta)*cos(alpha), distance*cos(beta)*sin(alpha), distance*sin(beta))) point_at(camera, mathutils.Vector((0, -0.4, 0)), roll=gamma) print('camera by looked_at', camera.location, camera.rotation_euler, camera.rotation_euler.to_quaternion()) scene.objects.link(camera) # Create lights (lights with random num in random directions) # light number:6~12, point light light_num = random.randint(a=light_num_low, b=light_num_high) print('create %d light(s) at:', light_num) for idx in range(light_num): light_data = bpy.data.lamps.new('light'+str(idx), type='POINT') light = bpy.data.objects.new('light'+str(idx), light_data) light_loc = (generate_rand(light_loc_low, light_loc_high), generate_rand(light_loc_low, light_loc_high), generate_rand(light_loc_low, light_loc_high, True)) light.location = mathutils.Vector(light_loc) scene.objects.link(light) light_data = bpy.data.lamps.new('light', type='POINT') light = bpy.data.objects.new('light', light_data) light.location = mathutils.Vector((0, 0, 8)) scene.objects.link(light) scene.update() scene.render.resolution_x = 2048 scene.render.resolution_y = 2048 scene.render.resolution_percentage = 100 scene.render.alpha_mode = 'TRANSPARENT' scene.camera = camera path = os.path.join(model_path, model) # make a new scene with cam and lights linked context.screen.scene = scene bpy.ops.scene.new(type='LINK_OBJECTS') context.scene.name = model_path cams = [c for c in context.scene.objects if c.type == 'CAMERA'] print(cams) bpy.context.scene.use_nodes = True tree = bpy.context.scene.node_tree links = tree.links bpy.context.scene.render.image_settings.color_depth = '8' bpy.context.scene.render.image_settings.color_mode = 'RGB' # Clear default nodes for n in tree.nodes: tree.nodes.remove(n) # 必须设置,否则无法输出法向 bpy.context.scene.render.layers['RenderLayer'].use_pass_normal = True bpy.context.scene.render.layers["RenderLayer"].use_pass_color = True bpy.context.scene.render.image_settings.file_format = 'PNG' # Create input render layer node. render_layers = tree.nodes.new('CompositorNodeRLayers') scale_normal = tree.nodes.new(type="CompositorNodeMixRGB") scale_normal.blend_type = 'MULTIPLY' scale_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 1) links.new(render_layers.outputs['Normal'], scale_normal.inputs[1]) bias_normal = tree.nodes.new(type="CompositorNodeMixRGB") bias_normal.blend_type = 'ADD' bias_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 0) links.new(scale_normal.outputs[0], bias_normal.inputs[1]) normal_file_output = tree.nodes.new(type="CompositorNodeOutputFile") normal_file_output.label = 'Normal Output' links.new(bias_normal.outputs[0], normal_file_output.inputs[0]) # Remap as other types can not represent the full range of depth. depth_file_output = tree.nodes.new(type="CompositorNodeOutputFile") depth_file_output.label = 'Depth Output' map = tree.nodes.new(type="CompositorNodeMapValue") # Size is chosen kind of arbitrarily, try out until you're satisfied with resulting depth map. map.offset = [-0.7] map.size = [0.1] map.use_min = True map.min = [0] links.new(render_layers.outputs['Depth'], map.inputs[0]) links.new(map.outputs[0], depth_file_output.inputs[0]) # image_file_output = tree.nodes.new(type="CompositorNodeOutputFile") # image_file_output.label = 'Image' # links.new(render_layers.outputs['Image'], image_file_output.inputs[0]) #print('image_idx: %08d, camera: (%.3f,%.3f,%.3f)' % (image_idx, a * 180. /pi, b * 180. / pi, g * 180. / pi)) albedo_file_output = tree.nodes.new(type="CompositorNodeOutputFile") albedo_file_output.label = 'Albedo Output' links.new(render_layers.outputs['Color'], albedo_file_output.inputs[0]) # import model bpy.ops.import_scene.obj(filepath=path, axis_forward='-Z', axis_up='Y', filter_glob="*.obj;*.mtl") #-Z, Y # print('scene objects:') for o in context.scene.objects: print(o) for obj in context.scene.objects: if obj.name in ['Camera.001'] + ['light'+str(idx) for idx in range(light_num)]: continue else: obj.location = mathutils.Vector((0, 0, -2.0)) obj.scale = mathutils.Vector((0.002, 0.002, 0.002)) c = cams[0] scene = bpy.context.scene #scene = bpy.context.scene f_quat = open(quat_file, 'w') image_idx = 0 for g in [0]: g = radians(float(g)) for b in [20, -20]: b = radians(float(b)) for a in range(1, 360, 60): a = radians(float(a)) c.location = mathutils.Vector((distance*cos(b)*cos(a), distance*cos(b)*sin(a), distance*sin(b))) point_at(c, mathutils.Vector((0, -0.4, 0)), roll = g) quat = c.rotation_euler.to_quaternion() for output_node in [normal_file_output, depth_file_output,albedo_file_output]: output_node.base_path = '' scene.render.filepath = '/media/jcn/新加卷/JCN/CLOTHES/Results/2/image_%03d' % image_idx # image_file_output.file_slots[0].path = '/media/jcn/新加卷/JCN/CLOTHES/Results/2/image%d' % image_idx normal_file_output.file_slots[0].path = '/media/jcn/新加卷/JCN/CLOTHES/Results/2/normal_%03d' % image_idx depth_file_output.file_slots[0].path = '/media/jcn/新加卷/JCN/CLOTHES/Results/2/depth_%03d' % image_idx albedo_file_output.file_slots[0].path = '/media/jcn/新加卷/JCN/CLOTHES/Results/2/albedo_%03d' % image_idx bpy.ops.render.render(use_viewport=True,write_still=True) #context.scene.render.filepath = render_path % image_idx f_quat.write('%08d,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%.4f\n' % (image_idx, quat[0], quat[1], quat[2], quat[3], a * 180 /pi, b * 180 / pi, g * 180 / pi)) image_idx = image_idx + 1 f_quat.close()
5b66423e71498cd6180f23934fe7cc35d8fdb9e0
9b64f0f04707a3a18968fd8f8a3ace718cd597bc
/huaweicloud-sdk-rms/huaweicloudsdkrms/v1/model/list_resources_response.py
dacd35a56aafb9e80f1c69849e3d804d2346de25
[ "Apache-2.0" ]
permissive
jaminGH/huaweicloud-sdk-python-v3
eeecb3fb0f3396a475995df36d17095038615fba
83ee0e4543c6b74eb0898079c3d8dd1c52c3e16b
refs/heads/master
2023-06-18T11:49:13.958677
2021-07-16T07:57:47
2021-07-16T07:57:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,605
py
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ListResourcesResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'resources': 'list[ResourceEntity]', 'page_info': 'PageInfo' } attribute_map = { 'resources': 'resources', 'page_info': 'page_info' } def __init__(self, resources=None, page_info=None): """ListResourcesResponse - a model defined in huaweicloud sdk""" super(ListResourcesResponse, self).__init__() self._resources = None self._page_info = None self.discriminator = None if resources is not None: self.resources = resources if page_info is not None: self.page_info = page_info @property def resources(self): """Gets the resources of this ListResourcesResponse. 资源列表 :return: The resources of this ListResourcesResponse. :rtype: list[ResourceEntity] """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this ListResourcesResponse. 资源列表 :param resources: The resources of this ListResourcesResponse. :type: list[ResourceEntity] """ self._resources = resources @property def page_info(self): """Gets the page_info of this ListResourcesResponse. :return: The page_info of this ListResourcesResponse. :rtype: PageInfo """ return self._page_info @page_info.setter def page_info(self, page_info): """Sets the page_info of this ListResourcesResponse. :param page_info: The page_info of this ListResourcesResponse. :type: PageInfo """ self._page_info = page_info def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): import simplejson as json return json.dumps(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListResourcesResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
4ca9bd19679fbb30fc5ed30b750ee022fc94c075
5ffdf4ddee5700e6bb3b062a07c1a9cf7e6adbc1
/PYTHON/Strings/capitalize.py
8cc94026d63e0fa32d0b508f4cfd21061a7f66e7
[ "MIT" ]
permissive
byung-u/HackerRank
23df791f9460970c3b4517cb7bb15f615c5d47d0
4c02fefff7002b3af774b99ebf8d40f149f9d163
refs/heads/master
2021-05-05T13:05:46.722675
2018-03-30T08:07:36
2018-03-30T08:07:36
104,960,152
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
#!/usr/bin/env python3 def capitalize(string): s = string.split(' ') for i in range(0, len(s)): if len(s[i]) == 0: continue if len(s[i][0]) != 0 and s[i][0].isalpha(): s[i] = s[i].title() return ' '.join(s) if __name__ == '__main__': string = input() capitalized_string = capitalize(string) print(capitalized_string)
e3c98e936946924d57a64be20bd0d6c76705512b
e55480007fde8acea46fe8eeb3ee7193c25ba113
/src/leetcode/1-99/09.py
4b14b2dee65b6c8465f1912a9386dbbec7fe586c
[]
no_license
Annihilation7/Ds-and-Al
80301bf543ec2eb4b3a9810f5fc25b0386847fd3
a0bc5f5ef4a92c0e7a736dcff77df61d46b57409
refs/heads/master
2020-09-24T05:04:41.250051
2020-02-15T10:31:10
2020-02-15T10:31:10
225,669,366
1
0
null
null
null
null
UTF-8
Python
false
false
1,191
py
# -*- coding: utf-8 -*- # Email: [email protected] # Created: 2019-12-09 12:11am ''' 判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。 示例 3: 输入: 10 输出: false 解释: 从右向左读, 为 01 。因此它不是一个回文数。 ''' class Solution: def isPalindrome(self, x: int) -> bool: ''' 负数直接先pass 用类似头尾双指针的方法来做这道题 ''' if x < 0: return False k = 1 while x // k >= 10: k *= 10 while x: left = x // k right = x % 10 if left != right: return False # 最关键的两步 # 一个是如何求除了左右两数字之外剩下的数 # 一个是k应该怎么变化 # 举个小例子看一下就好了,不难 x = x % k // 10 k //= 100 return True
64be974da5067480a0088094c5764bb85d240db1
3b9b4049a8e7d38b49e07bb752780b2f1d792851
/src/ui/webui/resources/PRESUBMIT.py
2ac87faf2b09787c19200dad102e395811d7661e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
webosce/chromium53
f8e745e91363586aee9620c609aacf15b3261540
9171447efcf0bb393d41d1dc877c7c13c46d8e38
refs/heads/webosce
2020-03-26T23:08:14.416858
2018-08-23T08:35:17
2018-09-20T14:25:18
145,513,343
0
2
Apache-2.0
2019-08-21T22:44:55
2018-08-21T05:52:31
null
UTF-8
Python
false
false
1,001
py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re def PostUploadHook(cl, change, output_api): rietveld_obj = cl.RpcServer() description = rietveld_obj.get_description(cl.issue) existing_bots = (change.CQ_INCLUDE_TRYBOTS or '').split(';') clean_bots = set(filter(None, map(lambda s: s.strip(), existing_bots))) new_bots = clean_bots | set(['tryserver.chromium.linux:closure_compilation']) new_tag = 'CQ_INCLUDE_TRYBOTS=%s' % ';'.join(new_bots) if clean_bots: tag_reg = '^CQ_INCLUDE_TRYBOTS=.*$' new_description = re.sub(tag_reg, new_tag, description, flags=re.M | re.I) else: new_description = description + '\n' + new_tag if new_description == description: return [] rietveld_obj.update_description(cl.issue, new_description) return [output_api.PresubmitNotifyResult( 'Automatically added optional Closure bots to run on CQ.')]
1ecae13285e6b4e11101cf69d5d4f92b64b71913
8fd55e7a0f8764b3fe894d927c39173507f03855
/sms/urls.py
f75a34a656dee837302b3de1b925fe0d38081e04
[]
no_license
bogdal/django-sms
2ed97cbafd7c2a9b4b1521c766e89b2514b63e75
fa0ed8369228b2b3160e8b577b6377587ce1fe5a
refs/heads/master
2020-04-05T08:22:29.864245
2013-04-24T09:28:34
2013-04-24T09:28:34
3,496,819
3
0
null
null
null
null
UTF-8
Python
false
false
410
py
from django.conf.urls import patterns, url from sms.decorators import ip_restrictions from sms.views import callback_received_sms, callback_delivery_report urlpatterns = patterns('', url(r'^callback/received-sms/$', ip_restrictions(callback_received_sms), name='callback-received-sms'), url(r'^callback/delivery-report/$', ip_restrictions(callback_delivery_report), name='callback-delivery-report'), )
a941a491e4d0a708c173a78c324d020376c894ea
bf1a44cb4836a60800d73c1f9e5fe0e25328cb43
/web2py/gluon/globals.py
43a28e45bc30e8c68bc8e39cdb0409b9583a43f0
[ "LGPL-3.0-only", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-warranty-disclaimer", "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-2.0-only", "Apache-2.0", "BSD-2-Clause" ]
permissive
aduckworth1969/smc
22874e8f8c80fb727fa3aa8f12b95c4351097de1
b1771d9ed68f0e35f46271aab5b1e1fab363e3d9
refs/heads/master
2023-04-05T14:23:07.486512
2021-04-07T16:15:45
2021-04-07T16:15:45
311,796,699
0
0
MIT
2021-04-07T16:15:46
2020-11-10T22:09:59
Python
UTF-8
Python
false
false
51,798
py
# -*- coding: utf-8 -*- """ | This file is part of the web2py Web Framework | Copyrighted by Massimo Di Pierro <[email protected]> | License: LGPLv3 (http://www.gnu.org/licenses/lgpl.html) Contains the classes for the global used variables: - Request - Response - Session """ from gluon._compat import pickle, StringIO, copyreg, Cookie, urlparse, PY2, iteritems, to_unicode, to_native, \ to_bytes, unicodeT, long, hashlib_md5, urllib_quote, to_native from gluon.storage import Storage, List from gluon.streamer import streamer, stream_file_or_304_or_206, DEFAULT_CHUNK_SIZE from gluon.contenttype import contenttype from gluon.html import xmlescape, TABLE, TR, PRE, URL from gluon.http import HTTP, redirect from gluon.fileutils import up from gluon.serializers import json, custom_json import gluon.settings as settings from gluon.utils import web2py_uuid, secure_dumps, secure_loads from gluon.settings import global_settings from gluon import recfile from gluon.cache import CacheInRam import hashlib from pydal.contrib import portalocker from pickle import Pickler, MARK, DICT, EMPTY_DICT # from types import DictionaryType import datetime import re import os import sys import traceback import threading import cgi import copy import tempfile import json as json_parser FMT = '%a, %d-%b-%Y %H:%M:%S PST' PAST = 'Sat, 1-Jan-1971 00:00:00' FUTURE = 'Tue, 1-Dec-2999 23:59:59' try: # FIXME PY3 from gluon.contrib.minify import minify have_minify = True except ImportError: have_minify = False __all__ = ['Request', 'Response', 'Session'] current = threading.local() # thread-local storage for request-scope globals css_template = '<link href="%s" rel="stylesheet" type="text/css" />' js_template = '<script src="%s" type="text/javascript"></script>' coffee_template = '<script src="%s" type="text/coffee"></script>' typescript_template = '<script src="%s" type="text/typescript"></script>' less_template = '<link href="%s" rel="stylesheet/less" type="text/css" />' css_inline = '<style type="text/css">\n%s\n</style>' js_inline = '<script type="text/javascript">\n%s\n</script>' template_mapping = { 'css': css_template, 'js': js_template, 'coffee': coffee_template, 'ts': typescript_template, 'less': less_template, 'css:inline': css_inline, 'js:inline': js_inline } # IMPORTANT: # this is required so that pickled dict(s) and class.__dict__ # are sorted and web2py can detect without ambiguity when a session changes class SortingPickler(Pickler): def save_dict(self, obj): self.write(EMPTY_DICT if self.bin else MARK + DICT) self.memoize(obj) self._batch_setitems([(key, obj[key]) for key in sorted(obj)]) if PY2: SortingPickler.dispatch = copy.copy(Pickler.dispatch) SortingPickler.dispatch[dict] = SortingPickler.save_dict else: SortingPickler.dispatch_table = copyreg.dispatch_table.copy() SortingPickler.dispatch_table[dict] = SortingPickler.save_dict def sorting_dumps(obj, protocol=None): file = StringIO() SortingPickler(file, protocol).dump(obj) return file.getvalue() # END ##################################################################### def copystream(src, dest, size, chunk_size, cache_inc=None): while size > 0: if size < chunk_size: data = src.read(size) callable(cache_inc) and cache_inc(size) else: data = src.read(chunk_size) callable(cache_inc) and cache_inc(chunk_size) length = len(data) if length > size: (data, length) = (data[:size], size) size -= length if length == 0: break dest.write(data) if length < chunk_size: break dest.seek(0) return def copystream_progress(request, chunk_size=10 ** 5): """ Copies request.env.wsgi_input into request.body and stores progress upload status in cache_ram X-Progress-ID:length and X-Progress-ID:uploaded """ env = request.env if not env.get('CONTENT_LENGTH', None): return StringIO() source = env['wsgi.input'] try: size = int(env['CONTENT_LENGTH']) except ValueError: raise HTTP(400, "Invalid Content-Length header") try: # Android requires this dest = tempfile.NamedTemporaryFile() except NotImplementedError: # and GAE this dest = tempfile.TemporaryFile() if 'X-Progress-ID' not in request.get_vars: copystream(source, dest, size, chunk_size) return dest cache_key = 'X-Progress-ID:' + request.get_vars['X-Progress-ID'] cache_ram = CacheInRam(request) # same as cache.ram because meta_storage cache_ram(cache_key + ':length', lambda: size, 0) cache_ram(cache_key + ':uploaded', lambda: 0, 0) copystream(source, dest, size, chunk_size, lambda v : cache_ram.increment(cache_key + ':uploaded', v)) cache_ram(cache_key + ':length', None) cache_ram(cache_key + ':uploaded', None) return dest class Request(Storage): """ Defines the request object and the default values of its members - env: environment variables, by gluon.main.wsgibase() - cookies - get_vars - post_vars - vars - folder - application - function - method - args - extension - now: datetime.datetime.now() - utcnow : datetime.datetime.utcnow() - is_local - is_https - restful() """ def __init__(self, env): Storage.__init__(self) self.env = Storage(env) self.env.web2py_path = global_settings.applications_parent self.env.update(global_settings) self.cookies = Cookie.SimpleCookie() self.method = self.env.get('REQUEST_METHOD') self._get_vars = None self._post_vars = None self._vars = None self._body = None self.folder = None self.application = None self.function = None self.args = List() self.extension = 'html' self.now = datetime.datetime.now() self.utcnow = datetime.datetime.utcnow() self.is_restful = False self.is_https = False self.is_local = False self.global_settings = settings.global_settings self._uuid = None def parse_get_vars(self): """Takes the QUERY_STRING and unpacks it to get_vars """ query_string = self.env.get('query_string', '') dget = urlparse.parse_qs(query_string, keep_blank_values=1) # Ref: https://docs.python.org/2/library/cgi.html#cgi.parse_qs get_vars = self._get_vars = Storage(dget) for (key, value) in iteritems(get_vars): if isinstance(value, list) and len(value) == 1: get_vars[key] = value[0] def parse_post_vars(self): """Takes the body of the request and unpacks it into post_vars. application/json is also automatically parsed """ env = self.env post_vars = self._post_vars = Storage() body = self.body # if content-type is application/json, we must read the body is_json = env.get('content_type', '')[:16] == 'application/json' if is_json: try: # In Python 3 versions prior to 3.6 load doesn't accept bytes and # bytearray, so we read the body convert to native and use loads # instead of load. # This line can be simplified to json_vars = json_parser.load(body) # if and when we drop support for python versions under 3.6 json_vars = json_parser.loads(to_native(body.read())) except: # incoherent request bodies can still be parsed "ad-hoc" json_vars = {} pass # update vars and get_vars with what was posted as json if isinstance(json_vars, dict): post_vars.update(json_vars) body.seek(0) # parse POST variables on POST, PUT, BOTH only in post_vars if body and not is_json and env.request_method in ('POST', 'PUT', 'DELETE', 'BOTH'): query_string = env.pop('QUERY_STRING', None) content_disposition = env.get('HTTP_CONTENT_DISPOSITION') if content_disposition: headers = {'content-disposition': content_disposition, 'content-type': env['CONTENT_TYPE'], 'content-length': env['CONTENT_LENGTH'], } else: headers = None dpost = cgi.FieldStorage(fp=body, environ=env, headers=headers, keep_blank_values=1) try: post_vars.update(dpost) except: pass if query_string is not None: env['QUERY_STRING'] = query_string # The same detection used by FieldStorage to detect multipart POSTs body.seek(0) def listify(a): return (not isinstance(a, list) and [a]) or a try: keys = sorted(dpost) except TypeError: keys = [] for key in keys: if key is None: continue # not sure why cgi.FieldStorage returns None key dpk = dpost[key] # if an element is not a file replace it with # its value else leave it alone pvalue = listify([(_dpk if _dpk.filename else _dpk.value) for _dpk in dpk] if isinstance(dpk, list) else (dpk if dpk.filename else dpk.value)) if len(pvalue): post_vars[key] = (len(pvalue) > 1 and pvalue) or pvalue[0] @property def body(self): if self._body is None: try: self._body = copystream_progress(self) except IOError: raise HTTP(400, "Bad Request - HTTP body is incomplete") return self._body def parse_all_vars(self): """Merges get_vars and post_vars to vars """ self._vars = copy.copy(self.get_vars) for key, value in iteritems(self.post_vars): if key not in self._vars: self._vars[key] = value else: if not isinstance(self._vars[key], list): self._vars[key] = [self._vars[key]] self._vars[key] += value if isinstance(value, list) else [value] @property def get_vars(self): """Lazily parses the query string into get_vars """ if self._get_vars is None: self.parse_get_vars() return self._get_vars @property def post_vars(self): """Lazily parse the body into post_vars """ if self._post_vars is None: self.parse_post_vars() return self._post_vars @property def vars(self): """Lazily parses all get_vars and post_vars to fill vars """ if self._vars is None: self.parse_all_vars() return self._vars @property def uuid(self): """Lazily uuid """ if self._uuid is None: self.compute_uuid() return self._uuid def compute_uuid(self): self._uuid = '%s/%s.