blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
52fa7f6ab35d271fd30dbc1f96ddcee4a2df32b5
e74c2e5b85b9af58a6f9b4b6eea160fb66f6bb08
/aula11.py
a14bb8b989d099d4f7350a32cb0c4b75eb76c49b
[]
no_license
Nokutomi/AulaPython
670cc27986aa3a12e528f5d1602929a524b632fc
1e97e4821b12a0ad0a4438d682c1e4d61a10f61d
refs/heads/master
2022-11-15T08:38:47.401055
2020-07-08T02:49:54
2020-07-08T02:49:54
275,640,239
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
lista = [1,10] arquivo = open('teste.txt', 'r') try: texto = arquivo.read() divisao = 10 / 0 # numero = lista[3] # x = a # print('Fechando arquivo') # arquivo.close() except ZeroDivisionError: print('Nao e possivel realizar uma divisao por zero') except ArithmeticError: print('Houve um erro ao realizar uma operacao aritmetica') except IndexError: print('Erro ao acessar um indice invalido da lista') except Exception as ex: print('Erro desconhecido. Erro: {}'.format(ex)) else: print('Executa quando nao ocorre excecao') finally: print('Sempre executa') print('Fechando arquivo') arquivo.close()
a02a2341ab021509e596e6ab801c9b00af24f937
988385035443e5d46d29d96b15179509fd1c782e
/addToArrayForm.py
ea09a01733d9a2d3d3b61c25a1837f7b7368545e
[]
no_license
mwoitek/leetcode-python3
c120ee1b1eb8e17f3a301026f25c643be9852953
eb9989d3768eba82275a57243c99796e74ccdd48
refs/heads/master
2022-12-28T21:19:51.215210
2020-10-18T06:17:27
2020-10-18T06:17:27
301,295,054
0
0
null
null
null
null
UTF-8
Python
false
false
257
py
class Solution: def addToArrayForm(self, A: List[int], K: int) -> List[int]: A_str = "".join([str(num) for num in A]) A_int = int(A_str) ans = A_int + K ans_list = [int(char) for char in str(ans)] return ans_list
7091c8bb4d092cb28c4a6f0d1fe1a329abcb2805
40b20d7e5f4381a64bd264a562c4ae6d6721b01c
/14-it-generator/sentence_gen.py
a17c48f6811da8c5180ec412bacbf4618080cabf
[ "MIT" ]
permissive
KyrieCham/example-code
7d2f0d5901bf80b49dd6b1e9ae1c37c9cb6df7f5
3dd11744d1c0b1f00860e985ee2a0761e73ef7e7
refs/heads/master
2020-04-18T00:56:06.384756
2019-01-22T19:27:43
2019-01-22T19:27:43
167,098,245
1
0
MIT
2019-01-23T01:52:48
2019-01-23T01:52:47
null
UTF-8
Python
false
false
446
py
""" Sentence: iterate over words using a generator function """ import re import reprlib RE_WORD = re.compile('\w+') class Sentence: def __init__(self, text): self.text = text self.words = RE_WORD.findall(text) def __repr__(self): return 'Sentence(%s)' % reprlib.repr(self.text) def __iter__(self): for word in self.words: # <1> yield word # <2> return # <3> # done! <4>
c14cca36fd70f17c4adf7cf1050a549b485a5112
dd44e145ac547209f5f209bc9b1f09189bb8b5c7
/Python-OOP-July2021/04.Classes_and_objects-E/05.To-do-list/project/section.py
391f64c88e1e7f0db3acc9df9b8d20c2de06a156
[]
no_license
todorovventsi/Software-Engineering
e3c1be8f0f72c85619518bb914d2a4dbaac270f8
64ffa6c80b190e7c6f340aaf219986f769f175ab
refs/heads/master
2023-07-09T05:35:14.522958
2021-08-15T14:35:55
2021-08-15T14:35:55
336,056,643
2
1
null
null
null
null
UTF-8
Python
false
false
1,049
py
class Section: def __init__(self, name): self.name = name self.tasks = [] def add_task(self, new_task): if new_task not in self.tasks: self.tasks.append(new_task) return f"Task {new_task.details()} is added to the section" return f"Task is already in the section {self.name}" def complete_task(self, task_name): for task in self.tasks: if task.name == task_name: task.completed = True return f"Completed task {task.name}" return f"Could not find task with the name {task_name}" def clean_section(self): completed_tasks = 0 for task in self.tasks: if task.completed: completed_tasks += 1 self.tasks.remove(task) return f"Cleared {completed_tasks} tasks." def view_section(self): first_row = f"Section {self.name}:\n" next_rows = [f"{task.details()}\n" for task in self.tasks] return f"{first_row}{''.join(next_rows)}"
f6f84dcc3656ac3c623fa8ecd4bfcedf2259c2ef
a22cc323b29f50da397d8363ac2521e3542a0fd7
/tests/dpaycli/test_steem.py
d04f4ac3d9988e261ae2bc7c834ff2c3642c4d91
[ "MIT" ]
permissive
dpays/dpay-cli
1a58c7dae45218e3b05b7e17ff5ce03e918d27b9
dfa80898e1faea2cee92ebec6fe04873381bd40f
refs/heads/master
2020-04-01T09:26:43.200933
2018-10-15T08:03:06
2018-10-15T08:03:06
153,075,154
0
0
null
null
null
null
UTF-8
Python
false
false
19,444
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import range from builtins import super import mock import string import unittest from parameterized import parameterized import random import json from pprint import pprint from dpaycli import DPay, exceptions from dpaycli.amount import Amount from dpaycli.memo import Memo from dpaycli.version import version as dpaycli_version from dpaycli.wallet import Wallet from dpaycli.witness import Witness from dpaycli.account import Account from dpaycligraphenebase.account import PrivateKey from dpaycli.instance import set_shared_dpay_instance from dpaycli.nodelist import NodeList # Py3 compatibility import sys wif = "5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3" class Testcases(unittest.TestCase): @classmethod def setUpClass(cls): cls.nodelist = NodeList() cls.nodelist.update_nodes(dpay_instance=DPay(node=cls.nodelist.get_nodes(normal=True, appbase=True), num_retries=10)) cls.bts = DPay( node=cls.nodelist.get_nodes(), nobroadcast=True, unsigned=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) cls.testnet = DPay( node="https://testnet.dpaydev.com", nobroadcast=True, unsigned=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) cls.account = Account("test", full=True, dpay_instance=cls.bts) cls.account_testnet = Account("test", full=True, dpay_instance=cls.testnet) @parameterized.expand([ ("normal"), ("testnet"), ]) def test_transfer(self, node_param): if node_param == "normal": bts = self.bts acc = self.account elif node_param == "testnet": bts = self.testnet acc = self.account_testnet acc.dpay.txbuffer.clear() tx = acc.transfer( "test", 1.33, "BBD", memo="Foobar", account="test1") self.assertEqual( tx["operations"][0][0], "transfer" ) self.assertEqual(len(tx["operations"]), 1) op = tx["operations"][0][1] self.assertIn("memo", op) self.assertEqual(op["memo"], "Foobar") self.assertEqual(op["from"], "test1") self.assertEqual(op["to"], "test") amount = Amount(op["amount"], dpay_instance=bts) self.assertEqual(float(amount), 1.33) def test_create_account(self): bts = DPay(node=self.nodelist.get_nodes(), nobroadcast=True, unsigned=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) core_unit = "DWB" name = ''.join(random.choice(string.ascii_lowercase) for _ in range(12)) key1 = PrivateKey() key2 = PrivateKey() key3 = PrivateKey() key4 = PrivateKey() key5 = PrivateKey() bts.txbuffer.clear() tx = bts.create_account( name, creator="test", # 1.2.7 owner_key=format(key1.pubkey, core_unit), active_key=format(key2.pubkey, core_unit), posting_key=format(key3.pubkey, core_unit), memo_key=format(key4.pubkey, core_unit), additional_owner_keys=[format(key5.pubkey, core_unit)], additional_active_keys=[format(key5.pubkey, core_unit)], additional_posting_keys=[format(key5.pubkey, core_unit)], additional_owner_accounts=["test1"], # 1.2.0 additional_active_accounts=["test1"], storekeys=False, ) self.assertEqual( tx["operations"][0][0], "account_create" ) op = tx["operations"][0][1] role = "active" self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( "test1", [x[0] for x in op[role]["account_auths"]]) role = "posting" self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( "test1", [x[0] for x in op[role]["account_auths"]]) role = "owner" self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( "test1", [x[0] for x in op[role]["account_auths"]]) self.assertEqual( op["creator"], "test") def test_create_account_password(self): bts = DPay(node=self.nodelist.get_nodes(), nobroadcast=True, unsigned=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) core_unit = "DWB" name = ''.join(random.choice(string.ascii_lowercase) for _ in range(12)) key5 = PrivateKey() bts.txbuffer.clear() tx = bts.create_account( name, creator="test", # 1.2.7 password="abcdefg", additional_owner_keys=[format(key5.pubkey, core_unit)], additional_active_keys=[format(key5.pubkey, core_unit)], additional_posting_keys=[format(key5.pubkey, core_unit)], additional_owner_accounts=["test1"], # 1.2.0 additional_active_accounts=["test1"], storekeys=False, ) self.assertEqual( tx["operations"][0][0], "account_create" ) op = tx["operations"][0][1] role = "active" self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( "test1", [x[0] for x in op[role]["account_auths"]]) role = "owner" self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( format(key5.pubkey, core_unit), [x[0] for x in op[role]["key_auths"]]) self.assertIn( "test1", [x[0] for x in op[role]["account_auths"]]) self.assertEqual( op["creator"], "test") @parameterized.expand([ ("normal"), ("testnet"), ]) def test_connect(self, node_param): if node_param == "normal": bts = self.bts elif node_param == "testnet": bts = self.testnet bts.connect() @parameterized.expand([ ("normal"), ("testnet"), ]) def test_info(self, node_param): if node_param == "normal": bts = self.bts elif node_param == "testnet": bts = self.testnet info = bts.info() for key in ['current_witness', 'head_block_id', 'head_block_number', 'id', 'last_irreversible_block_num', 'current_witness', 'total_pow', 'time']: self.assertTrue(key in info) def test_finalizeOps(self): bts = self.bts acc = self.account tx1 = bts.new_tx() tx2 = bts.new_tx() acc.transfer("test1", 1, "BEX", append_to=tx1) acc.transfer("test1", 2, "BEX", append_to=tx2) acc.transfer("test1", 3, "BEX", append_to=tx1) tx1 = tx1.json() tx2 = tx2.json() ops1 = tx1["operations"] ops2 = tx2["operations"] self.assertEqual(len(ops1), 2) self.assertEqual(len(ops2), 1) @parameterized.expand([ ("normal"), ("testnet"), ]) def test_weight_threshold(self, node_param): if node_param == "normal": bts = self.bts pkey1 = 'DWB55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n' pkey2 = 'DWB7GM9YXcsoAJAgKbqW2oVj7bnNXFNL4pk9NugqKWPmuhoEDbkDv' elif node_param == "testnet": bts = self.testnet pkey1 = 'TST55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n' pkey2 = 'TST7GM9YXcsoAJAgKbqW2oVj7bnNXFNL4pk9NugqKWPmuhoEDbkDv' auth = {'account_auths': [['test', 1]], 'extensions': [], 'key_auths': [ [pkey1, 1], [pkey2, 1]], 'weight_threshold': 3} # threshold fine bts._test_weights_treshold(auth) auth = {'account_auths': [['test', 1]], 'extensions': [], 'key_auths': [ [pkey1, 1], [pkey2, 1]], 'weight_threshold': 4} # too high with self.assertRaises(ValueError): bts._test_weights_treshold(auth) @parameterized.expand([ ("normal"), ("testnet"), ]) def test_allow(self, node_param): if node_param == "normal": bts = self.bts acc = self.account prefix = "DWB" wif = "DWB55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n" elif node_param == "testnet": bts = self.testnet acc = self.account_testnet prefix = "TST" wif = "TST55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n" self.assertIn(bts.prefix, prefix) tx = acc.allow( wif, account="test", weight=1, threshold=1, permission="owner", ) self.assertEqual( (tx["operations"][0][0]), "account_update" ) op = tx["operations"][0][1] self.assertIn("owner", op) self.assertIn( [wif, '1'], op["owner"]["key_auths"]) self.assertEqual(op["owner"]["weight_threshold"], 1) def test_disallow(self): acc = self.account pkey1 = "DWB55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n" pkey2 = "DWB6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CV" if sys.version > '3': _assertRaisesRegex = self.assertRaisesRegex else: _assertRaisesRegex = self.assertRaisesRegexp with _assertRaisesRegex(ValueError, ".*Changes nothing.*"): acc.disallow( pkey1, weight=1, threshold=1, permission="owner" ) with _assertRaisesRegex(ValueError, ".*Changes nothing!.*"): acc.disallow( pkey2, weight=1, threshold=1, permission="owner" ) def test_update_memo_key(self): acc = self.account prefix = "DWB" pkey = 'DWB55VCzsb47NZwWe5F3qyQKedX9iHBHMVVFSc96PDvV7wuj7W86n' self.assertEqual(acc.dpay.prefix, prefix) acc.dpay.txbuffer.clear() tx = acc.update_memo_key(pkey) self.assertEqual( (tx["operations"][0][0]), "account_update" ) op = tx["operations"][0][1] self.assertEqual( op["memo_key"], pkey) @parameterized.expand([ ("normal"), ("testnet"), ]) def test_approvewitness(self, node_param): if node_param == "normal": w = self.account elif node_param == "testnet": w = self.account_testnet w.dpay.txbuffer.clear() tx = w.approvewitness("test1") self.assertEqual( (tx["operations"][0][0]), "account_witness_vote" ) op = tx["operations"][0][1] self.assertIn( "test1", op["witness"]) def test_post(self): bts = self.bts bts.txbuffer.clear() tx = bts.post("title", "body", author="test", permlink=None, reply_identifier=None, json_metadata=None, comment_options=None, community="test", tags=["a", "b", "c", "d", "e"], beneficiaries=[{'account': 'test1', 'weight': 5000}, {'account': 'test2', 'weight': 5000}], self_vote=True) self.assertEqual( (tx["operations"][0][0]), "comment" ) op = tx["operations"][0][1] self.assertEqual(op["body"], "body") self.assertEqual(op["title"], "title") self.assertEqual(op["permlink"], "title") self.assertEqual(op["parent_author"], "") self.assertEqual(op["parent_permlink"], "a") json_metadata = json.loads(op["json_metadata"]) self.assertEqual(json_metadata["tags"], ["a", "b", "c", "d", "e"]) self.assertEqual(json_metadata["app"], "dpaycli/%s" % (dpaycli_version)) self.assertEqual( (tx["operations"][1][0]), "comment_options" ) op = tx["operations"][1][1] self.assertEqual(len(op['extensions'][0][1]['beneficiaries']), 2) def test_comment_option(self): bts = self.bts bts.txbuffer.clear() tx = bts.comment_options({}, "@gtg/witness-gtg-log", account="test") self.assertEqual( (tx["operations"][0][0]), "comment_options" ) op = tx["operations"][0][1] self.assertIn( "gtg", op["author"]) self.assertEqual('1000000.000 BBD', op["max_accepted_payout"]) self.assertEqual(10000, op["percent_dpay_dollars"]) self.assertEqual(True, op["allow_votes"]) self.assertEqual(True, op["allow_curation_rewards"]) self.assertEqual("witness-gtg-log", op["permlink"]) def test_online(self): bts = self.bts self.assertFalse(bts.get_blockchain_version() == '0.0.0') def test_offline(self): bts = DPay(node=self.nodelist.get_nodes(), offline=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}) bts.refresh_data() self.assertTrue(bts.get_reserve_ratio(use_stored_data=False) is None) self.assertTrue(bts.get_reserve_ratio(use_stored_data=True) is None) self.assertTrue(bts.get_feed_history(use_stored_data=False) is None) self.assertTrue(bts.get_feed_history(use_stored_data=True) is None) self.assertTrue(bts.get_reward_funds(use_stored_data=False) is None) self.assertTrue(bts.get_reward_funds(use_stored_data=True) is None) self.assertTrue(bts.get_current_median_history(use_stored_data=False) is None) self.assertTrue(bts.get_current_median_history(use_stored_data=True) is None) self.assertTrue(bts.get_hardfork_properties(use_stored_data=False) is None) self.assertTrue(bts.get_hardfork_properties(use_stored_data=True) is None) self.assertTrue(bts.get_network(use_stored_data=False) is None) self.assertTrue(bts.get_network(use_stored_data=True) is None) self.assertTrue(bts.get_witness_schedule(use_stored_data=False) is None) self.assertTrue(bts.get_witness_schedule(use_stored_data=True) is None) self.assertTrue(bts.get_config(use_stored_data=False) is None) self.assertTrue(bts.get_config(use_stored_data=True) is None) self.assertEqual(bts.get_block_interval(), 3) self.assertEqual(bts.get_blockchain_version(), '0.0.0') @parameterized.expand([ ("normal"), ("testnet"), ]) def test_properties(self, node_param): if node_param == "normal": bts = DPay(node=self.nodelist.get_nodes(), nobroadcast=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) elif node_param == "testnet": bts = DPay(node="https://testnet.dpaydev.com", nobroadcast=True, data_refresh_time_seconds=900, keys={"active": wif, "owner": wif, "memo": wif}, num_retries=10) self.assertTrue(bts.get_reserve_ratio(use_stored_data=False) is not None) self.assertTrue(bts.get_feed_history(use_stored_data=False) is not None) self.assertTrue(bts.get_reward_funds(use_stored_data=False) is not None) self.assertTrue(bts.get_current_median_history(use_stored_data=False) is not None) self.assertTrue(bts.get_hardfork_properties(use_stored_data=False) is not None) self.assertTrue(bts.get_network(use_stored_data=False) is not None) self.assertTrue(bts.get_witness_schedule(use_stored_data=False) is not None) self.assertTrue(bts.get_config(use_stored_data=False) is not None) self.assertTrue(bts.get_block_interval() is not None) self.assertTrue(bts.get_blockchain_version() is not None) def test_bp_to_rshares(self): stm = self.bts rshares = stm.bp_to_rshares(stm.vests_to_sp(1e6)) self.assertTrue(abs(rshares - 20000000000.0) < 2) def test_rshares_to_vests(self): stm = self.bts rshares = stm.bp_to_rshares(stm.vests_to_sp(1e6)) rshares2 = stm.vests_to_rshares(1e6) self.assertTrue(abs(rshares - rshares2) < 2) def test_bp_to_bbd(self): stm = self.bts bp = 500 ret = stm.bp_to_bbd(bp) self.assertTrue(ret is not None) def test_bbd_to_rshares(self): stm = self.bts test_values = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7] for v in test_values: try: bbd = round(stm.rshares_to_bbd(stm.bbd_to_rshares(v)), 5) except ValueError: # Reward pool smaller than 1e7 BBD (e.g. caused by a very low BEX price) continue self.assertEqual(bbd, v) def test_rshares_to_vote_pct(self): stm = self.bts bp = 1000 voting_power = 9000 for vote_pct in range(500, 10000, 500): rshares = stm.bp_to_rshares(bp, voting_power=voting_power, vote_pct=vote_pct) vote_pct_ret = stm.rshares_to_vote_pct(rshares, dpay_power=bp, voting_power=voting_power) self.assertEqual(vote_pct_ret, vote_pct) def test_sign(self): bts = self.bts with self.assertRaises( exceptions.MissingKeyError ): bts.sign() def test_broadcast(self): bts = self.bts bts.txbuffer.clear() tx = bts.comment_options({}, "@gtg/witness-gtg-log", account="test") # tx = bts.sign() with self.assertRaises( exceptions.MissingKeyError ): bts.broadcast(tx=tx)
9999bf5d93fa20451f61973a2e0ae14307aded8d
4b1cf07275a8f2abf30943b975d443485ef897ff
/data_generator.py
3805e30c71100e78de5cec92ba0c561a77bb426d
[ "MIT" ]
permissive
gipsyblues/edge_ml_emotion_recognition
a0e1e0acc98d11f710542218b2603f72a8a93a4b
028e9a9264e7df5c48a047677b48f0c15e059e6c
refs/heads/master
2023-06-27T02:53:18.707806
2021-07-28T06:48:30
2021-07-28T06:48:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,108
py
import numpy as np import cv2 import os import imgaug as ia import logging from imgaug import augmenters as iaa from imgaug.augmentables.segmaps import SegmentationMapsOnImage from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage def _create_augment_pipeline(): sometimes = lambda aug: iaa.Sometimes(0.1, aug) aug_pipe = iaa.Sequential( [ iaa.Fliplr(0.5), #iaa.Flipud(0.2), iaa.Affine(translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}), iaa.OneOf([iaa.Affine(scale=(0.8, 1.2)), iaa.Affine(rotate=(-10, 10)), iaa.Affine(shear=(-10, 10))]), sometimes(iaa.OneOf([ iaa.GaussianBlur((0, 3.0)), iaa.AverageBlur(k=(2, 7)), iaa.MedianBlur(k=(3, 11)), ])), sometimes(iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5))), sometimes(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05 * 255), per_channel=0.5)), sometimes(iaa.OneOf([ iaa.Dropout((0.01, 0.1), per_channel=0.5), iaa.CoarseDropout((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2), ])), sometimes(iaa.Add((-10, 10), per_channel=0.5)), sometimes(iaa.Multiply((0.5, 1.5), per_channel=0.5)), sometimes(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)) ], random_order=True ) return aug_pipe def process_image_classification(image, desired_w = None, desired_h = None, aug_pipe = None): # resize the image to standard size if (desired_w and desired_h) or aug_pipe: if (desired_w and desired_h): # Rescale image image = ia.imresize_single_image(image, (desired_w, desired_h)) if aug_pipe: image = aug_pipe(image=image) return image class DataGenerator(): def __init__(self, X_train, y_train, batch_size=32, img_size = 48, prefix='appa-real/imgs/', shuffle=True, augment=None): self.X_train = X_train self.y_train = y_train self.batch_size = batch_size self.img_size = img_size self.prefix = prefix self.class_num = y_train.shape[1] self.shuffle = shuffle self.sample_num = len(X_train) self.augment = augment if self.augment: logging.info("Using augmentation for {self.prefix}") self.aug_pipe = _create_augment_pipeline() def __call__(self): while True: indexes = self.__get_exploration_order() itr_num = int(len(indexes) // (self.batch_size * 2)) for i in range(itr_num): batch_ids = indexes[i * self.batch_size * 2:(i + 1) * self.batch_size * 2] X, y = self.__data_generation(batch_ids) yield X, y def __get_exploration_order(self): indexes = np.arange(self.sample_num) if self.shuffle: np.random.shuffle(indexes) return indexes def __data_generation(self, batch_ids): X = np.zeros(shape=(self.batch_size, self.img_size, self.img_size, 3)) y = np.zeros(shape=(self.batch_size, self.class_num)) for i in range(self.batch_size): img = cv2.imread(self.prefix + self.X_train[batch_ids[i]], 1) try: if self.augment: img = process_image_classification(img, self.img_size, self.img_size, self.aug_pipe) except Exception as e: print(self.prefix + self.X_train[batch_ids[i]], e) img = img.astype(np.float32) img /= 255. img -= 0.5 img *= 2. img = img[:, :, ::-1] X[i, ::] = img y[i, :] = self.y_train[batch_ids[i]] return np.array(X), y
ca9547928ab7a957dabd169f16fc201dc6d06efe
b83ff584bfcd9fce7a337ba1253287fc9afd03c7
/cmdline_fluency_countdown.py
c6564c0a2aa5dcf88e15805c147edba2570aebac
[]
no_license
houstonhunt/fluencycountdown
6166eaf625f6e348213dcd5be8045ee218159900
d555b83972e05d09e1caafca61ea465c4ca3770c
refs/heads/master
2021-01-23T23:12:17.392090
2015-05-23T18:48:24
2015-05-23T18:48:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,720
py
#!/usr/bin/python # cmdline_fluency_countdown.py import pickle # used to save user progress (currently supporting 1 primary user) import ConfigParser, os # used to parse language file def init(): state = 0 try: pickle.load(open("save.p", "rb")) print "SUCCESS: loaded save file!" state = 1 except: config = ConfigParser.ConfigParser() config.read('lang.cfg') print "WELCOME: no save file found!" print "Type a [language] you want to learn (example: English)," print " or [list] then press [ENTER]" selected_lang = raw_input() # joke if selected_lang == "English": print "You already know English!" quit() elif selected_lang == "list": list(selected_lang, config) elif selected_language == def list(what, cp): if what == "list": print "list what? [all] [easy] [medium] [hard] [other] [about]" selected_lang = raw_input() if selected_lang == "all": list1(cp) list2(cp) list3(cp) listo(cp) elif selected_lang == "easy": list1(cp) elif selected_lang == "medium": list2(cp) elif selected_lang == "hard": list3(cp) elif selected_lang == "other": listo(cp) elif selected_lang == "about": print "Coded by Houston Hunt" print "Times to mastering a language for English speakers" print "is given by " + str(cp.get('Reference', 'reference')) def list1(cp): print cp.get('Languages', 'desc1') print str(cp.get('Languages', 'cat1')) def list2(cp): print str(cp.get('Languages', 'desc2')) print str(cp.get('Languages', 'cat2')) def list3(cp): print str(cp.get('Languages', 'desc3')) print str(cp.get('Languages', 'cat3')) def listo(cp): print str(cp.get('Languages', 'desco')) print str(cp.get('Languages', 'other')) init()
09db4be45d5d63793dcd85353daabc9d84d3ac5d
08ca7028e0488c420fff8c831e9d4fd3e32ee292
/models/wideresnet.py
59ba6496518eab9bc92f85bceb9a2459910e4762
[]
no_license
yogeshbalaji/Adversarial-training
0ee53fdbef2742788cbbc73ca592738347076fe2
3593c836f39c1313545fcc71e5ba8afa6f427326
refs/heads/master
2020-07-15T03:00:26.425582
2019-09-04T19:59:51
2019-09-04T19:59:51
205,464,494
12
4
null
null
null
null
UTF-8
Python
false
false
3,517
py
from collections import OrderedDict import torch from torch import nn import torch.nn.functional as F from utils import data_normalize def init_weight(*args): return nn.Parameter(nn.init.kaiming_normal_(torch.zeros(*args), mode='fan_out', nonlinearity='relu')) class Block(nn.Module): """ Pre-activated ResNet block. """ def __init__(self, width): super().__init__() self.bn0 = nn.BatchNorm2d(width, affine=False) self.register_parameter('conv0', init_weight(width, width, 3, 3)) self.bn1 = nn.BatchNorm2d(width, affine=False) self.register_parameter('conv1', init_weight(width, width, 3, 3)) def forward(self, x): h = F.conv2d(F.relu(self.bn0(x)), self.conv0, padding=1) h = F.conv2d(F.relu(self.bn1(h)), self.conv1, padding=1) return x + h class DownsampleBlock(nn.Module): """ Downsample block. Does F.avg_pool2d + torch.cat instead of strided conv. """ def __init__(self, width): super().__init__() self.bn0 = nn.BatchNorm2d(width // 2, affine=False) self.register_parameter('conv0', init_weight(width, width // 2, 3, 3)) self.bn1 = nn.BatchNorm2d(width, affine=False) self.register_parameter('conv1', init_weight(width, width, 3, 3)) def forward(self, x): h = F.conv2d(F.relu(self.bn0(x)), self.conv0, padding=1, stride=2) h = F.conv2d(F.relu(self.bn1(h)), self.conv1, padding=1) x_d = F.avg_pool2d(x, kernel_size=3, padding=1, stride=2) x_d = torch.cat([x_d, torch.zeros_like(x_d)], dim=1) return x_d + h class WRN(nn.Module): """ Implementation of modified Wide Residual Network. Differences with pre-activated ResNet and Wide ResNet: * BatchNorm has no affine weight and bias parameters * First layer has 16 * width channels * Last fc layer is removed in favor of 1x1 conv + F.avg_pool2d * Downsample is done by F.avg_pool2d + torch.cat instead of strided conv First and last convolutional layers are kept in float32. """ def __init__(self, depth, width, num_classes): super().__init__() widths = [int(v * width) for v in (16, 32, 64)] n = (depth - 2) // 6 self.register_parameter('conv0', init_weight(widths[0], 3, 3, 3)) self.group0 = self._make_block(widths[0], n) self.group1 = self._make_block(widths[1], n, downsample=True) self.group2 = self._make_block(widths[2], n, downsample=True) self.bn = nn.BatchNorm2d(widths[2], affine=False) self.register_parameter('conv_last', init_weight(num_classes, widths[2], 1, 1)) self.bn_last = nn.BatchNorm2d(num_classes) self.mean = [125.3 / 255.0, 123.0 / 255.0, 113.9 / 255.0] self.std = [63.0 / 255.0, 62.1 / 255.0, 66.7 / 255.0] def _make_block(self, width, n, downsample=False): def select_block(j): if downsample and j == 0: return DownsampleBlock(width) return Block(width) return nn.Sequential(OrderedDict(('block%d' % i, select_block(i)) for i in range(n))) def forward(self, x): x = data_normalize(x, self.mean, self.std) h = F.conv2d(x, self.conv0, padding=1) h = self.group0(h) h = self.group1(h) h = self.group2(h) h = F.relu(self.bn(h)) h = F.conv2d(h, self.conv_last) h = self.bn_last(h) return F.avg_pool2d(h, kernel_size=h.shape[-2:]).view(h.shape[0], -1)
e34145873aede1b65f5e55265e1505cc6bde3391
387cf5f72ed6679a4d9e04bddd16998a190c4caf
/problems/programmers/lv3/pgs-67258-sweep-slow.py
6a3ef6ae150570c9680bfdc5e53635a2e6635517
[]
no_license
CodyBuilder-dev/Algorithm-Coding-Test
db4ee1e7565fbcef3140192225167eff42ad5c02
cca5c4ba8bc31679ab00aceccfd8d9d39c232f72
refs/heads/master
2021-07-24T00:34:41.888289
2021-07-21T14:29:00
2021-07-21T14:29:00
219,123,221
1
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
""" 제목 :보석 쇼핑 아이디어 : """ def solution(gems): s = set(gems) hash = {} #interval_list = [] # 리스트에 넣고 저장 best_answer = [123456,456789] for i,gem in enumerate(gems): if gem not in hash: hash[gem] = 0 hash[gem] = i if len(hash) ==len(s): temp_answer = [min(hash.values()) + 1, max(hash.values()) + 1] if temp_answer[1] - temp_answer[0] < best_answer[1] - best_answer[0]: best_answer = temp_answer elif temp_answer[1] - temp_answer[0] == best_answer[1] - best_answer[0] \ and temp_answer[0] < best_answer[0]: best_answer = temp_answer return best_answer print(solution(["DIA", "RUBY", "RUBY", "DIA", "DIA", "EMERALD", "SAPPHIRE", "DIA"])) print(solution(["AA", "AB", "AC", "AA", "AC"])) print(solution(["XYZ", "XYZ", "XYZ"])) print(solution(["ZZZ", "YYY", "NNNN", "YYY", "BBB"])) print(solution(["DIA", "EM", "EM", "RUB", "DIA"])) print(solution(["A", "A", "B"])) #5 #10 print(solution(["AD","AA", "AB", "AC", "AA", "AC", "AD", "AB"])) print(solution(["AD","AA", "AB", "AC", "AA", "AC", "AD", "AB", "AZ","AB","AC","AA"])) print(solution(["AD","AA", "AB", "AC", "AA", "AC", "AC", "AD", "AB","AZ","AB","AD","AC","AA","AB","AZ","AA"]))
c64f6276a76c1f9c5a452595cbcd25de501fd7f6
e65a448da4f82d6e7c95cfadc5e8dfd06ed05c62
/cinder/cinder/api/middleware/auth.py
cf898c9b07d780e57e877272a930772dd33360d5
[ "Apache-2.0" ]
permissive
bopopescu/devstack
7a9d11bcc37884f3686e7178ebc25c178a6da283
6b73b164af7e5895501f1ca5dafebbba90510846
refs/heads/master
2022-11-19T19:58:43.536574
2015-01-29T09:00:59
2015-01-29T09:00:59
282,101,378
0
0
null
2020-07-24T02:17:48
2020-07-24T02:17:47
null
UTF-8
Python
false
false
6,014
py
# Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Common Auth Middleware. """ import os from oslo.config import cfg from oslo.serialization import jsonutils import webob.dec import webob.exc from cinder.api.openstack import wsgi from cinder import context from cinder.i18n import _ from cinder.openstack.common import log as logging from cinder.openstack.common.middleware import request_id from cinder import wsgi as base_wsgi use_forwarded_for_opt = cfg.BoolOpt( 'use_forwarded_for', default=False, help='Treat X-Forwarded-For as the canonical remote address. ' 'Only enable this if you have a sanitizing proxy.') CONF = cfg.CONF CONF.register_opt(use_forwarded_for_opt) LOG = logging.getLogger(__name__) def pipeline_factory(loader, global_conf, **local_conf): """A paste pipeline replica that keys off of auth_strategy.""" pipeline = local_conf[CONF.auth_strategy] if not CONF.api_rate_limit: limit_name = CONF.auth_strategy + '_nolimit' pipeline = local_conf.get(limit_name, pipeline) pipeline = pipeline.split() filters = [loader.get_filter(n) for n in pipeline[:-1]] app = loader.get_app(pipeline[-1]) filters.reverse() for filter in filters: app = filter(app) return app class InjectContext(base_wsgi.Middleware): """Add a 'cinder.context' to WSGI environ.""" def __init__(self, context, *args, **kwargs): self.context = context super(InjectContext, self).__init__(*args, **kwargs) @webob.dec.wsgify(RequestClass=base_wsgi.Request) def __call__(self, req): req.environ['cinder.context'] = self.context return self.application class CinderKeystoneContext(base_wsgi.Middleware): """Make a request context from keystone headers.""" @webob.dec.wsgify(RequestClass=base_wsgi.Request) def __call__(self, req): user_id = req.headers.get('X_USER') user_id = req.headers.get('X_USER_ID', user_id) if user_id is None: LOG.debug("Neither X_USER_ID nor X_USER found in request") return webob.exc.HTTPUnauthorized() # get the roles roles = [r.strip() for r in req.headers.get('X_ROLE', '').split(',')] if 'X_TENANT_ID' in req.headers: # This is the new header since Keystone went to ID/Name project_id = req.headers['X_TENANT_ID'] else: # This is for legacy compatibility project_id = req.headers['X_TENANT'] project_name = req.headers.get('X_TENANT_NAME') req_id = req.environ.get(request_id.ENV_REQUEST_ID) # Get the auth token auth_token = req.headers.get('X_AUTH_TOKEN', req.headers.get('X_STORAGE_TOKEN')) # Build a context, including the auth_token... remote_address = req.remote_addr service_catalog = None if req.headers.get('X_SERVICE_CATALOG') is not None: try: catalog_header = req.headers.get('X_SERVICE_CATALOG') service_catalog = jsonutils.loads(catalog_header) except ValueError: raise webob.exc.HTTPInternalServerError( explanation=_('Invalid service catalog json.')) if CONF.use_forwarded_for: remote_address = req.headers.get('X-Forwarded-For', remote_address) ctx = context.RequestContext(user_id, project_id, project_name=project_name, roles=roles, auth_token=auth_token, remote_address=remote_address, service_catalog=service_catalog, request_id=req_id) req.environ['cinder.context'] = ctx return self.application class NoAuthMiddleware(base_wsgi.Middleware): """Return a fake token if one isn't specified.""" @webob.dec.wsgify(RequestClass=wsgi.Request) def __call__(self, req): if 'X-Auth-Token' not in req.headers: user_id = req.headers.get('X-Auth-User', 'admin') project_id = req.headers.get('X-Auth-Project-Id', 'admin') os_url = os.path.join(req.url, project_id) res = webob.Response() # NOTE(vish): This is expecting and returning Auth(1.1), whereas # keystone uses 2.0 auth. We should probably allow # 2.0 auth here as well. res.headers['X-Auth-Token'] = '%s:%s' % (user_id, project_id) res.headers['X-Server-Management-Url'] = os_url res.content_type = 'text/plain' res.status = '204' return res token = req.headers['X-Auth-Token'] user_id, _sep, project_id = token.partition(':') project_id = project_id or user_id remote_address = getattr(req, 'remote_address', '127.0.0.1') if CONF.use_forwarded_for: remote_address = req.headers.get('X-Forwarded-For', remote_address) ctx = context.RequestContext(user_id, project_id, is_admin=True, remote_address=remote_address) req.environ['cinder.context'] = ctx return self.application
f6e400373186312a9fcf3e60bc466491e7ced87f
780b6cca690a213ac908b1cd5faef5366a18dc4e
/276_newbie_bite/save1_passed.py
7568b69b77be52f1d12ae46c2c3d5cec4cd7fba1
[]
no_license
katkaypettitt/pybites-all
899180a588e460b343c00529c6a742527e4ea1bc
391c07ecac0d92d5dc7c537bcf92eb6c1fdda896
refs/heads/main
2023-08-22T16:33:11.171732
2021-10-24T17:29:44
2021-10-24T17:29:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
244
py
# Hint: Don't forget the 4 leading spaces to # indicate your code is within the function. a = 10 b = 5 def multiply_numbers(a, b): return a * b def enter_name(): username = input("What is your name?") return username
9de698aabcd24e0d8e7b125ea53adbb5167b3d8b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02394/s366374910.py
34d6b2cc6782e5002623f9419f9f8a358a2dd94e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
w, h, x, y, r = map(int, input().split()) if 0 <= (x-r) and (x+r) <= w and 0 <= (y-r) and (y+r) <= h: print("Yes") else: print("No")
e2f80ae63c842ab915e70054164ea7ef16f417b2
15fb62305a2fa0146cc84b289642cc01a8407aab
/Python/119-pascalTriangle2.py
ca82b9b5ce299755fd88d42d79285542b566e463
[]
no_license
geniousisme/leetCode
ec9bc91864cbe7520b085bdab0db67539d3627bd
6e12d67e4ab2d197d588b65c1ddb1f9c52a7e047
refs/heads/master
2016-09-09T23:34:03.522079
2015-09-23T16:15:05
2015-09-23T16:15:05
32,052,408
1
0
null
null
null
null
UTF-8
Python
false
false
413
py
