blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
9df488729a33c40b7f0a79805a0e490939c392cc
de06c4a1fb02fd23eadfc58c770d87edfd0a6d38
/group_buying/payment/migrations/0002_auto_20200829_0923.py
da6c064bd2bf89bfec813229cb49073801216a4d
[]
no_license
saisantoshchirag/group_buying
c12dc0bf1882cf03d20e6865dd98105a28907f80
1d9fb28f99dfb9b085e43bb5429bde476680ffa7
refs/heads/master
2023-08-15T01:27:56.203321
2020-11-13T11:16:36
2020-11-13T11:16:36
267,057,651
0
1
null
2021-09-22T19:21:23
2020-05-26T13:58:14
HTML
UTF-8
Python
false
false
1,038
py
# Generated by Django 2.1.5 on 2020-08-29 03:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('payment', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='orders', name='address', ), migrations.RemoveField( model_name='orders', name='city', ), migrations.RemoveField( model_name='orders', name='email', ), migrations.RemoveField( model_name='orders', name='items_json', ), migrations.RemoveField( model_name='orders', name='name', ), migrations.RemoveField( model_name='orders', name='phone', ), migrations.RemoveField( model_name='orders', name='state', ), migrations.RemoveField( model_name='orders', name='zip_code', ), ]
538215aa0cc6b8084fff013b4fd1dac21131423c
523f8f5febbbfeb6d42183f2bbeebc36f98eadb5
/80_best.py
c500e3032fd796de2b2a3073cdc4baa3dbdbb67f
[]
no_license
saleed/LeetCode
655f82fdfcc3000400f49388e97fc0560f356af0
48b43999fb7e2ed82d922e1f64ac76f8fabe4baa
refs/heads/master
2022-06-15T21:54:56.223204
2022-05-09T14:05:50
2022-05-09T14:05:50
209,430,056
2
0
null
null
null
null
UTF-8
Python
false
false
608
py
class Solution(object): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ n=0 p=0 pre=float("inf") for i in range(len(nums)): if nums[i]==pre: if n==2: continue else: n+=1 nums[p]=nums[i] p+=1 else: n=1 nums[p]=nums[i] p+=1 pre=nums[i] return p a=Solution() test=[1,1,1,2,2,3] print(a.removeDuplicates(test))
ce9a504baf33919b24dc53bdf46a87dc45cd164e
fa45fe7eaba7ef7c27ecf95db7c460ca189ce0d4
/everydays/day002/flask_test/hm_07_helloflask.py
c5e844f1d49376ac75384f887e29197ae23fd8cb
[]
no_license
jake20001/Hello
be1a2bb5331f2ad4c1d8f30c6a9a530aff79e605
08217871bb17152eb09e68cd154937ebe5d59d2c
refs/heads/master
2021-07-10T09:48:15.883716
2021-04-23T14:49:03
2021-04-23T14:49:03
56,282,358
0
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
from datetime import timedelta from flask import Flask, session,jsonify app = Flask(__name__) # 设置应用秘钥会被用于session签名 app.secret_key = 'test' # 设置session过期时间 默认31天 print(f'默认过期时间: {app.permanent_session_lifetime}') # 通过赋值一个 timedelta 对象来修改 session 的过期时间 app.permanent_session_lifetime = timedelta(days=0,seconds=20) print(f'测试过期时间: {app.permanent_session_lifetime}') @app.route('/session') def get_session(): # session是一个类字典对象 print(session) return jsonify({key: value for key, value in session.items()}) @app.route('/session/set') def set_session(): # session是一个类字典对象, 对其取值/赋值 就可以实现session数据的读写 # 记录session数据 session['username'] = 'zhangsan' session['age'] = 100 return "set session" @app.route('/session/delete') def delete_session(): # 使用 del 来删除 session 的 key,但是要判断 key 是否在 session,如果不判断可能会出现异常 if 'username' in session: del session['username'] return "delete session" if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)
c9979f423a456cb880b77c2b8a584ec0c5691070
b007d88e6726452ffa8fe80300614f311ae5b318
/educative.io/coding_patterns/hash_maps/isomorphic_string.py
3f2177702a7f146a99345b2c40f7a05c9cd83761
[]
no_license
jinurajan/Datastructures
ec332b12b8395f42cb769e771da3642f25ba7e7f
647fea5d2c8122468a1c018c6829b1c08717d86a
refs/heads/master
2023-07-06T14:42:55.168795
2023-07-04T13:23:22
2023-07-04T13:23:22
76,943,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,731
py
""" Given two strings, check whether two strings are isomorphic to each other or not. Two strings are isomorphic if a fixed mapping exists from the characters of one string to the characters of the other string. For example, if there are two instances of the character "a" in the first string, both these instances should be converted to another character (which could also remain the same character if "a" is mapped to itself) in the second string. This converted character should remain the same in both positions of the second string since there is a fixed mapping from the character "a" in the first string to the converted character in the second string. """ def is_isomorphic(string1, string2): # Write your code here # your code will replace this placeholder return statement if len(string1) != len(string2): return False map_1 = {} # str1 to str2 mapping map_2 = {} # str2 to str1 mapping for i in range(len(string1)): char_1 = string1[i] char_2 = string2[i] if char_1 in map_1 and map_1[char_1] != char_2: return False if char_2 in map_2 and map_2[char_2] != char_1: return False map_1[char_1] = char_2 map_2[char_2] = char_1 return True def is_isomorphic(string1, string2): # Write your code here # your code will replace this placeholder return statement if len(string1) != len(string2): return False map_1 = {} # str1 to str2 mapping map_2 = {} # str2 to str1 mapping for char_1, char_2 in zip(string1,string2): if char_1 in map_1 and map_1[char_1] != char_2: return False if char_2 in map_2 and map_2[char_2] != char_1: return False map_1[char_1] = char_2 map_2[char_2] = char_1 return True
dc4ba9522892d2b29251cd8eab33b73c5fffbcf8
2d2c10ffa7aa5ee35393371e7f8c13b4fab94446
/projects/ai/mrc/haihua/mrc_guwen/loss.py
b36544f5e4359d2393243aba18e0a179e657b745
[]
no_license
faker2081/pikachu2
bec83750a5ff3c7b5a26662000517df0f608c1c1
4f06d47c7bf79eb4e5a22648e088b3296dad3b2d
refs/heads/main
2023-09-02T00:28:41.723277
2021-11-17T11:15:44
2021-11-17T11:15:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,067
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # \file loss.py # \author chenghuige # \date 2021-01-09 17:51:33.472128 # \Description # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import tensorflow as tf import melt as mt from .config import * def loss_fn(y_true, y_pred, x, model): pred = y_pred pred = tf.cast(pred, tf.float32) loss_func = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE) loss = loss_func(y_true, pred) loss = mt.reduce_over(loss) return loss def get_loss(model=None): loss_fn_ = model.get_loss() # loss_fn_ = loss_fn # if not FLAGS.custom_loss: # loss_fn_ = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # else: # loss_fn_ = model.get_loss() return loss_fn_
b95feeca262a9036432d30423ce62dd23cffdd32
415fcefe59c8d33bc3f8b0784d48a7509ea7d5da
/addanother_example/models.py
f005bc5f0ebd821cc308a8ef2e021933eecd6f68
[]
no_license
asifpy/django-quickstart
6f517699375015584a7d17f112b70b8eeff89762
0ff625915cf169d3fb2f9646d9838260629c1576
refs/heads/master
2021-01-11T11:19:22.446634
2017-05-04T05:28:55
2017-05-04T05:28:55
72,719,312
2
1
null
2017-05-04T05:28:56
2016-11-03T07:24:32
Python
UTF-8
Python
false
false
795
py
from django.db import models class Team(models.Model): name = models.CharField(max_length=20) def __str__(self): return self.name class Player(models.Model): name = models.CharField(max_length=20) current_team = models.ForeignKey( "Team", related_name="current_players", help_text='This demonstrates the wrapper adding an "add" button only' ) future_team = models.ForeignKey( "Team", related_name="future_players", help_text='This demonstrates the wrapper adding both an "add" and an "edit" button' ) previous_teams = models.ManyToManyField( "Team", related_name="ancient_players", help_text="This demonstrates the wrapper on a ManyToMany field" ) def __str__(self): return self.name
a511646d6604a9c524b484c4ff7546e7ca14116e
bc167f434158921bcf2c678155c5cdfec1c9b0c9
/PI_code/simulator/behaviourGeneration/firstGenScripts_preyHunter/behav457.py
245f22a2fc444ac2254832c1c88ff8828465938b
[]
no_license
s0217391/DifferentProjects
6450efc89c64ecd21b86c705737e89e5c69433a6
7f4da153660817b6cbf72d2e823aa29c0c2f95a9
refs/heads/master
2021-01-17T02:58:46.219240
2015-05-26T22:45:46
2015-05-26T22:45:46
34,995,164
0
0
null
null
null
null
UTF-8
Python
false
false
1,209
py
#!/usr/bin/python import sys def compute(prey): temp0 = -1 * prey[1] if temp0 != 0: temp1 = temp0 / temp0 else: temp1 = temp0 temp0 = -1 * prey[1] temp1 = temp0 * prey[0] if temp0 != 0: temp2 = temp1 % temp0 else: temp2 = temp0 temp3 = temp1 + prey[1] if temp2 > temp0: if temp3 != 0: temp3 = temp3 % temp3 else: temp3 = temp3 else: if temp2 > temp0: if temp3 != 0: temp3 = prey[0] % temp3 else: temp3 = temp3 else: temp3 = temp3 * prey[0] if temp3 != 0: temp1 = temp1 / temp3 else: temp1 = temp3 if prey[1] > temp3: temp1 = temp2 * temp2 else: temp1 = prey[1] + prey[1] if temp0 != 0: temp1 = prey[1] / temp0 else: temp1 = temp0 temp0 = prey[0] + temp0 temp2 = prey[0] + temp3 temp4 = -1 * prey[1] if temp3 != 0: temp0 = temp1 % temp3 else: temp0 = temp3 temp4 = prey[0] + temp2 temp3 = prey[1] + temp3 temp1 = max(prey[1], temp3) temp2 = temp2 + prey[1] if temp1 > prey[1]: if prey[0] > prey[0]: temp0 = -1 * temp1 else: temp0 = temp1 + prey[0] else: if prey[1] != 0: temp0 = temp0 / prey[1] else: temp0 = prey[1] if temp3 != 0: temp5 = prey[1] / temp3 else: temp5 = temp3 return [prey[1], temp5]
a5c866848db0a2d103e4eccf93def3588d598874
f20da8440bae10fe73900f787fc7781f23196325
/downsample/downsample_dense.py
ad5654289ac0181edcac53448c9e825628577396
[]
no_license
ramesh720/recipe_zs2017_track2_phoneme
9c5cdb3066a84e5059153b1390802e700c66978e
f8bbd9b8e6ae4f542e52c2582eab1cf166923226
refs/heads/master
2020-04-29T11:07:47.406768
2018-01-13T13:03:46
2018-01-13T13:03:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,364
py
#!/usr/bin/env python """ Perform dense downsampling over indicated segmentation intervals. Author: Herman Kamper Contact: [email protected] Date: 2015-2017 """ from datetime import datetime from os import path import argparse import cPickle as pickle import numpy as np import scipy.signal as signal import sys OUTPUT_DIR = "embeddings" #-----------------------------------------------------------------------------# # UTILITY FUNCTIONS # #-----------------------------------------------------------------------------# def check_argv(): """Check the command line arguments.""" parser = argparse.ArgumentParser(description=__doc__.strip().split("\n")[0], add_help=False) parser.add_argument("lang", type=str, choices=["english", "french", "mandarin", "LANG1", "LANG2"]) parser.add_argument("subset", type=str, choices=["train"]) #, "test"]) # parser.add_argument("landmarks", type=str, choices=["gtphone", "unsup_syl"], help="landmarks set") parser.add_argument("landmarks", type=str, choices=["unsup_syl"], help="landmarks set") parser.add_argument( # "feature_type", type=str, help="input feature type", choices=["mfcc", "cae.d_10", "cae.d_13"] "feature_type", type=str, help="input feature type", choices=["mfcc", "okko0"] ) parser.add_argument("--n", type=int, help="number of samples (default: %(default)s)", default=10) parser.add_argument( "--frame_dims", type=int, default=None, help="only keep these number of dimensions" ) parser.add_argument( "--n_landmarks_max", type=int, help="maximum number of landmarks to cross (default: %(default)s)", default=6 ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def downsample_utterance(features, seglist, n): """ Return the downsampled matrix with each row an embedding for a segment in the seglist. """ embeddings = [] for i, j in seglist: y = features[i:j+1, :].T y_new = signal.resample(y, n, axis=1).flatten("C") embeddings.append(y_new) return np.asarray(embeddings) #-----------------------------------------------------------------------------# # MAIN FUNCTION # #-----------------------------------------------------------------------------# def main(): args = check_argv() if args.feature_type == "mfcc": input_npz_fn = path.join( "..", "features", "mfcc", args.lang + "_" + args.subset, "numpy", "mfcc.cmvn_dd.npz" ) elif args.feature_type == "okko0": input_npz_fn = path.join( "..", "features", "okko0", args.lang + "_" + args.subset, "segments.npz" ) else: assert False print("Reading: " + input_npz_fn) input_npz = np.load(input_npz_fn) d_frame = input_npz[input_npz.keys()[0]].shape[1] print("No. of utterances: " + str(len(input_npz.keys()))) seglist_pickle_fn = path.join( OUTPUT_DIR, args.lang + "_" + args.subset, "seglist." + args.landmarks + ".n_max_" + str(args.n_landmarks_max) + ".pkl" ) print("Reading: " + seglist_pickle_fn) with open(seglist_pickle_fn, "rb") as f: seglist_dict = pickle.load(f) print("No. of utterances: " + str(len(seglist_dict))) print("Frame dimensionality: " + str(d_frame)) if args.frame_dims is not None and args.frame_dims < d_frame: d_frame = args.frame_dims print("Reducing frame dimensionality: " + str(d_frame)) print("No. of samples: " + str(args.n)) print(datetime.now()) print("Downsampling") downsample_dict = {} for i, utt in enumerate(input_npz.keys()): downsample_dict[utt] = downsample_utterance( input_npz[utt][:, :args.frame_dims], seglist_dict[utt], args.n ) print(datetime.now()) output_npz_fn = path.join( OUTPUT_DIR, args.lang + "_" + args.subset, "downsample_dense." + args.feature_type + ".n_" + str(args.n) + ".n_max_" + str(args.n_landmarks_max) + "." + args.landmarks + ".npz" ) print("Writing: " + output_npz_fn) np.savez_compressed(output_npz_fn, **downsample_dict) if __name__ == "__main__": main()
0f149d04b001516f7e44891758e4f4b9fe1459e9
88d555a009f9075e59177fac70036892f397b439
/bin/saluki_train_folds.py
b0855e380c8a5fecbcf452fe9356988f2c5c8f01
[ "Apache-2.0" ]
permissive
calico/basenji
f9f406971d355dda81821dcf274696a7d27e332d
615b9eec8a591783b16d959029ddad08edae853d
refs/heads/master
2023-09-04T11:14:15.620786
2023-07-27T00:05:13
2023-07-27T00:05:13
96,346,574
326
143
Apache-2.0
2023-08-16T00:36:32
2017-07-05T17:54:18
Python
UTF-8
Python
false
false
13,420
py
#!/usr/bin/env python # Copyright 2019 Calico LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from optparse import OptionParser, OptionGroup import copy import glob import json from natsort import natsorted import os import pdb import pickle import shutil import subprocess import sys import numpy as np import pandas as pd import slurm """ saluki_train_folds.py Train Saluki model replicates on cross folds using given parameters and data. """ ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <params_file> <data1_dir> ...' parser = OptionParser(usage) # train train_options = OptionGroup(parser, 'saluki_train.py options') train_options.add_option('-o', dest='out_dir', default='train_out', help='Output directory for test statistics [Default: %default]') parser.add_option_group(train_options) # test test_options = OptionGroup(parser, 'saluki_test.py options') test_options.add_option('--shifts', dest='shifts', default='0', type='str', help='Ensemble prediction shifts [Default: %default]') parser.add_option_group(test_options) # multi rep_options = OptionGroup(parser, 'replication options') rep_options.add_option('-c', dest='crosses', default=1, type='int', help='Number of cross-fold rounds [Default:%default]') rep_options.add_option('-e', dest='conda_env', default='tf28', help='Anaconda environment [Default: %default]') rep_options.add_option('-f', dest='fold_subset', default=None, type='int', help='Run a subset of folds [Default:%default]') rep_options.add_option('--name', dest='name', default='fold', help='SLURM name prefix [Default: %default]') rep_options.add_option('-p', dest='processes', default=None, type='int', help='Number of processes, passed by multi script') rep_options.add_option('-q', dest='queue', default='geforce', help='SLURM queue on which to run the jobs [Default: %default]') rep_options.add_option('-r', dest='restart', default=False, action='store_true') rep_options.add_option('--test_off', dest='test_off', default=False, action='store_true') rep_options.add_option('--test_train_off', dest='test_train_off', default=False, action='store_true') parser.add_option_group(rep_options) (options, args) = parser.parse_args() if len(args) < 2: parser.error('Must provide parameters and data directory.') else: params_file = os.path.abspath(args[0]) data_dirs = [os.path.abspath(arg) for arg in args[1:]] # read model parameters with open(params_file) as params_open: params = json.load(params_open) params_train = params['train'] ####################################################### # prep work if not options.restart and os.path.isdir(options.out_dir): print('Output directory %s exists. Please remove.' % options.out_dir) exit(1) if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) # read data parameters num_data = len(data_dirs) data_stats_file = '%s/statistics.json' % data_dirs[0] with open(data_stats_file) as data_stats_open: data_stats = json.load(data_stats_open) # count folds num_folds = len([dkey for dkey in data_stats if dkey.startswith('fold')]) # subset folds if options.fold_subset is not None: num_folds = min(options.fold_subset, num_folds) # arrange data for ci in range(options.crosses): for fi in range(num_folds): rep_dir = '%s/f%dc%d' % (options.out_dir, fi, ci) os.makedirs(rep_dir, exist_ok=True) # make data directories for di in range(num_data): rep_data_dir = '%s/data%d' % (rep_dir, di) if not os.path.isdir(rep_data_dir): make_rep_data(data_dirs[di], rep_data_dir, fi, ci) ####################################################### # train jobs = [] for ci in range(options.crosses): for fi in range(num_folds): rep_dir = '%s/f%dc%d' % (options.out_dir, fi, ci) if options.restart and os.path.isdir('%s/train'%rep_dir): print('%s found and skipped.' % rep_dir) else: # collect data directories rep_data_dirs = [] for di in range(num_data): rep_data_dirs.append('%s/data%d' % (rep_dir, di)) # train command cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' cmd += ' conda activate %s;' % options.conda_env cmd += ' echo $HOSTNAME;' cmd += ' saluki_train.py' cmd += ' %s' % options_string(options, train_options, rep_dir) cmd += ' %s %s' % (params_file, ' '.join(rep_data_dirs)) name = '%s-train-f%dc%d' % (options.name, fi, ci) sbf = os.path.abspath('%s/train.sb' % rep_dir) outf = os.path.abspath('%s/train.out' % rep_dir) errf = os.path.abspath('%s/train.err' % rep_dir) j = slurm.Job(cmd, name, outf, errf, sbf, queue=options.queue, cpu=4, gpu=params_train.get('num_gpu',1), mem=30000, time='2-0:0:0') jobs.append(j) slurm.multi_run(jobs, max_proc=options.processes, verbose=True, launch_sleep=10, update_sleep=60) ####################################################### # test train jobs = [] if not options.test_train_off: for ci in range(options.crosses): for fi in range(num_folds): it_dir = '%s/f%dc%d' % (options.out_dir, fi, ci) for di in range(num_data): if num_data == 1: out_dir = '%s/test_train' % it_dir model_file = '%s/train/model_best.h5' % it_dir else: out_dir = '%s/test%d_train' % (it_dir, di) model_file = '%s/train/model%d_best.h5' % (it_dir, di) # check if done acc_file = '%s/acc.txt' % out_dir if os.path.isfile(acc_file): print('%s already generated.' % acc_file) else: # basenji test basenji_cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' basenji_cmd += ' conda activate %s;' % options.conda_env basenji_cmd += ' saluki_test.py' basenji_cmd += ' --head %d' % di basenji_cmd += ' -o %s' % out_dir if options.shifts: basenji_cmd += ' --shifts %s' % options.shifts basenji_cmd += ' --split train' basenji_cmd += ' %s' % params_file basenji_cmd += ' %s' % model_file basenji_cmd += ' %s/data%d' % (it_dir, di) name = '%s-testtr-f%dc%d' % (options.name, fi, ci) basenji_job = slurm.Job(basenji_cmd, name=name, out_file='%s.out'%out_dir, err_file='%s.err'%out_dir, queue=options.queue, cpu=2, gpu=1, mem=23000, time='8:00:00') jobs.append(basenji_job) ####################################################### # test best if not options.test_off: for ci in range(options.crosses): for fi in range(num_folds): it_dir = '%s/f%dc%d' % (options.out_dir, fi, ci) for di in range(num_data): if num_data == 1: out_dir = '%s/test' % it_dir model_file = '%s/train/model_best.h5' % it_dir else: out_dir = '%s/test%d' % (it_dir, di) model_file = '%s/train/model%d_best.h5' % (it_dir, di) # check if done acc_file = '%s/acc.txt' % out_dir if os.path.isfile(acc_file): print('%s already generated.' % acc_file) else: # basenji test basenji_cmd = '. /home/drk/anaconda3/etc/profile.d/conda.sh;' basenji_cmd += ' conda activate %s;' % options.conda_env basenji_cmd += ' saluki_test.py' basenji_cmd += ' --head %d' % di # TEMP basenji_cmd += ' --save' basenji_cmd += ' -o %s' % out_dir if options.shifts: basenji_cmd += ' --shifts %s' % options.shifts basenji_cmd += ' %s' % params_file basenji_cmd += ' %s' % model_file basenji_cmd += ' %s/data%d' % (it_dir, di) name = '%s-test-f%dc%d' % (options.name, fi, ci) basenji_job = slurm.Job(basenji_cmd, name=name, out_file='%s.out'%out_dir, err_file='%s.err'%out_dir, queue=options.queue, cpu=2, gpu=1, mem=23000, time='4:00:00') jobs.append(basenji_job) slurm.multi_run(jobs, max_proc=options.processes, verbose=True, launch_sleep=10, update_sleep=60) def make_rep_data(data_dir, rep_data_dir, fi, ci): # read data parameters data_stats_file = '%s/statistics.json' % data_dir with open(data_stats_file) as data_stats_open: data_stats = json.load(data_stats_open) # sequences per fold fold_seqs = [] dfi = 0 while 'fold%d_seqs'%dfi in data_stats: fold_seqs.append(data_stats['fold%d_seqs'%dfi]) del data_stats['fold%d_seqs'%dfi] dfi += 1 num_folds = dfi # split folds into train/valid/test test_fold = fi valid_fold = (fi+1+ci) % num_folds train_folds = [fold for fold in range(num_folds) if fold not in [valid_fold,test_fold]] # clear existing directory if os.path.isdir(rep_data_dir): shutil.rmtree(rep_data_dir) # make data directory os.mkdir(rep_data_dir) # dump data stats data_stats['test_seqs'] = fold_seqs[test_fold] data_stats['valid_seqs'] = fold_seqs[valid_fold] data_stats['train_seqs'] = sum([fold_seqs[tf] for tf in train_folds]) with open('%s/statistics.json'%rep_data_dir, 'w') as data_stats_open: json.dump(data_stats, data_stats_open, indent=4) # genes table genes_df = pd.read_csv('%s/genes.tsv' % data_dir, sep='\t', index_col=0) gene_split = np.array(['train']*genes_df.shape[0]) gene_split[genes_df.Fold==test_fold] = 'test' gene_split[genes_df.Fold==valid_fold] = 'valid' genes_df['Split'] = gene_split genes_df.to_csv('%s/genes.tsv'%rep_data_dir, sep='\t') # copy targets shutil.copy('%s/targets.txt'%data_dir, '%s/targets.txt'%rep_data_dir) # sym link tfrecords rep_tfr_dir = '%s/tfrecords' % rep_data_dir os.mkdir(rep_tfr_dir) # test tfrecords ti = 0 test_tfrs = natsorted(glob.glob('%s/tfrecords/fold%d-*.tfr' % (data_dir, test_fold))) for test_tfr in test_tfrs: test_tfr = os.path.abspath(test_tfr) test_rep_tfr = '%s/test-%d.tfr' % (rep_tfr_dir, ti) os.symlink(test_tfr, test_rep_tfr) ti += 1 # valid tfrecords ti = 0 valid_tfrs = natsorted(glob.glob('%s/tfrecords/fold%d-*.tfr' % (data_dir, valid_fold))) for valid_tfr in valid_tfrs: valid_tfr = os.path.abspath(valid_tfr) valid_rep_tfr = '%s/valid-%d.tfr' % (rep_tfr_dir, ti) os.symlink(valid_tfr, valid_rep_tfr) ti += 1 # train tfrecords ti = 0 train_tfrs = [] for tfi in train_folds: train_tfrs += natsorted(glob.glob('%s/tfrecords/fold%d-*.tfr' % (data_dir, tfi))) for train_tfr in train_tfrs: train_tfr = os.path.abspath(train_tfr) train_rep_tfr = '%s/train-%d.tfr' % (rep_tfr_dir, ti) os.symlink(train_tfr, train_rep_tfr) ti += 1 def options_string(options, train_options, rep_dir): options_str = '' for opt in train_options.option_list: opt_str = opt.get_opt_string() opt_value = options.__dict__[opt.dest] # wrap askeriks in "" if type(opt_value) == str and opt_value.find('*') != -1: opt_value = '"%s"' % opt_value # no value for bools elif type(opt_value) == bool: if not opt_value: opt_str = '' opt_value = '' # skip Nones elif opt_value is None: opt_str = '' opt_value = '' # modify elif opt.dest == 'out_dir': opt_value = '%s/train' % rep_dir # find matching restore elif opt.dest == 'restore': fold_dir_mid = rep_dir.split('/')[-1] if options.trunk: opt_value = '%s/%s/train/model_trunk.h5' % (opt_value, fold_dir_mid) else: opt_value = '%s/%s/train/model_best.h5' % (opt_value, fold_dir_mid) options_str += ' %s %s' % (opt_str, opt_value) return options_str ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main()
e0cef2e9484c65cdeaf1980ebb7c8d939eeb49b2
738b4fd5d8ebb8c424947a6786bd41ba30df46d6
/ibeatles/fitting/fitting_launcher.py
4d66c124f6dace8967669f0f642adedd8f81d6c0
[ "MIT" ]
permissive
indudhiman/bragg-edge
ba6e5c02e2bf2c2c5f87b626a4578238f7973e43
56af0a448534ef9cb5428879ba900e194dc05db2
refs/heads/master
2020-04-16T22:49:53.274903
2019-01-08T14:18:32
2019-01-08T14:18:32
165,985,908
0
0
null
null
null
null
UTF-8
Python
false
false
28,018
py
try: import PyQt4 import PyQt4.QtGui as QtGui import PyQt4.QtCore as QtCore from PyQt4.QtGui import QMainWindow from PyQt4.QtGui import QApplication except: import PyQt5 import PyQt5.QtGui as QtGui import PyQt5.QtCore as QtCore from PyQt5.QtWidgets import QMainWindow from PyQt5.QtWidgets import QApplication from pyqtgraph.dockarea import * import pyqtgraph as pg import numpy as np from ibeatles.interfaces.ui_fittingWindow import Ui_MainWindow as UiMainWindow from ibeatles.utilities.colors import pen_color from ibeatles.utilities.array_utilities import find_nearest_index from ibeatles.fitting.fitting_handler import FittingHandler from ibeatles.fitting.value_table_handler import ValueTableHandler from ibeatles.fitting.selected_bin_handler import SelectedBinsHandler from ibeatles.table_dictionary.table_dictionary_handler import TableDictionaryHandler from ibeatles.fitting.filling_table_handler import FillingTableHandler from ibeatles.fitting.fitting_initialization_handler import FittingInitializationHandler from ibeatles.fitting.create_fitting_story_launcher import CreateFittingStoryLauncher class FittingLauncher(object): def __init__(self, parent=None): self.parent = parent if self.parent.fitting_ui == None: fitting_window = FittingWindow(parent=parent) fitting_window.show() self.parent.fitting_ui = fitting_window o_fitting = FittingHandler(parent=self.parent) o_fitting.display_image() o_fitting.display_roi() o_fitting.fill_table() fitting_window.check_advanced_table_status() else: self.parent.fitting_ui.setFocus() self.parent.fitting_ui.activateWindow() class FittingWindow(QMainWindow): data = [] there_is_a_roi = False bragg_edge_active_button_status = True # to make sure active/lock button worked correctly list_bins_selected_item = [] list_bins_locked_item = [] image_view = None bragg_edge_plot = None line_view = None line_view_fitting = None #roi selected in binning window all_bins_button = None indi_bins_button = None header_value_tables_match = {0: [0], 1: [1], 2: [2], 3: [3], 4: [4], 5: [5,6], 6: [7,8], 7: [9,10], 8: [11,12], 9: [13,14], 10: [15,16], 11: [17,18], 12: [19,20]} para_cell_width = 110 header_table_columns_width = [30, 30, 50,50,100, para_cell_width, para_cell_width, para_cell_width, para_cell_width, para_cell_width, para_cell_width, para_cell_width, para_cell_width, para_cell_width] fitting_table_columns_width = [header_table_columns_width[0], header_table_columns_width[1], header_table_columns_width[2], header_table_columns_width[3], header_table_columns_width[4], np.int(header_table_columns_width[5]/2), np.int(header_table_columns_width[5]/2), np.int(header_table_columns_width[6]/2), np.int(header_table_columns_width[6]/2), np.int(header_table_columns_width[7]/2), np.int(header_table_columns_width[7]/2), np.int(header_table_columns_width[8]/2), np.int(header_table_columns_width[8]/2), np.int(header_table_columns_width[9]/2), np.int(header_table_columns_width[9]/2), np.int(header_table_columns_width[10]/2), np.int(header_table_columns_width[10]/2), np.int(header_table_columns_width[11]/2), np.int(header_table_columns_width[11]/2), np.int(header_table_columns_width[12]/2), np.int(header_table_columns_width[12]/2)] # status of alpha and sigma initialization sigma_alpha_initialized = False initialization_table = {'d_spacing': np.NaN, 'alpha': np.NaN, 'sigma': np.NaN, 'a1': np.NaN, 'a2': np.NaN, 'a5': np.NaN, 'a6': np.NaN} bragg_edge_data = {'x_axis': [], 'y_axis': []} def __init__(self, parent=None): self.parent = parent QMainWindow.__init__(self, parent=parent) self.ui = UiMainWindow() self.ui.setupUi(self) self.setWindowTitle("5. Fitting") self.init_pyqtgraph() self.init_labels() self.init_widgets() self.init_table_behavior() self.check_status_widgets() def re_fill_table(self): o_fitting = FittingHandler(parent=self.parent) o_fitting.fill_table() def init_table_behavior(self): for _column, _width in enumerate(self.header_table_columns_width): self.ui.header_table.setColumnWidth(_column, _width) for _column, _width in enumerate(self.fitting_table_columns_width): self.ui.value_table.setColumnWidth(_column, _width) self.hori_header_table = self.ui.header_table.horizontalHeader() self.hori_value_table = self.ui.value_table.horizontalHeader() self.hori_header_table.sectionResized.connect(self.resizing_header_table) self.hori_value_table.sectionResized.connect(self.resizing_value_table) self.hori_header_table.sectionClicked.connect(self.column_header_table_clicked) self.hori_value_table.sectionClicked.connect(self.column_value_table_clicked) def column_value_table_clicked(self, column): ''' to make sure that if the val or err column is selected, or unselected, the other column behave the same ''' if column < 5: return _item0 = self.parent.fitting_ui.ui.value_table.item(0, column) state_column_clicked = self.parent.fitting_ui.ui.value_table.isItemSelected(_item0) if column % 2 == 0: col1 = column-1 col2 = column else: col1 = column col2 = column+1 nbr_row = self.parent.fitting_ui.ui.value_table.rowCount() range_selected = QtGui.QTableWidgetSelectionRange(0, col1, nbr_row-1, col2) self.parent.fitting_ui.ui.value_table.setRangeSelected(range_selected, state_column_clicked) def column_header_table_clicked(self, column): _value_table_column = self.header_value_tables_match.get(column, -1) nbr_row = self.parent.fitting_ui.ui.value_table.rowCount() # if both col already selected, unselect them col_already_selected = False _item1 = self.parent.fitting_ui.ui.value_table.item(0, _value_table_column[0]) _item2 = self.parent.fitting_ui.ui.value_table.item(0, _value_table_column[-1]) if self.parent.fitting_ui.ui.value_table.isItemSelected(_item1) and \ self.parent.fitting_ui.ui.value_table.isItemSelected(_item2): col_already_selected = True if column in [2,3]: selection = self.parent.fitting_ui.ui.value_table.selectedRanges() col_already_selected = False for _select in selection: if column in [_select.leftColumn(), _select.rightColumn()]: col_already_selected = True break from_col = _value_table_column[0] to_col = _value_table_column[-1] range_selected = QtGui.QTableWidgetSelectionRange(0, from_col, nbr_row-1, to_col) self.parent.fitting_ui.ui.value_table.setRangeSelected(range_selected, not col_already_selected) def resizing_header_table(self, index_column, old_size, new_size): if index_column < 5: self.ui.value_table.setColumnWidth(index_column, new_size) else: new_half_size = np.int(new_size/2) index1 = (index_column - 5) * 2 + 5 index2 = index1+1 self.ui.value_table.setColumnWidth(index1, new_half_size) self.ui.value_table.setColumnWidth(index2, new_half_size) def resizing_value_table(self, index_column, old_size, new_size): if index_column < 5: self.ui.header_table.setColumnWidth(index_column, new_size) else: if (index_column % 2) == 1: right_new_size = self.ui.value_table.columnWidth(index_column + 1) index_header = np.int(index_column - 5) / 2 + 5 self.ui.header_table.setColumnWidth(index_header, new_size + right_new_size) else: left_new_size = self.ui.value_table.columnWidth(index_column - 1) index_header = np.int(index_column - 6) / 2 + 5 self.ui.header_table.setColumnWidth(index_header, new_size + left_new_size) def init_widgets(self): ''' such as material h,k,l list according to material selected in normalized tab ''' hkl_list = self.parent.selected_element_hkl_array str_hkl_list = ["{},{},{}".format(_hkl[0], _hkl[1], _hkl[2]) for _hkl in hkl_list] self.ui.hkl_list_ui.addItems(str_hkl_list) def check_status_widgets(self): if (len(self.parent.data_metadata['normalized']['data_live_selection']) > 0) and \ not (self.parent.binning_line_view['pos'] is None): status = True else: status = False self.ui.instructions_step1_button.setEnabled(status) def init_labels(self): self.ui.lambda_min_label.setText(u"\u03BB<sub>min</sub>") self.ui.lambda_max_label.setText(u"\u03BB<sub>max</sub>") self.ui.lambda_min_units.setText(u"\u212B") self.ui.lambda_max_units.setText(u"\u212B") self.ui.bragg_edge_units.setText(u"\u212B") self.ui.material_groupBox.setTitle(self.parent.selected_element_name) def init_pyqtgraph(self): if (len(self.parent.data_metadata['normalized']['data_live_selection']) > 0) and \ not (self.parent.binning_line_view['pos'] is None): status = True else: status = False area = DockArea() self.ui.area = area area.setVisible(status) d1 = Dock("Image Preview", size=(200, 300)) d2 = Dock("Bragg Edge", size=(200, 100)) area.addDock(d1, 'top') area.addDock(d2, 'bottom') preview_widget = pg.GraphicsLayoutWidget() pg.setConfigOptions(antialias=True) # this improve display vertical_layout = QtGui.QVBoxLayout() preview_widget.setLayout(vertical_layout) # image view (top plot) image_view = pg.ImageView() image_view.ui.roiBtn.hide() image_view.ui.menuBtn.hide() self.image_view = image_view image_view.scene.sigMouseMoved.connect(self.mouse_moved_in_image_view) top_widget = QtGui.QWidget() vertical = QtGui.QVBoxLayout() vertical.addWidget(image_view) # bin transparency transparency_layout = QtGui.QHBoxLayout() spacer = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) transparency_layout.addItem(spacer) label = QtGui.QLabel("Bin Transparency") transparency_layout.addWidget(label) slider = QtGui.QSlider(QtCore.Qt.Horizontal) slider.setMaximum(100) slider.setMinimum(0) slider.setValue(50) slider.valueChanged.connect(self.slider_changed) self.slider = slider transparency_layout.addWidget(slider) bottom_widget = QtGui.QWidget() bottom_widget.setLayout(transparency_layout) top_widget.setLayout(vertical) d1.addWidget(top_widget) d1.addWidget(bottom_widget) # bragg edge plot (bottom plot) bragg_edge_plot = pg.PlotWidget(title='') bragg_edge_plot.plot() self.bragg_edge_plot = bragg_edge_plot # plot all or individual bins buttons_layout = QtGui.QHBoxLayout() spacer = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) buttons_layout.addItem(spacer) label = QtGui.QLabel("Plot") label.setEnabled(False) buttons_layout.addWidget(label) # all bins button active_button = QtGui.QRadioButton() active_button.setText("Active Bins") active_button.setChecked(True) #active_button.setEnabled(False) active_button.pressed.connect(self.active_button_pressed) self.ui.active_bins_button = active_button # indi bin button buttons_layout.addWidget(active_button) locked_button = QtGui.QRadioButton() locked_button.setText("Locked Bins") locked_button.setChecked(False) #locked_button.setEnabled(False) locked_button.pressed.connect(self.lock_button_pressed) self.ui.locked_bins_button = locked_button buttons_layout.addWidget(locked_button) bottom_widget = QtGui.QWidget() bottom_widget.setLayout(buttons_layout) d2.addWidget(bragg_edge_plot) d2.addWidget(bottom_widget) vertical_layout.addWidget(area) self.ui.widget.setLayout(vertical_layout) def active_button_pressed(self): self.bragg_edge_active_button_status = True self.update_bragg_edge_plot() def lock_button_pressed(self): self.bragg_edge_active_button_status = False self.update_bragg_edge_plot() def mouse_moved_in_image_view(self): self.image_view.setFocus(True) def hkl_list_changed(self, hkl): bragg_edges_array = self.parent.selected_element_bragg_edges_array if bragg_edges_array: if str(hkl) == '': value = "N/A" else: hkl_array = self.parent.selected_element_hkl_array str_hkl_list = ["{},{},{}".format(_hkl[0], _hkl[1], _hkl[2]) for _hkl in hkl_array] hkl_bragg_edges = dict(zip(str_hkl_list, bragg_edges_array)) value = "{:04.3f}".format(hkl_bragg_edges[str(hkl)]) else: value = "N/A" self.ui.bragg_edge_calculated.setText(value) def slider_changed(self): o_fitting_handler = FittingHandler(parent=self.parent) o_fitting_handler.display_roi() def active_button_state_changed(self, status, row_clicked): ''' status: 0: off 2: on ''' QApplication.setOverrideCursor(QtCore.Qt.WaitCursor) update_lock_flag = False if self.parent.advanced_selection_ui: self.parent.advanced_selection_ui.ui.selection_table.blockSignals(True) if status == 0: status = False else: status = True # perform same status on all rows _selection = self.ui.value_table.selectedRanges() _this_column_is_selected = False for _select in _selection: if 3 in [_select.leftColumn(), _select.rightColumn()]: _this_column_is_selected = True break table_dictionary = self.parent.table_dictionary if _this_column_is_selected: update_selection_flag = True #we change the state so we need to update the selection for _index in table_dictionary: table_dictionary[_index]['active'] = status _widget_lock = self.ui.value_table.cellWidget(int(_index), 3) _widget_lock.blockSignals(True) _widget_lock.setChecked(status) _widget_lock.blockSignals(False) if status: _widget = self.ui.value_table.cellWidget(int(_index), 2) if _widget.isChecked(): # because we can not be active and locked at the same time table_dictionary[_index]['lock'] = False _widget.blockSignals(True) _widget.setChecked(False) _widget.blockSignals(False) else: table_dictionary[str(row_clicked)]['active'] = status if status: _widget = self.ui.value_table.cellWidget(row_clicked, 2) if _widget.isChecked(): table_dictionary[str(row_clicked)]['lock'] = False _widget.blockSignals(True) _widget.setChecked(False) _widget.blockSignals(False) update_lock_flag = True self.parent.table_dictionary = table_dictionary # hide this row if status is False and user only wants to see locked items o_filling_handler = FillingTableHandler(parent = self.parent) if (status == False) and (o_filling_handler.get_row_to_show_state() == 'active'): self.parent.fitting_ui.ui.value_table.hideRow(row_clicked) o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bins_selected() self.update_bragg_edge_plot() o_bin_handler.update_bins_locked() if self.parent.advanced_selection_ui: self.parent.advanced_selection_ui.update_selection_table() if update_lock_flag: self.parent.advanced_selection_ui.update_lock_table() self.parent.advanced_selection_ui.ui.selection_table.blockSignals(False) QApplication.restoreOverrideCursor() def lock_button_state_changed(self, status, row_clicked): ''' status: 0: off 2: on we also need to make sure that if the button is lock, it can not be activated ! ''' update_selection_flag = False if self.parent.advanced_selection_ui: self.parent.advanced_selection_ui.ui.lock_table.blockSignals(True) if status == 0: status = False else: status = True # perform same status on all rows _selection = self.ui.value_table.selectedRanges() _this_column_is_selected = False for _select in _selection: if 2 in [_select.leftColumn(), _select.rightColumn()]: _this_column_is_selected = True break table_dictionary = self.parent.table_dictionary if _this_column_is_selected: update_selection_flag = True #we change the state so we need to update the selection for _index in table_dictionary: table_dictionary[_index]['lock'] = status _widget_lock = self.ui.value_table.cellWidget(int(_index), 2) _widget_lock.blockSignals(True) _widget_lock.setChecked(status) _widget_lock.blockSignals(False) if status: _widget = self.ui.value_table.cellWidget(int(_index), 3) if _widget.isChecked(): # because we can not be active and locked at the same time table_dictionary[_index]['active'] = False _widget.blockSignals(True) _widget.setChecked(False) _widget.blockSignals(False) else: table_dictionary[str(row_clicked)]['lock'] = status if status: _widget = self.ui.value_table.cellWidget(row_clicked, 3) if _widget.isChecked(): # because we can not be active and locked at the same time table_dictionary[str(row_clicked)]['active'] = False _widget.blockSignals(True) _widget.setChecked(False) _widget.blockSignals(False) update_selection_flag = True #we change the state so we need to update the selection self.parent.table_dictionary = table_dictionary # hide this row if status is False and user only wants to see locked items o_filling_handler = FillingTableHandler(parent = self.parent) if (status == False) and (o_filling_handler.get_row_to_show_state() == 'lock'): self.parent.fitting_ui.ui.value_table.hideRow(row_clicked) o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bins_locked() self.update_bragg_edge_plot() o_bin_handler.update_bins_selected() if self.parent.advanced_selection_ui: self.parent.advanced_selection_ui.update_lock_table() if update_selection_flag: self.parent.advanced_selection_ui.update_selection_table() self.parent.advanced_selection_ui.ui.lock_table.blockSignals(False) def value_table_right_click(self, position): o_table_handler = ValueTableHandler(parent=self.parent) o_table_handler.right_click(position=position) def update_image_view_selection(self): o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bins_selected() def update_image_view_lock(self): o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bins_locked() def update_bragg_edge_plot(self, update_selection=True): o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bragg_edge_plot() if update_selection: self.bragg_edge_linear_region_changing() def selection_in_value_table_of_rows_cell_clicked(self, row, column): # make sure the selection is right (val and err selected at the same time) if column > 4: _item0 = self.ui.value_table.item(0, column) _is_selected = self.ui.value_table.isItemSelected(_item0) if (column % 2) == 0: left_column = column - 1 right_column = column else: left_column = column right_column = column + 1 nbr_row = self.ui.value_table.rowCount() _selection = QtGui.QTableWidgetSelectionRange(0, left_column, nbr_row-1, right_column) self.ui.value_table.setRangeSelected(_selection, _is_selected) self.update_bragg_edge_plot() def selection_in_value_table_changed(self): self.selection_in_value_table_of_rows_cell_clicked(-1, -1) def bragg_edge_linear_region_changing(self): #current xaxis is x_axis = self.parent.fitting_bragg_edge_x_axis _lr = self.parent.fitting_lr if _lr is None: return selection = list(_lr.getRegion()) left_index = find_nearest_index(array = x_axis, value=selection[0]) right_index = find_nearest_index(array = x_axis, value=selection[1]) # display lambda left and right lambda_array = self.parent.data_metadata['time_spectra']['normalized_lambda'] * 1e10 _lambda_min = lambda_array[left_index] _lambda_max = lambda_array[right_index] self.ui.lambda_min_lineEdit.setText("{:4.2f}".format(_lambda_min)) self.ui.lambda_max_lineEdit.setText("{:4.2f}".format(_lambda_max)) def bragg_edge_linear_region_changed(self): #current xaxis is x_axis = self.parent.normalized_lambda_bragg_edge_x_axis _lr = self.parent.fitting_lr if _lr is None: return selection = list(_lr.getRegion()) left_index = find_nearest_index(array = x_axis, value=selection[0]) right_index = find_nearest_index(array = x_axis, value=selection[1]) list_selected = [left_index, right_index] self.parent.fitting_bragg_edge_linear_selection = list_selected def check_advanced_table_status(self): button_status = self.ui.advanced_table_checkBox.isChecked() self.advanced_table_clicked(button_status) def advanced_table_clicked(self, status): QApplication.setOverrideCursor(QtCore.Qt.WaitCursor) o_table_handler = FillingTableHandler(parent=self.parent) o_table_handler.set_mode(advanced_mode = status) QApplication.restoreOverrideCursor() def update_table(self): o_filling_table = FillingTableHandler(parent = self.parent) self.parent.fitting_ui.ui.value_table.blockSignals(True) o_filling_table.fill_table() self.parent.fitting_ui.ui.value_table.blockSignals(False) def min_or_max_lambda_manually_changed(self): min_lambda = float(str(self.ui.lambda_min_lineEdit.text())) max_lambda = float(str(self.ui.lambda_max_lineEdit.text())) lambda_array = self.parent.data_metadata['time_spectra']['normalized_lambda'] * 1e10 left_index = find_nearest_index(array=lambda_array, value=min_lambda) right_index = find_nearest_index(array=lambda_array, value=max_lambda) self.parent.fitting_bragg_edge_linear_selection = [left_index, right_index] o_bin_handler = SelectedBinsHandler(parent = self.parent) o_bin_handler.update_bragg_edge_plot() def initialize_all_parameters_button_clicked(self): o_initialization = FittingInitializationHandler(parent=self.parent) o_initialization.make_all_active() o_initialization.run() def initialize_all_parameters_step2(self): o_initialization = FittingInitializationHandler(parent=self.parent) o_initialization.finished_up_initialization() # activate or not step4 (yes if we were able to initialize correctly all variables) self.ui.step4_groupBox.setEnabled(o_initialization.all_variables_initialized) self.update_bragg_edge_plot() def fit_table_active_cell_checked(self): pass def create_fitting_story_checked(self): o_story = CreateFittingStoryLauncher(parent=self.parent) def closeEvent(self, event=None): if self.parent.advanced_selection_ui: self.parent.advanced_selection_ui.close() if self.parent.fitting_set_variables_ui: self.parent.fitting_set_variables_ui.close() self.parent.fitting_ui = None
8425cd0230586cba7d321dc4706f57f721a3c5d4
b246bdb4ae3d845bbf8dee704b8936c32211c0f5
/Figure_1/initial_subtyping/do_tsne.py
fe059a8bd9f38cb0c2f026356b59d034111066fc
[]
no_license
KnottLab/bladder-snSeq
abfd3d77a04250622e6a28d84878e5adcd335d00
2e087dc745046e30c2814ab3e4c295bfa34e6820
refs/heads/master
2023-04-07T13:36:44.794889
2021-12-08T15:37:45
2021-12-08T15:37:45
323,445,511
4
1
null
null
null
null
UTF-8
Python
false
false
2,966
py
#!/usr/bin/env python import numpy as np import argparse from load_data import load_data from MulticoreTSNE import MulticoreTSNE as TSNE try: import cuml CUML_FLAG=True except: print('[DO_TSNE] WARNING failed to import cuML. GPU accelerated TSNE will not be available.') CUML_FLAG=False """ Modules have two modes: standalone from command line and pipelined Both modes accept a preprocessed AnnData object as input. Standalone mode writes back a AnnData with new metadata Pipelined mode returns the AnnData object with new metadata UMAPs with /umap-learn/cuML GPU-accelerated UMAP implementation https://umap-learn.readthedocs.io/en/latest/ https://github.com/lmcinnes/umap """ def do_tsne(adata, ARGS): latent = adata.obsm[ARGS.latent_key] if ARGS.gpu and CUML_FLAG: print('[DO_TSNE] Using cuML GPU-accelerated TSNE') umap_class = cuml.UMAP if ARGS.metric != 'euclidean': print('[DO_TSNE] cuML TSNE requres euclidean distance metric.') emb = cuml.TSNE( perplexity = ARGS.perplexity, learning_rate = ARGS.learning_rate, early_exaggeration = ARGS.early_exaggeration, ).fit_transform(latent) else: print('[DO_TSNE] Using MulticoreTSNE') emb = TSNE( perplexity = ARGS.perplexity, metric = ARGS.metric, verbose = False, n_jobs=ARGS.n_jobs).fit_transform(latent) print(f'[DO_TSNE] placing embedding {emb.shape} in key {ARGS.tsne_key}') adata.obsm[ARGS.tsne_key] = emb print(f'[DO_TSNE] recording tSNE args') adata.uns['tSNE_args'] = ARGS.__dict__ return adata if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('dataset', type=str) parser.add_argument('--latent_key', default='X_scVI_vanilla', type=str, help = 'Key in adata.obsm to use as features for tsne.') parser.add_argument('--tsne_key', default='X_scVI_tsne_vanilla', type=str, help = 'Key in adata.obsm to save tsne embedding.') parser.add_argument('--gpu', action='store_true', help = 'Whether to use GPU-accelerated tsne via RapidsAI \ and the cuML library. ') parser.add_argument('-j', '--n_jobs', default=12, type=int, help = 'Number of jobs for MulticoreTSNE') parser.add_argument('--perplexity', default=20, type=int) parser.add_argument('--learning_rate', default=200., type=float) parser.add_argument('--n_iter', default=1000, type=int) parser.add_argument('--metric', default='euclidean', type=str) parser.add_argument('--early_exaggeration', default=12, type=float) parser.add_argument('--output_adata', default=None, type=str, help = 'Path to save.') ARGS = parser.parse_args() adata = load_data(ARGS.dataset) adata = do_tsne(adata, ARGS) if ARGS.output_adata is not None: print(f'[DO_TSNE] Writing to {ARGS.output_adata}') adata.write(ARGS.output_adata)
14e1a228d0680642f41d17ebeaa1552a75c5e0c5
1aa0ddb70fb893a6f958841b0a606cdcac954e18
/settings/forms/batches.py
a1931328efe9b17262c46d238776331d3278fa66
[]
no_license
shitalluitel/LibraryManagementSystem
3042860a70096bf3821299fb10ca35958e680f62
eecd909b272ad7e524a031c9142d22a356141fda
refs/heads/master
2023-02-17T06:42:19.044516
2021-01-10T14:52:18
2021-01-10T14:52:18
166,533,846
2
1
null
2023-02-07T22:14:35
2019-01-19T10:22:41
HTML
UTF-8
Python
false
false
1,003
py
from django import forms from django.forms import ModelMultipleChoiceField from settings.models import Batch, CourseBatch, Course class BatchForm(forms.ModelForm): class Meta: model = Batch fields = ['name', 'code'] widgets = { 'name': forms.TextInput(attrs={'class': 'form-control'}), 'code': forms.TextInput(attrs={'class': 'form-control'}), } labels = { 'name': 'Batch Name', 'code': 'Batch Code', } class CourseBatchCreateForm(forms.Form): course = forms.ModelMultipleChoiceField( queryset=Course.objects.all(), label="Choose courses for this batch." ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # # self.fields['course'] = ModelMultipleChoiceField(queryset=Course.objects.all()) self.fields['course'].widget.attrs['class'] = 'form-control' self.fields['course'].empty_label = "Choose a countries"
5f01b00fb146fec0d23c878194633081590499e0
59de7788673ade984b9c9fbc33664a7cbdba67d3
/res/scripts/client/gui/scaleform/framework/entities/abstract/tooltipmgrmeta.py
a6dfedb52bce9035a795727e60fc365f096a4dbc
[]
no_license
webiumsk/WOT-0.9.15-CT
3fa24ab37a6c91b7073034afb2f355efa5b7fe36
fbd194fbaa6bdece51c7a68fc35bbb5257948341
refs/heads/master
2020-12-24T21:27:23.175774
2016-05-01T13:47:44
2016-05-01T13:47:44
57,600,180
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,329
py
# 2016.05.01 15:22:59 Střední Evropa (letní čas) # Embedded file name: scripts/client/gui/Scaleform/framework/entities/abstract/ToolTipMgrMeta.py from gui.Scaleform.framework.entities.BaseDAAPIModule import BaseDAAPIModule class ToolTipMgrMeta(BaseDAAPIModule): """ DO NOT MODIFY! Generated with yaml. __author__ = 'yaml_processor' @extends BaseDAAPIModule null """ def onCreateComplexTooltip(self, tooltipId, stateType): """ :param tooltipId: :param stateType: :return : """ self._printOverrideError('onCreateComplexTooltip') def onCreateTypedTooltip(self, type, args, stateType): """ :param type: :param args: :param stateType: :return : """ self._printOverrideError('onCreateTypedTooltip') def as_showS(self, tooltipData, linkage): """ :param tooltipData: :param linkage: :return : """ if self._isDAAPIInited(): return self.flashObject.as_show(tooltipData, linkage) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\framework\entities\abstract\tooltipmgrmeta.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.05.01 15:22:59 Střední Evropa (letní čas)
85d95bdfbd59a153f246c62bca01d14bff2342be
8382f4ec907950a8cfc618d3cceb97b0d00ab478
/6kyu/encryptThis.py
98249bc9ece7063bffc8fcf98db0cc716a54aaba
[]
no_license
naistangz/codewars_challenges
80788f3869a4283c89ee2a05f19142b18ba4820c
372bbb6f1668b378183a169206526b52315107a8
refs/heads/master
2023-04-14T11:52:31.412554
2021-04-25T09:39:03
2021-04-25T09:39:03
299,615,380
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
def encrypt_this(text): words = text.split(" ") res = [] for i in words: new = "" temp = "" for j in range(len(i)): if j == 0: new += str(ord(i[j])) elif j == 1: temp = i[j] new += i[-1] elif j == len(i) - 1: new += temp else: new += i[j] res.append(new) return " ".join(list(filter(None, res)))
7c8e4675d0711026385f5328533e7c8eeb8fad4d
56db1ccba3f8976b2df6d97c99e5aae7108149a1
/spending/main/admin.py
2c410651c1a51abbb5f05621793ae519229eae80
[]
no_license
peterbe/django-spending
4d60b7a77250fc58eb7a397e388fd22fe73576de
ab2ab1730fbdd999e5ef8d75575795fa3a48d2b9
refs/heads/master
2021-01-10T05:32:00.005607
2013-07-06T05:41:41
2013-07-06T05:41:41
8,384,613
2
0
null
null
null
null
UTF-8
Python
false
false
593
py
from django.contrib import admin from spending.main.models import Household, Expense, Category class HouseholdAdmin(admin.ModelAdmin): list_display = ('name', 'no_users') def no_users(self, obj): return obj.users.all().count() no_users.short_description = '# users' class ExpenseAdmin(admin.ModelAdmin): list_display = ('amount', 'date', 'user', 'category') class CategoryAdmin(admin.ModelAdmin): list_display = ('name',) admin.site.register(Household, HouseholdAdmin) admin.site.register(Expense, ExpenseAdmin) admin.site.register(Category, CategoryAdmin)
11ef2cc4fb52774a2fb7d480df6720fc9c79afd9
9b20743ec6cd28d749a4323dcbadb1a0cffb281b
/02_Statistical_Methods_for_Machine_Learning/14/01_tolerance.py
4a81741857f5d7f81dd597a2d99ba09c2f2bae3b
[]
no_license
jggrimesdc-zz/MachineLearningExercises
6e1c7e1f95399e69bba95cdfe17c4f8d8c90d178
ee265f1c6029c91daff172b3e7c1a96177646bc5
refs/heads/master
2023-03-07T19:30:26.691659
2021-02-19T08:00:49
2021-02-19T08:00:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,055
py
# parametric tolerance interval from numpy import mean from numpy import sqrt from numpy.random import randn from numpy.random import seed from scipy.stats import chi2 from scipy.stats import norm # seed the random number generator seed(1) # generate dataset data = 5 * randn(100) + 50 # specify degrees of freedom n = len(data) dof = n - 1 # specify data coverage prop = 0.95 prop_inv = (1.0 - prop) / 2.0 gauss_critical = norm.ppf(prop_inv) print('Gaussian critical value: %.3f (coverage=%d%%)' % (gauss_critical, prop * 100)) # specify confidence prob = 0.99 prop_inv = 1.0 - prob chi_critical = chi2.ppf(prop_inv, dof) print('Chi-Squared critical value: %.3f (prob=%d%%, dof=%d)' % (chi_critical, prob * 100, dof)) # tolerance interval = sqrt((dof * (1 + (1 / n)) * gauss_critical ** 2) / chi_critical) print('Tolerance Interval: %.3f' % interval) # summarize data_mean = mean(data) lower, upper = data_mean - interval, data_mean + interval print('%.2f to %.2f covers %d%% of data with a confidence of %d%%' % (lower, upper, prop * 100, prob * 100))
4fdc6b0d3c0d6e664d22960a9926a3b2127f2f29
753a70bc416e8dced2853f278b08ef60cdb3c768
/models/research/deeplab/datasets/build_cityscapes_data.py
ce81baef20a460abaa634d3f1dcb6760a0858dec
[ "MIT", "Apache-2.0" ]
permissive
finnickniu/tensorflow_object_detection_tflite
ef94158e5350613590641880cb3c1062f7dd0efb
a115d918f6894a69586174653172be0b5d1de952
refs/heads/master
2023-04-06T04:59:24.985923
2022-09-20T16:29:08
2022-09-20T16:29:08
230,891,552
60
19
MIT
2023-03-25T00:31:18
2019-12-30T09:58:41
C++
UTF-8
Python
false
false
6,244
py
# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts Cityscapes data to TFRecord file format with Example protos. The Cityscapes dataset is expected to have the following directory structure: + cityscapes - build_cityscapes_data.py (current working directiory). - build_data.py + cityscapesscripts + annotation + evaluation + helpers + preparation + viewer + gtFine + train + val + test + leftImg8bit + train + val + test + tfrecord This script converts data into sharded data files and save at tfrecord folder. Note that before running this script, the users should (1) register the Cityscapes dataset website at https://www.cityscapes-dataset.com to download the dataset, and (2) run the script provided by Cityscapes `preparation/createTrainIdLabelImgs.py` to generate the training groundtruth. Also note that the tensorflow model will be trained with `TrainId' instead of `EvalId' used on the evaluation server. Thus, the users need to convert the predicted labels to `EvalId` for evaluation on the server. See the vis.py for more details. The Example proto contains the following fields: image/encoded: encoded image content. image/filename: image filename. image/format: image file format. image/height: image height. image/width: image width. image/channels: image channels. image/segmentation/class/encoded: encoded semantic segmentation content. image/segmentation/class/format: semantic segmentation file format. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import math import os.path import re import sys import build_data from six.moves import range import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('cityscapes_root', './cityscapes', 'Cityscapes dataset root folder.') tf.app.flags.DEFINE_string( 'output_dir', './tfrecord', 'Path to save converted SSTable of TensorFlow examples.') _NUM_SHARDS = 10 # A map from data type to folder name that saves the data. _FOLDERS_MAP = { 'image': 'leftImg8bit', 'label': 'gtFine', } # A map from data type to filename postfix. _POSTFIX_MAP = { 'image': '_leftImg8bit', 'label': '_gtFine_labelTrainIds', } # A map from data type to data format. _DATA_FORMAT_MAP = { 'image': 'png', 'label': 'png', } # Image file pattern. _IMAGE_FILENAME_RE = re.compile('(.+)' + _POSTFIX_MAP['image']) def _get_files(data, dataset_split): """Gets files for the specified data type and dataset split. Args: data: String, desired data ('image' or 'label'). dataset_split: String, dataset split ('train', 'val', 'test') Returns: A list of sorted file names or None when getting label for test set. """ if data == 'label' and dataset_split == 'test': return None pattern = '*%s.%s' % (_POSTFIX_MAP[data], _DATA_FORMAT_MAP[data]) search_files = os.path.join( FLAGS.cityscapes_root, _FOLDERS_MAP[data], dataset_split, '*', pattern) filenames = glob.glob(search_files) return sorted(filenames) def _convert_dataset(dataset_split): """Converts the specified dataset split to TFRecord format. Args: dataset_split: The dataset split (e.g., train, val). Raises: RuntimeError: If loaded image and label have different shape, or if the image file with specified postfix could not be found. """ image_files = _get_files('image', dataset_split) label_files = _get_files('label', dataset_split) num_images = len(image_files) num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) image_reader = build_data.ImageReader('png', channels=3) label_reader = build_data.ImageReader('png', channels=1) for shard_id in range(_NUM_SHARDS): shard_filename = '%s-%05d-of-%05d.tfrecord' % ( dataset_split, shard_id, _NUM_SHARDS) output_filename = os.path.join(FLAGS.output_dir, shard_filename) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_idx = shard_id * num_per_shard end_idx = min((shard_id + 1) * num_per_shard, num_images) for i in range(start_idx, end_idx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i + 1, num_images, shard_id)) sys.stdout.flush() # Read the image. image_data = tf.gfile.FastGFile(image_files[i], 'rb').read() height, width = image_reader.read_image_dims(image_data) # Read the semantic segmentation annotation. seg_data = tf.gfile.FastGFile(label_files[i], 'rb').read() seg_height, seg_width = label_reader.read_image_dims(seg_data) if height != seg_height or width != seg_width: raise RuntimeError('Shape mismatched between image and label.') # Convert to tf example. re_match = _IMAGE_FILENAME_RE.search(image_files[i]) if re_match is None: raise RuntimeError('Invalid image filename: ' + image_files[i]) filename = os.path.basename(re_match.group(1)) example = build_data.image_seg_to_tfexample( image_data, filename, height, width, seg_data) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def main(unused_argv): # Only support converting 'train' and 'val' sets for now. for dataset_split in ['train', 'val']: _convert_dataset(dataset_split) if __name__ == '__main__': tf.app.run()
36427016924bc734286ed9ff39b3812b2d38b21a
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2367/60699/251530.py
e61d0d3cb0da03640cd9f10d895c7a604b12880b
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
167
py
res1=1 list1=[1] for i in range(0,30): res1=res1*10+1 list1.append(res1) n=int(input()) for i in list1: if i%n==0: print(i) break print(-1)
6c1288b99b5652fc745dbe1c2daa5fa84a0b459f
cd91dd22b391968e077fd0a693813893543cdf1f
/src/opserver/consistent_schdlr.py
d4dee2598c34380e1ab5750983d488d72b64a7fd
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
forsakening/controller
6c89476901d78423721b4b444d54123630eaa300
408892746ea189aecae33ce3b5a8ac6c1200a8d8
refs/heads/master
2020-04-08T12:08:27.204902
2019-02-13T08:56:03
2019-02-13T08:56:03
159,334,442
0
1
Apache-2.0
2019-01-31T01:44:29
2018-11-27T12:48:27
C++
UTF-8
Python
false
false
10,996
py
# # Copyright (c) 2015 Juniper Networks, Inc. All rights reserved. # from consistent_hash import ConsistentHash import gevent import os import hashlib import logging from kazoo.client import KazooClient from kazoo.client import KazooState from kazoo.handlers.gevent import SequentialGeventHandler from random import randint import struct import traceback from pysandesh.connection_info import ConnectionState from pysandesh.gen_py.process_info.ttypes import ConnectionStatus, \ ConnectionType class ConsistentScheduler(object): ''' LibPartitionHelper abstract out workers and work_items, and their mapping to partitions. So application can only deal with the work items it owns, without bothering about partition mapping. This class also provides syncronization premitives to ensure apps to clean up b4 giving up their partitions ''' _MAX_WAIT_4_ALLOCATION = 6 + randint(0, 9) def __init__(self, service_name=None, zookeeper='127.0.0.1:2181', delete_hndlr=None, add_hndlr=None, bucketsize=47, item2part_func=None, partitioner=None, logger=None, cluster_id=''): if logger: self._logger = logger else: self._logger = logging.getLogger(__name__) self._service_name = service_name or os.path.basename(sys.argv[0]) self._item2part_func = item2part_func or self._device2partition self._zookeeper_srvr = zookeeper self._zk = None self._bucketsize = bucketsize self._delete_hndlr = delete_hndlr self._add_hndlr = add_hndlr self._partitioner = partitioner or self._partitioner_func self._partitions = {} self._con_hash = None self._last_log = '' self._last_log_cnt = 0 self._partition_set = map(str, range(self._bucketsize)) self._cluster_id = cluster_id if self._cluster_id: self._zk_path = '/'+self._cluster_id + '/contrail_cs' + '/'+self._service_name else: self._zk_path = '/'.join(['/contrail_cs', self._service_name]) self._conn_state = None self._sandesh_connection_info_update(status='INIT', message='') while True: self._logger.error("Consistent scheduler zk start") self._zk = KazooClient(self._zookeeper_srvr, handler=SequentialGeventHandler()) self._zk.add_listener(self._zk_lstnr) try: self._zk.start() while self._conn_state != ConnectionStatus.UP: gevent.sleep(1) break except Exception as e: # Update connection info self._sandesh_connection_info_update(status='DOWN', message=str(e)) self._zk.remove_listener(self._zk_lstnr) try: self._zk.stop() self._zk.close() except Exception as ex: template = "Exception {0} in Consistent scheduler zk stop/close. Args:\n{1!r}" messag = template.format(type(ex).__name__, ex.args) self._logger.error("%s : traceback %s for %s" % \ (messag, traceback.format_exc(), self._service_name)) finally: self._zk = None gevent.sleep(1) self._pc = self._zk.SetPartitioner(path=self._zk_path, set=self._partition_set, partition_func=self._partitioner) self._wait_allocation = 0 gevent.sleep(0) def _sandesh_connection_info_update(self, status, message): new_conn_state = getattr(ConnectionStatus, status) ConnectionState.update(conn_type = ConnectionType.ZOOKEEPER, name = 'Zookeeper', status = new_conn_state, message = message, server_addrs = self._zookeeper_srvr.split(',')) if ((self._conn_state and self._conn_state != ConnectionStatus.DOWN) and new_conn_state == ConnectionStatus.DOWN): msg = 'Connection to Zookeeper down: %s' %(message) self._supress_log(msg) if (self._conn_state and self._conn_state != new_conn_state and new_conn_state == ConnectionStatus.UP): msg = 'Connection to Zookeeper ESTABLISHED' self._supress_log(msg) self._conn_state = new_conn_state # end _sandesh_connection_info_update def _zk_lstnr(self, state): self._logger.error("Consistent scheduler listen %s" % str(state)) if state == KazooState.CONNECTED: # Update connection info self._sandesh_connection_info_update(status='UP', message='') elif state == KazooState.LOST: self._logger.error("Consistent scheduler connection LOST") # Lost the session with ZooKeeper Server # Best of option we have is to exit the process and restart all # over again self._sandesh_connection_info_update(status='DOWN', message='Connection to Zookeeper lost') os._exit(2) elif state == KazooState.SUSPENDED: self._logger.error("Consistent scheduler connection SUSPENDED") # Update connection info self._sandesh_connection_info_update(status='INIT', message = 'Connection to zookeeper lost. Retrying') def schedule(self, items, lock_timeout=30): gevent.sleep(0) ret = False if self._pc.failed: self._logger.error('Lost or unable to acquire partition') os._exit(2) elif self._pc.release: self._supress_log('Releasing...') self._release() elif self._pc.allocating: self._supress_log('Waiting for allocation...') self._pc.wait_for_acquire(lock_timeout) if self._wait_allocation < self._MAX_WAIT_4_ALLOCATION: self._wait_allocation += 1 else: self._logger.error('Giving up after %d tries!' % (self._wait_allocation)) os._exit(2) elif self._pc.acquired: self._supress_log('got work: ', list(self._pc)) ret = True self._wait_allocation = 0 self._populate_work_items(items) self._supress_log('work items: ', self._items2name(self.work_items()), 'from the list', self._items2name(items)) return ret def members(self): return list(self._con_hash.nodes) def partitions(self): return list(self._pc) def work_items(self): return sum(self._partitions.values(), []) def finish(self): self._inform_delete(self._partitions.keys()) self._pc.finish() self._zk.remove_listener(self._zk_lstnr) gevent.sleep(1) try: self._zk.stop() except: self._logger.error("Stopping kazooclient failed") else: self._logger.error("Stopping kazooclient successful") try: self._zk.close() except: self._logger.error("Closing kazooclient failed") else: self._logger.error("Closing kazooclient successful") def _items2name(self, items): return map(lambda x: x.name, items) def _supress_log(self, *s): slog = ' '.join(map(str, s)) dl = '' if slog != self._last_log_cnt: if self._last_log_cnt: dl += ' ' * 4 dl += '.' * 8 dl += '[last print repeats %d times]' % self._last_log_cnt self._last_log_cnt = 0 dl += slog self._last_log = slog self._logger.debug(dl) else: self._last_log_cnt += 1 def _consistent_hash(self, members): if self._con_hash is None: self._con_hash = ConsistentHash(members) self._logger.error('members: %s' % (str(self._con_hash.nodes))) cur, updtd = set(self._con_hash.nodes), set(members) if cur != updtd: newm = updtd - cur rmvd = cur - updtd if newm: self._logger.error('new members: %s' % (str(newm))) self._con_hash.add_nodes(list(newm)) if rmvd: self._logger.error('members left: %s' % (str(rmvd))) self._con_hash.del_nodes(list(rmvd)) return self._con_hash def _consistent_hash_get_node(self, members, partition): return self._consistent_hash(members).get_node(partition) def _partitioner_func(self, identifier, members, _partitions): partitions = [p for p in _partitions \ if self._consistent_hash_get_node(members, p) == identifier] self._logger.error('partitions: %s' % (str(partitions))) return partitions def _release(self): old = set(self._pc) new = set(self._partitioner(self._pc._identifier, list(self._pc._party), self._partition_set)) rmvd = old - new added = new - old if rmvd: self._inform_delete(list(rmvd)) if added: self._inform_will_add(list(added)) self._pc.release_set() def _list_items_in(self, partitions): return sum([self._partitions[k] for k in partitions if k in \ self._partitions], []) def _inform_will_add(self, partitions): if callable(self._add_hndlr): self._add_hndlr(self._list_items_in(partitions)) def _inform_delete(self, partitions): if callable(self._delete_hndlr): self._delete_hndlr(self._list_items_in(partitions)) def _populate_work_items(self, items): self._refresh_work_items() for i in items: part = str(self._item2part_func(i.name)) if part in list(self._pc): if part not in self._partitions: self._partitions[part] = [] if i.name not in map(lambda x: x.name, self._partitions[part]): self._partitions[part].append(i) self._logger.debug('@populate_work_items(%s): done!' % ' '.join( map(lambda v: str(v[0]) + ':' + ','.join(map( lambda x: x.name, v[1])), self._partitions.items()))) gevent.sleep(0) def _device2partition(self, key): return struct.unpack('Q', hashlib.md5(key).digest( )[-8:])[0] % self._bucketsize def _refresh_work_items(self): for k in self._partitions: self._partitions[k] = []
47e5b33bf2c46dffa3df76a2bf4134619041815a
