blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
fb5bf4f07951d84bf342ddda620e4f8ab7c0a109
f65c78a69fbf9acb39f5b55a77565c491accccd1
/libs/common/bitcoin/script.py
5e4daafb10d6b6d794552c76082a923f8d133d76
[ "MIT" ]
permissive
Kevingislason/abacus_wallet
8ac5b9f5edc33cba3812f98e0040729e8be6bd98
3c0f2d5134a6fa59fc1fd15fcad65690352a46bf
refs/heads/main
2023-03-21T23:24:16.012416
2021-03-15T02:56:11
2021-03-15T02:56:11
334,851,360
0
0
null
null
null
null
UTF-8
Python
false
false
4,916
py
from .networks import NETWORKS from . import base58 from . import bech32 from . import hashes from . import compact import io SIGHASH_ALL = 1 class Script: def __init__(self, data: bytes): self.data = data[:] def address(self, network=NETWORKS["main"]) -> str: script_type = self.script_type() data = self.data if script_type is None: raise ValueError("This type of script doesn't have address representation") if script_type == "p2pkh": d = network["p2pkh"] + data[3:23] return base58.encode_check(d) if script_type == "p2sh": d = network["p2sh"] + data[2:22] return base58.encode_check(d) if script_type == "p2wpkh" or script_type == "p2wsh": return bech32.encode(network["bech32"], data[0], data[2:]) # we should never get here raise ValueError("Unsupported script type") def script_type(self): data = self.data # OP_DUP OP_HASH160 <20:hash160(pubkey)> OP_EQUALVERIFY OP_CHECKSIG if len(data) == 25 and data[:3] == b"\x76\xa9\x14" and data[-2:] == b"\x88\xac": return "p2pkh" # OP_HASH160 <20:hash160(script)> OP_EQUAL if len(data) == 23 and data[:2] == b"\xa9\x14" and data[-1] == 0x87: return "p2sh" # 0 <20:hash160(pubkey)> if len(data) == 22 and data[:2] == b"\x00\x14": return "p2wpkh" # 0 <32:sha256(script)> if len(data) == 34 and data[:2] == b"\x00\x20": return "p2wsh" # unknown type return None def serialize(self) -> bytes: return compact.to_bytes(len(self.data)) + self.data @classmethod def parse(cls, b: bytes) -> cls: stream = io.BytesIO(b) script = cls.read_from(stream) if len(stream.read(1)) > 0: raise ValueError("Too many bytes") return script @classmethod def read_from(cls, stream) -> cls: l = compact.read_from(stream) data = stream.read(l) if len(data) != l: raise ValueError("Cant read %d bytes" % l) return cls(data) def __eq__(self, other): return self.data == other.data def __ne__(self, other): return self.data != other.data class Witness: def __init__(self, items): self.items = items[:] def serialize(self) -> bytes: res = compact.to_bytes(len(self.items)) for item in self.items: res += compact.to_bytes(len(item)) + item return res @classmethod def parse(cls, b: bytes) -> cls: stream = io.BytesIO(b) r = cls.read_from(stream) if len(stream.read(1)) > 0: raise ValueError("Byte array is too long") return r @classmethod def read_from(cls, stream) -> cls: num = compact.read_from(stream) items = [] for i in range(num): l = compact.read_from(stream) data = stream.read(l) items.append(data) return cls(items) def p2pkh(pubkey) -> Script: """Return Pay-To-Pubkey-Hash ScriptPubkey""" return Script(b"\x76\xa9\x14" + hashes.hash160(pubkey.sec()) + b"\x88\xac") def p2sh(script) -> Script: """Return Pay-To-Script-Hash ScriptPubkey""" return Script(b"\xa9\x14" + hashes.hash160(script.data) + b"\x87") def p2wpkh(pubkey) -> Script: """Return Pay-To-Witness-Pubkey-Hash ScriptPubkey""" return Script(b"\x00\x14" + hashes.hash160(pubkey.sec())) def p2wsh(script) -> Script: """Return Pay-To-Witness-Pubkey-Hash ScriptPubkey""" return Script(b"\x00\x20" + hashes.sha256(script.data)) def p2pkh_from_p2wpkh(script) -> Script: """Convert p2wpkh to p2pkh script""" return Script(b"\x76\xa9" + script.serialize()[2:] + b"\x88\xac") def multisig(m: int, pubkeys) -> Script: if m <= 0 or m > 16: raise ValueError("m must be between 1 and 16") n = len(pubkeys) if n < m or n > 16: raise ValueError("Number of pubkeys must be between %d and 16" % m) data = bytes([80 + m]) for pubkey in pubkeys: sec = pubkey.sec() data += bytes([len(sec)]) + sec # OP_m <len:pubkey> ... <len:pubkey> OP_n OP_CHECKMULTISIG data += bytes([80 + n, 0xAE]) return Script(data) def address_to_scriptpubkey(addr): pass def script_sig_p2pkh(signature, pubkey) -> Script: sec = pubkey.sec() der = signature.serialize() + bytes([SIGHASH_ALL]) data = compact.to_bytes(len(der)) + der + compact.to_bytes(len(sec)) + sec return Script(data) def script_sig_p2sh(redeem_script) -> Script: """Creates scriptsig for p2sh""" # FIXME: implement for legacy p2sh as well return Script(redeem_script.serialize()) def witness_p2wpkh(signature, pubkey) -> Witness: return Witness([signature.serialize() + bytes([SIGHASH_ALL]), pubkey.sec()])
1ce44c79b815d8df6680a3212721e78e49837ae6
138c1b7a726386b6e9bafb9fcd42c7e62d9fe49e
/ScrapyProjects/DynamicSpider/DynamicSpider/spiders/guazi.py
b662668c881943737dbbd1a9bd8a5ed621eb1462
[]
no_license
zhujixiang1997/1805_spider
951bf6e5d411c0b24b33adf788c9d8a5770f244b
5cd617e5e3263d13854e19c16a1659017a8ed409
refs/heads/master
2022-12-11T01:10:54.232536
2019-07-09T10:28:30
2019-07-09T10:28:30
163,835,828
0
0
null
null
null
null
UTF-8
Python
false
false
3,575
py
# -*- coding: utf-8 -*- import scrapy from ScrapyProjects.DynamicSpider.DynamicSpider.items import GuaziCarItem from ScrapyProjects.DynamicSpider.DynamicSpider.utils.bshead import create_bs_driver ''' 爬取瓜子二手车直卖网武汉二手车 分析:采用scrapy shrll爬取页面,分析页面后,发现获取不到数据,引入selenium 方案:scrapy + selenium ''' class GuaziSpider(scrapy.Spider): name = 'guazi' allowed_domains = ['www.guazi.com'] start_urls = ['http://www.guazi.com/wh/buy/'] query_key = input("请输入关键字:") def __init__(self): scrapy.Spider.__init__(self, self.name) self.driver = create_bs_driver() self.driver.set_page_load_timeout(20) def __del__(self): self.driver.quit() def start_requests(self): # 重写初始化url请求,携带上信息,下载中间价能识别 for url in self.start_urls: yield scrapy.Request(url=url, meta={'type':'home','query_key':self.query_key}, callback=self.parse, dont_filter=True) def parse(self, response): print(f"{response.url}") cal_li_list = response.xpath("//ul[@class='carlist clearfix js-top']/li") for cal_li in cal_li_list: car_name = cal_li.xpath("./a/h2/text()").extract_first() car_image = cal_li.xpath("./a/img/@src").extract_first() car_detail_url = cal_li.xpath("./a/@href").extract_first() meta=dict(car_name=car_name,car_image=car_image,type="detail") yield scrapy.Request(url=f"https://www.guazi.com{car_detail_url}", meta=meta, callback=self.parse_detail, dont_filter=True) # 获取下一页 next_url = response.url meta = dict(type="next_page") yield scrapy.Request(url=next_url, meta=meta, callback=self.parse, dont_filter=True) def parse_detail(self,response): car_name=response.meta.get("car_name") car_image=response.meta.get("car_image") registration_time = response.xpath("//ul[@class='assort clearfix']/li[1]/span/text()").extract_first() mileage = response.xpath("//ul[@class='assort clearfix']/li[2]/span/text()").extract_first() license_plate = response.xpath("//ul[@class='assort clearfix']/li[3]/span/text()").extract_first() displacement = response.xpath("//ul[@class='assort clearfix']/li[4]/span/text()").extract_first() transmission = response.xpath("//ul[@class='assort clearfix']/li[5]/span/text()").extract_first() price = response.xpath("//div[@class='pricebox js-disprice']/span[1]/text()").extract_first() result = { 'car_name':car_name if car_name else None, 'car_image':car_image if car_image else None, 'registration_time':registration_time if registration_time else None, 'mileage':mileage if mileage else None, 'license_plate':license_plate if license_plate else None, 'displacement':displacement if displacement else None, 'transmission':transmission if transmission else None, 'price':price+'万' if price else None, } item = GuaziCarItem( car_name=result['car_name'], car_image=result['car_image'], registration_time=result['registration_time'], mileage=result['mileage'], license_plate=result['license_plate'], displacement=result['displacement'], transmission=result['transmission'], price=result['price'], ) yield item
32d15c69d2a035c6bbc6bbe67bbb271dd540c1f0
731230c336bf27af8ca91f15c33435920a5c3af4
/virtual/bin/wheel
599ecec06807b1ead412bf660847330f6744e209
[ "MIT" ]
permissive
Brayonski/personal-blog
c627adbddf66271594f07e7bd3e3b2069c9aff08
ab0cb6590b570ed75a475a52eae9bafadc647665
refs/heads/master
2020-03-28T17:34:10.867299
2018-09-17T13:10:12
2018-09-17T13:10:12
148,802,537
0
0
null
2018-10-11T13:39:58
2018-09-14T14:48:33
Python
UTF-8
Python
false
false
281
#!/media/root/Alpha/projects/MS-Python-Pre-work/flask/personal-blog/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
3210b53b1f11a7512ae651e9a24340fa8190d8c2
cfd9fa1af735ac3572954704a47e35543850b244
/lantern.py
6811ad214abe5ef2f1a2dfe9f75e48022f4f9798
[]
no_license
xingyueGK/hjsg
c1844ea8161d254f6d6cf70f42d1ac849e117438
be0c4c457bdfaa9178f25f9f722dc78d88f24540
refs/heads/master
2022-12-12T08:28:55.823357
2020-12-05T12:02:06
2020-12-05T12:02:06
147,184,573
0
1
null
2022-01-06T22:26:48
2018-09-03T09:47:04
HTML
UTF-8
Python
false
false
6,224
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/2/19 15:08 # @Author : xingyue # @File : lantern.py from task.base import SaoDangFb import threading import os, time import redis pool = redis.ConnectionPool(host='localhost', port=6379, db=0) _redis = redis.StrictRedis(connection_pool=pool) lock = threading.RLock() class task(SaoDangFb): def lanternIndex(self): stats = self.action(c='guess_lantern', m='index') if stats['status']== 1: print '开始答题' else: self.p(stats) exit(2) def lantern_festival(self): try: answer = { "1": "a", "2": "b", "3": "c", "4": "d", "5": "b", "6": "d", "7": "d", "8": "d", "9": "d", "10": "a", "11": "a", "12": "a", "13": "b", "14": "b", "15": "a", "16": "c", "17": "b", "18": "d", "19": "a", "20": "c", "21": "c", "22": "a", "23": "d", "24": "a", "25": "a", "26": "c", "27": "a", "28": "b", "29": "a", "30": "a", "31": "a", "32": "b", "33": "b", "34": "b", "35": "c", "36": "c", "37": "d", "38": "d", "39": "c", "40": "b", "41": "a", "42": "a", "44": "a", "45": "b", "46": "c", "48": "a", "49": "b", "50": "d", "51": "c", "52": "a", "54": "a", "55": "d", "56": "d", "58": "b", "59": "b", "61": "d", "62": "d", "63": "d", "67": "b", "68": "a", "69": "b", "71": "d", "73": "b", "74": "a", "75": "d", "76": "a", "77": "b", "78": "b", "43": "d", "47": "d", "53": "c", "57": "d", "60": "c", "64": "d", "65": "d", "66": "b", "70": "c", "72": "a", "79": "c", "80": "a", "81": "a", "82": "d", "83": "b", "84": "a", "85": "c", "86": "b", "87": "b", "88": "b", "89": "d", "90": "d", "91": "b", "92": "c", "93": "c", "94": "b", "95": "c", "96": "a", "97": "d", "98": "d", "99": "a", "100": "c", "101": "c", "102": "a", "103": "b", "104": "a", "105": "c", "106": "a", "107": "a", "108": "b", "109": "c", "110": "b", "111": "d", "112": "b", "113": "d", "114": "b", "115": "a", "116": "a", "117": "b", "118": "b", "119": "c", "120": "d", } resutl = self.action(c='guess_lantern', m='answer_index') time.sleep(0.5) total_num = int(resutl['total_num']) for i in range(total_num): questiont = resutl['question'] id = questiont['id'] try: formdata = { 'right': answer[id] } except KeyError as e: print 'id error ,chaoguo xianzhi ' self.p(questiont, 'iderror') formdata = { 'right': 'a' } resutl = self.action(c='guess_lantern', m='check', body=formdata) self.p(resutl,'resieeeeeeee') while True: if resutl['status'] == 1: if resutl['right'] == 1: time.sleep(2) break else: self.p(resutl, 'check result') print formdata break elif resutl['status'] == -10: time.sleep(5) resutl = self.action(c='guess_lantern', m='check', body=formdata) except KeyError as e: self.p(resutl, 'error') print 'eeeee',e def get_reward(self): self.action(c='guess_lantern', m='get_reward', id=1) if __name__ == '__main__': def act(user, apass, addr): action = task(user, apass, addr) action.lanternIndex()#开始答题 action.lantern_festival() action.get_reward() filepath = os.path.dirname(os.path.abspath(__file__)) # cont = ['21user.txt', 'autouser.txt','gmnewyear.txt', 'user.txt', 'alluser.txt'] cont = ['user.txt'] for t in cont: with open('%s/users/%s' % (filepath, t), 'r') as f: for i in f: if i.strip() and not i.startswith('#'): name = i.split()[0] passwd = i.split()[1] addr = i.split()[2] # addr = 21 t1 = threading.Thread(target=act, args=(name, passwd, addr)) t1.start() time.sleep(0.2)
068b41a94bea56acb225e23b723347f3b9e3b552
8fc9520d7224e6179f63f19e668b4b3b6a7d76c5
/apps/networks/libraries/flickr/tools.py
983d95c4458171972fa5c25ad14ae1aa7f71d267
[]
no_license
quantm/custom_django_oscar
352ef2fd95e7da932958d4aa80d77dff5b6c1e70
9205807030ab360884283810e94177440c228a23
refs/heads/master
2016-08-09T12:23:39.413677
2016-02-08T22:16:53
2016-02-08T22:16:53
51,326,524
1
0
null
null
null
null
UTF-8
Python
false
false
2,084
py
from method_call import call_api import sys import os def load_methods(): """ Loads the list of all methods """ r = call_api(method="flickr.reflection.getMethods") return r["methods"]["method"] __perms__ = {0: 'none', '1': 'read', '2': 'write', '3': 'delete'} def methods_info(): methods = {} for m in load_methods(): info = call_api(method="flickr.reflection.getMethodInfo", method_name=m) info.pop("stat") method = info.pop("method") method["requiredperms"] = __perms__[method["requiredperms"]] method["needslogin"] = bool(method.pop("needslogin")) method["needssigning"] = bool(method.pop("needssigning")) info.update(method) info["arguments"] = info["arguments"]["argument"] info["errors"] = info["errors"]["error"] methods[m] = info return methods def write_reflection(path, template, methods=None): if methods is None: methods = methods_info() with open(template, "r") as t: templ = t.read() prefix = "" new_templ = "" tab = " " templ = templ % str(methods) for c in templ: if c == '{': new_templ += '{\n' + prefix prefix += tab elif c == '}': new_templ += '\n' + prefix + '}\n' + prefix prefix = prefix[:-len(tab)] else: new_templ += c with open(path, "w") as f: f.write(new_templ) def write_doc(output_path, exclude=["flickr_keys", "methods"]): import flickr_api exclude.append("__init__") modules = ['flickr_api'] dir = os.path.dirname(flickr_api.__file__) modules += [ "flickr_api." + f[:-3] for f in os.listdir(dir) if f.endswith(".py") and f[:-3] not in exclude] sys.path.insert(0, dir + "../") if not os.path.exists(output_path): os.makedirs(output_path) os.chdir(output_path) for m in modules: os.system("pydoc -w " + m)
af55ae8008e31b19d12765e34394ed945e13896b
f672f2c2b35d388526217278f3c301d4372abb4b
/cartoview/app_manager/migrations/0001_initial.py
31b23a5245af1452dea592580640ac9fb684c4cb
[ "BSD-2-Clause" ]
permissive
Msalah593/cartoview_2
cce51db13f3e69e99a4915770627942d21a998a8
dc57cc22cdc4563ff76448b939c09c370590114f
refs/heads/master
2020-05-05T12:29:26.333491
2019-04-22T08:52:52
2019-04-22T08:52:52
180,030,874
0
0
null
2019-04-07T22:22:08
2019-04-07T22:22:08
null
UTF-8
Python
false
false
1,764
py
# Generated by Django 2.2 on 2019-04-18 14:17 import django.contrib.postgres.fields.jsonb from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='App', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, unique=True)), ('title', models.CharField(max_length=200, unique=True)), ('description', models.TextField(blank=True, null=True)), ('license', models.CharField(blank=True, max_length=200, null=True)), ('date_installed', models.DateTimeField(auto_now_add=True, null=True, verbose_name='Date Installed')), ('single_instance', models.BooleanField(default=False)), ('status', models.CharField(default='Alpha', max_length=100)), ('app_img_url', models.TextField(blank=True, max_length=1000, null=True)), ('version', models.CharField(max_length=10)), ('order', models.IntegerField(default=0, unique=True)), ('default_config', django.contrib.postgres.fields.jsonb.JSONField(blank=True, default=dict, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'ordering': ['order'], 'permissions': (('install_app', 'Install App'), ('uninstall_app', 'Uninstall App'), ('change_state', 'Change App State (active, suspend)')), }, ), ]
8396320380ca63e38dcfcc70b5428ef49c1972ad
6437a3a4a31ab9ad233d6b2d985beb50ed50de23
/PythonistaAppTemplate/PythonistaKit.framework/pylib/wsgiref/validate.py
b5577e5bbf54a2e99cc84fc8a1e1f3b1edf2aaa9
[]
no_license
sreyemnayr/jss-lost-mode-app
03ddc472decde3c17a11294d8ee48b02f83b71e7
3ff4ba6fb13f4f3a4a98bfc824eace137f6aabaa
refs/heads/master
2021-05-02T08:50:10.580091
2018-02-08T20:32:29
2018-02-08T20:32:29
120,813,623
1
0
null
null
null
null
UTF-8
Python
false
false
19,451
py
#\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo #\input texinfo # (c) 2005 Ian Bicking and contributors; written for Paste (http://pythonpaste.org) # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php # Also licenced under the Apache License, 2.0: http://opensource.org/licenses/apache2.0.php # Licensed to PSF under a Contributor Agreement """ Middleware to check for obedience to the WSGI specification. Some of the things this checks: * Signature of the application and start_response (including that keyword arguments are not used). * Environment checks: - Environment is a dictionary (and not a subclass). - That all the required keys are in the environment: REQUEST_METHOD, SERVER_NAME, SERVER_PORT, wsgi.version, wsgi.input, wsgi.errors, wsgi.multithread, wsgi.multiprocess, wsgi.run_once - That HTTP_CONTENT_TYPE and HTTP_CONTENT_LENGTH are not in the environment (these headers should appear as CONTENT_LENGTH and CONTENT_TYPE). - Warns if QUERY_STRING is missing, as the cgi module acts unpredictably in that case. - That CGI-style variables (that don't contain a .) have (non-unicode) string values - That wsgi.version is a tuple - That wsgi.url_scheme is 'http' or 'https' (@@: is this too restrictive?) - Warns if the REQUEST_METHOD is not known (@@: probably too restrictive). - That SCRIPT_NAME and PATH_INFO are empty or start with / - That at least one of SCRIPT_NAME or PATH_INFO are set. - That CONTENT_LENGTH is a positive integer. - That SCRIPT_NAME is not '/' (it should be '', and PATH_INFO should be '/'). - That wsgi.input has the methods read, readline, readlines, and __iter__ - That wsgi.errors has the methods flush, write, writelines * The status is a string, contains a space, starts with an integer, and that integer is in range (> 100). * That the headers is a list (not a subclass, not another kind of sequence). * That the items of the headers are tuples of strings. * That there is no 'status' header (that is used in CGI, but not in WSGI). * That the headers don't contain newlines or colons, end in _ or -, or contain characters codes below 037. * That Content-Type is given if there is content (CGI often has a default content type, but WSGI does not). * That no Content-Type is given when there is no content (@@: is this too restrictive?) * That the exc_info argument to start_response is a tuple or None. * That all calls to the writer are with strings, and no other methods on the writer are accessed. * That wsgi.input is used properly: - .read() is called with zero or one argument - That it returns a string - That readline, readlines, and __iter__ return strings - That .close() is not called - No other methods are provided * That wsgi.errors is used properly: - .write() and .writelines() is called with a string - That .close() is not called, and no other methods are provided. * The response iterator: - That it is not a string (it should be a list of a single string; a string will work, but perform horribly). - That .next() returns a string - That the iterator is not iterated over until start_response has been called (that can signal either a server or application error). - That .close() is called (doesn't raise exception, only prints to sys.stderr, because we only know it isn't called when the object is garbage collected). """ __all__ = ['validator'] import re import sys from types import DictType, StringType, TupleType, ListType import warnings header_re = re.compile(r'^[a-zA-Z][a-zA-Z0-9\-_]*$') bad_header_value_re = re.compile(r'[\000-\037]') class WSGIWarning(Warning): """ Raised in response to WSGI-spec-related warnings """ def assert_(cond, *args): if not cond: raise AssertionError(*args) def validator(application): """ When applied between a WSGI server and a WSGI application, this middleware will check for WSGI compliancy on a number of levels. This middleware does not modify the request or response in any way, but will raise an AssertionError if anything seems off (except for a failure to close the application iterator, which will be printed to stderr -- there's no way to raise an exception at that point). """ def lint_app(*args, **kw): assert_(len(args) == 2, "Two arguments required") assert_(not kw, "No keyword arguments allowed") environ, start_response = args check_environ(environ) # We use this to check if the application returns without # calling start_response: start_response_started = [] def start_response_wrapper(*args, **kw): assert_(len(args) == 2 or len(args) == 3, ( "Invalid number of arguments: %s" % (args,))) assert_(not kw, "No keyword arguments allowed") status = args[0] headers = args[1] if len(args) == 3: exc_info = args[2] else: exc_info = None check_status(status) check_headers(headers) check_content_type(status, headers) check_exc_info(exc_info) start_response_started.append(None) return WriteWrapper(start_response(*args)) environ['wsgi.input'] = InputWrapper(environ['wsgi.input']) environ['wsgi.errors'] = ErrorWrapper(environ['wsgi.errors']) iterator = application(environ, start_response_wrapper) assert_(iterator is not None and iterator != False, "The application must return an iterator, if only an empty list") check_iterator(iterator) return IteratorWrapper(iterator, start_response_started) return lint_app class InputWrapper: def __init__(self, wsgi_input): self.input = wsgi_input def read(self, *args): assert_(len(args) <= 1) v = self.input.read(*args) assert_(type(v) is type("")) return v def readline(self): v = self.input.readline() assert_(type(v) is type("")) return v def readlines(self, *args): assert_(len(args) <= 1) lines = self.input.readlines(*args) assert_(type(lines) is type([])) for line in lines: assert_(type(line) is type("")) return lines def __iter__(self): while 1: line = self.readline() if not line: return yield line def close(self): assert_(0, "input.close() must not be called") class ErrorWrapper: def __init__(self, wsgi_errors): self.errors = wsgi_errors def write(self, s): assert_(type(s) is type("")) self.errors.write(s) def flush(self): self.errors.flush() def writelines(self, seq): for line in seq: self.write(line) def close(self): assert_(0, "errors.close() must not be called") class WriteWrapper: def __init__(self, wsgi_writer): self.writer = wsgi_writer def __call__(self, s): assert_(type(s) is type("")) self.writer(s) class PartialIteratorWrapper: def __init__(self, wsgi_iterator): self.iterator = wsgi_iterator def __iter__(self): # We want to make sure __iter__ is called return IteratorWrapper(self.iterator, None) class IteratorWrapper: def __init__(self, wsgi_iterator, check_start_response): self.original_iterator = wsgi_iterator self.iterator = iter(wsgi_iterator) self.closed = False self.check_start_response = check_start_response def __iter__(self): return self def next(self): assert_(not self.closed, "Iterator read after closed") v = self.iterator.next() if self.check_start_response is not None: assert_(self.check_start_response, "The application returns and we started iterating over its body, but start_response has not yet been called") self.check_start_response = None return v def close(self): self.closed = True if hasattr(self.original_iterator, 'close'): self.original_iterator.close() def __del__(self): if not self.closed: sys.stderr.write( "Iterator garbage collected without being closed") assert_(self.closed, "Iterator garbage collected without being closed") def check_environ(environ): assert_(type(environ) is DictType, "Environment is not of the right type: %r (environment: %r)" % (type(environ), environ)) for key in ['REQUEST_METHOD', 'SERVER_NAME', 'SERVER_PORT', 'wsgi.version', 'wsgi.input', 'wsgi.errors', 'wsgi.multithread', 'wsgi.multiprocess', 'wsgi.run_once']: assert_(key in environ, "Environment missing required key: %r" % (key,)) for key in ['HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH']: assert_(key not in environ, "Environment should not have the key: %s " "(use %s instead)" % (key, key[5:])) if 'QUERY_STRING' not in environ: warnings.warn( 'QUERY_STRING is not in the WSGI environment; the cgi ' 'module will use sys.argv when this variable is missing, ' 'so application errors are more likely', WSGIWarning) for key in environ.keys(): if '.' in key: # Extension, we don't care about its type continue assert_(type(environ[key]) is StringType, "Environmental variable %s is not a string: %r (value: %r)" % (key, type(environ[key]), environ[key])) assert_(type(environ['wsgi.version']) is TupleType, "wsgi.version should be a tuple (%r)" % (environ['wsgi.version'],)) assert_(environ['wsgi.url_scheme'] in ('http', 'https'), "wsgi.url_scheme unknown: %r" % environ['wsgi.url_scheme']) check_input(environ['wsgi.input']) check_errors(environ['wsgi.errors']) # @@: these need filling out: if environ['REQUEST_METHOD'] not in ( 'GET', 'HEAD', 'POST', 'OPTIONS','PUT','DELETE','TRACE'): warnings.warn( "Unknown REQUEST_METHOD: %r" % environ['REQUEST_METHOD'], WSGIWarning) assert_(not environ.get('SCRIPT_NAME') or environ['SCRIPT_NAME'].startswith('/'), "SCRIPT_NAME doesn't start with /: %r" % environ['SCRIPT_NAME']) assert_(not environ.get('PATH_INFO') or environ['PATH_INFO'].startswith('/'), "PATH_INFO doesn't start with /: %r" % environ['PATH_INFO']) if environ.get('CONTENT_LENGTH'): assert_(int(environ['CONTENT_LENGTH']) >= 0, "Invalid CONTENT_LENGTH: %r" % environ['CONTENT_LENGTH']) if not environ.get('SCRIPT_NAME'): assert_('PATH_INFO' in environ, "One of SCRIPT_NAME or PATH_INFO are required (PATH_INFO " "should at least be '/' if SCRIPT_NAME is empty)") assert_(environ.get('SCRIPT_NAME') != '/', "SCRIPT_NAME cannot be '/'; it should instead be '', and " "PATH_INFO should be '/'") def check_input(wsgi_input): for attr in ['read', 'readline', 'readlines', '__iter__']: assert_(hasattr(wsgi_input, attr), "wsgi.input (%r) doesn't have the attribute %s" % (wsgi_input, attr)) def check_errors(wsgi_errors): for attr in ['flush', 'write', 'writelines']: assert_(hasattr(wsgi_errors, attr), "wsgi.errors (%r) doesn't have the attribute %s" % (wsgi_errors, attr)) def check_status(status): assert_(type(status) is StringType, "Status must be a string (not %r)" % status) # Implicitly check that we can turn it into an integer: status_code = status.split(None, 1)[0] assert_(len(status_code) == 3, "Status codes must be three characters: %r" % status_code) status_int = int(status_code) assert_(status_int >= 100, "Status code is invalid: %r" % status_int) if len(status) < 4 or status[3] != ' ': warnings.warn( "The status string (%r) should be a three-digit integer " "followed by a single space and a status explanation" % status, WSGIWarning) def check_headers(headers): assert_(type(headers) is ListType, "Headers (%r) must be of type list: %r" % (headers, type(headers))) header_names = {} for item in headers: assert_(type(item) is TupleType, "Individual headers (%r) must be of type tuple: %r" % (item, type(item))) assert_(len(item) == 2) name, value = item assert_(name.lower() != 'status', "The Status header cannot be used; it conflicts with CGI " "script, and HTTP status is not given through headers " "(value: %r)." % value) header_names[name.lower()] = None assert_('\n' not in name and ':' not in name, "Header names may not contain ':' or '\\n': %r" % name) assert_(header_re.search(name), "Bad header name: %r" % name) assert_(not name.endswith('-') and not name.endswith('_'), "Names may not end in '-' or '_': %r" % name) if bad_header_value_re.search(value): assert_(0, "Bad header value: %r (bad char: %r)" % (value, bad_header_value_re.search(value).group(0))) def check_content_type(status, headers): code = int(status.split(None, 1)[0]) # @@: need one more person to verify this interpretation of RFC 2616 # http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html NO_MESSAGE_BODY = (204, 304) for name, value in headers: if name.lower() == 'content-type': if code not in NO_MESSAGE_BODY: return assert_(0, ("Content-Type header found in a %s response, " "which must not return content.") % code) if code not in NO_MESSAGE_BODY: assert_(0, "No Content-Type header found in headers (%s)" % headers) def check_exc_info(exc_info): assert_(exc_info is None or type(exc_info) is type(()), "exc_info (%r) is not a tuple: %r" % (exc_info, type(exc_info))) # More exc_info checks? def check_iterator(iterator): # Technically a string is legal, which is why it's a really bad # idea, because it may cause the response to be returned # character-by-character assert_(not isinstance(iterator, str), "You should not return a string as your application iterator, " "instead return a single-item list containing that string.")
b51f457a805186eaa93adc2cc94cb037a560f42a
9dba277eeb0d5e9d2ac75e2e17ab5b5eda100612
/exercises/1901040058/1001S02E05_array.py.py
9b79494c7bd80613fe0fbe7ad3d6749416df796a
[]
no_license
shen-huang/selfteaching-python-camp
e8410bfc06eca24ee2866c5d890fd063e9d4be89
459f90c9f09bd3a3df9e776fc64dfd64ac65f976
refs/heads/master
2022-05-02T05:39:08.932008
2022-03-17T07:56:30
2022-03-17T07:56:30
201,287,222
9
6
null
2019-08-08T15:34:26
2019-08-08T15:34:25
null
UTF-8
Python
false
false
319
py
array=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] array.reverse() print(array) str1=''.join('%s'%id for id in array) print(str1) str2=str1[2:8] print(str2) str3=str2[::-1] print(str3) int1=int(str3) print(int1) int2="{0:b}".format(int1) print(int2) int3="{0:o}".format(int1) print(int3) int4="{0:x}".format(int1) print(int4)
1fe2794cabf63d91afdf446afb6eda5ac5eac6e6
e305ea0e2b84b1cbb138e4443d13c915d7f467cd
/面试题58 - I翻转单词顺序.py
063790615dc5a9a89d3f8b2617ae65f2da976cfb
[]
no_license
JoanWu5/jianzhi-offer
770d7fd903779e3e530386705a9a513224a05539
580287d9bcf288d374b64b5a87c9921733a7a4f9
refs/heads/master
2022-10-11T10:36:51.837879
2020-06-06T08:59:16
2020-06-06T08:59:16
268,311,599
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
class Solution(object): def reverseWords(self, s): """ :type s: str :rtype: str """ # s = s.strip().split() # result = [] # for i in range(len(s)-1,-1,-1): # if s[i] != ' ': # result.append(s[i]) # return ' '.join(result) result = [] s = s.strip() i = j = len(s)-1 while i>=0: while i>=0 and s[i]!=' ': i-=1 result.append(s[i+1:j+1]) while s[i]== ' ': i-=1 j=i return ' '.join(result) s = Solution() print(s.reverseWords("a good example"))
cdb3412b2336af2ceed7175b2fbeaf22845d0003
e0ab9c21e51f0ac9d682b901957f2d1e2bc602ee
/product/migrations/0012_auto__del_field_product_has_cutting.py
3fce9499662853a3018722261c7e9ae3e6714abb
[]
no_license
omago/web2print
bb36707932c76d24d07903fa9ee9c011f0d0d942
43bd1d9034e7d6d89457512f1aed376848b64f98
refs/heads/master
2021-07-15T09:00:59.389945
2016-11-05T21:12:54
2016-11-05T21:12:54
23,756,408
0
3
null
null
null
null
UTF-8
Python
false
false
11,322
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Product.has_cutting' db.delete_column('product', 'has_cutting') def backwards(self, orm): # Adding field 'Product.has_cutting' db.add_column('product', 'has_cutting', self.gf('django.db.models.fields.BooleanField')(default=None), keep_default=False) models = { u'flexion.flexion': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Flexion', 'db_table': "'flexion'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'format.format': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Format', 'db_table': "'format'"}, 'height': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product_subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['product_subcategory.ProductSubcategory']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['user.User']", 'null': 'True', 'blank': 'True'}), 'user_format': ('django.db.models.fields.BooleanField', [], {}), 'width': ('django.db.models.fields.IntegerField', [], {}) }, u'paper.paper': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Paper', 'db_table': "'paper'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'paper_finish': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['paper_finish.PaperFinish']", 'null': 'True', 'blank': 'True'}), 'paper_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['paper_type.PaperType']"}), 'paper_weight': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['paper_weight.PaperWeight']"}), 'price_per_kilogram': ('django.db.models.fields.DecimalField', [], {'max_digits': '11', 'decimal_places': '2'}) }, u'paper_finish.paperfinish': { 'Meta': {'ordering': "['-pk']", 'object_name': 'PaperFinish', 'db_table': "'paper_finish'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'paper_type.papertype': { 'Meta': {'ordering': "['-pk']", 'object_name': 'PaperType', 'db_table': "'paper_type'"}, 'better_quality_paper': ('django.db.models.fields.BooleanField', [], {}), 'has_finish': ('django.db.models.fields.BooleanField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'paper_weight.paperweight': { 'Meta': {'ordering': "['-pk']", 'object_name': 'PaperWeight', 'db_table': "'paper_weight'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'weight': ('django.db.models.fields.IntegerField', [], {}) }, u'plastic.plastic': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Plastic', 'db_table': "'plastic'"}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'press.press': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Press', 'db_table': "'press'"}, 'both_sides_print': ('django.db.models.fields.BooleanField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1024'}) }, u'product.product': { 'Meta': {'ordering': "['-pk']", 'object_name': 'Product', 'db_table': "'product'"}, 'cover_paper': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['paper.Paper']", 'null': 'True', 'symmetrical': 'False'}), 'cover_plastic': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['plastic.Plastic']", 'null': 'True', 'symmetrical': 'False'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'flexion': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'product-flexion'", 'null': 'True', 'to': u"orm['flexion.Flexion']"}), 'formats': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'product-formats'", 'null': 'True', 'to': u"orm['format.Format']"}), 'has_cover': ('django.db.models.fields.BooleanField', [], {}), 'has_creasing': ('django.db.models.fields.BooleanField', [], {}), 'has_flexion': ('django.db.models.fields.BooleanField', [], {}), 'has_hole_drilling': ('django.db.models.fields.BooleanField', [], {}), 'has_improper_cutting': ('django.db.models.fields.BooleanField', [], {}), 'has_insert': ('django.db.models.fields.BooleanField', [], {}), 'has_laminating': ('django.db.models.fields.BooleanField', [], {}), 'has_mutations': ('django.db.models.fields.BooleanField', [], {}), 'has_plastic': ('django.db.models.fields.BooleanField', [], {}), 'has_rounding': ('django.db.models.fields.BooleanField', [], {}), 'has_title': ('django.db.models.fields.BooleanField', [], {}), 'has_vacuuming': ('django.db.models.fields.BooleanField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '128', 'null': 'True', 'blank': 'True'}), 'insert_paper': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'product-insert-paper'", 'null': 'True', 'to': u"orm['paper.Paper']"}), 'meta_description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'meta_keywords': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'paper': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'paper'", 'null': 'True', 'to': u"orm['paper.Paper']"}), 'plastic': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'product-plastic'", 'null': 'True', 'to': u"orm['plastic.Plastic']"}), 'press': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['press.Press']", 'null': 'True', 'symmetrical': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '128'}), 'subcategory': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['product_subcategory.ProductSubcategory']"}) }, u'product_category.productcategory': { 'Meta': {'ordering': "['-pk']", 'object_name': 'ProductCategory', 'db_table': "'product_category'"}, 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meta_description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'meta_keywords': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '128'}) }, u'product_subcategory.productsubcategory': { 'Meta': {'ordering': "['-pk']", 'object_name': 'ProductSubcategory', 'db_table': "'product_subcategory'"}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['product_category.ProductCategory']"}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'meta_description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'meta_keywords': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '128'}) }, u'user.user': { 'Meta': {'ordering': "['-pk']", 'object_name': 'User', 'db_table': "'user'"}, 'activation_code': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True'}), 'click_price': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '11', 'decimal_places': '2', 'blank': 'True'}), 'company': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'contact_person': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'e_mail': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '254'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'oib': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'reset_password_code': ('django.db.models.fields.CharField', [], {'max_length': '254', 'null': 'True', 'blank': 'True'}), 'reset_password_code_expiration': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'start_price': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '11', 'decimal_places': '2', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '254', 'db_index': 'True'}) } } complete_apps = ['product']
6c7782966748458a5b72ad96b769db9cf5d70920
c9fcf2ff1acd16a423c47617145cde00cc1936aa
/tests/unit/api/test_task.py
eb114f77afdfcf11338986fe6f0b9774b96cf0bd
[ "MIT" ]
permissive
JonathanAlcantara/fastlane
766dd6701fcf172b6d7bb38983e19bd596cbf0d7
dd923f0769281e94da98c4de39c57e3d447aeea3
refs/heads/master
2020-04-28T19:33:45.310622
2019-03-12T20:46:42
2019-03-12T20:46:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,027
py
# Standard Library from json import loads from uuid import uuid4 # 3rd Party import pytest from preggy import expect # Fastlane from fastlane.models.task import Task def test_get_tasks(client): """Test getting tasks""" Task.create_task("my-task-1") Task.create_task("my-task-2") Task.create_task("my-task-3") resp = client.get("/tasks/") expect(resp.status_code).to_equal(200) data = loads(resp.data) expect(data["items"]).to_length(3) expect(data["total"]).to_equal(3) expect(data["page"]).to_equal(1) expect(data["pages"]).to_equal(1) expect(data["perPage"]).to_equal(3) expect(data["hasNext"]).to_be_false() expect(data["hasPrev"]).to_be_false() def test_get_tasks2(client): """Test getting tasks returns CORS headers""" resp = client.get("/tasks/") expect(resp.status_code).to_equal(200) headers = dict(resp.headers) expect(headers).to_include("Access-Control-Allow-Origin") expect(headers["Access-Control-Allow-Origin"]).to_equal("*") def test_get_tasks3(client): """Test getting tasks returns CORS headers with custom origin""" client.application.config["CORS_ORIGINS"] = "domain.com" resp = client.get("/tasks/") expect(resp.status_code).to_equal(200) headers = dict(resp.headers) expect(headers).to_include("Access-Control-Allow-Origin") expect(headers["Access-Control-Allow-Origin"]).to_equal("*") def test_get_tasks_data(client): """Test getting tasks resource data""" task = Task.create_task("my-task") resp = client.get("/tasks/") data = loads(resp.data) task_data = data["items"][0] with client.application.app_context(): expect(task_data.keys()).to_equal(task.to_dict().keys()) def test_get_tasks_pagination(client): """Test getting tasks pagination""" Task.create_task("my-task-1") Task.create_task("my-task-2") Task.create_task("my-task-3") Task.create_task("my-task-4") app = client.application server_name = app.config["SERVER_NAME"] resp = client.get("/tasks/?page=2") data = loads(resp.data) expect(data["total"]).to_equal(4) expect(data["page"]).to_equal(2) expect(data["hasNext"]).to_be_false() expect(data["hasPrev"]).to_be_true() expect(data["prevUrl"]).to_equal(f"http://{server_name}/tasks/?page=1") expect(data["nextUrl"]).to_be_null() def test_get_tasks_pagination2(client): """ Test getting tasks pagination should respond 400 when page is invalid """ resp1 = client.get("/tasks/?page=asdasdas") expect(resp1.status_code).to_equal(400) resp2 = client.get("/tasks/?page=1019021") expect(resp2.status_code).to_equal(404) resp3 = client.get("/tasks/?page=0") expect(resp3.status_code).to_equal(400) resp4 = client.get("/tasks/?page=-1") expect(resp4.status_code).to_equal(400) def test_get_task_details(client): """Test getting tasks""" task_id = str(uuid4()) job_id = str(uuid4()) task = Task.create_task(task_id) task.create_or_update_job(job_id, "ubuntu", "command") resp = client.get(f"/tasks/{task_id}/") expect(resp.status_code).to_equal(200) data = loads(resp.data) expect(data).to_include("jobs") expect(data["jobs"]).to_length(1) job_data = data["jobs"][0] expect(job_data).to_include("id") expect(job_data["id"]).to_equal(job_id) expect(job_data["url"]).to_equal( f"http://localhost:10000/tasks/{task_id}/jobs/{job_id}/" ) def test_search_tasks1(client): """Tests search task by task_id.""" task_id = f"task-search-{str(uuid4())}" Task.create_task(task_id) Task.create_task(str(uuid4())) Task.create_task(str(uuid4())) resp = client.get("/search/?query=search") expect(resp.status_code).to_equal(200) data = loads(resp.data) expect(data["items"]).to_length(1) def test_search_tasks2(client): """ Test search tasks pagination should respond error when page is invalid """ resp1 = client.get("/search/?query=qwe&page=asdasdas") expect(resp1.status_code).to_equal(400) resp2 = client.get("/search/?query=qwe&page=1019021") expect(resp2.status_code).to_equal(404) resp3 = client.get("/search/?query=qwe&page=0") expect(resp3.status_code).to_equal(400) resp4 = client.get("/search/?query=qwe&page=-1") expect(resp4.status_code).to_equal(400) def test_job_details1(client): """Tests get job details returns proper details and last 20 execs.""" pytest.skip("Not implemented") def test_job_stdout1(client): """Tests get job stdout returns log for last execution.""" pytest.skip("Not implemented") def test_job_stdout2(client): """Tests get job stdout fails if invalid input.""" pytest.skip("Not implemented") def test_job_stderr1(client): """Tests get job stderr returns log for last execution.""" pytest.skip("Not implemented") def test_job_stderr2(client): """Tests get job stderr fails if invalid input.""" pytest.skip("Not implemented") def test_job_logs1(client): """Tests get job logs returns log for last execution.""" pytest.skip("Not implemented") def test_job_logs2(client): """Tests get job logs fails if invalid input.""" pytest.skip("Not implemented") def test_stop_container1(client): """Tests that stopping a running container actually stops the container.""" pytest.skip("Not implemented") def test_stop_container2(client): """Tests that stopping a scheduled job kills the scheduling.""" pytest.skip("Not implemented") def test_stop_container3(client): """Tests that stopping a CRON job kills the scheduling.""" pytest.skip("Not implemented") def test_stop_container4(client): """Tests that stopping without an end slash fails with 404.""" pytest.skip("Not implemented") def test_stop_container5(client): """Tests that stopping a scheduled job with no executions actually kills the scheduled job.""" pytest.skip("Not implemented")
e2bcdd2563f558acd6fe945a5fb664ab81c64eea
127e99fbdc4e04f90c0afc6f4d076cc3d7fdce06
/2021_하반기 코테연습/boj22858.py
655bd7eab90f926e09c88916a4e2769f02d0f280
[]
no_license
holim0/Algo_Study
54a6f10239368c6cf230b9f1273fe42caa97401c
ce734dcde091fa7f29b66dd3fb86d7a6109e8d9c
refs/heads/master
2023-08-25T14:07:56.420288
2021-10-25T12:28:23
2021-10-25T12:28:23
276,076,057
3
1
null
null
null
null
UTF-8
Python
false
false
333
py
from collections import defaultdict n, k = map(int, input().split()) answer = [] after_k = list(map(int, input().split())) d = list(map(int, input().split())) for _ in range(k): tmp = [0] *n for i in range(n): tmp[d[i]-1] = after_k[i] after_k = tmp for i in range(n): print(after_k[i],end=" ")
251820f0a584d8815135b3db62e5b44d48b87e58
4b5ee91dabf402522685cea452ba51c10dbb834e
/server/scrolls/migrations/0019_auto_20180608_1241.py
0e839793ab7e8a2ddbc96b05321e94c0dee0d579
[]
no_license
unscrollinc/unscroll
8fb175d6cf9c2f91bdfc7a97a8da71beca7e702d
88168af51abf8a0bfa06dcc22bd0ec11b671d989
refs/heads/master
2023-01-10T03:15:17.737493
2021-01-28T20:57:57
2021-01-28T20:57:57
196,251,483
7
0
null
2023-01-09T22:06:57
2019-07-10T17:52:37
JavaScript
UTF-8
Python
false
false
381
py
# Generated by Django 2.0.4 on 2018-06-08 12:41 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('scrolls', '0018_auto_20180608_0404'), ] operations = [ migrations.AlterUniqueTogether( name='event', unique_together={('by_user', 'in_scroll', 'title', 'source_url')}, ), ]
e13b598b3ab59e0ff74d9435e43e41c82855e572
5a4ab9ea5e3060bf7744853c0fa261af527876d6
/day03/orm_demo1/boo/migrations/0002_article.py
1d15706a8dcc361abb33ea0a575a577eafed267c
[]
no_license
gaohj/jxlg_0304
3cabe3bc56d6a3e0a97f25bc1b684da27e0a0b96
9e34dba2abcb752fff692b2c25adb3defd098a87
refs/heads/master
2020-06-02T23:34:02.489012
2019-06-28T08:58:56
2019-06-28T08:58:56
191,345,040
3
4
null
null
null
null
UTF-8
Python
false
false
700
py
# Generated by Django 2.0 on 2019-06-14 07:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('boo', '0001_initial'), ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('title', models.CharField(max_length=100)), ('content', models.TextField()), ('pub_time', models.DateTimeField(auto_now_add=True)), ], options={ 'db_table': 'articles', 'ordering': ['pub_time'], }, ), ]
b364d718fc562acdadbf704f30576137acad4fb7
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/AT-SETUP-MIB.py
886100562cc364dc65fb729e95027670ac0c8fde
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
11,116
py
# # PySNMP MIB module AT-SETUP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/AT-SETUP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:14:36 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint") modules, = mibBuilder.importSymbols("AT-SMI-MIB", "modules") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Bits, Unsigned32, MibIdentifier, ModuleIdentity, Counter32, TimeTicks, ObjectIdentity, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, Gauge32, IpAddress, iso, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "Unsigned32", "MibIdentifier", "ModuleIdentity", "Counter32", "TimeTicks", "ObjectIdentity", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "Gauge32", "IpAddress", "iso", "Counter64") TruthValue, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "DisplayString", "TextualConvention") setup = ModuleIdentity((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500)) setup.setRevisions(('2013-10-14 00:00', '2012-09-21 00:00', '2010-11-20 00:00', '2010-10-08 00:00', '2010-09-10 00:00', '2010-09-08 00:00', '2010-06-15 00:15', '2010-04-09 00:00', '2008-10-02 00:00', '2008-09-30 00:00', '2008-09-24 00:00', '2008-05-21 00:00',)) if mibBuilder.loadTexts: setup.setLastUpdated('201310140000Z') if mibBuilder.loadTexts: setup.setOrganization('Allied Telesis, Inc.') class SystemFileOperationType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5)) namedValues = NamedValues(("idle", 1), ("success", 2), ("failure", 3), ("saving", 4), ("syncing", 5)) restartDevice = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 1))).setMaxAccess("readwrite") if mibBuilder.loadTexts: restartDevice.setStatus('deprecated') restartStkMemberDevice = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 4), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: restartStkMemberDevice.setStatus('current') firmware = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2)) currentFirmware = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1)) currSoftVersion = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: currSoftVersion.setStatus('current') currSoftName = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: currSoftName.setStatus('current') currSoftSaveAs = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 3), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: currSoftSaveAs.setStatus('deprecated') currSoftSaveToFile = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 4), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: currSoftSaveToFile.setStatus('current') currSoftSaveStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 5), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: currSoftSaveStatus.setStatus('current') currSoftLastSaveResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 1, 6), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: currSoftLastSaveResult.setStatus('current') nextBootFirmware = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 2)) nextBootVersion = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 2, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: nextBootVersion.setStatus('current') nextBootPath = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 2, 2), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: nextBootPath.setStatus('current') nextBootSetStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 2, 3), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: nextBootSetStatus.setStatus('current') nextBootLastSetResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 2, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: nextBootLastSetResult.setStatus('current') backupFirmware = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 3)) backupVersion = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 3, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupVersion.setStatus('current') backupPath = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 3, 2), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: backupPath.setStatus('current') backupSetStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 3, 3), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupSetStatus.setStatus('current') backupLastSetResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 2, 3, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupLastSetResult.setStatus('current') deviceConfiguration = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3)) runningConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 1)) runCnfgSaveAs = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 1, 1), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: runCnfgSaveAs.setStatus('current') runCnfgSaveAsStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 1, 2), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: runCnfgSaveAsStatus.setStatus('current') runCnfgLastSaveResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: runCnfgLastSaveResult.setStatus('current') nextBootConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 2)) bootCnfgPath = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 2, 1), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: bootCnfgPath.setStatus('current') bootCnfgExists = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 2, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootCnfgExists.setStatus('current') bootCnfgSetStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 2, 3), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootCnfgSetStatus.setStatus('current') bootCnfgLastSetResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 2, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootCnfgLastSetResult.setStatus('current') defaultConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 3)) dfltCnfgPath = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 3, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfltCnfgPath.setStatus('current') dfltCnfgExists = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 3, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfltCnfgExists.setStatus('current') backupConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 4)) backupCnfgPath = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 4, 1), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: backupCnfgPath.setStatus('current') backupCnfgExists = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 4, 2), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupCnfgExists.setStatus('current') backupCnfgSetStatus = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 4, 3), SystemFileOperationType()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupCnfgSetStatus.setStatus('current') backupCnfgLastSetResult = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 3, 4, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: backupCnfgLastSetResult.setStatus('current') serviceConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 5)) srvcTelnetEnable = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 5, 1), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: srvcTelnetEnable.setStatus('current') srvcSshEnable = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 5, 2), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: srvcSshEnable.setStatus('current') guiConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 6)) guiAppletConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 6, 1)) guiAppletSysSwVer = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 6, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: guiAppletSysSwVer.setStatus('current') guiAppletSwVer = MibScalar((1, 3, 6, 1, 4, 1, 207, 8, 4, 4, 4, 500, 6, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: guiAppletSwVer.setStatus('current') mibBuilder.exportSymbols("AT-SETUP-MIB", restartDevice=restartDevice, currSoftSaveStatus=currSoftSaveStatus, dfltCnfgPath=dfltCnfgPath, restartStkMemberDevice=restartStkMemberDevice, bootCnfgSetStatus=bootCnfgSetStatus, backupPath=backupPath, PYSNMP_MODULE_ID=setup, firmware=firmware, deviceConfiguration=deviceConfiguration, guiAppletConfig=guiAppletConfig, currSoftName=currSoftName, guiConfig=guiConfig, bootCnfgExists=bootCnfgExists, backupCnfgSetStatus=backupCnfgSetStatus, bootCnfgPath=bootCnfgPath, backupLastSetResult=backupLastSetResult, backupCnfgPath=backupCnfgPath, runningConfig=runningConfig, nextBootVersion=nextBootVersion, currSoftSaveAs=currSoftSaveAs, runCnfgSaveAsStatus=runCnfgSaveAsStatus, backupConfig=backupConfig, serviceConfig=serviceConfig, setup=setup, backupCnfgLastSetResult=backupCnfgLastSetResult, dfltCnfgExists=dfltCnfgExists, guiAppletSwVer=guiAppletSwVer, backupVersion=backupVersion, guiAppletSysSwVer=guiAppletSysSwVer, defaultConfig=defaultConfig, runCnfgSaveAs=runCnfgSaveAs, runCnfgLastSaveResult=runCnfgLastSaveResult, srvcSshEnable=srvcSshEnable, nextBootSetStatus=nextBootSetStatus, srvcTelnetEnable=srvcTelnetEnable, nextBootFirmware=nextBootFirmware, nextBootPath=nextBootPath, currentFirmware=currentFirmware, backupCnfgExists=backupCnfgExists, currSoftLastSaveResult=currSoftLastSaveResult, backupFirmware=backupFirmware, nextBootLastSetResult=nextBootLastSetResult, SystemFileOperationType=SystemFileOperationType, backupSetStatus=backupSetStatus, currSoftSaveToFile=currSoftSaveToFile, nextBootConfig=nextBootConfig, bootCnfgLastSetResult=bootCnfgLastSetResult, currSoftVersion=currSoftVersion)
ff09036b192720416dd122ea9562138c9f0394ce
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/2/gg_.py
30cf80cef6a2d8b04f1644345692606c1376e383
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'gg_': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
606d8cfb72f406daa19f033514b6c0387ef8ccc6
4542db1d4955aaf7c53c9ff7282d064a066ff393
/2020/December/20-Dec/command line argument,exception handling.py
763d53a7e21443113b29d545b869e123aa5501e4
[]
no_license
mohanbabu2706/100
7227527b0e0af1e4f69d194b7537c7aef27a810d
3c5a8b769fd4205afb3e3fd7e9cbf2ebf053b7b9
refs/heads/master
2023-02-20T09:56:45.970290
2021-01-20T10:09:09
2021-01-20T10:09:09
297,233,598
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
#This program adds up integers that have been passed as arguments in the command line import sys try: total = sum(int(arg)for arg in sys.argv[1:]) print('sum = ',total) expect ValueError: print('Please supply integer arguments')
4152263ec153a74dbe4b9a6e39b6c9bc8a66e341
9307c025d1611a9fd21b34543643a46a03a3d3a4
/orcamentos/core/management/commands/create_admin.py
220674e01324f0d30c05556b6c13f8580aa167ad
[ "MIT" ]
permissive
projetosparalelos/orcamentos
74892ae46bfd86a4e8196fa3feb15cb55692ef03
af88f5a2b5d73f7ea6cf416d871714a0ebcdf252
refs/heads/master
2020-04-27T12:41:59.811244
2019-01-17T04:31:28
2019-01-17T04:31:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
886
py
from django.core.management.base import BaseCommand from django.contrib.auth.models import User from orcamentos.crm.models import Employee class Command(BaseCommand): help = ''' Cria um usuário admin. ''' def handle(self, *args, **kwargs): ''' Cria um Employee. Precisamos de Employee para fazer todas as transações no sistema. ''' username = 'admin' first_name = 'Admin' last_name = 'Admin' email = '[email protected]' user = Employee.objects.create( username=username, first_name=first_name, last_name=last_name, email=email, gender='I' ) user.set_password('admin') user.is_staff = True user.is_superuser = True user.is_active = True user.save() print('Usuário criado com sucesso.')