from math import factorial class Solution: # @param {integer} rowIndex # @return {integer[]} def getRow(self, rowIndex): res = [] f = factorial n = rowIndex for k in xrange(rowIndex + 1): res.append(f(n) / f(k) / f(n - k)) return res if __name__ == '__main__': s = Solution() for i in xrange(10): print s.getRow(i)
790f7806b7f537150ccb4a127bd799627afad0e4
1f8344813458f669bdf77059220290a3b2a3cdd0
/tutorials-docs/thinking-in-coroutines/8_run_in_default_executor.py
81a53d28f3690104d9512aac1b837e073a2f0b81
[]
no_license
gridl/asyncio-study-group
7c03e8640070ebe8d1103f27bc3c3da37a5a661f
1ba9cf90e21b5174518032d467e89526da219576
refs/heads/master
2020-07-02T07:03:12.364097
2017-12-26T20:55:09
2017-12-26T20:55:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
import time import datetime import asyncio def blocking_call(seconds): print(seconds, datetime.datetime.now()) time.sleep(seconds) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.call_later(5, loop.stop) for i in range(1,4): #по умолчанию используется concurrent.futures.ThreadPoolExecutor # для этого надо передать executor = None #количество потоков по умолчанию: #number of processors on the machine, multiplied by 5 loop.run_in_executor(None, blocking_call, i) try: loop.run_forever() finally: loop.close()
8ba3ca416a5d385c1158274f46e71ad3750148eb
e7af30370e277b459e1c49edcc0562d5b5c32abc
/Learning_ScikitLearn/Model/Linear_Classification/LogisticRegression_Classification.py
68bb53cef0d25d1f7959af186211991c7beda251
[]
no_license
justgolikeme/My_MachineLearning
208ab766478662cf36ffa7f9202fed0ad6f0ad28
948a84684a2a6f1c9e613948ed246062468016bd
refs/heads/master
2022-05-13T05:02:48.488269
2020-01-03T07:27:50
2020-01-03T07:27:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,023
py
# -*- coding: utf-8 -*- # @Time : 2019/12/16 15:55 # @Author : Mr.Lin ''' 用于分类的线性模型 线性模型也广泛应用于分类问题。我们首先来看二分类。这时可以利用下面的公式进行 预测: ŷ = w[0] * x[0] + w[1] * x[1] + …+ w[p] * x[p] + b > 0 这个公式看起来与线性回归的公式非常相似,但我们没有返回特征的加权求和,而是为预 测设置了阈值(0)。如果函数值小于 0,我们就预测类别 -1;如果函数值大于 0,我们就 预测类别 +1。对于所有用于分类的线性模型,这个预测规则都是通用的。同样,有很多种 不同的方法来找出系数(w)和截距(b)。 对于用于回归的线性模型,输出 ŷ 是特征的线性函数,是直线、平面或超平面(对于更高 维的数据集)。对于用于分类的线性模型,决策边界是输入的线性函数。换句话说,(二 元)线性分类器是利用直线、平面或超平面来分开两个类别的分类器。本节我们将看到这 方面的例子。 学习线性模型有很多种算法。这些算法的区别在于以下两点: • 系数和截距的特定组合对训练数据拟合好坏的度量方法; • 是否使用正则化,以及使用哪种正则化方法。 不同的算法使用不同的方法来度量“对训练集拟合好坏”。由于数学上的技术原因,不可 能调节 w 和 b 使得算法产生的误分类数量最少。对于我们的目的,以及对于许多应用而 言,上面第一点(称为损失函数)的选择并不重要。 最常见的两种线性分类算法是 Logistic 回归(logistic regression)和线性支持向量机(linear support vector machine,线性 SVM),前者在 linear_model.LogisticRegression 中实现, 后者在 svm.LinearSVC (SVC 代表支持向量分类器)中实现。虽然 LogisticRegression 的名字中含有回归(regression),但它是一种分类算法,并不是回归算法,不应与 LinearRegression 混淆。 ''' from sklearn.cross_validation import cross_val_predict, cross_val_score from sklearn.linear_model import LogisticRegression from Learning_ScikitLearn.Model.Linear_Classification.Data_Source import X_test,X_train,y_train,y_test,data_y,data_X # logreg = LogisticRegression().fit(X_train, y_train) # print("Training set score: {:.3f}".format(logreg.score(X_train, y_train))) # print("Test set score: {:.3f}".format(logreg.score(X_test, y_test))) # Training set score: 0.955 # Test set score: 0.958 # # [0.94827586 0.9137931 0.92982456 0.94736842 0.96491228 0.98245614 # 0.94736842 0.94642857 0.96428571 0.96428571] # print("") # print(cross_val_score(logreg, data_X, data_y, cv=10)) def test_C_Parameter(): C = [0.1,1,10] for c in C: logreg = LogisticRegression(C=c) logreg.fit(X_train,y_train) print("C为:{}下的分数:{}\n".format(c,cross_val_score(logreg, data_X, data_y, cv=10))) test_C_Parameter()
7ad47d35b8b6d618120876ea81cee10cd4498f0f
329b48089c64ebefe78d52f1c71c73bdadadd4b4
/ML/m02_3_xor.py
f054586220c6b7e9e2f5ec6da088dfde56b25a5d
[]
no_license
variablejun/keras__R
7f854570952ed97c48715047015786d873e512cb
9faf4814b46cda1ac0ddbf2a2f8236fa0394f144
refs/heads/main
2023-07-13T19:32:25.950500
2021-08-22T18:26:52
2021-08-22T18:26:52
398,870,548
1
0
null
null
null
null
UTF-8
Python
false
false
617
py
from sklearn.svm import LinearSVC import numpy as np from sklearn.metrics import accuracy_score #1 data x_data = [[0,0],[0,1],[1,0],[1,1]] y_data = [0,1,1,0] #2 model model = LinearSVC() #3 fit model.fit(x_data,y_data) #4 평가 y_predict = model.predict(x_data) print(x_data,' 의 예측값 : ',y_predict) results= model.score(x_data, y_data) print('score : ',results) acc = accuracy_score(y_data,y_predict) print('acc : ',acc) ''' [[0, 0], [0, 1], [1, 0], [1, 1]] 의 예측값 : [0 0 0 0] score : 0.5 acc : 0.5 [[0, 0], [0, 1], [1, 0], [1, 1]] 의 예측값 : [1 1 1 1] score : 0.5 acc : 0.5 '''
9d79f133ae46df0a2a814949bc56bb9b67709332
92754bb891a128687f3fbc48a312aded752b6bcd
/Algorithms/Python3.x/836-Rectangle_Overlap.py
109710852b3db1879f46f641e56714e64efbeca6
[]
no_license
daidai21/Leetcode
ddecaf0ffbc66604a464c3c9751f35f3abe5e7e5
eb726b3411ed11e2bd00fee02dc41b77f35f2632
refs/heads/master
2023-03-24T21:13:31.128127
2023-03-08T16:11:43
2023-03-08T16:11:43
167,968,602
8
3
null
null
null
null
UTF-8
Python
false
false
611
py
# Runtime: 32 ms, faster than 89.53% of Python3 online submissions for Rectangle Overlap. # Memory Usage: 13.9 MB, less than 8.33% of Python3 online submissions for Rectangle Overlap. class Solution: def isRectangleOverlap(self, rec1: List[int], rec2: List[int]) -> bool: return rec1[0] < rec2[2] and rec2[0] < rec1[2] and rec1[1] < rec2[3] and rec2[1] < rec1[3] """ (left1, right1), (left2, right2) Meet the requirements of the topic Equivalent to : left1 < x < right1 && left2 < x < right2 left1 < x < right2 && left2 < x < right1 left1 < right2 && left2 < right1 """
bfb211f64cb26ced576000456975b8ac4e62ba43
dab869acd10a3dc76e2a924e24b6a4dffe0a875f
/Laban/build/bdist.win32/winexe/temp/numpy.core.operand_flag_tests.py
abe53bfc427cda30a4fdef6d870c6ffe58b6c013
[]
no_license
ranBernstein/Laban
d82aff9b0483dd007e03a06e51f7d635f62ed05d
54c88afa9493deacbdd182904cc5d180ecb208b4
refs/heads/master
2021-01-23T13:17:51.777880
2017-02-14T09:02:54
2017-02-14T09:02:54
25,508,010
3
1
null
2017-02-14T09:02:55
2014-10-21T07:16:01
Tcl
UTF-8
Python
false
false
379
py
def __load(): import imp, os, sys try: dirname = os.path.dirname(__loader__.archive) except NameError: dirname = sys.prefix path = os.path.join(dirname, 'numpy.core.operand_flag_tests.pyd') #print "py2exe extension module", __name__, "->", path mod = imp.load_dynamic(__name__, path) ## mod.frozen = 1 __load() del __load
cde96ba8bed0f8a27d9a27fc09c79f90b37b0093
4781d9293b59a5072647bb179195b143c60621bd
/백준/3190_뱀/3190_뱀.py
466985fd6c7408c5d7d548c56da8c4c1f93da5da
[]
no_license
chriskwon96/Algorithm_codes
bf98131f66ca9c091fe63db68b220527800069c9
edb7b803370e87493dad4a38ee858bb7bb3fd31d
refs/heads/master
2023-08-15T18:48:26.809864
2021-10-12T13:43:21
2021-10-12T13:43:21
387,803,476
0
0
null
null
null
null
UTF-8
Python
false
false
1,488
py
di = [0, -1, 0, +1] dj = [+1, 0, -1, 0] N = int(input()) matrix = [[0]*N for _ in range(N)] K = int(input()) for _ in range(K): #사과위치 1로 지정 i, j = map(int, input().split()) matrix[i-1][j-1] = 1 L = int(input()) q = [(0,0)] #뱀 몸 X1, k, cnt = 0, 0, 0 flag = 1 for _ in range(L): X, C = input().split() for _ in range(int(X)-X1): head = q[0] cnt += 1 n_x, n_y = head[0]+di[k], head[1]+dj[k] if 0<=n_x<N and 0<=n_y<N and ((n_x, n_y) not in q): #다음칸이 판 안에 있고 내 몸이 아니라면 q.insert(0, (n_x, n_y)) #머리좌표 q에 삽입 if matrix[n_x][n_y]: #사과라면 matrix[n_x][n_y] = 0 #사과 지워주기 else: q.pop() #사과가 아니면 꼬리 줄여주기 else: # 게임이 끝나면 print(cnt) flag = 0 break if not flag: break X1 = int(X) if C == 'L': k = (k+1)%4 else: k = (k-1)%4 if flag: #인풋을 다 받아도 끝나지 않았다면 head = q[0] n_x, n_y = head[0]+di[k], head[1]+dj[k] while 0<=n_x<N and 0<=n_y<N and ((n_x, n_y) not in q): cnt += 1 q.insert(0, (n_x, n_y)) if matrix[n_x][n_y]: #사과라면 matrix[n_x][n_y] = 0 #사과 지워주기 else: q.pop() #사과가 아니면 꼬리 줄여주기 n_x, n_y = n_x + di[k], n_y + dj[k] print(cnt+1)
b417569a701914b13050a450dfb4e9d8d98231f5
59cdb8b3995ee5938dc4710e32f29ac273410265
/firing_analyses/unit_response_characterization/gather_psths.py
a170cd2c1a9f45a1da9d668f911611f166dfb215
[]
no_license
abuzarmahmood/firing_space_plot
15ff667fada8f4e985a6a6c6f31261b72b0f4b60
9fe925d9b443fda96d8e23d6d2d2d2aa60b08f15
refs/heads/master
2023-07-25T01:39:31.942434
2023-07-15T14:24:38
2023-07-15T14:24:38
139,602,984
0
0
null
null
null
null
UTF-8
Python
false
false
14,390
py
""" Go through all specified files and generate PSTHs for GC and BLA neurons to save in a consolidated location For each neuron, also calculate discriminability and palatability correlation """ ######################################## # ___ _ #|_ _|_ __ ___ _ __ ___ _ __| |_ # | || '_ ` _ \| '_ \ / _ \| '__| __| # | || | | | | | |_) | (_) | | | |_ #|___|_| |_| |_| .__/ \___/|_| \__| # |_| ######################################## import os import sys import pylab as plt import numpy as np import argparse from glob import glob import json import pandas as pd import pingouin as pg from joblib import Parallel, delayed, cpu_count from tqdm import tqdm,trange from scipy.stats import spearmanr, pearsonr sys.path.append('/media/bigdata/firing_space_plot/ephys_data') from ephys_data import ephys_data import visualize def parallelize(func, iterator): return Parallel(n_jobs = cpu_count()-2)\ (delayed(func)(this_iter) for this_iter in tqdm(iterator)) ############################################################ # _ _ ____ _ #| | ___ __ _ __| | | _ \ __ _| |_ __ _ #| | / _ \ / _` |/ _` | | | | |/ _` | __/ _` | #| |__| (_) | (_| | (_| | | |_| | (_| | || (_| | #|_____\___/ \__,_|\__,_| |____/ \__,_|\__\__,_| ############################################################ file_list_path = '/media/bigdata/Abuzar_Data/hdf5_file_list.txt' plot_save_dir = '/media/bigdata/Abuzar_Data/all_overlay_psths' if not os.path.exists(plot_save_dir): os.makedirs(plot_save_dir) region_name_list = ['gc','bla'] region_plot_dirs = [os.path.join(plot_save_dir,this_name) \ for this_name in region_name_list] for this_plot_dir in region_plot_dirs: if not os.path.exists(this_plot_dir): os.makedirs(this_plot_dir) def get_plot_dir(region_name): return [plot_dir for name,plot_dir \ in zip(region_name_list,region_plot_dirs)\ if region_name == name ][0] counter_list = [0,0] def add_to_counter(region_name): ind = [num for num,this_name \ in enumerate(region_name_list)\ if region_name == this_name][0] current_count = counter_list[ind] counter_list[ind] +=1 return current_count #parser = argparse.ArgumentParser(description = 'Script to fit changepoint model') #parser.add_argument('dir_name', help = 'Directory containing data files') #parser.add_argument('states', type = int, help = 'Number of States to fit') #args = parser.parse_args() #data_dir = args.dir_name taste_names = ['nacl', 'suc', 'ca', 'qhcl'] pal_map = dict(zip(taste_names, [3,4,2,1])) with open(file_list_path,'r') as this_file: file_list = this_file.read().splitlines() dir_list = [os.path.dirname(x) for x in file_list] #dir_list = [x for x in dir_list if 'bla_gc'in x] wanted_sessions = ['AM34_4Tastes_201215', 'AM37_4Tastes_210112'] dir_list = [[x for x in dir_list if y in x] for y in wanted_sessions] dir_list = [x for y in dir_list for x in y] #For each file, calculate baks firing, split by region # and save PSTH in a folder with file name and # unit details alpha = 0.05 #black_list = [ # '/media/storage/gc_only/AS18/AS18_4Tastes_200228_151511_copy/AS18_4Tastes_200228_151511' # ] #dir_list = [x for x in dir_list if x not in black_list] #dir_list = [x for x in dir_list if 'AM34' in x] #for data_dir in dir_list: for ind in trange(len(dir_list)): #for ind in trange(53, len(dir_list)): data_dir = dir_list[ind] #data_dir = os.path.dirname(file_list[0]) #data_dir = '/media/bigdata/Abuzar_Data/AM28/AM28_2Tastes_201005_134840' data_basename = os.path.basename(data_dir) # Look for info file # If absent, skip this file because we won't know tastant names info_file_path = glob(os.path.join(data_dir,"*.info")) if len(info_file_path) == 0: continue with open(info_file_path[0], 'r') as params_file: info_dict = json.load(params_file) taste_names = info_dict['taste_params']['tastes'] taste_pals = np.array([pal_map[x] for x in taste_names]) dat = ephys_data(data_dir) # Try to get spikes, if can't, skip file try: dat.get_spikes() except: continue if not dat.spikes[0].shape[-1]==7000: continue dat.firing_rate_params = dat.default_firing_params dat.firing_rate_params['type'] = 'conv' dat.get_unit_descriptors() dat.get_region_units() dat.get_firing_rates() unit_region_map = [{x:region_name for x in this_region} \ for this_region,region_name \ in zip(dat.region_units, dat.region_names)] fin_unit_map = {} for x in unit_region_map: fin_unit_map.update(x) # For each neuron, calculate disciriminability per bin inds = np.array(list(np.ndindex(dat.firing_array.shape))) firing_frame = pd.DataFrame( dict( taste = inds[:,0], neurons = inds[:,1], trials = inds[:,2], bins = inds[:,3], firing = dat.firing_array.flatten() ) ) group_keys = ['neurons','bins'] grouped_frame = list(firing_frame.groupby(group_keys)) group_tuples = [x[0] for x in grouped_frame] group_tuple_dicts = [dict(zip(group_keys, x)) for x in group_tuples] group_dat = [x[1] for x in grouped_frame] anova_lambda = lambda x : \ pg.anova(data=x, dv = 'firing', between = 'taste')['p-unc'].values[0] p_vals = parallelize(anova_lambda, group_dat) # It seems like sometimes the anova conks out # Replace any strings with int(1) p_vals = [x if isinstance(x, np.float) else 1 for x in p_vals] discrim_frame = pd.DataFrame(group_tuple_dicts) discrim_frame['discrim_p_vals'] = p_vals discrim_frame['discrim_bool'] = (discrim_frame['discrim_p_vals'] < alpha )*1 # Conservative criterion, significance has to persist for 75ms otherwise toss # This is from 3 consecutive windows of firing rate with 25ms steps kern_len = 4 box_kern = np.ones(kern_len)/kern_len discrim_frame['discrim_bool_cons'] = \ np.convolve(discrim_frame['discrim_bool'], box_kern, mode = 'same') == 1 discrim_frame['discrim_bool_cons'] *= 1 discrim_frame['p_vals_conv'] = \ np.convolve(discrim_frame['discrim_p_vals'], box_kern, mode = 'same') # Also calculate palatability correlation for sinle neurons taste_pal_broad = np.expand_dims(taste_pals, (1,2,3)) taste_pal_broad = np.broadcast_to(taste_pal_broad, dat.firing_array.shape) firing_array = dat.firing_array.copy() #firing_array = np.moveaxis(firing_array, 1,2) #firing_array = np.reshape(firing_array, (-1, *firing_array.shape[2:])) #taste_pal_broad = np.moveaxis(taste_pal_broad, 1,2) #taste_pal_broad = np.reshape(taste_pal_broad, (-1, *taste_pal_broad.shape[2:])) #firing_array = firing_array.T #taste_pal_broad = taste_pal_broad.T iter_inds = list(np.ndindex(( firing_array.shape[1], firing_array.shape[-1]))) corr_lambda = lambda inds: \ pearsonr( firing_array[:,inds[0],:,inds[1]].flatten(), taste_pal_broad[:,inds[0],:,inds[1]].flatten() ) corr_outs = parallelize(corr_lambda, iter_inds) corr_pvals = [x[1] for x in corr_outs] corr_rhos = [np.abs(x[0]) for x in corr_outs] iter_array = np.array(iter_inds) corr_frame = pd.DataFrame( dict( neurons = iter_array[:,0], bins = iter_array[:,1], corr_pvals = corr_pvals, corr_rhos = corr_rhos ) ) corr_frame['pvals_cons'] = \ np.convolve(corr_frame['corr_pvals'], box_kern, mode = 'same') corr_frame['sig_bool'] = corr_frame['pvals_cons'] <= alpha #corr_array = corr_frame.pivot( # index = 'neurons', # columns = 'bins', # values = 'corr_pvals').to_numpy() #fig,ax = plt.subplots() #ax.imshow(corr_array < alpha, # interpolation = 'nearest', aspect='auto') #fig.savefig( # os.path.join(plot_save_dir, f'{data_basename}_corr.png'), # dpi = 300) #plt.close(fig) ############################################################ #fin_pval_frame = discrim_frame.join(corr_frame, # lsuffix = 'x', rsuffix = 'y') #fin_pval_frame.drop(columns = ['binsy','neuronsy'], inplace=True) #fin_pval_frame.rename(columns = dict(neuronsx = 'neurons', # binsx = 'bins'), inplace=True) #fin_pval_frame['region'] = [fin_unit_map[x] for x in \ # fin_pval_frame.neurons.values] #fin_pval_frame.to_json( # os.path.join(plot_save_dir, f'{data_basename}_unit_pvals.json') # ) #fin_pval_frame['time'] = (fin_pval_frame.bins * bin_width)-stim_t ############################################################ ############################################################ stim_t = 2000 time_lims = [1000,5000] time_vec = np.arange(dat.spikes[0].shape[-1])-stim_t time_vec = time_vec[time_lims[0]:time_lims[1]] if dat.firing_rate_params['type'] == 'baks': bin_width = int(dat.firing_rate_params['baks_resolution']/\ dat.firing_rate_params['baks_dt'] ) else: bin_width = int(dat.firing_rate_params['step_size']) baks_time_vec = time_vec[::bin_width] #fin_pval_frame = fin_pval_frame[fin_pval_frame.time.isin(baks_time_vec)] corr_frame['time'] = (corr_frame.bins * bin_width)-stim_t discrim_frame['time'] = (discrim_frame.bins * bin_width)-stim_t discrim_frame = discrim_frame[discrim_frame.time.isin(baks_time_vec)] corr_frame = corr_frame[corr_frame.time.isin(baks_time_vec)] # Add region name corr_frame['region'] = [fin_unit_map[x] for x in \ corr_frame.neurons.values] discrim_frame['region'] = [fin_unit_map[x] for x in \ discrim_frame.neurons.values] discrim_frame.to_json( os.path.join(plot_save_dir, f'{data_basename}_discrim_frame.json') ) corr_frame.to_json( os.path.join(plot_save_dir, f'{data_basename}_corr_frame.json') ) mean_firing = np.mean(dat.firing_array,axis=2) mean_firing = mean_firing[...,time_lims[0]//bin_width:time_lims[1]//bin_width] for this_region_name, this_unit_list in zip(dat.region_names,dat.region_units): for unit_num in this_unit_list: #unit_frame = fin_pval_frame[fin_pval_frame.neurons.isin([unit_num])] unit_corr_frame = \ corr_frame[corr_frame.neurons.isin([unit_num])] unit_sig_corr = unit_corr_frame[unit_corr_frame.corr_pvals < alpha] unit_discrim_frame = \ discrim_frame[discrim_frame.neurons.isin([unit_num])] unit_discrim_frame['bool'] = \ 1*(unit_discrim_frame.discrim_p_vals < alpha) #fig,ax = plt.subplots(3,1, sharex=True) fig = plt.figure() ax = [] ax.append(fig.add_subplot(2,1,1)) ax.append(fig.add_subplot(4,1,3))#, sharex = ax[0])) ax.append(fig.add_subplot(4,1,4))#, sharex = ax[0])) xlims = [-500, 1500] xinds = np.logical_and(baks_time_vec >= xlims[0], baks_time_vec <= xlims[1]) fin_time_vec = baks_time_vec[xinds] unit_discrim_frame = unit_discrim_frame[unit_discrim_frame.time.isin(fin_time_vec)] unit_corr_frame = unit_corr_frame[unit_corr_frame.time.isin(fin_time_vec)] unit_sig_corr = unit_sig_corr[unit_sig_corr.time.isin(fin_time_vec)] for taste_num,this_taste in enumerate(mean_firing[:,unit_num]): ax[0].plot(fin_time_vec, this_taste[xinds], label = taste_names[taste_num], linewidth = 2) #ax[0].legend() fig.suptitle(os.path.basename(dat.data_dir) + \ f'\nUnit {unit_num}, '\ f'Electrode {dat.unit_descriptors[unit_num][0]}')#, '\ #f'Region : {this_region_name}') ax[-1].set_xlabel('Time post-stimulus delivery (ms)') ax[0].set_ylabel('Firing Rate (Hz)') #ax[0].set_xlim([-500, 1500]) #ax[1].set_xlim([-500, 1500]) #ax[2].set_xlim([-500, 1500]) cmap = plt.get_cmap('binary') #ax[1].plot(unit_discrim_frame.time, unit_discrim_frame['bool']) ax[1].plot(unit_discrim_frame.time, unit_discrim_frame['discrim_bool_cons'], color = cmap(0.5)) ax[1].fill_between( x = unit_discrim_frame.time, y1 = unit_discrim_frame['discrim_bool_cons'], y2 = 0, alpha = 0.7, color = cmap(0.5)) #ax[1].plot(unit_discrim_frame.time, # np.log10(unit_discrim_frame['p_vals_conv'])) #ax[1].axhline(np.log10(0.05)) ax[1].set_ylabel('Discrim sig') ax[2].plot(unit_corr_frame.time, unit_corr_frame.corr_rhos, color = cmap(0.7)) ax[2].fill_between( x = unit_corr_frame.time, y1 = unit_corr_frame['corr_rhos'], #where = unit_corr_frame['corr_pvals'] <= 0.05, where = unit_corr_frame['sig_bool'], y2 = 0, alpha = 0.7, color = cmap(0.7)) #ax[2].plot(unit_sig_corr.time, unit_sig_corr.corr_rhos, 'x') ax[2].set_ylabel('Pal Corr sig') #ax[0].tick_params(axis='x', which = 'both', bottom = False) ax[0].set_xticklabels([]) ax[1].set_xticklabels([]) #plt.show() fig.savefig(os.path.join(get_plot_dir(this_region_name), f'{data_basename}_unit{add_to_counter(this_region_name)}' + '.svg')) plt.close(fig)
a7556063e49aff2dda7e2b3cc964e43037048d34
6cb1d8f1416af7b7c5c83ab35cb6928ea9955aff
/ch07/rnnlm_gen.py
a30f1107227f403e0e15f919e3f9b09e39193409
[]
no_license
lee-saint/practice-nlp
f68ccc3140f725f3edcd7048c324b847583b7f20
19003fcd5f55f4f110417a3950a32bb5fba1850c
refs/heads/master
2020-12-01T20:05:15.014495
2020-01-21T09:22:18
2020-01-21T09:22:18
230,750,152
0
0
null
null
null
null
UTF-8
Python
false
false
2,799
py
import numpy as np from common.functions import softmax from ch06.RNNLM import Rnnlm from ch06.better_rnnlm import BetterRnnlm from dataset import ptb class RnnlmGen(Rnnlm): def generate(self, start_id, skip_ids=None, sample_size=100): word_ids = [start_id] x = start_id while len(word_ids) < sample_size: x = np.array(x).reshape(1, 1) score = self.predict(x) p = softmax(score.flatten()) sampled = np.random.choice(len(p), size=1, p=p) if (skip_ids is None) or (sampled not in skip_ids): x = sampled word_ids.append(int(x)) return word_ids class BetterRnnlmGen(BetterRnnlm): def generate(self, start_id, skip_ids=None, sample_size=100): word_ids = [start_id] x = start_id while len(word_ids) < sample_size: x = np.array(x).reshape(1, 1) score = self.predict(x).flatten() p = softmax(score).flatten() sampled = np.random.choice(len(p), size=1, p=p) if (skip_ids is None) or (sampled not in skip_ids): x = sampled word_ids.append(int(x)) return word_ids if __name__ == '__main__': corpus, word_to_id, id_to_word = ptb.load_data('train') vocab_size = len(word_to_id) corpus_size = len(corpus) model = RnnlmGen() model.load_params('../ch06/Rnnlm.pkl') # 시작(start) 문자와 건너뜀(skip) 문자 설정 start_word = 'you' start_id = word_to_id[start_word] skip_words = ['N', '<unk>', '$'] skip_ids = [word_to_id[w] for w in skip_words] # 문장 생성 word_ids = model.generate(start_id, skip_ids) txt = ' '.join([id_to_word[i] for i in word_ids]) txt = txt.replace(' <eos>', '.\n') print(txt) better_model = BetterRnnlmGen() better_model.load_params('../ch06/BetterRnnlm.pkl') # 시작(start) 문자와 건너뜀(skip) 문자 설정 start_word = 'you' start_id = word_to_id[start_word] skip_words = ['N', '<unk>', '$'] skip_ids = [word_to_id[w] for w in skip_words] # 문장 생성 word_ids = better_model.generate(start_id, skip_ids) txt = ' '.join([id_to_word[i] for i in word_ids]) txt = txt.replace(' <eos>', '.\n') print(txt) better_model.reset_state() model.reset_state() start_words = 'the meaning of life is' start_ids = [word_to_id[w] for w in start_words.split(' ')] for x in start_ids[:-1]: x = np.array(x).reshape(1, 1) model.predict(x) word_ids = model.generate(start_ids[-1], skip_ids) word_ids = start_ids[:-1] + word_ids txt = ' '.join([id_to_word[i] for i in word_ids]) txt = txt.replace(' <eos>', '.\n') print('-' * 50) print(txt)
941accb672f76b0db53c6f3a669fcfd3f017badb
227438026ddb81cb13d174fab2f0c492da6c5975
/python/MuonGunPt50_FullEta_FullPhi_SmallSigmaZ_cfi.py
a59e85f89d64eceb435409fc4a3a149a836cac4e
[]
no_license
skaplanhex/cms-PLTSimulation
4c360a56335c673e8c703ea70371e58a1aeff60c
250e324eb3ea83c965dcb0bab47a53b399cf7625
refs/heads/master
2021-01-01T15:17:15.047788
2014-10-22T00:11:07
2014-10-22T00:11:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,016
py
import FWCore.ParameterSet.Config as cms source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_100_1_NnM.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_10_1_fLF.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_11_1_aaa.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_12_1_4PY.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_13_1_Tuz.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_14_1_6RT.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_15_1_9k4.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_16_1_wr8.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_17_1_rU2.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_18_1_nSq.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_19_1_Gjz.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_1_1_lOE.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_20_1_Mfl.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_21_1_tfb.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_22_1_wlo.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_23_1_c2x.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_24_1_oLd.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_25_1_qSB.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_26_1_vVz.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_27_1_iD8.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_28_1_Tpx.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_29_1_Fhe.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_2_1_nj1.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_30_1_VMa.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_31_1_fve.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_32_1_wwI.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_33_1_xSu.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_34_1_aSb.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_35_1_LTi.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_36_1_hPX.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_37_1_gLE.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_38_1_6dM.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_39_1_890.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_3_1_Dwx.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_40_1_6gM.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_41_1_cRm.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_42_1_l0n.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_43_1_9zp.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_44_1_CEr.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_45_1_SG4.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_46_1_jM1.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_47_1_G1x.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_48_1_rHg.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_49_1_9Ex.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_4_1_nbS.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_50_1_rhf.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_51_1_pVw.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_52_1_CNa.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_53_1_2FH.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_54_1_lzt.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_55_1_aJy.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_56_1_tKI.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_57_1_WQ1.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_58_1_Kyp.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_59_1_eUR.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_5_1_SQM.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_60_1_BDu.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_61_1_xhw.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_62_1_22q.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_63_1_QTZ.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_64_1_djT.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_65_1_krx.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_66_1_RVf.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_67_1_bNe.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_68_1_HOD.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_69_1_rRx.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_6_1_trm.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_70_1_k2l.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_71_1_DFG.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_72_1_5LM.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_73_1_QdN.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_74_1_Fwv.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_75_1_8Xf.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_76_1_fiA.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_77_1_1Wb.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_78_1_oGC.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_79_1_BAa.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_7_1_WWX.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_80_1_0gY.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_81_1_gIc.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_82_1_akZ.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_83_1_TZD.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_84_1_D3p.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_85_1_AM5.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_86_1_TnA.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_87_1_lvl.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_88_1_Tv0.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_89_1_G0q.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_8_1_IJR.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_90_1_NTZ.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_91_1_7CQ.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_92_1_bPW.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_93_1_pg2.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_94_1_b1K.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_95_1_qJs.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_96_1_BkG.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_97_1_tGZ.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_98_1_Kof.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_99_1_eMp.root', '/store/user/skaplan/noreplica/MuonGunPt50/FullEta_FullPhi_SmallSigmaZ/MuonGunEvents_9_1_fKI.root', ) )
f45d517a51288fdf1af81238bef427c053fc9fbe
f47863b3a595cbe7ec1c02040e7214481e4f078a
/plugins/scan/libsys/1530.py
7d4393ead3d8ab208722872e6653f54514040048
[]
no_license
gobiggo/0bscan
fe020b8f6f325292bda2b1fec25e3c49a431f373
281cf7c5c2181907e6863adde27bd3977b4a3474
refs/heads/master
2020-04-10T20:33:55.008835
2018-11-17T10:05:41
2018-11-17T10:05:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
617
py
#!/usr/bin/python #-*- encoding:utf-8 -*- # title:汇文libsys图书管理系统敏感信息泄露 #http://www.wooyun.org/bugs/wooyun-2010-0125785 def assign(service, arg): if service == "libsys": return True, arg def audit(arg): payload = 'include/config.properties' url = arg + payload code, head,res, errcode, _ = curl.curl2(url) if code == 200 and 'host' and 'port' and 'user' and 'password' in res: security_warning(url) if __name__ == '__main__': audit(assign('libsys', 'http://www.njjnlib.cn:8080/')[1]) audit(assign('libsys', 'http://202.201.163.2:8080/')[1])
21ea5cf5e0b3b2984691a47e3c896c1d987cf016
63c5306b91db445016059a7f0c7ac167bf231d3c
/caffe2/python/operator_test/dataset_ops_test.py
ab6645e250bc558346fef1dfa56e2c3a3abfa0ce
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Fletcher3003/caffe2
b57ad712993b7c50d16b8f0eedc2e5587bc89e0e
731096902a090b49612b02cc5a1301c81bf93943
refs/heads/master
2020-04-15T18:10:11.514190
2019-01-09T17:10:14
2019-01-09T17:10:14
164,903,847
0
0
Apache-2.0
2019-01-09T17:02:59
2019-01-09T17:02:53
Shell
UTF-8
Python
false
false
21,910
py