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/Reconstruction/RecExample/RecExCommon/share/ContainerRemapping.py
00f5c31d568f606d42fba403b8779c3df62a656f
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
4,782
py
include.block ("RecExCommon/ContainerRemapping.py") from AthenaCommon.AppMgr import ServiceMgr # Instantiate the address remapping service: if not hasattr( ServiceMgr, "AddressRemappingSvc" ): ServiceMgr += CfgMgr.AddressRemappingSvc() pass if not hasattr( ServiceMgr, "ProxyProviderSvc" ): ServiceMgr += CfgMgr.ProxyProviderSvc() pass ServiceMgr.ProxyProviderSvc.ProviderNames += [ "AddressRemappingSvc" ] # Declare the name conversion rules: ServiceMgr.AddressRemappingSvc.TypeKeyOverwriteMaps += [ "xAOD::ElectronContainer#ElectronCollection->" "xAOD::ElectronContainer#Electrons", "xAOD::ElectronAuxContainer#ElectronCollectionAux.->" "xAOD::ElectronAuxContainer#ElectronsAux.", "xAOD::ElectronContainer#FwdElectrons->" "xAOD::ElectronContainer#ForwardElectrons", "xAOD::ElectronAuxContainer#FwdElectronsAux.->" "xAOD::ElectronAuxContainer#ForwardElectronsAux.", "xAOD::PhotonContainer#PhotonCollection->" "xAOD::PhotonContainer#Photons", "xAOD::PhotonAuxContainer#PhotonCollectionAux.->" "xAOD::PhotonAuxContainer#PhotonsAux.", "xAOD::CaloClusterContainer#egClusterCollection->" "xAOD::CaloClusterContainer#egammaClusters", "xAOD::CaloClusterAuxContainer#egClusterCollectionAux.->" "xAOD::CaloClusterAuxContainer#egammaClustersAux.", "xAOD::CaloClusterContainer#LArClusterEMFrwd->" "xAOD::CaloClusterContainer#ForwardElectronClusters", "xAOD::CaloClusterAuxContainer#LArClusterEMFrwdAux.->" "xAOD::CaloClusterAuxContainer#ForwardElectronClustersAux.", "xAOD::TrackParticleContainer#InDetTrackParticlesForward->" "xAOD::TrackParticleContainer#InDetForwardTrackParticles", "xAOD::TrackParticleAuxContainer#InDetTrackParticlesForwardAux.->" "xAOD::TrackParticleAuxContainer#InDetForwardTrackParticlesAux.", "xAOD::TrackParticleContainer#InDetTrackParticlesLowBeta->" "xAOD::TrackParticleContainer#InDetLowBetaTrackParticles", "xAOD::TrackParticleAuxContainer#InDetTrackParticlesLowBetaAux.->" "xAOD::TrackParticleAuxContainer#InDetLowBetaTrackParticlesAux.", "xAOD::TauJetContainer#TauRecContainer->" "xAOD::TauJetContainer#TauJets", "xAOD::TauJetAuxContainer#TauRecContainerAux.->" "xAOD::TauJetAuxContainer#TauJetsAux.", "xAOD::CaloClusterContainer#TauPi0ClusterContainer->" "xAOD::CaloClusterContainer#TauPi0Clusters", "xAOD::CaloClusterAuxContainer#TauPi0ClusterContainerAux.->" "xAOD::CaloClusterAuxContainer#TauPi0ClustersAux.", "xAOD::VertexContainer#TauSecondaryVertexContainer->" "xAOD::VertexContainer#TauSecondaryVertices", "xAOD::VertexAuxContainer#TauSecondaryVertexContainerAux.->" "xAOD::VertexAuxContainer#TauSecondaryVerticesAux.", "xAOD::PFOContainer#TauShotPFOContainer->" "xAOD::PFOContainer#TauShotParticleFlowObjects", "xAOD::PFOAuxContainer#TauShotPFOContainerAux.->" "xAOD::PFOAuxContainer#TauShotParticleFlowObjectsAux.", "xAOD::PFOContainer#TauPi0ChargedPFOContainer->" "xAOD::PFOContainer#TauChargedParticleFlowObjects", "xAOD::PFOAuxContainer#TauPi0ChargedPFOContainerAux.->" "xAOD::PFOAuxContainer#TauChargedParticleFlowObjectsAux.", "xAOD::PFOContainer#TauPi0NeutralPFOContainer->" "xAOD::PFOContainer#TauNeutralParticleFlowObjects", "xAOD::PFOAuxContainer#TauPi0NeutralPFOContainerAux.->" "xAOD::PFOAuxContainer#TauNeutralParticleFlowObjectsAux.", "xAOD::PFOContainer#chargedJetETMissPFO_eflowRec->" "xAOD::PFOContainer#JetETMissChargedParticleFlowObjects", "xAOD::PFOAuxContainer#chargedJetETMissPFO_eflowRecAux.->" "xAOD::PFOAuxContainer#JetETMissChargedParticleFlowObjectsAux.", "xAOD::PFOContainer#neutralJetETMissPFO_eflowRec->" "xAOD::PFOContainer#JetETMissNeutralParticleFlowObjects", "xAOD::PFOAuxContainer#neutralJetETMissPFO_eflowRecAux.->" "xAOD::PFOAuxContainer#JetETMissNeutralParticleFlowObjectsAux.", "xAOD::CaloClusterContainer#CaloCalTopoCluster->" "xAOD::CaloClusterContainer#CaloCalTopoClusters", "xAOD::CaloClusterAuxContainer#CaloCalTopoClusterAux.->" "xAOD::CaloClusterAuxContainer#CaloCalTopoClustersAux.", "xAOD::TruthEventContainer#TruthEvent->" "xAOD::TruthEventContainer#TruthEvents", "xAOD::TruthEventAuxContainer#TruthEventAux.->" "xAOD::TruthEventAuxContainer#TruthEventsAux.", "xAOD::TruthParticleContainer#TruthParticle->" "xAOD::TruthParticleContainer#TruthParticles", "xAOD::TruthParticleAuxContainer#TruthParticleAux.->" "xAOD::TruthParticleAuxContainer#TruthParticlesAux.", "xAOD::TruthVertexContainer#TruthVertex->" "xAOD::TruthVertexContainer#TruthVertices", "xAOD::TruthVertexAuxContainer#TruthVertexAux.->" "xAOD::TruthVertexAuxContainer#TruthVerticesAux." ]
70b13e09918671ec8f42febe6f91674c2a84f798
d4f2e2e3552ab4b111f78cfbad0d30c144201093
/2016-12-20/semaphore.py
2c1f4492110d89b3a3f1daa84001456b57596e8d
[ "Apache-2.0" ]
permissive
dongweiming/mp
c1e9f6f2c1fd8adbd4d7b8ffc45c5cc288cdcd80
129c31c818e1f0c39c983aad1f2f1ad9fa7efb1c
refs/heads/master
2023-04-29T07:56:27.198574
2022-10-30T04:20:09
2022-10-30T04:21:27
75,051,758
96
35
Apache-2.0
2023-04-17T17:34:17
2016-11-29T06:44:53
Python
UTF-8
Python
false
false
509
py
import aiohttp import asyncio NUMBERS = range(12) URL = 'http://httpbin.org/get?a={}' sema = asyncio.Semaphore(3) async def fetch_async(a): async with aiohttp.request('GET', URL.format(a)) as r: data = await r.json() return data['args']['a'] async def print_result(a): with (await sema): r = await fetch_async(a) print('fetch({}) = {}'.format(a, r)) loop = asyncio.get_event_loop() f = asyncio.wait([print_result(num) for num in NUMBERS]) loop.run_until_complete(f)
3d2cdb0df6994ed18122a7d3e04ebebc15aee7da
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/nnuiy.py
d0fcd3f412294aeefbace25ce9b8a1fa5cf588aa
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
44
py
ii = [('MedwTAI2.py', 1), ('MereHHB.py', 1)]
b097b7a2e91b91ea67969ca245e6a9c69ad4bc7f
fbbe424559f64e9a94116a07eaaa555a01b0a7bb
/Selenium_Chromium/source/selenium/webdriver/edge/service.py
9eac51171035f1d2bd648ca409aeee7b8c69b782
[ "MIT" ]
permissive
ryfeus/lambda-packs
6544adb4dec19b8e71d75c24d8ed789b785b0369
cabf6e4f1970dc14302f87414f170de19944bac2
refs/heads/master
2022-12-07T16:18:52.475504
2022-11-29T13:35:35
2022-11-29T13:35:35
71,386,735
1,283
263
MIT
2022-11-26T05:02:14
2016-10-19T18:22:39
Python
UTF-8
Python
false
false
2,161
py
# Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from selenium.webdriver.common import service class Service(service.Service): def __init__(self, executable_path, port=0, verbose=False, log_path=None): """ Creates a new instance of the EdgeDriver service. EdgeDriver provides an interface for Microsoft WebDriver to use with Microsoft Edge. :param executable_path: Path to the Microsoft WebDriver binary. :param port: Run the remote service on a specified port. Defaults to 0, which binds to a random open port of the system's choosing. :verbose: Whether to make the webdriver more verbose (passes the --verbose option to the binary). Defaults to False. :param log_path: Optional path for the webdriver binary to log to. Defaults to None which disables logging. """ self.service_args = [] if verbose: self.service_args.append("--verbose") params = { "executable": executable_path, "port": port, "start_error_message": "Please download from http://go.microsoft.com/fwlink/?LinkId=619687" } if log_path: params["log_file"] = open(log_path, "a+") service.Service.__init__(self, **params) def command_line_args(self): return ["--port=%d" % self.port] + self.service_args
fe0e6cff95e5d8a330eff9257815093428fb3c63
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
/test/test_od_mcomplex_type_definition_range_check.py
1654fc81fa59cb3e96dcfdc2ece04a4d325049a1
[]
no_license
Sage-Bionetworks/rcc-client
c770432de2d2950e00f7c7bd2bac22f3a81c2061
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
refs/heads/main
2023-02-23T05:55:39.279352
2021-01-21T02:06:08
2021-01-21T02:06:08
331,486,099
0
0
null
null
null
null
UTF-8
Python
false
false
2,610
py
# coding: utf-8 """ nPhase REST Resource REDCap REST API v.2 # noqa: E501 The version of the OpenAPI document: 2.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import rcc from rcc.models.od_mcomplex_type_definition_range_check import ODMcomplexTypeDefinitionRangeCheck # noqa: E501 from rcc.rest import ApiException class TestODMcomplexTypeDefinitionRangeCheck(unittest.TestCase): """ODMcomplexTypeDefinitionRangeCheck unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ODMcomplexTypeDefinitionRangeCheck include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = rcc.models.od_mcomplex_type_definition_range_check.ODMcomplexTypeDefinitionRangeCheck() # noqa: E501 if include_optional : return ODMcomplexTypeDefinitionRangeCheck( check_value = [ rcc.models.od_mcomplex_type_definition_check_value.ODMcomplexTypeDefinitionCheckValue( value = '0', ) ], formal_expression = [ rcc.models.od_mcomplex_type_definition_formal_expression.ODMcomplexTypeDefinitionFormalExpression( value = '0', context = '0', ) ], measurement_unit_ref = rcc.models.od_mcomplex_type_definition_measurement_unit_ref.ODMcomplexTypeDefinitionMeasurementUnitRef( measurement_unit_oid = '0', ), error_message = rcc.models.od_mcomplex_type_definition_error_message.ODMcomplexTypeDefinitionErrorMessage( translated_text = [ rcc.models.od_mcomplex_type_definition_translated_text.ODMcomplexTypeDefinitionTranslatedText( value = '0', lang = '0', ) ], ), comparator = 'LT', soft_hard = 'SOFT' ) else : return ODMcomplexTypeDefinitionRangeCheck( ) def testODMcomplexTypeDefinitionRangeCheck(self): """Test ODMcomplexTypeDefinitionRangeCheck""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
d273be6ad84e00816624c1c2db81aeb55764ad1f
49536aafb22a77a6caf249c7fadef46d63d24dfe
/tensorflow/tensorflow/python/ops/metrics_impl.py
07a43d2961aef78c6af194c06eb1cd62d641f352
[ "Apache-2.0" ]
permissive
wangzhi01/deeplearning-1
4e5ad93f0d9ecd302b74352f80fe1fa6ae70bf0d
46ab82253d956953b8aa98e97ceb6cd290e82288
refs/heads/master
2020-05-28T03:14:55.687567
2018-09-12T16:52:09
2018-09-12T16:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
144,255
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of tf.metrics module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import sets from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import weights_broadcast_ops def _local_variable(initial_value, validate_shape=True, name=None): """Create variable and add it to `GraphKeys.LOCAL_VARIABLES` collection. Args: initial_value: See variables.Variable.__init__. validate_shape: See variables.Variable.__init__. name: See variables.Variable.__init__. Returns: New variable. """ return variable_scope.variable( initial_value, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], validate_shape=validate_shape, name=name) def _remove_squeezable_dimensions(predictions, labels, weights): """Internal version of `remove_squeezable_dimensions` which handles weights. Squeezes `predictions` and `labels` if their rank differs by 1. Squeezes `weights` if its rank is 1 more than the new rank of `predictions` This will use static shape if available. Otherwise, it will add graph operations, which could result in a performance hit. Args: predictions: Predicted values, a `Tensor` of arbitrary dimensions. labels: Optional label `Tensor` whose dimensions match `predictions`. weights: Optional weight `Tensor`. It will be squeezed if its rank is 1 more than the new rank of `predictions` Returns: Tuple of `predictions`, `labels` and `weights`, possibly with the last dimension squeezed. """ predictions = ops.convert_to_tensor(predictions) if labels is not None: labels, predictions = confusion_matrix.remove_squeezable_dimensions( labels, predictions) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if weights is None: return predictions, labels, None weights = ops.convert_to_tensor(weights) weights_shape = weights.get_shape() weights_rank = weights_shape.ndims if weights_rank == 0: return predictions, labels, weights predictions_shape = predictions.get_shape() predictions_rank = predictions_shape.ndims if (predictions_rank is not None) and (weights_rank is not None): # Use static rank. if weights_rank - predictions_rank == 1: weights = array_ops.squeeze(weights, [-1]) elif predictions_rank - weights_rank == 1: weights = array_ops.expand_dims(weights, [-1]) else: # Use dynamic rank. weights_rank_tensor = array_ops.rank(weights) rank_diff = weights_rank_tensor - array_ops.rank(predictions) def _maybe_expand_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, -1), lambda: array_ops.expand_dims(weights, [-1]), lambda: weights) # Don't attempt squeeze if it will fail based on static check. if ((weights_rank is not None) and (not weights_shape.dims[-1].is_compatible_with(1))): maybe_squeeze_weights = lambda: weights else: maybe_squeeze_weights = lambda: array_ops.squeeze(weights, [-1]) def _maybe_adjust_weights(): return control_flow_ops.cond( math_ops.equal(rank_diff, 1), maybe_squeeze_weights, _maybe_expand_weights) # If weights are scalar, do nothing. Otherwise, try to add or remove a # dimension to match predictions. weights = control_flow_ops.cond( math_ops.equal(weights_rank_tensor, 0), lambda: weights, _maybe_adjust_weights) return predictions, labels, weights def _maybe_expand_labels(labels, predictions): """If necessary, expand `labels` along last dimension to match `predictions`. Args: labels: `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN]. The latter implies num_labels=1, in which case the result is an expanded `labels` with shape [D1, ... DN, 1]. predictions: `Tensor` with shape [D1, ... DN, num_classes]. Returns: `labels` with the same rank as `predictions`. Raises: ValueError: if `labels` has invalid shape. """ with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope: labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) # If sparse, expand sparse shape. if isinstance(labels, sparse_tensor.SparseTensor): return control_flow_ops.cond( math_ops.equal( array_ops.rank(predictions), array_ops.size(labels.dense_shape) + 1), lambda: sparse_ops.sparse_reshape( # pylint: disable=g-long-lambda labels, shape=array_ops.concat((labels.dense_shape, (1,)), 0), name=scope), lambda: labels) # Otherwise, try to use static shape. labels_rank = labels.get_shape().ndims if labels_rank is not None: predictions_rank = predictions.get_shape().ndims if predictions_rank is not None: if predictions_rank == labels_rank: return labels if predictions_rank == labels_rank + 1: return array_ops.expand_dims(labels, -1, name=scope) raise ValueError( 'Unexpected labels shape %s for predictions shape %s.' % ( labels.get_shape(), predictions.get_shape())) # Otherwise, use dynamic shape. return control_flow_ops.cond( math_ops.equal(array_ops.rank(predictions), array_ops.rank(labels) + 1), lambda: array_ops.expand_dims(labels, -1, name=scope), lambda: labels) def _create_local(name, shape, collections=None, validate_shape=True, dtype=dtypes.float32): """Creates a new local variable. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. collections: A list of collection names to which the Variable will be added. validate_shape: Whether to validate the shape of the variable. dtype: Data type of the variables. Returns: The created variable. """ # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES collections = list(collections or []) collections += [ops.GraphKeys.LOCAL_VARIABLES] return variable_scope.variable( lambda: array_ops.zeros(shape, dtype=dtype), name=name, trainable=False, collections=collections, validate_shape=validate_shape) def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) def _safe_scalar_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is 0. Args: numerator: A scalar `float64` `Tensor`. denominator: A scalar `float64` `Tensor`. name: Name for the returned op. Returns: 0 if `denominator` == 0, else `numerator` / `denominator` """ numerator.get_shape().with_rank_at_most(1) denominator.get_shape().with_rank_at_most(1) return control_flow_ops.cond( math_ops.equal( array_ops.constant(0.0, dtype=dtypes.float64), denominator), lambda: array_ops.constant(0.0, dtype=dtypes.float64), lambda: math_ops.div(numerator, denominator), name=name) def _streaming_confusion_matrix(labels, predictions, num_classes, weights=None): """Calculate a streaming confusion matrix. Calculates a confusion matrix. For estimation over a stream of data, the function creates an `update_op` operation. Args: labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened if its rank > 1. predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Returns: total_cm: A `Tensor` representing the confusion matrix. update_op: An operation that increments the confusion matrix. """ # Local variable to accumulate the predictions in the confusion matrix. total_cm = _create_local( 'total_confusion_matrix', shape=[num_classes, num_classes], dtype=dtypes.float64) # Cast the type to int64 required by confusion_matrix_ops. predictions = math_ops.to_int64(predictions) labels = math_ops.to_int64(labels) num_classes = math_ops.to_int64(num_classes) # Flatten the input if its rank > 1. if predictions.get_shape().ndims > 1: predictions = array_ops.reshape(predictions, [-1]) if labels.get_shape().ndims > 1: labels = array_ops.reshape(labels, [-1]) if (weights is not None) and (weights.get_shape().ndims > 1): weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix.confusion_matrix( labels, predictions, num_classes, weights=weights, dtype=dtypes.float64) update_op = state_ops.assign_add(total_cm, current_cm) return total_cm, update_op def mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the (weighted) mean of the given values. The `mean` function creates two local variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): values = math_ops.to_float(values) total = _create_local('total', shape=[]) count = _create_local('count', shape=[]) if weights is None: num_values = math_ops.to_float(array_ops.size(values)) else: values, _, weights = _remove_squeezable_dimensions( predictions=values, labels=None, weights=weights) weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), values) values = math_ops.multiply(values, weights) num_values = math_ops.reduce_sum(weights) update_total_op = state_ops.assign_add(total, math_ops.reduce_sum(values)) with ops.control_dependencies([values]): update_count_op = state_ops.assign_add(count, num_values) mean_t = _safe_div(total, count, 'value') update_op = _safe_div(update_total_op, update_count_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def accuracy(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates how often `predictions` matches `labels`. The `accuracy` function creates two local variables, `total` and `count` that are used to compute the frequency with which `predictions` matches `labels`. This frequency is ultimately returned as `accuracy`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `accuracy`. Internally, an `is_correct` operation computes a `Tensor` with elements 1.0 where the corresponding elements of `predictions` and `labels` match and 0.0 otherwise. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `is_correct`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose shape matches `predictions`. predictions: The predicted values, a `Tensor` of any shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `accuracy` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: accuracy: A `Tensor` representing the accuracy, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if labels.dtype != predictions.dtype: predictions = math_ops.cast(predictions, labels.dtype) is_correct = math_ops.to_float(math_ops.equal(predictions, labels)) return mean(is_correct, weights, metrics_collections, updates_collections, name or 'accuracy') def _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=None, includes=None): """Computes true_positives, false_negatives, true_negatives, false_positives. This function creates up to four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives`. `true_positive[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`. `false_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `True`. `true_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `False`. `false_positives[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`. For estimation of these metrics over a stream of data, for each metric the function respectively creates an `update_op` operation that updates the variable and returns its value. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). includes: Tuple of keys to return, from 'tp', 'fn', 'tn', fp'. If `None`, default to all four. Returns: values: Dict of variables of shape `[len(thresholds)]`. Keys are from `includes`. update_ops: Dict of operations that increments the `values`. Keys are from `includes`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ all_includes = ('tp', 'fn', 'tn', 'fp') if includes is None: includes = all_includes else: for include in includes: if include not in all_includes: raise ValueError('Invalid key: %s.' % include) with ops.control_dependencies([ check_ops.assert_greater_equal( predictions, math_ops.cast(0.0, dtype=predictions.dtype), message='predictions must be in [0, 1]'), check_ops.assert_less_equal( predictions, math_ops.cast(1.0, dtype=predictions.dtype), message='predictions must be in [0, 1]') ]): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.to_float(predictions), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) num_thresholds = len(thresholds) # Reshape predictions and labels. predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1]) # Use static shape if known. num_predictions = predictions_2d.get_shape().as_list()[0] # Otherwise use dynamic shape. if num_predictions is None: num_predictions = array_ops.shape(predictions_2d)[0] thresh_tiled = array_ops.tile( array_ops.expand_dims(array_ops.constant(thresholds), [1]), array_ops.stack([1, num_predictions])) # Tile the predictions after thresholding them across different thresholds. pred_is_pos = math_ops.greater( array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), thresh_tiled) if ('fn' in includes) or ('tn' in includes): pred_is_neg = math_ops.logical_not(pred_is_pos) # Tile labels by number of thresholds label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) if ('fp' in includes) or ('tn' in includes): label_is_neg = math_ops.logical_not(label_is_pos) if weights is not None: weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), predictions) weights_tiled = array_ops.tile(array_ops.reshape( weights, [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) else: weights_tiled = None values = {} update_ops = {} if 'tp' in includes: true_p = _create_local('true_positives', shape=[num_thresholds]) is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) if weights_tiled is not None: is_true_positive *= weights_tiled update_ops['tp'] = state_ops.assign_add( true_p, math_ops.reduce_sum(is_true_positive, 1)) values['tp'] = true_p if 'fn' in includes: false_n = _create_local('false_negatives', shape=[num_thresholds]) is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) if weights_tiled is not None: is_false_negative *= weights_tiled update_ops['fn'] = state_ops.assign_add( false_n, math_ops.reduce_sum(is_false_negative, 1)) values['fn'] = false_n if 'tn' in includes: true_n = _create_local('true_negatives', shape=[num_thresholds]) is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights_tiled is not None: is_true_negative *= weights_tiled update_ops['tn'] = state_ops.assign_add( true_n, math_ops.reduce_sum(is_true_negative, 1)) values['tn'] = true_n if 'fp' in includes: false_p = _create_local('false_positives', shape=[num_thresholds]) is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) if weights_tiled is not None: is_false_positive *= weights_tiled update_ops['fp'] = state_ops.assign_add( false_p, math_ops.reduce_sum(is_false_positive, 1)) values['fp'] = false_p return values, update_ops def auc(labels, predictions, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None, summation_method='trapezoidal'): """Computes the approximate AUC via a Riemann sum. The `auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. This value is ultimately returned as `auc`, an idempotent operation that computes the area under a discretized curve of precision versus recall values (computed using the aforementioned variables). The `num_thresholds` variable controls the degree of discretization with larger numbers of thresholds more closely approximating the true AUC. The quality of the approximation may vary dramatically depending on `num_thresholds`. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC approximation may be poor if this is not the case. Setting `summation_method` to 'minoring' or 'majoring' can help quantify the error in the approximation by providing lower or upper bound estimate of the AUC. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `auc`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. summation_method: Specifies the Riemann summation method used, 'trapezoidal' [default] that applies the trapezoidal rule, 'minoring' that applies left summation for increasing intervals and right summation for decreasing intervals or 'majoring' that applies the opposite. Returns: auc: A scalar `Tensor` representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'auc', (labels, predictions, weights)): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 def compute_auc(tp, fn, tn, fp, name): """Computes the roc-auc or pr-auc based on confusion counts.""" rec = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) x = fp_rate y = rec else: # curve == 'PR'. prec = math_ops.div(tp + epsilon, tp + fp + epsilon) x = rec y = prec if summation_method == 'trapezoidal': return math_ops.reduce_sum( math_ops.multiply(x[:num_thresholds - 1] - x[1:], (y[:num_thresholds - 1] + y[1:]) / 2.), name=name) elif summation_method == 'minoring': return math_ops.reduce_sum( math_ops.multiply(x[:num_thresholds - 1] - x[1:], math_ops.minimum(y[:num_thresholds - 1], y[1:])), name=name) elif summation_method == 'majoring': return math_ops.reduce_sum( math_ops.multiply(x[:num_thresholds - 1] - x[1:], math_ops.maximum(y[:num_thresholds - 1], y[1:])), name=name) else: raise ValueError('Invalid summation_method: %s' % summation_method) # sum up the areas of all the trapeziums auc_value = compute_auc( values['tp'], values['fn'], values['tn'], values['fp'], 'value') update_op = compute_auc( update_ops['tp'], update_ops['fn'], update_ops['tn'], update_ops['fp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, auc_value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return auc_value, update_op def mean_absolute_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean absolute error between the labels and predictions. The `mean_absolute_error` function creates two local variables, `total` and `count` that are used to compute the mean absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_absolute_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_absolute_error`. Internally, an `absolute_errors` operation computes the absolute value of the differences between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `absolute_errors`, and it increments `count` with the reduced sum of `weights` If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_absolute_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_absolute_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_absolute_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) absolute_errors = math_ops.abs(predictions - labels) return mean(absolute_errors, weights, metrics_collections, updates_collections, name or 'mean_absolute_error') def mean_cosine_distance(labels, predictions, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions. The `mean_cosine_distance` function creates two local variables, `total` and `count` that are used to compute the average cosine distance between `predictions` and `labels`. This average is weighted by `weights`, and it is ultimately returned as `mean_distance`, which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_distance`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of arbitrary shape. predictions: A `Tensor` of the same shape as `labels`. dim: The dimension along which the cosine distance is computed. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Also, dimension `dim` must be `1`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: mean_distance: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) radial_diffs = math_ops.multiply(predictions, labels) radial_diffs = math_ops.reduce_sum(radial_diffs, reduction_indices=[dim,], keep_dims=True) mean_distance, update_op = mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.subtract(1.0, mean_distance) update_op = math_ops.subtract(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op def mean_per_class_accuracy(labels, predictions, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates the mean of the per-class accuracies. Calculates the accuracy for each class, then takes the mean of that. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_accuracy`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened if its rank > 1. predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_per_class_accuracy' should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_accuracy: A `Tensor` representing the mean per class accuracy. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean_accuracy', (predictions, labels, weights)): # Check if shape is compatible. predictions.get_shape().assert_is_compatible_with(labels.get_shape()) total_cm, update_op = _streaming_confusion_matrix( labels, predictions, num_classes, weights=weights) def compute_mean_accuracy(name): """Compute the mean per class accuracy via the confusion matrix.""" per_row_sum = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = per_row_sum # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = array_ops.where( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) accuracies = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(accuracies, name=name) mean_accuracy_v = compute_mean_accuracy('mean_accuracy') if metrics_collections: ops.add_to_collections(metrics_collections, mean_accuracy_v) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_accuracy_v, update_op def mean_iou(labels, predictions, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculate per-step mean Intersection-Over-Union (mIOU). Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened if its rank > 1. predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_iou` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_iou: A `Tensor` representing the mean intersection-over-union. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'mean_iou', (predictions, labels, weights)): # Check if shape is compatible. predictions.get_shape().assert_is_compatible_with(labels.get_shape()) total_cm, update_op = _streaming_confusion_matrix(labels, predictions, num_classes, weights) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # The mean is only computed over classes that appear in the # label or prediction tensor. If the denominator is 0, we need to # ignore the class. num_valid_entries = math_ops.reduce_sum(math_ops.cast( math_ops.not_equal(denominator, 0), dtype=dtypes.float32)) # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = array_ops.where( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) iou = math_ops.div(cm_diag, denominator) # If the number of valid entries is 0 (no classes) we return 0. result = array_ops.where( math_ops.greater(num_valid_entries, 0), math_ops.reduce_sum(iou, name=name) / num_valid_entries, 0) return result mean_iou_v = compute_mean_iou('mean_iou') if metrics_collections: ops.add_to_collections(metrics_collections, mean_iou_v) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_iou_v, update_op def mean_relative_error(labels, predictions, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean relative error by normalizing with the given values. The `mean_relative_error` function creates two local variables, `total` and `count` that are used to compute the mean relative absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_relative_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_reative_error`. Internally, a `relative_errors` operation divides the absolute value of the differences between `predictions` and `labels` by the `normalizer`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `relative_errors`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. normalizer: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_relative_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_relative_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_relative_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) predictions, normalizer = confusion_matrix.remove_squeezable_dimensions( predictions, normalizer) predictions.get_shape().assert_is_compatible_with(normalizer.get_shape()) relative_errors = array_ops.where( math_ops.equal(normalizer, 0.0), array_ops.zeros_like(labels), math_ops.div(math_ops.abs(labels - predictions), normalizer)) return mean(relative_errors, weights, metrics_collections, updates_collections, name or 'mean_relative_error') def mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean squared error between the labels and predictions. The `mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the mean squared error. This average is weighted by `weights`, and it is ultimately returned as `mean_squared_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) squared_error = math_ops.square(labels - predictions) return mean(squared_error, weights, metrics_collections, updates_collections, name or 'mean_squared_error') def mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors. In contrast to the `mean` function which returns a scalar with the mean, this function returns an average tensor with the same shape as the input tensors. The `mean_tensor` function creates two local variables, `total_tensor` and `count_tensor` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A float `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): values = math_ops.to_float(values) total = _create_local('total_tensor', shape=values.get_shape()) count = _create_local('count_tensor', shape=values.get_shape()) num_values = array_ops.ones_like(values) if weights is not None: values, _, weights = _remove_squeezable_dimensions( predictions=values, labels=None, weights=weights) weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), values) values = math_ops.multiply(values, weights) num_values = math_ops.multiply(num_values, weights) update_total_op = state_ops.assign_add(total, values) with ops.control_dependencies([values]): update_count_op = state_ops.assign_add(count, num_values) def compute_mean(total, count, name): non_zero_count = math_ops.maximum(count, array_ops.ones_like(count), name=name) return math_ops.truediv(total, non_zero_count, name=name) mean_t = compute_mean(total, count, 'value') update_op = compute_mean(update_total_op, update_count_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def percentage_below(values, threshold, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `percentage_below` function creates two local variables, `total` and `count` that are used to compute the percentage of `values` that fall below `threshold`. This rate is weighted by `weights`, and it is ultimately returned as `percentage` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `percentage`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A numeric `Tensor` of arbitrary size. threshold: A scalar threshold. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: percentage: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ is_below_threshold = math_ops.to_float(math_ops.less(values, threshold)) return mean(is_below_threshold, weights, metrics_collections, updates_collections, name or 'percentage_below_threshold') def _count_condition(values, weights=None, metrics_collections=None, updates_collections=None): """Sums the weights of cases where the given values are True. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `bool` `Tensor` of arbitrary size. weights: Optional `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ check_ops.assert_type(values, dtypes.bool) count = _create_local('count', shape=[]) values = math_ops.to_float(values) if weights is not None: with ops.control_dependencies(( check_ops.assert_rank_in(weights, (0, array_ops.rank(values))),)): weights = math_ops.to_float(weights) values = math_ops.multiply(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor) if updates_collections: ops.add_to_collections(updates_collections, update_op) return value_tensor, update_op def false_negatives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the total number of false negatives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_negatives', (predictions, labels, weights)): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) is_false_negative = math_ops.logical_and(math_ops.equal(labels, True), math_ops.equal(predictions, False)) return _count_condition(is_false_negative, weights, metrics_collections, updates_collections) def false_negatives_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes false negatives at provided threshold values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_negatives` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_negatives: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that updates the `false_negatives` variable and returns its current value. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_negatives', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=weights, includes=('fn',)) if metrics_collections: ops.add_to_collections(metrics_collections, values['fn']) if updates_collections: ops.add_to_collections(updates_collections, update_ops['fn']) return values['fn'], update_ops['fn'] def false_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_positives', (predictions, labels, weights)): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) is_false_positive = math_ops.logical_and(math_ops.equal(labels, False), math_ops.equal(predictions, True)) return _count_condition(is_false_positive, weights, metrics_collections, updates_collections) def false_positives_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes false positives at provided threshold values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_positives` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_positives: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that updates the `false_positives` variable and returns its current value. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_positives', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=weights, includes=('fp',)) if metrics_collections: ops.add_to_collections(metrics_collections, values['fp']) if updates_collections: ops.add_to_collections(updates_collections, update_ops['fp']) return values['fp'], update_ops['fp'] def true_negatives_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes true negatives at provided threshold values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `true_negatives` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: true_negatives: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that updates the `true_negatives` variable and returns its current value. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'true_negatives', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=weights, includes=('tn',)) if metrics_collections: ops.add_to_collections(metrics_collections, values['tn']) if updates_collections: ops.add_to_collections(updates_collections, update_ops['tn']) return values['tn'], update_ops['tn'] def true_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'true_positives', (predictions, labels, weights)): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) is_true_positive = math_ops.logical_and(math_ops.equal(labels, True), math_ops.equal(predictions, True)) return _count_condition(is_true_positive, weights, metrics_collections, updates_collections) def true_positives_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes true positives at provided threshold values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `true_positives` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: true_positives: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that updates the `true_positives` variable and returns its current value. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'true_positives', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=weights, includes=('tp',)) if metrics_collections: ops.add_to_collections(metrics_collections, values['tp']) if updates_collections: ops.add_to_collections(updates_collections, update_ops['tp']) return values['tp'], update_ops['tp'] def precision(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels. The `precision` function creates two local variables, `true_positives` and `false_positives`, that are used to compute the precision. This value is ultimately returned as `precision`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'precision', (predictions, labels, weights)): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_p, false_positives_update_op = false_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_precision(tp, fp, name): return array_ops.where( math_ops.greater(tp + fp, 0), math_ops.div(tp, tp + fp), 0, name) p = compute_precision(true_p, false_p, 'value') update_op = compute_precision( true_positives_update_op, false_positives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, p) if updates_collections: ops.add_to_collections(updates_collections, update_op) return p, update_op def precision_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision values for different `thresholds` on `predictions`. The `precision_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `precision[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of values in `predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] + false_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'precision_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fp')) # Avoid division by zero. epsilon = 1e-7 def compute_precision(tp, fp, name): return math_ops.div(tp, epsilon + tp + fp, name='precision_' + name) prec = compute_precision(values['tp'], values['fp'], 'value') update_op = compute_precision( update_ops['tp'], update_ops['fp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, prec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return prec, update_op def recall(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'recall', (predictions, labels, weights)): predictions, labels, weights = _remove_squeezable_dimensions( predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_n, false_negatives_update_op = false_negatives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_recall(true_p, false_n, name): return array_ops.where( math_ops.greater(true_p + false_n, 0), math_ops.div(true_p, true_p + false_n), 0, name) rec = compute_recall(true_p, false_n, 'value') update_op = compute_recall( true_positives_update_op, false_negatives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name def _select_class_id(ids, selected_id): """Filter all but `selected_id` out of `ids`. Args: ids: `int64` `Tensor` or `SparseTensor` of IDs. selected_id: Int id to select. Returns: `SparseTensor` of same dimensions as `ids`. This contains only the entries equal to `selected_id`. """ ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids) if isinstance(ids, sparse_tensor.SparseTensor): return sparse_ops.sparse_retain( ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape( ids_shape, array_ops.reshape(ids_last_dim, [1])) # Intersect `ids` with the selected ID. filled_selected_id = array_ops.fill( filled_selected_id_shape, math_ops.to_int64(selected_id)) result = sets.set_intersection(filled_selected_id, ids) return sparse_tensor.SparseTensor( indices=result.indices, values=result.values, dense_shape=ids_shape) def _maybe_select_class_id(labels, predictions_idx, selected_id=None): """If class ID is specified, filter all other classes. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. selected_id: Int id to select. Returns: Tuple of `labels` and `predictions_idx`, possibly with classes removed. """ if selected_id is None: return labels, predictions_idx return (_select_class_id(labels, selected_id), _select_class_id(predictions_idx, selected_id)) def _sparse_true_positive_at_k(labels, predictions_idx, class_id=None, weights=None, name=None): """Calculates true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of operation. Returns: A [D1, ... DN] `Tensor` of true positive counts. """ with ops.name_scope( name, 'true_positives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id( labels, predictions_idx, class_id) tp = sets.set_size(sets.set_intersection(predictions_idx, labels)) tp = math_ops.to_double(tp) if weights is not None: with ops.control_dependencies(( weights_broadcast_ops.assert_broadcastable(weights, tp),)): weights = math_ops.to_double(weights) tp = math_ops.multiply(tp, weights) return tp def _streaming_sparse_true_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incompatible shape. """ with ops.name_scope( name, _at_k_name('true_positive', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: tp = _sparse_true_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_tp = math_ops.to_double(math_ops.reduce_sum(tp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_tp, name='update') def _sparse_false_negative_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Returns: A [D1, ... DN] `Tensor` of false negative counts. """ with ops.name_scope( None, 'false_negatives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fn = sets.set_size(sets.set_difference(predictions_idx, labels, aminusb=False)) fn = math_ops.to_double(fn) if weights is not None: with ops.control_dependencies(( weights_broadcast_ops.assert_broadcastable(weights, fn),)): weights = math_ops.to_double(weights) fn = math_ops.multiply(fn, weights) return fn def _streaming_sparse_false_negative_at_k(labels, predictions_idx, k, class_id=None, weights=None, name=None): """Calculates weighted per step false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incompatible shape. """ with ops.name_scope( name, _at_k_name('false_negative', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: fn = _sparse_false_negative_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fn = math_ops.to_double(math_ops.reduce_sum(fn)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fn, name='update') def recall_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate recall by considering only the entries in the batch for which `class_id` is in the label, and computing the fraction of them for which `class_id` is in the top-k `predictions`. If `class_id` is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k `predictions`. `sparse_recall_at_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope( name, _at_k_name('recall', k, class_id=class_id), (predictions, labels, weights)) as scope: labels = _maybe_expand_labels(labels, predictions) _, top_k_idx = nn.top_k(predictions, k) return _sparse_recall_at_top_k( labels=labels, predictions_idx=top_k_idx, k=k, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=scope) def _sparse_recall_at_top_k(labels, predictions_idx, k=None, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of top-k predictions with respect to sparse labels. Differs from `recall_at_k` in that predictions must be in the form of top `k` class indices, whereas `recall_at_k` expects logits. Refer to `recall_at_k` for more details. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. predictions_idx: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and predictions has shape [batch size, k]. The final dimension contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope(name, _at_k_name('recall', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: top_k_idx = math_ops.to_int64(predictions_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fn, fn_update = _streaming_sparse_false_negative_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fn_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def recall_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various recall values for different `thresholds` on `predictions`. The `recall_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `recall[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of `True` values in `labels` (`true_positives[i] / (true_positives[i] + false_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'recall_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fn')) # Avoid division by zero. epsilon = 1e-7 def compute_recall(tp, fn, name): return math_ops.div(tp, epsilon + tp + fn, name='recall_' + name) rec = compute_recall(values['tp'], values['fn'], 'value') update_op = compute_recall(update_ops['tp'], update_ops['fn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def root_mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the root mean squared error between the labels and predictions. The `root_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the root mean squared error. This average is weighted by `weights`, and it is ultimately returned as `root_mean_squared_error`: an idempotent operation that takes the square root of the division of `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `root_mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `root_mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: root_mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `root_mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( predictions=predictions, labels=labels, weights=weights) mse, update_mse_op = mean_squared_error( labels, predictions, weights, None, None, name or 'root_mean_squared_error') rmse = math_ops.sqrt(mse) update_rmse_op = math_ops.sqrt(update_mse_op) if metrics_collections: ops.add_to_collections(metrics_collections, rmse) if updates_collections: ops.add_to_collections(updates_collections, update_rmse_op) return rmse, update_rmse_op def sensitivity_at_specificity( labels, predictions, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `sensitivity_at_specificity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the sensitivity at the given specificity value. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `sensitivity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. specificity: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given specificity. metrics_collections: An optional list of collections that `sensitivity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: sensitivity: A scalar `Tensor` representing the sensitivity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `sensitivity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `specificity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if specificity < 0 or specificity > 1: raise ValueError('`specificity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'sensitivity_at_specificity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) def compute_sensitivity_at_specificity(tp, tn, fp, fn, name): specificities = math_ops.div(tn, tn + fp + kepsilon) tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the sensitivity: return math_ops.div(tp[tf_index], tp[tf_index] + fn[tf_index] + kepsilon, name) sensitivity = compute_sensitivity_at_specificity( values['tp'], values['tn'], values['fp'], values['fn'], 'value') update_op = compute_sensitivity_at_specificity( update_ops['tp'], update_ops['tn'], update_ops['fp'], update_ops['fn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, sensitivity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return sensitivity, update_op def _expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension. Args: tensor: Input `Tensor` or `SparseTensor`. multiple: Integer, number of times to tile. dim: Integer, dimension along which to tile. name: Name of operation. Returns: `Tensor` result of expanding and tiling `tensor`. Raises: ValueError: if `multiple` is less than 1, or `dim` is not in `[-rank(tensor), rank(tensor)]`. """ if multiple < 1: raise ValueError('Invalid multiple %s, must be > 0.' % multiple) with ops.name_scope( name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor) if isinstance(tensor, sparse_tensor.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.dense_shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat( (array_ops.slice(tensor.dense_shape, [0], expand_dims), [1], array_ops.slice(tensor.dense_shape, expand_dims, [-1])), 0, name='expanded_shape') expanded = sparse_ops.sparse_reshape( tensor, shape=expanded_shape, name='expand') if multiple == 1: return expanded return sparse_ops.sparse_concat( dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope) # Dense. expanded = array_ops.expand_dims( tensor, dim if (dim >= 0) else (dim - 1), name='expand') if multiple == 1: return expanded ones = array_ops.ones_like(array_ops.shape(tensor)) tile_multiples = array_ops.concat( (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples') return array_ops.tile(expanded, tile_multiples, name=scope) def _num_relevant(labels, k): """Computes number of relevant values for each row in labels. For labels with shape [D1, ... DN, num_labels], this is the minimum of `num_labels` and `k`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. k: Integer, k for @k metric. Returns: Integer `Tensor` of shape [D1, ... DN], where each value is the number of relevant values for that row. Raises: ValueError: if inputs have invalid dtypes or values. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope(None, 'num_relevant', (labels,)) as scope: # For SparseTensor, calculate separate count for each row. labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) if isinstance(labels, sparse_tensor.SparseTensor): return math_ops.minimum(sets.set_size(labels), k, name=scope) # For dense Tensor, calculate scalar count based on last dimension, and # tile across labels shape. labels_shape = array_ops.shape(labels) labels_size = labels_shape[-1] num_relevant_scalar = math_ops.minimum(labels_size, k) return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) def _sparse_average_precision_at_top_k(labels, predictions_idx): """Computes average precision@k of predictions with respect to sparse labels. From en.wikipedia.org/wiki/Information_retrieval#Average_precision, formula for each row is: AveP = sum_{i=1...k} P_{i} * rel_{i} / num_relevant_items A "row" is the elements in dimension [D1, ... DN] of `predictions_idx`, `labels`, and the result `Tensors`. In the common case, this is [batch_size]. Each row of the results contains the average precision for that row. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. Values should be in range [0, num_classes). predictions_idx: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. The final dimension must be set and contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. Values should be in range [0, num_classes). Returns: `float64` `Tensor` of shape [D1, ... DN], where each value is the average precision for that row. Raises: ValueError: if the last dimension of predictions_idx is not set. """ with ops.name_scope( None, 'average_precision', (predictions_idx, labels)) as scope: predictions_idx = math_ops.to_int64(predictions_idx, name='predictions_idx') if predictions_idx.get_shape().ndims == 0: raise ValueError('The rank of predictions_idx must be at least 1.') k = predictions_idx.get_shape().as_list()[-1] if k is None: raise ValueError('The last dimension of predictions_idx must be set.') labels = _maybe_expand_labels(labels, predictions_idx) # Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate # prediction for each k, so we can calculate separate true positive values # for each k. predictions_idx_per_k = array_ops.expand_dims( predictions_idx, -1, name='predictions_idx_per_k') # Replicate labels k times to produce [D1, ... DN, k, num_labels] tensor. labels_per_k = _expand_and_tile( labels, multiple=k, dim=-1, name='labels_per_k') # The following tensors are all of shape [D1, ... DN, k], containing values # per row, per k value. # `relevant_per_k` (int32) - Relevance indicator, 1 if the prediction at # that k value is correct, 0 otherwise. This is the "rel_{i}" term from # the formula above. # `tp_per_k` (int32) - True positive counts. # `retrieved_per_k` (int32) - Number of predicted values at each k. This is # the precision denominator. # `precision_per_k` (float64) - Precision at each k. This is the "P_{i}" # term from the formula above. # `relevant_precision_per_k` (float64) - Relevant precisions; i.e., # precisions at all k for which relevance indicator is true. relevant_per_k = _sparse_true_positive_at_k( labels_per_k, predictions_idx_per_k, name='relevant_per_k') tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') retrieved_per_k = math_ops.cumsum( array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k') precision_per_k = math_ops.div( math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k), name='precision_per_k') relevant_precision_per_k = math_ops.multiply( precision_per_k, math_ops.to_double(relevant_per_k), name='relevant_precision_per_k') # Reduce along k dimension to get the sum, yielding a [D1, ... DN] tensor. precision_sum = math_ops.reduce_sum( relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum') # Divide by number of relevant items to get average precision. These are # the "num_relevant_items" and "AveP" terms from the formula above. num_relevant_items = math_ops.to_double(_num_relevant(labels, k)) return math_ops.div(precision_sum, num_relevant_items, name=scope) def _streaming_sparse_average_precision_at_top_k(labels, predictions_idx, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `sparse_average_precision_at_top_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. Values should be in range [0, num_classes). predictions_idx: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. The final dimension contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. Values should be in range [0, num_classes). weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ with ops.name_scope(name, 'average_precision_at_top_k', (predictions_idx, labels, weights)) as scope: # Calculate per-example average precision, and apply weights. average_precision = _sparse_average_precision_at_top_k( predictions_idx=predictions_idx, labels=labels) if weights is not None: weights = weights_broadcast_ops.broadcast_weights( math_ops.to_double(weights), average_precision) average_precision = math_ops.multiply(average_precision, weights) # Create accumulation variables and update ops for max average precision and # total average precision. with ops.name_scope(None, 'max', (average_precision,)) as max_scope: # `max` is the max possible precision. Since max for any row is 1.0: # - For the unweighted case, this is just the number of rows. # - For the weighted case, it's the sum of the weights broadcast across # `average_precision` rows. max_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope) if weights is None: batch_max = math_ops.to_double( array_ops.size(average_precision, name='batch_max')) else: batch_max = math_ops.reduce_sum(weights, name='batch_max') max_update = state_ops.assign_add(max_var, batch_max, name='update') with ops.name_scope(None, 'total', (average_precision,)) as total_scope: total_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=total_scope) batch_total = math_ops.reduce_sum(average_precision, name='batch_total') total_update = state_ops.assign_add(total_var, batch_total, name='update') # Divide total by max to get mean, for both vars and the update ops. mean_average_precision = _safe_scalar_div(total_var, max_var, name='mean') update = _safe_scalar_div(total_update, max_update, name=scope) if metrics_collections: ops.add_to_collections(metrics_collections, mean_average_precision) if updates_collections: ops.add_to_collections(updates_collections, update) return mean_average_precision, update def sparse_average_precision_at_k(labels, predictions, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `sparse_average_precision_at_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. Raises: ValueError: if k is invalid. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope( name, _at_k_name('average_precision', k), (predictions, labels, weights)) as scope: # Calculate top k indices to produce [D1, ... DN, k] tensor. _, predictions_idx = nn.top_k(predictions, k) return _streaming_sparse_average_precision_at_top_k( labels=labels, predictions_idx=predictions_idx, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=scope) def _sparse_false_positive_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Returns: A [D1, ... DN] `Tensor` of false positive counts. """ with ops.name_scope( None, 'false_positives', (predictions_idx, labels, weights)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fp = sets.set_size(sets.set_difference( predictions_idx, labels, aminusb=True)) fp = math_ops.to_double(fp) if weights is not None: with ops.control_dependencies(( weights_broadcast_ops.assert_broadcastable(weights, fp),)): weights = math_ops.to_double(weights) fp = math_ops.multiply(fp, weights) return fp def _streaming_sparse_false_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incompatible shape. """ with ops.name_scope( name, _at_k_name('false_positive', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: fp = _sparse_false_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fp = math_ops.to_double(math_ops.reduce_sum(fp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fp, name='update') def precision_at_top_k(labels, predictions_idx, k=None, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. Differs from `sparse_precision_at_k` in that predictions must be in the form of top `k` class indices, whereas `sparse_precision_at_k` expects logits. Refer to `sparse_precision_at_k` for more details. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions_idx: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and predictions has shape [batch size, k]. The final dimension contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. Only used for the default op name. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope(name, _at_k_name('precision', k, class_id=class_id), (predictions_idx, labels, weights)) as scope: labels = _maybe_expand_labels(labels, predictions_idx) top_k_idx = math_ops.to_int64(predictions_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fp, fp_update = _streaming_sparse_false_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fp), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fp_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def sparse_precision_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate precision by considering only the entries in the batch for which `class_id` is in the top-k highest `predictions`, and computing the fraction of them for which `class_id` is indeed a correct label. If `class_id` is not specified, we'll calculate precision as how often on average a class among the top-k classes with the highest predicted values of a batch entry is correct and can be found in the label for that entry. `sparse_precision_at_k` creates two local variables, `true_positive_at_<k>` and `false_positive_at_<k>`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_positive_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope(name, _at_k_name('precision', k, class_id=class_id), (predictions, labels, weights)) as scope: _, top_k_idx = nn.top_k(predictions, k) return precision_at_top_k( labels=labels, predictions_idx=top_k_idx, k=k, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=scope) def specificity_at_sensitivity( labels, predictions, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `specificity_at_sensitivity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the specificity at the given sensitivity value. The threshold for the given sensitivity value is computed and used to evaluate the corresponding specificity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `specificity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. sensitivity: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given sensitivity. metrics_collections: An optional list of collections that `specificity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: specificity: A scalar `Tensor` representing the specificity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `specificity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `sensitivity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if sensitivity < 0 or sensitivity > 1: raise ValueError('`sensitivity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'specificity_at_sensitivity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 - kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) def compute_specificity_at_sensitivity(tp, tn, fp, fn, name): """Computes the specificity at the given sensitivity. Args: tp: True positives. tn: True negatives. fp: False positives. fn: False negatives. name: The name of the operation. Returns: The specificity using the aggregated values. """ sensitivities = math_ops.div(tp, tp + fn + kepsilon) # We'll need to use this trick until tf.argmax allows us to specify # whether we should use the first or last index in case of ties. min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity)) indices_at_minval = math_ops.equal( math_ops.abs(sensitivities - sensitivity), min_val) indices_at_minval = math_ops.to_int64(indices_at_minval) indices_at_minval = math_ops.cumsum(indices_at_minval) tf_index = math_ops.argmax(indices_at_minval, 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the specificity: return math_ops.div(tn[tf_index], tn[tf_index] + fp[tf_index] + kepsilon, name) specificity = compute_specificity_at_sensitivity( values['tp'], values['tn'], values['fp'], values['fn'], 'value') update_op = compute_specificity_at_sensitivity( update_ops['tp'], update_ops['tn'], update_ops['fp'], update_ops['fn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, specificity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return specificity, update_op