%s.%s' % ( self.application, self.client.replace(':', '_'), self.now.strftime('%Y-%m-%d.%H-%M-%S'), web2py_uuid()) return self._uuid def user_agent(self): from gluon.contrib import user_agent_parser session = current.session user_agent = session._user_agent if user_agent: return user_agent http_user_agent = self.env.http_user_agent or '' user_agent = user_agent_parser.detect(http_user_agent) for key, value in user_agent.items(): if isinstance(value, dict): user_agent[key] = Storage(value) user_agent = Storage(user_agent) user_agent.is_mobile = 'Mobile' in http_user_agent user_agent.is_tablet = 'Tablet' in http_user_agent session._user_agent = user_agent return user_agent def requires_https(self): """ If request comes in over HTTP, redirects it to HTTPS and secures the session. """ cmd_opts = global_settings.cmd_options # checking if this is called within the scheduler or within the shell # in addition to checking if it's a cron job if (self.is_https or self.is_scheduler or cmd_opts and ( cmd_opts.shell or cmd_opts.cron_job)): current.session.secure() else: current.session.forget() redirect(URL(scheme='https', args=self.args, vars=self.vars)) def restful(self, ignore_extension=False): def wrapper(action, request=self): def f(_action=action, *a, **b): request.is_restful = True env = request.env is_json = env.content_type == 'application/json' method = env.request_method if not ignore_extension and len(request.args) and '.' in request.args[-1]: request.args[-1], _, request.extension = request.args[-1].rpartition('.') current.response.headers['Content-Type'] = \ contenttype('.' + request.extension.lower()) rest_action = _action().get(method, None) if not (rest_action and method == method.upper() and callable(rest_action)): raise HTTP(405, "method not allowed") try: res = rest_action(*request.args, **request.vars) if is_json and not isinstance(res, str): res = json(res) return res except TypeError as e: exc_type, exc_value, exc_traceback = sys.exc_info() if len(traceback.extract_tb(exc_traceback)) == 1: raise HTTP(400, "invalid arguments") else: raise f.__doc__ = action.__doc__ f.__name__ = action.__name__ return f return wrapper class Response(Storage): """ Defines the response object and the default values of its members response.write( ) can be used to write in the output html """ def __init__(self): Storage.__init__(self) self.status = 200 self.headers = dict() self.headers['X-Powered-By'] = 'web2py' self.body = StringIO() self.session_id = None self.cookies = Cookie.SimpleCookie() self.postprocessing = [] self.flash = '' # used by the default view layout self.meta = Storage() # used by web2py_ajax.html self.menu = [] # used by the default view layout self.files = [] # used by web2py_ajax.html self._vars = None self._caller = lambda f: f() self._view_environment = None self._custom_commit = None self._custom_rollback = None self.generic_patterns = ['*'] self.delimiters = ('{{', '}}') self.formstyle = 'table3cols' self.form_label_separator = ': ' def write(self, data, escape=True): if not escape: self.body.write(str(data)) else: self.body.write(to_native(xmlescape(data))) def render(self, *a, **b): from gluon.compileapp import run_view_in if len(a) > 2: raise SyntaxError( 'Response.render can be called with two arguments, at most') elif len(a) == 2: (view, self._vars) = (a[0], a[1]) elif len(a) == 1 and isinstance(a[0], str): (view, self._vars) = (a[0], {}) elif len(a) == 1 and hasattr(a[0], 'read') and callable(a[0].read): (view, self._vars) = (a[0], {}) elif len(a) == 1 and isinstance(a[0], dict): (view, self._vars) = (None, a[0]) else: (view, self._vars) = (None, {}) self._vars.update(b) self._view_environment.update(self._vars) if view: from gluon._compat import StringIO (obody, oview) = (self.body, self.view) (self.body, self.view) = (StringIO(), view) page = run_view_in(self._view_environment) self.body.close() (self.body, self.view) = (obody, oview) else: page = run_view_in(self._view_environment) return page def include_meta(self): s = "\n" for meta in iteritems((self.meta or {})): k, v = meta if isinstance(v, dict): s += '<meta' + ''.join(' %s="%s"' % (to_native(xmlescape(key)), to_native(xmlescape(v[key]))) for key in v) + ' />\n' else: s += '<meta name="%s" content="%s" />\n' % (k, to_native(xmlescape(v))) self.write(s, escape=False) def include_files(self, extensions=None): """ Includes files (usually in the head). Can minify and cache local files By default, caches in ram for 5 minutes. To change, response.cache_includes = (cache_method, time_expire). Example: (cache.disk, 60) # caches to disk for 1 minute. """ app = current.request.application # We start by building a files list in which adjacent files internal to # the application are placed in a list inside the files list. # # We will only minify and concat adjacent internal files as there's # no way to know if changing the order with which the files are apppended # will break things since the order matters in both CSS and JS and # internal files may be interleaved with external ones. files = [] # For the adjacent list we're going to use storage List to both distinguish # from the regular list and so we can add attributes internal = List() internal.has_js = False internal.has_css = False done = set() # to remove duplicates for item in self.files: if not isinstance(item, list): if item in done: continue done.add(item) if isinstance(item, (list, tuple)) or not item.startswith('/' + app): # also consider items in other web2py applications to be external if internal: files.append(internal) internal = List() internal.has_js = False internal.has_css = False files.append(item) continue if extensions and not item.rpartition('.')[2] in extensions: continue internal.append(item) if item.endswith('.js'): internal.has_js = True if item.endswith('.css'): internal.has_css = True if internal: files.append(internal) # We're done we can now minify if have_minify: for i, f in enumerate(files): if isinstance(f, List) and ((self.optimize_css and f.has_css) or (self.optimize_js and f.has_js)): # cache for 5 minutes by default key = hashlib_md5(repr(f)).hexdigest() cache = self.cache_includes or (current.cache.ram, 60 * 5) def call_minify(files=f): return List(minify.minify(files, URL('static', 'temp'), current.request.folder, self.optimize_css, self.optimize_js)) if cache: cache_model, time_expire = cache files[i] = cache_model('response.files.minified/' + key, call_minify, time_expire) else: files[i] = call_minify() def static_map(s, item): if isinstance(item, str): f = item.lower().split('?')[0] ext = f.rpartition('.')[2] # if static_version we need also to check for # static_version_urls. In that case, the _.x.x.x # bit would have already been added by the URL() # function if self.static_version and not self.static_version_urls: item = item.replace( '/static/', '/static/_%s/' % self.static_version, 1) tmpl = template_mapping.get(ext) if tmpl: s.append(tmpl % item) elif isinstance(item, (list, tuple)): f = item[0] tmpl = template_mapping.get(f) if tmpl: s.append(tmpl % item[1]) s = [] for item in files: if isinstance(item, List): for f in item: static_map(s, f) else: static_map(s, item) self.write(''.join(s), escape=False) def stream(self, stream, chunk_size=DEFAULT_CHUNK_SIZE, request=None, attachment=False, filename=None ): """ If in a controller function:: return response.stream(file, 100) the file content will be streamed at 100 bytes at the time Args: stream: filename or read()able content chunk_size(int): Buffer size request: the request object attachment(bool): prepares the correct headers to download the file as an attachment. Usually creates a pop-up download window on browsers filename(str): the name for the attachment Note: for using the stream name (filename) with attachments the option must be explicitly set as function parameter (will default to the last request argument otherwise) """ headers = self.headers # for attachment settings and backward compatibility keys = [item.lower() for item in headers] if attachment: # FIXME: should be done like in next download method if filename is None: attname = "" else: attname = filename headers["Content-Disposition"] = \ 'attachment; filename="%s"' % attname if not request: request = current.request if isinstance(stream, (str, unicodeT)): stream_file_or_304_or_206(stream, chunk_size=chunk_size, request=request, headers=headers, status=self.status) # ## the following is for backward compatibility if hasattr(stream, 'name'): filename = stream.name if filename and 'content-type' not in keys: headers['Content-Type'] = contenttype(filename) if filename and 'content-length' not in keys: try: headers['Content-Length'] = \ os.path.getsize(filename) except OSError: pass env = request.env # Internet Explorer < 9.0 will not allow downloads over SSL unless caching is enabled if request.is_https and isinstance(env.http_user_agent, str) and \ not re.search(r'Opera', env.http_user_agent) and \ re.search(r'MSIE [5-8][^0-9]', env.http_user_agent): headers['Pragma'] = 'cache' headers['Cache-Control'] = 'private' if request and env.web2py_use_wsgi_file_wrapper: wrapped = env.wsgi_file_wrapper(stream, chunk_size) else: wrapped = streamer(stream, chunk_size=chunk_size) return wrapped def download(self, request, db, chunk_size=DEFAULT_CHUNK_SIZE, attachment=True, download_filename=None): """ Example of usage in controller:: def download(): return response.download(request, db) Downloads from http://..../download/filename """ from pydal.helpers.regex import REGEX_UPLOAD_PATTERN from pydal.exceptions import NotAuthorizedException, NotFoundException current.session.forget(current.response) if not request.args: raise HTTP(404) name = request.args[-1] items = re.match(REGEX_UPLOAD_PATTERN, name) if not items: raise HTTP(404) t = items.group('table'); f = items.group('field') try: field = db[t][f] except (AttributeError, KeyError): raise HTTP(404) try: (filename, stream) = field.retrieve(name, nameonly=True) except NotAuthorizedException: raise HTTP(403) except NotFoundException: raise HTTP(404) except IOError: raise HTTP(404) headers = self.headers headers['Content-Type'] = contenttype(name) if download_filename is None: download_filename = filename if attachment: # Browsers still don't have a simple uniform way to have non ascii # characters in the filename so for now we are percent encoding it if isinstance(download_filename, unicodeT): download_filename = download_filename.encode('utf-8') download_filename = urllib_quote(download_filename) headers['Content-Disposition'] = \ 'attachment; filename="%s"' % download_filename.replace('"', '\\"') return self.stream(stream, chunk_size=chunk_size, request=request) def json(self, data, default=None, indent=None): if 'Content-Type' not in self.headers: self.headers['Content-Type'] = 'application/json' return json(data, default=default or custom_json, indent=indent) def xmlrpc(self, request, methods): from gluon.xmlrpc import handler """ assuming:: def add(a, b): return a+b if a controller function \"func\":: return response.xmlrpc(request, [add]) the controller will be able to handle xmlrpc requests for the add function. Example:: import xmlrpclib connection = xmlrpclib.ServerProxy( 'http://hostname/app/contr/func') print(connection.add(3, 4)) """ return handler(request, self, methods) def toolbar(self): from gluon.html import DIV, SCRIPT, BEAUTIFY, TAG, A BUTTON = TAG.button admin = URL("admin", "default", "design", extension='html', args=current.request.application) from gluon.dal import DAL dbstats = [] dbtables = {} infos = DAL.get_instances() for k, v in iteritems(infos): dbstats.append(TABLE(*[TR(PRE(row[0]), '%.2fms' % (row[1]*1000)) for row in v['dbstats']])) dbtables[k] = dict(defined=v['dbtables']['defined'] or '[no defined tables]', lazy=v['dbtables']['lazy'] or '[no lazy tables]') u = web2py_uuid() backtotop = A('Back to top', _href="#totop-%s" % u) # Convert lazy request.vars from property to Storage so they # will be displayed in the toolbar. request = copy.copy(current.request) request.update(vars=current.request.vars, get_vars=current.request.get_vars, post_vars=current.request.post_vars) return DIV( BUTTON('design', _onclick="document.location='%s'" % admin), BUTTON('request', _onclick="jQuery('#request-%s').slideToggle()" % u), BUTTON('response', _onclick="jQuery('#response-%s').slideToggle()" % u), BUTTON('session', _onclick="jQuery('#session-%s').slideToggle()" % u), BUTTON('db tables', _onclick="jQuery('#db-tables-%s').slideToggle()" % u), BUTTON('db stats', _onclick="jQuery('#db-stats-%s').slideToggle()" % u), DIV(BEAUTIFY(request), backtotop, _class="w2p-toolbar-hidden", _id="request-%s" % u), DIV(BEAUTIFY(current.session), backtotop, _class="w2p-toolbar-hidden", _id="session-%s" % u), DIV(BEAUTIFY(current.response), backtotop, _class="w2p-toolbar-hidden", _id="response-%s" % u), DIV(BEAUTIFY(dbtables), backtotop, _class="w2p-toolbar-hidden", _id="db-tables-%s" % u), DIV(BEAUTIFY(dbstats), backtotop, _class="w2p-toolbar-hidden", _id="db-stats-%s" % u), SCRIPT("jQuery('.w2p-toolbar-hidden').hide()"), _id="totop-%s" % u ) class Session(Storage): """ Defines the session object and the default values of its members (None) - session_storage_type : 'file', 'db', or 'cookie' - session_cookie_compression_level : - session_cookie_expires : cookie expiration - session_cookie_key : for encrypted sessions in cookies - session_id : a number or None if no session - session_id_name : - session_locked : - session_masterapp : - session_new : a new session obj is being created - session_hash : hash of the pickled loaded session - session_pickled : picked session if session in cookie: - session_data_name : name of the cookie for session data if session in db: - session_db_record_id - session_db_table - session_db_unique_key if session in file: - session_file - session_filename """ REGEX_SESSION_FILE = r'^(?:[\w-]+/)?[\w.-]+$' def connect(self, request=None, response=None, db=None, tablename='web2py_session', masterapp=None, migrate=True, separate=None, check_client=False, cookie_key=None, cookie_expires=None, compression_level=None ): """ Used in models, allows to customize Session handling Args: request: the request object response: the response object db: to store/retrieve sessions in db (a table is created) tablename(str): table name masterapp(str): points to another's app sessions. This enables a "SSO" environment among apps migrate: passed to the underlying db separate: with True, creates a folder with the 2 initials of the session id. Can also be a function, e.g. :: separate=lambda(session_name): session_name[-2:] check_client: if True, sessions can only come from the same ip cookie_key(str): secret for cookie encryption cookie_expires: sets the expiration of the cookie compression_level(int): 0-9, sets zlib compression on the data before the encryption """ request = request or current.request response = response or current.response masterapp = masterapp or request.application cookies = request.cookies self._unlock(response) response.session_masterapp = masterapp response.session_id_name = 'session_id_%s' % masterapp.lower() response.session_data_name = 'session_data_%s' % masterapp.lower() response.session_cookie_expires = cookie_expires response.session_client = str(request.client).replace(':', '.') current._session_cookie_key = cookie_key response.session_cookie_compression_level = compression_level # check if there is a session_id in cookies try: old_session_id = cookies[response.session_id_name].value except KeyError: old_session_id = None response.session_id = old_session_id # if we are supposed to use cookie based session data if cookie_key: response.session_storage_type = 'cookie' elif db: response.session_storage_type = 'db' else: response.session_storage_type = 'file' # why do we do this? # because connect may be called twice, by web2py and in models. # the first time there is no db yet so it should do nothing if (global_settings.db_sessions is True or masterapp in global_settings.db_sessions): return if response.session_storage_type == 'cookie': # check if there is session data in cookies if response.session_data_name in cookies: session_cookie_data = cookies[response.session_data_name].value else: session_cookie_data = None if session_cookie_data: data = secure_loads(session_cookie_data, cookie_key, compression_level=compression_level) if data: self.update(data) response.session_id = True # else if we are supposed to use file based sessions elif response.session_storage_type == 'file': response.session_new = False response.session_file = None # check if the session_id points to a valid sesion filename if response.session_id: if not re.match(self.REGEX_SESSION_FILE, response.session_id): response.session_id = None else: response.session_filename = \ os.path.join(up(request.folder), masterapp, 'sessions', response.session_id) try: response.session_file = \ recfile.open(response.session_filename, 