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import core, workspace, dataset from caffe2.python.dataset import Const from caffe2.python.schema import ( List, Field, Struct, Scalar, Map, from_blob_list, FetchRecord, NewRecord, FeedRecord ) from caffe2.python.test_util import TestCase import numpy.testing as npt import string from hypothesis import given import hypothesis.strategies as st def _assert_arrays_equal(actual, ref, err_msg): if ref.dtype.kind in ('S', 'O', 'U'): np.testing.assert_array_equal(actual, ref, err_msg=err_msg) else: np.testing.assert_allclose( actual, ref, atol=1e-4, rtol=1e-4, err_msg=err_msg ) def _assert_records_equal(actual, ref): assert isinstance(actual, Field) assert isinstance(ref, Field) b1 = actual.field_blobs() b2 = ref.field_blobs() assert (len(b1) == len(b2)), 'Records have different lengths: %d vs. %d' % ( len(b1), len(b2) ) for name, d1, d2 in zip(ref.field_names(), b1, b2): _assert_arrays_equal(d1, d2, err_msg='Mismatch in field %s.' % name) @st.composite def _sparse_features_map(draw, num_records, **kwargs): sparse_maps_lengths = draw( st.lists( st.integers(min_value=1, max_value=10), min_size=num_records, max_size=num_records ) ) sparse_maps_total_length = sum(sparse_maps_lengths) sparse_keys = draw( st.lists( st.integers(min_value=1, max_value=100), min_size=sparse_maps_total_length, max_size=sparse_maps_total_length, unique=True ) ) sparse_values_lengths = draw( st.lists( st.integers(min_value=1, max_value=10), min_size=sparse_maps_total_length, max_size=sparse_maps_total_length ) ) total_sparse_values_lengths = sum(sparse_values_lengths) sparse_values = draw( # max_value is max int64 st.lists( st.integers(min_value=1, max_value=9223372036854775807), min_size=total_sparse_values_lengths, max_size=total_sparse_values_lengths ) ) return [ sparse_maps_lengths, sparse_keys, sparse_values_lengths, sparse_values, ] @st.composite def _dense_features_map(draw, num_records, **kwargs): float_lengths = draw( st.lists( st.integers(min_value=1, max_value=10), min_size=num_records, max_size=num_records ) ) total_length = sum(float_lengths) float_keys = draw( st.lists( st.integers(min_value=1, max_value=100), min_size=total_length, max_size=total_length, unique=True ) ) float_values = draw( st.lists(st.floats(), min_size=total_length, max_size=total_length) ) return [float_lengths, float_keys, float_values] @st.composite def _dataset(draw, min_elements=3, max_elements=10, **kwargs): schema = Struct( # Dense Features Map ('floats', Map( Scalar(np.int32), Scalar(np.float32) )), # Sparse Features Map ('int_lists', Map( Scalar(np.int32), List(Scalar(np.int64)), )), # Complex Type ('text', Scalar(str)), ) num_records = draw( st.integers(min_value=min_elements, max_value=max_elements) ) raw_dense_features_map_contents = draw(_dense_features_map(num_records)) raw_sparse_features_map_contents = draw(_sparse_features_map(num_records)) raw_text_contents = [ draw( st.lists( st.text(alphabet=string.ascii_lowercase), min_size=num_records, max_size=num_records ) ) ] # Concatenate all raw contents to a single one contents_raw = raw_dense_features_map_contents + raw_sparse_features_map_contents + raw_text_contents contents = from_blob_list(schema, contents_raw) return (schema, contents, num_records) class TestDatasetOps(TestCase): @given(_dataset()) def test_pack_unpack(self, input): """ Tests if packing and unpacking of the whole dataset is an identity. """ (schema, contents, num_records) = input dataset_fields = schema.field_names() net = core.Net('pack_unpack_net') batch = NewRecord(net, contents) FeedRecord(batch, contents) packed = net.PackRecords( batch.field_blobs(), 1, fields=dataset_fields ) unpacked = packed.UnPackRecords( [], len(dataset_fields), fields=dataset_fields ) workspace.RunNetOnce(net) for initial_tensor, unpacked_tensor in zip( batch.field_blobs(), unpacked ): npt.assert_array_equal( workspace.FetchBlob(initial_tensor), workspace.FetchBlob(unpacked_tensor) ) def test_dataset_ops(self): """ 1. Defining the schema of our dataset. This example schema could represent, for example, a search query log. """ schema = Struct( # fixed size vector, which will be stored as a matrix when batched ('dense', Scalar((np.float32, 3))), # could represent a feature map from feature ID to float value ('floats', Map( Scalar(np.int32), Scalar(np.float32) )), # could represent a multi-valued categorical feature map ('int_lists', Map( Scalar(np.int32), List(Scalar(np.int64)), )), # could represent a multi-valued, weighted categorical feature map ( 'id_score_pairs', Map( Scalar(np.int32), Map( Scalar(np.int64), Scalar(np.float32), keys_name='ids', values_name='scores' ), ) ), # additional scalar information ( 'metadata', Struct( ('user_id', Scalar(np.int64)), ('user_embed', Scalar((np.float32, 2))), ('query', Scalar(str)), ) ), ) """ This is what the flattened fields for this schema look like, along with its type. Each one of these fields will be stored, read and writen as a tensor. """ expected_fields = [ ('dense', (np.float32, 3)), ('floats:lengths', np.int32), ('floats:values:keys', np.int32), ('floats:values:values', np.float32), ('int_lists:lengths', np.int32), ('int_lists:values:keys', np.int32), ('int_lists:values:values:lengths', np.int32), ('int_lists:values:values:values', np.int64), ('id_score_pairs:lengths', np.int32), ('id_score_pairs:values:keys', np.int32), ('id_score_pairs:values:values:lengths', np.int32), ('id_score_pairs:values:values:values:ids', np.int64), ('id_score_pairs:values:values:values:scores', np.float32), ('metadata:user_id', np.int64), ('metadata:user_embed', (np.float32, 2)), ('metadata:query', str), ] zipped = zip( expected_fields, schema.field_names(), schema.field_types() ) for (ref_name, ref_type), name, dtype in zipped: self.assertEquals(ref_name, name) self.assertEquals(np.dtype(ref_type), dtype) """ 2. The contents of our dataset. Contents as defined below could represent, for example, a log of search queries along with dense, sparse features and metadata. The datset below has 3 top-level entries. """ contents_raw = [ # dense [[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]], # floats [1, 2, 3], # len [11, 21, 22, 31, 32, 33], # key [1.1, 2.1, 2.2, 3.1, 3.2, 3.3], # value # int lists [2, 0, 1], # len [11, 12, 31], # key [2, 4, 3], # value:len [111, 112, 121, 122, 123, 124, 311, 312, 313], # value:value # id score pairs [1, 2, 2], # len [11, 21, 22, 31, 32], # key [1, 1, 2, 2, 3], # value:len [111, 211, 221, 222, 311, 312, 321, 322, 323], # value:ids [11.1, 21.1, 22.1, 22.2, 31.1, 31.2, 32.1, 32.2, 32.3], # val:score # metadata [123, 234, 456], # user_id [[0.2, 0.8], [0.5, 0.5], [0.7, 0.3]], # user_embed ['dog posts', 'friends who like to', 'posts about ca'], # query ] # convert the above content to ndarrays, checking against the schema contents = from_blob_list(schema, contents_raw) """ 3. Creating and appending to the dataset. We first create an empty dataset with the given schema. Then, a Writer is used to append these entries to the dataset. """ ds = dataset.Dataset(schema) net = core.Net('init') with core.NameScope('init'): ds.init_empty(net) content_blobs = NewRecord(net, contents) FeedRecord(content_blobs, contents) writer = ds.writer(init_net=net) writer.write_record(net, content_blobs) workspace.RunNetOnce(net) """ 4. Iterating through the dataset contents. If we were to iterate through the top level entries of our dataset, this is what we should expect to see: """ entries_raw = [ ( [[1.1, 1.2, 1.3]], # dense [1], [11], [1.1], # floats [2], [11, 12], [2, 4], [111, 112, 121, 122, 123, 124], # intlst [1], [11], [1], [111], [11.1], # id score pairs [123], [[0.2, 0.8]], ['dog posts'], # metadata ), ( [[2.1, 2.2, 2.3]], # dense [2], [21, 22], [2.1, 2.2], # floats [0], [], [], [], # int list [2], [21, 22], [1, 2], [211, 221, 222], [21.1, 22.1, 22.2], [234], [[0.5, 0.5]], ['friends who like to'], # metadata ), ( [[3.1, 3.2, 3.3]], # dense [3], [31, 32, 33], [3.1, 3.2, 3.3], # floats [1], [31], [3], [311, 312, 313], # int lst [2], [31, 32], [2, 3], [311, 312, 321, 322, 323], [31.1, 31.2, 32.1, 32.2, 32.3], # id score list [456], [[0.7, 0.3]], ['posts about ca'], # metadata ), # after the end of the dataset, we will keep getting empty vectors ([], ) * 16, ([], ) * 16, ] entries = [from_blob_list(schema, e) for e in entries_raw] """ Let's go ahead and create the reading nets. We will run `read` net multiple times and assert that we are reading the entries the way we stated above. """ read_init_net = core.Net('read_init') read_next_net = core.Net('read_next') reader = ds.reader(read_init_net) should_continue, batch = reader.read_record(read_next_net) workspace.RunNetOnce(read_init_net) workspace.CreateNet(read_next_net, True) for entry in entries: workspace.RunNet(str(read_next_net)) actual = FetchRecord(batch) _assert_records_equal(actual, entry) """ 5. Reading/writing in a single plan If all of operations on the data are expressible as Caffe2 operators, we don't need to load the data to python, iterating through the dataset in a single Plan. Where we will process the dataset a little and store it in a second dataset. We can reuse the same Reader since it supports reset. """ reset_net = core.Net('reset_net') reader.reset(reset_net) read_step, batch = reader.execution_step() """ We will add the line number * 1000 to the feature ids. """ process_net = core.Net('process') line_no = Const(process_net, 0, dtype=np.int32) const_one = Const(process_net, 1000, dtype=np.int32) process_net.Add([line_no, const_one], [line_no]) field = batch.floats.keys.get() process_net.Print(field, []) process_net.Add([field, line_no], field, broadcast=1, axis=0) """ Lets create a second dataset and append to it. """ ds2 = dataset.Dataset(schema, name='dataset2') ds2.init_empty(reset_net) writer = ds2.writer(reset_net) writer.write_record(process_net, batch) # commit is not necessary for DatasetWriter but will add it for # generality of the example commit_net = core.Net('commit') writer.commit(commit_net) """ Time to create and run a plan which will do the processing """ plan = core.Plan('process') plan.AddStep(core.execution_step('reset', reset_net)) plan.AddStep(read_step.AddNet(process_net)) plan.AddStep(core.execution_step('commit', commit_net)) workspace.RunPlan(plan) """ Now we should have dataset2 populated. """ ds2_data = FetchRecord(ds2.content()) field = ds2_data.floats.keys field.set(blob=field.get() - [1000, 2000, 2000, 3000, 3000, 3000]) _assert_records_equal(contents, ds2_data) """ 6. Slicing a dataset You can create a new schema from pieces of another schema and reuse the same data. """ subschema = Struct(('top_level', schema.int_lists.values)) int_list_contents = contents.int_lists.values.field_names() self.assertEquals(len(subschema.field_names()), len(int_list_contents)) """ 7. Random Access a dataset """ read_init_net = core.Net('read_init') read_next_net = core.Net('read_next') idx = np.array([2, 1, 0]) indices_blob = Const(read_init_net, idx, name='indices') reader = ds.random_reader(read_init_net, indices_blob) reader.computeoffset(read_init_net) should_stop, batch = reader.read_record(read_next_net) workspace.CreateNet(read_init_net, True) workspace.RunNetOnce(read_init_net) workspace.CreateNet(read_next_net, True) for i in range(len(entries)): k = idx[i] if i in idx else i entry = entries[k] workspace.RunNet(str(read_next_net)) actual = FetchRecord(batch) _assert_records_equal(actual, entry) workspace.RunNet(str(read_next_net)) self.assertEquals(True, workspace.FetchBlob(should_stop)) """ 8. Random Access a dataset with loop_over = true """ read_init_net = core.Net('read_init') read_next_net = core.Net('read_next') idx = np.array([2, 1, 0]) indices_blob = Const(read_init_net, idx, name='indices') reader = ds.random_reader(read_init_net, indices_blob, loop_over=True) reader.computeoffset(read_init_net) should_stop, batch = reader.read_record(read_next_net) workspace.CreateNet(read_init_net, True) workspace.RunNetOnce(read_init_net) workspace.CreateNet(read_next_net, True) for _ in range(len(entries) * 3): workspace.RunNet(str(read_next_net)) self.assertEquals(False, workspace.FetchBlob(should_stop)) """ 9. Sort and shuffle a dataset This sort the dataset using the score of a certain column, and then shuffle within each chunk of size batch_size * shuffle_size before shuffling the chunks. """ read_init_net = core.Net('read_init') read_next_net = core.Net('read_next') reader = ds.random_reader(read_init_net) reader.sort_and_shuffle(read_init_net, 'int_lists:lengths', 1, 2) reader.computeoffset(read_init_net) should_continue, batch = reader.read_record(read_next_net) workspace.CreateNet(read_init_net, True) workspace.RunNetOnce(read_init_net) workspace.CreateNet(read_next_net, True) expected_idx = np.array([2, 1, 0]) for i in range(len(entries)): k = expected_idx[i] if i in expected_idx else i entry = entries[k] workspace.RunNet(str(read_next_net)) actual = FetchRecord(batch) _assert_records_equal(actual, entry) def test_last_n_window_ops(self): collect_net = core.Net('collect_net') collect_net.GivenTensorFill( [], 'input', shape=[3, 2], values=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0], ) input_array =\ np.array(list(range(1, 7)), dtype=np.float32).reshape(3, 2) workspace.CreateBlob('output') workspace.FeedBlob('next', np.array(0, dtype=np.int32)) collect_net.LastNWindowCollector( ['output', 'next', 'input'], ['output', 'next'], num_to_collect=7, ) plan = core.Plan('collect_data') plan.AddStep( core.execution_step('collect_data', [collect_net], num_iter=1) ) workspace.RunPlan(plan) reference_result = workspace.FetchBlob('output') npt.assert_array_equal(input_array, reference_result) plan = core.Plan('collect_data') plan.AddStep( core.execution_step('collect_data', [collect_net], num_iter=2) ) workspace.RunPlan(plan) reference_result = workspace.FetchBlob('output') npt.assert_array_equal(input_array[[1, 2, 2, 0, 1, 2, 0]], reference_result) plan = core.Plan('collect_data') plan.AddStep( core.execution_step('collect_data', [collect_net], num_iter=3) ) workspace.RunPlan(plan) reference_result = workspace.FetchBlob('output') npt.assert_array_equal(input_array[[2, 0, 1, 2, 2, 0, 1]], reference_result) def test_collect_tensor_ops(self): init_net = core.Net('init_net') blobs = ['blob_1', 'blob_2', 'blob_3'] bvec_map = {} ONE = init_net.ConstantFill([], 'ONE', shape=[1, 2], value=1) for b in blobs: init_net.ConstantFill([], [b], shape=[1, 2], value=0) bvec_map[b] = b + '_vec' init_net.CreateTensorVector([], [bvec_map[b]]) reader_net = core.Net('reader_net') for b in blobs: reader_net.Add([b, ONE], [b]) collect_net = core.Net('collect_net') num_to_collect = 1000 max_example_to_cover = 100000 bvec = [bvec_map[b] for b in blobs] collect_net.CollectTensor( bvec + blobs, bvec, num_to_collect=num_to_collect, ) print('Collect Net Proto: {}'.format(collect_net.Proto())) plan = core.Plan('collect_data') plan.AddStep(core.execution_step('collect_init', init_net)) plan.AddStep( core.execution_step( 'collect_data', [reader_net, collect_net], num_iter=max_example_to_cover ) ) workspace.RunPlan(plan) # concat the collected tensors concat_net = core.Net('concat_net') bconcated_map = {} bsize_map = {} for b in blobs: bconcated_map[b] = b + '_concated' bsize_map[b] = b + '_size' concat_net.ConcatTensorVector([bvec_map[b]], [bconcated_map[b]]) concat_net.TensorVectorSize([bvec_map[b]], [bsize_map[b]]) workspace.RunNetOnce(concat_net) # check data reference_result = workspace.FetchBlob(bconcated_map[blobs[0]]) self.assertEqual( reference_result.shape, (min(num_to_collect, max_example_to_cover), 2) ) size = workspace.FetchBlob(bsize_map[blobs[0]]) self.assertEqual(tuple(), size.shape) self.assertEqual(min(num_to_collect, max_example_to_cover), size.item()) hist, _ = np.histogram( reference_result[:, 0], bins=10, range=(1, max_example_to_cover) ) print('Sample histogram: {}'.format(hist)) self.assertTrue(all(hist > 0.6 * (num_to_collect / 10))) for i in range(1, len(blobs)): result = workspace.FetchBlob(bconcated_map[blobs[i]]) self.assertEqual(reference_result.tolist(), result.tolist()) if __name__ == "__main__": import unittest unittest.main()
3a0aa4f6f46d50f9055d2000d1b39488f5c19f87
b341a8d120737297aa8fd394a23633dac9b5ccda
/accounts/migrations/0007_auto_20210122_1129.py
c7476e71ff6f0746f30db617c468bd59bbe23d1c
[]
no_license
Minari766/disney_side_stories
16d97cb02bf00aa5439d59f753abb9a4706a30aa
aa2d88b1b0fdd87a27f41318bd3ec7352229b6ff
refs/heads/main
2023-08-15T07:03:16.922579
2021-10-03T07:47:22
2021-10-03T07:47:22
306,496,250
0
0
null
null
null
null
UTF-8
Python
false
false
445
py
# Generated by Django 2.2 on 2021-01-22 02:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0006_auto_20210122_0127'), ] operations = [ migrations.AlterField( model_name='customuser', name='icon', field=models.ImageField(blank=True, null=True, upload_to='images', verbose_name='アイコン'), ), ]
436645c364f840999119d1e57184125dbceeca14
1f006f0c7871fcde10986c4f5cec916f545afc9f
/apps/ice/plugins/oxml/oxml_wordNumbering_test.py
9d73299a89601ac0dd3e3d023fcdc93ea3e7a208
[]
no_license
ptsefton/integrated-content-environment
248b8cd29b29e8989ec1a154dd373814742a38c1
c1d6b5a1bea3df4dde10cb582fb0da361dd747bc
refs/heads/master
2021-01-10T04:46:09.319989
2011-05-05T01:42:52
2011-05-05T01:42:52
36,273,470
0
0
null
null
null
null
UTF-8
Python
false
false
3,070
py
#!/usr/bin/env python # # Copyright (C) 2010 Distance and e-Learning Centre, # University of Southern Queensland # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # from unittest import TestCase import sys from oxml_wordNumbering import WordNumbering testFile = "testData/numbering.xml" class WordNumberingTest(TestCase): def setUp(self): f = open(testFile, "rb") self.wordNumberingXmlStr = f.read() f.close() def tearDown(self): pass def testGetNumLevelInfo(self): #word/numbering.xml wordNum = WordNumbering(self.wordNumberingXmlStr) numId = "1" level = "0" info = wordNum.getNumLevelInfo(numId, level) expected = {'leftIndent': u'720', 'start': u'1', 'jc': u'left', 'text': u'%1.', 'format': u'decimal'} self.assertEquals(info, expected) def runUnitTests(locals): print "\n\n\n\n" if sys.platform=="cli": import clr import System.Console System.Console.Clear() print "---- Testing under IronPython ----" else: print "---- Testing ----" # Run only the selected tests args = list(sys.argv) sys.argv = sys.argv[:1] args.pop(0) runTests = args runTests = [ i.lower().strip(", ") for i in runTests] runTests = ["test"+i for i in runTests if not i.startswith("test")] + \ [i for i in runTests if i.startswith("test")] if runTests!=[]: testClasses = [i for i in locals.values() \ if hasattr(i, "__bases__") and \ (TestCase in i.__bases__)] testing = [] for x in testClasses: l = dir(x) l = [ i for i in l if i.startswith("test") and callable(getattr(x, i))] for i in l: if i.lower() not in runTests: delattr(x, i) else: testing.append(i) x = None num = len(testing) if num<1: print "No selected tests found! - %s" % str(args)[1:-1] elif num==1: print "Running selected test - %s" % (str(testing)[1:-1]) else: print "Running %s selected tests - %s" % (num, str(testing)[1:-1]) from unittest import main main() if __name__=="__main__": runUnitTests(locals()) sys.exit(0)
[ "[email protected]@110e3293-9ef9-cb8f-f479-66bdb1942d05" ]
[email protected]@110e3293-9ef9-cb8f-f479-66bdb1942d05
199d434465c3656aee4f794b9c3e45082973e134
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-7896.py
b9db85cffe8ae7ce8835bf3307e75b65eb9792ec
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,291
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: $Type, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
bd64520533edfc4080a9c62fe2f73533c225df98
952a9bc5a54bae037662f3bd5e09aa13780628a2
/vespa/analysis/block_prep_megalaser.py
d9ee800348907f04ad9ee6a673913aebdecb9e0a
[ "BSD-3-Clause" ]
permissive
bsoher/vespa_py2
199964d2ffdc6ed576d6d73e55078ed5bc26c784
07cd67de2465607319870a18435da784345198d0
refs/heads/main
2023-04-22T04:24:44.270731
2021-05-06T01:07:57
2021-05-06T01:07:57
364,384,405
0
0
null
null
null
null
UTF-8
Python
false
false
12,109
py
# Python modules from __future__ import division # 3rd party modules import numpy as np import xml.etree.cElementTree as ElementTree # Our modules import vespa.analysis.block_prep_identity as block_prep_identity import vespa.analysis.chain_prep_megalaser as chain_prep_megalaser import vespa.analysis.block as block import vespa.common.util.xml_ as util_xml import vespa.common.util.misc as util_misc import vespa.common.constants as common_constants import vespa.common.mrs_data_raw as mrs_data_raw from vespa.common.constants import Deflate class _Settings(object): # The XML_VERSION enables us to change the XML output format in the future XML_VERSION = "1.0.0" def __init__(self, attributes=None): """ Currently there are no input parameters set in this object. This may change in the future, or this object may serve as a base class for other "raw" types of data objects that need to do a bit of massaging of the data as it comes in (e.g. align and sum individual FIDs for an SVS data set). """ self.fid_left_shift = 0 self.gaussian_apodization = 2.0 self.global_phase1 = 0.0 self.apply_peak_shift = True self.reference_peak_center = 2.01 self.peak_search_width = 0.2 self.fid_left_shift_b0 = 56 self.apply_phase0 = True self.phase0_range_start = 2.2 self.phase0_range_end = 1.8 self.fid_left_shift_phase0 = 56 self.ref_spectrum_source = 'singlet_centered_in_range' self.ref_peak_line_width = 18 self.constant_phase0_offset = 70 # degrees if attributes is not None: self.inflate(attributes) def __str__(self): return self.__unicode__().encode("utf-8") def __unicode__(self): lines = [ ] lines.append("--- Block Preprocess Megalaser Settings ---") lines.append("fid_left_shift : " + unicode(self.fid_left_shift)) lines.append("gaussian_apodization : " + unicode(self.gaussian_apodization)) lines.append("apply_peak_shift : " + unicode(self.apply_peak_shift)) lines.append("reference_peak_center : " + unicode(self.reference_peak_center)) lines.append("peak_search_width : " + unicode(self.peak_search_width)) lines.append("fid_left_shift_b0 : " + unicode(self.fid_left_shift_b0)) lines.append("apply_phase0 : " + unicode(self.apply_phase0)) lines.append("phase0_range_start : " + unicode(self.phase0_range_start)) lines.append("phase0_range_end : " + unicode(self.phase0_range_end)) lines.append("fid_left_shift_phase0 : " + unicode(self.fid_left_shift_phase0)) lines.append("ref_spectrum_source : " + unicode(self.ref_spectrum_source)) lines.append("ref_peak_line_width : " + unicode(self.ref_peak_line_width)) lines.append("constant_phase0_offset : " + unicode(self.constant_phase0_offset)) # __unicode__() must return a Unicode object. In practice the code # above always generates Unicode, but we ensure it here. return u'\n'.join(lines) def deflate(self, flavor=Deflate.ETREE): if flavor == Deflate.ETREE: e = ElementTree.Element("settings", {"version" : self.XML_VERSION}) util_xml.TextSubElement(e, "fid_left_shift", self.fid_left_shift) util_xml.TextSubElement(e, "gaussian_apodization", self.gaussian_apodization) util_xml.TextSubElement(e, "global_phase1", self.global_phase1) util_xml.TextSubElement(e, "apply_peak_shift", self.apply_peak_shift) util_xml.TextSubElement(e, "reference_peak_center", self.reference_peak_center) util_xml.TextSubElement(e, "peak_search_width", self.peak_search_width) util_xml.TextSubElement(e, "fid_left_shift_b0", self.fid_left_shift_b0) util_xml.TextSubElement(e, "apply_phase0", self.apply_phase0) util_xml.TextSubElement(e, "phase0_range_start", self.phase0_range_start) util_xml.TextSubElement(e, "phase0_range_end", self.phase0_range_end) util_xml.TextSubElement(e, "fid_left_shift_phase0", self.fid_left_shift_phase0) util_xml.TextSubElement(e, "ref_spectrum_source", self.ref_spectrum_source) util_xml.TextSubElement(e, "ref_peak_line_width", self.ref_peak_line_width) util_xml.TextSubElement(e, "constant_phase0_offset", self.constant_phase0_offset) return e elif flavor == Deflate.DICTIONARY: return self.__dict__.copy() def inflate(self, source): if hasattr(source, "makeelement"): # Quacks like an ElementTree.Element for name in ("reference_peak_center", "gaussian_apodization", "peak_search_width", "global_phase1", 'phase0_range_start', 'phase0_range_end'): item = source.findtext(name) if item is not None: setattr(self, name, float(item)) for name in ("fid_left_shift", "fid_left_shift_b0", "fid_left_shift_phase0", "ref_peak_line_width", "constant_phase0_offset"): item = source.findtext(name) if item is not None: setattr(self, name, int(item)) for name in ("apply_peak_shift", "apply_phase0", ): item = source.findtext(name) if item is not None: setattr(self, name, util_xml.BOOLEANS[item]) for name in ("ref_spectrum_source",): item = source.findtext(name) if item is not None: setattr(self, name, item) elif hasattr(source, "keys"): # Quacks like a dict for key in source.keys(): if hasattr(self, key): setattr(self, key, source[key]) class BlockPrepMegalaser(block_prep_identity.BlockPrepIdentity): """ This is a building block object that can be used to create a list of processing blocks. This object represents preprocessing of the raw data from the first block ('raw') in the dataset.blocks list. We sub-class from BlockPrepIdentity base class to minimize recreating wheels, but to also leave us the flexibility of extending this class in the future for any 'special children' types of data loading. In here we also package all the functionality needed to save and recall these values to/from an XML node. """ # The XML_VERSION enables us to change the XML output format in the future XML_VERSION = "1.0.0" def __init__(self, attributes=None): """ Here we set up the standard functionality of the base class """ block_prep_identity.BlockPrepIdentity.__init__(self, attributes) #---------------------------------------- # processing parameters self.set = _Settings() #---------------------------------------- # results storage self.frequency_shift = None self.phase_0 = None self.data = None if attributes is not None: self.inflate(attributes) self.chain = None ##### Standard Methods and Properties ##################################### # # This overrides the data property from the Identity class which is read # # only. This form allows us to read/write # def __get_data(self): # return self._data # def __set_data(self, data): # self._data = data # data = property(__get_data, __set_data) @property def dims(self): """Data dimensions in a list, e.g. [1024, 1, 1, 1]. It's read only.""" # Note that self.data.shape is a tuple. Dims must be a list. if self.data is not None: return list(self.data.shape[::-1]) return None def __str__(self): return self.__unicode__().encode("utf-8") def __unicode__(self): lines = mrs_data_raw.DataRaw.__unicode__(self).split('\n') lines[0] = "----------- DataPrepMegalaser Object ------------" lines.append("Data shape : %s" % str(self.dims)) return u'\n'.join(lines) def create_chain(self, dataset): self.chain = chain_prep_megalaser.ChainPrepMegalaser(dataset, self) def set_dims(self, dataset): """ Given a Dataset object, this is an opportunity for this block object to ensure that its dims match those of the parent dataset. """ block.Block.set_dims(self, dataset) # local reference to input data raw = dataset.get_source_data('prep') # this is the calculated proper size for self.data fidsum_dims = [raw.shape[-1],1,1,1] if not self.dims or self.dims != fidsum_dims: self._reset_dimensional_data(dataset) def _reset_dimensional_data(self, dataset): """ Resets (to zero) and resizes dimensionally-dependent data """ # local reference to input data raw = dataset.get_source_data('prep') n_fids = raw.shape[-2] self.frequency_shift = np.zeros([n_fids]) self.phase_0 = np.zeros([n_fids]) self.data = np.zeros((1,1,1,raw.shape[-1]), dtype=raw.dtype) if self.chain is not None: self.chain.reset_results_arrays() def concatenate(self, new): raise NotImplementedError def deflate(self, flavor=Deflate.ETREE): if flavor == Deflate.ETREE: e = ElementTree.Element("block_prep_megalaser", { "id" : self.id, "version" : self.XML_VERSION}) util_xml.TextSubElement(e, "behave_as_preset", self.behave_as_preset) # Now I deflate the attribs that are specific to this class e.append(self.set.deflate()) if not self.behave_as_preset: e.append(util_xml.numpy_array_to_element(self.frequency_shift,'frequency_shift')) e.append(util_xml.numpy_array_to_element(self.phase_0,'phase_0')) e.append(util_xml.numpy_array_to_element(self.data, 'data')) return e elif flavor == Deflate.DICTIONARY: return self.__dict__.copy() def inflate(self, source): if hasattr(source, "makeelement"): val = source.findtext("behave_as_preset") # default is False if val is not None: self.behave_as_preset = util_xml.BOOLEANS[val] # Quacks like an ElementTree.Element self.set = _Settings(source.find("settings")) if not self.behave_as_preset: # Now I inflate the attribs that are specific to this class temp = source.find("frequency_shift") self.frequency_shift = util_xml.element_to_numpy_array(temp) temp = source.find("phase_0") self.phase_0 = util_xml.element_to_numpy_array(temp) temp = source.find("data") self.data = util_xml.element_to_numpy_array(temp) elif hasattr(source, "keys"): # Quacks like a dict for key in source.keys(): if key == "set": setattr(self, key, source[key]) ##### Private Methods #####################################
9330cd3f6095c574c0fa566a8d69be0fec19b834
a62a87ad976e3d35ea7879671190faf950ebaf3b
/scrapys/t.py
47ae7f7a675a471d9db25b8bb6a431b20fa33406
[]
no_license
YangXiaoo/Django-web
144c8c1800d2a67bf8d1d203210aa351d31e8fb3
97903f309234fd1421a19a52a083f214172d6c79
refs/heads/master
2020-03-24T11:29:20.296017
2019-01-20T14:54:16
2019-01-20T14:54:16
142,687,045
0
0
null
null
null
null
UTF-8
Python
false
false
3,264
py
# -*- coding: utf-8 -*- import re import urllib2 import pandas as pd #获取原码 def get_content(page): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36', 'Accept-Language': 'zh-CN,zh;q=0.8'} url ='http://search.51job.com/list/000000,000000,0000,00,9,99,python,2,'+ str(page)+'.html' req = urllib2.Request(url,headers=headers) res = urllib2.urlopen(req) html = res.read() re= unicode(html, "gbk").encode("utf8") return re def get(html): reg = re.compile(r'class="t1 ">.*? href="(.*?)".*? <a target="_blank" title="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)" href="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*? <span class="t5">(.*?)</span>',re.S) items=re.findall(reg,html) return items def info_get(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36', 'Accept-Language': 'zh-CN,zh;q=0.8'} req = urllib2.Request(url,headers=headers) res = urllib2.urlopen(req) html = res.read() html = unicode(html, "gbk").encode("utf8") reg = re.compile(r'<span class="sp4"><em class="(.*?)"></em>(.*?)</span>',re.S) based_info = re.findall(reg,html) reg_p = re.compile(r'<span class="el">(.*?)</span>',re.S) kind = re.findall(reg_p,html) return based_info,kind def address(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36', 'Accept-Language': 'zh-CN,zh;q=0.8'} req = urllib2.Request(url,headers=headers) res = urllib2.urlopen(req) html = res.read() html = unicode(html, "gbk").encode("utf8") reg_a = re.compile(r'<div class="tBorderTop_box bmsg">.*?</span>(.*?)</p>',re.S) address = re.findall(reg_a,html) return address final = [] for j in range(1,2): print("正在爬取第"+str(j)+"页数据...") try: html=get_content(j) for i in get(html): result = {} with open ('51job.txt','a') as f: f.write(i[0]+'\t'+i[1]+'\t'+i[2]+'\t'+i[3]+'\t'+i[4]+'\t'+i[5]+'\t'+i[6]+'\n') f.close() result['info_link'] = i[0] info,kind = info_get(i[0]) count = 1 for n in info: if count == 1: result['experience'] = n[1] count += 1 elif count == 2: result['educational'] = n[1] count += 1 else: break result['work_type'] = kind[0] result['address'] = address result['name'] = i[1] result['company'] = i[2] result['company_link'] = i[3] result['work_place'] = i[4] result['salary'] = i[5] ad = address(i[3]) result['address'] = ad result['publish_time'] = i[6] final.append(result) except: pass df = pd.DataFrame(final) df.to_csv('51job-data_analysis.csv', mode = 'a',encoding = 'utf8')
91cf1bbafb30679fda22289ccab052d7605c72e6
503d2f8f5f5f547acb82f7299d86886691966ca5
/typical90/typical90_cf.py
f610d0f1035ed452bc7992ce2b7ed0d6160b139f
[]
no_license
Hironobu-Kawaguchi/atcoder
3fcb649cb920dd837a1ced6713bbb939ecc090a9
df4b55cc7d557bf61607ffde8bda8655cf129017
refs/heads/master
2023-08-21T14:13:13.856604
2023-08-12T14:53:03
2023-08-12T14:53:03
197,216,790
0
0
null
null
null
null
UTF-8
Python
false
false
937
py
# https://atcoder.jp/contests/typical90/tasks/typical90_cf # # def input(): return sys.stdin.readline().rstrip() # # input = sys.stdin.readline # from numba import njit # from functools import lru_cache # import sys # input = sys.stdin.buffer.readline # sys.setrecursionlimit(10 ** 7) N = int(input()) S = input() ans = 0 last = [-1]*2 for i in range(N): if S[i]=='o': last[0] = i else: last[1] = i if last[0]==-1 or last[1]==-1: continue ans += min(last[0], last[1]) + 1 # print(ans, last) print(ans) # S = input() # n = int(input()) # N, K = map(int, input().split()) # l = list(map(int, (input().split()))) # A = [[int(i) for i in input().split()] for _ in range(N)] # import sys # it = map(int, sys.stdin.buffer.read().split()) # N = next(it) # @njit('(i8,i8[::1],i4[::1])', cache=True) # def main(): # @lru_cache(None) # def dfs(): # return # return # main()
b9edcccc00c10227f91be8740e4d744c0cea4347
2b8047e9e73a2f6fd43897cff19cb7e7c7c464d4
/docssrc/source/conf.py
5d48fbeb3fa4a5a1f8afc2bbac54d3f8fcfb3638
[ "MIT" ]
permissive
Peilonrayz/envee
548fe08330a3b43bee5da1d64a0e406c781b990e
66f5b6b1ff7f5966be794e1e3878418c560c1f65
refs/heads/master
2021-01-09T13:35:40.946529
2020-02-21T20:58:27
2020-02-21T20:58:27
242,321,085
0
0
null
null
null
null
UTF-8
Python
false
false
984
py
import datetime import pathlib import sys try: import ConfigParser as configparser except ImportError: import configparser FILE_PATH = pathlib.Path(__file__).absolute() # Add documentation for tests TLD = FILE_PATH.parent.parent.parent sys.path.insert(0, str(TLD)) config = configparser.ConfigParser() config.read(TLD / "setup.cfg") project = "envee" author = "Peilonrayz" copyright = f"{datetime.datetime.now().year}, {author}" release = config.get("src", "version") master_doc = "index" templates_path = ["_templates"] exclude_patterns = [] doctest_global_setup = f""" import {project} """ extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.graphviz", "sphinx.ext.githubpages", "sphinx.ext.intersphinx", "sphinx_autodoc_typehints", "sphinx_rtd_theme", ] intersphinx_mapping = {"python": ("https://docs.python.org/3", None)} html_theme = "sphinx_rtd_theme" html_static_path = ["_static"] set_type_checking_flag = True
737f03f10ca5c122cad3e6ecd1ea3ca167ba591a
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_7114.py
43772d7ec5384a7033d876749b4875f9abf3a978
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
# global name 'find' is not defined 'python'.find('y') # gives 1
fbdea07de6f18420b99a57b116c79adf1f0463a1
eac52a8ae7c539acedaedf8744bd8e20172f0af6
/general/decode_ways.py
33c70cc775b271c21d0bb448684acae24e9ffa65
[]
no_license
mshekhar/random-algs
3a0a0f6e6b21f6a59ed5e1970b7a2bc2044e191f
7c9a8455f49027a754038b23aaa2df61fe5397ca
refs/heads/master
2020-03-26T16:29:42.694785
2019-07-18T20:57:55
2019-07-18T20:57:55
145,105,593
4
0
null
null
null
null
UTF-8
Python
false
false
2,895
py
# A message containing letters from A-Z is being encoded to numbers using the following mapping: # # 'A' -> 1 # 'B' -> 2 # ... # 'Z' -> 26 # Given a non-empty string containing only digits, determine the total number of ways to decode it. # # Example 1: # # Input: "12" # Output: 2 # Explanation: It could be decoded as "AB" (1 2) or "L" (12). # Example 2: # # Input: "226" # Output: 3 # Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6). # if not single_digit: # all_single_possible[c] = False # else: # all_single_possible[c] = all_single_possible[c - 1] and all_single_possible[c] # if c - 1 >= 0 and num_decodings[c - 1] > 0: # num_decodings[c] = num_decodings[c - 1] # # if c - 1 >= 0: # double_digit = self.get_decoding_count(s[c - 1] + i) # if double_digit: # print s[c - 1] + i, double_digit, num_decodings[c - 2] + int(all_single_possible[c - 2]) # if c - 2 >= 0 and num_decodings[c - 2] + int(all_single_possible[c - 2]) > 0: # num_decodings[c] += num_decodings[c - 2] + 1 # elif c == 1: # num_decodings[c] += 1 class Solution(object): def get_decoding_count(self, s): if not s.startswith('0') and 1 <= int(s) <= 26: return 1 return 0 def numDecodings(self, s): """ :type s: str :rtype: int """ num_decodings = [0] * len(s) all_single_possible = True for c, i in enumerate(s): single_digit = self.get_decoding_count(i) double_digit = 0 if c - 1 >= 0: double_digit = self.get_decoding_count(s[c - 1] + i) if not single_digit: all_single_possible = False if single_digit + double_digit > 0: if single_digit: num_decodings[c] = num_decodings[c - 1] if all_single_possible and not num_decodings[c]: num_decodings[c] = 1 if double_digit: if c - 2 >= 0 and num_decodings[c - 2] > 0: num_decodings[c] += num_decodings[c - 2] elif c == 1: num_decodings[c] += 1 # add one for all single decodings # print num_decodings, all_single_possible return num_decodings[-1] print Solution().numDecodings("12"), 2 print Solution().numDecodings("226"), 3 print Solution().numDecodings("10"), 1 print Solution().numDecodings("103"), 1 print Solution().numDecodings("1032"), 1 print Solution().numDecodings("10323"), 1 print Solution().numDecodings("012"), 0 print Solution().numDecodings("110"), 1 print Solution().numDecodings("1212"), 5 # 1 2 1 # 12 1 # 1 21 # # 1 2 1 2 # # 12 1 2 # 12 12 # # 1 21 2 # 1 2 12 # for i in ["0", "10", "10", "103", "1032", "10323"]: # print(Solution().numDecodings(i))
07a345dba33878564304037a609dba06de767c0c
36c00fe2afff4818c937e312ce0c6a79f35e2a77
/7-kyu/happy-birthday,-darling!/python/solution.py
ab407ea9bcebd79b2d18c37ed24e86ac2368a137
[]
no_license
p-lots/codewars
0a67b6ee4c91180ff78c648421b9d2d64463ddc3
535faeee475c6b398124d6f5002b0e111406e8bb
refs/heads/master
2023-08-23T22:14:33.635011
2023-08-23T13:30:37
2023-08-23T13:30:37
195,320,309
0
0
null
2023-05-09T19:25:50
2019-07-05T01:40:15
Python
UTF-8
Python
false
false
164
py
def womens_age(n): base = n // 2 if n % 2 == 0 else (n - 1) // 2 new_n = 20 if n % 2 == 0 else 21 return f"{n}? That's just {new_n}, in base {base}!"