33daf81383f07a60e1205b82c0c803721e8fd23e
25985aeeee54373d26a164e4cc6a014770e3ebf3
/windows/w3af/w3af/core/ui/gtkUi/.svn/text-base/exploittab.py.svn-base
7ad6f040980ac9f8abcf7cb7387f8c80945f7141
[]
no_license
sui84/tools
4b750dae90940fbe3a226cba72dc071d8fb88b7c
651cc08eb50199ce1044c684dbf714ea26df6432
refs/heads/master
2021-01-22T19:22:26.964580
2017-08-20T15:23:38
2017-08-20T15:23:38
100,774,276
0
1
null
null
null
null
UTF-8
Python
false
false
29,792
''' exploittab.py Copyright 2007 Andres Riancho This file is part of w3af, w3af.sourceforge.net . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ''' import gtk, gobject from . import prompt, helpers, entries, confpanel from core.ui.gtkUi.pluginEditor import pluginEditor import core.data.kb.knowledgeBase as kb from core.data.kb.vuln import vuln as vulnType from core.controllers.w3afException import w3afException, w3afMustStopException import operator class Shells(gtk.TreeView): '''The list of shells produced from vulnerabilities. @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self, w3af): self.w3af = w3af # create the ListStore, with the shell name and id self.liststore = gtk.ListStore(str, str) self.listholder = {} # create the TreeView using liststore super(Shells,self).__init__(self.liststore) # create a TreeViewColumn for the text tvcolumn = gtk.TreeViewColumn('Shells') cell = gtk.CellRendererText() tvcolumn.pack_start(cell, True) tvcolumn.add_attribute(cell, 'text', 0) self.append_column(tvcolumn) self.connect('row-activated', self.useShell) gobject.timeout_add(500, self._update) self.show() def _update(self): '''Updates the list of shells. @return: True, to keep gobject.timeout_add calling it. ''' shells = kb.kb.getAllShells() for shell in shells: shellid = str(id(shell)) if shellid not in self.listholder: try: self.liststore.append([str(shell), shellid]) except w3afException, w3: msg = _("An error ocurren while generating the shell object: ") + str(w3) dlg = gtk.MessageDialog(None, gtk.DIALOG_MODAL, gtk.MESSAGE_WARNING, gtk.BUTTONS_OK, msg) dlg.destroy() # I always perform this because I just want to be warned once self.listholder[shellid] = shell return True def useShell(self, treeview, path, view_column): '''Raises a prompt dialog to use the shell.''' shellid = self.liststore[path][1] shell = self.listholder[shellid] try: title = "Shell - " + shell.getRemoteSystem() except w3afException, w3: msg = _("Failed to get the remote system name from the shell object.\n") msg += _("Original exception: ") + str(w3) dlg = gtk.MessageDialog(None, gtk.DIALOG_MODAL, gtk.MESSAGE_WARNING, gtk.BUTTONS_OK, msg) dlg.destroy() else: promptText = shell.getRemoteUser()+'@'+shell.getRemoteSystemName() prompt.PromptDialog( title, promptText, shell.generic_user_input) class ExploitAllDialog(gtk.Dialog): '''A dialog with the About information. @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self, w3af): super(ExploitAllDialog,self).__init__("Multiple Exploit", None, gtk.DIALOG_MODAL, (gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL,gtk.STOCK_EXECUTE,gtk.RESPONSE_OK)) self.liststore = gtk.ListStore(str, gobject.TYPE_BOOLEAN) # just build the tree with the plugin names for plugin in sorted(w3af.getPluginList("attack")): self.liststore.append([plugin, 1]) # create the TreeView using liststore treeview = gtk.TreeView(self.liststore) self.vbox.pack_start(treeview) # create a TreeViewColumn for the text tvcolumn = gtk.TreeViewColumn(_('Exploits')) cell = gtk.CellRendererText() tvcolumn.pack_start(cell, True) tvcolumn.add_attribute(cell, 'text', 0) treeview.append_column(tvcolumn) # create a TreeViewColumn for the checkbox tvcolumn = gtk.TreeViewColumn(_('Active')) cell = gtk.CellRendererToggle() cell.set_property('activatable', True) cell.connect('toggled', self._toggle) tvcolumn.pack_start(cell, False) tvcolumn.add_attribute(cell, 'active', 1) treeview.append_column(tvcolumn) # stop on first self.but_sof = gtk.CheckButton(_("First successful")) if hasattr(self.but_sof, "set_tooltip_text"): self.but_sof.set_tooltip_text(_("Stop on first successful exploit")) self.vbox.pack_start(self.but_sof) # the cancel button but = self.action_area.get_children()[1] but.connect("clicked", lambda x: self.destroy()) # the ok button but = self.action_area.get_children()[0] but.connect("clicked", self._ok) self.connect("delete-event", lambda x,y: self.destroy()) self.activatedPlugins = None self.stopOnFirst = None self.show_all() def _ok(self, w): '''Collects the information.''' self.activatedPlugins = [name for (name,act) in self.liststore if act] self.stopOnFirst = self.but_sof.get_active() self.destroy() def _toggle(self, cell, path): '''Toggles the plugin on/off. @param cell: the cell that generated the signal. @param path: the path that clicked the user. ''' listrow = self.liststore[path] listrow[1] = not listrow[1] class ExploitTree(gtk.TreeView): '''A list showing all the plugins of "attack" type. @param w3af: The main core class. @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self, w3af): self.w3af = w3af # create the ListStore, with the plugin name twice (the first could # go bold, the second is the original name always) self.liststore = gtk.ListStore(str, str) # just build the tree with the plugin names for plugin in sorted(w3af.getPluginList("attack")): self.liststore.append([plugin, plugin]) # we will not ask for the plugin instances until needed, we'll # keep them here: self.plugin_instances = {} # create the TreeView using liststore super(ExploitTree,self).__init__(self.liststore) # signals self.connect('button-release-event', self.popup_menu) self.connect('cursor-changed', self._changedSelection) # create a TreeViewColumn for the text tvcolumn = gtk.TreeViewColumn(_('Exploits')) cell = gtk.CellRendererText() tvcolumn.pack_start(cell, True) tvcolumn.add_attribute(cell, 'markup', 0) self.append_column(tvcolumn) # drag and drop setup, this is the SOURCE target = [("explot-activ", 0, 1)] self.enable_model_drag_source(gtk.gdk.BUTTON1_MASK, target, gtk.gdk.ACTION_COPY) #self.set_enable_tree_lines(True) self.show() def setFilter(self, vuln): new_liststore = gtk.ListStore(str, str) for pname in sorted(self.w3af.getPluginList("attack")): exploit = self.w3af.getPluginInstance(pname, "attack") thisvulns = getExploitableVulns(exploit) markedname = ("<b>%s</b>" % pname) if vuln in thisvulns else pname new_liststore.append([markedname, pname]) self.set_model(new_liststore) self.liststore = new_liststore def _changedSelection(self, *w): '''Changed which exploit is selected.''' exploit = self.getSelectedExploit() self.vulnerabs.setFilter(exploit) # un-bold the rest for row in self.liststore: if row[1] != exploit.pname: row[0] = row[1] def getSelectedExploit(self): '''Returns the selected exploit. @return: The selected exploit. ''' (path, column) = self.get_cursor() if path is None: return None # Get the information about the click plugin = self.getPluginInstance(path) return plugin def popup_menu( self, tv, event ): '''Shows a menu when you right click on a plugin. @param tv: the treeview. @parameter event: The GTK event ''' if event.button != 3: return (path, column) = tv.get_cursor() # Is it over a plugin name ? if path is not None and len(path) == 1: # Get the information about the click plugin = self.getPluginInstance(path) pname = self.liststore[path][1] # Ok, now I show the popup menu ! # Create the popup menu gm = gtk.Menu() # And the items e = gtk.MenuItem(_("Edit plugin...")) e.connect('activate', self._handleEditPluginEvent, pname, path) gm.append( e ) e = gtk.MenuItem(_("Configure plugin...")) e.connect('activate', self._configureExploit, plugin, pname) gm.append( e ) e = gtk.MenuItem(_("Exploit ALL vulns")) e.connect('activate', self._exploitAll, pname, False) gm.append( e ) e = gtk.MenuItem(_("Exploit all until first successful")) e.connect('activate', self._exploitAll, pname, True) gm.append( e ) gm.show_all() gm.popup( None, None, None, event.button, event.time) def _handleEditPluginEvent(self, widget, pluginName, path): ''' I get here when the user right clicks on a plugin name, then he clicks on "Edit..." This method calls the plugin editor with the corresponding parameters. ''' def f(t, n): self._finishedEditingPlugin(path, pluginName) pluginEditor("attack", pluginName, f) def _finishedEditingPlugin(self, path, pluginName): ''' This is a callback that is called when the plugin editor finishes. ''' del self.plugin_instances[path] self.w3af.reloadModifiedPlugin('attack', pluginName) def _exploitAll(self, widget, pname, stoponfirst): '''Exploit all the vulns.''' effectivelyExploitAll(self.w3af, [pname], stoponfirst) def _configureExploit(self, widget, plugin, pname): '''Configure the exploit plugin.''' title = "Configure " + pname confpanel.ConfigDialog(title, self.w3af, plugin, showDesc=True) def getPluginInstance(self, path): '''Caches the plugin instance. @param path: where the user is in the plugin list @return The plugin ''' try: return self.plugin_instances[path] except KeyError: pass # path can be a tuple of one or two values here pname = self.liststore[path][1] plugin = self.w3af.getPluginInstance(pname, "attack") plugin.pname = pname plugin.ptype = "attack" self.plugin_instances[path] = plugin return plugin class VulnerabList(gtk.TreeView): '''A tree showing all the found vulnerabilities. @param w3af: The w3af core. @param exploitlist: The widget that keeps the list of exploits @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self, w3af, exploitlist): self.w3af = w3af self.exploitlist = exploitlist # simple empty List Store # columns: the string to show, the string to order, the key # for the plugin instance, and the icon self.liststore = gtk.ListStore(str, str, str, gtk.gdk.Pixbuf) gtk.TreeView.__init__(self, self.liststore) # the text & icon column tvcolumn = gtk.TreeViewColumn(_("Vulnerabilities")) cell = gtk.CellRendererPixbuf() tvcolumn.pack_start(cell, expand=False) tvcolumn.add_attribute(cell, "pixbuf", 3) cell = gtk.CellRendererText() tvcolumn.pack_start(cell, expand=True) tvcolumn.add_attribute(cell, "markup", 0) self.append_column(tvcolumn) # here we will hold the instances, the key will be stored in the store self.instances = {} self.listholder = set() # initial filters self.applicable = [] # drag and drop setup, this is the DESTINATION target = [("explot-activ", 0, 1)] self.enable_model_drag_dest(target, gtk.gdk.ACTION_COPY) self.connect("drag-data-received", self._dragDropped) self.connect('cursor-changed', self._changedSelection) # get the knowledge base and go live self.fullkb = kb.kb.dump() gobject.timeout_add(500, self._updateList) self.lastcheck = False self.show() def _changedSelection(self, *w): '''Changed which exploit is selected.''' (path, column) = self.get_cursor() vuln = self.getInstance(path) self.exploitlist.setFilter(vuln) # un-bold the rest selected = vuln.getName() for row in self.liststore: if row[1] != selected: row[0] = row[1] def setFilter(self, exploit): '''Sets a new filter and update the list. @param active: which types should be shown. ''' vulns = getExploitableVulns(exploit) if vulns is None: self.applicable = [] else: self.applicable = vulns new_liststore = gtk.ListStore(str, str, str, gtk.gdk.Pixbuf) new_listholder = set() self._updateList(new_liststore, new_listholder) self.set_model(new_liststore) self.liststore = new_liststore self.listholder = new_listholder def _filterKB(self): '''Calculates the difference between the KB and the list. This way, only is added to the list those nodes that are new. @return: The filtered KB. ''' # let's filter the real kb, to see what we should add filteredkb = [] # iterate the first layer, plugin names for pluginname, plugvalues in self.fullkb.items(): # iterate the second layer, variable names for variabname, variabobjects in plugvalues.items(): # iterate the third layer, the variable objects if isinstance(variabobjects, list): for obj in variabobjects: if type(obj) == vulnType: severity = obj.getSeverity() filteredkb.append((obj, severity)) return filteredkb def _getBestObjName(self, obj): ''' @return: The best obj name possible ''' if hasattr(obj, "getName"): realname = obj.getName() else: realname = repr(obj) if obj in self.applicable: showname = "<b>%s</b>" % realname else: showname = "%s" % realname return showname, realname def _updateList(self, liststore=None, listholder=None): '''Updates the GUI with the KB. @return: True to keep being called by gobject. ''' # if the core is not running, don't have anything to update if not self.w3af.isRunning(): if self.lastcheck: return True else: self.lastcheck = True self.lastcheck = False # get the filtered knowledge base info filteredKB = self._filterKB() if liststore is None: liststore = self.liststore listholder = self.listholder new_ones = [] for obj, severity in filteredKB: idinstance = str(id(obj)) if idinstance in listholder: continue # it's new! (showname, realname) = self._getBestObjName(obj) newicon = helpers.KB_ICONS.get(("vuln", severity)) if newicon is not None: newicon = newicon.get_pixbuf() new_ones.append( (idinstance, obj, showname, realname, newicon)) if new_ones: self._addVulns(listholder, liststore, new_ones) return True def _addVulns(self, listholder, liststore, vulns): '''Adds an element to the liststore. @param listholder: the holder to check for instances @param liststore: the list itself @param vulns: what to add ''' # order it by realname, in reverse to be able to do nice pops vulns.sort(key=operator.itemgetter(3), reverse=True) # add to listholder and instances for idinstance, obj, showname, realname, newicon in vulns: listholder.add(idinstance) self.instances[idinstance] = obj # add to the liststore, inserting into the right place to keep order storelen = len(liststore) ind = 0 idinstance, obj, showname, realname, newicon = vulns.pop() while ind < storelen: prvshowname,prvrealname, vln,icn = liststore[ind] if realname <= prvrealname: liststore.insert(ind, (showname,realname,idinstance,newicon)) storelen += 1 try: idinstance, obj, showname, realname, newicon = vulns.pop() except IndexError: break ind += 1 else: # we had some more, add them at the end liststore.append((showname,realname,idinstance,newicon)) for idinstance, obj, showname, realname, newicon in vulns[::-1]: liststore.append((showname,realname,idinstance,newicon)) def getInstance(self, path): '''Extracts the instance from the tree. @param path: where the user is in the tree @return The instance ''' instanckey = self.liststore[path][2] instance = self.instances.get(instanckey) return instance def _dragDropped(self, tv, drag_context, x, y, selection_data, info, timestamp): '''Something was dropped (after a drag) on us.''' droppoint = tv.get_dest_row_at_pos(x, y) if droppoint is None: return True # collect info about source and dest (destpath, where) = droppoint sourcepath = self.exploitlist.get_cursor()[0] sourcerow = self.exploitlist.liststore[sourcepath] # it should select a destination row if where not in (gtk.TREE_VIEW_DROP_INTO_OR_AFTER, gtk.TREE_VIEW_DROP_INTO_OR_BEFORE): self.w3af.mainwin.sb(_("You must drop into a row, not in the middle of two")) return # get real objects exploit = self.exploitlist.getPluginInstance(sourcepath) dstvuln = self.getInstance(destpath) if dstvuln is None: self.w3af.mainwin.sb(_("You must select a vulnerability as destination")) return self._executeExploit(exploit, dstvuln) return def _executeExploit(self, expl, vuln): '''Exploits a vulnerability. This raises a text dialog that informs how the exploit is going until it finishes. This method is going to: a) Create the TextDialog b) spawn a thread to launch the exploit process c) spawn a thread to read from the output manager queue b and c both write messages to the TextDialog. @param expl: the exploit to use @param vuln: the vulnerability to exploit ''' dlg = entries.TextDialog("Exploit!") # Start the generator that writes the messages from output manager console_task = helpers.write_console_messages(dlg) gobject.idle_add(console_task.next) # Start the generator that launches the exploit exploit_task = self._launch_exploit(dlg, expl, vuln) gobject.idle_add(exploit_task.next) return def _launch_exploit(self, dlg, expl, vuln): ''' Launch the exploit and write messages to the TextDialog. @parameter dlg: The TextDialog. ''' # get the info, and see if we can go for it dlg.addMessage("Checking suitability...\n") vuln_id_list = vuln.getId() yield True try: canexploit = expl.canExploit(vuln_id_list) except w3afException, e: dlg.addMessage(_("\nERROR: ")) dlg.addMessage(str(e) + '\n') dlg.done() # set button to sensitive dlg.dialog_run() # wait for user response yield False if not canexploit: dlg.addMessage(_("Sorry, this attack plugin can not exploit this vulnerability\n")) dlg.done() # set button to sensitive dlg.dialog_run() # wait for user response yield False # ok, go for it! dlg.addMessage(_("Ok, exploiting...\n")) yield True try: expl.exploit() yield True # print the console messages to the dialog except w3afException, e: dlg.addMessage(str(e) + '\n') else: dlg.addMessage(_("Done\n")) yield True dlg.done() # set button to sensitive dlg.dialog_run() # wait for user response yield False class Proxies(gtk.Label): '''Dummy class to alert that this will be done later. @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self): msg = "The 'Proxies' functionality\nwill be implemented\nin the future." super(Proxies,self).__init__(msg) self.set_justify(gtk.JUSTIFY_CENTER) self.show() def getExploitableVulns(exploit): '''Returns the exploitable vulnerabilities. @param exploit: the exploit to search. ''' try: vulns = exploit.getExploitableVulns() except w3afException: print "WARNING: The %r exploit has no getExploitableVulns method!" % exploit vulns = [] return vulns def effectivelyExploitAll(w3af, activatedPlugins, stopOnFirst): '''Exploit all the vulnerabilities. Just like in the 1-to-1 exploit, I'll create two generators that will perform the work in a "threaded" way. @param w3af: the core @param activatedPlugins: Which plugins are to be used. @param stopOnFirst: if the exploit should stop in the first exploited vuln. ''' dlg = entries.TextDialog("Multiple Exploit!") # Start the generator that writes the messages from output manager console_task = helpers.write_console_messages(dlg) gobject.idle_add(console_task.next) # Start the generator that launches the exploit exploit_task = _launch_exploit_all(dlg, w3af, activatedPlugins, stopOnFirst) gobject.idle_add(exploit_task.next) def _launch_exploit_all(dlg, w3af, activatedPlugins, stopOnFirst): ''' A generator that will perform the exploitation of all the vulnerabilities. @param dlg: The dialog where I'm going to write the messages @param w3af: the core @param activatedPlugins: Which plugins are to be used. @param stopOnFirst: if the exploit should stop in the first exploited vuln. ''' for exploitname in activatedPlugins: dlg.addMessage(_("\nExploiting %r...\n") % exploitname) exploit = w3af.getPluginInstance(exploitname, "attack") vulns = getExploitableVulns(exploit) dlg.addMessage(_(" %d vulnerabilites to exploit\n") % len(vulns)) yield True for vuln in vulns: # Let GTK handle events, I want a responsive GUI! yield True # check if o dlg.addMessage(("Checking suitability for vuln %r...\n") % vuln.getName()) try: canexploit = exploit.canExploit(vuln.getId()) except w3afException, e: dlg.addMessage(_("\nERROR: ")) dlg.addMessage(str(e) + '\n') dlg.done() dlg.dialog_run() yield False except w3afMustStopException, wmse: dlg.addMessage(_("\nERROR: ")) dlg.addMessage(str(wmse) + '\n') dlg.done() dlg.dialog_run() yield False if not canexploit: dlg.addMessage(_(" nop\n")) yield True continue dlg.addMessage(_(" ok\n")) # exploitable, go for it! dlg.addMessage(_("Exploiting...\n")) try: exploit.exploit() except w3afException, e: dlg.addMessage(str(e) + '\n') yield True continue except w3afMustStopException, wmse: dlg.addMessage(_("\nERROR:")) dlg.addMessage(str(wmse) + '\n') dlg.done() dlg.dialog_run() yield False # Let GTK handle events, I want a responsive GUI! yield True # it was succesful! if stopOnFirst: dlg.addMessage(_("Done\n")) dlg.done() dlg.dialog_run() yield False dlg.addMessage(_("Done\n")) dlg.done() dlg.dialog_run() yield False class ExploitBody(entries.RememberingHPaned): '''Body of the exploit tab. @param w3af: the Core instance. @author: Facundo Batista <facundobatista =at= taniquetil.com.ar> ''' def __init__(self, w3af): super(ExploitBody,self).__init__(w3af, "pane-exploitbody") self.w3af = w3af self.panels = {} # This is the index to use in the message diverter # # The first window that is poped up, gets 0 and starts from there # that window consumes messages and increases this number. # # The next window will show messages starting from were the # other window left the pointer. # # All the message_index handling is done with: # - self.get_message_index() # - self.inc_message_index() # self._message_index = 0 kb.kb.save('get_message_index', 'get_message_index', self.get_message_index) kb.kb.save('inc_message_index', 'inc_message_index', self.inc_message_index) # left & right exploitvuln = self._buildExplVuln() interac = self._buildInteraction() self.panels["exploitvuln"] = exploitvuln self.panels["interac"] = interac # pack it all and show self.pack1(exploitvuln) self.pack2(interac) self.panactiv = dict((x,True) for x in self.panels) self.show() def inc_message_index(self): self._message_index += 1 def get_message_index(self): return self._message_index def _buildExplVuln(self): '''The pane with the exploit list and vulnerabilities tree.''' pan = entries.RememberingHPaned(self.w3af, "pane-epxlvuln", 200) # left exploitlist = ExploitTree(self.w3af) scrollwin1 = gtk.ScrolledWindow() scrollwin1.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) scrollwin1.add_with_viewport(exploitlist) scrollwin1.show() # rigth interac = VulnerabList(self.w3af, exploitlist) exploitlist.vulnerabs = interac scrollwin2 = gtk.ScrolledWindow() scrollwin2.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) scrollwin2.add_with_viewport(interac) scrollwin2.show() # pack it all and show pan.pack1(scrollwin1) pan.pack2(scrollwin2) pan.show() return pan def _buildInteraction(self): '''The pane with the shells and proxies list.''' pan = entries.RememberingVPaned(self.w3af, "pane-explinteraction") # left shells = Shells(self.w3af) scrollwin1 = gtk.ScrolledWindow() scrollwin1.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) scrollwin1.add_with_viewport(shells) scrollwin1.show() # rigth proxies = Proxies() scrollwin2 = gtk.ScrolledWindow() scrollwin2.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) scrollwin2.add_with_viewport(proxies) scrollwin2.show() # pack it all and show pan.pack1(scrollwin1) pan.pack2(scrollwin2) pan.show() return pan def togglePanels(self, panel, active): '''Turn on and off the panels. @param panel: The panel to turn on and off @param active: If it should be activated or deactivated ''' widg = self.panels[panel] if active: widg.show() else: widg.hide() self.panactiv[panel] = active def exploitAll(self): '''Exploit all vulns with all plugins.''' ea = ExploitAllDialog(self.w3af) resp = ea.run() if resp != gtk.RESPONSE_OK: return effectivelyExploitAll(self.w3af, ea.activatedPlugins, ea.stopOnFirst) return
9057b02d2ebad2cfc59b5649da5d1eeb5780b432
8d5f49fa1fda8ffc473e7f5a62786c77838a5820
/website/drawquest/dbrouters.py
23bbfb4be240253be8526040cf768de593b23d88
[ "BSD-3-Clause" ]
permissive
MichaelBechHansen/drawquest-web
dfc6f5d9541860a5df23db678e82564a230bd42e
8d8f9149b6efeb65202809a5f8916386f58a1b3b
refs/heads/master
2021-01-14T10:30:10.861222
2015-11-10T03:13:42
2015-11-10T03:13:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,679
py
from django.conf import settings class DatabaseAppRouter(object): """ A router to control all database operations on models for different databases. In case an app is not set in settings.DATABASE_APPS_MAPPING, the router will fallback to the `default` database. Settings example: DATABASE_APPS_MAPPING = {'app1': 'db1', 'app2': 'db2'} """ def db_for_read(self, model, **hints): """" Point all read operations to the specific database. """ return settings.DATABASE_APPS_MAPPING.get(model._meta.app_label) def db_for_write(self, model, **hints): """ Point all write operations to the specific database. """ return settings.DATABASE_APPS_MAPPING.get(model._meta.app_label) def allow_relation(self, obj1, obj2, **hints): """ Allow any relation between apps that use the same database. """ db_obj1 = settings.DATABASE_APPS_MAPPING.get(obj1._meta.app_label) db_obj2 = settings.DATABASE_APPS_MAPPING.get(obj2._meta.app_label) if db_obj1 and db_obj2: if db_obj1 == db_obj2: return True else: return False def allow_syncdb(self, db, model): """ Make sure that apps only appear in the related database. """ if model._meta.app_label == 'south': return True elif db in settings.DATABASE_APPS_MAPPING.values(): return settings.DATABASE_APPS_MAPPING.get(model._meta.app_label) == db elif settings.DATABASE_APPS_MAPPING.has_key(model._meta.app_label): return False elif db != 'default': return False return True
444afd65d83f521bbd49a2443f13fc3fbfceb654
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03078/s480863669.py
ac933d8bc820956754a8b02303270586b6a2aaa3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
# solution x,y,z,k = map(int, input().split()) a = sorted(list(map(int, input().split())), reverse = True) b = sorted(list(map(int, input().split())), reverse = True) c = sorted(list(map(int, input().split())), reverse = True) ans = [] for p in range(min(k,len(a))): for q in range(min(k,len(b))): for r in range(min(k,len(c))): if((p+1)*(q+1)*(r+1) > k): break ans.append(a[p] + b[q] + c[r]) ans = sorted(ans, reverse = True) for i in range(k): print(ans[i])
3a074572647edca905c1104c2e82709c859ebddb
4050f786f3cc505760e25608d66805e3543835f8
/the_flyer_15147/urls.py
141a25667c75334ebfabf7887b5c99cfe55f3ff9
[]
no_license
crowdbotics-apps/the-flyer-15147
6fb0a403286d06c5393d9f58b39f76ad5c538312
e2f62327110f1200c8d4ebf46f127ce4fe903189
refs/heads/master
2022-12-11T02:03:31.153849
2020-03-28T02:01:50
2020-03-28T02:01:50
250,693,069
0
0
null
2022-12-08T05:09:49
2020-03-28T01:59:48
Python
UTF-8
Python
false
false
2,055
py
"""the_flyer_15147 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("api/v1/", include("event.api.v1.urls")), path("event/", include("event.urls")), path("home/", include("home.urls")), ] admin.site.site_header = "the flyer" admin.site.site_title = "the flyer Admin Portal" admin.site.index_title = "the flyer Admin" # swagger schema_view = get_schema_view( openapi.Info( title="the flyer API", default_version="v1", description="API documentation for the flyer App", ), public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
664fa09f48389314c2a900ac4b98a88fce679aba
84a617d20424c0e06847ee5230c579d99e85956c
/pytorch/re/pure/entity_models.py
36fb6f121c714294e0fbd9672ed9362eec3ddb85
[]
no_license
ienoob/neo_nlp_project
a6b1fce5ba3413e3d8dba174ffba8b8700d03444
1009dc9780b8827813ee3e575e8bfcb03aa5d388
refs/heads/master
2023-02-22T20:09:06.366958
2022-07-14T02:45:12
2022-07-14T02:45:12
249,361,823
8
0
null
2023-02-16T03:31:49
2020-03-23T07:22:13
Python
UTF-8
Python
false
false
12,864
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) *** import torch import torch.nn as nn from transformers import BertTokenizer, BertPreTrainedModel, BertModel from transformers import AlbertTokenizer, AlbertPreTrainedModel, AlbertModel from torch.nn import CrossEntropyLoss import logging logger = logging.getLogger('root') class BertForEntity(BertPreTrainedModel): def __init__(self, config, num_ner_labels, head_hidden_dim=150, width_embedding_dim=150, max_span_length=8): super().__init__(config) self.bert = BertModel(config) self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob) self.width_embedding = nn.Embedding(max_span_length + 1, width_embedding_dim) self.ner_classifier = nn.Sequential( FeedForward(input_dim=config.hidden_size * 2 + width_embedding_dim, num_layers=2, hidden_dims=head_hidden_dim, activations=F.relu, dropout=0.2), nn.Linear(head_hidden_dim, num_ner_labels) ) self.init_weights() def _get_span_embeddings(self, input_ids, spans, token_type_ids=None, attention_mask=None): sequence_output, pooled_output = self.bert(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) sequence_output = self.hidden_dropout(sequence_output) """ spans: [batch_size, num_spans, 3]; 0: left_ned, 1: right_end, 2: width spans_mask: (batch_size, num_spans, ) """ spans_start = spans[:, :, 0].view(spans.size(0), -1) spans_start_embedding = batched_index_select(sequence_output, spans_start) spans_end = spans[:, :, 1].view(spans.size(0), -1) spans_end_embedding = batched_index_select(sequence_output, spans_end) spans_width = spans[:, :, 2].view(spans.size(0), -1) spans_width_embedding = self.width_embedding(spans_width) # Concatenate embeddings of left/right points and the width embedding spans_embedding = torch.cat((spans_start_embedding, spans_end_embedding, spans_width_embedding), dim=-1) """ spans_embedding: (batch_size, num_spans, hidden_size*2+embedding_dim) """ return spans_embedding def forward(self, input_ids, spans, spans_mask, spans_ner_label=None, token_type_ids=None, attention_mask=None): spans_embedding = self._get_span_embeddings(input_ids, spans, token_type_ids=token_type_ids, attention_mask=attention_mask) ffnn_hidden = [] hidden = spans_embedding for layer in self.ner_classifier: hidden = layer(hidden) ffnn_hidden.append(hidden) logits = ffnn_hidden[-1] if spans_ner_label is not None: loss_fct = CrossEntropyLoss(reduction='sum') if attention_mask is not None: active_loss = spans_mask.view(-1) == 1 active_logits = logits.view(-1, logits.shape[-1]) active_labels = torch.where( active_loss, spans_ner_label.view(-1), torch.tensor(loss_fct.ignore_index).type_as(spans_ner_label) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, logits.shape[-1]), spans_ner_label.view(-1)) return loss, logits, spans_embedding else: return logits, spans_embedding, spans_embedding class EntityModel(): def __init__(self, args, num_ner_labels): super().__init__() bert_model_name = args.model vocab_name = bert_model_name if args.bert_model_dir is not None: bert_model_name = str(args.bert_model_dir) + '/' # vocab_name = bert_model_name + 'vocab.txt' vocab_name = bert_model_name logger.info('Loading BERT model from {}'.format(bert_model_name)) if args.use_albert: self.tokenizer = AlbertTokenizer.from_pretrained(vocab_name) self.bert_model = AlbertForEntity.from_pretrained(bert_model_name, num_ner_labels=num_ner_labels, max_span_length=args.max_span_length) else: self.tokenizer = BertTokenizer.from_pretrained(vocab_name) self.bert_model = BertForEntity.from_pretrained(bert_model_name, num_ner_labels=num_ner_labels, max_span_length=args.max_span_length) self._model_device = 'cpu' self.move_model_to_cuda() def move_model_to_cuda(self): if not torch.cuda.is_available(): logger.error('No CUDA found!') exit(-1) logger.info('Moving to CUDA...') self._model_device = 'cuda' self.bert_model.cuda() logger.info('# GPUs = %d' % (torch.cuda.device_count())) if torch.cuda.device_count() > 1: self.bert_model = torch.nn.DataParallel(self.bert_model) def _get_input_tensors(self, tokens, spans, spans_ner_label): start2idx = [] end2idx = [] bert_tokens = [] bert_tokens.append(self.tokenizer.cls_token) for token in tokens: start2idx.append(len(bert_tokens)) sub_tokens = self.tokenizer.tokenize(token) bert_tokens += sub_tokens end2idx.append(len(bert_tokens) - 1) bert_tokens.append(self.tokenizer.sep_token) indexed_tokens = self.tokenizer.convert_tokens_to_ids(bert_tokens) tokens_tensor = torch.tensor([indexed_tokens]) bert_spans = [[start2idx[span[0]], end2idx[span[1]], span[2]] for span in spans] bert_spans_tensor = torch.tensor([bert_spans]) spans_ner_label_tensor = torch.tensor([spans_ner_label]) return tokens_tensor, bert_spans_tensor, spans_ner_label_tensor def _get_input_tensors_batch(self, samples_list, training=True): tokens_tensor_list = [] bert_spans_tensor_list = [] spans_ner_label_tensor_list = [] sentence_length = [] max_tokens = 0 max_spans = 0 for sample in samples_list: tokens = sample['tokens'] spans = sample['spans'] spans_ner_label = sample['spans_label'] tokens_tensor, bert_spans_tensor, spans_ner_label_tensor = self._get_input_tensors(tokens, spans, spans_ner_label) tokens_tensor_list.append(tokens_tensor) bert_spans_tensor_list.append(bert_spans_tensor) spans_ner_label_tensor_list.append(spans_ner_label_tensor) assert (bert_spans_tensor.shape[1] == spans_ner_label_tensor.shape[1]) if (tokens_tensor.shape[1] > max_tokens): max_tokens = tokens_tensor.shape[1] if (bert_spans_tensor.shape[1] > max_spans): max_spans = bert_spans_tensor.shape[1] sentence_length.append(sample['sent_length']) sentence_length = torch.Tensor(sentence_length) # apply padding and concatenate tensors final_tokens_tensor = None final_attention_mask = None final_bert_spans_tensor = None final_spans_ner_label_tensor = None final_spans_mask_tensor = None for tokens_tensor, bert_spans_tensor, spans_ner_label_tensor in zip(tokens_tensor_list, bert_spans_tensor_list, spans_ner_label_tensor_list): # padding for tokens num_tokens = tokens_tensor.shape[1] tokens_pad_length = max_tokens - num_tokens attention_tensor = torch.full([1, num_tokens], 1, dtype=torch.long) if tokens_pad_length > 0: pad = torch.full([1, tokens_pad_length], self.tokenizer.pad_token_id, dtype=torch.long) tokens_tensor = torch.cat((tokens_tensor, pad), dim=1) attention_pad = torch.full([1, tokens_pad_length], 0, dtype=torch.long) attention_tensor = torch.cat((attention_tensor, attention_pad), dim=1) # padding for spans num_spans = bert_spans_tensor.shape[1] spans_pad_length = max_spans - num_spans spans_mask_tensor = torch.full([1, num_spans], 1, dtype=torch.long) if spans_pad_length > 0: pad = torch.full([1, spans_pad_length, bert_spans_tensor.shape[2]], 0, dtype=torch.long) bert_spans_tensor = torch.cat((bert_spans_tensor, pad), dim=1) mask_pad = torch.full([1, spans_pad_length], 0, dtype=torch.long) spans_mask_tensor = torch.cat((spans_mask_tensor, mask_pad), dim=1) spans_ner_label_tensor = torch.cat((spans_ner_label_tensor, mask_pad), dim=1) # update final outputs if final_tokens_tensor is None: final_tokens_tensor = tokens_tensor final_attention_mask = attention_tensor final_bert_spans_tensor = bert_spans_tensor final_spans_ner_label_tensor = spans_ner_label_tensor final_spans_mask_tensor = spans_mask_tensor else: final_tokens_tensor = torch.cat((final_tokens_tensor, tokens_tensor), dim=0) final_attention_mask = torch.cat((final_attention_mask, attention_tensor), dim=0) final_bert_spans_tensor = torch.cat((final_bert_spans_tensor, bert_spans_tensor), dim=0) final_spans_ner_label_tensor = torch.cat((final_spans_ner_label_tensor, spans_ner_label_tensor), dim=0) final_spans_mask_tensor = torch.cat((final_spans_mask_tensor, spans_mask_tensor), dim=0) # logger.info(final_tokens_tensor) # logger.info(final_attention_mask) # logger.info(final_bert_spans_tensor) # logger.info(final_bert_spans_tensor.shape) # logger.info(final_spans_mask_tensor.shape) # logger.info(final_spans_ner_label_tensor.shape) return final_tokens_tensor, final_attention_mask, final_bert_spans_tensor, final_spans_mask_tensor, final_spans_ner_label_tensor, sentence_length def run_batch(self, samples_list, try_cuda=True, training=True): # convert samples to input tensors tokens_tensor, attention_mask_tensor, bert_spans_tensor, spans_mask_tensor, spans_ner_label_tensor, sentence_length = self._get_input_tensors_batch( samples_list, training) output_dict = { 'ner_loss': 0, } if training: self.bert_model.train() ner_loss, ner_logits, spans_embedding = self.bert_model( input_ids=tokens_tensor.to(self._model_device), spans=bert_spans_tensor.to(self._model_device), spans_mask=spans_mask_tensor.to(self._model_device), spans_ner_label=spans_ner_label_tensor.to(self._model_device), attention_mask=attention_mask_tensor.to(self._model_device), ) output_dict['ner_loss'] = ner_loss.sum() output_dict['ner_llh'] = F.log_softmax(ner_logits, dim=-1) else: self.bert_model.eval() with torch.no_grad(): ner_logits, spans_embedding, last_hidden = self.bert_model( input_ids=tokens_tensor.to(self._model_device), spans=bert_spans_tensor.to(self._model_device), spans_mask=spans_mask_tensor.to(self._model_device), spans_ner_label=None, attention_mask=attention_mask_tensor.to(self._model_device), ) _, predicted_label = ner_logits.max(2) predicted_label = predicted_label.cpu().numpy() last_hidden = last_hidden.cpu().numpy() predicted = [] pred_prob = [] hidden = [] for i, sample in enumerate(samples_list): ner = [] prob = [] lh = [] for j in range(len(sample['spans'])): ner.append(predicted_label[i][j]) # prob.append(F.softmax(ner_logits[i][j], dim=-1).cpu().numpy()) prob.append(ner_logits[i][j].cpu().numpy()) lh.append(last_hidden[i][j]) predicted.append(ner) pred_prob.append(prob) hidden.append(lh) output_dict['pred_ner'] = predicted output_dict['ner_probs'] = pred_prob output_dict['ner_last_hidden'] = hidden return output_dict
1e445cc5bd290315f961eb98d248e02c72584909
f4653b4bd7528150a53c8f454658c00d7ea0b836
/cbm/ipycbm/ipy_view/view_main.py
e19d0de98e84ac96843c63b82e5adf468f855f50
[ "BSD-3-Clause" ]
permissive
mokasini/cbm
ccb09cb8ab96e6b06b0e13d86ff51124538706f6
33bd9c8a0d107f6cdc3343953ae9f7c9bd9272cd
refs/heads/main
2023-02-24T04:44:07.744715
2021-02-01T12:29:38
2021-02-01T12:29:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
976
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD from ipywidgets import Tab from cbm.ipycbm.utils import help_docs from cbm.ipycbm.ipy_view import view_settings, view_panel def view_widget_box(): try: tab_box = Tab(children=[view_panel.view(), help_docs.widget_box(), view_settings.widget_box()]) tab_box.set_title(0, 'View Data') tab_box.set_title(1, 'Help') tab_box.set_title(2, 'Settings') except Exception as err: tab_box = Tab(children=[help_docs.widget_box(), view_settings.widget_box()]) tab_box.set_title(1, 'Help') tab_box.set_title(2, 'Settings') print("Could not show 'View panel'.", err) return tab_box
27c35318c6b5f8212dd449e282c2b081d6dc4c61
046c1141399890afa13fd243e55da3dbf31085c5
/test/test22.py
05c20e2d7892acce138d4df0ab6d184be9b7d49e
[]
no_license
carusyte/tflab
1d0edf87282352aeb5a38b83c58ab9c0189bbb1a
2324c3b0ad22d28c50a4fd8db56e36a2836735c3
refs/heads/master
2021-05-12T06:58:26.270868
2019-03-24T14:57:44
2019-03-24T14:57:44
117,232,451
0
0
null
null
null
null
UTF-8
Python
false
false
6,165
py
from __future__ import print_function # Path hack. import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..") import tensorflow as tf from pstk.model import model11 from time import strftime from pstk.data import data as data0 from pstk.data import data12 from test import collect_summary import os import numpy as np import math EPOCH_SIZE = 444 RNN_LAYERS = 1 FCN_LAYERS = 3 LAYER_WIDTH = 256 MAX_STEP = 50 TIME_SHIFT = 9 DROP_OUT = math.e / 10.0 LEARNING_RATE = 1e-3 LOG_DIR = 'logdir' def run(): tf.logging.set_verbosity(tf.logging.INFO) loader = data12.DataLoader(TIME_SHIFT) print('{} loading test data...'.format(strftime("%H:%M:%S"))) tuuids, tdata, tlabels, tseqlen = loader.loadTestSet(MAX_STEP) print(tdata.shape) print(tlabels.shape) featSize = tdata.shape[2] nclass = tlabels.shape[1] classes = [i-nclass//2 for i in range(nclass)] data = tf.placeholder(tf.float32, [None, MAX_STEP, featSize], "input") target = tf.placeholder(tf.float32, [None, nclass], "labels") seqlen = tf.placeholder(tf.int32, [None], "seqlen") dropout = tf.placeholder(tf.float32, [], name="dropout") training = tf.placeholder(tf.bool, [], name="training") with tf.Session() as sess: model = model11.DRnnPredictorV6( data=data, target=target, seqlen=seqlen, classes=classes, rnn_layers=RNN_LAYERS, fcn_layers=FCN_LAYERS, layer_width=LAYER_WIDTH, dropout=dropout, training=training, learning_rate=LEARNING_RATE) stime = '{}'.format(strftime("%Y-%m-%d %H:%M:%S")) model_name = model.getName() f = __file__ fbase = f[f.rfind('/')+1:f.rindex('.py')] base_dir = '{}/{}_{}/{}'.format(LOG_DIR, fbase, model_name, strftime("%Y%m%d_%H%M%S")) print('{} using model: {}'.format(strftime("%H:%M:%S"), model_name)) if tf.gfile.Exists(base_dir): tf.gfile.DeleteRecursively(base_dir) tf.gfile.MakeDirs(base_dir) # Isolate the variables stored behind the scenes by the metric operation metric_local_vars = tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="Precisions") + tf.get_collection( tf.GraphKeys.LOCAL_VARIABLES, scope="Recalls") metric_vars_initializer = tf.variables_initializer( var_list=metric_local_vars) sess.run(tf.group(tf.global_variables_initializer(), metric_vars_initializer)) summary, train_writer, test_writer = collect_summary( sess, model, base_dir) saver = tf.train.Saver() bno = 0 for epoch in range(EPOCH_SIZE): bno = epoch*50 print('{} running on test set...'.format(strftime("%H:%M:%S"))) feeds = {data: tdata, target: tlabels, seqlen: tseqlen, dropout: 0, training: False} accuracy, worst, test_summary_str = sess.run( [model.accuracy, model.worst, summary, model.precisions[1], model.recalls[1], model.f_score], feeds)[:3] bidx, max_entropy, predict, actual = worst[0], worst[1], worst[2], worst[3] print('{} Epoch {} test accuracy {:3.3f}% max_entropy {:3.4f} predict {} actual {} uuid {}'.format( strftime("%H:%M:%S"), epoch, 100. * accuracy, max_entropy, predict, actual, tuuids[bidx])) data0.save_worst_rec(model_name, stime, "test", epoch, tuuids[bidx], max_entropy, predict, actual) summary_str = None for i in range(50): sess.run(metric_vars_initializer) bno = bno+1 print('{} loading training data for batch {}...'.format( strftime("%H:%M:%S"), bno)) truuids, trdata, labels, trseqlen = loader.loadTrainingData( bno, MAX_STEP) print('{} training...'.format(strftime("%H:%M:%S"))) feeds = {data: trdata, target: labels, seqlen: trseqlen, dropout: DROP_OUT, training: True} summary_str, worst = sess.run( [summary, model.worst, model.optimize, model.precisions[1], model.recalls[1], model.f_score], feeds)[:2] bidx, max_entropy, predict, actual = worst[0], worst[1], worst[2], worst[3] print('{} bno {} max_entropy {:3.4f} predict {} actual {}'.format( strftime("%H:%M:%S"), bno, max_entropy, predict, actual)) data0.save_worst_rec(model_name, stime, "train", bno, truuids[bidx], max_entropy, predict, actual) train_writer.add_summary(summary_str, bno) test_writer.add_summary(test_summary_str, bno) train_writer.flush() test_writer.flush() checkpoint_file = os.path.join(base_dir, 'model.ckpt') saver.save(sess, checkpoint_file, global_step=bno) sess.run(metric_vars_initializer) # test last epoch print('{} running on test set...'.format(strftime("%H:%M:%S"))) feeds = {data: tdata, target: tlabels, seqlen: tseqlen, dropout: 0, training: False} accuracy, worst, test_summary_str = sess.run( [model.accuracy, model.worst, summary, model.precisions[1], model.recalls[1], model.f_score], feeds)[:3] bidx, max_entropy, predict, actual = worst[0], worst[1], worst[2], worst[3] print('{} Epoch {} test accuracy {:3.3f}% max_entropy {:3.4f} predict {} actual {}'.format( strftime("%H:%M:%S"), EPOCH_SIZE, 100. * accuracy, max_entropy, predict, actual)) data0.save_worst_rec(model_name, stime, "test", EPOCH_SIZE, tuuids[bidx], max_entropy, predict, actual) train_writer.add_summary(summary_str, bno) test_writer.add_summary(test_summary_str, bno) train_writer.flush() test_writer.flush() if __name__ == '__main__': run()
4ecf47ca7e7b37620817c44064a35600aa63affa
dfc2c18053b8e7576f88e7b2524d7ca3a8f47282
/ch03/session3/63.py
a3458fac0a02818719ccecbeba2d2a88982ce7e0
[]
no_license
Xoozi/tchomework
a6eed3bbf697ff12af8d42249ec58a139aed0c4c
627c98b0b652ef20fd93025a17341bba76fbfce6
refs/heads/master
2021-01-23T21:18:15.793703
2018-10-21T11:05:55
2018-10-21T11:05:55
57,583,655
1
2
null
null
null
null
UTF-8
Python
false
false
1,067
py
#一族三次曲线 #(a)对k = 0, 及其邻近的k的正和负值, 把f(x) = x**3 + k*x的图形画在一个公共屏幕上. #k的值是怎么影响到图形的形状的 #k小于0时, 函数递减, 只有一个根 #k向0移动, 函数图像开始逆时针旋转, 并且开始弯曲, 靠近0时开始有多个根 #k大于0时, 又开始伸展, #(b)求f'(x). 正如你知道的, f'(x)是一个二次函数, 求该二次函数的判别式. 对什么样的k值, 该判别式 #为正, 为零, 为负? 对什么k值f'有两个零点, 一个或,没有零点? #说明k的值对f图形的形状有什么影响? #f'(x) = 3*x**2 + k #Δ = -4*3*k = -12k #k>0时Δ<0, f'无零点 #k<0时Δ>0, f'有两个零点 #k=0时Δ=0, f'有一个零点 #说明k值影响了f是否有极值 def f(x, k): return x**3 + k*x def ddd(s, e, a): r = 0 g = 0 b = 0 k = -1280 plot([s, e], [0, 0], '-k') x = linspace(s, e, a) while(k <= 1280): y = f(x, k) plot(x, y, '#%02X%02X%02X' % (r, g, b)) r += 2 k += 20 ddd(-16, 16, 1000)
d954433fc734887cf2bed62499ea0205cefd66a3
30b97efb2f36f81aa684d16d19e0e2db17f2967d
/기타/2468.py
05d75b8ff59e165f6298ad243ba4d49c20202b24
[]
no_license
jmseb3/bakjoon
0a784a74c6476ef51864e2ada9d2551c7c7979eb
a38db54e851372059b0e45add92e43e556835e62
refs/heads/main
2023-08-25T08:43:04.579785
2021-10-01T08:40:37
2021-10-01T08:40:37
362,287,450
2
0
null
null
null
null
UTF-8
Python
false
false
956
py
from collections import deque N = int(input()) maps = [] max_len = 0 for _ in range(N): temp = list(map(int, input().split())) max_len = max(max_len, max(temp)) maps.append(temp) moves = [(-1, 0), (1, 0), (0, 1), (0, -1)] ans = 0 def bfs(y, x, ck, visited): q = deque() q.append((y, x)) visited[y][x] = True while q: y, x = q.popleft() for dy, dx in moves: ny = y + dy nx = x + dx if ny < 0 or nx < 0 or ny >= N or nx >= N: continue if maps[ny][nx] >= ck and not visited[ny][nx]: visited[ny][nx] = True q.append((ny, nx)) for ck in range(max_len+1): tmp = 0 visited = [[False]*N for _ in range(N)] for y in range(N): for x in range(N): if maps[y][x] >= ck and not visited[y][x]: bfs(y, x, ck, visited) tmp += 1 ans = max(tmp, ans) print(ans)
e1ecdb9dddc1bcdc4da805d75772b02eead18e04
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/LIVINGSTON-PM4-MIB.py
aa942223a96f63f216f498a166e8bc9c5381dac9
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
135,200
py
# # PySNMP MIB module LIVINGSTON-PM4-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/LIVINGSTON-PM4-MIB # Produced by pysmi-0.3.4 at Wed May 1 14:07:28 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint") lucentPM4, = mibBuilder.importSymbols("LIVINGSTON-ROOT-MIB", "lucentPM4") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") sysName, = mibBuilder.importSymbols("SNMPv2-MIB", "sysName") Counter32, Gauge32, Counter64, IpAddress, ModuleIdentity, Unsigned32, Integer32, TimeTicks, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, Bits, NotificationType, NotificationType, MibIdentifier, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Gauge32", "Counter64", "IpAddress", "ModuleIdentity", "Unsigned32", "Integer32", "TimeTicks", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits", "NotificationType", "NotificationType", "MibIdentifier", "iso") DisplayString, TextualConvention, PhysAddress = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention", "PhysAddress") class PMUnitType(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 255)) namedValues = NamedValues(("mrgmodule", 1), ("quadt1", 2), ("trie1", 3), ("modem", 4), ("serialport", 5), ("ether0", 6), ("ether1", 7), ("console", 8), ("acpwrsup", 9), ("fan", 10), ("dcpwrsup", 11), ("allunits", 255)) class PMEquipPRIStatus(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("up", 1), ("down", 2), ("loopback", 3), ("fault", 4)) class PMEquipStatus(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5)) namedValues = NamedValues(("up", 1), ("down", 2), ("maintenance", 3), ("fault", 4), ("other", 5)) class PMDiagCmdStatus(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("success", 1), ("fail", 2), ("inprogress", 3), ("notsupported", 4), ("aborted", 5), ("other", 6)) class PMDiagTestCntrl(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("normal", 1), ("start", 2), ("stop", 3), ("abort", 4)) class PMAlarmType(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5)) namedValues = NamedValues(("informational", 1), ("warning", 2), ("minor", 3), ("major", 4), ("critical", 5)) lucentPM4Mib = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1)) lucentPM4Traps = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2)) lucentPM4MibRev = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 6))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4MibRev.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4MibRev.setDescription('This object specifies the current MIB revision number. Example of the MIB revision can be PM4xxx for PM4 product and PM3xxx for PM3 products etc. Where xxx can be any combination of alpha-numeric characters.') lucentPM4SWRev = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 10))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SWRev.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SWRev.setDescription('This object specifies the ComOS revision number. Example of the ComOS revision can be ComOS4.xx. Where xxx can be any combination of alpha-numeric characters.') lucentPM4Chassis = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3)) lucentPM4ChasSummary = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(55, 55)).setFixedLength(55)).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ChasSummary.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasSummary.setDescription("This object provides general information about the PortMaster 4 chassis operational status. This object is read-only. The DisplayString represents a summary of all the devices in the chassis as follows: Bytes 1 - 2 '0''0' Byte 3 'U', 'D', 'M', 'F', 'O' Byte 4 space Bytes 5 - 6 '0''1' Byte 7 'U', 'D', 'M', 'F', 'O' Byte 8 space Bytes 9 - 10 '0''2' Byte 11 'U', 'D', 'M', 'F', 'O' Byte 12 space Bytes 13 - 14 '0''3' Byte 15 'U', 'D', 'M', 'F', 'O' Byte 16 space Bytes 17 - 18 '0''4' Byte 19 'U', 'D', 'M', 'F', 'O' Byte 20 space Bytes 21 - 22 '0''5' Byte 23 'U', 'D', 'M', 'F', 'O' Byte 24 space Bytes 25 - 26 '0''6' Byte 27 'U', 'D', 'M', 'F', 'O' Byte 28 space Bytes 29 - 30 '0''7' Byte 31 'U', 'D', 'M', 'F', 'O' Byte 32 space Bytes 33 - 34 '0''8' Byte 35 'U', 'D', 'M', 'F', 'O' Byte 36 space Bytes 37 - 38 '0''9' Byte 39 'U', 'D', 'M', 'F', 'O' Byte 40 space Bytes 41 - 42 '1''0' Byte 43 'U', 'D', 'M', 'F', 'O' Byte 44 space Bytes 45 - 46 '1''1' Byte 47 'U', 'D', 'M', 'F', 'O' Byte 48 space Bytes 49 - 50 '1''2' Byte 51 'U', 'D', 'M', 'F', 'O' Byte 52 space Bytes 53 - 54 '1''3' Byte 55 'U', 'D', 'M', 'F', 'O' Byte 56 space Bytes 57 - 58 '1''4' Byte 59 'U', 'D', 'M', 'F', 'O' Byte 60 space Bytes 61 - 62 '1''5' Byte 63 'U', 'D', 'M', 'F', 'O' Byte 64 space Bytes 65 - 66 'P''1' Byte 67 'U', 'D', 'M', 'F', 'O' Byte 68 space Bytes 69 - 70 'P''2' Byte 71 'U', 'D', 'M', 'F', 'O' Byte 72 space Bytes 73 - 74 'P''3' Byte 75 'U', 'D', 'M', 'F', 'O' Byte 76 space Bytes 77 - 78 'D''1' Byte 79 'U', 'D', 'M', 'F', 'O' Byte 80 space Bytes 81 - 82 'D''2' Byte 83 'U', 'D', 'M', 'F', 'O' Byte 84 space Bytes 85 - 86 'F''1' Byte 87 'U', 'D', 'M', 'F', 'O' Byte 88 space Bytes 89 - 90 'F''2' Byte 91 'U', 'D', 'M', 'F', 'O' Byte 92 space Bytes 93 - 94 'F''3' Byte 95 'U', 'D', 'M', 'F', 'O' Byte 96 space Bytes 97 - 98 'F''4' Byte 99 'U', 'D', 'M', 'F', 'O' Legend '#''#' Represents the board number 'F''#' Represents the Fan # 'P''#' Represents the Power Supply # 'D''#' Represents the DC Power Supply # 'U' Up 'D' Down 'M' Maintenance 'F' Failed 'O' Other unknown state.") lucentPM4ChasCmdTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2), ) if mibBuilder.loadTexts: lucentPM4ChasCmdTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdTable.setDescription('Table describing the commands that can be issued to the agent to perform specific actions to any card, port or device in the system. For example to erase the flash or a particular file from the flash. Note that only a station configured with the appropriate authentication string can issue commands to the agent.') lucentPM4ChasCmdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4ChasCmdIndex")) if mibBuilder.loadTexts: lucentPM4ChasCmdEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdEntry.setDescription('Entries in the command table for the chassis commands. This describes one entry or row in the command table.') lucentPM4ChasCmdIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 10))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdIndex.setDescription('This object specifies the index in the command table. The values for this object is limited to the size of the command table on the network element. The size of the command table is set to 10 which can be changed if and when users need to schedule more than 10 commands at a given time.') lucentPM4ChasCmdBoardId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdBoardId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdBoardId.setDescription('This object specifies the board for which the command is to be applied. The values for this object is limited to the Max number of boards.') lucentPM4ChasCmdUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 3), PMUnitType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdUnitType.setDescription('This object specifies the type of the device to which this command must apply.') lucentPM4ChasCmdUnitIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdUnitIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdUnitIndex.setDescription('This object specifies the interface index.') lucentPM4ChasCmdDevId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 96))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdDevId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdDevId.setDescription('This object specifies the sub-unit id for which the command must be applied to. This value will be used by the agent to index to the correct sub-device on a board. For example, this object can have values from 1 - 96 for the modems or 1 - 4 for T1 or 1 - 3 for the E1.') lucentPM4ChasCmdId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29))).clone(namedValues=NamedValues(("eraseflashfile", 1), ("eraseallflash", 2), ("saveall", 3), ("resetport", 4), ("resetfilter", 5), ("adduser", 6), ("deleteuser", 7), ("addlocation", 8), ("diallocation", 9), ("addfilter", 10), ("deletefilter", 11), ("addmodem", 12), ("resetvirtport", 13), ("addospfarea", 14), ("resetospf", 15), ("addprop", 16), ("deleteprop", 17), ("resetprop", 18), ("resetether0", 19), ("resetether1", 20), ("resetall", 21), ("resetconsole", 22), ("version", 23), ("traceroutes", 24), ("ptrace", 25), ("ifconfig", 26), ("eraseconfig", 27), ("erasecomos", 28), ("reboot", 29)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdId.setDescription('This object specifies the command. Each command takes a unique value. The completion status of this command is set in the result object of the table.') lucentPM4ChasCmdParams = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4ChasCmdParams.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdParams.setDescription("This object specifies the command parameters. Each parameter must be seperated by a blank space. The last parameter is terminated with a ';'.") lucentPM4ChasCmdResult = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 3, 2, 1, 8), PMDiagCmdStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ChasCmdResult.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ChasCmdResult.setDescription('This object specifies the command result. The result for each of the previous 10 commands will be stored in a table, which can be retrieved by the client when needed.') lucentPM4ConfigMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4)) lucentPM4CmInterfaces = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1)) lucentPM4CmSerial = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1)) lucentPM4SerialTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1), ) if mibBuilder.loadTexts: lucentPM4SerialTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTable.setDescription('A list of serial interface entries.') lucentPM4SerialEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4SerialBoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4SerialIndex")) if mibBuilder.loadTexts: lucentPM4SerialEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialEntry.setDescription('A serial interface entry containing objects at the physical and session layer.') lucentPM4SerialBoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialBoardIndex.setDescription('A unique value for each board in the PortMaster chassis. The Max value of this variable is limited by the number of boards in the chassis. This value is limited to 255.') lucentPM4SerialUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialUnitType.setDescription('Unit type indicates the serial port. The interface table ifIndex is a combination of board index, unit type and unit index.') lucentPM4SerialIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialIndex.setDescription('A unique value for each serial interface on a given board.') lucentPM4ModemId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemId.setDescription('This object is the cross reference to the modem interface table index. The value is dynamically assigned when the call is established.') lucentPM4SerialPortNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialPortNumber.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialPortNumber.setDescription('A serial port to which this modem is assigned for this call.') lucentPM4SerialPhysType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("other", 1), ("async", 2), ("sync", 3), ("isdn", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialPhysType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialPhysType.setDescription('The type of physical serial interface, distinguished according to the physical/link protocol(s) being currently used on the interface. When this object is set to asyn(2), then the service types dial-in, dial- out, login, and device are valid. When this object is set to sync(3), the serial service types dial-in, dial- out and hardwired are valid.') lucentPM4SerialPortStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("idle", 1), ("connecting", 2), ("established", 3), ("disconnecting", 4), ("command", 5), ("noservice", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialPortStatus.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialPortStatus.setDescription('The status of the serial interface.') lucentPM4SerialDS0State = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("notavailable", 1), ("busyout", 2), ("havecomport", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialDS0State.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialDS0State.setDescription('Cross reference value for each DS0 for a given T1/E1 line and a given board in the PM4 chassis.') lucentPM4SerialUser = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialUser.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialUser.setDescription('Name of the active user. Blank if not active.') lucentPM4SerialSessionId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 10), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialSessionId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialSessionId.setDescription('A unique Session Identifier which matches the RADIUS session ID. Blank when not using RADIUS.') lucentPM4SerialTypeHardwired = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeHardwired.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeHardwired.setDescription('The active type of service being provided by the serial interface.') lucentPM4SerialTypeNwDialIn = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeNwDialIn.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeNwDialIn.setDescription('The active type of service being provided by the serial interface.') lucentPM4SerialTypeNwDialout = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeNwDialout.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeNwDialout.setDescription('The active type of service being provided by the serial interface.') lucentPM4SerialTypeLogin = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeLogin.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeLogin.setDescription('The active type of service being provided by the serial interface.') lucentPM4SerialTypeDevice = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeDevice.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeDevice.setDescription('The active type of service being provided by the serial interface.') lucentPM4SerialTypeDeviceName = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 16), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SerialTypeDeviceName.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialTypeDeviceName.setDescription('Device name if the lucentPM4SerialTypeDevice is enabled. This is a string of characters (e.g. /dev/tty1) indicating the device name.') lucentPM4SerialDirection = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("in", 1), ("out", 2), ("inout", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialDirection.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialDirection.setDescription('The direction the active session was initiated.') lucentPM4SerialStarted = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 18), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialStarted.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialStarted.setDescription('The amount of time this session has been active.') lucentPM4SerialIdle = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 19), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialIdle.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialIdle.setDescription('The amount of time this session has been idle.') lucentPM4SerialInSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 20), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialInSpeed.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialInSpeed.setDescription("An estimate of the serial interface's current inbound bandwidth in bits per second.") lucentPM4SerialOutSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 21), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialOutSpeed.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialOutSpeed.setDescription("An estimate of the serial interface's current outbound bandwidth in bits per second.") lucentPM4SerialIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 22), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialIpAddress.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialIpAddress.setDescription("The IP address associated with the serial interface. If being used as a network type port, this is the remote user's IP address. If being used as a device or login, this is the IP address of the host the user is connected to.") lucentPM4SerialifDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 23), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialifDescr.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialifDescr.setDescription('A textual string containing information about the network interface bound to the serial interface.') lucentPM4SerialInOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 24), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialInOctets.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialInOctets.setDescription('The total number of octets received on the serial interface.') lucentPM4SerialOutOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 25), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialOutOctets.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialOutOctets.setDescription('The total number of octets transmitted on the serial interface.') lucentPM4SerialQOctets = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 1, 1, 1, 26), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SerialQOctets.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SerialQOctets.setDescription('The total number of octets queued on the serial interface.') lucentPM4CmT1E1 = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2)) lucentPM4T1E1Table = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1), ) if mibBuilder.loadTexts: lucentPM4T1E1Table.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Table.setDescription('A list of T1/E1 interface entries.') lucentPM4T1E1Entry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1BoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1Index")) if mibBuilder.loadTexts: lucentPM4T1E1Entry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Entry.setDescription('A T1/E1 entry containing objects at the physical layer.') lucentPM4T1E1BoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1BoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1BoardIndex.setDescription('A unique value for each board in the PM4 chassis.') lucentPM4T1E1UnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1UnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1UnitType.setDescription('This object specifies the type of the unit as the T1/E1 line. This value is a part of the interface table ifIndex.') lucentPM4T1E1Index = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1Index.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Index.setDescription('A unique value for each T1/E1 interface.') lucentPM4T1E1SerialIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1SerialIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1SerialIndex.setDescription('The value of the instance for the serial port. This object provides a cross reference from the T1/E1 interface to the serial port to which it is mapped.') lucentPM4T1E1SerialCount = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1SerialCount.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1SerialCount.setDescription('The number of serial ports assigned to this interface. If this is a Channelized T1/E1, then the count is 24/32. If this is a fractional T1/E1, then the count can be any number between 1 and a number less than 24/32.') lucentPM4T1E1PhysType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("t1", 1), ("e1", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PhysType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PhysType.setDescription('The type of interface (T1 or E1).') lucentPM4T1E1Status = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 7), PMEquipPRIStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1Status.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Status.setDescription('The current operational status of the interface.') lucentPM4T1E1Function = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("isdn", 1), ("channelized", 2), ("clear", 3), ("fractional", 4), ("isdnfrac", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1Function.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Function.setDescription('The configured function of the interface.') lucentPM4T1E1Framing = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("esf", 1), ("d4", 2), ("crc4", 3), ("fas", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1Framing.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Framing.setDescription('The configured line framing.') lucentPM4T1E1Encoding = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("ami", 1), ("b8zs", 2), ("hdb3", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1Encoding.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1Encoding.setDescription('The configured line signal encoding.') lucentPM4T1E1PCM = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("ulaw", 1), ("alaw", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PCM.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PCM.setDescription('The configured voice modulation.') lucentPM4T1E1SuperSignal = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("em", 1), ("groundstart", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4T1E1SuperSignal.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1SuperSignal.setDescription('The configured supervisory signalling mode for this interface.') lucentPM4T1E1StartMode = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("wink", 1), ("immediate", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4T1E1StartMode.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1StartMode.setDescription('The configured start mode for this interface.') lucentPM4T1E1ChangeTime = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 14), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1ChangeTime.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1ChangeTime.setDescription('The amount of time since the last status change.') lucentPM4T1E1RecvLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 15), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1RecvLevel.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1RecvLevel.setDescription("An estimate of the serial interface's current recieve signal level in DB.") lucentPM4T1E1BlueAlarms = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 16), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1BlueAlarms.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1BlueAlarms.setDescription('The total number of Blue Alarms on the interface.') lucentPM4T1E1YellowAlarms = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 17), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1YellowAlarms.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1YellowAlarms.setDescription('The total number of Yellow Alarms on the interface.') lucentPM4T1E1CarrierLoss = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 18), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1CarrierLoss.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1CarrierLoss.setDescription('The total number of times the interface has lost carrier.') lucentPM4T1E1SyncLoss = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1SyncLoss.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1SyncLoss.setDescription('The total number of times the interface has lost frame synchronization.') lucentPM4T1E1BipolarErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 20), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1BipolarErrors.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1BipolarErrors.setDescription('The total number of bipolar violations detected on the interface.') lucentPM4T1E1CRCErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 21), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1CRCErrors.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1CRCErrors.setDescription('The total number of frame level CRC errors detected on the interface.') lucentPM4T1E1SyncErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 2, 1, 1, 22), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1SyncErrors.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1SyncErrors.setDescription('The total number of frame synchronization errors detected on the interface.') lucentPM4CmModem = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3)) lucentPM4ModemTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1), ) if mibBuilder.loadTexts: lucentPM4ModemTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemTable.setDescription('A list of modem entries.') lucentPM4ModemEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4ModemBoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4ModemUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4ModemIndex")) if mibBuilder.loadTexts: lucentPM4ModemEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemEntry.setDescription('A modem entry containing objects at the session layer.') lucentPM4ModemBoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemBoardIndex.setDescription('A unique value for each modem interface.') lucentPM4ModemUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemUnitType.setDescription('Unit type specifies the type of device or interface.') lucentPM4ModemIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemIndex.setDescription('A unique value for each modem interface. The value of this object can be 1 - 96 for a Quad T1, 1 - 94 for a Tri E1 card.') lucentPM4ModemPortName = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemPortName.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemPortName.setDescription('A textual string containing the name of the serial interface (ie. S0, S1, etc).') lucentPM4ModemStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9))).clone(namedValues=NamedValues(("none", 1), ("bound", 2), ("connecting", 3), ("active", 4), ("test", 5), ("down", 6), ("ready", 7), ("halt", 8), ("admin", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemStatus.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemStatus.setDescription('A current state of the modem.') lucentPM4ModemProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("none", 1), ("lapm", 2), ("mnp", 3), ("bufferd", 4), ("direct", 5), ("cellular", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemProtocol.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemProtocol.setDescription('The error correcting protocol being used in the modem.') lucentPM4ModemCompression = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 1), ("v42bis", 2), ("mnp5", 3), ("stac", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemCompression.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemCompression.setDescription('The compression being used in the modem interface.') lucentPM4ModemInSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemInSpeed.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemInSpeed.setDescription("An estimate of the modem interface's current inbound bandwidth in bits per second.") lucentPM4ModemOutSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemOutSpeed.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemOutSpeed.setDescription("An estimate of the modem interface's current outbound bandwidth in bits per second.") lucentPM4ModemInByteCount = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemInByteCount.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemInByteCount.setDescription('The total number of bytes received on the serial interface.') lucentPM4ModemOutByteCount = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemOutByteCount.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemOutByteCount.setDescription('The total number of bytes transmitted on the serial interface.') lucentPM4ModemRetrains = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemRetrains.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemRetrains.setDescription('The number of retrains attempted by the modem.') lucentPM4ModemRenegotiates = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemRenegotiates.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemRenegotiates.setDescription('The number of renegotiates attempted by the modem.') lucentPM4ModemCalls = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemCalls.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemCalls.setDescription('The number of times a call received by the modem.') lucentPM4ModemDetects = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 15), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemDetects.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemDetects.setDescription('The number of analog calls received by the modem.') lucentPM4ModemConnects = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 3, 1, 1, 16), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4ModemConnects.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4ModemConnects.setDescription('The number of successful calls received by the modem.') lucentPM4CmEther = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4)) lucentPM4EtherTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1), ) if mibBuilder.loadTexts: lucentPM4EtherTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherTable.setDescription('A list of ethernet interface entries. This object is not accessible') lucentPM4EtherEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4EtherBoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4EtherIfType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4EtherIndex")) if mibBuilder.loadTexts: lucentPM4EtherEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherEntry.setDescription('Ethernet interface entry containing objects at the Session/Physical layers.') lucentPM4EtherBoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4EtherBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherBoardIndex.setDescription('A unique value for each ethernet board. The manager card has two ethernet interfaces at present. The ethernet interface in slot 4 has a board ID 10 and if there is a manager card in slot 5, the board ID for the interface would be 11.') lucentPM4EtherIfType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4EtherIfType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherIfType.setDescription('The interface type which together with the board ID and the interface number will uniquely identify the interface.') lucentPM4EtherIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("ether0", 1), ("ether1", 2), ("other", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4EtherIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherIndex.setDescription('A unique value for each ethernet interface. The manager card has two ethernet interfaces at present. ether0(1) represents 10 Base-T interface and ether1(2) specifies the 10/100 Base-T auto-sensing ethernet interface.') lucentPM4EtherIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(67436545, 168099841))).clone(namedValues=NamedValues(("ether0", 67436545), ("ether1", 168099841)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4EtherIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherIfIndex.setDescription('IfIndex cross reference value for the ethernet interfaces. The manager card has two ethernet interfaces at present. ether0(67436545) represents 10 Base-T interface which corresponds to board 4 and interface 1. The enumerated value ether1(168099841) specifies the 10/100 Base-T auto-sensing ethernet interface which corresponds to board 4 and interface 2. We can add the standby manager card ethernet interfaces when they are available.') lucentPM4EtherPortName = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherPortName.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherPortName.setDescription('A printable ASCII string specifying the name of the ethernet port.') lucentPM4EtherMacAddress = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 6), PhysAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4EtherMacAddress.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherMacAddress.setDescription('Physical address of the interface.') lucentPM4EtherIpAddress = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 7), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherIpAddress.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherIpAddress.setDescription('IP address of the interface.') lucentPM4EtherIpGateway = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 8), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherIpGateway.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherIpGateway.setDescription('IP address of the gateway machine.') lucentPM4EtherPriNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 9), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherPriNameServer.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherPriNameServer.setDescription('IP address of the primary name server.') lucentPM4EtherAltNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 10), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherAltNameServer.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherAltNameServer.setDescription('IP address of the alternate name server.') lucentPM4EtherSubnetMask = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 11), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherSubnetMask.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherSubnetMask.setDescription('Subnet mask of the interface. Used to partition the network into different branches.') lucentPM4EtherInFilter = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 12), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 16))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherInFilter.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherInFilter.setDescription('IP Input packet filter. Used to control the type of IP packets reaching the interface.') lucentPM4EtherOutFilter = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 13), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 16))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOutFilter.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOutFilter.setDescription('IP output packet filter. Used to control the type of packets sent out of the interface.') lucentPM4EtherOptRip = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptRip.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptRip.setDescription('The RIP protocol enable/disable option.') lucentPM4EtherOptSlip = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptSlip.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptSlip.setDescription('The SLIP protocol enable/disable option.') lucentPM4EtherOptEtherDown = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 16), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptEtherDown.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptEtherDown.setDescription('Ethernet interface down enable/disable option.') lucentPM4EtherOptBcastHigh = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptBcastHigh.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptBcastHigh.setDescription('Use high one(s) broadcast address enable/disable option.') lucentPM4EtherOptSnmp = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 18), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptSnmp.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptSnmp.setDescription('Default SNMP protocol enable/disable option.') lucentPM4EtherOptNoListen = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 19), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptNoListen.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptNoListen.setDescription('Do not listen to RIP on the ether interface.') lucentPM4EtherOptDefaultRip = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptDefaultRip.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptDefaultRip.setDescription('Default RIP protocol enable/disable option.') lucentPM4EtherOptDefaultListen = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 21), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptDefaultListen.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptDefaultListen.setDescription('Default listen enable/disable option.') lucentPM4EtherOptIPFilter = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 22), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptIPFilter.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptIPFilter.setDescription('IP filter enable/disable option.') lucentPM4EtherOptDns = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 23), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptDns.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptDns.setDescription('DNS enable/disable option.') lucentPM4EtherOptPmeMsg = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 24), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptPmeMsg.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptPmeMsg.setDescription('PME Msg. enable/disable option. Whatever that means.') lucentPM4EtherOptNoClip = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 25), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptNoClip.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptNoClip.setDescription('No Clip enable/disable option. Whatever that means.') lucentPM4EtherOptEtherIpx = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 26), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptEtherIpx.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptEtherIpx.setDescription('Ether IPX enable/disable option.') lucentPM4EtherOptNetBIOS = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 27), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptNetBIOS.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptNetBIOS.setDescription('Net BIOS enable/disable option.') lucentPM4EtherOptAccounting = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 28), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptAccounting.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptAccounting.setDescription('Accounting enable/disable option.') lucentPM4EtherOptNoPAP = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 4, 1, 4, 1, 1, 29), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4EtherOptNoPAP.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4EtherOptNoPAP.setDescription('PAP enable/disable option.') lucentPM4FaultMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5)) lucentPM4FaultMgmtIsolation = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1)) lucentPM4FaultMgmtChasTrap = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1), ) if mibBuilder.loadTexts: lucentPM4FaultMgmtChasTrap.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FaultMgmtChasTrap.setDescription('Chassis Trap table which indicates one of several Traps. The chassis trap table stores the previous history of the traps which can be retrieved by the management stations at a later time. This object is not-accessible and present for MIB clarity.') lucentPM4FMChasTrapEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4FMChasTrapIndex")) if mibBuilder.loadTexts: lucentPM4FMChasTrapEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapEntry.setDescription('Entry in the chassis Trap table. Each trap is uniquely identified by an index. This object is not accessible and present for MIB clarity.') lucentPM4FMChasTrapIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapIndex.setDescription('Index into the Trap table on the agent. This table stores the previous 500 traps which can be retrieved at any given time.') lucentPM4FMChasTrapBoardID = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapBoardID.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapBoardID.setDescription('Board ID is the board number for which this trap is stored. If the trap is for an auxillary device such as a power supply or fan, this value is set to zero.') lucentPM4FMChasTrapUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 3), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapUnitType.setDescription('Uniquely specifies the unit type for this trap. The unit can be a board or any other device in the chassis such as a fan or a power supply.') lucentPM4FMChasTrapUnitIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapUnitIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapUnitIndex.setDescription('Uniquely specifies the unit index. The unit index is same as the ifIndex for T1/E1 interfaces, or the modemIndex for the modems or fan or power supply index for fan or power supplies.') lucentPM4FMChasTrapStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("other", 1), ("online", 2), ("offline", 3), ("maintenance", 4), ("fault", 5), ("notinstalled", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapStatus.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapStatus.setDescription('Trap status specifies the associated object in the Trap is online(2), offline(3), maintenance(4) or fault(5).') lucentPM4FMChasTrapSeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 6), PMAlarmType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapSeverity.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapSeverity.setDescription('Trap severity specifies the severity of the Trap for the associated object.') lucentPM4FMChasTrapTimeStamp = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 7), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMChasTrapTimeStamp.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapTimeStamp.setDescription('This object stores the timestamp of this trap.') lucentPM4FMChasTrapState = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("trapsent", 1), ("ackdue", 2), ("acked", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMChasTrapState.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMChasTrapState.setDescription('This object stores the Trap state of this trap.') lucentPM4FMBoardIndex = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 2), Integer32()) if mibBuilder.loadTexts: lucentPM4FMBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMBoardIndex.setDescription('Board index uniquely specifies the board in the chassis. This object is set to zero for power supplies, fans and other auxillary devices. This object is not accessible through Get, Get-Next or Set PDUs. It is sent out as part of the Trap.') lucentPM4FMUnitIndex = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 3), Integer32()) if mibBuilder.loadTexts: lucentPM4FMUnitIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMUnitIndex.setDescription('Unit index uniquely specifies the T1/E1 line, or modem or any device (logical/physical) in the chassis. This object is not accessible through Get, Get-Next or Set PDUs. It is sent out as part of the Trap.') lucentPM4FMUnitType = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 4), PMUnitType()) if mibBuilder.loadTexts: lucentPM4FMUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMUnitType.setDescription('Unit type specifies the T1/E1 line, or modem or any device in the chassis. This object is not accessible through Get, Get-Next or Set PDUs. It is sent out as part of the Trap.') lucentPM4FMUnitTrapStatus = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28))).clone(namedValues=NamedValues(("other", 1), ("offline", 2), ("online", 3), ("failed", 4), ("restored", 5), ("pwrwarn", 6), ("tempwarn", 7), ("temphot", 8), ("dtrloss", 9), ("carrierloss", 10), ("renegotiation", 11), ("los", 12), ("ais", 13), ("redalarm", 14), ("yellowalarm", 15), ("cv", 16), ("crc", 17), ("bpv", 18), ("fer", 19), ("pll", 20), ("es", 21), ("ses", 22), ("sefs", 23), ("uas", 24), ("dm", 25), ("les", 26), ("css", 27), ("bes", 28)))) if mibBuilder.loadTexts: lucentPM4FMUnitTrapStatus.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMUnitTrapStatus.setDescription('Trap status specifies the associated object in the Trap. This object is not accessible other than when produced as the result of a trap.') lucentPM4FMUnitTrapSeverity = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 1, 6), PMAlarmType()) if mibBuilder.loadTexts: lucentPM4FMUnitTrapSeverity.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMUnitTrapSeverity.setDescription('Trap severity specifies the severity of the Trap for the associated object. This object is not accessible except when produced as the result of a trap.') lucentPM4FMTrapConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2)) lucentPM4FMEqpTrapCfg = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1), ) if mibBuilder.loadTexts: lucentPM4FMEqpTrapCfg.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpTrapCfg.setDescription('Equipment Trap configuration table configure Traps. The objects in this table are used to enable or disable traps on a per board/interface/device basis. This object is not-accessible and present for MIB clarity.') lucentPM4FMEqpTrapCfgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEqpBoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEqpUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEqpUnitIndex")) if mibBuilder.loadTexts: lucentPM4FMEqpTrapCfgEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpTrapCfgEntry.setDescription('Entry in the equipment Trap config table. Each trap is uniquely identified by the board ID, Unit type and unit index. For auxillary devices such as power supplies and fans, the board index will be zero, the unit index identifies the units and the unit type specifies if the unit is a fan, power supplies etc. This object is not accessible and present for MIB clarity.') lucentPM4FMEqpBoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEqpBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpBoardIndex.setDescription('Board ID for which the Trap configuration need to apply. The board ID is zero if this trap configuration is for an auxillary device such as fans or power supplies.') lucentPM4FMEqpUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEqpUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpUnitType.setDescription('Unit type alongwith the board index and unit index specifies uniquely the device/interface which is being configured.') lucentPM4FMEqpUnitIndex = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEqpUnitIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpUnitIndex.setDescription('Unit index refers to the interface or sub-device such as a modem, serial port etc. For devices such as power supplies and fans this object is zero.') lucentPM4FMEqpTrapId = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))).clone(namedValues=NamedValues(("boardoffline", 1), ("boardonline", 2), ("pwrsupfail", 3), ("pwrsuprestored", 4), ("fanfail", 5), ("fanrestored", 6), ("boardtempwarn", 7), ("boardtempnormal", 8), ("boardtoohot", 9), ("modemfail", 10), ("linedown", 11), ("lineup", 12), ("linethresh", 13), ("boardpwrshutdown", 14), ("radiusauthfail", 15)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEqpTrapId.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpTrapId.setDescription('Trap ID indicating the trap for which the configuration must apply.') lucentPM4FMEqpTrapCtl = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEqpTrapCtl.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpTrapCtl.setDescription('Trap control which configures the trap off(1) or on(2). When the trap is configured as off(1), the trap is not sent out to the management station. When configures as on(2), the trap is sent to all the management stations configured to receive the trap.') lucentPM4FMEqpRepTimer = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 1, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEqpRepTimer.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEqpRepTimer.setDescription('If the trap is to be repeated, this object specifies the time in seconds. When this object value is set to 0, it indicates the trap is non-repeat trap.') lucentPM4FMT1E1ThreshTrapCfg = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2), ) if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapCfg.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapCfg.setDescription('T1/E1 Threshold Trap configuration table to configure the thresholds for various T1/E1 traps. This object is not-accessible and present for MIB clarity.') lucentPM4FMT1E1ThreshTrapCfgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4FMThreshBoardIndex"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMThreshUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMThreshUnitIndex")) if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapCfgEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapCfgEntry.setDescription('Entry in the T1/E1 threshold trap config table. Each trap is uniquely identified by the board index, unit type and unit index which is the T1/E1 interface number. This object is not accessible and present for MIB clarity.') lucentPM4FMT1E1ThreshBoardIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshBoardIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshBoardIndex.setDescription('Board ID for which the Trap threshold configuration must apply. It includes boards 1 - 10 and other devices such as power supplies and fans etc.') lucentPM4FMT1E1ThreshUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshUnitType.setDescription('Unit type for which the Trap threshold configuration must be applied.') lucentPM4FMT1E1ThreshESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 3), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshESs.setDescription('The threshold for errored seconds on the interface. A trap is issued when this set limit is exceeded. When this threshold exceeds, the performance of the interface will degrade. A trap is generated to notify the adminstrator to take appropriate action.') lucentPM4FMT1E1ThreshSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 4), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshSESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshSESs.setDescription('The threshold for severely errored seconds on the interface. A trap is issued when this limit is exceeded. A severely errored seconds is a second with 320 or more path code violation error events or one or more out of frame defects or detected AIS defect.') lucentPM4FMT1E1ThreshSEFSs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 5), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshSEFSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshSEFSs.setDescription('The threshold for severely errored framing seconds. A trap is issued when this threshold is exceeded. A severely errored framing second is a second with one or more frame defects or detected AIS defect.') lucentPM4FMT1E1ThreshUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 6), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshUASs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshUASs.setDescription('The threshold for unavailable seconds. A trap is issued when this set threshold is exceeded. Unavailable seconds are calculated by counting the number of seconds that the interface is unavailable from the onset of 10 SESs. Once unavailable, the interface becomes available at the onset of 10 contiguous no SESs.') lucentPM4FMT1E1ThreshCSSs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 7), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshCSSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshCSSs.setDescription('The threshold for controlled slip seconds on the interface. A trap is issued when this set threshold is exceeded. A controlled slip second is a one-second interval containing one or more controlled slips.') lucentPM4FMT1E1ThreshPCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 8), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshPCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshPCVs.setDescription('The threshold for path code violations on the interface. A trap is issued when this set threshold is exceeded. PCV is a frame syncronization bit error in the D4 and E1-noCRC format interfaces or a CRC error in the ESF (extended super frame) and E1-CRC interface formats.') lucentPM4FMT1E1ThreshLESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 9), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshLESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshLESs.setDescription('The threshold for line errored seconds on the interface. A trap is sent to the manager when this set threshold is exceeded. A line errored second, according to T1M1.3 is a second in which one or more line code violations were detected.') lucentPM4FMT1E1ThreshBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 10), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshBESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshBESs.setDescription('The threshold for bursty errored seconds on the interface. A trap is sent to the manager when this set threshold is exceeded. A bursty errored second is a second with fewer than 320 and more than 1 path code violations.') lucentPM4FMT1E1ThreshDMs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 11), Gauge32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshDMs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshDMs.setDescription('The threshold for degraded minutes on the interface. A trap is sent to the manager when this set threshold is exceeded. Degraded minutes are determined by collecting all of the available seconds, after removing any severely errored seconds. The resulting seconds is grouped into 60 second intervals and if the cumulative errors during the seconds present in the group exceeds 1E-6.') lucentPM4FMT1E1ThreshRepTimer = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 12), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshRepTimer.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshRepTimer.setDescription('If the trap is to be repeated, this object specifies the time in seconds. When this object value is set to 0, it indicates the trap is non-repeat trap.') lucentPM4FMT1E1ThreshTrapAck = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 2, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("noack", 2), ("ack", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapAck.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMT1E1ThreshTrapAck.setDescription('If set to ack(3), clears the trap condition. If the value is set to noack(2), leaves the trap condition unchanged.') lucentPM4FMEnvTrapCfg = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3), ) if mibBuilder.loadTexts: lucentPM4FMEnvTrapCfg.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvTrapCfg.setDescription('Environment Trap configuration table. This table enables configuration of voltage, power levels and temperature ranges for different units in the chassis. This object is not-accessible and present for MIB clarity.') lucentPM4FMEnvTrapCfgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEnvBoardID"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEnvUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4FMEnvUnitIndex")) if mibBuilder.loadTexts: lucentPM4FMEnvTrapCfgEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvTrapCfgEntry.setDescription('Entry in the environment trap config table. Each trap is uniquely identified by the board index, unit type and unit index. This object is not accessible and present for MIB clarity.') lucentPM4FMEnvBoardID = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEnvBoardID.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvBoardID.setDescription('Board ID specifies the board identifier for this trap. If the trap configuration is for an auxillary device such as a power supply or fan, this object will be set to zero. The unit type and the unit index will uniquely identify the auxillary devices.') lucentPM4FMEnvUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEnvUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvUnitType.setDescription('Unit for which the Trap configuration must to apply.') lucentPM4FMEnvUnitIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4FMEnvUnitIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvUnitIndex.setDescription('Unit index specifies the interface or sub-unit for this trap (modem or T1/E1 interface etc.). The unit type and the unit index will uniquely identify the auxillary devices.') lucentPM4FMEnvOptUnitTemp = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEnvOptUnitTemp.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvOptUnitTemp.setDescription('The optimum temperature for this unit. A trap is generated when the temperature deviates from the specified range. The temperature is specified as an integer in degrees farenheit.') lucentPM4FMEnvUnitTempRange = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEnvUnitTempRange.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvUnitTempRange.setDescription('The temperature range above which a trap is generated. The temperature must be specified as an integer in degree Farenhiet (for example +/- 5 degree Far.).') lucentPM4FMEnvOptUnitPwrLvl = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEnvOptUnitPwrLvl.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvOptUnitPwrLvl.setDescription('The optimal power level that is appropriate for this unit. A trap is generated when the power level fluctuates outside the limits set.') lucentPM4FMEnvUnitPwrRange = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 7), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEnvUnitPwrRange.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvUnitPwrRange.setDescription('The power range specified in volts. A trap is generated when the power level fluctuates outside the Opt Pwr +/- Range set.') lucentPM4FMEnvTrapCtl = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 5, 2, 3, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("enable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4FMEnvTrapCtl.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4FMEnvTrapCtl.setDescription('The trap control used to turn the environment traps on or off for the specified unit(s).') lucentPM4PerfMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6)) lucentPM4T1E1PerfMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1)) lucentPM4T1E1PMCur = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1), ) if mibBuilder.loadTexts: lucentPM4T1E1PMCur.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCur.setDescription('Performance management table representing the performance statistics of T1/E1 interfaces in the box. This table represents the current 15 mins statistics. This object is not accessible and present for clarity purpose. This table is part of RFC 1406.') lucentPM4T1E1PMCurEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMBoardID"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMLineNum")) if mibBuilder.loadTexts: lucentPM4T1E1PMCurEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurEntry.setDescription('Performance management table entries for all the T1/E1 interfaces in the box. This table represents the current 15 mins statistics. This object is not accessible and present for clarity purpose.') lucentPM4T1E1PMCurBoard = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurBoard.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurBoard.setDescription('Board number of the interface. The global interface number is computed by using the Most Significant byte of the ifIndex and the Least Significant 2 bytes represents the interface index. Byte 3 will represent the unit type which would be a T1 or E1.') lucentPM4T1E1PMCurUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurUnitType.setDescription('Unit type indicates the type of interface as T1/E1 or T3/E3 in future. This is part of the interface table ifIndex which is constructed with boardID, unit type and unit index.') lucentPM4T1E1PMCurLineNum = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurLineNum.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurLineNum.setDescription('Line number uniquely identifies the T1/E1 interface on a given board.') lucentPM4T1E1PMCurIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurIfIndex.setDescription('Interface table ifIndex cross reference. The global interface number is computed by using the Most Significant byte as the board ID and the Least Significant 2 bytes represents the interface index. The third byte represents the unit type which will be a T1 or E1. Thus board 0 interface 3 is represented as 0x00050003. The global interface number corresponds to the IfIndex in MIB II.') lucentPM4T1E1PMCurESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurESs.setDescription('The number of errored seconds, encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurSESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurSESs.setDescription('The number of Severely Errored Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurSEFSs = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurSEFSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurSEFSs.setDescription('The number of Severely Errored Framing Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurUASs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurUASs.setDescription('The number of Unavailable Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurCSSs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurCSSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurCSSs.setDescription('The number of Controlled Slip Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurPCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 10), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurPCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurPCVs.setDescription('The number of Path Coding Violations encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurLESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 11), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurLESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurLESs.setDescription('The number of Line Errored Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 12), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurBESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurBESs.setDescription('The number of Bursty Errored Seconds encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurDMs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 13), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurDMs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurDMs.setDescription('The number of Degraded Minutes encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMCurLCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 1, 1, 1, 14), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMCurLCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMCurLCVs.setDescription('The number of Line Code Violations encountered by the line in the current 15 mins interval.') lucentPM4T1E1PMInt = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2), ) if mibBuilder.loadTexts: lucentPM4T1E1PMInt.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMInt.setDescription('Performance management table representing the performance statistics of T1/E1 interfaces in the box. This table represents the 24 hr statistics divided into 96 15 mins intervals. This object is not accessible and present for clarity purpose. This table is part of RFC 1406.') lucentPM4T1E1PMIntEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMIntBoard"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMIntUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMIntLineNum"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMIntInterval")) if mibBuilder.loadTexts: lucentPM4T1E1PMIntEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntEntry.setDescription('Performance management table entries for all the T1/E1 interfaces in the box. This table represents the 24 hr statistics divided into 96 15 mins intervals. This object is not accessible and present for clarity purpose.') lucentPM4T1E1PMIntBoard = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntBoard.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntBoard.setDescription('Board number of the interface. The global interface number is computed by using the Most Significant nibble of the ifIndex and the Least Significant nibble represents the interface index. Thus board 0 interface 3 is represented as 0x03 or 03 decimal and board 10 interface 3 is represented as 0xa3 or 163 decimal. In an integer, of 4 bytes wide, the 3 MSBytes will all be zeros. The global interface number corresponds to the IfIndex of MIB II.') lucentPM4T1E1PMIntUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntUnitType.setDescription('Unit type indicates the type of physical or logical device. The unit type for this table is either T1 or E1.') lucentPM4T1E1PMIntLineNum = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntLineNum.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntLineNum.setDescription('Line number uniquely identifies the T1/E1 interface for this board.') lucentPM4T1E1PMIntInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 96))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntInterval.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntInterval.setDescription('Interval number for a given board. The 24 hr period is divided into 96 15 min intervals, where 1 is the most recent and 96 is the least recent.') lucentPM4T1E1PMIntIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntIfIndex.setDescription('Interface table ifIndex cross reference. The global interface number is computed by using the Most Significant byte as the board ID and the Least Significant 2 bytes represents the interface index. The third byte represents the unit type which will be a T1 or E1. Thus board 0 interface 3 is represented as 0x00050003. The global interface number corresponds to the IfIndex in MIB II.') lucentPM4T1E1PMIntESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntESs.setDescription('The number of errored seconds, encountered by the line in the last 24 hrs divided into 96 15 mins intervals.') lucentPM4T1E1PMIntSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntSESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntSESs.setDescription('The number of Severely Errored Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntSEFSs = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntSEFSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntSEFSs.setDescription('The number of Severely Errored Framing Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntUASs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntUASs.setDescription('The number of Unavailable Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntCSSs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 10), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntCSSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntCSSs.setDescription('The number of Controlled Slip Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntPCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 11), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntPCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntPCVs.setDescription('The number of Path Coding Violations encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntLESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 12), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntLESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntLESs.setDescription('The number of Line Errored Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 13), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntBESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntBESs.setDescription('The number of Bursty Errored Seconds encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntDMs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 14), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntDMs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntDMs.setDescription('The number of Degraded Minutes encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMIntLCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 2, 1, 15), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMIntLCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMIntLCVs.setDescription('The number of Line Code Violations encountered by the line for one of the 96 15 mins intervals.') lucentPM4T1E1PMTotal = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3), ) if mibBuilder.loadTexts: lucentPM4T1E1PMTotal.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotal.setDescription('Performance management table representing the performance statistics of T1/E1 interfaces in the box. This table represents the 24 hr statistics divided into 96 15 mins intervals. This object is not accessible and present for clarity purpose. This table is part of RFC 1406.') lucentPM4T1E1PMTotalEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMTotalBoard"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMTotalUnitType"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMTotalLineNum"), (0, "LIVINGSTON-PM4-MIB", "lucentPM4T1E1PMTotalInterval")) if mibBuilder.loadTexts: lucentPM4T1E1PMTotalEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalEntry.setDescription('Performance management table entries for all the T1/E1 interfaces in the box. This table represents the 24 hr statistics divided into 96 15 mins intervals. This object is not accessible and present for clarity purpose.') lucentPM4T1E1PMTotalBoard = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalBoard.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalBoard.setDescription('Board number of the interface. The global interface number is computed by using the Most Significant nibble of the ifIndex and the Least Significant nibble represents the interface index. Thus board 0 interface 3 is represented as 0x03 or 03 decimal and board 10 interface 3 is represented as 0xa3 or 163 decimal. In an integer, of 4 bytes wide, the 3 MSBytes will all be zeros. The global interface number corresponds to the IfIndex of MIB II. This table stores the cumulative values for the past 24 hr period.') lucentPM4T1E1PMTotalUnitType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 2), PMUnitType()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalUnitType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalUnitType.setDescription('Unit type indicates the type of physical or logical device. The unit type for this table is either T1 or E1.') lucentPM4T1E1PMTotalLineNum = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLineNum.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLineNum.setDescription('Interface number for a given board. The global interface number is computed by using the Most Significant nibble of the ifIndex and the Least Significant nibble represents the interface index. Thus board 0 interface 3 is represented as 0x03 or 03 decimal and board 10 interface 3 is represented as 0xa3 or 163 decimal. In an integer, of 4 bytes wide, the 3 MSBytes will all be zeros. The global interface number corresponds to the IfIndex in MIB II.') lucentPM4T1E1PMTotalIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalIfIndex.setDescription('IfIndex cross reference value. This value is obtained from the Board/board number and interface number by combining them into the LSByte. The upper nibble represents the board and the lower nibble represents the line number.') lucentPM4T1E1PMTotalESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalESs.setDescription('The cumulative value of errored seconds, encountered by the line in the last 24 hrs.') lucentPM4T1E1PMTotalSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalSESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalSESs.setDescription('The cumulative value Severely Errored Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalSEFSs = MibScalar((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalSEFSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalSEFSs.setDescription('The cumulative value of Severely Errored Framing Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalUASs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalUASs.setDescription('The cumulative value of Unavailable Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalCSSs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalCSSs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalCSSs.setDescription('The cumulative value of Controlled Slip Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalPCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 10), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalPCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalPCVs.setDescription('The cumulative value of Path Coding Violations encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalLESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 11), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLESs.setDescription('The cumulative value of Line Errored Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 12), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalBESs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalBESs.setDescription('The cumulative value of Bursty Errored Seconds encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalDMs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 13), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalDMs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalDMs.setDescription('The cumulative value of Degraded Minutes encountered by the line for the 24 hr period.') lucentPM4T1E1PMTotalLCVs = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 6, 3, 1, 14), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLCVs.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4T1E1PMTotalLCVs.setDescription('The cumulative value of Line Code Violations encountered by the line for the 24 hr period.') lucentPM4SecurityMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 7)) lucentPM4AcctMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8)) lucentPM4AcctMgmtComm = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1)) lucentPM4SnmpCommTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1), ) if mibBuilder.loadTexts: lucentPM4SnmpCommTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommTable.setDescription('The SNMP Community Table. This table contains entries to restrict the SNMP get and set operations.') lucentPM4SnmpCommEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4SnmpCommName")) if mibBuilder.loadTexts: lucentPM4SnmpCommEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommEntry.setDescription('The entries in the community table.') lucentPM4SnmpCommIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 10))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SnmpCommIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommIndex.setDescription('The index of the command in the command table. A MAX of 10 network management stations must be specified along with their community names.') lucentPM4SnmpCommName = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 32))) if mibBuilder.loadTexts: lucentPM4SnmpCommName.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommName.setDescription('The name of the SNMP Community for SNMP readers and writers. The size of the string is limited to 32 characters. All characters in the string must be printable.') lucentPM4SnmpCommIpAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 3), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SnmpCommIpAddr.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommIpAddr.setDescription('The IP Address of the remote community.') lucentPM4SnmpCommReadAccess = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("ensable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SnmpCommReadAccess.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommReadAccess.setDescription('Read access enable or disable for this community. When enabled, it allows read-only variable access using this community string by the SNMP client.') lucentPM4SnmpCommWriteAccess = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("ensable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SnmpCommWriteAccess.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommWriteAccess.setDescription('Write access enable or disable for this community. When enabled, the agent allows write access to the parameters on the agent by the SNMP clients.') lucentPM4SnmpCommTraps = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disable", 1), ("ensable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SnmpCommTraps.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommTraps.setDescription('Traps receiving capability enable or disable for this community. When enabled, the SNMP agent forwards the traps generated in the box to this SNMP client.') lucentPM4SnmpCommStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("delete", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: lucentPM4SnmpCommStatus.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommStatus.setDescription('The status of the entry for this community. If the status is set to normal, it allows requests from this SNMP client else it discards the requests from this client.') lucentPM4SnmpCommLastError = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 1, 1, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 511))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4SnmpCommLastError.