blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0d2af27c7b63e8f21fc7c713d6004cfdb8063ea9
820a8e7ec541299f315ac43ddb3b41236e11cd33
/demo/streaming/message_based_client.py
8bba3e3493dd7f6aadd1d443706b2ee614e2f6f3
[ "Apache-2.0" ]
permissive
hpsaturn/Autobahn
5caba163ee976e8ddedadfb1a79139ba6014861b
f7bd44433f227130901440e768073e2afbf410bf
refs/heads/master
2021-01-17T22:09:02.484645
2011-11-01T18:27:57
2011-11-01T18:27:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
############################################################################### ## ## Copyright 2011 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### from ranstring import randomByteString from twisted.internet import reactor from autobahn.websocket import WebSocketClientFactory, WebSocketClientProtocol MESSAGE_SIZE = 1 * 2**20 class MessageBasedHashClientProtocol(WebSocketClientProtocol): """ Message-based WebSockets client that generates stream of random octets sent to WebSockets server as a sequence of messages. The server will respond to us with the SHA-256 computed over each message. When we receive response, we repeat by sending a new message. """ def sendOneMessage(self): data = randomByteString(MESSAGE_SIZE) self.sendMessage(data, binary = True) def onOpen(self): self.count = 0 self.sendOneMessage() def onMessage(self, message, binary): print "Digest for message %d computed by server: %s" % (self.count, message) self.count += 1 self.sendOneMessage() if __name__ == '__main__': factory = WebSocketClientFactory() factory.protocol = MessageBasedHashClientProtocol reactor.connectTCP("localhost", 9000, factory) reactor.run()
a8a95539dac6b0b456a25ccbafca9321dd5c8b20
5e8832e7a49e121c4db1f57d036fe39b4250246a
/347_top_k_frequent_elements.py
f3f54cdd069c2acf438ed7c5694b526627821a0d
[]
no_license
shaniavina/Leetcode_Python
9e80477794cd80e00a399d65b76088eea41d80d1
185bf1542265f5f4feca2e937d1d36a7bb4a5d2b
refs/heads/master
2022-10-12T10:56:23.476219
2022-09-21T01:53:40
2022-09-21T01:53:40
52,979,850
1
0
null
null
null
null
UTF-8
Python
false
false
506
py
import collections class Solution(object): def topKFrequent(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ frq = collections.defaultdict(list) for key, cnt in collections.Counter(nums).items(): frq[cnt].append(key) res = [] for times in reversed(range(len(nums) + 1)): res.extend(frq[times]) if len(res) >= k: return res[:k] return res[:k]
097321d7ebb305770869f9fd631a4837eeeec702
b87f66b13293782321e20c39aebc05defd8d4b48
/maps/build/mayavi/enthought/mayavi/tools/sources.py
2dcd4601cae2528189b5d19a6fb7ba72ba533b83
[]
no_license
m-elhussieny/code
5eae020932d935e4d724c2f3d16126a0d42ebf04
5466f5858dbd2f1f082fa0d7417b57c8fb068fad
refs/heads/master
2021-06-13T18:47:08.700053
2016-11-01T05:51:06
2016-11-01T05:51:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
49,570
py
""" Data sources classes and their associated functions for mlab. """ # Author: Gael Varoquaux <[email protected]> # Prabhu Ramachandran # Copyright (c) 2007-2010, Enthought, Inc. # License: BSD Style. import operator import numpy as np from enthought.traits.api import (HasTraits, Instance, CArray, Either, Bool, on_trait_change, NO_COMPARE) from enthought.tvtk.api import tvtk from enthought.tvtk.common import camel2enthought from enthought.mayavi.sources.array_source import ArraySource from enthought.mayavi.core.registry import registry import tools from engine_manager import engine_manager __all__ = [ 'vector_scatter', 'vector_field', 'scalar_scatter', 'scalar_field', 'line_source', 'array2d_source', 'grid_source', 'open', 'triangular_mesh_source', 'vertical_vectors_source', ] ################################################################################ # A subclass of CArray that will accept floats and do a np.atleast_1d ################################################################################ class CArrayOrNumber(CArray): def validate( self, object, name, value): if operator.isNumberType(value): value = np.atleast_1d(value) return CArray.validate(self, object, name, value) ################################################################################ # `MlabSource` class. ################################################################################ class MlabSource(HasTraits): """ This class represents the base class for all mlab sources. These classes allow a user to easily update the data without having to recreate the whole pipeline. """ # The TVTK dataset we manage. dataset = Instance(tvtk.DataSet) # The Mayavi data source we manage. m_data = Instance(HasTraits) ######################################## # Private traits. # Disable the update when data is changed. _disable_update = Bool(False) ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Function to create the data from input arrays etc. This is to be used when the size of the arrays change or the first time when the data is created. This regenerates the data structures and will be slower in general. """ raise NotImplementedError() def update(self): """Update the visualization. This is to be called after the data of the visualization has changed. """ if not self._disable_update: self.dataset.modified() md = self.m_data if md is not None: if hasattr(md, '_assign_attribute'): md._assign_attribute.update() md.data_changed = True def set(self, trait_change_notify=True, **traits): """Shortcut for setting object trait attributes. This is an overridden method that will make changing multiple traits easier. This method is to be called when the arrays have changed content but not in shape/size. In that case one must call the `reset` method. Parameters ---------- trait_change_notify : Boolean If **True** (the default), then each value assigned may generate a trait change notification. If **False**, then no trait change notifications will be generated. (see also: trait_setq) traits : list of key/value pairs Trait attributes and their values to be set Returns ------- self The method returns this object, after setting attributes. """ try: self._disable_update = True super(MlabSource, self).set(trait_change_notify, **traits) finally: self._disable_update = False if trait_change_notify: self.update() return self ###################################################################### # Non-public interface. ###################################################################### def _m_data_changed(self, ds): if not hasattr(ds, 'mlab_source'): ds.add_trait('mlab_source', Instance(MlabSource)) ds.mlab_source = self ArrayOrNone = Either(None, CArray, comparison_mode=NO_COMPARE) ArrayNumberOrNone = Either(None, CArrayOrNumber, comparison_mode=NO_COMPARE) ################################################################################ # `MGlyphSource` class. ################################################################################ class MGlyphSource(MlabSource): """ This class represents a glyph data source for Mlab objects and allows the user to set the x, y, z, scalar/vector attributes. """ # The x, y, z and points of the glyphs. x = ArrayNumberOrNone y = ArrayNumberOrNone z = ArrayNumberOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayNumberOrNone # The u, v, w components of the vector and the vectors. u = ArrayNumberOrNone v = ArrayNumberOrNone w = ArrayNumberOrNone vectors = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First convert numbers to arrays. for name in ('x', 'y', 'z', 'u', 'v', 'w', 'scalars'): if name in traits and traits[name] is not None: traits[name] = np.atleast_1d(traits[name]) # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) vectors = self.vectors scalars = self.scalars points = self.points x, y, z = self.x, self.y, self.z x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) if 'points' in traits: x=points[:,0].ravel() y=points[:,1].ravel() z=points[:,2].ravel() self.set(x=x,y=y,z=z,trait_change_notify=False) else: points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (points.size/3, 3) self.set(points=points, trait_change_notify=False) u, v, w = self.u, self.v, self.w if u is not None: u = np.atleast_1d(u) v = np.atleast_1d(v) w = np.atleast_1d(w) if len(u) > 0: vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (vectors.size/3, 3) self.set(vectors=vectors, trait_change_notify=False) if 'vectors' in traits: u=vectors[:,0].ravel() v=vectors[:,1].ravel() w=vectors[:,2].ravel() self.set(u=u,v=v,w=w,trait_change_notify=False) else: if u is not None and len(u) > 0: vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (vectors.size/3, 3) self.set(vectors=vectors, trait_change_notify=False) if vectors is not None and len(vectors) > 0: assert len(points) == len(vectors) if scalars is not None: scalars = np.atleast_1d(scalars) if len(scalars) > 0: assert len(points) == len(scalars) # Create the dataset. polys = np.arange(0, len(points), 1, 'l') polys = np.reshape(polys, (len(points), 1)) if self.dataset is None: # Create new dataset if none exists pd = tvtk.PolyData() else: # Modify existing one. pd = self.dataset pd.set(points=points, polys=polys) if self.vectors is not None: pd.point_data.vectors = self.vectors pd.point_data.vectors.name = 'vectors' if self.scalars is not None: pd.point_data.scalars = self.scalars pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): x = np.atleast_1d(x) self.points[:,0] = x self.update() def _y_changed(self, y): y = np.atleast_1d(y) self.points[:,1] = y self.update() def _z_changed(self, z): z = np.atleast_1d(z) self.points[:,2] = z self.update() def _u_changed(self, u): u = np.atleast_1d(u) self.vectors[:,0] = u self.update() def _v_changed(self, v): v = np.atleast_1d(v) self.vectors[:,1] = v self.update() def _w_changed(self, w): w = np.atleast_1d(w) self.vectors[:,2] = w self.update() def _points_changed(self, p): p = np.atleast_2d(p) self.dataset.points = p self.update() def _scalars_changed(self, s): if s is None: self.dataset.point_data.scalars = None self.dataset.point_data.remove_array('scalars') else: s = np.atleast_1d(s) self.dataset.point_data.scalars = s self.dataset.point_data.scalars.name = 'scalars' self.update() def _vectors_changed(self, v): self.dataset.point_data.vectors = v self.dataset.point_data.vectors.name = 'vectors' self.update() ################################################################################ # `MVerticalGlyphSource` class. ################################################################################ class MVerticalGlyphSource(MGlyphSource): """ This class represents a vertical glyph data source for Mlab objects and allows the user to set the x, y, z, scalar attributes. The vectors are created from the scalars to represent them in the vertical direction. """ def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" if 'scalars' in traits: s = traits['scalars'] if s is not None: traits['u'] = traits['v'] = np.ones_like(s), traits['w'] = s super(MVerticalGlyphSource, self).reset(**traits) def _scalars_changed(self, s): self.dataset.point_data.scalars = s self.dataset.point_data.scalars.name = 'scalars' self.set(vectors=np.c_[np.ones_like(s), np.ones_like(s), s]) self.update() ################################################################################ # `MArraySource` class. ################################################################################ class MArraySource(MlabSource): """ This class represents an array data source for Mlab objects and allows the user to set the x, y, z, scalar/vector attributes. """ # The x, y, z arrays for the volume. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone # The u, v, w components of the vector and the vectors. u = ArrayOrNone v = ArrayOrNone w = ArrayOrNone vectors = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) vectors = self.vectors scalars = self.scalars x, y, z = [np.atleast_3d(a) for a in self.x, self.y, self.z] u, v, w = self.u, self.v, self.w if 'vectors' in traits: u=vectors[:,0].ravel() v=vectors[:,1].ravel() w=vectors[:,2].ravel() self.set(u=u,v=v,w=w,trait_change_notify=False) else: if u is not None and len(u) > 0: #vectors = np.concatenate([u[..., np.newaxis], # v[..., np.newaxis], # w[..., np.newaxis] ], # axis=3) vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (u.shape[0] , u.shape[1], w.shape[2], 3) self.set(vectors=vectors, trait_change_notify=False) if vectors is not None and len(vectors) > 0 and scalars is not None: assert len(scalars) == len(vectors) if x.shape[0] <= 1: dx = 1 else: dx = x[1, 0, 0] - x[0, 0, 0] if y.shape[1] <= 1: dy = 1 else: dy = y[0, 1, 0] - y[0, 0, 0] if z.shape[2] <= 1: dz = 1 else: dz = z[0, 0, 1] - z[0, 0, 0] if self.m_data is None: ds = ArraySource(transpose_input_array=True) else: ds = self.m_data old_scalar = ds.scalar_data ds.set(vector_data=vectors, origin=[x.min(), y.min(), z.min()], spacing=[dx, dy, dz], scalar_data=scalars) if scalars is old_scalar: ds._scalar_data_changed(scalars) self.dataset = ds.image_data self.m_data = ds ###################################################################### # Non-public interface. ###################################################################### @on_trait_change('[x, y, z]') def _xyz_changed(self): x, y, z = self.x, self.y, self.z dx = x[1, 0, 0] - x[0, 0, 0] dy = y[0, 1, 0] - y[0, 0, 0] dz = z[0, 0, 1] - z[0, 0, 0] ds = self.dataset ds.origin = [x.min(), y.min(), z.min()] ds.spacing = [dx, dy, dz] if self.m_data is not None: self.m_data.set(origin=ds.origin, spacing=ds.spacing) self.update() def _u_changed(self, u): self.vectors[...,0] = u self.m_data._vector_data_changed(self.vectors) def _v_changed(self, v): self.vectors[...,1] = v self.m_data._vector_data_changed(self.vectors) def _w_changed(self, w): self.vectors[...,2] = w self.m_data._vector_data_changed(self.vectors) def _scalars_changed(self, s): old = self.m_data.scalar_data self.m_data.scalar_data = s if old is s: self.m_data._scalar_data_changed(s) def _vectors_changed(self, v): self.m_data.vector_data = v ################################################################################ # `MLineSource` class. ################################################################################ class MLineSource(MlabSource): """ This class represents a line data source for Mlab objects and allows the user to set the x, y, z, scalar attributes. """ # The x, y, z and points of the glyphs. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z if 'points' in traits: x=points[:,0].ravel() y=points[:,1].ravel() z=points[:,2].ravel() self.set(x=x,y=y,z=z,trait_change_notify=False) else: points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (len(x), 3) self.set(points=points, trait_change_notify=False) # Create the dataset. n_pts = len(points) - 1 lines = np.zeros((n_pts, 2), 'l') lines[:,0] = np.arange(0, n_pts-0.5, 1, 'l') lines[:,1] = np.arange(1, n_pts+0.5, 1, 'l') if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset # Avoid lines refering to non existing points: First set the # lines to None, then set the points, then set the lines # refering to the new points. pd.set(lines=None) pd.set(points=points) pd.set(lines=lines) if scalars is not None and len(scalars) > 0: assert len(x) == len(scalars) pd.point_data.scalars = np.ravel(scalars) pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.points[:,0] = x self.update() def _y_changed(self, y): self.points[:,1] = y self.update() def _z_changed(self, z): self.points[:,2] = z self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() ################################################################################ # `MArray2DSource` class. ################################################################################ class MArray2DSource(MlabSource): """ This class represents a 2D array data source for Mlab objects and allows the user to set the x, y and scalar attributes. """ # The x, y values. # Values of X and Y as None are accepted, in that case we would build # values of X and Y automatically from the shape of scalars x = ArrayOrNone y = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone # The masking array. mask = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) x, y, mask = self.x, self.y, self.mask scalars = self.scalars # We may have used this without specifying x and y at all in # which case we set them from the shape of scalars. nx, ny = scalars.shape #Build X and Y from shape of Scalars if they are none if x is None and y is None: x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2] if mask is not None and len(mask) > 0: scalars[mask.astype('bool')] = np.nan # The NaN trick only works with floats. scalars = scalars.astype('float') self.set(scalars=scalars, trait_change_notify=False) z = np.array([0]) self.set(x=x, y=y, z=z, trait_change_notify=False) # Do some magic to extract the first row/column, independently of # the shape of x and y x = np.atleast_2d(x.squeeze().T)[0, :].squeeze() y = np.atleast_2d(y.squeeze())[0, :].squeeze() if x.ndim == 0: dx = 1 else: dx = x[1] - x[0] if y.ndim == 0: dy = 1 else: dy = y[1] - y[0] if self.m_data is None: ds = ArraySource(transpose_input_array=True) else: ds = self.m_data old_scalar = ds.scalar_data ds.set(origin=[x.min(), y.min(), 0], spacing=[dx, dy, 1], scalar_data=scalars) if old_scalar is scalars: ds._scalar_data_changed(scalars) self.dataset = ds.image_data self.m_data = ds ###################################################################### # Non-public interface. ###################################################################### @on_trait_change('[x, y]') def _xy_changed(self): x, y,scalars = self.x, self.y, self.scalars nx, ny = scalars.shape if x is None or y is None: x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2] self.trait_setq(x=x,y=y) x = np.atleast_2d(x.squeeze().T)[0, :].squeeze() y = np.atleast_2d(y.squeeze())[0, :].squeeze() dx = x[1] - x[0] dy = y[1] - y[0] ds = self.dataset ds.origin = [x.min(), y.min(), 0] ds.spacing = [dx, dy, 1] if self.m_data is not None: self.m_data.set(origin=ds.origin, spacing=ds.spacing) self.update() def _scalars_changed(self, s): mask = self.mask if mask is not None and len(mask) > 0: s[mask.astype('bool')] = np.nan # The NaN tric only works with floats. s = s.astype('float') self.set(scalars=s, trait_change_notify=False) old = self.m_data.scalar_data self.m_data.scalar_data = s if s is old: self.m_data._scalar_data_changed(s) ################################################################################ # `MGridSource` class. ################################################################################ class MGridSource(MlabSource): """ This class represents a grid source for Mlab objects and allows the user to set the x, y, scalar attributes. """ # The x, y, z and points of the grid. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z assert len(x.shape) == 2, "Array x must be 2 dimensional." assert len(y.shape) == 2, "Array y must be 2 dimensional." assert len(z.shape) == 2, "Array z must be 2 dimensional." assert x.shape == y.shape, "Arrays x and y must have same shape." assert y.shape == z.shape, "Arrays y and z must have same shape." #Points in the grid source will always be created using x,y,z #Changing of points is not allowed because it cannot be used to modify values of x,y,z nx, ny = x.shape points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (nx*ny, 3) self.set(points=points, trait_change_notify=False) i, j = np.mgrid[0:nx-1,0:ny-1] i, j = np.ravel(i), np.ravel(j) t1 = i*ny+j, (i+1)*ny+j, (i+1)*ny+(j+1) t2 = (i+1)*ny+(j+1), i*ny+(j+1), i*ny+j nt = len(t1[0]) triangles = np.zeros((nt*2, 3), 'l') triangles[0:nt,0], triangles[0:nt,1], triangles[0:nt,2] = t1 triangles[nt:,0], triangles[nt:,1], triangles[nt:,2] = t2 if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset pd.set(points=points, polys=triangles) if scalars is not None and len(scalars) > 0: if not scalars.flags.contiguous: scalars = scalars.copy() self.set(scalars=scalars, trait_change_notify=False) assert x.shape == scalars.shape pd.point_data.scalars = scalars.ravel() pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.trait_setq(x=x); self.points[:,0] = x.ravel() self.update() def _y_changed(self, y): self.trait_setq(y=y) self.points[:,1] = y.ravel() self.update() def _z_changed(self, z): self.trait_setq(z=z) self.points[:,2] = z.ravel() self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() ################################################################################ # `MTriangularMeshSource` class. ################################################################################ class MTriangularMeshSource(MlabSource): """ This class represents a triangular mesh source for Mlab objects and allows the user to set the x, y, scalar attributes. """ # The x, y, z and points of the grid. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone triangles = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (points.size/3, 3) self.set(points=points, trait_change_notify=False) triangles = self.triangles assert triangles.shape[1] == 3, \ "The shape of the triangles array must be (X, 3)" assert triangles.max() < len(points), \ "The triangles indices must be smaller that the number of points" assert triangles.min() >= 0, \ "The triangles indices must be positive or null" if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset # Set the points first, and the triangles after: so that the # polygone can refer to the right points, in the polydata. pd.set(points=points) pd.set(polys=triangles) if (not 'scalars' in traits and scalars is not None and scalars.shape != x.shape): # The scalars where set probably automatically to z, by the # factory. We need to reset them, as the size has changed. scalars = z if scalars is not None and len(scalars) > 0: if not scalars.flags.contiguous: scalars = scalars.copy() self.set(scalars=scalars, trait_change_notify=False) assert x.shape == scalars.shape pd.point_data.scalars = scalars.ravel() pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.trait_setq(x=x); self.points[:,0] = x.ravel() self.update() def _y_changed(self, y): self.trait_setq(y=y) self.points[:,1] = y.ravel() self.update() def _z_changed(self, z): self.trait_setq(z=z) self.points[:,2] = z.ravel() self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() def _triangles_changed(self, triangles): if triangles.min() < 0: raise ValueError, 'The triangles array has negative values' if triangles.max() > self.x.size: raise ValueError, 'The triangles array has values larger than' \ 'the number of points' self.dataset.polys = triangles self.update() ############################################################################ # Argument processing ############################################################################ def convert_to_arrays(args): """ Converts a list of iterables to a list of arrays or callables, if needed. """ args = list(args) for index, arg in enumerate(args): if not callable(arg): if not hasattr(arg, 'shape'): arg = np.atleast_1d(np.array(arg)) if np.any(np.isinf(arg)): raise ValueError("""Input array contains infinite values You can remove them using: a[np.isinf(a)] = np.nan """) args[index] = arg return args def process_regular_vectors(*args): """ Converts different signatures to (x, y, z, u, v, w). """ args = convert_to_arrays(args) if len(args)==3: u, v, w = [np.atleast_3d(a) for a in args] assert len(u.shape)==3, "3D array required" x, y, z = np.indices(u.shape) elif len(args)==6: x, y, z, u, v, w = args elif len(args)==4: x, y, z, f = args if not callable(f): raise ValueError, "When 4 arguments are provided, the fourth must be a callable" u, v, w = f(x, y, z) else: raise ValueError, "wrong number of arguments" assert ( x.shape == y.shape and y.shape == z.shape and u.shape == z.shape and v.shape == u.shape and w.shape == v.shape ), "argument shape are not equal" return x, y, z, u, v, w def process_regular_scalars(*args): """ Converts different signatures to (x, y, z, s). """ args = convert_to_arrays(args) if len(args)==1: s = np.atleast_3d(args[0]) assert len(s.shape)==3, "3D array required" x, y, z = np.indices(s.shape) elif len(args)==3: x, y, z = args s = None elif len(args)==4: x, y, z, s = args if callable(s): s = s(x, y, z) else: raise ValueError, "wrong number of arguments" assert ( x.shape == y.shape and y.shape == z.shape and ( s is None or s.shape == z.shape ) ), "argument shape are not equal" return x, y, z, s def process_regular_2d_scalars(*args, **kwargs): """ Converts different signatures to (x, y, s). """ args = convert_to_arrays(args) for index, arg in enumerate(args): if not callable(arg): args[index] = np.atleast_2d(arg) if len(args)==1: s = args[0] assert len(s.shape)==2, "2D array required" x, y = np.indices(s.shape) elif len(args)==3: x, y, s = args if callable(s): s = s(x, y) else: raise ValueError, "wrong number of arguments" assert len(s.shape)==2, "2D array required" if 'mask' in kwargs: mask = kwargs['mask'] s[mask.astype('bool')] = np.nan # The NaN tric only works with floats. s = s.astype('float') return x, y, s ############################################################################ # Sources ############################################################################ def vector_scatter(*args, **kwargs): """ Creates scattered vector data. **Function signatures**:: vector_scatter(u, v, w, ...) vector_scatter(x, y, z, u, v, w, ...) vector_scatter(x, y, z, f, ...) If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be made from the indices of vectors. If 4 positional arguments are passed the last one must be a callable, f, that returns vectors. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" x, y, z, u, v, w = process_regular_vectors(*args) scalars = kwargs.pop('scalars', None) if scalars is not None: scalars = np.ravel(scalars) name = kwargs.pop('name', 'VectorScatter') data_source = MGlyphSource() data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars) ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def vector_field(*args, **kwargs): """ Creates vector field data. **Function signatures**:: vector_field(u, v, w, ...) vector_field(x, y, z, u, v, w, ...) vector_field(x, y, z, f, ...) If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be made from the indices of vectors. If the x, y and z arrays are passed, they should have been generated by `numpy.mgrid` or `numpy.ogrid`. The function builds a scalar field assuming the points are regularily spaced on an orthogonal grid. If 4 positional arguments are passed the last one must be a callable, f, that returns vectors. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args) == 3: x = y = z = np.atleast_3d(1) u, v, w = [np.atleast_3d(a) for a in args] else: x, y, z, u, v, w = [np.atleast_3d(a) for a in process_regular_vectors(*args)] scalars = kwargs.pop('scalars', None) if scalars is not None: scalars = np.atleast_3d(scalars) data_source = MArraySource() data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars) name = kwargs.pop('name', 'VectorField') return tools.add_dataset(data_source.m_data, name, **kwargs) def scalar_scatter(*args, **kwargs): """ Creates scattered scalar data. **Function signatures**:: scalar_scatter(s, ...) scalar_scatter(x, y, z, s, ...) scalar_scatter(x, y, z, s, ...) scalar_scatter(x, y, z, f, ...) If only 1 array s is passed the x, y and z arrays are assumed to be made from the indices of vectors. If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" x, y, z, s = process_regular_scalars(*args) if s is not None: s = np.ravel(s) data_source = MGlyphSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'ScalarScatter') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def scalar_field(*args, **kwargs): """ Creates a scalar field data. **Function signatures**:: scalar_field(s, ...) scalar_field(x, y, z, s, ...) scalar_field(x, y, z, f, ...) If only 1 array s is passed the x, y and z arrays are assumed to be made from the indices of arrays. If the x, y and z arrays are passed they are supposed to have been generated by `numpy.mgrid`. The function builds a scalar field assuming the points are regularily spaced. If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args) == 1: # Be lazy, don't create three big arrays for 1 input array. The # MArraySource is clever-enough to handle flat arrays x = y = z = np.atleast_1d(1) s = args[0] else: x, y, z, s = process_regular_scalars(*args) data_source = MArraySource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'ScalarField') return tools.add_dataset(data_source.m_data, name, **kwargs) def line_source(*args, **kwargs): """ Creates line data. **Function signatures**:: line_source(x, y, z, ...) line_source(x, y, z, s, ...) line_source(x, y, z, f, ...) If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args)==1: raise ValueError, "wrong number of arguments" x, y, z, s = process_regular_scalars(*args) data_source = MLineSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'LineSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def array2d_source(*args, **kwargs): """ Creates structured 2D data from a 2D array. **Function signatures**:: array2d_source(s, ...) array2d_source(x, y, s, ...) array2d_source(x, y, f, ...) If 3 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. x and y give the coordinnates of positions corresponding to the s values. x and y can be 1D or 2D arrays (such as returned by numpy.ogrid or numpy.mgrid), but the points should be located on an orthogonal grid (possibly non-uniform). In other words, all the points sharing a same index in the s array need to have the same x or y value. If only 1 array s is passed the x and y arrays are assumed to be made from the indices of arrays, and an uniformly-spaced data set is created. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. :mask: Mask points specified in a boolean masking array. """ data_source = MArray2DSource() mask = kwargs.pop('mask', None) if len(args) == 1 : args = convert_to_arrays(args) s = np.atleast_2d(args[0]) data_source.reset(scalars=s, mask=mask) else: x, y, s = process_regular_2d_scalars(*args, **kwargs) data_source.reset(x=x, y=y, scalars=s, mask=mask) name = kwargs.pop('name', 'Array2DSource') return tools.add_dataset(data_source.m_data, name, **kwargs) def grid_source(x, y, z, **kwargs): """ Creates 2D grid data. x, y, z are 2D arrays giving the positions of the vertices of the surface. The connectivity between these points is implied by the connectivity on the arrays. For simple structures (such as orthogonal grids) prefer the array2dsource function, as it will create more efficient data structures. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ scalars = kwargs.pop('scalars', None) if scalars is None: scalars = z x, y, z, scalars = convert_to_arrays((x, y, z, scalars)) data_source = MGridSource() data_source.reset(x=x, y=y, z=z, scalars=scalars) name = kwargs.pop('name', 'GridSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def vertical_vectors_source(*args, **kwargs): """ Creates a set of vectors pointing upward, useful eg for bar graphs. **Function signatures**:: vertical_vectors_source(s, ...) vertical_vectors_source(x, y, s, ...) vertical_vectors_source(x, y, f, ...) vertical_vectors_source(x, y, z, s, ...) vertical_vectors_source(x, y, z, f, ...) If only one positional argument is passed, it can be a 1D, 2D, or 3D array giving the length of the vectors. The positions of the data points are deducted from the indices of array, and an uniformly-spaced data set is created. If 3 positional arguments (x, y, s) are passed the last one must be an array s, or a callable, f, that returns an array. x and y give the 2D coordinates of positions corresponding to the s values. The vertical position is assumed to be 0. If 4 positional arguments (x, y, z, s) are passed, the 3 first are arrays giving the 3D coordinates of the data points, and the last one is an array s, or a callable, f, that returns an array giving the data value. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ if len(args) == 3: x, y, data = args if np.isscalar(x): z = 0 else: z = np.zeros_like(x) args = (x, y, z, data) x, y, z, s = process_regular_scalars(*args) if s is not None: s = np.ravel(s) data_source = MVerticalGlyphSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'VerticalVectorsSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def triangular_mesh_source(x, y, z, triangles, **kwargs): """ Creates 2D mesh by specifying points and triangle connectivity. x, y, z are 2D arrays giving the positions of the vertices of the surface. The connectivity between these points is given by listing triplets of vertices inter-connected. These vertices are designed by there position index. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ x, y, z, triangles = convert_to_arrays((x, y, z, triangles)) if triangles.min() < 0: raise ValueError, 'The triangles array has negative values' if triangles.max() > x.size: raise ValueError, 'The triangles array has values larger than' \ 'the number of points' scalars = kwargs.pop('scalars', None) if scalars is None: scalars = z data_source = MTriangularMeshSource() data_source.reset(x=x, y=y, z=z, triangles=triangles, scalars=scalars) name = kwargs.pop('name', 'TriangularMeshSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def open(filename, figure=None): """Open a supported data file given a filename. Returns the source object if a suitable reader was found for the file. """ if figure is None: engine = tools.get_engine() else: engine = engine_manager.find_figure_engine(figure) engine.current_scene = figure src = engine.open(filename) return src ############################################################################ # Automatically generated sources from registry. ############################################################################ def _create_data_source(metadata): """Creates a data source and adds it to the mayavi engine given metadata of the source. Returns the created source. """ factory = metadata.get_callable() src = factory() engine = tools.get_engine() engine.add_source(src) return src def _make_functions(namespace): """Make the automatic functions and add them to the namespace.""" for src in registry.sources: if len(src.extensions) == 0: func_name = camel2enthought(src.id) if func_name.endswith('_source'): func_name = func_name[:-7] func = lambda metadata=src: _create_data_source(metadata) func.__doc__ = src.help func.__name__ = func_name # Inject function into the namespace and __all__. namespace[func_name] = func __all__.append(func_name) _make_functions(locals())
ddf31aa0247b5bd2963cdb3c8159a26bb33c77e0
fe039f62337b210061bfd7291000c5fa406fd0ff
/list/webapp/models.py
4a9bf3ad037982d3daaeb33bc2a410482cb276bf
[]
no_license
Erlan1998/python_group_7_homework_45_Erlan_Kurbanaliev
a5f5956490d778341e4958fe6740ab6e1a395f45
4f860b561f046413bbc9ab8f587b8f7c40b8c23a
refs/heads/main
2023-05-07T00:16:28.530637
2021-03-04T12:32:36
2021-03-04T12:32:36
342,240,837
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
from django.db import models status_choices = [('new', 'Новая'), ('in_progress', 'В процессе'), ('done', 'Сделано')] class List(models.Model): description = models.TextField(max_length=200, null=False, blank=False) detailed_description = models.TextField(max_length=3000, null=True, blank=True) status = models.CharField(max_length=120, null=False, blank=False, choices=status_choices) updated_at = models.DateField(null=True, blank=True) class Meta: db_table = 'Lists' verbose_name = 'Задача' verbose_name_plural = 'Задачи' def __str__(self): return f'{self.id}. {self.status}: {self.description}'
f53ac3f6c538688800be418ff966c4e0919f43ec
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_248/ch81_2020_04_12_22_18_46_334181.py
8e1cf83d9390b88d1079f2c7a2e6970a6b74812b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
def interseccao_valores(dic1,dic2): v=dic1.values v2=dic2.values lista=[] if v1==v2: lista.append(v1) return lista
505e5e0ce0cb191a5ec404f1e81be10da0578bf5
268d9c21243e12609462ebbd6bf6859d981d2356
/Python/python_stack/Django/Dojo_ninjas/main/apps/dojo_ninjas/migrations/0002_dojo_desc.py
58a3322cbefd8d01f3ac70e8cbe91f35e5cc03d2
[]
no_license
dkang417/cdj
f840962c3fa8e14146588eeb49ce7dbd08b8ff4c
9966b04af1ac8a799421d97a9231bf0a0a0d8745
refs/heads/master
2020-03-10T03:29:05.053821
2018-05-23T02:02:07
2018-05-23T02:02:07
129,166,089
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2018-05-08 14:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dojo_ninjas', '0001_initial'), ] operations = [ migrations.AddField( model_name='dojo', name='desc', field=models.TextField(null=True), ), ]
ef52298f256957366a62065c6bbda48bbbfa0568
8efd8bcd3945d88370f6203e92b0376ca6b41c87
/problems100_200/131_Palindrome_Partitioning.py
4fd4acc10c6135bdd9be20744a848feda4634b56
[]
no_license
Provinm/leetcode_archive
732ad1ef5dcdfdde6dd5a33522e86f7e24ae2db5
3e72dcaa579f4ae6f587898dd316fce8189b3d6a
refs/heads/master
2021-09-21T08:03:31.427465
2018-08-22T15:58:30
2018-08-22T15:58:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
834
py
#coding=utf-8 ''' 131. Palindrome Partitioning Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s. For example, given s = "aab", Return [ ["aa","b"], ["a","a","b"] ] ''' class Solution: def partition(self, s): """ :type s: str :rtype: List[List[str]] """ if not s: return [[]] res = [] for idx, item in enumerate(s): cur_s = s[:idx+1] if self.is_p(cur_s): r = self.partition(s[idx+1:]) for sub_item in r: res.append([cur_s] + sub_item) return res def is_p(self, s): return s == s[::-1] s = Solution() r = s.partition("aab") print(r) ## 深度优先算法
22082fac0984c7728a7ac71f5666b9a60a1c7171
15cace5f904c5c2389ca3cc02b5ff1fc029c7651
/parsing/management/commands/scraper/test.py
cc3b4a7431673dd5f8c4b261fd80953be86ccffa
[]
no_license
ghostnoop/django-youtube-parser-asyncio
fb7146e788dfe5986ad31a45a5d5b1da918583c6
631bc4ddc0eed0407f09a810c334a0e9d8d0ed7a
refs/heads/main
2023-03-26T12:57:32.248097
2021-03-25T11:02:54
2021-03-25T11:02:54
341,303,844
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
main_list = [i for i in range(100)] size = len(main_list) // 4 a = main_list[:size] b = (main_list[size:size * 2]) c = (main_list[size * 2:size * 3]) d = (main_list[size * 3:])
fbf8ce4a8f1a8fa531b08275055edceb9aa982a6
bad44a92fb338260f9c077689d7fa5472526c3fe
/src/python/nnfusion/jit.py
6fd2745e160f063b2ff9cf6c47e345239698423f
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
microsoft/nnfusion
ebc4c06331b8e93dbf5e176e5ecd3382e322ff21
bd4f6feed217a43c9ee9be16f02fa8529953579a
refs/heads/main
2023-08-25T17:41:37.517769
2022-09-16T05:59:01
2022-09-16T05:59:01
252,069,995
872
157
MIT
2023-07-19T03:06:21
2020-04-01T04:15:38
C++
UTF-8
Python
false
false
6,923
py