'rb+') portalocker.lock(response.session_file, portalocker.LOCK_EX) response.session_locked = True self.update(pickle.load(response.session_file)) response.session_file.seek(0) oc = response.session_filename.split('/')[-1].split('-')[0] if check_client and response.session_client != oc: raise Exception("cookie attack") except: response.session_id = None if not response.session_id: uuid = web2py_uuid() response.session_id = '%s-%s' % (response.session_client, uuid) separate = separate and (lambda session_name: session_name[-2:]) if separate: prefix = separate(response.session_id) response.session_id = '%s/%s' % (prefix, response.session_id) response.session_filename = \ os.path.join(up(request.folder), masterapp, 'sessions', response.session_id) response.session_new = True # else the session goes in db elif response.session_storage_type == 'db': if global_settings.db_sessions is not True: global_settings.db_sessions.add(masterapp) # if had a session on file already, close it (yes, can happen) if response.session_file: self._close(response) # if on GAE tickets go also in DB if settings.global_settings.web2py_runtime_gae: request.tickets_db = db if masterapp == request.application: table_migrate = migrate else: table_migrate = False tname = tablename + '_' + masterapp table = db.get(tname, None) Field = db.Field if table is None: db.define_table( tname, Field('locked', 'boolean', default=False), Field('client_ip', length=64), Field('created_datetime', 'datetime', default=request.now), Field('modified_datetime', 'datetime'), Field('unique_key', length=64), Field('session_data', 'blob'), migrate=table_migrate, ) table = db[tname] # to allow for lazy table response.session_db_table = table if response.session_id: # Get session data out of the database try: (record_id, unique_key) = response.session_id.split(':') record_id = long(record_id) except (TypeError, ValueError): record_id = None # Select from database if record_id: row = table(record_id, unique_key=unique_key) # Make sure the session data exists in the database if row: # rows[0].update_record(locked=True) # Unpickle the data try: session_data = pickle.loads(row['session_data']) self.update(session_data) response.session_new = False except: record_id = None else: record_id = None if record_id: response.session_id = '%s:%s' % (record_id, unique_key) response.session_db_unique_key = unique_key response.session_db_record_id = record_id else: response.session_id = None response.session_new = True # if there is no session id yet, we'll need to create a # new session else: response.session_new = True # set the cookie now if you know the session_id so user can set # cookie attributes in controllers/models # cookie will be reset later # yet cookie may be reset later # Removed comparison between old and new session ids - should send # the cookie all the time if isinstance(response.session_id, str): response.cookies[response.session_id_name] = response.session_id response.cookies[response.session_id_name]['path'] = '/' if cookie_expires: response.cookies[response.session_id_name]['expires'] = \ cookie_expires.strftime(FMT) session_pickled = pickle.dumps(self, pickle.HIGHEST_PROTOCOL) response.session_hash = hashlib.md5(session_pickled).hexdigest() if self.flash: (response.flash, self.flash) = (self.flash, None) def renew(self, clear_session=False): if clear_session: self.clear() request = current.request response = current.response session = response.session masterapp = response.session_masterapp cookies = request.cookies if response.session_storage_type == 'cookie': return # if the session goes in file if response.session_storage_type == 'file': self._close(response) uuid = web2py_uuid() response.session_id = '%s-%s' % (response.session_client, uuid) separate = (lambda s: s[-2:]) if session and response.session_id[2:3] == "/" else None if separate: prefix = separate(response.session_id) response.session_id = '%s/%s' % \ (prefix, response.session_id) response.session_filename = \ os.path.join(up(request.folder), masterapp, 'sessions', response.session_id) response.session_new = True # else the session goes in db elif response.session_storage_type == 'db': table = response.session_db_table # verify that session_id exists if response.session_file: self._close(response) if response.session_new: return # Get session data out of the database if response.session_id is None: return (record_id, sep, unique_key) = response.session_id.partition(':') if record_id.isdigit() and long(record_id) > 0: new_unique_key = web2py_uuid() row = table(record_id) if row and to_native(row['unique_key']) == to_native(unique_key): table._db(table.id == record_id).update(unique_key=new_unique_key) else: record_id = None if record_id: response.session_id = '%s:%s' % (record_id, new_unique_key) response.session_db_record_id = record_id response.session_db_unique_key = new_unique_key else: response.session_new = True def _fixup_before_save(self): response = current.response rcookies = response.cookies scookies = rcookies.get(response.session_id_name) if not scookies: return if self._forget: del rcookies[response.session_id_name] return if self.get('httponly_cookies', True): scookies['HttpOnly'] = True if self._secure: scookies['secure'] = True if self._same_site is None: # Using SameSite Lax Mode is the default # You actually have to call session.samesite(False) if you really # dont want the extra protection provided by the SameSite header self._same_site = 'Lax' if self._same_site: if 'samesite' not in Cookie.Morsel._reserved: # Python version 3.7 and lower needs this Cookie.Morsel._reserved['samesite'] = 'SameSite' scookies['samesite'] = self._same_site def clear_session_cookies(self): request = current.request response = current.response session = response.session masterapp = response.session_masterapp cookies = request.cookies rcookies = response.cookies # if not cookie_key, but session_data_name in cookies # expire session_data_name from cookies if response.session_data_name in cookies: rcookies[response.session_data_name] = 'expired' rcookies[response.session_data_name]['path'] = '/' rcookies[response.session_data_name]['expires'] = PAST if response.session_id_name in rcookies: del rcookies[response.session_id_name] def save_session_id_cookie(self): request = current.request response = current.response session = response.session masterapp = response.session_masterapp cookies = request.cookies rcookies = response.cookies # if not cookie_key, but session_data_name in cookies # expire session_data_name from cookies if not current._session_cookie_key: if response.session_data_name in cookies: rcookies[response.session_data_name] = 'expired' rcookies[response.session_data_name]['path'] = '/' rcookies[response.session_data_name]['expires'] = PAST if response.session_id: rcookies[response.session_id_name] = response.session_id rcookies[response.session_id_name]['path'] = '/' expires = response.session_cookie_expires if isinstance(expires, datetime.datetime): expires = expires.strftime(FMT) if expires: rcookies[response.session_id_name]['expires'] = expires def clear(self): # see https://github.com/web2py/web2py/issues/735 response = current.response if response.session_storage_type == 'file': target = recfile.generate(response.session_filename) try: self._close(response) os.unlink(target) except: pass elif response.session_storage_type == 'db': table = response.session_db_table if response.session_id: (record_id, sep, unique_key) = response.session_id.partition(':') if record_id.isdigit() and long(record_id) > 0: table._db(table.id == record_id).delete() Storage.clear(self) def is_new(self): if self._start_timestamp: return False else: self._start_timestamp = datetime.datetime.today() return True def is_expired(self, seconds=3600): now = datetime.datetime.today() if not self._last_timestamp or \ self._last_timestamp + datetime.timedelta(seconds=seconds) > now: self._last_timestamp = now return False else: return True def secure(self): self._secure = True def samesite(self, mode='Lax'): self._same_site = mode def forget(self, response=None): self._close(response) self._forget = True def _try_store_in_cookie(self, request, response): if self._forget or self._unchanged(response): # self.clear_session_cookies() self.save_session_id_cookie() return False name = response.session_data_name compression_level = response.session_cookie_compression_level value = secure_dumps(dict(self), current._session_cookie_key, compression_level=compression_level) rcookies = response.cookies rcookies.pop(name, None) rcookies[name] = to_native(value) rcookies[name]['path'] = '/' expires = response.session_cookie_expires if isinstance(expires, datetime.datetime): expires = expires.strftime(FMT) if expires: rcookies[name]['expires'] = expires return True def _unchanged(self, response): if response.session_new: internal = ['_last_timestamp', '_secure', '_start_timestamp', '_same_site'] for item in self.keys(): if item not in internal: return False return True session_pickled = pickle.dumps(self, pickle.HIGHEST_PROTOCOL) response.session_pickled = session_pickled session_hash = hashlib.md5(session_pickled).hexdigest() return response.session_hash == session_hash def _try_store_in_db(self, request, response): # don't save if file-based sessions, # no session id, or session being forgotten # or no changes to session (Unless the session is new) if (not response.session_db_table or self._forget or (self._unchanged(response) and not response.session_new)): if (not response.session_db_table and global_settings.db_sessions is not True and response.session_masterapp in global_settings.db_sessions): global_settings.db_sessions.remove(response.session_masterapp) # self.clear_session_cookies() self.save_session_id_cookie() return False table = response.session_db_table record_id = response.session_db_record_id if response.session_new: unique_key = web2py_uuid() else: unique_key = response.session_db_unique_key session_pickled = response.session_pickled or pickle.dumps(self, pickle.HIGHEST_PROTOCOL) dd = dict(locked=0, client_ip=response.session_client, modified_datetime=request.now.isoformat(), session_data=session_pickled, unique_key=unique_key) if record_id: if not table._db(table.id == record_id).update(**dd): record_id = None if not record_id: record_id = table.insert(**dd) response.session_id = '%s:%s' % (record_id, unique_key) response.session_db_unique_key = unique_key response.session_db_record_id = record_id self.save_session_id_cookie() return True def _try_store_in_cookie_or_file(self, request, response): if response.session_storage_type == 'file': return self._try_store_in_file(request, response) if response.session_storage_type == 'cookie': return self._try_store_in_cookie(request, response) def _try_store_in_file(self, request, response): try: if (not response.session_id or not response.session_filename or self._forget or self._unchanged(response)): # self.clear_session_cookies() return False else: if response.session_new or not response.session_file: # Tests if the session sub-folder exists, if not, create it session_folder = os.path.dirname(response.session_filename) if not os.path.exists(session_folder): os.mkdir(session_folder) response.session_file = recfile.open(response.session_filename, 'wb') portalocker.lock(response.session_file, portalocker.LOCK_EX) response.session_locked = True if response.session_file: session_pickled = response.session_pickled or pickle.dumps(self, pickle.HIGHEST_PROTOCOL) response.session_file.write(session_pickled) response.session_file.truncate() return True finally: self._close(response) self.save_session_id_cookie() def _unlock(self, response): if response and response.session_file and response.session_locked: try: portalocker.unlock(response.session_file) response.session_locked = False except: # this should never happen but happens in Windows pass def _close(self, response): if response and response.session_file: self._unlock(response) try: response.session_file.close() del response.session_file except: pass def pickle_session(s): return Session, (dict(s),) copyreg.pickle(Session, pickle_session)
09e8055fcdcf2ad2dec55459c099ab811ed32068
fffabb9f3025e89f7d1e71e2bea1e1f93ca95c98
/gevent_-master/monkey_test.py
ca9512a34827effed846c0722e796fa03555f070
[]
no_license
kagxin/recipe
2a880b77e56bae25e9793b13a8ebdeeea19b716c
70af9c949b9e4b476585b2b650fba416a9d3ebb2
refs/heads/master
2021-09-11T18:58:46.295928
2018-04-11T03:11:05
2018-04-11T03:11:05
86,281,134
2
0
null
null
null
null
UTF-8
Python
false
false
129
py
import gevent.monkey gevent.monkey.patch_socket() import gevent import urllib import json def fetch(pid): pass fetch()
8ada0608c934b48b2abbcdeb5aa1350a01506751
0a004fc3fe8e36fd7ce0ed2cc7e8140982315e03
/supervised_learning/0x0F-word_embeddings/0-bag_of_words.py
58f174f5ee6192922d3b2ccf12ba7882281f6654
[]
no_license
pafuentess/holbertonschool-machine_learning
266ed4f05e106e194cdafe39544e48904f6538f4
3bffd1391b3fc790f0137d0afbe90eb8e2f7d713
refs/heads/master
2023-03-26T15:12:14.721409
2021-03-20T20:28:15
2021-03-20T20:28:15
279,388,813
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
#!/usr/bin/env python3 """ doc """ from sklearn.feature_extraction.text import CountVectorizer def bag_of_words(sentences, vocab=None): """ doc """ if vocab is None: vectorizer = CountVectorizer() X = vectorizer.fit_transform(sentences) vocab = vectorizer.get_feature_names() else: vectorizer = CountVectorizer(vocabulary=vocab) X = vectorizer.fit_transform(sentences) return X.toarray(), vocab
d132455b70c174d99968af7351962cf9ba6070a0
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-1/30cae1c356d7341ef3c3a049b435b2da9bbd5588-<main>-bug.py
1207a332ae96f47a64d09b9b87303bc66e73535b
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,799
py
def main(): module = AnsibleModule(argument_spec=dict(script=dict(required=True, type='str'), url=dict(required=False, type='str', default='http://localhost:8080'), validate_certs=dict(required=False, type='bool', default=True), user=dict(required=False, no_log=True, type='str', default=None), password=dict(required=False, no_log=True, type='str', default=None), timeout=dict(required=False, type='int', default=10), args=dict(required=False, type='dict', default=None))) if (module.params['user'] is not None): if (module.params['password'] is None): module.fail_json(msg='password required when user provided') module.params['url_username'] = module.params['user'] module.params['url_password'] = module.params['password'] module.params['force_basic_auth'] = True if (module.params['args'] is not None): from string import Template script_contents = Template(module.params['script']).substitute(module.params['args']) else: script_contents = module.params['script'] headers = { } if is_csrf_protection_enabled(module): crumb = get_crumb(module) headers = { crumb['crumbRequestField']: crumb['crumb'], } (resp, info) = fetch_url(module, (module.params['url'] + '/scriptText'), data=urlencode({ 'script': script_contents, }), headers=headers, method='POST', timeout=module.params['timeout']) if (info['status'] != 200): module.fail_json(msg=((('HTTP error ' + str(info['status'])) + ' ') + info['msg'])) result = to_native(resp.read()) if (('Exception:' in result) and ('at java.lang.Thread' in result)): module.fail_json(msg=('script failed with stacktrace:\n ' + result)) module.exit_json(output=result)
26724562ddaf5b84d3514df2553cf578c11097ff
e262e64415335060868e9f7f73ab8701e3be2f7b
/.history/pytest_test_20201123174255.py
71d84ac3ea86d52edcf7b63ed99b1d05e2cfeaed
[]
no_license
Allison001/developer_test
6e211f1e2bd4287ee26fd2b33baf1c6a8d80fc63
b8e04b4b248b0c10a35e93128a5323165990052c
refs/heads/master
2023-06-18T08:46:40.202383
2021-07-23T03:31:54
2021-07-23T03:31:54
322,807,303
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
import pytest class Test_A: @pytest.mark.parametrize('a,b',[(10,20),(5,5)]) def test_data1(self,a,b): print(a + b) def test_data2(self): a = 5 b = 5 print(a+b) if __name__ == '__main__': pytest.main
81031853fd92e573bbec0a772457ebba3f43bb7a
e229456b9effa99e906d5cdfe08200ca5e1920a4
/lib/modules/exfiltration/invoke-exfiltration.py
b64b4fe4bcca83a42b5941dd3559df04ae7ff47c
[ "BSD-3-Clause" ]
permissive
nerbix/Empire
cff3620f589d38a4967737458b7f4b56acabd64c
f45d5f35ff459df22ef0bd55236b7ffd9cef6f45
refs/heads/master
2020-05-22T09:27:59.693741
2017-03-08T18:18:13
2017-03-08T18:18:13
84,344,747
0
0
null
2017-03-08T16:54:42
2017-03-08T16:54:42
null
UTF-8
Python
false
false
4,857
py
from lib.common import helpers class Module: def __init__(self, mainMenu, params=[]): # metadata info about the module, not modified during runtime self.info = { # name for the module that will appear in module menus 'Name': 'Invoke-Exfiltration', # list of one or more authors for the module 'Author': ['Nick Britton <[email protected]>'], # more verbose multi-line description of the module 'Description': ('This module will exfiltration data over a range of protocols'), # True if the module needs to run in the background 'Background' : True, # File extension to save the file as 'OutputExtension' : None, # True if the module needs admin rights to run 'NeedsAdmin' : False, # True if the method doesn't touch disk/is reasonably opsec safe # Disabled - this can be a relatively noisy module but sometimes useful 'OpsecSafe' : False, # The minimum PowerShell version needed for the module to run 'MinPSVersion' : '2', # list of any references/other comments 'Comments': [ 'Based heavily on the great work done by Sensepost here: http://github.com/sensepost/det' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { # The 'Agent' option is the only one that MUST be in a module 'Description' : 'Agent to generate the source traffic on', 'Required' : True, 'Value' : '' }, 'server' : { 'Description' : 'Receiving Server IP', 'Required' : True, 'Value' : '' }, 'type' : { 'Description' : 'The protocol to use (ICMP, DNS, HTTP)', 'Required' : True, 'Value' : 'ICMP' }, 'key' : { 'Description' : 'AES encryption key to use', 'Required' : True, 'Value' : 'HELLO123' }, 'file' : { 'Description' : 'Full path of file to exfiltrate', 'Required' : True, 'Value' : '' }, 'port' : { 'Description' : 'Port (for HTTP exfiltration only).', 'Required' : False, 'Value' : '8080' }, 'dns' : { 'Description' : 'DNS Server to you (for DNS exfiltration only).', 'Required' : False, 'Value' : 'google.com' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu # During instantiation, any settable option parameters # are passed as an object set to the module and the # options dictionary is automatically set. This is mostly # in case options are passed on the command line if params: for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self): # if you're reading in a large, external script that might be updates, # use the pattern below # read in the common module source code moduleSource = self.mainMenu.installPath + "/data/module_source/exfil/Invoke-Exfiltration.ps1" try: f = open(moduleSource, 'r') except: print helpers.color("[!] Could not read module source path at: " + str(moduleSource)) return "" moduleCode = f.read() f.close() script = moduleCode # Need to actually run the module that has been loaded script += 'Invoke-Exfiltration' # add any arguments to the end execution of the script for option,values in self.options.iteritems(): if option.lower() != "agent": if values['Value'] and values['Value'] != '': if values['Value'].lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " \"" + str(values['Value']) + "\"" return script