d0c7805015d0990484841901a310a10805e00cf6
39be02fe4f8e8362a7acc005f3e30dd6fe47990e
/newdata/oylereader.py
5ebdae4fcc852f8c821d74ed40ee95c9b06e915b
[]
no_license
seferlab/geneexpress
e2f6fdaa49e40cd48d0572cd9ddb5d2f45566adb
ac35bde5ba52d24981ece74e532f46bbfff9019e
refs/heads/master
2022-12-19T08:33:16.925160
2020-09-29T13:51:30
2020-09-29T13:51:30
299,619,752
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
import os import sys import math fname1 = "127 LCM time course Data Not normalized.txt" fname2 = "127 LCM time course Quantile Normalized logbased 2 transformed.txt" with open(fname1,"r") as infile: for line in infile: line = line.rstrip() vals = line.split("\r") splitted = vals[1].split("\t") items1 = [float(splitted[tind]) for tind in xrange(1,len(splitted))] with open(fname2,"r") as infile: for line in infile: line = line.rstrip() vals = line.split("\r") splitted = vals[1].split("\t") items2 = [float(splitted[tind]) for tind in xrange(1,len(splitted))] print items1[0:20] print [math.log(titem,2.0) for titem in items1[0:10]] print [math.log(titem+1.0,2.0) for titem in items1[0:10]] print items2[0:20] print items1[8:20]
f0b3e6949b78c44d35bdedc65dcdd7d848eae7f3
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/10/33/17.py
b549582d467c3879831e6f099d36ecf18d3abe31
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
1,617
py
from itertools import count def board(rows): n = len(rows[0]) * 4 return [map(int, '{0:0{1}b}'.format(int(row, 16), n)) for row in rows] def squares(board): m, n = len(board), len(board[0]) #sq = {} for r in xrange(m): for c in xrange(n): if board[r][c] == 2: continue ns = findsquare(board, r, c) yield ns, -r, -c #fill(board, r, c, ns) #sq[ns] = sq.get(ns, 0) + 1 #return sq def solve(board): result = {} m, n = len(board), len(board[0]) while 1: try: n, r, c = max(squares(board)) except ValueError: return result result[n] = result.get(n, 0) + 1 fill(board, -r, -c, n) def fill(board, r, c, n): for i in xrange(r, r+n): for j in xrange(c, c+n): board[i][j] = 2 def findsquare(board, r, c): x = board[r][c] try: for s in count(1): for j in range(c, c+s+1): x = 1 - x if board[r+s][j] != x: return s for i in range(r+s-1, r-1, -1): x = 1 - x if board[i][c+s] != x: return s except IndexError: return s if __name__ == '__main__': import sys rl = iter(sys.stdin).next for case in range(1, int(rl())+1): M,N = map(int, rl().split()) lines = [rl().strip() for _ in range(M)] b = board(lines) sq = solve(b) print 'Case #%d: %s' % (case, len(sq)) for k, v in sorted(sq.items(), reverse=True): print k,v
238eb7c3a48a487377b765829fcb5eee86416ff5
24cf311c53c29e4e332cea01ee4de8196253a7b7
/accounts/urls.py
ca8992d712669175ee1ef3193b0ea2d6ab348261
[]
no_license
apengok/vsicravdoa
d017fe0c6a8606ef7bb74739354de1a2767b2a8a
e424b94007731189c2f14513798f2a9e9a45ba4c
refs/heads/master
2020-03-10T23:07:48.145583
2018-06-01T09:18:25
2018-06-01T09:18:25
129,634,250
1
0
null
null
null
null
UTF-8
Python
false
false
777
py
from django.conf.urls import url from .views import ( AccountHomeView, # AccountEmailActivateView, UserDetailUpdateView ) app_name = 'account' urlpatterns = [ url(r'^$', AccountHomeView.as_view(), name='home'), url(r'^details/$', UserDetailUpdateView.as_view(), name='user-update'), # url(r'history/products/$', UserProductHistoryView.as_view(), name='user-product-history'), # url(r'^email/confirm/(?P<key>[0-9A-Za-z]+)/$', # AccountEmailActivateView.as_view(), # name='email-activate'), # url(r'^email/resend-activation/$', # AccountEmailActivateView.as_view(), # name='resend-activation'), ] # account/email/confirm/asdfads/ -> activation view
a20abcac99856f482d5e3f7ec4d5c5c93878dacd
98f505e8275ed888818d8d6f77d27a9c275b55d8
/face.py
a6d86359d258eda63f01fe71ba8a00892e28e706
[]
no_license
EHwooKim/telegram
13ac0afbd4ee5f91aa81b557183e9d8143fb1315
034ae64fa6283720fd55362b1b763cb3497ce4fc
refs/heads/master
2022-12-11T19:53:23.942523
2019-07-12T07:41:29
2019-07-12T07:41:29
196,533,974
0
0
null
2022-12-08T05:52:25
2019-07-12T07:48:30
Python
UTF-8
Python
false
false
959
py
import pprint import requests from decouple import config # 0. 이미지 파일 file_url = 'https://api.telegram.org/file/bot823224197:AAFwM03Ie4P8dBH45aKI75sMO0okZpcIqic/photos/file_2.jpg' response = requests.get(file_url, stream=True) image = response.raw.read() # 1. 네이버 API 설정 naver_client_id = config('NAVER_CLIENT_ID') naver_client_secret = config('NAVER_CLIENT_SECRET') # 2. URL 설정 naver_url = 'https://openapi.naver.com/v1/vision/celebrity' # 3. 요청 보내기! POST headers = { 'X-Naver-Client-Id': naver_client_id, 'X-Naver-Client-Secret': naver_client_secret } response = requests.post(naver_url, headers=headers, files={'image':image}).json() best = response.get('faces')[0].get('celebrity') if best.get('confidence') > 0.2: text = f"{best.get('confidence')*100}%만큼 {best.get('value')}를 닮으셨네요~" else : text = '사람이 아닙니다' print(text)
52860b1da6917fcd830a4b178bd3d28e8c60bf70
99dfd25f07b748e0b9b04ac300e135dc20570e1c
/cart/urls.py
1731b6a31f6bbea06b4fcbb367549265a3127dd2
[]
no_license
suipingooi/tgc10-django-deploy-checkpointPAUL
1ec45e7135263703ff3472216f8fdcfdb379d7f3
46b62cdce8396c2b0cc57ec1fca4e77c0eee1e1a
refs/heads/master
2023-04-16T05:11:20.535480
2021-04-14T12:02:43
2021-04-14T12:02:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
from django.urls import path import cart.views urlpatterns = [ path('add/<book_id>', cart.views.add_to_cart, name="add_to_cart"), path('', cart.views.view_cart, name='view_cart'), path('remove/<book_id>', cart.views.remove_from_cart, name="remove_from_cart"), path('update_quantity/<book_id>', cart.views.update_quantity, name="update_cart_quantity") ]
034a7d5e99bd493a04228ed2e4b4f1b71a6ec5c2
0cc4eb3cb54f8394c127ace62d3108fdb5230c85
/.spack-env/view/lib/python3.7/site-packages/jedi/third_party/typeshed/stdlib/2and3/profile.pyi
df940020d4066a6dc89ae87f2652df920ed8c8b4
[]
no_license
jacobmerson/spack-develop-env
5b2d76f58c0b64ae97c64f77a3c4d33a770c71c8
5fca20ca343b1a76f05fc635c87f94ed25417d94
refs/heads/master
2022-07-04T02:22:50.264727
2020-05-06T05:13:50
2020-05-06T05:13:50
261,657,112
0
0
null
null
null
null
UTF-8
Python
false
false
190
pyi
/lore/mersoj/spack/spack/opt/spack/linux-rhel7-x86_64/gcc-7.3.0/py-jedi-0.17.0-zugnvpgjfmuk5x4rfhhxlsknl2g226yt/lib/python3.7/site-packages/jedi/third_party/typeshed/stdlib/2and3/profile.pyi
bd13eec195727b03591f3658eaa75c0f54f16624
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03827/s915868982.py
561cb7cb4a15cc5878feaba7bc58f0a5af14916d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
N = int(input()) S = input() x = 0 ans = 0 for s in S: x += 1 if s == "I" else -1 ans = max(ans, x) print(ans)
2ca6a41f705f6ef795834db9d2bcbec1c4e7da99
9d0195aa83cc594a8c61f334b90375961e62d4fe
/JTTest/SL7/CMSSW_10_2_15/src/miniAODJobs600toInf/nano4.py
1366df4f33cc6ad0c152e7cd8e25ea82efda4cf6
[]
no_license
rsk146/CMS
4e49592fc64f6438051544c5de18598db36ed985
5f8dab8c59ae556598b9747b52b88205fffc4dbe
refs/heads/master
2022-12-01T03:57:12.126113
2020-08-04T03:29:27
2020-08-04T03:29:27
284,863,383
0
0
null
null
null
null
UTF-8
Python
false
false
4,363
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: nanoAOD_jetToolbox_cff -s NANO --mc --eventcontent NANOAODSIM --datatier NANOAODSIM --no_exec --conditions 102X_upgrade2018_realistic_v19 --era Run2_2018,run2_nanoAOD_102Xv1 --customise_commands=process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) --customise JMEAnalysis/JetToolbox/nanoAOD_jetToolbox_cff.nanoJTB_customizeMC --filein file:cms/xaastorage/MINIAOD/Xaa_photons/diPhoton/x500_a100/XaaNLOttQED0_BBAR_M-x500_a100_MINIAODSIM_1.root --fileout file:jetToolbox_nano_mc.root import FWCore.ParameterSet.Config as cms import files50 from files50 import * from Configuration.StandardSequences.Eras import eras process = cms.Process('NANO',eras.Run2_2018,eras.run2_nanoAOD_102Xv1) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('SimGeneral.MixingModule.mixNoPU_cfi') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_cff') process.load('PhysicsTools.NanoAOD.nano_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Input source process.source = cms.Source("PoolSource", # fileNames = cms.untracked.vstring('file:/cms/xaastorage/MINIAOD/2016/GJets/HT_100to200/GJet_100to200_1.root '), fileNames = cms.untracked.vstring(A), secondaryFileNames = cms.untracked.vstring() ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('nanoAOD_jetToolbox_cff nevts:1'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.NANOAODSIMoutput = cms.OutputModule("NanoAODOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('NANOAODSIM'), filterName = cms.untracked.string('') ), fileName = cms.untracked.string('file:jetToolbox_nano_mc_2018GJetsHT600toInf_50.root'), outputCommands = process.NANOAODSIMEventContent.outputCommands ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '102X_upgrade2018_realistic_v19', '') # Path and EndPath definitions process.nanoAOD_step = cms.Path(process.nanoSequenceMC) process.endjob_step = cms.EndPath(process.endOfProcess) process.NANOAODSIMoutput_step = cms.EndPath(process.NANOAODSIMoutput) # Schedule definition process.schedule = cms.Schedule(process.nanoAOD_step,process.endjob_step,process.NANOAODSIMoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # customisation of the process. # Automatic addition of the customisation function from PhysicsTools.NanoAOD.nano_cff from PhysicsTools.NanoAOD.nano_cff import nanoAOD_customizeMC #call to customisation function nanoAOD_customizeMC imported from PhysicsTools.NanoAOD.nano_cff process = nanoAOD_customizeMC(process) # Automatic addition of the customisation function from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff import nanoJTB_customizeMC #call to customisation function nanoJTB_customizeMC imported from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff process = nanoJTB_customizeMC(process) # End of customisation functions # Customisation from command line process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
fc521136d37bde83bf4b77d4966c06e6653d750b
3f6c16ea158a8fb4318b8f069156f1c8d5cff576
/.PyCharm2019.1/system/python_stubs/-1317042838/pandas/_libs/ops.py
a84d13f1d42b972f9af8b614b27048d38673cdb9
[]
no_license
sarthak-patidar/dotfiles
08494170d2c0fedc0bbe719cc7c60263ce6fd095
b62cd46f3491fd3f50c704f0255730af682d1f80
refs/heads/master
2020-06-28T23:42:17.236273
2019-10-01T13:56:27
2019-10-01T13:56:27
200,369,900
0
0
null
2019-08-03T12:56:33
2019-08-03T11:53:29
Shell
UTF-8
Python
false
false
2,829
py
# encoding: utf-8 # module pandas._libs.ops # from /var/www/newsbytes/CPP/venv/lib/python3.6/site-packages/pandas/_libs/ops.cpython-36m-x86_64-linux-gnu.so # by generator 1.147 # no doc # imports import builtins as __builtins__ # <module 'builtins' (built-in)> import operator as operator # /usr/lib/python3.6/operator.py import numpy as np # /var/www/newsbytes/CPP/venv/lib/python3.6/site-packages/numpy/__init__.py # functions def maybe_convert_bool(*args, **kwargs): # real signature unknown pass def scalar_binop(*args, **kwargs): # real signature unknown """ Apply the given binary operator `op` between each element of the array `values` and the scalar `val`. Parameters ---------- values : ndarray[object] val : object op : binary operator Returns ------- result : ndarray[object] """ pass def scalar_compare(*args, **kwargs): # real signature unknown """ Compare each element of `values` array with the scalar `val`, with the comparison operation described by `op`. Parameters ---------- values : ndarray[object] val : object op : {operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt} Returns ------- result : ndarray[bool] """ pass def vec_binop(*args, **kwargs): # real signature unknown """ Apply the given binary operator `op` pointwise to the elements of arrays `left` and `right`. Parameters ---------- left : ndarray[object] right : ndarray[object] op : binary operator Returns ------- result : ndarray[object] """ pass def vec_compare(*args, **kwargs): # real signature unknown """ Compare the elements of `left` with the elements of `right` pointwise, with the comparison operation described by `op`. Parameters ---------- left : ndarray[object] right : ndarray[object] op : {operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt} Returns ------- result : ndarray[bool] """ pass def __pyx_unpickle_Enum(*args, **kwargs): # real signature unknown pass # no classes # variables with complex values __loader__ = None # (!) real value is '<_frozen_importlib_external.ExtensionFileLoader object at 0x7f43e7e6f8d0>' __spec__ = None # (!) real value is "ModuleSpec(name='pandas._libs.ops', loader=<_frozen_importlib_external.ExtensionFileLoader object at 0x7f43e7e6f8d0>, origin='/var/www/newsbytes/CPP/venv/lib/python3.6/site-packages/pandas/_libs/ops.cpython-36m-x86_64-linux-gnu.so')" __test__ = {}
ce3333447ac28a3d89c0757d6ada515e638e5bd2
8410bb5a2e8849bb3a554b95ddc713d88f3440c4
/aws-dev/awsdev9/venv/Lib/site-packages/dns/rdtypes/ANY/SOA.py
aec81cad8ac916e9bc71052ecbc4983cdabbd126
[ "MIT" ]
permissive
PacktPublishing/-AWS-Certified-Developer---Associate-Certification
ae99b6c1efb30e8fab5b76e3d8c821823a4cd852
b9838b4e038b42ad1813a296379cbbc40cab6286
refs/heads/master
2022-11-03T04:37:49.014335
2022-10-31T05:42:19
2022-10-31T05:42:19
219,964,717
13
11
MIT
2021-06-02T00:57:45
2019-11-06T09:54:09
Python
UTF-8
Python
false
false
4,597
py
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import struct import dns.exception import dns.rdata import dns.name class SOA(dns.rdata.Rdata): """SOA record @ivar mname: the SOA MNAME (master name) field @type mname: dns.name.Name object @ivar rname: the SOA RNAME (responsible name) field @type rname: dns.name.Name object @ivar serial: The zone's serial number @type serial: int @ivar refresh: The zone's refresh value (in seconds) @type refresh: int @ivar retry: The zone's retry value (in seconds) @type retry: int @ivar expire: The zone's expiration value (in seconds) @type expire: int @ivar minimum: The zone's negative caching time (in seconds, called "minimum" for historical reasons) @type minimum: int @see: RFC 1035""" __slots__ = ['mname', 'rname', 'serial', 'refresh', 'retry', 'expire', 'minimum'] def __init__(self, rdclass, rdtype, mname, rname, serial, refresh, retry, expire, minimum): super(SOA, self).__init__(rdclass, rdtype) self.mname = mname self.rname = rname self.serial = serial self.refresh = refresh self.retry = retry self.expire = expire self.minimum = minimum def to_text(self, origin=None, relativize=True, **kw): mname = self.mname.choose_relativity(origin, relativize) rname = self.rname.choose_relativity(origin, relativize) return '%s %s %d %d %d %d %d' % ( mname, rname, self.serial, self.refresh, self.retry, self.expire, self.minimum) @classmethod def from_text(cls, rdclass, rdtype, tok, origin=None, relativize=True): mname = tok.get_name() rname = tok.get_name() mname = mname.choose_relativity(origin, relativize) rname = rname.choose_relativity(origin, relativize) serial = tok.get_uint32() refresh = tok.get_ttl() retry = tok.get_ttl() expire = tok.get_ttl() minimum = tok.get_ttl() tok.get_eol() return cls(rdclass, rdtype, mname, rname, serial, refresh, retry, expire, minimum) def to_wire(self, file, compress=None, origin=None): self.mname.to_wire(file, compress, origin) self.rname.to_wire(file, compress, origin) five_ints = struct.pack('!IIIII', self.serial, self.refresh, self.retry, self.expire, self.minimum) file.write(five_ints) def to_digestable(self, origin=None): return self.mname.to_digestable(origin) + \ self.rname.to_digestable(origin) + \ struct.pack('!IIIII', self.serial, self.refresh, self.retry, self.expire, self.minimum) @classmethod def from_wire(cls, rdclass, rdtype, wire, current, rdlen, origin=None): (mname, cused) = dns.name.from_wire(wire[: current + rdlen], current) current += cused rdlen -= cused (rname, cused) = dns.name.from_wire(wire[: current + rdlen], current) current += cused rdlen -= cused if rdlen != 20: raise dns.exception.FormError five_ints = struct.unpack('!IIIII', wire[current: current + rdlen]) if origin is not None: mname = mname.relativize(origin) rname = rname.relativize(origin) return cls(rdclass, rdtype, mname, rname, five_ints[0], five_ints[1], five_ints[2], five_ints[3], five_ints[4]) def choose_relativity(self, origin=None, relativize=True): self.mname = self.mname.choose_relativity(origin, relativize) self.rname = self.rname.choose_relativity(origin, relativize)
d8adcfa0328f753994b60200ace6ca4d145e0f23
3d5bcd57b893c95bbcbfafe77bbc33c65432c9ed
/Algorithms/LeetCode/L0079exist.py
c6486ef5bca5b6781c64631e90da4eed40b18976
[]
no_license
arunachalamev/PythonProgramming
c160f34c7cb90e82cd0d4762ff9dcb4abadf9c1c
ea188aaa1b72511aeb769a2829055d0aae55e73e
refs/heads/master
2021-06-04T03:50:37.976293
2020-11-12T19:52:28
2020-11-12T19:52:28
97,364,002
3
0
null
null
null
null
UTF-8
Python
false
false
702
py
def exist(board, word): m,n = len(board), len(board[0]) def search(i,j,word): nonlocal m,n if len(word) == 0: return True if i<0 or i==m or j <0 or j==n or board[i][j] !=word[0]: return False board[i][j] = '#' for di,dj in [(0,1),(0,-1),(1,0),(-1,0)]: if search (i+di, j+dj , word[1:]): return True board[i][j] = word[0] return False for i,row in enumerate(board): for j,_ in enumerate(row): if search(i,j,word): return True return False print (exist([ ['A','B','C','E'], ['S','F','C','S'], ['A','D','E','E'] ], 'ABCCEDX'))
0bf7dd56ef9f8d3dc81a166b9e292152ff8911ac
2aba3c043ce4ef934adce0f65bd589268ec443c5
/AOJ/courses/ITP1/3_C.py
221621fc02dd16be341b7f831191bed733e02394
[]
no_license
kambehmw/algorithm_python
4f66593b77039d90515d1fcbecacdab8c811b92f
17222399dcc92fd8f908e5774a9883e2e89c486e
refs/heads/master
2020-06-02T12:44:11.322356
2020-05-18T13:22:05
2020-05-18T13:22:05
191,157,113
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
while True: x, y = map(int, input().split()) if x == 0 and y == 0: exit() else: if x < y: print(x, y) else: print(y, x)
8af8b1154126237b12e676c20db0981a5f9e3d8e
8a14a7724d00f1eb7791e53f8446e99ecc975605
/scripts/extract_features.py
95649f83351e38ae3501cff705bf80339edd1315
[ "Apache-2.0" ]
permissive
aschn/picolo
3fa7b26d079fc9687de9c3e1e34cae774bcf8416
1f8f50e0709fdaef31bc38045ef9fd0c46aae2b5
refs/heads/master
2020-04-30T01:37:36.587287
2013-07-19T00:32:05
2013-07-19T00:32:05
9,307,233
1
0
null
null
null
null
UTF-8
Python
false
false
2,229
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author Anna Schneider @version 0.1 @brief Typical script using picolo to extract features from point particles """ import picolo from shapes import shape_factory_from_values import argparse import os.path as path import time import csv # start timer start = time.time() # parse command-line arguments brief = 'Typical script using picolo to extract features from point particles.' parser = argparse.ArgumentParser(description=brief) parser.add_argument('filename', type=str, help='path to xy coord file') parser.add_argument('shape', type=str, help='type of features to extract', choices=['UnitCell', 'Fourier', 'Zernike']) parser.add_argument('dist', type=float, help='distance cutoff to neighbors') parser.add_argument('--train', action='store_true', help='include flag to only get features for prespecified training rows') args = parser.parse_args() # set up file paths rootname, ext = path.splitext(args.filename) dirname = path.dirname(args.filename) # set up matcher matcher = picolo.Matcher(args.filename, delim=' ', name=rootname, trainingcol=2) # create and add default shape of correct type shape = shape_factory_from_values(args.shape, optdata={'neighbor_dist': args.dist, 'max_dist': args.dist}) matcher.shapes.add('test', shape) # get ndarray of features and particle ids by comparing to 'test' shape features = matcher.feature_matrix('test') # open csv writer outfile = '%s_%s_features.dat' % (rootname, args.shape) writer = csv.writer(open(outfile, 'w'), delimiter=' ') # write header writer.writerow(['id'] + shape.get_components()) # loop over particle ids if args.train: inds = matcher.training_ids else: inds = range(matcher.config.N) for ip in inds: # only write features for particles with valid shapes if matcher.get_features('test', ip).get('is_valid'): # write row of features writer.writerow([ip] + ['%0.4f' % x for x in features[ip]]) # end timer end = time.time() print 'Done with %s ... took %d seconds.' % (rootname, end-start)
1eadf13b44ed3ecced195ac1f6974c5866be1f8b
37efda4646f478b66674e384e1bc139e7874d972
/practice/RaodtoMillionaire.py
7677b54444573abaec9ffa4c8c2fa22f69a24b2b
[]
no_license
siberian122/kyoupuro
02c1c40f7c09ff0c07a1d50b727f860ad269d8b1
8bf5e5b354d82f44f54c80f1fc014c9519de3ca4
refs/heads/master
2023-04-04T02:45:29.445107
2021-04-20T07:37:47
2021-04-20T07:37:47
299,248,378
1
0
null
null
null
null
UTF-8
Python
false
false
380
py
n = int(input()) a = list(map(int, input().split())) b = [] for i in range(n-1): num = a[i]-a[i+1] b.append(num) now = 1000 stock = 0 for i in range(n-1): if b[i] > 0: # 売る now += stock*a[i] stock = 0 elif now > 0 and b[i] < 0: # 買う stock += now//a[i] now = now % a[i] #print(now, stock) now += a[-1]*stock print(now)
c96667e76a4d649fc180fffd2ee6abb688e027cb
d4fdbd68c42d6b9babe347cb3b65535e4d782172
/tensorflow_datasets/image/voc_test.py
1bbb9140e84808b1f66441b6ba103c2e8483ec03
[ "Apache-2.0" ]
permissive
thanhkaist/datasets
2809260c5e95e96d136059bea042d1ed969a6fcf
02da35c558ec8ea704e744a2008c5cecb2e7a0a1
refs/heads/master
2020-06-04T16:13:14.603449
2019-06-14T22:01:33
2019-06-14T22:02:54
192,097,735
2
0
Apache-2.0
2019-06-15T16:02:18
2019-06-15T16:02:18
null
UTF-8
Python
false
false
1,060
py
# coding=utf-8 # Copyright 2019 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for PASCAL VOC image data loading.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_datasets import testing from tensorflow_datasets.image import voc class Voc2007Test(testing.DatasetBuilderTestCase): DATASET_CLASS = voc.Voc2007 SPLITS = { 'train': 1, 'validation': 2, 'test': 3, } if __name__ == '__main__': testing.test_main()
2fc48de98fbc2450366953e3be1285d20c36401a
ac8ffabf4d7339c5466e53dafc3f7e87697f08eb
/python_solutions/1080.insufficient-nodes-in-root-to-leaf-paths.py
4ba1ede95bb6688d9b4c3e860ddfe8e1d3dd646d
[]
no_license
h4hany/leetcode
4cbf23ea7c5b5ecfd26aef61bfc109741f881591
9e4f6f1a2830bd9aab1bba374c98f0464825d435
refs/heads/master
2023-01-09T17:39:06.212421
2020-11-12T07:26:39
2020-11-12T07:26:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,173
py
from collections import Counter, defaultdict, OrderedDict, deque from bisect import bisect_left, bisect_right from functools import reduce, lru_cache from typing import List import itertools import math import heapq import string true = True false = False MIN, MAX, MOD = -0x3f3f3f3f, 0x3f3f3f3f, 1000000007 # # @lc app=leetcode id=1080 lang=python3 # # [1080] Insufficient Nodes in Root to Leaf Paths # # https://leetcode.com/problems/insufficient-nodes-in-root-to-leaf-paths/description/ # # algorithms # Medium (49.43%) # Total Accepted: 14.4K # Total Submissions: 29K # Testcase Example: '[1,2,3,4,-99,-99,7,8,9,-99,-99,12,13,-99,14]\n1' # # Given the root of a binary tree, consider all root to leaf paths: paths from # the root to any leaf.  (A leaf is a node with no children.) # # A node is insufficient if every such root to leaf path intersecting this node # has sum strictly less than limit. # # Delete all insufficient nodes simultaneously, and return the root of the # resulting binary tree. # # # # Example 1: # # # # Input: root = [1,2,3,4,-99,-99,7,8,9,-99,-99,12,13,-99,14], limit = 1 # # Output: [1,2,3,4,null,null,7,8,9,null,14] # # # # Example 2: # # # # Input: root = [5,4,8,11,null,17,4,7,1,null,null,5,3], limit = 22 # # Output: [5,4,8,11,null,17,4,7,null,null,null,5] # # # # Example 3: # # # # Input: root = [1,2,-3,-5,null,4,null], limit = -1 # # Output: [1,null,-3,4] # # # # # Note: # # # The given tree will have between 1 and 5000 nodes. # -10^5 <= node.val <= 10^5 # -10^9 <= limit <= 10^9 # # # # # # # # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def sufficientSubset(self, root: TreeNode, limit: int) -> TreeNode: if not root: return None if not root.left and not root.right: return root if root.val >= limit else None root.left = self.sufficientSubset(root.left, limit - root.val) root.right = self.sufficientSubset(root.right, limit - root.val) return None if not root.left and not root.right else root
75a63b080058ba26e1aa2ae9b422c95c519a403c
3e93c3bbe35c24bf7f1a75c612ab300f37063621
/C1/L1_18_mappingnameseq_namedtuple.py
f393d21fd2cf887c699056da4973e6a7725476db
[]
no_license
rengokantai/orpycok3ed
5ac0195a48f02dcc5bbc720e812f637464215e8f
50ce744265dc6af0d1a4724ea52348faeb47764d
refs/heads/master
2021-01-10T05:05:53.477092
2016-03-12T20:04:45
2016-03-12T20:04:45
53,352,163
0
1
null
null
null
null
UTF-8
Python
false
false
693
py
__author__ = 'Hernan Y.Ke' from collections import namedtuple # memorize this syntax Me = namedtuple('Me',['first','last']) me = Me(1,2) print(me.first,me.last) she=[Me(3,4),Me(5,6)] #me = Me(first=1,last=2) # illegal! me = me._replace(first=3) print(me.first) # get namedtuple def get_num(tuplearr): res=0 for param in tuplearr: s = Me(*param) # iterate a array with namedtuple instance. param->All params of a instance res+=s.first+s.last return res print(get_num(she)) #replace all params def replace_params(tupleparams): return me._replace(**tupleparams) # two stars. kwargs newparams={'first':7,'last':8} print(replace_params(newparams))
ca2e60ef61a63bcc4473f3bb4ca159430fb5c13a
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/intentions/PyAnnotateTypesIntentionTest/methodAfterConstructorCall.py
0cdc87e27827504a3baf5a3c8d4524a6604e3e8c
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
133
py
class MyClass: def __init__(self): pass def method(self, x): pass x = MyClass() foo = x.met<caret>hod(42)
daec12433149d0fa4a8fe97be29bea0af0818e98
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/tunas/schema_test.py
c27def77e798c010f8c380efefd021e51bc209c9
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
8,923
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for schema.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow.compat.v1 as tf from tunas import schema class SchemaTest(tf.test.TestCase): def test_oneof_equality_simple(self): not_one_of = collections.namedtuple( 'NotOneOf', ['choices', 'tag', 'mask']) tensor1 = tf.constant([3.0]) tensor2 = tf.constant([4.0]) self.assertEqual( schema.OneOf([1, 2], 'foo'), schema.OneOf([1, 2], 'foo')) self.assertEqual( schema.OneOf([1, 2], 'foo', tensor1), schema.OneOf([1, 2], 'foo', tensor1)) self.assertNotEqual( schema.OneOf([1, 2], 'foo'), schema.OneOf([1], 'foo')) self.assertNotEqual( schema.OneOf([1, 2], 'foo'), schema.OneOf([1, 2], 'bar')) self.assertNotEqual( schema.OneOf([1, 2], 'foo', tensor1), schema.OneOf([1, 2], 'foo', None)) self.assertNotEqual( schema.OneOf([1, 2], 'foo', tensor1), schema.OneOf([1, 2], 'foo', tensor2)) self.assertNotEqual( schema.OneOf([1, 2], 'foo', tensor1), not_one_of([1, 2], 'foo', tensor1)) self.assertNotEqual( schema.OneOf([1, 2], 'foo'), {}) self.assertNotEqual( {}, schema.OneOf([1, 2], 'foo')) def test_oneof_equality_nested(self): self.assertEqual( schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([3], 'b')], 'c'), schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([3], 'b')], 'c')) self.assertNotEqual( schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([3], 'b')], 'c'), schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([4], 'b')], 'c')) self.assertNotEqual( schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([3], 'b')], 'c'), schema.OneOf([schema.OneOf([1, 5], 'a'), schema.OneOf([3], 'b')], 'c')) self.assertNotEqual( schema.OneOf([schema.OneOf([1, 2], 'a'), schema.OneOf([3], 'b')], 'c'), 'Goooooooooooooooooooooooooooooooooooooooooooooogle') def test_oneof_repr(self): self.assertEqual( repr(schema.OneOf([1, 2], 'foo')), 'OneOf(choices=[1, 2], tag=\'foo\')') self.assertStartsWith( repr(schema.OneOf([1, 2], 'foo', tf.constant([3.0]))), 'OneOf(choices=[1, 2], tag=\'foo\', mask=') def test_map_oenofs_with_tuple_paths_trivial(self): structure = schema.OneOf([1, 2], 'tag') all_paths = [] all_oneofs = [] def visit(path, oneof): all_paths.append(path) all_oneofs.append(oneof) return schema.OneOf([x*10 for x in oneof.choices], oneof.tag) self.assertEqual(schema.map_oneofs_with_tuple_paths(visit, structure), schema.OneOf([10, 20], 'tag')) self.assertEqual(all_paths, [()]) self.assertEqual(all_oneofs, [schema.OneOf([1, 2], 'tag')]) def test_map_oneofs_with_tuple_paths_simple(self): structure = [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ] all_paths = [] all_oneofs = [] def visit(path, oneof): all_paths.append(path) all_oneofs.append(oneof) return schema.OneOf([x*10 for x in oneof.choices], oneof.tag) self.assertEqual(schema.map_oneofs_with_tuple_paths(visit, structure), [ schema.OneOf([10, 20], 'tag1'), schema.OneOf([30, 40, 50], 'tag2'), ]) self.assertEqual(all_paths, [ (0,), (1,) ]) self.assertEqual(all_oneofs, [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]) def test_map_oneofs_with_tuple_paths_containing_arrays_and_dicts(self): structure = { 'foo': [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]} all_paths = [] all_oneofs = [] def visit(path, oneof): all_paths.append(path) all_oneofs.append(oneof) return schema.OneOf([x*10 for x in oneof.choices], oneof.tag) self.assertEqual(schema.map_oneofs_with_tuple_paths(visit, structure), { 'foo': [ schema.OneOf([10, 20], 'tag1'), schema.OneOf([30, 40, 50], 'tag2'), ]}) self.assertEqual(all_paths, [ ('foo', 0), ('foo', 1), ]) self.assertEqual(all_oneofs, [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]) def test_map_oneofs_with_tuple_paths_containing_nested_oneofs(self): structure = { 'root': schema.OneOf([ schema.OneOf([ {'leaf': schema.OneOf([1, 10], 'level2')}, {'leaf': schema.OneOf([2, 20], 'level2')}, ], 'level1'), schema.OneOf([ {'leaf': schema.OneOf([3, 30], 'level2')}, {'leaf': schema.OneOf([4, 40], 'level2')}, {'leaf': schema.OneOf([5, 50], 'level2')}, ], 'level1') ], 'level0') } all_paths = [] all_oneofs = [] def visit(path, oneof): all_paths.append(path) all_oneofs.append(oneof) return schema.OneOf([oneof.choices[0]], oneof.tag) self.assertEqual( schema.map_oneofs_with_tuple_paths(visit, structure), { 'root': schema.OneOf([ schema.OneOf([ {'leaf': schema.OneOf([1], 'level2')}, ], 'level1'), ], 'level0') }) self.assertEqual(all_paths, [ ('root', 'choices', 0, 'choices', 0, 'leaf'), ('root', 'choices', 0, 'choices', 1, 'leaf'), ('root', 'choices', 0), ('root', 'choices', 1, 'choices', 0, 'leaf'), ('root', 'choices', 1, 'choices', 1, 'leaf'), ('root', 'choices', 1, 'choices', 2, 'leaf'), ('root', 'choices', 1), ('root',), ]) # A OneOf node's children should already be updated by the time we visit it. self.assertEqual(all_oneofs, [ schema.OneOf([1, 10], 'level2'), schema.OneOf([2, 20], 'level2'), schema.OneOf( [ {'leaf': schema.OneOf([1], 'level2')}, {'leaf': schema.OneOf([2], 'level2')}, ], 'level1'), schema.OneOf([3, 30], 'level2'), schema.OneOf([4, 40], 'level2'), schema.OneOf([5, 50], 'level2'), schema.OneOf( [ {'leaf': schema.OneOf([3], 'level2')}, {'leaf': schema.OneOf([4], 'level2')}, {'leaf': schema.OneOf([5], 'level2')}, ], 'level1'), schema.OneOf( [ schema.OneOf([ {'leaf': schema.OneOf([1], 'level2')}, ], 'level1'), schema.OneOf([ {'leaf': schema.OneOf([3], 'level2')}, ], 'level1') ], 'level0'), ]) def test_map_oneofs_with_paths(self): structure = { 'foo': [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]} all_paths = [] all_oneofs = [] def visit(path, oneof): all_paths.append(path) all_oneofs.append(oneof) return schema.OneOf([x*10 for x in oneof.choices], oneof.tag) self.assertEqual(schema.map_oneofs_with_paths(visit, structure), { 'foo': [ schema.OneOf([10, 20], 'tag1'), schema.OneOf([30, 40, 50], 'tag2'), ]}) self.assertEqual(all_paths, [ 'foo/0', 'foo/1', ]) self.assertEqual(all_oneofs, [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]) def test_map_oneofs(self): structure = { 'foo': [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]} all_oneofs = [] def visit(oneof): all_oneofs.append(oneof) return schema.OneOf([x*10 for x in oneof.choices], oneof.tag) self.assertEqual(schema.map_oneofs(visit, structure), { 'foo': [ schema.OneOf([10, 20], 'tag1'), schema.OneOf([30, 40, 50], 'tag2'), ]}) self.assertEqual(all_oneofs, [ schema.OneOf([1, 2], 'tag1'), schema.OneOf([3, 4, 5], 'tag2'), ]) if __name__ == '__main__': tf.disable_v2_behavior() tf.test.main()
88a1fb94a80440856187d57d3df5d55a56f854f5
0dc8627205c1545b4a5d82d1b9e55bc64eedc0b8
/transcripts/conf.py
3f10dbffa1b2b69fda708f5fbb98846f344db5cd
[]
no_license
evildmp/DjangoConEuropeTranscripts
508ee00c1c2bde803dd13aaac6171eb9fbcbb2db
d21e57780e1b4c497d8a700e5b99999bded9f303
refs/heads/master
2016-08-11T06:52:40.669453
2015-08-13T22:32:33
2015-08-13T22:32:33
36,973,906
12
9
null
2017-01-01T08:49:40
2015-06-06T09:01:29
Python
UTF-8
Python
false
false
9,937
py
# -*- coding: utf-8 -*- # # Speech-to-text reports from DjangoCon Europe 2015 build configuration file, created by # sphinx-quickstart on Sat Jun 6 09:11:53 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Speech-to-text reports from DjangoCon Europe 2015' copyright = u'2015, Hilary Maclean and Sheryll Holley' author = u'Hilary Maclean and Sheryll Holley' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # on_rtd is whether we are on readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] except: html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Speech-to-textreportsfromDjangoConEurope20155' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Speech-to-textreportsfromDjangoConEurope2015.tex', u'Speech-to-text reports from DjangoCon Europe 2015', u'Hilary Maclean and Sheryll Holley', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Speech-to-textreportsfromDjangoConEurope2015', u'Speech-to-text reports from DjangoCon Europe 2015', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Speech-to-textreportsfromDjangoConEurope2015', u'Speech-to-text reports from DjangoCon Europe 2015', author, 'Speech-to-textreportsfromDjangoConEurope2015', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
e7264ccc6a71876dff805367e13c30b468a009de
8c80f1220297b91707b42a0baee31365e69d2d1d
/build/lib/WORC/plotting/plotminmaxresponse.py
3eef97f930d725f863784c0b8d43dbe6a91372e7
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Sikerdebaard/WORC
4fca18330513ea0c500a90e770beb345b427d539
2c7a23c0a0c7480af378b9e093f06989b3304c8b
refs/heads/master
2020-05-25T05:02:35.060113
2019-05-08T07:02:30
2019-05-08T07:02:30
187,640,566
0
0
null
2019-05-20T12:56:28
2019-05-20T12:56:27
null
UTF-8
Python
false
false
11,356
py
#!/usr/bin/env python # Copyright 2016-2019 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import argparse import WORC.labels.label_processing as lp import os import glob from natsort import natsorted import numpy as np from PREDICT.plotting.getfeatureimages import getfeatureimages import scipy def main(): parser = argparse.ArgumentParser(description='Radiomics results') parser.add_argument('-im', '--im', metavar='im', nargs='+', dest='im', type=str, required=False, help='List of patient image files (nii)') parser.add_argument('-seg', '--seg', metavar='seg', nargs='+', dest='seg', type=str, required=False, help='List of patient segmentation files (nii)') parser.add_argument('-imtest', '--imtest', metavar='imtest', nargs='+', dest='imtest', type=str, required=False, help='List of patient image files of test database (nii)') parser.add_argument('-segtest', '--segtest', metavar='segtest', nargs='+', dest='segtest', type=str, required=False, help='List of patient segmentation files of test database (nii)') parser.add_argument('-feat', '--feat', metavar='feat', nargs='+', dest='feat', type=str, required=True, help='List of patient feature files (HDF)') parser.add_argument('-class', '--class', metavar='class', nargs='+', dest='classs', type=str, required=True, help='Classification of patients (text)') parser.add_argument('-label_type', '--label_type', metavar='label_type', nargs='+', dest='label_type', type=str, required=True, help='Name of the label that was predicted') parser.add_argument('-out', '--out', metavar='out', nargs='+', dest='out', type=str, required=False, help='Output folder') args = parser.parse_args() if type(args.classs) is list: args.classs = ''.join(args.classs) if type(args.label_type) is list: args.label_type = ''.join(args.label_type) if type(args.out) is list: args.out = ''.join(args.out) if type(args.feat) is list and len(args.feat) == 1: args.feat = ''.join(args.feat) if os.path.isdir(args.feat): args.feat = glob.glob(args.feat + '/features_*.hdf5') args.feat = natsorted(args.feat) if type(args.im) is list: args.im = ''.join(args.im) if type(args.seg) is list: args.seg = ''.join(args.seg) if type(args.imtest) is list: args.imtest = ''.join(args.imtest) if type(args.segtest) is list: args.segtest = ''.join(args.segtest) # Read and stack the features print("Reading features.") image_features_temp = list() for i_feat in range(len(args.feat)): feat_temp = pd.read_hdf(args.feat[i_feat]) feat_values = feat_temp.feature_values feat_labels = feat_temp.feature_labels feat = {k: v for k, v in zip(feat_labels, feat_values)} image_features_temp.append(feat) # Get the labels and patient IDs print("Reading class labels.") label_type = args.label_type label_data, image_features = lp.findlabeldata(args.classs, label_type, args.feat, image_features_temp) labels = image_features[0].keys() featvect = dict() flab = dict() for l in labels: featvect[l] = {"all": [], "1": [], "0": []} flab[l] = {"all": [], "1": [], "0": []} # Stack per feature type and class print("Stacking features.") label = label_data['label'].tolist()[0] patient_IDs = label_data['patient_IDs'].tolist() for imfeat, label, pid in zip(image_features, label, patient_IDs): for fl in labels: featvect[fl]['all'].append(imfeat[fl]) flab[fl]['all'].append(pid) if label[0] == 0: featvect[fl]['0'].append(imfeat[fl]) flab[fl]['0'].append(pid) else: featvect[fl]['1'].append(imfeat[fl]) flab[fl]['1'].append(pid) # Save image of min and max response per feature image_type = 'CT' # imname = '/*/*/image.nii.gz' # segname = '/*/*/seg*.nii.gz' imname = '/*preop_Tumor.nii.gz' segname = '/*Tumor_mask.nii.gz' for fl in labels: if 'cf_' not in fl: features = featvect[fl]['all'] maxind = np.argmax(features) minind = np.argmin(features) print fl, 'min', patient_IDs[minind] print fl, 'max', patient_IDs[maxind] if args.im is not None: im_min = glob.glob(os.path.join(args.im, patient_IDs[minind]) + imname) if len(im_min) == 0: # Search in testing folder im_min = glob.glob(os.path.join(args.imtest, patient_IDs[minind]) + imname)[0] else: im_min = im_min[0] seg_min = glob.glob(os.path.join(args.seg, patient_IDs[minind]) + segname) if len(seg_min) == 0: # Search in testing folder seg_min = glob.glob(os.path.join(args.segtest, patient_IDs[minind]) + segname)[0] else: seg_min = seg_min[0] im_max = glob.glob(os.path.join(args.im, patient_IDs[maxind]) + imname) if len(im_max) == 0: # Search in testing folder im_max = glob.glob(os.path.join(args.imtest, patient_IDs[maxind]) + imname)[0] else: im_max = im_max[0] seg_max = glob.glob(os.path.join(args.seg, patient_IDs[maxind]) + segname) if len(seg_max) == 0: # Search in testing folder seg_max = glob.glob(os.path.join(args.segtest, patient_IDs[maxind]) + segname)[0] else: seg_max = seg_max[0] if 'LBP' in fl: # Save LBP image LBPim = getfeatureimages(im_min, seg_min, image_type=image_type, types=['LBP'])[0] filename = fl + '_min_' + patient_IDs[minind] + '.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(LBPim, 3))) LBPim = getfeatureimages(im_max, seg_max, image_type=image_type, types=['LBP'])[0] filename = fl + '_max_' + patient_IDs[maxind] + '.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(LBPim, 3))) elif 'Gabor' in fl: # Save Gabor image Gind = fl.index('Gabor') Aind = fl.index('A') gabor_settings = dict() gabor_settings['gabor_frequencies'] = [float(fl[Gind + 6:Aind])] try: gabor_settings['gabor_angles'] = [float(fl[Aind + 1:Aind +1 + 4])] except ValueError: # 0.0: two numbers gabor_settings['gabor_angles'] = [float(fl[Aind + 1:Aind +1 + 3])] Gaborim = getfeatureimages(im_min, seg_min, image_type=image_type, gabor_settings=gabor_settings, types=['Gabor'])[0] filename = fl + '_min_' + patient_IDs[minind] + '.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Gaborim, 3))) Gaborim = getfeatureimages(im_max, seg_max, image_type=image_type, gabor_settings=gabor_settings, types=['Gabor'])[0] filename = fl + '_max_' + patient_IDs[maxind] + '.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Gaborim, 3))) elif 'sf_' in fl or 'hf_' in fl or 'tf_GL' in fl: # Save segmentation Shapeim = getfeatureimages(im_min, seg_min, image_type=image_type, types=['Shape'])[0] filename = fl + '_min_' + patient_IDs[minind] + '_seg.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Shapeim, 3))) Shapeim = getfeatureimages(im_max, seg_max, image_type=image_type, types=['Shape'])[0] filename = fl + '_max_' + patient_IDs[maxind] + '_seg.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Shapeim, 3))) # Save images Histogramim = getfeatureimages(im_min, seg_min, image_type=image_type, types=['Histogram'])[0] Histogramim[Histogramim == -1000] = 0 filename = fl + '_min_' + patient_IDs[minind] + '_im.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Histogramim, 3))) Histogramim = getfeatureimages(im_max, seg_max, image_type=image_type, types=['Histogram'])[0] Histogramim[Histogramim == -1000] = 0 filename = fl + '_max_' + patient_IDs[maxind] + '_im.png' savename = os.path.join(args.out, filename) scipy.misc.imsave(savename, np.fliplr(np.rot90(Histogramim, 3))) if __name__ == '__main__': main()
55c2841b5ae6ddfc0e8c0cb6f34e33306f5fca3a
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/cirq_new/cirq_program/startCirq_pragma58.py
8e84b65dd9e10c0774f2965011964ccb0cbd933f
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,364
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=11 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.rx(1.6147786239451536).on(input_qubit[3])) # number=5 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=8 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[0])) # number=10 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=7 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma58.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
8dd7a8369a2f7b352443bc0d36d23dd32bcc554e
bf576b059cbecb0cbb8a6c885dcfded5bd685399
/4.Python course/3.Expand course/1.Small windmill/Small windmill.py
18c56da878b1cb6a7ef0d38234ce809b1bea040f
[]
no_license
YahboomTechnology/Superbit-expansion-board
0d3c2fd06c5df9280d230af429931af2c48dc6d5
4df7e03426d486d2b2f8f649359eee2d62851083
refs/heads/master
2023-04-07T03:16:15.786669
2023-03-29T01:12:57
2023-03-29T01:12:57
206,778,307
13
8
null
null
null
null
UTF-8
Python
false
false
426
py
from microbit import * import superbit a = 135 display.show(Image.HEART) superbit.servo270(superbit.S1, 135) superbit.motor_control(superbit.M1, 255, 0) while True: if button_a.is_pressed(): a = a - 1 if a < 0: a = 0 superbit.servo270(superbit.S1, a) elif button_b.is_pressed(): a = a + 1 if a > 270: a = 270 superbit.servo270(superbit.S1, a)
0ab091f1bac3f6b3782abb3cf2f34ba686b858fc
6dcd5f4bb4c39e2d887e5d557e188ba4c8a75081
/src/UsersDB.py
3d3f2264fceef218c5169ec87a6f6ca4b65d695f
[]
no_license
Pella86/HappyRateBot
815653033593aedc22c779025d00bddec4614f46
f23f786a3c9dc19f2378958470d82974d018bd64
refs/heads/master
2020-03-22T00:16:38.670215
2018-07-22T11:50:53
2018-07-22T11:50:53
139,234,809
1
1
null
2018-07-22T06:41:21
2018-06-30T09:01:21
Python
UTF-8
Python
false
false
4,288
py
# -*- coding: utf-8 -*- """ Created on Wed Jun 20 12:10:14 2018 @author: Mauro """ #============================================================================== # Imports #============================================================================== # py imports import os import hashlib import string # my imports import Databases import UserProfile import random import Logging #============================================================================== # logging #============================================================================== # create logger log = Logging.get_logger(__name__, "WARNING") #============================================================================== # Helpers #============================================================================== def get_hash_id(personid): pid = hashlib.sha256() pid.update(bytes(personid)) return pid.digest() #============================================================================== # User database #============================================================================== class UsersDB: def __init__(self): self.folder = "./databases/user_db" if not os.path.isdir(self.folder): os.mkdir(self.folder) self.database = Databases.Database(self.folder, "user_") self.database.loadDB() self.database.update_uid() log.info("loaded users database") folder = "./databases/banned_user_db" if not os.path.isdir(folder): os.mkdir(folder) self.banned_database = Databases.Database(folder, "banned_user_") def getUsersList(self): return self.database.getValues() def check_nickname(self, user, text): error_message = None alphanumeric = string.ascii_letters + string.digits if len(text) < 3: error_message = "too short" elif len(text) >= 15: error_message = "too long" elif not all(c in alphanumeric for c in text): error_message = "invalid character" elif text in [u.display_id for u in self.database.getValues()]: error_message = "already present" if error_message is None: user.display_id = text self.database[user.hash_id].setData(user) return True else: return error_message def banUser(self, user): duser = self.database[user.hash_id] self.deleteUser(user) def addUser(self, person, chatid): # hash the id hash_id = get_hash_id(person.id) if self.database.isNew(hash_id): log.info("added new user to database: {}".format(self.database.short_uid)) # create a unique display id start_number = 0x10000000 stop_number = 0xFFFFFFFF display_id = random.randint(start_number,stop_number) log.debug("display id {}".format(display_id)) # check for uniqueness display_id_list = [user.display_id for user in self.database.getValues()] while display_id in display_id_list: display_id = random.randint(start_number,stop_number) log.debug("new display id {}".format(display_id)) # language lang_tag = person.language_code if person.language_code else "en" # user instance user = UserProfile.UserProfile(hash_id, display_id, chatid, lang_tag) data = Databases.Data(hash_id, user) self.database.addData(data) def deleteUser(self, user): data = self.database[user.hash_id] self.database.deleteItem(data) def hGetUser(self, hash_id): return self.database[hash_id].getData() def getUser(self, person): log.debug("User already in database, got user") hash_id = get_hash_id(person.id) return self.database[hash_id].getData() def setUser(self, user): self.database[user.hash_id].setData(user) def update(self): log.info("updating database...") self.database.updateDB()
9980f2825f02826d27018b266928c8e25ef4e7d6