7d366690a2e18aece41ce666bb4da73a35298049
93713f46f16f1e29b725f263da164fed24ebf8a8
/Library/lib/python3.7/site-packages/sympy/stats/stochastic_process.py
ad68ef5ac3b84750463e3b0a29e5a5de45eaf751
[ "BSD-3-Clause" ]
permissive
holzschu/Carnets
b83d15136d25db640cea023abb5c280b26a9620e
1ad7ec05fb1e3676ac879585296c513c3ee50ef9
refs/heads/master
2023-02-20T12:05:14.980685
2023-02-13T15:59:23
2023-02-13T15:59:23
167,671,526
541
36
BSD-3-Clause
2022-11-29T03:08:22
2019-01-26T09:26:46
Python
UTF-8
Python
false
false
2,228
py
from __future__ import print_function, division from sympy import Basic from sympy.stats.joint_rv import ProductPSpace from sympy.stats.rv import ProductDomain, _symbol_converter class StochasticPSpace(ProductPSpace): """ Represents probability space of stochastic processes and their random variables. Contains mechanics to do computations for queries of stochastic processes. Initialized by symbol, the specific process and distribution(optional) if the random indexed symbols of the process follows any specific distribution, like, in Bernoulli Process, each random indexed symbol follows Bernoulli distribution. For processes with memory, this parameter should not be passed. """ def __new__(cls, sym, process, distribution=None): sym = _symbol_converter(sym) from sympy.stats.stochastic_process_types import StochasticProcess if not isinstance(process, StochasticProcess): raise TypeError("`process` must be an instance of StochasticProcess.") return Basic.__new__(cls, sym, process, distribution) @property def process(self): """ The associated stochastic process. """ return self.args[1] @property def domain(self): return ProductDomain(self.process.index_set, self.process.state_space) @property def symbol(self): return self.args[0] @property def distribution(self): return self.args[2] def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Transfers the task of handling queries to the specific stochastic process because every process has their own logic of handling such queries. """ return self.process.probability(condition, given_condition, evaluate, **kwargs) def compute_expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Transfers the task of handling queries to the specific stochastic process because every process has their own logic of handling such queries. """ return self.process.expectation(expr, condition, evaluate, **kwargs)
054d37c07f6a302bf45d9cc67212e2cd1df7291a
60a831fb3c92a9d2a2b52ff7f5a0f665d4692a24
/IronPythonStubs/release/stubs.min/Autodesk/Revit/DB/Structure/__init___parts/DistributionType.py
d38e3a744760d77f5c4751c442f58658e92cb577
[ "MIT" ]
permissive
shnlmn/Rhino-Grasshopper-Scripts
a9411098c5d1bbc55feb782def565d535b27b709
0e43c3c1d09fb12cdbd86a3c4e2ba49982e0f823
refs/heads/master
2020-04-10T18:59:43.518140
2020-04-08T02:49:07
2020-04-08T02:49:07
161,219,695
11
2
null
null
null
null
UTF-8
Python
false
false
912
py
class DistributionType(Enum,IComparable,IFormattable,IConvertible): """ The type of the distribution enum DistributionType,values: Uniform (0),VaryingLength (1) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass Uniform=None value__=None VaryingLength=None
5c43f2e8a875e9f1939b98e2c16527d7a369d9b7
7e40c8bb28c2cee8e023751557b90ef7ef518326
/level2/level2.py
6b6d4cb94b858331308d54c42e681b7377f549a3
[]
no_license
1337536723/buuctf_pwn
b6e5d65372ed0638a722faef1775026a89321fa3
cca3c4151a50c7d7c3237dab2c5a283dbcf6fccf
refs/heads/master
2023-08-29T19:35:04.352530
2021-11-16T14:06:20
2021-11-16T14:06:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
from pwn import * bin_addr = 0x0804a024 #p = process('./level2') p = remote('node3.buuoj.cn', 26359) elf = ELF('level2') sys_addr = elf.plt['system'] p.recvuntil('Input:') payload = b'a' * ( 0x88 + 4 ) + p32(sys_addr) + p32(0x123) + p32(bin_addr) p.sendline(payload) p.interactive()
c85b43f04745e322592dcd18a3f52120461d5379
95a534d8e0a3d29ae5224e7135f1961a14f2674d
/app/one_to_one/models.py
45135b5ad8e389f9ac61ad03a44a9a63a3899105
[]
no_license
mongkyo/prac-document
7a96bfed1d62411dcf231376898f73b94bdb969f
65a5331130feb3a0e135255c82ea8d2ba23d4ecc
refs/heads/master
2020-03-31T08:06:43.134379
2018-10-11T17:40:42
2018-10-11T17:40:42
152,046,166
0
0
null
null
null
null
UTF-8
Python
false
false
878
py
from django.db import models class Place(models.Model): name = models.CharField(max_length=50) address = models.CharField(max_length=80) def __str__(self): return f'{self.name} the place' class Restaurant(models.Model): place = models.OneToOneField( Place, on_delete=models.CASCADE, primary_key=True, ) serves_hot_dogs = models.BooleanField(default=False) serves_pizza = models.BooleanField(default=False) def __str__(self): return f'{self.place.name} the restaurant' class Waiter(models.Model): restaurant = models.ForeignKey( Restaurant, on_delete=models.CASCADE, ) name = models.CharField(max_length=50) def __str__(self): return f'{name} the waiter at {restaurant}'.formate( name=self.name, restaurant=self.restaurant, )
64e08a3ae92f72b778581622471ad547fefae6dd
b284097fb7eda14307defe2dd19fe290a366a8b3
/addons-vauxoo/invoice_cancel_iva/model/invoice.py
b868901d2963f3be0082d600541caff1c9bfe1db
[]
no_license
OpenBusinessSolutions/odoo-fondeur-server
41420069e77b2faaf12c396e5d3d2a2c165a8ae2
9c588e45011a87ec8d9af73535c4c56485be92f7
refs/heads/master
2021-01-01T05:45:29.736682
2016-04-19T15:21:58
2016-04-19T15:21:58
56,607,743
1
1
null
null
null
null
UTF-8
Python
false
false
4,060
py
# coding: utf-8 ########################################################################### # Module Writen to OpenERP, Open Source Management Solution # Copyright (C) OpenERP Venezuela (<http://openerp.com.ve>). # All Rights Reserved # Credits###################################################### # Coded by: Vauxoo C.A. # Planified by: Nhomar Hernandez # Audited by: Vauxoo C.A. ############################################################################# # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ########################################################################## from openerp.osv import osv from openerp.tools.translate import _ import openerp.workflow as workflow class AccountInvoice(osv.Model): _inherit = 'account.invoice' #~ def action_cancel_draft(self, cr, uid, ids, *args): #~ #~ wf_service = workflow #~ res = super(account_invoice, self).action_cancel_draft(cr, uid, ids, ()) #~ for i in self.browse(cr,uid,ids,context={}): #~ if i.wh_iva_id: #~ wf_service.trg_validate(uid, 'account.wh.iva',i.wh_iva_id.id, 'set_to_draft', cr) #~ return res def action_number(self, cr, uid, ids, context=None): ''' Modified to witholding vat validate ''' wf_service = workflow res = super(AccountInvoice, self).action_number(cr, uid, ids) iva_line_obj = self.pool.get('account.wh.iva.line') invo_brw = self.browse(cr, uid, ids, context=context)[0] state = [('draft', 'set_to_draft'), ( 'confirmed', 'wh_iva_confirmed'), ('done', 'wh_iva_done')] if invo_brw.cancel_true: if invo_brw.wh_iva_id: iva_line_obj.load_taxes(cr, uid, [ i.id for i in invo_brw.wh_iva_id.wh_lines], context=context) for d in state: if invo_brw.wh_iva_id.prev_state == 'cancel': break if not all([False for line in invo_brw.wh_iva_id.wh_lines if not line.invoice_id.move_id]): raise osv.except_osv(_('Error'), _( 'One of the bills involved in the vat retention\ has not been validated, because it does not\ have an associated retention')) wf_service.trg_validate( uid, 'account.wh.iva', invo_brw.wh_iva_id.id, d[1], cr) if d[0] == invo_brw.wh_iva_id.prev_state: break return res def invoice_cancel(self, cr, uid, ids, context=None): if context is None: context = {} context.update({'iva': True}) iva_obj = self.pool.get('account.wh.iva') invo_brw = self.browse(cr, uid, ids, context=context)[0] if invo_brw.wh_iva_id: iva_obj.write(cr, uid, [invo_brw.wh_iva_id.id], { 'prev_state': invo_brw.wh_iva_id.state}, context=context) res = super(AccountInvoice, self).invoice_cancel( cr, uid, ids, context=context) return res def check_iva(self, cr, uid, ids, context=None): if context is None: context = {} invo_brw = self.browse(cr, uid, ids[0], context=context) if invo_brw.wh_iva_id: return False return True
27dcc1afb9eef48f0b54eae6b5613fe0829275e1
c3e10c7174f78a8ac2dc0823a1fcfa4c80afc67b
/1elinearsearch.py
2cca16f64fbbb233b2f111ac68456068d9554835
[]
no_license
PreritBhandari/python-programs-III
3460c63e56ce6383d71ec594274c4b3edf984117
eea3fbecae59b410971e11ff3a50504752cb60da
refs/heads/master
2022-11-19T09:20:11.332556
2020-07-19T03:56:44
2020-07-19T03:56:44
280,787,593
1
0
null
null
null
null
UTF-8
Python
false
false
242
py
# e) linear search def LinearSearch(lys, element): for i in range(len(lys)): if lys[i] == element: return i return False if __name__ == "__main__": print(LinearSearch([1, 2, 3, 4, 5, 2, 1], 2))
42394a236222b49e0c60dc927584f9b29b99139a
f68d246ea82f980706bfa574da91d99797c29b38
/activeCode/heap.py
4d0a8944d04ab21537ff135bbd68862108086e79
[]
no_license
nicolas4d/Problem-Solving-with-Algorithms-and-Data-Structures-using-Python
40684370ab0c8a22894aa58c0479da6697ea0a13
5c7595cab3c5501e4b4177b700708a2609c74e30
refs/heads/master
2020-12-02T13:43:49.547926
2020-02-01T14:19:08
2020-02-01T14:19:08
231,025,645
1
0
null
null
null
null
UTF-8
Python
false
false
184
py
from pythonds.trees import BinHeap bh = BinHeap() bh.insert(5) bh.insert(7) bh.insert(3) bh.insert(11) print(bh.delMin()) print(bh.delMin()) print(bh.delMin()) print(bh.delMin())
066227fc4417ba0fff2fa3345443eb2815dab4c4
b23d294fdffabe72c336644f119860f5ce704eef
/python_1000phone/预科/day2-PIL/04-文字和颜色块.py
fa76439697eb6e145f5254e5ba57f3ea695b190c
[]
no_license
ikaros274556330/my_code
65232758fd20820e9f4fa8cb5a6c91a1969862a2
92db21c4abcbd88b7bd77e78d9f660b4534b5071
refs/heads/master
2020-11-26T09:43:58.200990
2019-12-23T02:08:39
2019-12-23T02:08:39
229,032,315
1
0
null
null
null
null
UTF-8
Python
false
false
766
py
"""__author:吴佩隆""" from PIL import Image,ImageFont,ImageDraw # 1.文字水印 - 将文字渲染在图片上 # 准备图片 image1 = Image.open('./files/chiling.jpg') # 准备文字 # 1)创建字体对象 # ImageFont.truetype(字体文件的路径,字体大小) font1 = ImageFont.truetype('files/bb.ttf',80) # 2)创建draw对象 # draw = ImageDraw.Draw(image1) draw = ImageDraw.Draw(image1) # 3)写 # draw.text(文字坐标,内容,(颜色),字体对象) draw.text((0,0),'Hello Word!',(0,0,0),font1) image1.show() # 2.颜色块 image2 = Image.new('RGB',(200,50),(255,255,255)) # 1)创建draw对象 draw2 = ImageDraw.Draw(image2) # 2)将图片上指定坐标设置为指定颜色 # draw2.point(坐标,颜色) draw2.point((0,0),(255,0,0)) image2.show()
524ed7e94503183a799d610122964444c9b38b8e
304033f60097c489cbc60aab639be45ccdbef1a5
/algorithms/inflearn/section2/7.py
6e47b9bfce07d3c94cfb462166a5a879c41312ce
[]
no_license
pgw928/TIL
3d0c47c07bd1f5c73826daf8579a2b0e3f93cb95
765906f1e6eecad4ad8ec9bf704041433d7eb304
refs/heads/master
2023-06-29T05:46:30.039815
2021-08-10T17:38:11
2021-08-10T17:38:11
288,923,095
3
0
null
null
null
null
UTF-8
Python
false
false
226
py
import sys sys.stdin = open('section2/input.txt', 'rt') n = int(input()) nums = [True]*(n+1) nums[0], nums[1] = False, False for i in range(2, n//2+1): for j in range(2*i, n+1, i): nums[j] = False print(sum(nums))
2ac8ca7010ab02f782764f9cacfde68898b0dc49
10e94d77e56d9cbb979174795c465b679d03d6b3
/tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
0acdbf20c3edc80fb0a163d9f7314403fed1882c
[ "Apache-2.0" ]
permissive
pint1022/tf-coriander
68939732c1ec0f052929c13ef6d8f49e44d423e4
197a685accca4a3f38285d6ac3ccf3998a200090
refs/heads/master
2020-04-14T18:56:40.334257
2019-01-11T00:40:11
2019-01-11T00:40:11
164,038,861
1
0
Apache-2.0
2019-01-04T00:53:40
2019-01-04T00:53:40
null
UTF-8
Python
false
false
22,385
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import tempfile import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = tf.contrib.learn.datasets.load_boston() features = tf.reshape(tf.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) if num_epochs: features = tf.train.limit_epochs(features, num_epochs=num_epochs) target = tf.reshape(tf.constant(boston.target), [-1, 1]) return features, target def iris_input_fn(): iris = tf.contrib.learn.datasets.load_iris() features = tf.reshape(tf.constant(iris.data), [-1, _IRIS_INPUT_DIM]) target = tf.reshape(tf.constant(iris.target), [-1]) return features, target def boston_eval_fn(): boston = tf.contrib.learn.datasets.load_boston() n_examples = len(boston.target) features = tf.reshape( tf.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) target = tf.reshape(tf.constant(boston.target), [n_examples, 1]) return tf.concat(0, [features, features]), tf.concat(0, [target, target]) def linear_model_params_fn(features, target, mode, params): assert mode in ('train', 'eval', 'infer') prediction, loss = ( tf.contrib.learn.models.linear_regression_zero_init(features, target) ) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, target, mode): assert mode in ('train', 'eval', 'infer') prediction, loss = ( tf.contrib.learn.models.linear_regression_zero_init(features, target) ) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def logistic_model_no_mode_fn(features, target): target = tf.one_hot(target, 3, 1, 0) prediction, loss = ( tf.contrib.learn.models.logistic_regression_zero_init(features, target) ) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return {'class': tf.argmax(prediction, 1), 'prob': prediction}, loss, train_op class CheckCallsMonitor(tf.contrib.learn.monitors.BaseMonitor): def __init__(self, expect_calls): super(CheckCallsMonitor, self).__init__() self.begin_calls = None self.end_calls = None self.expect_calls = expect_calls def begin(self, max_steps): self.begin_calls = 0 self.end_calls = 0 def step_begin(self, step): self.begin_calls += 1 return {} def step_end(self, step, outputs): self.end_calls += 1 return False def end(self): assert (self.end_calls == self.expect_calls and self.begin_calls == self.expect_calls) class EstimatorTest(tf.test.TestCase): def testCustomConfig(self): test_random_seed = 5783452 class TestInput(object): def __init__(self): self.random_seed = 0 def config_test_input_fn(self): self.random_seed = tf.get_default_graph().seed return tf.constant([[1.]]), tf.constant([1.]) config = tf.contrib.learn.RunConfig(tf_random_seed=test_random_seed) test_input = TestInput() est = tf.contrib.learn.Estimator(model_fn=linear_model_fn, config=config) est.fit(input_fn=test_input.config_test_input_fn, steps=1) # If input_fn ran, it will have given us the random seed set on the graph. self.assertEquals(test_random_seed, test_input.random_seed) def testCheckInputs(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) # Lambdas so we have to different objects to compare right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32) right_targets = lambda: np.ones(shape=[7, 10], dtype=np.int32) est.fit(right_features(), right_targets(), steps=1) # TODO(wicke): This does not fail for np.int32 because of data_feeder magic. wrong_type_features = np.ones(shape=[7., 8.], dtype=np.int64) wrong_size_features = np.ones(shape=[7, 10]) wrong_type_targets = np.ones(shape=[7., 10.], dtype=np.float32) wrong_size_targets = np.ones(shape=[7, 11]) est.fit(x=right_features(), y=right_targets(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_type_features, y=right_targets(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_size_features, y=right_targets(), steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_type_targets, steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_size_targets, steps=1) def testBadInput(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) self.assertRaisesRegexp(ValueError, 'Either x or input_fn must be provided.', est.fit, x=None, input_fn=None) self.assertRaisesRegexp(ValueError, 'Can not provide both input_fn and x or y', est.fit, x='X', input_fn=iris_input_fn) self.assertRaisesRegexp(ValueError, 'Can not provide both input_fn and x or y', est.fit, y='Y', input_fn=iris_input_fn) self.assertRaisesRegexp(ValueError, 'Can not provide both input_fn and batch_size', est.fit, input_fn=iris_input_fn, batch_size=100) self.assertRaisesRegexp( ValueError, 'Inputs cannot be tensors. Please provide input_fn.', est.fit, x=tf.constant(1.)) def testUntrained(self): boston = tf.contrib.learn.datasets.load_boston() est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) with self.assertRaises(tf.contrib.learn.NotFittedError): _ = est.evaluate( x=boston.data, y=boston.target.astype(np.float64)) with self.assertRaises(tf.contrib.learn.NotFittedError): est.predict(x=boston.data) def testContinueTraining(self): boston = tf.contrib.learn.datasets.load_boston() output_dir = tempfile.mkdtemp() est = tf.contrib.learn.Estimator(model_fn=linear_model_fn, model_dir=output_dir) float64_target = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_target, steps=50) scores = est.evaluate( x=boston.data, y=float64_target, metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = tf.contrib.learn.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston.data, y=float64_target, metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = est2.predict(x=boston.data) other_score = _sklearn.mean_squared_error(predictions, float64_target) self.assertAllClose(other_score, scores['MSE']) # Check we can keep training. est2.fit(x=boston.data, y=float64_target, steps=100) scores3 = est2.evaluate( x=boston.data, y=float64_target, metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error}) self.assertLess(scores3['MSE'], scores['MSE']) def testEstimatorParams(self): boston = tf.contrib.learn.datasets.load_boston() est = tf.contrib.learn.Estimator(model_fn=linear_model_params_fn, params={'learning_rate': 0.01}) est.fit(x=boston.data, y=boston.target, steps=100) def testBostonAll(self): boston = tf.contrib.learn.datasets.load_boston() est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) float64_target = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_target, steps=100) scores = est.evaluate( x=boston.data, y=float64_target, metrics={'MSE': tf.contrib.metrics.streaming_mean_squared_error}) predictions = est.predict(x=boston.data) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(iris.data, iris.target, steps=100) scores = est.evaluate( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): tf.contrib.metrics.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class']) self.assertEqual(predictions['class'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class['class']) self.assertAllClose(predictions['class'], np.argmax(predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = est.predict(x=iris.data)['class'] self.assertEqual(predictions.shape[0], iris.target.shape[0]) def testIrisIterator(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = itertools.islice(iris.target, 100) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = est.predict(x=iris.data)['class'] self.assertEqual(predictions.shape[0], iris.target.shape[0]) def testTrainInputFn(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testTrainStepsIsIncremental(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, steps=15) self.assertEqual(25, est.get_variable_value('global_step')) def testTrainMaxStepsIsNotIncremental(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, max_steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, max_steps=15) self.assertEqual(15, est.get_variable_value('global_step')) def testPredict(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) boston = tf.contrib.learn.datasets.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = est.predict(boston.data) self.assertEqual(output.shape[0], boston.target.shape[0]) def testPredictInputFn(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) boston = tf.contrib.learn.datasets.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = est.predict(input_fn=boston_input_fn) self.assertEqual(output.shape[0], boston.target.shape[0]) def testPredictAsIterable(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) boston = tf.contrib.learn.datasets.load_boston() est.fit(input_fn=boston_input_fn, steps=1) self.assertEqual( len(list(est.predict(boston.data, batch_size=10, as_iterable=True))), boston.target.shape[0]) def testPredictInputFnAsIterable(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) boston = tf.contrib.learn.datasets.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) self.assertEqual( len(list(est.predict(input_fn=input_fn, as_iterable=True))), boston.target.shape[0]) def testWrongInput(self): def other_input_fn(): return {'other': tf.constant([0, 0, 0])}, tf.constant([0, 0, 0]) est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaises(ValueError): est.fit(input_fn=other_input_fn, steps=1) def testMonitors(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=21, monitors=[CheckCallsMonitor(expect_calls=21)]) def testSummaryWriting(self): est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate(input_fn=boston_input_fn, steps=200) loss_summary = tf.contrib.testing.simple_values_from_events( tf.contrib.testing.latest_events(est.model_dir), ['loss']) self.assertEqual(len(loss_summary), 1) def testLossInGraphCollection(self): class _LossCheckerHook(tf.train.SessionRunHook): def begin(self): self.loss_collection = tf.get_collection(tf.GraphKeys.LOSSES) hook = _LossCheckerHook() est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200, monitors=[hook]) self.assertTrue(hook.loss_collection) def test_export_returns_exported_dirname(self): expected = '/path/to/some_dir' with tf.test.mock.patch.object(estimator, 'export') as mock_export_module: mock_export_module._export_estimator.return_value = expected est = tf.contrib.learn.Estimator(model_fn=linear_model_fn) actual = est.export('/path/to') self.assertEquals(actual, expected) class InferRealValuedColumnsTest(tf.test.TestCase): def testInvalidArgs(self): with self.assertRaisesRegexp(ValueError, 'x or input_fn must be provided'): tf.contrib.learn.infer_real_valued_columns_from_input(None) with self.assertRaisesRegexp(ValueError, 'cannot be tensors'): tf.contrib.learn.infer_real_valued_columns_from_input(tf.constant(1.0)) def _assert_single_feature_column( self, expected_shape, expected_dtype, feature_columns): self.assertEqual(1, len(feature_columns)) feature_column = feature_columns[0] self.assertEqual('', feature_column.name) self.assertEqual({ '': tf.FixedLenFeature(shape=expected_shape, dtype=expected_dtype) }, feature_column.config) def testInt32Input(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.int32)) self._assert_single_feature_column([8], tf.int32, feature_columns) def testInt32InputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: (tf.ones(shape=[7, 8], dtype=tf.int32), None)) self._assert_single_feature_column([8], tf.int32, feature_columns) def testInt64Input(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.int64)) self._assert_single_feature_column([8], tf.int64, feature_columns) def testInt64InputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: (tf.ones(shape=[7, 8], dtype=tf.int64), None)) self._assert_single_feature_column([8], tf.int64, feature_columns) def testFloat32Input(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.float32)) self._assert_single_feature_column([8], tf.float32, feature_columns) def testFloat32InputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: (tf.ones(shape=[7, 8], dtype=tf.float32), None)) self._assert_single_feature_column([8], tf.float32, feature_columns) def testFloat64Input(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.float64)) self._assert_single_feature_column([8], tf.float64, feature_columns) def testFloat64InputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: (tf.ones(shape=[7, 8], dtype=tf.float64), None)) self._assert_single_feature_column([8], tf.float64, feature_columns) def testBoolInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): tf.contrib.learn.infer_real_valued_columns_from_input( np.array([[False for _ in xrange(8)] for _ in xrange(7)])) def testBoolInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: (tf.constant(False, shape=[7, 8], dtype=tf.bool), None)) def testStringInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda tf.contrib.learn.infer_real_valued_columns_from_input( np.array([['%d.0' % i for i in xrange(8)] for _ in xrange(7)])) def testStringInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda tf.contrib.learn.infer_real_valued_columns_from_input_fn( lambda: ( tf.constant([['%d.0' % i for i in xrange(8)] for _ in xrange(7)]), None)) def testBostonInputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) self._assert_single_feature_column( [_BOSTON_INPUT_DIM], tf.float64, feature_columns) def testIrisInputFn(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( iris_input_fn) self._assert_single_feature_column( [_IRIS_INPUT_DIM], tf.float64, feature_columns) class ReplicaDeviceSetterTest(tf.test.TestCase): def testVariablesAreOnPs(self): with tf.device(estimator._get_replica_device_setter( tf.contrib.learn.RunConfig(num_ps_replicas=1))): v = tf.Variable([1, 2]) w = tf.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker', a.device) def testVariablesAreLocal(self): with tf.device(estimator._get_replica_device_setter( tf.contrib.learn.RunConfig(num_ps_replicas=0))): v = tf.Variable([1, 2]) w = tf.Variable([2, 1]) a = v + w self.assertDeviceEqual('', v.device) self.assertDeviceEqual('', v.initializer.device) self.assertDeviceEqual('', w.device) self.assertDeviceEqual('', w.initializer.device) self.assertDeviceEqual('', a.device) def testMutableHashTableIsOnPs(self): with tf.device(estimator._get_replica_device_setter( tf.contrib.learn.RunConfig(num_ps_replicas=1))): default_val = tf.constant([-1, -1], tf.int64) table = tf.contrib.lookup.MutableHashTable(tf.string, tf.int64, default_val) input_string = tf.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('/job:ps/task:0', table._table_ref.device) self.assertDeviceEqual('/job:ps/task:0', output.device) def testMutableHashTableIsLocal(self): with tf.device(estimator._get_replica_device_setter( tf.contrib.learn.RunConfig(num_ps_replicas=0))): default_val = tf.constant([-1, -1], tf.int64) table = tf.contrib.lookup.MutableHashTable(tf.string, tf.int64, default_val) input_string = tf.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('', table._table_ref.device) self.assertDeviceEqual('', output.device) def testTaskIsSetOnWorkerWhenJobNameIsSet(self): with tf.device( estimator._get_replica_device_setter( tf.contrib.learn.RunConfig( num_ps_replicas=1, job_name='worker', task=3))): v = tf.Variable([1, 2]) w = tf.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker/task:3', a.device) if __name__ == '__main__': tf.test.main()
99971c0b16dacf336e6bb8cfec3810444af31ef1
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2882/39190/304719.py
48b5449910760181ac3be5702cc6fd925bd7e81f
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
690
py
def func3(arr): arr.reverse() rra=arr arr.reverse() peak=max(arr) if arr.index(peak)>0: for i in range(arr.index(peak)-1): if int(arr[i])>=int(arr[i+1]): return False if arr.index(peak)<len(arr)-rra.index(peak)-1: for i in range(arr.index(peak),len(arr)-rra.index(peak)-2): if int(arr[i])!=int(arr[i+1]): return False if rra.index(peak)>0: for i in range(len(arr)-rra.index(peak)-1,len(arr)-1): if int(arr[i])<=int(arr[i+1]): return False return True ip=input() arr=input().split(" ") op=func3(arr) if op==True: print("YES") else: print("NO")
daa228415a1b3cdca8c7512fe938035567946c7a
fcfd7f52a5592a5f4f46940c78634bf7f40c2ef5
/apps/organization/views.py
5ca8e34bde2db550cbfe23ba3b9c388ffa6e1858
[]
no_license
fank-cd/course_ol_exercise
0acdca8088c145c7bff9b54a68b62de0eb1c0510
10a504a0cfa9bf7754ff7da8e504135e82fdd169
refs/heads/master
2020-03-26T05:12:46.040472
2018-08-13T07:48:19
2018-08-13T07:48:19
144,265,376
0
0
null
null
null
null
UTF-8
Python
false
false
9,775
py
# coding:utf-8 from django.shortcuts import render from django.http import HttpResponse from django.views.generic.base import View from django.db.models import Q from courses.models import Course from operation.models import UserFavorite from .models import CourseOrg, CityDict, Teacher from .forms import UserAskForm from pure_pagination import Paginator, EmptyPage, PageNotAnInteger # Create your views here. class OrgView(View): def get(self, request): all_orgs = CourseOrg.objects.all() for org in all_orgs: org.course_nums = org.course_set.count() org.save() all_citys = CityDict.objects.all() hot_orgs = all_orgs.order_by("-click_nums")[:3] search_keywords = request.GET.get('keywords', '') if search_keywords: all_orgs = all_orgs.filter(Q(name__icontains=search_keywords) | Q(desc__contains=search_keywords) | Q(address__icontains=search_keywords)) city_id = request.GET.get('city', '') category = request.GET.get('ct', '') sort = request.GET.get('sort', '') if sort: if sort == 'students': all_orgs = all_orgs.order_by("-students") if sort == "courses": all_orgs = all_orgs.order_by("-course_nums") if city_id: all_orgs = all_orgs.filter(city_id=int(city_id)) if category: all_orgs = all_orgs.filter(category=category) org_nums = all_orgs.count() try: page = request.GET.get('page', 1) except PageNotAnInteger: page = 1 p = Paginator(all_orgs, 4, request=request) orgs = p.page(page) context = {'all_orgs': orgs, "all_citys": all_citys, 'org_nums': org_nums, "city_id": city_id, "category": category, "hot_orgs": hot_orgs, "sort": sort, "search_keywords": search_keywords} return render(request, "org-list.html", context=context) class AddUserAskView(View): def post(self,request): userask_form = UserAskForm(request.POST) if userask_form.is_valid(): user_ask = userask_form.save(commit=True) return HttpResponse('{"status":"success"}', content_type='application/json') else: return HttpResponse('{"status":"fail", "msg":"您的字段有错误,请检查"}', content_type='application/json') class OrgHomeView(View): def get(self, request, org_id): course_org = CourseOrg.objects.get(id=int(org_id)) all_courses = course_org.course_set.all()[:4] all_teachers = course_org.teacher_set.all()[:2] current_page = 'home' has_fav = False course_org.click_nums += 1 course_org.save() if request.user.is_authenticated(): if UserFavorite.objects.filter(user=request.user, fav_id=int(org_id), fav_type=2): has_fav = True return render(request, 'org-detail-homepage.html', { 'course_org': course_org, 'all_courses': all_courses, 'all_teacher': all_teachers, 'current_page': current_page, 'has_fav': has_fav, }) class OrgCourseView(View): def get(self, request, org_id): course_org = CourseOrg.objects.get(id=int(org_id)) all_course = course_org.course_set.all() current_page = 'course' has_fav = False if request.user.is_authenticated(): if UserFavorite.objects.filter(user=request.user, fav_id=int(org_id), fav_type=2): has_fav = True return render(request, 'org-detail-course.html', { 'all_courses': all_course, 'course_org': course_org, 'current_page': current_page, 'has_fav': has_fav, }) class OrgDescView(View): def get(self, request, org_id): current_page = 'desc' course_org = CourseOrg.objects.get(id=int(org_id)) has_fav = False if request.user.is_authenticated(): if UserFavorite.objects.filter(user=request.user, fav_id=int(org_id), fav_type=2): has_fav = True return render(request, 'org-detail-desc.html', { 'course_org': course_org, 'current_page': current_page, 'has_fav': has_fav, }) class OrgTeacherView(View): def get(self, request, org_id): current_pgae = "teacher" course_org = CourseOrg.objects.get(id=int(org_id)) all_teachers = course_org.teacher_set.all() has_fav = False if request.user.is_authenticated(): if UserFavorite.objects.filter(user=request.user, fav_id=int(org_id), fav_type=2): has_fav = True return render(request, 'org-detail-teachers.html', { 'all_teachers': all_teachers, 'course_org': course_org, 'current_page': current_pgae, 'has_fav': has_fav, }) class AddFavView(View): """ 用户收藏与取消收藏功能 """ def post(self, request): id = request.POST.get('fav_id', 0) type = request.POST.get('fav_type', 0) if request.user.is_authenticated(): exist_records = UserFavorite.objects.filter(user=request.user, fav_id=int(id), fav_type=int(type)) if exist_records: # 如果记录已经存在, 则表示用户取消收藏 exist_records.delete() if int(type) == 1: course = Course.objects.get(id=int(id)) course.fav_nums -= 1 if course.fav_nums < 0: course.fav_nums = 0 course.save() elif int(type) == 2: org = CourseOrg.objects.get(id=int(id)) org.fav_nums -= 1 if org.fav_nums < 0: org.fav_nums = 0 org.save() elif int(type) == 3: teacher = Teacher.objects.get(id=int(id)) teacher.fav_nums -= 1 if teacher.fav_nums < 0: teacher.fav_nums = 0 teacher.save() return HttpResponse('{"status":"success", "msg":"收藏"}', content_type='application/json') else: user_fav = UserFavorite() # 过滤掉未取到fav_id type的默认情况 if int(type) > 0 and int(id) > 0: user_fav.fav_id = int(id) user_fav.fav_type = int(type) user_fav.user = request.user user_fav.save() if int(type) == 1: course = Course.objects.get(id=int(id)) course.fav_nums += 1 course.save() elif int(type) == 2: org = CourseOrg.objects.get(id=int(id)) org.fav_nums += 1 org.save() elif int(type) == 3: teacher = Teacher.objects.get(id=int(id)) teacher.fav_nums += 1 teacher.save() return HttpResponse('{"status":"success", "msg":"已收藏"}', content_type='application/json') else: return HttpResponse('{"status":"fail", "msg":"收藏出错"}', content_type='application/json') else: print "dd" return HttpResponse('{"status":"fail", "msg":"用户未登录"}', content_type='application/json') class TeacherListView(View): def get(self, request): all_teacher = Teacher.objects.all() teacher_nums = all_teacher.count() sort = request.GET.get("sort", "") if sort: if sort == 'hot': all_teacher = all_teacher.order_by('-click_nums') search_keywords = request.GET.get('keywords', '') if search_keywords: all_teacher = all_teacher.filter(Q(name__icontains=search_keywords) | Q(work_company__contains=search_keywords)) rank_teachers = Teacher.objects.all().order_by("-fav_nums")[:5] try: page = request.GET.get('page', 1) except PageNotAnInteger: page = 1 p = Paginator(all_teacher, 4, request=request) teachers = p.page(page) return render(request, "teachers-list.html", { "all_teacher": teachers, "teacher_nums": teacher_nums, 'sort': sort, "rank_teachers": rank_teachers, "search_keywords": search_keywords, }) class TeacherDetailView(View): def get(self, request, teacher_id): teacher = Teacher.objects.get(id=int(teacher_id)) all_course = teacher.course_set.all() teacher.click_nums += 1 teacher.save() rank_teacher = Teacher.objects.all().order_by("fav_nums")[:5] has_hav_teacher = False has_hav_org = False if request.user.is_authenticated(): if UserFavorite.objects.filter(user=request.user, fav_type=3, fav_id=teacher.id): has_hav_teacher = True if UserFavorite.objects.filter(user=request.user, fav_type=2, fav_id=teacher.org.id): has_hav_org = True return render(request, "teacher-detail.html", { "teacher": teacher, "all_course": all_course, "rank_teacher": rank_teacher, "has_fav_teacher": has_hav_teacher, "has_hav_org": has_hav_org, })
9683287354e0075e12fd77dad8cf739231fb23f6
0ac4831465d0273effd087c75484474985fd1106
/link_rec/forms.py
ae67ff1282aa8f0d1c546ad426aa3d76d792747d
[]
no_license
duggalr2/linkedin_recommend
af2a040b69cca4f190b8fe064f8048c0b412483c
d535df1643f2a37b8473962f496d83464aa839f3
refs/heads/master
2020-12-02T22:39:51.501151
2017-12-05T16:19:58
2017-12-05T16:19:58
96,162,172
7
2
null
null
null
null
UTF-8
Python
false
false
5,627
py
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.forms import formset_factory, ModelForm INDUSTRY_CHOICES = ( ('software', 'Software'), ('engineering', 'Engineering, excluding Software'), ('research', 'Research'), ('design', 'Design'), ('data_science', 'Data Science'), ('product_manager', 'Product Manager'), ('business_finance', 'Business and Finance'), ('startup_founder', 'Startup Founders/Executives'), ('admin_coordination', 'Startup Founders/Executives'), ('startup_founder', 'Admin/Coordination/IT/HR'), ('crypto_blockchain', 'Cryptography/Blockchain') ) SCHOOL_NAMES = ( ('university_of_toronto', 'University of Toronto'), ('harvard', 'Harvard University'), ('massachusetts_institute_of_technology', 'Massachusetts Institute of Technology'), ('waterloo', 'University of Waterloo'), ('stanford', 'Stanford University'), ('western', 'Western University'), ('university_of_california_berkeley', 'University of California, Berkeley'), ('caltech', 'Caltech'), ('cornell', 'Cornell University'), ('oxford', 'Oxford University'), ('carnegie_mellon_university', 'Carnegie Mellon University'), ('university_of_pennsylvania', 'University of Pennsylvania'), ('cambridge', 'University of Cambridge'), ('university_of_california_los_angeles', 'University of California, Los Angeles'), ('queens', "Queen's University"), ('columbia', 'Columbia University') ) PROGRAM_CHOICES = ( ('computer_science', 'Computer Science'), ('commerce_business', 'Commerce/Business/Finance'), ('humanities_lifesci', 'Humanities/LifeSci/HealthSci'), ('math_physics_statistics', 'Math/Physics/Statistics'), ('engineering', 'Engineering'), ) class SignUpForm(UserCreationForm): # this will add additional fields to the built-in User Creation Form school = forms.ChoiceField(choices=SCHOOL_NAMES,) school_program = forms.ChoiceField(choices=PROGRAM_CHOICES, ) industry_of_interest = forms.MultipleChoiceField(widget=forms.CheckboxSelectMultiple, choices=INDUSTRY_CHOICES, ) school_of_interest = forms.MultipleChoiceField(widget=forms.CheckboxSelectMultiple, choices=SCHOOL_NAMES, ) name = forms.CharField(max_length=250) class Meta: model = User fields = ('name', 'username', 'password1', 'password2', 'school', 'school_program', 'industry_of_interest', 'school_of_interest') MISCLASSIFY_SELECTION = ( ('education_program', 'Education Program'), ('job_industry', 'Job Industry'), ) class MisClassify(forms.Form): first_selection = forms.ChoiceField(choices=MISCLASSIFY_SELECTION, ) class InitialEduClassify(forms.Form): pass class JobMisClassify(forms.Form): # edu_correct = forms.ChoiceField(choices=MISCLASSIFY_SELECTION,) def __init__(self, *args, **kwargs): extra = kwargs.pop('extra') super(JobMisClassify, self).__init__(*args, **kwargs) for i, job in enumerate(extra): self.fields['custom_%s' % i] = forms.ChoiceField(label=job, choices=INDUSTRY_CHOICES, required=False) # self.fields['custom_%s' % i] = forms.CharField(label=job, max_length=250, required=False) def extra_answers(self): for name, value in self.cleaned_data.items(): if name.startswith('custom_'): yield (self.fields[name].label, value) # super(EducationMisClassify, self).__init__(*args, **kwargs) # for i in range(0, n): # self.fields["edu_correct %d" % i] = forms.ChoiceField(choices=MISCLASSIFY_SELECTION,) # edu_correct = forms.CharField(max_length=250) class EducationMisClassify(forms.Form): edu_correct = forms.ChoiceField(choices=MISCLASSIFY_SELECTION,) # job_selection = forms.MultipleChoiceField(widget=forms.CheckboxSelectMultiple, choices=(('job1', 'Default Job 1'),)) #class AuthorForm(ModelForm): # class Meta: # model = Author # fields = ['name', 'title', 'birth_date'] # # #class BookForm(ModelForm): # class Meta: # model = Book # fields = ['name', 'authors'] # # #class MultiWidgetBasic(forms.widgets.MultiWidget): # def __init__(self, attrs=None): # widgets = [forms.TextInput(), # forms.TextInput()] # super(MultiWidgetBasic, self).__init__(widgets, attrs) # # def decompress(self, value): # if value: # return pickle.loads(value) # else: # return ['', ''] # # #class MultiExampleField(forms.fields.MultiValueField): # widget = MultiWidgetBasic # # def __init__(self, *args, **kwargs): # list_fields = [forms.fields.CharField(max_length=31), # forms.fields.CharField(max_length=31)] # super(MultiExampleField, self).__init__(list_fields, *args, **kwargs) # # def compress(self, values): # return pickle.dumps(values) # # #class FormForm(forms.Form): # a = forms.BooleanField() # b = forms.CharField(max_length=32) # c = forms.CharField(max_length=32, widget=forms.widgets.Textarea()) # d = forms.CharField(max_length=32, widget=forms.widgets.SplitDateTimeWidget()) # e = forms.CharField(max_length=32, widget=MultiWidgetBasic()) # f = MultiExampleField() # # class UserForm(forms.ModelForm): # class Meta: # model = User # fields = ('first_name', 'last_name', 'email') # # # class ProfileForm(forms.ModelForm): # class Meta: # model = Profile # fields = ('bio', 'location', 'birth_date')