afb957284892edf8fcd63b07feef00c82584970b
4a7ca643f2bb681a14105fdfba2b696c14f8fb19
/alphamind/tests/analysis/test_quantilieanalysis.py
fd31eaf64d67c0a4e71bef2c786c696b2e91e3ae
[ "MIT" ]
permissive
iLampard/alpha-mind
84bb490eaa515a147b2a31deff305b2e6423c76f
c99ba7b2b082d7bf07263fde0cca57b1a8bcb7de
refs/heads/master
2020-03-22T02:32:28.489547
2018-08-22T03:01:26
2018-08-22T03:01:26
126,668,894
0
0
MIT
2018-06-26T03:37:20
2018-03-25T05:53:51
Python
UTF-8
Python
false
false
3,087
py
# -*- coding: utf-8 -*- """ Created on 2017-8-16 @author: cheng.li """ import unittest import numpy as np import pandas as pd from alphamind.analysis.quantileanalysis import er_quantile_analysis from alphamind.analysis.quantileanalysis import quantile_analysis from alphamind.data.processing import factor_processing from alphamind.data.standardize import standardize from alphamind.data.winsorize import winsorize_normal from alphamind.data.quantile import quantile class TestQuantileAnalysis(unittest.TestCase): def setUp(self): n = 5000 n_f = 5 self.x = np.random.randn(n, 5) self.x_w = np.random.randn(n_f) self.r = np.random.randn(n) self.b_w = np.random.randint(0, 10, n) self.b_w = self.b_w / float(self.b_w.sum()) self.risk_exp = np.random.randn(n, 3) self.n_bins = 10 def test_q_anl_impl(self): n_bins = 5 x = self.x[:, 0] q_groups = quantile(x, n_bins) s = pd.Series(self.r, index=q_groups) grouped_return = s.groupby(level=0).mean().values.flatten() expected_res = grouped_return.copy() res = n_bins - 1 res_weight = 1. / res for i, value in enumerate(expected_res): expected_res[i] = (1. + res_weight) * value - res_weight * grouped_return.sum() calculated_res = er_quantile_analysis(x, n_bins, self.r) np.testing.assert_array_almost_equal(expected_res, calculated_res) def test_quantile_analysis_simple(self): f_df = pd.DataFrame(self.x) calculated = quantile_analysis(f_df, self.x_w, self.r, n_bins=self.n_bins, do_neutralize=False, pre_process=[], post_process=[]) er = self.x_w @ self.x.T expected = er_quantile_analysis(er, self.n_bins, self.r) np.testing.assert_array_almost_equal(calculated, expected) def test_quantile_analysis_with_factor_processing(self): f_df = pd.DataFrame(self.x) calculated = quantile_analysis(f_df, self.x_w, self.r, n_bins=self.n_bins, do_neutralize=True, risk_exp=self.risk_exp, pre_process=[winsorize_normal, standardize], post_process=[standardize]) er = self.x_w @ factor_processing(self.x, [winsorize_normal, standardize], self.risk_exp, [standardize]).T expected = er_quantile_analysis(er, self.n_bins, self.r) np.testing.assert_array_almost_equal(calculated, expected) if __name__ == '__main__': unittest.main()
b2b72af5d662ec2cf1cd5c51918723e1513fc6d5
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_11_01/aio/operations/_network_interface_ip_configurations_operations.py
0441579f380976233a87e4c8a79c2311179a4ecd
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
8,928
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class NetworkInterfaceIPConfigurationsOperations: """NetworkInterfaceIPConfigurationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, network_interface_name: str, **kwargs ) -> AsyncIterable["_models.NetworkInterfaceIPConfigurationListResult"]: """Get all ip configurations in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkInterfaceIPConfigurationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_11_01.models.NetworkInterfaceIPConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.NetworkInterfaceIPConfigurationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('NetworkInterfaceIPConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations'} # type: ignore async def get( self, resource_group_name: str, network_interface_name: str, ip_configuration_name: str, **kwargs ) -> "_models.NetworkInterfaceIPConfiguration": """Gets the specified network interface ip configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param ip_configuration_name: The name of the ip configuration name. :type ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: NetworkInterfaceIPConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_11_01.models.NetworkInterfaceIPConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.NetworkInterfaceIPConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'ipConfigurationName': self._serialize.url("ip_configuration_name", ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('NetworkInterfaceIPConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/ipConfigurations/{ipConfigurationName}'} # type: ignore
e23182c952b026b3073f17d87b07c6f0b5a98c59
e3ffd1f17819ab8a7b95b63f4a30cbbe85d7c44d
/week_4/contacts_short_41.py
6a866c20b264e1243963c70d3d82ae7fb3e9efe3
[]
no_license
jamesoneill54/programming_2
77d105f0eb3be7c1af3fe6ca89cf291aca4e0c95
8c8d7e4551894b773f52ee1e4785fe324b974ac9
refs/heads/master
2021-01-22T04:18:22.654154
2017-05-25T23:46:31
2017-05-25T23:46:31
92,451,317
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
import sys with open(sys.argv[1], 'r') as f: contacts = {} for line in f: [name, phone] = line.strip().split() contacts[name] = phone for line in sys.stdin: if line.strip() in contacts: print('Name:', line.strip()) print('Phone:', contacts[line.strip()]) else: print('Name:', line.strip()) print('No such contact')
57790357a11b82f693fabb647bd204391e2a5368
a9e3f3ad54ade49c19973707d2beb49f64490efd
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/lms/djangoapps/commerce/api/v1/views.py
c85719eccde259580a7818f846c5cf0d12d2b7f5
[ "AGPL-3.0-only", "AGPL-3.0-or-later", "MIT" ]
permissive
luque/better-ways-of-thinking-about-software
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
5809eaca7079a15ee56b0b7fcfea425337046c97
refs/heads/master
2021-11-24T15:10:09.785252
2021-11-22T12:14:34
2021-11-22T12:14:34
163,850,454
3
1
MIT
2021-11-22T12:12:31
2019-01-02T14:21:30
JavaScript
UTF-8
Python
false
false
3,600
py
""" Commerce views """ import logging from django.contrib.auth.models import User # lint-amnesty, pylint: disable=imported-auth-user from django.http import Http404 from edx_rest_api_client import exceptions from edx_rest_framework_extensions.auth.jwt.authentication import JwtAuthentication from rest_framework.authentication import SessionAuthentication from rest_framework.generics import ListAPIView, RetrieveUpdateAPIView from rest_framework.permissions import IsAuthenticated from rest_framework.views import APIView from common.djangoapps.course_modes.models import CourseMode from common.djangoapps.util.json_request import JsonResponse from openedx.core.djangoapps.commerce.utils import ecommerce_api_client from openedx.core.lib.api.authentication import BearerAuthentication from openedx.core.lib.api.mixins import PutAsCreateMixin from ...utils import is_account_activation_requirement_disabled from .models import Course from .permissions import ApiKeyOrModelPermission, IsAuthenticatedOrActivationOverridden from .serializers import CourseSerializer log = logging.getLogger(__name__) class CourseListView(ListAPIView): """ List courses and modes. """ authentication_classes = (JwtAuthentication, BearerAuthentication, SessionAuthentication,) permission_classes = (IsAuthenticated,) serializer_class = CourseSerializer pagination_class = None def get_queryset(self): return list(Course.iterator()) class CourseRetrieveUpdateView(PutAsCreateMixin, RetrieveUpdateAPIView): """ Retrieve, update, or create courses/modes. """ lookup_field = 'id' lookup_url_kwarg = 'course_id' model = CourseMode authentication_classes = (JwtAuthentication, BearerAuthentication, SessionAuthentication,) permission_classes = (ApiKeyOrModelPermission,) serializer_class = CourseSerializer # Django Rest Framework v3 requires that we provide a queryset. # Note that we're overriding `get_object()` below to return a `Course` # rather than a CourseMode, so this isn't really used. queryset = CourseMode.objects.all() def get_object(self, queryset=None): # lint-amnesty, pylint: disable=arguments-differ, unused-argument course_id = self.kwargs.get(self.lookup_url_kwarg) course = Course.get(course_id) if course: return course raise Http404 def pre_save(self, obj): # There is nothing to pre-save. The default behavior changes the Course.id attribute from # a CourseKey to a string, which is not desired. pass class OrderView(APIView): """ Retrieve order details. """ authentication_classes = (JwtAuthentication, SessionAuthentication,) permission_classes = (IsAuthenticatedOrActivationOverridden,) def get(self, request, number): """ HTTP handler. """ # If the account activation requirement is disabled for this installation, override the # anonymous user object attached to the request with the actual user object (if it exists) if not request.user.is_authenticated and is_account_activation_requirement_disabled(): try: request.user = User.objects.get(id=request.session._session_cache['_auth_user_id']) # lint-amnesty, pylint: disable=protected-access except User.DoesNotExist: return JsonResponse(status=403) try: order = ecommerce_api_client(request.user).orders(number).get() return JsonResponse(order) except exceptions.HttpNotFoundError: return JsonResponse(status=404)
a8b587769f572f0e5f80a0878307423b27a05b90
28aed3120411fd7558fc08b47274f5ced5d5069c
/UIAutomation/tests/Utils/test_envsettingreader.py
c9533f87b7fe7e555380cf537766a0f96e5fc602
[ "MIT", "Apache-2.0" ]
permissive
SirCYong/long_long_ago
8e181310267836774b50824e873adb7959f80080
6dfe9a9eb9d0f25a55bccd22b66878bde1a2fd6b
refs/heads/master
2020-03-16T02:58:18.161981
2018-05-07T15:17:54
2018-05-07T15:17:54
132,477,192
0
1
null
null
null
null
UTF-8
Python
false
false
663
py
import unittest from nose.tools import assert_equal from UIAutomation.Utils import get_setting_configuration, get_env_script_runs_on class TestEnvSettingReader(unittest.TestCase): def test_get_setting_configuration(self): assert_equal('Android', get_setting_configuration('android', 'platformName')) assert_equal('.activity.base.LauncherActivity', get_setting_configuration('android', 'appActivity')) assert_equal('com.iscs.SmallAnimal', get_setting_configuration('ios', 'bundleId')) def test_get_env_script_runs_on(self): assert get_env_script_runs_on().lower() == 'cit' or get_env_script_runs_on().lower() == 'sit'
fd642025117c7bf558857ee67a8ba489a67f97f8
1ab7b3f2aa63de8488ce7c466a67d367771aa1f2
/Ricardo_OS/Python_backend/venv/lib/python3.8/site-packages/gevent/_socket2.py
537676c22624f54f5cdf951c1f488cd19b22b941
[ "MIT" ]
permissive
icl-rocketry/Avionics
9d39aeb11aba11115826fd73357b415026a7adad
95b7a061eabd6f2b607fba79e007186030f02720
refs/heads/master
2022-07-30T07:54:10.642930
2022-07-10T12:19:10
2022-07-10T12:19:10
216,184,670
9
1
MIT
2022-06-27T10:17:06
2019-10-19T09:57:07
C++
UTF-8
Python
false
false
11,598
py
# Copyright (c) 2009-2014 Denis Bilenko and gevent contributors. See LICENSE for details. """ Python 2 socket module. """ from __future__ import absolute_import from __future__ import print_function # Our import magic sadly makes this warning useless # pylint: disable=undefined-variable import sys from gevent import _socketcommon from gevent._util import copy_globals from gevent._compat import PYPY copy_globals(_socketcommon, globals(), names_to_ignore=_socketcommon.__py3_imports__ + _socketcommon.__extensions__, dunder_names_to_keep=()) __socket__ = _socketcommon.__socket__ __implements__ = _socketcommon._implements __extensions__ = _socketcommon.__extensions__ __imports__ = [i for i in _socketcommon.__imports__ if i not in _socketcommon.__py3_imports__] __dns__ = _socketcommon.__dns__ try: _fileobject = __socket__._fileobject except AttributeError: # Allow this module to be imported under Python 3 # for building the docs _fileobject = object else: # Python 2 doesn't natively support with statements on _fileobject; # but it substantially eases our test cases if we can do the same with on both Py3 # and Py2. (For this same reason we make the socket itself a context manager.) # Implementation copied from Python 3 assert not hasattr(_fileobject, '__enter__') # we could either patch in place: #_fileobject.__enter__ = lambda self: self #_fileobject.__exit__ = lambda self, *args: self.close() if not self.closed else None # or we could subclass. subclassing has the benefit of not # changing the behaviour of the stdlib if we're just imported; OTOH, # under Python 2.6/2.7, test_urllib2net.py asserts that the class IS # socket._fileobject (sigh), so we have to work around that. # We also make it call our custom socket closing method that disposes # of IO watchers but not the actual socket itself. # Python 2 relies on reference counting to close sockets, so this is all # very ugly and fragile. class _fileobject(_fileobject): # pylint:disable=function-redefined __slots__ = ( '__weakref__', ) def __enter__(self): return self def __exit__(self, *args): if not self.closed: self.close() def close(self): if self._sock is not None: self._sock._drop_events_and_close(closefd=False) super(_fileobject, self).close() class _closedsocket(object): __slots__ = () def _dummy(*args, **kwargs): # pylint:disable=no-method-argument,unused-argument raise error(EBADF, 'Bad file descriptor') # All _delegate_methods must also be initialized here. send = recv = recv_into = sendto = recvfrom = recvfrom_into = _dummy def __nonzero__(self): return False __bool__ = __nonzero__ if PYPY: def _drop(self): pass def _reuse(self): pass __getattr__ = _dummy gtype = type _Base = _socketcommon.SocketMixin class socket(_Base): """ gevent `socket.socket <https://docs.python.org/2/library/socket.html#socket-objects>`_ for Python 2. This object should have the same API as the standard library socket linked to above. Not all methods are specifically documented here; when they are they may point out a difference to be aware of or may document a method the standard library does not. .. versionchanged:: 1.5.0 This object is a context manager, returning itself, like in Python 3. """ # pylint:disable=too-many-public-methods __slots__ = ( ) def __init__(self, family=AF_INET, type=SOCK_STREAM, proto=0, _sock=None): _Base.__init__(self) timeout = _socket.getdefaulttimeout() if _sock is None: self._sock = _realsocket(family, type, proto) else: if hasattr(_sock, '_sock'): timeout = getattr(_sock, 'timeout', timeout) while hasattr(_sock, '_sock'): # passed a gevent socket or a native # socket._socketobject. Unwrap this all the way to the # native _socket.socket. _sock = _sock._sock self._sock = _sock if PYPY: self._sock._reuse() self.timeout = timeout self._sock.setblocking(0) fileno = self._sock.fileno() self.hub = get_hub() io = self.hub.loop.io self._read_event = io(fileno, 1) self._write_event = io(fileno, 2) def __enter__(self): return self def __exit__(self, t, v, tb): self.close() def __repr__(self): return '<%s at %s %s>' % (type(self).__name__, hex(id(self)), self._formatinfo()) def __str__(self): return '<%s %s>' % (type(self).__name__, self._formatinfo()) def _formatinfo(self): # pylint:disable=broad-except try: fileno = self.fileno() except Exception as ex: fileno = str(ex) try: sockname = self.getsockname() sockname = '%s:%s' % sockname except Exception: sockname = None try: peername = self.getpeername() peername = '%s:%s' % peername except Exception: peername = None result = 'fileno=%s' % fileno if sockname is not None: result += ' sock=' + str(sockname) if peername is not None: result += ' peer=' + str(peername) if getattr(self, 'timeout', None) is not None: result += ' timeout=' + str(self.timeout) return result def accept(self): while 1: try: client_socket, address = self._sock.accept() break except error as ex: if ex.args[0] != EWOULDBLOCK or self.timeout == 0.0: raise sys.exc_clear() self._wait(self._read_event) sockobj = socket(_sock=client_socket) if PYPY: client_socket._drop() return sockobj, address def _drop_ref_on_close(self, sock): # See the same method in _socket3.py. We just can't be as deterministic # as we can on Python 3. scheduled_new = self.hub.loop.closing_fd(sock.fileno()) if PYPY: meth = sock._drop else: meth = sock.fileno # Still keep it alive if we need to if scheduled_new: self.hub.loop.run_callback(meth) else: meth() def close(self, _closedsocket=_closedsocket): if not self._sock: return # This function should not reference any globals. See Python issue #808164. # First, break any reference to the loop.io objects. Our # fileno, which they were tied to, is about to be free to be # reused, so these objects are no longer functional. self._drop_events_and_close() # Next, change self._sock. On CPython, this drops a # reference, and if it was the last reference, __del__ will # close it. (We cannot close it, makefile() relies on # reference counting like this, and it may be shared among # multiple wrapper objects). Methods *must not* cache # `self._sock` separately from # self._write_event/self._read_event, or they will be out of # sync and we may get inappropriate errors. (See # test__hub:TestCloseSocketWhilePolling for an example). self._sock = _closedsocket() @property def closed(self): return isinstance(self._sock, _closedsocket) def dup(self): """dup() -> socket object Return a new socket object connected to the same system resource. Note, that the new socket does not inherit the timeout.""" return socket(_sock=self._sock) def makefile(self, mode='r', bufsize=-1): # Two things to look out for: # 1) Closing the original socket object should not close the # fileobject (hence creating a new socket instance); # An alternate approach is what _socket3.py does, which is to # keep count of the times makefile objects have been opened (Py3's # SocketIO helps with that). But the newly created socket, which # has its own read/write watchers, does need those to be closed # when the fileobject is; our custom subclass does that. Note that # we can't pass the 'close=True' argument, as that causes reference counts # to get screwed up, and Python2 sockets rely on those. # 2) The resulting fileobject must keep the timeout in order # to be compatible with the stdlib's socket.makefile. # Pass self as _sock to preserve timeout. fobj = _fileobject(type(self)(_sock=self), mode, bufsize) if PYPY: self._sock._drop() return fobj def sendall(self, data, flags=0): if isinstance(data, unicode): data = data.encode() return _Base.sendall(self, data, flags) if PYPY: def _reuse(self): self._sock._reuse() def _drop(self): self._sock._drop() SocketType = socket if hasattr(_socket, 'socketpair'): # The native, low-level socketpair returns # low-level objects def socketpair(family=getattr(_socket, 'AF_UNIX', _socket.AF_INET), type=_socket.SOCK_STREAM, proto=0): one, two = _socket.socketpair(family, type, proto) result = socket(_sock=one), socket(_sock=two) if PYPY: one._drop() two._drop() return result elif hasattr(__socket__, 'socketpair'): # The high-level backport uses high-level socket APIs. It works # cooperatively automatically if we're monkey-patched, # else we must do it ourself. _orig_socketpair = __socket__.socketpair def socketpair(family=_socket.AF_INET, type=_socket.SOCK_STREAM, proto=0): one, two = _orig_socketpair(family, type, proto) if not isinstance(one, socket): one = socket(_sock=one) two = socket(_sock=two) if PYPY: one._drop() two._drop() return one, two elif 'socketpair' in __implements__: __implements__.remove('socketpair') if hasattr(_socket, 'fromfd'): def fromfd(fd, family, type, proto=0): s = _socket.fromfd(fd, family, type, proto) result = socket(_sock=s) if PYPY: s._drop() return result elif 'fromfd' in __implements__: __implements__.remove('fromfd') if hasattr(__socket__, 'ssl'): def ssl(sock, keyfile=None, certfile=None): # deprecated in 2.7.9 but still present; # sometimes backported by distros. See ssl.py # Note that we import gevent.ssl, not _ssl2, to get the correct # version. from gevent import ssl as _sslmod # wrap_socket is 2.7.9/backport, sslwrap_simple is older. They take # the same arguments. wrap = getattr(_sslmod, 'wrap_socket', None) or getattr(_sslmod, 'sslwrap_simple') return wrap(sock, keyfile, certfile) __implements__.append('ssl') if hasattr(__socket__, 'sethostname'): # This was added in 3.3, but PyPy 2.7-7.3.2 # leaked it back into Python 2. sethostname = __socket__.sethostname __imports__.append('sethostname') __all__ = __implements__ + __extensions__ + __imports__
c90939194ffd9a0ae033eda433c4412b90e34be4