import copy import functools from inspect import isfunction, ismethod, isclass import torch from .jit_utils import TorchModule, get_signature from .runtime import NNFusionRT from .config import Config def is_method_of_instance(obj, cls): return ismethod(obj) and isinstance(obj.__self__, cls) def is_subclass_of_cls(obj, cls): return isclass(obj) and issubclass(obj, cls) def get_nrt_forward(obj, signature, config, outputs, *inputs, is_method=False): """ Return a wrapped forward function that using nnf as runtime """ if not isinstance(obj, torch.nn.Module): raise AssertionError( "Internal bug, please report to " "https://github.com/microsoft/nnfusion" ) output_is_tensor = isinstance(outputs, torch.Tensor) if output_is_tensor: outputs = [outputs] nnf = NNFusionRT(obj, config, signature) nnf.compile(inputs, outputs) # TODO free outputs and only save desc? def forward(*inputs): results = [ torch.empty_like(output) for output in outputs ] if is_method: obj, *inputs = inputs nnf.run_method(obj, inputs, results) else: inputs = list(inputs) nnf.run(inputs, results) if output_is_tensor: return results[0] return results return forward def nrt_forward(obj, *inputs, config=None, signature=None, is_method=False): if signature is None: signature = get_signature(obj) if hasattr(obj, '_orig_forward'): # shallow copy is needed to avoid recursion # call instance forward -> call nnf_forward -> call instance forward obj_ = copy.copy(obj) obj_.forward = obj._orig_forward obj = obj_ outputs = obj(*inputs) def jit_class_method_using_decorator(): """ Check if obj is a class method with @nnfusion.jit decorator. The cases of decorating class method with the @ symbol or applying it as function are different. """ return isinstance(inputs[0], torch.nn.Module) if jit_class_method_using_decorator(): self, *inputs = inputs # shallow copy is needed to avoid recursion when using jit as decorator: # export onnx -> call forward to trace -> call nnf jit func -> export onnx self_ = copy.copy(self) def forward(*args): if forward.first_call: forward.first_call = False return obj(self, *args) # handle the case that jit target function will call `forward` return self.forward(*args) forward.first_call = True self_.forward = forward return get_nrt_forward(self_, signature, config, outputs, *inputs, is_method=True) if isfunction(obj) or is_method_of_instance(obj, torch.nn.Module): return get_nrt_forward(TorchModule(obj), signature, config, outputs, *inputs) return get_nrt_forward(obj, signature, config, outputs, *inputs) def parse_config(tune, tuning_steps, config): if config is None: config = Config() elif type(config) is dict: config = Config(config) if not type(config) is Config: raise TypeError( "Expected optional 'config' argument of type dict or " f"nnfusion.Config but found {config}" ) if tuning_steps is not None: if not isinstance(tuning_steps, int): raise TypeError( "Expected optional 'tuning_steps' argument of type int " f"but found {tuning_steps}" ) if tune is False: raise ValueError( f"Conflict is detected: tune={tune} and " f"tuning_steps={tuning_steps}" ) tune = True config['kernel_tuning_steps'] = tuning_steps if tune is not None: if not isinstance(tune, bool): raise TypeError( "Expected optional 'tune' argument of type bool " f"but found {tune}" ) config['antares_mode'] = tune return config def check_obj_type(obj): if not ( isfunction(obj) or isinstance(obj, torch.nn.Module) or is_subclass_of_cls(obj, torch.nn.Module) or is_method_of_instance(obj, torch.nn.Module) ): raise TypeError( "Expected function or torch.nn.Module instance/method/class " f"but found {obj}" ) def jit_class(obj, config): """ Return jitted class using dynamic inheritance to override the forward function and keep its signature. """ class JITModule(obj): @jit(config=config, _signature='.'.join([get_signature(obj), 'forward'])) def forward(self, *args, **kwargs): return super().forward(*args, **kwargs) return JITModule def jit(obj=None, *, tune=None, tuning_steps=None, config=None, _signature=None): """ Parameters: obj (function, `torch.nn.Module` instance/method/class): The target object to be traced. When `obj` is an instance or a class, it is equivalent to trace its `forward` function. tune (Optional[bool]): Whether to tune kernel. By default it follows `config`. If set, it overwrites `config`. tuning_steps (Optional[int]): Number of kernel tuning steps. By default it follows `config`. If set, it overwrites `config` and `tune`. config (Optional[dict, nnfusion.Config]): NNFusion compilation config. By default it will be set to `nnfusion.Config()`. Pass a `dict` to overwrite default config or directly pass an instance of `nnfusion.Config`. For example, `@nnfusion.jit(tune=True, config={'kernel_tuning_steps': 42})` For more flags information, please execute the command `nnfusion` in the terminal. """ config = parse_config(tune, tuning_steps, config) def _jit(_obj): check_obj_type(_obj) if is_subclass_of_cls(_obj, torch.nn.Module): return jit_class(_obj, config) @functools.wraps(_obj) def wrapper(*args): # TODO support kwargs? if wrapper.forward is None: wrapper.forward = nrt_forward(_obj, *args, config=config, signature=_signature) return wrapper.forward(*args) wrapper.forward = None if isinstance(_obj, torch.nn.Module): _obj._orig_forward = _obj.forward _obj.forward = wrapper return _obj return wrapper if obj is None: return _jit return _jit(obj)
3d27cf4f50a9cc4bd469bd18977762b572f062a1
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/company/new_problem/look_week_into_different_child/woman.py
adf36b9a017251053bd4003aaba072a84a85d48d
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
#! /usr/bin/env python def right_week_or_little_person(str_arg): seem_work_for_next_man(str_arg) print('eye') def seem_work_for_next_man(str_arg): print(str_arg) if __name__ == '__main__': right_week_or_little_person('place')
419801dc9b41a351205b81a2536848b549bcdca3
67a48a7a2db56247fdd84474efa35124565fd8b9
/Codeforces/1567/1567a.py
d8ac3e266bff074dc1c8d5d2ab0d617f691e4d6f
[]
no_license
qazz625/Competitive-Programming-Codes
e3de31f9276f84e919a6017b2cf781c946809862
e5df9cdc4714d78b7b6a7535ed7a45e07d3781c3
refs/heads/master
2022-08-30T07:57:55.172867
2022-08-10T08:02:07
2022-08-10T08:02:07
242,182,922
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
t = int(input()) for _ in range(t): n = int(input()) arr = [] s = input() for x in s: if x == 'L' or x == 'R': arr += [x] elif x == 'D': arr += ['U'] else: arr += ['D'] print(*arr, sep='')
f95eb6c548d33fdfb4e4c5bca3aec825ebb08bec
8957fd60446378ba77d5920c883935bac9275933
/btools/building/customobj.py
f74c400d927c3004785f0cf10d68d480f9d7714c
[ "MIT" ]
permissive
ranjian0/building_tools
37f647608873288db3346bc7d2d9e2c97fbefabe
4a5950ed712b41fa3b953ea4ac3e1b1db8d5f489
refs/heads/master
2023-09-04T01:53:35.926031
2023-03-12T09:58:05
2023-03-12T09:58:05
123,632,239
831
94
MIT
2021-02-08T12:58:09
2018-03-02T21:22:22
Python
UTF-8
Python
false
false
10,758
py
""" Tools to allow users to place custom meshes on a building """ import bpy import bmesh from mathutils import Matrix, Vector from bpy.props import PointerProperty from .facemap import ( FaceMap, add_faces_to_map, add_facemap_for_groups ) from ..utils import ( select, local_xyz, bm_to_obj, crash_safe, bm_from_obj, popup_message, calc_faces_median, calc_verts_median, get_bounding_verts, calc_face_dimensions, bmesh_from_active_object, subdivide_face_vertically, subdivide_face_horizontally, get_selected_face_dimensions, ) from ..utils import VEC_UP, VEC_FORWARD from .array import ArrayProperty, ArrayGetSet from .sizeoffset import SizeOffsetProperty, SizeOffsetGetSet class CustomObjectProperty(bpy.types.PropertyGroup, SizeOffsetGetSet, ArrayGetSet): array: PointerProperty(type=ArrayProperty) size_offset: PointerProperty(type=SizeOffsetProperty) def init(self, wall_dimensions): self["wall_dimensions"] = wall_dimensions self.size_offset.init( (self["wall_dimensions"][0] / self.count, self["wall_dimensions"][1]), default_size=(1.0, 1.0), default_offset=(0.0, 0.0), ) def draw(self, context, layout): box = layout.box() self.size_offset.draw(context, box) layout.prop(self.array, "count") @crash_safe def add_custom_execute(self, context): custom_obj = context.scene.btools_custom_object if not custom_obj: # Custom object has not been assigned self.report({'INFO'}, "No Object Selected!") return {"CANCELLED"} if custom_obj.users == 0 or custom_obj.name not in context.view_layer.objects: # Object was already deleted self.report({'INFO'}, "Object has been deleted!") return {"CANCELLED"} self.props.init(get_selected_face_dimensions(context)) apply_transforms(context, custom_obj) place_custom_object(context, self.props, custom_obj) transfer_materials(custom_obj, context.object) return {'FINISHED'} class BTOOLS_OT_add_custom(bpy.types.Operator): """Place custom meshes on the selected faces""" bl_idname = "btools.add_custom" bl_label = "Add Custom Geometry" bl_options = {"REGISTER", "UNDO", "PRESET"} props: PointerProperty(type=CustomObjectProperty) @classmethod def poll(cls, context): return context.object is not None and context.mode == "EDIT_MESH" def execute(self, context): add_facemap_for_groups([FaceMap.CUSTOM]) return add_custom_execute(self, context) def draw(self, context): self.props.draw(context, self.layout) def apply_transforms(context, obj): # -- store the current active object mode_previous = context.mode active_previous = context.active_object # -- switch to object mode, if we are not already there if context.mode != "OBJECT": bpy.ops.object.mode_set(mode='OBJECT') # -- make obj the active object and select it bpy.context.view_layer.objects.active = obj select(bpy.context.view_layer.objects, False) obj.select_set(True) # -- apply transform bpy.ops.object.transform_apply(location=True, rotation=True, scale=True) # -- resume the previous state bpy.context.view_layer.objects.active = active_previous select(bpy.context.view_layer.objects, False) active_previous.select_set(True) bpy.ops.object.mode_set(mode=mode_previous.replace('_MESH', "")) def place_custom_object(context, prop, custom_obj): with bmesh_from_active_object(context) as bm: faces = [face for face in bm.faces if face.select] for face in faces: face.select = False # No support for upward/downward facing if face.normal.z: popup_message("Faces with Z+/Z- normals not supported!", title="Invalid Face Selection") continue array_faces = subdivide_face_horizontally(bm, face, widths=[prop.size_offset.size.x] * prop.count) for aface in array_faces: # -- Create split and place obj split_face = create_split(bm, aface, prop.size_offset.size, prop.size_offset.offset) place_object_on_face(bm, split_face, custom_obj, prop) bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.0001) def transfer_materials(from_object, to_obj): """Transfer materials from 'from_object' to 'to_object'""" materials = from_object.data.materials if not materials: return # -- copy materials to_mats = to_obj.data.materials if not to_mats: # -- to_obj has no materials list(map(to_mats.append, materials)) else: # -- to_obj has some materials, ensure we are not duplicating for mat in materials: if mat.name not in to_mats: to_mats.append(mat) def mat_name_from_idx(idx): for i, m in enumerate(materials): if i == idx: return m.name.encode() return "".encode() # -- store material names on the face layer bm = bm_from_obj(from_object) bm.faces.layers.string.verify() mat_name = bm.faces.layers.string.active for face in bm.faces: face[mat_name] = mat_name_from_idx(face.material_index) bm_to_obj(bm, from_object) def duplicate_into_bm(bm, obj): """Copy all the mesh data in obj to the bm Return the newly inserted faces """ max_index = len(bm.faces) bm.from_mesh(obj.data.copy()) return [f for f in bm.faces if f.index >= max_index] # TODO(ranjian0) refactor function (duplicated from create_window_split) def create_split(bm, face, size, offset): """Use properties from SplitOffset to subdivide face into regular quads""" wall_w, wall_h = calc_face_dimensions(face) # horizontal split h_widths = [wall_w / 2 + offset.x - size.x / 2, size.x, wall_w / 2 - offset.x - size.x / 2] h_faces = subdivide_face_horizontally(bm, face, h_widths) # vertical split v_width = [wall_h / 2 + offset.y - size.y / 2, size.y, wall_h / 2 - offset.y - size.y / 2] v_faces = subdivide_face_vertically(bm, h_faces[1], v_width) return v_faces[1] def place_object_on_face(bm, face, custom_obj, prop): """Place the custom_object mesh flush on the face""" # XXX get mesh from custom_obj into bm face_idx = face.index custom_faces = duplicate_into_bm(bm, custom_obj) face = [f for f in bm.faces if f.index == face_idx].pop() # restore reference add_faces_to_map(bm, custom_faces, FaceMap.CUSTOM) custom_verts = list({v for f in custom_faces for v in f.verts}) # (preprocess)calculate bounds of the object # NOTE: bounds are calculated before any transform is made dims = custom_obj.dimensions current_size = [max(dims.x, dims.y), dims.z] # -- move the custom faces into proper position on this face transform_parallel_to_face(bm, custom_faces, face) scale_to_size(bm, custom_verts, current_size, prop.size_offset.size, local_xyz(face)) # cleanup bmesh.ops.delete(bm, geom=[face], context="FACES_ONLY") def get_coplanar_faces(face_verts): """ Determine extent faces that should be coplanar to walls""" bounds = get_bounding_verts(face_verts) coplanar_faces = ( list(bounds.topleft.link_faces) + list(bounds.topright.link_faces) + list(bounds.botleft.link_faces) + list(bounds.botright.link_faces) ) return set(coplanar_faces) def calc_coplanar_median(face_verts): """ Determine the median point for coplanar faces""" return calc_faces_median(get_coplanar_faces(face_verts)) def calc_coplanar_normal(faces): face_verts = list({v for f in faces for v in f.verts}) coplanar_faces = get_coplanar_faces(face_verts) normals = {f.normal.copy().to_tuple(3) for f in coplanar_faces} return Vector(normals.pop()) def transform_parallel_to_face(bm, custom_faces, target_face): """Move and rotate verts(mesh) so that it lies with it's forward-extreme faces parallel to `face` """ target_normal = target_face.normal.copy() target_median = target_face.calc_center_median() verts = list({v for f in custom_faces for v in f.verts}) verts_median = calc_verts_median(verts) custom_normal = calc_coplanar_normal(custom_faces) try: angle = target_normal.xy.angle_signed(custom_normal.xy) except ValueError: # TODO(ranjian0) Support all mesh shapes when placing along face angle = 0 bmesh.ops.rotate( bm, verts=verts, cent=verts_median, matrix=Matrix.Rotation(angle, 4, VEC_UP) ) # -- determine the median of the faces that should be coplanar to the walls coplanar_median = calc_coplanar_median(verts) coplanar_median.z = verts_median.z # Compensate on Z axis for any coplanar faces not considered in calculations # -- move the custom faces to the target face based on coplanar median transform_diff = target_median - coplanar_median bmesh.ops.translate(bm, verts=verts, vec=transform_diff) def scale_to_size(bm, verts, current_size, target_size, local_dir): """Scale verts to target size along local direction (x and y)""" x_dir, y_dir, z_dir = local_dir target_width, target_height = target_size current_width, current_height = current_size # --scale scale_x = x_dir * (target_width / current_width) scale_y = y_dir * (target_height / current_height) scale_z = Vector(map(abs, z_dir)) bmesh.ops.scale( bm, verts=verts, vec=scale_x + scale_y + scale_z, space=Matrix.Translation(-calc_verts_median(verts)) ) def set_face_materials(bm, faces): mat_name = bm.faces.layers.string.active if not mat_name: return obj_mats = bpy.context.object.data.materials for f in faces: mat = obj_mats.get(f[mat_name].decode()) f.material_index = list(obj_mats).index(mat) classes = (CustomObjectProperty, BTOOLS_OT_add_custom) def register_custom(): bpy.types.Scene.btools_custom_object = PointerProperty( type=bpy.types.Object, description="Object to use for custom placement" ) for cls in classes: bpy.utils.register_class(cls) def unregister_custom(): del bpy.types.Scene.btools_custom_object for cls in classes: bpy.utils.unregister_class(cls)