b40e44faa5e369870bc288871dc9c304d99d2c3e
34474048ec5c4850623cf0fea993b43de76fada4
/Tests/unittest/code_gen/tac_o1/mix_global_local_nested_int_char_array.tac
3af956749d4f00960c094f9db45c8c0e838c9ba5
[]
no_license
imsure/C--
69a80e152936e31b14319ab16c2317d2cacc9165
9991e7135d6ebc8f6f08f46f37b82bfe353ec17f
refs/heads/master
2021-01-13T02:04:07.295401
2015-05-01T01:26:07
2015-05-01T01:26:07
30,732,455
0
0
null
null
null
null
UTF-8
Python
false
false
1,027
tac
main: Enter main 108 _taddr0 = x + 0 *_taddr0(int) = 0 _taddr1 = y + 0 *_taddr1(char) = 1 _taddr2 = x + 4 *_taddr2(int) = 1 _taddr3 = y + 1 *_taddr3(char) = 2 _taddr4 = x + 8 *_taddr4(int) = 2 _taddr5 = y + 2 *_taddr5(char) = 3 _taddr6 = x + 12 *_taddr6(int) = 3 _taddr7 = y + 3 *_taddr7(char) = 4 _taddr8 = x + 16 *_taddr8(int) = 4 _taddr9 = y + 4 *_taddr9(char) = 55 _taddr10 = x + 0 _tvar0 = *_taddr10(int) * 1 _taddr11 = y + _tvar0 _tvar0 = *_taddr11(char) * 4 _taddr12 = x + _tvar0 _tvar0 = *_taddr12(int) * 1 _taddr13 = y + _tvar0 _tvar0 = *_taddr13(char) * 4 _taddr14 = x + _tvar0 _tvar0 = *_taddr14(int) * 1 _taddr15 = y + _tvar0 _tvar0 = *_taddr15(char) * 4 _taddr16 = x + _tvar0 _tvar0 = *_taddr16(int) * 1 _taddr17 = y + _tvar0 _tvar0 = *_taddr17(char) * 4 _taddr18 = x + _tvar0 _tvar0 = *_taddr18(int) * 1 _taddr19 = y + _tvar0 u = *_taddr19(char) Param u Call print_int 1 _tstr0 = "\n" Param _tstr0 Call print_string 1 Return
259ffde6c20e473442c24385d68c132bf7ce4779
006ff11fd8cfd5406c6f4318f1bafa1542095f2a
/RecoLuminosity/LumiDB/scripts/specificLumi.py
916399856d1c2d32dd8f1828936869fa5f3be98f
[]
permissive
amkalsi/cmssw
8ac5f481c7d7263741b5015381473811c59ac3b1
ad0f69098dfbe449ca0570fbcf6fcebd6acc1154
refs/heads/CMSSW_7_4_X
2021-01-19T16:18:22.857382
2016-08-09T16:40:50
2016-08-09T16:40:50
262,608,661
0
0
Apache-2.0
2020-05-09T16:10:07
2020-05-09T16:10:07
null
UTF-8
Python
false
false
20,778
py
#!/usr/bin/env python ######################################################################## # Command to produce perbunch and specific lumi # # # # Author: Zhen Xie # ######################################################################## # # dump all fills into files. # allfills.txt all the existing fills. # fill_num.txt all the runs in the fill # dumpFill -o outputdir # dumpFill -f fillnum generate runlist for the given fill # import os,os.path,sys,math,array,datetime,time,calendar,re import coral from RecoLuminosity.LumiDB import argparse,sessionManager,lumiTime,CommonUtil,lumiCalcAPI,lumiParameters,revisionDML,normDML MINFILL=1800 MAXFILL=9999 allfillname='allfills.txt' def getFillFromDB(schema,fillnum): ''' output: {run:starttime} ''' runtimesInFill={} fillrundict=lumiCalcAPI.fillrunMap(schema,fillnum) if len(fillrundict)>0: runs=fillrundict.values()[0] runlsdict=dict(zip(runs,[None]*len(runs))) runresult=lumiCalcAPI.runsummary(schema,runlsdict) for perrundata in runresult: runtimesInFill[perrundata[0]]=perrundata[7] return runtimesInFill def listfilldir(indir): ''' list all fills contained in the given dir input: indir output: [fill] ''' fillnamepat=r'^[0-9]{4}$' p=re.compile(fillnamepat) processedfills=[] dirList=os.listdir(indir) for fname in dirList: if p.match(fname) and os.path.isdir(os.path.join(indir,fname)):#found fill dir allfs=os.listdir(os.path.join(indir,fname)) for myfile in allfs: sumfilenamepat=r'^[0-9]{4}_bxsum_CMS.txt$' s=re.compile(sumfilenamepat) if s.match(myfile): #only if fill_summary_CMS.txt file exists processedfills.append(int(fname)) return processedfills def lastcompleteFill(infile): ''' parse infile to find LASTCOMPLETEFILL input: input file name output: last completed fill number ''' lastfill=None hlinepat=r'(LASTCOMPLETEFILL )([0-9]{4})' h=re.compile(hlinepat) dqmfile=open(infile,'r') for line in dqmfile: result=h.match(line) if result: lastfill=result.group(2) break return int(lastfill) def calculateSpecificLumi(lumi,lumierr,beam1intensity,beam1intensityerr,beam2intensity,beam2intensityerr): ''' calculate specific lumi input: instlumi, instlumierror,beam1intensity,beam1intensityerror,beam2intensity,beam2intensityerror output (specific lumi value,specific lumi error) ''' specificlumi=0.0 specificlumierr=0.0 if beam1intensity<0: beam1intensity=0 if beam2intensity<0: beam2intensity=0 if beam1intensity>0.0 and beam2intensity>0.0: specificlumi=float(lumi)/(float(beam1intensity)*float(beam2intensity)) specificlumierr=specificlumi*math.sqrt(lumierr**2/lumi**2+beam1intensityerr**2/beam1intensity**2+beam2intensityerr**2/beam2intensity**2) return (specificlumi,specificlumierr) def getFillFromFile(fillnum,inputdir): ''' parse fill_xxx.txt files in the input directory for runs, starttime in the fill input: fillnumber, input dir output: {run:tarttime} ''' runtimesInFill={} #look for files 'fill_num.txt' in inputdir for filename in os.listdir(inputdir): mpat=r'^fill_[0-9]{4}.txt$' m=re.compile(mpat) if m.match(filename) is None: continue filename=filename.strip() if filename.find('.')==-1: continue basename,extension=filename.split('.') if not extension or extension!='txt': continue if basename.find('_')==-1: continue prefix,number=basename.split('_') if not number : continue if fillnum!=int(number):continue f=open(os.path.join(inputdir,'fill_'+number+'.txt'),'r') for line in f: l=line.strip() fields=l.split(',') if len(fields)<2 : continue runtimesInFill[int(fields[0])]=fields[1] f.close() return runtimesInFill #####output methods#### def filltofiles(allfills,runsperfill,runtimes,dirname): ''' write runnumber:starttime map per fill to files ''' f=open(os.path.join(dirname,allfillname),'w') for fill in allfills: print >>f,'%d'%(fill) f.close() for fill,runs in runsperfill.items(): filename='fill_'+str(fill)+'.txt' if len(runs)!=0: f=open(os.path.join(dirname,filename),'w') for run in runs: print >>f,'%d,%s'%(run,runtimes[run]) f.close() def specificlumiTofile(fillnum,filldata,outdir): # #input : fillnum # filldata: {bxidx:[[lstime,beamstatusfrac,lumivalue,lumierror,speclumi,speclumierr]],[]} #sorted by bxidx, sorted by lstime inside list #check outdir/fillnum subdir exists; if not, create it; else outdir=outdir/fillnum # if not filldata: print 'empty input data, do nothing for fill ',fillnum return timedict={}#{lstime:[[stablebeamfrac,lumi,lumierr,speclumi,speclumierr]]} filloutdir=os.path.join(outdir,str(fillnum)) if not os.path.exists(filloutdir): os.mkdir(filloutdir) for cmsbxidx,perbxdata in filldata.items(): lhcbucket=0 if cmsbxidx!=0: lhcbucket=(cmsbxidx-1)*10+1 a=sorted(perbxdata,key=lambda x:x[0]) filename=str(fillnum)+'_lumi_'+str(lhcbucket)+'_CMS.txt' linedata=[] for perlsdata in a: ts=int(perlsdata[0]) beamstatusfrac=perlsdata[1] lumi=perlsdata[2] lumierror=perlsdata[3] #beam1intensity=perlsdata[4] #beam2intensity=perlsdata[5] speclumi=perlsdata[4] speclumierror= perlsdata[5] if lumi>0: linedata.append([ts,beamstatusfrac,lumi,lumierror,speclumi,speclumierror]) if not timedict.has_key(ts): timedict[ts]=[] timedict[ts].append([beamstatusfrac,lumi,lumierror,speclumi,speclumierror]) if len(linedata)>10:#at least 10 good ls f=open(os.path.join(filloutdir,filename),'w') for line in linedata: print >>f, '%d\t%e\t%e\t%e\t%e\t%e'%(line[0],line[1],line[2],line[3],line[4],line[5]) f.close() #print 'writing avg file' summaryfilename=str(fillnum)+'_lumi_CMS.txt' f=None lstimes=timedict.keys() lstimes.sort() fillseg=[] lscounter=0 for lstime in lstimes: allvalues=timedict[lstime] transposedvalues=CommonUtil.transposed(allvalues,0.0) bstatfrac=transposedvalues[0][0]#beamstatus does not change with bx position lumivals=transposedvalues[1] lumitot=sum(lumivals) if bstatfrac==1.0 : fillseg.append([lstime,lumitot]) lumierrs=transposedvalues[2] lumierrortot=math.sqrt(sum(map(lambda x:x**2,lumierrs))) specificvals=transposedvalues[3] specificavg=sum(specificvals)/float(len(specificvals))#avg spec lumi specificerrs=transposedvalues[4] specifictoterr=math.sqrt(sum(map(lambda x:x**2,specificerrs))) specificerravg=specifictoterr/float(len(specificvals)) if lscounter==0: f=open(os.path.join(filloutdir,summaryfilename),'w') lscounter+=1 print >>f,'%d\t%e\t%e\t%e\t%e\t%e'%(lstime,bstatfrac,lumitot,lumierrortot,specificavg,specificerravg) if f is not None: f.close() #print 'writing summary file' fillsummaryfilename=str(fillnum)+'_bxsum_CMS.txt' f=open(os.path.join(filloutdir,fillsummaryfilename),'w') if len(fillseg)==0: print >>f,'%s'%('#no stable beams') f.close() return previoustime=fillseg[0][0] boundarytime=fillseg[0][0] #print 'boundary time ',boundarytime summaryls={} summaryls[boundarytime]=[] for [lstime,lumitot] in fillseg:#fillseg is everything with stable beam flag if lstime-previoustime>50.0: boundarytime=lstime #print 'found new boundary ',boundarytime summaryls[boundarytime]=[] # print 'appending ',boundarytime,lstime,lumitot summaryls[boundarytime].append([lstime,lumitot]) previoustime=lstime #print summaryls summarylstimes=summaryls.keys() summarylstimes.sort() lumip=lumiParameters.ParametersObject() for bts in summarylstimes: startts=bts tsdatainseg=summaryls[bts] #print 'tsdatainseg ',tsdatainseg stopts=tsdatainseg[-1][0] plu=max(CommonUtil.transposed(tsdatainseg,0.0)[1]) lui=sum(CommonUtil.transposed(tsdatainseg,0.0)[1])*lumip.lslengthsec() print >>f,'%d\t%d\t%e\t%e'%(startts,stopts,plu,lui) f.close() def getSpecificLumi(schema,fillnum,inputdir,dataidmap,normmap,xingMinLum=0.0,amodetag='PROTPHYS',bxAlgo='OCC1'): ''' specific lumi in 1e-30 (ub-1s-1) unit lumidetail occlumi in 1e-27 1309_lumi_401_CMS.txt time(in seconds since January 1,2011,00:00:00 UTC) stab(fraction of time spent in stable beams for this time bin) l(lumi in Hz/ub) dl(point-to-point error on lumi in Hz/ub) sl(specific lumi in Hz/ub) dsl(error on specific lumi) 20800119.0 1 -0.889948 0.00475996848729 0.249009 0.005583287562 -0.68359 6.24140208607 0.0 0.0 0.0 0.0 0.0 0.0 0.0383576 0.00430892097862 0.0479095 0.00430892097862 66.6447 4.41269758764 0.0 0.0 0.0 result [(time,beamstatusfrac,lumi,lumierror,speclumi,speclumierror)] ''' t=lumiTime.lumiTime() fillbypos={}#{bxidx:[[ts,beamstatusfrac,lumi,lumierror,spec1,specerror],[]]} runtimesInFill=getFillFromDB(schema,fillnum)#{runnum:starttimestr} runlist=runtimesInFill.keys() if not runlist: return fillbypos irunlsdict=dict(zip(runlist,[None]*len(runlist))) #prirunlsdict GrunsummaryData=lumiCalcAPI.runsummaryMap(session.nominalSchema(),irunlsdict) lumidetails=lumiCalcAPI.deliveredLumiForIds(schema,irunlsdict,dataidmap,GrunsummaryData,beamstatusfilter=None,normmap=normmap,withBXInfo=True,bxAlgo=bxAlgo,xingMinLum=xingMinLum,withBeamIntensity=True,lumitype='HF') # #output: {run:[lumilsnum(0),cmslsnum(1),timestamp(2),beamstatus(3),beamenergy(4),deliveredlumi(5),calibratedlumierr(6),(bxvalues,bxerrs)(7),(bxidx,b1intensities,b2intensities)(8),fillnum(9)]} # totalstablebeamls=0 orderedrunlist=sorted(lumidetails) for run in orderedrunlist: perrundata=lumidetails[run] for perlsdata in perrundata: beamstatus=perlsdata[3] if beamstatus=='STABLE BEAMS': totalstablebeamls+=1 #print 'totalstablebeamls in fill ',totalstablebeamls if totalstablebeamls<10:#less than 10 LS in a fill has 'stable beam', it's no a good fill print 'fill ',fillnum,' , having less than 10 stable beam lS, is not good, skip' return fillbypos lumiparam=lumiParameters.ParametersObject() for run in orderedrunlist: perrundata=lumidetails[run] for perlsdata in perrundata: beamstatusfrac=0.0 tsdatetime=perlsdata[2] ts=calendar.timegm(tsdatetime.utctimetuple()) beamstatus=perlsdata[3] if beamstatus=='STABLE BEAMS': beamstatusfrac=1.0 (bxidxlist,bxvaluelist,bxerrolist)=perlsdata[7] #instbxvaluelist=[x/lumiparam.lslengthsec() for x in bxvaluelist if x] instbxvaluelist=[x for x in bxvaluelist if x] maxlumi=0.0 if len(instbxvaluelist)!=0: maxlumi=max(instbxvaluelist) avginstlumi=0.0 if len(instbxvaluelist)!=0: avginstlumi=sum(instbxvaluelist) (intbxidxlist,b1intensities,b2intensities)=perlsdata[8]#contains only non-zero bx for bxidx in bxidxlist: idx=bxidxlist.index(bxidx) instbxvalue=bxvaluelist[idx] bxerror=bxerrolist[idx] if instbxvalue<max(xingMinLum,maxlumi*0.2): continue bintensityPos=-1 try: bintensityPos=intbxidxlist.index(bxidx) except ValueError: pass if bintensityPos<=0: fillbypos.setdefault(bxidx,[]).append([ts,beamstatusfrac,instbxvalue,bxerror,0.0,0.0]) continue b1intensity=b1intensities[bintensityPos] b2intensity=b2intensities[bintensityPos] speclumi=calculateSpecificLumi(instbxvalue,bxerror,b1intensity,0.0,b2intensity,0.0) fillbypos.setdefault(bxidx,[]).append([ts,beamstatusfrac,instbxvalue,bxerror,speclumi[0],speclumi[1]]) return fillbypos ############################## ## ######################## ## ## ## ################## ## ## ## ## ## Main Program ## ## ## ## ## ################## ## ## ## ######################## ## ############################## if __name__ == '__main__': parser = argparse.ArgumentParser(prog=os.path.basename(sys.argv[0]),description = "specific lumi",formatter_class=argparse.ArgumentDefaultsHelpFormatter) amodetagChoices = [ "PROTPHYS","IONPHYS",'PAPHYS' ] xingAlgoChoices =[ "OCC1","OCC2","ET"] # parse arguments parser.add_argument('-c',dest='connect', action='store', required=False, help='connect string to lumiDB,optional', default='frontier://LumiCalc/CMS_LUMI_PROD') parser.add_argument('-P',dest='authpath', action='store', help='path to authentication file,optional') parser.add_argument('-i',dest='inputdir', action='store', required=False, help='output dir', default='.') parser.add_argument('-o',dest='outputdir', action='store', required=False, help='output dir', default='.') parser.add_argument('-f','--fill',dest='fillnum', action='store', required=False, help='specific fill', default=None) parser.add_argument('--minfill',dest='minfill', type=int, action='store', required=False, default=MINFILL, help='min fill') parser.add_argument('--maxfill',dest='maxfill', type=int, action='store', required=False, default=MAXFILL, help='maximum fillnumber ' ) parser.add_argument('--amodetag',dest='amodetag', action='store', choices=amodetagChoices, required=False, help='specific accelerator mode choices [PROTOPHYS,IONPHYS,PAPHYS] (optional)') parser.add_argument('--xingMinLum', dest = 'xingMinLum', type=float, default=1e-03, required=False, help='Minimum luminosity considered for lumibylsXing action') parser.add_argument('--xingAlgo', dest = 'bxAlgo', default='OCC1', required=False, help='algorithm name for per-bunch lumi ') parser.add_argument('--normtag',dest='normtag',action='store', required=False, help='norm tag', default=None) parser.add_argument('--datatag',dest='datatag',action='store', required=False, help='data tag', default=None) # #command configuration # parser.add_argument('--siteconfpath',dest='siteconfpath',action='store', help='specific path to site-local-config.xml file, optional. If path undefined, fallback to cern proxy&server') # #switches # parser.add_argument('--without-correction',dest='withoutNorm',action='store_true', help='without any correction/calibration' ) parser.add_argument('--debug',dest='debug',action='store_true', help='debug') options=parser.parse_args() if options.authpath: os.environ['CORAL_AUTH_PATH'] = options.authpath ## #query DB for all fills and compare with allfills.txt #if found newer fills, store in mem fill number #reprocess anyway the last 1 fill in the dir #redo specific lumi for all marked fills ## svc=sessionManager.sessionManager(options.connect,authpath=options.authpath,debugON=options.debug) session=svc.openSession(isReadOnly=True,cpp2sqltype=[('unsigned int','NUMBER(10)'),('unsigned long long','NUMBER(20)')]) fillstoprocess=[] maxfillnum=options.maxfill minfillnum=options.minfill if options.fillnum is not None: #if process a specific single fill fillstoprocess.append(int(options.fillnum)) else: session.transaction().start(True) schema=session.nominalSchema() allfillsFromDB=lumiCalcAPI.fillInRange(schema,fillmin=minfillnum,fillmax=maxfillnum,amodetag=options.amodetag) processedfills=listfilldir(options.outputdir) lastcompletedFill=lastcompleteFill(os.path.join(options.inputdir,'runtofill_dqm.txt')) for pf in processedfills: if pf>lastcompletedFill: print '\tremove unfinished fill from processed list ',pf processedfills.remove(pf) for fill in allfillsFromDB: if fill not in processedfills : if int(fill)<=lastcompletedFill: if int(fill)>minfillnum and int(fill)<maxfillnum: fillstoprocess.append(fill) else: print 'ongoing fill...',fill session.transaction().commit() print 'fills to process : ',fillstoprocess if len(fillstoprocess)==0: print 'no fill to process, exit ' exit(0) print '===== Start Processing Fills',fillstoprocess print '=====' filldata={} # # check datatag # reqfillmin=min(fillstoprocess) reqfillmax=max(fillstoprocess) session.transaction().start(True) runlist=lumiCalcAPI.runList(session.nominalSchema(),options.fillnum,runmin=None,runmax=None,fillmin=reqfillmin,fillmax=reqfillmax,startT=None,stopT=None,l1keyPattern=None,hltkeyPattern=None,amodetag=options.amodetag,nominalEnergy=None,energyFlut=None,requiretrg=False,requirehlt=False) datatagname=options.datatag if not datatagname: (datatagid,datatagname)=revisionDML.currentDataTag(session.nominalSchema()) dataidmap=revisionDML.dataIdsByTagId(session.nominalSchema(),datatagid,runlist=runlist,withcomment=False) #{run:(lumidataid,trgdataid,hltdataid,())} else: dataidmap=revisionDML.dataIdsByTagName(session.nominalSchema(),datatagname,runlist=runlist,withcomment=False) # # check normtag and get norm values if required # normname='NONE' normid=0 normvalueDict={} if not options.withoutNorm: normname=options.normtag if not normname: normmap=normDML.normIdByType(session.nominalSchema(),lumitype='HF',defaultonly=True) if len(normmap): normname=normmap.keys()[0] normid=normmap[normname] else: normid=normDML.normIdByName(session.nominalSchema(),normname) if not normid: raise RuntimeError('[ERROR] cannot resolve norm/correction') sys.exit(-1) normvalueDict=normDML.normValueById(session.nominalSchema(),normid) #{since:[corrector(0),{paramname:paramvalue}(1),amodetag(2),egev(3),comment(4)]} session.transaction().commit() for fillnum in fillstoprocess:# process per fill session.transaction().start(True) filldata=getSpecificLumi(session.nominalSchema(),fillnum,options.inputdir,dataidmap,normvalueDict,xingMinLum=options.xingMinLum,amodetag=options.amodetag,bxAlgo=options.bxAlgo) specificlumiTofile(fillnum,filldata,options.outputdir) session.transaction().commit()
d5848a9e5ad00752733438c6be9f15f855ff05c2
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_pointer.py
5ac88a0ce708e9c89cc7b196e8ef77770aec8498
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
#calss header class _POINTER(): def __init__(self,): self.name = "POINTER" self.definitions = [u'something that is used for pointing at things, such as a long, thin stick that you hold to direct attention to a place on a map or words on a board, or a cursor', u'a helpful piece of advice or information: ', u'something that shows you an existing or developing situation: ', u'a hunting dog that has been trained to stand very still with its nose pointing towards the animals and birds that are being hunted'] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
07d74c965ad48428b3acade5da4a6aa190bffc77
4a307849ed4dded5ce84b0ceb6d2cf56c2e64b89
/tcutils/config/vnc_api_results.py
093f370d0de9d0734a131a098e8f33e0287fb00e
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
lmadhusudhanan/contrail-test
a6316b41dcb836315d25503f1dee511943d7f976
bd39ff19da06a20bd79af8c25e3cde07375577cf
refs/heads/master
2022-05-04T20:01:58.960911
2018-06-27T17:56:47
2018-06-27T17:56:47
138,913,918
0
0
null
null
null
null
UTF-8
Python
false
false
37,667
py
import re from tcutils.verification_util import * class CsDomainResult (Result): ''' CsDomainResult to provide access to vnc_introspect_utils.get_cs_domain dict contrains: {u'domain': { u'fq_name': [u'ted-domain'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 13068984139654137108L, u'uuid_mslong': 9504116366942620127L}}, u'namespaces': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/namespace/c0552b1f-588e-4507-8962-b1837c8f883a', u'to': [u'ted-domain', u'default-namespace'], u'uuid': u'c0552b1f-588e-4507-8962-b1837c8f883a'}], u'projects': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/project/0d779509-7d54-4842-9b34-f85557898b67', u'to': [u'ted-domain', u'ted-eng'], u'uuid': u'0d779509-7d54-4842-9b34-f85557898b67'}, {u'attr': {}, u'href': u'http://10.84.7.4:8082/project/1fcf3244-d4d9-407d-8637-54bb2522020e', u'to': [u'ted-domain', u'default-project'], u'uuid': u'1fcf3244-d4d9-407d-8637-54bb2522020e'}], u'_type': u'domain', u'href': u'http://10.84.7.4:8082/domain/83e5677b-1397-49df-b55e-5bd5234c8514', u'name': u'ted-domain', u'uuid': u'83e5677b-1397-49df-b55e-5bd5234c8514'}} ''' def fq_name(self): return ':'.join(self.xpath('domain', 'fq_name')) def name(self): return self.xpath('domain', 'name') def uuid(self): return self.xpath('domain', 'uuid') def project_list(self): return map(lambda x: ':'.join(x['to']), self.xpath('domain', 'projects')) def project(self, name): if not self.xpath('domain', 'projects'): return list() return filter(lambda x: x['to'] == [self.name(), name], self.xpath('domain', 'projects')) def st_list(self): return self.xpath('domain', 'service_templates') def st(self, st): return filter(lambda x: x['to'][-1] == st, self.st_list()) def vdns_list(self): return self.xpath('domain', 'virtual_DNSs') def vdns(self, vdns_name): vdns_li = self.vdns_list() if vdns_li: return filter(lambda x: x['to'][-1] == vdns_name, vdns_li) class CsProjectResult (Result): ''' CsDomainResult to provide access to vnc_introspect_utils.get_cs_project dict contrains: {u'project': {u'fq_name': [u'ted-domain', u'ted-eng'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 11183836820092324711L, u'uuid_mslong': 970408112711551042}}, u'network_ipams': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/network-ipam/52310151-ec68-4052-9114-14ae1a47f2fb', u'to': [u'ted-domain', u'ted-eng', u'default-network-ipam'], u'uuid': u'52310151-ec68-4052-9114-14ae1a47f2fb'}], u'network_policys': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/network-policy/c30461ae-e72a-44a6-845b-7510c7ae3897', u'to': [u'ted-domain', u'ted-eng', u'default-network-policy'], u'uuid': u'c30461ae-e72a-44a6-845b-7510c7ae3897'}], u'security_groups': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/security-group/32dc02af-1b3c-4baa-a6eb-3c97cbdd2941', u'to': [u'ted-domain', u'ted-eng', u'default-security-group'], u'uuid': u'32dc02af-1b3c-4baa-a6eb-3c97cbdd2941'}], u'service_templates': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/service-template/4264dd1e-d312-4e03-a60e-35b40da39e95', u'to': [u'ted-domain', u'ted-eng', u'default-service-template'], u'uuid': u'4264dd1e-d312-4e03-a60e-35b40da39e95'}], u'_type': u'project', u'virtual_networks': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/virtual-network/6a5c5c29-cfe6-4fea-9768-b0dea3b217bc', u'to': [u'ted-domain', u'ted-eng', u'ted-back'], u'uuid': u'6a5c5c29-cfe6-4fea-9768-b0dea3b217bc'}, {u'attr': {}, u'href': u'http://10.84.7.4:8082/virtual-network/926c8dcc-0b8b-444f-9f59-9ab67a8f9f48', u'to': [u'ted-domain', u'ted-eng', u'ted-front'], u'uuid': u'926c8dcc-0b8b-444f-9f59-9ab67a8f9f48'}, {u'attr': {}, u'href': u'http://10.84.7.4:8082/virtual-network/b312647f-0921-4ddf-9d59-0667a887989f', u'to': [u'ted-domain', u'ted-eng', u'default-virtual-network'], u'uuid': u'b312647f-0921-4ddf-9d59-0667a887989f'}], u'href': u'http://10.84.7.4:8082/project/0d779509-7d54-4842-9b34-f85557898b67', u'name': u'ted-eng', u'parent_name': u'ted-domain', u'uuid': u'0d779509-7d54-4842-9b34-f85557898b67'}} ''' def fq_name(self): return ':'.join(self.xpath('project', 'fq_name')) def policy_list(self): return self.xpath('project', 'network_policys') def policy(self, policy): return filter(lambda x: x['to'][-1] == policy, self.policy_list()) def vn_list(self): return self.xpath('project', 'virtual_networks') def vn(self, vn): if self.vn_list(): return filter(lambda x: x['to'][-1] == vn, self.vn_list()) return [] def fip_list(self): if self.has_key('floating_ip_pool_refs'): p = self.xpath('project', 'floating_ip_pool_refs') else: p = [] return p def fip(self, fip_fq_name=[]): return filter(lambda x: x['to'] == fip_fq_name, self.fip_list()) def secgrp_list(self): return self.xpath('project', 'security_groups') def secgrp(self, secgrp): secgrp_list = self.secgrp_list() if secgrp_list: return filter(lambda x: x['to'][-1] == secgrp, secgrp_list) def si_list(self): return self.xpath('project', 'service_instances') def si(self, si): si_list = self.si_list() if si_list: return filter(lambda x: x['to'][-1] == si, si_list) def alarm_list(self): result = self.xpath('project', 'alarms') if not result: return [] return result def alarm(self,alarm): return filter(lambda x: x['to'][-1] == alarm, self.alarm_list()) class CsAlarmResult(Result): def fq_name(self): return ':'.join(self.xpath('alarm','fq_name')) class CsVdnsResult(Result): def fq_name(self): return ':'.join(self.xpath('virtual-DNS', 'fq_name')) def vdns_data(self): return ':'.join(self.xpath('virtual-DNS', 'virtual_DNS_data')) def vdns_records(self): return ':'.join(self.xpath('virtual-DNS', 'virtual_DNS_records')) # end of CsVdnsResult class CsUseFipResult (Result): ''' CsUseFipResult to provide access to vnc_introspect_utils.get_cs_use_fip_pool dict contrains: {u'floating-ip-pool': {u'fq_name': [u'ted-domain', u'ted-eng', u'ted-front', u'ted_fip_pool'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 13214437371555268939L, u'uuid_mslong': 18023639221065174839L}}, u'project_back_refs': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/project/1fcf3244-d4d9-407d-8637-54bb2522020e', u'to': [u'ted-domain', u'default-project'], u'uuid': u'1fcf3244-d4d9-407d-8637-54bb2522020e'}], u'_type': u'floating-ip-pool', u'href': u'http://10.84.7.4:8082/floating-ip-pool/fa20d460-d363-4f37-b763-1cc6be32c94b', u'name': u'ted_fip_pool', u'parent_name': u'ted-front', u'uuid': u'fa20d460-d363-4f37-b763-1cc6be32c94b'}} ''' class CsAllocFipResult (Result): ''' CsAllocFipResult to provide access to vnc_introspect_utils.get_cs_alloc_fip_pool dict contrains: {u'floating-ip-pool': {u'fq_name': [u'ted-domain', u'ted-eng', u'ted-front', u'ted_fip_pool'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 13214437371555268939L, u'uuid_mslong': 18023639221065174839L}}, u'project_back_refs': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/project/1fcf3244-d4d9-407d-8637-54bb2522020e', u'to': [u'ted-domain', u'default-project'], u'uuid': u'1fcf3244-d4d9-407d-8637-54bb2522020e'}], u'_type': u'floating-ip-pool', u'href': u'http://10.84.7.4:8082/floating-ip-pool/fa20d460-d363-4f37-b763-1cc6be32c94b', u'name': u'ted_fip_pool', u'parent_name': u'ted-front', u'uuid': u'fa20d460-d363-4f37-b763-1cc6be32c94b'}} ''' pass class CsIPAMResult (Result): ''' CsIPAMResult to provide access to vnc_introspect_utils.get_cs_ipam dict contrains: {u'network-ipam': {u'fq_name': [u'ted-domain', u'ted-eng', u'default-network-ipam'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 10454003373031551739L, u'uuid_mslong': 5922516436339146834}}, u'network_ipam_mgmt': {u'dhcp_option_list': None, u'ipam_method': u'dhcp'}, u'_type': u'network-ipam', u'virtual_network_back_refs': [{u'attr': {u'ipam_subnets': [{u'default_gateway': None, u'subnet': {u'ip_prefix': u'192.168.1.0', u'ip_prefix_len': 24}}]}, u'href': u'http://10.84.7.4:8082/virtual-network/6a5c5c29-cfe6-4fea-9768-b0dea3b217bc', u'to': [u'ted-domain', u'ted-eng', u'ted-back'], u'uuid': u'6a5c5c29-cfe6-4fea-9768-b0dea3b217bc'}], u'href': u'http://10.84.7.4:8082/network-ipam/52310151-ec68-4052-9114-14ae1a47f2fb', u'name': u'default-network-ipam', u'parent_name': u'ted-eng', u'uuid': u'52310151-ec68-4052-9114-14ae1a47f2fb'}} ''' def fq_name(self): return ':'.join(self.xpath('network-ipam', 'fq_name')) class CsPolicyResult (Result): ''' CsPolicyResult to provide access to vnc_introspect_utils.get_cs_policy dict contrains: {u'network-policy': {u'fq_name': [u'ted-domain', u'ted-eng', u'default-network-policy'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 9537345350817167511L, u'uuid_mslong': 14052464141133300902L}}, u'_type': u'network-policy', u'href': u'http://10.84.7.4:8082/network-policy/c30461ae-e72a-44a6-845b-7510c7ae3897', u'name': u'default-network-policy', u'parent_name': u'ted-eng', u'uuid': u'c30461ae-e72a-44a6-845b-7510c7ae3897'}} ''' def fq_name(self): return ':'.join(self.xpath('network-policy', 'fq_name')) class CsVNResult (Result): ''' CsVNResult to provide access to vnc_introspect_utils.get_cs_vn dict contrains: {u'virtual-network': {u'fq_name': [u'ted-domain', u'ted-eng', u'ted-back'], u'id_perms': {u'created': None, u'enable': True, u'last_modified': None, u'permissions': {u'group': u'cloud-admin-group', u'group_access': 7, u'other_access': 7, u'owner': u'cloud-admin', u'owner_access': 7}, u'uuid': {u'uuid_lslong': 10910164567580612540L, u'uuid_mslong': 7664102000529133546}}, u'instance_ip_back_refs': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/instance-ip/9d4cbfbc-da80-4732-a98e-77607bd78704', u'to': [u'9d4cbfbc-da80-4732-a98e-77607bd78704'], u'uuid': u'9d4cbfbc-da80-4732-a98e-77607bd78704'}], u'network_ipam_refs': [{u'attr': {u'ipam_subnets': [{u'default_gateway': None, u'subnet': {u'ip_prefix': u'192.168.1.0', u'ip_prefix_len': 24}}]}, u'href': u'http://10.84.7.4:8082/network-ipam/52310151-ec68-4052-9114-14ae1a47f2fb', u'to': [u'ted-domain', u'ted-eng', u'default-network-ipam'], u'uuid': u'52310151-ec68-4052-9114-14ae1a47f2fb'}], u'routing_instances': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/routing-instance/a68948af-46be-4f26-b73e-9ec725f57437', u'to': [u'ted-domain', u'ted-eng', u'ted-back', u'ted-back'], u'uuid': u'a68948af-46be-4f26-b73e-9ec725f57437'}], u'_type': u'virtual-network', u'virtual_machine_interface_back_refs': [{u'attr': {}, u'href': u'http://10.84.7.4:8082/virtual-machine-interface/864ecd37-cf1f-43d5-9f63-4f24831859eb', u'to': [u'c707f91f-68e9-427a-a0ba-92563c0d067f', u'864ecd37-cf1f-43d5-9f63-4f24831859eb'], u'uuid': u'864ecd37-cf1f-43d5-9f63-4f24831859eb'}], u'href': u'http://10.84.7.4:8082/virtual-network/6a5c5c29-cfe6-4fea-9768-b0dea3b217bc', u'name': u'ted-back', u'parent_name': u'ted-eng', u'uuid': u'6a5c5c29-cfe6-4fea-9768-b0dea3b217bc'}} ''' _pat = None def _rpat(self): if self._pat is None: self._pat = re.compile('-interface/.*$') return self._pat def sub(self, st, _id): return self._rpat().sub('/%s' % _id, st) def fq_name(self): return ':'.join(self.xpath('virtual-network', 'fq_name')) def fip_list(self): return self.xpath('virtual-network', 'floating_ip_pools') def fip(self, fip): return filter(lambda x: x['to'][-1] == fip, self.fip_list()) def vm_link_list(self): return map(lambda x: self.sub(x['href'], x['to'][0]), self.xpath('virtual-network', 'virtual_machine_interface_back_refs')) def rts(self): if self.xpath('virtual-network').has_key('route_target_list'): for rt in self.xpath('virtual-network', 'route_target_list', 'route_target'): yield rt def ri_links(self): if self.xpath('virtual-network').has_key('routing_instances'): for ri in self.xpath('virtual-network', 'routing_instances'): yield ri['href'] def ri_refs(self): if self.xpath('virtual-network').has_key('routing_instances'): for ri in self.xpath('virtual-network', 'routing_instances'): yield ri['to'] def uuid(self): return self.xpath('virtual-network', 'uuid') def route_table(self): return self.xpath('virtual-network', 'route_table_refs', 0) @property def is_shared(self): return self.xpath('virtual-network', 'is_shared') def global_access(self): return self.xpath('virtual-network', 'perms2', 'global_access') @property def virtual_network_properties(self): return self.xpath('virtual-network', 'virtual_network_properties') class CsRtResult (Result): ''' CsRtResult to provide access to vnc_introspect_utils.get_cs_route_targets dict contrains: ''' def fq_name(self): return ':'.join(self.xpath('route-table', 'fq_name')) class CsRiResult (Result): ''' CsRiResult to provide access to vnc_introspect_utils.get_cs_routing_instances dict contrains: ''' def rt_links(self): if self.xpath('routing-instance').has_key('route_target_refs'): for rt in self.xpath('routing-instance', 'route_target_refs'): yield rt['href'] def get_rt(self): target = list() if self.xpath('routing-instance').has_key('route_target_refs'): for rt in self.xpath('routing-instance', 'route_target_refs'): target.append(rt['to'][0]) return target class CsAllocFipPoolResult (Result): ''' CsVMResult to provide access to vnc_introspect_utils.get_cs_vm dict contrains: ''' pass class CsVMResult (Result): ''' CsVMResult to provide access to vnc_introspect_utils.get_cs_vm dict contrains: ''' def fq_name(self): return ':'.join(self.xpath('virtual-machine', 'fq_name')) def vr_link(self): return self.xpath('virtual-machine', 'virtual_router_back_refs', 0, 'href') def vmi_links(self): vmi_list = (self.xpath('virtual-machine', 'virtual_machine_interfaces') or self.xpath('virtual-machine', 'virtual_machine_interface_back_refs')) or [] links = [] for vmi in vmi_list or []: links.append(vmi['href']) return links # return self.xpath ('virtual-machine', 'virtual_machine_interfaces', # 0, 'href') def service_instance_refs(self): si_refs = self.xpath('virtual-machine', 'service_instance_refs') return si_refs class CsVMIResult (Result): def get_bindings(self): bindings = self.xpath('virtual-machine-interface', 'virtual_machine_interface_bindings', 'key_value_pair') bdict = dict() for binding in bindings: bdict[binding['key']] = binding['value'] return bdict class CsVrOfVmResult (Result): def name(self): return self.xpath('name') class CsVmiOfVmResult (Result): def ip_link(self): links = [] instance_ips = self.xpath('virtual-machine-interface', 'instance_ip_back_refs') for iip in instance_ips or []: links.append(iip['href']) return links def fip_link(self): if self.xpath('virtual-machine-interface').has_key( 'floating_ip_back_refs'): return self.xpath('virtual-machine-interface', 'floating_ip_back_refs', 0, 'href') def properties(self, property=None): if self.xpath('virtual-machine-interface').has_key( 'virtual_machine_interface_properties'): if property: return self.xpath('virtual-machine-interface', 'virtual_machine_interface_properties', property) else: return self.xpath('virtual-machine-interface', 'virtual_machine_interface_properties') @property def uuid(self): return self.xpath('virtual-machine-interface', 'uuid') @property def vn_fq_name(self): return ':'.join(self.xpath('virtual-machine-interface', 'virtual_network_refs', 0, 'to')) @property def vn_uuid(self): return self.xpath('virtual-machine-interface', 'virtual_network_refs', 0, 'uuid') @property def mac_addr(self): return self.xpath('virtual-machine-interface', 'virtual_machine_interface_mac_addresses', 'mac_address', 0) class CsIipOfVmResult (Result): @property def ip(self): return self.xpath('instance-ip', 'instance_ip_address') @property def vn_uuid(self): return self.xpath('instance-ip', 'virtual_network_refs', 0, 'uuid') @property def vn_fq_name(self): return ':'.join(self.xpath('instance-ip', 'virtual_network_refs', 0, 'to')) class CsFipOfVmResult (Result): def ip(self): return self.xpath('floating-ip', 'floating_ip_address') class CsFipIdResult (Result): ''' CsFipIdResult to provide access to vnc_introspect_utils.get_cs_fip dict contrains: ''' def fip(self): return self.xpath('floating-ip', 'floating_ip_address') def vmi(self): return [vmi['uuid'] for vmi in self.xpath('floating-ip', 'virtual_machine_interface_refs') or []] class CsSecurityGroupResult (Result): ''' CsSecurityGroupResult to provide access to vnc_introspect_utils.get_cs_secgrp ''' def fq_name(self): return ':'.join(self.xpath('security-group', 'fq_name')) class CsVirtualMachineInterfaceResult (Result): ''' CsVirtualMachineInterfaceResult to provide access to vnc_introspect_utils.get_cs_vmi ''' def uuid(self): return ':'.join(self.xpath('virtual-machine-interface', 'uuid')) def fq_name(self): return ':'.join(self.xpath('virtual-machine-interface', 'fq_name')) class CsPortTupleResult (Result): ''' CsPortTupleResult to provide access to vnc_introspect_utils.get_cs_pt ''' def uuid(self): return ':'.join(self.xpath('port-tuple', 'uuid')) def fq_name(self): return ':'.join(self.xpath('port-tuple', 'fq_name')) class CsServiceInstanceResult (Result): ''' CsServiceInstanceResult to provide access to vnc_introspect_utils.get_cs_si ''' def fq_name(self): return ':'.join(self.xpath('service-instance', 'fq_name')) def get_vms(self): vms = list() if self.xpath('service-instance').has_key('virtual_machine_back_refs'): for vm in self.xpath('service-instance', 'virtual_machine_back_refs'): vms.append(vm['uuid']) return vms class CsServiceTemplateResult (Result): ''' CsServiceTemplateResult to provide access to vnc_introspect_utils.get_cs_st ''' def fq_name(self): return ':'.join(self.xpath('service-template', 'fq_name')) class CsGlobalVrouterConfigResult (Result): ''' CsGlobalVrouterConfigResult to provide access to vnc_introspect_utils.get_global_vrouter_config ''' def get_link_local_service(self, name='metadata'): link_local_service = {} try: p = self.xpath('global-vrouter-config', 'linklocal_services') for elem in p['linklocal_service_entry']: if (elem['linklocal_service_name'] == name): link_local_service['name'] = elem['linklocal_service_name'] link_local_service['service_ip'] = elem[ 'linklocal_service_ip'] link_local_service['service_port'] = elem[ 'linklocal_service_port'] link_local_service['fabric_service_ip'] = elem[ 'ip_fabric_service_ip'] link_local_service['fabric_DNS_service_name'] = elem[ 'ip_fabric_DNS_service_name'] link_local_service['ip_fabric_service_port'] = elem[ 'ip_fabric_service_port'] except Exception as e: print e finally: return link_local_service class CsLogicalRouterResult(Result): ''' CsLogicalRouterResult access logical router dict ''' def get_rt(self): target = list() if self.xpath('logical-router').has_key('route_target_refs'): for rt in self.xpath('logical-router', 'route_target_refs'): target.append(rt['to'][0]) return target def fq_name(self): return ':'.join(self.xpath('logical-router', 'fq_name')) def uuid(self): return self.xpath('logical-router', 'uuid') class CsTableResult(Result): ''' CsTableResult access Route table dict ''' def get_route(self): if self.xpath('route-table').has_key('routes'): return self.xpath('route-table', 'routes', 'route') def fq_name(self): return ':'.join(self.xpath('route-table', 'fq_name')) def uuid(self): return self.xpath('route-table', 'uuid') class CsLoadbalancer(Result): ''' CsLoadbalancer access Load Balancer dict ''' def fq_name(self): return ':'.join(self.xpath('loadbalancer', 'fq_name')) def uuid(self): return self.xpath('loadbalancer', 'uuid') def name(self): return self.xpath('loadbalancer', 'name') def si(self): return self.xpath('loadbalancer', 'service_instance_refs', 0, 'uuid') class CsLbPool(Result): ''' CsLbPool access Load Balancer Pool dict ''' def fq_name(self): return ':'.join(self.xpath('loadbalancer-pool', 'fq_name')) def uuid(self): return self.xpath('loadbalancer-pool', 'uuid') def name(self): return self.xpath('loadbalancer-pool', 'name') def members(self): members = list() for member in self.xpath('loadbalancer-pool', 'loadbalancer_members') or []: members.append(member['uuid']) return members def hmons(self): hmons = list() for hmon in self.xpath('loadbalancer-pool', 'loadbalancer_healthmonitor_refs') or []: hmons.append(hmon['uuid']) return hmons def vip(self): return self.xpath('loadbalancer-pool', 'virtual_ip_back_refs', 0,'uuid') def si(self): return self.xpath('loadbalancer-pool', 'service_instance_refs',0,'uuid') def properties(self): return self.xpath('loadbalancer-pool', 'loadbalancer_pool_properties') def custom_attrs(self): custom_attr = dict() kvpairs = self.xpath('loadbalancer-pool', 'loadbalancer_pool_custom_attributes', 'key_value_pair') or [] for dct in kvpairs: custom_attr[dct['key']] = dct['value'] return custom_attr class CsLbMember(Result): ''' CsLbMember access Load Balancer Member dict ''' def fq_name(self): return ':'.join(self.xpath('loadbalancer-member', 'fq_name')) def uuid(self): return self.xpath('loadbalancer-member', 'uuid') def ip(self): return self.xpath('loadbalancer-member', 'loadbalancer_member_properties', 'address') class CsLbVip(Result): ''' CsLbVip access Load Balancer Vip dict ''' def fq_name(self): return ':'.join(self.xpath('virtual-ip', 'fq_name')) def uuid(self): return self.xpath('virtual-ip', 'uuid') def ip(self): return self.xpath('virtual-ip', 'virtual_ip_properties', 'address') def vmi(self): return self.xpath('virtual-ip', 'virtual_machine_interface_refs', 0, 'uuid') class CsLbHealthMonitor(Result): ''' CsLbHealthMonitor access Load Balancer Health Monitor dict ''' def fq_name(self): return ':'.join(self.xpath('loadbalancer-healthmonitor', 'fq_name')) def uuid(self): return self.xpath('loadbalancer-healthmonitor', 'uuid') def properties(self): return self.xpath('loadbalancer-healthmonitor', 'loadbalancer_healthmonitor_properties') class CsVrouters(Result): def __iter__(self): for vrouter in self.xpath('virtual-routers'): yield vrouter class CsVrouter(Result): def is_tor_agent(self): vr_type = self.xpath('virtual-router', 'virtual_router_type') if vr_type and 'tor-agent' == vr_type.lower(): return True return False def is_tsn(self): vr_type = self.xpath('virtual-router', 'virtual_router_type') if vr_type and 'tor-service-node' == vr_type.lower(): return True return False @property def ip(self): return self.xpath('virtual-router', 'virtual_router_ip_address') class CsBGPaaSResult(Result): ''' CsBGPaaSResult access bgp_as_a_service dict ''' def fq_name(self): return ':'.join(self.xpath('bgp-as-a-service', 'fq_name')) def uuid(self): return self.xpath('bgp-as-a-service', 'uuid') def bgpaas_shared(self): return self.xpath('bgp-as-a-service', 'bgpaas_shared') def bgpaas_ip_address(self): return self.xpath('bgp-as-a-service', 'bgpaas_ip_address') def autonomous_system(self): return self.xpath('bgp-as-a-service', 'autonomous_system') class CsHealthCheckResult(Result): ''' CsHealthCheckResult access service health check dict ''' def fq_name(self): return ':'.join(self.xpath('service-health-check', 'fq_name')) def uuid(self): return self.xpath('service-health-check', 'uuid') def properties(self, attr): return self.xpath('service-health-check', 'service_health_check_properties', attr) @property def health_check_type(self): return self.properties('health_check_type') @property def status(self): return self.properties('enabled') @property def probe_type(self): return self.properties('monitor_type') @property def delay(self): return self.properties('delay') @property def timeout(self): return self.properties('timeout') @property def max_retries(self): return self.properties('max_retries') @property def http_url(self): return self.properties('url_path') @property def http_method(self): return self.properties('http_method') @property def http_codes(self): return self.properties('expected_codes') class CsApiAccessList(Result): def fq_name(self): return ':'.join(self.xpath('api-access-list', 'fq_name')) def uuid(self): return self.xpath('api-access-list', 'uuid') def get_rules(self): return self.xpath('api-access-list', 'api_access_list_entries', 'rbac_rule') class CsBridgeDomainResult(Result): def fq_name(self): return ':'.join(self.xpath('bridge_domain', 'fq_name')) def name(self): return self.xpath('bridge_domain', 'name')