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4SnmpCommLastError.setDescription('If there is an error on a request, this variable may contain a message indicating the error.') lucentPM4AcctMgmtCallEvent = MibIdentifier((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2)) lucentPM4AMCallEventTable = MibTable((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1), ) if mibBuilder.loadTexts: lucentPM4AMCallEventTable.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCallEventTable.setDescription('Call accounting table containing a list of call events, which may be used for billing purposes.') lucentPM4AMCallEventEntry = MibTableRow((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1), ).setIndexNames((0, "LIVINGSTON-PM4-MIB", "lucentPM4AMCEIndex")) if mibBuilder.loadTexts: lucentPM4AMCallEventEntry.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCallEventEntry.setDescription('The entries in the accounting/billing table.') lucentPM4AMCEIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEIndex.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEIndex.setDescription('Call event index used as an index into the call event table. The table stores call events which may be used for billing.') lucentPM4AMCETimeStamp = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCETimeStamp.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCETimeStamp.setDescription('Time stamp for this event in seconds since the last reboot.') lucentPM4AMCEType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("calloriginated", 1), ("callanswered", 2), ("callcleared", 3), ("servicechanged", 4), ("namechanged", 5), ("baudratechanged", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEType.setDescription('Specifies the type of event associated with this entry in the call event table.') lucentPM4AMCESvcType = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16))).clone(namedValues=NamedValues(("none", 1), ("ppp", 2), ("slip", 3), ("mpp", 4), ("x25", 5), ("combinet", 6), ("frameRelay", 7), ("euraw", 8), ("euui", 9), ("telnet", 10), ("telnetBinary", 11), ("rawTcp", 12), ("terminalServer", 13), ("mp", 14), ("virtualConnect", 15), ("x25DChannel", 16)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCESvcType.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCESvcType.setDescription('The type of service provided to the user. This field is meaningful if the event type is servicechanged(4), or namechanged(5) events. In all other cases, this object must return none(1).') lucentPM4AMCEUName = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 5), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEUName.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEUName.setDescription('User name of the dialed in user. This object returns the valid user name when the event type is servicechanged(4) or namechanged(5). In all other cases, it returns a NULL.') lucentPM4AMCEModemBoard = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEModemBoard.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEModemBoard.setDescription('Board ID of the modem which handled this call. This value can be used to diagnose modem related problems (dropping the call, retraining too frequently etc.).') lucentPM4AMCEModemID = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 7), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEModemID.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEModemID.setDescription('Identifies the specific modem on a board which handled this call. Can be used to diagnose modem related problems.') lucentPM4AMCEModemPort = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 8), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEModemPort.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEModemPort.setDescription('A textual string containing the name of the serial interface (ie. S0, S1, etc).') lucentPM4AMCEDataRate = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 9), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEDataRate.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEDataRate.setDescription('Specifies the speed of this connection. Speed is specified as baud rate for modem calls and receive data rate for ISDN calls. This object returns a 0 for call answered and call cleared events.') lucentPM4AMCECallingPartyID = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 10), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCECallingPartyID.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCECallingPartyID.setDescription('Calling party ID. This object is valid only for call answered, call originated, and call cleared events. For all invalid event types, this object is set to NULL.') lucentPM4AMCECalledPartyID = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 11), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCECalledPartyID.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCECalledPartyID.setDescription('Called party ID. This object is valid only for call answered, call originated, and call cleared events. For all invalid event types, this object is set to NULL.') lucentPM4AMCEInOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 12), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEInOctets.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEInOctets.setDescription('Total octets received during this call. This object is cleared at the end of each call.') lucentPM4AMCEOutOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 13), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEOutOctets.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEOutOctets.setDescription('Total octets sent out during this call. This object is cleared at the end of each call.') lucentPM4AMCECallCharge = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 14), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCECallCharge.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCECallCharge.setDescription('Call charge for this call. This object is valid only when the event is call cleared. For all other events this object is set to zero.') lucentPM4AMCEDisconnReason = MibTableColumn((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 1, 8, 2, 1, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 100, 101, 102, 120, 150, 151, 152, 160, 170, 180, 185, 190, 195, 201, 210))).clone(namedValues=NamedValues(("notApplicable", 1), ("unknown", 2), ("disconnected", 3), ("clidAuthFailed", 4), ("clidAuthServTimeout", 5), ("clidAuthRequestCallback", 6), ("preT310Timeout", 7), ("noModemAvailable", 9), ("noModemNoCarrier", 10), ("noModemLossCarrier", 11), ("noModemResultCodes", 12), ("noModemOpenFailed", 13), ("noModemOpenFailedDiag", 14), ("tsUserExit", 20), ("tsIdleTimeout", 21), ("tsExitTelnet", 22), ("tsNoIPAddr", 23), ("tsExitTcp", 24), ("tsPassWordFail", 25), ("tsRawTCPDisable", 26), ("tsControlC", 27), ("tsDestroyed", 28), ("tsClosedVirtualConnect", 29), ("tsVirtualConnectDestroyed", 30), ("tsExitRlogin", 31), ("tsRloginBadOption", 32), ("tsErrorResource", 33), ("mpNullMessageTimeout", 35), ("pppLcpTimeout", 40), ("pppLcpNegotiateFail", 41), ("pppPAPAuthFail", 42), ("pppCHAPAuthFail", 43), ("pppRemoteAuthFail", 44), ("pppRcvTerminate", 45), ("pppCloseEvent", 46), ("pppCloseNoNcpsOpened", 47), ("pppCloseUnknownMpBundle", 48), ("pppCloseMpAddChanFail", 49), ("tsExitErrTooMany", 50), ("tsExitErrResource", 51), ("tsExitErrInvalidIP", 52), ("tsExitErrHostName", 53), ("tsExitErrBadPort", 54), ("tsExitErrHostReset", 60), ("tsExitErrConnRefused", 61), ("tsExitErrTimedOut", 62), ("tsExitErrClosed", 63), ("tsExitErrNetUnreach", 64), ("tsExitErrHostUnreach", 65), ("tsExitErrNetAdminUnreach", 66), ("tsExitErrHostAdminUnreach", 67), ("tsExitErrPortUnreach", 68), ("sessTimeOut", 100), ("sessFailSecurity", 101), ("sessCallback", 102), ("invalidProtocol", 120), ("requestByRadiusClient", 150), ("localAdmin", 151), ("localSnmp", 152), ("v110Timeout", 160), ("pppAuthTimeout", 170), ("userCallClearRequest", 180), ("remoteEndHungUp", 185), ("resourceQuiesced", 190), ("maxCallDurationReached", 195), ("lowMemory", 201), ("boardDied", 210)))).setMaxAccess("readonly") if mibBuilder.loadTexts: lucentPM4AMCEDisconnReason.setStatus('mandatory') if mibBuilder.loadTexts: lucentPM4AMCEDisconnReason.setDescription('Reason for the disconnect.') lucentPM4BoardOfflineTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,1)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardOfflineTrap.setDescription('Board down trap. The variable bindings in the Trap packet provide information about the chassis name, board number and the trap status. This Trap must be cleared manually.') lucentPM4BoardOnlineTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,2)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardOnlineTrap.setDescription('Board up trap. The variable bindings in the Trap packet provide information about the chassis name, board number and the trap status. This Trap must be cleared manually.') lucentPM4PwrSupFailTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,3)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4PwrSupFailTrap.setDescription('Power supply failed trap. The variable bindings in the Trap packet provide information about the chassis name, power supply unit and the trap status. This Trap must be cleared manually.') lucentPM4PwrSupWarnTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,4)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4PwrSupWarnTrap.setDescription('Power supply warning trap. The variable bindings in the Trap packet provide information about the chassis name, power supply unit and the trap status. This Trap is issued when the power supply fluctuates between a set threshold. This Trap must be cleared manually.') lucentPM4PwrSupRestoredTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,5)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4PwrSupRestoredTrap.setDescription('Power supply restored trap. The variable bindings in the Trap packet provide information about the chassis name, power supply unit and the trap status. This Trap is issued when a failed power supply is restored. This must be cleared manually.') lucentPM4FanFailTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,6)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4FanFailTrap.setDescription('Fan failure trap. The variable bindings in the Trap packet provide information about the chassis name, fan number and the trap status. This Trap must be cleared manually.') lucentPM4FanRestoredTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,7)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4FanRestoredTrap.setDescription('Fan restored trap. The variable bindings in the Trap packet provide information about the chassis name, fan number and the trap status. This Trap is issued when the failed fan is restored. This trap must be cleared manually.') lucentPM4BoardTempWarnTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,8)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardTempWarnTrap.setDescription('Board temperature warning trap. The variable bindings in the Trap packet provide information about the chassis name, unit and the trap status. This Trap is issued when the board temperature exceeds a set threshold value. This trap must be cleared manually.') lucentPM4BoardTempNormalTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,9)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardTempNormalTrap.setDescription('Board temperature normal trap. The variable bindings in the Trap packet provide information about the chassis name, unit and the trap status. This Trap is issued when the board temperature returns to normal. This trap must be cleared manually.') lucentPM4BoardTooHotTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,10)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardTooHotTrap.setDescription('Board trap. The variable bindings in the Trap packet provide information about the chassis name, board number and the trap status. This Trap must be cleared manually.') lucentPM4ModemFailTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,11)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4ModemFailTrap.setDescription('Modem failure trap. The variable bindings in the Trap packet provide information about the chassis name, modem number and the trap status. This Trap must be cleared manually.') lucentPM4T1E1LineDownTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,12)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4T1E1LineDownTrap.setDescription('T1/E1 Line trap. The variable bindings in the Trap packet provide all the information for the clients to display the Board ID, Line ID and the status of the line. This Trap could be generated when the line comes up or goes down once. It must be cleared manually.') lucentPM4T1E1LineUpTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,13)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4T1E1LineUpTrap.setDescription('T1/E1 Line trap. The variable bindings in the Trap packet provide all the information for the clients to display the Board ID, Line ID and the status of the line. This Trap could be generated when the line comes up or goes down once. It must be cleared manually.') lucentPM4T1E1LineThreshTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,14)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4T1E1LineThreshTrap.setDescription('T1/E1 Line trap. The variable bindings in the Trap packet provide all the information for the clients to display the Board ID, Line ID and the trap type. This Trap could be generated when the thresholds for the various performance statistics (ES, SES etc.) exceed. It must be cleared manually.') lucentPM4BoardPwrOffTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,15)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitType"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitTrapStatus")) if mibBuilder.loadTexts: lucentPM4BoardPwrOffTrap.setDescription('This trap is issued when the power supply to the board is not enough. The variable bindings in the Trap packet provide information about the chassis name, board/board number and the trap status. This Trap must be cleared manually.') lucentPM4RadiusAuthFailTrap = NotificationType((1, 3, 6, 1, 4, 1, 307, 1, 1, 2, 2) + (0,16)).setObjects(("SNMPv2-MIB", "sysName"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMBoardIndex"), ("LIVINGSTON-PM4-MIB", "lucentPM4FMUnitIndex")) if mibBuilder.loadTexts: lucentPM4RadiusAuthFailTrap.setDescription('This trap is issued when the Radius authentication fails. This Trap must be cleared manually. The trap provides information about the board and the modem number.') mibBuilder.exportSymbols("LIVINGSTON-PM4-MIB", lucentPM4FaultMgmt=lucentPM4FaultMgmt, lucentPM4SerialUser=lucentPM4SerialUser, lucentPM4T1E1ChangeTime=lucentPM4T1E1ChangeTime, lucentPM4EtherOptNoClip=lucentPM4EtherOptNoClip, lucentPM4EtherOutFilter=lucentPM4EtherOutFilter, lucentPM4FMEnvOptUnitPwrLvl=lucentPM4FMEnvOptUnitPwrLvl, lucentPM4T1E1PMIntLESs=lucentPM4T1E1PMIntLESs, lucentPM4ModemUnitType=lucentPM4ModemUnitType, PMAlarmType=PMAlarmType, lucentPM4SerialIndex=lucentPM4SerialIndex, lucentPM4SerialQOctets=lucentPM4SerialQOctets, lucentPM4ModemIndex=lucentPM4ModemIndex, lucentPM4SerialPortNumber=lucentPM4SerialPortNumber, lucentPM4SerialTypeDevice=lucentPM4SerialTypeDevice, lucentPM4EtherMacAddress=lucentPM4EtherMacAddress, lucentPM4EtherOptSlip=lucentPM4EtherOptSlip, lucentPM4FMEnvUnitPwrRange=lucentPM4FMEnvUnitPwrRange, lucentPM4T1E1PMCurUASs=lucentPM4T1E1PMCurUASs, lucentPM4CmT1E1=lucentPM4CmT1E1, lucentPM4EtherOptNetBIOS=lucentPM4EtherOptNetBIOS, lucentPM4EtherSubnetMask=lucentPM4EtherSubnetMask, lucentPM4EtherOptAccounting=lucentPM4EtherOptAccounting, lucentPM4SerialInSpeed=lucentPM4SerialInSpeed, lucentPM4T1E1Encoding=lucentPM4T1E1Encoding, lucentPM4Traps=lucentPM4Traps, lucentPM4FMT1E1ThreshTrapAck=lucentPM4FMT1E1ThreshTrapAck, lucentPM4T1E1PMTotal=lucentPM4T1E1PMTotal, lucentPM4Chassis=lucentPM4Chassis, lucentPM4T1E1PMCurDMs=lucentPM4T1E1PMCurDMs, lucentPM4FMChasTrapState=lucentPM4FMChasTrapState, lucentPM4AMCECallCharge=lucentPM4AMCECallCharge, lucentPM4SerialStarted=lucentPM4SerialStarted, PMUnitType=PMUnitType, lucentPM4T1E1StartMode=lucentPM4T1E1StartMode, lucentPM4FMUnitTrapSeverity=lucentPM4FMUnitTrapSeverity, lucentPM4T1E1PMCurCSSs=lucentPM4T1E1PMCurCSSs, lucentPM4T1E1BlueAlarms=lucentPM4T1E1BlueAlarms, lucentPM4ChasCmdId=lucentPM4ChasCmdId, lucentPM4BoardTempWarnTrap=lucentPM4BoardTempWarnTrap, lucentPM4T1E1Status=lucentPM4T1E1Status, lucentPM4FMUnitTrapStatus=lucentPM4FMUnitTrapStatus, lucentPM4FMT1E1ThreshTrapCfg=lucentPM4FMT1E1ThreshTrapCfg, lucentPM4FMT1E1ThreshPCVs=lucentPM4FMT1E1ThreshPCVs, lucentPM4FMEnvBoardID=lucentPM4FMEnvBoardID, lucentPM4FMChasTrapEntry=lucentPM4FMChasTrapEntry, lucentPM4FMT1E1ThreshBESs=lucentPM4FMT1E1ThreshBESs, lucentPM4EtherOptDns=lucentPM4EtherOptDns, lucentPM4FMT1E1ThreshSEFSs=lucentPM4FMT1E1ThreshSEFSs, lucentPM4T1E1PMIntIfIndex=lucentPM4T1E1PMIntIfIndex, lucentPM4FMEnvUnitIndex=lucentPM4FMEnvUnitIndex, lucentPM4ModemCalls=lucentPM4ModemCalls, lucentPM4AMCEIndex=lucentPM4AMCEIndex, lucentPM4SerialTypeLogin=lucentPM4SerialTypeLogin, lucentPM4FMTrapConfig=lucentPM4FMTrapConfig, lucentPM4T1E1LineDownTrap=lucentPM4T1E1LineDownTrap, lucentPM4SerialTypeNwDialIn=lucentPM4SerialTypeNwDialIn, lucentPM4FMT1E1ThreshDMs=lucentPM4FMT1E1ThreshDMs, lucentPM4T1E1PMTotalCSSs=lucentPM4T1E1PMTotalCSSs, lucentPM4FMT1E1ThreshCSSs=lucentPM4FMT1E1ThreshCSSs, lucentPM4MibRev=lucentPM4MibRev, lucentPM4T1E1PMCurSEFSs=lucentPM4T1E1PMCurSEFSs, lucentPM4SnmpCommTraps=lucentPM4SnmpCommTraps, lucentPM4AMCEModemBoard=lucentPM4AMCEModemBoard, lucentPM4T1E1PMCurESs=lucentPM4T1E1PMCurESs, lucentPM4FMT1E1ThreshESs=lucentPM4FMT1E1ThreshESs, lucentPM4ModemRetrains=lucentPM4ModemRetrains, lucentPM4SerialSessionId=lucentPM4SerialSessionId, lucentPM4SerialEntry=lucentPM4SerialEntry, lucentPM4ChasCmdResult=lucentPM4ChasCmdResult, lucentPM4EtherOptBcastHigh=lucentPM4EtherOptBcastHigh, lucentPM4ChasCmdDevId=lucentPM4ChasCmdDevId, lucentPM4T1E1SuperSignal=lucentPM4T1E1SuperSignal, PMDiagCmdStatus=PMDiagCmdStatus, lucentPM4CmInterfaces=lucentPM4CmInterfaces, lucentPM4T1E1PMCurBESs=lucentPM4T1E1PMCurBESs, lucentPM4SnmpCommIpAddr=lucentPM4SnmpCommIpAddr, lucentPM4AMCETimeStamp=lucentPM4AMCETimeStamp, lucentPM4PerfMgmt=lucentPM4PerfMgmt, PMDiagTestCntrl=PMDiagTestCntrl, lucentPM4T1E1PMTotalBoard=lucentPM4T1E1PMTotalBoard, lucentPM4SnmpCommReadAccess=lucentPM4SnmpCommReadAccess, lucentPM4ModemPortName=lucentPM4ModemPortName, lucentPM4AcctMgmt=lucentPM4AcctMgmt, lucentPM4T1E1PMTotalEntry=lucentPM4T1E1PMTotalEntry, lucentPM4SerialUnitType=lucentPM4SerialUnitType, lucentPM4ChasCmdTable=lucentPM4ChasCmdTable, lucentPM4ModemOutSpeed=lucentPM4ModemOutSpeed, lucentPM4FMEnvTrapCfg=lucentPM4FMEnvTrapCfg, lucentPM4SerialTypeHardwired=lucentPM4SerialTypeHardwired, lucentPM4FMT1E1ThreshSESs=lucentPM4FMT1E1ThreshSESs, lucentPM4BoardOfflineTrap=lucentPM4BoardOfflineTrap, lucentPM4T1E1PMIntPCVs=lucentPM4T1E1PMIntPCVs, lucentPM4FMEqpTrapCfg=lucentPM4FMEqpTrapCfg, lucentPM4T1E1UnitType=lucentPM4T1E1UnitType, lucentPM4SnmpCommStatus=lucentPM4SnmpCommStatus, lucentPM4CmSerial=lucentPM4CmSerial, lucentPM4T1E1BipolarErrors=lucentPM4T1E1BipolarErrors, lucentPM4ChasCmdUnitType=lucentPM4ChasCmdUnitType, lucentPM4T1E1PMInt=lucentPM4T1E1PMInt, lucentPM4ModemStatus=lucentPM4ModemStatus, lucentPM4ChasCmdParams=lucentPM4ChasCmdParams, lucentPM4AMCallEventEntry=lucentPM4AMCallEventEntry, lucentPM4ChasCmdIndex=lucentPM4ChasCmdIndex, lucentPM4EtherOptNoPAP=lucentPM4EtherOptNoPAP, lucentPM4FMEqpTrapCfgEntry=lucentPM4FMEqpTrapCfgEntry, lucentPM4T1E1PMIntCSSs=lucentPM4T1E1PMIntCSSs, lucentPM4T1E1PMTotalUASs=lucentPM4T1E1PMTotalUASs, lucentPM4EtherBoardIndex=lucentPM4EtherBoardIndex, lucentPM4T1E1PMIntESs=lucentPM4T1E1PMIntESs, lucentPM4EtherOptNoListen=lucentPM4EtherOptNoListen, lucentPM4ModemFailTrap=lucentPM4ModemFailTrap, lucentPM4FMChasTrapSeverity=lucentPM4FMChasTrapSeverity, lucentPM4FMEqpUnitIndex=lucentPM4FMEqpUnitIndex, lucentPM4EtherPriNameServer=lucentPM4EtherPriNameServer, lucentPM4SerialIpAddress=lucentPM4SerialIpAddress, lucentPM4SerialBoardIndex=lucentPM4SerialBoardIndex, lucentPM4FMEnvUnitType=lucentPM4FMEnvUnitType, lucentPM4AMCEModemID=lucentPM4AMCEModemID, lucentPM4T1E1PMIntLCVs=lucentPM4T1E1PMIntLCVs, lucentPM4SecurityMgmt=lucentPM4SecurityMgmt, lucentPM4T1E1PMIntUASs=lucentPM4T1E1PMIntUASs, lucentPM4T1E1PMIntBESs=lucentPM4T1E1PMIntBESs, lucentPM4T1E1PMTotalSESs=lucentPM4T1E1PMTotalSESs, lucentPM4T1E1PMCurPCVs=lucentPM4T1E1PMCurPCVs, lucentPM4T1E1PMTotalLineNum=lucentPM4T1E1PMTotalLineNum, lucentPM4AMCEDisconnReason=lucentPM4AMCEDisconnReason, lucentPM4T1E1PMCurIfIndex=lucentPM4T1E1PMCurIfIndex, lucentPM4SnmpCommWriteAccess=lucentPM4SnmpCommWriteAccess, lucentPM4FMEnvUnitTempRange=lucentPM4FMEnvUnitTempRange, lucentPM4FMT1E1ThreshUnitType=lucentPM4FMT1E1ThreshUnitType, lucentPM4EtherOptDefaultRip=lucentPM4EtherOptDefaultRip, lucentPM4AMCEUName=lucentPM4AMCEUName, lucentPM4FMBoardIndex=lucentPM4FMBoardIndex, lucentPM4BoardOnlineTrap=lucentPM4BoardOnlineTrap, lucentPM4T1E1SerialCount=lucentPM4T1E1SerialCount, lucentPM4AMCECallingPartyID=lucentPM4AMCECallingPartyID, lucentPM4SerialOutSpeed=lucentPM4SerialOutSpeed, lucentPM4AMCEOutOctets=lucentPM4AMCEOutOctets, lucentPM4T1E1Table=lucentPM4T1E1Table, lucentPM4ModemTable=lucentPM4ModemTable, lucentPM4EtherTable=lucentPM4EtherTable, lucentPM4T1E1LineUpTrap=lucentPM4T1E1LineUpTrap, lucentPM4EtherOptIPFilter=lucentPM4EtherOptIPFilter, lucentPM4EtherOptEtherIpx=lucentPM4EtherOptEtherIpx, lucentPM4AMCESvcType=lucentPM4AMCESvcType, lucentPM4T1E1PMIntSESs=lucentPM4T1E1PMIntSESs, lucentPM4T1E1PMIntDMs=lucentPM4T1E1PMIntDMs, lucentPM4T1E1SyncErrors=lucentPM4T1E1SyncErrors, lucentPM4T1E1PMTotalUnitType=lucentPM4T1E1PMTotalUnitType, lucentPM4T1E1PMTotalBESs=lucentPM4T1E1PMTotalBESs, lucentPM4T1E1PMCurSESs=lucentPM4T1E1PMCurSESs, lucentPM4T1E1PMTotalPCVs=lucentPM4T1E1PMTotalPCVs, lucentPM4T1E1PMIntUnitType=lucentPM4T1E1PMIntUnitType, lucentPM4EtherIfType=lucentPM4EtherIfType, lucentPM4AMCEModemPort=lucentPM4AMCEModemPort, PMEquipPRIStatus=PMEquipPRIStatus, lucentPM4CmModem=lucentPM4CmModem, lucentPM4ModemConnects=lucentPM4ModemConnects, lucentPM4SerialIdle=lucentPM4SerialIdle, lucentPM4PwrSupRestoredTrap=lucentPM4PwrSupRestoredTrap, lucentPM4AMCEType=lucentPM4AMCEType, lucentPM4AcctMgmtComm=lucentPM4AcctMgmtComm, lucentPM4EtherOptDefaultListen=lucentPM4EtherOptDefaultListen, lucentPM4EtherOptPmeMsg=lucentPM4EtherOptPmeMsg, lucentPM4T1E1PMCurEntry=lucentPM4T1E1PMCurEntry, lucentPM4EtherIndex=lucentPM4EtherIndex, lucentPM4ModemBoardIndex=lucentPM4ModemBoardIndex, lucentPM4FMChasTrapIndex=lucentPM4FMChasTrapIndex, lucentPM4T1E1PMTotalSEFSs=lucentPM4T1E1PMTotalSEFSs, lucentPM4FMChasTrapStatus=lucentPM4FMChasTrapStatus, lucentPM4FMEqpRepTimer=lucentPM4FMEqpRepTimer, lucentPM4FMT1E1ThreshLESs=lucentPM4FMT1E1ThreshLESs, lucentPM4T1E1SyncLoss=lucentPM4T1E1SyncLoss, lucentPM4T1E1YellowAlarms=lucentPM4T1E1YellowAlarms, lucentPM4FanFailTrap=lucentPM4FanFailTrap, lucentPM4FMT1E1ThreshTrapCfgEntry=lucentPM4FMT1E1ThreshTrapCfgEntry, lucentPM4SnmpCommName=lucentPM4SnmpCommName, lucentPM4T1E1PMIntSEFSs=lucentPM4T1E1PMIntSEFSs, lucentPM4ChasSummary=lucentPM4ChasSummary, lucentPM4T1E1PhysType=lucentPM4T1E1PhysType, lucentPM4EtherPortName=lucentPM4EtherPortName, lucentPM4T1E1PMCurLESs=lucentPM4T1E1PMCurLESs, lucentPM4ChasCmdEntry=lucentPM4ChasCmdEntry, lucentPM4FMEqpBoardIndex=lucentPM4FMEqpBoardIndex, lucentPM4T1E1RecvLevel=lucentPM4T1E1RecvLevel, lucentPM4SnmpCommIndex=lucentPM4SnmpCommIndex, lucentPM4FMChasTrapTimeStamp=lucentPM4FMChasTrapTimeStamp, lucentPM4AMCEDataRate=lucentPM4AMCEDataRate, lucentPM4T1E1PCM=lucentPM4T1E1PCM, lucentPM4EtherEntry=lucentPM4EtherEntry, lucentPM4ConfigMgmt=lucentPM4ConfigMgmt, lucentPM4FMEnvTrapCfgEntry=lucentPM4FMEnvTrapCfgEntry, lucentPM4FMChasTrapUnitIndex=lucentPM4FMChasTrapUnitIndex, lucentPM4FMEqpUnitType=lucentPM4FMEqpUnitType, lucentPM4SerialPhysType=lucentPM4SerialPhysType, lucentPM4FMChasTrapUnitType=lucentPM4FMChasTrapUnitType, lucentPM4FMEnvOptUnitTemp=lucentPM4FMEnvOptUnitTemp, lucentPM4T1E1LineThreshTrap=lucentPM4T1E1LineThreshTrap, lucentPM4FaultMgmtChasTrap=lucentPM4FaultMgmtChasTrap, lucentPM4ModemId=lucentPM4ModemId, lucentPM4CmEther=lucentPM4CmEther, lucentPM4T1E1CarrierLoss=lucentPM4T1E1CarrierLoss, lucentPM4T1E1Framing=lucentPM4T1E1Framing, lucentPM4T1E1PMIntEntry=lucentPM4T1E1PMIntEntry, lucentPM4T1E1Index=lucentPM4T1E1Index, lucentPM4T1E1PMCur=lucentPM4T1E1PMCur, lucentPM4ModemInByteCount=lucentPM4ModemInByteCount, lucentPM4T1E1Entry=lucentPM4T1E1Entry, lucentPM4T1E1BoardIndex=lucentPM4T1E1BoardIndex, lucentPM4EtherOptSnmp=lucentPM4EtherOptSnmp, lucentPM4FMUnitType=lucentPM4FMUnitType, lucentPM4ModemRenegotiates=lucentPM4ModemRenegotiates, lucentPM4FMEnvTrapCtl=lucentPM4FMEnvTrapCtl, lucentPM4T1E1PMCurBoard=lucentPM4T1E1PMCurBoard, lucentPM4EtherAltNameServer=lucentPM4EtherAltNameServer, lucentPM4T1E1PMCurLineNum=lucentPM4T1E1PMCurLineNum, lucentPM4BoardTempNormalTrap=lucentPM4BoardTempNormalTrap, lucentPM4ModemCompression=lucentPM4ModemCompression, lucentPM4EtherInFilter=lucentPM4EtherInFilter, lucentPM4SerialOutOctets=lucentPM4SerialOutOctets, lucentPM4T1E1PMTotalIfIndex=lucentPM4T1E1PMTotalIfIndex, lucentPM4T1E1PMTotalLCVs=lucentPM4T1E1PMTotalLCVs, lucentPM4SerialDirection=lucentPM4SerialDirection, lucentPM4T1E1PMTotalLESs=lucentPM4T1E1PMTotalLESs, lucentPM4FanRestoredTrap=lucentPM4FanRestoredTrap, lucentPM4SWRev=lucentPM4SWRev, lucentPM4PwrSupFailTrap=lucentPM4PwrSupFailTrap, lucentPM4FMT1E1ThreshBoardIndex=lucentPM4FMT1E1ThreshBoardIndex, lucentPM4ModemOutByteCount=lucentPM4ModemOutByteCount, lucentPM4SerialifDescr=lucentPM4SerialifDescr, lucentPM4T1E1SerialIndex=lucentPM4T1E1SerialIndex, lucentPM4ChasCmdBoardId=lucentPM4ChasCmdBoardId, lucentPM4ModemEntry=lucentPM4ModemEntry, lucentPM4FMT1E1ThreshRepTimer=lucentPM4FMT1E1ThreshRepTimer, lucentPM4T1E1PMCurLCVs=lucentPM4T1E1PMCurLCVs, lucentPM4EtherOptRip=lucentPM4EtherOptRip, lucentPM4T1E1PMTotalESs=lucentPM4T1E1PMTotalESs, lucentPM4FMEqpTrapCtl=lucentPM4FMEqpTrapCtl, lucentPM4BoardPwrOffTrap=lucentPM4BoardPwrOffTrap, lucentPM4RadiusAuthFailTrap=lucentPM4RadiusAuthFailTrap, lucentPM4AMCallEventTable=lucentPM4AMCallEventTable, PMEquipStatus=PMEquipStatus, lucentPM4T1E1PMIntLineNum=lucentPM4T1E1PMIntLineNum, lucentPM4PwrSupWarnTrap=lucentPM4PwrSupWarnTrap, lucentPM4T1E1CRCErrors=lucentPM4T1E1CRCErrors, lucentPM4SerialInOctets=lucentPM4SerialInOctets, lucentPM4ModemDetects=lucentPM4ModemDetects, lucentPM4FaultMgmtIsolation=lucentPM4FaultMgmtIsolation, lucentPM4T1E1PMTotalDMs=lucentPM4T1E1PMTotalDMs, lucentPM4T1E1PMCurUnitType=lucentPM4T1E1PMCurUnitType, lucentPM4SnmpCommLastError=lucentPM4SnmpCommLastError, lucentPM4SerialTable=lucentPM4SerialTable, lucentPM4AMCEInOctets=lucentPM4AMCEInOctets, lucentPM4FMUnitIndex=lucentPM4FMUnitIndex) mibBuilder.exportSymbols("LIVINGSTON-PM4-MIB", lucentPM4AcctMgmtCallEvent=lucentPM4AcctMgmtCallEvent, lucentPM4ModemInSpeed=lucentPM4ModemInSpeed, lucentPM4EtherIpAddress=lucentPM4EtherIpAddress, lucentPM4T1E1PerfMgmt=lucentPM4T1E1PerfMgmt, lucentPM4AMCECalledPartyID=lucentPM4AMCECalledPartyID, lucentPM4BoardTooHotTrap=lucentPM4BoardTooHotTrap, lucentPM4SerialTypeNwDialout=lucentPM4SerialTypeNwDialout, lucentPM4SnmpCommTable=lucentPM4SnmpCommTable, lucentPM4SerialDS0State=lucentPM4SerialDS0State, lucentPM4SerialPortStatus=lucentPM4SerialPortStatus, lucentPM4EtherIpGateway=lucentPM4EtherIpGateway, lucentPM4ChasCmdUnitIndex=lucentPM4ChasCmdUnitIndex, lucentPM4ModemProtocol=lucentPM4ModemProtocol, lucentPM4T1E1Function=lucentPM4T1E1Function, lucentPM4FMT1E1ThreshUASs=lucentPM4FMT1E1ThreshUASs, lucentPM4T1E1PMIntBoard=lucentPM4T1E1PMIntBoard, lucentPM4Mib=lucentPM4Mib, lucentPM4SerialTypeDeviceName=lucentPM4SerialTypeDeviceName, lucentPM4T1E1PMIntInterval=lucentPM4T1E1PMIntInterval, lucentPM4EtherIfIndex=lucentPM4EtherIfIndex, lucentPM4SnmpCommEntry=lucentPM4SnmpCommEntry, lucentPM4FMChasTrapBoardID=lucentPM4FMChasTrapBoardID, lucentPM4EtherOptEtherDown=lucentPM4EtherOptEtherDown, lucentPM4FMEqpTrapId=lucentPM4FMEqpTrapId)
49307e4030a27ff3a99f09bee2dfa9b7677a0bfa
6109a95a284891792c35d0d19906ab8d1697f9c7
/src/datamigration/azext_datamigration/vendored_sdks/datamigration/operations/_database_migrations_sql_mi_operations.py
442a15827c7342be590b73150c6bde88654f882a
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
Tatsinnit/azure-cli-extensions
3e5a1752edced00d7c33660027d2c17fae074569
a1959b123d4c11149adae2728ab5791949889d54
refs/heads/master
2022-10-05T17:40:10.825889
2022-03-16T10:33:56
2022-03-16T10:33:56
250,102,909
0
0
MIT
2020-03-25T22:12:01
2020-03-25T22:12:01
null
UTF-8
Python
false
false
26,682
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class DatabaseMigrationsSqlMiOperations(object): """DatabaseMigrationsSqlMiOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.datamigration.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str migration_operation_id=None, # type: Optional[str] expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.DatabaseMigrationSqlMi" """Retrieve the Database Migration resource. :param resource_group_name: Name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param managed_instance_name: :type managed_instance_name: str :param target_db_name: The name of the target database. :type target_db_name: str :param migration_operation_id: Optional migration operation ID. If this is provided, then details of migration operation for that ID are retrieved. If not provided (default), then details related to most recent or current operation are retrieved. :type migration_operation_id: str :param expand: The child resources to include in the response. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DatabaseMigrationSqlMi, or the result of cls(response) :rtype: ~azure.mgmt.datamigration.models.DatabaseMigrationSqlMi :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.DatabaseMigrationSqlMi"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-10-30-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if migration_operation_id is not None: query_parameters['migrationOperationId'] = self._serialize.query("migration_operation_id", migration_operation_id, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('DatabaseMigrationSqlMi', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.DatabaseMigrationSqlMi" **kwargs # type: Any ): # type: (...) -> "models.DatabaseMigrationSqlMi" cls = kwargs.pop('cls', None) # type: ClsType["models.DatabaseMigrationSqlMi"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-10-30-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'DatabaseMigrationSqlMi') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('DatabaseMigrationSqlMi', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('DatabaseMigrationSqlMi', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.DatabaseMigrationSqlMi" **kwargs # type: Any ): # type: (...) -> LROPoller["models.DatabaseMigrationSqlMi"] """Create a new database migration to a given SQL Managed Instance. :param resource_group_name: Name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param managed_instance_name: :type managed_instance_name: str :param target_db_name: The name of the target database. :type target_db_name: str :param parameters: Details of SqlMigrationService resource. :type parameters: ~azure.mgmt.datamigration.models.DatabaseMigrationSqlMi :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DatabaseMigrationSqlMi or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.datamigration.models.DatabaseMigrationSqlMi] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.DatabaseMigrationSqlMi"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, managed_instance_name=managed_instance_name, target_db_name=target_db_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('DatabaseMigrationSqlMi', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}'} # type: ignore def _cancel_initial( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.MigrationOperationInput" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-10-30-preview" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._cancel_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'MigrationOperationInput') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _cancel_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}/cancel'} # type: ignore def begin_cancel( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.MigrationOperationInput" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Stop migrations in progress for the database. :param resource_group_name: Name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param managed_instance_name: :type managed_instance_name: str :param target_db_name: The name of the target database. :type target_db_name: str :param parameters: Required migration operation ID for which cancel will be initiated. :type parameters: ~azure.mgmt.datamigration.models.MigrationOperationInput :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._cancel_initial( resource_group_name=resource_group_name, managed_instance_name=managed_instance_name, target_db_name=target_db_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_cancel.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}/cancel'} # type: ignore def _cutover_initial( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.MigrationOperationInput" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-10-30-preview" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._cutover_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'MigrationOperationInput') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _cutover_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}/cutover'} # type: ignore def begin_cutover( self, resource_group_name, # type: str managed_instance_name, # type: str target_db_name, # type: str parameters, # type: "models.MigrationOperationInput" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Initiate cutover for online migration in progress for the database. :param resource_group_name: Name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param managed_instance_name: :type managed_instance_name: str :param target_db_name: The name of the target database. :type target_db_name: str :param parameters: Required migration operation ID for which cutover will be initiated. :type parameters: ~azure.mgmt.datamigration.models.MigrationOperationInput :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._cutover_initial( resource_group_name=resource_group_name, managed_instance_name=managed_instance_name, target_db_name=target_db_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'managedInstanceName': self._serialize.url("managed_instance_name", managed_instance_name, 'str'), 'targetDbName': self._serialize.url("target_db_name", target_db_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_cutover.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Sql/managedInstances/{managedInstanceName}/providers/Microsoft.DataMigration/databaseMigrations/{targetDbName}/cutover'} # type: ignore
931dd466a1df578c537a95a690a9c0529161c7ba
6553f98336fa296ca4faa6e3e247c0a343d883f3
/yolo/utils.py
c639349f2c4306f0ce792157149cee22126cc8ce
[]
no_license
DableUTeeF/algea
5341a529534e26f1d7ae4ad71d064f32f8f0aba5
3a34c796bdddd07f2ab17811fe472cdce6d9207a
refs/heads/master
2020-08-29T12:27:39.566480
2019-11-08T02:41:03
2019-11-08T02:41:03
218,030,814
1
0
null
null
null
null
UTF-8
Python
false
false
51,045
py
import numpy as np import os import xml.etree.ElementTree as ET import csv import cv2 # from keras.optimizers import Optimizer # from keras import backend as K import copy from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from six import raise_from import csv import sys import os.path def _parse(value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _read_classes(csv_reader): """ Parse the classes file given by csv_reader. """ result = {} for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = _parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def _read_annotations(csv_reader, classes): """ Read annotations from the csv_reader. """ result = {} for line, row in enumerate(csv_reader): line += 1 try: img_file, x1, y1, x2, y2, class_name = row[:6] except ValueError: raise_from(ValueError( 'line {}: format should be \'img_file,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None) if img_file not in result: result[img_file] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = _parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) y1 = _parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) x2 = _parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) y2 = _parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1)) if y2 <= y1: raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes)) result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name}) return result def _open_for_csv(path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') class CocoGenerator: """ Generate data from the COCO dataset. See https://github.com/cocodataset/cocoapi/tree/master/PythonAPI for more information. """ def __init__(self, json_path, image_dir): """ Initialize a COCO data generator. Args data_dir: Path to where the COCO dataset is stored. set_name: Name of the set to parse. """ self.image_dir = image_dir self.coco = COCO(json_path) self.image_ids = self.coco.getImgIds() self.load_classes() def load_classes(self): """ Loads the class to label mapping (and inverse) for COCO. """ # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) self.classes[c['name']] = len(self.classes) # also load the reverse (label -> name) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key def size(self): """ Size of the COCO dataset. """ return len(self.image_ids) def num_classes(self): """ Number of classes in the dataset. For COCO this is 80. """ return len(self.classes) def has_label(self, label): """ Return True if label is a known label. """ return label in self.labels def has_name(self, name): """ Returns True if name is a known class. """ return name in self.classes def name_to_label(self, name): """ Map name to label. """ return self.classes[name] def label_to_name(self, label): """ Map label to name. """ return self.labels[label] def coco_label_to_label(self, coco_label): """ Map COCO label to the label as used in the network. COCO has some gaps in the order of labels. The highest label is 90, but there are 80 classes. """ return self.coco_labels_inverse[coco_label] def coco_label_to_name(self, coco_label): """ Map COCO label to name. """ return self.label_to_name(self.coco_label_to_label(coco_label)) def label_to_coco_label(self, label): """ Map label as used by the network to labels as used by COCO. """ return self.coco_labels[label] def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ image = self.coco.loadImgs(self.image_ids[image_index])[0] return float(image['width']) / float(image['height']) def load_annotations(self, image_index): """ Load annotations for an image_index. """ # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = {'labels': np.empty((0,)), 'bboxes': np.empty((0, 4))} # some images appear to miss annotations (like image with id 257034) if len(annotations_ids) == 0: return annotations # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for idx, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotations['labels'] = np.concatenate( [annotations['labels'], [self.coco_label_to_label(a['category_id'])]], axis=0) annotations['bboxes'] = np.concatenate([annotations['bboxes'], [[ a['bbox'][0], a['bbox'][1], a['bbox'][0] + a['bbox'][2], a['bbox'][1] + a['bbox'][3], ]]], axis=0) return annotations def parse_annotation(ann_dir, img_dir, labels=()): all_imgs = [] seen_labels = {} for ann in sorted(os.listdir(ann_dir)): img = {'object': []} tree = ET.parse(os.path.join(ann_dir, ann)) for elem in tree.iter(): if 'filename' in elem.tag: img['filename'] = os.path.join(img_dir, elem.text) if 'width' in elem.tag: img['width'] = int(elem.text) if 'height' in elem.tag: img['height'] = int(elem.text) if 'object' in elem.tag or 'part' in elem.tag: obj = {} for attr in list(elem): if 'name' in attr.tag: obj['name'] = attr.text if obj['name'] in seen_labels: seen_labels[obj['name']] += 1 else: seen_labels[obj['name']] = 1 if len(labels) > 0 and obj['name'] not in labels: break else: img['object'] += [obj] if 'bndbox' in attr.tag: for dim in list(attr): if 'xmin' in dim.tag: obj['xmin'] = int(round(float(dim.text))) if 'ymin' in dim.tag: obj['ymin'] = int(round(float(dim.text))) if 'xmax' in dim.tag: obj['xmax'] = int(round(float(dim.text))) if 'ymax' in dim.tag: obj['ymax'] = int(round(float(dim.text))) if len(img['object']) > 0: all_imgs += [img] return all_imgs, seen_labels def parse_voc_annotation(ann_dir, img_dir, labels=()): all_imgs = {} seen_labels = {} max_box_per_image = 0 for ann in sorted(os.listdir(ann_dir)): img = {'object': []} tree = ET.parse(os.path.join(ann_dir, ann)) for elem in tree.iter(): if 'filename' in elem.tag: filename = elem.text[:-4] img['filename'] = os.path.join(img_dir, elem.text) if 'width' in elem.tag: img['width'] = int(elem.text) if 'height' in elem.tag: img['height'] = int(elem.text) if 'object' in elem.tag or 'part' in elem.tag: obj = {} for attr in list(elem): if 'name' in attr.tag: obj['name'] = attr.text if obj['name'] in seen_labels: seen_labels[obj['name']] += 1 else: seen_labels[obj['name']] = 1 if len(labels) > 0 and obj['name'] not in labels: break else: img['object'] += [obj] if 'bndbox' in attr.tag: for dim in list(attr): if 'xmin' in dim.tag: obj['xmin'] = int(round(float(dim.text))) if 'ymin' in dim.tag: obj['ymin'] = int(round(float(dim.text))) if 'xmax' in dim.tag: obj['xmax'] = int(round(float(dim.text))) if 'ymax' in dim.tag: obj['ymax'] = int(round(float(dim.text))) if len(img['object']) > 0: all_imgs[filename] = img if len(img['object']) > max_box_per_image: max_box_per_image = len(img['object']) return all_imgs, seen_labels, max_box_per_image def create_voc_training_instances(voc_folder): # parse annotations of the training set ints, labels, max_box_per_image = parse_voc_annotation(os.path.join(voc_folder, 'Annotations'), os.path.join(voc_folder, 'JPEGImages')) train_txt = open(os.path.join(voc_folder, 'ImageSets/Main/train.txt')).read().split('\n')[:-1] val_txt = open(os.path.join(voc_folder, 'ImageSets/Main/val.txt')).read().split('\n')[:-1] train_ints = [ints[train] for train in train_txt] valid_ints = [ints[val] for val in val_txt] # for instance in ints: # filename = os.path.split(instance['filename'])[-1][:-4] # if filename in train_txt: # train_ints.append(instance) # else: # valid_ints.append(instance) return train_ints, valid_ints, sorted(labels), max_box_per_image def create_csv_training_instances(train_csv, test_csv, class_csv, with_wh=False): with _open_for_csv(class_csv) as file: classes = _read_classes(csv.reader(file, delimiter=',')) with _open_for_csv(train_csv) as file: train_image_data = _read_annotations(csv.reader(file, delimiter=','), classes) with _open_for_csv(test_csv) as file: test_image_data = _read_annotations(csv.reader(file, delimiter=','), classes) train_ints = [] valid_ints = [] labels = list(classes) max_box_per_image = 0 for k in train_image_data: image_data = train_image_data[k] ints = {'filename': k, 'object': []} for i, obj in enumerate(image_data): o = {'xmin': obj['x1'], 'xmax': obj['x2'], 'ymin': obj['y1'], 'ymax': obj['y2'], 'name': obj['class']} if with_wh: x = cv2.imread(k) height, width, _ = x.shape o['width'] = width o['height'] = height ints['object'].append(o) if i + 1 > max_box_per_image: max_box_per_image = i + 1 train_ints.append(ints) for k in test_image_data: image_data = test_image_data[k] ints = {'filename': k, 'object': []} for i, obj in enumerate(image_data): o = {'xmin': obj['x1'], 'xmax': obj['x2'], 'ymin': obj['y1'], 'ymax': obj['y2'], 'name': obj['class']} if with_wh: x = cv2.imread(k) height, width, _ = x.shape o['width'] = width o['height'] = height ints['object'].append(o) if i + 1 > max_box_per_image: max_box_per_image = i + 1 valid_ints.append(ints) return train_ints, valid_ints, sorted(labels), max_box_per_image def create_coco_training_instances(train_json, val_json, train_image_dir, val_image_dir, with_empty=True ): train_coco = CocoGenerator(train_json, train_image_dir) val_coco = CocoGenerator(val_json, val_image_dir) assert sorted(val_coco.labels) == sorted( train_coco.labels), r"Something's wrong, the labels in val and train seem to not the same" labels = {} for label in val_coco.labels: labels[val_coco.labels[label]] = 0 max_box_per_image = 0 train_ints = [] valid_ints = [] for image_index in range(len(train_coco.image_ids)): ann = train_coco.load_annotations(image_index) image_info = train_coco.coco.loadImgs(train_coco.image_ids[image_index])[0] impath = os.path.join(train_coco.image_dir, image_info['file_name']) instance = {'filename': impath, 'object': [], 'width': image_info['width'], 'height': image_info['height']} for j in range(len(ann['labels'])): x1 = int(ann['bboxes'][j][0]) y1 = int(ann['bboxes'][j][1]) x2 = int(ann['bboxes'][j][2]) y2 = int(ann['bboxes'][j][3]) cls = train_coco.labels[ann['labels'][j]] obj = {'xmin': x1, 'xmax': x2, 'ymin': y1, 'ymax': y2, 'name': cls} instance['object'].append(obj) if with_empty or len(instance['object']) > 0: train_ints.append(instance) if len(instance['object']) > max_box_per_image: max_box_per_image = len(instance['object']) for image_index in range(len(val_coco.image_ids)): ann = val_coco.load_annotations(image_index) image_info = val_coco.coco.loadImgs(val_coco.image_ids[image_index])[0] impath = os.path.join(val_coco.image_dir, image_info['file_name']) instance = {'filename': impath, 'object': [], 'width': image_info['width'], 'height': image_info['height']} for j in range(len(ann['labels'])): x1 = int(ann['bboxes'][j][0]) y1 = int(ann['bboxes'][j][1]) x2 = int(ann['bboxes'][j][2]) y2 = int(ann['bboxes'][j][3]) cls = val_coco.labels[ann['labels'][j]] obj = {'xmin': x1, 'xmax': x2, 'ymin': y1, 'ymax': y2, 'name': cls} instance['object'].append(obj) if with_empty or len(instance['object']) > 0: valid_ints.append(instance) if len(instance['object']) > max_box_per_image: max_box_per_image = len(instance['object']) return train_ints, valid_ints, sorted(labels), max_box_per_image def create_training_instances(train_annot_folder, train_image_folder, valid_annot_folder, valid_image_folder, labels, ): # parse annotations of the training set train_ints, train_labels = parse_annotation(train_annot_folder, train_image_folder, labels) # parse annotations of the validation set, if any, otherwise split the training set if os.path.exists(valid_annot_folder): valid_ints, valid_labels = parse_annotation(valid_annot_folder, valid_image_folder, labels) else: print("valid_annot_folder not exists. Spliting the trainining set.") train_valid_split = int(0.8 * len(train_ints)) np.random.seed(0) np.random.shuffle(train_ints) np.random.seed() valid_ints = train_ints[train_valid_split:] train_ints = train_ints[:train_valid_split] # compare the seen labels with the given labels in config.json if len(labels) > 0: overlap_labels = set(labels).intersection(set(train_labels.keys())) print('Seen labels: \t' + str(train_labels) + '\n') print('Given labels: \t' + str(labels)) # return None, None, None if some given label is not in the dataset if len(overlap_labels) < len(labels): print('\033[33m\nThese labels has no image') for label in labels: if label not in overlap_labels: print(label) print('\033[0m') labels = list(overlap_labels) else: print('No labels are provided. Train on all seen labels.') # print(train_labels) labels = train_labels.keys() max_box_per_image = max([len(inst['object']) for inst in (train_ints + valid_ints)]) return train_ints, valid_ints, sorted(labels), max_box_per_image class BoundBox: def __init__(self, xmin, ymin, xmax, ymax, c=None, classes=None): self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax self.c = c self.classes = classes self.label = -1 self.score = -1 def get_label(self): if self.label == -1: self.label = np.argmax(self.classes) return self.label def get_score(self): if self.score == -1: self.score = self.classes[self.get_label()] return self.score class WeightReader: def __init__(self, weight_file): self.offset = 4 self.all_weights = np.fromfile(weight_file, dtype='float32') def read_bytes(self, size): self.offset = self.offset + size return self.all_weights[self.offset - size:self.offset] def reset(self): self.offset = 4 def bbox_iou(box1, box2): intersect_w = _interval_overlap([box1.xmin, box1.xmax], [box2.xmin, box2.xmax]) intersect_h = _interval_overlap([box1.ymin, box1.ymax], [box2.ymin, box2.ymax]) intersect = intersect_w * intersect_h w1, h1 = box1.xmax - box1.xmin, box1.ymax - box1.ymin w2, h2 = box2.xmax - box2.xmin, box2.ymax - box2.ymin union = w1 * h1 + w2 * h2 - intersect return float(intersect) / union def draw_boxes(image, boxes, labels): image_h, image_w, _ = image.shape color = [(0, 255, 0), (0, 255, 255), (255, 255, 0), (0, 0, 255), (255, 0, 255), (255, 0, 0)] for box in boxes: xmin = max(0, int(box.xmin * image_w)) ymin = max(0, int(box.ymin * image_h)) xmax = min(int(box.xmax * image_w), image_w) ymax = min(int(box.ymax * image_h), image_h) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color[box.get_label() % 6], 3) cv2.putText(image, labels[box.get_label()] + ' ' + str(box.get_score()), (xmin, ymin - 13), cv2.FONT_HERSHEY_SIMPLEX, 1e-3 * image_h, color[box.get_label() % 6], 1) return image def decode_netout(netout, anchors, nb_class, obj_threshold=0.3, nms_threshold=0.3): grid_h, grid_w, nb_box = netout.shape[:3] boxes = [] # decode the output by the network netout[..., 4] = _sigmoid(netout[..., 4]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:]) netout[..., 5:] *= netout[..., 5:] > obj_threshold for row in range(grid_h): for col in range(grid_w): for b in range(nb_box): # from 4th element onwards are confidence and class classes classes = netout[row, col, b, 5:] if np.sum(classes) > 0: # first 4 elements are x, y, w, and h x, y, w, h = netout[row, col, b, :4] x = (col + _sigmoid(x)) / grid_w # center position, unit: image width y = (row + _sigmoid(y)) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / grid_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / grid_h # unit: image height confidence = netout[row, col, b, 4] box = BoundBox(x - w / 2, y - h / 2, x + w / 2, y + h / 2, confidence, classes) boxes.append(box) # suppress non-maximal boxes for c in range(nb_class): sorted_indices = list(reversed(np.argsort([box.classes[c] for box in boxes]))) for i in range(len(sorted_indices)): index_i = sorted_indices[i] if boxes[index_i].classes[c] == 0: continue else: for j in range(i + 1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_threshold: boxes[index_j].classes[c] = 0 # remove the boxes which are less likely than a obj_threshold boxes = [box for box in boxes if box.get_score() > obj_threshold] return boxes def decode_netoutv3(netout, anchors, obj_thresh, net_h, net_w): grid_h, grid_w = netout.shape[:2] nb_box = 3 netout = netout.reshape((grid_h, grid_w, nb_box, -1)) boxes = [] netout[..., :2] = _sigmoid(netout[..., :2]) netout[..., 4] = _sigmoid(netout[..., 4]) netout[..., 5:] = netout[..., 4][..., np.newaxis] * _softmax(netout[..., 5:]) netout[..., 5:] *= netout[..., 5:] > obj_thresh for i in range(grid_h * grid_w): row = i // grid_w col = i % grid_w for b in range(nb_box): # 4th element is objectness score objectness = netout[row, col, b, 4] if objectness <= obj_thresh: continue # first 4 elements are x, y, w, and h x, y, w, h = netout[row, col, b, :4] x = (col + x) / grid_w # center position, unit: image width y = (row + y) / grid_h # center position, unit: image height w = anchors[2 * b + 0] * np.exp(w) / net_w # unit: image width h = anchors[2 * b + 1] * np.exp(h) / net_h # unit: image height # last elements are class probabilities classes = netout[row, col, b, 5:] box = BoundBox(x - w / 2, y - h / 2, x + w / 2, y + h / 2, objectness, classes) boxes.append(box) return boxes def compute_overlap(a, b): """ Code originally from https://github.com/rbgirshick/py-faster-faster_rcnn. Parameters ---------- a: (N, 4) ndarray of float b: (K, 4) ndarray of float Returns ------- overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0]) ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1]) iw = np.maximum(iw, 0) ih = np.maximum(ih, 0) ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih ua = np.maximum(ua, np.finfo(float).eps) intersection = iw * ih return intersection / ua def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-faster_rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-faster_rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def _interval_overlap(interval_a, interval_b): x1, x2 = interval_a x3, x4 = interval_b if x3 < x1: if x4 < x1: return 0 else: return min(x2, x4) - x1 else: if x2 < x3: return 0 else: return min(x2, x4) - x3 def _sigmoid(x): return 1. / (1. + np.exp(-x)) def _softmax(x, axis=-1, t=-100.): x = x - np.max(x) if np.min(x) < t: x = x / np.min(x) * t e_x = np.exp(x) return e_x / e_x.sum(axis, keepdims=True) def _rand_scale(scale): scale = np.random.uniform(1, scale) return scale if (np.random.randint(2) == 0) else 1. / scale def _constrain(min_v, max_v, value): if value < min_v: return min_v if value > max_v: return max_v return value def random_flip(image, flip): if flip == 1: return cv2.flip(image, 1) return image def correct_bounding_boxes(boxes, new_w, new_h, net_w, net_h, dx, dy, flip, image_w, image_h): boxes = copy.deepcopy(boxes) # randomize boxes' order np.random.shuffle(boxes) # correct sizes and positions sx, sy = float(new_w) / image_w, float(new_h) / image_h zero_boxes = [] for i in range(len(boxes)): boxes[i]['xmin'] = int(_constrain(0, net_w, boxes[i]['xmin'] * sx + dx)) boxes[i]['xmax'] = int(_constrain(0, net_w, boxes[i]['xmax'] * sx + dx)) boxes[i]['ymin'] = int(_constrain(0, net_h, boxes[i]['ymin'] * sy + dy)) boxes[i]['ymax'] = int(_constrain(0, net_h, boxes[i]['ymax'] * sy + dy)) if boxes[i]['xmax'] <= boxes[i]['xmin'] or boxes[i]['ymax'] <= boxes[i]['ymin']: zero_boxes += [i] continue if flip == 1: swap = boxes[i]['xmin'] boxes[i]['xmin'] = net_w - boxes[i]['xmax'] boxes[i]['xmax'] = net_w - swap boxes = [boxes[i] for i in range(len(boxes)) if i not in zero_boxes] return boxes def random_distort_image(image, hue=18, saturation=1.5, exposure=1.5): # determine scale factors dhue = np.random.uniform(-hue, hue) dsat = _rand_scale(saturation) dexp = _rand_scale(exposure) # convert RGB space to HSV space image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype('float') # change satuation and exposure image[:, :, 1] *= dsat image[:, :, 2] *= dexp # change hue image[:, :, 0] += dhue image[:, :, 0] -= (image[:, :, 0] > 180) * 180 image[:, :, 0] += (image[:, :, 0] < 0) * 180 # convert back to RGB from HSV return cv2.cvtColor(image.astype('uint8'), cv2.COLOR_HSV2RGB) def apply_random_scale_and_crop(image, new_w, new_h, net_w, net_h, dx, dy): try: im_sized = cv2.resize(image, (new_w, new_h)) except cv2.error as e: print('something') print(new_w, new_h) raise cv2.error('{}, {} {}'.format(new_w, new_h, e.__cause__)) if dx > 0: im_sized = np.pad(im_sized, ((0, 0), (dx, 0), (0, 0)), mode='constant', constant_values=127) else: im_sized = im_sized[:, -dx:, :] if (new_w + dx) < net_w: im_sized = np.pad(im_sized, ((0, 0), (0, net_w - (new_w + dx)), (0, 0)), mode='constant', constant_values=127) if dy > 0: im_sized = np.pad(im_sized, ((dy, 0), (0, 0), (0, 0)), mode='constant', constant_values=127) else: im_sized = im_sized[-dy:, :, :] if (new_h + dy) < net_h: im_sized = np.pad(im_sized, ((0, net_h - (new_h + dy)), (0, 0), (0, 0)), mode='constant', constant_values=127) return im_sized[:net_h, :net_w, :] def makedirs(path): try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def label_to_coco_label(label): return {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90}[label] def coco_label_to_label(coco_label): dictionary = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90} for label, d_coco_label in dictionary.items(): # for name, age in dictionary.iteritems(): (for Python 2.x) if d_coco_label == coco_label: return label return -1 def boundbox2cocobox(boxes, scale): """ :param scale: :param boxes: [Bndbox(), Bndbox(),...] :return: boxes: [[x, y, w, h]] scores: float labels: int """ cocoboxes = [] scores = [] labels = [] for bbox in boxes: cocoboxes.append([bbox.xmin / scale, bbox.ymin / scale, (bbox.xmax - bbox.xmin) / scale, (bbox.ymax - bbox.ymin) / scale]) scores.append(bbox.get_score()) labels.append(bbox.get_label()) assert len(cocoboxes) == len(scores) == len(labels) return cocoboxes, scores, labels def compute_resize_scale(image_shape, min_side=800, max_side=1333): """ Compute an image scale such that the image size is constrained to min_side and max_side. Args min_side: The image's min side will be equal to min_side after resizing. max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side. Returns A resizing scale. """ (rows, cols, _) = image_shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side return scale def resize_image(img, min_side=800, max_side=1333): """ Resize an image such that the size is constrained to min_side and max_side. Args min_side: The image's min side will be equal to min_side after resizing. max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side. Returns A resized image. """ # compute scale to resize the image scale = compute_resize_scale(img.shape, min_side=min_side, max_side=max_side) # resize the image with the computed scale img = cv2.resize(img, None, fx=scale, fy=scale) return img, scale # noinspection PyTypeChecker def evaluate_coco(generator, model, anchors, json_path, imsize=448, threshold=0.5): """ Use the pycocotools to evaluate a COCO model on a dataset. Args generator : The generator for generating the evaluation data. model : The model to evaluate. threshold : The score threshold to use. """ # start collecting results import pickle if os.path.exists('coco_eval_temp.pk'): results, image_ids = pickle.load(open('coco_eval_temp.pk', 'rb')) else: results = [] image_ids = [] for index in range(generator.size()): # if index % 50 == 0: # print() print(index, end='\r') image = generator.load_image(index) image, scale = resize_image(image, 360, imsize) image = np.expand_dims(image, 0) boxes = get_yolo_boxes(model, image, imsize, imsize, anchors, 0.5, 0.5, preprocess=True)[0] boxes, scores, labels = boundbox2cocobox(boxes, scale) # assert len(boxes) > 0 # compute predicted labels and scores image_id = int(os.path.split(generator.instances[index]['filename'])[-1][:-4]) for box, score, label in zip(boxes, scores, labels): # scores are sorted, so we can break if score < threshold: break # append detection for each positively labeled class image_result = { 'image_id': image_id, 'category_id': label_to_coco_label(label), # todo: 'score': float(score), 'bbox': box, } # append detection to results results.append(image_result) # append image to list of processed images image_ids.append(image_id) with open('coco_eval_temp.pk', 'wb') as wr: pickle.dump([results, image_ids], wr) if not len(results): return import json # write output json.dump(results, open('{}_bbox_results.json'.format('val2017'), 'w'), indent=4) json.dump(image_ids, open('{}_processed_image_ids.json'.format('val2017'), 'w'), indent=4) # load results in COCO evaluation tool coco_true = COCO(json_path) coco_pred = coco_true.loadRes('{}_bbox_results.json'.format('val2017')) # run COCO evaluation coco_eval = COCOeval(coco_true, coco_pred, 'bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval.stats # noinspection PyTypeChecker def evaluate(model, generator, iou_threshold=0.5, obj_thresh=0.5, nms_thresh=0.45, net_h=416, net_w=416, save_path=None): """ Evaluate a given dataset using a given model. code originally from https://github.com/fizyr/keras-retinanet # Arguments model : The model to evaluate. generator : The generator that represents the dataset to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. obj_thresh : The threshold used to distinguish between object and non-object nms_thresh : The threshold used to determine whether two detections are duplicates net_h : The height of the input image to the model, higher value results in better accuracy net_w : The width of the input image to the model save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores. """ # gather all detections and annotations all_detections = [[None for _ in range(generator.num_classes())] for _ in range(generator.size())] all_annotations = [[None for _ in range(generator.num_classes())] for _ in range(generator.size())] for i in range(generator.size()): print(i, end='\r') raw_image = [generator.load_image(i)] # make the boxes and the labels pred_boxes = get_yolo_boxes(model, raw_image, net_h, net_w, generator.get_anchors(), obj_thresh, nms_thresh)[0] score = np.array([box.get_score() for box in pred_boxes]) pred_labels = np.array([box.label for box in pred_boxes]) if len(pred_boxes) > 0: pred_boxes = np.array([[box.xmin, box.ymin, box.xmax, box.ymax, box.get_score()] for box in pred_boxes]) else: pred_boxes = np.array([[]]) # sort the boxes and the labels according to scores score_sort = np.argsort(-score) pred_labels = pred_labels[score_sort] pred_boxes = pred_boxes[score_sort] # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = pred_boxes[pred_labels == label, :] annotations = generator.load_annotation(i) # copy detections to all_annotations for label in range(generator.num_classes()): try: all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy() except IndexError: pass # compute mAP by comparing all detections and all annotations average_precisions = {} for label in range(generator.num_classes()): print() false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores = np.zeros((0,)) num_annotations = 0.0 for i in range(generator.size()): print(i, end='\r') detections = all_detections[i][label] annotations = all_annotations[i][label] num_annotations += annotations.shape[0] detected_annotations = [] for d in detections: scores = np.append(scores, d[4]) if annotations.shape[0] == 0: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) continue overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations) assigned_annotation = np.argmax(overlaps, axis=1) max_overlap = overlaps[0, assigned_annotation] if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations: false_positives = np.append(false_positives, 0) true_positives = np.append(true_positives, 1) detected_annotations.append(assigned_annotation) else: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) # no annotations -> AP for this class is 0 (is this correct?) if num_annotations == 0: average_precisions[label] = 0 continue # sort by score indices = np.argsort(-scores) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / num_annotations precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) # compute average precision average_precision = compute_ap(recall, precision) average_precisions[label] = average_precision return average_precisions # noinspection PyTypeChecker def evaluate_acc(model, generator, iou_threshold=0.5, obj_thresh=0.5, nms_thresh=0.45, net_h=416, net_w=416, save_path=None): """ Evaluate a given dataset using a given model. code originally from https://github.com/fizyr/keras-retinanet # Arguments model : The model to evaluate. generator : The generator that represents the dataset to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. obj_thresh : The threshold used to distinguish between object and non-object nms_thresh : The threshold used to determine whether two detections are duplicates net_h : The height of the input image to the model, higher value results in better accuracy net_w : The width of the input image to the model save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores. """ # gather all detections and annotations all_detections = [[None for _ in range(generator.num_classes())] for _ in range(generator.size())] all_annotations = [[None for _ in range(generator.num_classes())] for _ in range(generator.size())] for i in range(generator.size()): print(i, end='\r') raw_image = [generator.load_image(i)] # make the boxes and the labels pred_boxes = get_yolo_boxes(model, raw_image, net_h, net_w, generator.get_anchors(), obj_thresh, nms_thresh)[0] score = np.array([box.get_score() for box in pred_boxes]) pred_labels = np.array([box.label for box in pred_boxes]) if len(pred_boxes) > 0: pred_boxes = np.array([[box.xmin, box.ymin, box.xmax, box.ymax, box.get_score()] for box in pred_boxes]) else: pred_boxes = np.array([[]]) # sort the boxes and the labels according to scores score_sort = np.argsort(-score) pred_labels = pred_labels[score_sort] pred_boxes = pred_boxes[score_sort] # copy detections to all_detections for label in range(generator.num_classes()): all_detections[i][label] = pred_boxes[pred_labels == label, :] annotations = generator.load_annotation(i) # copy detections to all_annotations for label in range(generator.num_classes()): try: all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy() except IndexError: pass # compute mAP by comparing all detections and all annotations average_precisions = {} for label in range(generator.num_classes()): print() false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores = np.zeros((0,)) num_annotations = 0.0 for i in range(generator.size()): print(i, end='\r') detections = all_detections[i][label] annotations = all_annotations[i][label] num_annotations += annotations.shape[0] detected_annotations = [] for d in detections: scores = np.append(scores, d[4]) if annotations.shape[0] == 0: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) continue overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations) assigned_annotation = np.argmax(overlaps, axis=1) max_overlap = overlaps[0, assigned_annotation] if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations: false_positives = np.append(false_positives, 0) true_positives = np.append(true_positives, 1) detected_annotations.append(assigned_annotation) else: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) # no annotations -> AP for this class is 0 (is this correct?) if num_annotations == 0: average_precisions[label] = 0 continue # sort by score indices = np.argsort(-scores) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / num_annotations precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) # compute average precision average_precision = compute_ap(recall, precision) average_precisions[label] = average_precision return average_precisions def normalize(image): MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255] STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255] image = np.subtract(image.astype('float32'), MEAN_RGB) image = np.divide(image, STDDEV_RGB) return image # effnet use this instead of image/255. def draw_boxesv3(image, boxes, labels, obj_thresh): color = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 0, 255), (255, 255, 0), (0, 255, 255), (0, 0, 0), (255, 255, 255), ] for box in boxes: label_str = '' label = -1 for i in range(len(labels)): if box.classes[i] > obj_thresh: label_str += labels[i] label = i # print(labels[i] + ': ' + str(box.classes[i] * 100) + '%') if label >= 0: cv2.rectangle(image, (box.xmin, box.ymin), (box.xmax, box.ymax), color[box.get_label() % 6], 1) cv2.putText(image, label_str + ' ' + str(box.get_score()), (box.xmin, box.ymin - 13), cv2.FONT_HERSHEY_SIMPLEX, 1e-3 * image.shape[0], color[box.get_label() % 8], 1) return image def preprocess_input(image, net_h, net_w): new_h, new_w, _ = image.shape # determine the new size of the image if (float(net_w) / new_w) < (float(net_h) / new_h): new_h = (new_h * net_w) // new_w new_w = net_w else: new_w = (new_w * net_h) // new_h new_h = net_h # resize the image to the new size resized = cv2.resize(normalize(image[:, :, ::-1]), (new_w, new_h)) # embed the image into the standard letter box new_image = np.ones((net_h, net_w, 3)) * 0.5 new_image[(net_h - new_h) // 2:(net_h + new_h) // 2, (net_w - new_w) // 2:(net_w + new_w) // 2, :] = resized new_image = np.expand_dims(new_image, 0) return new_image def get_yolo_boxes(model, images, net_h, net_w, anchors, obj_thresh, nms_thresh, preprocess=True): image_h, image_w, _ = images[0].shape nb_images = len(images) batch_input = np.zeros((nb_images, net_h, net_w, 3)) # preprocess the input if preprocess: for i in range(nb_images): batch_input[i] = preprocess_input(images[i], net_h, net_w) # run the prediction batch_output = model.predict_on_batch(batch_input) batch_boxes = [None] * nb_images for i in range(nb_images): yolos = [batch_output[0][i], batch_output[1][i], batch_output[2][i]] boxes = [] # decode the output of the network for j in range(len(yolos)): yolo_anchors = anchors[(2 - j) * 6:(3 - j) * 6] # config['model']['anchors'] boxes += decode_netoutv3(yolos[j], yolo_anchors, obj_thresh, net_h, net_w) # correct the sizes of the bounding boxes correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w) # suppress non-maximal boxes do_nms(boxes, nms_thresh) batch_boxes[i] = boxes return batch_boxes def correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w): if (float(net_w) / image_w) < (float(net_h) / image_h): new_w = net_w new_h = (image_h * net_w) / image_w else: new_h = net_w new_w = (image_w * net_h) / image_h for i in range(len(boxes)): x_offset, x_scale = (net_w - new_w) / 2. / net_w, float(new_w) / net_w y_offset, y_scale = (net_h - new_h) / 2. / net_h, float(new_h) / net_h boxes[i].xmin = int((boxes[i].xmin - x_offset) / x_scale * image_w) boxes[i].xmax = int((boxes[i].xmax - x_offset) / x_scale * image_w) boxes[i].ymin = int((boxes[i].ymin - y_offset) / y_scale * image_h) boxes[i].ymax = int((boxes[i].ymax - y_offset) / y_scale * image_h) def do_nms(boxes, nms_thresh): if len(boxes) > 0: nb_class = len(boxes[0].classes) else: return for c in range(nb_class): sorted_indices = np.argsort([-box.classes[c] for box in boxes]) for i in range(len(sorted_indices)): index_i = sorted_indices[i] if boxes[index_i].classes[c] == 0: continue for j in range(i + 1, len(sorted_indices)): index_j = sorted_indices[j] if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_thresh: boxes[index_j].classes[c] = 0