2bcc6c45a28251dcde72bb8b003b5592350dc208
/exams/models.py
5909bafe70117024d9487d86d13b9a60bbab0dba
[]
no_license
amanjhurani/university_dost
153d1a245df4338be60df3e9980e0238408e40ad
41f6119c88d36f0153fbf1a5be1913e2c45d9751
refs/heads/master
2021-10-08T22:23:42.252577
2018-12-18T11:22:10
2018-12-18T11:22:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,291
py
from django.urls import reverse from config.settings.base import AUTH_USER_MODEL from django.db import models from universities.models import Subject from config.utils import random_string_generator from markdownx.models import MarkdownxField class Exam(models.Model): # Choices MONTH_CHOICES = ( ('january', 'January'), ('february', 'February'), ('march', 'March'), ('april', 'April'), ('may', 'May'), ('june', 'June'), ('july', 'July'), ('august', 'August'), ('september', 'September'), ('october', 'October'), ('november', 'November'), ('december', 'December') ) TERM_CHOICES = ( ('summer', 'Summer'), ('winter', 'Winter') ) # Fields month = models.CharField(max_length=128, choices=MONTH_CHOICES) year = models.CharField(max_length=4) term = models.CharField(max_length=12, choices=TERM_CHOICES) date = models.DateField() total_time = models.CharField(max_length=12) total_marks = models.IntegerField() exam_code = models.CharField(max_length=128, blank=True, null=True) exam_complete = models.BooleanField(default=False) # Relationship Fields subject = models.ForeignKey( Subject, on_delete=models.CASCADE ) class Meta: ordering = ('-pk',) def save(self, *args, **kwargs): if self.exam_code and len(self.exam_code.split('-')) > 3: self.exam_code = self.exam_code.split('-')[3] self.exam_code = '{}-{}'.format( self.subject.subject_code, random_string_generator(size=5) ) qs_exists = Exam.objects.filter(exam_code=self.exam_code).exists() if qs_exists: self.exam_code = '{}-{}'.format(self.subject.subject_code, random_string_generator(size=5)) super(Exam, self).save(*args, **kwargs) def __str__(self): return self.subject.name + " " + self.term + "-" + self.year def get_absolute_url(self): return reverse('exams_exam_detail', args=(self.pk,)) def get_update_url(self): return reverse('exams_exam_update', args=(self.pk,)) class Question(models.Model): # Choices QUESTION_TYPE_CHOICES = ( ('mcq', 'MCQ'), ('short_question', 'Short Question'), ('descriptive_question', 'Descriptive Question'), ) # Fields question_code = models.CharField(max_length=128, blank=True, null=True) question_number = models.CharField(max_length=128) question_body = MarkdownxField() question_type = models.CharField( max_length=12, choices=QUESTION_TYPE_CHOICES) answer = MarkdownxField(blank=True, null=True) explanation = MarkdownxField(blank=True, null=True) marks = models.IntegerField() upvote = models.IntegerField(default=0) downvote = models.IntegerField(default=0) # Relationship Fields exam = models.ForeignKey( Exam, on_delete=models.CASCADE ) author = models.ForeignKey( AUTH_USER_MODEL, blank=True, null=True, on_delete=models.SET_NULL ) class Meta: ordering = ('-pk',) def save(self, *args, **kwargs): if len(self.question_code.split('-')) > 4: self.question_code = self.question_code.split('-')[4] self.question_code = '{}-{}'.format( self.exam.exam_code, self.question_code ) super(Question, self).save(*args, **kwargs) def __str__(self): return (self.question_number + " | " + self.exam.term + "-" + self.exam.year ) def get_absolute_url(self): return reverse('exams_question_detail', args=(self.pk,)) def get_update_url(self): return reverse('exams_question_update', args=(self.pk,)) class AnswerFeedback(models.Model): # Choices FEEDBACK_TYPE_CHOICES = ( ('wrong_answer', 'Wrong Answer'), ('improvement', 'Improvement'), ) FEEDBACK_STATUS_CHOICES = ( ('received', 'Received'), ('reviewing', 'Reviewing'), ('reviewed', 'Reviewed'), ('resolved', 'Resolved') ) # Fields feedback_title = models.CharField(max_length=256, blank=True, null=True) feedback_body = models.TextField() feedback_type = models.CharField( max_length=128, choices=FEEDBACK_TYPE_CHOICES) feedback_status = models.CharField( max_length=128, choices=FEEDBACK_STATUS_CHOICES, default='received') user_email = models.EmailField(max_length=256, blank=True, null=True) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) # Relationship Fields question = models.ForeignKey( Question, on_delete=models.CASCADE ) user = models.ForeignKey( AUTH_USER_MODEL, blank=True, null=True, on_delete=models.SET_NULL ) class Meta: ordering = ('-pk',) def __str__(self): return self.feedback_title def get_absolute_url(self): return reverse('exams_answerfeedback_detail', args=(self.pk,)) def get_update_url(self): return reverse('exams_answerfeedback_update', args=(self.pk,))
49f552812ae2ebc0e2cb7111c0f72e6044fd22b7
d96f75610758fd6e193d575a2c5ba72c420d90e8
/blog/migrations/0001_initial.py
ae82676f9c48d490aaed6c97ff64cd7594a38393
[]
no_license
barlapelican/my-first-blog
4a20ef5f3723209225510436513321b10b5d9fcf
1594006935765d288434d4542502deb3e954f974
refs/heads/master
2020-06-17T06:06:07.116828
2019-07-08T13:53:25
2019-07-08T13:53:25
195,823,812
0
0
null
null
null
null
UTF-8
Python
false
false
987
py
# Generated by Django 2.0.13 on 2019-07-08 13:06 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
30e036da1644eb5fa3fbcdbdf92476a5bda2a487
b5a9d42f7ea5e26cd82b3be2b26c324d5da79ba1
/tensorflow/tools/compatibility/all_renames_v2.py
297539c1e7d028c31244a3e2161e48ceaf3be0a9
[ "Apache-2.0" ]
permissive
uve/tensorflow
e48cb29f39ed24ee27e81afd1687960682e1fbef
e08079463bf43e5963acc41da1f57e95603f8080
refs/heads/master
2020-11-29T11:30:40.391232
2020-01-11T13:43:10
2020-01-11T13:43:10
230,088,347
0
0
Apache-2.0
2019-12-25T10:49:15
2019-12-25T10:49:14
null
UTF-8
Python
false
false
25,028
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides a list of renames between TensorFlow 1.* and 2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.tools.compatibility import renames_v2 # pylint: disable=line-too-long # Add additional renames not in renames_v2.py here. # IMPORTANT: For the renames in here, if you also need to add to # function_reorders or function_keyword_renames in tf_upgrade_v2.py, # use the OLD function name. # These renames happen after the arguments have been processed. manual_symbol_renames = { "tf.batch_to_space_nd": "tf.batch_to_space", "tf.batch_gather": "tf.compat.v1.batch_gather", "tf.space_to_batch_nd": "tf.space_to_batch", "tf.nn.space_to_batch": "tf.space_to_batch", "tf.estimator.inputs": "tf.compat.v1.estimator.inputs", "tf.extract_image_patches": "tf.image.extract_patches", "tf.image.extract_image_patches": "tf.image.extract_patches", "tf.gfile.Copy": "tf.io.gfile.copy", "tf.gfile.DeleteRecursively": "tf.io.gfile.rmtree", "tf.gfile.Exists": "tf.io.gfile.exists", "tf.gfile.Glob": "tf.io.gfile.glob", "tf.gfile.GFile": "tf.io.gfile.GFile", "tf.gfile.IsDirectory": "tf.io.gfile.isdir", "tf.gfile.ListDirectory": "tf.io.gfile.listdir", "tf.gfile.MakeDirs": "tf.io.gfile.makedirs", "tf.gfile.MkDir": "tf.io.gfile.mkdir", "tf.gfile.Open": "tf.io.gfile.GFile", "tf.gfile.Remove": "tf.io.gfile.remove", "tf.gfile.Rename": "tf.io.gfile.rename", "tf.gfile.Stat": "tf.io.gfile.stat", "tf.gfile.Walk": "tf.io.gfile.walk", "tf.contrib.cluster_resolver.ClusterResolver": "tf.distribute.cluster_resolver.ClusterResolver", "tf.contrib.cluster_resolver.GceClusterResolver": "tf.distribute.cluster_resolver.GCEClusterResolver", "tf.contrib.cluster_resolver.KubernetesClusterResolver": "tf.distribute.cluster_resolver.KubernetesClusterResolver", "tf.contrib.cluster_resolver.SimpleClusterResolver": "tf.distribute.cluster_resolver.SimpleClusterResolver", "tf.contrib.cluster_resolver.SlurmClusterResolver": "tf.distribute.cluster_resolver.SlurmClusterResolver", "tf.contrib.cluster_resolver.TFConfigClusterResolver": "tf.distribute.cluster_resolver.TFConfigClusterResolver", "tf.contrib.cluster_resolver.TPUClusterResolver": "tf.distribute.cluster_resolver.TPUClusterResolver", "tf.contrib.cluster_resolver.UnionClusterResolver": "tf.distribute.cluster_resolver.UnionClusterResolver", "tf.contrib.data.AUTOTUNE": "tf.data.experimental.AUTOTUNE", "tf.contrib.data.Counter": "tf.data.experimental.Counter", "tf.contrib.data.CheckpointInputPipelineHook": "tf.data.experimental.CheckpointInputPipelineHook", "tf.contrib.data.CsvDataset": "tf.data.experimental.CsvDataset", "tf.contrib.data.Optional": "tf.data.experimental.Optional", "tf.contrib.data.RandomDataset": "tf.data.experimental.RandomDataset", "tf.contrib.data.Reducer": "tf.data.experimental.Reducer", "tf.contrib.data.SqlDataset": "tf.data.experimental.SqlDataset", "tf.contrib.data.StatsAggregator": "tf.data.experimental.StatsAggregator", "tf.contrib.data.TFRecordWriter": "tf.data.experimental.TFRecordWriter", "tf.contrib.data.assert_element_shape": "tf.data.experimental.assert_element_shape", "tf.contrib.data.bucket_by_sequence_length": "tf.data.experimental.bucket_by_sequence_length", "tf.contrib.data.choose_from_datasets": "tf.data.experimental.choose_from_datasets", "tf.contrib.data.copy_to_device": "tf.data.experimental.copy_to_device", "tf.contrib.data.dense_to_sparse_batch": "tf.data.experimental.dense_to_sparse_batch", "tf.contrib.data.enumerate_dataset": "tf.data.experimental.enumerate_dataset", "tf.contrib.data.get_next_as_optional": "tf.data.experimental.get_next_as_optional", "tf.contrib.data.get_single_element": "tf.data.experimental.get_single_element", "tf.contrib.data.group_by_reducer": "tf.data.experimental.group_by_reducer", "tf.contrib.data.group_by_window": "tf.data.experimental.group_by_window", "tf.contrib.data.ignore_errors": "tf.data.experimental.ignore_errors", "tf.contrib.data.latency_stats": "tf.data.experimental.latency_stats", "tf.contrib.data.make_batched_features_dataset": "tf.data.experimental.make_batched_features_dataset", "tf.contrib.data.make_csv_dataset": "tf.data.experimental.make_csv_dataset", "tf.contrib.data.make_saveable_from_iterator": "tf.data.experimental.make_saveable_from_iterator", "tf.contrib.data.map_and_batch": "tf.data.experimental.map_and_batch", "tf.contrib.data.parallel_interleave": "tf.data.experimental.parallel_interleave", "tf.contrib.data.parse_example_dataset": "tf.data.experimental.parse_example_dataset", "tf.contrib.data.prefetch_to_device": "tf.data.experimental.prefetch_to_device", "tf.contrib.data.rejection_resample": "tf.data.experimental.rejection_resample", "tf.contrib.data.sample_from_datasets": "tf.data.experimental.sample_from_datasets", "tf.contrib.data.scan": "tf.data.experimental.scan", "tf.contrib.data.set_stats_aggregator": "tf.data.experimental.set_stats_aggregator", "tf.contrib.data.shuffle_and_repeat": "tf.data.experimental.shuffle_and_repeat", "tf.contrib.data.unbatch": "tf.data.experimental.unbatch", "tf.contrib.data.unique": "tf.data.experimental.unique", "tf.contrib.distribute.CrossDeviceOps": "tf.distribute.CrossDeviceOps", "tf.contrib.distribute.ReductionToOneDeviceCrossDeviceOps": "tf.distribute.ReductionToOneDevice", "tf.contrib.estimator.make_early_stopping_hook": "tf.estimator.experimental.make_early_stopping_hook", "tf.contrib.estimator.stop_if_higher_hook": "tf.estimator.experimental.stop_if_higher_hook", "tf.contrib.estimator.stop_if_lower_hook": "tf.estimator.experimental.stop_if_lower_hook", "tf.contrib.estimator.stop_if_no_decrease_hook": "tf.estimator.experimental.stop_if_no_decrease_hook", "tf.contrib.estimator.stop_if_no_increase_hook": "tf.estimator.experimental.stop_if_no_increase_hook", "tf.contrib.framework.CriticalSection": "tf.CriticalSection", "tf.contrib.framework.is_tensor": "tf.is_tensor", "tf.contrib.framework.load_variable": "tf.train.load_variable", "tf.contrib.framework.nest.assert_same_structure": "tf.nest.assert_same_structure", "tf.contrib.framework.nest.flatten": "tf.nest.flatten", "tf.contrib.framework.nest.is_sequence": "tf.nest.is_nested", "tf.contrib.framework.nest.map_structure": "tf.nest.map_structure", "tf.contrib.framework.nest.pack_sequence_as": "tf.nest.pack_sequence_as", "tf.contrib.batching.batch_function": "tf.nondifferentiable_batch_function", "tf.contrib.util.constant_value": "tf.get_static_value", "tf.contrib.saved_model.load_keras_model": "tf.keras.experimental.load_from_saved_model", "tf.contrib.saved_model.save_keras_model": "tf.keras.experimental.export_saved_model", "tf.contrib.rnn.RNNCell": "tf.compat.v1.nn.rnn_cell.RNNCell", "tf.contrib.rnn.LSTMStateTuple": "tf.nn.rnn_cell.LSTMStateTuple", "tf.contrib.rnn.BasicLSTMCell": "tf.compat.v1.nn.rnn_cell.BasicLSTMCell", "tf.contrib.rnn.BasicRNNCell": "tf.compat.v1.nn.rnn_cell.BasicRNNCell", "tf.contrib.rnn.GRUCell": "tf.compat.v1.nn.rnn_cell.GRUCell", "tf.contrib.rnn.LSTMCell": "tf.compat.v1.nn.rnn_cell.LSTMCell", "tf.contrib.rnn.MultiRNNCell": "tf.compat.v1.nn.rnn_cell.MultiRNNCell", "tf.contrib.rnn.static_rnn": "tf.compat.v1.nn.static_rnn", "tf.contrib.rnn.static_state_saving_rnn": "tf.compat.v1.nn.static_state_saving_rnn", "tf.contrib.rnn.static_bidirectional_rnn": "tf.compat.v1.nn.static_bidirectional_rnn", "tf.contrib.framework.sort": "tf.sort", "tf.contrib.framework.argsort": "tf.argsort", "tf.contrib.summary.all_summary_ops": "tf.compat.v1.summary.all_v2_summary_ops", "tf.contrib.summary.always_record_summaries": "tf.compat.v2.summary.record_if", "tf.contrib.summary.audio": "tf.compat.v2.summary.audio", "tf.contrib.summary.create_file_writer": "tf.compat.v2.summary.create_file_writer", "tf.contrib.summary.flush": "tf.compat.v2.summary.flush", "tf.contrib.summary.generic": "tf.compat.v2.summary.write", "tf.contrib.summary.histogram": "tf.compat.v2.summary.histogram", "tf.contrib.summary.image": "tf.compat.v2.summary.image", "tf.contrib.summary.initialize": "tf.compat.v1.summary.initialize", "tf.contrib.summary.never_record_summaries": "tf.compat.v2.summary.record_if", "tf.contrib.summary.scalar": "tf.compat.v2.summary.scalar", "tf.contrib.tpu.CrossShardOptimizer": "tf.compat.v1.tpu.CrossShardOptimizer", "tf.contrib.tpu.InputPipelineConfig": "tf.compat.v1.estimator.tpu.InputPipelineConfig", "tf.contrib.tpu.RunConfig": "tf.compat.v1.estimator.tpu.RunConfig", "tf.contrib.tpu.TPUConfig": "tf.compat.v1.estimator.tpu.TPUConfig", "tf.contrib.tpu.TPUEstimator": "tf.compat.v1.estimator.tpu.TPUEstimator", "tf.contrib.tpu.TPUEstimatorSpec": "tf.compat.v1.estimator.tpu.TPUEstimatorSpec", "tf.contrib.tpu.batch_parallel": "tf.compat.v1.tpu.batch_parallel", "tf.contrib.tpu.bfloat16_scope": "tf.compat.v1.tpu.bfloat16_scope", "tf.contrib.tpu.core": "tf.compat.v1.tpu.core", "tf.contrib.tpu.cross_replica_sum": "tf.compat.v1.tpu.cross_replica_sum", "tf.contrib.tpu.initialize_system": "tf.compat.v1.tpu.initialize_system", "tf.contrib.tpu.outside_compilation": "tf.compat.v1.tpu.outside_compilation", "tf.contrib.tpu.replicate": "tf.compat.v1.tpu.replicate", "tf.contrib.tpu.rewrite": "tf.compat.v1.tpu.rewrite", "tf.contrib.tpu.shard": "tf.compat.v1.tpu.shard", "tf.contrib.tpu.shutdown_system": "tf.compat.v1.tpu.shutdown_system", "tf.contrib.training.checkpoints_iterator": "tf.train.checkpoints_iterator", "tf.contrib.layers.recompute_grad": "tf.recompute_grad", "tf.count_nonzero": "tf.math.count_nonzero", "tf.manip.batch_to_space_nd": "tf.batch_to_space", "tf.quantize_v2": "tf.quantization.quantize", "tf.sparse_add": "tf.sparse.add", "tf.sparse_concat": "tf.sparse.concat", "tf.sparse_split": "tf.sparse.split", "tf.sparse_matmul": "tf.linalg.matmul", "tf.sparse_reduce_sum": "tf.sparse.reduce_sum", "tf.sparse_reduce_max": "tf.sparse.reduce_max", "tf.random.stateless_multinomial": "tf.random.stateless_categorical", "tf.substr": "tf.strings.substr", # TODO(b/129398290) "tf.string_split": "tf.compat.v1.string_split", "tf.string_to_hash_bucket": "tf.strings.to_hash_bucket", "tf.string_to_number": "tf.strings.to_number", "tf.multinomial": "tf.random.categorical", "tf.random.multinomial": "tf.random.categorical", "tf.reduce_join": "tf.strings.reduce_join", "tf.load_file_system_library": "tf.load_library", "tf.bincount": "tf.math.bincount", "tf.confusion_matrix": "tf.math.confusion_matrix", "tf.train.confusion_matrix": "tf.math.confusion_matrix", "tf.train.sdca_fprint": "tf.raw_ops.SdcaFprint", "tf.train.sdca_optimizer": "tf.raw_ops.SdcaOptimizer", "tf.train.sdca_shrink_l1": "tf.raw_ops.SdcaShrinkL1", "tf.decode_csv": "tf.io.decode_csv", "tf.data.Iterator": "tf.compat.v1.data.Iterator", "tf.data.experimental.DatasetStructure": "tf.data.DatasetSpec", "tf.data.experimental.OptionalStructure": "tf.OptionalSpec", "tf.data.experimental.RaggedTensorStructure": "tf.RaggedTensorSpec", "tf.data.experimental.SparseTensorStructure": "tf.SparseTensorSpec", "tf.data.experimental.Structure": "tf.TypeSpec", "tf.data.experimental.TensorArrayStructure": "tf.TensorArraySpec", "tf.data.experimental.TensorStructure": "tf.TensorSpec", "tf.parse_example": "tf.io.parse_example", "tf.parse_single_example": "tf.io.parse_single_example", "tf.nn.fused_batch_norm": "tf.compat.v1.nn.fused_batch_norm", "tf.nn.softmax_cross_entropy_with_logits_v2": "tf.nn.softmax_cross_entropy_with_logits", "tf.losses.Reduction.MEAN": "tf.compat.v1.losses.Reduction.MEAN", "tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS": "tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS", "tf.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS": "tf.compat.v1.