f5aa2f0a35d71460c6b936f9fe19313a0a13913b
1a3234c1deeb8987fb4c5b424e6485ddd10c8ace
/estagios/core/form.py
021338a4415b61c90edc91e57e34b3d1b2660f03
[]
no_license
orlandosaraivajr/estagio
0c46b16fccf52861f68431a88032ba0fdc46bf66
439b797406c82673e9972eee373d60f844679a9c
refs/heads/master
2022-05-14T14:15:53.109355
2020-04-03T05:58:13
2020-04-03T05:58:13
189,227,824
0
0
null
2022-04-22T21:20:07
2019-05-29T13:09:14
CSS
UTF-8
Python
false
false
1,632
py
from django import forms from django.forms import ModelForm from estagios.core.models import User class LoginForm(ModelForm): class Meta: model = User fields = ['email', 'password'] labels = { 'email': 'E-mail', 'password': 'Senha' } widgets = { 'email': forms.EmailInput(attrs={'class': 'form-control'}), 'password': forms.PasswordInput(attrs={'class': 'form-control'}) } help_texts = { 'email': ('E-mail cadastrado.'), 'password': ('Senha para acesso.'), } error_messages = { 'email': { 'required': ("Digite um e-mail válido."), }, 'password': { 'required': ("Senha não pode ser em branco."), } } class NomeCompletoForm(ModelForm): error_css_class = "error" class Meta: model = User fields = ('first_name',) labels = { 'first_name': 'Nome Completo', } widgets = { 'first_name': forms.TextInput( attrs={ 'class': 'form-control', 'placeholder': 'Preencha seu nome completo.' } ), } error_messages = { 'first_name': { 'required': ("Não deixe este campo em branco. Informe seu nome completo."), }, } def clean_first_name(self): if self.cleaned_data['first_name'] != '': return self.cleaned_data['first_name'] return 'Nome em Branco'
2599ba25172f8c4d5bf9dfd7c2d42ef2a622b096
48a522b031d45193985ba71e313e8560d9b191f1
/baekjoon/python/10406.py
14779fe2b517e02188eedca6e18f8062aa9d26ff
[]
no_license
dydwnsekd/coding_test
beabda0d0aeec3256e513e9e0d23b43debff7fb3
4b2b4878408558239bae7146bb4f37888cd5b556
refs/heads/master
2023-09-04T12:37:03.540461
2023-09-03T15:58:33
2023-09-03T15:58:33
162,253,096
4
1
null
null
null
null
UTF-8
Python
false
false
213
py
import sys count = 0 w, n, p = map(int, sys.stdin.readline().split()) punch_list = list(map(int, sys.stdin.readline().split())) for punch in punch_list: if w <= punch <= n: count += 1 print(count)
13ff38fd624a28f8e31a89d15df14a35ccd208fa
9ecf55bf2601e0d4f74e71f4903d2fd9e0871fd6
/my_seg_tf/v4_128_128/model/unet.py
ba7e761f74f601823dd64cf81e8c08124d5f3053
[]
no_license
qq191513/mySeg
02bc9803cde43907fc5d96dc6a6a6371f2bef6fe
4337e6a0ca50b8ccbf6ed9b6254f2aec814b24db
refs/heads/master
2020-04-10T09:57:37.811133
2019-06-26T08:21:23
2019-06-26T08:21:23
160,951,962
1
0
null
null
null
null
UTF-8
Python
false
false
5,033
py
import os import tensorflow as tf import sys sys.path.append('../') import config as cfg lr_init = cfg.lr_init class Unet(object): def __init__(self, sess, config, is_train): self.sess = sess self.name = 'Unet' self.mask = config.mask self.ckpt_dir = config.ckpt_dir self.is_train = is_train self.images = tf.placeholder(tf.float32, [config.batch_size, config.input_shape[0], config.input_shape[1], config.input_shape[2]]) #initially 512,512,3 for Gray Images self.labels = tf.placeholder(tf.float32, [config.batch_size, config.labels_shape[0], config.labels_shape[1], config.labels_shape[2]]) #initially 512,512, 256 for Binary Segmentation self.pred = self.build(self.images) # self.accuracy = self.compute_acc(self.recons, self.labels) self.loss = self.compute_loss( self.labels, self.pred) self.t_vars = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) self.sess.run(tf.variables_initializer(self.t_vars)) self.saver = tf.train.Saver() if not tf.gfile.Exists(self.ckpt_dir): tf.gfile.MakeDirs(self.ckpt_dir) self.summary_writer = tf.summary.FileWriter(self.ckpt_dir) self.summary_op = tf.summary.merge(self.loss_summaries) # self.summary_op = tf.summary.merge(self.acc_summaries) self.optim = tf.train.AdamOptimizer(lr_init) #use NadamOptmizer self.train = self.optim.minimize(self.loss) def fit(self, images, labels, summary_step=-1): if summary_step >= 0: # _, loss_val,acc_val, summary_str = self.sess.run( # [self.train, self.loss, self.acc,self.summary_op], # {self.images:images, self.labels:labels}) # self.summary_writer.add_summary(summary_str, summary_step) _,loss_val, summary_str = self.sess.run( [self.train, self.loss, self.summary_op], {self.images: images, self.labels: labels}) self.summary_writer.add_summary(summary_str, summary_step) else : # _, loss_val,acc_val = self.sess.run( # [self.train, self.loss,self.acc], # {self.images:images, self.labels:labels}) _, loss_val = self.sess.run( [self.train, self.loss], {self.images: images, self.labels: labels}) return loss_val def predict(self, images): result = self.sess.run([self.pred], {self.images:images}) return result def compute_loss(self, labels,pred): dice_loss = self.dice_coef_loss(labels, pred) self.loss_summaries = [ tf.summary.scalar("dice_loss", dice_loss)] total_loss = dice_loss return total_loss def build(self, images): # with tf.variable_scope(self.name): conv1 = self.conv2d(images, 64, 3) conv1 = self.conv2d(conv1, 64, 3) pool1 = self.maxpooling2d(conv1,[2,2]) conv2 = self.conv2d(pool1, 128, 3) conv2 = self.conv2d(conv2, 128, 3) pool2 = self.maxpooling2d(conv2,[2,2]) conv3 = self.conv2d(pool2, 256, 3) conv3 = self.conv2d(conv3, 256, 3) pool3 = self.maxpooling2d(conv3,[2,2]) conv4 = self.conv2d(pool3, 512, 3) conv4 = self.conv2d(conv4, 512, 3) up5 = tf.concat([self.conv2d_transpose(conv4,256,3), conv3], axis=3) conv5 = self.conv2d(up5, 256, 3) conv5 = self.conv2d(conv5, 256, 3) up6 = tf.concat([self.conv2d_transpose(conv5,256,3), conv4], axis=3) conv6 = self.conv2d(up6, 128, 3) conv6 = self.conv2d(conv6, 128, 3) up7 = tf.concat([self.conv2d_transpose(conv6,256,3), conv5], axis=3) conv7 = self.conv2d(up7, 64, 3) conv7 = self.conv2d(conv7, 64, 3) conv8 = self.conv2d(conv7, 16, 1) out = tf.squeeze(conv8, axis=3) # tf.squeeze remove the dimensions of value 1 print("shape of squeezed vector:", out.get_shape()) return out def conv2d(self, x, channel, kernel, stride=1, padding="SAME",activation='relu'): return tf.layers.conv2d(x, channel, kernel, stride, padding, activation,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) def maxpooling2d(self,inputs,pool_size, strides,padding='valid', data_format='channels_last',name=None): return tf.layers.max_pooling2d(inputs,pool_size, strides,padding=padding, data_format=data_format,name=name) def conv2d_transpose(self, x, channel, kernel, stride=1, padding="SAME"): return tf.layers.conv2d_transpose(x, channel, kernel, stride, padding, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) def save(self,epoch): print('saving model.......') self.saver.save(self.sess, os.path.join(self.ckpt_dir, "model_{}.ckpt".format(epoch))) def restore(self,name): print('restoring model: {}.......'.format(name)) self.saver.restore(self.sess, os.path.join(self.ckpt_dir, name))
d369fd4de101726338d35665b676a132ab6c4567
32cb0be487895629ad1184ea25e0076a43abba0a
/LifePictorial/top/api/rest/CrmShopvipCancelRequest.py
c82fb8fafe43c8edd71af72a729843b38b0af2af
[]
no_license
poorevil/LifePictorial
6814e447ec93ee6c4d5b0f1737335601899a6a56
b3cac4aa7bb5166608f4c56e5564b33249f5abef
refs/heads/master
2021-01-25T08:48:21.918663
2014-03-19T08:55:47
2014-03-19T08:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
''' Created by auto_sdk on 2014-02-10 16:59:30 ''' from top.api.base import RestApi class CrmShopvipCancelRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) def getapiname(self): return 'taobao.crm.shopvip.cancel'
f4139ba7b59e752ce0180da1c48a07365de98486
c839961aeab22795200d9edef9ba043fe42eeb9c
/data/script1014.py
dabede7bc768ce46066e92849eee030bf819e85c
[]
no_license
StevenLOL/kaggleScape
ad2bb1e2ed31794f1ae3c4310713ead1482ffd52
18bede8420ab8d2e4e7c1eaf6f63280e20cccb97
refs/heads/master
2020-03-17T05:12:13.459603
2018-05-02T19:35:55
2018-05-02T19:35:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,147
py
# coding: utf-8 # In[ ]: # Inspiration 1: https://www.kaggle.com/tunguz/logistic-regression-with-words-and-char-n-grams/code # Inspiration 2: https://www.kaggle.com/jhoward/nb-svm-strong-linear-baseline import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import re, string import time from scipy.sparse import hstack from scipy.special import logit, expit from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score # In[ ]: # Functions def tokenize(s): return re_tok.sub(r' \1 ', s).split() def pr(y_i, y, x): p = x[y==y_i].sum(0) return (p+1) / ((y==y_i).sum()+1) def get_mdl(y,x, c0 = 4): y = y.values r = np.log(pr(1,y,x) / pr(0,y,x)) m = LogisticRegression(C= c0, dual=True) x_nb = x.multiply(r) return m.fit(x_nb, y), r def multi_roc_auc_score(y_true, y_pred): assert y_true.shape == y_pred.shape columns = y_true.shape[1] column_losses = [] for i in range(0, columns): column_losses.append(roc_auc_score(y_true[:, i], y_pred[:, i])) return np.array(column_losses).mean() # In[ ]: model_type = 'lrchar' todate = time.strftime("%d%m") # # Data # In[ ]: # read data train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') subm = pd.read_csv('../input/sample_submission.csv') id_train = train['id'].copy() id_test = test['id'].copy() # add empty label for None label_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] train['none'] = 1-train[label_cols].max(axis=1) # fill missing values COMMENT = 'comment_text' train[COMMENT].fillna("unknown", inplace=True) test[COMMENT].fillna("unknown", inplace=True) # In[ ]: # Tf-idf # prepare tokenizer re_tok = re.compile(f'([{string.punctuation}“”¨«»®´·º½¾¿¡§£₤‘’])') # create sparse matrices n = train.shape[0] #vec = TfidfVectorizer(ngram_range=(1,2), tokenizer=tokenize, min_df=3, max_df=0.9, strip_accents='unicode', # use_idf=1, smooth_idf=1, sublinear_tf=1 ) word_vectorizer = TfidfVectorizer( tokenizer=tokenize, sublinear_tf=True, strip_accents='unicode', analyzer='word', min_df = 5, token_pattern=r'\w{1,}', ngram_range=(1, 3)) # , # max_features=250000) all1 = pd.concat([train[COMMENT], test[COMMENT]]) word_vectorizer.fit(all1) xtrain1 = word_vectorizer.transform(train[COMMENT]) xtest1 = word_vectorizer.transform(test[COMMENT]) char_vectorizer = TfidfVectorizer( sublinear_tf=True, strip_accents='unicode', analyzer='char', min_df = 3, ngram_range=(1, 6)) # , # max_features=250000) all1 = pd.concat([train[COMMENT], test[COMMENT]]) char_vectorizer.fit(all1) xtrain2 = char_vectorizer.transform(train[COMMENT]) xtest2 = char_vectorizer.transform(test[COMMENT]) # # Model # In[ ]: nfolds = 5 xseed = 29 cval = 4 # data setup xtrain = hstack([xtrain1, xtrain2], format='csr') xtest = hstack([xtest1,xtest2], format='csr') ytrain = np.array(train[label_cols].copy()) # stratified split skf = StratifiedKFold(n_splits= nfolds, random_state= xseed) # storage structures for prval / prfull predval = np.zeros((xtrain.shape[0], len(label_cols))) predfull = np.zeros((xtest.shape[0], len(label_cols))) scoremat = np.zeros((nfolds,len(label_cols) )) score_vec = np.zeros((len(label_cols),1)) # In[ ]: for (lab_ind,lab) in enumerate(label_cols): y = train[lab].copy() print('label:' + str(lab_ind)) for (f, (train_index, test_index)) in enumerate(skf.split(xtrain, y)): # split x0, x1 = xtrain[train_index], xtrain[test_index] y0, y1 = y[train_index], y[test_index] # fit model for prval m,r = get_mdl(y0,x0, c0 = cval) predval[test_index,lab_ind] = m.predict_proba(x1.multiply(r))[:,1] scoremat[f,lab_ind] = roc_auc_score(y1,predval[test_index,lab_ind]) # fit model full m,r = get_mdl(y,xtrain, c0 = cval) predfull[:,lab_ind] += m.predict_proba(xtest.multiply(r))[:,1] print('fit:'+ str(lab) + ' fold:' + str(f) + ' score:%.6f' %(scoremat[f,lab_ind])) # break predfull /= nfolds # In[ ]: score_vec = np.zeros((len(label_cols),1)) for ii in range(len(label_cols)): score_vec[ii] = roc_auc_score(ymat[:,ii], predval[:,ii]) print(score_vec.mean()) print(multi_roc_auc_score(ymat, predval)) # # Store resultss # In[ ]: # store prval prval = pd.DataFrame(predval) prval.columns = label_cols prval['id'] = id_train prval.to_csv('prval_'+model_type+'x'+str(cval)+'f'+str(nfolds)+'_'+todate+'.csv', index= False) # store prfull prfull = pd.DataFrame(predfull) prfull.columns = label_cols prfull['id'] = id_test prfull.to_csv('prfull_'+model_type+'x'+str(cval)+'f'+str(nfolds)+'_'+todate+'.csv', index= False) # store submission submid = pd.DataFrame({'id': subm["id"]}) submission = pd.concat([submid, pd.DataFrame(prfull, columns = label_cols)], axis=1) submission.to_csv('sub_'+model_type+'x'+str(cval)+'f'+str(nfolds)+'_'+todate+'.csv', index= False)
1aa72e7f053db9d44e6084691888488c1d1da4e8
b1baabe0f34a5595af3f9587b357155590f76569
/switcher
44806892454dc8ccc7239c8c9d4a227f32075524
[]
no_license
anson-tang/3dkserver
cb41269801ec97d747bb7b853841c7ad4921ad94
4fec66a0e1c8454252f53bc9ba41ce220357f7e4
refs/heads/master
2021-01-19T05:27:11.555032
2016-06-22T01:13:04
2016-06-22T01:13:04
60,994,700
0
2
null
null
null
null
UTF-8
Python
false
false
3,350
#!/usr/bin/env python #-*-coding: utf-8-*- import sys, os from os.path import abspath, dirname, join, normpath PREFIX = normpath( dirname( abspath( __file__ ) ) ) lib_path = normpath( join( PREFIX, 'lib' ) ) if lib_path not in sys.path: sys.path = [ lib_path ] + sys.path from twisted.internet import reactor, defer from rpc import ConnectorCreator from setting import GATEWAYSERVER from utils import print_e cmd = None seconds = 0 uids_admin_want_add = [] USAGE = '''{0} [ USAGE ]: ./switcher on 打开游戏区。 ./switcher status 查看游戏区当前状态。 ./switcher off 关闭游戏区,但不需要停止服务器。 ./switcher off 0 关闭游戏区,但不需要停止服务器。 ./switcher off N 关闭游戏区,广播所有线上客户端,N + 3秒后游戏区所有进程停止。 ./switcher add accountname accountname accountname 增加Admin账号,在游戏区关闭的情况下,仍然可以正常进入游戏。 ''' def switch( p ): switch_on = ( cmd == 'on' ) return p.call( 'gm_server_status_switch', ( switch_on, seconds ) ) def add_admin( p ): return p.call( 'gm_add_admin_user', uids_admin_want_add ) def status( p ): return p.call( 'gm_server_status', None) def usage( err ): print USAGE.format( '[ E ]: ' + str( err ) if err else '' ) return False def parse_argv(): global cmd, switch_on, seconds, uids_admin_want_add _argv = sys.argv _l = len( _argv ) if _l < 2: return usage( '命令不正确。' ) else: cmd = _argv[1].strip() if cmd in ( 'on', 'off', 'status' ) and _l == 2: return True else: if cmd == 'off' and _l == 3: try: seconds = int( _argv[2] ) except: return usage( '倒计时格式不正确。' ) elif cmd == 'add' and _l >= 3: try: uids_admin_want_add = map( lambda s:s.strip(), _argv[2:] ) except: return usage( '用户账号格式不正确。' ) else: return usage( '未知错误。' ) return True @defer.inlineCallbacks def connected( p ): res = None if parse_argv(): if p: try: if cmd == 'add': res = yield add_admin( p ) elif cmd == 'status': res = yield status( p ) elif cmd in ( 'on', 'off' ): res = yield switch( p ) else: usage( '{0}: {1}'.format( '未知命令', cmd ) ) except: print_e() print '[ connected ]OK. cmd', cmd, 'and res([1, 1] means executed successfully)', res else: print '[ failed ]connect to {0} : {1} failed'.format(GATEWAYSERVER['localhost'], GATEWAYSERVER['port']) reactor.stop() def failed(error): print '[ failed ]connect failed. error', error.getErrorMessage() reactor.stop() def main(): ConnectorCreator( None ).connect(GATEWAYSERVER['localhost'], GATEWAYSERVER['port'], timeout = 1).addCallbacks( connected, failed ) reactor.run() if __name__ == '__main__': main()
c53a010937b63e46766486a720a1459d0abc48db
f31fda8014ecadf6af7d4e3392fb917c49e0352a
/HeavyIonsAnalysis/JetAnalysis/python/jets/akPuFilter1PFJetSequence_PbPb_jec_cff.py
9ab5f0e173560a4a0aafa9aeb1a3c4177253b7eb
[]
no_license
jniedzie/lightbylight
acea5051f053c49824a49a0b78bac3a2247ee75f
f5a4661fcf3fd3c0e9ccd8893a46a238e30c2aa8
refs/heads/master
2020-03-18T12:24:31.970468
2018-02-09T15:50:00
2018-02-09T15:50:00
134,724,759
0
1
null
2018-05-24T14:11:12
2018-05-24T14:11:12
null
UTF-8
Python
false
false
15,089
py
import FWCore.ParameterSet.Config as cms from HeavyIonsAnalysis.JetAnalysis.patHeavyIonSequences_cff import patJetGenJetMatch, patJetPartonMatch, patJetCorrFactors, patJets from HeavyIonsAnalysis.JetAnalysis.inclusiveJetAnalyzer_cff import * from HeavyIonsAnalysis.JetAnalysis.bTaggers_cff import * from RecoJets.JetProducers.JetIDParams_cfi import * from RecoJets.JetProducers.nJettinessAdder_cfi import Njettiness akPuFilter1PFmatch = patJetGenJetMatch.clone( src = cms.InputTag("akPuFilter1PFJets"), matched = cms.InputTag("ak1HiSignalGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.1 ) akPuFilter1PFmatchGroomed = patJetGenJetMatch.clone( src = cms.InputTag("akFilter1HiGenJets"), matched = cms.InputTag("ak1HiSignalGenJets"), resolveByMatchQuality = cms.bool(False), maxDeltaR = 0.1 ) akPuFilter1PFparton = patJetPartonMatch.clone(src = cms.InputTag("akPuFilter1PFJets") ) akPuFilter1PFcorr = patJetCorrFactors.clone( useNPV = cms.bool(False), useRho = cms.bool(False), # primaryVertices = cms.InputTag("hiSelectedVertex"), levels = cms.vstring('L2Relative','L3Absolute'), src = cms.InputTag("akPuFilter1PFJets"), payload = "AKPu1PF_offline" ) akPuFilter1PFJetID= cms.EDProducer('JetIDProducer', JetIDParams, src = cms.InputTag('akPuFilter1CaloJets')) #akPuFilter1PFclean = heavyIonCleanedGenJets.clone(src = cms.InputTag('ak1HiSignalGenJets')) akPuFilter1PFbTagger = bTaggers("akPuFilter1PF",0.1) #create objects locally since they dont load properly otherwise #akPuFilter1PFmatch = akPuFilter1PFbTagger.match akPuFilter1PFparton = patJetPartonMatch.clone(src = cms.InputTag("akPuFilter1PFJets"), matched = cms.InputTag("hiSignalGenParticles")) akPuFilter1PFPatJetFlavourAssociationLegacy = akPuFilter1PFbTagger.PatJetFlavourAssociationLegacy akPuFilter1PFPatJetPartons = akPuFilter1PFbTagger.PatJetPartons akPuFilter1PFJetTracksAssociatorAtVertex = akPuFilter1PFbTagger.JetTracksAssociatorAtVertex akPuFilter1PFJetTracksAssociatorAtVertex.tracks = cms.InputTag("highPurityTracks") akPuFilter1PFSimpleSecondaryVertexHighEffBJetTags = akPuFilter1PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPuFilter1PFSimpleSecondaryVertexHighPurBJetTags = akPuFilter1PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPuFilter1PFCombinedSecondaryVertexBJetTags = akPuFilter1PFbTagger.CombinedSecondaryVertexBJetTags akPuFilter1PFCombinedSecondaryVertexV2BJetTags = akPuFilter1PFbTagger.CombinedSecondaryVertexV2BJetTags akPuFilter1PFJetBProbabilityBJetTags = akPuFilter1PFbTagger.JetBProbabilityBJetTags akPuFilter1PFSoftPFMuonByPtBJetTags = akPuFilter1PFbTagger.SoftPFMuonByPtBJetTags akPuFilter1PFSoftPFMuonByIP3dBJetTags = akPuFilter1PFbTagger.SoftPFMuonByIP3dBJetTags akPuFilter1PFTrackCountingHighEffBJetTags = akPuFilter1PFbTagger.TrackCountingHighEffBJetTags akPuFilter1PFTrackCountingHighPurBJetTags = akPuFilter1PFbTagger.TrackCountingHighPurBJetTags akPuFilter1PFPatJetPartonAssociationLegacy = akPuFilter1PFbTagger.PatJetPartonAssociationLegacy akPuFilter1PFImpactParameterTagInfos = akPuFilter1PFbTagger.ImpactParameterTagInfos akPuFilter1PFImpactParameterTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akPuFilter1PFJetProbabilityBJetTags = akPuFilter1PFbTagger.JetProbabilityBJetTags akPuFilter1PFSecondaryVertexTagInfos = akPuFilter1PFbTagger.SecondaryVertexTagInfos akPuFilter1PFSimpleSecondaryVertexHighEffBJetTags = akPuFilter1PFbTagger.SimpleSecondaryVertexHighEffBJetTags akPuFilter1PFSimpleSecondaryVertexHighPurBJetTags = akPuFilter1PFbTagger.SimpleSecondaryVertexHighPurBJetTags akPuFilter1PFCombinedSecondaryVertexBJetTags = akPuFilter1PFbTagger.CombinedSecondaryVertexBJetTags akPuFilter1PFCombinedSecondaryVertexV2BJetTags = akPuFilter1PFbTagger.CombinedSecondaryVertexV2BJetTags akPuFilter1PFSecondaryVertexNegativeTagInfos = akPuFilter1PFbTagger.SecondaryVertexNegativeTagInfos akPuFilter1PFNegativeSimpleSecondaryVertexHighEffBJetTags = akPuFilter1PFbTagger.NegativeSimpleSecondaryVertexHighEffBJetTags akPuFilter1PFNegativeSimpleSecondaryVertexHighPurBJetTags = akPuFilter1PFbTagger.NegativeSimpleSecondaryVertexHighPurBJetTags akPuFilter1PFNegativeCombinedSecondaryVertexBJetTags = akPuFilter1PFbTagger.NegativeCombinedSecondaryVertexBJetTags akPuFilter1PFPositiveCombinedSecondaryVertexBJetTags = akPuFilter1PFbTagger.PositiveCombinedSecondaryVertexBJetTags akPuFilter1PFNegativeCombinedSecondaryVertexV2BJetTags = akPuFilter1PFbTagger.NegativeCombinedSecondaryVertexV2BJetTags akPuFilter1PFPositiveCombinedSecondaryVertexV2BJetTags = akPuFilter1PFbTagger.PositiveCombinedSecondaryVertexV2BJetTags akPuFilter1PFSoftPFMuonsTagInfos = akPuFilter1PFbTagger.SoftPFMuonsTagInfos akPuFilter1PFSoftPFMuonsTagInfos.primaryVertex = cms.InputTag("offlinePrimaryVertices") akPuFilter1PFSoftPFMuonBJetTags = akPuFilter1PFbTagger.SoftPFMuonBJetTags akPuFilter1PFSoftPFMuonByIP3dBJetTags = akPuFilter1PFbTagger.SoftPFMuonByIP3dBJetTags akPuFilter1PFSoftPFMuonByPtBJetTags = akPuFilter1PFbTagger.SoftPFMuonByPtBJetTags akPuFilter1PFNegativeSoftPFMuonByPtBJetTags = akPuFilter1PFbTagger.NegativeSoftPFMuonByPtBJetTags akPuFilter1PFPositiveSoftPFMuonByPtBJetTags = akPuFilter1PFbTagger.PositiveSoftPFMuonByPtBJetTags akPuFilter1PFPatJetFlavourIdLegacy = cms.Sequence(akPuFilter1PFPatJetPartonAssociationLegacy*akPuFilter1PFPatJetFlavourAssociationLegacy) #Not working with our PU sub, but keep it here for reference #akPuFilter1PFPatJetFlavourAssociation = akPuFilter1PFbTagger.PatJetFlavourAssociation #akPuFilter1PFPatJetFlavourId = cms.Sequence(akPuFilter1PFPatJetPartons*akPuFilter1PFPatJetFlavourAssociation) akPuFilter1PFJetBtaggingIP = cms.Sequence(akPuFilter1PFImpactParameterTagInfos * (akPuFilter1PFTrackCountingHighEffBJetTags + akPuFilter1PFTrackCountingHighPurBJetTags + akPuFilter1PFJetProbabilityBJetTags + akPuFilter1PFJetBProbabilityBJetTags ) ) akPuFilter1PFJetBtaggingSV = cms.Sequence(akPuFilter1PFImpactParameterTagInfos * akPuFilter1PFSecondaryVertexTagInfos * (akPuFilter1PFSimpleSecondaryVertexHighEffBJetTags+ akPuFilter1PFSimpleSecondaryVertexHighPurBJetTags+ akPuFilter1PFCombinedSecondaryVertexBJetTags+ akPuFilter1PFCombinedSecondaryVertexV2BJetTags ) ) akPuFilter1PFJetBtaggingNegSV = cms.Sequence(akPuFilter1PFImpactParameterTagInfos * akPuFilter1PFSecondaryVertexNegativeTagInfos * (akPuFilter1PFNegativeSimpleSecondaryVertexHighEffBJetTags+ akPuFilter1PFNegativeSimpleSecondaryVertexHighPurBJetTags+ akPuFilter1PFNegativeCombinedSecondaryVertexBJetTags+ akPuFilter1PFPositiveCombinedSecondaryVertexBJetTags+ akPuFilter1PFNegativeCombinedSecondaryVertexV2BJetTags+ akPuFilter1PFPositiveCombinedSecondaryVertexV2BJetTags ) ) akPuFilter1PFJetBtaggingMu = cms.Sequence(akPuFilter1PFSoftPFMuonsTagInfos * (akPuFilter1PFSoftPFMuonBJetTags + akPuFilter1PFSoftPFMuonByIP3dBJetTags + akPuFilter1PFSoftPFMuonByPtBJetTags + akPuFilter1PFNegativeSoftPFMuonByPtBJetTags + akPuFilter1PFPositiveSoftPFMuonByPtBJetTags ) ) akPuFilter1PFJetBtagging = cms.Sequence(akPuFilter1PFJetBtaggingIP *akPuFilter1PFJetBtaggingSV *akPuFilter1PFJetBtaggingNegSV # *akPuFilter1PFJetBtaggingMu ) akPuFilter1PFpatJetsWithBtagging = patJets.clone(jetSource = cms.InputTag("akPuFilter1PFJets"), genJetMatch = cms.InputTag("akPuFilter1PFmatch"), genPartonMatch = cms.InputTag("akPuFilter1PFparton"), jetCorrFactorsSource = cms.VInputTag(cms.InputTag("akPuFilter1PFcorr")), JetPartonMapSource = cms.InputTag("akPuFilter1PFPatJetFlavourAssociationLegacy"), JetFlavourInfoSource = cms.InputTag("akPuFilter1PFPatJetFlavourAssociation"), trackAssociationSource = cms.InputTag("akPuFilter1PFJetTracksAssociatorAtVertex"), useLegacyJetMCFlavour = True, discriminatorSources = cms.VInputTag(cms.InputTag("akPuFilter1PFSimpleSecondaryVertexHighEffBJetTags"), cms.InputTag("akPuFilter1PFSimpleSecondaryVertexHighPurBJetTags"), cms.InputTag("akPuFilter1PFCombinedSecondaryVertexBJetTags"), cms.InputTag("akPuFilter1PFCombinedSecondaryVertexV2BJetTags"), cms.InputTag("akPuFilter1PFJetBProbabilityBJetTags"), cms.InputTag("akPuFilter1PFJetProbabilityBJetTags"), #cms.InputTag("akPuFilter1PFSoftPFMuonByPtBJetTags"), #cms.InputTag("akPuFilter1PFSoftPFMuonByIP3dBJetTags"), cms.InputTag("akPuFilter1PFTrackCountingHighEffBJetTags"), cms.InputTag("akPuFilter1PFTrackCountingHighPurBJetTags"), ), jetIDMap = cms.InputTag("akPuFilter1PFJetID"), addBTagInfo = True, addTagInfos = True, addDiscriminators = True, addAssociatedTracks = True, addJetCharge = False, addJetID = False, getJetMCFlavour = True, addGenPartonMatch = True, addGenJetMatch = True, embedGenJetMatch = True, embedGenPartonMatch = True, # embedCaloTowers = False, # embedPFCandidates = True ) akPuFilter1PFNjettiness = Njettiness.clone( src = cms.InputTag("akPuFilter1PFJets"), R0 = cms.double( 0.1) ) akPuFilter1PFpatJetsWithBtagging.userData.userFloats.src += ['akPuFilter1PFNjettiness:tau1','akPuFilter1PFNjettiness:tau2','akPuFilter1PFNjettiness:tau3'] akPuFilter1PFJetAnalyzer = inclusiveJetAnalyzer.clone(jetTag = cms.InputTag("akPuFilter1PFpatJetsWithBtagging"), genjetTag = 'ak1HiGenJets', rParam = 0.1, matchJets = cms.untracked.bool(False), matchTag = 'patJetsWithBtagging', pfCandidateLabel = cms.untracked.InputTag('particleFlowTmp'), trackTag = cms.InputTag("hiGeneralTracks"), fillGenJets = True, isMC = True, doSubEvent = True, useHepMC = cms.untracked.bool(False), genParticles = cms.untracked.InputTag("genParticles"), eventInfoTag = cms.InputTag("generator"), doLifeTimeTagging = cms.untracked.bool(True), doLifeTimeTaggingExtras = cms.untracked.bool(False), bTagJetName = cms.untracked.string("akPuFilter1PF"), jetName = cms.untracked.string("akPuFilter1PF"), genPtMin = cms.untracked.double(5), hltTrgResults = cms.untracked.string('TriggerResults::'+'HISIGNAL'), doTower = cms.untracked.bool(True), doSubJets = cms.untracked.bool(True), doGenSubJets = cms.untracked.bool(False), subjetGenTag = cms.untracked.InputTag("akFilter1GenJets"), doGenTaus = True ) akPuFilter1PFJetSequence_mc = cms.Sequence( #akPuFilter1PFclean #* akPuFilter1PFmatch #* #akPuFilter1PFmatchGroomed * akPuFilter1PFparton * akPuFilter1PFcorr * #akPuFilter1PFJetID #* akPuFilter1PFPatJetFlavourIdLegacy #* #akPuFilter1PFPatJetFlavourId # Use legacy algo till PU implemented * akPuFilter1PFJetTracksAssociatorAtVertex * akPuFilter1PFJetBtagging * akPuFilter1PFNjettiness * akPuFilter1PFpatJetsWithBtagging * akPuFilter1PFJetAnalyzer ) akPuFilter1PFJetSequence_data = cms.Sequence(akPuFilter1PFcorr * #akPuFilter1PFJetID #* akPuFilter1PFJetTracksAssociatorAtVertex * akPuFilter1PFJetBtagging * akPuFilter1PFNjettiness * akPuFilter1PFpatJetsWithBtagging * akPuFilter1PFJetAnalyzer ) akPuFilter1PFJetSequence_jec = cms.Sequence(akPuFilter1PFJetSequence_mc) akPuFilter1PFJetSequence_mb = cms.Sequence(akPuFilter1PFJetSequence_mc) akPuFilter1PFJetSequence = cms.Sequence(akPuFilter1PFJetSequence_jec) akPuFilter1PFJetAnalyzer.genPtMin = cms.untracked.double(1) akPuFilter1PFJetAnalyzer.jetPtMin = cms.double(1)
5aec16750f6f86a0cdcfca7f3b20d9375929d277
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/TsRjbMRoNCM3GHuDk_9.py
7ca02c3b7d778338936732065ba5053888817fc2
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
""" The syllabic structure of Persian language is CV(C)(C). C stands for consonants and V stands for Vowels. The CV(C)(C) means that there are three types of syllables in Persian: * CV * CVC * CVCC Write a function that takes the phonetic transcription of a Persian word as an argument and returns the syllabified word based on the syllabic structure. In other word, put a period between syllables. ### Examples syllabification("kAr") ➞ "kAr" syllabification("bArAn") ➞ "bA.rAn" syllabification("tA") ➞ "tA" syllabification("deraxt") ➞ "de.raxt" syllabification("pust") ➞ "pust" syllabification("lAjevard") ➞ "lA.je.vard" ### Notes * Mono-syllabic words don't need syllabification. * Persian has six vowels: `a, A, e, i, o, u` * Persian has 23 consonants: `p, b, t, d, k, g, G, ?, f, v, s, z, S, Z, x, h, c, j, m, n, r, l, y` * Try to solve the problem by using RegEx. ### Hint Since each syllable has only one vowel, it's not necessary to know the consonants. Just knowing that there are only one consonant before the vowel and 0 to 2 consonants after the vowel is enough to solve the challenge. """ def syllabification(word): v = 'aAeiou' lst_idx_v = [i for i, l in enumerate(word) if l in v] if len(lst_idx_v) == 1: return word begin = 0 syllables = [] for i in range(1, len(lst_idx_v)): syllables.append(word[begin: lst_idx_v[i] - 1]) begin = lst_idx_v[i] - 1 syllables.append(word[begin:]) return '.'.join(syllables)
611a0c5777f47f7658d656110a34f4b258b8ccf4
8fcdcec1bf0f194d23bba4acd664166a04dc128f
/packages/grid_control/datasets/scanner_basic.py
db6e80561435f992b58c20ba4e1205c5861bfe7a
[]
no_license
grid-control/grid-control
e51337dd7e5d158644a8da35923443fb0d232bfb
1f5295cd6114f3f18958be0e0618ff6b35aa16d7
refs/heads/master
2022-11-13T13:29:13.226512
2021-10-01T14:37:59
2021-10-01T14:37:59
13,805,261
32
30
null
2023-02-19T16:22:47
2013-10-23T14:39:28
Python
UTF-8
Python
false
false
16,454
py
# | Copyright 2010-2017 Karlsruhe Institute of Technology # | # | Licensed under the Apache License, Version 2.0 (the "License"); # | you may not use this file except in compliance with the License. # | You may obtain a copy of the License at # | # | http://www.apache.org/licenses/LICENSE-2.0 # | # | Unless required by applicable law or agreed to in writing, software # | distributed under the License is distributed on an "AS IS" BASIS, # | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # | See the License for the specific language governing permissions and # | limitations under the License. import os, logging from grid_control.backends.storage import se_ls from grid_control.config import ConfigError, create_config from grid_control.datasets import DataProvider, DatasetError from grid_control.datasets.scanner_base import InfoScanner from grid_control.job_db import JobClass from grid_control.job_selector import AndJobSelector, ClassSelector, JobSelector from grid_control.utils import DictFormat, clean_path, split_opt from grid_control.utils.activity import ProgressActivity from grid_control.utils.algos import filter_dict from grid_control.utils.parsing import parse_str from hpfwk import clear_current_exception from python_compat import identity, ifilter, imap, irange, izip, lfilter, lidfilter, lmap, set, sorted # pylint:disable=line-too-long class AddFilePrefix(InfoScanner): alias_list = ['prefix'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._prefix = config.get('filename prefix', '') def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): yield (self._prefix + item, metadata_dict, entries, location_list, obj_dict) class DetermineEntries(InfoScanner): alias_list = ['DetermineEvents', 'events'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._entries_cmd = config.get(['events command', 'entries command'], '') self._entries_key = config.get(['events key', 'entries key'], '') self._entries_key_scale = config.get_float(['events per key value', 'entries per key value'], 1.) self._entries_default = config.get_int(['events default', 'entries default'], -1) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): if (entries is None) or (entries < 0): entries = self._entries_default if self._entries_key: entries_meta = int(metadata_dict.get(self._entries_key, entries)) entries = max(1, int(entries_meta * self._entries_key_scale)) if self._entries_cmd: try: entries = int(os.popen('%s %s' % (self._entries_cmd, item)).readlines()[-1]) except Exception: self._log.log(logging.INFO2, 'Unable to determine entries with %r %r', self._entries_cmd, item) clear_current_exception() yield (item, metadata_dict, entries, location_list, obj_dict) class FilesFromDataProvider(InfoScanner): alias_list = ['provider_files'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) source_dataset_path = config.get('source dataset path') self._source = DataProvider.create_instance('ListProvider', config, 'source dataset', source_dataset_path) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): for block in self._source.get_block_list_cached(show_stats=False): metadata_keys = block.get(DataProvider.Metadata, []) for fi in block[DataProvider.FileList]: metadata_dict['SRC_DATASET'] = block[DataProvider.Dataset] metadata_dict['SRC_BLOCK'] = block[DataProvider.BlockName] metadata_dict.update(dict(izip(metadata_keys, fi.get(DataProvider.Metadata, [])))) yield (fi[DataProvider.URL], metadata_dict, fi[DataProvider.NEntries], block[DataProvider.Locations], obj_dict) class FilesFromJobInfo(InfoScanner): alias_list = ['jobinfo_files'] def get_guard_keysets(self): return (['SE_OUTPUT_FILE'], ['SE_OUTPUT_PATH']) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): if 'JOBINFO' not in obj_dict: raise DatasetError('Job infos not available! Ensure that "JobInfoFromOutputDir" is selected!') try: job_info_dict = obj_dict['JOBINFO'] file_info_str_iter = ifilter(lambda x: x[0].startswith('file'), job_info_dict.items()) file_info_tuple_list = imap(lambda x_y: tuple(x_y[1].strip('"').split(' ')), file_info_str_iter) for (file_hash, fn_local, fn_dest, se_path) in file_info_tuple_list: metadata_dict.update({'SE_OUTPUT_HASH_MD5': file_hash, 'SE_OUTPUT_FILE': fn_local, 'SE_OUTPUT_BASE': os.path.splitext(fn_local)[0], 'SE_OUTPUT_PATH': se_path}) yield (os.path.join(se_path, fn_dest), metadata_dict, entries, location_list, obj_dict) except Exception: raise DatasetError('Unable to read file stageout information!') class FilesFromLS(InfoScanner): alias_list = ['ls'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._path = config.get('source directory', '.') self._timeout = config.get_int('source timeout', 120) self._trim = config.get_bool('source trim local', True) self._recurse = config.get_bool('source recurse', False) if '://' not in self._path: self._path = 'file://' + self._path (prot, path) = self._path.split('://') self._path = prot + '://' + clean_path(path) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): metadata_dict['GC_SOURCE_DIR'] = self._path progress = ProgressActivity('Reading source directory') for counter, size_url in enumerate(self._iter_path(self._path)): progress.update_progress(counter) metadata_dict['FILE_SIZE'] = size_url[0] url = size_url[1] if self._trim: url = url.replace('file://', '') yield (url, metadata_dict, entries, location_list, obj_dict) progress.finish() def _iter_path(self, path): proc = se_ls(path) for size_basename in proc.stdout.iter(timeout=self._timeout): (size, basename) = size_basename.strip().split(' ', 1) size = int(size) if size >= 0: yield (size, os.path.join(path, basename)) elif self._recurse: for result in self._iter_path(os.path.join(path, basename)): yield result if proc.status(timeout=0) != 0: self._log.log_process(proc) class JobInfoFromOutputDir(InfoScanner): alias_list = ['dn_jobinfo'] def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): job_info_path = os.path.join(item, 'job.info') try: job_info_dict = DictFormat('=').parse(open(job_info_path)) if job_info_dict.get('exitcode') == 0: obj_dict['JOBINFO'] = job_info_dict yield (item, metadata_dict, entries, location_list, obj_dict) except Exception: self._log.log(logging.INFO2, 'Unable to parse job info file %r', job_info_path) clear_current_exception() class MatchDelimeter(InfoScanner): alias_list = ['delimeter'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) # delimeter based selection match_delim_str = config.get('delimeter match', '') self._match_delim = match_delim_str.split(':') self._match_inactive = len(self._match_delim) != 2 # delimeter based metadata setup self._setup_arg_list = [] self._guard_ds = self._setup('DELIMETER_DS', config.get('delimeter dataset key', ''), config.get('delimeter dataset modifier', '')) self._guard_b = self._setup('DELIMETER_B', config.get('delimeter block key', ''), config.get('delimeter block modifier', '')) def get_guard_keysets(self): return (self._guard_ds, self._guard_b) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): fn_base = os.path.basename(item) if self._match_inactive or fn_base.count(self._match_delim[0]) == int(self._match_delim[1]): for setup in self._setup_arg_list: self._process(item, metadata_dict, *setup) yield (item, metadata_dict, entries, location_list, obj_dict) def _process(self, item, metadata_dict, key, delim, delim_start, delim_end, modifier_fun): value = str.join(delim, os.path.basename(item).split(delim)[delim_start:delim_end]) try: metadata_dict[key] = str(modifier_fun(value)) except Exception: raise DatasetError('Unable to modifiy %s: %r' % (key, value)) def _setup(self, setup_vn, setup_key, setup_mod): if setup_key: (delim, delim_start_str, delim_end_str) = split_opt(setup_key, '::') modifier = identity if setup_mod and (setup_mod.strip() != 'value'): try: modifier = eval('lambda value: ' + setup_mod) # pylint:disable=eval-used except Exception: raise ConfigError('Unable to parse delimeter modifier %r' % setup_mod) (delim_start, delim_end) = (parse_str(delim_start_str, int), parse_str(delim_end_str, int)) self._setup_arg_list.append((setup_vn, delim, delim_start, delim_end, modifier)) return [setup_vn] return [] class MatchOnFilename(InfoScanner): alias_list = ['match'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._match = config.get_matcher('filename filter', '*.root', default_matcher='ShellStyleMatcher') self._relative = config.get_bool('filename filter relative', True) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): fn_match = item if self._relative: fn_match = os.path.basename(item) if self._match.match(fn_match) > 0: yield (item, metadata_dict, entries, location_list, obj_dict) class MetadataFromTask(InfoScanner): alias_list = ['task_metadata'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) ignore_list_default = lmap(lambda x: 'SEED_%d' % x, irange(10)) + ['DOBREAK', 'FILE_NAMES', 'GC_DEPFILES', 'GC_JOBID', 'GC_JOBNUM', 'GC_JOB_ID', 'GC_PARAM', 'GC_RUNTIME', 'GC_VERSION', 'JOB_RANDOM', 'JOBID', 'LANDINGZONE_LL', 'LANDINGZONE_UL', 'MY_JOB', 'MY_JOBID', 'MY_RUNTIME', 'SB_INPUT_FILES', 'SB_OUTPUT_FILES', 'SCRATCH_LL', 'SCRATCH_UL', 'SEEDS', 'SE_INPUT_FILES', 'SE_INPUT_PATH', 'SE_INPUT_PATTERN', 'SE_MINFILESIZE', 'SE_OUTPUT_FILES', 'SE_OUTPUT_PATH', 'SE_OUTPUT_PATTERN', 'SUBST_FILES'] self._ignore_vars = config.get_list('ignore task vars', ignore_list_default) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): if ('GC_TASK' in obj_dict) and ('GC_JOBNUM' in metadata_dict): job_env_dict = obj_dict['GC_TASK'].get_job_dict(metadata_dict['GC_JOBNUM']) for (key_new, key_old) in obj_dict['GC_TASK'].get_var_alias_map().items(): job_env_dict[key_new] = job_env_dict.get(key_old) metadata_dict.update(filter_dict(job_env_dict, key_filter=lambda k: k not in self._ignore_vars)) yield (item, metadata_dict, entries, location_list, obj_dict) class OutputDirsFromConfig(InfoScanner): alias_list = ['config_dn'] # Get output directories from external config file def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) ext_config_fn = config.get_fn('source config') ext_config_raw = create_config(ext_config_fn, load_only_old_config=True) ext_config = ext_config_raw.change_view(set_sections=['global']) self._ext_work_dn = ext_config.get_work_path() logging.getLogger().disabled = True ext_workflow = ext_config.get_plugin('workflow', 'Workflow:global', cls='Workflow', pkwargs={'backend': 'NullWMS'}) logging.getLogger().disabled = False self._ext_task = ext_workflow.task job_selector = JobSelector.create(config.get('source job selector', ''), task=self._ext_task) self._selected = sorted(ext_workflow.job_manager.job_db.get_job_list(AndJobSelector( ClassSelector(JobClass.SUCCESS), job_selector))) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): progress_max = None if self._selected: progress_max = self._selected[-1] + 1 progress = ProgressActivity('Reading job logs', progress_max) for jobnum in self._selected: progress.update_progress(jobnum) metadata_dict['GC_JOBNUM'] = jobnum obj_dict.update({'GC_TASK': self._ext_task, 'GC_WORKDIR': self._ext_work_dn}) job_output_dn = os.path.join(self._ext_work_dn, 'output', 'job_%d' % jobnum) yield (job_output_dn, metadata_dict, entries, location_list, obj_dict) progress.finish() class OutputDirsFromWork(InfoScanner): alias_list = ['work_dn'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._ext_work_dn = config.get_dn('source directory') self._ext_output_dir = os.path.join(self._ext_work_dn, 'output') if not os.path.isdir(self._ext_output_dir): raise DatasetError('Unable to find task output directory %s' % repr(self._ext_output_dir)) self._selector = JobSelector.create(config.get('source job selector', '')) def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): dn_list = lfilter(lambda fn: fn.startswith('job_'), os.listdir(self._ext_output_dir)) progress = ProgressActivity('Reading job logs', len(dn_list)) for idx, dn in enumerate(dn_list): progress.update_progress(idx) try: metadata_dict['GC_JOBNUM'] = int(dn.split('_')[1]) except Exception: clear_current_exception() continue obj_dict['GC_WORKDIR'] = self._ext_work_dn if self._selector and not self._selector(metadata_dict['GC_JOBNUM'], None): continue job_output_dn = os.path.join(self._ext_output_dir, dn) yield (job_output_dn, metadata_dict, entries, location_list, obj_dict) progress.finish() class ParentLookup(InfoScanner): alias_list = ['parent'] def __init__(self, config, datasource_name): InfoScanner.