84f29f68b65af4c479188bad5fe13eb540caa362
7fac5e7216c8f4328f21a14f9e222005890a57f8
/11_Actor_Critic_Advantage/refactor/CartPole/network.py
a91406a51ae6f89da620c63ac4298837c272d612
[]
no_license
ZhangRui111/MorvanRL
bee77d644df50ce9900be6ec7d702c395238fae4
ad443d56314427aa9ebe4af552dde0f5470da967
refs/heads/master
2021-04-14T12:05:14.657272
2019-03-26T02:28:31
2019-03-26T02:28:31
126,663,363
0
0
null
null
null
null
UTF-8
Python
false
false
1,786
py
import numpy as np import tensorflow as tf def build_actor_network(n_features, n_actions, lr): s = tf.placeholder(tf.float32, [1, n_features], "state") a = tf.placeholder(tf.int32, None, "act") td_error = tf.placeholder(tf.float32, None, "td_error") # TD_error with tf.variable_scope('Actor'): l1 = tf.contrib.layers.fully_connected(s, 20, activation_fn=tf.nn.relu) acts_prob = tf.contrib.layers.fully_connected(l1, n_actions, activation_fn=tf.nn.softmax) with tf.variable_scope('exp_v'): log_prob = tf.log(acts_prob[0, a]) # log_prob = tf.exp(acts_prob[0, a]) # tf.exp can also convergent exp_v = tf.reduce_mean(log_prob * td_error) # advantage (TD_error) guided loss with tf.variable_scope('train'): train_op = tf.train.AdamOptimizer(lr).minimize(-exp_v) # minimize(-exp_v) = maximize(exp_v) return [[s, a, td_error], [acts_prob, exp_v, train_op]] # # debug mode # # # return [[s, a, td_error], [acts_prob, exp_v, train_op], [log_prob, l1]] # # debug mode # # def build_critic_network(n_features, lr, discount): s = tf.placeholder(tf.float32, [1, n_features], "state") v_ = tf.placeholder(tf.float32, [1, 1], "v_next") r = tf.placeholder(tf.float32, None, 'r') with tf.variable_scope('Critic'): l1 = tf.contrib.layers.fully_connected(s, 20, activation_fn=tf.nn.relu) v = tf.contrib.layers.fully_connected(l1, 1, activation_fn=None) with tf.variable_scope('squared_TD_error'): td_error = r + discount * v_ - v loss = tf.square(td_error) # TD_error = (r+gamma*V_next) - V_eval with tf.variable_scope('train'): train_op = tf.train.AdamOptimizer(lr).minimize(loss) return [[s, v_, r], [v, td_error, loss, train_op]]
e0b1b9862bfdcbcd85808a3da492258a9d3be3b4
05148c0ea223cfc7ed9d16234ab3e6bb40885e9d
/Packages/matplotlib-2.2.2/examples/units/basic_units.py
be07f0c9fce57fe2c456d751270dfbe77b983ac9
[ "MIT" ]
permissive
NightKirie/NCKU_NLP_2018_industry3
9ee226e194287fd9088429f87c58c874e050a8b3
23ac13644b140587e23cfeffb114c7c6f46f17a2
refs/heads/master
2021-06-05T05:33:09.510647
2018-07-05T10:19:47
2018-07-05T10:19:47
133,680,341
1
4
MIT
2020-05-20T16:29:54
2018-05-16T14:43:38
Python
UTF-8
Python
false
false
10,875
py
""" =========== Basic Units =========== """ import six import math import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker from matplotlib.axes import Axes from matplotlib.cbook import iterable class ProxyDelegate(object): def __init__(self, fn_name, proxy_type): self.proxy_type = proxy_type self.fn_name = fn_name def __get__(self, obj, objtype=None): return self.proxy_type(self.fn_name, obj) class TaggedValueMeta(type): def __init__(cls, name, bases, dict): for fn_name in cls._proxies: try: dummy = getattr(cls, fn_name) except AttributeError: setattr(cls, fn_name, ProxyDelegate(fn_name, cls._proxies[fn_name])) class PassThroughProxy(object): def __init__(self, fn_name, obj): self.fn_name = fn_name self.target = obj.proxy_target def __call__(self, *args): fn = getattr(self.target, self.fn_name) ret = fn(*args) return ret class ConvertArgsProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] for a in args: try: converted_args.append(a.convert_to(self.unit)) except AttributeError: converted_args.append(TaggedValue(a, self.unit)) converted_args = tuple([c.get_value() for c in converted_args]) return PassThroughProxy.__call__(self, *converted_args) class ConvertReturnProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): ret = PassThroughProxy.__call__(self, *args) return (NotImplemented if ret is NotImplemented else TaggedValue(ret, self.unit)) class ConvertAllProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] arg_units = [self.unit] for a in args: if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'): # if this arg has a unit type but no conversion ability, # this operation is prohibited return NotImplemented if hasattr(a, 'convert_to'): try: a = a.convert_to(self.unit) except: pass arg_units.append(a.get_unit()) converted_args.append(a.get_value()) else: converted_args.append(a) if hasattr(a, 'get_unit'): arg_units.append(a.get_unit()) else: arg_units.append(None) converted_args = tuple(converted_args) ret = PassThroughProxy.__call__(self, *converted_args) if ret is NotImplemented: return NotImplemented ret_unit = unit_resolver(self.fn_name, arg_units) if ret_unit is NotImplemented: return NotImplemented return TaggedValue(ret, ret_unit) class TaggedValue(six.with_metaclass(TaggedValueMeta)): _proxies = {'__add__': ConvertAllProxy, '__sub__': ConvertAllProxy, '__mul__': ConvertAllProxy, '__rmul__': ConvertAllProxy, '__cmp__': ConvertAllProxy, '__lt__': ConvertAllProxy, '__gt__': ConvertAllProxy, '__len__': PassThroughProxy} def __new__(cls, value, unit): # generate a new subclass for value value_class = type(value) try: subcls = type('TaggedValue_of_%s' % (value_class.__name__), tuple([cls, value_class]), {}) if subcls not in units.registry: units.registry[subcls] = basicConverter return object.__new__(subcls) except TypeError: if cls not in units.registry: units.registry[cls] = basicConverter return object.__new__(cls) def __init__(self, value, unit): self.value = value self.unit = unit self.proxy_target = self.value def __getattribute__(self, name): if name.startswith('__'): return object.__getattribute__(self, name) variable = object.__getattribute__(self, 'value') if hasattr(variable, name) and name not in self.__class__.__dict__: return getattr(variable, name) return object.__getattribute__(self, name) def __array__(self, dtype=object): return np.asarray(self.value).astype(dtype) def __array_wrap__(self, array, context): return TaggedValue(array, self.unit) def __repr__(self): return 'TaggedValue(' + repr(self.value) + ', ' + repr(self.unit) + ')' def __str__(self): return str(self.value) + ' in ' + str(self.unit) def __len__(self): return len(self.value) def __iter__(self): # Return a generator expression rather than use `yield`, so that # TypeError is raised by iter(self) if appropriate when checking for # iterability. return (TaggedValue(inner, self.unit) for inner in self.value) def get_compressed_copy(self, mask): new_value = np.ma.masked_array(self.value, mask=mask).compressed() return TaggedValue(new_value, self.unit) def convert_to(self, unit): if unit == self.unit or not unit: return self new_value = self.unit.convert_value_to(self.value, unit) return TaggedValue(new_value, unit) def get_value(self): return self.value def get_unit(self): return self.unit class BasicUnit(object): def __init__(self, name, fullname=None): self.name = name if fullname is None: fullname = name self.fullname = fullname self.conversions = dict() def __repr__(self): return 'BasicUnit(%s)' % self.name def __str__(self): return self.fullname def __call__(self, value): return TaggedValue(value, self) def __mul__(self, rhs): value = rhs unit = self if hasattr(rhs, 'get_unit'): value = rhs.get_value() unit = rhs.get_unit() unit = unit_resolver('__mul__', (self, unit)) if unit is NotImplemented: return NotImplemented return TaggedValue(value, unit) def __rmul__(self, lhs): return self*lhs def __array_wrap__(self, array, context): return TaggedValue(array, self) def __array__(self, t=None, context=None): ret = np.array([1]) if t is not None: return ret.astype(t) else: return ret def add_conversion_factor(self, unit, factor): def convert(x): return x*factor self.conversions[unit] = convert def add_conversion_fn(self, unit, fn): self.conversions[unit] = fn def get_conversion_fn(self, unit): return self.conversions[unit] def convert_value_to(self, value, unit): conversion_fn = self.conversions[unit] ret = conversion_fn(value) return ret def get_unit(self): return self class UnitResolver(object): def addition_rule(self, units): for unit_1, unit_2 in zip(units[:-1], units[1:]): if (unit_1 != unit_2): return NotImplemented return units[0] def multiplication_rule(self, units): non_null = [u for u in units if u] if (len(non_null) > 1): return NotImplemented return non_null[0] op_dict = { '__mul__': multiplication_rule, '__rmul__': multiplication_rule, '__add__': addition_rule, '__radd__': addition_rule, '__sub__': addition_rule, '__rsub__': addition_rule} def __call__(self, operation, units): if (operation not in self.op_dict): return NotImplemented return self.op_dict[operation](self, units) unit_resolver = UnitResolver() cm = BasicUnit('cm', 'centimeters') inch = BasicUnit('inch', 'inches') inch.add_conversion_factor(cm, 2.54) cm.add_conversion_factor(inch, 1/2.54) radians = BasicUnit('rad', 'radians') degrees = BasicUnit('deg', 'degrees') radians.add_conversion_factor(degrees, 180.0/np.pi) degrees.add_conversion_factor(radians, np.pi/180.0) secs = BasicUnit('s', 'seconds') hertz = BasicUnit('Hz', 'Hertz') minutes = BasicUnit('min', 'minutes') secs.add_conversion_fn(hertz, lambda x: 1./x) secs.add_conversion_factor(minutes, 1/60.0) # radians formatting def rad_fn(x, pos=None): n = int((x / np.pi) * 2.0 + 0.25) if n == 0: return '0' elif n == 1: return r'$\pi/2$' elif n == 2: return r'$\pi$' elif n % 2 == 0: return r'$%s\pi$' % (n//2,) else: return r'$%s\pi/2$' % (n,) class BasicUnitConverter(units.ConversionInterface): @staticmethod def axisinfo(unit, axis): 'return AxisInfo instance for x and unit' if unit == radians: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.fullname, ) elif unit == degrees: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'), label=unit.fullname, ) elif unit is not None: if hasattr(unit, 'fullname'): return units.AxisInfo(label=unit.fullname) elif hasattr(unit, 'unit'): return units.AxisInfo(label=unit.unit.fullname) return None @staticmethod def convert(val, unit, axis): if units.ConversionInterface.is_numlike(val): return val if iterable(val): return [thisval.convert_to(unit).get_value() for thisval in val] else: return val.convert_to(unit).get_value() @staticmethod def default_units(x, axis): 'return the default unit for x or None' if iterable(x): for thisx in x: return thisx.unit return x.unit def cos(x): if iterable(x): return [math.cos(val.convert_to(radians).get_value()) for val in x] else: return math.cos(x.convert_to(radians).get_value()) basicConverter = BasicUnitConverter() units.registry[BasicUnit] = basicConverter units.registry[TaggedValue] = basicConverter
5db9f1bb82aaada88a79243dab0be796299f41e9
a1d8fefb84ce2f69ebce5fedcdf5262ba0005a5f
/zvt/recorders/eastmoney/meta/china_stock_category_recorder.py
a0a6b9c47e284491ad80a9fade92202ba428d1f4
[ "MIT" ]
permissive
vinhphu3000/FinanceCenter
f2c827ffe268421011682ed45375f55ac6ddc54a
1511751fe6d7d1f1fb940ae66d29b45eb0782fea
refs/heads/master
2023-03-30T19:55:17.124679
2021-03-27T11:40:18
2021-03-27T11:40:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,630
py
# -*- coding: utf-8 -*- import pandas as pd from numba import njit from zvt import zvt_config from zvt.api.data_type import Region, Provider, EntityType from zvt.api.quote import china_stock_code_to_id from zvt.domain import BlockStock, BlockCategory, Block from zvt.contract.api import df_to_db from zvt.contract.recorder import RecorderForEntities, TimeSeriesDataRecorder from zvt.networking.request import sync_get from zvt.utils.time_utils import now_pd_timestamp, PD_TIME_FORMAT_DAY from zvt.utils.utils import json_callback_param class EastmoneyChinaBlockRecorder(RecorderForEntities): provider = Provider.EastMoney data_schema = Block region = Region.CHN # 用于抓取行业/概念/地域列表 category_map_url = { BlockCategory.industry: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKHY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_F1A61014DE5E45B7A50068EA290BC918&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08766', BlockCategory.concept: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKGN&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=300&lvl=&cb=jsonp_3071689CC1E6486A80027D69E8B33F26&token=4f1862fc3b5e77c150a2b985b12db0fd&_=08251', # BlockCategory.area: 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C._BKDY&sty=DCRRBKCPAL&st=(ChangePercent)&sr=-1&p=1&ps=200&lvl=&cb=jsonp_A597D4867B3D4659A203AADE5B3B3AD5&token=4f1862fc3b5e77c150a2b985b12db0fd&_=02443' } def init_entities(self): self.entities = [BlockCategory.industry, BlockCategory.concept] def process_loop(self, entity, http_session): text = sync_get(http_session, self.category_map_url[entity], return_type='text') if text is None: return results = json_callback_param(text) @njit(nopython=True) def numba_boost_up(results): the_list = [] for result in results: items = result.split(',') code = items[1] name = items[2] entity_id = f'block_cn_{code}' the_list.append({ 'id': entity_id, 'entity_id': entity_id, 'entity_type': EntityType.Block.value, 'exchange': 'cn', 'code': code, 'name': name, 'category': entity.value }) return the_list the_list = numba_boost_up(results) if the_list: df = pd.DataFrame.from_records(the_list) df_to_db(df=df, ref_df=None, region=Region.CHN, data_schema=self.data_schema, provider=self.provider) self.logger.info(f"finish record sina blocks:{entity.value}") class EastmoneyChinaBlockStockRecorder(TimeSeriesDataRecorder): region = Region.CHN provider = Provider.EastMoney entity_schema = Block data_schema = BlockStock # 用于抓取行业包含的股票 category_stocks_url = 'https://nufm.dfcfw.com/EM_Finance2014NumericApplication/JS.aspx?type=CT&cmd=C.{}{}&sty=SFCOO&st=(Close)&sr=-1&p=1&ps=300&cb=jsonp_B66B5BAA1C1B47B5BB9778045845B947&token=7bc05d0d4c3c22ef9fca8c2a912d779c' def __init__(self, exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=False, sleeping_time=5, default_size=zvt_config['batch_size'], real_time=False, fix_duplicate_way='add', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0) -> None: super().__init__(EntityType.Block, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute) def generate_domain_id(self, entity, df, time_fmt=PD_TIME_FORMAT_DAY): return entity.id + '_' + df['stock_id'] def record(self, entity, start, end, size, timestamps, http_session): url = self.category_stocks_url.format(entity.code, '1') text = sync_get(http_session, url, return_type='text') if text is None: return None results = json_callback_param(text) # @njit(nopython=True) def numba_boost_up(results): the_list = [] for result in results: items = result.split(',') stock_code = items[1] stock_id = china_stock_code_to_id(stock_code) the_list.append({ 'stock_id': stock_id, 'stock_code': stock_code, 'stock_name': items[2], }) return the_list the_list = numba_boost_up(results) if the_list: df = pd.DataFrame.from_records(the_list) return df self.sleep() return None def format(self, entity, df): df['timestamp'] = now_pd_timestamp(Region.CHN) df['entity_id'] = entity.id df['provider'] = self.provider.value df['code'] = entity.code df['name'] = entity.name df['level'] = self.level.value df['exchange'] = entity.exchange df['entity_type'] = EntityType.Block.value df['id'] = self.generate_domain_id(entity, df) return df __all__ = ['EastmoneyChinaBlockRecorder', 'EastmoneyChinaBlockStockRecorder'] if __name__ == '__main__': # init_log('china_stock_category.log') recorder = EastmoneyChinaBlockStockRecorder(codes=['BK0727']) recorder.run()
a25196a8f29cc48a0abcab0af5d74810790319c3
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/470/usersdata/281/112524/submittedfiles/Av2_Parte3.py
a4b0c34470239c11ef1a33686d04422e6413ad37
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
# -*- coding: utf-8 -*- m=int(input('Digite a quantidade de listas desejada: ')) for i in range(0,m,1): lista=[] n=int(input('Digite a quantidade de elementos da %d lista: ' %(i+1))) for i in range(0,n,1): lista.append(int(input('Digite o %d elemento dessa lista: ' %(i+1)))) media=sum(lista)/len(lista) for i in range(0,n,1): soma=0 soma(i-media)**2 dp=((1/(n-1))*soma)**(1/2) print(media) print(dp)
aca102ba379f86d774530313c359be0ea25547c8
747f759311d404af31c0f80029e88098193f6269
/extra-addons/hr_attendance_analysis/interface.py
01271421ed420fa708a35f11eb536752ed1a9217
[]
no_license
sgeerish/sirr_production
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
1081f3a5ff8864a31b2dcd89406fac076a908e78
refs/heads/master
2020-05-19T07:21:37.047958
2013-09-15T13:03:36
2013-09-15T13:03:36
9,648,444
0
1
null
null
null
null
UTF-8
Python
false
false
2,712
py
# -*- encoding: utf-8 -*- ############################################################################## # # Clock Reader for OpenERP # Copyright (C) 2004-2009 Moldeo Interactive CT # (<http://www.moldeointeractive.com.ar>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import timeutils as tu class Interface(object): def __init__(self, cr, uid, pool, oid, otype): self._parms = (cr, uid, pool) self._cache = pool.get(otype).read(cr, uid, oid) self._field = pool.get(otype).fields_get(cr, uid) self._local_cache = {} def __getitem__(self, name): if name in self._local_cache: return self._local_cache[name] if name in self._cache: ret = self._cache[name] if isinstance(ret, bool): return ret field = self._field[name] if field['type'] in ['char','int','float', 'selection']: _r = ret elif field['type'] in ['datetime']: _r = tu.dt(ret) elif field['type'] in ['date']: _r = tu.d(ret) elif field['type'] in ['many2one']: _r = Interface(*(self._parms + (ret[0] ,field['relation']))) elif field['type'] in ['many2many', 'one2many']: _r = map(lambda a: Interface(*(self._parms + a)) , zip(ret, [field['relation']]*len(ret))) else: raise NotImplementedError, \ "Not implemented for %s of type %s (%s)." % (name, field['type'], str(ret)) self._local_cache[name] = _r return _r else: # raise ValueError, "Not exists %s in object." % name return False def __getattr__(self, name): return self[name] # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
1648baed214078a8926589e49711518dd6f5a517
49f61714a6f78d984fd2194d6064d84e891bc5b7
/2019-1/220/users/4258/codes/1647_2445.py
e74ad3e0112c554a5f274784d793ec04694fb134
[]
no_license
psbarros/Variaveis3
b5c4e1517e7d94a846ee03791d25d5821a1c651c
3dcf6f810709ce03c78335acf9533e008a2ae125
refs/heads/master
2023-06-13T07:05:00.878430
2021-07-06T17:51:37
2021-07-06T17:51:37
383,549,597
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
escala = input("Escolha C para Celsius, ou F para Fahrenheit: ") temp = float(input("Temperatura: ")) c = (5/9)*(temp - 32) f = ((9/5)*temp) + 32 if(escala == "C"): print(f) if(escala == "F"): print(c)
21b8c9f44927459be125440bea1eff530f530da0
040236bf3bb45826c0bbc39e7432512ff420a0d1
/geomk/api/serializers.py
6c022a859e6e149bbc1d0f638e27c128eb57e92b
[]
no_license
ThiagoDiasV/parking-lot-api
2768baf8921b9dc087616def8c93ccc4f2fe8cf5
5cb3f687099bea59740b0034aeebf9a65b791358
refs/heads/master
2022-12-13T02:25:50.754524
2020-02-12T12:08:32
2020-02-12T12:08:32
232,959,041
4
3
null
2022-03-08T21:10:08
2020-01-10T03:36:52
Python
UTF-8
Python
false
false
991
py
from .models import Car from rest_framework import serializers class CarSerializer(serializers.ModelSerializer): class Meta: model = Car fields = "__all__" read_only_fields = ["entry_time", "left_time", "time", "paid", "left"] def create(self, validated_data: dict) -> Car: """ Overriding create function to avoid POST with cars that already are at parking lot and don't left yet. Cars with plate registered can only enter if they already left the last time. """ try: cars = Car.objects.filter(plate=validated_data.get("plate")) last_register = cars.last() if last_register: if not last_register.left: raise serializers.ValidationError( "Car already at parking lot and don't left yet." ) except IndexError: pass return Car.objects.create(**validated_data)
769afb7623da0289c6dc97015f9e4fa301f95254
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/5/mzm.py
3ec62cfc159dc28f0f1be15728991241acff646f
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'mZM': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
27da08cfa78217f9a5c0fc73b6cccf72ff2e25ac
69a2f0c4419d0bf39d2fe46e8ff2ee117eaf237a
/mutilprocess/test.py
5b992fe9cd521106dc327da20aafd0555f827fc5
[]
no_license
lxy5513/python
7da339e8ef6e2fa827e2da723c0f4e3595e11e04
228c3e631e642228de659e68f98ea938bcb2509f
refs/heads/master
2020-03-27T03:21:03.582842
2020-01-17T00:39:57
2020-01-17T00:39:57
145,855,837
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
import multiprocessing import time import collections Queue = collections.deque(maxlen=10) def consume(interval): while True: print("Queue: ", Queue) if len(Queue) == 0: print("no data") time.sleep(0.5) else: num = Queue.pop() print("Num: ", num) time.sleep(0.5) print("worker_1") time.sleep(interval) print("end worker_1") def productor(interval): while True: print("productor") time.sleep(interval) Queue.append(1) print("length of queue is: ", len(Queue)) print("end worker_2") if __name__ == "__main__": p1 = multiprocessing.Process(target = consume, args = (2,)) p2 = multiprocessing.Process(target = productor, args = (3,)) p1.start() p2.start()
883182e36ae3c57c73a7b281ee795b79299603a9
191fbcc96b9f0c74b88b001003f024064c973753
/gateware/rtl/platform/syzygy/boson.py
8ca2d666a8022c603a68c64631c4c2278825ce82
[ "BSD-2-Clause" ]
permissive
gregdavill/boson-eth-firmware
f0b5895469260e414b90cd7e7e0fad37a5728159
056843c43fac6486114bfb916fb78a4f7d38e87c
refs/heads/main
2023-08-24T12:55:10.648741
2021-10-15T00:28:16
2021-10-15T00:28:16
374,504,758
1
0
null
null
null
null
UTF-8
Python
false
false
2,166
py
# This file is Copyright (c) 2020 Gregory Davill <[email protected]> # License: BSD from litex.build.generic_platform import * def boson_syzygy_r0d1(syzygy_id=0): _id = f'SYZYGY{syzygy_id}' return [ ("Boson", 0, Subsignal("data", Pins(f'{_id}:S27 {_id}:P2C_CLKN {_id}:D5P {_id}:S26 \ {_id}:D7N {_id}:D2P {_id}:D2N {_id}:S17 \ {_id}:D1N {_id}:S16 {_id}:D5N {_id}:S18 \ {_id}:C2P_CLKN {_id}:S25 {_id}:D1P {_id}:D6P \ {_id}:D4P {_id}:D0P {_id}:D6N {_id}:S23 \ {_id}:'),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("clk", Pins("A17"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("vsync", Pins("A13"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("hsync", Pins("D16"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("valid", Pins("C16"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("tx", Pins("A3"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("rx", Pins("B9"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("reset", Pins("B2"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("ext_sync", Pins("B18"),IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW")), Subsignal("rst_n", Pins("SYZYGY1:D5N"), IOStandard("LVCMOS18"),Misc("SLEWRATE=FAST TERMINATION=OFF")), Subsignal("clk_p", Pins("SYZYGY1:D4P"), IOStandard("LVCMOS18"),Misc("SLEWRATE=FAST TERMINATION=OFF")), Subsignal("clk_n", Pins("SYZYGY1:D4N"), IOStandard("LVCMOS18"),Misc("SLEWRATE=FAST TERMINATION=OFF")), Subsignal("cs_n", Pins("SYZYGY1:D6P"), IOStandard("LVCMOS18"),Misc("SLEWRATE=SLOW TERMINATION=OFF")), Subsignal("dq", Pins("SYZYGY1:D2N SYZYGY1:D0N SYZYGY1:D5P SYZYGY1:D2P SYZYGY1:D3P SYZYGY1:D1N SYZYGY1:D1P SYZYGY1:D0P"), IOStandard("LVCMOS18"),Misc("SLEWRATE=FAST TERMINATION=OFF")), Subsignal("rwds", Pins("SYZYGY1:D3N"), IOStandard("LVCMOS18"),Misc("SLEWRATE=FAST TERMINATION=OFF")), ), ]
00d0a14e123abd54a6e59a43184ae690361ef49d
acbb6e1e33cf2c5dae45c73e3d07723ce21f1cf9
/migrations/versions/ad4630b5d9d4_followers.py
6b6dd161cc165a486f3c1637ff7b444302d21143
[]
no_license
Tur-4000/microblog
24edde54599937bc97bf782861868fea0f57814e
24de02ed7c1d417b68171079dc366833f7d2e6c7
refs/heads/master
2022-05-25T22:16:10.609591
2018-08-02T20:34:40
2018-08-02T20:34:40
141,682,858
1
0
null
2022-05-25T00:20:33
2018-07-20T08:05:00
Python
UTF-8
Python
false
false
840
py
"""followers Revision ID: ad4630b5d9d4 Revises: 6f99f9ee47c0 Create Date: 2018-07-24 17:35:58.696784 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ad4630b5d9d4' down_revision = '6f99f9ee47c0' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('followers', sa.Column('follower_id', sa.Integer(), nullable=True), sa.Column('followed_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['followed_id'], ['user.id'], ), sa.ForeignKeyConstraint(['follower_id'], ['user.id'], ) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('followers') # ### end Alembic commands ###
b54dbcbba5b87d5e208a4286878095d159ab7260
4f75cc33b4d65d5e4b054fc35b831a388a46c896
/test_watchlist.py
395cd36afd93c199d6f54cfb098279bd0d6044b4
[]
no_license
Lr-2002/newpage
c3fe2acc451e24f6408996ea1271c61c321de702
c589ad974e7100aa9b1c2ccc095a959ff68069b6
refs/heads/main
2023-09-03T06:13:53.428236
2021-11-23T10:41:21
2021-11-23T10:41:21
402,606,000
0
0
null
null
null
null
UTF-8
Python
false
false
8,048
py
from os import name from re import A, T import unittest from app import app, db, Movie, User class WatchlistTestCase(unittest.TestCase): def setUp(self): app.config.update( TESTING = True, SQLALCHEMY_DATABASE_URI = 'sqlite:///:memory:' ) db.create_all() user = User(name = 'test', username = 'test') user.set_password('123') movie = Movie(title ='Test Movie Title', year = 2000) db.session.add_all([user,movie]) db.session.commit() self.client = app.test_client() # create client to test self.runner = app.test_cli_runner() # app.test_cli_runner app.test_client # both of them are built-in test function oin falsk def tearDown(self): """ close app and clean everything""" db.session.remove() db.drop_all() def test_app_exist(self): """ exist_testing by none (if app not exist then the object is nono)""" self.assertIsNotNone(app) def test_app_is_testing(self): """ test_app_is_testing by give app.config""" self.assertTrue(app.config['TESTING']) def test_404_page(self): response = self.client.get('/nothing') data = response.get_data(as_text=True) self.assertIn('Page Not Found - 404',data) # test the response of 404_page self.assertEqual(response.status_code, 404) def test_index_page(self): response = self.client.get('/') data = response.get_data(as_text=True) self.assertEqual(response.status_code, 200) def login(self): self.client.post('/login', data=dict( username = 'test', password = '123' ),follow_redirects = True) def test_create_item(self): print(1) self.login() print(4) response = self.client.post('/', data=dict( title='New Movie', year='2019' ), follow_redirects=True) print(2) data = response.get_data(as_text=True) self.assertIn('Item created.', data) self.assertIn('New Movie', data) print(3) # 测试创建条目操作,但电影标题为空 response = self.client.post('/', data=dict( title='', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item created.', data) self.assertIn('Invalid input.', data) # 测试创建条目操作,但电影年份为空 response = self.client.post('/', data=dict( title='New Movie', year='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item created.', data) self.assertIn('Invalid input.', data) def test_update_item(self): self.login() # 测试更新页面 response = self.client.get('/movie/edit/1') data = response.get_data(as_text=True) self.assertIn('Edit', data) self.assertIn('Test Movie Title', data) self.assertIn('2000', data) # 测试更新条目操作 response = self.client.post('/movie/edit/1', data=dict( title='New Movie Edited', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Item updated.', data) self.assertIn('New Movie Edited', data) # 测试更新条目操作,但电影标题为空 response = self.client.post('/movie/edit/1', data=dict( title='', year='2019' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item updated.', data) self.assertIn('Invalid input.', data) # 测试更新条目操作,但电影年份为空 response = self.client.post('/movie/edit/1', data=dict( title='New Movie Edited Again', year='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Item updated.', data) self.assertNotIn('New Movie Edited Again', data) self.assertIn('Invalid input.', data) # 测试删除条目 def test_delete_item(self): self.login() response = self.client.post('/movie/delete/1', follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Item Deleted', data) self.assertNotIn('Test Movie Title', data) def test_login_protect(self): response = self.client.get('/') data = response.get_data(as_text=True) self.assertNotIn('Logout', data) self.assertIn('Settings', data) self.assertIn("<form method='post'>", data) self.assertIn('Delete', data) self.assertIn('Edit', data) # 测试登录 def test_login(self): response = self.client.post('/login', data=dict( username='test', password='123' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('Successfully', data) self.assertIn('logout', data) self.assertIn('Settings', data) self.assertIn('Delete', data) self.assertIn('Edit', data) self.assertIn("<form method='post'>", data) # 测试使用错误的密码登录 response = self.client.post('/login', data=dict( username='test', password='456' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Successfully', data) self.assertIn('Invalid username or password', data) # 测试使用错误的用户名登录 response = self.client.post('/login', data=dict( username='wrong', password='123' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Successfully', data) self.assertIn('Invalid username or password', data) # 测试使用空用户名登录 response = self.client.post('/login', data=dict( username='', password='123' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Successfully', data) self.assertIn('Invalid username or password', data) # 测试使用空密码登录 response = self.client.post('/login', data=dict( username='test', password='' ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('Successfully', data) self.assertIn('Invalid username or password', data) # 测试登出 def test_logout(self): self.login() response = self.client.get('/logout', follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('logged out', data) # self.assertIn('Logout', data) self.assertIn('Settings', data) self.assertIn('Delete', data) self.assertIn('Edit', data) self.assertIn("<form method='post'>", data) # 测试设置 def test_settings(self): self.login() # 测试设置页面 response = self.client.get('/settings') data = response.get_data(as_text=True) self.assertIn('Settings', data) self.assertIn('Your Name', data) # 测试更新设置 response = self.client.post('/settings', data=dict( name='Grey Li', ), follow_redirects=True) data = response.get_data(as_text=True) self.assertIn('changed', data) self.assertIn('Grey Li', data) # 测试更新设置,名称为空 response = self.client.post('/settings', data=dict( name='', ), follow_redirects=True) data = response.get_data(as_text=True) self.assertNotIn('changed', data) # self.assertIn('Invalid input.', data) if __name__ == '__main__': unittest.main()
9dedcdee6a2d68515c547bd4a1b13efe3b23bdce
3a891a79be468621aae43defd9a5516f9763f36e
/desktop/core/ext-py/dnspython-1.15.0/examples/ddns.py
f351524ee738290cfe64177208bb0df88bbff61f
[ "LicenseRef-scancode-warranty-disclaimer", "ISC", "Apache-2.0" ]
permissive
oyorooms/hue
b53eb87f805063a90f957fd2e1733f21406269aa
4082346ef8d5e6a8365b05752be41186840dc868
refs/heads/master
2020-04-15T20:31:56.931218
2019-01-09T19:02:21
2019-01-09T19:05:36
164,998,117
4
2
Apache-2.0
2019-01-10T05:47:36
2019-01-10T05:47:36
null
UTF-8
Python
false
false
1,204
py
#!/usr/bin/env python # # Use a TSIG-signed DDNS update to update our hostname-to-address # mapping. # # usage: ddns.py <ip-address> # # On linux systems, you can automatically update your DNS any time an # interface comes up by adding an ifup-local script that invokes this # python code. # # E.g. on my systems I have this # # #!/bin/sh # # DEVICE=$1 # # if [ "X${DEVICE}" == "Xeth0" ]; then # IPADDR=`LANG= LC_ALL= ifconfig ${DEVICE} | grep 'inet addr' | # awk -F: '{ print $2 } ' | awk '{ print $1 }'` # /usr/local/sbin/ddns.py $IPADDR # fi # # in /etc/ifup-local. # import sys import dns.update import dns.query import dns.tsigkeyring # # Replace the keyname and secret with appropriate values for your # configuration. # keyring = dns.tsigkeyring.from_text({ 'keyname.' : 'NjHwPsMKjdN++dOfE5iAiQ==' }) # # Replace "example." with your domain, and "host" with your hostname. # update = dns.update.Update('example.', keyring=keyring) update.replace('host', 300, 'A', sys.argv[1]) # # Replace "10.0.0.1" with the IP address of your master server. # response = dns.query.tcp(update, '10.0.0.1', timeout=10)
499388b2165572001dc1138029488a7777cf7e8c
45fdc51cf264bbd50e59655440eefc91451c50ea
/text/src/textwrap_dedent.py
5084ccaedb083bd8a9ae1878d3c3217339c0efd4
[]
no_license
blindij/python3_stl
2163043f3a9113eac21a48a35685a4a01987e926
ea138e25f8b5bbf7d8f78e4b1b7e2ae413de4735
refs/heads/master
2021-12-24T20:37:54.055116
2021-09-29T13:37:38
2021-09-29T13:37:38
191,508,648
0
0
null
2019-08-27T15:45:53
2019-06-12T06:10:30
Python
UTF-8
Python
false
false
142
py
import textwrap from textwrap_example import sample_text dedented_text = textwrap.dedent(sample_text) print('Dedented') print(dedented_text)
2eb81e6bc89d77f0ee7640edaec9543348a8f465
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/380/usersdata/315/101991/submittedfiles/minha_bib.py
37dfe39276605bb65b991985c20942c3898a1b93
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
3,182
py
# -*- coding: utf-8 -*- import random #Simbolo que o Jogador quer utilizar def solicitaSimbolodoHumano(a): a = input('\nQual símbolo você deseja utilizar no jogo? ') while a!='O' and a!='X' and a!='o' and a!='x': a = input('\nQual símbolo você deseja utilizar no jogo? ') if a == 'x' or a =='X': a = ' X ' else: a = ' O ' return a #Sorteio de quem ira começar jogando def sorteioPrimeiraJogada(jogador, nome): jogador = random.choice((0,1)) if jogador ==1: print('\nVencedor do sorteio para inicio do jogo : %s'%nome) else: print('\nVencedor do sorteio para inicio do jogo : Computador') return jogador #Printa o tabuleiro def mostraTabuleiro(tabuleiro): print ('') print (tabuleiro[0][0] + '|' + tabuleiro[0][1] + '|' + tabuleiro[0][2]) print (tabuleiro[1][0] + '|' + tabuleiro[1][1] + '|' + tabuleiro[1][2]) print (tabuleiro[2][0] + '|' + tabuleiro[2][1] + '|' + tabuleiro[2][2]) #Jogada do computador TA COM ERRO def JogadaComputador(smbPC,tabuleiro): while True: ti = random.choice((0,1,2)) tj = random.choice((0,1,2)) if tabuleiro[ti][tj] == ' ': break else: ti = random.choice((0,1,2)) tj = random.choice((0,1,2)) tabuleiro[ti][tj] = smbPC return tabuleiro #Verifica se a jogada é valida def validaJogada(a, tabuleiro, nome): while True: if tabuleiro[int(a[0])][int(a[2])] == (' '): break else: print('\nOPS!!! Essa jogada não está disponível. Tente novamente!') a = input('\nQual a sua jogada, %s? ' %nome) return a #sua jogada def JogadaHumana(smbH,tabuleiro, nome): mostraTabuleiro(tabuleiro) n = input('\nQual a sua jogada, %s? ' %nome) n = validaJogada(n, tabuleiro, nome) tabuleiro[int(n[0])][int(n[2])] = smbH return tabuleiro #Verifica se alguem ganhou def verificaVencedor(simbolo, tabuleiro): if tabuleiro[0][0] == simbolo and tabuleiro[0][1] == simbolo and tabuleiro[0][2] == simbolo: return True elif tabuleiro[1][0] == simbolo and tabuleiro[1][1] == simbolo and tabuleiro[1][2] == simbolo: return True elif tabuleiro[2][0] == simbolo and tabuleiro[2][1] == simbolo and tabuleiro[2][2] == simbolo: return True elif tabuleiro[0][0] == simbolo and tabuleiro[1][0] == simbolo and tabuleiro[2][0] == simbolo: return True elif tabuleiro[1][0] == simbolo and tabuleiro[1][1] == simbolo and tabuleiro[1][2] == simbolo: return True elif tabuleiro[2][0] == simbolo and tabuleiro[2][1] == simbolo and tabuleiro[2][2] == simbolo: return True elif tabuleiro[0][0] == simbolo and tabuleiro[1][1] == simbolo and tabuleiro[2][2] == simbolo: return True elif tabuleiro[0][2] == simbolo and tabuleiro[1][1] == simbolo and tabuleiro[2][0] == simbolo: return True elif (' ') not in tabuleiro: print('Velha')
80de93ce6ac31685b8012386a62622a1db6f1fc7
aa9297175621fcd499cad5a0373aaad15f33cde8
/impractical_py_projects/04/null_cipher_finder.py
217c00b8e15b8e5e7cc33e404b729d1f1166c3ca
[]
no_license
eflipe/python-exercises
a64e88affe8f9deb34e8aa29a23a68c25e7ba08a
b7a429f57a5e4c5dda7c77db5721ca66a401d0a3
refs/heads/master
2023-04-26T19:19:28.674350
2022-07-19T20:53:09
2022-07-19T20:53:09
192,589,885
0
0
null
2023-04-21T21:23:14
2019-06-18T18:06:14
HTML
UTF-8
Python
false
false
1,433
py
import sys import string def load_text(file): """Load a text file as a string""" with open(file) as f: file = f.read().strip() return file def sole_null_cipher(message, lookahead): for i in range(1, lookahead+1): plaintext = '' count = 0 found_first = False for char in message: if char in string.punctuation: count = 0 found_first = True elif found_first is True: count += 1 if count == i: plaintext += char print("Using offset of {} after punctuation = {}".format(i, plaintext)) print() def main(): filename = input("\nIngresa el mensaje: ") try: loaded_message = load_text(filename) except IOError as e: print(f'{e}. Error!') sys.exit(1) print("\nMensaje =") print("{}".format(loaded_message), "\n") print("\nList of punctuation marks to check = {}".format(string.punctuation)) message = ''.join(loaded_message.split()) while True: lookahead = input("\nLetras a checkear después de" \ "un signo de puntuación: ") if lookahead.isdigit(): lookahead = int(lookahead) break else: print("Pls, ingresa un número") print() sole_null_cipher(message, lookahead) if __name__ == '__main__': main()
14378df2d496adc2ab62a597cefb735979db3c8d
6219e6536774e8eeb4cadc4a84f6f2bea376c1b0
/scraper/storage_spiders/muahangtructuyencomvn.py
e3ab3bbbf0f13987eaeba9a31f3ed5a9bd875132
[ "MIT" ]
permissive
nguyenminhthai/choinho
109d354b410b92784a9737f020894d073bea1534
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
refs/heads/master
2023-05-07T16:51:46.667755
2019-10-22T07:53:41
2019-10-22T07:53:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='product-info']/h1[@class='mainbox-title']", 'price' : "//div[@class='product-info']/div[@class='clear']/p/span/span/span | //div[@class='product-info']/div[@class='prices-container clear']/div[@class='float-left product-prices']/p/span/span/span", 'category' : "//div[@class='breadcrumbs']/a", 'description' : "//div[@class='product-main-info']/div[@id='tabs_content']", 'images' : "//div[@class='product-main-info']/form/div/div/a/@href", 'canonical' : "", 'base_url' : "", 'brand' : "" } name = 'muahangtructuyen.com.vn' allowed_domains = ['muahangtructuyen.com.vn'] start_urls = ['http://muahangtructuyen.com.vn'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+\.html']), 'parse_item'), Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+/+$']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
ee57f682e295cbfd9747da50306e7deadad5f554
b66e70a8bb3c53595acd01dceb23298694884b67
/cloudy/cloudy/models.py
92cd7f135177bdbc3b72c907c8741df29eb2c148
[]
no_license
flupke/cloudy-release
d7735a38d79f816c52da3d983c714512a32919b1
6b160188a7067f125b107eb68dc8db4bbb4bfdf4
refs/heads/master
2016-09-06T05:23:40.856287
2013-02-23T18:17:16
2013-02-23T18:17:16
8,377,854
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
from django.db import models class SshIdentity(models.Model): name = models.CharField(max_length=256) public = models.TextField() private = models.TextField() class HostsGroup(models.Model): name = models.CharField(max_length=256) ssh_user = models.CharField(max_length=32, blank=True) ssh_identity = models.ForeignKey(SshIdentity, blank=True) class Host(models.Model): hostname = models.CharField(max_length=256) alias = models.CharField(max_length=256, blank=True) group = models.ForeignKey(HostsGroup) ssh_user = models.CharField(max_length=32, blank=True) ssh_identity = models.ForeignKey(SshIdentity, blank=True) class Project(models.Model): name = models.CharField(max_length=64) hosts = models.ForeignKey(HostsGroup) class Check(models.Model): project = models.ForeignKey(Project) name = models.CharField(max_length=64) command = models.TextField()
b69d77bed712f5e5879450544915df9006afc0cc
40b31d45c216a876843b9285be626180e7e989c9
/novaagent/__init__.py
a46e74db9c3f0d040015cbc7e988088a38ea173b
[ "Apache-2.0" ]
permissive
inflatador/nova-agent
7221d492f35d4862e482e3803358a514e6a012d4
c0449d500166f4adf3cd753dddb7c67087260bb1
refs/heads/master
2020-03-23T13:44:16.624566
2018-06-28T19:58:18
2018-06-28T19:58:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
__version__ = '2.1.14'
6adc753cf5c0b93e22a7d940f84597658076e3fa
cdb7bb6215cc2f362f2e93a040c7d8c5efe97fde
/F/FindResultantArrayAfterRemovingAnagrams.py
b380d59a74a054967ffe8ad6c2e2113609d1576b
[]
no_license
bssrdf/pyleet
8861bbac06dfe0f0f06f6ad1010d99f8def19b27
810575368ecffa97677bdb51744d1f716140bbb1
refs/heads/master
2023-08-20T05:44:30.130517
2023-08-19T21:54:34
2023-08-19T21:54:34
91,913,009
2
0
null
null
null
null
UTF-8
Python
false
false
1,973
py
''' -Easy- You are given a 0-indexed string array words, where words[i] consists of lowercase English letters. In one operation, select any index i such that 0 < i < words.length and words[i - 1] and words[i] are anagrams, and delete words[i] from words. Keep performing this operation as long as you can select an index that satisfies the conditions. Return words after performing all operations. It can be shown that selecting the indices for each operation in any arbitrary order will lead to the same result. An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase using all the original letters exactly once. For example, "dacb" is an anagram of "abdc". Example 1: Input: words = ["abba","baba","bbaa","cd","cd"] Output: ["abba","cd"] Explanation: One of the ways we can obtain the resultant array is by using the following operations: - Since words[2] = "bbaa" and words[1] = "baba" are anagrams, we choose index 2 and delete words[2]. Now words = ["abba","baba","cd","cd"]. - Since words[1] = "baba" and words[0] = "abba" are anagrams, we choose index 1 and delete words[1]. Now words = ["abba","cd","cd"]. - Since words[2] = "cd" and words[1] = "cd" are anagrams, we choose index 2 and delete words[2]. Now words = ["abba","cd"]. We can no longer perform any operations, so ["abba","cd"] is the final answer. Example 2: Input: words = ["a","b","c","d","e"] Output: ["a","b","c","d","e"] Explanation: No two adjacent strings in words are anagrams of each other, so no operations are performed. Constraints: 1 <= words.length <= 100 1 <= words[i].length <= 10 words[i] consists of lowercase English letters. ''' from typing import List class Solution: def removeAnagrams(self, words: List[str]) -> List[str]: stack = [] for word in words: if stack and sorted(stack[-1]) == sorted(word): continue stack.append(word) return stack
ce2343c09e39f921202647e30c1bfea5cae7d3a8
463c053bcf3f4a7337b634890720ea9467f14c87
/rllib/examples/deterministic_training.py
3a0a9c725acda75ce6b9cd7557c4fb04fd59a650
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
pdames/ray
e8faddc4440976211a6bcead8f8b6e62c1dcda01
918d3601c6519d333f10910dc75eb549cbb82afa
refs/heads/master
2023-01-23T06:11:11.723212
2022-05-06T22:55:59
2022-05-06T22:55:59
245,515,407
1
1
Apache-2.0
2023-01-14T08:02:21
2020-03-06T20:59:04
Python
UTF-8
Python
false
false
2,464
py
""" Example of a fully deterministic, repeatable RLlib train run using the "seed" config key. """ import argparse import ray from ray import tune from ray.rllib.examples.env.env_using_remote_actor import ( CartPoleWithRemoteParamServer, ParameterStorage, ) from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.metrics.learner_info import LEARNER_INFO from ray.rllib.utils.test_utils import check parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=2) parser.add_argument("--num-gpus-trainer", type=float, default=0) parser.add_argument("--num-gpus-per-worker", type=float, default=0) if __name__ == "__main__": args = parser.parse_args() param_storage = ParameterStorage.options(name="param-server").remote() config = { "env": CartPoleWithRemoteParamServer, "env_config": { "param_server": "param-server", }, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": args.num_gpus_trainer, "num_workers": 1, # parallelism "num_gpus_per_worker": args.num_gpus_per_worker, "num_envs_per_worker": 2, "framework": args.framework, # Make sure every environment gets a fixed seed. "seed": args.seed, # Simplify to run this example script faster. "train_batch_size": 100, "sgd_minibatch_size": 10, "num_sgd_iter": 5, "rollout_fragment_length": 50, } stop = { "training_iteration": args.stop_iters, } results1 = tune.run(args.run, config=config, stop=stop, verbose=1) results2 = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: results1 = list(results1.results.values())[0] results2 = list(results2.results.values())[0] # Test rollout behavior. check(results1["hist_stats"], results2["hist_stats"]) # As well as training behavior (minibatch sequence during SGD # iterations). check( results1["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"], results2["info"][LEARNER_INFO][DEFAULT_POLICY_ID]["learner_stats"], ) ray.shutdown()
f9ac252177ad6e419233ca977c739c8b9a08c30c
4bf5a16c17f888d5e0a2b043a6b752a6111824fd
/src/biotite/structure/util.py
34495270dbcba6c8b3f79077462e59bc1fe60708
[ "BSD-3-Clause" ]
permissive
AAABioInfo/biotite
1b0e8c6d6fbc870ff894fc1ae91c32fe6568aed3
693f347534bcf2c8894bbcabf68c225c43190ec6
refs/heads/master
2022-07-06T01:15:25.373371
2020-05-18T13:27:01
2020-05-18T13:27:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,226
py
# This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. """ Utility functions for in internal use in `Bio.Structure` package """ __name__ = "biotite.structure" __author__ = "Patrick Kunzmann" __all__ = ["vector_dot", "norm_vector", "distance", "matrix_rotate"] import numpy as np def vector_dot(v1,v2): """ Calculate vector dot product of two vectors. Parameters ---------- v1,v2 : ndarray The arrays to calculate the product from. The vectors are represented by the last axis. Returns ------- product : float or ndarray Scalar product over the last dimension of the arrays. """ return (v1*v2).sum(axis=-1) def norm_vector(v): """ Normalise a vector. Parameters ---------- v : ndarray The array containg the vector(s). The vectors are represented by the last axis. """ factor = np.linalg.norm(v, axis=-1) if isinstance(factor, np.ndarray): v /= factor[..., np.newaxis] else: v /= factor def distance(v1,v2): """ Calculate the distance between two position vectors. Parameters ---------- v1,v2 : ndarray The arrays to calculate the product from. The vectors are represented by the last axis. Returns ------- product : float or ndarray Vector distance over the last dimension of the array. """ dif = v1 - v2 return np.sqrt((dif*dif).sum(axis=-1)) def matrix_rotate(v, matrix): """ Perform a rotation using a rotation matrix. Parameters ---------- v : ndarray The coordinates to rotate. matrix : ndarray The rotation matrix. Returns ------- rotated : ndarray The rotated coordinates. """ # For proper rotation reshape into a maximum of 2 dimensions orig_ndim = v.ndim if orig_ndim > 2: orig_shape = v.shape v = v.reshape(-1, 3) # Apply rotation v = np.dot(matrix, v.T).T # Reshape back into original shape if orig_ndim > 2: v = v.reshape(*orig_shape) return v
742ed5a7da53469a0161d9225e9841a8d8cd06b4
90ec9a009d84dd7eebbd93de4f4b9de553326a39
/app/customer/views.py
f18aa6381cc21c8fb4bfde7ab8a60775f87a3157
[]
no_license
alexiuasse/NipponArDjango
18a86bb108b9d72b36c8adf7c4344398cc4ca6b2
ddc541a8d7e4428bde63c56f44354d6f82e0f40d
refs/heads/master
2023-08-03T12:16:56.431870
2021-07-15T23:43:33
2021-07-15T23:43:33
278,093,323
0
0
null
2021-09-22T20:04:15
2020-07-08T13:13:22
CSS
UTF-8
Python
false
false
7,674
py
# Created by Alex Matos Iuasse. # Copyright (c) 2020. All rights reserved. # Last modified 24/08/2020 17:44. from typing import Dict, Any from django.contrib.admin.utils import NestedObjects from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin from django.shortcuts import render from django.urls import reverse_lazy from django.views import View from django.views.generic.edit import DeleteView, CreateView, UpdateView from django_filters.views import FilterView from django_tables2.paginators import LazyPaginator from django_tables2.views import SingleTableMixin from .conf import * from .filters import * from .forms import * from .tables import * from frontend.icons import ICON_PERSON, ICON_NEW_PERSON class CustomerProfile(LoginRequiredMixin, View): template = 'customer/profile.html' def get(self, request, pk, tp): obj = IndividualCustomer.objects.get(pk=pk) if tp == 0 else JuridicalCustomer.objects.get(pk=pk) header = HEADER_CLASS_INDIVIDUAL_CUSTOMER if tp == 0 else HEADER_CLASS_JURIDICAL_CUSTOMER context = { 'config': { 'header': header }, 'obj': obj, } return render(request, self.template, context) class Customer(LoginRequiredMixin, View): template = 'customer/view.html' title = TITLE_VIEW_CUSTOMER subtitle = SUBTITLE_VIEW_CUSTOMER def get(self, request): links = { 'Pessoas Físicas': { 'Pessoa Física': { 'name': "Ver Todas Pessoas Físicas", 'link': reverse_lazy('customer:individualcustomer:view'), 'contextual': 'success', 'icon': ICON_PERSON, }, 'Novo Cadastro': { 'name': "Novo Cadastro", 'link': reverse_lazy('customer:individualcustomer:create'), 'contextual': 'primary', 'icon': ICON_NEW_PERSON, }, }, 'Pessoas Jurídicas': { 'Pessoa Jurídica': { 'name': "Ver Todas Pessoas Jurídicas", 'link': reverse_lazy('customer:juridicalcustomer:view'), 'contextual': 'success', 'icon': ICON_PERSON, }, 'Novo Cadastro': { 'name': "Novo Cadastro", 'link': reverse_lazy('customer:juridicalcustomer:create'), 'contextual': 'primary', 'icon': ICON_NEW_PERSON, }, }, } context = { 'title': self.title, 'subtitle': self.subtitle, 'links': links } return render(request, self.template, context) ######################################################################################################################## class IndividualCustomerView(LoginRequiredMixin, PermissionRequiredMixin, SingleTableMixin, FilterView): model = IndividualCustomer table_class = IndividualCustomerTable filterset_class = IndividualCustomerFilter paginator_class = LazyPaginator permission_required = 'customer.view_individualcustomer' template_name = 'base/view.html' title = TITLE_VIEW_INDIVIDUAL_CUSTOMER subtitle = SUBTITLE_INDIVIDUAL_CUSTOMER new = reverse_lazy('customer:individualcustomer:create') back_url = reverse_lazy('customer:index') header_class = HEADER_CLASS_INDIVIDUAL_CUSTOMER class IndividualCustomerCreate(LoginRequiredMixin, PermissionRequiredMixin, CreateView): model = IndividualCustomer form_class = IndividualCustomerForm template_name = 'customer/form.html' permission_required = 'customer.create_individualcustomer' title = TITLE_CREATE_INDIVIDUAL_CUSTOMER subtitle = SUBTITLE_INDIVIDUAL_CUSTOMER header_class = HEADER_CLASS_INDIVIDUAL_CUSTOMER @staticmethod def get_back_url(): return reverse_lazy('customer:individualcustomer:view') class IndividualCustomerEdit(LoginRequiredMixin, PermissionRequiredMixin, UpdateView): model = IndividualCustomer form_class = IndividualCustomerForm template_name = 'customer/form.html' permission_required = 'customer.edit_individualcustomer' title = TITLE_EDIT_INDIVIDUAL_CUSTOMER subtitle = SUBTITLE_INDIVIDUAL_CUSTOMER header_class = HEADER_CLASS_INDIVIDUAL_CUSTOMER # delete all services class IndividualCustomerDel(PermissionRequiredMixin, LoginRequiredMixin, DeleteView): model = IndividualCustomer template_name = "base/confirm_delete.html" permission_required = 'customer.del_individualcustomer' success_url = reverse_lazy('customer:individualcustomer:view') title = TITLE_DEL_INDIVIDUAL_CUSTOMER subtitle = SUBTITLE_INDIVIDUAL_CUSTOMER header_class = HEADER_CLASS_INDIVIDUAL_CUSTOMER def get_context_data(self, **kwargs): context: Dict[str, Any] = super().get_context_data(**kwargs) collector = NestedObjects(using='default') # or specific database collector.collect([context['object']]) to_delete = collector.nested() context['extra_object'] = to_delete return context ######################################################################################################################## class JuridicalCustomerView(LoginRequiredMixin, PermissionRequiredMixin, SingleTableMixin, FilterView): model = JuridicalCustomer table_class = JuridicalCustomerTable filterset_class = JuridicalCustomerFilter paginator_class = LazyPaginator permission_required = 'customer.view_juridicalcustomer' template_name = 'base/view.html' title = TITLE_VIEW_JURIDICAL_CUSTOMER subtitle = SUBTITLE_JURIDICAL_CUSTOMER new = reverse_lazy('customer:juridicalcustomer:create') back_url = reverse_lazy('customer:index') header_class = HEADER_CLASS_JURIDICAL_CUSTOMER class JuridicalCustomerCreate(LoginRequiredMixin, PermissionRequiredMixin, CreateView): model = JuridicalCustomer form_class = JuridicalCustomerForm template_name = 'base/form.html' permission_required = 'customer.create_juridicalcustomer' title = TITLE_CREATE_JURIDICAL_CUSTOMER subtitle = SUBTITLE_JURIDICAL_CUSTOMER header_class = HEADER_CLASS_JURIDICAL_CUSTOMER @staticmethod def get_back_url(): return reverse_lazy('customer:juridicalcustomer:view') class JuridicalCustomerEdit(LoginRequiredMixin, PermissionRequiredMixin, UpdateView): model = JuridicalCustomer form_class = JuridicalCustomerForm template_name = 'base/form.html' permission_required = 'customer.edit_juridicalcustomer' title = TITLE_EDIT_JURIDICAL_CUSTOMER subtitle = SUBTITLE_JURIDICAL_CUSTOMER header_class = HEADER_CLASS_JURIDICAL_CUSTOMER # delete all services class JuridicalCustomerDel(PermissionRequiredMixin, LoginRequiredMixin, DeleteView): model = JuridicalCustomer template_name = "base/confirm_delete.html" permission_required = 'customer.del_juridicalcustomer' success_url = reverse_lazy('customer:juridicalcustomer:view') title = TITLE_DEL_JURIDICAL_CUSTOMER subtitle = SUBTITLE_JURIDICAL_CUSTOMER header_class = HEADER_CLASS_JURIDICAL_CUSTOMER def get_context_data(self, **kwargs): context: Dict[str, Any] = super().get_context_data(**kwargs) collector = NestedObjects(using='default') # or specific database collector.collect([context['object']]) to_delete = collector.nested() context['extra_object'] = to_delete return context
a7c26984aed690a4bffc47db05dcfca2eaafb289
26f6313772161851b3b28b32a4f8d255499b3974
/Python/MaximumNestingDepthofTwoValidParenthesesStrings.py
67d4f477e9fa483c28fe2874e85607452ffd9d93
[]
no_license
here0009/LeetCode
693e634a3096d929e5c842c5c5b989fa388e0fcd
f96a2273c6831a8035e1adacfa452f73c599ae16
refs/heads/master
2023-06-30T19:07:23.645941
2021-07-31T03:38:51
2021-07-31T03:38:51
266,287,834
1
0
null
null
null
null
UTF-8
Python
false
false
1,751
py
""" A string is a valid parentheses string (denoted VPS) if and only if it consists of "(" and ")" characters only, and: It is the empty string, or It can be written as AB (A concatenated with B), where A and B are VPS's, or It can be written as (A), where A is a VPS. We can similarly define the nesting depth depth(S) of any VPS S as follows: depth("") = 0 depth(A + B) = max(depth(A), depth(B)), where A and B are VPS's depth("(" + A + ")") = 1 + depth(A), where A is a VPS. For example, "", "()()", and "()(()())" are VPS's (with nesting depths 0, 1, and 2), and ")(" and "(()" are not VPS's. Given a VPS seq, split it into two disjoint subsequences A and B, such that A and B are VPS's (and A.length + B.length = seq.length). Now choose any such A and B such that max(depth(A), depth(B)) is the minimum possible value. Return an answer array (of length seq.length) that encodes such a choice of A and B: answer[i] = 0 if seq[i] is part of A, else answer[i] = 1. Note that even though multiple answers may exist, you may return any of them. Example 1: Input: seq = "(()())" Output: [0,1,1,1,1,0] Example 2: Input: seq = "()(())()" Output: [0,0,0,1,1,0,1,1] Constraints: 1 <= seq.size <= 10000 """ class Solution: def maxDepthAfterSplit(self, seq: str): res = [0]*len(seq) stack = [] num = -1 for i,s in enumerate(seq): if s == '(': num += 1 stack.append(num) res[i] = num elif s == ')': num -= 1 res[i] = stack.pop() # print(res) return [i%2 for i in res] S = Solution() seq = "(()())" print(S.maxDepthAfterSplit(seq)) seq = "()(())()" print(S.maxDepthAfterSplit(seq))
f7dd8f55dc709f693b0211d8fcd73662147731f0
5574620c834f96d4baf50d6aa349242dae7c17af
/41.first-missing-positive.py
76b5ddd14a2ff4b66c5f2817265ba08c132b15ab
[]
no_license
Ming-H/leetcode
52dceba5f9a605afbdaa65e286a37205873e21bb
057cee4b830603ac12976ed7d5cea8d06a9b46a0
refs/heads/main
2023-09-02T21:30:48.796395
2023-09-01T01:59:48
2023-09-01T01:59:48
489,290,172
1
0
null
null
null
null
UTF-8
Python
false
false
870
py
# # @lc app=leetcode id=41 lang=python3 # # [41] First Missing Positive # class Solution: def firstMissingPositive(self, nums): """ 不能用额外空间,那就只有利用数组本身,跟Counting sort一样, 利用数组的index来作为数字本身的索引,把正数按照递增顺序依次放到数组中。 即让A[0]=1, A[1]=2, A[2]=3, ... , 这样一来,最后如果哪个数组元素 违反了A[i]=i+1即说明i+1就是我们要求的第一个缺失的正数。 """ for i in range(len(nums)): while 0 <= nums[i]-1 < len(nums) and nums[nums[i]-1] != nums[i]: tmp = nums[i]-1 nums[i], nums[tmp] = nums[tmp], nums[i] for i in range(len(nums)): if nums[i] != i+1: return i+1 return len(nums)+1
d28bf400e50f8c6d766ed1c1fb8dc15f1e4e723f
a3c662a5eda4e269a8c81c99e229879b946a76f6
/.venv/lib/python3.7/site-packages/pylint/test/functional/trailing_comma_tuple.py
a832ccc28973265a5df8150f54034ca8fc5a239a
[ "MIT" ]
permissive
ahmadreza-smdi/ms-shop
0c29da82c58b243507575672bbc94fb6e8068aeb
65ba3f3061e2ac5c63115b08dadfe7d67f645fb6
refs/heads/master
2023-04-27T19:51:34.858182
2019-11-24T20:57:59
2019-11-24T20:57:59
223,616,552
6
2
MIT
2023-04-21T20:51:21
2019-11-23T16:09:03
Python
UTF-8
Python
false
false
732
py
"""Check trailing comma one element tuples.""" # pylint: disable=bad-whitespace, missing-docstring AAA = 1, # [trailing-comma-tuple] BBB = "aaaa", # [trailing-comma-tuple] CCC="aaa", # [trailing-comma-tuple] FFF=['f'], # [trailing-comma-tuple] BBB = 1, 2 CCC = (1, 2, 3) DDD = ( 1, 2, 3, ) EEE = ( "aaa", ) def test(*args, **kwargs): return args, kwargs test(widget=1, label='test') test(widget=1, label='test') test(widget=1, \ label='test') def some_func(first, second): if first: return first, # [trailing-comma-tuple] if second: return (first, second,) return first, second, # [trailing-comma-tuple] def some_other_func(): yield 'hello', # [trailing-comma-tuple]
283575d0431210f70f269274660f9a4d6ba55839
667c324c7e8ac6a38cc91cd8ec4921a0dc9a0492
/backend/accounts/models.py
1340ee3158c537192b304432dd0f40f65bb50e5d
[]
no_license
litvaOo/elmy-clone
86fdf80fff91642c088fa3cee50bd4ad32518afd
eb30b5fd2eb8cfc177f3c6fec53d61722c7fe9cd
refs/heads/master
2021-05-08T02:33:48.277250
2017-10-23T16:11:21
2017-10-23T16:11:21
108,006,369
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
from django.db import models from django.contrib.auth.models import AbstractUser class ServiceProvider(models.Model): rating = models.DecimalField(max_digits=2, decimal_places=1) description = models.CharField(max_length=1000) latitude = models.FloatField(default=0) longitude = models.FloatField(default=0) city = models.CharField(max_length=30, blank=True, null=True) class Client(models.Model): previous_buys = models.IntegerField(blank=True, null=True, default=0) class CustomUser(AbstractUser): phone = models.CharField(max_length=12, blank=True, null=True) bank_account = models.CharField(max_length=16, blank=True, null=True) customer = models.OneToOneField(Client, blank=True, null=True) provider = models.OneToOneField(ServiceProvider, blank=True, null=True) def __str__(self): try: return "Username: {0}, city: {1}".format(self.username, self.provider.city) except: return self.username # Create your models here.