d9defe5ad47eb503e1e8834bad3974c9f76ea1ae
33fc4f5b3b92fc5d84be6c4872094264be5c2192
/108numpy-copy-deepcopy.py
c41df93204747de028547d6883e0e74eb2590112
[]
no_license
greenmac/python-morvan-numpy-pandas
2ee9f572b910f65b44fe76316774fa9f604e9eb2
77fe010b15074e7ecabaefc07bc80bf667575d89
refs/heads/master
2020-04-12T14:54:47.317643
2018-12-22T07:18:19
2018-12-22T07:18:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-8-np-copy/ import numpy as np # a = np.arange(4) # b = a # c = a # d = b # a[0] = 11 # print(a) # print(b) # print(c) # print(d) # print(b is a) # print(d is a) # a = np.arange(4) # b = a # c = a # d = b # a[0] = 11 # d[1:3] = [22, 33] # print(a) # print(b) # print(c) # print(d) a = np.arange(4) b = a c = a d = b a[0] = 11 d[1:3] = [22, 33] b = a.copy() # deep copy, 深度copy, 這樣就不會被關聯 a[3] = 44 print(a) print(b) # b因為deep copy的關係, 所以b[3]不會被改變, 這樣就不會被關聯 print(c) print(d)
1344db5d293e0d52eb43ae1b44c466eb59437167
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02380/s484509438.py
102ce45748de53d8af54b0469dd1cd39937af871
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
import math a,b,C=map(int,input().split()) radC=math.radians(C) S=a*b*math.sin(radC)*(1/2) c=a**2+b**2-2*a*b*math.cos(radC) L=a+b+math.sqrt(c) h=2*S/a list=[S,L,h] for i in list: print('{:.08f}'.format(i))
fd2f9e40af42009d2df03ad31acbf7115cfbdb22
ec0e202ba914a1d9318c449130eee74223af6c98
/rememerme/users/client.py
c79c6d6be62bb75e649fba4b1b42f040d57849c3
[ "Apache-2.0" ]
permissive
rememerme/users-model
0f07c76bdbabf803fc6b8f6fe4aabcde42fe0e34
6b62af077ae93f073e9bb831a82ca8f011697277
refs/heads/master
2020-05-17T00:27:01.990149
2014-01-18T05:54:46
2014-01-18T05:54:46
15,694,812
3
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
import requests from rememerme.users.models import User class UserClientError(Exception): pass def strip_trailing_slash(url): if url[-1] == '/': return url[:-1] return url class UserClient: DEFAULT_URL = 'http://134.53.148.103' def __init__(self, session_id, url=DEFAULT_URL): self.url = strip_trailing_slash(url) self.session_id = session_id def create(self, username, password): return NotImplementedError() payload = { 'username':username, 'password':password } r = requests.post(self.url + '/rest/v1/sessions',data=payload) if r.status_code is not 200: raise UserClientError(r.text) return User.fromMap(r.json()) def update(self, user_id, username=None, password=None, email=None): payload = {} if username: payload['username'] = username if password: payload['password'] = password if email: payload['email'] = email headers = { 'HTTP_AUTHORIZATION' : self.session_id } r = requests.put(self.url + '/rest/v1/sessions/%s' % str(user_id), data=payload, headers=headers) if r.status_code is not 200: raise UserClientError(r.text) return User.fromMap(r.json()) def get(self, user_id): headers = { 'HTTP_AUTHORIZATION' : self.session_id } r = requests.delete(self.url + '/rest/v1/sessions/%s' % str(user_id), headers=headers) if r.status_code is not 200: raise UserClientError(r.text) return User.fromMap(r.json())
5d1e42d4fcbfa344f5d00f5f5bbb49288f53b5ac
559995c23c13f67ee6f342389d0db81081207d87
/prjforinfcreditvilfw/vig/estisimurand/sall_aws_sandbox/template_onefile/esr_s1357_submit_job.py
9640ff2bd0dc0bdddbcce8ae8bbcf6bb9621c9c1
[]
no_license
MacroFinanceHub/PrjForInfCreditVilFW
06a6c475d0c846c1578205e062acb0190bcce1c2
d2a863656962691f8dc13d205a82c81823040c8b
refs/heads/main
2023-07-19T05:31:15.992847
2021-08-30T14:44:14
2021-08-30T14:44:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,237
py
""" Assume that: 1. Container on ECR has been updated to contain latest pyfan and thaijmp code 2. A task with the task name below has been submitted. Note that for different invokations, can adjust the default command and compute size of registered tasks. Submit two separate tasks, representing two different regions. """ import logging import pyfan.amto.json.json as support_json import time import boto3aws.tools.manage_aws as boto3aws import parameters.runspecs.compute_specs as computespec import parameters.runspecs.estimate_specs as estispec import projectsupport.systemsupport as proj_sys_sup logger = logging.getLogger(__name__) FORMAT = '%(filename)s - %(funcName)s - %(lineno)d - %(asctime)s - %(levelname)s %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) """ OPTINAL PARAMETER SPECIFICATIONS """ esr_run = 7 it_call_options = 2 if it_call_options == 1: it_esti_top_which_max = 5 # A1. Main folder name save_directory_main = 'esti_tst_onefile_xN5' # A2. subfolder name esrbstfilesuffix = "_esr_tstN5_aws" # C1. ITG or x, normal, or detailed esrbxrditg = "x" # C2. compute spec key esrscomputespeckey = "ng_s_t" # C3. test scale (esti spec key) esrssttestscale = "_tinytst_" elif it_call_options == 2: it_esti_top_which_max = 5 save_directory_main = 'esti_tst_onefile_ITGN5' esrbstfilesuffix = "_esr_tstN5_aws" esrbxrditg = "_ITG" esrscomputespeckey = "b_ng_p_d" esrssttestscale = "_tinytst_" # Both regions ar_regions = ['ce', 'ne'] # ar_regions = ['ne'] # Region-specific combo_type information # st_cta, st_ctb = 'e', '20201025x_esr_medtst' st_cta, st_ctb = 'e', '20201025' + esrbxrditg + esrbstfilesuffix dc_combo_type = {'ce': {'cta': st_cta, 'ctb': st_ctb, 'ctc': 'list_tKap_mlt_ce1a2'}, 'ne': {'cta': st_cta, 'ctb': st_ctb, 'ctc': 'list_tKap_mlt_ne1a2'}} # Region specific speckey dc_moment_key = {'ce': '3', 'ne': '4'} momset_key = '3' dc_compute_spec_key = {1: esrscomputespeckey, 3: 'mpoly_1', 5: esrscomputespeckey, 7: esrscomputespeckey} dc_esti_spec_key = {1: 'esti' + esrssttestscale + 'thin_1', 3: 'esti' + esrssttestscale + 'mpoly_13', 5: 'esti_mplypostsimu_1', 7: 'esti_mplypostesti_12'} """ OPTINAL PARAMETER SPECIFICATIONS """ # Start Batch aws_batch = boto3aws.start_boto3_client('batch') # This is a already registered task: see esr_s0_register_task.py jobDefinitionName = 'a-1-thaijmp-runesr-x' # task info job_queue = 'Spot' # common code esr_run specific # 1. Sepckey compute_spec_key, esti_spec_key = dc_compute_spec_key[esr_run], dc_esti_spec_key[esr_run] dc_speckey = {'ce': '='.join([compute_spec_key, esti_spec_key, dc_moment_key['ce'], momset_key]), 'ne': '='.join([compute_spec_key, esti_spec_key, dc_moment_key['ne'], momset_key])} # 1b. speckey ERS3 compute_spec_key_mpoly, esti_spec_key_mpoly = dc_compute_spec_key[3], dc_esti_spec_key[3] dc_speckey_mpoly = {'ce': '='.join([compute_spec_key_mpoly, esti_spec_key_mpoly, dc_moment_key['ce'], momset_key]), 'ne': '='.join([compute_spec_key_mpoly, esti_spec_key_mpoly, dc_moment_key['ne'], momset_key])} # 2. Container options array_size = estispec.estimate_set(esti_spec_key)['esti_param_vec_count'] it_memory = computespec.compute_set(compute_spec_key)['memory'] it_vcpus = computespec.compute_set(compute_spec_key)['vcpus'] # run by region dc_responses = {} for st_regions in ar_regions: if esr_run == 1 or esr_run == 3: response = aws_batch.submit_job( jobName=jobDefinitionName + '-' + st_regions + '-' + proj_sys_sup.save_suffix_time(2), jobQueue=job_queue, arrayProperties={'size': array_size}, jobDefinition=jobDefinitionName, containerOverrides={"vcpus": int(it_vcpus), "memory": int(it_memory), "command": ["python", "/ThaiJMP/invoke/run_esr.py", str(esr_run), "-s", dc_speckey[st_regions], "-cta", dc_combo_type[st_regions]["cta"], "-ctb", dc_combo_type[st_regions]["ctb"], "-ctc", dc_combo_type[st_regions]["ctc"], "-f", save_directory_main]}) elif esr_run == 5 or esr_run == 7: response = aws_batch.submit_job( jobName=jobDefinitionName + '-' + st_regions + '-' + proj_sys_sup.save_suffix_time(2), jobQueue=job_queue, arrayProperties={'size': it_esti_top_which_max}, jobDefinition=jobDefinitionName, containerOverrides={"vcpus": int(it_vcpus), "memory": int(it_memory), "command": ["python", "/ThaiJMP/invoke/run_esr.py", str(esr_run), "-s", dc_speckey[st_regions], "-cta", dc_combo_type[st_regions]["cta"], "-ctb", dc_combo_type[st_regions]["ctb"], "-ctc", dc_combo_type[st_regions]["ctc"], "-cte1", dc_speckey_mpoly[st_regions], "-cte2", str(it_esti_top_which_max), "-f", save_directory_main]}) else: raise ValueError(f'The specified esr_run, {esr_run=} is not allowed.') support_json.jdump(response, 'submit_job--response', logger=logger.info) dc_responses[st_regions] = response # Display status fl_start = time.time() dc_bl_job_in_progress = {'ce': True, 'ne': True} dc_it_wait_seconds = {'ce': 0, 'ne': 0} while (dc_bl_job_in_progress['ce'] or dc_bl_job_in_progress['ne']): for st_regions in ar_regions: dc_json_batch_response = dc_responses[st_regions] # Get Job ID st_batch_jobID = dc_json_batch_response['jobId'] # Print Job ID # print(f'{st_batch_jobID=}') # While loop to check status # describe job dc_json_batch_describe_job_response = aws_batch.describe_jobs(jobs=[st_batch_jobID]) # pprint.pprint(dc_json_batch_describe_job_response, width=1) it_array_size = dc_json_batch_describe_job_response['jobs'][0]['arrayProperties']['size'] if it_array_size >= 1000: it_wait_time = 300 elif it_array_size >= 100: it_wait_time = 120 elif it_array_size >= 10: it_wait_time = 60 else: it_wait_time = 20 dc_status_summary = dc_json_batch_describe_job_response['jobs'][0]['arrayProperties']['statusSummary'] if dc_status_summary: # check status it_completed = dc_status_summary['SUCCEEDED'] + dc_status_summary['FAILED'] if it_completed < it_array_size: dc_bl_job_in_progress[st_regions] = True # sleep three seconds time.sleep(it_wait_time) dc_it_wait_seconds[st_regions] = round(time.time() - fl_start) else: dc_bl_job_in_progress[st_regions] = False print(f'{st_regions.upper()} ({dc_it_wait_seconds[st_regions]} sec): ' f'ArrayN={it_array_size},' f'SUCCEEDED={dc_status_summary["SUCCEEDED"]}, FAILED={dc_status_summary["FAILED"]}, ' f'RUNNING={dc_status_summary["RUNNING"]}, PENDING={dc_status_summary["PENDING"]}, ' f'RUNNABLE={dc_status_summary["RUNNABLE"]}') else: dc_bl_job_in_progress[st_regions] = True # empty statussummary time.sleep(it_wait_time) dc_it_wait_seconds[st_regions] = round(time.time() - fl_start) print(f'{st_regions.upper()} ({dc_it_wait_seconds[st_regions]} sec): ArrayN={it_array_size}')
93b7f21504d58d63e17f2a7e1435cb78ca6999d6
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part009324.py
cbdf2c82d8e24b917f93048ece6a2aa7d84ec418
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,298
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher108113(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i3.1.2.0', 1, 1, None), Mul), (VariableWithCount('i3.1.2.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher108113._instance is None: CommutativeMatcher108113._instance = CommutativeMatcher108113() return CommutativeMatcher108113._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 108112 return yield from collections import deque
ff3f576564a64698fd39d488aee3b2df3873b01e
9d8e2dd4441c50b443390f76c899ad1f46c42c0e
/mit_intro_algos/max_heap.py
13d0a325af33fa82b8c19924971ba9c0b20d5f14
[]
no_license
vikramjit-sidhu/algorithms
186ec32de471386ce0fd6b469403199a5e3bbc6d
cace332fc8e952db76c19e200cc91ec8485ef14f
refs/heads/master
2021-01-01T16:20:52.071495
2015-08-03T17:42:29
2015-08-03T17:42:29
29,119,005
0
0
null
null
null
null
UTF-8
Python
false
false
2,979
py
""" Creates a max heap, can also use heap sort algorithm on a pre created array Uses an array to implement array My implementation of python heapq module """ class MaxHeap: def __init__(self, ar=[None]): self.A = ar if len(self.A) > 1: self.__create_maxheap() def __max_heapify(self, index): left, right = 2*index, 2*index+1 if left < len(self.A) and self.A[index] < self.A[left]: maximum = left else: maximum = index if right < len(self.A) and self.A[maximum] < self.A[right]: maximum = right if maximum != index: self.A[index], self.A[maximum] = self.A[maximum], self.A[index] self.__max_heapify(maximum) return True return False def __create_maxheap(self): if self.A[0]: self.A.append(self.A[0]) self.A[0] = None start_index = int((len(self.A)-1)/2) for i in range(start_index, 0, -1): self.__max_heapify(i) def find_max(self): return self.A[1] def extract_max(self): last_index = len(self.A) - 1 self.A[1], self.A[last_index] = self.A[last_index], self.A[1] max_key = self.A.pop() max_heapify(1) return max_key def insert_key(self, key): self.A.append(key) check_index = len(self.A) - 1 parent_index = int(check_index/2) self.__parent_updatify(parent_index, check_index) def __parent_updatify(self, parent_index, check_index): while parent_index >=1 and self.A[parent_index] < self.A[check_index]: self.A[parent_index], self.A[check_index] = self.A[check_index], self.A[parent_index] check_index, parent_index = parent_index, int(parent_index/2) def update_key(self, key, new_key): key_index = self.find_key(key) self.A[key_index] = new_key if not self.__max_heapify(key_index): self.__parent_updatify(int(key_index/2), key_index) def find_key(self, key): """ Returns index of key in array (self.A). Uses BFS. """ from queue import Queue qu = Queue() qu.put(1) key_index = None while not qu.empty(): element = qu.get_nowait() if self.A[element] == key: key_index = element break left, right = element*2, element*2+1 if left < len(self.A) and self.A[left] >= key: qu.put_nowait(left) if right < len(self.A) and self.A[right] >= key: qu.put_nowait(right) else: print("Key {0} not found".format(key)) del(qu) return key_index if __name__ == '__main__': main()