__init__(self, config, datasource_name) self._parent_source = config.get('parent source', '') self._parent_keys = config.get_list('parent keys', []) self._parent_match_level = config.get_int('parent match level', 1) self._parent_merge = config.get_bool('merge parents', False) # cached "parent lfn parts" (plfnp) to "parent dataset name" (pdn) maps self._plfnp2pdn_cache = {} # the maps are stored for different parent_dataset_expr self._empty_config = create_config(use_default_files=False, load_old_config=False) self._read_plfnp_map(config, self._parent_source) # read from configured parent source def get_guard_keysets(self): if self._parent_merge: return ([], []) return ([], ['PARENT_PATH']) def _get_lfnp(self, lfn): # get lfn parts (lfnp) if lfn and self._parent_match_level: # return looseMatch path elements in reverse order # /store/local/data/file.root -> file.root (~ML1) | file.root/data/local (~ML3) tmp = lfn.split('/') tmp.reverse() return str.join('/', tmp[:self._parent_match_level]) return lfn def _iter_datasource_items(self, item, metadata_dict, entries, location_list, obj_dict): # if parent source is not defined, try to get datacache from GC_WORKDIR map_plfnp2pdn = dict(self._plfnp2pdn_cache.get(self._parent_source, {})) datacache_fn = os.path.join(obj_dict.get('GC_WORKDIR', ''), 'datacache.dat') if os.path.exists(datacache_fn): # extend configured parent source with datacache if it exists map_plfnp2pdn.update(self._read_plfnp_map(self._empty_config, datacache_fn)) pdn_list = [] # list with parent dataset names for key in ifilter(metadata_dict.__contains__, self._parent_keys): parent_lfn_list = metadata_dict[key] if not isinstance(parent_lfn_list, list): parent_lfn_list = [metadata_dict[key]] for parent_lfn in parent_lfn_list: pdn_list.append(map_plfnp2pdn.get(self._get_lfnp(parent_lfn))) metadata_dict['PARENT_PATH'] = lidfilter(set(pdn_list)) yield (item, metadata_dict, entries, location_list, obj_dict) def _read_plfnp_map(self, config, parent_dataset_expr): if parent_dataset_expr and (parent_dataset_expr not in self._plfnp2pdn_cache): # read parent source and fill lfnMap with parent_lfn_parts -> parent dataset name mapping map_plfnp2pdn = self._plfnp2pdn_cache.setdefault(parent_dataset_expr, {}) for block in DataProvider.iter_blocks_from_expr(self._empty_config, parent_dataset_expr): for fi in block[DataProvider.FileList]: map_plfnp2pdn[self._get_lfnp(fi[DataProvider.URL])] = block[DataProvider.Dataset] return self._plfnp2pdn_cache.get(parent_dataset_expr, {}) # return cached mapping
0c1509e1816728cd8c2678be1b3f957b1ad9cc38
75e951dcf749f62f2a292774968fe95fc4a353c8
/boa3/model/operation/unaryop.py
8d001b89427dfa1ef705bb7c35ec6be1e5ab8fb7
[ "Apache-2.0" ]
permissive
jplippi/neo3-boa
e0a199d1ed2fa39abe09ebd3c013c360ca87f544
052be4adebb665113715bb80067d954f7ad85ad5
refs/heads/development
2022-08-19T10:17:43.610854
2020-05-25T20:30:42
2020-05-25T20:30:42
265,959,419
0
0
Apache-2.0
2020-05-25T20:39:59
2020-05-21T21:54:24
Python
UTF-8
Python
false
false
2,046
py
from typing import Optional from boa3.model.operation.operator import Operator from boa3.model.operation.unary.booleannot import BooleanNot from boa3.model.operation.unary.negative import Negative from boa3.model.operation.unary.positive import Positive from boa3.model.operation.unary.unaryoperation import UnaryOperation from boa3.model.type.type import IType class UnaryOp: # Arithmetic operations Positive = Positive() Negative = Negative() # Logical operations Not = BooleanNot() @classmethod def validate_type(cls, operator: Operator, operand: IType) -> Optional[UnaryOperation]: """ Gets a unary operation given the operator and the operand type. :param operator: unary operator :param operand: type of the operand :return: The operation if exists. None otherwise; :rtype: UnaryOperation or None """ for id, op in vars(cls).items(): if isinstance(op, UnaryOperation) and op.is_valid(operator, operand): return op.build(operand) @classmethod def get_operation_by_operator(cls, operator: Operator) -> Optional[UnaryOperation]: """ Gets a unary operation given the operator. :param operator: unary operator :return: The operation if exists. If exists more than one operation with the same operator, returns the first found. None otherwise. :rtype: UnaryOperation or None """ for id, op in vars(cls).items(): if isinstance(op, UnaryOperation) and op.operator is operator: return op @classmethod def get_operation(cls, operation: UnaryOperation) -> Optional[UnaryOperation]: """ Gets an unary operation given another operation. :param operation: unary operation :return: The operation if exists. None otherwise; :rtype: UnaryOperation or None """ for id, op in vars(cls).items(): if type(operation) == type(op): return op
030b4c362a080ed3fefaefec7c4a04c2570a0144
8f7b7a910520ba49a2e614da72f7b6297f617409
/Problemset/isomorphic-strings/isomorphic-strings.py
bfd41976cf490a5bac150110e345392d060325ff
[]
no_license
fank-cd/python_leetcode
69c4466e9e202e48502252439b4cc318712043a2
61f07d7c7e76a1eada21eb3e6a1a177af3d56948
refs/heads/master
2021-06-16T23:41:55.591095
2021-03-04T08:31:47
2021-03-04T08:31:47
173,226,640
1
0
null
null
null
null
UTF-8
Python
false
false
511
py
# @Title: 同构字符串 (Isomorphic Strings) # @Author: [email protected] # @Date: 2020-12-28 16:12:46 # @Runtime: 48 ms # @Memory: 17.1 MB class Solution: def isIsomorphic(self, s: str, t: str) -> bool: d1,d2 = defaultdict(list), defaultdict(list) for index,i in enumerate(s): d1[i].append(index) for index,i in enumerate(t): d2[i].append(index) # print(list(d1.values()),list(d2.values())) return list(d1.values()) == list(d2.values())
1f30f5e4102fbbdca71b5f19949cadfb232dfb14
a42d5b8e53660db5b33d4cb3e9350eb983639cd8
/board/admin.py
d39fd3a5723f23155ad3e5430bbb5406e68ef879
[]
no_license
Tedhoon/SPNU_DP
03a0b3e6ae5fa0cf045617ef1da6c14f1084202b
3776417fc5d3cb099d6f7029d6864d58b5e535b6
refs/heads/master
2022-11-29T15:20:31.594799
2019-10-17T17:18:04
2019-10-17T17:18:04
211,781,362
1
0
null
2022-11-22T04:16:33
2019-09-30T05:23:59
CSS
UTF-8
Python
false
false
123
py
from django.contrib import admin from .models import * admin.site.register(NoticeBoard) admin.site.register(FreeBoard)
ec1d53bcb53a59ed0b3cf5cdec093ad9456263da
a560269290749e10466b1a29584f06a2b8385a47
/Notebooks/py/alberto33/introduction-to-ensembling-stacking-in-python/introduction-to-ensembling-stacking-in-python.py
697cfa42405f34ec019f187864f73b14e61421cd
[]
no_license
nischalshrestha/automatic_wat_discovery
c71befad1aa358ae876d5494a67b0f4aa1266f23
982e700d8e4698a501afffd6c3a2f35346c34f95
refs/heads/master
2022-04-07T12:40:24.376871
2020-03-15T22:27:39
2020-03-15T22:27:39
208,379,586
2
1
null
null
null
null
UTF-8
Python
false
false
29,957
py
#!/usr/bin/env python # coding: utf-8 # # Introduction # # This notebook is a very basic and simple introductory primer to the method of ensembling (combining) base learning models, in particular the variant of ensembling known as Stacking. In a nutshell stacking uses as a first-level (base), the predictions of a few basic classifiers and then uses another model at the second-level to predict the output from the earlier first-level predictions. # # The Titanic dataset is a prime candidate for introducing this concept as many newcomers to Kaggle start out here. Furthermore even though stacking has been responsible for many a team winning Kaggle competitions there seems to be a dearth of kernels on this topic so I hope this notebook can fill somewhat of that void. # # I myself am quite a newcomer to the Kaggle scene as well and the first proper ensembling/stacking script that I managed to chance upon and study was one written in the AllState Severity Claims competition by the great Faron. The material in this notebook borrows heavily from Faron's script although ported to factor in ensembles of classifiers whilst his was ensembles of regressors. Anyway please check out his script here: # # [Stacking Starter][1] : by Faron # # # Now onto the notebook at hand and I hope that it manages to do justice and convey the concept of ensembling in an intuitive and concise manner. My other standalone Kaggle [script][2] which implements exactly the same ensembling steps (albeit with different parameters) discussed below gives a Public LB score of 0.808 which is good enough to get to the top 9% and runs just under 4 minutes. Therefore I am pretty sure there is a lot of room to improve and add on to that script. Anyways please feel free to leave me any comments with regards to how I can improve # # # [1]: https://www.kaggle.com/mmueller/allstate-claims-severity/stacking-starter/run/390867 # [2]: https://www.kaggle.com/arthurtok/titanic/simple-stacking-with-xgboost-0-808 # In[ ]: # Load in our libraries import pandas as pd import numpy as np import re import sklearn import xgboost as xgb import seaborn as sns import matplotlib.pyplot as plt get_ipython().magic(u'matplotlib inline') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import warnings warnings.filterwarnings('ignore') # Going to use these 5 base models for the stacking from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier) from sklearn.svm import SVC from sklearn.cross_validation import KFold # # Feature Exploration, Engineering and Cleaning # # Now we will proceed much like how most kernels in general are structured, and that is to first explore the data on hand, identify possible feature engineering opportunities as well as numerically encode any categorical features. # In[ ]: # Load in the train and test datasets train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') # Store our passenger ID for easy access PassengerId = test['PassengerId'] train.head(3) # Well it is no surprise that our task is to somehow extract the information out of the categorical variables # # **Feature Engineering** # # Here, credit must be extended to Sina's very comprehensive and well-thought out notebook for the feature engineering ideas so please check out his work # # [Titanic Best Working Classfier][1] : by Sina # # # [1]: https://www.kaggle.com/sinakhorami/titanic/titanic-best-working-classifier # In[ ]: full_data = [train, test] # Some features of my own that I have added in # Gives the length of the name train['Name_length'] = train['Name'].apply(len) test['Name_length'] = test['Name'].apply(len) # Feature that tells whether a passenger had a cabin on the Titanic train['Has_Cabin'] = train["Cabin"].apply(lambda x: 0 if type(x) == float else 1) test['Has_Cabin'] = test["Cabin"].apply(lambda x: 0 if type(x) == float else 1) # Feature engineering steps taken from Sina # Create new feature FamilySize as a combination of SibSp and Parch for dataset in full_data: dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 # Create new feature IsAlone from FamilySize for dataset in full_data: dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 # Remove all NULLS in the Embarked column for dataset in full_data: dataset['Embarked'] = dataset['Embarked'].fillna('S') # Remove all NULLS in the Fare column and create a new feature CategoricalFare for dataset in full_data: dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median()) train['CategoricalFare'] = pd.qcut(train['Fare'], 4) # Create a New feature CategoricalAge for dataset in full_data: age_avg = dataset['Age'].mean() age_std = dataset['Age'].std() age_null_count = dataset['Age'].isnull().sum() age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size=age_null_count) dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list dataset['Age'] = dataset['Age'].astype(int) train['CategoricalAge'] = pd.cut(train['Age'], 5) # Define function to extract titles from passenger names def get_title(name): title_search = re.search(' ([A-Za-z]+)\.', name) # If the title exists, extract and return it. if title_search: return title_search.group(1) return "" # Create a new feature Title, containing the titles of passenger names for dataset in full_data: dataset['Title'] = dataset['Name'].apply(get_title) # Group all non-common titles into one single grouping "Rare" for dataset in full_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') for dataset in full_data: # Mapping Sex dataset['Sex'] = dataset['Sex'].map( {'female': 0, 'male': 1} ).astype(int) # Mapping titles title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) # Mapping Embarked dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int) # Mapping Fare dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) # Mapping Age dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 ; # In[ ]: # Feature selection drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp'] train = train.drop(drop_elements, axis = 1) train = train.drop(['CategoricalAge', 'CategoricalFare'], axis = 1) test = test.drop(drop_elements, axis = 1) # All right so now having cleaned the features and extracted relevant information and dropped the categorical columns our features should now all be numeric, a format suitable to feed into our Machine Learning models. However before we proceed let us generate some simple correlation and distribution plots of our transformed dataset to observe ho # # ## Visualisations # In[ ]: train.head(3) # **Pearson Correlation Heatmap** # # let us generate some correlation plots of the features to see how related one feature is to the next. To do so, we will utilise the Seaborn plotting package which allows us to plot heatmaps very conveniently as follows # In[ ]: colormap = plt.cm.RdBu plt.figure(figsize=(15,15)) plt.title('Pearson Correlation of Features 2', y=1.05, size=15) sns.heatmap(train.astype(float).corr(),linewidths=0.1,vmax=1.0, square=False, cmap=colormap, linecolor='black', annot=True) # **Takeaway from the Plots** # # One thing that that the Pearson Correlation plot can tell us is that there are not too many features strongly correlated with one another. This is good from a point of view of feeding these features into your learning model because this means that there isn't much redundant or superfluous data in our training set and we are happy that each feature carries with it some unique information. Here are two most correlated features are that of Family size and Parch (Parents and Children). I'll still leave both features in for the purposes of this exercise. # # **Pairplots** # # Finally let us generate some pairplots to observe the distribution of data from one feature to the other. Once again we use Seaborn to help us. # In[ ]: g = sns.pairplot(train[[u'Survived', u'Pclass', u'Sex', u'Age', u'Parch', u'Fare', u'Embarked', u'FamilySize', u'IsAlone', u'Title']], hue='Survived', palette = 'seismic',size=1.2,diag_kind = 'kde',diag_kws=dict(shade=True),plot_kws=dict(s=10) ) g.set(xticklabels=[]) # # Ensembling & Stacking models # # Finally after that brief whirlwind detour with regards to feature engineering and formatting, we finally arrive at the meat and gist of the this notebook. # # Creating a Stacking ensemble! # ### Helpers via Python Classes # # Here we invoke the use of Python's classes to help make it more convenient for us. For any newcomers to programming, one normally hears Classes being used in conjunction with Object-Oriented Programming (OOP). In short, a class helps to extend some code/program for creating objects (variables for old-school peeps) as well as to implement functions and methods specific to that class. # # In the section of code below, we essentially write a class *SklearnHelper* that allows one to extend the inbuilt methods (such as train, predict and fit) common to all the Sklearn classifiers. Therefore this cuts out redundancy as won't need to write the same methods five times if we wanted to invoke five different classifiers. # In[ ]: # Some useful parameters which will come in handy later on ntrain = train.shape[0] ntest = test.shape[0] SEED = 0 # for reproducibility NFOLDS = 5 # set folds for out-of-fold prediction kf = KFold(ntrain, n_folds= NFOLDS, random_state=SEED) # Class to extend the Sklearn classifier class SklearnHelper(object): def __init__(self, clf, seed=0, params=None): params['random_state'] = seed self.clf = clf(**params) def train(self, x_train, y_train): self.clf.fit(x_train, y_train) def predict(self, x): return self.clf.predict(x) def fit(self,x,y): return self.clf.fit(x,y) def feature_importances(self,x,y): print(self.clf.fit(x,y).feature_importances_) # Class to extend XGboost classifer # Bear with me for those who already know this but for people who have not created classes or objects in Python before, let me explain what the code given above does. In creating my base classifiers, I will only use the models already present in the Sklearn library and therefore only extend the class for that. # # **def init** : Python standard for invoking the default constructor for the class. This means that when you want to create an object (classifier), you have to give it the parameters of clf (what sklearn classifier you want), seed (random seed) and params (parameters for the classifiers). # # The rest of the code are simply methods of the class which simply call the corresponding methods already existing within the sklearn classifiers. Essentially, we have created a wrapper class to extend the various Sklearn classifiers so that this should help us reduce having to write the same code over and over when we implement multiple learners to our stacker. # ### Out-of-Fold Predictions # # Now as alluded to above in the introductory section, stacking uses predictions of base classifiers as input for training to a second-level model. However one cannot simply train the base models on the full training data, generate predictions on the full test set and then output these for the second-level training. This runs the risk of your base model predictions already having "seen" the test set and therefore overfitting when feeding these predictions. # In[ ]: def get_oof(clf, x_train, y_train, x_test): oof_train = np.zeros((ntrain,)) oof_test = np.zeros((ntest,)) oof_test_skf = np.empty((NFOLDS, ntest)) for i, (train_index, test_index) in enumerate(kf): x_tr = x_train[train_index] y_tr = y_train[train_index] x_te = x_train[test_index] clf.train(x_tr, y_tr) oof_train[test_index] = clf.predict(x_te) oof_test_skf[i, :] = clf.predict(x_test) oof_test[:] = oof_test_skf.mean(axis=0) return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1) # # Generating our Base First-Level Models # # So now let us prepare five learning models as our first level classification. These models can all be conveniently invoked via the Sklearn library and are listed as follows: # # 1. Random Forest classifier # 2. Extra Trees classifier # 3. AdaBoost classifer # 4. Gradient Boosting classifer # 5. Support Vector Machine # **Parameters** # # Just a quick summary of the parameters that we will be listing here for completeness, # # **n_jobs** : Number of cores used for the training process. If set to -1, all cores are used. # # **n_estimators** : Number of classification trees in your learning model ( set to 10 per default) # # **max_depth** : Maximum depth of tree, or how much a node should be expanded. Beware if set to too high a number would run the risk of overfitting as one would be growing the tree too deep # # **verbose** : Controls whether you want to output any text during the learning process. A value of 0 suppresses all text while a value of 3 outputs the tree learning process at every iteration. # # Please check out the full description via the official Sklearn website. There you will find that there are a whole host of other useful parameters that you can play around with. # In[ ]: # Put in our parameters for said classifiers # Random Forest parameters rf_params = { 'n_jobs': -1, 'n_estimators': 500, 'warm_start': True, #'max_features': 0.2, 'max_depth': 6, 'min_samples_leaf': 2, 'max_features' : 'sqrt', 'verbose': 0 } # Extra Trees Parameters et_params = { 'n_jobs': -1, 'n_estimators':500, #'max_features': 0.5, 'max_depth': 8, 'min_samples_leaf': 2, 'verbose': 0 } # AdaBoost parameters ada_params = { 'n_estimators': 500, 'learning_rate' : 0.75 } # Gradient Boosting parameters gb_params = { 'n_estimators': 500, #'max_features': 0.2, 'max_depth': 5, 'min_samples_leaf': 2, 'verbose': 0 } # Support Vector Classifier parameters svc_params = { 'kernel' : 'linear', 'C' : 0.025 } # Furthermore, since having mentioned about Objects and classes within the OOP framework, let us now create 5 objects that represent our 5 learning models via our Helper Sklearn Class we defined earlier. # In[ ]: # Create 5 objects that represent our 4 models rf = SklearnHelper(clf=RandomForestClassifier, seed=SEED, params=rf_params) et = SklearnHelper(clf=ExtraTreesClassifier, seed=SEED, params=et_params) ada = SklearnHelper(clf=AdaBoostClassifier, seed=SEED, params=ada_params) gb = SklearnHelper(clf=GradientBoostingClassifier, seed=SEED, params=gb_params) svc = SklearnHelper(clf=SVC, seed=SEED, params=svc_params) # **Creating NumPy arrays out of our train and test sets** # # Great. Having prepared our first layer base models as such, we can now ready the training and test test data for input into our classifiers by generating NumPy arrays out of their original dataframes as follows: # In[ ]: # Create Numpy arrays of train, test and target ( Survived) dataframes to feed into our models y_train = train['Survived'].ravel() train = train.drop(['Survived'], axis=1) x_train = train.values # Creates an array of the train data x_test = test.values # Creats an array of the test data # **Output of the First level Predictions** # # We now feed the training and test data into our 5 base classifiers and use the Out-of-Fold prediction function we defined earlier to generate our first level predictions. Allow a handful of minutes for the chunk of code below to run. # In[ ]: # Create our OOF train and test predictions. These base results will be used as new features et_oof_train, et_oof_test = get_oof(et, x_train, y_train, x_test) # Extra Trees rf_oof_train, rf_oof_test = get_oof(rf,x_train, y_train, x_test) # Random Forest ada_oof_train, ada_oof_test = get_oof(ada, x_train, y_train, x_test) # AdaBoost gb_oof_train, gb_oof_test = get_oof(gb,x_train, y_train, x_test) # Gradient Boost svc_oof_train, svc_oof_test = get_oof(svc,x_train, y_train, x_test) # Support Vector Classifier print("Training is complete") # **Feature importances generated from the different classifiers** # # Now having learned our the first-level classifiers, we can utilise a very nifty feature of the Sklearn models and that is to output the importances of the various features in the training and test sets with one very simple line of code. # # As per the Sklearn documentation, most of the classifiers are built in with an attribute which returns feature importances by simply typing in **.feature_importances_**. Therefore we will invoke this very useful attribute via our function earliand plot the feature importances as such # In[ ]: rf_feature = rf.feature_importances(x_train,y_train) et_feature = et.feature_importances(x_train, y_train) ada_feature = ada.feature_importances(x_train, y_train) gb_feature = gb.feature_importances(x_train,y_train) # So I have not yet figured out how to assign and store the feature importances outright. Therefore I'll print out the values from the code above and then simply copy and paste into Python lists as below (sorry for the lousy hack) # In[ ]: rf_features = [0.10474135, 0.21837029, 0.04432652, 0.02249159, 0.05432591, 0.02854371 ,0.07570305, 0.01088129 , 0.24247496, 0.13685733 , 0.06128402] et_features = [ 0.12165657, 0.37098307 ,0.03129623 , 0.01591611 , 0.05525811 , 0.028157 ,0.04589793 , 0.02030357 , 0.17289562 , 0.04853517, 0.08910063] ada_features = [0.028 , 0.008 , 0.012 , 0.05866667, 0.032 , 0.008 ,0.04666667 , 0. , 0.05733333, 0.73866667, 0.01066667] gb_features = [ 0.06796144 , 0.03889349 , 0.07237845 , 0.02628645 , 0.11194395, 0.04778854 ,0.05965792 , 0.02774745, 0.07462718, 0.4593142 , 0.01340093] # Create a dataframe from the lists containing the feature importance data for easy plotting via the Plotly package. # In[ ]: cols = train.columns.values # Create a dataframe with features feature_dataframe = pd.DataFrame( {'features': cols, 'Random Forest feature importances': rf_features, 'Extra Trees feature importances': et_features, 'AdaBoost feature importances': ada_features, 'Gradient Boost feature importances': gb_features }) # **Interactive feature importances via Plotly scatterplots** # # I'll use the interactive Plotly package at this juncture to visualise the feature importances values of the different classifiers via a plotly scatter plot by calling "Scatter" as follows: # In[ ]: # Scatter plot trace = go.Scatter( y = feature_dataframe['Random Forest feature importances'].values, x = feature_dataframe['features'].values, mode='markers', marker=dict( sizemode = 'diameter', sizeref = 1, size = 25, # size= feature_dataframe['AdaBoost feature importances'].values, #color = np.random.randn(500), #set color equal to a variable color = feature_dataframe['Random Forest feature importances'].values, colorscale='Portland', showscale=True ), text = feature_dataframe['features'].values ) data = [trace] layout= go.Layout( autosize= True, title= 'Random Forest Feature Importance', hovermode= 'closest', # xaxis= dict( # title= 'Pop', # ticklen= 5, # zeroline= False, # gridwidth= 2, # ), yaxis=dict( title= 'Feature Importance', ticklen= 5, gridwidth= 2 ), showlegend= False ) fig = go.Figure(data=data, layout=layout) py.iplot(fig,filename='scatter2010') # Scatter plot trace = go.Scatter( y = feature_dataframe['Extra Trees feature importances'].values, x = feature_dataframe['features'].values, mode='markers', marker=dict( sizemode = 'diameter', sizeref = 1, size = 25, # size= feature_dataframe['AdaBoost feature importances'].values, #color = np.random.randn(500), #set color equal to a variable color = feature_dataframe['Extra Trees feature importances'].values, colorscale='Portland', showscale=True ), text = feature_dataframe['features'].values ) data = [trace] layout= go.Layout( autosize= True, title= 'Extra Trees Feature Importance', hovermode= 'closest', # xaxis= dict( # title= 'Pop', # ticklen= 5, # zeroline= False, # gridwidth= 2, # ), yaxis=dict( title= 'Feature Importance', ticklen= 5, gridwidth= 2 ), showlegend= False ) fig = go.Figure(data=data, layout=layout) py.iplot(fig,filename='scatter2010') # Scatter plot trace = go.Scatter( y = feature_dataframe['AdaBoost feature importances'].values, x = feature_dataframe['features'].values, mode='markers', marker=dict( sizemode = 'diameter', sizeref = 1, size = 25, # size= feature_dataframe['AdaBoost feature importances'].values, #color = np.random.randn(500), #set color equal to a variable color = feature_dataframe['AdaBoost feature importances'].values, colorscale='Portland', showscale=True ), text = feature_dataframe['features'].values ) data = [trace] layout= go.Layout( autosize= True, title= 'AdaBoost Feature Importance', hovermode= 'closest', # xaxis= dict( # title= 'Pop', # ticklen= 5, # zeroline= False, # gridwidth= 2, # ), yaxis=dict( title= 'Feature Importance', ticklen= 5, gridwidth= 2 ), showlegend= False ) fig = go.Figure(data=data, layout=layout) py.iplot(fig,filename='scatter2010') # Scatter plot trace = go.Scatter( y = feature_dataframe['Gradient Boost feature importances'].values, x = feature_dataframe['features'].values, mode='markers', marker=dict( sizemode = 'diameter', sizeref = 1, size = 25, # size= feature_dataframe['AdaBoost feature importances'].values, #color = np.random.randn(500), #set color equal to a variable color = feature_dataframe['Gradient Boost feature importances'].values, colorscale='Portland', showscale=True ), text = feature_dataframe['features'].values ) data = [trace] layout= go.Layout( autosize= True, title= 'Gradient Boosting Feature Importance', hovermode= 'closest', # xaxis= dict( # title= 'Pop', # ticklen= 5, # zeroline= False, # gridwidth= 2, # ), yaxis=dict( title= 'Feature Importance', ticklen= 5, gridwidth= 2 ), showlegend= False ) fig = go.Figure(data=data, layout=layout) py.iplot(fig,filename='scatter2010') # Now let us calculate the mean of all the feature importances and store it as a new column in the feature importance dataframe. # In[ ]: # Create the new column containing the average of values feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise feature_dataframe.head(3) # **Plotly Barplot of Average Feature Importances** # # Having obtained the mean feature importance across all our classifiers, we can plot them into a Plotly bar plot as follows: # In[ ]: y = feature_dataframe['mean'].values x = feature_dataframe['features'].values data = [go.Bar( x= x, y= y, width = 0.5, marker=dict( color = feature_dataframe['mean'].values, colorscale='Portland', showscale=True, reversescale = False ), opacity=0.6 )] layout= go.Layout( autosize= True, title= 'Barplots of Mean Feature Importance', hovermode= 'closest', # xaxis= dict( # title= 'Pop', # ticklen= 5, # zeroline= False, # gridwidth= 2, # ), yaxis=dict( title= 'Feature Importance', ticklen= 5, gridwidth= 2 ), showlegend= False ) fig = go.Figure(data=data, layout=layout) py.iplot(fig, filename='bar-direct-labels') # # Second-Level Predictions from the First-level Output # **First-level output as new features** # # Having now obtained our first-level predictions, one can think of it as essentially building a new set of features to be used as training data for the next classifier. As per the code below, we are therefore having as our new columns the first-level predictions from our earlier classifiers and we train the next classifier on this. # In[ ]: base_predictions_train = pd.DataFrame( {'RandomForest': rf_oof_train.ravel(), 'ExtraTrees': et_oof_train.ravel(), 'AdaBoost': ada_oof_train.ravel(), 'GradientBoost': gb_oof_train.ravel() }) base_predictions_train.head() # **Correlation Heatmap of the Second Level Training set** # In[ ]: data = [ go.Heatmap( z= base_predictions_train.astype(float).corr().values , x=base_predictions_train.columns.values, y= base_predictions_train.columns.values, colorscale='Viridis', showscale=True, reversescale = True ) ] py.iplot(data, filename='labelled-heatmap') # There have been quite a few articles and Kaggle competition winner stories about the merits of having trained models that are more uncorrelated with one another producing better scores. # In[ ]: x_train = np.concatenate(( et_oof_train, rf_oof_train, ada_oof_train, gb_oof_train, svc_oof_train), axis=1) x_test = np.concatenate(( et_oof_test, rf_oof_test, ada_oof_test, gb_oof_test, svc_oof_test), axis=1) # Having now concatenated and joined both the first-level train and test predictions as x_train and x_test, we can now fit a second-level learning model. # ### Second level learning model via XGBoost # # Here we choose the eXtremely famous library for boosted tree learning model, XGBoost. It was built to optimize large-scale boosted tree algorithms. For further information about the algorithm, check out the [official documentation][1]. # # [1]: https://xgboost.readthedocs.io/en/latest/ # # Anyways, we call an XGBClassifier and fit it to the first-level train and target data and use the learned model to predict the test data as follows: # In[ ]: gbm = xgb.XGBClassifier( #learning_rate = 0.02, n_estimators= 2000, max_depth= 4, min_child_weight= 2, #gamma=1, gamma=0.9, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread= -1, scale_pos_weight=1).fit(x_train, y_train) predictions = gbm.predict(x_test) # Just a quick run down of the XGBoost parameters used in the model: # # **max_depth** : How deep you want to grow your tree. Beware if set to too high a number might run the risk of overfitting. # # **gamma** : minimum loss reduction required to make a further partition on a leaf node of the tree. The larger, the more conservative the algorithm will be. # # **eta** : step size shrinkage used in each boosting step to prevent overfitting # **Producing the Submission file** # # Finally having trained and fit all our first-level and second-level models, we can now output the predictions into the proper format for submission to the Titanic competition as follows: # In[ ]: # Generate Submission File StackingSubmission = pd.DataFrame({ 'PassengerId': PassengerId, 'Survived': predictions }) StackingSubmission.to_csv("StackingSubmission.csv", index=False) # **Steps for Further Improvement** # # As a closing remark it must be noted that the steps taken above just show a very simple way of producing an ensemble stacker. You hear of ensembles created at the highest level of Kaggle competitions which involves monstrous combinations of stacked classifiers as well as levels of stacking which go to more than 2 levels. # # Some additional steps that may be taken to improve one's score could be: # # 1. Implementing a good cross-validation strategy in training the models to find optimal parameter values # 2. Introduce a greater variety of base models for learning. The more uncorrelated the results, the better the final score. # ### Conclusion # # I have this notebook has been helpful somewhat in introducing a working script for stacking learning models. Again credit must be extended to Faron and Sina. # # For other excellent material on stacking or ensembling in general, refer to the de-facto Must read article on the website MLWave: [Kaggle Ensembling Guide][1]. # # Till next time, Peace Out # # [1]: http://mlwave.com/kaggle-ensembling-guide/ # In[ ]:
0f61974c5e834f3cba8ffe47ed15b4b1a1f3aba8
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_127/118.py
d4733f2f4831c105eb5335bfcd752027eea7d78a
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
import math def get_number_of_test_case(): return int(raw_input().strip()) def ans(x, y, n): if n == 1: if abs(x) + abs(y) != 1: return False elif x == 1: return 'E' elif x == -1: return 'W' elif y == 1: return 'N' elif y == -1: return 'S' else: threshold = (n * (n - 1) / 2) for item in [[x + n, y, 'W',], [x - n, y, 'E',], [x, y + n, 'S',], [x, y - n, 'N',]]: if abs(item[0]) + abs(item[1]) <= threshold: result = ans(item[0], item[1], n - 1) if result: return result + item[2] return False def solve_case(t): x, y = [int(i) for i in raw_input().strip().split()] z = abs(x) + abs(y) n = int(math.ceil((math.sqrt(z * 8 + 1) - 1) / 2)) found = False result = '' while not found: result = ans(x, y, n) if result: found = True n += 1 print 'Case #%d: %s' % (t, result,) T = get_number_of_test_case() t = 1 while t <= T: solve_case(t) t += 1
d6d823f39170c014d0a11739f5a3ab7b90f9178c
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4347/codes/1793_1595.py
05495cd7b509876291eb94882aeab29cc3d2410f
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
166
py
from numpy import* n=array(eval(input("nota dos alunos"))) h=0 t=0 while(size(n)>h): t=t+n[h] h=h+1 t=t-min(n) y=size(n) y=y-1 t=t/y print(round(t,2))
ba8ea0976052895c62f71ec036fb295afc85a666
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/model_control/detailed/transf_BoxCox/model_control_one_enabled_BoxCox_LinearTrend_Seasonal_Minute_AR.py
8af17b88b486c656cac6b7a11b9ebc140c4f4ea5
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
161
py
import pyaf.tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['BoxCox'] , ['LinearTrend'] , ['Seasonal_Minute'] , ['AR'] );
557c6f588642ff8207591f649b68e0f4d5928909
dfc991b4163bca9192985bc6daa12168283ffac8
/test/aqua/operators/__init__.py
7909fc6dac6c123e255fc08303846d478c8de9e3
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Unathi-Skosana/qiskit-aqua
feb8231a1719a0e73aaae0f29df0246b3dc9419c
e13f66eda6d8b819a6f132319a2bac819941f6b1
refs/heads/master
2020-11-24T15:39:29.645914
2020-08-07T22:36:23
2020-08-07T22:36:23
255,790,533
2
0
Apache-2.0
2020-04-15T03:06:06
2020-04-15T03:06:06
null
UTF-8
Python
false
false
508
py
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals.