8bac119f9df15d577d94fded7585b260efde9cc7
a563a95e0d5b46158ca10d6edb3ca5d127cdc11f
/tccli/services/captcha/captcha_client.py
8382673aac4f34d3d54b5528b41376e67b95efa9
[ "Apache-2.0" ]
permissive
SAIKARTHIGEYAN1512/tencentcloud-cli
e93221e0a7c70f392f79cda743a86d4ebbc9a222
d129f1b3a943504af93d3d31bd0ac62f9d56e056
refs/heads/master
2020-08-29T09:20:23.790112
2019-10-25T09:30:39
2019-10-25T09:30:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,063
py
# -*- coding: utf-8 -*- import os import json import tccli.options_define as OptionsDefine import tccli.format_output as FormatOutput from tccli.nice_command import NiceCommand import tccli.error_msg as ErrorMsg import tccli.help_template as HelpTemplate from tccli import __version__ from tccli.utils import Utils from tccli.configure import Configure from tencentcloud.common import credential from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.captcha.v20190722 import captcha_client as captcha_client_v20190722 from tencentcloud.captcha.v20190722 import models as models_v20190722 from tccli.services.captcha import v20190722 from tccli.services.captcha.v20190722 import help as v20190722_help def doDescribeCaptchaResult(argv, arglist): g_param = parse_global_arg(argv) if "help" in argv: show_help("DescribeCaptchaResult", g_param[OptionsDefine.Version]) return param = { "CaptchaType": Utils.try_to_json(argv, "--CaptchaType"), "Ticket": argv.get("--Ticket"), "UserIp": argv.get("--UserIp"), "Randstr": argv.get("--Randstr"), "CaptchaAppId": Utils.try_to_json(argv, "--CaptchaAppId"), "AppSecretKey": argv.get("--AppSecretKey"), "BusinessId": Utils.try_to_json(argv, "--BusinessId"), "SceneId": Utils.try_to_json(argv, "--SceneId"), "MacAddress": argv.get("--MacAddress"), "Imei": argv.get("--Imei"), } cred = credential.Credential(g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey]) http_profile = HttpProfile( reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]), reqMethod="POST", endpoint=g_param[OptionsDefine.Endpoint] ) profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256") mod = CLIENT_MAP[g_param[OptionsDefine.Version]] client = mod.CaptchaClient(cred, g_param[OptionsDefine.Region], profile) client._sdkVersion += ("_CLI_" + __version__) models = MODELS_MAP[g_param[OptionsDefine.Version]] model = models.DescribeCaptchaResultRequest() model.from_json_string(json.dumps(param)) rsp = client.DescribeCaptchaResult(model) result = rsp.to_json_string() jsonobj = None try: jsonobj = json.loads(result) except TypeError as e: jsonobj = json.loads(result.decode('utf-8')) # python3.3 FormatOutput.output("action", jsonobj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter]) CLIENT_MAP = { "v20190722": captcha_client_v20190722, } MODELS_MAP = { "v20190722": models_v20190722, } ACTION_MAP = { "DescribeCaptchaResult": doDescribeCaptchaResult, } AVAILABLE_VERSION_LIST = [ v20190722.version, ] AVAILABLE_VERSIONS = { 'v' + v20190722.version.replace('-', ''): {"help": v20190722_help.INFO,"desc": v20190722_help.DESC}, } def captcha_action(argv, arglist): if "help" in argv: versions = sorted(AVAILABLE_VERSIONS.keys()) opt_v = "--" + OptionsDefine.Version version = versions[-1] if opt_v in argv: version = 'v' + argv[opt_v].replace('-', '') if version not in versions: print("available versions: %s" % " ".join(AVAILABLE_VERSION_LIST)) return action_str = "" docs = AVAILABLE_VERSIONS[version]["help"] desc = AVAILABLE_VERSIONS[version]["desc"] for action, info in docs.items(): action_str += " %s\n" % action action_str += Utils.split_str(" ", info["desc"], 120) helpstr = HelpTemplate.SERVICE % {"name": "captcha", "desc": desc, "actions": action_str} print(helpstr) else: print(ErrorMsg.FEW_ARG) def version_merge(): help_merge = {} for v in AVAILABLE_VERSIONS: for action in AVAILABLE_VERSIONS[v]["help"]: if action not in help_merge: help_merge[action] = {} help_merge[action]["cb"] = ACTION_MAP[action] help_merge[action]["params"] = [] for param in AVAILABLE_VERSIONS[v]["help"][action]["params"]: if param["name"] not in help_merge[action]["params"]: help_merge[action]["params"].append(param["name"]) return help_merge def register_arg(command): cmd = NiceCommand("captcha", captcha_action) command.reg_cmd(cmd) cmd.reg_opt("help", "bool") cmd.reg_opt(OptionsDefine.Version, "string") help_merge = version_merge() for actionName, action in help_merge.items(): c = NiceCommand(actionName, action["cb"]) cmd.reg_cmd(c) c.reg_opt("help", "bool") for param in action["params"]: c.reg_opt("--" + param, "string") for opt in OptionsDefine.ACTION_GLOBAL_OPT: stropt = "--" + opt c.reg_opt(stropt, "string") def parse_global_arg(argv): params = {} for opt in OptionsDefine.ACTION_GLOBAL_OPT: stropt = "--" + opt if stropt in argv: params[opt] = argv[stropt] else: params[opt] = None if params[OptionsDefine.Version]: params[OptionsDefine.Version] = "v" + params[OptionsDefine.Version].replace('-', '') config_handle = Configure() profile = config_handle.profile if ("--" + OptionsDefine.Profile) in argv: profile = argv[("--" + OptionsDefine.Profile)] is_conexist, conf_path = config_handle._profile_existed(profile + "." + config_handle.configure) is_creexist, cred_path = config_handle._profile_existed(profile + "." + config_handle.credential) config = {} cred = {} if is_conexist: config = config_handle._load_json_msg(conf_path) if is_creexist: cred = config_handle._load_json_msg(cred_path) for param in params.keys(): if param == OptionsDefine.Version: continue if params[param] is None: if param in [OptionsDefine.SecretKey, OptionsDefine.SecretId]: if param in cred: params[param] = cred[param] else: raise Exception("%s is invalid" % param) else: if param in config: params[param] = config[param] elif param == OptionsDefine.Region: raise Exception("%s is invalid" % OptionsDefine.Region) try: if params[OptionsDefine.Version] is None: version = config["captcha"][OptionsDefine.Version] params[OptionsDefine.Version] = "v" + version.replace('-', '') if params[OptionsDefine.Endpoint] is None: params[OptionsDefine.Endpoint] = config["captcha"][OptionsDefine.Endpoint] except Exception as err: raise Exception("config file:%s error, %s" % (conf_path, str(err))) versions = sorted(AVAILABLE_VERSIONS.keys()) if params[OptionsDefine.Version] not in versions: raise Exception("available versions: %s" % " ".join(AVAILABLE_VERSION_LIST)) return params def show_help(action, version): docs = AVAILABLE_VERSIONS[version]["help"][action] desc = AVAILABLE_VERSIONS[version]["desc"] docstr = "" for param in docs["params"]: docstr += " %s\n" % ("--" + param["name"]) docstr += Utils.split_str(" ", param["desc"], 120) helpmsg = HelpTemplate.ACTION % {"name": action, "service": "captcha", "desc": desc, "params": docstr} print(helpmsg) def get_actions_info(): config = Configure() new_version = max(AVAILABLE_VERSIONS.keys()) version = new_version try: profile = config._load_json_msg(os.path.join(config.cli_path, "default.configure")) version = profile["captcha"]["version"] version = "v" + version.replace('-', '') except Exception: pass if version not in AVAILABLE_VERSIONS.keys(): version = new_version return AVAILABLE_VERSIONS[version]["help"]
973985b9f213204d6193613b33715c89be7142b6
555b9f764d9bca5232360979460bc35c2f5ad424
/google/ads/google_ads/v1/proto/services/operating_system_version_constant_service_pb2.py
1ee3878ce83414b2d29fbf7d33f34fba67bb97ed
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
juanmacugat/google-ads-python
b50256163782bc0223bcd8b29f789d74f4cfad05
0fc8a7dbf31d9e8e2a4364df93bec5f6b7edd50a
refs/heads/master
2021-02-18T17:00:22.067673
2020-03-05T16:13:57
2020-03-05T16:13:57
245,215,877
1
0
Apache-2.0
2020-03-05T16:39:34
2020-03-05T16:39:33
null
UTF-8
Python
false
true
5,671
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v1/proto/services/operating_system_version_constant_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v1.proto.resources import operating_system_version_constant_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_operating__system__version__constant__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v1/proto/services/operating_system_version_constant_service.proto', package='google.ads.googleads.v1.services', syntax='proto3', serialized_options=_b('\n$com.google.ads.googleads.v1.servicesB*OperatingSystemVersionConstantServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v1/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V1.Services\312\002 Google\\Ads\\GoogleAds\\V1\\Services\352\002$Google::Ads::GoogleAds::V1::Services'), serialized_pb=_b('\nVgoogle/ads/googleads_v1/proto/services/operating_system_version_constant_service.proto\x12 google.ads.googleads.v1.services\x1aOgoogle/ads/googleads_v1/proto/resources/operating_system_version_constant.proto\x1a\x1cgoogle/api/annotations.proto\"A\n(GetOperatingSystemVersionConstantRequest\x12\x15\n\rresource_name\x18\x01 \x01(\t2\x9b\x02\n%OperatingSystemVersionConstantService\x12\xf1\x01\n!GetOperatingSystemVersionConstant\x12J.google.ads.googleads.v1.services.GetOperatingSystemVersionConstantRequest\x1a\x41.google.ads.googleads.v1.resources.OperatingSystemVersionConstant\"=\x82\xd3\xe4\x93\x02\x37\x12\x35/v1/{resource_name=operatingSystemVersionConstants/*}B\x91\x02\n$com.google.ads.googleads.v1.servicesB*OperatingSystemVersionConstantServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v1/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V1.Services\xca\x02 Google\\Ads\\GoogleAds\\V1\\Services\xea\x02$Google::Ads::GoogleAds::V1::Servicesb\x06proto3') , dependencies=[google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_operating__system__version__constant__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _GETOPERATINGSYSTEMVERSIONCONSTANTREQUEST = _descriptor.Descriptor( name='GetOperatingSystemVersionConstantRequest', full_name='google.ads.googleads.v1.services.GetOperatingSystemVersionConstantRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v1.services.GetOperatingSystemVersionConstantRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=235, serialized_end=300, ) DESCRIPTOR.message_types_by_name['GetOperatingSystemVersionConstantRequest'] = _GETOPERATINGSYSTEMVERSIONCONSTANTREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetOperatingSystemVersionConstantRequest = _reflection.GeneratedProtocolMessageType('GetOperatingSystemVersionConstantRequest', (_message.Message,), dict( DESCRIPTOR = _GETOPERATINGSYSTEMVERSIONCONSTANTREQUEST, __module__ = 'google.ads.googleads_v1.proto.services.operating_system_version_constant_service_pb2' , __doc__ = """Request message for [OperatingSystemVersionConstantService.GetOperatingSystemVersionConstant][google.ads.googleads.v1.services.OperatingSystemVersionConstantService.GetOperatingSystemVersionConstant]. Attributes: resource_name: Resource name of the OS version to fetch. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v1.services.GetOperatingSystemVersionConstantRequest) )) _sym_db.RegisterMessage(GetOperatingSystemVersionConstantRequest) DESCRIPTOR._options = None _OPERATINGSYSTEMVERSIONCONSTANTSERVICE = _descriptor.ServiceDescriptor( name='OperatingSystemVersionConstantService', full_name='google.ads.googleads.v1.services.OperatingSystemVersionConstantService', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=303, serialized_end=586, methods=[ _descriptor.MethodDescriptor( name='GetOperatingSystemVersionConstant', full_name='google.ads.googleads.v1.services.OperatingSystemVersionConstantService.GetOperatingSystemVersionConstant', index=0, containing_service=None, input_type=_GETOPERATINGSYSTEMVERSIONCONSTANTREQUEST, output_type=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_operating__system__version__constant__pb2._OPERATINGSYSTEMVERSIONCONSTANT, serialized_options=_b('\202\323\344\223\0027\0225/v1/{resource_name=operatingSystemVersionConstants/*}'), ), ]) _sym_db.RegisterServiceDescriptor(_OPERATINGSYSTEMVERSIONCONSTANTSERVICE) DESCRIPTOR.services_by_name['OperatingSystemVersionConstantService'] = _OPERATINGSYSTEMVERSIONCONSTANTSERVICE # @@protoc_insertion_point(module_scope)
b30622071ac8d8b8f022702c199e4e3e3d14d14c
9ed05e94ad0779adda724a15591c459f47cd083a
/scripts/visualize_genomic_elements.py
f07cf8f8c747c5756efd2bcd74e54120f5620300
[ "BSD-3-Clause" ]
permissive
greenelab/tad_pathways
b9dad990a21dc30bb01fe9e6e8ed294ac9af18c7
c871d99c6d73cc68f58ef89fffbc9b6bbefe416c
refs/heads/master
2023-08-01T00:11:16.873202
2017-04-21T17:37:06
2017-04-21T17:37:06
65,410,058
1
2
null
2017-04-21T17:37:07
2016-08-10T19:21:20
Python
UTF-8
Python
false
false
13,030
py
""" 2016 Gregory Way scripts/visualize_genomic_elements.py Description: Summarizes the location of genomic elements across TADs Usage: Is called by 'scripts/visualize.sh' which is run inside of 'scripts/run_pipeline.sh'. This particular script will output the location of genomic elements in a given input TAD python scripts/visualize_genomic_elements.py --TAD-Boundary 'hESC' Output: Several .pdf plots in "figures/genome/" and chisquare analyses of the "rightness" of SNPs in TADs and protein coding genes near boundaries. """ import os import argparse import csv import numpy as np import pandas as pd from scipy.stats import chisquare import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns from tad_util.util import assign_bin plt.figure.max_open_warning = 0 sns.set_style("whitegrid") sns.set_style("ticks") sns.set_context("paper", rc={"font.size": 20, "axes.titlesize": 20, "axes.labelsize": 20, "xtick.labelsize": 12, "ytick.labelsize": 12}) parser = argparse.ArgumentParser() parser.add_argument('-t', '--TAD-Boundary', help='boundary cell type. The' 'options can be "hESC", "IMR90", "mESC", or "cortex"') args = parser.parse_args() # Load Constants num_bins = 50 tad_cell = args.TAD_Boundary xlab = [''] * num_bins for x in range(0, 50, 10): xlab[x] = x if tad_cell in ['hESC', 'IMR90']: genome = 'hg19' elif tad_cell in ['mESC', 'cortex']: genome = 'mm9' else: raise ValueError('Please input: "hESC", "IMR90", "mESC", or "cortex"') # Input files base_file = '{}_{}'.format(genome, tad_cell) snp_index = os.path.join('index', 'SNP_index_{}.tsv.bz2'.format(base_file)) gene_index = os.path.join('index', 'GENE_index_{}.tsv.bz2'.format(base_file)) repeat_index = os.path.join('index', 'REPEATS_index_{}.tsv.bz2' .format(base_file)) # Output files fig_base = os.path.join('figures', genome) if not os.path.exists(fig_base): os.makedirs(fig_base) snp_count_file = os.path.join(fig_base, 'snp_count_{}.pdf'.format(base_file)) snp_dist_file = os.path.join(fig_base, 'snp_tad_distribution_{}.pdf' .format(base_file)) snp_chrom_file = os.path.join(fig_base, 'snp_tad_distrib_chromosomes_{}.pdf' .format(base_file)) snp_chi_square = os.path.join('results', 'tad_snp_rightness_chi_{}.csv').format(base_file) gene_count_file = os.path.join(fig_base, 'gene_count_{}.pdf' .format(base_file)) gene_chrom_file = os.path.join(fig_base, 'gene_tad_distrib_chromosomes_{}.pdf' .format(base_file)) gene_type_file = os.path.join(fig_base, 'gene_types_{}.pdf'.format(base_file)) gene_chi_square = os.path.join('results', 'tad_gene_bound_chi_{}.csv').format(base_file) repeat_count_file = os.path.join(fig_base, 'repeat_count_{}.pdf' .format(base_file)) rep_type_file = os.path.join(fig_base, 'repeat_type_{}_.pdf'.format(base_file)) repeat_dist = os.path.join(fig_base, 'repeat_type_all_distrib_{}.pdf' .format(base_file)) # Load Data gene_types_df = pd.read_table(os.path.join('tables', 'gene_classification.tsv')) snp_df = pd.read_table(snp_index, index_col=0) gene_df = pd.read_table(gene_index, index_col=0) repeat_df = pd.read_table(repeat_index, index_col=0) ######################### # PART 1 - SNPs ######################### # Process SNP dataframe snp_df = snp_df[snp_df['TAD_id'] != 'Boundary'] bin_s = snp_df.apply(lambda x: assign_bin(x, bins=num_bins, ID='SNP'), axis=1) snp_df = snp_df.assign(tad_bin=bin_s) # Jointplot of number of SNPs per TAD by TAD length plot_ready = snp_df.assign(tad_length=np.log10(snp_df.TAD_end .sub(snp_df.TAD_start))) plot_ready = pd.DataFrame(plot_ready.groupby(['TAD_id', 'tad_length']) .tad_bin.count()).reset_index() plot_ready = plot_ready.assign(snp_count_alt=plot_ready.tad_bin.div(1000)) ax = sns.jointplot('tad_length', 'snp_count_alt', data=plot_ready, kind='scatter', stat_func=None, color=sns.xkcd_rgb['medium green'], joint_kws={'s': 3}) ax.set_axis_labels(xlabel='TAD Length (log10 kb)', ylabel='Number of SNPs (x1000)') plt.tight_layout() plt.savefig(snp_count_file) plt.close() # Distribution of SNPs across TADs summary_snp = snp_df['tad_bin'].value_counts(sort=False) p = sns.pointplot(x=summary_snp.index, y=summary_snp / 1000, color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() p.set(xticklabels=xlab) p.set(ylabel='Number of SNPs (x1000)', xlabel='TAD Bins') p.set_title('Distribution of SNPs across TADs') plt.tight_layout() plt.savefig(snp_dist_file) plt.close() # Chromosome-specific distribution snp_chrom = snp_df.groupby('chromosome').tad_bin.value_counts(sort=False).\ unstack(level=0) with PdfPages(snp_chrom_file) as pdf: for chrom, chrom_df in snp_chrom.iteritems(): p = sns.pointplot(x=chrom_df.index, y=chrom_df, color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() p.set(xticklabels=xlab) p.set(ylabel='Number of SNPs', xlabel='TAD Bins') p.set_title('SNP Distribution in Chromosome {}'.format(chrom)) plt.tight_layout() pdf.savefig() plt.close() # SNPs appear to be more concentrated on the right side of TADs snp_side = [snp_df[snp_df['tad_bin'] < 25].shape[0], snp_df[snp_df['tad_bin'] >= 25].shape[0]] tad_snp_sig = chisquare(snp_side) with open(snp_chi_square, 'w') as chisq_fh: snpwriter = csv.writer(chisq_fh, delimiter=',') snpwriter.writerow(['SNPs in the left vs. right of {} TAD' .format(tad_cell)]) snpwriter.writerow(['left', 'right']) snpwriter.writerow(snp_side) snpwriter.writerow(tad_snp_sig) ######################### # PART 2 - Genes ######################### # Process genes gene_df = gene_df[gene_df['TAD_id'] != 'Boundary'] bin_assign_gene = gene_df.apply(lambda x: assign_bin(x, bins=num_bins, ID='gene'), axis=1) gene_df = gene_df.assign(tad_bin=bin_assign_gene) gene_df = gene_df[gene_df['tad_bin'] != -1] # Jointplot of number of Genes per TAD plot_ready_gene = gene_df.assign(tad_length=np.log10(gene_df.TAD_end .sub(gene_df.TAD_start))) plot_ready_gene = pd.DataFrame(plot_ready_gene.groupby(['TAD_id', 'tad_length']) .tad_bin.count()).reset_index() plot_ready_gene = plot_ready_gene.assign(gene_count_alt=plot_ready_gene .tad_bin) ax = sns.jointplot('tad_length', 'gene_count_alt', data=plot_ready_gene, kind='scatter', stat_func=None, color=sns.xkcd_rgb['medium green'], joint_kws={'s': 3}) ax.set_axis_labels(xlabel='TAD Length (log10 kb)', ylabel='Number of Genes') plt.savefig(gene_count_file) plt.close() # Chromosome specific distribution of genes across TADs gene_chrom = gene_df.groupby('chromosome').tad_bin.value_counts(sort=False).\ unstack(level=0) with PdfPages(gene_chrom_file) as pdf: for chrom, chrom_df in gene_chrom.iteritems(): ax = sns.pointplot(x=chrom_df.index, y=chrom_df, color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() ax.set(xticklabels=xlab) ax.set(ylabel='Number of Genes', xlabel='TAD Bins') ax.set_title('Gene Distribution in Chromosome {}'.format(chrom)) plt.tight_layout() pdf.savefig() plt.close() # Gene-type specific distribution across TADs gene_types_df = gene_types_df[gene_types_df[genome] == 1] summary_gene_classes = [] with PdfPages(gene_type_file) as pdf: for idx, gene in gene_types_df.iterrows(): gene_class = gene['gene_class'] gene_type = gene['gene_type'] if gene_class in ['tr_gene', 'ig_gene', 'tr_pseud', 'ig_pseud']: gene_type = gene_types_df[gene_types_df['gene_class'] == gene_class]['gene_type'] gene_sub_df = gene_df[gene_df['gene_type'].isin(gene_type)] plot_title = gene_class if gene_class in summary_gene_classes: continue else: summary_gene_classes.append(gene_class) elif gene_class == 'std' and gene_type != 'all': gene_sub_df = gene_df[gene_df['gene_type'] == gene_type] plot_title = gene_type elif gene_type == 'all': gene_sub_df = gene_df plot_title = 'Distribution of Genes across TADs' sum_gene = gene_sub_df['tad_bin'].value_counts(sort=False).sort_index() ax = sns.pointplot(x=sum_gene.index, y=sum_gene, color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() ax.set(xticklabels=xlab) ax.set(ylabel='Number of Genes', xlabel='TAD Bins') ax.set_title(plot_title) plt.tight_layout() pdf.savefig() plt.close() # Chisquare of genes on TAD boundaries protein_coding = gene_df[gene_df['gene_type'] == 'protein_coding'] bin_list = list(range(num_bins))[0:2] + list(range(num_bins))[-2:] boundary_df = protein_coding[protein_coding['tad_bin'].isin(bin_list)] num_genes_b = boundary_df.shape[0] num_genes_c = protein_coding.shape[0] - num_genes_b chi_test = [num_genes_b, num_genes_c] exp = protein_coding.shape[0] / num_bins bound_chi = chisquare(chi_test, f_exp=[exp * len(bin_list), exp * (num_bins - len(bin_list))]) with open(gene_chi_square, 'w') as chisq_fh: genewriter = csv.writer(chisq_fh, delimiter=',') genewriter.writerow(['Genes at boundaries vs. center of {} TAD' .format(tad_cell)]) genewriter.writerow(['bound', 'center']) genewriter.writerow(chi_test) genewriter.writerow(bound_chi) ######################### # PART 3 - Repeats ######################### # Process Repeats repeat_df = repeat_df.fillna('Boundary') repeat_df = repeat_df[repeat_df['TAD_id'] != 'Boundary'] bin_assign_repeat = repeat_df.apply(lambda x: assign_bin(x, bins=num_bins, ID='repeat'), axis=1) repeat_df = repeat_df.assign(tad_bin=bin_assign_repeat) repeat_df = repeat_df[repeat_df['tad_bin'] != -1] # Jointplot of number of repeats per TAD repeat_df.TAD_end = repeat_df.TAD_end.astype(int) repeat_df.TAD_start = repeat_df.TAD_start.astype(int) plot_ready_repeat = repeat_df.assign(tad_length=np.log10(repeat_df.TAD_end .sub(repeat_df.TAD_start))) plot_ready_repeat = pd.DataFrame(plot_ready_repeat.groupby(['TAD_id', 'tad_length']) .tad_bin.count()).reset_index() plot_ready_repeat = plot_ready_repeat.assign(rep_count_alt=plot_ready_repeat .tad_bin.div(100)) ax = sns.jointplot('tad_length', 'rep_count_alt', data=plot_ready_repeat, kind='scatter', stat_func=None, color=sns.xkcd_rgb['medium green'], joint_kws={'s': 3}) ax.set_axis_labels(xlabel='TAD Length (log10 kb)', ylabel='Number of Repeats (x100)') plt.savefig(repeat_count_file) plt.close() # Distribution of different classes of repeats across TADs with PdfPages(rep_type_file) as pdf: for repeat_type in repeat_df['repeat'].unique(): if '?' not in repeat_type: repeat_fh = repeat_type.replace('/', '_') rep_sub = repeat_df[repeat_df['repeat'] == repeat_type] sum_rep = rep_sub['tad_bin'].value_counts(sort=False).sort_index() p = sns.pointplot(x=sum_rep.index, y=sum_rep, color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() p.set(xticklabels=xlab) p.set(ylabel='Number of Repeats', xlabel='TAD Bins') p.set_title(repeat_type + ' Distribution') plt.tight_layout() pdf.savefig() plt.close() # Distribution of all repeats sum_repeat = repeat_df['tad_bin'].value_counts(sort=False).sort_index() p = sns.pointplot(x=sum_repeat.index, y=sum_repeat.div(100), color=sns.xkcd_rgb["medium green"], scale=0.5) sns.despine() p.set(xticklabels=xlab) p.set(ylabel='Number of Repeats (x100)', xlabel='TAD Bins') p.set_title('All Repeats Distribution') plt.tight_layout() plt.savefig(repeat_dist) plt.close()
69e1dec6b346397c1857340caf4299600c26a600
2fe8194db578820629740e7022326355ef76632a
/instaladores/migrations/0004_merge_20201128_1647.py
52b65ade950c986c1f9bf531762ba99d0d9e0cfe
[]
no_license
Aleleonel/newloma
01213a14036aa7437b5951b8bb7ef202de6b86c2
7910c5b3170b953134240536b6e5376c96382266
refs/heads/master
2023-01-18T19:15:08.890658
2020-11-28T20:22:48
2020-11-28T20:22:48
312,459,505
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
# Generated by Django 3.1.3 on 2020-11-28 19:47 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('instaladores', '0003_instaladores_email'), ('instaladores', '0002_auto_20201122_1232'), ] operations = [ ]
d90fb9bc6062203554935aaa9d2091c9aa8edcdb
72579db4299be6d512a766ce38ae50e3c7753368
/.history/Pythonlearning/day9_20200802091221.py
c5ab6ce577d7bd4429235686a4956391bbf742ca
[]
no_license
moteily/Python_Learning
f0d1abf360ad417112051ba52f32a141452adb2d
c294aa1e373254739fb372918507cd7dbe12c999
refs/heads/master
2022-11-26T11:09:48.145308
2020-08-04T08:47:15
2020-08-04T08:47:15
284,379,822
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#接上一天的第九章 # 静态方法和类方法: # 定义和表示:静态方法和类方法 class Myclass: def smeth(): print('This is a static method')\ smeth = staticmethod(smeth) def cmeth(cls)
5fba23b3bfb05e91ac578ebeb773c34c16a2d760
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/RecoEgamma/EgammaIsolationAlgos/python/eleTrackExtractorBlocks_cff.py
a0465cbb16938dc958035bcbba12f0a0b49dbf37
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
643
py
import FWCore.ParameterSet.Config as cms EleIsoTrackExtractorBlock = cms.PSet( ComponentName = cms.string('EgammaTrackExtractor'), inputTrackCollection = cms.InputTag("generalTracks"), DepositLabel = cms.untracked.string(''), Diff_r = cms.double(9999.0), Diff_z = cms.double(0.2), DR_Max = cms.double(1.0), DR_Veto = cms.double(0.0), BeamlineOption = cms.string('BeamSpotFromEvent'), BeamSpotLabel = cms.InputTag("offlineBeamSpot"), NHits_Min = cms.uint32(0), Chi2Ndof_Max = cms.double(1e+64), Chi2Prob_Min = cms.double(-1.0), Pt_Min = cms.double(-1.0), dzOption = cms.string("vz") )
0f679e9becb942faabe154fdacf30c7f881b2d4f
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_201/671.py
42a2e415e2dafaa7888c38febad69fbcb7a3fdab
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,988
py
FILE_NAME = 'C-large'; INPUT_FILE = FILE_NAME+'.in'; OUTPUT_FILE = FILE_NAME+'.out'; def algorithm(N, K): segments = [N] while K > 0: segments.sort(reverse=True) biggest_segment = segments[0] del segments[0] if(biggest_segment % 2 == 0): left = biggest_segment / 2 - 1 right = biggest_segment / 2 else: left = right = biggest_segment / 2 segments.append(right) segments.append(left) K -= 1 result = segments[-2:] return str(result[0]) + " " + str(result[1]) def solve(data): N = int(data[0]) K = int(data[1]) log2 = K.bit_length() - 1 pow_log2 = 2**log2 Kscaled = K/pow_log2 Nscaled = N/pow_log2 if N%pow_log2 < K%pow_log2: Nscaled -= 1 return str(algorithm(Nscaled, Kscaled)); def run(): with open(INPUT_FILE) as in_file: lines = in_file.readlines() n_tests = int(lines[0]); out_file = open(OUTPUT_FILE,'w') count = 1 for i in range(1,len(lines)): result = solve(lines[i].split()) string_result = "Case #%d: %s\n" % (count,result) out_file.write(string_result); print string_result count += 1 # def debug(N, K): # print "-------" # L = K.bit_length() - 1 # print "division power 2: ", N/2**L, K/2**L # print "reminder: ", N%(2**L), K%(2**L) # print "correct: " , algorithm(N, K) # print N, K, 2**L # print "fast: ", algorithm(N/2**L , K/2**L) # print "-------" # def correct(N, K): # global TEST_COUNT # L = K.bit_length() - 1 # L2 = 2**L # Ntest = N/L2 # if N%L2 < K%L2: # Ntest -= 1 # Ktest = K/L2 # correct = algorithm(N, K) # test = algorithm(Ntest, Ktest) # if correct == test: # #print N, K, L2, "!", N/L2, Ktest, "!", N%L2, K%L2, correct == test, "!", N-K # print N%L2 < K%L2 # #print correct # #print algorithm(Ntest + 1 , Ktest) # #print algorithm(Ntest - 1 , Ktest) # #print "-----" run()
be370b1c9635cd0f42269dd7fcec37bb899a703c
f0ef364ed2d20390ff76bc7c5b9506cb41ba2e71
/widgets4py/websocket/examples/w2ui_toolbar_example.py
9f430804dd5066d43512e58a6ed47619c6c1eb7f
[]
no_license
singajeet/widgets4py
07c983e06d6101b6421bf96224fa1bcc3793f47a
e3ca6a459dee896af755278257a914efe04b1d11
refs/heads/master
2020-06-09T19:08:20.295781
2020-02-14T15:55:23
2020-02-14T15:55:23
193,489,543
1
0
null
null
null
null
UTF-8
Python
false
false
4,188
py
import os import webview from flask import Flask # , url_for from flask_socketio import SocketIO from widgets4py.base import Page from widgets4py.websocket.w2ui.ui import Toolbar, ToolbarButton, ToolbarCheck from widgets4py.websocket.w2ui.ui import ToolbarHTML, ToolbarMenu, ToolbarMenuCheck from widgets4py.websocket.w2ui.ui import ToolbarMenuRadio, ToolbarRadio, ToolbarSeparator from widgets4py.websocket.w2ui.ui import ToolbarDropDown, ToolbarSpacer from multiprocessing import Process app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app, async_mode=None) class W2UIPage: pg = None toolbar = None tool_btn = None tool_chk = None tool_html = None tool_menu = None tool_menu_chk = None tool_menu_rd = None tool_rd = None tool_sep = None tool_dd = None tool_spacer = None def show_layout(self): self.pg = Page('myPage', 'My Page') self.toolbar = Toolbar('toolbar', socketio, onclick_callback=self._toolbar_clicked) self.tool_btn = ToolbarButton('toolbtn', 'Button') self.tool_chk = ToolbarCheck('tool_chk', 'Check') self.tool_dd = ToolbarDropDown('tool_dd', 'My DropDown content', 'DropDown') self.tool_html = ToolbarHTML('tool_html', '<input type=text />', 'Html') self.tool_menu = ToolbarMenu('tool_menu', 'Actions') self.tool_menu.add_item('Add') self.tool_menu.add_item('Insert') self.tool_menu.add_item('Remove') self.tool_menu.add_item('Show') self.tool_menu.add_item('Hide') self.tool_menu.add_item('Enable') self.tool_menu.add_item('Disable') self.tool_menu_chk = ToolbarMenuCheck('tool_menu_chk', 'MenuCheck') self.tool_menu_chk.add_item('item1', 'Item1') self.tool_menu_chk.add_item('item2', 'Item2') self.tool_menu_rd = ToolbarMenuRadio('tool_menu_rd', 'MenuRadio') self.tool_menu_rd.add_item('item1', 'Item1') self.tool_menu_rd.add_item('item2', 'Item2') self.tool_rd = ToolbarRadio('tool_rd', 'Radio') self.tool_sep = ToolbarSeparator('tool_sep', 'Sep') self.tool_spacer = ToolbarSpacer('tool_spacer', 'Spac') self.toolbar.add(self.tool_btn) self.toolbar.add(self.tool_chk) self.toolbar.add(self.tool_dd) self.toolbar.add(self.tool_html) self.toolbar.add(self.tool_menu) self.toolbar.add(self.tool_menu_chk) self.toolbar.add(self.tool_menu_rd) self.toolbar.add(self.tool_rd) self.toolbar.add(self.tool_sep) self.toolbar.add(self.tool_spacer) self.pg.add(self.toolbar) content = self.pg.render() return content def _toolbar_clicked(self, name, props): menu = self.toolbar.clicked_item if str(menu).find(':') > 0: item = str(menu).split(':')[1] if item.upper() == 'ADD': new_btn = ToolbarButton('new_btn', 'New Button') self.toolbar.add_item(new_btn) if item.upper() == 'INSERT': new_ins_btn = ToolbarButton('new_ins_btn', 'New Insert Button') self.toolbar.insert_item(new_ins_btn, 'tool_btn') if item.upper() == 'REMOVE': self.toolbar.remove_item('new_ins_btn') if item.upper() == 'HIDE': self.toolbar.hide_item('toolbtn') if item.upper() == 'SHOW': self.toolbar.show_item('toolbtn') if item.upper() == 'ENABLE': self.toolbar.enable_item('toolbtn') if item.upper() == 'DISABLE': self.toolbar.disable_item('toolbtn') def start_app(): p = W2UIPage() app.add_url_rule('/', 'index', p.show_layout) socketio.run(app, debug=True) def start_web_view(): webview.create_window("My Application", "http://localhost:5000", resizable=True) if __name__ == "__main__": if os.uname().machine == 'aarch64': start_app() else: app_proc = Process(target=start_app) web_app = Process(target=start_web_view) app_proc.start() web_app.start() app_proc.join() web_app.join()
cf2901edbd6511a02d111b4d1c700a63f479a31e
d27a97334691bd4dcce72f772b382aacda5ab26f
/tests/rdf_album.py
fe438dcfc34744a41d358fd2a69623c7dfcc289e
[]
no_license
qood/vgmdb
e238c19d437eeb609466504d2a5d92416f936987
978f2245be746ea37faed2707e56c6002b8a0426
refs/heads/master
2021-01-24T01:11:25.427263
2015-08-05T05:41:50
2015-08-05T05:41:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,611
py
# -*- coding: UTF-8 -*- import os import datetime import unittest import decimal from ._rdf import TestRDF from vgmdb.parsers import album from vgmdb.config import BASE_URL from urlparse import urljoin class TestAlbumsRDF(TestRDF): data_parser = lambda self,x: album.parse_page(x) outputter_type = 'album' def setUp(self): pass def run_ff8_tests(self, graph): test_count_results = { "select ?type where { <@base#subject> rdf:type mo:Release . }" : 1, "select ?type where { <@base#subject> rdf:type schema:MusicAlbum . }" : 1, "select ?type where { <@base#composition> rdf:type mo:Composition . }" : 1, "select ?type where { <@base#composition> rdf:type schema:CreativeWork . }" : 1, "select ?type where { <@base#musicalwork> rdf:type mo:MusicalWork . }" : 1, "select ?type where { <@base#musicalwork> rdf:type schema:CreativeWork . }" : 1, "select ?type where { <@base#performance> rdf:type mo:Performance . }" : 1, "select ?type where { <@base#performance> rdf:type schema:Event . }" : 1, "select ?person where { <@base#subject> schema:byArtist ?person . }" : 8, "select ?person where { ?person foaf:made <@base#subject> . }" : 3, "select ?composition where { <@base/artist/77#subject> foaf:made <@base#subject> . }" : 1, "select ?composition where { <@base/artist/77#subject> foaf:made <@base#composition> . }" : 1, "select ?person where { <@base#composition> mo:composer ?person . }" : 1, "select ?person where { <@base#performance> mo:performer ?person . }" : 8, "select ?person where { ?person foaf:made <@base#lyrics> . }" : 2, "select ?record where { <@base#subject> mo:record ?record }" : 1, "select ?track where { <@base#subject> mo:record ?record . ?record mo:track ?track . }" : 13, "select ?track where { <@base#subject> mo:record ?record . ?record schema:track ?track . }" : 13, "select ?track where { <@base#subject> mo:record ?record . ?track schema:inPlaylist ?record . }" : 13 } test_first_result = { "select ?expression where { <@base#subject> mo:publication_of ?expression . }" : "<@base#musicalexpression>", "select ?album where { <@base#musicalexpression> mo:published_as ?album . }" : "<@base#subject>", "select ?performance where { <@base#musicalexpression> mo:records ?performance . }" : "<@base#performance>", "select ?expression where { <@base#performance> mo:recorded_as ?expression . }" : "<@base#musicalexpression>", "select ?work where { <@base#performance> mo:performance_of ?work . }" : "<@base#musicalwork>", "select ?performance where { <@base#musicalwork> mo:performed_in ?performance . }" : "<@base#performance>", "select ?composed where { <@base#musicalwork> mo:composed_in ?composed . }" : "<@base#composition>", "select ?work where { <@base#composition> mo:produced_work ?work . }" : "<@base#musicalwork>", "select ?lyrics where { <@base#musicalwork> mo:lyrics ?lyrics . }" : "<@base#lyrics>", "select ?about where { <@base#subject> schema:about ?about . } " : "<@baseproduct/189#subject>", "select ?name where { <@base#subject> schema:about ?about . ?about schema:name ?name . filter(lang(?name)='en')} " : u'Final Fantasy VIII', "select ?name where { <@base#subject> schema:about ?about . ?about schema:name ?name . filter(lang(?name)='ja')} " : u'ファイナルファンタジーVIII', "select ?name where { ?album rdf:type mo:Release . ?album dcterms:title ?name . }" : u'FITHOS LUSEC WECOS VINOSEC: FINAL FANTASY VIII', "select ?name where { ?album rdf:type mo:Release . ?album schema:name ?name . }" : u'FITHOS LUSEC WECOS VINOSEC: FINAL FANTASY VIII', "select ?name where { ?album rdf:type mo:Performance . ?album schema:name ?name . }" : u'FITHOS LUSEC WECOS VINOSEC: FINAL FANTASY VIII', "select ?name where { ?album rdf:type mo:Composition . ?album schema:name ?name . }" : u'FITHOS LUSEC WECOS VINOSEC: FINAL FANTASY VIII', "select ?catalog where { <@base#subject> mo:catalogue_number ?catalog . }" : "SSCX-10037", "select ?catalog where { <@base#subject> mo:other_release_of ?release . ?release mo:catalogue_number ?catalog . } order by desc(?catalog)" : "SQEX-10025", "select ?date where { ?album rdf:type schema:MusicAlbum . ?album dcterms:created ?date . }" : datetime.date(1999,11,20), "select ?name where { <@base#performance> mo:performer ?person . ?person foaf:name ?name . filter(lang(?name)='en')} order by ?name" : "Chie Sasakura", "select ?name where { <@base#performance> schema:byArtist ?person . ?person foaf:name ?name . filter(lang(?name)='en')} order by ?name" : "Chie Sasakura", "select ?name where { <@base#performance> schema:byArtist ?person . ?person rdf:type schema:Person . ?person foaf:name ?name . filter(lang(?name)='en')} order by ?name" : "Chie Sasakura", "select ?name where { ?person mo:performed <@base#performance> . ?person foaf:name ?name . filter(lang(?name)='en')} order by ?name" : "Chie Sasakura", "select ?records where { <@base#subject> mo:record_count ?records . }" : 1, "select ?tracks where { <@base#subject> mo:record ?record . ?record mo:track_count ?tracks . }" : 13, "select ?length where { <@base#subject> mo:record ?record . ?record mo:track ?track . ?track mo:track_number \"1\"^^xsd:integer . ?track schema:duration ?length . }" : "PT3:09", "select ?length where { <@base#subject> mo:record ?record . ?record schema:duration ?length . }" : "PT64:16", "select ?name where { <@base#subject> mo:record ?record . ?record mo:track ?track . ?track mo:track_number \"1\"^^xsd:integer . ?track schema:name ?name . filter(lang(?name)='en')}" : "Liberi Fatali", "select ?name where { <@base#subject> mo:record ?record . ?record mo:track ?track . ?track mo:track_number \"1\"^^xsd:integer . ?track dcterms:title ?name . filter(lang(?name)='en')}" : "Liberi Fatali", "select ?publisher where { <@base#subject> mo:publisher ?publisher . }" : "<@baseorg/54#subject>", "select ?name where { <@base#subject> schema:publisher ?publisher . ?publisher foaf:name ?name . filter(lang(?name)='en') }" : "DigiCube", "select ?composer where { <@base#composition> mo:composer ?composer . }" : "<@base/artist/77#subject>", "select ?name where { <@base#composition> mo:composer ?composer . ?composer foaf:name ?name . filter(lang(?name)='en') }" : "Nobuo Uematsu", "select ?rating where { <@base#subject> schema:aggregateRating ?agg . ?agg schema:ratingValue ?rating . }" : decimal.Decimal("4.47"), "select ?rating where { <@base#subject> schema:aggregateRating ?agg . ?agg schema:ratingCount ?rating . }" : 43, "select ?rating where { <@base#subject> schema:aggregateRating ?agg . ?agg schema:bestRating ?rating . }" : 5, "select ?cover where { <@base#subject> foaf:depiction ?cover . ?cover a foaf:Image }" : "<http://vgmdb.net/db/assets/covers/7/9/79-1190730814.jpg>", "select ?cover where { <@base#subject> schema:image ?cover . ?cover a schema:ImageObject }" : "<http://vgmdb.net/db/assets/covers/7/9/79-1190730814.jpg>", "select ?cover where { ?cover foaf:depicts <@base#subject> . }" : "<http://vgmdb.net/db/assets/covers/7/9/79-1190730814.jpg>", "select ?cover where { ?cover schema:about <@base#subject> . }" : "<http://vgmdb.net/db/assets/covers/7/9/79-1190730814.jpg>", "select ?thumb where { <@base#subject> foaf:depiction ?cover . ?cover foaf:thumbnail ?thumb . ?thumb a foaf:Image }" : "<http://vgmdb.net/db/assets/covers-medium/7/9/79-1190730814.jpg>", "select ?thumb where { <@base#subject> schema:image ?cover . ?cover schema:thumbnailUrl ?thumb . ?thumb a schema:ImageObject }" : "<http://vgmdb.net/db/assets/covers-medium/7/9/79-1190730814.jpg>" } self.run_tests(graph, test_count_results, test_first_result) def test_ff8_rdfa(self): graph = self.load_rdfa_data('album_ff8.html') self.run_ff8_tests(graph) def test_ff8_rdf(self): graph = self.load_rdf_data('album_ff8.html') self.run_ff8_tests(graph) def run_bootleg_tests(self, graph): test_count_results = { } test_first_result = { "select ?catalog where { <@base#subject> mo:catalogue_number ?catalog . } order by desc(?catalog)" : "GAME-119", "select ?catalog where { <@base#subject> mo:other_release_of ?release . ?release mo:catalogue_number ?catalog . } order by desc(?catalog)" : "N30D-021" } self.run_tests(graph, test_count_results, test_first_result) def test_bootleg_rdfa(self): graph = self.load_rdfa_data('album_bootleg.html') self.run_bootleg_tests(graph) def test_bootleg_rdf(self): graph = self.load_rdf_data('album_bootleg.html') self.run_bootleg_tests(graph) if __name__ == '__main__': unittest.main()
23ee2ea3fb54a9d1d459ca0edb986191ba823dca
3f7240da3dc81205a0a3bf3428ee4e7ae74fb3a2
/src/Week9/Efficiency/Sequencing.py
5cd59f4ad5c2b4f90a8180536091d1c58517304a
[]
no_license
theguyoverthere/CMU15-112-Spring17
b4ab8e29c31410b4c68d7b2c696a76b9d85ab4d8
b8287092b14e82d2a3aeac6c27bffbc95382eb34
refs/heads/master
2021-04-27T08:52:45.237631
2018-10-02T15:38:18
2018-10-02T15:38:18
107,882,442
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
# what is the total cost here? L = [ 52, 83, 78, 9, 12, 4 ] # assume L is an arbitrary list of length N L.sort() # This is O(NlogN) L.sort(reverse=True) # This is O(NlogN) L[0] -= 5 # This is O(1) print(L.count(L[0]) + sum(L)) # This is O(N) + O(N)
ee1620b5cccb60aa52d2725d3e10e369eb226f0f
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/suntimes/testcase/firstcases/testcase1_004.py
af83c435e940513a3fe6bb22542eaddd2ba85ec4
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
4,328
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'com.forrestguice.suntimeswidget', 'appActivity' : 'com.forrestguice.suntimeswidget.SuntimesActivity', 'resetKeyboard' : True, 'androidCoverage' : 'com.forrestguice.suntimeswidget/com.forrestguice.suntimeswidget.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return # testcase004 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememtBack(driver, "new UiSelector().text(\"moonrise\")", "new UiSelector().className(\"android.widget.TextView\").instance(9)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"2:50\")", "new UiSelector().className(\"android.widget.TextView\").instance(4)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"sunrise\")", "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).tap(element).perform() driver.press_keycode(4) element = getElememtBack(driver, "new UiSelector().text(\"sunrise\")", "new UiSelector().className(\"android.widget.TextView\").instance(5)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"sunrise\")", "new UiSelector().className(\"android.widget.TextView\").instance(3)") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"sunrise\")", "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).long_press(element).release().perform() element = getElememtBack(driver, "new UiSelector().text(\"sunset\")", "new UiSelector().className(\"android.widget.TextView\").instance(1)") TouchAction(driver).tap(element).perform() swipe(driver, 0.5, 0.2, 0.5, 0.8) except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"1_004\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'com.forrestguice.suntimeswidget'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
85d86a4f98edb5e00f54a8dadafebb34f0999ee8
60284a471e48e49e9b184305b08da38cbaf85c38
/src/tests/ftest/datamover/posix_symlinks.py
fd9e6762fe298a9f0f9f8a40b9bffbe555cdb234
[ "BSD-2-Clause-Patent", "BSD-2-Clause" ]
permissive
minmingzhu/daos
734aa37c3cce1c4c9e777b151f44178eb2c4da1f
9f095c63562db03e66028f78df0c37f1c05e2db5
refs/heads/master
2022-05-10T17:23:32.791914
2022-02-28T18:44:50
2022-02-28T18:44:50
228,773,662
1
0
Apache-2.0
2019-12-18T06:30:39
2019-12-18T06:30:38
null
UTF-8
Python
false
false
9,058
py
#!/usr/bin/python ''' (C) Copyright 2020-2021 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent ''' from data_mover_test_base import DataMoverTestBase from os.path import join class DmvrPosixSymlinks(DataMoverTestBase): # pylint: disable=too-many-ancestors """Test class for POSIX DataMover symlink validation Test Class Description: Tests POSIX DataMover symlink copying and dereferencing. :avocado: recursive """ def test_dm_posix_symlinks(self): """JIRA id: DAOS-5998 Test Description: Tests copying POSIX symlinks with dcp. :avocado: tags=all,full_regression :avocado: tags=datamover,dcp,dfuse :avocado: tags=dm_posix_symlinks,dm_posix_symlinks_dcp """ self.run_dm_posix_symlinks("DCP") def run_dm_posix_symlinks(self, tool): """ Use Cases: 1. Create pool 2. Create container 3. Create symlink structure: - Links that point to files - Links that point to directories - Links that point to other links - Links that point forward multiple levels - Links that point backward one level - Links that are transitive (link -> dir -> link) 4. Test copying between DAOS and POSIX Args: tool (str): The DataMover tool to run the test with. Must be a valid tool in self.TOOLS. NOTE: Different symlink structures are created with the create_links_* functions, where each structure tests some part of the uses cases above. """ # Set the tool to use self.set_tool(tool) # Start dfuse to hold all pools/containers self.start_dfuse(self.dfuse_hosts) # Create 1 pool pool1 = self.create_pool() # Create a special container to hold UNS entries uns_cont = self.create_cont(pool1) # Test links that point forward container1 = self.create_cont(pool1, True, pool1, uns_cont) self.run_dm_posix_symlinks_fun( pool1, container1, self.create_links_forward, "forward") # Test links that point backward container2 = self.create_cont(pool1, True, pool1, uns_cont) self.run_dm_posix_symlinks_fun( pool1, container2, self.create_links_backward, "backward") # Test a mix of forward and backward links container3 = self.create_cont(pool1, True, pool1, uns_cont) self.run_dm_posix_symlinks_fun( pool1, container3, self.create_links_mixed, "mixed") def run_dm_posix_symlinks_fun(self, pool, cont, link_fun, link_desc): """ Tests copying symlinks with and without --dereference. Args: pool (TestPool): The pool to use cont (TestContainer): The container for both src and dst link_fun (str -> void): The function for creating the symlink structure. A path is passed for the location. link_desc (str): A description about the link_fun. Used in logging. """ # Get the dereference param do_deref = self.params.get( "dereference", "/run/{}/*".format(self.tool.lower())) # Use a common test_desc test_desc = self.test_id + "({})".format(link_desc) test_desc += " (dereference={})".format(str(do_deref)) self.log.info("Running %s", test_desc) # Get a directory for POSIX posix_test_path = self.new_posix_test_path() # Save some paths and encode the type in the path for easier debugging src_daos_dir = "/src_" + link_desc src_daos_path = cont.path.value + src_daos_dir src_posix_path = join(posix_test_path, "src_" + link_desc) # Create the source links link_fun(src_daos_path) link_fun(src_posix_path) if do_deref: # Use POSIX cp to create a baseline for dereferencing deref_baseline_path = join(posix_test_path, "baseline_" + link_desc) self.execute_cmd("cp -r --dereference '{}' '{}'".format( src_posix_path, deref_baseline_path)) diff_src = deref_baseline_path else: # Just compare against the original diff_src = src_posix_path # DAOS -> DAOS dst_daos_dir = self.new_daos_test_path(create=False) self.run_datamover( test_desc + " (DAOS->DAOS)", "DAOS", src_daos_dir, pool, cont, "DAOS", dst_daos_dir, pool, cont) self.run_diff(diff_src, cont.path.value + dst_daos_dir, do_deref) # DAOS -> POSIX dst_posix_path = self.new_posix_test_path(create=False) self.run_datamover( test_desc + " (DAOS->POSIX)", "DAOS", src_daos_dir, pool, cont, "POSIX", dst_posix_path) self.run_diff(diff_src, dst_posix_path) # POSIX -> DAOS dst_daos_dir = self.new_daos_test_path(create=False) self.run_datamover( test_desc + " (POSIX->DAOS)", "POSIX", src_posix_path, None, None, "DAOS", dst_daos_dir, pool, cont) self.run_diff(diff_src, cont.path.value + dst_daos_dir, do_deref) def create_links_forward(self, path): """ Creates forward symlinks up to 3 levels deep. Args: path (str): The path to create the links in Description: - Links that point to files - Links that point to directories - Links that point to other links - Links that point forward multiple levels deep - Links that are transitive (link -> dir -> link) """ cmd_list = [ "mkdir -p " + path + "/dir1.1/dir1.2/dir1.3", "pushd " + path, # Level 4: one file "echo 'file1.4' > dir1.1/dir1.2/dir1.3/file1.4", # Level 3: one file, links to file and dir "echo 'file1.3' > dir1.1/dir1.2/file1.3", "ln -s file1.3 ./dir1.1/dir1.2/link1.3", "ln -s dir1.3 ./dir1.1/dir1.2/link2.3", # Level 2: links to level 3 "ln -s dir1.2/file1.3 ./dir1.1/link1.2", "ln -s dir1.2/dir1.3 ./dir1.1/link2.2", "ln -s dir1.2/link1.3 ./dir1.1/link3.2", "ln -s dir1.2/link2.3 ./dir1.1/link4.2", # Level 1: Links to level 2 and level 3 "ln -s dir1.1/dir1.2 ./link1.1", "ln -s dir1.1/link1.2 ./link2.1", "ln -s dir1.1/link2.2 ./link3.1", "ln -s dir1.1/link3.2 ./link4.1", "ln -s dir1.1/link4.2 ./link5.1", "ln -s dir1.1/dir1.2/file1.3 ./link6.1", "ln -s dir1.1/dir1.2/dir1.3 ./link7.1", "ln -s dir1.1/dir1.2/link1.3 ./link8.1", "ln -s dir1.1/dir1.2/link2.3 ./link9.1", "popd" ] self.execute_cmd_list(cmd_list) def create_links_backward(self, path): """ Creates backward symlinks 1 level deep. ../../ is not yet supported. Args: path (str): The path to create the links in Description: - Links that point to files - Links that point to links - Links that point backward, one level up """ cmd_list = [ "mkdir -p " + path + "/dir1.1/dir1.2/", "pushd " + path, # Level 1: one file and two links "echo 'file1.1' > ./file1.1", "ln -s file1.1 ./link1.1", "ln -s link1.1 ./link2.1", # Level 2: links to level 1 "ln -s ../file1.1 ./dir1.1/link1.2", "ln -s ../link1.1 ./dir1.1/link2.2", "popd" ] self.execute_cmd_list(cmd_list) def create_links_mixed(self, path): """ Creates a mix of forward and backward links. Level 1 -> Level 3 -> Level 2 Args: path (str): The path to create the links in Description: - Links that point to files - Links that point to links - Links that traverse forward and backward """ cmd_list = [ "mkdir -p " + path + "/dir1.1/dir1.2/", "pushd " + path, # Level 1: link to level 3 "ln -s dir1.1/dir1.2/link1.3 ./link1.1", # Level 3: one file, link to level 2 "echo 'file1.3' > ./dir1.1/dir1.2/file1.3", "ln -s ../link1.2 ./dir1.1/dir1.2/link1.3", # Level 2: link to level 3 "ln -s dir1.2/file1.3 ./dir1.1/link1.2", "popd" ] self.execute_cmd_list(cmd_list) def execute_cmd_list(self, cmd_list): """Execute a list of commands, separated by &&. Args: cmd_list (list): A list of commands to execute. """ cmd = " &&\n".join(cmd_list) self.execute_cmd(cmd)
ad3b703785a4e63fadd304fe931f34553ff93077
60eb98538025c61cf94a91f6c96f9ee81dcd3fdf
/tests/test_phl_cpu.py
31e28bd39d8728b69f948db45d80ae5f98ade8d0
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
gagandaroach/MONAI
167e7746995d4b6136731881e22ad4df333b16a9
79b83d9fac41efae9b90ed2f9ad078d6d664bf64
refs/heads/master
2023-06-02T19:54:47.737846
2021-06-24T18:34:02
2021-06-24T18:34:02
270,741,899
0
0
Apache-2.0
2020-06-08T16:29:32
2020-06-08T16:29:31
null
UTF-8
Python
false
false
9,018
py
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from monai.networks.layers.filtering import PHLFilter from tests.utils import skip_if_no_cpp_extension TEST_CASES = [ [ # Case Description "2 batches, 1 dimensions, 1 channels, 1 features", # Sigmas [1, 0.2], # Input [ # Batch 0 [ # Channel 0 [1, 0, 0, 0, 1] ], # Batch 1 [ # Channel 0 [0, 0, 1, 0, 0] ], ], # Features [ # Batch 0 [ # Channel 0 [1, 0.2, 0.5, 0, 1], ], # Batch 1 [ # Channel 0 [0.5, 0, 1, 1, 1] ], ], # Expected [ # Batch 0 [ # Channel 0 [0.468968, 0.364596, 0.4082, 0.332579, 0.468968] ], # Batch 1 [ # Channel 0 [0.202473, 0.176527, 0.220995, 0.220995, 0.220995] ], ], ], [ # Case Description "1 batches, 1 dimensions, 3 channels, 1 features", # Sigmas [1], # Input [ # Batch 0 [ # Channel 0 [1, 0, 0, 0, 0], # Channel 1 [0, 0, 0, 0, 1], # Channel 2 [0, 0, 1, 0, 0], ], ], # Features [ # Batch 0 [ # Channel 0 [1, 0.2, 0.5, 0.2, 1], ], ], # Expected [ # Batch 0 [ # Channel 0 [0.229572, 0.182884, 0.202637, 0.182884, 0.229572], # Channel 1 [0.229572, 0.182884, 0.202637, 0.182884, 0.229572], # Channel 2 [0.201235, 0.208194, 0.205409, 0.208194, 0.201235], ], ], ], [ # Case Description "1 batches, 2 dimensions, 1 channels, 3 features", # Sigmas [5, 3, 3], # Input [ # Batch 0 [ # Channel 0 [[9, 9, 0, 0, 0], [9, 9, 0, 0, 0], [9, 9, 0, 0, 0], [9, 9, 6, 6, 6], [9, 9, 6, 6, 6]] ], ], # Features [ # Batch 0 [ # Channel 0 [[9, 9, 0, 0, 0], [9, 9, 0, 0, 0], [9, 9, 0, 0, 0], [9, 9, 6, 6, 6], [9, 9, 6, 6, 6]], # Channel 1 [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], # Channel 2 [[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4, 4]], ], ], # Expected [ # Batch 0 [ # Channel 0 [ [7.696051, 7.427121, 1.191990, 1.156004, 1.157489], [7.670297, 7.371155, 1.340232, 1.287871, 1.304018], [7.639579, 7.365163, 1.473319, 1.397826, 1.416861], [7.613517, 7.359183, 5.846500, 5.638952, 5.350098], [7.598255, 7.458446, 5.912375, 5.583625, 5.233126], ] ], ], ], [ # Case Description "1 batches, 3 dimensions, 1 channels, 1 features", # Sigmas [5, 3, 3], # Input [ # Batch 0 [ # Channel 0 [ # Frame 0 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0]], # Frame 1 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0]], # Frame 2 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], # Frame 3 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], # Frame 4 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], ] ], ], # Features [ # Batch 0 [ # Channel 0 [ # Frame 0 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0]], # Frame 1 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0], [9, 9, 9, 0, 0]], # Frame 2 [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], # Frame 3 [[0, 0, 5, 5, 5], [0, 0, 5, 5, 5], [0, 0, 5, 5, 5], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], # Frame 4 [[0, 0, 5, 5, 5], [0, 0, 5, 5, 5], [0, 0, 5, 5, 5], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], ] ], ], # Expected [ # Batch 0 [ # Channel 0 [ # Frame 0 [ [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], ], # Frame 1 [ [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], [3.578490, 3.578490, 3.578490, 0.284234, 0.284234], ], # Frame 2 [ [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], ], # Frame 3 [ [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], ], # Frame 4 [ [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 1.359728, 1.359728, 1.359728], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], [0.284234, 0.284234, 0.284234, 0.284234, 0.284234], ], ] ], ], ], ] @skip_if_no_cpp_extension class PHLFilterTestCaseCpu(unittest.TestCase): @parameterized.expand(TEST_CASES) def test_cpu(self, test_case_description, sigmas, input, features, expected): # Create input tensors input_tensor = torch.from_numpy(np.array(input)).to(dtype=torch.float, device=torch.device("cpu")) feature_tensor = torch.from_numpy(np.array(features)).to(dtype=torch.float, device=torch.device("cpu")) # apply filter output = PHLFilter.apply(input_tensor, feature_tensor, sigmas).cpu().numpy() # Ensure result are as expected np.testing.assert_allclose(output, expected, atol=1e-4) if __name__ == "__main__": unittest.main()
723faaf18a590d38c7b2d7ddbf82a2f78035fdb4
bb6ebff7a7f6140903d37905c350954ff6599091
/third_party/WebKit/Tools/Scripts/webkitpy/layout_tests/port/driver_unittest.py
f65b682fea8a8d1e1f1c13f0fda30331da23efb3
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
PDi-Communication-Systems-Inc/lollipop_external_chromium_org
faa6602bd6bfd9b9b6277ce3cd16df0bd26e7f2f
ccadf4e63dd34be157281f53fe213d09a8c66d2c
refs/heads/master
2022-12-23T18:07:04.568931
2016-04-11T16:03:36
2016-04-11T16:03:36
53,677,925
0
1
BSD-3-Clause
2022-12-09T23:46:46
2016-03-11T15:49:07
C++
UTF-8
Python
false
false
10,886
py
# Copyright (C) 2010 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import webkitpy.thirdparty.unittest2 as unittest from webkitpy.common.system.systemhost_mock import MockSystemHost from webkitpy.layout_tests.port import Port, Driver, DriverOutput from webkitpy.layout_tests.port.server_process_mock import MockServerProcess # FIXME: remove the dependency on TestWebKitPort from webkitpy.layout_tests.port.port_testcase import TestWebKitPort from webkitpy.tool.mocktool import MockOptions class DriverTest(unittest.TestCase): def make_port(self): port = Port(MockSystemHost(), 'test', MockOptions(configuration='Release')) port._config.build_directory = lambda configuration: '/mock-checkout/out/' + configuration return port def _assert_wrapper(self, wrapper_string, expected_wrapper): wrapper = Driver(self.make_port(), None, pixel_tests=False)._command_wrapper(wrapper_string) self.assertEqual(wrapper, expected_wrapper) def test_command_wrapper(self): self._assert_wrapper(None, []) self._assert_wrapper("valgrind", ["valgrind"]) # Validate that shlex works as expected. command_with_spaces = "valgrind --smc-check=\"check with spaces!\" --foo" expected_parse = ["valgrind", "--smc-check=check with spaces!", "--foo"] self._assert_wrapper(command_with_spaces, expected_parse) def test_test_to_uri(self): port = self.make_port() driver = Driver(port, None, pixel_tests=False) self.assertEqual(driver.test_to_uri('foo/bar.html'), 'file://%s/foo/bar.html' % port.layout_tests_dir()) self.assertEqual(driver.test_to_uri('http/tests/foo.html'), 'http://127.0.0.1:8000/foo.html') self.assertEqual(driver.test_to_uri('http/tests/ssl/bar.html'), 'https://127.0.0.1:8443/ssl/bar.html') def test_uri_to_test(self): port = self.make_port() driver = Driver(port, None, pixel_tests=False) self.assertEqual(driver.uri_to_test('file://%s/foo/bar.html' % port.layout_tests_dir()), 'foo/bar.html') self.assertEqual(driver.uri_to_test('http://127.0.0.1:8000/foo.html'), 'http/tests/foo.html') self.assertEqual(driver.uri_to_test('https://127.0.0.1:8443/ssl/bar.html'), 'http/tests/ssl/bar.html') def test_read_block(self): port = TestWebKitPort() driver = Driver(port, 0, pixel_tests=False) driver._server_process = MockServerProcess(lines=[ 'ActualHash: foobar', 'Content-Type: my_type', 'Content-Transfer-Encoding: none', "#EOF", ]) content_block = driver._read_block(0) self.assertEqual(content_block.content, '') self.assertEqual(content_block.content_type, 'my_type') self.assertEqual(content_block.encoding, 'none') self.assertEqual(content_block.content_hash, 'foobar') driver._server_process = None def test_read_binary_block(self): port = TestWebKitPort() driver = Driver(port, 0, pixel_tests=True) driver._server_process = MockServerProcess(lines=[ 'ActualHash: actual', 'ExpectedHash: expected', 'Content-Type: image/png', 'Content-Length: 9', "12345678", "#EOF", ]) content_block = driver._read_block(0) self.assertEqual(content_block.content_type, 'image/png') self.assertEqual(content_block.content_hash, 'actual') self.assertEqual(content_block.content, '12345678\n') self.assertEqual(content_block.decoded_content, '12345678\n') driver._server_process = None def test_read_base64_block(self): port = TestWebKitPort() driver = Driver(port, 0, pixel_tests=True) driver._server_process = MockServerProcess(lines=[ 'ActualHash: actual', 'ExpectedHash: expected', 'Content-Type: image/png', 'Content-Transfer-Encoding: base64', 'Content-Length: 12', 'MTIzNDU2NzgK#EOF', ]) content_block = driver._read_block(0) self.assertEqual(content_block.content_type, 'image/png') self.assertEqual(content_block.content_hash, 'actual') self.assertEqual(content_block.encoding, 'base64') self.assertEqual(content_block.content, 'MTIzNDU2NzgK') self.assertEqual(content_block.decoded_content, '12345678\n') def test_no_timeout(self): port = TestWebKitPort() port._config.build_directory = lambda configuration: '/mock-checkout/out/' + configuration driver = Driver(port, 0, pixel_tests=True, no_timeout=True) self.assertEqual(driver.cmd_line(True, []), ['/mock-checkout/out/Release/content_shell', '--no-timeout', '--dump-render-tree', '-']) def test_check_for_driver_crash(self): port = TestWebKitPort() driver = Driver(port, 0, pixel_tests=True) class FakeServerProcess(object): def __init__(self, crashed): self.crashed = crashed def pid(self): return 1234 def name(self): return 'FakeServerProcess' def has_crashed(self): return self.crashed def stop(self, timeout=0.0): pass def assert_crash(driver, error_line, crashed, name, pid, unresponsive=False, leaked=False): self.assertEqual(driver._check_for_driver_crash(error_line), crashed) self.assertEqual(driver._crashed_process_name, name) self.assertEqual(driver._crashed_pid, pid) self.assertEqual(driver._subprocess_was_unresponsive, unresponsive) self.assertEqual(driver._check_for_leak(error_line), leaked) driver.stop() driver._server_process = FakeServerProcess(False) assert_crash(driver, '', False, None, None) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#CRASHED\n', True, 'FakeServerProcess', 1234) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#CRASHED - WebProcess\n', True, 'WebProcess', None) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#CRASHED - WebProcess (pid 8675)\n', True, 'WebProcess', 8675) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#PROCESS UNRESPONSIVE - WebProcess (pid 8675)\n', True, 'WebProcess', 8675, True) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#CRASHED - renderer (pid 8675)\n', True, 'renderer', 8675) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(False) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '#LEAK - renderer pid 8675 ({"numberOfLiveDocuments":[2,3]})\n', False, None, None, False, True) driver._crashed_process_name = None driver._crashed_pid = None driver._server_process = FakeServerProcess(True) driver._subprocess_was_unresponsive = False driver._leaked = False assert_crash(driver, '', True, 'FakeServerProcess', 1234) def test_creating_a_port_does_not_write_to_the_filesystem(self): port = TestWebKitPort() driver = Driver(port, 0, pixel_tests=True) self.assertEqual(port._filesystem.written_files, {}) self.assertEqual(port._filesystem.last_tmpdir, None) def test_stop_cleans_up_properly(self): port = TestWebKitPort() port._server_process_constructor = MockServerProcess driver = Driver(port, 0, pixel_tests=True) driver.start(True, []) last_tmpdir = port._filesystem.last_tmpdir self.assertNotEquals(last_tmpdir, None) driver.stop() self.assertFalse(port._filesystem.isdir(last_tmpdir)) def test_two_starts_cleans_up_properly(self): port = TestWebKitPort() port._server_process_constructor = MockServerProcess driver = Driver(port, 0, pixel_tests=True) driver.start(True, []) last_tmpdir = port._filesystem.last_tmpdir driver._start(True, []) self.assertFalse(port._filesystem.isdir(last_tmpdir)) def test_start_actually_starts(self): port = TestWebKitPort() port._server_process_constructor = MockServerProcess driver = Driver(port, 0, pixel_tests=True) driver.start(True, []) self.assertTrue(driver._server_process.started)
9dbc5aad569ad45d58831448aa34a51bc8258984
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02996/s612893539.py
7bab9fefb9759e4aca7500b4bfc54fe21ec5e098
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
import sys import math import itertools import bisect from copy import copy from collections import deque,Counter from decimal import Decimal def s(): return input() def i(): return int(input()) def S(): return input().split() def I(): return map(int,input().split()) def L(): return list(input().split()) def l(): return list(map(int,input().split())) def lcm(a,b): return a*b//math.gcd(a,b) sys.setrecursionlimit(10 ** 9) mod = 10**9+7 S = i() time = [] for i in range(S): a = l() a.reverse() time.append(a) time.sort() pl = 0 for i in range(S): pl += time[i][1] if pl > time[i][0]: print("No") sys.exit() print("Yes")
2146132029e154c9162b74995f0cf34f0ef3342e
60654caf2633613021470d0285817343f76223e5
/daily_catch/public_update/config.py
566a37dc4796f6f4c390e00778aea0555a926b77
[]
no_license
whoiskx/com_code
79460ccee973d1dfe770af3780c273e4a0f466c9
388b5a055393ee7768cc8525c0484f19c3f97193
refs/heads/master
2020-04-09T23:14:28.228729
2018-12-06T07:10:25
2018-12-06T07:10:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
# -*- coding: utf-8 -*- import os read_ver_url = 'http://dispatch.yunrunyuqing.com:38082/resources/sourceVersion/weixin/version.txt' download_url = 'http://dispatch.yunrunyuqing.com:38082/resources/sourceVersion/weixin/public_update.zip' base_path = os.path.dirname(os.path.abspath(__file__)) core_spider_path = os.path.join(base_path, 'public_update') core_zip_path = os.path.join(core_spider_path, 'public_update.zip') version_txt_path = os.path.join(core_spider_path, 'version.txt') spider_path = os.path.join(core_spider_path, 'daily_collect') run_path = os.path.join(spider_path, 'daily_collect.py') kill_path = 'daily_collect.py'
0b313513a4e40c31df181c98f2e15203095458e5
9bfd93b93531c7d66335fffded2d00db0c1f8935
/blog_censurfridns_dk/blog/translation.py
9e8157edd7537f26fe16f55c391113b0d9039730
[]
no_license
mortensteenrasmussen/blog.censurfridns.dk
7d5da3961b6abf4124fddba7b1fdf5a4fc014c2c
53939dee90ad5028256aace4c876d38695ec9e07
refs/heads/master
2021-01-14T14:23:17.443442
2016-08-29T20:11:22
2016-08-29T20:11:22
65,412,684
0
0
null
2016-08-10T20:03:31
2016-08-10T20:03:31
null
UTF-8
Python
false
false
412
py
from modeltranslation.translator import register, TranslationOptions from .models import BlogPost from taggit.models import Tag @register(BlogPost) class BlogPostTranslationOptions(TranslationOptions): fields = ('title', 'body', 'slug') required_languages = ('en', 'da') @register(Tag) class TaggitTranslations(TranslationOptions): fields = ('name','slug') required_languages = ('en', 'da')
60de944ffe3715da94961884dba29a2e0af82137
2937d60b7f5259b4899ba5af08146bd874529a67
/Assignment 5 q4.py
d9776a0e669e961e49153c7ebd3133b4fe52a833
[]
no_license
gourav47/Let-us-learn-python
9a2302265cb6c47e74863359c79eef5a3078358a
b324f2487de65b2f073b54c8379c1b9e9aa36298
refs/heads/master
2021-06-27T03:33:27.483992
2021-01-07T12:26:16
2021-01-07T12:26:16
204,323,390
1
1
null
2020-07-19T14:25:12
2019-08-25T16:53:56
Python
UTF-8
Python
false
false
212
py
'''python script to print square of numbers from a to b''' a=int(input("Enter the first number: ")) b=int(input("Enter second number: ")) if a>b: a,b=b,a for i in range(a,b+1): print(i**2,end=' ')
e43dc1c4687a848c69bf66702ed69a995ab3c08f
1291b1974904918accf29f87c2d303e679297e03
/038comp2dates.py
8f57b80d77fd8950587bb9796dea50f4a02bffb6
[]
no_license
utkarsh192000/PythonAdvance
853a594ed678c462d9604a8bd6300aa0449dd610
e2e5f3059050b94f2e89ba681ddd6e3f01091b97
refs/heads/master
2023-04-05T09:42:34.942443
2021-04-04T19:07:18
2021-04-04T19:07:18
354,625,582
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
from datetime import * d1=date(2021,3,23) d2=date(2010,3,23) print(d1<d2) print(d1>d2) print(d1==d2)
d7c0d7693181b79f9f44abbeaedd2d8e7988f5ff
caa14cf78fe15affc96acc3de6f4fb1b54bcdf70
/sap/sap/saplib/tests/test_saputils.py
6eec437d874842f6cbed599b9adb923e141e3f69
[]
no_license
jesstherobot/Sycamore_FPGA
2e3f0dea21482de87ea444506ae2af3f58b5a344
d1096e15f07b17a8dcb2276e312c5ba3e0006632