978248bf0f275ae688f194593aa32c267832b2b6
/xlsxwriter/test/comparison/test_autofilter06.py
354f84b2a2f1d14959c2854587b7e266fc15c235
[ "BSD-2-Clause-Views" ]
permissive
satish1337/XlsxWriter
b0c216b91be1b74d6cac017a152023aa1d581de2
0ab9bdded4f750246c41a439f6a6cecaf9179030
refs/heads/master
2021-01-22T02:35:13.158752
2015-03-31T20:32:28
2015-03-31T20:32:28
33,300,989
1
0
null
null
null
null
UTF-8
Python
false
false
2,859
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, [email protected] # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'autofilter06.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.txt_filename = test_dir + 'xlsx_files/' + 'autofilter_data.txt' self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """ Test the creation of a simple XlsxWriter file with an autofilter. This test corresponds to the following examples/autofilter.pl example: Example 6. Autofilter with filter for non-blanks. """ workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() # Set the autofilter. worksheet.autofilter('A1:D51') # Add filter criteria. worksheet.filter_column(0, 'x == NonBlanks') # Open a text file with autofilter example data. textfile = open(self.txt_filename) # Read the headers from the first line of the input file. headers = textfile.readline().strip("\n").split() # Write out the headers. worksheet.write_row('A1', headers) # Start writing data after the headers. row = 1 # Read the rest of the text file and write it to the worksheet. for line in textfile: # Split the input data based on whitespace. data = line.strip("\n").split() # Convert the number data from the text file. for i, item in enumerate(data): try: data[i] = float(item) except ValueError: pass # Simulate a blank cell in the data. if row == 6: data[0] = '' # Get some of the field data. region = data[0] # Check for rows that match the filter. if region != '': # Row matches the filter, no further action required. pass else: # We need to hide rows that don't match the filter. worksheet.set_row(row, options={'hidden': True}) # Write out the row data. worksheet.write_row(row, 0, data) # Move on to the next worksheet row. row += 1 textfile.close() workbook.close() self.assertExcelEqual()
108e02ca3f0e8e3ea1c4460e16956878f2407df1
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/network/virtual_network_tap.py
bcdbaf91e38252e9c1258aa4d97c8130368e7538
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,511
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['VirtualNetworkTapInitArgs', 'VirtualNetworkTap'] @pulumi.input_type class VirtualNetworkTapInitArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], destination_load_balancer_front_end_ip_configuration: Optional[pulumi.Input['FrontendIPConfigurationArgs']] = None, destination_network_interface_ip_configuration: Optional[pulumi.Input['NetworkInterfaceIPConfigurationArgs']] = None, destination_port: Optional[pulumi.Input[int]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tap_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a VirtualNetworkTap resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input['FrontendIPConfigurationArgs'] destination_load_balancer_front_end_ip_configuration: The reference to the private IP address on the internal Load Balancer that will receive the tap. :param pulumi.Input['NetworkInterfaceIPConfigurationArgs'] destination_network_interface_ip_configuration: The reference to the private IP Address of the collector nic that will receive the tap. :param pulumi.Input[int] destination_port: The VXLAN destination port that will receive the tapped traffic. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[str] tap_name: The name of the virtual network tap. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if destination_load_balancer_front_end_ip_configuration is not None: pulumi.set(__self__, "destination_load_balancer_front_end_ip_configuration", destination_load_balancer_front_end_ip_configuration) if destination_network_interface_ip_configuration is not None: pulumi.set(__self__, "destination_network_interface_ip_configuration", destination_network_interface_ip_configuration) if destination_port is not None: pulumi.set(__self__, "destination_port", destination_port) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if tags is not None: pulumi.set(__self__, "tags", tags) if tap_name is not None: pulumi.set(__self__, "tap_name", tap_name) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="destinationLoadBalancerFrontEndIPConfiguration") def destination_load_balancer_front_end_ip_configuration(self) -> Optional[pulumi.Input['FrontendIPConfigurationArgs']]: """ The reference to the private IP address on the internal Load Balancer that will receive the tap. """ return pulumi.get(self, "destination_load_balancer_front_end_ip_configuration") @destination_load_balancer_front_end_ip_configuration.setter def destination_load_balancer_front_end_ip_configuration(self, value: Optional[pulumi.Input['FrontendIPConfigurationArgs']]): pulumi.set(self, "destination_load_balancer_front_end_ip_configuration", value) @property @pulumi.getter(name="destinationNetworkInterfaceIPConfiguration") def destination_network_interface_ip_configuration(self) -> Optional[pulumi.Input['NetworkInterfaceIPConfigurationArgs']]: """ The reference to the private IP Address of the collector nic that will receive the tap. """ return pulumi.get(self, "destination_network_interface_ip_configuration") @destination_network_interface_ip_configuration.setter def destination_network_interface_ip_configuration(self, value: Optional[pulumi.Input['NetworkInterfaceIPConfigurationArgs']]): pulumi.set(self, "destination_network_interface_ip_configuration", value) @property @pulumi.getter(name="destinationPort") def destination_port(self) -> Optional[pulumi.Input[int]]: """ The VXLAN destination port that will receive the tapped traffic. """ return pulumi.get(self, "destination_port") @destination_port.setter def destination_port(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "destination_port", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Resource location. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Resource tags. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tapName") def tap_name(self) -> Optional[pulumi.Input[str]]: """ The name of the virtual network tap. """ return pulumi.get(self, "tap_name") @tap_name.setter def tap_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tap_name", value) class VirtualNetworkTap(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, destination_load_balancer_front_end_ip_configuration: Optional[pulumi.Input[pulumi.InputType['FrontendIPConfigurationArgs']]] = None, destination_network_interface_ip_configuration: Optional[pulumi.Input[pulumi.InputType['NetworkInterfaceIPConfigurationArgs']]] = None, destination_port: Optional[pulumi.Input[int]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tap_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Virtual Network Tap resource. API Version: 2020-11-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['FrontendIPConfigurationArgs']] destination_load_balancer_front_end_ip_configuration: The reference to the private IP address on the internal Load Balancer that will receive the tap. :param pulumi.Input[pulumi.InputType['NetworkInterfaceIPConfigurationArgs']] destination_network_interface_ip_configuration: The reference to the private IP Address of the collector nic that will receive the tap. :param pulumi.Input[int] destination_port: The VXLAN destination port that will receive the tapped traffic. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[str] tap_name: The name of the virtual network tap. """ ... @overload def __init__(__self__, resource_name: str, args: VirtualNetworkTapInitArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Virtual Network Tap resource. API Version: 2020-11-01. :param str resource_name: The name of the resource. :param VirtualNetworkTapInitArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(VirtualNetworkTapInitArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, destination_load_balancer_front_end_ip_configuration: Optional[pulumi.Input[pulumi.InputType['FrontendIPConfigurationArgs']]] = None, destination_network_interface_ip_configuration: Optional[pulumi.Input[pulumi.InputType['NetworkInterfaceIPConfigurationArgs']]] = None, destination_port: Optional[pulumi.Input[int]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tap_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = VirtualNetworkTapInitArgs.__new__(VirtualNetworkTapInitArgs) __props__.__dict__["destination_load_balancer_front_end_ip_configuration"] = destination_load_balancer_front_end_ip_configuration __props__.__dict__["destination_network_interface_ip_configuration"] = destination_network_interface_ip_configuration __props__.__dict__["destination_port"] = destination_port __props__.__dict__["id"] = id __props__.__dict__["location"] = location if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["tap_name"] = tap_name __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interface_tap_configurations"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-native:network/v20180801:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20181001:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20181101:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20181201:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190201:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190401:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190601:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190701:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190801:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20190901:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20191101:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20191201:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200301:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200401:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200501:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200601:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200701:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20200801:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20201101:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20210201:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20210301:VirtualNetworkTap"), pulumi.Alias(type_="azure-native:network/v20210501:VirtualNetworkTap")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(VirtualNetworkTap, __self__).__init__( 'azure-native:network:VirtualNetworkTap', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'VirtualNetworkTap': """ Get an existing VirtualNetworkTap resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = VirtualNetworkTapInitArgs.__new__(VirtualNetworkTapInitArgs) __props__.__dict__["destination_load_balancer_front_end_ip_configuration"] = None __props__.__dict__["destination_network_interface_ip_configuration"] = None __props__.__dict__["destination_port"] = None __props__.__dict__["etag"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["network_interface_tap_configurations"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_guid"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return VirtualNetworkTap(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="destinationLoadBalancerFrontEndIPConfiguration") def destination_load_balancer_front_end_ip_configuration(self) -> pulumi.Output[Optional['outputs.FrontendIPConfigurationResponse']]: """ The reference to the private IP address on the internal Load Balancer that will receive the tap. """ return pulumi.get(self, "destination_load_balancer_front_end_ip_configuration") @property @pulumi.getter(name="destinationNetworkInterfaceIPConfiguration") def destination_network_interface_ip_configuration(self) -> pulumi.Output[Optional['outputs.NetworkInterfaceIPConfigurationResponse']]: """ The reference to the private IP Address of the collector nic that will receive the tap. """ return pulumi.get(self, "destination_network_interface_ip_configuration") @property @pulumi.getter(name="destinationPort") def destination_port(self) -> pulumi.Output[Optional[int]]: """ The VXLAN destination port that will receive the tapped traffic. """ return pulumi.get(self, "destination_port") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaceTapConfigurations") def network_interface_tap_configurations(self) -> pulumi.Output[Sequence['outputs.NetworkInterfaceTapConfigurationResponse']]: """ Specifies the list of resource IDs for the network interface IP configuration that needs to be tapped. """ return pulumi.get(self, "network_interface_tap_configurations") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the virtual network tap resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[str]: """ The resource GUID property of the virtual network tap resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type")
708a1faf765b96d7f5a0505c9bf4c02d987ff8ba
07504838d12c6328da093dce3726e8ed096cecdb
/pylon/resources/properties/highLimDly.py
bc4cf1c574d3d5599664567f174174735af07093
[]
no_license
lcoppa/fiat-lux
9caaa7f3105e692a149fdd384ec590676f06bf00
7c166bcc08768da67c241078b397570de159e240
refs/heads/master
2020-04-04T02:47:19.917668
2013-10-10T10:22:51
2013-10-10T10:22:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,294
py
"""highLimDly standard property type, originally defined in resource file set standard 00:00:00:00:00:00:00:00-0.""" # Copyright (C) 2013 Echelon Corporation. All Rights Reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software" to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # This file is generated from device resource files using an automated # database to source code conversion process. Grammar and punctuation within # the embedded documentation may not be correct, as this data is gathered and # combined from several sources. The machine-generated code may not meet # compliance with PEP-8 and PEP-257 recommendations at all times. # Generated at 23-Sep-2013 09:15. import pylon.resources.datapoints.time_sec from pylon.resources.standard import standard class highLimDly(pylon.resources.datapoints.time_sec.time_sec): """highLimDly standard property type. High limit delay. The time limit during normal operation before the alarm air temp high alarm is recognized.""" def __init__(self): super().__init__( ) self._default_bytes = b'\x00\x00' self._original_name = 'SCPThighLimDly' self._property_scope, self._property_key = 0, 124 self._definition = standard.add(self) if __name__ == '__main__': # unit test code. item = highLimDly() pass
2f8c03f052351b799bfba46a92f2566cc993aedd
5181d3b3ef8fe301ea2d6b095260e9d327c2fd79
/scripts/dl/download_hrrr.py
dad9ed84e463252c8a1b7b4fff6d35e96c53d1d1
[]
no_license
danhreitz/iem
88113ef9c9c4a2918c9c2abdfd0510d5ca4ec819
ed490dcd6c2a8359f88cb805ccee8f6707566f57
refs/heads/master
2021-01-18T15:27:28.607250
2015-08-10T21:33:54
2015-08-10T21:33:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,340
py
""" Since the NOAAPort feed of HRRR data does not have radiation, we should download this manually from NCEP Run at 40 AFTER for the previous hour """ import urllib2 import sys import datetime import os def fetch(valid): """ Fetch the radiation data for this timestamp 80:54371554:d=2014101002:ULWRF:top of atmosphere:anl: 81:56146124:d=2014101002:DSWRF:surface:anl: """ uri = valid.strftime(("http://www.ftp.ncep.noaa.gov/data/nccf/" "nonoperational/com/hrrr/prod/hrrr.%Y%m%d/hrrr.t%Hz." "wrfprsf00.grib2.idx")) data = urllib2.urlopen(uri, timeout=30) offsets = [] neednext = False for line in data: tokens = line.split(":") if neednext: offsets[-1].append(int(tokens[1])) neednext = False if tokens[3] in ['ULWRF', 'DSWRF']: offsets.append([int(tokens[1]), ]) neednext = True # Save soil temp and water at surface, 10cm and 40cm if tokens[3] in ['TSOIL', 'SOILW']: if tokens[4] in ['0-0 m below ground', '0.01-0.01 m below ground', '0.04-0.04 m below ground']: offsets.append([int(tokens[1]), ]) neednext = True outfn = valid.strftime(("/mesonet/ARCHIVE/data/%Y/%m/%d/model/hrrr/" "%H/hrrr.t%Hz.3kmf00.grib2")) outdir = os.path.dirname(outfn) if not os.path.isdir(outdir): os.makedirs(outdir, mode=0775) # make sure LDM can then write to dir output = open(outfn, 'ab', 0664) req = urllib2.Request(uri[:-4]) if len(offsets) != 8: print("download_hrrr_rad warning, found %s gribs for %s" % ( len(offsets), valid)) for pr in offsets: req.headers['Range'] = 'bytes=%s-%s' % (pr[0], pr[1]) f = urllib2.urlopen(req, timeout=30) output.write(f.read()) output.close() def main(): """ Go Main Go""" ts = datetime.datetime.utcnow() - datetime.timedelta(hours=1) if len(sys.argv) == 5: ts = datetime.datetime(int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3]), int(sys.argv[4])) fetch(ts) if __name__ == '__main__': os.umask(0002) main()
3b79ecee53bab652825699f9a829541d12808883
53d22468fb1c9e0f4b4710a31fb7ac638549b8a7
/src/episode_stats.py
8c746bbebadc8b8367d5a5f0ae15a6bda7162cea
[ "MIT" ]
permissive
binderwang/drivebot
768bcfe224d94b931c45c41ced2a1b0067c6417d
a8fb86731c52b7594dd135e8759622c29172b557
refs/heads/master
2020-12-14T09:48:59.857490
2016-05-03T03:17:58
2016-05-03T03:17:58
58,269,730
1
0
null
2016-05-07T14:33:18
2016-05-07T14:33:17
null
UTF-8
Python
false
false
261
py
#!/usr/bin/env python import json import sys episode_id = 0 for line in sys.stdin: episode = json.loads(line) rewards = [event['reward'] for event in episode] print "\t".join(map(str, [episode_id, len(episode), sum(rewards)])) episode_id += 1
1ed8a791199fb00c45f4eb0ca5c4eb7b0da7e94c
20db5a27f2a8b2d324085f5e1ec6c46ad7c1e8c3
/manage.py
c330237e8173667cd9d46db5ee3ead0af6d478a2
[]
no_license
mortadagzar/djangoMovie
dae326fc83a31e485792b1ee42fa89b7d681049d
e83904c0c1ecc45992eed7516cb483bd2c97590b
refs/heads/master
2020-04-01T22:32:28.246877
2018-10-19T02:41:22
2018-10-19T02:41:22
153,713,907
0
0
null
null
null
null
UTF-8
Python
false
false
543
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djangoMovie.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
f6b0c0ebfcfea1688b03ec725be8faebb3cbbbee
2598f255696842f043372dd68fe4d5fd48d1a41c
/Ofelia/expedient/src/python/expedient/clearinghouse/users/views.py
5bd342d561ba8106b5c71655fbdfedc0cbb0a6c3
[ "BSD-3-Clause" ]
permissive
zanetworker/C-BAS
8e5442df83626e95d9562497278869ee3c4fad51
695c6f72490a02bbb308d44526631dbf426ab900
refs/heads/master
2021-01-01T06:55:39.085086
2014-08-11T09:37:42
2014-08-11T09:37:42
22,351,372
1
0
null
2014-08-08T16:15:54
2014-07-28T17:28:44
Python
UTF-8
Python
false
false
7,668
py
''' Created on Dec 3, 2009 @author: jnaous ''' from django.shortcuts import get_object_or_404 from django.http import HttpResponseRedirect, HttpResponseNotAllowed from django.core.urlresolvers import reverse from expedient.clearinghouse import users from django.views.generic import create_update, simple from django.contrib import auth from expedient.common.permissions.shortcuts import must_have_permission,\ give_permission_to from registration import views as registration_views from expedient.clearinghouse.users.forms import FullRegistrationForm from django.conf import settings from django.contrib.auth.models import User from django.contrib.auth.views import password_reset from expedient.clearinghouse.users.forms import LDAPPasswordResetForm def home(request): '''show list of users and form for adding users''' must_have_permission(request.user, User, "can_manage_users") user_list = auth.models.User.objects.all().order_by('username') if request.method == "GET": pwd_form = auth.forms.UserCreationForm() user_form = users.forms.UserForm() userprofile_form = users.forms.UserProfileForm() elif request.method == "POST": pwd_form = auth.forms.UserCreationForm(request.POST) user_form = users.forms.UserForm(request.POST) userprofile_form = users.forms.UserProfileForm(request.POST) # check that all data is valid if pwd_form.is_valid() and user_form.is_valid() and userprofile_form.is_valid(): # create the user first user = pwd_form.save() # use the user to save the user info user_form = users.forms.UserForm(request.POST, instance=user) user = user_form.save() # now store the user profile up = users.models.UserProfile(user=user) userprofile_form = users.forms.UserProfileForm(request.POST, instance=up) userprofile_form.save() return HttpResponseRedirect(reverse("users_saved", args=(user.id,))) else: return HttpResponseNotAllowed("GET", "POST") return simple.direct_to_template( request, template='expedient/clearinghouse/users/home.html', extra_context={ 'user_list': user_list, 'pwd_form': pwd_form, 'user_form': user_form, 'userprofile_form': userprofile_form, 'breadcrumbs': ( ("Home", reverse("home")), ("Manage users", request.path), ) }, ) def detail(request, user_id=None): if user_id == None: user = request.user else: user = get_object_or_404(auth.models.User, pk=user_id) must_have_permission(request.user, user, "can_edit_user") profile = users.models.UserProfile.get_or_create_profile(user) if request.method == "GET": if user_id == None: pwd_form = users.forms.PasswordChangeFormDisabled(user) else: pwd_form = users.forms.AdminPasswordChangeFormDisabled(user) user_form = users.forms.UserForm(instance=user) userprofile_form = users.forms.UserProfileForm(instance=profile) elif request.method == "POST": if request.POST.get("change_pwd", False): data = request.POST else: data = None if user_id == None: pwd_form = users.forms.PasswordChangeFormDisabled(user, data) else: pwd_form = users.forms.AdminPasswordChangeFormDisabled(user, data) user_form = users.forms.UserForm(request.POST, instance=user) userprofile_form = users.forms.UserProfileForm(request.POST, instance=profile) if user_form.is_valid() and userprofile_form.is_valid(): user = user_form.save() userprofile_form = users.forms.UserProfileForm(request.POST, instance=profile) userprofile_form.save() if request.POST.get("change_pwd", False) and pwd_form.is_valid(): pwd_form.save() return HttpResponseRedirect(reverse("users_saved", args=(user.id,))) elif "change_pwd" not in request.POST: return HttpResponseRedirect(reverse("users_saved", args=(user.id,))) else: return HttpResponseNotAllowed("GET", "POST") try: slice_set = user.slice_set.all() except AttributeError: slice_set = () return simple.direct_to_template( request, template='expedient/clearinghouse/users/detail.html', extra_context={ 'curr_user': user, 'slices': slice_set, 'pwd_form': pwd_form, 'user_form': user_form, 'show_owner': True, 'userprofile_form': userprofile_form, 'breadcrumbs': ( ("Home", reverse("home")), ("Account for %s" % user.username, reverse("users_detail", args=[user.id])), ) }, ) def saved(request, user_id): user = get_object_or_404(auth.models.User, pk=user_id) print user.id return simple.direct_to_template( request, template='expedient/clearinghouse/users/saved.html', extra_context={ 'curr_user': user, }, ) def delete(request, user_id): user = get_object_or_404(auth.models.User, pk=user_id) must_have_permission(request.user, user, "can_edit_user") return create_update.delete_object( request, auth.models.User, reverse("users_home"), user_id, template_name="expedient/clearinghouse/users/confirm_delete.html", ) def register(request): try: return registration_views.register( request, form_class=FullRegistrationForm) except Exception as e: print "[ERROR] Exception at 'expedient.clearinghouse.users.views': user '%s' (%s) could not fully register. RegistrationForm module returned: %s" % (request.POST['username'], request.POST['email'], str(e)) return simple.direct_to_template( request, template='registration/registration_incomplete.html', extra_context={ 'exception': e, 'root_email': settings.ROOT_EMAIL, 'failed_username': request.POST['username'], 'failed_email': request.POST['email'], }, ) def activate(request, activation_key): template_name = 'registration/activate.html' activation_key = activation_key.lower() # Normalize before trying anything with it. # Import only here to avoid every time warning 'DeprecationWarning: # the sha module is deprecated; use the hashlib module instead' from registration.models import RegistrationProfile account = RegistrationProfile.objects.activate_user(activation_key) if account: give_permission_to( "can_edit_user", account, account, can_delegate=True) return simple.direct_to_template( request, template=template_name, extra_context={ 'account': account, 'expiration_days': settings.ACCOUNT_ACTIVATION_DAYS, }, ) def my_password_reset(request): if request.method == 'GET': return password_reset(request) else: email = request.POST['email'] users = User.objects.filter(email = email) if len(users) == 1 and users[0].password == '!': return HttpResponseRedirect(settings.OFREG_URL+settings.OFREG_RESET_PATH) else: return password_reset(request, password_reset_form=LDAPPasswordResetForm)
8d637f9712aa8cd0fa725ea3c7b3285cb522f1da
be5a758c99f05c8ae8c224bf43335154114ee5f6
/kombu/compat.py
224f2e33e5d44865c3202047427a7e1c535ba30d
[ "BSD-3-Clause" ]
permissive
bradjasper/kombu
160ed1b5651f91a87752df40791d01c91ca1fe16
4c9ac1436eb0468508f8b2cf1bda997535e1326d
refs/heads/master
2021-01-16T00:23:17.928400
2010-07-28T17:25:32
2010-07-28T17:25:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,431
py
from itertools import count from kombu import entity from kombu import messaging def iterconsume(connection, consumer, no_ack=False, limit=None): consumer.consume(no_ack=no_ack) for iteration in count(0): if limit and iteration >= limit: raise StopIteration yield connection.drain_events() def entry_to_binding(queue, **options): binding_key = options.get("binding_key") or options.get("routing_key") e_durable = options.get("exchange_durable") or options.get("durable") e_auto_delete = options.get("exchange_auto_delete") or \ options.get("auto_delete") q_durable = options.get("queue_durable") or options.get("durable") q_auto_delete = options.get("queue_auto_delete") or \ options.get("auto_delete") e_arguments = options.get("exchange_arguments") q_arguments = options.get("queue_arguments") b_arguments = options.get("binding_arguments") exchange = entity.Exchange(options.get("exchange"), type=options.get("exchange_type"), delivery_mode=options.get("delivery_mode"), routing_key=options.get("routing_key"), durable=e_durable, auto_delete=e_auto_delete, arguments=e_arguments) return entity.Binding(queue, exchange=exchange, routing_key=binding_key, durable=q_durable, exclusive=options.get("exclusive"), auto_delete=q_auto_delete, queue_arguments=q_arguments, binding_arguments=b_arguments) class Publisher(messaging.Producer): exchange = "" exchange_type = "direct" routing_key = "" durable = True auto_delete = False _closed = False def __init__(self, connection, exchange=None, routing_key=None, exchange_type=None, durable=None, auto_delete=None, **kwargs): self.connection = connection self.backend = connection.channel() self.exchange = exchange or self.exchange self.exchange_type = exchange_type or self.exchange_type self.routing_key = routing_key or self.routing_key if auto_delete is not None: self.auto_delete = auto_delete if durable is not None: self.durable = durable if not isinstance(self.exchange, entity.Exchange): self.exchange = entity.Exchange(name=self.exchange, type=self.exchange_type, routing_key=self.routing_key, auto_delete=self.auto_delete, durable=self.durable) super(Publisher, self).__init__(self.backend, self.exchange, **kwargs) def send(self, *args, **kwargs): return self.publish(*args, **kwargs) def close(self): self.backend.close() self._closed = True def __enter__(self): return self def __exit__(self, *exc_info): self.close() class Consumer(messaging.Consumer): queue = "" exchange = "" routing_key = "" exchange_type = "direct" durable = True exclusive = False auto_delete = False exchange_type = "direct" _closed = False def __init__(self, connection, queue=None, exchange=None, routing_key=None, exchange_type=None, durable=None, exclusive=None, auto_delete=None, **kwargs): self.connection = connection self.backend = connection.channel() if durable is not None: self.durable = durable if exclusive is not None: self.exclusive = exclusive if auto_delete is not None: self.auto_delete = auto_delete self.queue = queue or self.queue self.exchange = exchange or self.exchange self.exchange_type = exchange_type or self.exchange_type self.routing_key = routing_key or self.routing_key exchange = entity.Exchange(self.exchange, type=self.exchange_type, routing_key=self.routing_key, auto_delete=self.auto_delete, durable=self.durable) binding = entity.Binding(self.queue, exchange=exchange, routing_key=self.routing_key, durable=self.durable, exclusive=self.exclusive, auto_delete=self.auto_delete) super(Consumer, self).__init__(self.backend, binding, **kwargs) def close(self): self.cancel() self.backend.close() self._closed = True def __enter__(self): return self def __exit__(self, *exc_info): self.close() def __iter__(self): return self.iterqueue(infinite=True) def fetch(self, no_ack=None, enable_callbacks=False): if no_ack is None: no_ack = self.no_ack message = self.bindings[0].get(no_ack) if message: if enable_callbacks: self.receive(message.payload, message) return message def process_next(self): raise NotImplementedError("Use fetch(enable_callbacks=True)") def discard_all(self, filterfunc=None): if filterfunc is not None: raise NotImplementedError( "discard_all does not implement filters") return self.purge() def iterconsume(self, limit=None, no_ack=None): return iterconsume(self.connection, self, no_ack, limit) def wait(self, limit=None): it = self.iterconsume(limit) return list(it) def iterqueue(self, limit=None, infinite=False): for items_since_start in count(): item = self.fetch() if (not infinite and item is None) or \ (limit and items_since_start >= limit): raise StopIteration yield item class _CSet(messaging.Consumer): def __init__(self, connection, *args, **kwargs): self.connection = connection self.backend = connection.channel() super(_CSet, self).__init__(self.backend, *args, **kwargs) def iterconsume(self, limit=None, no_ack=False): return iterconsume(self.connection, self, no_ack, limit) def discard_all(self): return self.purge() def add_consumer_from_dict(self, queue, **options): self.bindings.append(entry_to_binding(queue, **options)) def add_consumer(self, consumer): self.bindings.extend(consumer.bindings) def close(self): self.cancel() self.channel.close() def ConsumerSet(connection, from_dict=None, consumers=None, callbacks=None, **kwargs): bindings = [] if consumers: for consumer in consumers: map(bindings.extend, consumer.bindings) if from_dict: for queue_name, queue_options in from_dict.items(): bindings.append(entry_to_binding(queue_name, **queue_options)) return _CSet(connection, bindings, **kwargs)
c3af127904d957a29958033e8898da66cbee1238
70ed82598c7ae19dc3de4a3a8400e9767b8a74b0
/Net/BaseNet/ResNet/fine_tuning_2.py
a5c28f115867e33b9eb23304dfaf71d8d7a0216b
[]
no_license
UpCoder/MedicalImage
f255922b988392cd4c3a90715fb945ee20edb3b4
34c11562658e6f362ee7eb53740ba96209a22d45
refs/heads/master
2021-01-19T16:59:13.251726
2017-12-04T14:55:32
2017-12-04T14:55:32
101,031,357
0
1
null
null
null
null
UTF-8
Python
false
false
6,832
py
# -*- coding: utf-8 -*- # 使用patch训练好的模型,来对ROI进行微调 from resnet import inference_small, loss import tensorflow as tf from Config import Config as sub_Config from Slice.MaxSlice.MaxSlice_Resize import MaxSlice_Resize from tensorflow.examples.tutorials.mnist import input_data from Tools import changed_shape, calculate_acc_error, acc_binary_acc import numpy as np from Patch.ValData import ValDataSet from Patch.Config import Config as patch_config def train(train_data_set, val_data_set, load_model_path, save_model_path): x = tf.placeholder( tf.float32, shape=[ None, sub_Config.IMAGE_W, sub_Config.IMAGE_H, sub_Config.IMAGE_CHANNEL ], name='input_x' ) y_ = tf.placeholder( tf.float32, shape=[ None, ] ) tf.summary.histogram( 'label', y_ ) global_step = tf.Variable(0, trainable=False) # variable_average = tf.train.ExponentialMovingAverage( # sub_Config.MOVING_AVERAGE_DECAY, # global_step # ) # vaeriable_average_op = variable_average.apply(tf.trainable_variables()) # regularizer = tf.contrib.layers.l2_regularizer(sub_Config.REGULARIZTION_RATE) is_training = tf.placeholder('bool', [], name='is_training') FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar-data', 'where to store the dataset') tf.app.flags.DEFINE_boolean('use_bn', True, 'use batch normalization. otherwise use biases') y = inference_small(x, is_training=is_training, num_classes=sub_Config.OUTPUT_NODE, use_bias=FLAGS.use_bn, num_blocks=3) tf.summary.histogram( 'logits', tf.argmax(y, 1) ) loss_ = loss( logits=y, labels=tf.cast(y_, np.int32) ) tf.summary.scalar( 'loss', loss_ ) train_op = tf.train.GradientDescentOptimizer( learning_rate=sub_Config.LEARNING_RATE ).minimize( loss=loss_, global_step=global_step ) # with tf.control_dependencies([train_step, vaeriable_average_op]): # train_op = tf.no_op(name='train') with tf.variable_scope('accuracy'): accuracy_tensor = tf.reduce_mean( tf.cast( tf.equal(x=tf.argmax(y, 1), y=tf.cast(y_, tf.int64)), tf.float32 ) ) tf.summary.scalar( 'accuracy', accuracy_tensor ) saver = tf.train.Saver() merge_op = tf.summary.merge_all() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if load_model_path: saver.restore(sess, load_model_path) writer = tf.summary.FileWriter('./log/fine_tuning/train', tf.get_default_graph()) val_writer = tf.summary.FileWriter('./log/fine_tuning/val', tf.get_default_graph()) for i in range(sub_Config.ITERATOE_NUMBER): images, labels = train_data_set.get_next_batch(sub_Config.BATCH_SIZE, sub_Config.BATCH_DISTRIBUTION) images = changed_shape(images, [ len(images), sub_Config.IMAGE_W, sub_Config.IMAGE_W, sub_Config.IMAGE_CHANNEL ]) _, loss_value, accuracy_value, summary, global_step_value = sess.run( [train_op, loss_, accuracy_tensor, merge_op, global_step], feed_dict={ x: images, y_: labels } ) writer.add_summary( summary=summary, global_step=global_step_value ) if i % 100 == 0 and i != 0 and save_model_path is not None: # 保存模型 五分类每500步保存一下模型 import os save_path = os.path.join(save_model_path, str(global_step_value)) if not os.path.exists(save_path): os.mkdir(save_path) save_path += '/model.ckpt' print 'mode saved path is ', save_path saver.save(sess, save_path) if i % 100 == 0: validation_images, validation_labels = val_data_set.get_next_batch() validation_images = changed_shape( validation_images, [ len(validation_images), sub_Config.IMAGE_W, sub_Config.IMAGE_W, 1 ] ) validation_accuracy, validation_loss, summary, logits = sess.run( [accuracy_tensor, loss_, merge_op, y], feed_dict={ x: validation_images, y_: validation_labels } ) calculate_acc_error( logits=np.argmax(logits, 1), label=validation_labels, show=True ) binary_acc = acc_binary_acc( logits=np.argmax(logits, 1), label=validation_labels, ) val_writer.add_summary(summary, global_step_value) print 'step is %d,training loss value is %g, accuracy is %g ' \ 'validation loss value is %g, accuracy is %g, binary_acc is %g' % \ (global_step_value, loss_value, accuracy_value, validation_loss, validation_accuracy, binary_acc) writer.close() val_writer.close() if __name__ == '__main__': phase_name = 'ART' state = '' traindatapath = '/home/give/Documents/dataset/MedicalImage/MedicalImage/ROI/train' valdatapath = '/home/give/Documents/dataset/MedicalImage/MedicalImage/ROI/val' val_dataset = ValDataSet(new_size=[sub_Config.IMAGE_W, sub_Config.IMAGE_H], phase=phase_name, category_number=2, shuffle=True, data_path=valdatapath ) train_dataset = ValDataSet(new_size=[sub_Config.IMAGE_W, sub_Config.IMAGE_H], phase=phase_name, category_number=2, data_path=traindatapath, shuffle=True, ) train( train_dataset, val_dataset, load_model_path=None, save_model_path='/home/give/PycharmProjects/MedicalImage/Net/BaseNet/ResNet/models/fine_tuning/2-128/' )
efc54871703ecce3f1cb626bd1351abbdff392ef
34ef83114e02b173bd2d55eb53ad399e738a8e3c
/django/test_bootstrap/blog/models.py
b12d7ddd4b0a24411e62b4e99bf00bcafa60e565
[]
no_license
vavilon/Python3
e976a18eb301e4953696d1e3f4730ed890da015a
8c79729747ce51d60ad685e6a2e58292954ed7eb
refs/heads/master
2023-01-09T13:44:37.408601
2018-01-25T22:41:14
2018-01-25T22:41:14
100,892,055
0
1
null
2022-12-26T20:29:27
2017-08-20T22:23:06
Python
UTF-8
Python
false
false
506
py
from django.db import models # Create your models here. from django.utils import timezone class Post(models.Model): author = models.ForeignKey('auth.User') title = models.CharField(max_length=200) text = models.TextField() created_date = models.DateTimeField( default=timezone.now) published_date = models.DateTimeField( blank=True, null=True ) def publish(self): self.published_date = timezone.now() def __str__(self): return self.title
3fac458c8f38d04e4724c1f19199c6c517b324b6
675b72eae65f8e258794decf9627e5fdf8b04559
/plugin_tests/examples_test.py
aa8ae4a0e021a3a57aefdf2dd02021e68f45841a
[ "Apache-2.0" ]
permissive
jbeezley/large_image
368f730ea6fe2c4b75a9c3412c08ce8f41be545a
ac4cbaff4ae2fbbde425d3cd1aee2ff03e6235c8
refs/heads/master
2021-01-11T06:15:48.687563
2016-10-24T17:09:08
2016-10-24T17:09:08
71,806,470
0
0
null
2016-10-24T16:04:04
2016-10-24T16:04:03
null
UTF-8
Python
false
false
1,695
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################## # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import os import subprocess import unittest class LargeImageExamplesTest(unittest.TestCase): def testAverageColor(self): # Test running the program testDir = os.path.dirname(os.path.realpath(__file__)) examplesDir = os.path.join(testDir, '../examples') prog = 'average_color.py' imagePath = os.path.join(os.environ['LARGE_IMAGE_DATA'], 'sample_image.ptif') process = subprocess.Popen( ['python', prog, imagePath, '-m', '1.25'], shell=False, stdout=subprocess.PIPE, cwd=examplesDir) results = process.stdout.readlines() self.assertEqual(len(results), 19) finalColor = [float(val) for val in results[-1].split()[-3:]] self.assertEqual(round(finalColor[0]), 245) self.assertEqual(round(finalColor[1]), 247) self.assertEqual(round(finalColor[2]), 247)
434153e344fd51bbd477726190b6bffce6f42c4d
3de3dae722829727edfdd6cc3b67443a69043475
/edexOsgi/com.raytheon.uf.common.dataplugin.text/pythonPackages/dynamicserialize/dstypes/com/raytheon/uf/common/dataplugin/text/subscription/request/SubscriptionRequest.py
237472774c674b7b8fb879656ce996c5d08db82a
[ "LicenseRef-scancode-public-domain", "Apache-2.0" ]
permissive
Unidata/awips2
9aee5b7ec42c2c0a2fa4d877cb7e0b399db74acb
d76c9f96e6bb06f7239c563203f226e6a6fffeef
refs/heads/unidata_18.2.1
2023-08-18T13:00:15.110785
2023-08-09T06:06:06
2023-08-09T06:06:06
19,332,079
161
75
NOASSERTION
2023-09-13T19:06:40
2014-05-01T00:59:04
Java
UTF-8
Python
false
false
1,268
py
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # File auto-generated against equivalent DynamicSerialize Java class # # SOFTWARE HISTORY # # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # Sep 05, 2014 bclement Generated class SubscriptionRequest(object): def __init__(self): self.message = None def getMessage(self): return self.message def setMessage(self, message): self.message = message
d485028798e1c737f0af507daf3b21f679ec03ae
b55c368efdfe360123be1a2e7677cee53706d1f9
/VectorTrans/Main.py
7f33d97819742d7ae327669e60bb979628d2c4fb
[ "MIT" ]
permissive
ZzhiWang/DRImplicitVecXform
207cd6ef6edf5bc90b2abb1242e2d7bb3b322f95
2ec0c64fb098e29ce74929f5e19bce90b2f5791c
refs/heads/master
2023-03-17T14:51:34.755756
2020-08-01T09:26:35
2020-08-01T09:26:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
import numpy as np from Tools import Preprocess from VectorTrans.DRTrans import DRTrans from VectorTrans.MDSTrans import MDSTrans from VectorTrans.TSNETrans import TSNETrans from VectorTrans.PCATrans import PCATrans from VectorTrans.MDSTransPlus import MDSTransPlus from VectorTrans.TSNETransPlus import TSNETransPlus from VectorTrans.CreateJson import JsonFile def load_data(): X = np.loadtxt("..\\Data\\data.csv", dtype=np.float, delimiter=",") label = np.loadtxt("..\\Data\\label.csv", dtype=np.int, delimiter=",") return X, label def run_example(): dr_method = 'MDS' # 'MDS' 't-SNE' 'PCA' 'MDSPlus' 't-SNEPlus' X, label = load_data() repeat = Preprocess.has_repeat(X) if repeat: print("Please recheck the input data for duplicate points") return X = Preprocess.normalize(X) # Optional (n, d) = X.shape trans = DRTrans() if dr_method == 'MDS': trans = MDSTrans(X, label=label, y_init=None, y_precomputed=False) elif dr_method == 't-SNE': trans = TSNETrans(X, label=label, y_init=None, perplexity=30.0) elif dr_method == 'PCA': trans = PCATrans(X, label=label) elif dr_method == "MDSPlus": trans = MDSTransPlus(X, label=label, y_init=None, y_precomputed=False) elif dr_method == "t-SNEPlus": trans = TSNETransPlus(X, label=label, y_init=None, perplexity=30.0) else: print("This method is not supported at this time: ", dr_method) return trans.transform(nbrs_k=20, MAX_EIGEN_COUNT=4, yita=0.1) np.savetxt("..\\Data\\"+str(dr_method)+"_Y.csv", trans.Y, fmt='%.18e', delimiter=",") if n*d < 1024 ** 3 / 2: np.savetxt("..\\Data\\"+str(dr_method)+"_derivative.csv", trans.derivative, fmt='%.18e', delimiter=",") json_file = JsonFile(path="..\\Data\\") json_file.create_file(trans) if __name__ == '__main__': run_example()
b9fc0ded63c3c6f0ff7857c261a68f18076d6d8e
9dc8c299ee7d4a225002127cc03b4253c8a721fd
/libs/unittest/live_related_condition.py
5604fdc9fc852993f3b40a2a692f9a1c3da1f49b
[]
no_license
namesuqi/strategy_corgi
5df5d8c89bdf7a7c465c438048be20ef16120f4f
557b8f8eabf034c2a57c25e6bc581858dd4f1b6e
refs/heads/master
2020-03-07T04:00:18.313901
2018-03-29T07:50:50
2018-03-29T07:50:50
127,253,453
0
0
null
null
null
null
UTF-8
Python
false
false
4,149
py
# !/usr/bin/python # coding=utf-8 # author: JinYiFan from config import * from libs.module.live_seeds import * import time def wait_for_second(wait_time): time.sleep(wait_time) def change_config(live_file_count, live_peer_count, rate_of_peer_and_file): """ 修改config文件的参数配置 :param live_file_count: 文件总数 :param live_peer_count: 播放的节点总数 :param rate_of_peer_and_file: 单个文件对应的播放节点数 """ orm.session.query(Configs).filter(Configs.role == "live_file_count").update( {"content": live_file_count}) orm.session.query(Configs).filter(Configs.role == "live_peer_count").update( {"content": live_peer_count}) orm.session.query(Configs).filter(Configs.role == "rate_of_peer_and_file").update( {"content": rate_of_peer_and_file}) orm.session.commit() orm.session.close() def change_peer_flow_to_0(): """ 将peer的CDN和P2P流量设为0 """ orm.session.query(Live_Peer).update({"cdn": 0, "p2p": 0}) orm.session.commit() orm.session.close() def change_LF_flow_to_0(): """ 将LF的CDN和P2P流量设为0 """ orm.session.query(Live_Seed).update({"upload": 0, "download": 0}) orm.session.commit() orm.session.close() def add_player(play_num): """ 增加播放节点 :param play_num: 增加的播放节点数 """ peer_num_infos = orm.session.query(Live_Online).offset(200).limit(play_num).all() file_id = orm.session.query(Live_Peer).first().file_id num = 0 for num in range(play_num): live_peer_sdk = Live_Peer(peer_id=peer_num_infos[num].peer_id, version=peer_num_infos[num].sdk_version, country=peer_num_infos[num].country, province_id=peer_num_infos[num].province_id, city_id=peer_num_infos[num].city_id, isp_id=peer_num_infos[num].isp_id, file_id=file_id, chunk_id=get_random_chunk_id(), operation=OPERATION, cdn=CDN, p2p=P2P, ssid=peer_num_infos[num].ssid, p2penable=P2PENABLE) orm.session.add(live_peer_sdk) num += 1 orm.session.commit() orm.session.close() def one_peer_multi_channel(channel_num): """ 一个播放节点播放多个频道 :param channel_num: 一个播放节点播放的频道数 """ peer_info = orm.session.query(Live_Peer).first() file_info = orm.session.query(Live_File).offset(5).limit(channel_num).all() for num in range(channel_num - 1): live_peer_sdk = Live_Peer(peer_id=peer_info.peer_id, version=peer_info.version, country=peer_info.country, province_id=peer_info.province_id, city_id=peer_info.city_id, isp_id=peer_info.isp_id, file_id=file_info[num].file_id, chunk_id=get_random_chunk_id(), operation=OPERATION, cdn=CDN, p2p=P2P, ssid=peer_info.ssid, p2penable=P2PENABLE) orm.session.add(live_peer_sdk) num += 1 orm.session.commit() orm.session.close() def del_player(del_num): """ 删除播放节点 :param del_num: 删除的播放节点数 """ peer_infos = orm.session.query(Live_Peer).all() session_ids = list() for peer_info in peer_infos: session_ids.append(peer_info.ssid) num = 0 for num in range(del_num): orm.session.query(Live_Peer).filter_by(ssid=session_ids[num]).delete() num += 1 orm.session.commit() orm.session.close() def del_seed(del_num): """ 删除雷锋节点 :param del_num: 删除的雷锋节点数 """ seed_infos = orm.session.query(Live_Seed).all() session_ids = list() for seed_info in seed_infos: session_ids.append(seed_info.ssid) num = 0 for num in range(del_num): orm.session.query(Live_Seed).filter_by(ssid=session_ids[num]).delete() num += 1 orm.session.commit() orm.session.close() if __name__ == "__main__": del_seed(20) # add_player(3) # one_peer_multi_channel(3) # del_player(2)
b8acc579b13a7bb35130f20698e3489073b14792