72391153bf1b5a4b9500125fb9c2eab3123cfda6
bd7e89c8e55a106af3dab4cf036309ec8a3e05e2
/Onsite/Week1/stick_of_truth_1.py
c50e9491405a6de5ff35dd5cf1ee6b39d36a44b4
[]
no_license
wiput1999/PrePro60-Python
758ec60addaa61ff27ea9bc46474eaf244f5ab58
d26dcadcd71896589f992a69cbff711ec0576f59
refs/heads/master
2021-09-15T19:52:10.899257
2018-06-09T12:52:42
2018-06-09T12:52:42
89,356,578
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
""" [Stick of Truth - 1] Time Converter """ def main(): """ Convert time """ # Parallel Hour para_hr = int(input()) # Parallel Minute para_min = int(input()) # Parallel Second para_sec = int(input()) pre_result = (para_hr * 50 * 29) + (para_min * 29) + para_sec pre_result *= 14 # Real World Second real_sec = pre_result % 60 pre_result //= 60 # Real World Minute real_min = pre_result % 60 pre_result //= 60 # Real World Hour real_hr = pre_result % 24 pre_result //= 24 # Real World Day real_day = pre_result print("%02d:%02d:%02d" %(real_hr, real_min, real_sec)) print("Day : %d" %real_day) main()
a4bb39a9334acf1bf77a42f83b0699981a29f9c7
781e2692049e87a4256320c76e82a19be257a05d
/assignments/python/anagram/src/374.py
c539bcd239aa7680c066a136c90fe90dc92c4ca3
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
308
py
def detect_anagrams(reference, word_list): reference = reference.casefold() ref_list = sorted(reference) detect_anagram = lambda w1 : w1 != ref and sorted(w1) == ref_list return [word for word in word_list if detect_anagram(word.casefold())]
bc3fdf3b58a0e51964c0ff34acad6251cbc52f5f
7a604a685f9729cd691a7c81f12f2f8a297744de
/feedly/default_settings.py
2cacfbb53bcb1181a10700376b241fc1d96dd34f
[ "BSD-3-Clause" ]
permissive
vmaliwal/Feedly
16b3e6ba90646dcbce863f6a2b5613b832a21c0e
ec9c8655b4b831cda22d12afa7e39dc382a86b4e
refs/heads/master
2021-01-20T22:55:09.042922
2013-08-08T13:39:34
2013-08-08T13:39:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
552
py
FEEDLY_NYDUS_CONFIG = { 'CONNECTIONS': { 'redis': { 'engine': 'nydus.db.backends.redis.Redis', 'router': 'nydus.db.routers.redis.PrefixPartitionRouter', 'hosts': { 0: {'prefix': 'default', 'db': 2, 'host': 'localhost', 'port': 6379}, 12: {'prefix': 'feedly:', 'db': 0, 'host': 'localhost', 'port': 6379}, 13: {'prefix': 'feedly:', 'db': 1, 'host': 'localhost', 'port': 6379}, 14: {'prefix': 'notification:', 'db': 3, 'host': 'localhost', 'port': 6379}, } }, } } FEEDLY_CASSANDRA_HOSTS = ['localhost']
b035543cf5b0996c159636f236d14a00d492ff0f
fcc33e6a8b8af0ac1d69bd9815b786318c4b2d4b
/tests/testapp/migrations/0002_config_template.py
11ad23505a0fcdf0eab9bd30b3843fd68d91b43c
[ "LicenseRef-scancode-unknown-license-reference" ]
permissive
PabloCastellano/openwisp-users
47a0c7b286422effaa57c192ee7a3e687afeb90f
d95cb7a1e30ef69b948216c54931ddf7a4a215fc
refs/heads/master
2022-07-08T03:02:35.622736
2020-04-15T22:47:39
2020-04-15T22:47:39
256,520,208
0
0
BSD-3-Clause
2020-04-17T14:07:29
2020-04-17T14:07:28
null
UTF-8
Python
false
false
510
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-14 15:14 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('testapp', '0001_initial'), ] operations = [ migrations.AddField( model_name='config', name='template', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='testapp.Template'), ), ]
47c521124fd2c1605e9cacaaffd327c383c76a12
8dfe4b53fae92795405d789d52148d1291836afa
/.metadata/.plugins/org.eclipse.core.resources/.history/b0/40309ba33381001515feb230dc0120b2
fe95f4e3a0d5f62b004a6c2ef67cbc23ae59821a
[]
no_license
ymyjohnny/python
e07c54a88954e090cf3d30a4c6f6ac46353063fb
b483fd55e577d4dcceb5762bddf833df23874f3a
refs/heads/master
2021-01-10T01:10:19.038424
2019-07-02T02:40:23
2019-07-02T02:40:23
45,223,843
0
0
null
null
null
null
UTF-8
Python
false
false
382
#!/usr/bin/python #coding=utf-8 ''' Created on 2015-11-2 @author: ymy ''' import os dirname = '/tmp' def allfile(dirname): for base,dirs,files in os.walk(dirname): for file in files: filename = os.path.join(base,file) filenames = filename.append() #print filenames def grep_a(file,str): pass allfile(dirname)
966d55e40c38e5b665058075f090351806b1d9a6
0a973640f0b02d7f3cf9211fcce33221c3a50c88
/.history/src/easy-money_20210129095952.py
ea98f703e481dd4caf491af6ddbe4c82c9af507b
[]
no_license
JiajunChen123/IPO_under_review_crawler
5468b9079950fdd11c5e3ce45af2c75ccb30323c
031aac915ebe350ec816c05a29b5827fde588567
refs/heads/main
2023-02-26T08:23:09.622725
2021-02-04T10:11:16
2021-02-04T10:11:16
332,619,348
0
0
null
null
null
null
UTF-8
Python
false
false
9,945
py
# 东方财富网 首发申报 from datetime import datetime,timedelta from urllib.parse import urlencode import pandas as pd import requests import re import time from bs4 import BeautifulSoup base_url = 'https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx?' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36'} def date_gen(): r = requests.get('http://data.eastmoney.com/xg/xg/sbqy.html',headers=headers) r.encoding = 'gbk' soup = BeautifulSoup(r.text,'html.parser') dateList = [i.text for i in soup.findAll('option')] yield dateList def get_eastmoneyData(dateList): query = {'type': 'NS', 'sty' : 'NSFR', 'st' : '1', 'sr' : '-1', 'p' : '1', 'ps' : '5000', 'js' : 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt' : '1', 'rt' : '53721774' } main_data = [] for date in dateList: query['fd'] = dateList # start = datetime.strptime('2017-01-05','%Y-%m-%d').date() # while start < datetime.today().date(): # query['fd'] = start url = base_url + urlencode(query) # yield url # start += timedelta(days=7) rs = requests.get(url,headers=headers) if rs.text == '': continue js = rs.text.split('var IBhynDx={pages:1,data:')[1] data = eval(js[:-1]) main_data.extend(data) time.sleep(2) temp = [i.split(',') for i in main_data] columns = ['会计师事务所','保荐代表人','保荐机构','xxx','律师事务所','日期','所属行业','板块','是否提交财务自查报告', '注册地','类型','机构名称','签字会计师','签字律师','时间戳','简称'] df = pd.DataFrame(temp,columns=columns) df['文件链接'] = df['时间戳'].apply(lambda x: "https://notice.eastmoney.com/pdffile/web/H2_" + x + "_1.pdf") df = df[['机构名称', '类型', '板块', '注册地', '保荐机构','保荐代表人', '律师事务所', '签字律师','会计师事务所', '签字会计师', '是否提交财务自查报告', '所属行业','日期','xxx', '时间戳', '保荐机构','文件链接']] df = df[df['板块'] != '创业板'] df.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_raw_data.csv',index=False,encoding='utf-8-sig') return df def get_meetingData(): meetingInfo = [] for marketType in ['2','4']: # 2 为主板, 4 为中小板 query = {'type': 'NS', 'sty' : 'NSSH', 'st' : '1', 'sr' : '-1', 'p' : '1', 'ps' : '5000', 'js' : 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt' : marketType, 'rt' : '53723990' } url = base_url + urlencode(query) rss = requests.get(url,headers=headers) jss = rss.text.split('var IBhynDx={pages:1,data:')[1] data = eval(jss[:-1]) meetingInfo.extend(data) temp = [j.split(',') for j in meetingInfo] columns = ['时间戳','yyy','公司代码','机构名称','详情链接','申报日期','上会日期','申购日期','上市日期','9','拟发行数量','发行前总股本','发行后总股本','13','占发行后总股本比例','当前状态','上市地点','主承销商','承销方式','发审委委员','网站','简称'] df = pd.DataFrame(temp,columns=columns) df['文件链接'] = df['时间戳'].apply(lambda x: "https://notice.eastmoney.com/pdffile/web/H2_" + x + "_1.pdf") df['详情链接'] = df['公司代码'].apply(lambda x: "data.eastmoney.com/xg/gh/detail/" + x + ".html") df = df[['机构名称', '当前状态', '上市地点', '拟发行数量', '申报日期','上会日期', '申购日期', '上市日期', '主承销商','承销方式', '9', '发行前总股本','发行后总股本','13','占发行后总股本比例','发审委委员','网站','公司代码','yyy','时间戳', '简称', '详情链接','文件链接']] df.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_data_meeting.csv'.format(i),index=False,encoding='utf-8-sig') return df def get_zzscData(dateList): zzsc_dict = {} for date in dateList: query = {'type': 'NS', 'sty' : 'NSSE', 'st' : '1', 'sr' : '-1', 'p' : '1', 'ps' : '500', 'js' : 'var IBhynDx={pages:(pc),data:[(x)]}', 'mkt' : '4', 'stat':'zzsc', 'fd' : date, 'rt' : '53727636' } url = base_url + urlencode(query) rss = requests.get(url,headers=headers) if rss.text == 'var IBhynDx={pages:0,data:[{stats:false}]}': continue jss = rss.text.split('var IBhynDx={pages:1,data:')[1] data = eval(jss[:-1]) for i in data: name = i.split(',')[1] if name not in zzsc_dict: zzsc_dict[name] = i.split(',')[2] else: continue time.sleep(2) zzsc = pd.DataFrame(zzsc_dict.items(),columns = ['机构名称','决定终止审查时间']) zzsc.to_csv('C:/Users/chen/Desktop/IPO_info/eastmoney_zzsc.csv',encoding='utf-8-sig',index=False) return zzsc def eastmoney_cleanUP(): east_money = pd.read_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/easymoney_raw_data.csv') east_money.replace({'是否提交财务自查报告':' '},'是') east_money.replace({'是否提交财务自查报告':'不适用'},'是') east_money['机构名称'] = east_money['机构名称'].replace(r'\*','',regex=True) east_money['机构名称'] = east_money['机构名称'].replace(r'股份有限公司','',regex=True) east_money = east_money[east_money['板块'] != '创业板'] # east_money.sort_values(['机构名称','类型','受理日期'],ascending=[True, True,True],inplace=True) # east_money.to_csv('C:/Users/chen/Desktop/IPO_info/pre_cleab.csv',encoding='utf-8-sig',index=False) east_money.drop_duplicates(subset =['机构名称','类型'], keep = 'first', inplace = True) east_money.to_csv('C:/Users/chen/Desktop/IPO_info/EastMoney/eastmoney_data_cleaned.csv',encoding='utf-8-sig',index=False) return east_money def gen_finalData(cleaned_easymoney_df, meetingInfo_df, zzsc_df): ''' 主板、中小板 = {'机构名称':'', '简称':'', 'Wind代码':'', '统一社会信用代码':'', '板块':'', '注册地':'', '所属行业':'', '经营范围':'', '预先披露':'[日期]', '已反馈':'[日期]', '预先披露更新':'[日期]', '发审会':{'中止审查':'[日期]', '已上发审会,暂缓表决':'[日期]', '已提交发审会讨论,暂缓表决:'[日期]', '已通过发审会':'[日期]'}, '终止审查':'[日期]', '上市日期':'[日期]', '保荐机构':'', '律师事务所':, '会计师事务所':'', '发行信息':{'拟发行数量':'', '发行前总股本':'', '发行后总股本':''}, '反馈文件':'[链接]' } ''' shzb = {} # 上海主板 szzxb = {} # 深圳中小板 all_data = {} # 总数据 ekk = cleaned_easymoney_df.values.tolist() for i in ekk: if i[0] not in all_data: all_data[i[0]] = {'机构名称':i[0], '简称':i[15], 'Wind代码':'', '统一社会信用代码':'', '板块':'', '注册地':'', '所属行业':'', '经营范围':'', '预先披露':'', '已反馈':'', '预先披露更新':'', '发审会':{'中止审查':'', '已上发审会,暂缓表决':'', '已提交发审会讨论,暂缓表决':'', '已通过发审会':''}, '终止审查':'', '上市日期':'', '保荐机构':i[4], '律师事务所':i[6], '会计师事务所':i[8], '发行信息':{'拟发行数量':'', '发行前总股本':'', '发行后总股本':''}, '反馈文件':'' } if i[1] == '已受理': all_data[i[0]]['预先披露'] = i[12] elif i[1] == '已反馈': all_data[i[0]]['已反馈'] = i[12] elif i[1] == '预先披露更新': all_data[i[0]]['预先披露更新'] = i[12] elif i[1] == '已通过发审会': all_data[i[0]]['发审会']['已通过发审会'] = i[12] elif i[1] == '已提交发审会讨论,暂缓表决': all_data[i[0]]['发审会']['已通过发审会'] = i[12] elif i[1] in ['已提交发审会讨论,暂缓表决','已上发审会,暂缓表决','中止审查']: all_data[i[0]]['其他'] = {i[1]:i[12]}
aa237d039e97b9f01880f9bee5d1a2994a3a66ea
94318d8fa492445adb79547da369f141d8a80133
/scripts/plot_detection_rate.py
80df4af4d2dc49e02ca82f87f4f91f7f365b7f49
[]
no_license
dragontt/geneoscopy_dev
630fbaca230dfd009667694ed8bb4a222e597eed
a5cf26ed0dc949c3d7af48d765864aff95edbe9d
refs/heads/master
2021-01-12T12:53:16.696478
2017-05-26T18:44:45
2017-05-26T18:44:45
69,477,315
0
1
null
null
null
null
UTF-8
Python
false
false
1,061
py
#/usr/bin/python import numpy as np import sys import matplotlib.pyplot as plt ##Color choice: #507cb2 <- blue #73aa53 <- green #7f4d91 <- purple filename = sys.argv[1] color = sys.argv[2] f = open(filename, 'r') lines = f.readlines() f.close() labels = [] values = [] for i in range(1, (len(lines)-1)): line = lines[i].strip().split('\t') labels.append(line[0]) values.append(float(line[2].strip('%'))) indx = np.arange(len(labels)) + .1 fig, ax = plt.subplots(figsize=(4, 2.5), dpi=150) plt.bar(indx, values, .5, color='#'+color) plt.ylabel('Sensitivity (%)') plt.xticks(indx+.25, labels, rotation=40) plt.tick_params(axis=u'x', which=u'both',length=0) plt.ylim([0, 100]) plt.gcf().subplots_adjust(bottom=0.35, left=.2) # plt.show() rects = ax.patches for rect, value in zip(rects, values): height = rect.get_height() annot_text = ax.text(rect.get_x() + rect.get_width()/2, height - 12, ('%d%%' % value), ha='center', va='bottom', color='white') annot_text.set_fontsize(9) plt.savefig(filename.strip('.txt')+'.pdf', fmt='pdf')
965f0f0575173c3e422ccf531b6ee00c9c26153a
18f0ad99e21e2e35126f8c3c28079d358fa2129a
/Adafruit_STEMMA_Relay/code.py
90a3ebc494b98b85606ab958b6d7eed82af95a86
[ "MIT" ]
permissive
ladyada/Adafruit_Learning_System_Guides
9bf18dfa35941e0cbecbb3c2d02b4fa3cb79744f
6d76801878cbf65132ccea950dc47ae842c73dcd
refs/heads/master
2023-08-20T20:30:42.910576
2022-01-10T20:28:11
2022-01-10T20:28:11
115,837,894
13
2
MIT
2020-03-31T23:23:45
2017-12-31T02:34:47
C
UTF-8
Python
false
false
225
py
import time import board import digitalio relay = digitalio.DigitalInOut(board.A1) relay.direction = digitalio.Direction.OUTPUT while True: relay.value = True time.sleep(1) relay.value = False time.sleep(1)
74f58ecbee8a351e9afa5d6b12189026de789cce
03e3138f99f275d15d41a5c5bfb212f85d64d02e
/source/res/scripts/client/gui/Scaleform/daapi/view/meta/BCMessageWindowMeta.py
0012af4c374027efc9feaad96ad7d03c1dfb6253
[]
no_license
TrenSeP/WorldOfTanks-Decompiled
e428728e7901146d0b599d02c930d70532232a97
1faa748acec1b7e435b657fd054ecba23dd72778
refs/heads/1.4.1
2020-04-27T08:07:49.813023
2019-03-05T17:37:06
2019-03-05T17:37:06
174,159,837
1
0
null
2019-03-06T14:33:33
2019-03-06T14:24:36
Python
UTF-8
Python
false
false
757
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/BCMessageWindowMeta.py from tutorial.gui.Scaleform.pop_ups import TutorialDialog class BCMessageWindowMeta(TutorialDialog): def onMessageRemoved(self): self._printOverrideError('onMessageRemoved') def onMessageAppear(self, rendrerer): self._printOverrideError('onMessageAppear') def onMessageDisappear(self, rendrerer): self._printOverrideError('onMessageDisappear') def onMessageButtonClicked(self): self._printOverrideError('onMessageButtonClicked') def as_setMessageDataS(self, value): return self.flashObject.as_setMessageData(value) if self._isDAAPIInited() else None
cbf6d2082e39aa257ea9fbe33b054caa5d9f3c3b
7c74ceb9f8addcc0816d012e0b84b174b96e0def
/src/azure-cli/azure/cli/command_modules/aro/commands.py
d260980c3351e0d1f012b5f449a5127298355e87
[ "MIT", "LGPL-2.1-only", "LGPL-2.1-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.0-or-later", "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause" ]
permissive
microsoft/azure-cli
4c826290e7a6f6bd27da3829b05e4f02ff6dc8d9
9ba64b33f6f78e2c3e42f8a147f59484300e8779
refs/heads/dev
2023-08-31T08:51:39.526556
2022-11-28T19:08:23
2022-11-28T19:08:23
370,900,439
7
7
MIT
2023-08-01T23:34:50
2021-05-26T03:59:41
Python
UTF-8
Python
false
false
1,505
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands import CliCommandType from azure.cli.command_modules.aro._client_factory import cf_aro from azure.cli.command_modules.aro._format import aro_show_table_format from azure.cli.command_modules.aro._format import aro_list_table_format from azure.cli.command_modules.aro._help import helps # pylint: disable=unused-import def load_command_table(self, _): aro_sdk = CliCommandType( operations_tmpl='azure.mgmt.redhatopenshift.operations#OpenShiftClustersOperations.{}', # pylint: disable=line-too-long client_factory=cf_aro) with self.command_group('aro', aro_sdk, client_factory=cf_aro) as g: g.custom_command('create', 'aro_create', supports_no_wait=True) g.custom_command('delete', 'aro_delete', supports_no_wait=True, confirmation=True) g.custom_command('list', 'aro_list', table_transformer=aro_list_table_format) g.custom_show_command('show', 'aro_show', table_transformer=aro_show_table_format) g.custom_command('update', 'aro_update', supports_no_wait=True) g.wait_command('wait') g.custom_command('list-credentials', 'aro_list_credentials')
abb7a8d52d3b436acb78715b3bb73aea337c4351
cc4d8bfef5395c0e3076e9a37a40864554e9099a
/cli.py
6d64d4987ace1d007791275ed73818dfd6440490
[ "MIT" ]
permissive
NiklasRosenstein/yassg
99ce9cd327d7e4a72b94066a6e1d1c693b581b33
511ca5a1eb76b8fb314c45de6ac85a845b98243c
refs/heads/master
2021-01-01T04:49:03.758342
2017-11-15T13:02:52
2017-11-15T13:02:52
97,255,419
0
0
null
null
null
null
UTF-8
Python
false
false
2,682
py
# Copyright (c) 2017 Niklas Rosenstein # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import click import toml import os import subprocess import yassg from './yassg.py' @click.command() @click.argument('build_dir', default='build') @click.option('-C', '--config', default=None, help='Configuration file. Defaults to yassg.toml or .config/yassg.toml') @click.option('--commit', is_flag=True, help='Create a new commit after the build. Use only when the build ' 'directory is set-up as a git worktree.') @click.option('--push', is_flag=True, help='Commit and push after the build. Use only when the build ' 'directory is set-up as a git worktree.') def main(build_dir, config, commit, push): """ Yet another static site generator. """ if not config: config = 'yassg.toml' if not os.path.isfile(config): config = '.config/yassg.toml' config_filename = config with open(config) as fp: config = toml.load(fp) if 'content-directory' in config: content_dir = os.path.join(os.path.dirname(config_filename), config['content-directory']) else: content_dir = 'content' root = yassg.RootPage(yassg.pages_from_directory(content_dir, recursive=True)) root.sort() renderer = yassg.Renderer(root, config) renderer.render(build_dir) if commit or push: print('Creating new commit in "{}" ...'.format(build_dir)) subprocess.call(['git', 'add', '.'], cwd=build_dir) subprocess.call(['git', 'commit', '-m', 'Update'], cwd=build_dir) if push: print('Pushing to "{}" ...'.format(build_dir)) subprocess.call(['git', 'push', 'origin', 'gh-pages'], cwd=build_dir) if require.main == module: main()
708ac5d15ba5bd4ff5de1105d484cf04d937744f
70922de165319283d640821fd42ea1806da402c0
/math/0x05-advanced_linear_algebra/4-inverse.py
072f6b067b57f8f8f4c3b6c36868f390e22e15db
[]
no_license
ikki2530/holbertonschool-machine_learning
bdd8152d575a99281e2cce105cf87442ec07f2fb
0b56aa0e92d65d4a5832cc994769834fbcfbe0ac
refs/heads/main
2023-07-07T00:49:03.675328
2021-08-11T10:27:56
2021-08-11T10:27:56
317,352,924
0
0
null
null
null
null
UTF-8
Python
false
false
5,506
py
#!/usr/bin/env python3 """ calculates the inverse of a matrix. """ def determinant(matrix): """ Calculates the determinant of a matrix. - matrix is a list of lists whose determinant should be calculated. Returns: the determinant of matrix """ n = len(matrix) if n == 1 and len(matrix[0]) == 0 and type( matrix) == list and type(matrix[0]) == list: return 1 if n == 0: raise TypeError("matrix must be a list of lists") if type(matrix) != list: raise TypeError("matrix must be a list of lists") for row in matrix: if type(row) != list: raise TypeError("matrix must be a list of lists") if len(row) != n: raise ValueError("matrix must be a square matrix") if len(matrix) == 1 and len(matrix[0]) == 1: return matrix[0][0] if n == 2: a = matrix[0][0] b = matrix[0][1] c = matrix[1][0] d = matrix[1][1] det = a * d - (b * c) return det all_minors = [] mult = matrix[0] signo = 1 signos = [] newm = [] temp = [] cofactorv = 0 # take the minors for k in range(n): for i in range(n): for j in range(n): if i != cofactorv and j != k: temp.append(matrix[i][j]) if temp: newm.append(temp.copy()) temp = [] if newm: all_minors.append(newm) signos.append(signo) signo = signo * -1 newm = [] # add determinant suma = 0 for i in range(n): suma = suma + (signos[i] * mult[i] * determinant(all_minors[i])) return suma def minor(matrix): """ Calculates the minor matrix of a matrix. - matrix is a list of lists whose minor matrix should be calculated. Returns: the minor matrix of matrix """ if type(matrix) is not list: raise TypeError("matrix must be a list of lists") n = len(matrix) if n == 0: raise TypeError("matrix must be a list of lists") for row in matrix: if type(row) is not list: raise TypeError("matrix must be a list of lists") if len(row) != n: raise ValueError("matrix must be a non-empty square matrix") if n == 1: return [[1]] newm = [] temp = [] minors = [[0 for j in range(n)] for i in range(n)] # find the minor matrices for h in range(n): for w in range(n): for i in range(n): for j in range(n): if i != h and j != w: temp.append(matrix[i][j]) if temp: newm.append(temp.copy()) temp = [] if newm: # Add a new minor minors[h][w] = determinant(newm) newm = [] return minors def cofactor(matrix): """ Calculates the cofactor matrix of a matrix. - matrix is a list of lists whose cofactor matrix should be calculated. Returns: the cofactor matrix of matrix. """ if type(matrix) is not list: raise TypeError("matrix must be a list of lists") n = len(matrix) if n == 0: raise TypeError("matrix must be a list of lists") for row in matrix: if type(row) is not list: raise TypeError("matrix must be a list of lists") if len(row) != n: raise ValueError("matrix must be a non-empty square matrix") if n == 1: return [[1]] cofactor = minor(matrix) sign = -1 for i in range(n): for j in range(n): cofactor[i][j] = cofactor[i][j] * (sign**(i+j)) return cofactor def adjugate(matrix): """ Calculates the adjugate matrix of a matrix. - matrix is a list of lists whose adjugate matrix should be calculated. Returns: the adjugate matrix of matrix. """ if type(matrix) is not list: raise TypeError("matrix must be a list of lists") n = len(matrix) if n == 0: raise TypeError("matrix must be a list of lists") for row in matrix: if type(row) is not list: raise TypeError("matrix must be a list of lists") if len(row) != n: raise ValueError("matrix must be a non-empty square matrix") if n == 1: return [[1]] cf = cofactor(matrix) adj = [[0 for j in range(n)] for i in range(n)] # transpose of cofactors matrix for i in range(n): for j in range(n): adj[j][i] = cf[i][j] return adj def inverse(matrix): """ Calculates the inverse of a matrix. - matrix is a list of lists whose inverse should be calculated. Returns: the inverse of matrix, or None if matrix is singular. """ if type(matrix) is not list: raise TypeError("matrix must be a list of lists") n = len(matrix) if n == 0: raise TypeError("matrix must be a list of lists") for row in matrix: if type(row) is not list: raise TypeError("matrix must be a list of lists") if len(row) != n: raise ValueError("matrix must be a non-empty square matrix") if n == 1: return [[1 / matrix[0][0]]] adj = adjugate(matrix) det = determinant(matrix) if det == 0: return None inverse = [[0 for j in range(n)] for i in range(n)] for i in range(n): for j in range(n): inverse[i][j] = adj[i][j] / det return inverse
72f7059f397a28a6fc5d98863a2b760954f5192a
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_136/701.py
e899850bc93a963d05e10c0c43026ddae3581bf4
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
N = int(raw_input()) for p in range(N): c, f, x = [float(x) for x in raw_input().split()] ps = 2 sc = 0 mn = 1e18 while True: if x/ps+sc > mn: break mn = x/ps+sc sc = sc + c/ps ps = ps + f print "Case #%d: %.7f" % (p+1, mn)
0f0f877c97a35b12e70b671b4474566eb9ea5061
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_11384.py
b95a73f029ffac05ff28a15dd300aebce41f7043
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
# Pythonic way to find any item from a list within a string any(name in line for name in illegal_names)
ebb12756eedd2b1951d254e6c61ebf9cc3fccc37
24a377bcf06aac43eb099f5ce2383e5da07ddadc
/analysis/set_num_runs.py
7a02d3330ac65acc6e51f1470227da9a0bc78537
[]
no_license
AlJohri/nulaundry
223f0cf4b5c4a46e083512b35f4cddc5879d39ab
be61f72dd69cc633458d3e147a1593b2e6bf01c4
refs/heads/master
2020-05-19T14:15:44.561527
2015-04-15T04:21:29
2015-04-15T04:21:29
33,854,316
1
0
null
null
null
null
UTF-8
Python
false
false
420
py
from firebase import firebase firebase = firebase.FirebaseApplication('https://aljohri-nulaundry.firebaseio.com', None) machines = firebase.get("/machines", None) for machine_id, machine in machines.iteritems(): num_runs = len(machine['runs'].values()) if machine.get('runs') else 0 print "Machine %s has %d runs" % (machine_id, num_runs) firebase.put(url='/machines/%s' % machine_id, name="num_runs", data=num_runs)
2c1729733b5515b33837a25e1c54ba55a64c4d70
744c3b66611b08782fcdd9d66261c4d55b00d426
/examples/pybullet/gym/pybullet_envs/minitaur/agents/baseline_controller/gait_generator.py
61bd849acf0af82aee1c3cb503e4381a69ee2973
[ "Zlib" ]
permissive
erwincoumans/bullet3
4ff9e0aa64b641c65b57b26f415dd69dbfb12256
6d181d78a5c7be8714c74055cddcf63d5ccef70a
refs/heads/master
2023-03-10T14:58:18.072562
2023-02-24T18:32:53
2023-02-24T18:32:53
31,621,748
103
29
NOASSERTION
2019-02-25T17:31:00
2015-03-03T21:15:54
C++
UTF-8
Python
false
false
685
py
"""Gait pattern planning module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import enum class LegState(enum.Enum): """The state of a leg during locomotion.""" SWING = 0 STANCE = 1 # A swing leg that collides with the ground. EARLY_CONTACT = 2 # A stance leg that loses contact. LOSE_CONTACT = 3 class GaitGenerator(object): # pytype: disable=ignored-metaclass """Generates the leg swing/stance pattern for the robot.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod def reset(self, current_time): pass @abc.abstractmethod def update(self, current_time): pass
6413512eb598e1e8364fa9fbecd51fc794c7d5e3
395f974e62eafed74572efebcd91d62966e61639
/examples/microjson/mutants/AOR_BinOp_mutant_1486201075.py
5d5230b65975c8dfcad7628802b49a4a92723753
[ "Apache-2.0" ]
permissive
agroce/tstl
ad386d027f0f5ff750eab19a722a4b119ed39211
8d43ef7fa49534868e6cdf1697863748260405c7
refs/heads/master
2023-08-08T19:14:52.020314
2023-07-26T17:51:36
2023-07-26T17:51:36
32,408,285
106
33
NOASSERTION
2021-01-26T19:05:17
2015-03-17T17:14:04
Python
UTF-8
Python
false
false
8,312
py
import math import StringIO import types __pychecker__ = 'no-returnvalues' WS = set([' ', '\t', '\r', '\n', '\x08', '\x0c']) DIGITS = set([str(i) for i in range(0, 10)]) NUMSTART = DIGITS.union(['.', '-', '+']) NUMCHARS = NUMSTART.union(['e', 'E']) ESC_MAP = {'n': '\n', 't': '\t', 'r': '\r', 'b': '\x08', 'f': '\x0c'} REV_ESC_MAP = dict([(_v, _k) for (_k, _v) in ESC_MAP.items()] + [('"', '"')]) E_BYTES = 'input string must be type str containing ASCII or UTF-8 bytes' E_MALF = 'malformed JSON data' E_TRUNC = 'truncated JSON data' E_BOOL = 'expected boolean' E_NULL = 'expected null' E_LITEM = 'expected list item' E_DKEY = 'expected key' E_COLON = 'missing colon after key' E_EMPTY = 'found empty string, not valid JSON data' E_BADESC = 'bad escape character found' E_UNSUPP = 'unsupported type "%s" cannot be JSON-encoded' E_BADFLOAT = 'cannot emit floating point value "%s"' NEG_INF = float('-inf') POS_INF = float('inf') class JSONError(Exception): def __init__(self, msg, stm=None, pos=0): if stm: msg += ' at position %d, "%s"' % (pos, repr(stm.substr(pos, 32))) Exception.__init__(self, msg) class JSONStream(object): def __init__(self, data): self._stm = StringIO.StringIO(data) @property def pos(self): return self._stm.pos @property def len(self): return self._stm.len def getvalue(self): return self._stm.getvalue() def skipspaces(self): 'post-cond: read pointer will be over first non-WS char' self._skip(lambda c: (c not in WS)) def _skip(self, stopcond): while True: c = self.peek() if (stopcond(c) or (c == '')): break self.next() def next(self, size=1): return self._stm.read(size) def next_ord(self): return ord(self.next()) def peek(self): if (self.pos == self.len): return '' return self.getvalue()[self.pos] def substr(self, pos, length): return self.getvalue()[pos:pos + length] def _decode_utf8(c0, stm): c0 = ord(c0) r = 65533 nc = stm.next_ord if (c0 & 224 == 192): r = c0 & 31 << 6 + nc() & 63 elif (c0 & 240 == 224): r = c0 / 15 << 12 + nc() & 63 << 6 + nc() & 63 elif (c0 & 248 == 240): r = c0 & 7 << 18 + nc() & 63 << 12 + nc() & 63 << 6 + nc() & 63 return unichr(r) def decode_escape(c, stm): v = ESC_MAP.get(c, None) if (v is not None): return v elif (c != 'u'): return c sv = 12 r = 0 for _ in range(0, 4): r |= int(stm.next(), 16) << sv sv -= 4 return unichr(r) def _from_json_string(stm): stm.next() r = [] while True: c = stm.next() if (c == ''): raiseJSONError(E_TRUNC, stm, stm.pos - 1) elif (c == '\\'): c = stm.next() r.append(decode_escape(c, stm)) elif (c == '"'): return ''.join(r) elif (c > '\x7f'): r.append(_decode_utf8(c, stm)) else: r.append(c) def _from_json_fixed(stm, expected, value, errmsg): off = len(expected) pos = stm.pos if (stm.substr(pos, off) == expected): stm.next(off) return value raiseJSONError(errmsg, stm, pos) def _from_json_number(stm): is_float = 0 saw_exp = 0 pos = stm.pos while True: c = stm.peek() if (c not in NUMCHARS): break elif ((c == '-') and (not saw_exp)): pass elif (c in ('.', 'e', 'E')): is_float = 1 if (c in ('e', 'E')): saw_exp = 1 stm.next() s = stm.substr(pos, stm.pos - pos) if is_float: return float(s) return long(s) def _from_json_list(stm): stm.next() result = [] pos = stm.pos while True: stm.skipspaces() c = stm.peek() if (c == ''): raiseJSONError(E_TRUNC, stm, pos) elif (c == ']'): stm.next() return result elif (c == ','): stm.next() result.append(_from_json_raw(stm)) continue elif (not result): result.append(_from_json_raw(stm)) continue else: raiseJSONError(E_MALF, stm, stm.pos) def _from_json_dict(stm): stm.next() result = {} expect_key = 0 pos = stm.pos while True: stm.skipspaces() c = stm.peek() if (c == ''): raiseJSONError(E_TRUNC, stm, pos) if (c in ('}', ',')): stm.next() if expect_key: raiseJSONError(E_DKEY, stm, stm.pos) if (c == '}'): return result expect_key = 1 continue elif (c == '"'): key = _from_json_string(stm) stm.skipspaces() c = stm.next() if (c != ':'): raiseJSONError(E_COLON, stm, stm.pos) stm.skipspaces() val = _from_json_raw(stm) result[key] = val expect_key = 0 continue raiseJSONError(E_MALF, stm, stm.pos) def _from_json_raw(stm): while True: stm.skipspaces() c = stm.peek() if (c == '"'): return _from_json_string(stm) elif (c == '{'): return _from_json_dict(stm) elif (c == '['): return _from_json_list(stm) elif (c == 't'): return _from_json_fixed(stm, 'true', True, E_BOOL) elif (c == 'f'): return _from_json_fixed(stm, 'false', False, E_BOOL) elif (c == 'n'): return _from_json_fixed(stm, 'null', None, E_NULL) elif (c in NUMSTART): return _from_json_number(stm) raiseJSONError(E_MALF, stm, stm.pos) def from_json(data): "\n Converts 'data' which is UTF-8 (or the 7-bit pure ASCII subset) into\n a Python representation. You must pass bytes to this in a str type,\n not unicode.\n " if (not isinstance(data, str)): raiseJSONError(E_BYTES) if (not data): return None stm = JSONStream(data) return _from_json_raw(stm) def _to_json_list(stm, lst): seen = 0 stm.write('[') for elem in lst: if seen: stm.write(',') seen = 1 _to_json_object(stm, elem) stm.write(']') def _to_json_string(stm, buf): stm.write('"') for c in buf: nc = REV_ESC_MAP.get(c, None) if nc: stm.write('\\' + nc) elif (ord(c) <= 127): stm.write(str(c)) else: stm.write('\\u%04x' % ord(c)) stm.write('"') def _to_json_dict(stm, dct): seen = 0 stm.write('{') for key in dct.keys(): if seen: stm.write(',') seen = 1 val = dct[key] if (not (type(key) in (types.StringType, types.UnicodeType))): key = str(key) _to_json_string(stm, key) stm.write(':') _to_json_object(stm, val) stm.write('}') def _to_json_object(stm, obj): if isinstance(obj, (types.ListType, types.TupleType)): _to_json_list(stm, obj) elif isinstance(obj, types.BooleanType): if obj: stm.write('true') else: stm.write('false') elif isinstance(obj, types.FloatType): if (not (NEG_INF < obj < POS_INF)): raiseJSONError(E_BADFLOAT % obj) stm.write('%s' % obj) elif isinstance(obj, (types.IntType, types.LongType)): stm.write('%d' % obj) elif isinstance(obj, types.NoneType): stm.write('null') elif isinstance(obj, (types.StringType, types.UnicodeType)): _to_json_string(stm, obj) elif (hasattr(obj, 'keys') and hasattr(obj, '__getitem__')): _to_json_dict(stm, obj) elif hasattr(obj, '__unicode__'): _to_json_string(stm, obj.__unicode__()) elif hasattr(obj, '__str__'): _to_json_string(stm, obj.__str__()) else: raiseJSONError(E_UNSUPP % type(obj)) def to_json(obj): "\n Converts 'obj' to an ASCII JSON string representation.\n " stm = StringIO.StringIO('') _to_json_object(stm, obj) return stm.getvalue() decode = from_json encode = to_json
64608d15d268eb8a172554ecfb7235b36b175d0b
677a3a76807d8585f65ec0e0839bb3a8b833e2fb
/10.Design Patterns/Lab/1.Abstract_factory.py
cd4cff1cf3cb94f6f195c13a8447e4bec28e90a5
[]
no_license
negative0101/Python-OOP
0d531a1b72beb3e58f9486df88d457ecd59be10e
b5825e66a909c947a46458712d683e8a38035912
refs/heads/main
2023-07-14T11:27:34.841594
2021-08-20T08:49:04
2021-08-20T08:49:04
381,475,313
0
0
null
2021-07-25T19:52:38
2021-06-29T19:26:42
Python
UTF-8
Python
false
false
1,724
py
from abc import ABC, abstractmethod class Chair: def __init__(self, name): self.name = name def __str__(self): return self.name class Sofa: def __init__(self, name): self.name = name def __str__(self): return self.name class Table: def __init__(self, name): self.name = name def __str__(self): return self.name class AbstractFactory(ABC): @abstractmethod def create_chair(self): pass @abstractmethod def create_table(self): pass @abstractmethod def create_sofa(self): pass class VictorianFactory(AbstractFactory): def create_chair(self): return Chair('Victorian chair') def create_sofa(self): return Sofa('Victorian sofa') def create_table(self): return Table('Victorian table') class ArtFactory(AbstractFactory): def create_chair(self): return Chair('Art chair') def create_sofa(self): return Sofa('Art sofa') def create_table(self): return Table('Art table') class ModernFactory(AbstractFactory): def create_chair(self): return Chair('Modern chair') def create_sofa(self): return Sofa('Modern sofa') def create_table(self): return Table('Modern table') def get_factory(style): if style == 'Victorian': return VictorianFactory() elif style == 'Art': return ArtFactory() elif style == 'Modern': return ModernFactory() if __name__ == '__main__': client_style = input() factory = get_factory(client_style) print(factory.create_chair())
3d7ce7f23f60f696a1c6fc3dad73799d24bb83a9
2bcc421ee345b00cf805c543b37d18b5d019dc04
/adafruit-circuitpython-bundle-6.x-mpy-20201126/examples/rfm69_transmit.py
8f290230a0177f4531c020ba3597b90cb31b0bc0
[]
no_license
saewoonam/sc-current-source-titano
5a1ad46889c1b09c168424901fd71cb4eab5c61b
1c136aa8b61268d9ac0b5a682b30ece70ab87663
refs/heads/main
2023-03-02T22:12:26.685537
2021-02-09T03:28:01
2021-02-09T03:28:01
317,299,900
0
2
null
null
null
null
UTF-8
Python
false
false
1,895
py
# Example to send a packet periodically # Author: Jerry Needell # import time import board import busio import digitalio import adafruit_rfm69 # set the time interval (seconds) for sending packets transmit_interval = 10 # Define radio parameters. RADIO_FREQ_MHZ = 915.0 # Frequency of the radio in Mhz. Must match your # module! Can be a value like 915.0, 433.0, etc. # Define pins connected to the chip. CS = digitalio.DigitalInOut(board.CE1) RESET = digitalio.DigitalInOut(board.D25) # Initialize SPI bus. spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO) # Initialze RFM radio rfm69 = adafruit_rfm69.RFM69(spi, CS, RESET, RADIO_FREQ_MHZ) # Optionally set an encryption key (16 byte AES key). MUST match both # on the transmitter and receiver (or be set to None to disable/the default). rfm69.encryption_key = ( b"\x01\x02\x03\x04\x05\x06\x07\x08\x01\x02\x03\x04\x05\x06\x07\x08" ) # initialize counter counter = 0 # send a broadcast mesage rfm69.send(bytes("message number {}".format(counter), "UTF-8")) # Wait to receive packets. print("Waiting for packets...") # initialize flag and timer send_reading = False time_now = time.monotonic() while True: # Look for a new packet - wait up to 5 seconds: packet = rfm69.receive(timeout=5.0) # If no packet was received during the timeout then None is returned. if packet is not None: # Received a packet! # Print out the raw bytes of the packet: print("Received (raw bytes): {0}".format(packet)) # send reading after any packet received if time.monotonic() - time_now > transmit_interval: # reset timeer time_now = time.monotonic() # clear flag to send data send_reading = False counter = counter + 1 rfm69.send(bytes("message number {}".format(counter), "UTF-8"))
8a3659cc339b77f4682c2220d784c46a647f5a6a
5b76a92ec02529f97bcf72ba2487f11b73684439
/pyxel_lander/__init__.py
40a9993bd4c8b06058baaef719dbb92ea720489a
[ "MIT" ]
permissive
humrochagf/pyxel-lander
d9533598a56a1adba4c335167620950868bcec6b
05b76c45de69f7fa1ecf78cf1ba555e8771d3bfc
refs/heads/main
2023-03-08T06:18:39.555621
2023-03-06T02:18:09
2023-03-06T02:18:09
163,335,210
28
3
null
null
null
null
UTF-8
Python
false
false
235
py
from pyxel_lander.constants import AUTHOR, EMAIL, VERSION from pyxel_lander.game import Game __author__ = AUTHOR __email__ = EMAIL __version__ = VERSION __all__ = [ "__author__", "__email__", "__version__", "Game", ]
3082243e987f916fa7c31952331a62d65983a72c
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/4jNjHdZ2hmMh23pRg_8.py
def823a82703336877c1698b26cb5997d5eaa82f
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
def cutting_grass(lst, *cuts): lsts = [[e - sum(cuts[:i+1]) for e in lst] for i in range(len(cuts))] return [i if all(e > 0 for e in i) else 'Done' for i in lsts]
d2d5e2724e5868e3de00fc519848b82369742bab
e62c8ee151671b999c6720ab8c2aa2f96c0d7f55
/examples/miniapps/boto3-session/boto3_session_example.py
33ed85f6dd4ffb0cf0fd7d12844a69a572b02a71
[]
permissive
ets-labs/python-dependency-injector
45645973456bb6494386ad12103d06e1f1be2cd8
cc2304e46e054ae08dc12995428759fbfb51af10
refs/heads/master
2023-08-23T03:59:53.509743
2022-12-19T03:14:24
2022-12-19T03:14:24
28,774,758
3,217
273
BSD-3-Clause
2023-09-08T21:46:18
2015-01-04T13:23:05
Python
UTF-8
Python
false
false
2,053
py
"""Boto3 session example.""" import boto3.session from dependency_injector import containers, providers class Service: def __init__(self, s3_client, sqs_client): self.s3_client = s3_client self.sqs_client = sqs_client class Container(containers.DeclarativeContainer): config = providers.Configuration() session = providers.Resource( boto3.session.Session, aws_access_key_id=config.aws_access_key_id, aws_secret_access_key=config.aws_secret_access_key, aws_session_token=config.aws_session_token, ) s3_client = providers.Resource( session.provided.client.call(), service_name="s3", ) sqs_client = providers.Resource( providers.MethodCaller(session.provided.client), # Alternative syntax service_name="sqs", ) service1 = providers.Factory( Service, s3_client=s3_client, sqs_client=sqs_client, ) service2 = providers.Factory( Service, s3_client=session.provided.client.call(service_name="s3"), # Alternative inline syntax sqs_client=session.provided.client.call(service_name="sqs"), # Alternative inline syntax ) def main(): container = Container() container.config.aws_access_key_id.from_env("AWS_ACCESS_KEY_ID") container.config.aws_secret_access_key.from_env("AWS_SECRET_ACCESS_KEY") container.config.aws_session_token.from_env("AWS_SESSION_TOKEN") container.init_resources() s3_client = container.s3_client() print(s3_client) sqs_client = container.sqs_client() print(sqs_client) service1 = container.service1() print(service1, service1.s3_client, service1.sqs_client) assert service1.s3_client is s3_client assert service1.sqs_client is sqs_client service2 = container.service2() print(service2, service2.s3_client, service2.sqs_client) assert service2.s3_client.__class__.__name__ == "S3" assert service2.sqs_client.__class__.__name__ == "SQS" if __name__ == "__main__": main()
570a9766aa5228126ece666542ba521ded51bb84
37d10412479a81c652e3ebf0c21c101b68fe1b4d
/rebecca/bootstrapui/helpers.py
7c850d56c33719949e736ca874ba579b29d7a7d6
[ "MIT" ]
permissive
rebeccaframework/rebecca.bootstrapui
97bfde14861d9b318fd1b0087a30c10cfbc18da3
e247aead62e75009256d8341a893b173ccfe3b10
refs/heads/master
2020-05-18T15:50:27.364424
2014-08-23T10:18:21
2014-08-23T10:18:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
964
py
import functools from webhelpers2.html import HTML, escape, literal from babel.dates import format_date, format_datetime, format_time from babel.numbers import format_number, format_decimal, format_percent def bind_locale(func, localename): return functools.partial(func, locale=localename) class WebHelper(object): def __init__(self, request): self.request = request self.locale_name = request.locale_name self.HTML = HTML self.escape = escape self.literal = literal self.format_date = bind_locale(format_date, self.locale_name) self.format_datetime = bind_locale(format_datetime, self.locale_name) self.format_time = bind_locale(format_time, self.locale_name) self.format_number = bind_locale(format_number, self.locale_name) self.format_decimal = bind_locale(format_decimal, self.locale_name) self.format_percent = bind_locale(format_percent, self.locale_name)
5dc668e60985444fd9aa28246684e0b119ddea80
88ea6ae5a8f97e3771490583d8acecdbe2877fd8
/zips/plugin.video.vistatv/resources/lib/sources/en/watch32.py
e4449b2214e5d64dd66cc38e81ebeb999833a20b
[]
no_license
staycanuca/PersonalDataVistaTV
26497a29e6f8b86592609e7e950d6156aadf881c
4844edbfd4ecfc1d48e31432c39b9ab1b3b1a222
refs/heads/master
2021-01-25T14:46:25.763952
2018-03-03T10:48:06
2018-03-03T10:48:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,798
py
# -*- coding: UTF-8 -*- ####################################################################### # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # @tantrumdev wrote this file. As long as you retain this notice you # can do whatever you want with this stuff. If we meet some day, and you think # this stuff is worth it, you can buy me a beer in return. - Muad'Dib # ---------------------------------------------------------------------------- ####################################################################### ##Cerebro ShowBox Scraper #Cerebro ShowBox Scraper # Addon Provider: MuadDib import re,urllib,urlparse from resources.lib.modules import cleantitle from resources.lib.modules import client from resources.lib.modules import debrid from resources.lib.modules import source_utils class source: def __init__(self): self.priority = 1 self.language = ['en'] self.domains = ['watch32hd.co'] self.base_link = 'https://watch32hd.co' self.search_link = '/watch?v=%s_%s' def movie(self, imdb, title, localtitle, aliases, year): try: url = {'imdb': imdb, 'title': title, 'year': year} url = urllib.urlencode(url) return url except: return def sources(self, url, hostDict, hostprDict): try: sources = [] if url == None: return sources data = urlparse.parse_qs(url) data = dict([(i, data[i][0]) if data[i] else (i, '') for i in data]) title = data['title'] year = data['year'] url = urlparse.urljoin(self.base_link, self.search_link) url = url % (title.replace(':', ' ').replace(' ','_'),year) search_results = client.request(url) varid = re.compile('var frame_url = "(.+?)"',re.DOTALL).findall(search_results)[0].replace('/embed/','/streamdrive/info/') res_chk = re.compile('class="title"><h1>(.+?)</h1>',re.DOTALL).findall(search_results)[0] varid = 'http:'+varid holder = client.request(varid) links = re.compile('"src":"(.+?)"',re.DOTALL).findall(holder) for link in links: vid_url = link.replace('\\','') if '1080' in res_chk: quality = '1080p' elif '720' in res_chk: quality = '720p' else: quality = 'DVD' sources.append({'source': 'Googlelink', 'quality': quality, 'language': 'en', 'url': vid_url, 'direct': False, 'debridonly': False}) return sources except: return sources def resolve(self, url): return url
bc500ba176b2434f5fb8c5f9ef04e5625cd2fe98
ce8563184a6cf8210279b79cd1ccfd4040e35b55
/src/ebay_rest/api/sell_listing/rest.py
1f94ccb346b94bc05b402e233e6d6cb5bfa8b4fc
[ "MIT" ]
permissive
craiga/ebay_rest
43dc107f9eeba9a04924f36ee8cf57af3854bc9a
a0be2677c65a787e9566df848ffa3ad0c309a9d9
refs/heads/main
2023-08-29T09:14:08.896434
2021-09-05T23:07:36
2021-09-05T23:07:36
411,585,541
0
0
MIT
2021-09-29T08:10:44
2021-09-29T08:10:43
null
UTF-8
Python
false
false
13,642
py