f583736aeb98af156de12d7ff928aca9a305b7c8
711756b796d68035dc6a39060515200d1d37a274
/output_exocyst_tags/initial_7607.py
f3e10cc911458956f628b86bc422c72bf2469275
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
4,587
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Sec3_GFPN" not in marker_sets: s=new_marker_set('Sec3_GFPN') marker_sets["Sec3_GFPN"]=s s= marker_sets["Sec3_GFPN"] mark=s.place_marker((19, 105, 690), (0.15, 0.78, 0.66), 21.9005) if "Sec3_GFPC" not in marker_sets: s=new_marker_set('Sec3_GFPC') marker_sets["Sec3_GFPC"]=s s= marker_sets["Sec3_GFPC"] mark=s.place_marker((215, 753, 192), (0.15, 0.78, 0.66), 31.586) if "Sec3_Anch" not in marker_sets: s=new_marker_set('Sec3_Anch') marker_sets["Sec3_Anch"]=s s= marker_sets["Sec3_Anch"] mark=s.place_marker((122, 745, 777), (0.15, 0.58, 0.66), 26.9335) if "Sec5_GFPN" not in marker_sets: s=new_marker_set('Sec5_GFPN') marker_sets["Sec5_GFPN"]=s s= marker_sets["Sec5_GFPN"] mark=s.place_marker((285, 668, 783), (0.38, 0.24, 0.37), 21.9005) if "Sec5_GFPC" not in marker_sets: s=new_marker_set('Sec5_GFPC') marker_sets["Sec5_GFPC"]=s s= marker_sets["Sec5_GFPC"] mark=s.place_marker((266, 354, 710), (0.38, 0.24, 0.37), 31.586) if "Sec6_GFPN" not in marker_sets: s=new_marker_set('Sec6_GFPN') marker_sets["Sec6_GFPN"]=s s= marker_sets["Sec6_GFPN"] mark=s.place_marker((732, 670, 594), (0.84, 0.98, 0.24), 21.9005) if "Sec6_GFPC" not in marker_sets: s=new_marker_set('Sec6_GFPC') marker_sets["Sec6_GFPC"]=s s= marker_sets["Sec6_GFPC"] mark=s.place_marker((696, 107, 386), (0.84, 0.98, 0.24), 31.586) if "Sec6_Anch" not in marker_sets: s=new_marker_set('Sec6_Anch') marker_sets["Sec6_Anch"]=s s= marker_sets["Sec6_Anch"] mark=s.place_marker((558, 299, 781), (0.84, 0.78, 0.24), 26.9335) if "Sec8_GFPC" not in marker_sets: s=new_marker_set('Sec8_GFPC') marker_sets["Sec8_GFPC"]=s s= marker_sets["Sec8_GFPC"] mark=s.place_marker((428, 270, 711), (0.62, 0.67, 0.45), 31.586) if "Sec8_Anch" not in marker_sets: s=new_marker_set('Sec8_Anch') marker_sets["Sec8_Anch"]=s s= marker_sets["Sec8_Anch"] mark=s.place_marker((877, 991, 805), (0.62, 0.47, 0.45), 26.9335) if "Sec10_GFPN" not in marker_sets: s=new_marker_set('Sec10_GFPN') marker_sets["Sec10_GFPN"]=s s= marker_sets["Sec10_GFPN"] mark=s.place_marker((899, 576, 943), (0, 0.91, 0), 21.9005) if "Sec10_GFPC" not in marker_sets: s=new_marker_set('Sec10_GFPC') marker_sets["Sec10_GFPC"]=s s= marker_sets["Sec10_GFPC"] mark=s.place_marker((671, 362, 423), (0, 0.91, 0), 31.586) if "Sec10_Anch" not in marker_sets: s=new_marker_set('Sec10_Anch') marker_sets["Sec10_Anch"]=s s= marker_sets["Sec10_Anch"] mark=s.place_marker((699, 105, 883), (0, 0.71, 0), 26.9335) if "Sec15_GFPN" not in marker_sets: s=new_marker_set('Sec15_GFPN') marker_sets["Sec15_GFPN"]=s s= marker_sets["Sec15_GFPN"] mark=s.place_marker((340, 501, 893), (0.11, 0.51, 0.86), 21.9005) if "Sec15_GFPC" not in marker_sets: s=new_marker_set('Sec15_GFPC') marker_sets["Sec15_GFPC"]=s s= marker_sets["Sec15_GFPC"] mark=s.place_marker((964, 729, 337), (0.11, 0.51, 0.86), 31.586) if "Sec15_Anch" not in marker_sets: s=new_marker_set('Sec15_Anch') marker_sets["Sec15_Anch"]=s s= marker_sets["Sec15_Anch"] mark=s.place_marker((486, 503, 223), (0.11, 0.31, 0.86), 26.9335) if "Exo70_GFPN" not in marker_sets: s=new_marker_set('Exo70_GFPN') marker_sets["Exo70_GFPN"]=s s= marker_sets["Exo70_GFPN"] mark=s.place_marker((472, 868, 488), (0.89, 0.47, 0.4), 21.9005) if "Exo70_GFPC" not in marker_sets: s=new_marker_set('Exo70_GFPC') marker_sets["Exo70_GFPC"]=s s= marker_sets["Exo70_GFPC"] mark=s.place_marker((333, 100, 187), (0.89, 0.47, 0.4), 31.586) if "Exo70_Anch" not in marker_sets: s=new_marker_set('Exo70_Anch') marker_sets["Exo70_Anch"]=s s= marker_sets["Exo70_Anch"] mark=s.place_marker((147, 620, 939), (0.89, 0.27, 0.4), 26.9335) if "Exo84_GFPN" not in marker_sets: s=new_marker_set('Exo84_GFPN') marker_sets["Exo84_GFPN"]=s s= marker_sets["Exo84_GFPN"] mark=s.place_marker((573, 301, 997), (0.5, 0.7, 0), 31.586) if "Exo84_GFPC" not in marker_sets: s=new_marker_set('Exo84_GFPC') marker_sets["Exo84_GFPC"]=s s= marker_sets["Exo84_GFPC"] mark=s.place_marker((585, 771, 647), (0.5, 0.7, 0), 31.586) if "Exo84_Anch" not in marker_sets: s=new_marker_set('Exo84_Anch') marker_sets["Exo84_Anch"]=s s= marker_sets["Exo84_Anch"] mark=s.place_marker((183, 347, 23), (0.5, 0.5, 0), 26.9335) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
9fe14f76ed7f167080c56d6ae5377451ea028db9
607241e619ca499121106b218a5e00ac5244bda3
/analysis/zeldovich_enzo_mass.py
808a1269774d71bef4bd037a05e3c33e5614d2a5
[]
no_license
bvillasen/cosmo_sims
37caea950c7be0626a5170333bfe734071c58124
8b20dc05842a22ea50ceb3d646037d2e66fc8c9b
refs/heads/master
2020-04-22T23:22:28.670894
2020-01-02T23:32:39
2020-01-02T23:32:39
114,167,239
0
0
null
null
null
null
UTF-8
Python
false
false
2,713
py
import sys import numpy as np import matplotlib.pyplot as plt import h5py as h5 import yt dev_dir = '/home/bruno/Desktop/Dropbox/Developer/' cosmo_dir = dev_dir + 'cosmo_sims/' toolsDirectory = cosmo_dir + "tools/" sys.path.extend([toolsDirectory ] ) from load_data_cholla import load_snapshot_data from internal_energy import get_internal_energy, get_temp, get_Temperaure_From_Flags_DE # from load_data_enzo import load_snapshot_enzo from cosmo_constants import * from tools import create_directory from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() nSnap = rank # rank = 0 dataDir = '/raid/bruno/data/' # dataDir = '/home/bruno/Desktop/data/' data_set = 'enzo_simple_beta_convDE' startSnap = 27 enzoDir = dataDir + 'cosmo_sims/enzo/ZeldovichPancake_HLLC/' outDir = dev_dir + 'figures/zeldovich_mass/' if rank == 0: create_directory( outDir ) a_list = [] gamma = 5./3 j_indx = 0 i_indx = 0 L = 64. n = 256 dx = L / ( n ) x = np.arange(0, 256, 1)* dx + 0.5*dx dv = (dx*1e3)**3 chollaDir_0 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PLMC_HLLC_VL_eta0.001_0.030_z1/' chollaDir_1 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PLMP_HLLC_VL_eta0.001_0.030_z1/' chollaDir_2 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMC_HLLC_VL_eta0.001_0.030_z1_ic0/' chollaDir_3 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMP_HLLC_VL_eta0.001_0.030_z1_ic64/' chollaDir_4 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMP_HLLC_VL_eta0.001_0.030_z1_ic32/' chollaDir_5 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMP_HLLC_VL_eta0.001_0.030_z1_ic4/' chollaDir_6 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMP_HLLC_VL_eta0.001_0.030_z1_ic0/' # chollaDir_3 = dataDir + 'cosmo_sims/cholla_pm/zeldovich/data_PPMC_HLLC_VL_eta0.001_0.030_z1_signStone/' dir_list = [ chollaDir_0, chollaDir_1, chollaDir_2, chollaDir_3, chollaDir_4, chollaDir_5, chollaDir_6 ] labels = ['PLMC', 'PLMP', 'PPMC_ic0', 'PPMP_ic64', 'PPMP_ic32', 'PPMP_ic4', 'PPMP_ic0', ] out_file_name = 'zeldovich_mass.png' #Plot UVB uvb_rates nrows=1 ncols = 1 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(10*ncols,8*nrows)) lw = 3 for i,chollaDir in enumerate(dir_list): print chollaDir mass = [] z = [] for nSnap in range(50): data_cholla = load_snapshot_data( nSnap, chollaDir ) current_z = data_cholla['current_z'] dens_ch = data_cholla['gas']['density'][...] mass_tot = dens_ch.sum() / dv z.append(current_z) mass.append( mass_tot ) # print mass ax.plot( z, mass, label=labels[i] ) ax.legend() ax.set_xlabel('Redshift') ax.set_ylabel(r'Mass [$\mathrm{M}_{\odot}/h$ ]') fig.savefig( outDir+out_file_name, bbox_inches='tight', dpi=100)
1f4b6688675f5b730dc3dd73a877fc56530df03b
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/W_w_Mgt_to_C_focus_div/ch032/Tcrop_s255_p20_j15/pyr_6s/L3/step09_6side_L3.py
bb36cd8c779761d81788e6554c71dce596961f80
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
50,455
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_W_w_M_to_Cx_Cy_combine import W_w_M_to_Cx_Cy from step08_b_use_G_generate_0_util import Tight_crop from step09_c_train_step import Train_step_W_w_M_to_Cx_Cy from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME use_what_gen_op = W_w_M_to_Cx_Cy( separate_out=True, focus=True, tight_crop=Tight_crop(pad_size=20, resize=(255, 255), jit_scale= 0) ) use_what_train_step = Train_step_W_w_M_to_Cx_Cy( separate_out=True, focus=True, tight_crop=Tight_crop(pad_size=20, resize=(255, 255), jit_scale= 15) ) use_hid_ch = 32 import time start_time = time.time() ############################################################################################################################################################################################### ################################## ### 6side1 ################################## ##### 5side1 # side1, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1 = [6, 0, 0, 0, 0, 0, 6] # side2, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1 = [6, 1, 0, 0, 0, 1, 6] pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1 = [6, 2, 0, 0, 0, 2, 6] pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1 = [6, 3, 0, 0, 0, 3, 6] pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1 = [6, 4, 0, 0, 0, 4, 6] # side3, 1 3 "6" 10 15 21 28 36 45 55, 10 pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1 = [6, 1, 1, 0, 1, 1, 6] pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1 = [6, 2, 1, 0, 1, 2, 6] pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1 = [6, 3, 1, 0, 1, 3, 6] pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1 = [6, 2, 2, 0, 2, 2, 6] pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1 = [6, 3, 2, 0, 2, 3, 6] pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1 = [6, 3, 3, 0, 3, 3, 6] pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1 = [6, 4, 1, 0, 1, 4, 6] pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1 = [6, 4, 2, 0, 2, 4, 6] pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1 = [6, 4, 3, 0, 3, 4, 6] pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1 = [6, 4, 4, 0, 4, 4, 6] # side4, 1 3 6 "10" 15 21 28 36 45 55, 20 pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1 = [6, 1, 1, 1, 1, 1, 6] pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1 = [6, 2, 1, 1, 1, 2, 6] pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1 = [6, 3, 1, 1, 1, 3, 6] pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1 = [6, 2, 2, 1, 2, 2, 6] pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1 = [6, 3, 2, 1, 2, 3, 6] pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1 = [6, 3, 3, 1, 3, 3, 6] pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1 = [6, 2, 2, 2, 2, 2, 6] pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1 = [6, 3, 2, 2, 2, 3, 6] pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1 = [6, 3, 3, 2, 3, 3, 6] pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1 = [6, 3, 3, 3, 3, 3, 6] pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1 = [6, 4, 1, 1, 1, 4, 6] pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1 = [6, 4, 2, 1, 2, 4, 6] pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1 = [6, 4, 3, 1, 3, 4, 6] pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1 = [6, 4, 2, 2, 2, 4, 6] pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1 = [6, 4, 3, 2, 3, 4, 6] pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1 = [6, 4, 3, 3, 3, 4, 6] pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1 = [6, 4, 4, 1, 4, 4, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1 = [6, 4, 4, 2, 4, 4, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1 = [6, 4, 4, 3, 4, 4, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1 = [6, 4, 4, 4, 4, 4, 6] ##### 5side2 # side2, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1 = [6, 5, 0, 0, 0, 5, 6] # side3, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1 = [6, 5, 1, 0, 1, 5, 6] pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1 = [6, 5, 2, 0, 2, 5, 6] pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1 = [6, 5, 3, 0, 3, 5, 6] pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1 = [6, 5, 4, 0, 4, 5, 6] # side4, 1 3 "6" 10 15 21 28 36 45 55, 10 pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1 = [6, 5, 1, 1, 1, 5, 6] pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1 = [6, 5, 2, 1, 2, 5, 6] pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1 = [6, 5, 3, 1, 3, 5, 6] pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1 = [6, 5, 2, 2, 2, 5, 6] pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1 = [6, 5, 3, 