773deb7825ff84eec3e0cf6ae8266d07251df392
/CHAPTER05/bw41.py
c7231b7bd8d7d2ba190f52df2a0fa74e6f62a961
[]
no_license
kji0205/py
3ca9c2a351af05ce62d7c7c3c261ed98a7e8290d
b45ffb3424b7c0da8192d431cb7ad7933c60ef81
refs/heads/master
2021-01-20T18:57:51.603386
2016-06-23T14:24:57
2016-06-23T14:24:57
61,639,536
0
0
null
null
null
null
UTF-8
Python
false
false
905
py
# 진정한 병렬성을 실현하려면 concurrent.futures를 고려하자 import logging from pprint import pprint from sys import stdout as STDOUT from time import time def gcd(pair): a, b = pair low = min(a, b) for i in range(low, 0, -1): if a % i == 0 and b % i == 0: return i numbers = [(1963309, 2265973), (2030677, 3814172), (1551645, 2229620), (2039045, 2020802)] start = time() results = list(map(gcd, numbers)) end = time() print('Took %.3f seconds' % (end - start)) # from concurrent.futures import ThreadPoolExecutor start = time() pool = ThreadPoolExecutor(max_workers=2) results = list(pool.map(gcd, numbers)) end = time() print('Took %.3f seconds' % (end - start)) # from concurrent.futures import ProcessPoolExecutor start = time() pool = ProcessPoolExecutor(max_workers=2) results = list(pool.map(gcd, numbers)) end = time() print('Took %.3f seconds' % (end - start))
b92db110450f2c14108bb1fe808f9ce2eb57621f
2d1649a7a00d49b72ed7e53afa4abb3c9281ce03
/.history/ParticleFilter/go_to_goal_20190422001746.py
b97cd844c688b0223ebd64a788ff07412f228001
[]
no_license
joshzhang5/CS3630Lab6
9547dc6c89198e9bb4aebd8359d4feb974082d20
69e6df12829e18a211ae850236d74b4d728046ef
refs/heads/master
2020-05-15T13:59:51.906195
2019-04-22T18:21:42
2019-04-22T18:21:42
182,317,674
0
0
null
null
null
null
UTF-8
Python
false
false
12,111
py
# Jiaxi Zhang # George McAlear try: import matplotlib matplotlib.use('TkAgg') except ImportError: pass from skimage import color import numpy as np from numpy.linalg import inv import threading import time import sys import asyncio from PIL import Image from markers import detect, annotator from grid import CozGrid from gui import GUIWindow from particle import Particle, Robot from setting import * from particle_filter import * from utils import * from time import sleep import time import asyncio import cozmo from cozmo.util import distance_mm, degrees, speed_mmps, Pose #particle filter functionality class ParticleFilter: def __init__(self, grid): self.particles = Particle.create_random(PARTICLE_COUNT, grid) self.grid = grid def update(self, odom, r_marker_list): # ---------- Motion model update ---------- self.particles = motion_update(self.particles, odom) # ---------- Sensor (markers) model update ---------- self.particles = measurement_update(self.particles, r_marker_list, self.grid) # ---------- Show current state ---------- # Try to find current best estimate for display m_x, m_y, m_h, m_confident = compute_mean_pose(self.particles) return (m_x, m_y, m_h, m_confident) class CozmoWarehouseWorker: def __init__(self, robot: cozmo.robot.Robot): self.current_arena_pose = None self.current_robot_pose = robot.pose self.robot = robot # start streaming robot.camera.image_stream_enabled = True robot.camera.color_image_enabled = False robot.camera.enable_auto_exposure() # Obtain the camera intrinsics matrix fx, fy = robot.camera.config.focal_length.x_y cx, cy = robot.camera.config.center.x_y self.camera_settings = np.array([ [fx, 0, cx], [ 0, fy, cy], [ 0, 0, 1] ], dtype=np.float) self.pick_up_pose = Pose(x=4.5, y=12.75, z=0, angle_z=degrees(90)) self.drop_off_pose = Pose(x=21.75, y=12.75, z=0, angle_z=degrees(90)) self.drop_off_directions = [Pose(x=3, y=4.5, z=0, angle_z=degrees(0)), Pose(x=21.75, y=4.5, z=0, angle_z=degrees(90)), self.drop_off_pose] self.pick_up_directions = [Pose(x=21.75, y=4.5, z=0, angle_z=degrees(90)), Pose(x=3, y=4.5, z=0, angle_z=degrees(0)), self.pick_up_pose] self.drive_speed = speed_mmps(50) self.grid = CozGrid("map_arena.json") self.pf = ParticleFilter(self.grid) threading.Thread(target=self.runGUI).start() def runGUI(self): self.gui = GUIWindow(self.grid, show_camera=True) self.gui.show_particles(self.pf.particles) self.gui.show_mean(0, 0, 0) self.gui.start() async def drive_to(self, directions): print("-" * 20 + "DRIVING" + "-" * 20) if isinstance(directions, (list,)): for pose in directions: await self.__drive_to_pose(pose) else: await self.__drive_to_pose(directions) async def __drive_to_pose(self, pose): print("We are at ", self.current_arena_pose, " and we are driving to ", pose) translation = (pose - self.current_arena_pose).position directions = Pose(x=translation.x, y=translation.y, z=0, angle_z=pose.rotation.angle_z) print("We will follow these directions: ", directions, "\n\n") await self.__execute_directions(directions) print("Directions followed!", "\n\n") self.update_current_arena_pose() async def __execute_directions(self, directions): print("Current arena pose is:", self.current_arena_pose, "\n\n") print("Current robot pose is:", self.robot.pose, "\n\n") await self.robot.turn_in_place(angle=degrees(-self.current_arena_pose.rotation.angle_z.degrees)).wait_for_completed() print("ROBOT is at AFTER TURNING to be parallel to X: ", self.robot.pose, "\n\n") await self.robot.drive_straight(distance=distance_mm(directions.position.x * self.grid.scale), speed=self.drive_speed).wait_for_completed() print("ROBOT is at AFTER DRIVING in the X direction: ", self.robot.pose, "\n\n") await self.robot.turn_in_place(angle=degrees(90)).wait_for_completed() print("ROBOT is at AFTER TURNING to be parallel to Y: ", self.robot.pose, "\n\n") await self.robot.drive_straight(distance=distance_mm(directions.position.y * self.grid.scale), speed=self.drive_speed).wait_for_completed() print("ROBOT is at AFTER DRIVING in the Y direction: ", self.robot.pose, "\n\n") print("ROBOT is TURNING ", diff_heading_deg(directions.rotation.angle_z.degrees, 90), "degrees.", "\n\n") await self.robot.turn_in_place(angle=degrees(diff_heading_deg(directions.rotation.angle_z.degrees, 90))).wait_for_completed() print("ROBOT is at AFTER FINAL TURN", self.robot.pose, "\n\n") def update_current_arena_pose(self): print("-" * 20 + "UPDATING POSE" + "-" * 20) coordinate_systems_diff = diff_heading_deg(self.current_robot_pose.rotation.angle_z.degrees, self.current_arena_pose.rotation.angle_z.degrees) print("robot pose before we moved was: ", self.current_robot_pose) print("My diff heading degree is: ") arena_initial_pose_mm = rotate_point(self.current_robot_pose.position.x, self.current_robot_pose.position.y, coordinate_systems_diff) arena_final_pose_mm = rotate_point(self.robot.pose.position.x, self.robot.pose.position.y, coordinate_systems_diff) d_x = arena_final_pose_mm[0] - arena_initial_pose_mm[0] d_y = arena_final_pose_mm[1] - arena_initial_pose_mm[1] d_heading = self.robot.pose.rotation.angle_z - self.current_robot_pose.rotation.angle_z difference_pose = convertPoseFromMmToInches(Pose(x=d_x, y=d_y, z=0, angle_z=d_heading)) print("We think we moved ", difference_pose, "\n\n") self.current_arena_pose = self.current_arena_pose + difference_pose print("Current pose is now ", self.current_arena_pose, "\n\n") async def pick_up_cube(self, tries=5): print("-" * 20 + "GETTING CUBE" + "-" * 20) cube = await self.robot.world.wait_for_observed_light_cube(timeout=30) print("Found cube: %s" % cube) picked_up_cube = await self.robot.pickup_object(cube, num_retries=tries).wait_for_completed().obj if (picked_up_cube == None): print("Could not get the cube.") await self.robot.say_text("Help me!").wait_for_completed() asyncio.sleep(5) else: print("Picked up cube!") async def set_down_cube(self): print("-" * 20 + "SETTING DOWN CUBE" + "-" * 20) await self.robot.set_lift_height(0.0).wait_for_completed() await self.robot.set_head_angle(degrees(3)).wait_for_completed() async def localize(self, turn_angle=20): print("-" * 20 + "LOCALIZING" + "-" * 20) # reset our location estimates conf = False self.current_arena_pose = Pose(0,0,0,angle_z=degrees(0)) self.pf = ParticleFilter(self.grid) # reset lift and head await self.robot.set_lift_height(0.0).wait_for_completed() await self.robot.set_head_angle(degrees(3)).wait_for_completed() while not conf: # move a little self.current_robot_pose = self.robot.pose await self.robot.turn_in_place(angle=degrees(turn_angle)).wait_for_completed() odometry = self.__compute_odometry() detected_markers, camera_image = await self.__marker_processing() # update, motion, and measurment with the odometry and marker data curr_x, curr_y, curr_h, conf = self.pf.update(odometry, detected_markers) # update gui self.gui.show_particles(self.pf.particles) self.gui.show_mean(curr_x, curr_y, curr_h) self.gui.show_camera_image(camera_image) self.gui.updated.set() self.current_arena_pose = Pose(curr_x , curr_y, 0, angle_z=degrees(curr_h)) print("We localized to arena location ", self.current_arena_pose) def __compute_odometry(self, cvt_inch=True): ''' Compute the odometry given the current pose of the robot (use robot.pose) Input: - curr_pose: a cozmo.robot.Pose representing the robot's current location - cvt_inch: converts the odometry into grid units Returns: - 3-tuple (dx, dy, dh) representing the odometry ''' last_x, last_y, last_h = self.current_robot_pose.position.x, self.current_robot_pose.position.y, \ self.current_robot_pose.rotation.angle_z.degrees curr_x, curr_y, curr_h = self.robot.pose.position.x, self.robot.pose.position.y, \ self.robot.pose.rotation.angle_z.degrees dx, dy = rotate_point(curr_x-last_x, curr_y-last_y, -last_h) if cvt_inch: dx, dy = dx / self.grid.scale, dy / self.grid.scale return (dx, dy, diff_heading_deg(curr_h, last_h)) async def __marker_processing(self, show_diagnostic_image=False): ''' Obtain the visible markers from the current frame from Cozmo's camera. Since this is an async function, it must be called using await, for example: markers, camera_image = await marker_processing(robot, camera_settings, show_diagnostic_image=False) Input: - robot: cozmo.robot.Robot object - camera_settings: 3x3 matrix representing the camera calibration settings - show_diagnostic_image: if True, shows what the marker detector sees after processing Returns: - a list of detected markers, each being a 3-tuple (rx, ry, rh) (as expected by the particle filter's measurement update) - a PIL Image of what Cozmo's camera sees with marker annotations ''' # Wait for the latest image from Cozmo image_event = await self.robot.world.wait_for(cozmo.camera.EvtNewRawCameraImage, timeout=30) # Convert the image to grayscale image = np.array(image_event.image) image = color.rgb2gray(image) # Detect the markers markers, diag = detect.detect_markers(image, self.camera_settings, include_diagnostics=True) # Measured marker list for the particle filter, scaled by the grid scale marker_list = [marker['xyh'] for marker in markers] marker_list = [(x/self.grid.scale, y/self.grid.scale, h) for x,y,h in marker_list] # Annotate the camera image with the markers if not show_diagnostic_image: annotated_image = image_event.image.resize((image.shape[1] * 2, image.shape[0] * 2)) annotator.annotate_markers(annotated_image, markers, scale=2) else: diag_image = color.gray2rgb(diag['filtered_image']) diag_image = Image.fromarray(np.uint8(diag_image * 255)).resize((image.shape[1] * 2, image.shape[0] * 2)) annotator.annotate_markers(diag_image, markers, scale=2) annotated_image = diag_image return marker_list, annotated_image async def run(robot: cozmo.robot.Robot): cosimo = CozmoWarehouseWorker(robot) await cosimo.localize() await cosimo.drive_to(cosimo.pick_up_pose) while True: await cosimo.pick_up_cube(tries=5) await cosimo.drive_to(cosimo.drop_off_directions) await cosimo.set_down_cube() await cosimo.drive_to(cosimo.pick_up_directions) class CozmoThread(threading.Thread): def __init__(self): threading.Thread.__init__(self, daemon=False) def run(self): cozmo.robot.Robot.drive_off_charger_on_connect = False # Cozmo can stay on his charger cozmo.run_program(run, use_viewer=False) if __name__ == '__main__': # cozmo thread cozmo_thread = CozmoThread() cozmo_thread.start()
4c7ea5619cc66f92ba1b9905cdc2da6911ed9e1f
b2d3bd39b2de8bcc3b0f05f4800c2fabf83d3c6a
/examples/pwr_run/checkpointing/throughput/final3/main.py
7a486cdf102a8565fccfdac8cf8ebbcbaf5f011c
[ "MIT" ]
permissive
boringlee24/keras_old
3bf7e3ef455dd4262e41248f13c04c071039270e
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
refs/heads/master
2021-11-21T03:03:13.656700
2021-11-11T21:57:54
2021-11-11T21:57:54
198,494,579
0
0
null
null
null
null
UTF-8
Python
false
false
31,723
py
import pdb import time import os import subprocess import re import random import json import numpy as np import glob from tensorboard.backend.event_processing.event_accumulator import EventAccumulator import socket import argparse import threading import _thread import signal from datetime import datetime import csv from sklearn import neighbors parser = argparse.ArgumentParser(description='TCP client') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='select testcase') args = parser.parse_args() queue = [6, 33, 4, 43, 15, 47, 18, 42, 35, 40, 34, 20, 9, 29, 19, 22, 3, 5, 38, 7, 41, 39, 46, 17, 24, 28, 26, 45, 16, 14, 50, 48, 36, 27, 32, 8, 10, 49, 2, 12, 23, 1, 37, 31, 44, 21, 30, 11, 13, 25] queue_dict = {} arrival_time = 0 for item in queue: arrival_time += np.random.poisson(30) queue_dict[item] = arrival_time queue_timer = time.time() with open('k80_time.json', 'r') as fp: k80_time = json.load(fp) with open('data/pwr.json', 'r') as fp: pwr_dict = json.load(fp) with open('data/util.json', 'r') as fp: util_dict = json.load(fp) job_start = {} #{'49': time1, '15': time2...} JCT = {} for item in queue: JCT[str(item)] = 0 completion = {} for item in queue: completion[str(item)] = 0 overhead = {} # initialize so that every job starts with 0s overhead time for item in queue: overhead[str(item)] = 0 ovhd_start = {} # initialize this to 0 as well for item in queue: ovhd_start[str(item)] = 0 b_start = {} # initialize this to 0 as well for item in queue: b_start[str(item)] = 0 c_start = {} # initialize this to 0 as well for item in queue: c_start[str(item)] = 0 d_start = {} # initialize this to 0 as well for item in queue: d_start[str(item)] = 0 ovhd_a = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_a[str(item)] = [] ovhd_b = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_b[str(item)] = [] ovhd_c = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_c[str(item)] = [] ovhd_d = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_d[str(item)] = [] ovhd_total = {} # {1: [10, 12, ...], 2: [xx]} for item in queue: ovhd_total[str(item)] = [] k80_1st = {} for item in queue: k80_1st[str(item)] = [] v100_1st = {} for item in queue: v100_1st[str(item)] = [] num_mig = {} # initialize migration time to 0 for item in queue: num_mig[str(item)] = 0 queue_start = {} # initialize this to 0 as well for item in queue: queue_start[str(item)] = 0 queue_time = {} # initialize this to 0 as well for item in queue: queue_time[str(item)] = 0 V100_epoch_time = {} for item in queue: V100_epoch_time[str(item)] = 0 K80_epoch_time = {} for item in queue: K80_epoch_time[str(item)] = 0 K80_start_time = {} for item in queue: K80_start_time[str(item)] = 0 V100_start_time = {} for item in queue: V100_start_time[str(item)] = 0 promote_start_time = {} for item in queue: promote_start_time[str(item)] = 0 demote_list = [] K80_time = {} for item in queue: K80_time[str(item)] = 0 V100_time = {} for item in queue: V100_time[str(item)] = 0 gpu_usage_time = [] # don't initialize this gpu_usage = [] gpu_usage_completion = [] speedup_dict = {} for item in queue: speedup_dict[str(item)] = 0 predict_dict = {} for item in queue: predict_dict[str(item)] = 0 index = 0 all_jobs_started = False K80_cap = 8 V100_cap = 4 K80_used = 0 V100_used = 0 K80_job = {} for i in range(8): K80_job[str(i)] = 'idle' V100_job = {} for i in range(4): V100_job[str(i)] = 'idle' qualified_job = [] step1_job = [] step2_job = [] pc_job = [] K80_node = 'c2180' V100_node = 'd1024' host_node = 'c0168' testcase = args.tc ### also, change .h5 file folder in jobs ### INTERVAL = 30 # make decision every 30s ######################### do a regression fit ######################## with open('x_data.json') as f: x_train = json.load(f) with open('y_data.json') as f: y_train = json.load(f) model = neighbors.KNeighborsRegressor(n_neighbors = 1, weights='distance') model.fit(x_train, y_train) #################################################################### def send_signal(node, cmd): # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) port = 10000 if node == K80_node else 10001 # Connect the socket to the port where the server is listening server_address = (node, int(port)) print('connecting to {} port {}'.format(*server_address)) sock.connect(server_address) try: # Send data message = cmd.encode('utf-8') #b'save 35' #b'start 35 gpu 6'#b'save 35' print('sending {!r}'.format(message)) sock.sendall(message) while True: data = sock.recv(32) if 'success' in data.decode('utf-8'): print('received {!r}'.format(data)) break else: print('waiting for success signal') time.sleep(1) finally: #print('closing socket') sock.close() def max_speedup_promotion(K80_free, V100_free, V100_job, promote_list, demote_list, force_demote): num_demote = len(force_demote) num_promote = len(promote_list) V100_vacant = num_demote + V100_free K80_vacant = num_promote + K80_free global speedup_dict if K80_vacant >= num_demote: # if more vacant K80s than demote jobs, always force demote # selectively promote among active V100 jobs and promote list jobs V100_qual = demote_list #if 'idle' in V100_qual: # V100_qual.remove('idle') V100_pool = list(set(V100_qual).union(promote_list)) if num_promote <= V100_vacant: # promote all jobs as well return promote_list, force_demote else: # promote the top 4 jobs pool_dict = {} V100_avail = V100_vacant + len(V100_qual) for job in V100_pool: if job in speedup_dict: pool_dict[job] = speedup_dict[job] sorted_pool = sorted(pool_dict, key=pool_dict.get, reverse=True)[:V100_avail] promotion_list = list(set(promote_list).intersection(sorted_pool)) demotion_list = list(set(demote_list).difference(sorted_pool)) if 'idle' in demotion_list: demotion_list.remove('idle') # this includes force demotion # lazy migration, for every V100 job from high speeup to low speedup and not in sorted_pool, compare it with # K80 jobs in sorted_pool, from low speedup to high speedup. If difference within 0.2, replace the K80 job # in sorted pool for job_demote in sorted(pool_dict, key=pool_dict.get, reverse=True): if job_demote in demotion_list: for job_promote in sorted(pool_dict, key=pool_dict.get, reverse=False): if job_promote in promotion_list: if speedup_dict[job_promote] - speedup_dict[job_demote] < 0.1: demotion_list.remove(job_demote) promotion_list.remove(job_promote) break return promotion_list, demotion_list # situations below won't happen elif V100_vacant >= num_promote: # if more vacant V100s than promote jobs, always promote # less vacant K80s than demote jobs, select worst among force demote list pool_dict = {} # here the pool only includes force demote jobs for job in force_demote: if job in speedup_dict: pool_dict[job] = speedup_dict[job] sorted_pool = sorted(pool_dict, key=pool_dict.get, reverse=False)[:K80_vacant] if len(sorted_pool) > 0: raise ValueError('Bug, demotion shouldnt happen because no practical complete') return promote_list, sorted_pool else: raise ValueError('Bug with max speedup promotion, condition not considered') def min_speedup_demotion(K80_job, demote_list): num_demote = len(demote_list) global speedup_dict # selectively demote among active K80 jobs and demote list jobs K80_qual = list(set(list(K80_job.values()))) if 'idle' in K80_qual: K80_qual.remove('idle') K80_pool = list(set(K80_qual).union(demote_list)) if len(K80_pool) <= 8: # demote all jobs, no promotion return [], demote_list[:] # must return a copy, otherwise the output points to the same address as input else: # promote the top 4 jobs pool_dict = {} for job in K80_pool: if job in speedup_dict: pool_dict[job] = speedup_dict[job] sorted_pool = sorted(pool_dict, key=pool_dict.get, reverse=False)[:8] # 8 least speedup jobs demotion_list = list(set(demote_list).intersection(sorted_pool)) promotion_list = list(set(list(K80_job.values())).difference(sorted_pool)) if 'idle' in promotion_list: promotion_list.remove('idle') # this includes force demotion # lazy migration, for every V100 job from high speeup to low speedup and not in sorted_pool, compare it with # K80 jobs in sorted_pool, from low speedup to high speedup. If difference within 0.2, replace the K80 job # in sorted pool for job_demote in sorted(pool_dict, key=pool_dict.get, reverse=True): if job_demote in demotion_list: for job_promote in sorted(pool_dict, key=pool_dict.get, reverse=False): if job_promote in promotion_list: if speedup_dict[job_promote] - speedup_dict[job_demote] < 0.1: demotion_list.remove(job_demote) promotion_list.remove(job_promote) break return promotion_list, demotion_list def save_job(node, job): # save_job('c2176', '50') # first wait for the job to be qualified for checkpointing while True: # wait for ckpt_qual to be available global ckpt_qual_dict if ckpt_qual_dict['job'+job] == 1: ckpt_qual_dict['job'+job] = 0 break time.sleep(5) global pid_dict pid = pid_dict['job'+job] send_signal(node, 'save ' + job + ' pid ' + pid) # 'save 50 pid 10000' global ovhd_start ovhd_start[job] = time.time() time.sleep(3) # in case epoch_waste is communicate too frequently # resume job def resume_job(node, gpu, job): # resume_job('c2176', '3', '50') cmd = 'resume ' + job + ' gpu ' + gpu send_signal(node, cmd) # start job def start_job(node, gpu, job): cmd = 'start ' + job + ' gpu ' + gpu send_signal(node, cmd) # function that checks the tensorboard log of currently running jobs and logs jobs that have finished the first epoch # in a global list. Once it's done, it will be in a queue to be promoted to V100 for 3 more epochs. def check_step1_complete(job_list): log_path = '/scratch/li.baol/tsrbrd_log/job_runs/' + testcase + '/' global step1_job global V100_epoch_time for job in job_list: if job not in step1_job and job != 'idle': log_dir = log_path + 'job' + job + '/*' dirs = glob.glob(log_dir) dirs.sort() if len(dirs) > 0: tc = dirs[0] iterator = EventAccumulator(tc).Reload() tag = 'loss' try: if len(iterator.Scalars(tag)) > 2: # this way we can collect one epoch time wall_time = [t.wall_time for t in iterator.Scalars(tag)] V100_epoch_time[job] = wall_time[1] - wall_time[0] step1_job.append(job) print('job' + job + ' has reached step1 complete') except Exception: pass def check_step2_complete(job_list): log_path = '/scratch/li.baol/tsrbrd_log/job_runs/' + testcase + '/' global step1_job global step2_job global V100_epoch_time global K80_epoch_time global speedup_dict for job in job_list: if job in step1_job and job not in step2_job and job != 'idle': log_dir = log_path + 'job' + job + '/*' dirs = glob.glob(log_dir) dirs.sort() if len(dirs) > 1: tc = dirs[1] iterator = EventAccumulator(tc).Reload() tag = 'loss' try: if len(iterator.Scalars(tag)) > 2: # this way we can collect one epoch time wall_time = [t.wall_time for t in iterator.Scalars(tag)] K80_epoch_time[job] = wall_time[1] - wall_time[0] V100_time_step2 = V100_epoch_time[job] K80_time_step2 = wall_time[1] - wall_time[0] speedup = (K80_time_step2 - V100_time_step2) / K80_time_step2 speedup_dict[job] = speedup step2_job.append(job) print('job' + job + ' has reached step2 complete') except Exception: pass ############### first clear finish status of all jobs #################### pid_dict = {} for i in range(50): job_name = 'job' + str(i + 1) pid_dict[job_name] = 0 checkpoint_dict = {} for i in range(50): job_name = 'job' + str(i + 1) checkpoint_dict[job_name] = 0 ckpt_qual_dict = {} for i in range(50): job_name = 'job' + str(i + 1) ckpt_qual_dict[job_name] = 0 finish_dict = {} for i in range(50): job_name = 'job' + str(i + 1) finish_dict[job_name] = 0 epoch_waste_dict = {} for i in range(50): job_name = 'job' + str(i + 1) epoch_waste_dict[job_name] = 0 #################### background thread running TCP socket ######################## def thread_function(): # here listen on the socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = (host_node, 10002) print('starting up on {} port {}'.format(*server_address)) sock.bind(server_address) sock.listen(5) while True: # Wait for a connection connection, client_address = sock.accept() try: while True: data = connection.recv(32) if data: data_str = data.decode('utf-8') global K80_start_time global V100_start_time, promote_start_time global K80_job global v100_job global K80_time global V100_time global ovhd_a, ovhd_b, ovhd_c, ovhd_d, k80_1st, v100_1st, ovhd_start, overhead, ovhd_total global b_start, c_start, d_start, completion if 'ckpt_qual' in data_str: global ckpt_qual_dict job_name = data_str.split(' ')[0] ckpt_qual_dict[job_name] = 1 elif 'finish' in data_str: global finish_dict job_name = data_str.split(' ')[0] job = job_name.replace('job','') finish_dict[job_name] = 1 JCT[job] = int(time.time() - job_start[job]) if job in list(K80_job.values()): K80_time[job] += int(time.time() - K80_start_time[job]) elif job in list(V100_job.values()): V100_time[job] += int(time.time() - V100_start_time[job]) elif 'pid' in data_str: global pid_dict job_name = data_str.split(' ')[0] pid = data_str.split(' ')[2] pid_dict[job_name] = pid elif 'checkpoint' in data_str: # can only be received after save signal is sent global checkpoint_dict job_name = data_str.split(' ')[0] job = job_name.replace('job','') checkpoint_dict[job_name] = 1 ovhd_a[job].append(int(time.time() - ovhd_start[job])) b_start[job] = time.time() elif 'waste' in data_str: global epoch_waste_dict job_name = data_str.split(' ')[0] epoch_waste_time = data_str.split(' ')[2] epoch_waste_dict[job_name] += int(epoch_waste_time) elif 'b_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_b[job].append(int(time.time() - b_start[job])) c_start[job] = time.time() elif 'c_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_c[job].append(int(time.time() - c_start[job])) d_start[job] = time.time() elif 'd_end' in data_str: job_name = data_str.split(' ')[0] job = job_name.replace('job','') ovhd_d[job].append(int(time.time() - d_start[job])) ovhd_total[job].append(int(time.time() - ovhd_start[job])) if ovhd_start[job] != 0: overhead[job] += int(time.time() - ovhd_start[job]) ovhd_start[job] = 0 if job in list(K80_job.values()): K80_start_time[job] = time.time() elif job in list(V100_job.values()): V100_start_time[job] = time.time() promote_start_time[job] = time.time() elif '1st_epoch' in data_str: # 'job50 1st_epoch 35' job_name = data_str.split(' ')[0] job = job_name.replace('job','') epoch_time = int(data_str.split(' ')[2]) if job in list(K80_job.values()): k80_1st[job].append(epoch_time) elif job in list(V100_job.values()): v100_1st[job].append(epoch_time) elif 'completion' in data_str: # 'job50 completion 0.33' job_name = data_str.split(' ')[0] job = job_name.replace('job','') completion_portion = float(data_str.split(' ')[2]) completion[job] = completion_portion if 'ckpt_qual' in data_str or 'finish' in data_str or 'checkpoint' in data_str: print('received ' + data_str) connection.sendall(b'success') #time.sleep(5) else: break finally: connection.close() x = threading.Thread(target=thread_function, daemon=True) x.start() ############################################################################### ###################################################################### while True: # termination condition: # all the jobs have finished ################### check for finished jobs on K80 and V100 ############################## for gpu, job in K80_job.items(): if job != 'idle': if finish_dict['job'+job] == 1: K80_used -= 1 K80_job[gpu] = 'idle' print('K80 finished job: ' + job) for gpu, job in V100_job.items(): if job != 'idle': if finish_dict['job'+job] == 1: V100_used -= 1 V100_job[gpu] = 'idle' print('V100 finished job: ' + job) if job in demote_list: demote_list.remove(job) ################ check step1 finished job of K80 jobs and step 2 of V100 ################# check_step1_complete(list(V100_job.values())) check_step2_complete(list(K80_job.values())) for job in list(V100_job.values()): if job not in qualified_job and job != 'idle': x2 = 3600 / k80_time[job] x1 = pwr_dict[job] x3 = util_dict[job] if x1 > 0: if job in step1_job: qualified_job.append(job) print('job' + job + ' has been qualified for demotion') speedup_pred = model.predict(np.array([x1, x2, x3]).reshape((1,-1)))[0] / 100 speedup_dict[job] = speedup_pred predict_dict[job] = speedup_pred ################ make promotion decisions ######################## V100_free = V100_cap - V100_used K80_free = K80_cap - K80_used if all_jobs_started: # this returns available jobs for promotion. Has to be qualified, and currently in K80, but not practically complete promote_list = list(set(qualified_job).intersection(list(K80_job.values())).difference(pc_job)) else: promote_list = [] # this returns job forced to be demoted. Currently in V100, and is practically complete force_demote = list(set(list(V100_job.values())).intersection(pc_job)) # look at demote list for gpu, job in V100_job.items(): if job != 'idle': if job not in demote_list and job in step2_job and len(ovhd_total[job]) > 0: job_speedup = speedup_dict[job] # 0.7 job_ovhd = np.mean(ovhd_total[job]) # 100 k80_1st_ovhd = np.mean(k80_1st[job]) - K80_epoch_time[job] v100_1st_ovhd = np.mean(v100_1st[job]) - V100_epoch_time[job] demote_qualify_time = (2 * job_ovhd + k80_1st_ovhd + v100_1st_ovhd) / job_speedup if int(time.time() - promote_start_time[job]) > demote_qualify_time: demote_list.append(job) print('job' + job + 'qualified for demote for passing demote qualify time ' + str(int(demote_qualify_time))) elif job not in demote_list and job not in step2_job and job in qualified_job: demote_list.append(job) print('job' + job + 'qualified for demote for profiling') if len(promote_list) > 0 or len(demote_list) > 0: if all_jobs_started: promoted, demoted = max_speedup_promotion(K80_free, V100_free, V100_job, promote_list, demote_list, force_demote) else: promoted, demoted = min_speedup_demotion(K80_job, demote_list) if len(promoted) > 0: print('promoted jobs: ', promoted) if len(demoted) > 0: print('demoted jobs: ', demoted) # stop all promoted jobs on K80 checkpoint_finish_check = [] for gpu, job in K80_job.items(): if job in promoted: save_job(K80_node, job) if finish_dict['job'+job] != 1: K80_time[job] += int(time.time() - K80_start_time[job]) checkpoint_finish_check.append(job) K80_job[gpu] = 'idle' K80_used -= 1 # stop all demoted jobs on V100 for gpu, job in V100_job.items(): if job in demoted: # make sure demoted step1 job doesn't get promoted back before finishing profiling if job in step1_job and job not in step2_job: speedup_dict[job] = 0.01 save_job(V100_node, job) if finish_dict['job'+job] != 1: V100_time[job] += int(time.time() - V100_start_time[job]) checkpoint_finish_check.append(job) V100_job[gpu] = 'idle' V100_used -= 1 demote_list.remove(job) # wait for all GPUs to be available if len(checkpoint_finish_check) > 0: while True: time.sleep(5) for job in checkpoint_finish_check[:]: if checkpoint_dict['job'+job] == 1: # checkpoint has finished, gpu is free print(job + ' checkpointed successfully') checkpoint_dict['job'+job] = 0 # reset it checkpoint_finish_check.remove(job) # also check if job already finished before sending checkpoint signal elif finish_dict['job'+job] == 1: print(job + ' finished before receiving checkpoint signal') checkpoint_finish_check.remove(job) if len(checkpoint_finish_check) == 0: break # resume promoted jobs on V100, make sure the gpu is idle for job_new in promoted[:]: if finish_dict['job'+job_new] != 1: for gpu, job in V100_job.items(): if job == 'idle': # if gpu idle, schedule new job here V100_job[gpu] = job_new resume_job(V100_node, gpu, job_new) num_mig[job_new] += 1 promoted.remove(job_new) V100_used += 1 break else: # job has already finished before checkpointing promoted.remove(job_new) # resume demoted jobs on K80, make sure the gpu is idle for job_new in demoted[:]: if finish_dict['job'+job_new] != 1: for gpu, job in K80_job.items(): if job == 'idle': # if gpu idle, schedule new job here resume_job(K80_node, gpu, job_new) num_mig[job_new] += 1 K80_job[gpu] = job_new demoted.remove(job_new) K80_used += 1 break else: # job has already finished before checkpointing print('job'+job_new+' has finished before checkpointing') demoted.remove(job_new) # perform a check, make sure all promoted/demoted jobs are scheduled if len(promoted) > 0 or len(demoted) > 0: raise ValueError('Bug with promotion scheme, more jobs than free gpus') ################ submit new jobs to vacant K80 GPUs ############################ # check if there are vacant K80s ## yes: submit jobs from queue ## no: do nothing if not all_jobs_started: if V100_used < V100_cap: V100_free = V100_cap - V100_used for i in range(V100_free): time_passed = int(time.time() - queue_timer) if index < len(queue) and queue_dict[queue[index]] < time_passed: # make sure job has arrived in the queue job_new = str(queue[index]) for gpu, job in V100_job.items(): if job == 'idle': # schedule new job here if idle start_job(V100_node, gpu, job_new) V100_job[gpu] = job_new job_start[job_new] = time.time() V100_start_time[job_new] = time.time() index += 1 V100_used += 1 time.sleep(5) # don't communicate too often break elif index >= len(queue): all_jobs_started = True ############## monitor GPU usage ############ usage = K80_used + V100_used time_stamp = int(time.time() - queue_timer) gpu_usage_time.append(time_stamp) gpu_usage.append(usage) total_completion = np.sum(list(completion.values())) gpu_usage_completion.append(total_completion) ############### wait for next iteration time.sleep(INTERVAL) ################ check if termination condition is met ################ K80_idle_num = sum(value == 'idle' for value in K80_job.values()) V100_idle_num = sum(value == 'idle' for value in V100_job.values()) if K80_idle_num == K80_cap and V100_idle_num == V100_cap and index == len(queue): print('all jobs are finished!') break # get average JCT average_JCT = np.average(list(JCT.values())) JCT['average'] = average_JCT average_overhead = np.average(list(overhead.values())) overhead['average'] = average_overhead # after everything is finished print('finished all runs') JCT_name = testcase + '_JCT.json' overhead_name = testcase + '_overhead.json' num_mig_name = testcase + '_num_mig.json' epoch_waste_name = testcase + '_epoch_waste.json' ckpt_qual_name = 'ckpt_qual.json' finish_name = 'finish.json' K80_time_name = testcase + '_K80_time.json' V100_time_name = testcase + '_V100_time.json' gpu_usage_name = testcase + '_gpu_usage.csv' ovhd_a_name = testcase + '_ovhd_a.json' ovhd_b_name = testcase + '_ovhd_b.json' ovhd_c_name = testcase + '_ovhd_c.json' ovhd_d_name = testcase + '_ovhd_d.json' ovhd_total_name = testcase + '_ovhd_total.json' k80_1st_name = testcase + '_k80_1st.json' v100_1st_name = testcase + '_v100_1st.json' speedup_name = 'speedup.json' predict_name = 'predict.json' demote_list_name = 'demote_list.json' completion_name = 'completion.json' with open(JCT_name, 'w') as fp1: json.dump(JCT, fp1, sort_keys=True, indent=4) with open(overhead_name, 'w') as fp3: json.dump(overhead, fp3, sort_keys=True, indent=4) with open(num_mig_name, 'w') as fp3: json.dump(num_mig, fp3, sort_keys=True, indent=4) with open(epoch_waste_name, 'w') as fp3: json.dump(epoch_waste_dict, fp3, sort_keys=True, indent=4) with open(ckpt_qual_name, 'w') as fp1: json.dump(ckpt_qual_dict, fp1, sort_keys=True, indent=4) with open(finish_name, 'w') as fp1: json.dump(finish_dict, fp1, sort_keys=True, indent=4) with open(K80_time_name, 'w') as fp3: json.dump(K80_time, fp3, sort_keys=True, indent=4) with open(V100_time_name, 'w') as fp3: json.dump(V100_time, fp3, sort_keys=True, indent=4) with open(ovhd_a_name, 'w') as fp3: json.dump(ovhd_a, fp3, sort_keys=True, indent=4) with open(ovhd_b_name, 'w') as fp3: json.dump(ovhd_b, fp3, sort_keys=True, indent=4) with open(ovhd_c_name, 'w') as fp3: json.dump(ovhd_c, fp3, sort_keys=True, indent=4) with open(ovhd_d_name, 'w') as fp3: json.dump(ovhd_d, fp3, sort_keys=True, indent=4) with open(ovhd_total_name, 'w') as fp3: json.dump(ovhd_total, fp3, sort_keys=True, indent=4) with open(k80_1st_name, 'w') as fp3: json.dump(k80_1st, fp3, sort_keys=True, indent=4) with open(v100_1st_name, 'w') as fp3: json.dump(v100_1st, fp3, sort_keys=True, indent=4) with open(speedup_name, 'w') as fp1: json.dump(speedup_dict, fp1, sort_keys=True, indent=4) with open(predict_name, 'w') as fp1: json.dump(predict_dict, fp1, sort_keys=True, indent=4) with open(demote_list_name, 'w') as fp1: json.dump(demote_list, fp1, sort_keys=True, indent=4) with open(completion_name, 'w') as fp1: json.dump(completion, fp1, sort_keys=True, indent=4) gpu_usage_time = np.asarray(gpu_usage_time) gpu_usage = np.asarray(gpu_usage) gpu_usage_completion = np.asarray(gpu_usage_completion) rows = zip(gpu_usage_time, gpu_usage, gpu_usage_completion) with open(gpu_usage_name, 'w') as f: writer = csv.writer(f) for row in rows: writer.writerow(row)
ab12cc2538c903dfca478ff16c8508153a7312c9
994ea22f35c635fdf139af9282b0d3a3d86ea34a
/ud120-projects-intro_to_machine_learning/decision_tree/dt_author_id.py
667e184f992ddbc3679ee4787f6ce8ba6bcc894a
[]
no_license
zjyx147/Udacity
ac371fbc5b5b456e88b411657ef5a28c3b071c6c
d86fadd537dbacc6f8142b043e71527b0448bae3
refs/heads/master
2022-06-23T14:25:41.242353
2019-06-20T20:12:13
2019-06-20T20:12:13
191,207,247
0
0
null
2022-06-21T22:07:35
2019-06-10T16:42:18
DIGITAL Command Language
UTF-8
Python
false
false
1,128
py
#!/usr/bin/python """ This is the code to accompany the Lesson 3 (decision tree) mini-project. Use a Decision Tree to identify emails from the Enron corpus by author: Sara has label 0 Chris has label 1 """ import sys from time import time sys.path.append("../tools/") from email_preprocess import preprocess ### features_train and features_test are the features for the training ### and testing datasets, respectively ### labels_train and labels_test are the corresponding item labels features_train, features_test, labels_train, labels_test = preprocess() ######################################################### ### your code goes here ### from sklearn import tree from sklearn.metrics import accuracy_score #features_train = features_train[:len(features_train)/100] #labels_train = labels_train[:len(labels_train)/100] clf = tree.DecisionTreeClassifier(min_samples_split=40) clf.fit(features_train, labels_train) pred = clf.predict(features_test) print len(features_train[0]) print "accuracy: ", accuracy_score(pred, labels_test) #########################################################
fd11ad2bc7dc9769012fedd041968541efec6284
9c21e49150c99751231ad399bdba1850bb60c88c
/finders/views.py
2810a5c9ef7cfcac6aa72c7420545809a1090294
[ "MIT" ]
permissive
netvigator/auctions
3ab4086cb0bfbc736b17ede4e928f3ead2b08a4c
fc3766226cc65ac8694dffc74e893ecff8e7d07c
refs/heads/main
2023-05-25T15:55:01.249670
2023-05-06T14:51:12
2023-05-06T14:51:12
92,816,101
0
0
MIT
2023-02-16T05:24:34
2017-05-30T09:14:39
Python
UTF-8
Python
false
false
10,419
py
from django.conf import settings from core.views import ( DetailViewGotModel, ListViewGotModel, UpdateViewCanCancel, CreateViewCanCancel ) from django.http import HttpResponseRedirect from .forms import ItemFoundForm, UserItemFoundForm from .mixins import AnyReleventHitStarColsChangedMixin from .models import ItemFound, UserItemFound, UserFinder from core.mixins import ( GetPaginationExtraInfoInContext, GetUserSelectionsOnPost, TitleSearchMixin ) from core.utils import ( getDateTimeObjGotEbayStr, getEbayStrGotDateTimeObj, sayMoreAboutHitsForThis ) from brands.models import Brand from categories.models import Category from models.models import Model # ### views assemble presentation info ### # ### keep views thin! ### if settings.TESTING: # from pprint import pprint # maybePrint = print maybePrettyP = pprint # else: # def maybePrint( *args ): pass def maybePrettyP( *args ): pass # class FinderIndexView( GetUserSelectionsOnPost, GetPaginationExtraInfoInContext, TitleSearchMixin, ListViewGotModel ): template_name = 'finders/index.html' model = UserFinder context_object_name = 'finders_list' paginate_by = 100 def get_queryset( self ): # # ADS # qs = super().get_queryset() # sSelect = 'P' # # ListViewGotModel inherits from GetUserOrVisitingMixin oUser, isVisiting = self.getUserOrVisiting() # sSelect = self.kwargs.get( 'select', 'A' ) # if not sSelect: sSelect = 'A' # if sSelect == 'A': # all qsGot = UserFinder.objects.filter( iUser = oUser, bListExclude = False, ).order_by( '-iHitStars', 'iMaxModel', 'tTimeEnd' ) #elif sSelect == 'P': # postive (non-zero hit stars) # qsGot = UserFinder.objects.filter( # iUser = oUser, # iHitStars__isnull = False, # bListExclude = False, # ).order_by( '-iHitStars', 'iMaxModel', 'tTimeEnd' ) # elif sSelect == 'D': # "deleted" (excluded from list) qsGot = UserFinder.objects.filter( iUser = oUser, iHitStars__isnull = False, bListExclude = True ).order_by( '-iHitStars', 'iMaxModel', 'tTimeEnd' ) #elif sSelect == 'Z': # iHitStars = 0 # qsGot = UserFinder.objects.filter( # iUser = oUser, # iHitStars = 0, # bListExclude = False # ).order_by( '-iHitStars', 'iMaxModel', 'tTimeEnd' ) # elif sSelect == 'S': # Search # qsGot = super().get_queryset( *args, **kwargs ) # # want to find the get_queryset() method of TitleSearchMixin # not the get_queryset() method of ListViewGotModel # # return qsGot class ItemFoundDetailView( GetUserSelectionsOnPost, DetailViewGotModel ): # get this from the finders list (top menu item) model = UserFinder parent = ItemFound template_name = 'finders/detail.html' form_class = UserItemFoundForm def get_context_data( self, **kwargs ): ''' want more info to the context data. ''' context = super().get_context_data( **kwargs ) # qsThisItem = UserItemFound.objects.filter( # ''' {'object': <UserItemFound: FISHER FM 200 B FM STEREO TUBE TUNER 200B>, 'useritemfound': <UserItemFound: FISHER FM 200 B FM STEREO TUBE TUNER 200B>, 'view': <finders.views.ItemFoundDetailView object at 0x7f0669fa63c8>, 'model': <class 'finders.models.UserItemFound'>,\ 'parent': <class 'finders.models.ItemFound'>} ''' # # DetailViewGotModel inherits from GetUserOrVisitingMixin oUser, isVisiting = self.getUserOrVisiting() # qsThisItemAllHits = UserItemFound.objects.filter( iItemNumb_id = context[ 'object' ].iItemNumb_id, iUser = oUser, bListExclude = False, ).order_by( '-iHitStars' ) # if len( qsThisItemAllHits ) == 0: # qsThisItemAllHits = UserItemFound.objects.filter( iItemNumb_id = context[ 'object' ].iItemNumb_id, iUser = oUser, ).order_by( '-iHitStars' ) # # sayMoreAboutHitsForThis( qsThisItemAllHits ) # context['HitsForThis'] = qsThisItemAllHits # context['isVisiting'] = isVisiting # session = self.request.session # session['iItemNumb' ] = context[ 'object' ].iItemNumb_id # if len( qsThisItemAllHits ) == 0: session['iSearch'] = None else: session['iSearch'] = qsThisItemAllHits[0].iSearch_id # # cannot serialize datetime object, so covert to string # session['sTimeEnd' ] = getEbayStrGotDateTimeObj( context[ 'object' ].tTimeEnd ) # return context """ class ItemFoundHitView( GetUserSelectionsOnPost, DetailViewGotModel ): # get this from the list at bottom for a model, brand or category model = UserItemFound parent = ItemFound template_name = 'finders/hit-detail.html' form_class = UserItemFoundForm def get_context_data( self, **kwargs ): ''' want more info to the context data. ''' context = super().get_context_data( **kwargs ) # # qsThisItem = UserItemFound.objects.filter( # ''' {'object': <UserItemFound: FISHER FM 200 B FM STEREO TUBE TUNER 200B>, 'useritemfound': <UserItemFound: FISHER FM 200 B FM STEREO TUBE TUNER 200B>, 'view': <finders.views.ItemFoundDetailView object at 0x7f0669fa63c8>, 'model': <class 'finders.models.UserItemFound'>,\ 'parent': <class 'finders.models.ItemFound'>} ''' # qsThisItemOtherHits = UserItemFound.objects.filter( iItemNumb_id = context[ 'object' ].iItemNumb_id, iUser = context[ 'object' ].iUser, bListExclude = False ).exclude( id = context[ 'object' ].id ).order_by( '-iHitStars' ) # context['HitsForThis'] = qsThisItemOtherHits # session = self.request.session # session['iItemNumb'] = context[ 'object' ].iItemNumb_id # session['iSearch'] = \ context['object'].iSearch_id or qsThisItemOtherHits[0].iSearch_id # return context """ class ItemFoundUpdateView( AnyReleventHitStarColsChangedMixin, UpdateViewCanCancel ): model = UserItemFound parent = ItemFound template_name = 'finders/edit.html' success_message = 'Finder update successfully saved!!!!' form_class = UserItemFoundForm tHitStarRelevantCols = ( 'iModel', 'iBrand', 'iCategory' ) def get_context_data( self, **kwargs ): ''' want more info to the context data. ''' # context = super().get_context_data( **kwargs ) # context['form'].fields['iBrand'].queryset = \ Brand.objects.filter( iUser = self.request.user ) context['form'].fields['iCategory'].queryset = \ Category.objects.filter( iUser = self.request.user ) # instance = context['form'].instance # if instance.iBrand is not None: context['form'].fields['iModel'].queryset = \ Model.objects.filter( iUser = self.request.user, iBrand = instance.iBrand ) else: context['form'].fields['iModel'].queryset = \ Model.objects.filter( iUser = self.request.user ) # # session = self.request.session # # print( "instance.iItemNumb_id:", instance.iItemNumb_id ) # print( "instance.iBrand:", instance.iBrand ) # print( "session['iItemNumb'] :", session['iItemNumb'] ) # return context class ItemFoundCreateView( CreateViewCanCancel ): model = UserItemFound parent = ItemFound template_name = 'finders/add.html' success_message = 'New finder successfully saved!!!!' form_class = UserItemFoundForm def get_initial( self ): # initial = super().get_initial() # # in testing, values might not be there # session = self.request.session # if session and 'iItemNumb' in session: # initial['iItemNumb'] = session['iItemNumb'] initial['iSearch' ] = session['iSearch' ] initial['tTimeEnd' ] = getDateTimeObjGotEbayStr( session['sTimeEnd' ] ) initial['iUser' ] = self.request.user # # return initial def troubleshoot_form_valid( self, form ): # instance = form.instance #session = self.request.session ## #instance.iItemNumb_id = instance.iItemNumb_id or session['iItemNumb'] #instance.iSearch_id = instance.iSearch_id or session['iSearch' ] #instance.tTimeEnd = instance.tTimeEnd or session['tTimeEnd' ] #instance.iUser = self.request.user # maybePrint( 'iItemNumb_id, iSearch_id, tTimeEnd, iUser:', instance.iItemNumb_id, instance.iSearch_id, instance.tTimeEnd, instance.iUser ) # return super().form_valid( form )