# coding: utf-8 """ Listing API <span class=\"tablenote\"><b>Note:</b> This is a <a href=\"https://developer.ebay.com/api-docs/static/versioning.html#limited\" target=\"_blank\"> <img src=\"/cms/img/docs/partners-api.svg\" class=\"legend-icon partners-icon\" title=\"Limited Release\" alt=\"Limited Release\" />(Limited Release)</a> API available only to select developers approved by business units.</span><br /><br />Enables a seller adding an ad or item on a Partner's site to automatically create an eBay listing draft using the item details from the Partner's site. # noqa: E501 OpenAPI spec version: v1_beta.3.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import io import json import logging import re import ssl import certifi # python 2 and python 3 compatibility library import six from six.moves.urllib.parse import urlencode try: import urllib3 except ImportError: raise ImportError('Swagger python client requires urllib3.') logger = logging.getLogger(__name__) class RESTResponse(io.IOBase): def __init__(self, resp): self.urllib3_response = resp self.status = resp.status self.reason = resp.reason self.data = resp.data def getheaders(self): """Returns a dictionary of the response headers.""" return self.urllib3_response.getheaders() def getheader(self, name, default=None): """Returns a given response header.""" return self.urllib3_response.getheader(name, default) class RESTClientObject(object): def __init__(self, configuration, pools_size=4, maxsize=None): # urllib3.PoolManager will pass all kw parameters to connectionpool # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/poolmanager.py#L75 # noqa: E501 # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/connectionpool.py#L680 # noqa: E501 # maxsize is the number of requests to host that are allowed in parallel # noqa: E501 # Custom SSL certificates and client certificates: http://urllib3.readthedocs.io/en/latest/advanced-usage.html # noqa: E501 # cert_reqs if configuration.verify_ssl: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE # ca_certs if configuration.ssl_ca_cert: ca_certs = configuration.ssl_ca_cert else: # if not set certificate file, use Mozilla's root certificates. ca_certs = certifi.where() addition_pool_args = {} if configuration.assert_hostname is not None: addition_pool_args['assert_hostname'] = configuration.assert_hostname # noqa: E501 if maxsize is None: if configuration.connection_pool_maxsize is not None: maxsize = configuration.connection_pool_maxsize else: maxsize = 4 # https pool manager if configuration.proxy: self.pool_manager = urllib3.ProxyManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=ca_certs, cert_file=configuration.cert_file, key_file=configuration.key_file, proxy_url=configuration.proxy, **addition_pool_args ) else: self.pool_manager = urllib3.PoolManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=ca_certs, cert_file=configuration.cert_file, key_file=configuration.key_file, **addition_pool_args ) def request(self, method, url, query_params=None, headers=None, body=None, post_params=None, _preload_content=True, _request_timeout=None): """Perform requests. :param method: http request method :param url: http request url :param query_params: query parameters in the url :param headers: http request headers :param body: request json body, for `application/json` :param post_params: request post parameters, `application/x-www-form-urlencoded` and `multipart/form-data` :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. """ method = method.upper() assert method in ['GET', 'HEAD', 'DELETE', 'POST', 'PUT', 'PATCH', 'OPTIONS'] if post_params and body: raise ValueError( "body parameter cannot be used with post_params parameter." ) post_params = post_params or {} headers = headers or {} timeout = None if _request_timeout: if isinstance(_request_timeout, (int, ) if six.PY3 else (int, long)): # noqa: E501,F821 timeout = urllib3.Timeout(total=_request_timeout) elif (isinstance(_request_timeout, tuple) and len(_request_timeout) == 2): timeout = urllib3.Timeout( connect=_request_timeout[0], read=_request_timeout[1]) if 'Content-Type' not in headers: headers['Content-Type'] = 'application/json' try: # For `POST`, `PUT`, `PATCH`, `OPTIONS`, `DELETE` if method in ['POST', 'PUT', 'PATCH', 'OPTIONS', 'DELETE']: if query_params: url += '?' + urlencode(query_params) if re.search('json', headers['Content-Type'], re.IGNORECASE): request_body = '{}' if body is not None: request_body = json.dumps(body) r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'application/x-www-form-urlencoded': # noqa: E501 r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=False, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'multipart/form-data': # must del headers['Content-Type'], or the correct # Content-Type which generated by urllib3 will be # overwritten. del headers['Content-Type'] r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=True, preload_content=_preload_content, timeout=timeout, headers=headers) # Pass a `string` parameter directly in the body to support # other content types than Json when `body` argument is # provided in serialized form elif isinstance(body, str): request_body = body r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) else: # Cannot generate the request from given parameters msg = """Cannot prepare a request message for provided arguments. Please check that your arguments match declared content type.""" raise ApiException(status=0, reason=msg) # For `GET`, `HEAD` else: r = self.pool_manager.request(method, url, fields=query_params, preload_content=_preload_content, timeout=timeout, headers=headers) except urllib3.exceptions.SSLError as e: msg = "{0}\n{1}".format(type(e).__name__, str(e)) raise ApiException(status=0, reason=msg) if _preload_content: r = RESTResponse(r) # In the python 3, the response.data is bytes. # we need to decode it to string. if six.PY3: r.data = r.data.decode('utf8') # log response body logger.debug("response body: %s", r.data) if not 200 <= r.status <= 299: raise ApiException(http_resp=r) return r def GET(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("GET", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def HEAD(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("HEAD", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def OPTIONS(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("OPTIONS", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def DELETE(self, url, headers=None, query_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("DELETE", url, headers=headers, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def POST(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("POST", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PUT(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PUT", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PATCH(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PATCH", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) class ApiException(Exception): def __init__(self, status=None, reason=None, http_resp=None): if http_resp: self.status = http_resp.status self.reason = http_resp.reason self.body = http_resp.data self.headers = http_resp.getheaders() else: self.status = status self.reason = reason self.body = None self.headers = None def __str__(self): """Custom error messages for exception""" error_message = "({0})\n"\ "Reason: {1}\n".format(self.status, self.reason) if self.headers: error_message += "HTTP response headers: {0}\n".format( self.headers) if self.body: error_message += "HTTP response body: {0}\n".format(self.body) return error_message
12ec82e69e5b3d50651b488913b9e56d768c6259
bd01527a0af06828c56206d1113c372787e0d1d0
/backend/media/justrelax/node/media/player.py
0fae154d42080e85207185137f7117e755f8f9ac
[]
no_license
nosseb/justrelax
3810f3cbae507f3da3c7a0ab894e5c3236b8c9d1
812bdf7787a761c94afd867cfc4de20f993fc86a
refs/heads/master
2022-11-26T22:12:33.825056
2020-07-21T15:42:27
2020-07-21T15:42:27
263,049,627
0
0
null
2020-05-11T13:24:52
2020-05-11T13:24:51
null
UTF-8
Python
false
false
2,432
py
from justrelax.common.logging_utils import logger class MediaPlayerMixin: STATE_NOT_STARTED = 'not_started' STATE_PLAYING = 'playing' STATE_PAUSED = 'paused' def __init__(self): self.current_state = MediaPlayerMixin.STATE_NOT_STARTED def play(self): if self.current_state == MediaPlayerMixin.STATE_NOT_STARTED: logger.debug('Player has not been started yet') self._play() self.current_state = MediaPlayerMixin.STATE_PLAYING elif self.current_state == MediaPlayerMixin.STATE_PLAYING: logger.debug('Player is already playing') logger.debug('Nothing to do') elif self.current_state == MediaPlayerMixin.STATE_PAUSED: logger.debug('Player is paused and had already been started') self._resume() self.current_state = MediaPlayerMixin.STATE_PLAYING else: pass def pause(self): if self.current_state == MediaPlayerMixin.STATE_NOT_STARTED: logger.debug('Player has not been started yet') logger.debug('Nothing to do') elif self.current_state == MediaPlayerMixin.STATE_PLAYING: logger.debug('Player is already playing') self._pause() self.current_state = MediaPlayerMixin.STATE_PAUSED elif self.current_state == MediaPlayerMixin.STATE_PAUSED: logger.debug('Player is paused and had already been started') logger.debug('Nothing to do') else: pass def stop(self): if self.current_state == MediaPlayerMixin.STATE_NOT_STARTED: logger.debug('Player has not been started yet') logger.debug('Nothing to do') elif self.current_state == MediaPlayerMixin.STATE_PLAYING: logger.debug('Player is already playing') self._stop() self.current_state = MediaPlayerMixin.STATE_NOT_STARTED elif self.current_state == MediaPlayerMixin.STATE_PAUSED: logger.debug('Player is paused and had already been started') self._stop() self.current_state = MediaPlayerMixin.STATE_NOT_STARTED else: pass def _play(self): logger.debug("Playing") def _resume(self): logger.debug("Resuming") def _pause(self): logger.debug("Pausing") def _stop(self): logger.debug("Stopping")
485ebf8496bd146a42491a9f4317726e7d3725e0
79b93d7c36645735309a55973ec54d126956c612
/Round1B/DraupnirBig.py
bbd9b31b2927243318da8e69786c1f06597f0bb4
[]
no_license
rocket3989/codeJam2019
a7523f27c73a8e69c35754ad1737f8587e626c9f
2d383ef2eefac43a86b24433bb6371961002adc5
refs/heads/master
2022-02-28T23:52:56.653242
2019-09-25T01:01:43
2019-09-25T01:01:43
179,910,089
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
T, M = list(map(int, input().split())) for test in range(0,T): r = [0,0,0,0,0,0,0] inp = [] print(200) inp.append(int(input())) print(56) inp.append(int(input())) r[6] = (inp[0] % 2 ** 40) // 2 ** 33 inp[0] -= r[6] * 2 ** 33 r[5] = (inp[0] % 2 ** 50) // 2 ** 40 inp[0] -= r[5] * 2 ** 40 r[4] = inp[0] // 2 ** 50 inp[1] -= r[4] * 2 ** 14 + r[5] * 2 ** 11 + r[6] * 2 ** 9 r[3] = (inp[1] % 2 ** 28) // 2 ** 18 inp[1] -= r[6] * 2 ** 18 r[2] = (inp[1] % 2 ** 56) // 2 ** 28 inp[1] -= r[5] * 2 ** 28 r[1] = inp[1] // 2 ** 56 for out in r[1::]: print(out, end=" ") print() res = int(input()) if res == -1: exit()
e22ed8db69cbcb31a38db3a504b7ff241cb1244b
49c3166a46e84b193f8b70dfaf12757b8e385348
/recipe_scrapers/tests/test_thepioneerwoman.py
3b87fde7e5f2f7de001dc4e29870507d834b482b
[ "MIT" ]
permissive
buneme/recipe-scrapers
f8f199ee47f52d74ef8813ff6bd1efb70d4064de
7e3426a5e853335ba0999e2a50b1ea9b98ee429c
refs/heads/master
2020-04-13T00:27:24.710040
2018-11-27T15:31:55
2018-11-27T15:31:55
162,845,950
1
0
MIT
2018-12-22T22:12:29
2018-12-22T22:12:29
null
UTF-8
Python
false
false
2,468
py
import os import unittest from recipe_scrapers.thepioneerwoman import ThePioneerWoman class TestThePioneerWomanScraper(unittest.TestCase): def setUp(self): # tests are run from tests.py with open(os.path.join( os.getcwd(), 'recipe_scrapers', 'tests', 'test_data', 'thepioneerwoman.testhtml' )) as file_opened: self.harvester_class = ThePioneerWoman(file_opened, test=True) def test_host(self): self.assertEqual( 'thepioneerwoman.com', self.harvester_class.host() ) def test_title(self): self.assertEqual( self.harvester_class.title(), 'Patty Melts' ) def test_total_time(self): self.assertEqual( 35, self.harvester_class.total_time() ) def test_ingredients(self): self.assertCountEqual( [ '1 stick Butter', '1 whole Large Onion, Halved And Sliced', '1-1/2 pound Ground Beef', 'Salt And Pepper, to taste', '5 dashes Worcestershire Sauce', '8 slices Swiss Cheese', '8 slices Rye Bread' ], self.harvester_class.ingredients() ) def test_instructions(self): return self.assertEqual( 'In a medium skillet, melt 2 tablespoons of butter over medium-low heat.\n Throw in the sliced onions and cook slowly for 20 to 25 minutes, stirring occasionally, until the onions are golden brown and soft.\n In a medium bowl, mix together the ground beef, salt & pepper, and Worcestershire.\n Form into 4 patties.\nMelt 2 tablespoons butter in a separate skillet over medium heat.\n Cook the patties on both sides until totally done in the middle.\n Assemble patty melts this way: Slice of bread, slice of cheese, hamburger patty, 1/4 of the cooked onions, another slice of cheese, and another slice of bread.\n On a clean griddle or in a skillet, melt 2 tablespoons butter and grill the sandwiches over medium heat until golden brown.\n Remove the sandwiches and add the remaining 2 tablespoons of butter to the skillet.\n Turn the sandwiches to the skillet, flipping them to the other side.\n Cook until golden brown and crisp, and until cheese is melted.\n Slice in half and serve immediately!', self.harvester_class.instructions() )
b8ce6bca58314b866a7d721d90990ae2cc5492a5
e3e8467a3bae0982bd1ae0a27474e59d61eabe95
/nukepy
efe0df8dd0ca6a266d16c453902c4d02f54a5aa2
[]
no_license
LumaPictures/nukecli
d47cd5c5a8d15cf5e584ac5b87362ad5333fa8d6
7ca3829cf940a3d836eb0104f41fb00321c9c92c
refs/heads/master
2020-06-01T04:20:58.804388
2011-08-05T23:34:46
2011-08-05T23:34:46
2,163,112
15
4
null
null
null
null
UTF-8
Python
false
false
1,441
#!/usr/bin/env python """ Wrapper for Nuke -t that behaves more like a normal python binary. - adds support for -c flag to pass a string of python code to execute - expands symbolic links - can be used as the interpreter in executable python scripts (e.g. #!/usr/bin/env nukepy) """ from __future__ import with_statement import sys import os import subprocess import tempfile newArgsList = [] nextIsPyCmd = False tempFileName = None try: for arg in sys.argv[1:]: if nextIsPyCmd: nextIsPyCmd = False fd, tempFileName = tempfile.mkstemp(suffix='.py', prefix='nukepyCommand', text=True) with os.fdopen(fd, 'w') as tempFileHandle: tempFileHandle.write(arg) newArgsList.append(tempFileName) elif arg == '-c': if tempFileName is not None: raise Exception('-c argument may only be given once') nextIsPyCmd = True elif os.path.islink(arg): newArgsList.append(os.path.realpath(arg)) else: newArgsList.append(arg) procArgs = ["Nuke", "-c", "4G", "-t", "--"] + newArgsList p = subprocess.Popen(procArgs) os.waitpid(p.pid, 0)[1] finally: if tempFileName: os.remove(tempFileName) # this also works but exits in a slightly different way #/bin/tcsh #Nuke -t < $*
9c32c81ada99ccdd475169383494827f0feba25d
fe06311a7de13a02ca0be37d84c542c3cece3f33
/Chapter14/file_14_4k.py
c0a727e6cee4b1ac580ff06298411b2c8d3e643c
[]
no_license
mooksys/Python_Algorithms
a4a84ddabc34ec4b7cc0ac01d55019880af38514
375817e3dfdec94411cf245fe3f685a69d92b948
refs/heads/master
2020-08-24T06:35:05.791979
2018-07-30T01:22:24
2018-07-30T01:22:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
84
py
import string print(string.ascii_uppercase) # 출력: ABCDEFGHIJKLMNOPQRSTUVWXYZ
cbe54232f0be04c15cdde2e8131a03669382f580
e6d79311f0e020f366f98fd0bb096e66598093e9
/tests/test_aggregates.py
d9a34c164a72ef523f3854e45375ce6a452ff7f9
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
adborden/openFEC
b54fb4b0e854d9ad77de738420ea07f714574941
53a0a2b1a56292c5ca8e7a3185832baaed4a63d9
refs/heads/develop
2021-01-17T15:51:15.486471
2016-03-14T16:17:49
2016-03-14T16:17:49
53,984,188
0
1
null
2016-03-15T22:50:11
2016-03-15T22:50:11
null
UTF-8
Python
false
false
10,824
py
from tests import factories from tests.common import ApiBaseTest, assert_dicts_subset from webservices import schemas from webservices.rest import db, api from webservices.resources.aggregates import ( ScheduleAByEmployerView, ScheduleEByCandidateView, CommunicationCostByCandidateView, ElectioneeringByCandidateView, ) from webservices.resources.candidate_aggregates import ( ScheduleABySizeCandidateView, ScheduleAByStateCandidateView, TotalsCandidateView, ) class TestCommitteeAggregates(ApiBaseTest): def test_stable_sort(self): rows = [ factories.ScheduleAByEmployerFactory( committee_id='C001', employer='omnicorp-{}'.format(idx), total=538, ) for idx in range(100) ] employers = [] for page in range(2): results = self._results(api.url_for(ScheduleAByEmployerView, sort='-total', per_page=50, page=page + 1)) employers.extend(result['employer'] for result in results) assert len(set(employers)) == len(rows) class TestAggregates(ApiBaseTest): cases = [ ( factories.ScheduleEByCandidateFactory, ScheduleEByCandidateView, schemas.ScheduleEByCandidateSchema, ), ( factories.CommunicationCostByCandidateFactory, CommunicationCostByCandidateView, schemas.CommunicationCostByCandidateSchema, ), ( factories.ElectioneeringByCandidateFactory, ElectioneeringByCandidateView, schemas.ElectioneeringByCandidateSchema, ), ] def setUp(self): super(TestAggregates, self).setUp() self.committee = factories.CommitteeHistoryFactory( name='Ritchie for America', cycle=2012, ) self.candidate = factories.CandidateDetailFactory( candidate_id='P123', name='Robert Ritchie', election_years=[2012], office='P', ) self.candidate_history = factories.CandidateHistoryFactory( candidate_id='P123', name='Robert Ritchie', election_years=[2012], two_year_period=2012, office='P', ) factories.CandidateElectionFactory( candidate_id='P123', cand_election_year=2012, ) def make_aggregates(self, factory): return [ factory( candidate_id=self.candidate.candidate_id, committee_id=self.committee.committee_id, cycle=self.committee.cycle, total=100, count=5, ), factory( candidate_id=self.candidate.candidate_id, committee_id=self.committee.committee_id, cycle=self.committee.cycle - 2, total=100, count=5, ), ] def test_candidate_aggregates_by_committee(self): for factory, resource, schema in self.cases: aggregates = self.make_aggregates(factory) results = self._results( api.url_for( resource, committee_id=self.committee.committee_id, cycle=2012, ) ) assert len(results) == 1 serialized = schema().dump(aggregates[0]).data serialized.update({ 'committee_name': self.committee.name, 'candidate_name': self.candidate.name, }) assert results[0] == serialized def test_candidate_aggregates_by_committee_full(self): """For each aggregate type, create a two-year aggregate in the target election year and a two-year aggregate in the previous two-year period. Assert that both aggregates are summed when the `election_full` flag is passed. """ for factory, resource, schema in self.cases: aggregates = self.make_aggregates(factory) results = self._results( api.url_for( resource, candidate_id=self.candidate.candidate_id, committee_id=self.committee.committee_id, cycle=2012, election_full='true', ) ) assert len(results) == 1 serialized = schema().dump(aggregates[0]).data serialized.update({ 'committee_name': self.committee.name, 'candidate_name': self.candidate.name, 'total': sum(each.total for each in aggregates), 'count': sum(each.count for each in aggregates), }) assert results[0] == serialized def test_candidate_aggregates_by_election(self): for factory, resource, _ in self.cases: [ factory( committee_id=self.committee.committee_id, candidate_id=self.candidate.candidate_id, cycle=self.committee.cycle, ), factory( cycle=self.committee.cycle, ), ] results = self._results( api.url_for( resource, office='president', cycle=2012, ) ) assert len(results) == 1 assert results[0]['candidate_id'] == self.candidate.candidate_id class TestCandidateAggregates(ApiBaseTest): def setUp(self): super().setUp() self.candidate = factories.CandidateHistoryFactory( candidate_id='S123', two_year_period=2012, ) self.committees = [ factories.CommitteeHistoryFactory(cycle=2012, designation='P'), factories.CommitteeHistoryFactory(cycle=2012, designation='A'), ] factories.CandidateHistoryLatestFactory( candidate_id=self.candidate.candidate_id, cand_election_year=2012, two_year_period=2012, ) factories.CandidateDetailFactory( candidate_id=self.candidate.candidate_id, election_years=[2008, 2012], ) [ factories.CandidateElectionFactory( candidate_id=self.candidate.candidate_id, cand_election_year=election_year ) for election_year in [2008, 2012] ] [ factories.CommitteeDetailFactory(committee_id=each.committee_id) for each in self.committees ] factories.CandidateTotalFactory( candidate_id=self.candidate.candidate_id, cycle=2012, is_election=True, receipts=100, ) factories.CandidateTotalFactory( candidate_id=self.candidate.candidate_id, cycle=2012, is_election=False, receipts=75, ) db.session.flush() # Create two-year totals for both the target period (2011-2012) and the # previous period (2009-2010) for testing the `election_full` flag factories.CandidateCommitteeLinkFactory( candidate_id=self.candidate.candidate_id, committee_id=self.committees[0].committee_id, committee_designation='P', committee_type='S', fec_election_year=2012, ) factories.CandidateCommitteeLinkFactory( candidate_id=self.candidate.candidate_id, committee_id=self.committees[1].committee_id, committee_designation='A', committee_type='S', fec_election_year=2012, ) factories.CandidateCommitteeLinkFactory( candidate_id=self.candidate.candidate_id, committee_id=self.committees[1].committee_id, committee_designation='A', committee_type='S', fec_election_year=2010, ) def test_by_size(self): [ factories.ScheduleABySizeFactory( committee_id=self.committees[0].committee_id, cycle=2012, total=50, size=200, ), factories.ScheduleABySizeFactory( committee_id=self.committees[1].committee_id, cycle=2012, total=150, size=200, ), ] results = self._results( api.url_for( ScheduleABySizeCandidateView, candidate_id=self.candidate.candidate_id, cycle=2012, ) ) self.assertEqual(len(results), 1) expected = { 'candidate_id': self.candidate.candidate_id, 'cycle': 2012, 'total': 200, 'size': 200, } self.assertEqual(results[0], expected) def test_by_state(self): [ factories.ScheduleAByStateFactory( committee_id=self.committees[0].committee_id, cycle=2012, total=50, state='NY', state_full='New York', ), factories.ScheduleAByStateFactory( committee_id=self.committees[1].committee_id, cycle=2012, total=150, state='NY', state_full='New York', ), ] results = self._results( api.url_for( ScheduleAByStateCandidateView, candidate_id=self.candidate.candidate_id, cycle=2012, ) ) self.assertEqual(len(results), 1) expected = { 'candidate_id': self.candidate.candidate_id, 'cycle': 2012, 'total': 200, 'state': 'NY', 'state_full': 'New York', } self.assertEqual(results[0], expected) def test_totals(self): results = self._results( api.url_for( TotalsCandidateView, candidate_id=self.candidate.candidate_id, cycle=2012, ) ) assert len(results) == 1 assert_dicts_subset(results[0], {'cycle': 2012, 'receipts': 75}) def test_totals_full(self): results = self._results( api.url_for( TotalsCandidateView, candidate_id=self.candidate.candidate_id, cycle=2012, election_full='true', ) ) assert len(results) == 1 assert_dicts_subset(results[0], {'cycle': 2012, 'receipts': 100})
b46e91baeb582c1b23025c803fe705dab8582a91
d2bbf50859beb3447d8e15d5d11f89942f1b21d3
/Top down design lab/conversion1.py
56c6680b68b9082c71627b440e82dace9a22c5a0
[]
no_license
nbenkler/CS110_Intro_CS
f5bc8da21bac9bc4d1c01070b5f7cc75fb3ab012
372483bce661ef8052c2ebbe832cc6ec1922d113
refs/heads/master
2020-04-24T07:25:26.630687
2019-02-21T04:27:55
2019-02-21T04:27:55
171,798,847
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
#conversion1.py # A program to convert Celsius temps to Fahrenheit def main(): fileName = eval(input("What is the name of the file you would like to convert? ")) inFile = open(fileName, "r") for line in inFile: celsius = int(line) fahrenheit = 9/5 * celsius + 32 print(celsius, "degrees celsius is", fahrenheit, "degrees in Fahrenheit.") inFile.close() main()
8d626cd10ddba11c2cc47aaaae26cca82f16f13d
bb6ebff7a7f6140903d37905c350954ff6599091
/third_party/WebKit/Source/devtools/scripts/concatenate_js_files.py
69d776abae74eff185f6689bcb1c595dffa5d111
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "BSD-3-Clause" ]
permissive
PDi-Communication-Systems-Inc/lollipop_external_chromium_org
faa6602bd6bfd9b9b6277ce3cd16df0bd26e7f2f
ccadf4e63dd34be157281f53fe213d09a8c66d2c
refs/heads/master
2022-12-23T18:07:04.568931
2016-04-11T16:03:36
2016-04-11T16:03:36
53,677,925
0
1
BSD-3-Clause
2022-12-09T23:46:46
2016-03-11T15:49:07
C++
UTF-8
Python
false
false
4,254
py
#!/usr/bin/env python # # Copyright (C) 2010 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # This script concatenates in place JS files in the order specified # using <script> tags in a given 'order.html' file. from __future__ import with_statement from HTMLParser import HTMLParser from cStringIO import StringIO import os.path import sys rjsmin_path = os.path.abspath(os.path.join( os.path.dirname(__file__), "..", "..", "build", "scripts")) sys.path.append(rjsmin_path) import rjsmin class OrderedJSFilesExtractor(HTMLParser): def __init__(self, order_html): HTMLParser.__init__(self) self.ordered_js_files = [] self.feed(order_html) def handle_starttag(self, tag, attrs): if tag == 'script': attrs_dict = dict(attrs) if ('type' in attrs_dict and attrs_dict['type'] == 'text/javascript' and 'src' in attrs_dict): self.ordered_js_files.append(attrs_dict['src']) class PathExpander: def __init__(self, paths): self.paths = paths def expand(self, filename): for path in self.paths: fname = os.path.join(path, filename) if (os.access(fname, os.F_OK)): return fname return None def main(argv): if len(argv) < 3: print('usage: %s order.html input_source_dir_1 input_source_dir_2 ... ' 'output_file' % argv[0]) return 1 output_file_name = argv.pop() input_order_file_name = argv[1] with open(input_order_file_name, 'r') as order_html: extractor = OrderedJSFilesExtractor(order_html.read()) expander = PathExpander(argv[2:]) output = StringIO() for input_file_name in extractor.ordered_js_files: full_path = expander.expand(input_file_name) if (full_path is None): raise Exception('File %s referenced in %s not found on any source paths, ' 'check source tree for consistency' % (input_file_name, input_order_file_name)) output.write('/* %s */\n\n' % input_file_name) input_file = open(full_path, 'r') output.write(input_file.read()) output.write('\n') input_file.close() if os.path.exists(output_file_name): os.remove(output_file_name) output_file = open(output_file_name, 'w') output_file.write(rjsmin.jsmin(output.getvalue())) output_file.close() output.close() # Touch output file directory to make sure that Xcode will copy # modified resource files. if sys.platform == 'darwin': output_dir_name = os.path.dirname(output_file_name) os.utime(output_dir_name, None) if __name__ == '__main__': sys.exit(main(sys.argv))
83626a499b71960a0cbd94990cb81f96a5cc2601
ff69aab96d76ac3dc5b93605617314c6eb2b257c
/gymmeforce/models/__init__.py
4cedb96b2487ce53f7fda441d4b1d2cc233798a2
[ "MIT" ]
permissive
init27Lab/gymmeforce
a9fc7e455b8427ce2c3334e059ee6e532adb3384
12731bcf34de9e9a94fae085cdfe10e3f4e0d142
refs/heads/master
2021-09-01T12:30:16.508592
2017-12-27T01:35:21
2017-12-27T01:35:21
115,546,238
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
from gymmeforce.models.base_model import BaseModel from gymmeforce.models.dqn_model import DQNModel from gymmeforce.models.vanilla_pg_model import VanillaPGModel from gymmeforce.models.ppo_model import PPOModel
c439df6bafaa4167d39bfcd0250e95a1dca7f532
79197ddad40d2780a8f291bffa2cb58509c055bb
/Menus/menu-1.py
d09c2355e97f9093a2030524511a2994180fe946
[]
no_license
Adrien-FILIPPI/Hackbox
6dd0c66e0fa72a249ee06c6064cbc9bb66eeaa7b
c58495503abc2948ae1d6e2ea1705ee48192f1df
refs/heads/master
2021-01-25T09:37:59.960101
2019-01-08T16:04:38
2019-01-08T16:04:38
93,864,005
0
0
null
null
null
null
UTF-8
Python
false
false
7,712
py
#!/usr/bin/env python import kalipi from kalipi import * ############################# ## Local Functions ## # Check VNC status def check_vnc(): if 'vnc :1' in commands.getoutput('/bin/ps -ef'): return True else: return False # Check Terminal session status def check_terminal(): if 'SCREEN -R -S term' in commands.getoutput('/bin/ps -ef'): return True else: return False ## Local Functions ## ############################# ############################# ## Buttons ## # define all of the buttons titleButton = Button(" " + kalipi.get_hostname() + " " + kalipi.get_ip(), originX, originX, buttonHeight, buttonWidth * 3 + spacing * 2, tron_blu, tron_ora, titleFont) button1 = Button(labelPadding * " " + " Exit", originX, originY, buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button2 = Button(labelPadding * " " + " X on TFT", originX + buttonWidth + spacing, originY, buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button3 = Button(labelPadding * " " + " X on HDMI", originX + (buttonWidth * 2) + (spacing * 2), originY, buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button4 = Button(labelPadding * " " + " Shutdown", originX, originY + buttonHeight + spacing, buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button5 = Button(labelPadding * " " + " Find IP", originX + buttonWidth + spacing, originY + buttonHeight + spacing, buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button6 = Button(labelPadding * " " + " Terminal", originX + (buttonWidth * 2) + (spacing * 2), originY + buttonHeight + spacing, buttonHeight, buttonWidth, tron_blu,tron_whi, labelFont) button7 = Button(labelPadding * " " + " Reboot", originX, originY + (buttonHeight * 2) + (spacing * 2), buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button8 = Button(labelPadding * " " + " Screen Off", originX + buttonWidth + spacing, originY + (buttonHeight * 2) + (spacing * 2), buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) button9 = Button(labelPadding * " " + " >>>", originX + (buttonWidth * 2) + (spacing * 2), originY + (buttonHeight * 2) + (spacing * 2), buttonHeight, buttonWidth, tron_blu, tron_whi, labelFont) # Define each button press action def button(number): if number == 1: if button1.disable == 1: return # Exit process = subprocess.call("setterm -term linux -back default -fore white -clear all", shell=True) pygame.quit() sys.exit(37) if number == 2: if button2.disable == 1: return # X TFT pygame.quit() ## Requires "Anybody" in dpkg-reconfigure x11-common if we have scrolled pages previously ## kalipi.run_cmd("/usr/bin/sudo -u pi FRAMEBUFFER=/dev/fb1 startx") kalipi.run_cmd("/usr/bin/sudo FRAMEBUFFER=/dev/fb1 startx") os.execv(__file__, sys.argv) if number == 3: if button3.disable == 1: return # X HDMI pygame.quit() ## Requires "Anybody" in dpkg-reconfigure x11-common if we have scrolled pages previously ## kalipi.run_cmd("/usr/bin/sudo -u pi FRAMEBUFFER=/dev/fb0 startx") kalipi.run_cmd("/usr/bin/sudo FRAMEBUFFER=/dev/fb0 startx") os.execv(__file__, sys.argv) if number == 4: if button4.disable == 1: return # Shutdown pygame.quit() kalipi.run_cmd("/usr/bin/sudo /sbin/shutdown -h now") sys.exit() if number == 5: if button5.disable == 1: return # Find IP pygame.quit() kalipi.run_cmd("/opt/hackbox/findip.sh") os.execv(__file__, sys.argv) if number == 6: if button6.disable == 1: return # Terminal process = subprocess.call("setterm -term linux -back default -fore white -clear all", shell=True) pygame.quit() kalipi.run_cmd("/usr/bin/sudo -u pi screen -R -S term") process = subprocess.call("setterm -term linux -back default -fore black -clear all", shell=True) os.execv(__file__, sys.argv) if check_terminal(): button6.fntColor = green button6.draw() pygame.display.update() else: button6.fntColor = tron_whi button6.draw() pygame.display.update() return if number == 7: if button7.disable == 1: return # Reboot pygame.quit() kalipi.run_cmd("/usr/bin/sudo /sbin/shutdown -r now") sys.exit() if number == 8: if button8.disable == 1: return # Lock retPage="menu-1.py" kalipi.screensaver(retPage) menu1() if number == 9: if button9.disable == 1: return # Next page pygame.quit() page=os.environ["MENUDIR"] + "menu-2.py" os.execvp("python", ["python", page]) sys.exit() ## Buttons ## ############################# def menu1(): # Init Pygame kalipi.screen() # Outer Border kalipi.border(tron_blu) ############################# ## Buttons ## # Buttons and labels # See variables at the top of the document to adjust the menu # Title titleButton.draw() # First Row # Button 1 button1.disable = 0 # "1" disables button if button1.disable == 1: button1.draw() else: # Add button launch code here button1.fntColor = yellow button1.draw() # Button 2 button2.disable = 0 # "1" disables button if button2.disable == 1: button2.draw() else: # Add button launch code here button2.draw() # Button 3 button3.disable = 0 # "1" disables button if button3.disable == 1: button3.draw() else: # Add button launch code here button3.draw() # Second Row # Button 4 button4.disable = 0 # "1" disables button if button4.disable == 1: button4.draw() else: # Add button launch code here button4.fntColor = yellow button4.draw() # Button 5 button5.disable = 0 # "1" disables button if button5.disable == 1: button5.draw() else: # Add button launch code here if check_vnc(): button5.fntColor = green button5.draw() else: button5.fntColor = tron_whi button5.draw() # Button 6 button6.disable = 0 # "1" disables button if button6.disable == 1: button6.draw() else: # Add button launch code here if check_terminal(): button6.fntColor = green button6.draw() else: button6.fntColor = tron_whi button6.draw() # Third Row # Button 7 button7.disable = 0 # "1" disables button if button7.disable == 1: button7.draw() else: # Add button launch code here button7.fntColor = yellow button7.draw() # Button 8 button8.disable = 0 # "1" disables button if button8.disable == 1: button8.draw() else: # Add button launch code here button8.draw() # Button 9 button9.disable = 0 # "1" disables button if button9.disable == 1: button9.draw() else: # Add button launch code here button9.draw() ## Buttons ## ############################# ############################# ## Input loop ## while 1: butNo=kalipi.inputLoop("menu-1.py") button(butNo) ## Input loop ## ############################# if __name__ == "__main__": menu1()
dca6b846e015febbace846cc1f9076f111184cbe
382034646e9d3e32c8e63e8d83d2dd7da5be4ef3
/workery/tenant_api/serializers/staff.py
9988858b14d0cbfa0d3e9175f319d0674e705928
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
wahello/workery-django
80c88ecb7968951719af6857711891ec3787cf46
289318b0333d830c089f4492716c38d409c365ed
refs/heads/master
2020-03-30T04:21:48.642659
2018-09-28T01:30:22
2018-09-28T01:30:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,320
py
# -*- coding: utf-8 -*- import logging import phonenumbers from datetime import datetime, timedelta from dateutil import tz from starterkit.drf.validation import ( MatchingDuelFieldsValidator, EnhancedPasswordStrengthFieldValidator ) from starterkit.utils import ( get_random_string, get_unique_username_from_email, int_or_none ) from django.conf import settings from django.contrib.auth.models import Group from django.contrib.auth import authenticate from django.db.models import Q, Prefetch from django.utils.translation import ugettext_lazy as _ from django.utils import timezone from django.utils.http import urlquote from rest_framework import exceptions, serializers from rest_framework.response import Response from rest_framework.validators import UniqueValidator from shared_api.custom_fields import PhoneNumberField from shared_foundation.constants import ASSOCIATE_GROUP_ID from shared_foundation.models import SharedUser from tenant_foundation.models import ( Comment, StaffComment, Staff ) logger = logging.getLogger(__name__) class StaffListCreateSerializer(serializers.ModelSerializer): # OVERRIDE THE MODEL FIELDS AND ENFORCE THE FOLLOWING CUSTOM VALIDATION RULES. given_name = serializers.CharField( required=True, allow_blank=False, ) last_name = serializers.CharField( required=True, allow_blank=False, ) address_country = serializers.CharField( required=True, allow_blank=False, ) address_region = serializers.CharField( required=True, allow_blank=False, ) address_locality = serializers.CharField( required=True, allow_blank=False, ) postal_code = serializers.CharField( required=True, allow_blank=False, ) street_address = serializers.CharField( required=True, allow_blank=False, ) # We are overriding the `email` field to include unique email validation. email = serializers.EmailField( validators=[UniqueValidator(queryset=SharedUser.objects.all())], required=True, ) # All comments are created by our `create` function and not by # `django-rest-framework`. # comments = StaffCommentSerializer(many=True, read_only=True, allow_null=True) # This is a field used in the `create` function if the user enters a # comment. This field is *ONLY* to be used during the POST creation and # will be blank during GET. extra_comment = serializers.CharField(write_only=True, allow_null=True) # This field is used to assign the user to the group. account_type = serializers.CharField( write_only=True, allow_null=False, required=True ) # Custom formatting of our telephone fields. fax_number = PhoneNumberField(allow_null=True, required=False) telephone = PhoneNumberField(allow_null=True, required=False) other_telephone = PhoneNumberField(allow_null=True, required=False) # Add password adding. password = serializers.CharField( write_only=True, required=True, allow_blank=False, max_length=63, style={'input_type': 'password'}, validators = [ MatchingDuelFieldsValidator( another_field='password_repeat', message=_("Inputted passwords fields do not match.") ), EnhancedPasswordStrengthFieldValidator() ] ) password_repeat = serializers.CharField( write_only=True, required=True, allow_blank=False, max_length=63, style={'input_type': 'password'} ) is_active = serializers.BooleanField( write_only=True, required=True, error_messages={ "invalid": _("Please pick either 'Yes' or 'No' choice.") } ) # Meta Information. class Meta: model = Staff fields = ( # Thing 'id', 'created', 'last_modified', 'account_type', 'description', # Person 'given_name', 'middle_name', 'last_name', 'birthdate', 'join_date', 'gender', # Misc (Read/Write) 'tags', 'is_active', # # Misc (Read Only) # 'comments', # Misc (Write Only) 'extra_comment', 'password', 'password_repeat', # Contact Point 'area_served', 'available_language', 'contact_type', 'email', 'personal_email', 'fax_number', # 'hours_available', #TODO: FIX 'telephone', 'telephone_extension', 'telephone_type_of', 'other_telephone', 'other_telephone_extension', 'other_telephone_type_of', # Postal Address 'address_country', 'address_locality', 'address_region', 'post_office_box_number', 'postal_code', 'street_address', 'street_address_extra', # Geo-coordinate 'elevation', 'latitude', 'longitude', # 'location' #TODO: FIX ) def validate_telephone(self, value): """ Include validation on no-blanks """ if value is None: raise serializers.ValidationError("This field may not be blank.") return value def validate_account_type(self, value): """ Include validation for valid choices. """ if int_or_none(value) is None: raise serializers.ValidationError("Please select a valid choice.") return value def setup_eager_loading(cls, queryset): """ Perform necessary eager loading of data. """ queryset = queryset.prefetch_related( 'owner', 'created_by', 'last_modified_by', # 'comments' 'tags', ) return queryset def create(self, validated_data): """ Override the `create` function to add extra functinality: - Create a `User` object in the public database. - Create a `SharedUser` object in the public database. - Create a `Staff` object in the tenant database. - If user has entered text in the 'extra_comment' field then we will a `Comment` object and attach it to the `Staff` object. - We will attach the staff user whom created this `Staff` object. """ # Format our telephone(s) fax_number = validated_data.get('fax_number', None) if fax_number: fax_number = phonenumbers.parse(fax_number, "CA") telephone = validated_data.get('telephone', None) if telephone: telephone = phonenumbers.parse(telephone, "CA") other_telephone = validated_data.get('other_telephone', None) if other_telephone: other_telephone = phonenumbers.parse(other_telephone, "CA") validated_data['fax_number'] = fax_number validated_data['telephone'] = telephone validated_data['other_telephone'] = other_telephone # Extract our "email" field. email = validated_data.get('email', None) personal_email = validated_data.get('personal_email', None) #------------------- # Create our user. #------------------- owner = SharedUser.objects.create( first_name=validated_data['given_name'], last_name=validated_data['last_name'], email=email, is_active=validated_data['is_active'], franchise=self.context['franchise'], was_email_activated=True ) logger.info("Created shared user.") # Attach the user to the `group` group. account_type = int_or_none(validated_data.get('account_type', None)) if account_type: owner.groups.set([account_type]) # Update the password. password = validated_data.get('password', None) owner.set_password(password) owner.save() #--------------------------------------------------- # Create our `Staff` object in our tenant schema. #--------------------------------------------------- # Create an "Staff". staff = Staff.objects.create( created_by=self.context['created_by'], last_modified_by=self.context['created_by'], description=validated_data.get('description', None), # Person given_name=validated_data['given_name'], last_name=validated_data['last_name'], middle_name=validated_data['middle_name'], birthdate=validated_data.get('birthdate', None), join_date=validated_data.get('join_date', None), gender=validated_data.get('gender', None), # Misc created_from = self.context['created_from'], created_from_is_public = self.context['created_from_is_public'], # . . . # Contact Point area_served=validated_data.get('area_served', None), available_language=validated_data.get('available_language', None), contact_type=validated_data.get('contact_type', None), email=email, personal_email=personal_email, fax_number=fax_number, # 'hours_available', #TODO: IMPLEMENT. telephone=telephone, telephone_extension=validated_data.get('telephone_extension', None), telephone_type_of=validated_data.get('telephone_type_of', None), other_telephone=other_telephone, other_telephone_extension=validated_data.get('other_telephone_extension', None), other_telephone_type_of=validated_data.get('other_telephone_type_of', None), # Postal Address address_country=validated_data.get('address_country', None), address_locality=validated_data.get('address_locality', None), address_region=validated_data.get('address_region', None), post_office_box_number=validated_data.get('post_office_box_number', None), postal_code=validated_data.get('postal_code', None), street_address=validated_data.get('street_address', None), street_address_extra=validated_data.get('street_address_extra', None), # Geo-coordinate elevation=validated_data.get('elevation', None), latitude=validated_data.get('latitude', None), longitude=validated_data.get('longitude', None), # 'location' #TODO: IMPLEMENT. ) logger.info("Created staff member.") # Update our staff again. staff.owner = owner staff.email = email staff.save() logger.info("Attached user object to staff member.") #------------------------ # Set our `Tag` objects. #------------------------ tags = validated_data.get('tags', None) if tags is not None: if len(tags) > 0: staff.tags.set(tags) #----------------------------- # Create our `Comment` object. #----------------------------- extra_comment = validated_data.get('extra_comment', None) if extra_comment is not None: comment = Comment.objects.create( created_by=self.context['created_by'], last_modified_by=self.context['created_by'], text=extra_comment, created_from = self.context['created_from'], created_from_is_public = self.context['created_from_is_public'] ) staff_comment = StaffComment.objects.create( about=staff, comment=comment, ) # Update validation data. # validated_data['comments'] = StaffComment.objects.filter(staff=staff) validated_data['created_by'] = self.context['created_by'] validated_data['last_modified_by'] = self.context['created_by'] validated_data['extra_comment'] = None validated_data['id'] = staff.id # Return our validated data. return validated_data class StaffRetrieveUpdateDestroySerializer(serializers.ModelSerializer): # owner = serializers.PrimaryKeyRelatedField(many=False, read_only=True) # We are overriding the `email` field to include unique email validation. email = serializers.EmailField( validators=[UniqueValidator(queryset=Staff.objects.all())], required=False ) personal_email = serializers.EmailField( validators=[UniqueValidator(queryset=Staff.objects.all())], required=False ) # Add password adding. password = serializers.CharField( write_only=True, required=False, allow_blank=True, max_length=63, style={'input_type': 'password'}, validators = [ MatchingDuelFieldsValidator( another_field='password_repeat', message=_("Inputted passwords fields do not match.") ), EnhancedPasswordStrengthFieldValidator() ] ) password_repeat = serializers.CharField( write_only=True, required=False, allow_blank=True, max_length=63, style={'input_type': 'password'} ) is_active = serializers.BooleanField( write_only=True, required=True, error_messages={ "invalid": _("Please pick either 'Yes' or 'No' choice.") } ) # This field is used to assign the user to the group. account_type = serializers.CharField( write_only=True, allow_null=False, required=True ) # All comments are created by our `create` function and not by # # `django-rest-framework`. # comments = StaffCommentSerializer(many=True, read_only=True) # # # This is a field used in the `create` function if the user enters a # # comment. This field is *ONLY* to be used during the POST creation and # # will be blank during GET. # extra_comment = serializers.CharField(write_only=True, allow_null=True) # Custom formatting of our telephone fields. fax_number = PhoneNumberField(allow_null=True, required=False) telephone = PhoneNumberField(allow_null=True, required=False) other_telephone = PhoneNumberField(allow_null=True, required=False) # Meta Information. class Meta: model = Staff fields = ( # Thing 'id', 'created', 'last_modified', # 'owner', 'description', 'account_type', # Person 'given_name', 'middle_name', 'last_name', 'birthdate', 'join_date', 'gender', # Misc (Read/Write) 'tags', 'is_active', # # 'is_senior', # # 'is_support', # # 'job_info_read', # 'how_hear', # # # Misc (Read Only) # 'comments', # # # Misc (Write Only) 'password', 'password_repeat', # 'extra_comment', # Contact Point 'area_served', 'available_language', 'contact_type', 'email', 'personal_email', 'fax_number', # 'hours_available', #TODO: FIX 'telephone', 'telephone_extension', 'telephone_type_of', 'other_telephone', 'other_telephone_extension', 'other_telephone_type_of', # Postal Address 'address_country', 'address_locality', 'address_region', 'post_office_box_number', 'postal_code', 'street_address', 'street_address_extra', # Geo-coordinate 'elevation', 'latitude', 'longitude', # 'location' #TODO: FIX ) def setup_eager_loading(cls, queryset): """ Perform necessary eager loading of data. """ queryset = queryset.prefetch_related( 'owner', 'created_by', 'last_modified_by', # 'comments' 'tags', ) return queryset def validate_account_type(self, value): """ Include validation for valid choices. """ if int_or_none(value) is None: raise serializers.ValidationError("Please select a valid choice.") return value def validate_personal_email(self, value): """ Include validation for valid choices. """ if value is None or value == '': raise serializers.ValidationError("This field may not be blank.") return value def update(self, instance, validated_data): """ Override this function to include extra functionality. """ # For debugging purposes only. # print(validated_data) # Get our inputs. email = validated_data.get('email', instance.email) personal_email = validated_data.get('personal_email', None) #------------------------------------- # Bugfix: Created `SharedUser` object. #------------------------------------- if instance.owner is None: owner = SharedUser.objects.filter(email=email).first() if owner: instance.owner = owner instance.save() logger.info("BUGFIX: Attached existing shared user to staff.") else: instance.owner = SharedUser.objects.create( first_name=validated_data['given_name'], last_name=validated_data['last_name'], email=email, is_active=validated_data['is_active'], franchise=self.context['franchise'], was_email_activated=True ) instance.save() logger.info("BUGFIX: Created shared user and attached to staff.") #--------------------------- # Update `SharedUser` object. #--------------------------- # Update the password if required. password = validated_data.get('password', None) if password: instance.owner.set_password(password) logger.info("Updated the password.") # Update the account. if email: instance.owner.email = email instance.owner.username = get_unique_username_from_email(email) instance.owner.first_name = validated_data.get('given_name', instance.owner.first_name) instance.owner.last_name = validated_data.get('last_name', instance.owner.last_name) instance.owner.is_active = validated_data.get('is_active', instance.owner.is_active) instance.owner.save() logger.info("Updated the shared user.") # Attach the user to the `group` group. account_type = validated_data.get('account_type', None) if account_type != "NaN": account_type = int(account_type) instance.owner.groups.set([account_type]) logger.info("Updated the group membership.") #--------------------------- # Update `Staff` object. #--------------------------- # Person instance.description=validated_data.get('description', None) instance.given_name=validated_data.get('given_name', None) instance.last_name=validated_data.get('last_name', None) instance.middle_name=validated_data.get('middle_name', None) instance.birthdate=validated_data.get('birthdate', None) instance.join_date=validated_data.get('join_date', None) instance.gender=validated_data.get('gender', None) # Misc instance.hourly_salary_desired=validated_data.get('hourly_salary_desired', 0.00) instance.limit_special=validated_data.get('limit_special', None) instance.dues_date=validated_data.get('dues_date', None) instance.commercial_insurance_expiry_date=validated_data.get('commercial_insurance_expiry_date', None) instance.police_check=validated_data.get('police_check', None) instance.drivers_license_class=validated_data.get('drivers_license_class', None) instance.how_hear=validated_data.get('how_hear', None) instance.last_modified_by = self.context['last_modified_by'] instance.last_modified_from = self.context['last_modified_from'] instance.last_modified_from_is_public = self.context['last_modified_from_is_public'] # 'organizations', #TODO: IMPLEMENT. # Contact Point instance.area_served=validated_data.get('area_served', None) instance.available_language=validated_data.get('available_language', None) instance.contact_type=validated_data.get('contact_type', None) instance.email=email instance.personal_email=personal_email instance.fax_number=validated_data.get('fax_number', None) # 'hours_available', #TODO: IMPLEMENT. instance.telephone=validated_data.get('telephone', None) instance.telephone_extension=validated_data.get('telephone_extension', None) instance.telephone_type_of=validated_data.get('telephone_type_of', None) instance.other_telephone=validated_data.get('other_telephone', None) instance.other_telephone_extension=validated_data.get('other_telephone_extension', None) instance.other_telephone_type_of=validated_data.get('other_telephone_type_of', None) # Postal Address instance.address_country=validated_data.get('address_country', None) instance.address_locality=validated_data.get('address_locality', None) instance.address_region=validated_data.get('address_region', None) instance.post_office_box_number=validated_data.get('post_office_box_number', None) instance.postal_code=validated_data.get('postal_code', None) instance.street_address=validated_data.get('street_address', None) instance.street_address_extra=validated_data.get('street_address_extra', None) # Geo-coordinate instance.elevation=validated_data.get('elevation', None) instance.latitude=validated_data.get('latitude', None) instance.longitude=validated_data.get('longitude', None) # 'location' #TODO: IMPLEMENT. # Save our instance. instance.save() logger.info("Updated the staff member.") #------------------------ # Set our `Tag` objects. #------------------------ tags = validated_data.get('tags', None) if tags is not None: if len(tags) > 0: instance.tags.set(tags) #--------------------------- # Attach our comment. #--------------------------- extra_comment = validated_data.get('extra_comment', None) if extra_comment is not None: comment = Comment.objects.create( created_by=self.context['last_modified_by'], last_modified_by=self.context['last_modified_by'], text=extra_comment, created_from = self.context['last_modified_from'], created_from_is_public = self.context['last_modified_from_is_public'] ) staff_comment = StaffComment.objects.create( staff=instance, comment=comment, ) #--------------------------- # Update validation data. #--------------------------- # validated_data['comments'] = StaffComment.objects.filter(staff=instance) validated_data['last_modified_by'] = self.context['last_modified_by'] # validated_data['extra_comment'] = None # Return our validated data. return validated_data
05c69d86a598279fd05f359ed4b55dbf7789ecbb
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/96/usersdata/212/52473/submittedfiles/estatistica.py
833c7315b45ff153b15c5cbf6daf19fb0e037238
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
# -*- coding: utf-8 -*- def media(lista): soma = 0 for i in range(0,len(lista),1): soma = soma + lista[i] resultado = soma/len(lista) return resultado #Baseado na função acima, escreva a função para calcular o desvio padrão de uma lista def desvio(lista): soma=0 dp=0 m=media(lista) n=len(lista) for i in range(0,n,1): soma=soma+(lista[i]-(media(lista)))**2 soma=((soma/n-1))**(1/2) return soma #Por último escreva o programa principal, que pede a entrada e chama as funções criadas. n1=int(input('digite o número de elemetos da primeira lista:')) l1=[] i=0 while i<n1: elemento=float(input('digite um número:')) l1.append(elemento) i=i+1 n2=int(input('digite o número de elemetos da segunda lista:')) l2=[] i=0 while i<n2: elemento=float(input('digite um número:')) l2.append(elemento) i=i+1 m1=media(l1) print('%.2f'%m1) dp1=desvio(l1) print(dp1) m2=media(l2) print('%.2f'%m2) dp2=desvio(l2) print(dp2)
6a4ee598f47454db0493b131fcdf35f2e2f999bb
66d04b8c46feef85c1666a4ba467124ee2c18450
/lambdas/layer/.chalice/config.json.template.py
3d375499fa4760654e91540304e9ac9cb68879d9
[ "Apache-2.0" ]
permissive
DataBiosphere/azul
767abdefafbaf714fb78e5ee1aa5224b07fa7ec1
3722323d4eed3089d25f6d6c9cbfb1672b7de939
refs/heads/develop
2023-09-01T12:26:21.387100
2023-09-01T00:01:46
2023-09-01T00:01:46
139,095,537
23
22
Apache-2.0
2023-09-14T18:00:44
2018-06-29T03:18:14
Python
UTF-8
Python
false
false
263
py
from azul import config from azul.template import emit emit({ "version": "2.0", "app_name": config.qualified_resource_name("dependencies"), "api_gateway_stage": config.deployment_stage, "manage_iam_role": False, "lambda_memory_size": 128, })
e71c296d26a1fc078ab5b6286026948ef2b23459
0beaf9d78d03100b2aebaaac38fb343d425f2b6a
/tests/regression/gsheet/test_chrome_gsheet_100r_number_utf8chars.py
57e29b0c39b7eec92f89400c4f2f06c356e2ae5d
[]
no_license
digitarald/Hasal
462fc044bb4a754c8d76c0bfb0df519f1786fdcc
c496afae6ec2e3743148f3a6288b78f120100513
refs/heads/master
2021-01-13T14:29:44.471037
2016-11-04T10:49:19
2016-11-04T10:49:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from lib.perfBaseTest import PerfBaseTest class TestSikuli(PerfBaseTest): def setUp(self): super(TestSikuli, self).setUp() def test_chrome_gsheet_100r_number_utf8chars(self): self.test_url = self.env.GSHEET_TEST_URL_SPEC % self.env.TEST_TARGET_ID_100R_NUMBER_UTF8CHAR self.sikuli_status = self.sikuli.run_test(self.env.test_name, self.env.output_name, test_target=self.test_url, script_dp=self.env.test_script_py_dp)
bc25b8a888412a5a123d8375db6d22ff7ea6760c
fd48fba90bb227017ac2da9786d59f9b9130aaf0
/digsby/src/jabber/threadstreamsocket.py
bec1c1382c048055bceedd2e48336ceb8812b1b6
[ "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
niterain/digsby
bb05b959c66b957237be68cd8576e3a7c0f7c693
16a62c7df1018a49eaa8151c0f8b881c7e252949
refs/heads/master
2021-01-18T10:07:10.244382
2013-11-03T02:48:25
2013-11-03T02:48:25
5,991,568
1
0
null
2013-11-03T02:48:26
2012-09-28T02:24:50
Python
UTF-8
Python
false
false
8,488
py
from asynchat import async_chat from util.threads.threadpool2 import threaded from common import netcall from util.callbacks import callsback from common import pref import sys import socket import logging import common from util.primitives.synchronization import lock from util.primitives.funcs import get try: import M2Crypto if M2Crypto.version_info < (0, 16): tls_available = 0 else: from M2Crypto import SSL from M2Crypto.SSL import SSLError import M2Crypto.SSL.cb tls_available = 1 SSL_ERROR_WANT_WRITE = SSL.m2.ssl_error_want_write SSL_ERROR_WANT_READ = SSL.m2.ssl_error_want_read except ImportError: tls_available = 0 class ThreadStreamSocket(common.socket): ac_in_buffer_size = 4096 * 16 ac_out_buffer_size = 4096 * 16 def __init__(self, sock, collect, term, on_close, on_error, ssl=False): self.term = term self.tls = None if not ssl else sock self.collect_incoming_data = collect self.set_terminator(self.term) self.__logger=logging.getLogger("ThreadStreamSocket") self.on_close = on_close self.on_error = on_error self.killed = False self.lastbuffer = '' self.__want_write = False self.__want_read = False common.socket.__init__(self, sock) def found_terminator(self): self.set_terminator(self.term) def handle_error(self, e=None): import traceback;traceback.print_exc() t, v = sys.exc_info()[:2] if t is not None: msg = get(get(v.args, 0, 'say what?'), 'message', '') if msg.startswith('bad write retry'): assert False self.__logger.error('Got that weird-ass "bad write retry" message in jabber socket') # return sslzero_closes = pref('jabber.ssl_error_zero.should_close', type = bool, default = True) if t is SSLError and get(v.args, 0, sentinel) == 0: self.__logger('SSL error 0!') if not sslzero_closes: self.__logger('\tnot closing') return self.__logger.debug('handle_error in %r', self) async_chat.close(self) if not self.killed: self.killed = True self.on_error() def handle_close(self): self.__logger.debug('handle_close in %r', self) async_chat.close(self) if not self.killed: self.killed = True self.on_close() @lock @callsback def make_tls(self, ctx, callback=None): self._realfileno = self._fileno self.socket.setblocking(True) self.del_channel() dbg = self.__logger.debug def blocking_connect(): try: dbg("Creating TLS connection") self.tls = SSL.Connection(ctx, self.socket) dbg("Setting up TLS connection") self.tls.setup_ssl() dbg("Setting TLS connect state") self.tls.set_connect_state() dbg("Starting TLS handshake") # self.tls.setblocking(True) self.tls.connect_ssl() self.socket.setblocking(False) self.tls.setblocking(False) self.ssocket = self.socket self.socket = self.tls except Exception, e: try: self.socket.close() self.tls.close() dbg('There was an exception in TLS blocking_connect: %r', e) except Exception: pass raise e def win(): self._fileno = self._realfileno self.add_channel() callback.success() def lose(e): netcall(callback.error) threaded(blocking_connect)(success = lambda: netcall(win), error=lose) def recv(self, buffer_size=4096): self.__want_read = False try: return common.socket.recv(self, buffer_size) except SSLError, e: if e.args[0] == SSL_ERROR_WANT_WRITE: self.__want_write = True self.__want_read = False self.__logger.warning("read_want_write") return "" elif e.args[0] == SSL_ERROR_WANT_READ: self.__want_write = False self.__want_read = True self.__logger.warning("read_want_read") return "" else: raise socket.error(e) def send(self, buffer): self.__want_write = False # buffer = str(buffer) if self.tls is None: return common.socket.send(self, buffer) ## # M2Crypto returns -1 to mean "retry the last write." It has the ## # strange requirement that exactly the same bytes are tried again ## # during the next write--so we need to keep our own buffer. r = None if not self.lastbuffer: try: r = self.socket.sendall(buffer) except SSLError, e: if e.args[0] == SSL_ERROR_WANT_WRITE: self.__want_write = True self.__want_read = False self.__logger.warning("write_want_write") self.lastbuffer = buffer # -1: store the bytes for later return len(buffer) # consume from asyncore elif e.args[0] == SSL_ERROR_WANT_READ: self.__want_write = False self.__want_read = True self.__logger.warning("write_want_read") return 0 else: raise socket.error(e, r) else: if r < 0: raise socket.error('unknown -1 for ssl send') return r else: try: # we've got saved bytes--send them first. r = self.socket.sendall(self.lastbuffer) except SSLError, e: if e.args[0] == SSL_ERROR_WANT_WRITE: self.__want_write = True self.__want_read = False self.__logger.warning("write_want_write (buffer)") elif e.args[0] == SSL_ERROR_WANT_READ: self.__want_write = False self.__want_read = True self.__logger.warning("write_want_read (buffer)") else: raise socket.error(e, r) else: if r < 0: raise socket.error('unknown -1 for ssl send (buffer)') elif r < len(self.lastbuffer): self.lastbuffer = self.lastbuffer[r:] else: self.lastbuffer = '' return 0 def initiate_send(self): #if there's nothing else in the socket buffer, the super class initiate_send won't call send # and self.lastbuffer won't be flushed. if self.lastbuffer: assert self.tls is not None assert self.__want_write self.send(None) return return common.socket.initiate_send(self) def readable (self): "predicate for inclusion in the readable for select()" assert not (self.__want_read and self.__want_write) return not self.__want_write and (self.__want_read or common.socket.readable(self))# and not self.lastbuffer def writable (self): assert not (self.__want_read and self.__want_write) "predicate for inclusion in the writable for select()" # return len(self.ac_out_buffer) or len(self.producer_fifo) or (not self.connected) # this is about twice as fast, though not as clear. return (common.socket.writable(self) #async buffer + connection or self.lastbuffer #out buffer or self.__want_write) and not self.__want_read def _repr(self): return 'wr:%s ww:%s lb:%s' % (self.__want_read, self.__want_write, self.lastbuffer) class ThreadStreamSSLSocket(common.socket): def __init__(self, sock, collect, term): self.collect_incoming_data = collect self.set_terminator(term) self.__logger = logging.getLogger("ThreadStreamSSLSocket") common.socket.__init__(self, sock)
252a725708758cf720a94811657ecfdfd0b1d90d
0206ac23a29673ee52c367b103dfe59e7733cdc1
/src/crcm5/analyse_hdf/lake_effect_on_streamflow_quantiles.py
f129054251e6b9dd8519fa5d776392060593cf5a
[]
no_license
guziy/RPN
2304a93f9ced626ae5fc8abfcc079e33159ae56a
71b94f4c73d4100345d29a6fbfa9fa108d8027b5
refs/heads/master
2021-11-27T07:18:22.705921
2021-11-27T00:54:03
2021-11-27T00:54:03
2,078,454
4
3
null
null
null
null
UTF-8
Python
false
false
7,676
py
import os from datetime import datetime import brewer2mpl from matplotlib.axes import Axes from matplotlib.font_manager import FontProperties from matplotlib.ticker import MaxNLocator, ScalarFormatter from crcm5 import infovar from data import cehq_station from data.cehq_station import Station from data.cell_manager import CellManager from . import do_analysis_using_pytables as analysis import matplotlib.pyplot as plt import numpy as np __author__ = 'huziy' images_folder = "/home/huziy/skynet3_rech1/Netbeans Projects/Python/RPN/images_for_lake-river_paper" from . import common_plot_params as cpp def plot_one_to_one_line(the_ax): assert isinstance(the_ax, Axes) x1, x2 = the_ax.get_xlim() y1, y2 = the_ax.get_ylim() lims = [x1, x2, y1, y2] z = min(lims), max(lims) the_ax.plot(z, z, "-.k") def main(): start_year = 1980 end_year = 2010 start_date = datetime(start_year, 1, 1) end_date = datetime(end_year, 12, 31) ids_with_lakes_upstream = [ "104001", "093806", "093801", "081002", "081007", "080718" ] selected_station_ids = ["092715", "074903", "080104", "081007", "061905", "093806", "090613", "081002", "093801", "080718", "104001"] selected_station_ids = ids_with_lakes_upstream # Get the list of stations to do the comparison with stations = cehq_station.read_station_data( start_date=start_date, end_date=end_date, selected_ids=selected_station_ids ) # add hydat stations # province = "QC" # min_drainage_area_km2 = 10000.0 # stations_hd = cehq_station.load_from_hydat_db(start_date=start_date, end_date=end_date, # province=province, min_drainage_area_km2=min_drainage_area_km2) # if not len(stations_hd): # print "No hydat stations satisying the conditions: period {0}-{1}, province {2}".format( # str(start_date), str(end_date), province # ) # stations.extend(stations_hd) # brewer2mpl.get_map args: set name set type number of colors bmap = brewer2mpl.get_map("Set1", "qualitative", 9) path1 = "/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-r.hdf5" label1 = "CRCM5-L1" path2 = "/skynet3_rech1/huziy/hdf_store/quebec_0.1_crcm5-hcd-rl.hdf5" label2 = "CRCM5-L2" color2, color1 = bmap.mpl_colors[:2] fldirs = analysis.get_array_from_file(path=path1, var_name=infovar.HDF_FLOW_DIRECTIONS_NAME) lons2d, lats2d, basemap = analysis.get_basemap_from_hdf(path1) lake_fractions = analysis.get_array_from_file(path=path1, var_name=infovar.HDF_LAKE_FRACTION_NAME) # cell_areas = analysis.get_array_from_file(path=path1, var_name=infovar.HDF_CELL_AREA_NAME) acc_area = analysis.get_array_from_file(path=path1, var_name=infovar.HDF_ACCUMULATION_AREA_NAME) cell_manager = CellManager(fldirs, lons2d=lons2d, lats2d=lats2d, accumulation_area_km2=acc_area) station_to_mp = cell_manager.get_model_points_for_stations(station_list=stations, lake_fraction=lake_fractions, drainaige_area_reldiff_limit=0.3) fig, axes = plt.subplots(1, 2, gridspec_kw=dict(top=0.80, wspace=0.4)) q90_obs_list = [] q90_mod1_list = [] q90_mod2_list = [] q10_obs_list = [] q10_mod1_list = [] q10_mod2_list = [] for the_station, the_mp in station_to_mp.items(): assert isinstance(the_station, Station) compl_years = the_station.get_list_of_complete_years() if len(compl_years) < 3: continue t, stfl1 = analysis.get_daily_climatology_for_a_point(path=path1, years_of_interest=compl_years, i_index=the_mp.ix, j_index=the_mp.jy, var_name="STFA") _, stfl2 = analysis.get_daily_climatology_for_a_point(path=path2, years_of_interest=compl_years, i_index=the_mp.ix, j_index=the_mp.jy, var_name="STFA") _, stfl_obs = the_station.get_daily_climatology_for_complete_years(stamp_dates=t, years=compl_years) # Q90 q90_obs = np.percentile(stfl_obs, 90) q90_mod1 = np.percentile(stfl1, 90) q90_mod2 = np.percentile(stfl2, 90) # Q10 q10_obs = np.percentile(stfl_obs, 10) q10_mod1 = np.percentile(stfl1, 10) q10_mod2 = np.percentile(stfl2, 10) # save quantiles to lists for correlation calculation q90_obs_list.append(q90_obs) q90_mod1_list.append(q90_mod1) q90_mod2_list.append(q90_mod2) q10_mod1_list.append(q10_mod1) q10_mod2_list.append(q10_mod2) q10_obs_list.append(q10_obs) # axes[0].annotate(the_station.id, (q90_obs, np.percentile(stfl1, 90))) # axes[1].annotate(the_station.id, (q10_obs, np.percentile(stfl1, 10))) # Plot scatter plot of Q90 the_ax = axes[0] # the_ax.annotate(the_station.id, (q90_obs, np.percentile(stfl1, 90))) the_ax.scatter(q90_obs_list, q90_mod1_list, label=label1, c=color1) the_ax.scatter(q90_obs_list, q90_mod2_list, label=label2, c=color2) # plot scatter plot of Q10 the_ax = axes[1] # the_ax.annotate(the_station.id, (q10_obs, np.percentile(stfl1, 10))) h1 = the_ax.scatter(q10_obs_list, q10_mod1_list, label=label1, c=color1) h2 = the_ax.scatter(q10_obs_list, q10_mod2_list, label=label2, c=color2) # Add correlation coefficients to the axes fp = FontProperties(size=14, weight="bold") axes[0].annotate(r"$R^2 = {0:.2f}$".format(np.corrcoef(q90_mod1_list, q90_obs_list)[0, 1] ** 2), (0.1, 0.85), color=color1, xycoords="axes fraction", font_properties=fp) axes[0].annotate(r"$R^2 = {0:.2f}$".format(np.corrcoef(q90_mod2_list, q90_obs_list)[0, 1] ** 2), (0.1, 0.70), color=color2, xycoords="axes fraction", font_properties=fp) axes[1].annotate(r"$R^2 = {0:.2f}$".format(np.corrcoef(q10_mod1_list, q10_obs_list)[0, 1] ** 2), (0.1, 0.85), color=color1, xycoords="axes fraction", font_properties=fp) axes[1].annotate(r"$R^2 = {0:.2f}$".format(np.corrcoef(q10_mod2_list, q10_obs_list)[0, 1] ** 2), (0.1, 0.70), color=color2, xycoords="axes fraction", font_properties=fp) sf = ScalarFormatter(useMathText=True) sf.set_powerlimits((-2, 3)) for ind, the_ax in enumerate(axes): plot_one_to_one_line(the_ax) if ind == 0: the_ax.set_xlabel(r"Observed $\left({\rm m^3/s} \right)$") the_ax.set_ylabel(r"Modelled $\left({\rm m^3/s} \right)$") the_ax.annotate(r"$Q_{90}$" if ind == 0 else r"$Q_{10}$", (0.95, 0.95), xycoords="axes fraction", bbox=dict(facecolor="white"), va="top", ha="right") the_ax.xaxis.set_major_formatter(sf) the_ax.yaxis.set_major_formatter(sf) locator = MaxNLocator(nbins=5) the_ax.xaxis.set_major_locator(locator) the_ax.yaxis.set_major_locator(locator) x1, x2 = the_ax.get_xlim() # Since streamflow percentiles can only be positive the_ax.set_xlim(0, x2) the_ax.set_ylim(0, x2) fig.legend([h1, h2], [label1, label2], loc="upper center", ncol=2) figpath = os.path.join(images_folder, "percentiles_comparison.png") # plt.tight_layout() fig.savefig(figpath, dpi=cpp.FIG_SAVE_DPI, bbox_inches="tight") if __name__ == "__main__": import application_properties application_properties.set_current_directory() main()
b8a196d6aa3611a6fbcce7ad132fcd437d7f6bf3
b1b86d8528df27d99ed56ed16f1ba15b5ae78661
/build_isolated/waterplus_map_tools/cmake/waterplus_map_tools-genmsg-context.py
13af763d2d6d2c9932b8be57f4bfc5f85289af4d
[]
no_license
gychen-n/match
8754ac128b43f81e00faf3ab2af160af70a1d4a3
ec91f19d104aa4a827c9f66d362f94fe44739cad
refs/heads/main
2023-04-09T19:56:55.507118
2021-04-15T13:39:02
2021-04-15T13:39:02
358,268,746
0
0
null
null
null
null
UTF-8
Python
false
false
1,051
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/gyc/match_ws/src/tools/waterplus_map_tools/msg/Waypoint.msg" services_str = "/home/gyc/match_ws/src/tools/waterplus_map_tools/srv/SaveWaypoints.srv;/home/gyc/match_ws/src/tools/waterplus_map_tools/srv/AddNewWaypoint.srv;/home/gyc/match_ws/src/tools/waterplus_map_tools/srv/GetNumOfWaypoints.srv;/home/gyc/match_ws/src/tools/waterplus_map_tools/srv/GetWaypointByIndex.srv;/home/gyc/match_ws/src/tools/waterplus_map_tools/srv/GetWaypointByName.srv" pkg_name = "waterplus_map_tools" dependencies_str = "std_msgs;geometry_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "waterplus_map_tools;/home/gyc/match_ws/src/tools/waterplus_map_tools/msg;std_msgs;/opt/ros/melodic/share/std_msgs/cmake/../msg;geometry_msgs;/opt/ros/melodic/share/geometry_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python2" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/melodic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
ab104e594bbf8454e09b791cefc01091331f1e51
a90077635aeac846965381e0b07591a1df011afe
/care/facility/summarisation/facility_capacity.py
17669b7b24a61209378ee70cec2dbb3a812a2584
[ "MIT" ]
permissive
Basharckr/care
f873ca140ae8607846d9b9500e3c21e9bfa15800
c86ae2614ea9ba80b140a2eb21ad64fdbb47ad7e
refs/heads/master
2023-06-17T21:26:48.936321
2021-07-12T06:03:52
2021-07-12T06:03:52
386,884,450
1
0
MIT
2021-07-17T08:41:09
2021-07-17T08:41:09
null
UTF-8
Python
false
false
8,112
py
from celery.decorators import periodic_task from celery.schedules import crontab from django.db.models import Sum from django.utils.decorators import method_decorator from django.utils.timezone import localtime, now from django.views.decorators.cache import cache_page from django_filters import rest_framework as filters from rest_framework import serializers from rest_framework.mixins import ListModelMixin from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.viewsets import GenericViewSet from care.facility.api.serializers.facility import FacilitySerializer from care.facility.api.serializers.facility_capacity import FacilityCapacitySerializer from care.facility.models import Facility, FacilityCapacity, FacilityRelatedSummary, PatientRegistration from care.facility.models.inventory import FacilityInventoryBurnRate, FacilityInventoryLog, FacilityInventorySummary from care.facility.models.patient import PatientRegistration class FacilitySummarySerializer(serializers.ModelSerializer): facility = FacilitySerializer() class Meta: model = FacilityRelatedSummary exclude = ( "id", "s_type", ) class FacilitySummaryFilter(filters.FilterSet): start_date = filters.DateFilter(field_name="created_date", lookup_expr="gte") end_date = filters.DateFilter(field_name="created_date", lookup_expr="lte") facility = filters.UUIDFilter(field_name="facility__external_id") district = filters.NumberFilter(field_name="facility__district__id") local_body = filters.NumberFilter(field_name="facility__local_body__id") state = filters.NumberFilter(field_name="facility__state__id") class FacilityCapacitySummaryViewSet( ListModelMixin, GenericViewSet, ): lookup_field = "external_id" queryset = ( FacilityRelatedSummary.objects.filter(s_type="FacilityCapacity") .order_by("-created_date") .select_related("facility", "facility__state", "facility__district", "facility__local_body") ) permission_classes = (IsAuthenticatedOrReadOnly,) serializer_class = FacilitySummarySerializer filter_backends = (filters.DjangoFilterBackend,) filterset_class = FacilitySummaryFilter @method_decorator(cache_page(60 * 10)) def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, **kwargs) # def get_queryset(self): # user = self.request.user # queryset = self.queryset # if user.is_superuser: # return queryset # elif self.request.user.user_type >= User.TYPE_VALUE_MAP["DistrictReadOnlyAdmin"]: # return queryset.filter(facility__district=user.district) # elif self.request.user.user_type >= User.TYPE_VALUE_MAP["StateReadOnlyAdmin"]: # return queryset.filter(facility__state=user.state) # return queryset.filter(facility__users__id__exact=user.id) def FacilityCapacitySummary(): capacity_objects = FacilityCapacity.objects.all().select_related( "facility", "facility__state", "facility__district", "facility__local_body" ) capacity_summary = {} current_date = localtime(now()).replace(hour=0, minute=0, second=0, microsecond=0) for facility_obj in Facility.objects.all(): # Calculate Actual Patients Discharged and Live in this Facility patients_in_facility = PatientRegistration.objects.filter(facility_id=facility_obj.id).select_related( "state", "district", "local_body" ) capacity_summary[facility_obj.id] = FacilitySerializer(facility_obj).data capacity_summary[facility_obj.id]["actual_live_patients"] = patients_in_facility.filter(is_active=True).count() discharge_patients = patients_in_facility.filter(is_active=False) capacity_summary[facility_obj.id]["actual_discharged_patients"] = discharge_patients.count() capacity_summary[facility_obj.id]["availability"] = [] temp_inventory_summary_obj = {} summary_objs = FacilityInventorySummary.objects.filter(facility_id=facility_obj.id) for summary_obj in summary_objs: burn_rate = FacilityInventoryBurnRate.objects.filter( facility_id=facility_obj.id, item_id=summary_obj.item.id ).first() log_query = FacilityInventoryLog.objects.filter( facility_id=facility_obj.id, item_id=summary_obj.item.id, created_date__gte=current_date, probable_accident=False, ) # start_log = log_query.order_by("created_date").first() end_log = log_query.order_by("-created_date").first() # start_stock = summary_obj.quantity_in_default_unit # if start_log: # if start_log.is_incoming: # Add current value to current stock to get correct stock # start_stock = start_log.current_stock + start_log.quantity_in_default_unit # else: # start_stock = start_log.current_stock - start_log.quantity_in_default_unit end_stock = summary_obj.quantity if end_log: end_stock = end_log.current_stock total_consumed = 0 temp1 = log_query.filter(is_incoming=False).aggregate(Sum("quantity_in_default_unit")) if temp1: total_consumed = temp1.get("quantity_in_default_unit__sum", 0) if not total_consumed: total_consumed = 0 total_added = 0 temp2 = log_query.filter(is_incoming=True).aggregate(Sum("quantity_in_default_unit")) if temp2: total_added = temp2.get("quantity_in_default_unit__sum", 0) if not total_added: total_added = 0 # Calculate Start Stock as # end_stock = start_stock - consumption + addition # start_stock = end_stock - addition + consumption # This way the start stock will never veer off course start_stock = end_stock - total_added + total_consumed if burn_rate: burn_rate = burn_rate.burn_rate temp_inventory_summary_obj[summary_obj.item.id] = { "item_name": summary_obj.item.name, "stock": summary_obj.quantity, "unit": summary_obj.item.default_unit.name, "is_low": summary_obj.is_low, "burn_rate": burn_rate, "start_stock": start_stock, "end_stock": end_stock, "total_consumed": total_consumed, "total_added": total_added, "modified_date": summary_obj.modified_date.astimezone().isoformat(), } capacity_summary[facility_obj.id]["inventory"] = temp_inventory_summary_obj for capacity_object in capacity_objects: facility_id = capacity_object.facility.id if facility_id not in capacity_summary: capacity_summary[facility_id] = FacilitySerializer(capacity_object.facility).data if "availability" not in capacity_summary[facility_id]: capacity_summary[facility_id]["availability"] = [] capacity_summary[facility_id]["availability"].append(FacilityCapacitySerializer(capacity_object).data) for i in capacity_summary: facility_summary_obj = None if FacilityRelatedSummary.objects.filter( s_type="FacilityCapacity", facility_id=i, created_date__gte=current_date ).exists(): facility_summary_obj = FacilityRelatedSummary.objects.get( s_type="FacilityCapacity", facility_id=i, created_date__gte=current_date ) else: facility_summary_obj = FacilityRelatedSummary(s_type="FacilityCapacity", facility_id=i) facility_summary_obj.data = capacity_summary[i] facility_summary_obj.save() return True @periodic_task(run_every=crontab(minute="*/5")) def run_midnight(): FacilityCapacitySummary() print("Summarised Capacities")
d3d10a4755e4599dfc81f7fea2fea1d344dc0b4b
82bdb812582e7ad42db922023f3eb84b4fb80f72
/networks.py
4a8973311254d1c7786d7381d47672b7ffe20ffd
[]
no_license
hzaskywalker/AWR-Python
cda43594248f3db563456f67c677db4508f80a5c
4fb00f3691b980c93734b11fab6002737a369b31
refs/heads/master
2022-10-11T09:31:37.742771
2020-06-11T17:18:10
2020-06-11T17:18:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,135
py
import torch import numpy as np class Value: def __init__(self, policy): self.policy = policy def __call__(self, state, params): state = torch.cat((state, params), dim=-1) act = self.policy.actor_target(state) cri1, cri2 = self.policy.critic_target(state,act) return torch.min(cri1, cri2) #return min(min (cri1.numpy(), cri2.numpy())[0][0]) def get_td3_value(env_name): if env_name == "DartWalker2dPT-v1": state_dim = 25 action_dim = 6 max_action = 1.0 elif env_name == "DartHopperPT-v1": state_dim = 16 action_dim = 3 max_action = 1.0 import utils import policy_transfer.uposi.TD3.utils from policy_transfer.uposi.TD3.TD3 import TD3 import policy_transfer.uposi.TD3.OurDDPG import policy_transfer.uposi.TD3.DDPG policy = TD3(state_dim = state_dim, action_dim = action_dim, max_action = max_action) policy.load("/home/hza/policy_transfer/PT/policy_transfer/uposi/TD3/models/TD3_" + env_name + "_1000") #policy.actor_target.to(torch.device("cpu")) #policy.critic_target.to(torch.device("cpu")) policy.actor_target.to(torch.device("cuda")) policy.critic_target.to(torch.device("cuda")) return Value(policy) class UP: def __init__(self, actor_critic, ob_rms): self.actor_critic = actor_critic self.ob_rms = ob_rms self.device = 'cuda:0' self.params = None def reset(self): self.hidden = torch.zeros( 1, self.actor_critic.recurrent_hidden_state_size, device=self.device) self.mask = torch.zeros(1, 1, device=self.device) def set_params(self, params): self.params = params def __call__(self, ob): assert self.params is not None ob = np.concatenate((ob, self.params)) ob = torch.tensor([np.clip((ob - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + 1e-08), -10.0, 10.0)], dtype=torch.float32, device=self.device) _, action, _, self.hidden_state = self.actor_critic.act(ob, self.hidden, self.mask, deterministic=True) return action.detach().cpu().numpy()[0] def get_up_network(env_name, num): import sys import os sys.path.append(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'PT/policy_transfer/uposi')) sys.path.append(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'PT/baselines')) from a2c_ppo_acktr import algo, utils from a2c_ppo_acktr.algo import gail from a2c_ppo_acktr.arguments import get_args from a2c_ppo_acktr.envs import make_vec_envs from a2c_ppo_acktr.model import Policy from a2c_ppo_acktr.storage import RolloutStorage env_name = env_name[:-5] if 'Dart' in env_name: path = f"/home/hza/policy_transfer/PT/trained_models/ppo/UP_{env_name}_{num}.pt" else: path = f"/home/hza/policy_transfer/PT/trained_models/ppo/UP_{env_name}_{num}.pt" result = torch.load(path, map_location=lambda a, b:torch.Storage().cuda()) actor_critic = result[0] actor_critic.cuda() ob_rms = result[1] return UP(actor_critic, ob_rms) class UP2(UP): def __init__(self, agent): self.agent = agent self.params = None def set_params(self, params): self.params = params def __call__(self, ob): if len(self.params.shape) == 1: ob = np.concatenate((ob, self.params), axis=0)[None,:] else: ob = np.concatenate((np.tile(ob,(len(self.params), 1)), self.params), axis=1) action = self.agent.act(ob, mode='test') return action.mean(axis=0) def reset(self): pass def get_awr_network(env_name, num): import torch import sys sys.path.append('awr2') path = f'awr2/models/{env_name}' agent = torch.load(path) return UP2(agent) def get_finetune_network(env_name, num, num_iter=21, num_proc=10): import torch import sys from finetune import Finetune sys.path.append('awr2') path = f'awr2/models/{env_name}' agent = torch.load(path) return Finetune(env_name, num, agent, num_iter, num_proc=num_proc)
d97fa27fd1ef8dab53b15a077aea13385d7f7afd
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_Quantization/trend_MovingMedian/cycle_12/ar_/test_artificial_128_Quantization_MovingMedian_12__100.py
64695ec2235c61ebbe172764ee17c38a3ffdbfd8
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
272
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 12, transform = "Quantization", sigma = 0.0, exog_count = 100, ar_order = 0);
b87981a578e9f0a4fa7bd52c97f63d833cf5ea5c
3d7e1a506d65c23c84b7430fa46623cb98de8c64
/median.py
dc0584831963d0d6f87700eddb7c8140d94fb9f2
[]
no_license
crakama/UdacityIntrotoComputerScience
cb6ac8a9084f078eaf245a52adc43541c35dc3f4
416b82b85ff70c48eabae6bb9d7b43354a158d9a
refs/heads/master
2021-01-09T20:39:15.974791
2016-07-18T20:59:09
2016-07-18T20:59:09
60,571,882
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# Define a procedure, median, that takes three # numbers as its inputs, and returns the median # of the three numbers. # Make sure your procedure has a return statement. def bigger(a,b): if a > b: return a else: return b def biggest(a,b,c): return bigger(a,bigger(b,c)) def median(a, b, c): summation = a + b + c median = summation / 3 return median
1ee30cd5b57a8912f7804703d5709be5b9d229d5
77ca708f981b3d4127568ff416e3c0a3dc1fff94
/util/cli_parser.py
be02dbf7e3bb509d0d10d208c7954fafe85a7c4c
[ "Apache-2.0" ]
permissive
inksong/bidDB_downloader
df7046cadc392872d4ed58bd730474771e83aaf0
1550b6006d1d21bab726bbe5a10c8c2d7aa94bbc
refs/heads/master
2022-03-06T19:10:03.333813
2019-09-28T19:41:15
2019-09-28T19:41:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,575
py
import argparse import sys class CLIParser: # -- Public methods # CLIParser Constructor def __init__(self): super(CLIParser, self).__init__() self.parser = argparse.ArgumentParser(prog='bidDB_downloader.py', description='BugTraq database downloader.') self.parser.add_argument('-w','--workers', type=int, default=100, help='number of workers for execution. By ' 'default, the workers number is set ' 'to 100') self.parser.add_argument('-f', '--first', type=int, default=1, help='your download will start from this ' 'BugTraq Id. By default, the first BugTraq ' 'Id is set to 1') self.parser.add_argument('-l', '--last', type=int, default=100000, help='your download will finish in this last' ' BugTraq Id. By default, the last ' 'BugTraq Id is set to 100000') self.parser.add_argument('-v', '--version', action='version', version='%(prog)s 0.1.0', help='show the version message and exit') self.args = self.parser.parse_args() self.__verify_args() # -- Getters # Gets workers def get_workers(self): return self.args.workers # Gets the first bid def get_first_bid(self): return self.args.first # Gets the last bid def get_last_bid(self): return self.args.last # -- Private methods # Verify command line arguments def __verify_args(self): if self.args.first <= 0 or self.args.last <= 0 or self.args.workers <= 0: print(self.parser.prog + ': error: all arguments must be greater than zero.', file=sys.stderr) exit(2) elif self.args.first > self.args.last: print(self.parser.prog + ': error: argument -l/--last: this argument must be greater than -f/--first ' 'argument.', file=sys.stderr) exit(2) elif self.args.workers > 500: print(self.parser.prog + ': warning: argument -w/--workers: your system may be unstable with values ' 'greater than 500.', file=sys.stderr)
bd1e701a5e902eca16077631d3424e1691ebb4f5
77900cdd9a815caf1cd04705321ca93f5072179f
/Project2/Project2/.history/blog/models_20211115152413.py
443d1fa03512e592b13bcd760279c43dbb1f7c43
[]
no_license
Bom19990111/helloword_python
717799d994223d65de5adaeabecf396ff2bc1fb7
2ee2e67a60043f03c1ce4b070470c7d2dcdc72a7
refs/heads/master
2023-09-06T04:17:02.057628
2021-11-21T20:00:46
2021-11-21T20:00:46
407,063,273
0
1
null
2021-11-21T20:00:47
2021-09-16T07:18:35
Python
UTF-8
Python
false
false
778
py
from django.db import models from django.contrib.auth.models import User from ckeditor # Create your models here. STATUS = ((0, "Draft"), (1, "Published")) USE_TZ = False class Blog(models.Model): title = models.CharField('Tiêu đề', max_length=250, blank=True) slug = models.SlugField(max_length=250, blank=True) author = models.ForeignKey( User, on_delete=models.CASCADE, related_name='blog_posts') created_on = models.DateTimeField('Giờ tạo', auto_now_add=True) update_on = models.DateTimeField('Giờ cập nhật', auto_now=True) content = models.TextField() status = models.IntegerField('Trạng thái', choices=STATUS, default=0) class meta: ordering = ['-created_on'] def __str__(self): return self.title