2, 3, 5, 6] pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1 = [6, 5, 3, 3, 3, 5, 6] pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1 = [6, 5, 4, 1, 4, 5, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1 = [6, 5, 4, 2, 4, 5, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1 = [6, 5, 4, 3, 4, 5, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1 = [6, 5, 4, 4, 4, 5, 6] ##### 5side3 # side3, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1 = [6, 5, 5, 0, 5, 5, 6] # side4, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1 = [6, 5, 5, 1, 5, 5, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1 = [6, 5, 5, 2, 5, 5, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1 = [6, 5, 5, 3, 5, 5, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1 = [6, 5, 5, 4, 5, 5, 6] ##### 5side4 # side4, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1 = [6, 5, 5, 5, 5, 5, 6] ################################## ### 6side2 ################################## ##### 5side2 # side2, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2 = [6, 6, 0, 0, 0, 6, 6] # side3, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2 = [6, 6, 1, 0, 1, 6, 6] pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2 = [6, 6, 2, 0, 2, 6, 6] pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2 = [6, 6, 3, 0, 3, 6, 6] pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2 = [6, 6, 4, 0, 4, 6, 6] # side4, 1 3 "6" 10 15 21 28 36 45 55, 10 pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2 = [6, 6, 1, 1, 1, 6, 6] pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2 = [6, 6, 2, 1, 2, 6, 6] pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2 = [6, 6, 3, 1, 3, 6, 6] pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2 = [6, 6, 2, 2, 2, 6, 6] pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2 = [6, 6, 3, 2, 3, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2 = [6, 6, 3, 3, 3, 6, 6] pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2 = [6, 6, 4, 1, 4, 6, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2 = [6, 6, 4, 2, 4, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2 = [6, 6, 4, 3, 4, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2 = [6, 6, 4, 4, 4, 6, 6] ##### 5side3 # side3, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2 = [6, 6, 5, 0, 5, 6, 6] # side4, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2 = [6, 6, 5, 1, 5, 6, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2 = [6, 6, 5, 2, 5, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2 = [6, 6, 5, 3, 5, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2 = [6, 6, 5, 4, 5, 6, 6] ##### 5side4 # side4, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2 = [6, 6, 5, 5, 5, 6, 6] ################################## ### 6side3 ################################## ##### 5side3 # side3, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3 = [6, 6, 6, 0, 6, 6, 6] # side4, 1 "3" 6 10 15 21 28 36 45 55, 4 pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3 = [6, 6, 6, 1, 6, 6, 6] pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3 = [6, 6, 6, 2, 6, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3 = [6, 6, 6, 3, 6, 6, 6] pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3 = [6, 6, 6, 4, 6, 6, 6] ##### 5side4 # side4, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3 = [6, 6, 6, 5, 6, 6, 6] ################################## ### 6side4 ################################## ##### 5side4 # side4, "1" 3 6 10 15 21 28 36 45 55, 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4 = [6, 6, 6, 6, 6, 6, 6] ############################################################################################################################################################################################### ############################################################################################################################################################################################### ############################################################################################################################################################################################### ################### ############# 1s1 ######### 2s1 ##### 3s1 ### 4s1 ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ################### ############# 1s2 ######### 2s1 ##### 3s1 ### 4s1 ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s1 ##### 3s1 ### 4s1 ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ################### ############# 1s3 ######### 2s1 ##### 3s1 ### 4s1 ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s2 ##### 3s1 ### 4s1 ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s3 ##### 3s1 ### 4s1 ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s3 ### 4s1 ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s3 ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ################### ############# 1s4 ######### 2s1 ##### 3s1 ### 4s1 ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s2 ##### 3s1 ### 4s1 ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s3 ##### 3s1 ### 4s1 ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s3 ### 4s1 ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s3 ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ######### 2s4 ##### 3s1 ### 4s1 ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s2 ### 4s1 ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s3 ### 4s1 ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s3 ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ##### 3s4 ### 4s1 ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s2 ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s3 ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ### 4s4 ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch=use_hid_ch, depth_level=3, out_ch=1, d_amount=2, bottle_divide=True, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4, ch_upper_bound= 2 ** 14).set_gen_op( use_what_gen_op ).set_train_step( use_what_train_step ) ############################################################################################################################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1), dtype=np.float32) use_model = ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1 use_model = use_model.build() result = use_model.generator(data) print(result[0].shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary() print(use_model.model_describe)
00c84dfe665dbb738ca50b70040e7c837c595038
4f9930e15c02cb9a09af70d66b794480b8c9bd57
/hail/python/hailtop/pipeline/task.py
a2472c4ff18e3f5de5f9d7a3a7b3edab693c4253
[ "MIT" ]
permissive
gsarma/hail
d76aa16d718618c1915b629077fd80cbc4d3b526
6aa2d945bb7d57c463d5ab9afb686f18c2941b25
refs/heads/master
2020-06-20T06:09:43.408615
2019-10-29T21:40:23
2019-10-29T21:40:23
196,250,453
0
0
MIT
2019-07-10T17:44:48
2019-07-10T17:44:47
null
UTF-8
Python
false
false
12,654
py
import re from .resource import ResourceFile, ResourceGroup from .utils import PipelineException def _add_resource_to_set(resource_set, resource, include_rg=True): if isinstance(resource, ResourceGroup): rg = resource if include_rg: resource_set.add(resource) else: resource_set.add(resource) if isinstance(resource, ResourceFile) and resource._has_resource_group(): rg = resource._get_resource_group() else: rg = None if rg is not None: for _, resource_file in rg._resources.items(): resource_set.add(resource_file) class Task: """ Object representing a single job to execute. Examples -------- Create a pipeline object: >>> p = Pipeline() Create a new pipeline task that prints hello to a temporary file `t.ofile`: >>> t = p.new_task() >>> t.command(f'echo "hello" > {t.ofile}') Write the temporary file `t.ofile` to a permanent location >>> p.write_output(t.ofile, 'hello.txt') Execute the DAG: >>> p.run() Notes ----- This class should never be created directly by the user. Use `Pipeline.new_task` instead. """ _counter = 0 _uid_prefix = "__TASK__" _regex_pattern = r"(?P<TASK>{}\d+)".format(_uid_prefix) @classmethod def _new_uid(cls): uid = "{}{}".format(cls._uid_prefix, cls._counter) cls._counter += 1 return uid def __init__(self, pipeline, name=None, attributes=None): self._pipeline = pipeline self.name = name self.attributes = attributes self._cpu = None self._memory = None self._storage = None self._image = None self._command = [] self._resources = {} # dict of name to resource self._resources_inverse = {} # dict of resource to name self._uid = Task._new_uid() self._inputs = set() self._internal_outputs = set() self._external_outputs = set() self._mentioned = set() # resources used in the command self._valid = set() # resources declared in the appropriate place self._dependencies = set() def _get_resource(self, item): if item not in self._resources: r = self._pipeline._new_task_resource_file(self) self._resources[item] = r self._resources_inverse[r] = item return self._resources[item] def __getitem__(self, item): return self._get_resource(item) def __getattr__(self, item): return self._get_resource(item) def _add_internal_outputs(self, resource): _add_resource_to_set(self._internal_outputs, resource, include_rg=False) def _add_inputs(self, resource): _add_resource_to_set(self._inputs, resource, include_rg=False) def declare_resource_group(self, **mappings): """ Declare a resource group for a task. Examples -------- Declare a resource group: >>> input = p.read_input_group(bed='data/example.bed', ... bim='data/example.bim', ... fam='data/example.fam') >>> t = p.new_task() >>> t.declare_resource_group(tmp1={'bed': '{root}.bed', ... 'bim': '{root}.bim', ... 'fam': '{root}.fam', ... 'log': '{root}.log'}) >>> t.command(f"plink --bfile {input} --make-bed --out {t.tmp1}") Caution ------- Be careful when specifying the expressions for each file as this is Python code that is executed with `eval`! Parameters ---------- mappings: :obj:`dict` of :obj:`str` to :obj:`dict` of :obj:`str` to :obj:`str` Keywords are the name(s) of the resource group(s). The value is a dict mapping the individual file identifier to a string expression representing how to transform the resource group root name into a file. Use `{root}` for the file root. Returns ------- :class:`.Task` Same task object with resource groups set. """ for name, d in mappings.items(): assert name not in self._resources if not isinstance(d, dict): raise PipelineException(f"value for name '{name}' is not a dict. Found '{type(d)}' instead.") rg = self._pipeline._new_resource_group(self, d) self._resources[name] = rg _add_resource_to_set(self._valid, rg) return self def depends_on(self, *tasks): """ Explicitly set dependencies on other tasks. Examples -------- Create the first task: >>> t1 = p.new_task() >>> t1.command(f'echo "hello"') Create the second task that depends on `t1`: >>> t2 = p.new_task() >>> t2.depends_on(t1) >>> t2.command(f'echo "world"') Notes ----- Dependencies between tasks are automatically created when resources from one task are used in a subsequent task. This method is only needed when no intermediate resource exists and the dependency needs to be explicitly set. Parameters ---------- tasks: :class:`.Task`, varargs Sequence of tasks to depend on. Returns ------- :class:`.Task` Same task object with dependencies set. """ for t in tasks: self._dependencies.add(t) def command(self, command): """ Set the task's command to execute. Examples -------- Simple task with no output files: >>> p = Pipeline() >>> t1 = p.new_task() >>> t1.command(f'echo "hello"') >>> p.run() Simple task with one temporary file `t2.ofile` that is written to a permanent location: >>> p = Pipeline() >>> t2 = p.new_task() >>> t2.command(f'echo "hello world" > {t2.ofile}') >>> p.write_output(t2.ofile, 'output/hello.txt') >>> p.run() Two tasks with a file interdependency: >>> p = Pipeline() >>> t3 = p.new_task() >>> t3.command(f'echo "hello" > {t3.ofile}') >>> t4 = p.new_task() >>> t4.command(f'cat {t3.ofile} > {t4.ofile}') >>> p.write_output(t4.ofile, 'output/cat_output.txt') >>> p.run() Specify multiple commands in the same task: >>> p = Pipeline() >>> t5 = p.new_task() >>> t5.command(f'echo "hello" > {t5.tmp1}') >>> t5.command(f'echo "world" > {t5.tmp2}') >>> t5.command(f'echo "!" > {t5.tmp3}') >>> t5.command(f'cat {t5.tmp1} {t5.tmp2} {t5.tmp3} > {t5.ofile}') >>> p.write_output(t5.ofile, 'output/concatenated.txt') >>> p.run() Notes ----- This method can be called more than once. It's behavior is to append commands to run to the set of previously defined commands rather than overriding an existing command. To declare a resource file of type :class:`.TaskResourceFile`, use either the get attribute syntax of `task.{identifier}` or the get item syntax of `task['identifier']`. If an object for that identifier doesn't exist, then one will be created automatically (only allowed in the :meth:`.command` method). The identifier name can be any valid Python identifier such as `ofile5000`. All :class:`.TaskResourceFile` are temporary files and must be written to a permanent location using :func:`.Pipeline.write_output` if the output needs to be saved. Only Resources can be referred to in commands. Referencing a :class:`.Pipeline` or :class:`.Task` will result in an error. Parameters ---------- command: :obj:`str` Returns ------- :class:`.Task` Same task object with command appended. """ def handler(match_obj): groups = match_obj.groupdict() if groups['TASK']: raise PipelineException(f"found a reference to a Task object in command '{command}'.") if groups['PIPELINE']: raise PipelineException(f"found a reference to a Pipeline object in command '{command}'.") assert groups['RESOURCE_FILE'] or groups['RESOURCE_GROUP'] r_uid = match_obj.group() r = self._pipeline._resource_map.get(r_uid) if r is None: raise PipelineException(f"undefined resource '{r_uid}' in command '{command}'.