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS", "tf.lite.constants.FLOAT": "tf.float32", "tf.lite.constants.INT32": "tf.int32", "tf.lite.constants.INT64": "tf.int64", "tf.lite.constants.STRING": "tf.string", "tf.lite.constants.QUANTIZED_UINT8": "tf.uint8", "tf.arg_max": "tf.argmax", "tf.arg_min": "tf.argmin", # tf.nn.ctc_loss is still available in 2.0 but behavior # changed significantly. "tf.nn.ctc_loss": "tf.compat.v1.nn.ctc_loss", # tf.saved_model.load in 1.x has no equivalent in 2.x, but there is a # symbol with the same name. "tf.saved_model.load": "tf.compat.v1.saved_model.load", "tf.saved_model.load_v2": "tf.compat.v2.saved_model.load", "tf.image.resize_images": "tf.image.resize", "tf.random_poisson": "tf.random.poisson", "tf.debugging.assert_greater": "tf.compat.v1.debugging.assert_greater", "tf.debugging.assert_greater_equal": "tf.compat.v1.debugging.assert_greater_equal", "tf.debugging.assert_integer": "tf.compat.v1.debugging.assert_integer", "tf.debugging.assert_less": "tf.compat.v1.debugging.assert_less", "tf.debugging.assert_less_equal": "tf.compat.v1.debugging.assert_less_equal", "tf.debugging.assert_near": "tf.compat.v1.debugging.assert_near", "tf.debugging.assert_negative": "tf.compat.v1.debugging.assert_negative", "tf.debugging.assert_non_negative": "tf.compat.v1.debugging.assert_non_negative", "tf.debugging.assert_non_positive": "tf.compat.v1.debugging.assert_non_positive", "tf.debugging.assert_none_equal": "tf.compat.v1.debugging.assert_none_equal", "tf.debugging.assert_type": "tf.compat.v1.debugging.assert_type", "tf.debugging.assert_positive": "tf.compat.v1.debugging.assert_positive", "tf.debugging.assert_equal": "tf.compat.v1.debugging.assert_equal", "tf.debugging.assert_scalar": "tf.compat.v1.debugging.assert_scalar", "tf.assert_equal": "tf.compat.v1.assert_equal", "tf.assert_less": "tf.compat.v1.assert_less", "tf.assert_greater": "tf.compat.v1.assert_greater", "tf.debugging.assert_rank": "tf.compat.v1.debugging.assert_rank", "tf.debugging.assert_rank_at_least": "tf.compat.v1.debugging.assert_rank_at_least", "tf.debugging.assert_rank_in": "tf.compat.v1.debugging.assert_rank_in", "tf.errors.exception_type_from_error_code": "tf.compat.v1.errors.exception_type_from_error_code", "tf.errors.error_code_from_exception_type": "tf.compat.v1.errors.error_code_from_exception_type", "tf.errors.raise_exception_on_not_ok_status": "tf.compat.v1.errors.raise_exception_on_not_ok_status", "tf.assert_rank": "tf.compat.v1.assert_rank", "tf.nn.max_pool": "tf.nn.max_pool2d", "tf.nn.avg_pool": "tf.nn.avg_pool2d", "tf.keras.initializers.zeros": "tf.compat.v1.keras.initializers.zeros", "tf.keras.initializers.Zeros": "tf.compat.v1.keras.initializers.Zeros", "tf.keras.initializers.ones": "tf.compat.v1.keras.initializers.ones", "tf.keras.initializers.Ones": "tf.compat.v1.keras.initializers.Ones", "tf.keras.initializers.constant": "tf.compat.v1.keras.initializers.constant", "tf.keras.initializers.Constant": "tf.compat.v1.keras.initializers.Constant", "tf.keras.initializers.VarianceScaling": "tf.compat.v1.keras.initializers.VarianceScaling", "tf.keras.initializers.Orthogonal": "tf.compat.v1.keras.initializers.Orthogonal", "tf.keras.initializers.orthogonal": "tf.compat.v1.keras.initializers.orthogonal", "tf.keras.initializers.Identity": "tf.compat.v1.keras.initializers.Identity", "tf.keras.initializers.identity": "tf.compat.v1.keras.initializers.identity", "tf.keras.initializers.glorot_uniform": "tf.compat.v1.keras.initializers.glorot_uniform", "tf.keras.initializers.glorot_normal": "tf.compat.v1.keras.initializers.glorot_normal", "tf.keras.initializers.lecun_normal": "tf.compat.v1.keras.initializers.lecun_normal", "tf.keras.initializers.lecun_uniform": "tf.compat.v1.keras.initializers.lecun_uniform", "tf.keras.initializers.he_normal": "tf.compat.v1.keras.initializers.he_normal", "tf.keras.initializers.he_uniform": "tf.compat.v1.keras.initializers.he_uniform", "tf.keras.initializers.TruncatedNormal": "tf.compat.v1.keras.initializers.TruncatedNormal", "tf.keras.initializers.truncated_normal": "tf.compat.v1.keras.initializers.truncated_normal", "tf.keras.initializers.RandomUniform": "tf.compat.v1.keras.initializers.RandomUniform", "tf.keras.initializers.uniform": "tf.compat.v1.keras.initializers.uniform", "tf.keras.initializers.random_uniform": "tf.compat.v1.keras.initializers.random_uniform", "tf.keras.initializers.RandomNormal": "tf.compat.v1.keras.initializers.RandomNormal", "tf.keras.initializers.normal": "tf.compat.v1.keras.initializers.normal", "tf.keras.initializers.random_normal": "tf.compat.v1.keras.initializers.random_normal", "tf.zeros_initializer": "tf.compat.v1.zeros_initializer", "tf.initializers.zeros": "tf.compat.v1.initializers.zeros", "tf.ones_initializer": "tf.compat.v1.ones_initializer", "tf.initializers.ones": "tf.compat.v1.initializers.ones", "tf.constant_initializer": "tf.compat.v1.constant_initializer", "tf.initializers.constant": "tf.compat.v1.initializers.constant", "tf.random_uniform_initializer": "tf.compat.v1.random_uniform_initializer", "tf.initializers.random_uniform": "tf.compat.v1.initializers.random_uniform", "tf.random_normal_initializer": "tf.compat.v1.random_normal_initializer", "tf.initializers.random_normal": "tf.compat.v1.initializers.random_normal", "tf.truncated_normal_initializer": "tf.compat.v1.truncated_normal_initializer", "tf.initializers.truncated_normal": "tf.compat.v1.initializers.truncated_normal", "tf.variance_scaling_initializer": "tf.compat.v1.variance_scaling_initializer", "tf.initializers.variance_scaling": "tf.compat.v1.initializers.variance_scaling", "tf.orthogonal_initializer": "tf.compat.v1.orthogonal_initializer", "tf.initializers.orthogonal": "tf.compat.v1.initializers.orthogonal", "tf.glorot_uniform_initializer": "tf.compat.v1.glorot_uniform_initializer", "tf.initializers.glorot_uniform": "tf.compat.v1.initializers.glorot_uniform", "tf.glorot_normal_initializer": "tf.compat.v1.glorot_normal_initializer", "tf.initializers.glorot_normal": "tf.compat.v1.initializers.glorot_normal", "tf.initializers.identity": "tf.compat.v1.initializers.identity", "tf.initializers.lecun_normal": "tf.compat.v1.initializers.lecun_normal", "tf.initializers.lecun_uniform": "tf.compat.v1.initializers.lecun_uniform", "tf.initializers.he_normal": "tf.compat.v1.initializers.he_normal", "tf.initializers.he_uniform": "tf.compat.v1.initializers.he_uniform", "tf.data.experimental.map_and_batch_with_legacy_function": "tf.compat.v1.data.experimental.map_and_batch_with_legacy_function", "tf.nn.conv2d_backprop_input": "tf.nn.conv2d_transpose", "tf.test.compute_gradient": "tf.compat.v1.test.compute_gradient", "tf.floor_div": "tf.math.floordiv", "tf.where": "tf.compat.v1.where", "tf.where_v2": "tf.compat.v2.where", } # pylint: enable=line-too-long symbol_renames = renames_v2.renames symbol_renames.update(manual_symbol_renames) addons_symbol_mappings = { "tf.contrib.layers.poincare_normalize": "tfa.layers.PoincareNormalize", "tf.contrib.layers.maxout": "tfa.layers.Maxout", "tf.contrib.layers.group_norm": "tfa.layers.GroupNormalization", "tf.contrib.layers.instance_norm": "tfa.layers.InstanceNormalization", "tf.contrib.sparsemax.sparsemax": "tfa.activations.sparsemax", "tf.contrib.losses.metric_learning.contrastive_loss": "tfa.losses.ContrastiveLoss", "tf.contrib.losses.metric_learning.lifted_struct_loss": "tfa.losses.LiftedStructLoss", "tf.contrib.sparsemax.sparsemax_loss": "tfa.losses.SparsemaxLoss", "tf.contrib.losses.metric_learning.triplet_semihard_loss": "tfa.losses.TripletSemiHardLoss", "tf.contrib.opt.LazyAdamOptimizer": "tfa.optimizers.LazyAdam", "tf.contrib.opt.MovingAverageOptimizer": "tfa.optimizers.MovingAverage", "tf.contrib.opt.MomentumWOptimizer": "tfa.optimizers.SGDW", "tf.contrib.opt.AdamWOptimizer": "tfa.optimizers.AdamW", "tf.contrib.opt.extend_with_decoupled_weight_decay": "tfa.optimizers.extend_with_decoupled_weight_decay", "tf.contrib.text.skip_gram_sample": "tfa.text.skip_gram_sample", "tf.contrib.text.skip_gram_sample_with_text_vocab": "tfa.text.skip_gram_sample_with_text_vocab", "tf.contrib.image.dense_image_warp": "tfa.image.dense_image_warp", "tf.contrib.image.adjust_hsv_in_yiq": "tfa.image.adjust_hsv_in_yiq", "tf.contrib.image.compose_transforms": "tfa.image.compose_transforms", "tf.contrib.image.random_hsv_in_yiq": "tfa.image.random_hsv_in_yiq", "tf.contrib.image.angles_to_projective_transforms": "tfa.image.angles_to_projective_transforms", "tf.contrib.image.matrices_to_flat_transforms": "tfa.image.matricies_to_flat_transforms", "tf.contrib.image.rotate": "tfa.image.rotate", "tf.contrib.image.transform": "tfa.image.transform", "tf.contrib.rnn.NASCell": "tfa.rnn.NASCell", "tf.contrib.rnn.LayerNormBasicLSTMCell": "tfa.rnn.LayerNormLSTMCell" }
9e1d8e2de437c05c4bfb0801655ea47bebb855fb
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_palls.py
dbff538f21fd450bb0e9c7a702715178521cdfad
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
#calss header class _PALLS(): def __init__(self,): self.name = "PALLS" self.definitions = pall self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['pall']
3498868b0b750bda0169ecc70e6676ab407c13b9
e2f4cbbde6cd6f169a5ac36a5ae050d89f895158
/Python_Workspace/Modules/package1/mod2.py
ebb9da7375c3d08a03d56eee659d36357caa8574
[]
no_license
shubhamkumar1739/Linux_Workshop
7a8511eebb049d6a0518bd1c8101038bc6b0e4e9
c22e51943f012981165c41a76cea50b142bf3d77
refs/heads/master
2020-03-30T13:03:12.525964
2018-10-06T03:34:58
2018-10-06T03:34:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
11
py
var1_m2=77
3f395841d95506c7c4b11095f96b073ae8043dea
b5a7c9ae13c81d655c176ceb0b8a73b4399cbf7a
/practico_02/ejercicio_01.py
847b669e2c61394631d2e994bc0d7f2731006427
[ "MIT" ]
permissive
ELC/TUPPython
7459f4af5eb0306da1a61fd1e175ca4a68e5ac46
0115ece1dfdd599626f1cdeb410245fbee2aa4f8
refs/heads/master
2023-06-07T21:03:12.151001
2021-03-17T22:31:51
2021-03-17T22:31:51
338,466,855
1
1
MIT
2021-02-28T02:48:20
2021-02-13T00:36:50
Python
UTF-8
Python
false
false
856
py
"""Módulos Antes de realizar este TP, se recomienda ver el siguiente video: https://youtu.be/A47sszUdTsM En este archivo se deben importar los módulos: - main.py as main - source/util.py as util - source/controller/controller.py as controller Los imports deben hacerse de forma tal que funcionen con TODAS las formas posibles de invocación (estando parados en la carpeta practico_02): $PATH$/practico_02> python ejercicio_01.py $PATH$/practico_02> python -m ejercicio_01 Referencia: https://docs.python.org/3/reference/import.html#the-import-system """ import main import source.util as util import source.controller.controller as controller # NO MODIFICAR - INICIO assert main.name == "main" assert util.name == "util" assert controller.name == "controller" # NO MODIFICAR - FIN # El siguiente ejercicio se encuentra en source/ejercicio_02.py
1719fe5138986b05ab207d3c7b30490116f74c96
e980e13bd0d264b3880705fb53a795a89fb5cfe6
/sales_order/repair_order.py
f6ba01e2762bf878cdbc8480aa7f1e1f9f8ddf80
[]
no_license
qianpeng-shen/u8
8e430ccab5390254b6660cbd047fc2ac495a04ca
7fd28399dbf921826c1ef024800994412ab1b623
refs/heads/master
2020-05-13T20:28:16.764800
2019-04-16T09:29:58
2019-04-16T09:29:58
181,657,315
2
0
null
null
null
null
UTF-8
Python
false
false
1,972
py
# -*- coding:utf-8 -*- #解析维修类维修工单数据 def analysis_repair(data): repair_list = [] for repair in range(1,data.nrows): repair_dict = {} repair_dict['Status'] = data.cell(repair,1).value repair_dict['UserID_ZDR'] = data.cell(repair,7).value repair_dict['AdgoupID'] = data.cell(repair,8).value repair_dict['UserID_KF'] = data.cell(repair,10).value if data.cell(repair,11).vlaue: if data.cell(repair,11).value == '网页表单': repair_dict['CreateOrderChannel'] = '线上' else: repair_dict['CreateOrderChannel'] = '电话' repair_dict['DetailContentMore'] = data.cell(repair,12).value repair_dict['CallerNumber'] = data.cell(repair,13).value repair_dict['UserName'] = data.cell(repair,20).value repair_dict['ProvinceID'] = data.cell(repair,22).value repair_dict['MunicipalityID'] = data.cell(repair,23).value repair_dict['PrefectureID'] = data.cell(repair,24).value repair_dict['Address_Detail'] = data.cell(repair,34).value repair_dict['SN_GDXX'] = data.cell(repair,38).value repair_dict['AppointmentTime'] = (data.cell(repair,40).value).replace('/','-') + 'T00"00:00Z' repair_dict['WarrantyPeriod'] = data.cell(repair,41).value if data.cell(repair,43).value: malfunction = data.cell(repair,43).value if ',' in malfunction: repair_dict['Breakdown_PhenomenonID'] = malfunction.split(',')[1] repair_dict['RelatedServiceProvider'] = data.cell(repair,46).value repair_dict['ServiceProvidersNumber'] = data.cell(repair,48).value repair_dict['ActivityContent'] = data.cell(repair,49).value repair_dict['Reason'] = data.cell(repair,50).value repair_dict['MailingAddress'] = data.cell(repair,52).value repair_dict['ReturnToLogistics'] = data.cell(repair,53).value
fbe657576a5f4817faee93631a0c29bd41fef7fd
43461f999228079c9bfee03f0e4043f08426051f
/python_zero/飞机大战/hm_11_监听退出事件.py
ac165dcc7445e849fe8d415791911b793b4875e3
[]
no_license
MapleStoryBoy/spider
f9af844ae9812fe21141060213ac2677e719ac73
b014d81d52805f9317e85b66024d047e73d59053
refs/heads/master
2020-05-21T18:27:50.585790
2019-07-12T10:11:58
2019-07-12T10:11:58
186,132,575
6
2
null
null
null
null
UTF-8
Python
false
false
1,376
py
import pygame # 游戏的初始化 pygame.init() # 创建游戏的窗口 480 * 700 screen = pygame.display.set_mode((480, 700)) # 绘制背景图像 bg = pygame.image.load("./images/background.png") screen.blit(bg, (0, 0)) # pygame.display.update() # 绘制英雄的飞机 hero = pygame.image.load("./images/me1.png") screen.blit(hero, (150, 300)) # 可以在所有绘制工作完成之后,统一调用update方法 pygame.display.update() # 创建时钟对象 clock = pygame.time.Clock() # 1. 定义rect记录飞机的初始位置 hero_rect = pygame.Rect(150, 300, 102, 126) # 游戏循环 -> 意味着游戏的正式开始! while True: # 可以指定循环体内部的代码执行的频率 clock.tick(60) # 监听事件 for event in pygame.event.get(): # 判断事件类型是否是退出事件 if event.type == pygame.QUIT: print("游戏退出...") # quit 卸载所有的模块 pygame.quit() # exit() 直接终止当前正在执行的程序 exit() # 2. 修改飞机的位置 hero_rect.y -= 1 # 判断飞机的位置 if hero_rect.y <= 0: hero_rect.y = 700 # 3. 调用blit方法绘制图像 screen.blit(bg, (0, 0)) screen.blit(hero, hero_rect) # 4. 调用update方法更新显示 pygame.display.update() pygame.quit()
db4bc9a1b1db2b8a2081ccbfc57774f296f255e9
1f9e643698f683e77ed5f253cafda776b204f5d2
/backend/franchise_guru_4345/urls.py
5f0e09df865079b377bc64581a60b6f4c1dedb06
[]
no_license
crowdbotics-apps/franchise-guru-4345
ca907aaed1618abd5828ce20c108a90f01f09af7
53712fe881aa94579121e1c7384ab3e039fccd9d
refs/heads/master
2022-12-12T06:50:11.577025
2019-06-06T20:54:46
2019-06-06T20:54:46
190,648,540
0
0
null
2022-12-06T16:07:16
2019-06-06T20:54:42
JavaScript
UTF-8
Python
false
false
1,074
py
"""franchise_guru_4345 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin urlpatterns = [ url('', include('home.urls')), url(r'^accounts/', include('allauth.urls')), url(r'^api/v1/', include('home.api.v1.urls')), url(r'^admin/', admin.site.urls), ] admin.site.site_header = 'Franchise Guru' admin.site.site_title = 'Franchise Guru Admin Portal' admin.site.index_title = 'Franchise Guru Admin'
4fed6cdfbfd5f2a72de1850169ab92171fcb5f2b
ded46c3a86c2a70328a63d779ac038d636ae5906
/_WSpython/Pandas06_04_GroupByChkPop_최임정.py
25b7e2d0123dcbc8d13c20046ed655462fdfe522
[]
no_license
imjoung/hongik_univ
82d0e7ea31763713f51bbde9d45e4aae5cb73849
82a3a77605d74d13eb76b915b215f6e245968180
refs/heads/main
2023-06-24T12:49:46.087083
2021-07-15T06:31:57
2021-07-15T06:31:57
379,128,178
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
# coding: utf-8 # In[19]: import pandas as pd df=pd.read_csv('../data/gapminder.tsv','\t') # In[20]: uniqueList=df['year'].unique() for idx in uniqueList: yearList=df[df['year'] == idx] print(yearList['pop'].mean())
3401ca65f75073dbe9b340ead4558693cb3b86eb
1605c2db57cabfce9d146e891b22e38b85c37035
/docs/reference/actions.py
d30f816795f6bc57107f80a8fc893396be519c45
[ "Apache-2.0" ]
permissive
sylvielamythepaut/climetlab
22499475e2220021145f4f6c84f6526a19d43ba4
59516b8a510ad506a12ad32bea9e8b98bdb9abf3
refs/heads/master
2022-12-21T11:51:41.243440
2020-09-18T07:42:45
2020-09-18T07:42:45
296,547,196
0
0
Apache-2.0
2020-09-18T07:42:46
2020-09-18T07:30:00
null
UTF-8
Python
false
false
10,710
py
import inspect from typing import List from Magics import macro def _given_args(frame): func = frame.f_globals[frame.f_code.co_name] user_args = inspect.getargvalues(frame) code_args = inspect.getfullargspec(func) given = {} if code_args.kwonlydefaults: pairs = list(code_args.kwonlydefaults.items()) else: pairs = list(zip(code_args.args, code_args.defaults)) for name, value in pairs: if user_args.locals[name] is not value: given[name] = user_args.locals[name] return given def mcoast( *, # [Coastlines] This action controls the plotting of coastlines, rivers, cities and country boundaries, as well as the latitude/longitude grid lines. map_coastline_general_style: str = "", map_coastline: bool = True, map_grid: bool = True, map_label: bool = True, # [CoastPlotting] map_coastline_resolution: str = "automatic", map_coastline_land_shade: bool = False, map_coastline_land_shade_colour: str = "green", map_coastline_sea_shade: bool = False, map_coastline_sea_shade_colour: str = "blue", map_boundaries: bool = False, map_cities: bool = False, map_preview: bool = False, map_rivers: str = False, map_rivers_style: str = "solid", map_rivers_colour: str = "blue", map_rivers_thickness: int = 1, map_user_layer: str = False, map_user_layer_name: str = "", map_user_layer_projection: str = "", map_user_layer_style: str = "solid", map_user_layer_colour: str = "blue", map_user_layer_thickness: int = 1, map_coastline_colour: str = "black", map_coastline_style: str = "solid", map_coastline_thickness: int = 1, # [GridPlotting] map_grid_latitude_reference: float = 0, map_grid_latitude_increment: float = 10.0, map_grid_longitude_reference: float = 0, map_grid_longitude_increment: float = 20.0, map_grid_line_style: str = "solid", map_grid_thickness: int = 1, map_grid_colour: str = "black", map_grid_frame: bool = False, map_grid_frame_line_style: str = "solid", map_grid_frame_thickness: int = 1, map_grid_frame_colour: str = "black", # [LabelPlotting] map_label_font: str = "sansserif", map_label_font_style: str = "normal", map_label_colour: str = "black", map_label_height: float = 0.25, map_label_blanking: bool = True, map_label_latitude_frequency: int = 1, map_label_longitude_frequency: int = 1, map_label_left: bool = True, map_label_right: bool = True, map_label_top: bool = True, map_label_bottom: bool = True, ): return macro.mcoast(**_given_args(inspect.currentframe())) def mcont( *, # [Contour] This action controls the plotting of isolines, contour bands and grid points. It is used to plot gridded data, such as fields. legend: bool = False, contour: str = True, contour_method: str = "automatic", contour_interpolation_floor: float = -2147483647, contour_interpolation_ceiling: float = 2147483647, contour_automatic_setting: str = False, contour_style_name: str = "", contour_metadata_only: bool = False, contour_hilo: str = False, contour_grid_value_plot: str = False, # [Akima474Method] contour_akima_x_resolution: float = 1.5, contour_akima_y_resolution: float = 1.5, # [Akima760Method] #contour_akima_x_resolution: float = 1.5, #contour_akima_y_resolution: float = 1.5, # [AutomaticContourMethod] # [CountSelectionType] contour_max_level: float = 1e+21, contour_min_level: float = -1e+21, contour_shade_max_level: float = 1e+21, contour_shade_min_level: float = -1e+21, contour_level_count: int = 10, contour_level_tolerance: int = 2, contour_reference_level: float = 0.0, # [HighHiLo] contour_hilo_type: str = "text", contour_hilo_window_size: int = 3, contour_hilo_max_value: float = 1e+21, contour_hilo_min_value: float = -1e+21, contour_hi_max_value: float = 1e+21, contour_hi_min_value: float = -1e+21, contour_lo_max_value: float = 1e+21, contour_lo_min_value: float = -1e+21, contour_hilo_marker: str = False, # [IntervalSelectionType] #contour_max_level: float = 1e+21, #contour_min_level: float = -1e+21, #contour_shade_max_level: float = 1e+21, #contour_shade_min_level: float = -1e+21, #contour_reference_level: float = 0.0, contour_interval: float = 8.0, # [IsoLabel] contour_label_type: str = "number", contour_label_text: str = "", contour_label_height: float = 0.3, contour_label_format: str = "(automatic)", contour_label_blanking: bool = True, contour_label_font: str = "sansserif", contour_label_font_style: str = "normal", contour_label_colour: str = "contour_line_colour", contour_label_frequency: int = 2, # [IsoShading] contour_shade_technique: str = "polygon_shading", #contour_shade_max_level: float = 1e+21, #contour_shade_min_level: float = -1e+21, contour_shade_colour_method: str = "calculate", # [LevelListSelectionType] #contour_max_level: float = 1e+21, #contour_min_level: float = -1e+21, #contour_shade_max_level: float = 1e+21, #contour_shade_min_level: float = -1e+21, contour_level_list: List[float] = [], # [LowHiLo] #contour_hilo_type: str = "text", #contour_hilo_window_size: int = 3, #contour_hilo_max_value: float = 1e+21, #contour_hilo_min_value: float = -1e+21, #contour_hi_max_value: float = 1e+21, #contour_hi_min_value: float = -1e+21, #contour_lo_max_value: float = 1e+21, #contour_lo_min_value: float = -1e+21, #contour_hilo_marker: str = False, # [NoIsoPlot] contour_line_style: str = "solid", contour_line_thickness: int = 1, contour_line_colour_rainbow: bool = False, contour_line_colour: str = "blue", contour_line_colour_rainbow_method: str = "calculate", contour_line_colour_rainbow_max_level_colour: str = "blue", contour_line_colour_rainbow_min_level_colour: str = "red", contour_line_colour_rainbow_direction: str = "anti_clockwise", contour_line_colour_rainbow_colour_list: List[str] = [], contour_line_colour_rainbow_colour_list_policy: str = "lastone", contour_line_thickness_rainbow_list: List[int] = [], contour_line_thickness_rainbow_list_policy: str = "lastone", contour_line_style_rainbow_list: List[str] = [], contour_line_style_rainbow_list_policy: str = "lastone", contour_highlight: bool = True, contour_level_selection_type: str = "count", contour_label: bool = True, contour_shade: bool = False, contour_legend_only: bool = False, # [ValuePlot] contour_grid_value_type: str = "normal", contour_grid_value_plot_type: str = "value", ): return macro.mcont(**_given_args(inspect.currentframe())) def msymb( *, # [SymbolAdvancedTableMode] symbol_advanced_table_selection_type: str = "count", symbol_advanced_table_min_value: float = -1e+21, symbol_advanced_table_max_value: float = 1e+21, symbol_advanced_table_level_count: int = 10, symbol_advanced_table_level_tolerance: int = 2, symbol_advanced_table_interval: float = 8.0, symbol_advanced_table_reference_level: float = 0.0, symbol_advanced_table_level_list: List[float] = [], symbol_advanced_table_colour_method: str = "calculate", symbol_advanced_table_max_level_colour: str = "blue", symbol_advanced_table_min_level_colour: str = "red", symbol_advanced_table_colour_direction: str = "anti_clockwise", symbol_advanced_table_colour_list: List[str] = [], symbol_advanced_table_colour_list_policy: str = "lastone", symbol_advanced_table_marker_list: List[int] = [], symbol_advanced_table_marker_name_list: List[str] = [], symbol_advanced_table_marker_list_policy: str = "lastone", symbol_advanced_table_height_method: str = "list", symbol_advanced_table_height_max_value: float = 0.2, symbol_advanced_table_height_min_value: float = 0.1, symbol_advanced_table_height_list: List[float] = [], symbol_advanced_table_height_list_policy: str = "lastone", symbol_advanced_table_text_list: List[str] = [], symbol_advanced_table_text_list_policy: str = "cycle", symbol_advanced_table_text_font: str = "sansserif", symbol_advanced_table_text_font_size: float = 0.25, symbol_advanced_table_text_font_style: str = "normal", symbol_advanced_table_text_font_colour: str = "automatic", symbol_advanced_table_text_display_type: str = "none", symbol_advanced_table_outlayer_method: bool = "none", symbol_advanced_table_outlayer_min_value: float = -1e+21, symbol_advanced_table_outlayer_max_value: float = 1e+21, # [SymbolIndividualMode] legend_user_text: str = "", symbol_colour: str = "blue", symbol_height: float = 0.2, symbol_marker_mode: str = "index", symbol_marker_index: int = 1, symbol_marker_name: str = "dot", symbol_image_path: str = "", symbol_image_format: str = "automatic", symbol_image_width: float = -1.0, symbol_image_height: float = -1.0, symbol_text_list: List[str] = [], symbol_text_position: str = "right", symbol_text_font: str = "sansserif", symbol_text_font_size: float = 0.25, symbol_text_font_style: str = "normal", symbol_text_font_colour: str = "automatic", symbol_legend_height: float = -1.0, # [SymbolPlotting] This action controls the plotting of meteorological and marker symbols. It is used to plot point data, such as observations. legend: bool = False, symbol_scaling_method: bool = False, symbol_scaling_level_0_height: float = 0.1, symbol_scaling_factor: float = 4.0, symbol_type: str = "number", symbol_table_mode: str = "OFF", #symbol_marker_mode: str = "index", symbol_format: str = "(automatic)", symbol_text_blanking: bool = False, symbol_outline: bool = False, symbol_outline_colour: str = "black", symbol_outline_thickness: int = 1, symbol_outline_style: str = "solid", symbol_connect_line: bool = False, symbol_connect_automatic_line_colour: bool = True, symbol_connect_line_colour: str = "black", symbol_connect_line_thickness: int = 1, symbol_connect_line_style: str = "solid", symbol_legend_only: bool = False, # [SymbolTableMode] symbol_min_table: List[float] = [], symbol_max_table: List[float] = [], symbol_marker_table: List[int] = [], symbol_name_table: List[str] = [], symbol_colour_table: List[str] = [], symbol_height_table: List[float] = [], ): return macro.msymb(**_given_args(inspect.currentframe()))
5ec23bfac0f13f11f9935fea8caf3b8b1e956401
c4af67db4c523d20f2d55aef90ba77db1fb53c38
/CMFCalendar/testing.py
0918f04c86d1a5fb9cdbaaf7709a9ab261d013b7
[]
no_license
dtgit/dtedu
e59b16612d7d9ea064026bf80a44657082ef45a3
d787885fe7ed0de6f9e40e9b05d852a0e9d60677
refs/heads/master
2020-04-06T05:22:50.025074
2009-04-08T20:13:20
2009-04-08T20:13:20
171,351
1
0
null
null
null
null
UTF-8
Python
false
false
2,008
py
############################################################################## # # Copyright (c) 2006 Zope Corporation and Contributors. All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ Unit test layers. $Id: testing.py 73064 2007-03-08 14:03:20Z yuppie $ """ from Testing import ZopeTestCase ZopeTestCase.installProduct('ZCTextIndex', 1) ZopeTestCase.installProduct('CMFCore', 1) import transaction from Products.Five import zcml from Products.CMFCore.testing import FunctionalZCMLLayer from Products.CMFDefault.factory import addConfiguredSite class FunctionalLayer(FunctionalZCMLLayer): @classmethod def setUp(cls): import Products.CMFCalendar import Products.CMFDefault import Products.CMFTopic import Products.DCWorkflow zcml.load_config('configure.zcml', Products.CMFCalendar) zcml.load_config('configure.zcml', Products.CMFDefault) zcml.load_config('configure.zcml', Products.CMFTopic) zcml.load_config('configure.zcml', Products.DCWorkflow) app = ZopeTestCase.app() addConfiguredSite(app, 'site', 'Products.CMFDefault:default', snapshot=False, extension_ids=('Products.CMFCalendar:default', 'Products.CMFCalendar:skins_support')) transaction.commit() ZopeTestCase.close(app) @classmethod def tearDown(cls): app = ZopeTestCase.app() app._delObject('site') transaction.commit() ZopeTestCase.close(app)
6485d44a97f1ed29a4fa36480a7c390436e0aa7f
2b25aae9266437b657e748f3d6fea4db9e9d7f15
/CMU/6lab/coroutines1.py
a44559612b62e023d62943e13b80f94a5246447f
[]
no_license
Zilby/Stuy-Stuff
b1c3bc23abf40092a8a7a80e406e7c412bd22ae0
5c5e375304952f62667d3b34b36f0056c1a8e753
refs/heads/master
2020-05-18T03:03:48.210196
2018-11-15T04:50:03
2018-11-15T04:50:03
24,191,397
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
s="The quick brown fox jumped over the lazy old dog." def capitalize(): while True: value=yield print value.upper() c=capitalize() c.next() for word in s.split(): c.send(word)
0aefadcd0195f3d016d2f2e73d810a3fa481c9bf
42c48f3178a48b4a2a0aded547770027bf976350
/google/ads/google_ads/v3/proto/errors/keyword_plan_keyword_error_pb2.py
72f053c63c315f0883e175fbdc4ef1c9f7dc2a89
[ "Apache-2.0" ]
permissive
fiboknacky/google-ads-python
e989464a85f28baca1f28d133994c73759e8b4d6
a5b6cede64f4d9912ae6ad26927a54e40448c9fe
refs/heads/master
2021-08-07T20:18:48.618563
2020-12-11T09:21:29
2020-12-11T09:21:29
229,712,514
0
0
Apache-2.0
2019-12-23T08:44:49
2019-12-23T08:44:49
null
UTF-8
Python
false
true
5,055
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v3/proto/errors/keyword_plan_keyword_error.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v3/proto/errors/keyword_plan_keyword_error.proto', package='google.ads.googleads.v3.errors', syntax='proto3', serialized_options=_b('\n\"com.google.ads.googleads.v3.errorsB\034KeywordPlanKeywordErrorProtoP\001ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v3/errors;errors\242\002\003GAA\252\002\036Google.Ads.GoogleAds.V3.Errors\312\002\036Google\\Ads\\GoogleAds\\V3\\Errors\352\002\"Google::Ads::GoogleAds::V3::Errors'), serialized_pb=_b('\nEgoogle/ads/googleads_v3/proto/errors/keyword_plan_keyword_error.proto\x12\x1egoogle.ads.googleads.v3.errors\x1a\x1cgoogle/api/annotations.proto\"\x82\x02\n\x1bKeywordPlanKeywordErrorEnum\"\xe2\x01\n\x17KeywordPlanKeywordError\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x1e\n\x1aINVALID_KEYWORD_MATCH_TYPE\x10\x02\x12\x15\n\x11\x44UPLICATE_KEYWORD\x10\x03\x12\x19\n\x15KEYWORD_TEXT_TOO_LONG\x10\x04\x12\x1d\n\x19KEYWORD_HAS_INVALID_CHARS\x10\x05\x12\x1e\n\x1aKEYWORD_HAS_TOO_MANY_WORDS\x10\x06\x12\x18\n\x14INVALID_KEYWORD_TEXT\x10\x07\x42\xf7\x01\n\"com.google.ads.googleads.v3.errorsB\x1cKeywordPlanKeywordErrorProtoP\x01ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v3/errors;errors\xa2\x02\x03GAA\xaa\x02\x1eGoogle.Ads.GoogleAds.V3.Errors\xca\x02\x1eGoogle\\Ads\\GoogleAds\\V3\\Errors\xea\x02\"Google::Ads::GoogleAds::V3::Errorsb\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _KEYWORDPLANKEYWORDERRORENUM_KEYWORDPLANKEYWORDERROR = _descriptor.EnumDescriptor( name='KeywordPlanKeywordError', full_name='google.ads.googleads.v3.errors.KeywordPlanKeywordErrorEnum.KeywordPlanKeywordError', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INVALID_KEYWORD_MATCH_TYPE', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DUPLICATE_KEYWORD', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='KEYWORD_TEXT_TOO_LONG', index=4, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='KEYWORD_HAS_INVALID_CHARS', index=5, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='KEYWORD_HAS_TOO_MANY_WORDS', index=6, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INVALID_KEYWORD_TEXT', index=7, number=7, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=168, serialized_end=394, ) _sym_db.RegisterEnumDescriptor(_KEYWORDPLANKEYWORDERRORENUM_KEYWORDPLANKEYWORDERROR) _KEYWORDPLANKEYWORDERRORENUM = _descriptor.Descriptor( name='KeywordPlanKeywordErrorEnum', full_name='google.ads.googleads.v3.errors.KeywordPlanKeywordErrorEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _KEYWORDPLANKEYWORDERRORENUM_KEYWORDPLANKEYWORDERROR, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=136, serialized_end=394, ) _KEYWORDPLANKEYWORDERRORENUM_KEYWORDPLANKEYWORDERROR.containing_type = _KEYWORDPLANKEYWORDERRORENUM DESCRIPTOR.message_types_by_name['KeywordPlanKeywordErrorEnum'] = _KEYWORDPLANKEYWORDERRORENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) KeywordPlanKeywordErrorEnum = _reflection.GeneratedProtocolMessageType('KeywordPlanKeywordErrorEnum', (_message.Message,), dict( DESCRIPTOR = _KEYWORDPLANKEYWORDERRORENUM, __module__ = 'google.ads.googleads_v3.proto.errors.keyword_plan_keyword_error_pb2' , __doc__ = """Container for enum describing possible errors from applying a keyword or a negative keyword from a keyword plan. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v3.errors.KeywordPlanKeywordErrorEnum) )) _sym_db.RegisterMessage(KeywordPlanKeywordErrorEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
f69a5854f33bc30eb43daf851f9e43ceb207ec1a
b7948d60834c4c6fe58d8d665177511cb6db53e2
/Outpass Webapp + Api's - Django/student/migrations/0008_auto_20190815_0023.py
08405388f8bb2400e3756da54e002813b1d1e8b2
[]
no_license
abhinavsharma629/Outpass-Generator
4a2ebc2c7d0fc678b2afd10a36c6cbcbc6583d60
f363d49c47543c70e2c114ab7d48ffaef83b5de4
refs/heads/master
2022-02-24T15:07:58.171462
2019-10-05T16:05:09
2019-10-05T16:05:09
205,933,273
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
# Generated by Django 2.2.4 on 2019-08-14 18:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0007_registeredcolleges_logo'), ] operations = [ migrations.AlterField( model_name='student', name='bed_no', field=models.PositiveIntegerField(blank=True, null=True), ), migrations.AlterField( model_name='student', name='branch', field=models.CharField(blank=True, max_length=50, null=True), ), migrations.AlterField( model_name='student', name='er_no', field=models.CharField(blank=True, max_length=7, null=True), ), migrations.AlterField( model_name='student', name='hostel', field=models.CharField(blank=True, max_length=50, null=True), ), migrations.AlterField( model_name='student', name='room_no', field=models.CharField(blank=True, max_length=50, null=True), ), migrations.AlterField( model_name='student', name='year', field=models.PositiveIntegerField(blank=True, null=True), ), ]
5a5e091b0cb0991756eaa7e0c7fdb809951c7cd4
d158e396e083ad6761a1871bd39519d588c461bc
/hw/9dcv/contrib_seq2seq.py
e2a412f09abce6ff8f5b388720e649b2947d8530
[]
no_license
jendelel/npfl114
c7250e6256f556c2e9f134dce2f2148117c43368
44a562e2aae96a9e30f930cfae7985043f172828
refs/heads/master
2021-01-10T18:07:46.310969
2017-01-16T15:10:04
2017-01-16T15:10:04
71,621,825
1
2
null
2017-01-05T09:59:18
2016-10-22T06:42:31
Python
UTF-8
Python
false
false
9,159
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Seq2seq layer operations for use in neural networks. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope as vs # decoder_fn(time, cell_state, cell_input, cell_output, context_state) # -> (done, next_state, next_input, emit_output, next_context_state def dynamic_rnn_decoder(cell, decoder_fn, inputs=None, sequence_length=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None, name=None): """ Dynamic RNN decoder for a sequence-to-sequence model specified by RNNCell and decoder function. The `dynamic_rnn_decoder` is similar to the `tf.python.ops.rnn.dynamic_rnn` as the decoder does not make any assumptions of sequence length and batch size of the input. The `dynamic_rnn_decoder` has two modes: training or inference and expects the user to create seperate functions for each. Under both training and inference `cell` and `decoder_fn` is expected. Where the `cell` performs computation at every timestep using the `raw_rnn` and the `decoder_fn` allows modelling of early stopping, output, state, and next input and context. When training the user is expected to supply `inputs`. At every time step a slice of the supplied input is fed to the `decoder_fn`, which modifies and returns the input for the next time step. `sequence_length` is needed at training time, i.e., when `inputs` is not None, for dynamic unrolling. At test time, when `inputs` is None, `sequence_length` is not needed. Under inference `inputs` is expected to be `None` and the input is inferred solely from the `decoder_fn`. Args: cell: An instance of RNNCell. decoder_fn: A function that takes time, cell state, cell input, cell output and context state. It returns a early stopping vector, cell state, next input, cell output and context state. Examples of decoder_fn can be found in the decoder_fn.py folder. inputs: The inputs for decoding (embedded format). If `time_major == False` (default), this must be a `Tensor` of shape: `[batch_size, max_time, ...]`. If `time_major == True`, this must be a `Tensor` of shape: `[max_time, batch_size, ...]`. The input to `cell` at each time step will be a `Tensor` with dimensions `[batch_size, ...]`. sequence_length: (optional) An int32/int64 vector sized `[batch_size]`. if `inputs` is not None and `sequence_length` is None it is inferred from the `inputs` as the maximal possible sequence length. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the `raw_rnn`; defaults to None. name: NameScope for the decoder; defaults to "dynamic_rnn_decoder" Returns: A pair (outputs, state) where: outputs: the RNN output 'Tensor'. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. state: The final state and will be shaped `[batch_size, cell.state_size]`. Raises: ValueError: if inputs is not None and has less than three dimensions. """ with ops.name_scope(name, "dynamic_rnn_decoder", [cell, decoder_fn, inputs, sequence_length, parallel_iterations, swap_memory, time_major, scope]): if inputs is not None: # Convert to tensor inputs = ops.convert_to_tensor(inputs) # Test input dimensions if inputs.get_shape().ndims is not None and ( inputs.get_shape().ndims < 2): raise ValueError("Inputs must have at least two dimensions") # Setup of RNN (dimensions, sizes, length, initial state, dtype) if not time_major: # [batch, seq, features] -> [seq, batch, features] inputs = array_ops.transpose(inputs, perm=[1, 0, 2]) dtype = inputs.dtype # Get data input information input_depth = int(inputs.get_shape()[2]) batch_depth = inputs.get_shape()[1].value max_time = inputs.get_shape()[0].value if max_time is None: max_time = array_ops.shape(inputs)[0] # Setup decoder inputs as TensorArray inputs_ta = tensor_array_ops.TensorArray(dtype, size=max_time) inputs_ta = inputs_ta.unpack(inputs) def loop_fn(time, cell_output, cell_state, loop_state): if cell_state is None: # first call, before while loop (in raw_rnn) if cell_output is not None: raise ValueError("Expected cell_output to be None when cell_state " "is None, but saw: %s" % cell_output) if loop_state is not None: raise ValueError("Expected loop_state to be None when cell_state " "is None, but saw: %s" % loop_state) context_state = None else: # subsequent calls, inside while loop, after cell excution if isinstance(loop_state, tuple): (done, context_state) = loop_state else: done = loop_state context_state = None # call decoder function if inputs is not None: # training # get next_cell_input if cell_state is None: next_cell_input = inputs_ta.read(0) else: if batch_depth is not None: batch_size = batch_depth else: batch_size = array_ops.shape(done)[0] next_cell_input = control_flow_ops.cond( math_ops.equal(time, max_time), lambda: array_ops.zeros([batch_size, input_depth], dtype=dtype), lambda: inputs_ta.read(time)) (next_done, next_cell_state, next_cell_input, emit_output, next_context_state) = decoder_fn(time, cell_state, next_cell_input, cell_output, context_state) else: # inference # next_cell_input is obtained through decoder_fn (next_done, next_cell_state, next_cell_input, emit_output, next_context_state) = decoder_fn(time, cell_state, None, cell_output, context_state) # check if we are done if next_done is None: # training next_done = time >= sequence_length # build next_loop_state if next_context_state is None: next_loop_state = next_done else: next_loop_state = (next_done, next_context_state) return (next_done, next_cell_input, next_cell_state, emit_output, next_loop_state) # Run raw_rnn function outputs_ta, state, _ = rnn.raw_rnn( cell, loop_fn, parallel_iterations=parallel_iterations, swap_memory=swap_memory, scope=scope) outputs = outputs_ta.pack() if not time_major: # [seq, batch, features] -> [batch, seq, features] outputs = array_ops.transpose(outputs, perm=[1, 0, 2]) return outputs, state