refs/heads/master
2021-01-18T07:57:14.268157
2011-10-19T22:46:28
2011-10-19T22:46:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,689
py
import unittest import sys import os class Test (unittest.TestCase): """Unit test for saputils""" def setUp(self): os.environ["SAPLIB_BASE"] = sys.path[0] + "/saplib" #print "SAPLIB_BASE: " + os.getenv("SAPLIB_BASE") def test_create_dir(self): """create a directory""" import saputils result = saputils.create_dir("~/sandbox/projects") self.assertEqual(result, True) def test_remove_comments(self): """try and remove all comments from a buffer""" import saputils bufin = "not comment /*comment\n\n*/\n\n//comment\n\n/*\nabc\n*/soemthing//comment" #print "input buffer:\n" + bufin output_buffer = saputils.remove_comments(bufin) #print "output buffer:\n" + bufout self.assertEqual(len(output_buffer) > 0, True) def test_find_rtl_file_location(self): """give a filename that should be in the RTL""" import saputils result = saputils.find_rtl_file_location("simple_gpio.v") #print "file location: " + result try: testfile = open(result) result = True testfile.close() except: result = False self.assertEqual(result, True) def test_resolve_linux_path(self): """given a filename with or without the ~ return a filename with the ~ expanded""" import saputils filename1 = "/filename1" filename = saputils.resolve_linux_path(filename1) #print "first test: " + filename #if (filename == filename1): # print "test1: they are equal!" self.assertEqual(filename == "/filename1", True) filename2 = "~/filename2" filename = saputils.resolve_linux_path(filename2) correct_result = os.path.expanduser("~") + "/filename2" #print "second test: " + filename + " should equal to: " + correct_result #if (correct_result == filename): # print "test2: they are equal!" self.assertEqual(correct_result == filename, True) filename = filename.strip() def test_read_slave_tags(self): """try and extrapolate all info from the slave file""" import saputils base_dir = os.getenv("SAPLIB_BASE") filename = base_dir + "/hdl/rtl/wishbone/slave/simple_gpio/simple_gpio.v" drt_keywords = [ "DRT_ID", "DRT_FLAGS", "DRT_SIZE" ] tags = saputils.get_module_tags(filename, keywords = drt_keywords, debug = False) io_types = [ "input", "output", "inout" ] # #for io in io_types: # for port in tags["ports"][io].keys(): # print "Ports: " + port self.assertEqual(True, True) def test_read_slave_tags_with_params(self): """some verilog files have a paramter list""" import saputils base_dir = os.getenv("SAPLIB_BASE") filename = base_dir + "/hdl/rtl/wishbone/slave/ddr/wb_ddr.v" drt_keywords = [ "DRT_ID", "DRT_FLAGS", "DRT_SIZE" ] tags = saputils.get_module_tags(filename, keywords = drt_keywords, debug = True) io_types = [ "input", "output", "inout" ] # #for io in io_types: # for port in tags["ports"][io].keys(): # print "Ports: " + port print "\n\n\n\n\n\n" print "module name: " + tags["module"] print "\n\n\n\n\n\n" self.assertEqual(True, True) def test_read_hard_slave_tags(self): """try and extrapolate all info from the slave file""" import saputils base_dir = os.getenv("SAPLIB_BASE") filename = base_dir + "/hdl/rtl/wishbone/slave/ddr/wb_ddr.v" drt_keywords = [ "DRT_ID", "DRT_FLAGS", "DRT_SIZE" ] tags = saputils.get_module_tags(filename, keywords = drt_keywords, debug = True) io_types = [ "input", "output", "inout" ] # #for io in io_types: # for port in tags["ports"][io].keys(): # print "Ports: " + port self.assertEqual(True, True) if __name__ == "__main__": sys.path.append (sys.path[0] + "/../") import saputils unittest.main()
f7ecbb6e60d58f81414014d4eb23c770a0e6acd9
c4a8e44b171bbfcce4773fbd5820be40d991afab
/dispatcher_sample.fcgi
299c4ad0e1726445c0909f317429f2fd66a4824f
[ "MIT" ]
permissive
sveetch/DjangoSveetchies
a2462c29839d60736077f647b3014396ce700f42
0fd4f23d601287dbfb5a93b4f9baa33481466a25
refs/heads/master
2021-01-01T20:48:08.824288
2013-03-10T12:14:56
2013-03-10T12:14:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
638
fcgi
#!/usr/bin/python # -*- coding: utf-8 -*- """ FastCGI dispatcher for development environment """ import sys, os sys.path.insert(0, '/home/django/py_libs') # An optionnal path where is installed some Python libs sys.path.insert(0, '/home/django/gits/') # Path to the directory which contains 'DjangoSveetchies' # Specify the temporary directory to use for Python Eggs os.environ['PYTHON_EGG_CACHE'] = "/tmp" # Set the DJANGO_SETTINGS_MODULE environment variable. os.environ['DJANGO_SETTINGS_MODULE'] = "DjangoSveetchies.prod_settings" from django.core.servers.fastcgi import runfastcgi runfastcgi(method="threaded", daemonize="false")
524a64d718c9a87331dcd95f4b5511761a102a97
3e397609ebd59d50ed0f9928e6bd039030e35f9a
/contract_api/lambda_handler.py
4757ef1411c05ce3dff3425d4a41156dd03276bb
[]
no_license
prashantramangupta/marketplace
d8f64462668f1bb15c37fd52c17236d7565e5ae5
acae91d90ec8626bc79ae46168c37a4d8bbab46a
refs/heads/master
2020-06-05T15:48:19.063615
2019-06-26T05:28:16
2019-06-26T05:28:16
159,120,771
0
0
null
null
null
null
UTF-8
Python
false
false
4,511
py
import json import logging import re import traceback from schema import Schema, And from common.constant import NETWORKS from common.repository import Repository from mpe import MPE from registry import Registry NETWORKS_NAME = dict((NETWORKS[netId]['name'], netId) for netId in NETWORKS.keys()) db = dict((netId, Repository(net_id=netId)) for netId in NETWORKS.keys()) def request_handler(event, context): print(event) if 'path' not in event: return get_response(400, "Bad Request") try: payload_dict = None resp_dta = None path = event['path'].lower() stage = event['requestContext']['stage'] net_id = NETWORKS_NAME[stage] if event['httpMethod'] == 'POST': body = event['body'] if body is not None and len(body) > 0: payload_dict = json.loads(body) elif event['httpMethod'] == 'GET': payload_dict = event.get('queryStringParameters') else: return get_response(400, "Bad Request") if path in ["/service", "/feedback"] or path[0:4] == "/org" or path[0:5] == "/user": obj_reg = Registry(obj_repo=db[net_id]) if "/org" == path: resp_dta = obj_reg.get_all_org() elif re.match("(\/service)[/]{0,1}$", path): if payload_dict is None: payload_dict = {} resp_dta = obj_reg.get_all_srvcs(qry_param=payload_dict) elif re.match("(\/org\/)[^\/]*(\/service\/)[^\/]*(\/group)[/]{0,1}$", path): params = path.split("/") org_id = params[2] service_id = params[4] resp_dta = obj_reg.get_group_info(org_id=org_id, service_id=service_id) elif "/channels" == path: obj_mpe = MPE(net_id=net_id, obj_repo=db[net_id]) resp_dta = obj_mpe.get_channels_by_user_address(payload_dict['user_address'], payload_dict.get('org_id', None), payload_dict.get('service_id', None)) elif re.match("(\/user\/)[^\/]*(\/feedback)[/]{0,1}$", path): params = path.split("/") user_address = params[2] resp_dta = get_user_feedback(user_address=user_address, obj_reg=obj_reg) elif "/feedback" == path: resp_dta = set_user_feedback(payload_dict['feedback'], obj_reg=obj_reg, net_id=net_id) else: return get_response(400, "Invalid URL path.") if resp_dta is None: err_msg = {'status': 'failed', 'error': 'Bad Request', 'api': event['path'], 'payload': payload_dict} response = get_response(500, err_msg) else: response = get_response(200, {"status": "success", "data": resp_dta}) except Exception as e: err_msg = {"status": "failed", "error": repr(e), 'api': event['path'], 'payload': payload_dict} response = get_response(500, err_msg) traceback.print_exc() return response def check_for_blank(field): if field is None or len(field) == 0: return True return False def get_user_feedback(user_address, obj_reg): if check_for_blank(user_address): return [] return obj_reg.get_usr_feedbk(user_address) def set_user_feedback(feedbk_info, obj_reg, net_id): feedbk_recorded = False schema = Schema([{'user_address': And(str), 'org_id': And(str), 'service_id': And(str), 'up_vote': bool, 'down_vote': bool, 'comment': And(str), 'signature': And(str) }]) try: feedback_data = schema.validate([feedbk_info]) feedbk_recorded = obj_reg.set_usr_feedbk(feedback_data[0], net_id=net_id) except Exception as err: print("Invalid Input ", err) return None if feedbk_recorded: return [] return None def get_response(status_code, message): return { 'statusCode': status_code, 'body': json.dumps(message), 'headers': { 'Content-Type': 'application/json', "X-Requested-With": '*', "Access-Control-Allow-Headers": 'Access-Control-Allow-Origin, Content-Type,X-Amz-Date,Authorization,X-Api-Key,x-requested-with', "Access-Control-Allow-Origin": '*', "Access-Control-Allow-Methods": 'GET,OPTIONS,POST' } }
ec204e589862d7db078962cf5fe0c41711f5cbcb
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_Logit/trend_Lag1Trend/cycle_30/ar_12/test_artificial_32_Logit_Lag1Trend_30_12_20.py
b308b4cbc07f69e3c5a3e07412703d09b5786f7b
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
266
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 30, transform = "Logit", sigma = 0.0, exog_count = 20, ar_order = 12);
699bfc4d77e051f4b0b9b95cde59fbb62b5cf72d
4edbeb3e2d3263897810a358d8c95854a468c3ca
/python3/version/python_version.py
dec52afee6ab14dce005f6ae31bb0e544017de89
[ "MIT" ]
permissive
jtraver/dev
f505d15d45b67a59d11306cc7252114c265f388b
2197e3443c7619b856470558b737d85fe1f77a5a
refs/heads/master
2023-08-06T02:17:58.601861
2023-08-01T16:58:44
2023-08-01T16:58:44
14,509,952
0
1
MIT
2020-10-14T18:32:48
2013-11-19T00:51:19
Python
UTF-8
Python
false
false
672
py
#!/usr/bin/env python3 #!/usr/bin/python import os import platform import sys import aerospike def main(): print("\nos") print("os.name = %s" % str(os.name)) print("sys.platform = %s" % str(sys.platform)) print("platform.platform() = %s" % str(platform.platform())) print("\npython") print("sys.version = %s" % str(sys.version)) print("sys.version_info = %s" % str(sys.version_info)) print("sys.version_info[0] = %s" % str(sys.version_info[0])) print("\naerospike") try: print("aerospike client version is %s" % str(aerospike.__version__)) except Exception as e: print("e = %s" % str(e)) pass main()
bffc4998a73a001af96ff4d89986c7f07ba844b4
65f94b2fe3794b6fd682e52c7f4047a737cae6c7
/env/bin/symilar
f88c0874a96d9c0b5e2366b5b1482cc352a5092d
[]
no_license
udoyen/vgg-project-challenge
47e7e0c5352437f3df00aff9ac055dbadaadebb5
76a005edec6e77f9467b67bda20002c58abef7a9
refs/heads/master
2022-10-04T14:42:46.267458
2020-02-11T10:47:22
2020-02-11T10:47:22
238,899,753
0
1
null
2022-09-16T18:17:10
2020-02-07T10:45:53
Python
UTF-8
Python
false
false
276
#!/home/george/Documents/vgg-docs/vgg-project-challenge/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pylint import run_symilar if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_symilar())
bf1ede23da3e02e00b2cf1c77c17765bc71ab71a
b39d72ba5de9d4683041e6b4413f8483c817f821
/GeneVisualization/ass1/Lib/site-packages/itk/itkAggregateLabelMapFilterPython.py
0dbdcf699057bdee2b4e73071db281a38799bb72
[]
no_license
ssalmaan/DataVisualization
d93a0afe1290e4ea46c3be5718d503c71a6f99a7
eff072f11337f124681ce08742e1a092033680cc
refs/heads/master
2021-03-13T05:40:23.679095
2020-03-11T21:37:45
2020-03-11T21:37:45
246,642,979
0
0
null
null
null
null
UTF-8
Python
false
false
11,395
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.8 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3, 0, 0): new_instancemethod = lambda func, inst, cls: _itkAggregateLabelMapFilterPython.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_itkAggregateLabelMapFilterPython', [dirname(__file__)]) except ImportError: import _itkAggregateLabelMapFilterPython return _itkAggregateLabelMapFilterPython if fp is not None: try: _mod = imp.load_module('_itkAggregateLabelMapFilterPython', fp, pathname, description) finally: fp.close() return _mod _itkAggregateLabelMapFilterPython = swig_import_helper() del swig_import_helper else: import _itkAggregateLabelMapFilterPython del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): object.__setattr__(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self, name, value): if (name == "thisown"): return self.this.own(value) if hasattr(self, name) or (name == "this"): set(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr import itkInPlaceLabelMapFilterPython import itkLabelMapFilterPython import ITKLabelMapBasePython import itkStatisticsLabelObjectPython import itkPointPython import itkFixedArrayPython import pyBasePython import vnl_vector_refPython import vnl_vectorPython import vnl_matrixPython import stdcomplexPython import itkVectorPython import itkIndexPython import itkOffsetPython import itkSizePython import itkMatrixPython import itkCovariantVectorPython import vnl_matrix_fixedPython import itkAffineTransformPython import itkMatrixOffsetTransformBasePython import itkArray2DPython import itkOptimizerParametersPython import itkArrayPython import ITKCommonBasePython import itkVariableLengthVectorPython import itkDiffusionTensor3DPython import itkSymmetricSecondRankTensorPython import itkTransformBasePython import itkShapeLabelObjectPython import itkImageRegionPython import itkLabelObjectPython import itkLabelObjectLinePython import itkHistogramPython import itkSamplePython import itkImageSourcePython import itkImageSourceCommonPython import itkVectorImagePython import itkImagePython import itkRGBAPixelPython import itkRGBPixelPython import itkImageToImageFilterCommonPython def itkAggregateLabelMapFilterLM3_New(): return itkAggregateLabelMapFilterLM3.New() def itkAggregateLabelMapFilterLM2_New(): return itkAggregateLabelMapFilterLM2.New() class itkAggregateLabelMapFilterLM2(itkInPlaceLabelMapFilterPython.itkInPlaceLabelMapFilterLM2): """Proxy of C++ itkAggregateLabelMapFilterLM2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkAggregateLabelMapFilterLM2_Pointer": """__New_orig__() -> itkAggregateLabelMapFilterLM2_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkAggregateLabelMapFilterLM2_Pointer": """Clone(itkAggregateLabelMapFilterLM2 self) -> itkAggregateLabelMapFilterLM2_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2_Clone(self) __swig_destroy__ = _itkAggregateLabelMapFilterPython.delete_itkAggregateLabelMapFilterLM2 def cast(obj: 'itkLightObject') -> "itkAggregateLabelMapFilterLM2 *": """cast(itkLightObject obj) -> itkAggregateLabelMapFilterLM2""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkAggregateLabelMapFilterLM2 Create a new object of the class itkAggregateLabelMapFilterLM2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkAggregateLabelMapFilterLM2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkAggregateLabelMapFilterLM2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkAggregateLabelMapFilterLM2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkAggregateLabelMapFilterLM2.Clone = new_instancemethod(_itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2_Clone, None, itkAggregateLabelMapFilterLM2) itkAggregateLabelMapFilterLM2_swigregister = _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2_swigregister itkAggregateLabelMapFilterLM2_swigregister(itkAggregateLabelMapFilterLM2) def itkAggregateLabelMapFilterLM2___New_orig__() -> "itkAggregateLabelMapFilterLM2_Pointer": """itkAggregateLabelMapFilterLM2___New_orig__() -> itkAggregateLabelMapFilterLM2_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2___New_orig__() def itkAggregateLabelMapFilterLM2_cast(obj: 'itkLightObject') -> "itkAggregateLabelMapFilterLM2 *": """itkAggregateLabelMapFilterLM2_cast(itkLightObject obj) -> itkAggregateLabelMapFilterLM2""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM2_cast(obj) class itkAggregateLabelMapFilterLM3(itkInPlaceLabelMapFilterPython.itkInPlaceLabelMapFilterLM3): """Proxy of C++ itkAggregateLabelMapFilterLM3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkAggregateLabelMapFilterLM3_Pointer": """__New_orig__() -> itkAggregateLabelMapFilterLM3_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkAggregateLabelMapFilterLM3_Pointer": """Clone(itkAggregateLabelMapFilterLM3 self) -> itkAggregateLabelMapFilterLM3_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3_Clone(self) __swig_destroy__ = _itkAggregateLabelMapFilterPython.delete_itkAggregateLabelMapFilterLM3 def cast(obj: 'itkLightObject') -> "itkAggregateLabelMapFilterLM3 *": """cast(itkLightObject obj) -> itkAggregateLabelMapFilterLM3""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkAggregateLabelMapFilterLM3 Create a new object of the class itkAggregateLabelMapFilterLM3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkAggregateLabelMapFilterLM3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkAggregateLabelMapFilterLM3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkAggregateLabelMapFilterLM3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) itkAggregateLabelMapFilterLM3.Clone = new_instancemethod(_itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3_Clone, None, itkAggregateLabelMapFilterLM3) itkAggregateLabelMapFilterLM3_swigregister = _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3_swigregister itkAggregateLabelMapFilterLM3_swigregister(itkAggregateLabelMapFilterLM3) def itkAggregateLabelMapFilterLM3___New_orig__() -> "itkAggregateLabelMapFilterLM3_Pointer": """itkAggregateLabelMapFilterLM3___New_orig__() -> itkAggregateLabelMapFilterLM3_Pointer""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3___New_orig__() def itkAggregateLabelMapFilterLM3_cast(obj: 'itkLightObject') -> "itkAggregateLabelMapFilterLM3 *": """itkAggregateLabelMapFilterLM3_cast(itkLightObject obj) -> itkAggregateLabelMapFilterLM3""" return _itkAggregateLabelMapFilterPython.itkAggregateLabelMapFilterLM3_cast(obj) def aggregate_label_map_filter(*args, **kwargs): """Procedural interface for AggregateLabelMapFilter""" import itk instance = itk.AggregateLabelMapFilter.New(*args, **kwargs) return instance.__internal_call__() def aggregate_label_map_filter_init_docstring(): import itk import itkTemplate if isinstance(itk.AggregateLabelMapFilter, itkTemplate.itkTemplate): aggregate_label_map_filter.__doc__ = itk.AggregateLabelMapFilter.values()[0].__doc__ else: aggregate_label_map_filter.__doc__ = itk.AggregateLabelMapFilter.__doc__
19b0f1f8a7c09dc649e0cad037b8f1d8ebb8b242
81579ecd0678d652bbb57ff97529631fcfb74b12
/corehq/motech/openmrs/tests/test_repeater_helpers.py
83282f2a7427ec1fa865d3dd1356587c444939b9
[ "BSD-3-Clause" ]
permissive
dungeonmaster51/commcare-hq
64fece73671b03c1bca48cb9d1a58764d92796ea
1c70ce416564efa496fb4ef6e9130c188aea0f40
refs/heads/master
2022-12-03T21:50:26.035495
2020-08-11T07:34:59
2020-08-11T07:34:59
279,546,551
1
0
BSD-3-Clause
2020-07-31T06:13:03
2020-07-14T09:51:32
Python
UTF-8
Python
false
false
1,089
py
from unittest import skip from nose.tools import assert_regexp_matches from corehq.motech.auth import BasicAuthManager from corehq.motech.openmrs.repeater_helpers import generate_identifier from corehq.motech.requests import Requests DOMAIN = 'openmrs-test' BASE_URL = 'https://demo.mybahmni.org/openmrs/' USERNAME = 'superman' PASSWORD = 'Admin123' # Patient identifier type for use by the Bahmni Registration System # https://demo.mybahmni.org/openmrs/admin/patients/patientIdentifierType.form?patientIdentifierTypeId=3 IDENTIFIER_TYPE = '81433852-3f10-11e4-adec-0800271c1b75' @skip('Uses third-party web services') def test_generate_identifier(): auth_manager = BasicAuthManager(USERNAME, PASSWORD) requests = Requests( DOMAIN, BASE_URL, verify=False, # demo.mybahmni.org uses a self-issued cert auth_manager=auth_manager, logger=dummy_logger, ) identifier = generate_identifier(requests, IDENTIFIER_TYPE) assert_regexp_matches(identifier, r'^BAH\d{6}$') # e.g. BAH203001 def dummy_logger(*args, **kwargs): pass
2d9f94c5939c209e95cd90f452b218045cd65527
373c43096384a2ea7f351fdedc64312660a1c344
/src/cli.py
f3ccd5fb4c85d42a6d92d16f6863a85c68bacb64
[ "MIT" ]
permissive
VanirLab/weever
7ad69c76227ac0981b1dd0570e3dbae4dd67de21
b602e90ddecb8e469a28e092da3ca7fec514e3dc
refs/heads/master
2020-05-27T20:57:48.320430
2019-05-27T09:02:33
2019-05-27T09:02:33
188,788,722
3
1
null
null
null
null
UTF-8
Python
false
false
49,577
py
""" Implementation of weever's command line interface. """ import sys import traceback import argparse import logging import getpass import typing as typ from src.wrapper.bad_cluster import BadClusterWrapper from src.wrapper.cluster_allocation import ClusterAllocation from src.fat.fat_filesystem.fat_wrapper import create_fat from src.fat.fat_filesystem.fattools import FATtools from src.wrapper.file_slack import FileSlack from src.metadata import Metadata from src.wrapper.mft_slack import MftSlack from src.wrapper.osd2 import OSD2 from src.wrapper.obso_faddr import FADDR from src.wrapper.reserved_gdt_blocks import ReservedGDTBlocks from src.wrapper.superblock_slack import SuperblockSlack from src.wrapper.inode_padding import inodePadding from src.wrapper.write_gen import write_gen from src.wrapper.timestamp_hiding import timestampHiding from src.wrapper.xfield_padding import xfieldPadding LOGGER = logging.getLogger("cli") def do_metadata(args: argparse.Namespace) -> None: """ handles metadata subcommand execution :param args: argparse.Namespace """ if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(args.metadata) meta.info() def do_fattools(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ handles fattools subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ fattool = FATtools(create_fat(device)) if args.fat: fattool.list_fat() elif args.info: fattool.list_info() elif args.list is not None: fattool.list_directory(args.list) def do_fileslack(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ hanles fileslack subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.info: slacker = FileSlack(device, Metadata(), args.dev) slacker.info(args.destination) if args.write: if args.password is False: slacker = FileSlack(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() slacker = FileSlack(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into fileslack slacker.write(sys.stdin.buffer, args.destination) else: # write from files into fileslack with open(args.file, 'rb') as fstream: slacker.write(fstream, args.destination, args.file) with open(args.metadata, 'wb+') as metadata_out: slacker.metadata.write(metadata_out) elif args.read: # read file slack of a single hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = FileSlack(device, meta, args.dev) slacker.read(sys.stdout.buffer) elif args.outfile: # read hidden data in fileslack into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = FileSlack(device, meta, args.dev) slacker.read_into_file(args.outfile) elif args.clear: # clear fileslack with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = FileSlack(device, meta, args.dev) slacker.clear() def do_mftslack(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ hanles mftslack subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.info: slacker = MftSlack(device, Metadata(), args.dev) slacker.info(args.offset, args.limit) if args.write: if args.password is False: slacker = MftSlack(device, Metadata(), args.dev, args.domirr) else: print("Please enter password: ") pw = getpass.getpass() slacker = MftSlack(device, Metadata(password=pw), args.dev, args.domirr) if not args.file: # write from stdin into mftslack slacker.write(sys.stdin.buffer, offset=args.offset) else: # write from files into mftslack with open(args.file, 'rb') as fstream: slacker.write(fstream, args.file, args.offset) with open(args.metadata, 'wb+') as metadata_out: slacker.metadata.write(metadata_out) elif args.read: # read file slack of a single hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = MftSlack(device, meta, args.dev) slacker.read(sys.stdout.buffer) elif args.outfile: # read hidden data in fileslack into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = MftSlack(device, meta, args.dev) slacker.read_into_file(args.outfile) elif args.clear: # clear fileslack with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slacker = MftSlack(device, meta, args.dev) slacker.clear() def do_addcluster(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ hanles addcluster subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: allocator = ClusterAllocation(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() allocator = ClusterAllocation(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into additional clusters allocator.write(sys.stdin.buffer, args.destination) else: # write from files into additional clusters with open(args.file, 'rb') as fstream: allocator.write(fstream, args.destination, args.file) with open(args.metadata, 'wb+') as metadata_out: allocator.metadata.write(metadata_out) elif args.read: # read file slack of a single hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = ClusterAllocation(device, meta, args.dev) allocator.read(sys.stdout.buffer) elif args.outfile: # read hidden data from additional clusters into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = ClusterAllocation(device, meta, args.dev) allocator.read_into_file(args.outfile) elif args.clear: # clear additional clusters with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = ClusterAllocation(device, meta, args.dev) allocator.clear() def do_badcluster(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ hanles badcluster subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: allocator = BadClusterWrapper(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() allocator = BadClusterWrapper(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into bad clusters allocator.write(sys.stdin.buffer) else: # write from file into bad cluster with open(args.file, 'rb') as fstream: allocator.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: allocator.metadata.write(metadata_out) elif args.read: # read bad cluster to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = BadClusterWrapper(device, meta, args.dev) allocator.read(sys.stdout.buffer) elif args.outfile: # read hidden data from bad cluster into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = BadClusterWrapper(device, meta, args.dev) allocator.read_into_file(args.outfile) elif args.clear: # clear bad cluster with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) allocator = BadClusterWrapper(device, meta, args.dev) allocator.clear() def do_reserved_gdt_blocks(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ handles reserved_gdt_blocks subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: reserve = ReservedGDTBlocks(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() reserve = ReservedGDTBlocks(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into reserved GDT blocks reserve.write(sys.stdin.buffer) else: # write from files into reserved GDT blocks with open(args.file, 'rb') as fstream: reserve.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: reserve.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) reserve = ReservedGDTBlocks(device, meta, args.dev) reserve.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) reserve = ReservedGDTBlocks(device, meta, args.dev) reserve.read_into_file(args.outfile) elif args.clear: # clear reserved GDT blocks with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) reserve = ReservedGDTBlocks(device, meta, args.dev) reserve.clear() elif args.info: # show info with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) reserve = ReservedGDTBlocks(device, meta, args.dev) reserve.info() def do_superblock_slack(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ handles superblock_slack subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: slack = SuperblockSlack(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() slack = SuperblockSlack(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into superblock slack slack.write(sys.stdin.buffer) else: # write from files into superblock slack with open(args.file, 'rb') as fstream: slack.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: slack.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slack = SuperblockSlack(device, meta, args.dev) slack.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slack = SuperblockSlack(device, meta, args.dev) slack.read_into_file(args.outfile) elif args.clear: # clear superblock slack with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slack = SuperblockSlack(device, meta, args.dev) slack.clear() elif args.info: # show info with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) slack = SuperblockSlack(device, meta, args.dev) slack.info() def do_osd2(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ handles osd2 subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: osd2 = OSD2(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() osd2 = OSD2(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into osd2 fields osd2.write(sys.stdin.buffer) else: # write from files into osd2 fields with open(args.file, 'rb') as fstream: osd2.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: osd2.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) osd2 = OSD2(device, meta, args.dev) osd2.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) osd2 = OSD2(device, meta, args.dev) osd2.read_into_file(args.outfile) elif args.clear: # clear osd2 fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) osd2 = OSD2(device, meta, args.dev) osd2.clear() elif args.info: # show info with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) osd2 = OSD2(device, meta, args.dev) osd2.info() def do_obso_faddr(args: argparse.Namespace, device: typ.BinaryIO) -> None: """ handles obso_faddr subcommand execution :param args: argparse.Namespace :param device: stream of the filesystem """ if args.write: if args.password is False: faddr = FADDR(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() faddr = FADDR(device, Metadata(password=pw), args.dev) if not args.file: # write from stdin into faddr fields faddr.write(sys.stdin.buffer) else: # write from files into faddr fields with open(args.file, 'rb') as fstream: faddr.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: faddr.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) faddr = FADDR(device, meta, args.dev) faddr.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) faddr = FADDR(device, meta, args.dev) faddr.read_into_file(args.outfile) elif args.clear: # clear faddr fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) faddr = FADDR(device, meta, args.dev) faddr.clear() elif args.info: # show info with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) faddr = FADDR(device, meta, args.dev) faddr.info() def do_inode_padding(args: argparse.Namespace, device: typ.BinaryIO) -> None: if args.write: if args.password is False: ipad = inodePadding(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() ipad = inodePadding(device, Metadata(password=pw), args.dev) if not args.file: ipad.write(sys.stdin.buffer) else: with open(args.file, 'rb') as fstream: ipad.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: ipad.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) ipad = inodePadding(device, meta, args.dev) ipad.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) ipad = inodePadding(device, meta, args.dev) ipad.read_into_file(args.outfile) elif args.clear: # clear faddr fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) ipad = inodePadding(device, meta, args.dev) ipad.clear() def do_write_gen(args: argparse.Namespace, device: typ.BinaryIO) -> None: if args.write: if args.password is False: wgen = write_gen(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() wgen = write_gen(device, Metadata(password=pw), args.dev) if not args.file: wgen.write(sys.stdin.buffer) else: with open(args.file, 'rb') as fstream: wgen.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: wgen.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) wgen = write_gen(device, meta, args.dev) wgen.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password = pw) meta.read(metadata_file) wgen = write_gen(device, meta, args.dev) wgen.read_into_file(args.outfile) elif args.clear: # clear faddr fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) wgen = write_gen(device, meta, args.dev) wgen.clear() def do_timestamp_hiding(args: argparse.Namespace, device: typ.BinaryIO) -> None: if args.write: if args.password is False: timestamp = timestampHiding(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() timestamp = timestampHiding(device, Metadata(password=pw), args.dev) if not args.file: timestamp.write(sys.stdin.buffer) else: with open(args.file, 'rb') as fstream: timestamp.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: timestamp.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) timestamp = timestampHiding(device, meta, args.dev) timestamp.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) timestamp = timestampHiding(device, meta, args.dev) timestamp.read_into_file(args.outfile) elif args.clear: # clear faddr fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) timestamp = timestampHiding(device, meta, args.dev) timestamp.clear() def do_xfield_padding(args: argparse.Namespace, device: typ.BinaryIO) -> None: if args.write: if args.password is False: xfield = xfieldPadding(device, Metadata(), args.dev) else: print("Please enter password: ") pw = getpass.getpass() xfield = xfieldPadding(device, Metadata(password=pw), args.dev) if not args.file: xfield.write(sys.stdin.buffer) else: with open(args.file, 'rb') as fstream: xfield.write(fstream, args.file) with open(args.metadata, 'wb+') as metadata_out: xfield.metadata.write(metadata_out) elif args.read: # read hidden file to stdout with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) xfield = xfieldPadding(device, meta, args.dev) xfield.read(sys.stdout.buffer) elif args.outfile: # read hidden file into outfile with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) xfield = xfieldPadding(device, meta, args.dev) xfield.read_into_file(args.outfile) elif args.clear: # clear faddr fields with open(args.metadata, 'rb') as metadata_file: if args.password is False: meta = Metadata() else: print("Please enter password: ") pw = getpass.getpass() meta = Metadata(password=pw) meta.read(metadata_file) xfield = xfieldPadding(device, meta, args.dev) xfield.clear() def build_parser() -> argparse.ArgumentParser: """ Get the cli parser :rtype: argparse.ArgumentParser """ parser = argparse.ArgumentParser(description='Toolkit for filesystem based data hiding techniques.') # TODO: Maybe this option should be required for hiding technique # subcommand but not for metadata.... needs more thoughs than I # currently have parser.set_defaults(which='no_arguments') parser.add_argument('-d', '--device', dest='dev', required=False, help='Path to filesystem') parser.add_argument('-p', '--password', dest='password', action='store_true', required=False, help='Password for encryption of metadata') # TODO Maybe we should provide a more fine grained option to choose between different log levels parser.add_argument('--verbose', '-v', action='count', help="Increase verbosity. Use it multiple times to increase verbosity further.") subparsers = parser.add_subparsers(help='Hiding techniques sub-commands') # FAT Tools fatt = subparsers.add_parser('fattools', help='List statistics about FAT filesystem') fatt.set_defaults(which='fattools') fatt.add_argument('-l', '--ls', dest='list', type=int, metavar='CLUSTER_ID', help='List files under cluster id. Use 0 for root directory') fatt.add_argument('-f', '--fat', dest='fat', action='store_true', help='List content of FAT') fatt.add_argument('-i', '--info', dest='info', action='store_true', help='Show some information about the filesystem') # Metadata info metadata = subparsers.add_parser('metadata', help='list information about a metadata file') metadata.set_defaults(which='metadata') metadata.add_argument('-m', '--metadata', dest='metadata', type=argparse.FileType('rb'), help="filepath to metadata file") # FileSlack fileslack = subparsers.add_parser('fileslack', help='Operate on file slack') fileslack.set_defaults(which='fileslack') fileslack.add_argument('-d', '--dest', dest='destination', action='append', required=False, help='absolute path to file or directory on filesystem, directories will be parsed recursively') fileslack.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') fileslack.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from slackspace to stdout') fileslack.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from slackspace to OUTFILE') fileslack.add_argument('-w', '--write', dest='write', action='store_true', help='write to slackspace') fileslack.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear slackspace') fileslack.add_argument('-i', '--info', dest='info', action='store_true', help='print file slack information of given files') fileslack.add_argument('file', metavar='FILE', nargs='?', help="File to write into slack space, if nothing provided, use stdin") # MftSlack mftslack = subparsers.add_parser('mftslack', help='Operate on mft slack') mftslack.set_defaults(which='mftslack') mftslack.add_argument('-s', '--seek', dest='offset', default=0, type=int, required=False, help='sector offset to the start of the first mft entry to be used when hiding data. To avoid overwriting data use the "Next position" provided by the last execution of this module.') mftslack.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') mftslack.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from slackspace to stdout') mftslack.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from slackspace to OUTFILE') mftslack.add_argument('-w', '--write', dest='write', action='store_true', help='write to slackspace') mftslack.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear slackspace') mftslack.add_argument('-d', '--domirr', dest='domirr', action='store_true', help='write copy of data to $MFTMirr. Avoids detection with chkdsk') mftslack.add_argument('-i', '--info', dest='info', action='store_true', help='print mft slack information of entries in limit') mftslack.add_argument('-l', '--limit', dest='limit', default=-1, type=int, required=False, help='limit the amount of mft entries to print information for when using the "--info" switch') mftslack.add_argument('file', metavar='FILE', nargs='?', help="File to write into slack space, if nothing provided, use stdin") # Additional Cluster Allocation addcluster = subparsers.add_parser('addcluster', help='Allocate more clusters for a file') addcluster.set_defaults(which='addcluster') addcluster.add_argument('-d', '--dest', dest='destination', required=False, help='absolute path to file or directory on filesystem') addcluster.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') addcluster.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from allocated clusters to stdout') addcluster.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from allocated clusters to OUTFILE') addcluster.add_argument('-w', '--write', dest='write', action='store_true', help='write to additional allocated clusters') addcluster.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear allocated clusters') addcluster.add_argument('file', metavar='FILE', nargs='?', help="File to write into additionally allocated clusters, if nothing provided, use stdin") # Additional Cluster Allocation badcluster = subparsers.add_parser('badcluster', help='Allocate more clusters for a file') badcluster.set_defaults(which='badcluster') badcluster.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') badcluster.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from allocated clusters to stdout') badcluster.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from allocated clusters to OUTFILE') badcluster.add_argument('-w', '--write', dest='write', action='store_true', help='write to additional allocated clusters') badcluster.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear allocated clusters') badcluster.add_argument('file', metavar='FILE', nargs='?', help="File to write into additionally allocated clusters, if nothing provided, use stdin") # Reserved GDT blocks reserved_gdt_blocks = subparsers.add_parser('reserved_gdt_blocks', help='hide data in reserved GDT blocks') reserved_gdt_blocks.set_defaults(which='reserved_gdt_blocks') reserved_gdt_blocks.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') reserved_gdt_blocks.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from reserved GDT blocks to stdout') reserved_gdt_blocks.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from reserved GDT blocks to OUTFILE') reserved_gdt_blocks.add_argument('-w', '--write', dest='write', action='store_true', help='write to reserved GDT blocks') reserved_gdt_blocks.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear reserved GDT blocks') reserved_gdt_blocks.add_argument('-i', '--info', dest='info', action='store_true', help='show infor1mation about reserved gdt') reserved_gdt_blocks.add_argument('file', metavar='FILE', nargs='?', help="File to write into reserved GDT blocks, if nothing provided, use stdin") # Superblock slack superblock_slack = subparsers.add_parser('superblock_slack', help='hide data in superblock slack') superblock_slack.set_defaults(which='superblock_slack') superblock_slack.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') superblock_slack.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from superblock slack to stdout') superblock_slack.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from superblock slack to OUTFILE') superblock_slack.add_argument('-w', '--write', dest='write', action='store_true', help='write to superblock slack') superblock_slack.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear superblock slack') superblock_slack.add_argument('-i', '--info', dest='info', action='store_true', help='show information about superblock') superblock_slack.add_argument('file', metavar='FILE', nargs='?', help="File to write into superblock slack, if nothing provided, use stdin") # OSD2 osd2 = subparsers.add_parser('osd2', help='hide data in osd2 fields of inodes') osd2.set_defaults(which='osd2') osd2.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') osd2.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from osd2 fields to stdout') osd2.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from osd2 fields to OUTFILE') osd2.add_argument('-w', '--write', dest='write', action='store_true', help='write to osd2 fields') osd2.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear osd2 fields') osd2.add_argument('-i', '--info', dest='info', action='store_true', help='show information about osd2') osd2.add_argument('file', metavar='FILE', nargs='?', help="File to write into osd2 fields, if nothing provided, use stdin") # obso_faddr obso_faddr = subparsers.add_parser('obso_faddr', help='hide data in obso_faddr fields of inodes') obso_faddr.set_defaults(which='obso_faddr') obso_faddr.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') obso_faddr.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from obso_faddr fields to stdout') obso_faddr.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from obso_faddr fields to OUTFILE') obso_faddr.add_argument('-w', '--write', dest='write', action='store_true', help='write to obso_faddr fields') obso_faddr.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear obso_faddr fields') obso_faddr.add_argument('-i', '--info', dest='info', action='store_true', help='show information about obso_faddr') obso_faddr.add_argument('file', metavar='FILE', nargs='?', help="File to write into obso_faddr fields, if nothing provided, use stdin") # inode Padding inode_padding = subparsers.add_parser('inode_padding', help='hide data in padding fields of inodes') inode_padding.set_defaults(which='inode_padding') inode_padding.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') inode_padding.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from padding fields to stdout') inode_padding.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from padding fields to OUTFILE') inode_padding.add_argument('-w', '--write', dest='write', action='store_true', help='write to padding fields') inode_padding.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear padding fields') inode_padding.add_argument('file', metavar='FILE', nargs='?', help="File to write into padding fields, if nothing provided, use stdin") # write gen write_gen = subparsers.add_parser('write_gen', help='hide data in write_gen fields of inodes') write_gen.set_defaults(which='write_gen') write_gen.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') write_gen.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from write_gen fields to stdout') write_gen.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from write_gen fields to OUTFILE') write_gen.add_argument('-w', '--write', dest='write', action='store_true', help='write to write_gen fields') write_gen.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear write_gen fields') write_gen.add_argument('file', metavar='FILE', nargs='?', help="File to write into write_gen fields, if nothing provided, use stdin") # timestamp hiding timestamp = subparsers.add_parser('timestamp_hiding', help='hide data in inode timestamps') timestamp.set_defaults(which='timestamp_hiding') timestamp.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') timestamp.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from timestamps to stdout') timestamp.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from timestamps to OUTFILE') timestamp.add_argument('-w', '--write', dest='write', action='store_true', help='write to timestamps') timestamp.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear timestamps') timestamp.add_argument('file', metavar='FILE', nargs='?', help="File to write into timestamps, if nothing provided, use stdin") # xfield padding xfield = subparsers.add_parser('xfield_padding', help='hide data in inode extended fields') xfield.set_defaults(which='xfield_padding') xfield.add_argument('-m', '--metadata', dest='metadata', required=True, help='Metadata file to use') xfield.add_argument('-r', '--read', dest='read', action='store_true', help='read hidden data from extended fields to stdout') xfield.add_argument('-o', '--outfile', dest='outfile', metavar='OUTFILE', help='read hidden data from extended fields to OUTFILE') xfield.add_argument('-w', '--write', dest='write', action='store_true', help='write to extended fields') xfield.add_argument('-c', '--clear', dest='clear', action='store_true', help='clear extended fields') xfield.add_argument('file', metavar='FILE', nargs='?', help="File to write into extended fields, if nothing provided, use stdin") return parser def main(): # set exception handler sys.excepthook = general_excepthook # Parse cli arguments parser = build_parser() args = parser.parse_args() # Set logging level (verbosity) if args.verbose is None: args.verbose = 0 if args.verbose == 1: logging.basicConfig(level=logging.INFO) elif args.verbose >= 2: logging.basicConfig(level=logging.DEBUG) if args.verbose > 2: fish = """ .|_- ___.-´ /_. .--´` `´`-,/ . ..--.-´-. ´-. /| (o( o( o ) ./. ` ´ - ( `. / -....-- .\ \--..- \\ `--´ -.-´ \.- \| """ LOGGER.debug(fish) LOGGER.debug("Thank you for debugging so hard! We know it is " "a mess. So, here is a friend, who will support you :)") # if 'metadata' was chosen if args.which == 'no_arguments': parser.print_help() elif args.which == 'metadata': do_metadata(args) else: with open(args.dev, 'rb+') as device: # if 'fattools' was chosen if args.which == "fattools": do_fattools(args, device) # if 'fileslack' was chosen if args.which == 'fileslack': do_fileslack(args, device) # if 'mftslack' was chosen if args.which == 'mftslack': do_mftslack(args, device) # if 'addcluster' was chosen if args.which == 'addcluster': do_addcluster(args, device) # if 'badcluster' was chosen if args.which == 'badcluster': do_badcluster(args, device) # if 'reserved_gdt_blocks' was chosen if args.which == 'reserved_gdt_blocks': do_reserved_gdt_blocks(args, device) # if 'osd2' was chosen if args.which == "osd2": do_osd2(args, device) # if 'obso_faddr' was chosen if args.which == "obso_faddr": do_obso_faddr(args, device) # if 'inode_padding' was chosen if args.which == "inode_padding": do_inode_padding(args, device) # if 'timestamp_hiding' was chosen if args.which == "timestamp_hiding": do_timestamp_hiding(args, device) # if 'xfield_padding' was chosen if args.which == "xfield_padding": do_xfield_padding(args, device) # if 'write_gen' was chosen if args.which == "write_gen": do_write_gen(args, device) # if 'superblock_slack' was chosen if args.which == 'superblock_slack': do_superblock_slack(args,device) def general_excepthook(errtype, value, tb): """ This function serves as a general exception handler, who catches all exceptions, that were not handled at a higher lever """ LOGGER.critical("Error: %s: %s.", errtype, value) LOGGER.info("".join(traceback.format_exception(type, value, tb))) sys.exit(1) if __name__ == "__main__": main()
dae9dc485e3fb180f377368fb642b0eeeb1004c6
1640189b5bf78114e2749a8ed1216e099bae9814
/src/xmlsec/rsa_x509_pem/pyasn1/debug.py
5aa42ced36ef65aadacddb629cebd74977b9d1a4
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
hfalcic/pyXMLSecurity
fb69cce12c1b417928d85b91a4c3dc87f46935ec
b29a68e6d21a0485b9190be45d532b9042fdc918
refs/heads/master
2020-04-03T13:19:13.016532
2014-07-08T17:57:55
2014-07-08T17:57:55
21,471,398
0
1
null
null
null
null
UTF-8
Python
false
false
1,512
py
import sys from .compat.octets import octs2ints from . import error from . import __version__ flagNone = 0x0000 flagEncoder = 0x0001 flagDecoder = 0x0002 flagAll = 0xffff flagMap = { 'encoder': flagEncoder, 'decoder': flagDecoder, 'all': flagAll } class Debug: defaultPrinter = sys.stderr.write def __init__(self, *flags): self._flags = flagNone self._printer = self.defaultPrinter self('running pyasn1 version %s' % __version__) for f in flags: if f not in flagMap: raise error.PyAsn1Error('bad debug flag %s' % (f,)) self._flags = self._flags | flagMap[f] self('debug category \'%s\' enabled' % f) def __str__(self): return 'logger %s, flags %x' % (self._printer, self._flags) def __call__(self, msg): self._printer('DBG: %s\n' % msg) def __and__(self, flag): return self._flags & flag def __rand__(self, flag): return flag & self._flags logger = 0 def setLogger(l): global logger logger = l def hexdump(octets): return ' '.join( [ '%s%.2X' % (n%16 == 0 and ('\n%.5d: ' % n) or '', x) for n,x in zip(range(len(octets)), octs2ints(octets)) ] ) class Scope: def __init__(self): self._list = [] def __str__(self): return '.'.join(self._list) def push(self, token): self._list.append(token) def pop(self): return self._list.pop() scope = Scope()
c9cbfca3f4c84cb5e219730e43194e7238cda653
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/358/usersdata/296/102792/submittedfiles/estatistica.py
79ada402f0ec9ec03a71780b75717f4fa32662f5
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,036
py
# -*- coding: utf-8 -*- def media(lista): soma = 0 for i in range(0,len(lista),1): soma = soma + lista[i] resultado = soma/len(lista) return resultado def media(lista): media = sum(lista)/len(lista) return media def desvio_padrao(lista): somatorio = 0 for i in range (0,len(lista),1): somatorio = ((media(lista)-lista[i])**2) + somatorio desvio = (somatorio/(n-1))**0.5 return desvio m = int(input("Digite o número da lista: ")) n = int(input("Digite o número de elementos de cada lista: ")) matriz=[] for i in range (0,m,1): matriz_linha=[] for j in range (0,n,1): matriz_linha.append(int(input("Digite o elemento (%d,%d): "%(i+1,j+1)))) matriz.append(matriz_linha) for i in range (0,m,1): print(media(matriz[i])) print("%.2f"%(desvio_padrao(matriz[i]))) #Baseado na função acima, escreva a função para calcular o desvio padrão de uma lista #Por último escreva o programa principal, que pede a entrada e chama as funções criadas.
9cab9dc37c46f3af6d44d688dd5c03fcf4425162
10c459a49cbc8ee2dc3bc2a8353c48b5a96f0c1d
/AI/nai_bayes.py
131804de264e30fc0df16076a4ac00543533cbaf
[]
no_license
alinzel/Demo
1a5d0e4596ab4c91d7b580da694b852495c4ddcc
cc22bbcdbd77190014e9c26e963abd7a9f4f0829
refs/heads/master
2020-03-10T22:26:30.247695
2018-04-15T15:37:28
2018-04-15T15:37:28
129,619,168
0
0
null
null
null
null
UTF-8
Python
false
false
3,994
py
import numpy as np from sklearn.naive_bayes import MultinomialNB, BernoulliNB from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import GridSearchCV from sklearn import metrics from time import time from pprint import pprint import matplotlib.pyplot as plt import matplotlib as mpl def make_test(classfier): print('分类器:', classfier) alpha_can = np.logspace(-3, 2, 10) model = GridSearchCV(classfier, param_grid={'alpha': alpha_can}, cv=5) model.set_params(param_grid={'alpha': alpha_can}) t_start = time() model.fit(x_train, y_train) t_end = time() t_train = (t_end - t_start) / (5 * alpha_can.size) print('5折交叉验证的训练时间为:%.3f秒/(5*%d)=%.3f秒' % ((t_end - t_start), alpha_can.size, t_train)) print('最优超参数为:', model.best_params_) t_start = time() y_hat = model.predict(x_test) t_end = time() t_test = t_end - t_start print('测试时间:%.3f秒' % t_test) acc = metrics.accuracy_score(y_test, y_hat) print('测试集准确率:%.2f%%' % (100 * acc)) name = str(classfier).split('(')[0] index = name.find('Classifier') if index != -1: name = name[:index] # 去掉末尾的Classifier return t_train, t_test, 1 - acc, name if __name__ == "__main__": remove = ('headers', 'footers', 'quotes') categories = 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space' # 选择四个类别进行分类 # 下载数据 data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=0, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=0, remove=remove) print('训练集包含的文本数目:', len(data_train.data)) print('测试集包含的文本数目:', len(data_test.data)) print('训练集和测试集使用的%d个类别的名称:' % len(categories)) categories = data_train.target_names pprint(categories) y_train = data_train.target y_test = data_test.target print(' -- 前10个文本 -- ') for i in np.arange(10): print('文本%d(属于类别 - %s):' % (i + 1, categories[y_train[i]])) print(data_train.data[i]) print('\n\n') # tf-idf处理 vectorizer = TfidfVectorizer(input='content', stop_words='english', max_df=0.5, sublinear_tf=True) x_train = vectorizer.fit_transform(data_train.data) x_test = vectorizer.transform(data_test.data) print('训练集样本个数:%d,特征个数:%d' % x_train.shape) print('停止词:\n', end=' ') #pprint(vectorizer.get_stop_words()) feature_names = np.asarray(vectorizer.get_feature_names()) # 比较分类器结果 clfs = (MultinomialNB(), # 0.87(0.017), 0.002, 90.39% BernoulliNB(), # 1.592(0.032), 0.010, 88.54% ) result = [] for clf in clfs: r = make_test(clf) result.append(r) print('\n') result = np.array(result) time_train, time_test, err, names = result.T time_train = time_train.astype(np.float) time_test = time_test.astype(np.float) err = err.astype(np.float) x = np.arange(len(time_train)) mpl.rcParams['font.sans-serif'] = ['simHei'] mpl.rcParams['axes.unicode_minus'] = False plt.figure(figsize=(10, 7), facecolor='w') ax = plt.axes() b1 = ax.bar(x, err, width=0.25, color='#77E0A0') ax_t = ax.twinx() b2 = ax_t.bar(x + 0.25, time_train, width=0.25, color='#FFA0A0') b3 = ax_t.bar(x + 0.5, time_test, width=0.25, color='#FF8080') plt.xticks(x + 0.5, names) plt.legend([b1[0], b2[0], b3[0]], ('错误率', '训练时间', '测试时间'), loc='upper left', shadow=True) plt.title('新闻组文本数据不同分类器间的比较', fontsize=18) plt.xlabel('分类器名称') plt.grid(True) plt.tight_layout(2) plt.show()
080a6e7e8f5e0c897c92846f23df703ff1cf81f0
a8750439f200e4efc11715df797489f30e9828c6
/LeetCodeContests/87/845_longest_mountain.py
141d5018c884992b88f6afeddcd2fd5ae122f0db
[]
no_license
rajlath/rkl_codes
f657174305dc85c3fa07a6fff1c7c31cfe6e2f89
d4bcee3df2f501349feed7a26ef9828573aff873
refs/heads/master
2023-02-21T10:16:35.800612
2021-01-27T11:43:34
2021-01-27T11:43:34
110,989,354
0
0
null
null
null
null
UTF-8
Python
false
false
1,187
py
''' Let's call any (contiguous) subarray B (of A) a mountain if the following properties hold: B.length >= 3 There exists some 0 < i < B.length - 1 such that B[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1] (Note that B could be any subarray of A, including the entire array A.) Given an array A of integers, return the length of the longest mountain. Return 0 if there is no mountain. Example 1: Input: [2,1,4,7,3,2,5] Output: 5 Explanation: The largest mountain is [1,4,7,3,2] which has length 5. Example 2: Input: [2,2,2] Output: 0 Explanation: There is no mountain. Note: 0 <= A.length <= 10000 0 <= A[i] <= 10000 ''' class Solution: def longestMountain(self, A): """ :type A: List[int] :rtype: int """ size = len(A) ans = 0 for i in range(1, size-1): if A[i] > A[i-1] and A[i] > A[i+1]: l = i - 1 r = i + 1 while l > 0 and A[l] > A[l-1]: l-= 1 while r < size-1 and A[r] > A[r+1]: r +=1 ans = max(ans, r - l + 1) return ans sol = Solution() print(sol.longestMountain([0,1,2,3,4,5,4,3,2,1,0]))
681440009127bf5750638d9a87a4155477b2fda3
43b34ed0be64771f236c086f716bc6a92ae3db32
/kt_ph_n.py
8073dcefb011746731594e8d83f99505915ad414
[]
no_license
elonca/LWB-benchmark-generator
ad5b6dc5e591941184056476db3ad13f01900879
7a7f28800f7574c98a3883f6edccad727dd509bc
refs/heads/main
2023-07-28T01:42:22.532324
2021-09-16T07:22:56
2021-09-16T07:22:56
407,061,367
0
0
null
2021-09-16T07:12:38
2021-09-16T07:12:37
null
UTF-8
Python
false
false
135
py
from k_ph_n import * def kt_ph_n(n): return str(kt_ph_n_f(n))[1:-1] def kt_ph_n_f(n): return left(n) |IMPLIES| Dia(right(n))
16b25ff5a3aed45017c060619a98e4dfce6a60d6
cbda89443b351bb2047180dad4e300c13dc3df7f
/Crystals/Morpurgo_sp_outer/Jobs/Pc/Pc_neut_neut_inner1_outer4/Pc_neut_neut_inner1_outer4.py
416385fcff412563b8446a40888f5125d9823323
[]
no_license
sheridanfew/pythonpolarisation
080f52979f98d26360a46412a10c8e3f51ee4549
178e2684e9a239a8e60af5f7b1eb414ac5f31e92
refs/heads/master
2021-07-10T01:07:40.978790
2021-03-11T16:56:37
2021-03-11T16:56:37
96,101,351
0
0
null
2017-07-03T13:37:06
2017-07-03T10:54:52
null
UTF-8
Python
false
false
5,279
py
import sys sys.path.append('../../../../../') from BasicElements import * from BasicElements.Register import GetRegister from BasicElements.MoleculeFactory import ReadMoleculeType from BasicElements.MoleculeFactory import GetMolecule from BasicElements.Crystal import * from Polarizability.GetDipoles import get_dipoles,split_dipoles_onto_atoms from Polarizability import * from Polarizability.GetEnergyFromDips import * from Polarizability.JMatrix import JMatrix import numpy as np from math import * from time import gmtime, strftime import os print strftime("%a, %d %b %Y %X +0000", gmtime()) name='Pc_neut_neut_inner1_outer4' #For crystals here, all cubic and centred at centre insize=1 #number of TVs in each dir central mol is from edge of inner region outsize=4 mols_cen=['Pc_mola_neut_aniso_cifstruct_chelpg.xyz','Pc_molb_neut_aniso_cifstruct_chelpg.xyz'] mols_sur=['Pc_mola_neut_aniso_cifstruct_chelpg.xyz','Pc_molb_neut_aniso_cifstruct_chelpg.xyz'] mols_outer=['sp_Pc_mola_neut.xyz','sp_Pc_molb_neut.xyz'] #From cif: ''' Pc _cell_length_a 7.900 _cell_length_b 6.060 _cell_length_c 16.010 _cell_angle_alpha 101.90 _cell_angle_beta 112.60 _cell_angle_gamma 85.80 _cell_volume 692.384 ''' #Get translation vectors: a=7.900/0.5291772109217 b=6.060/0.5291772109217 c=16.010/0.5291772109217 alpha=101.90*(pi/180) beta=112.60*(pi/180) gamma=90*(pi/180) cif_unit_cell_volume=692.384/(a*b*c*(0.5291772109217**3)) cell_volume=sqrt(1 - (cos(alpha)**2) - (cos(beta)**2) - (cos(gamma)**2) + (2*cos(alpha)*cos(beta)*cos(gamma))) #Converts frac coords to carts matrix_to_cartesian=np.matrix( [[a, b*cos(gamma), c*cos(beta)], [0, b*sin(gamma), c*(cos(alpha) - cos(beta)*cos(gamma))/sin(gamma)], [0, 0, c*cell_volume/sin(gamma)]]) #carts to frac matrix_to_fractional=matrix_to_cartesian.I #TVs, TV[0,1,2] are the three translation vectors. TV=matrix_to_cartesian.T cut=8.0 totsize=insize+outsize #number of TVs in each dir nearest c inner mol is from edge of outer region cenpos=[totsize,totsize,totsize] length=[2*totsize+1,2*totsize+1,2*totsize+1] maxTVs=insize outer_maxTVs=insize+outsize #for diamond outer, don't specify for cube and will fill to cube edges. print 'name: ',name,'mols_cen: ', mols_cen,' mols_sur: ',mols_sur,' TVs: ', TV # Place Molecules prot_neut_cry=Crystal(name=name,mols_cen=mols_cen,mols_sur=mols_sur,cenpos=cenpos,length=length,TVs=TV,maxTVs=maxTVs,mols_outer=mols_outer,outer_maxTVs=outer_maxTVs) #prot_neut_cry._mols contains all molecules. #mols[0] contains a list of all molecules in position a, mols[1] all mols in pos'n b, etc. #mols[0][x,y,z] contains molecule a in position x,y,z #mols may as such be iterated over in a number of ways to consider different molecules. prot_neut_cry().print_posns() #Calculate Properties: print strftime("%a, %d %b %Y %X +0000", gmtime()) E0 = np.matrix([0.,0.,0.]) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Calc jm' jm = JMatrix(cutoff=cut) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Calc dips:' d = get_dipoles(E0=E0,jm=jm._m,cutoff=cut) print strftime("%a, %d %b %Y %X +0000", gmtime()) Efield = get_electric_field(E0) potential = get_potential() print strftime("%a, %d %b %Y %X +0000", gmtime()) #print 'dips', d print 'splitting dips onto atoms' split_d = split_dipoles_onto_atoms(d) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'summing dips:' tot = np.matrix([0.,0.,0.]) for dd in split_d: tot += dd print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'total dip moment', tot Uqq = np.multiply(get_U_qq(potential=potential),27.211) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Uqq', Uqq Uqd = np.multiply(get_U_qdip(dips=d,Efield=Efield),27.211) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Uqd', Uqd Udd = np.multiply(get_U_dipdip(jm=jm._m,dips=d.T),27.211) print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Udd', Udd energyev = Udd+Uqd+Uqq print 'energyev', energyev energy=energyev/27.211 print strftime("%a, %d %b %Y %X +0000", gmtime()) print 'Making .dat cross sections for gnuplot' # print TVs if not os.path.exists('Dips_Posns_TVs'): os.makedirs('Dips_Posns_TVs') f = open('Dips_Posns_TVs/%s_TVs.dat' % name, 'w') TVstr=str(str(TV[0,0]) + ' ' + str(TV[0,1]) + ' ' + str(TV[0,2]) + '\n' + str(TV[1,0]) + ' ' + str(TV[1,1]) + ' ' + str(TV[1,2]) + '\n' + str(TV[2,0]) + ' ' + str(TV[2,1]) + ' ' + str(TV[2,2])+ '\n') f.write(TVstr) f.flush() f.close() # print dipoles if not os.path.exists('Dips_Posns_TVs'): os.makedirs('Dips_Posns_TVs') f = open('Dips_Posns_TVs/%s_dipoles.dat' % name, 'w') for dd in split_d: dstr=str(dd) f.write(dstr) f.write('\n') f.flush() f.close() # print properties for charge in centrepos time=strftime("%a, %d %b %Y %X +0000", gmtime()) f = open('%s_properties.csv' % name, 'w') f.write ('time\tname\tmols_cen\tmols_sur\tmols_outer\tinsize\toutsize\tenergyev\tUqq\tUqd\tUdd\tTotdip_x\tTotdip_y\tTotdip_z') f.write ('\n%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s' % (time,name,mols_cen,mols_sur,mols_outer,insize,outsize,energyev,Uqq,Uqd,Udd,tot[0,0],tot[0,1],tot[0,2])) f.flush() f.close() print 'Job Completed Successfully.'
5fbfc72f14ae2926b33488a6f8779cdf247fa0b7
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_397/ch12_2020_03_04_11_23_47_173814.py
6f4b82bd91b75fe7a2fadd6fbd05585a048320bf
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
def resolve_equacao_1o_grau (a, b): X=(0-b)/a return X
894482ee3334014d91285e7f29af8f4772c1e0bf
dd80a584130ef1a0333429ba76c1cee0eb40df73
/external/chromium_org/tools/cr/main.py
dced8cd4069ceea9d47ee5b9b17ca6fc164b8c81
[ "MIT", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "GPL-2.0-only", "Apache-2.0", "LicenseRef-scancode-unknown" ]
permissive
karunmatharu/Android-4.4-Pay-by-Data
466f4e169ede13c5835424c78e8c30ce58f885c1
fcb778e92d4aad525ef7a995660580f948d40bc9
refs/heads/master
2021-03-24T13:33:01.721868
2017-02-18T17:48:49
2017-02-18T17:48:49
81,847,777
0
2
MIT
2020-03-09T00:02:12
2017-02-13T16:47:00
null
UTF-8
Python
false
false
3,092
py
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Chromium cr tool main module. Holds the main function and all it's support code. """ import os import sys import cr import cr.auto.user import cr.autocomplete import cr.loader _CONTACT = '[email protected]' def Main(): """Chromium cr tool main function. This is the main entry point of the cr tool, it finds and loads all the plugins, creates the context and then activates and runs the specified command. """ # Add the users plugin dir to the cr.auto.user package scan user_path = os.path.expanduser(os.path.join('~', '.config', 'cr')) cr.auto.user.__path__.append(user_path) cr.loader.Scan() # Build the command context context = cr.Context( description='The chrome dev build tool.', epilog='Contact ' + _CONTACT + ' if you have issues with this tool.', ) # Install the sub-commands for command in cr.Command.Plugins(): context.AddSubParser(command) # test for the special autocomplete command if context.autocompleting: # After plugins are loaded so pylint: disable=g-import-not-at-top cr.autocomplete.Complete(context) return # Speculative argument processing to add config specific args context.ParseArgs(True) cr.plugin.Activate(context) # At this point we should know what command we are going to use command = cr.Command.GetActivePlugin(context) # Do some early processing, in case it changes the build dir if command: command.EarlyArgProcessing(context) # Update the activated set again, in case the early processing changed it cr.plugin.Activate(context) # Load the build specific configuration found_build_dir = cr.base.client.LoadConfig(context) # Final processing or arguments context.ParseArgs() cr.plugin.Activate(context) # If we did not get a command before, it might have been fixed. if command is None: command = cr.Command.GetActivePlugin(context) # If the verbosity level is 3 or greater, then print the environment here if context.verbose >= 3: context.DumpValues(context.verbose > 3) if command is None: print context.Substitute('No command specified.') exit(1) if command.requires_build_dir: if not found_build_dir: if not context.Find('CR_OUT_FULL'): print context.Substitute( 'No build directory specified. Please use cr init to make one.') else: print context.Substitute( 'Build {CR_BUILD_DIR} not a valid build directory') exit(1) if context.Find('CR_VERSION') != cr.base.client.VERSION: print context.Substitute( 'Build {CR_BUILD_DIR} is for the wrong version of cr') print 'Please run cr init to reset it' exit(1) cr.Platform.Prepare(context) if context.verbose >= 1: print context.Substitute( 'Running cr ' + command.name + ' for {CR_BUILD_DIR}') # Invoke the given command command.Run(context) if __name__ == '__main__': sys.exit(Main())