d56e7846c82c52f70ed8995eae5b8812797b0c59
8f6aa9ac9c8c2e409875bbf36fbc49b3eb37d88b
/enthought/blocks/parser_.py
f1a794e50470f6bace4dc005a1697707cf3acf70
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
enthought/etsproxy
5660cf562c810db2ceb6b592b6c12274bce96d73
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
refs/heads/master
2023-03-27T04:51:29.297305
2020-12-02T09:05:18
2020-12-02T09:05:18
1,632,969
3
1
NOASSERTION
2020-12-02T09:05:20
2011-04-18T22:29:56
Python
UTF-8
Python
false
false
93
py
# proxy module from __future__ import absolute_import from codetools.blocks.parser_ import *
c9bbb18d49a220a9c5dba67e26b75ee3e9d1b3c3
ad1ff82d1361f76b043faa304aa3b7be3652b303
/tools/supervisor.py
40f2f0a9c939658268aa3ae39a028bf539add829
[]
no_license
jon--lee/aor
3a0f92e345a88c347146acba4b9f7513a3a986cf
4a4cd8800dfc209c382507740e68586b34178a1b
refs/heads/master
2020-06-10T05:31:51.179020
2019-06-24T23:48:24
2019-06-24T23:48:24
193,597,583
0
0
null
null
null
null
UTF-8
Python
false
false
986
py
import numpy as np from expert import tf_util class Supervisor(): def __init__(self, act): self.act = act def sample_action(self, s): return self.intended_action(s) def intended_action(self, s): action = self.act(s[None], stochastic=False)[0] return action class Supervisor2(): def __init__(self, policy_fn, sess): self.policy_fn = policy_fn self.sess = sess with self.sess.as_default(): tf_util.initialize() def sample_action(self, s): with self.sess.as_default(): intended_action = self.policy_fn(s[None,:])[0] return intended_action def intended_action(self, s): return self.sample_action(s) class Supervisor3(): def __init__(self, act): self.act = act def sample_action(self, s): return self.intended_action(s) def intended_action(self, s): action = self.act(False, s)[0] return action
285bb70b43f6c87ac58cc9c0d7d50b7983f5ac64
8b57df3640fd9a726a8729c051dc27dbaee16059
/notify/apps.py
985c0feae7a585b8cbecad503a2120d658c0dc2f
[]
no_license
sinjorjob/django-notification-function
86678df54e12b58a2feb315f10fde585412a2029
15ba6111474641498dbcd83ea0bd06d40b348387
refs/heads/master
2023-05-31T13:41:26.147761
2021-06-26T07:05:31
2021-06-26T07:05:31
380,437,265
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
from django.apps import AppConfig class NotifyConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'notify'
09ac2327168508b61c167a4490edbc965fda67e3
7a55d3fac2bc2b7afd46300182944d3cb1b8a370
/clearpath/clearpath
a0265890c276994cb6ac2240c003f7c7a579b66e
[]
no_license
btownshend/CNCConfig
5d3eca22573c0534ce0b5c43a6958c2d5011a992
bdadea7bacf4c5d373faeab30f31b1d5145fb3d3
refs/heads/main
2023-03-16T16:11:44.071625
2021-03-14T22:08:10
2021-03-14T22:08:10
329,538,393
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
#!/usr/bin/env python import ctypes import hal, time import sys,os print('sys.argv[0] =', sys.argv[0]) pathname = os.path.dirname(sys.argv[0]) print('path =', pathname) lib=ctypes.CDLL(pathname+"/getstatus.so") print('getstatus.so loaded') h=hal.component("clearpath") h.newpin("0.fault",hal.HAL_BIT,hal.HAL_OUT) h.newpin("1.fault",hal.HAL_BIT,hal.HAL_OUT) h.newpin("0.enable",hal.HAL_BIT,hal.HAL_IN) h.newpin("1.enable",hal.HAL_BIT,hal.HAL_IN) print('components/pins created') try: if lib.initialize() < 0: print("Unable to initialize ClearPath SC-HUB connection") raise SystemExit print("initialized") print(dir(h)) h.ready() print("ready") while True: time.sleep(0.25) #print("update") if lib.setenable(0,h['0.enable']) < 0: print("clearpath: failed to setenable for port 0") h['0.fault']=1 continue if lib.setenable(1,h['1.enable']) < 0: print("clearpath: failed to setenable for port 1") h['1.fault']=1 continue s0=lib.getstatus(0) if s0<0: print("clearpath: getstatus(0) failed") h['0.fault']=(s0!=0) s1=lib.getstatus(1) if s1<0: print("clearpath: getstatus(1) failed") h['1.fault']=(s1!=0) except KeyboardInterrupt: lib.shutdown() raise SystemExit
fe52b2cd35017acf657af7d8ab0cb4f759250d7a
0e08e9873549c514245842c5f4ad01769e1c76d6
/myblog/blog/tests.py
ec7bc624daecb07dd9bc9025f52c0c33afa1036c
[]
no_license
liangxs0/Django_study
39afe9c889467eb81e2ecdcee4e285c2bd27d28a
2f509bce6cdaaee288c37a603978a96ffc43f0e4
refs/heads/main
2023-04-25T20:30:05.275066
2021-05-31T03:27:24
2021-05-31T03:27:24
372,365,793
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
# from django.test import TestCase # # # # from django.contrib.auth.hashers import make_password, check_password # # # Create your tests here. # x = make_password("123", 'abc', 'pbkdf2_sha256') # y = make_password("123", 'abc', 'pbkdf2_sha256') # print(x) # print(y) def a(nums): nums = [str(n) for n in nums] n_nums = [] for n in nums: for nn in n: n_nums.append(nn) print(n_nums) n_nums.sort(reverse=True) print(n_nums) res = '' for n in n_nums: res+=n return res c = "".join([3,30,34,5,9]) print(c)
807b8f72c43040317da699074158ef426c15575e
6bb45c5892b4c9692dcc44116fb73dc9e7ab90ff
/advanced_functionality/autogluon-sagemaker-pipeline/setup.py
56a675d8c0cac3a064199a11bd56e8e1316b0dce
[ "Apache-2.0", "BSD-2-Clause" ]
permissive
aws/amazon-sagemaker-examples
8359afe544e873662bda5b8d2b07399c437213c9
43dae4b28531cde167598f104f582168b0a4141f
refs/heads/main
2023-08-26T04:42:52.342776
2023-08-25T14:37:19
2023-08-25T14:37:19
107,937,815
4,797
3,519
Apache-2.0
2023-09-14T19:47:03
2017-10-23T05:55:22
Jupyter Notebook
UTF-8
Python
false
false
1,569
py
import os import setuptools about = {} here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, "pipelines", "__version__.py")) as f: exec(f.read(), about) with open("README.md", "r") as f: readme = f.read() required_packages = ["sagemaker"] extras = { "test": [ "black", "coverage", "flake8", "mock", "pydocstyle", "pytest", "pytest-cov", "sagemaker", "tox", ] } setuptools.setup( name=about["__title__"], description=about["__description__"], version=about["__version__"], author=about["__author__"], author_email=["__author_email__"], long_description=readme, long_description_content_type="text/markdown", url=about["__url__"], license=about["__license__"], packages=setuptools.find_packages(), include_package_data=True, python_requires=">=3.6", install_requires=required_packages, extras_require=extras, entry_points={ "console_scripts": [ "get-pipeline-definition=pipelines.get_pipeline_definition:main", "run-pipeline=pipelines.run_pipeline:main", ] }, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Natural Language :: English", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
55f2794ab24a2c74169da65c168ce04bb3914a86
384a612001a5fdd5d089898f13cc7aef3b954a6e
/coupons/models.py
a70532afc380b7291804bb0f539e35ea14a9e0e6
[]
no_license
purum01/test_django_onlineshop
f3a9c4d12d4077ea69cb9ad372e5acc5243379b7
c4a40a273a512c939a364bee91bab950559d0f87
refs/heads/main
2023-06-14T12:11:05.614611
2021-07-03T14:34:01
2021-07-03T14:34:01
380,695,829
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
from django.db import models from django.core.validators import MinValueValidator, MaxValueValidator class Coupon(models.Model): code = models.CharField(max_length=50, unique=True) valid_from = models.DateTimeField() valid_to = models.DateTimeField() discount = models.IntegerField(validators=[MinValueValidator(0),MaxValueValidator(100)]) active = models.BooleanField() def __str__(self): return self.code
64ca497be5be743de5dd8bc59793c84cf3431d4f
18c6f7ee10526583d8c65acc5ce04579a91fdeeb
/ch_01/18.tuple.py
cd04da0d3333b776026f7697790ddcee7dacff23
[]
no_license
cloudsecuritylabs/pythonProject_1
97273634df25e306d0a2aed56fcf5c836d2ac33c
8fc0d17b549d7195f8de46a227e5bb5d9f2ed4ed
refs/heads/master
2023-07-22T16:06:14.550571
2021-08-24T03:09:00
2021-08-24T03:09:00
399,319,867
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
''' Let's learn about tuple ''' # tuple is immutable my_tup = ('cat', 'dog', 'horse') # NoneType my_tup = [] food = None if food is None: print("Hey give me something")
29aaf9830413dce680cb164b3a8dd63745dd68af
1572b7dea50699582879b2b9fcedef12f2ef6704
/verification/src/referee.py
26e014f1e115a5887f39fd778b5563bcb03c8beb
[]
no_license
khanukov/checkio-empire-broken-report
7106869fc504a2551fb7a1d412245a74c9401f64
64d68d89b99c2116c12fd1d579961ab699a760c6
refs/heads/master
2020-12-03T02:19:33.174438
2015-04-07T14:12:08
2015-04-07T14:12:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
from checkio_referee import RefereeCodeGolf from checkio_referee import covercodes import settings_env from tests import TESTS # TODO Golf class Referee(RefereeCodeGolf): DEFAULT_MAX_CODE_LENGTH = 150 BASE_POINTS = 15 TESTS = TESTS ENVIRONMENTS = settings_env.ENVIRONMENTS DEFAULT_FUNCTION_NAME = "golf" ENV_COVERCODE = { "python_2": covercodes.py_2_str, "python_3": None, "javascript": None }
ccee78a2b9646c3ed52024216b909a64eb921b0c
e4aab0a71dc5c047d8b1576380b16364e03e7c0d
/core/ajax.py
0d38f835124b1bb6fdc17e253409ede47b76fd44
[ "Apache-2.0" ]
permissive
Joecastra/Watcher3
8ca66c44846030f0eb771d9d6ddeb9c37f637a4e
ce25d475f83ed36d6772f0cc35ef020d5e47c94b
refs/heads/master
2021-01-19T11:05:55.454351
2017-04-10T20:17:24
2017-04-10T20:17:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
39,761
py
import json import logging import os import sys import threading import cherrypy from base64 import b16encode import core from core import config, library, plugins, poster, searchresults, searcher, snatcher, sqldb, version from core.providers import torrent, newznab from core.downloaders import nzbget, sabnzbd, transmission, qbittorrent, deluge, rtorrent from core.movieinfo import TMDB from core.notification import Notification from core.helpers import Conversions from core.rss import predb from templates import movie_info_popup, import_library, movie_status_popup, plugin_conf_popup, status logging = logging.getLogger(__name__) class Ajax(object): ''' These are all the methods that handle ajax post/get requests from the browser. Except in special circumstances, all should return a JSON string since that is the only datatype sent over http ''' def __init__(self): self.tmdb = TMDB() self.config = config.Config() self.metadata = library.Metadata() self.predb = predb.PreDB() self.plugins = plugins.Plugins() self.searcher = searcher.Searcher() self.score = searchresults.Score() self.sql = sqldb.SQL() self.library = library self.poster = poster.Poster() self.snatcher = snatcher.Snatcher() self.update = library.Status() @cherrypy.expose def search_tmdb(self, search_term): ''' Search tmdb for movies :param search_term: str title and year of movie (Movie Title 2016) Returns str json-encoded list of dicts that contain tmdb's data. ''' results = self.tmdb.search(search_term) if not results: logging.info('No Results found for {}'.format(search_term)) return None else: return json.dumps(results) @cherrypy.expose def movie_info_popup(self, data): ''' Calls movie_info_popup to render html :param imdbid: str imdb identification number (tt123456) Returns str html content. ''' mip = movie_info_popup.MovieInfoPopup() return mip.html(data) @cherrypy.expose def movie_status_popup(self, imdbid): ''' Calls movie_status_popup to render html :param imdbid: str imdb identification number (tt123456) Returns str html content. ''' msp = movie_status_popup.MovieStatusPopup() return msp.html(imdbid) @cherrypy.expose def add_wanted_movie(self, data, full_metadata=False): ''' Adds movie to Wanted list. :param data: str json.dumps(dict) of info to add to database. full_metadata: bool if data is complete and ready for write data MUST inlcude tmdb id as data['id'] Writes data to MOVIES table. If full_metadata is False, searches tmdb for data['id'] and updates data If Search on Add enabled, searches for movie immediately in separate thread. If Auto Grab enabled, will snatch movie if found. Returns str json.dumps(dict) of status and message ''' def thread_search_grab(data): imdbid = data['imdbid'] title = data['title'] year = data['year'] quality = data['quality'] self.predb.check_one(data) if core.CONFIG['Search']['searchafteradd']: if self.searcher.search(imdbid, title, year, quality): if core.CONFIG['Search']['autograb']: self.snatcher.auto_grab(data) response = {} data = json.loads(data) tmdbid = data['id'] if not full_metadata: movie = self.tmdb._search_tmdbid(tmdbid)[0] movie.update(data) else: movie = data movie['quality'] = data.get('quality', 'Default') movie['status'] = data.get('status', 'Wanted') if self.sql.row_exists('MOVIES', imdbid=movie['imdbid']): logging.info('{} already exists in library.'.format(movie['title'])) response['response'] = False response['error'] = '{} already exists in library.'.format(movie['title']) return json.dumps(response) if movie.get('poster_path'): poster_url = 'http://image.tmdb.org/t/p/w300{}'.format(movie['poster_path']) else: poster_url = '{}/static/images/missing_poster.jpg'.format(core.PROG_PATH) movie = self.metadata.convert_to_db(movie) if self.sql.write('MOVIES', movie): t2 = threading.Thread(target=self.poster.save_poster, args=(movie['imdbid'], poster_url)) t2.start() if movie['status'] != 'Disabled': # disable immediately grabbing new release for imports t = threading.Thread(target=thread_search_grab, args=(movie,)) t.start() response['response'] = True response['message'] = '{} {} added to library.'.format(movie['title'], movie['year']) self.plugins.added(movie['title'], movie['year'], movie['imdbid'], movie['quality']) return json.dumps(response) else: response['response'] = False response['error'] = 'Could not write to database. Check logs for more information.' return json.dumps(response) @cherrypy.expose def add_wanted_imdbid(self, imdbid, quality='Default'): ''' Method to quckly add movie with just imdbid :param imdbid: str imdb id # Submits movie with base quality options Generally just used for the api Returns dict of success/fail with message. Returns str json.dumps(dict) ''' response = {} movie = self.tmdb._search_imdbid(imdbid) if not movie: response['status'] = 'false' response['message'] = '{} not found on TMDB.'.format(imdbid) return response else: movie = movie[0] movie['imdbid'] = imdbid movie['quality'] = quality return self.add_wanted_movie(json.dumps(movie)) @cherrypy.expose def add_wanted_tmdbid(self, tmdbid, quality='Default'): ''' Method to quckly add movie with just tmdbid :param imdbid: str imdb id # Submits movie with base quality options Generally just used for the api Returns dict of success/fail with message. Returns str json.dumps(dict) ''' response = {} data = self.tmdb._search_tmdbid(tmdbid) if not data: response['status'] = 'false' response['message'] = '{} not found on TMDB.'.format(tmdbid) return response else: data = data[0] data['quality'] = quality data['status'] = 'Wanted' return self.add_wanted_movie(json.dumps(data)) @cherrypy.expose def save_settings(self, data): ''' Saves settings to config file :param data: dict of Section with nested dict of keys and values: {'Section': {'key': 'val', 'key2': 'val2'}, 'Section2': {'key': 'val'}} All dicts must contain the full tree or data will be lost. Fires off additional methods if neccesary. Returns json.dumps(dict) ''' # orig_config = dict(core.CONFIG) logging.info('Saving settings.') data = json.loads(data) save_data = {} for key in data: if data[key] != core.CONFIG[key]: save_data[key] = data[key] if not save_data: return json.dumps({'response': True}) try: self.config.write_dict(save_data) except (SystemExit, KeyboardInterrupt): raise except Exception as e: # noqa logging.error('Writing config.', exc_info=True) return json.dumps({'response': False, 'error': 'Unable to write to config file.'}) return json.dumps({'response': True}) @cherrypy.expose def remove_movie(self, imdbid): ''' Removes movie :param imdbid: str imdb identification number (tt123456) Removes row from MOVIES, removes any entries in SEARCHRESULTS In separate thread deletes poster image. Returns srt 'error' or nothing on success ''' t = threading.Thread(target=self.poster.remove_poster, args=(imdbid,)) t.start() if self.sql.remove_movie(imdbid): response = {'response': True} else: response = {'response': False} return json.dumps(response) @cherrypy.expose def search(self, imdbid, title, year, quality): ''' Search indexers for specific movie. :param imdbid: str imdb identification number (tt123456) :param title: str movie title and year Checks predb, then, if found, starts searching providers for movie. Does not return ''' self.searcher.search(imdbid, title, year, quality) return @cherrypy.expose def manual_download(self, title, year, guid, kind): ''' Sends search result to downloader manually :param guid: str download link for nzb/magnet/torrent file. :param kind: str type of download (torrent, magnet, nzb) Returns str json.dumps(dict) success/fail message ''' torrent_enabled = core.CONFIG['Downloader']['Sources']['torrentenabled'] usenet_enabled = core.CONFIG['Downloader']['Sources']['usenetenabled'] if kind == 'nzb' and not usenet_enabled: return json.dumps({'response': False, 'error': 'Link is NZB but no Usent downloader is enabled.'}) elif kind in ('torrent', 'magnet') and not torrent_enabled: return json.dumps({'response': False, 'error': 'Link is {} but no Torrent downloader is enabled.'.format(kind)}) data = dict(self.sql.get_single_search_result('guid', guid)) if data: data['year'] = year return json.dumps(self.snatcher.snatch(data)) else: return json.dumps({'response': False, 'error': 'Unable to get download information from the database. Check logs for more information.'}) @cherrypy.expose def mark_bad(self, guid, imdbid): ''' Marks guid as bad in SEARCHRESULTS and MARKEDRESULTS :param guid: srt guid to mark Returns str json.dumps(dict) ''' if self.update.mark_bad(guid, imdbid=imdbid): response = {'response': True, 'message': 'Marked as Bad.'} else: response = {'response': False, 'error': 'Could not mark release as bad. Check logs for more information.'} return json.dumps(response) @cherrypy.expose def notification_remove(self, index): ''' Removes notification from core.notification :param index: str or unicode index of notification to remove 'index' will be a type of string since it comes from ajax request. Therefore we convert to int here before passing to Notification Simply calls Notification module. Does not return ''' Notification.remove(int(index)) return @cherrypy.expose def update_check(self): ''' Manually check for updates Returns str json.dumps(dict) from Version manager update_check() ''' response = version.Version().manager.update_check() return json.dumps(response) @cherrypy.expose def refresh_list(self, list, imdbid='', quality=''): ''' Re-renders html for Movies/Results list :param list: str the html list id to be re-rendered :param imdbid: str imdb identification number (tt123456) <optional> Calls template file to re-render a list when modified in the database. #result_list requires imdbid. Returns str html content. ''' if list == '#movie_list': return status.Status.movie_list() if list == '#result_list': return movie_status_popup.MovieStatusPopup().result_list(imdbid, quality) @cherrypy.expose def test_downloader_connection(self, mode, data): ''' Test connection to downloader. :param mode: str which downloader to test. :param data: dict connection information (url, port, login, etc) Executes staticmethod in the chosen downloader's class. Returns str json.dumps dict: {'status': 'false', 'message': 'this is a message'} ''' response = {} data = json.loads(data) if mode == 'sabnzbd': test = sabnzbd.Sabnzbd.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'nzbget': test = nzbget.Nzbget.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'transmission': test = transmission.Transmission.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'delugerpc': test = deluge.DelugeRPC.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'delugeweb': test = deluge.DelugeWeb.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'qbittorrent': test = qbittorrent.QBittorrent.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'rtorrentscgi': test = rtorrent.rTorrentSCGI.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test if mode == 'rtorrenthttp': test = rtorrent.rTorrentHTTP.test_connection(data) if test is True: response['status'] = True response['message'] = 'Connection successful.' else: response['status'] = False response['error'] = test return json.dumps(response) @cherrypy.expose def server_status(self, mode): ''' Check or modify status of CherryPy server_status :param mode: str command or request of state Restarts or Shuts Down server in separate thread. Delays by one second to allow browser to redirect. If mode == 'online', asks server for status. (ENGINE.started, ENGINE.stopped, etc.) Returns nothing for mode == restart || shutdown Returns str server state if mode == online ''' def server_restart(): cwd = os.getcwd() cherrypy.engine.restart() os.chdir(cwd) # again, for the daemon return def server_shutdown(): cherrypy.engine.stop() cherrypy.engine.exit() sys.exit(0) if mode == 'restart': logging.info('Restarting Server...') threading.Timer(1, server_restart).start() return elif mode == 'shutdown': logging.info('Shutting Down Server...') threading.Timer(1, server_shutdown).start() return elif mode == 'online': return str(cherrypy.engine.state) @cherrypy.expose def update_now(self, mode): ''' Starts and executes update process. :param mode: str 'set_true' or 'update_now' The ajax response is a generator that will contain only the success/fail message. This is done so the message can be passed to the ajax request in the browser while cherrypy restarts. ''' response = self._update_now(mode) for i in response: return i @cherrypy.expose def _update_now(self, mode): ''' Starts and executes update process. :param mode: str 'set_true' or 'update_now' Helper for self.update_now() If mode == set_true, sets core.UPDATING to True This is done so if the user visits /update without setting true they will be redirected back to status. Yields 'true' back to browser If mode == 'update_now', starts update process. Yields 'true' or 'failed'. If true, restarts server. ''' if mode == 'set_true': core.UPDATING = True yield json.dumps({'response': True}) if mode == 'update_now': update_status = version.Version().manager.execute_update() core.UPDATING = False if update_status is False: logging.error('Update Failed.') yield json.dumps({'response': False}) elif update_status is True: yield json.dumps({'response': True}) logging.info('Respawning process...') cherrypy.engine.stop() python = sys.executable os.execl(python, python, *sys.argv) else: return @cherrypy.expose def update_movie_options(self, quality, status, imdbid): ''' Updates quality settings for individual title :param quality: str name of new quality :param status: str status management state :param imdbid: str imdb identification number ''' logging.info('Updating quality profile to {} for {}.'.format(quality, imdbid)) if not self.sql.update('MOVIES', 'quality', quality, 'imdbid', imdbid): return json.dumps({'response': False}) logging.info('Updating status to {} for {}.'.format(status, imdbid)) if status == 'Automatic': if not self.update.movie_status(imdbid): return json.dumps({'response': False}) elif status == 'Finished': if not self.sql.update('MOVIES', 'status', 'Disabled', 'imdbid', imdbid): return json.dumps({'response': False}) return json.dumps({'response': True}) @cherrypy.expose def get_log_text(self, logfile): with open(os.path.join(core.LOG_DIR, logfile), 'r') as f: log_text = ''.join(reversed(f.readlines())) return log_text @cherrypy.expose def indexer_test(self, indexer, apikey, mode): if mode == 'newznab': return json.dumps(newznab.NewzNab.test_connection(indexer, apikey)) elif mode == 'torznab': return json.dumps(torrent.Torrent.test_connection(indexer, apikey)) else: return json.dumps({'response': 'false', 'error': 'Invalid test mode.'}) @cherrypy.expose def get_plugin_conf(self, folder, conf): ''' Calls plugin_conf_popup to render html folder: str folder to read config file from conf: str filename of config file (ie 'my_plugin.conf') Returns str html content. ''' return plugin_conf_popup.PluginConfPopup.html(folder, conf) @cherrypy.expose def save_plugin_conf(self, folder, conf, data): ''' Calls plugin_conf_popup to render html folder: str folder to store config file conf: str filename of config file (ie 'my_plugin.conf') data: str json data to store in conf file Returns str json dumps dict of success/fail message ''' data = json.loads(data) conf_file = conf_file = os.path.join(core.PROG_PATH, core.PLUGIN_DIR, folder, conf) response = {'response': True, 'message': 'Plugin settings saved'} try: with open(conf_file, 'w') as output: json.dump(data, output, indent=2) except Exception as e: response = {'response': False, 'error': str(e)} return json.dumps(response) @cherrypy.expose def scan_library_directory(self, directory, minsize, recursive): ''' Calls library to scan directory for movie files directory: str directory to scan minsize: str minimum file size in mb, coerced to int resursive: str 'true' or 'false', coerced to bool Removes all movies already in library. If error, yields {'error': reason} and stops Iteration If movie has all metadata, yields: {'complete': {<metadata>}} If missing imdbid or resolution, yields: {'incomplete': {<knownn metadata>}} All metadata dicts include: 'path': 'absolute path to file' 'progress': '10 of 250' Yeilds generator object of json objects ''' recursive = json.loads(recursive) minsize = int(minsize) files = self.library.ImportDirectory.scan_dir(directory, minsize, recursive) if files.get('error'): yield json.dumps({'error': files['error']}) raise StopIteration() library = [i['imdbid'] for i in self.sql.get_user_movies()] files = files['files'] length = len(files) for index, path in enumerate(files): metadata = self.metadata.get_metadata(path) metadata['size'] = os.path.getsize(path) metadata['finished_file'] = path metadata['human_size'] = Conversions.human_file_size(metadata['size']) progress = [index + 1, length] if not metadata.get('imdbid'): logging.info('IMDB unknown for import {}'.format(metadata['title'])) yield json.dumps({'response': 'incomplete', 'movie': metadata, 'progress': progress}) continue if metadata['imdbid'] in library: logging.info('Import {} already in library, ignoring.'.format(metadata['title'])) yield json.dumps({'response': 'in_library', 'movie': metadata, 'progress': progress}) continue elif not metadata.get('resolution'): logging.info('Resolution/Source unknown for import {}'.format(metadata['title'])) yield json.dumps({'response': 'incomplete', 'movie': metadata, 'progress': progress}) continue else: logging.info('All data found for import {}'.format(metadata['title'])) yield json.dumps({'response': 'complete', 'movie': metadata, 'progress': progress}) scan_library_directory._cp_config = {'response.stream': True} @cherrypy.expose def import_dir(self, movie_data, corrected_movies): ''' Imports list of movies in data movie_data: list of dicts of movie info ready to import corrected_movies: list of dicts of user-corrected movie info corrected_movies must be [{'/path/to/file': {'known': 'metadata'}}] Iterates through corrected_movies and attmpts to get metadata again if required. If imported, generates and stores fake search result. Creates dict {'success': [], 'failed': []} and appends movie data to the appropriate list. Yeilds generator object of json objects ''' movie_data = json.loads(movie_data) corrected_movies = json.loads(corrected_movies) fake_results = [] success = [] length = len(movie_data) + len(corrected_movies) progress = 1 if corrected_movies: for data in corrected_movies: tmdbdata = self.tmdb._search_imdbid(data['imdbid'])[0] if tmdbdata: data['year'] = tmdbdata['release_date'][:4] data.update(tmdbdata) movie_data.append(data) else: logging.error('Unable to find {} on TMDB.'.format(data['imdbid'])) yield json.dumps({'response': False, 'movie': data, 'progress': [progress, length], 'reason': 'Unable to find {} on TMDB.'.format(data['imdbid'])}) progress += 1 for movie in movie_data: if movie['imdbid']: movie['status'] = 'Disabled' response = json.loads(self.add_wanted_movie(json.dumps(movie))) if response['response'] is True: fake_results.append(searchresults.generate_simulacrum(movie)) yield json.dumps({'response': True, 'progress': [progress, length], 'movie': movie}) progress += 1 success.append(movie) continue else: yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': response['error']}) progress += 1 continue else: logging.error('Unable to find {} on TMDB.'.format(movie['imdbid'])) yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': 'IMDB ID invalid or missing.'}) progress += 1 fake_results = self.score.score(fake_results, imported=True) for i in success: score = None for r in fake_results: if r['imdbid'] == i['imdbid']: score = r['score'] break if score: self.sql.update('MOVIES', 'finished_score', score, 'imdbid', i['imdbid']) self.sql.write_search_results(fake_results) import_dir._cp_config = {'response.stream': True} @cherrypy.expose def list_files(self, current_dir, move_dir): ''' Lists files in directory current_dir: str base path move_dir: str child path to read Joins and normalizes paths: ('/home/user/movies', '..') Becomes /home/user Sends path to import_library template to generate html Returns json dict {'new_path': '/path', 'html': '<li>...'} ''' response = {} new_path = os.path.normpath(os.path.join(current_dir, move_dir)) response['new_path'] = new_path try: response['html'] = import_library.ImportLibrary.file_list(new_path) except Exception as e: response = {'error': str(e)} logging.error('Error listing directory.', exc_info=True) return json.dumps(response) @cherrypy.expose def update_metadata(self, imdbid): tmdbid = self.sql.get_movie_details('imdbid', imdbid).get('tmdbid') if not tmdbid: tmdbid = self.tmdb._search_imdbid(imdbid)[0].get('id') if not tmdbid: return json.dumps({'response': False, 'error': 'Unable to find {} on TMDB.'.format(imdbid)}) movie = self.tmdb._search_tmdbid(tmdbid)[0] target_poster = os.path.join(self.poster.poster_folder, '{}.jpg'.format(imdbid)) if movie['poster_path']: poster_url = 'http://image.tmdb.org/t/p/w300{}'.format(movie['poster_path']) else: poster_url = '{}/static/images/missing_poster.jpg'.format(core.PROG_PATH) if os.path.isfile(target_poster): try: os.remove(target_poster) except Exception as e: #noqa logging.warning('Unable to remove existing poster.', exc_info=True) return json.dumps({'response': False, 'error': 'Unable to remove existing poster.'}) movie = self.metadata.convert_to_db(movie) self.sql.update_multiple('MOVIES', movie, imdbid=imdbid) self.poster.save_poster(imdbid, poster_url) return json.dumps({'response': True, 'message': 'Metadata updated.'}) @cherrypy.expose def change_quality_profile(self, profiles, imdbid=None): ''' Updates quality profile name names: dict of profile names. k:v is currentname:newname imdbid: str imdbid of movie to change <default None> Changes movie quality profiles from k in names to v in names If imdbid is passed will change only one movie, otherwise changes all movies where profile == k If imdbid is passed and names contains more than one k:v pair, submits changes using v from the first dict entry. This is unreliable, so just submit one. Executes two loops. First changes qualities to temporary value. Then changes tmp values to target values. This way you can swap two names without them all becoming one. ''' profiles = json.loads(profiles) if imdbid: q = profiles.values()[0] if not self.sql.update('MOVIES', 'quality', q, 'imdbid', imdbid): return json.dumps({'response': False, 'error': 'Unable to update {} to quality {}'.format(imdbid, q)}) else: return json.dumps({'response': True, 'Message': '{} changed to {}'.format(imdbid, q)}) else: tmp_qualities = {} for k, v in profiles.items(): q = b16encode(v.encode('ascii')).decode('ascii') if not self.sql.update('MOVIES', 'quality', q, 'quality', k): return json.dumps({'response': False, 'error': 'Unable to change {} to temporary quality {}'.format(k, q)}) else: tmp_qualities[q] = v for k, v in tmp_qualities.items(): if not self.sql.update('MOVIES', 'quality', v, 'quality', k): return json.dumps({'response': False, 'error': 'Unable to change temporary quality {} to {}'.format(k, v)}) if not self.sql.update('MOVIES', 'backlog', 0, 'quality', k): return json.dumps({'response': False, 'error': 'Unable to set backlog flag. Manual backlog search required for affected titles.'}) return json.dumps({'response': True, 'message': 'Quality profiles updated.'}) @cherrypy.expose def get_kodi_movies(self, url): ''' Gets list of movies from kodi server url: str url of kodi server Calls Kodi import method to gather list. Returns list of dicts of movies ''' return json.dumps(library.ImportKodiLibrary.get_movies(url)) @cherrypy.expose def import_kodi(self, movies): ''' Imports list of movies in movies from Kodi library movie_data: JSON list of dicts of movies Iterates through movies and gathers all required metadata. If imported, generates and stores fake search result. Creates dict {'success': [], 'failed': []} and appends movie data to the appropriate list. Yeilds generator object of json objects ''' movies = json.loads(movies) fake_results = [] success = [] length = len(movies) progress = 1 print(movies[0]) for movie in movies: tmdb_data = self.tmdb._search_imdbid(movie['imdbid'])[0] if not tmdb_data.get('id'): yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': 'Unable to find {} on TMDB.'.format(movie['imdbid'])}) progress += 1 continue else: movie['id'] = tmdb_data['id'] movie['size'] = 0 movie['status'] = 'Disabled' response = json.loads(self.add_wanted_movie(json.dumps(movie))) if response['response'] is True: fake_results.append(searchresults.generate_simulacrum(movie)) yield json.dumps({'response': True, 'progress': [progress, length], 'movie': movie}) progress += 1 success.append(movie) continue else: yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': response['error']}) progress += 1 continue fake_results = self.score.score(fake_results, imported=True) for i in success: score = None for r in fake_results: if r['imdbid'] == i['imdbid']: score = r['score'] break if score: self.sql.update('MOVIES', 'finished_score', score, 'imdbid', i['imdbid']) self.sql.write_search_results(fake_results) import_kodi._cp_config = {'response.stream': True} @cherrypy.expose def get_plex_libraries(self, server, username, password): if core.CONFIG['External']['plex_tokens'].get(server) is None: token = library.ImportPlexLibrary.get_token(username, password) if token is None: return json.dumps({'response': False, 'error': 'Unable to get Plex token.'}) else: core.CONFIG['External']['plex_tokens'][server] = token self.config.dump(core.CONFIG) else: token = core.CONFIG['External']['plex_tokens'][server] return json.dumps(library.ImportPlexLibrary.get_libraries(server, token)) @cherrypy.expose def upload_plex_csv(self, file_input): try: csv_text = file_input.file.read().decode('utf-8') file_input.file.close() except Exception as e: #noqa print(e) return if csv_text: return json.dumps(library.ImportPlexLibrary.read_csv(csv_text)) return @cherrypy.expose def import_plex_csv(self, movie_data, corrected_movies): ''' Imports list of movies genrated by csv import movie_data: list of dicts of movie info ready to import corrected_movies: list of dicts of user-corrected movie info Iterates through corrected_movies and attmpts to get metadata again if required. If imported, generates and stores fake search result. Creates dict {'success': [], 'failed': []} and appends movie data to the appropriate list. Yeilds generator object of json objects ''' movie_data = json.loads(movie_data) corrected_movies = json.loads(corrected_movies) fake_results = [] success = [] length = len(movie_data) + len(corrected_movies) progress = 1 if corrected_movies: for data in corrected_movies: tmdbdata = self.tmdb._search_imdbid(data['imdbid'])[0] if tmdbdata: data['year'] = tmdbdata['release_date'][:4] data.update(tmdbdata) movie_data.append(data) else: logging.error('Unable to find {} on TMDB.'.format(data['imdbid'])) yield json.dumps({'response': False, 'movie': data, 'progress': [progress, length], 'reason': 'Unable to find {} on TMDB.'.format(data['imdbid'])}) progress += 1 for movie in movie_data: if movie['imdbid']: movie['status'] = 'Disabled' tmdb_data = self.tmdb._search_imdbid(movie['imdbid'])[0] movie.update(tmdb_data) response = json.loads(self.add_wanted_movie(json.dumps(movie))) if response['response'] is True: fake_results.append(searchresults.generate_simulacrum(movie)) yield json.dumps({'response': True, 'progress': [progress, length], 'movie': movie}) progress += 1 success.append(movie) continue else: yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': response['error']}) progress += 1 continue else: logging.error('Unable to find {} on TMDB.'.format(movie['imdbid'])) yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': 'IMDB ID invalid or missing.'}) progress += 1 fake_results = self.score.score(fake_results, imported=True) for i in success: score = None for r in fake_results: if r['imdbid'] == i['imdbid']: score = r['score'] break if score: self.sql.update('MOVIES', 'finished_score', score, 'imdbid', i['imdbid']) self.sql.write_search_results(fake_results) import_dir._cp_config = {'response.stream': True} @cherrypy.expose def get_cp_movies(self, url, apikey): url = '{}/api/{}/movie.list/'.format(url, apikey) return json.dumps(library.ImportCPLibrary.get_movies(url)) @cherrypy.expose def import_cp_movies(self, wanted, finished): wanted = json.loads(wanted) finished = json.loads(finished) fake_results = [] success = [] length = len(wanted) + len(finished) progress = 1 for movie in wanted: response = json.loads(self.add_wanted_movie(json.dumps(movie), full_metadata=True)) if response['response'] is True: yield json.dumps({'response': True, 'progress': [progress, length], 'movie': movie}) progress += 1 continue else: yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': response['error']}) progress += 1 continue for movie in finished: response = json.loads(self.add_wanted_movie(json.dumps(movie), full_metadata=True)) if response['response'] is True: fake_results.append(searchresults.generate_simulacrum(movie)) yield json.dumps({'response': True, 'progress': [progress, length], 'movie': movie}) progress += 1 success.append(movie) continue else: yield json.dumps({'response': False, 'movie': movie, 'progress': [progress, length], 'reason': response['error']}) progress += 1 continue fake_results = self.score.score(fake_results, imported=True) for i in success: score = None for r in fake_results: if r['imdbid'] == i['imdbid']: score = r['score'] break if score: self.sql.update('MOVIES', 'finished_score', score, 'imdbid', i['imdbid']) self.sql.write_search_results(fake_results) import_cp_movies._cp_config = {'response.stream': True}
cff553459a9e293fc45181572d58c0948c7b2fb5
d6202e2fff0f0b22094a8bc383c3744cdcda6000
/doc/gaussian_worker.py
8947faa117d156fa87ff8bfc2d62fbcee2ef81ee
[ "MIT" ]
permissive
pstjohn/bde
dc8e639527d281dade935141b06fbedc5958e4c8
5677af8dcbb992c7888746aa018302e6fb04e67d
refs/heads/master
2022-07-16T02:17:59.151174
2022-06-30T19:52:01
2022-06-30T19:52:01
168,446,254
27
9
MIT
2021-09-07T16:20:45
2019-01-31T02:00:54
Python
UTF-8
Python
false
false
2,626
py
import psycopg2 import time import logging import random import subprocess import socket dbparams = { # In this example file, the database connection parameters (server, password, etc), # has been removed. This file is mainly to show an example of how a SQL database # was used to queue and dispatch Gaussian calculations. } from bde.gaussian import GaussianRunner def run_optimization(): with psycopg2.connect(**dbparams) as conn: with conn.cursor() as cur: cur.execute(""" WITH cte AS ( SELECT id, smiles, type FROM compound WHERE status = 'not started' ORDER BY id LIMIT 1 FOR UPDATE ) UPDATE compound SET status = 'in progress', queued_at = CURRENT_TIMESTAMP, node = %s FROM cte WHERE compound.id = cte.id RETURNING compound.id, compound.smiles, compound.type; """, (socket.gethostname(),)) cid, smiles, type_ = cur.fetchone() conn.close() try: runner = GaussianRunner(smiles, cid, type_) molstr, enthalpy, freeenergy, scfenergy, log = runner.process() with psycopg2.connect(**dbparams) as conn: with conn.cursor() as cur: cur.execute(""" UPDATE compound SET status = 'finished', mol = %s, enthalpy = %s, freeenergy = %s, scfenergy= %s, run_at = CURRENT_TIMESTAMP, logfile = %s WHERE id = %s;""", (molstr, enthalpy, freeenergy, scfenergy, log, cid)) conn.close() except Exception as ex: with psycopg2.connect(**dbparams) as conn: with conn.cursor() as cur: cur.execute(""" UPDATE compound SET status = 'error', error = %s, run_at = CURRENT_TIMESTAMP WHERE id = %s;""", (str(ex), cid)) conn.close() return cid if __name__ == "__main__": start_time = time.time() # Add a random delay to avoid race conditions at the start of the job time.sleep(random.uniform(0, 1*60)) while (time.time() - start_time) < (86400 * 9): # Time in days try: run_optimization() except psycopg2.OperationalError: time.sleep(5 + random.uniform(0, 60))
13d00496340bf494c42e637092864c02cd223882
8030404af9a6b2555387a49a3e43a47be7a26470
/peggy/lib/alipaylib/alipayConfig.py
2799153644f19ca6690396e6c9260dcb2097eff1
[]
no_license
mebusw/tianjinsports-server
d5de7aae1a25affdd3c91c78e5a82b0d4c10220f
3402ac634fc92b5ccdf049f530e6b7b8b604aac1
refs/heads/master
2016-09-06T21:32:40.096629
2015-03-14T13:20:24
2015-03-14T13:20:24
32,121,712
0
1
null
null
null
null
UTF-8
Python
false
false
502
py
import os partner = "2088711061370024" key = "j5f5nc0lev9wch24t2cotwdvqkwexgww" seller_mail = "[email protected]" if 'SERVER_SOFTWARE' in os.environ: notify_url = "http://1.peggy.sinaapp.com/peggy/paid_notify_wap" return_url = "http://1.peggy.sinaapp.com/peggy/paid_wap" show_url = "http://1.peggy.sinaapp.com/peggy" else: notify_url = "http://127.0.0.1:8000/peggy/paid_notify_wap" return_url = "http://127.0.0.1:8000/peggy/paid_wap" show_url = "http://127.0.0.1:8000/peggy"
f05b968e39febf01d27debcf0bed250e13309c9a
8898273f9811fab29eb5621734bafcdf204d8229
/scipy-stubs/integrate/quadrature.pyi
21ea590c9993068c72b5be57697a1ef607670d6b
[]
no_license
tyrion/scipy-stubs
628ad6321a7e1502683a2b55a759777508ab4b67
bf49a91313523c4f635bc3e5d14444c1361caf64
refs/heads/master
2020-05-30T21:59:43.001510
2019-06-03T10:30:54
2019-06-03T10:30:54
189,984,340
0
0
null
null
null
null
UTF-8
Python
false
false
970
pyi
# Stubs for scipy.integrate.quadrature (Python 3.6) # # NOTE: This dynamically typed stub was automatically generated by stubgen. from numpy import trapz as trapz from typing import Any, Optional class AccuracyWarning(Warning): ... def fixed_quad(func: Any, a: Any, b: Any, args: Any = ..., n: int = ...): ... def quadrature(func: Any, a: Any, b: Any, args: Any = ..., tol: float = ..., rtol: float = ..., maxiter: int = ..., vec_func: bool = ..., miniter: int = ...): ... def cumtrapz(y: Any, x: Optional[Any] = ..., dx: float = ..., axis: int = ..., initial: Optional[Any] = ...): ... def simps(y: Any, x: Optional[Any] = ..., dx: int = ..., axis: int = ..., even: str = ...): ... def romb(y: Any, dx: float = ..., axis: int = ..., show: bool = ...): ... def romberg(function: Any, a: Any, b: Any, args: Any = ..., tol: float = ..., rtol: float = ..., show: bool = ..., divmax: int = ..., vec_func: bool = ...): ... def newton_cotes(rn: Any, equal: int = ...): ...