7d5a0bdd30acb51aa2d53b292d0cadc6076e129e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03068/s875123408.py
7ebd0a3af325dded24435da6029b158873c69c05
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
n = int(input()) s = list(input()) k = int(input()) ans = '' for i in range(n): if s[i] != s[k-1]: s[i] = '*' else: continue print(*s, sep='')
f3bb6fb019a485fe0bec264817b74915c0530643
7323b8039f47c0457ae90173c963549b7d1e6823
/sandbox/src1/histdemo.py
a8514133c69af80b7c5f510d812d969b0da96add
[ "LicenseRef-scancode-public-domain", "BSD-2-Clause" ]
permissive
sniemi/SamPy
abce0fb941f011a3264a8d74c25b522d6732173d
e048756feca67197cf5f995afd7d75d8286e017b
refs/heads/master
2020-05-27T18:04:27.156194
2018-12-13T21:19:55
2018-12-13T21:19:55
31,713,784
5
2
null
null
null
null
UTF-8
Python
false
false
361
py
from matplotlib import rcParams from pylab import * mu, sigma = 100, 15 x = mu + sigma*randn(10000) # the histogram of the data n, bins, patches = hist(x, 100, normed=1) # add a 'best fit' line y = normpdf(bins, mu, sigma) l = plot(bins, y, 'r--', linewidth=2) xlim(40, 160) xlabel('Smarts') ylabel('P') title(r'$\rm{IQ:}\/ \mu=100,\/ \sigma=15$') show()
d8b1f7b564f9c8a9889d070590faa58b2928a4d8
c6d22cf128819af1d48d02972bb9296a1687b9bb
/venv/Lib/site-packages/pyface/ui/wx/image_widget.py
2e50ff64cb90378c94caab22abc79b27e902d0f7
[ "BSD-3-Clause" ]
permissive
GenomePhD/Bio1-HIV
92808a1e7e6339da6d07190ba3e1a2071f3e8428
b5059e7f121e4abb6888893f91f95dd79aed9ca4
refs/heads/master
2022-10-28T21:55:42.998205
2018-04-16T18:52:32
2018-04-16T18:52:32
129,792,081
0
1
null
2022-10-05T18:36:22
2018-04-16T19:03:26
Python
UTF-8
Python
false
false
7,447
py
#------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in enthought/LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: Enthought, Inc. # Description: <Enthought pyface package component> #------------------------------------------------------------------------------ """ A clickable/draggable widget containing an image. """ # Major package imports. import wx # Enthought library imports. from traits.api import Any, Bool, Event # Local imports. from .widget import Widget class ImageWidget(Widget): """ A clickable/draggable widget containing an image. """ #### 'ImageWidget' interface ############################################## # The bitmap. bitmap = Any # Is the widget selected? selected = Bool(False) #### Events #### # A key was pressed while the tree is in focus. key_pressed = Event # A node has been activated (ie. double-clicked). node_activated = Event # A drag operation was started on a node. node_begin_drag = Event # A (non-leaf) node has been collapsed. node_collapsed = Event # A (non-leaf) node has been expanded. node_expanded = Event # A left-click occurred on a node. node_left_clicked = Event # A right-click occurred on a node. node_right_clicked = Event #### Private interface #################################################### _selected = Any ########################################################################### # 'object' interface. ########################################################################### def __init__ (self, parent, **traits): """ Creates a new widget. """ # Base class constructors. super(ImageWidget, self).__init__(**traits) # Add some padding around the image. size = (self.bitmap.GetWidth() + 10, self.bitmap.GetHeight() + 10) # Create the toolkit-specific control. self.control = wx.Window(parent, -1, size=size) self.control.__tag__ = 'hack' self._mouse_over = False self._button_down = False # Set up mouse event handlers: self.control.Bind(wx.EVT_ENTER_WINDOW, self._on_enter_window) self.control.Bind(wx.EVT_LEAVE_WINDOW, self._on_leave_window) self.control.Bind(wx.EVT_LEFT_DCLICK, self._on_left_dclick) self.control.Bind(wx.EVT_LEFT_DOWN, self._on_left_down) self.control.Bind(wx.EVT_LEFT_UP, self._on_left_up) self.control.Bind(wx.EVT_PAINT, self._on_paint) # Pens used to draw the 'selection' marker: # ZZZ: Make these class instances when moved to the wx toolkit code. self._selectedPenDark = wx.Pen( wx.SystemSettings.GetColour(wx.SYS_COLOUR_3DSHADOW), 1, wx.PENSTYLE_SOLID ) self._selectedPenLight = wx.Pen( wx.SystemSettings.GetColour(wx.SYS_COLOUR_3DHIGHLIGHT), 1, wx.PENSTYLE_SOLID ) return ########################################################################### # Private interface. ########################################################################### #### Trait event handlers ################################################# def _bitmap_changed(self, bitmap): """ Called when the widget's bitmap is changed. """ if self.control is not None: self.control.Refresh() return def _selected_changed(self, selected): """ Called when the selected state of the widget is changed. """ if selected: for control in self.GetParent().GetChildren(): if hasattr(control, '__tag__'): if control.Selected(): control.Selected(False) break self.Refresh() return #### wx event handlers #################################################### def _on_enter_window(self, event): """ Called when the mouse enters the widget. """ if self._selected is not None: self._mouse_over = True self.Refresh() return def _on_leave_window(self, event): """ Called when the mouse leaves the widget. """ if self._mouse_over: self._mouse_over = False self.Refresh() return def _on_left_dclick(self, event): """ Called when the left mouse button is double-clicked. """ #print 'left dclick' event.Skip() return def _on_left_down ( self, event = None ): """ Called when the left mouse button goes down on the widget. """ #print 'left down' if self._selected is not None: self.CaptureMouse() self._button_down = True self.Refresh() event.Skip() return def _on_left_up ( self, event = None ): """ Called when the left mouse button goes up on the widget. """ #print 'left up' need_refresh = self._button_down if need_refresh: self.ReleaseMouse() self._button_down = False if self._selected is not None: wdx, wdy = self.GetClientSizeTuple() x = event.GetX() y = event.GetY() if (0 <= x < wdx) and (0 <= y < wdy): if self._selected != -1: self.Selected( True ) elif need_refresh: self.Refresh() return if need_refresh: self.Refresh() event.Skip() return def _on_paint ( self, event = None ): """ Called when the widget needs repainting. """ wdc = wx.PaintDC( self.control ) wdx, wdy = self.control.GetClientSizeTuple() bitmap = self.bitmap bdx = bitmap.GetWidth() bdy = bitmap.GetHeight() wdc.DrawBitmap( bitmap, (wdx - bdx) / 2, (wdy - bdy) / 2, True ) pens = [ self._selectedPenLight, self._selectedPenDark ] bd = self._button_down if self._mouse_over: wdc.SetBrush( wx.TRANSPARENT_BRUSH ) wdc.SetPen( pens[ bd ] ) wdc.DrawLine( 0, 0, wdx, 0 ) wdc.DrawLine( 0, 1, 0, wdy ) wdc.SetPen( pens[ 1 - bd ] ) wdc.DrawLine( wdx - 1, 1, wdx - 1, wdy ) wdc.DrawLine( 1, wdy - 1, wdx - 1, wdy - 1 ) if self._selected == True: wdc.SetBrush( wx.TRANSPARENT_BRUSH ) wdc.SetPen( pens[ bd ] ) wdc.DrawLine( 1, 1, wdx - 1, 1 ) wdc.DrawLine( 1, 1, 1, wdy - 1 ) wdc.DrawLine( 2, 2, wdx - 2, 2 ) wdc.DrawLine( 2, 2, 2, wdy - 2 ) wdc.SetPen( pens[ 1 - bd ] ) wdc.DrawLine( wdx - 2, 2, wdx - 2, wdy - 1 ) wdc.DrawLine( 2, wdy - 2, wdx - 2, wdy - 2 ) wdc.DrawLine( wdx - 3, 3, wdx - 3, wdy - 2 ) wdc.DrawLine( 3, wdy - 3, wdx - 3, wdy - 3 ) return #### EOF ######################################################################
53f1e2f513a9735af030b686847f828c7d25a6f9
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/spanner/admin/database/v1/admin-database-v1-py/google/cloud/spanner_admin_database_v1/services/database_admin/pagers.py
77fee41bb742a42304fa72cb45903814dd541b52
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,767
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple, Optional from google.cloud.spanner_admin_database_v1.types import backup from google.cloud.spanner_admin_database_v1.types import spanner_database_admin from google.longrunning import operations_pb2 as operations # type: ignore class ListDatabasesPager: """A pager for iterating through ``list_databases`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse` object, and provides an ``__iter__`` method to iterate through its ``databases`` field. If there are more pages, the ``__iter__`` method will make additional ``ListDatabases`` requests and continue to iterate through the ``databases`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., spanner_database_admin.ListDatabasesResponse], request: spanner_database_admin.ListDatabasesRequest, response: spanner_database_admin.ListDatabasesResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListDatabasesRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = spanner_database_admin.ListDatabasesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[spanner_database_admin.ListDatabasesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[spanner_database_admin.Database]: for page in self.pages: yield from page.databases def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListDatabasesAsyncPager: """A pager for iterating through ``list_databases`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse` object, and provides an ``__aiter__`` method to iterate through its ``databases`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListDatabases`` requests and continue to iterate through the ``databases`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[spanner_database_admin.ListDatabasesResponse]], request: spanner_database_admin.ListDatabasesRequest, response: spanner_database_admin.ListDatabasesResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListDatabasesRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListDatabasesResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = spanner_database_admin.ListDatabasesRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[spanner_database_admin.ListDatabasesResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[spanner_database_admin.Database]: async def async_generator(): async for page in self.pages: for response in page.databases: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListBackupsPager: """A pager for iterating through ``list_backups`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListBackupsResponse` object, and provides an ``__iter__`` method to iterate through its ``backups`` field. If there are more pages, the ``__iter__`` method will make additional ``ListBackups`` requests and continue to iterate through the ``backups`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListBackupsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., backup.ListBackupsResponse], request: backup.ListBackupsRequest, response: backup.ListBackupsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListBackupsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListBackupsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = backup.ListBackupsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[backup.ListBackupsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[backup.Backup]: for page in self.pages: yield from page.backups def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListBackupsAsyncPager: """A pager for iterating through ``list_backups`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListBackupsResponse` object, and provides an ``__aiter__`` method to iterate through its ``backups`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListBackups`` requests and continue to iterate through the ``backups`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListBackupsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[backup.ListBackupsResponse]], request: backup.ListBackupsRequest, response: backup.ListBackupsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListBackupsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListBackupsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = backup.ListBackupsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[backup.ListBackupsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[backup.Backup]: async def async_generator(): async for page in self.pages: for response in page.backups: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListDatabaseOperationsPager: """A pager for iterating through ``list_database_operations`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse` object, and provides an ``__iter__`` method to iterate through its ``operations`` field. If there are more pages, the ``__iter__`` method will make additional ``ListDatabaseOperations`` requests and continue to iterate through the ``operations`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., spanner_database_admin.ListDatabaseOperationsResponse], request: spanner_database_admin.ListDatabaseOperationsRequest, response: spanner_database_admin.ListDatabaseOperationsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = spanner_database_admin.ListDatabaseOperationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[spanner_database_admin.ListDatabaseOperationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[operations.Operation]: for page in self.pages: yield from page.operations def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListDatabaseOperationsAsyncPager: """A pager for iterating through ``list_database_operations`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse` object, and provides an ``__aiter__`` method to iterate through its ``operations`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListDatabaseOperations`` requests and continue to iterate through the ``operations`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[spanner_database_admin.ListDatabaseOperationsResponse]], request: spanner_database_admin.ListDatabaseOperationsRequest, response: spanner_database_admin.ListDatabaseOperationsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListDatabaseOperationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = spanner_database_admin.ListDatabaseOperationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[spanner_database_admin.ListDatabaseOperationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[operations.Operation]: async def async_generator(): async for page in self.pages: for response in page.operations: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListBackupOperationsPager: """A pager for iterating through ``list_backup_operations`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse` object, and provides an ``__iter__`` method to iterate through its ``operations`` field. If there are more pages, the ``__iter__`` method will make additional ``ListBackupOperations`` requests and continue to iterate through the ``operations`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., backup.ListBackupOperationsResponse], request: backup.ListBackupOperationsRequest, response: backup.ListBackupOperationsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListBackupOperationsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = backup.ListBackupOperationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property def pages(self) -> Iterable[backup.ListBackupOperationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = self._method(self._request, metadata=self._metadata) yield self._response def __iter__(self) -> Iterable[operations.Operation]: for page in self.pages: yield from page.operations def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response) class ListBackupOperationsAsyncPager: """A pager for iterating through ``list_backup_operations`` requests. This class thinly wraps an initial :class:`google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse` object, and provides an ``__aiter__`` method to iterate through its ``operations`` field. If there are more pages, the ``__aiter__`` method will make additional ``ListBackupOperations`` requests and continue to iterate through the ``operations`` field on the corresponding responses. All the usual :class:`google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse` attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup. """ def __init__(self, method: Callable[..., Awaitable[backup.ListBackupOperationsResponse]], request: backup.ListBackupOperationsRequest, response: backup.ListBackupOperationsResponse, *, metadata: Sequence[Tuple[str, str]] = ()): """Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.spanner_admin_database_v1.types.ListBackupOperationsRequest): The initial request object. response (google.cloud.spanner_admin_database_v1.types.ListBackupOperationsResponse): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ self._method = method self._request = backup.ListBackupOperationsRequest(request) self._response = response self._metadata = metadata def __getattr__(self, name: str) -> Any: return getattr(self._response, name) @property async def pages(self) -> AsyncIterable[backup.ListBackupOperationsResponse]: yield self._response while self._response.next_page_token: self._request.page_token = self._response.next_page_token self._response = await self._method(self._request, metadata=self._metadata) yield self._response def __aiter__(self) -> AsyncIterable[operations.Operation]: async def async_generator(): async for page in self.pages: for response in page.operations: yield response return async_generator() def __repr__(self) -> str: return '{0}<{1!r}>'.format(self.__class__.__name__, self._response)
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com