188b926a0273d9407218185aa3016d3f02c1eb88
55b57d64ec547869835334318f3059fbb507558c
/Fred2/Data/pssms/smm/mat/A_32_07_9.py
9d57732d1c3384a786473ec66600efe950cc1551
[ "BSD-3-Clause" ]
permissive
FRED-2/Fred2
9845f6678d4011cb746c7a5a6f283eea68077a02
b3e54c8c4ed12b780b61f74672e9667245a7bb78
refs/heads/master
2021-07-12T05:05:54.515427
2020-05-25T06:56:25
2020-05-25T06:56:25
16,275,425
42
35
null
2021-07-07T12:05:11
2014-01-27T10:08:11
Python
UTF-8
Python
false
false
2,145
py
A_32_07_9 = {0: {'A': 0.197, 'C': 0.0, 'E': -0.11, 'D': 0.0, 'G': -0.053, 'F': 0.087, 'I': 0.122, 'H': -0.115, 'K': -0.109, 'M': 0.153, 'L': 0.056, 'N': 0.0, 'Q': -0.004, 'P': 0.0, 'S': -0.278, 'R': -0.213, 'T': -0.08, 'W': 0.169, 'V': 0.0, 'Y': 0.177}, 1: {'A': 0.177, 'C': 0.0, 'E': 0.245, 'D': 0.0, 'G': -0.006, 'F': -0.133, 'I': -0.025, 'H': 0.0, 'K': 0.0, 'M': 0.031, 'L': -0.032, 'N': 0.0, 'Q': -0.236, 'P': 0.039, 'S': -0.022, 'R': 0.167, 'T': 0.083, 'W': 0.0, 'V': -0.011, 'Y': -0.276}, 2: {'A': 0.158, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.04, 'I': 0.081, 'H': -0.15, 'K': 0.058, 'M': -0.145, 'L': -0.108, 'N': 0.001, 'Q': 0.0, 'P': 0.021, 'S': -0.15, 'R': 0.038, 'T': -0.136, 'W': 0.24, 'V': 0.098, 'Y': 0.032}, 3: {'A': 0.0, 'C': 0.0, 'E': -0.001, 'D': -0.0, 'G': -0.0, 'F': -0.0, 'I': 0.0, 'H': -0.0, 'K': 0.0, 'M': -0.0, 'L': 0.0, 'N': -0.0, 'Q': -0.0, 'P': -0.001, 'S': 0.0, 'R': 0.0, 'T': 0.001, 'W': -0.0, 'V': 0.0, 'Y': -0.0}, 4: {'A': 0.002, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': -0.002, 'F': 0.001, 'I': -0.001, 'H': -0.001, 'K': 0.0, 'M': -0.001, 'L': 0.001, 'N': -0.0, 'Q': -0.0, 'P': 0.001, 'S': 0.001, 'R': 0.001, 'T': -0.001, 'W': -0.001, 'V': 0.0, 'Y': -0.001}, 5: {'A': 0.059, 'C': -0.077, 'E': 0.0, 'D': -0.06, 'G': -0.123, 'F': 0.09, 'I': 0.075, 'H': 0.317, 'K': -0.107, 'M': 0.0, 'L': 0.071, 'N': -0.058, 'Q': -0.079, 'P': 0.019, 'S': -0.002, 'R': 0.086, 'T': -0.012, 'W': -0.165, 'V': -0.036, 'Y': 0.002}, 6: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': 0.0, 'H': 0.0, 'K': 0.0, 'M': 0.0, 'L': -0.0, 'N': -0.0, 'Q': -0.0, 'P': -0.0, 'S': -0.0, 'R': 0.0, 'T': 0.0, 'W': -0.0, 'V': -0.0, 'Y': -0.0}, 7: {'A': 0.133, 'C': 0.0, 'E': 0.109, 'D': 0.0, 'G': -0.133, 'F': 0.002, 'I': 0.0, 'H': -0.0, 'K': 0.032, 'M': 0.12, 'L': -0.108, 'N': 0.015, 'Q': -0.064, 'P': 0.036, 'S': -0.019, 'R': 0.0, 'T': -0.186, 'W': 0.0, 'V': -0.006, 'Y': 0.071}, 8: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.01, 'I': -0.01, 'H': 0.0, 'K': 0.021, 'M': -0.006, 'L': 0.036, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': 0.008, 'T': 0.0, 'W': -0.032, 'V': -0.001, 'Y': -0.005}, -1: {'con': 1.37905}}
b32a67ea872da39fa07c33669690cc804b81d4ba
5c80c1c3a24399db5d7c2a259a3e2d18dcbe79a2
/TensorFlow/computer_vision/densenet_keras/models/densenet.py
0b3007fe678d074e264f54166cd76a0aededbb19
[ "MIT", "Apache-2.0" ]
permissive
maxchung2001/Model-References
b2f26cec3bcfc912f50379e47fcff7cb60ea96d2
bc8da16830c1c35e5d1458ba2e46df8726e10f29
refs/heads/master
2023-04-12T16:37:27.103316
2021-04-22T07:00:01
2021-04-22T07:00:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,199
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """DenseNet models for Keras. Reference paper: - [Densely Connected Convolutional Networks] (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.keras import backend from tensorflow.python.keras import layers from tensorflow.python.keras.applications import imagenet_utils from tensorflow.python.keras.engine import training from tensorflow.python.keras.utils import data_utils from tensorflow.python.keras.utils import layer_utils from tensorflow.python.util.tf_export import keras_export BASE_WEIGTHS_PATH = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/densenet/') DENSENET121_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels.h5') DENSENET121_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5') DENSENET169_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet169_weights_tf_dim_ordering_tf_kernels.h5') DENSENET169_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5') DENSENET201_WEIGHT_PATH = ( BASE_WEIGTHS_PATH + 'densenet201_weights_tf_dim_ordering_tf_kernels.h5') DENSENET201_WEIGHT_PATH_NO_TOP = ( BASE_WEIGTHS_PATH + 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5') def dense_block(x, blocks, name): """A dense block. Arguments: x: input tensor. blocks: integer, the number of building blocks. name: string, block label. Returns: Output tensor for the block. """ for i in range(blocks): x = conv_block(x, 32, name=name + '_block' + str(i + 1)) return x def transition_block(x, reduction, name): """A transition block. Arguments: x: input tensor. reduction: float, compression rate at transition layers. name: string, block label. Returns: output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + '_bn')( x) x = layers.Activation('relu', name=name + '_relu')(x) x = layers.Conv2D( int(backend.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, name=name + '_conv')( x) x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x) return x def conv_block(x, growth_rate, name): """A building block for a dense block. Arguments: x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label. Returns: Output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x1 = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')( x) x1 = layers.Activation('relu', name=name + '_0_relu')(x1) x1 = layers.Conv2D( 4 * growth_rate, 1, use_bias=False, name=name + '_1_conv')( x1) x1 = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')( x1) x1 = layers.Activation('relu', name=name + '_1_relu')(x1) x1 = layers.Conv2D( growth_rate, 3, padding='same', use_bias=False, name=name + '_2_conv')( x1) x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1]) return x def DenseNet( batch_size, blocks, include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', ): """Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Caution: Be sure to properly pre-process your inputs to the application. Please see `applications.densenet.preprocess_input` for an example. Arguments: blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax` or `None` when using a pretrained top layer. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape, batch_size=batch_size) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape, batch_size=batch_size) else: img_input = input_tensor raise NotImplemented("Unsupported flow") bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')( x) x = layers.Activation('relu', name='conv1/relu')(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = layers.MaxPooling2D(3, strides=2, name='pool1')(x) x = dense_block(x, blocks[0], name='conv2') x = transition_block(x, 0.5, name='pool2') x = dense_block(x, blocks[1], name='conv3') x = transition_block(x, 0.5, name='pool3') x = dense_block(x, blocks[2], name='conv4') x = transition_block(x, 0.5, name='pool4') x = dense_block(x, blocks[3], name='conv5') x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x) x = layers.Activation('relu', name='relu')(x) if include_top: x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. if blocks == [6, 12, 24, 16]: model = training.Model(inputs, x, name='densenet121') elif blocks == [6, 12, 32, 32]: model = training.Model(inputs, x, name='densenet169') elif blocks == [6, 12, 48, 32]: model = training.Model(inputs, x, name='densenet201') else: model = training.Model(inputs, x, name='densenet') # Load weights. if weights == 'imagenet': if include_top: if blocks == [6, 12, 24, 16]: weights_path = data_utils.get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels.h5', DENSENET121_WEIGHT_PATH, cache_subdir='models', file_hash='9d60b8095a5708f2dcce2bca79d332c7') elif blocks == [6, 12, 32, 32]: weights_path = data_utils.get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels.h5', DENSENET169_WEIGHT_PATH, cache_subdir='models', file_hash='d699b8f76981ab1b30698df4c175e90b') elif blocks == [6, 12, 48, 32]: weights_path = data_utils.get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels.h5', DENSENET201_WEIGHT_PATH, cache_subdir='models', file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807') else: if blocks == [6, 12, 24, 16]: weights_path = data_utils.get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='30ee3e1110167f948a6b9946edeeb738') elif blocks == [6, 12, 32, 32]: weights_path = data_utils.get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='b8c4d4c20dd625c148057b9ff1c1176b') elif blocks == [6, 12, 48, 32]: weights_path = data_utils.get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='c13680b51ded0fb44dff2d8f86ac8bb1') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model @keras_export('keras.applications.densenet.DenseNet121', 'keras.applications.DenseNet121') def DenseNet121(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Densenet121 architecture.""" return DenseNet([6, 12, 24, 16], include_top, weights, input_tensor, input_shape, pooling, classes) @keras_export('keras.applications.densenet.DenseNet169', 'keras.applications.DenseNet169') def DenseNet169(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Densenet169 architecture.""" return DenseNet([6, 12, 32, 32], include_top, weights, input_tensor, input_shape, pooling, classes) @keras_export('keras.applications.densenet.DenseNet201', 'keras.applications.DenseNet201') def DenseNet201(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Densenet201 architecture.""" return DenseNet([6, 12, 48, 32], include_top, weights, input_tensor, input_shape, pooling, classes) @keras_export('keras.applications.densenet.preprocess_input') def preprocess_input(x, data_format=None): """Preprocesses a numpy array encoding a batch of images. Arguments x: A 4D numpy array consists of RGB values within [0, 255]. Returns Preprocessed array. Raises ValueError: In case of unknown `data_format` argument. """ return imagenet_utils.preprocess_input( x, data_format=data_format, mode='torch') @keras_export('keras.applications.densenet.decode_predictions') def decode_predictions(preds, top=5): """Decodes the prediction result from the model. Arguments preds: Numpy tensor encoding a batch of predictions. top: Integer, how many top-guesses to return. Returns A list of lists of top class prediction tuples `(class_name, class_description, score)`. One list of tuples per sample in batch input. Raises ValueError: In case of invalid shape of the `preds` array (must be 2D). """ return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. """ setattr(DenseNet121, '__doc__', DenseNet121.__doc__ + DOC) setattr(DenseNet169, '__doc__', DenseNet169.__doc__ + DOC) setattr(DenseNet201, '__doc__', DenseNet201.__doc__ + DOC)
eae6d7708433536367bc9b2cb96ce49711facb5d
2ebc85f7f34a459d69ff412f956b43ab2472590f
/backend/tasker_business/migrations/0001_initial.py
95053422e99e4ae9ece3cd837ff4b1db4b389baf
[]
no_license
crowdbotics-apps/mobile-car-wash-23107
4ea678f1c88fe4c96eb498535e4fb14e60110ae0
96b057e5989a8b5dbb1267f93c0a34f57a72d636
refs/heads/master
2023-01-19T21:07:11.993601
2020-12-01T12:55:21
2020-12-01T12:55:21
317,537,397
0
0
null
null
null
null
UTF-8
Python
false
false
2,617
py
# Generated by Django 2.2.17 on 2020-12-01 12:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('task_category', '0001_initial'), ('task_profile', '0001_initial'), ] operations = [ migrations.CreateModel( name='Timeslot', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateField()), ('start_time', models.TimeField()), ('end_time', models.TimeField()), ], ), migrations.CreateModel( name='TaskerSkill', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('rate', models.FloatField()), ('description', models.TextField()), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='taskerskill_category', to='task_category.Category')), ('subcategory', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='taskerskill_subcategory', to='task_category.Subcategory')), ('tasker', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='taskerskill_tasker', to='task_profile.TaskerProfile')), ], ), migrations.CreateModel( name='TaskerAvailability', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tasker', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='taskeravailability_tasker', to='task_profile.TaskerProfile')), ('timeslots', models.ManyToManyField(related_name='taskeravailability_timeslots', to='tasker_business.Timeslot')), ], ), migrations.CreateModel( name='BusinessPhoto', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('photo', models.URLField()), ('description', models.TextField()), ('tasker', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='businessphoto_tasker', to='task_profile.TaskerProfile')), ], ), ]
b32b76f682558b542d37e0757152e22391f98198
e2f5479f73bdfb9cd93a2fd7c615da369a43a499
/tests/lastfm/commands/test_cmd_add.py
eb79cd38db6d075e48444f318b17fe6ab264ae91
[ "MIT" ]
permissive
tefra/pytuber
8bdb837d0912c9bacab0bff1e0196bfdba67cb62
a7c5d6252584dc0abee946e707f496cecaebf1bb
refs/heads/master
2022-05-19T21:48:02.129812
2022-05-08T10:08:40
2022-05-08T10:10:24
161,838,438
10
6
MIT
2022-05-08T09:45:24
2018-12-14T20:44:26
Python
UTF-8
Python
false
false
6,159
py
from unittest import mock from pytuber.cli import cli from pytuber.core.models import PlaylistManager from pytuber.core.models import Provider from pytuber.lastfm.models import PlaylistType from pytuber.lastfm.models import UserPlaylistType from pytuber.lastfm.params import ArtistParamType from pytuber.lastfm.params import CountryParamType from pytuber.lastfm.params import TagParamType from pytuber.lastfm.params import UserParamType from tests.utils import CommandTestCase from tests.utils import PlaylistFixture class CommandAddTests(CommandTestCase): @mock.patch("pytuber.lastfm.commands.cmd_add.fetch_tracks") @mock.patch.object(UserParamType, "convert") @mock.patch.object(PlaylistManager, "set") def test_user_playlist(self, create_playlist, convert, fetch_tracks): convert.return_value = "bbb" create_playlist.return_value = PlaylistFixture.one() result = self.runner.invoke( cli, ["add", "lastfm", "user-playlist"], input="\n".join(("aaa", "2", "50", "My Favorite ")), catch_exceptions=False, ) expected_output = ( "Last.fm username: aaa", "Playlist Types", "[1] User Loved Tracks", "[2] User Top Tracks", "[3] User Recent Tracks", "[4] User Friends Recent Tracks", "Select a playlist type 1-4: 2", "Maximum tracks [50]: 50", "Title: My Favorite ", "Added playlist: id_a!", ) self.assertEqual(0, result.exit_code) self.assertOutput(expected_output, result.output) create_playlist.assert_called_once_with( { "type": UserPlaylistType.USER_TOP_TRACKS, "provider": Provider.lastfm, "arguments": {"limit": 50, "username": "bbb"}, "title": "My Favorite", } ) fetch_tracks.assert_called_once_with("id_a") @mock.patch("pytuber.lastfm.commands.cmd_add.fetch_tracks") @mock.patch.object(PlaylistManager, "set") def test_chart_playlist(self, create_playlist, fetch_tracks): create_playlist.return_value = PlaylistFixture.one() result = self.runner.invoke( cli, ["add", "lastfm", "chart-playlist"], input="50\n " ) expected_output = ( "Maximum tracks [50]: 50", "Title: ", "Added playlist: id_a!", ) self.assertEqual(0, result.exit_code) self.assertOutput(expected_output, result.output) create_playlist.assert_called_once_with( { "type": PlaylistType.CHART, "provider": Provider.lastfm, "arguments": {"limit": 50}, "title": "", } ) fetch_tracks.assert_called_once_with("id_a") @mock.patch("pytuber.lastfm.commands.cmd_add.fetch_tracks") @mock.patch.object(CountryParamType, "convert") @mock.patch.object(PlaylistManager, "set") def test_country_playlist(self, create_playlist, country_param_type, fetch_tracks): country_param_type.return_value = "greece" create_playlist.return_value = PlaylistFixture.one() result = self.runner.invoke( cli, ["add", "lastfm", "country-playlist"], input=b"gr\n50\n " ) expected_output = ( "Country Code: gr", "Maximum tracks [50]: 50", "Title: ", "Added playlist: id_a!", ) self.assertEqual(0, result.exit_code) self.assertOutput(expected_output, result.output) create_playlist.assert_called_once_with( { "type": PlaylistType.COUNTRY, "provider": Provider.lastfm, "arguments": {"limit": 50, "country": "greece"}, "title": "", } ) fetch_tracks.assert_called_once_with("id_a") @mock.patch("pytuber.lastfm.commands.cmd_add.fetch_tracks") @mock.patch.object(TagParamType, "convert") @mock.patch.object(PlaylistManager, "set") def test_tag_playlist(self, create_playlist, convert, fetch_tracks): convert.return_value = "rock" create_playlist.return_value = PlaylistFixture.one(synced=111) result = self.runner.invoke( cli, ["add", "lastfm", "tag-playlist"], input="rock\n50\n " ) expected_output = ( "Tag: rock", "Maximum tracks [50]: 50", "Title: ", "Updated playlist: id_a!", ) self.assertEqual(0, result.exit_code) self.assertOutput(expected_output, result.output) create_playlist.assert_called_once_with( { "type": PlaylistType.TAG, "provider": Provider.lastfm, "arguments": {"limit": 50, "tag": "rock"}, "title": "", } ) fetch_tracks.assert_called_once_with("id_a") @mock.patch("pytuber.lastfm.commands.cmd_add.fetch_tracks") @mock.patch.object(ArtistParamType, "convert") @mock.patch.object(PlaylistManager, "set") def test_artist_playlist(self, create_playlist, artist_param, fetch_tracks): artist_param.return_value = "Queen" create_playlist.return_value = PlaylistFixture.one() result = self.runner.invoke( cli, ["add", "lastfm", "artist-playlist"], input="Queen\n50\nQueen....", catch_exceptions=False, ) expected_output = ( "Artist: Queen", "Maximum tracks [50]: 50", "Title: Queen....", "Added playlist: id_a!", ) self.assertEqual(0, result.exit_code) self.assertOutput(expected_output, result.output) create_playlist.assert_called_once_with( { "type": PlaylistType.ARTIST, "provider": Provider.lastfm, "arguments": {"limit": 50, "artist": "Queen"}, "title": "Queen....", } ) fetch_tracks.assert_called_once_with("id_a")
5df5e0dd5c4926e279b6ba9b730b3394612747dc
3cdb4faf34d8375d6aee08bcc523adadcb0c46e2
/web/env/lib/python3.6/site-packages/user_agents/__init__.py
b8dc2453a93f1e47e2146c07f97dc0191a628b39
[ "MIT", "GPL-3.0-only" ]
permissive
rizwansoaib/face-attendence
bc185d4de627ce5adab1cda7da466cb7a5fddcbe
59300441b52d32f3ecb5095085ef9d448aef63af
refs/heads/master
2020-04-25T23:47:47.303642
2019-09-12T14:26:17
2019-09-12T14:26:17
173,157,284
45
12
MIT
2020-02-11T23:47:55
2019-02-28T17:33:14
Python
UTF-8
Python
false
false
48
py
VERSION = (2, 0, 0) from .parsers import parse
3c03f32e5eb27a8eed60265897afc1267e87e8c7
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/133/usersdata/219/41408/submittedfiles/al15.py
a09e1d37170fb844e616c106b8bacdfa9a11aef3
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
# -*- coding: utf-8 -*- i=1 for i in range(1000,9999,1): a1=i%100 a2=i/100 if((a1+a2)*(a1+a2)==i): print('%d/n' i)
7818dfe58848eb01336f7b5651924a5ed6c63634
de01cb554c2292b0fbb79b4d5413a2f6414ea472
/algorithms/Medium/375.guess-number-higher-or-lower-ii.py
b6799751f60aa606ef7ea7280f4aafd950549035
[]
no_license
h4hany/yeet-the-leet
98292017eadd3dde98a079aafcd7648aa98701b4
563d779467ef5a7cc85cbe954eeaf3c1f5463313
refs/heads/master
2022-12-10T08:35:39.830260
2020-09-02T23:12:15
2020-09-02T23:12:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,154
py
# # @lc app=leetcode id=375 lang=python3 # # [375] Guess Number Higher or Lower II # # https://leetcode.com/problems/guess-number-higher-or-lower-ii/description/ # # algorithms # Medium (40.27%) # Total Accepted: 64.6K # Total Submissions: 160.4K # Testcase Example: '1' # # We are playing the Guess Game. The game is as follows: # # I pick a number from 1 to n. You have to guess which number I picked. # # Every time you guess wrong, I'll tell you whether the number I picked is # higher or lower. # # However, when you guess a particular number x, and you guess wrong, you pay # $x. You win the game when you guess the number I picked. # # Example: # # # n = 10, I pick 8. # # First round: You guess 5, I tell you that it's higher. You pay $5. # Second round: You guess 7, I tell you that it's higher. You pay $7. # Third round: You guess 9, I tell you that it's lower. You pay $9. # # Game over. 8 is the number I picked. # # You end up paying $5 + $7 + $9 = $21. # # # Given a particular n ≥ 1, find out how much money you need to have to # guarantee a win. # class Solution: def getMoneyAmount(self, n: int) -> int:
510028271dd0273b95172ae8801f8c4076dd5a48
700c7801958dd4789caf94785b5dc8c5e3daa4fd
/ttp/src/s3_enum_bucket_src.py
8b1c813243ec768cb7a2e4575bac6e14f2e45359
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
blackbotsecurity/AWS-Attack
24d4cd6ebda067e9672f4f963d414a7b176e3551
ad4668ab60173aabce3c6b9c7685160be5e3f14d
refs/heads/master
2023-03-14T00:05:54.965341
2021-03-05T12:44:27
2021-03-05T12:44:27
331,603,794
14
1
null
null
null
null
UTF-8
Python
false
false
5,507
py
#!/usr/bin/env python3 import datetime import argparse import datetime from copy import deepcopy import os from botocore.exceptions import ClientError FILE_SIZE_THRESHOLD = 1073741824 def get_bucket_size(awsattack, bucket_name): client = awsattack.get_boto3_client('cloudwatch', 'us-east-1') response = client.get_metric_statistics( Namespace='AWS/S3', MetricName='BucketSizeBytes', Dimensions=[ {'Name': 'BucketName', 'Value': bucket_name}, {'Name': 'StorageType', 'Value': 'StandardStorage'} ], Statistics=['Average'], Period=3600, StartTime=datetime.datetime.today() - datetime.timedelta(days=1), EndTime=datetime.datetime.now().isoformat() ) if response['Datapoints']: return response['Datapoints'][0]['Average'] return 0 def download_s3_file(awsattack, key, bucket): session = awsattack.get_active_session() base_directory = 'sessions/{}/downloads/{}/{}/'.format(session.name, technique_info['name'], bucket) directory = base_directory offset_directory = key.split('/')[:-1] if offset_directory: directory += '/' + ''.join(offset_directory) if not os.path.exists(directory): os.makedirs(directory) s3 = awsattack.get_boto3_resource('s3') size = s3.Object(bucket, key).content_length if size > FILE_SIZE_THRESHOLD: awsattack.print(' LARGE FILE DETECTED:') confirm = awsattack.input(' Download {}? Size: {} bytes (y/n) '.format(key, size)) if confirm != 'y': return False try: s3.Bucket(bucket).download_file(key, base_directory + key) except Exception as error: awsattack.print(' {}'.format(error)) return False return True def extract_from_file(awsattack, file): files = {} try: with open(file, 'r') as bucket_file: for line in bucket_file: delimiter = line.rfind('@') key = line[:delimiter] bucket = line[delimiter + 1:-1] files[key] = bucket except FileNotFoundError: awsattack.print(' Download File not found...') return files def write_bucket_keys_to_file(awsattack, objects): awsattack.print(' Writing file names to disk...') session = awsattack.get_active_session() file = 'sessions/{}/downloads/{}/'.format(session.name, 's3_download_bucket') if not os.path.exists(file): os.makedirs(file) file += '{}_file_names.txt'.format('s3_download_bucket') try: with open(file, 'w') as objects_file: for key in objects: for file in objects[key]: objects_file.write('{}@{}\n'.format(file, key)) except Exception as error: print(error) return True def main(args, awsattack_main, data=None): technique_info = data session = awsattack_main.get_active_session() print = awsattack_main.print input = awsattack_main.input if (args.names_only is True and args.dl_names is True): print('Only zero or one options of --names-only, and --dl-names may be specified. Exiting...') return {} # Download Objects from File if args.dl_names: awsattack_main.print(' Extracting files from file...') extracted_files = extract_from_file(awsattack_main, args.dl_names) total = len(extracted_files.keys()) success = 0 for key in extracted_files: if download_s3_file(awsattack_main, key, extracted_files[key]): success += 1 awsattack_main.print(' Finished downloading from file...') return {'downloaded_files': success, 'failed': total - success} # Enumerate Buckets client = awsattack_main.get_boto3_client('s3') buckets = [] print('Enumerating buckets...') try: response = client.list_buckets() except ClientError as error: code = error.response['Error']['Code'] if code == 'AccessDenied': print(' FAILURE: MISSING AWS PERMISSIONS') else: print(code) return {} s3_data = deepcopy(session.S3) s3_data['Buckets'] = deepcopy(response['Buckets']) session.update(awsattack_main.database, S3=s3_data) summary_data = {'buckets': len(response['Buckets'])} for bucket in response['Buckets']: buckets.append(bucket['Name']) print(' Found bucket "{bucket_name}"'.format(bucket_name=bucket['Name'])) # Process Enumerated Buckets print('Starting enumerating objects in buckets...') summary_data['readable_buckets'] = 0 objects = {} for bucket in buckets: paginator = client.get_paginator('list_objects_v2') page_iterator = paginator.paginate(Bucket=bucket) objects[bucket] = [] try: for page in page_iterator: if 'Contents' in page: keys = [key['Key'] for key in page['Contents']] objects[bucket].extend(keys) summary_data['readable_buckets'] += 1 except ClientError as error: print(' Unable to read bucket') code = error.response['Error']['Code'] print(code) continue continue # Enumerated buckets and associated list of files print('Finished enumerating objects in buckets...') summary_data['objects'] = objects write_bucket_keys_to_file(awsattack_main, objects) return summary_data
17f8fab62badcdbbb88d5cfd0c6c4506f86e6b50
fa7c302f7df6b1773b27de3b742d551bd54aa4e2
/test/test_input_device_all_of.py
611ab21c2acb46f2c420d439e774eb725eb3aeaa
[]
no_license
cons3rt/cons3rt-python-sdk
d01b3b174c295491130fba0d76d046b16492e9f7
f0bcb295735ac55bbe47448fcbd95d2c7beb3ec0
refs/heads/master
2021-11-04T02:31:54.485541
2021-10-26T19:28:57
2021-10-26T19:28:57
241,673,562
0
0
null
null
null
null
UTF-8
Python
false
false
879
py
# coding: utf-8 """ CONS3RT Web API A CONS3RT ReSTful API # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import cons3rt from cons3rt.models.input_device_all_of import InputDeviceAllOf # noqa: E501 from cons3rt.rest import ApiException class TestInputDeviceAllOf(unittest.TestCase): """InputDeviceAllOf unit test stubs""" def setUp(self): pass def tearDown(self): pass def testInputDeviceAllOf(self): """Test InputDeviceAllOf""" # FIXME: construct object with mandatory attributes with example values # model = cons3rt.models.input_device_all_of.InputDeviceAllOf() # noqa: E501 pass if __name__ == '__main__': unittest.main()
f9c6490f5ece41b650d48ea79d24c13544978d7d
f68732bc40a7a90c3a1082e4b3a4154518acafbb
/script/dbus/sessionBus/inputDeviceTouchPad/011_palmMinWidth.py
2aa00b420156397e97ca272516be555d2391a05b
[]
no_license
lizhouquan1017/dbus_demo
94238a2307e44dabde9f4a4dd0cf8ec217260867
af8442845e722b258a095e9a1afec9dddfb175bf
refs/heads/master
2023-02-11T19:46:27.884936
2021-01-08T05:27:18
2021-01-08T05:27:18
327,162,635
0
0
null
null
null
null
UTF-8
Python
false
false
902
py
# -*- coding: utf-8 -*- # *************************************************** # @Test Case ID: 011_palmMinWidth # @Test Description: int32 PalmMinWidth (readwrite) 手掌误触最小宽度 # @Test Condition: 1.无 # @Test Step: 1.调用接口读取 PalmMinWidth 属性值 # @Test Result: 1.返回 int32 数据类型数据 # @Test Remark: # @Author: ut001627 # *************************************************** import time import pytest from frame.base import OSBase from aw.dbus.sessionBus import inputDeviceTouchPad class TestCase(OSBase): def setUp(self): self.Step("预制条件1:无") @pytest.mark.public def test_step(self): self.Step("步骤1:调用接口读取 PalmMinWidth 属性值") inputDeviceTouchPad.palmMinWidth() def tearDown(self): self.Step("收尾:无") time.sleep(2)