\n" f"Hint: resources must be from the same pipeline as the current task.") if r._source != self: self._add_inputs(r) if r._source is not None: if r not in r._source._valid: name = r._source._resources_inverse[r] raise PipelineException(f"undefined resource '{name}'\n" f"Hint: resources must be defined within " "the task methods 'command' or 'declare_resource_group'") self._dependencies.add(r._source) r._source._add_internal_outputs(r) else: _add_resource_to_set(self._valid, r) self._mentioned.add(r) return f"${{{r_uid}}}" from .pipeline import Pipeline # pylint: disable=cyclic-import subst_command = re.sub(f"({ResourceFile._regex_pattern})|({ResourceGroup._regex_pattern})" f"|({Task._regex_pattern})|({Pipeline._regex_pattern})", handler, command) self._command.append(subst_command) return self def storage(self, storage): """ Set the task's storage size. Examples -------- Set the task's disk requirements to 1 Gi: >>> t1 = p.new_task() >>> (t1.storage('1Gi') ... .command(f'echo "hello"')) Parameters ---------- storage: :obj:`str` Returns ------- :class:`.Task` Same task object with storage set. """ self._storage = storage return self def memory(self, memory): """ Set the task's memory requirements. Examples -------- Set the task's memory requirement to 5GB: >>> t1 = p.new_task() >>> (t1.memory(5) ... .command(f'echo "hello"')) Parameters ---------- memory: :obj:`str` or :obj:`float` or :obj:`int` Value is in GB. Returns ------- :class:`.Task` Same task object with memory requirements set. """ self._memory = memory return self def cpu(self, cores): """ Set the task's CPU requirements. Examples -------- Set the task's CPU requirement to 2 cores: >>> t1 = p.new_task() >>> (t1.cpu(2) ... .command(f'echo "hello"')) Parameters ---------- cores: :obj:`str` or :obj:`float` or :obj:`int` Returns ------- :class:`.Task` Same task object with CPU requirements set. """ self._cpu = cores return self def image(self, image): """ Set the task's docker image. Examples -------- Set the task's docker image to `alpine`: >>> t1 = p.new_task() >>> (t1.image('alpine:latest') ... .command(f'echo "hello"')) Parameters ---------- image: :obj:`str` Docker image to use. Returns ------- :class:`.Task` Same task object with docker image set. """ self._image = image return self def _pretty(self): s = f"Task '{self._uid}'" \ f"\tName:\t'{self.name}'" \ f"\tAttributes:\t'{self.attributes}'" \ f"\tImage:\t'{self._image}'" \ f"\tCPU:\t'{self._cpu}'" \ f"\tMemory:\t'{self._memory}'" \ f"\tStorage:\t'{self._storage}'" \ f"\tCommand:\t'{self._command}'" return s def __str__(self): return self._uid
921a1439c4b41746c803c1027e09f0d1502c2b93
55dc6e337e634acb852c570274a1d0358b7300a5
/tests/core/intz/intz.py
32ff67f7a362dffe3e6e8699ccb651f1b494c791
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
fifoteam/veriloggen
97ad45671f053c85f495b08a030f735fd9822146
23cb7251c0f126d40d249982cad33ef37902afef
refs/heads/master
2020-05-27T00:28:37.575411
2017-02-20T01:47:00
2017-02-20T01:47:00
82,518,602
2
0
null
2017-02-20T05:02:37
2017-02-20T05:02:37
null
UTF-8
Python
false
false
989
py
from __future__ import absolute_import from __future__ import print_function import sys import os # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))) from veriloggen import * def mkLed(): m = Module('blinkled') width = m.Parameter('WIDTH', 8) clk = m.Input('CLK') rst = m.Input('RST') led = m.OutputReg('LED', width) count = m.Reg('count', 32) m.Always(Posedge(clk))( If(rst)( count(0) ).Else( If(count == 1023)( count(0) ).Else( count(count + 1) ) )) m.Always(Posedge(clk))( If(rst)( led(0) ).Else( If(count == 1024 - 1)( led(IntZ()) ) )) return m if __name__ == '__main__': led = mkLed() verilog = led.to_verilog('') print(verilog)
daf504ddb048bd9ff53c1be218bdef13eb0e3612
978d8f24f4985c61c2dce534a279abe6ffeff433
/custom_components/blueprint/__init__.py
7f90a41bded995d9a9e736289b3e45a104db0064
[ "MIT" ]
permissive
JiriKursky/blueprint
3c1ad02c4726539ab07fc407b6c53ef4c903448b
92ae97dc5fec3a9a6e6e14031c32bbf2f1953ff6
refs/heads/master
2022-01-27T16:24:27.521422
2019-07-20T10:52:46
2019-07-20T10:52:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,577
py
""" Component to integrate with blueprint. For more details about this component, please refer to https://github.com/custom-components/blueprint """ import os from datetime import timedelta import logging import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.helpers import discovery from homeassistant.util import Throttle from .const import ( CONF_BINARY_SENSOR, CONF_ENABLED, CONF_NAME, CONF_PASSWORD, CONF_SENSOR, CONF_SWITCH, CONF_USERNAME, DEFAULT_NAME, DOMAIN_DATA, DOMAIN, ISSUE_URL, PLATFORMS, REQUIRED_FILES, STARTUP, VERSION, ) MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) _LOGGER = logging.getLogger(__name__) BINARY_SENSOR_SCHEMA = vol.Schema( { vol.Optional(CONF_ENABLED, default=True): cv.boolean, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) SENSOR_SCHEMA = vol.Schema( { vol.Optional(CONF_ENABLED, default=True): cv.boolean, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) SWITCH_SCHEMA = vol.Schema( { vol.Optional(CONF_ENABLED, default=True): cv.boolean, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Optional(CONF_USERNAME): cv.string, vol.Optional(CONF_PASSWORD): cv.string, vol.Optional(CONF_BINARY_SENSOR): vol.All( cv.ensure_list, [BINARY_SENSOR_SCHEMA] ), vol.Optional(CONF_SENSOR): vol.All(cv.ensure_list, [SENSOR_SCHEMA]), vol.Optional(CONF_SWITCH): vol.All(cv.ensure_list, [SWITCH_SCHEMA]), } ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Set up this component.""" # Import client from a external python package hosted on PyPi from sampleclient.client import Client # Print startup message startup = STARTUP.format(name=DOMAIN, version=VERSION, issueurl=ISSUE_URL) _LOGGER.info(startup) # Check that all required files are present file_check = await check_files(hass) if not file_check: return False # Create DATA dict hass.data[DOMAIN_DATA] = {} # Get "global" configuration. username = config[DOMAIN].get(CONF_USERNAME) password = config[DOMAIN].get(CONF_PASSWORD) # Configure the client. client = Client(username, password) hass.data[DOMAIN_DATA]["client"] = BlueprintData(hass, client) # Load platforms for platform in PLATFORMS: # Get platform specific configuration platform_config = config[DOMAIN].get(platform, {}) # If platform is not enabled, skip. if not platform_config: continue for entry in platform_config: entry_config = entry # If entry is not enabled, skip. if not entry_config[CONF_ENABLED]: continue hass.async_create_task( discovery.async_load_platform( hass, platform, DOMAIN, entry_config, config ) ) return True class BlueprintData: """This class handle communication and stores the data.""" def __init__(self, hass, client): """Initialize the class.""" self.hass = hass self.client = client @Throttle(MIN_TIME_BETWEEN_UPDATES) async def update_data(self): """Update data.""" # This is where the main logic to update platform data goes. try: data = self.client.get_data() self.hass.data[DOMAIN_DATA]["data"] = data except Exception as error: # pylint: disable=broad-except _LOGGER.error("Could not update data - %s", error) async def check_files(hass): """Return bool that indicates if all files are present.""" # Verify that the user downloaded all files. base = "{}/custom_components/{}/".format(hass.config.path(), DOMAIN) missing = [] for file in REQUIRED_FILES: fullpath = "{}{}".format(base, file) if not os.path.exists(fullpath): missing.append(file) if missing: _LOGGER.critical("The following files are missing: %s", str(missing)) returnvalue = False else: returnvalue = True return returnvalue
e7b1a107e606889f4d2ea63f1cc95c913cd2cef3
13800b7827598e76428a335559b7bf11867ec2f0
/python/ccxt/async_support/binancecoinm.py
62ca72174bcc92699c5987d6f42bca5163a236e1
[ "MIT" ]
permissive
ccxt/ccxt
b40a0466f5c430a3c0c6026552ae697aa80ba6c6
e4065f6a490e6fc4dd7a72b375428b2faa570668
refs/heads/master
2023-09-04T03:41:29.787733
2023-09-03T19:25:57
2023-09-03T19:25:57
91,253,698
30,798
8,190
MIT
2023-09-14T21:59:09
2017-05-14T15:41:56
Python
UTF-8
Python
false
false
1,683
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.binance import binance from ccxt.abstract.binancecoinm import ImplicitAPI class binancecoinm(binance, ImplicitAPI): def describe(self): return self.deep_extend(super(binancecoinm, self).describe(), { 'id': 'binancecoinm', 'name': 'Binance COIN-M', 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/117738721-668c8d80-b205-11eb-8c49-3fad84c4a07f.jpg', 'doc': [ 'https://binance-docs.github.io/apidocs/delivery/en/', 'https://binance-docs.github.io/apidocs/spot/en', ], }, 'has': { 'CORS': None, 'spot': False, 'margin': False, 'swap': True, 'future': True, 'option': None, 'createStopMarketOrder': True, }, 'options': { 'fetchMarkets': ['inverse'], 'defaultSubType': 'inverse', 'leverageBrackets': None, }, }) async def transfer_in(self, code: str, amount, params={}): # transfer from spot wallet to coinm futures wallet return await self.futuresTransfer(code, amount, 3, params) async def transfer_out(self, code: str, amount, params={}): # transfer from coinm futures wallet to spot wallet return await self.futuresTransfer(code, amount, 4, params)
7163f816dfd5db84ab30220ee8fb101ce0b68c6c
66e6360325b781ed0791868765f1fd8a6303726f
/TB2009/WorkDirectory/5173 Pulse Timing/Pion_108538.py
e53460495e0c5366f4f533ec68de84b6c0a8447d
[]
no_license
alintulu/FHead2011PhysicsProject
c969639b212d569198d8fce2f424ce866dcfa881
2568633d349810574354ad61b0abab24a40e510e
refs/heads/master
2022-04-28T14:19:30.534282
2020-04-23T17:17:32
2020-04-23T17:17:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,320
py
import FWCore.ParameterSet.Config as cms process = cms.Process("EventDisplay") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("HcalTBSource", fileNames = cms.untracked.vstring("file:/tmp/chenyi/HTB_108538.root"), streams = cms.untracked.vstring('Chunk699', 'HCAL_Trigger', 'HCAL_SlowData', 'HCAL_QADCTDC', 'HCAL_DCC021') ) process.tbunpack = cms.EDFilter("HcalTBObjectUnpacker", #IncludeUnmatchedHits = cms.untracked.bool(False), HcalTriggerFED = cms.untracked.int32(1), HcalVLSBFED = cms.untracked.int32(699), HcalTDCFED = cms.untracked.int32(8), HcalQADCFED = cms.untracked.int32(8), HcalSlowDataFED = cms.untracked.int32(3), ConfigurationFile = cms.untracked.string('configQADCTDC_TB2009.txt') ) process.vlsbinfo = cms.EDProducer("VLSBInformationProducer", minSample = cms.untracked.uint32(0), maxSample = cms.untracked.uint32(31), baselineSamples = cms.untracked.uint32(2), mip = cms.untracked.string("MIP_EarlyRejection.txt"), useMotherBoard0 = cms.untracked.bool(True), useMotherBoard1 = cms.untracked.bool(False), useMotherBoard2 = cms.untracked.bool(False), useMotherBoard3 = cms.untracked.bool(False), usePedestalMean = cms.untracked.bool(False) ) process.ABCcut = cms.EDFilter("SingleTowerParticleFilter") process.hitcut = cms.EDFilter("HitXFilter", maximum = cms.untracked.double(-5) ) process.MessageLogger = cms.Service("MessageLogger", default = cms.untracked.PSet( reportEvery = cms.untracked.int32(100) ) ) process.alignpion2 = cms.EDAnalyzer("AlignPulseAnalyzer", rejectionSample = cms.untracked.int32(2), rejectionHeight = cms.untracked.double(0.1), output = cms.untracked.string("Time_108538_2.root"), maxsample = cms.untracked.double(1000), minsample = cms.untracked.double(15) ) process.alignpion1 = cms.EDAnalyzer("AlignPulseAnalyzer", rejectionSample = cms.untracked.int32(2), rejectionHeight = cms.untracked.double(0.1), output = cms.untracked.string("Time_108538_1.root"), maxsample = cms.untracked.double(40), minsample = cms.untracked.double(0) ) process.p = cms.Path( process.tbunpack * process.ABCcut * process.vlsbinfo * process.hitcut * process.alignpion1 * process.alignpion2 )
ddb0511c7da10557a74469f32fdf621eef3c6942
3a093f6a40e8fb24957d277ad8f4b097d08c6d04
/result_scons/tools/cards.py
289cbf4c6c50e49e16d0902fa369f486a474e093
[]
no_license
dlont/FourTops2016
ab9e953760e93b0e777b23478938efd30d640286
88c929bf98625735a92a31210f7233f799c5a10c
refs/heads/master
2021-01-18T22:23:52.796080
2019-07-31T12:34:03
2019-07-31T12:34:03
72,439,490
0
1
null
null
null
null
UTF-8
Python
false
false
6,985
py
#!/usr/bin/env python """ Script for Higgs Combine cards creation """ import os import sys import time import argparse import logging import json from datetime import datetime import pandas as pd import numpy as np import ROOT from cards_proc_list import proc_id from cards_syst_list import systtypelist from cards_syst_list import syst_norm_size_list, syst_shape_size_list from cards_bin_list import binlist #Global definitions def getObservation(ch,file,observable): ''' Fill per-bin datacounts list ''' logging.debug("----getObservation:-----") obs = {ch:{}} for ibin in binlist[ch]: histname = ibin.replace(ch,'') #Remove channel prefix e.g. mu6J2M->6J2M histname = histname + '/' + observable logging.debug("Observations filename: "+file.GetName()) logging.debug("Observations histname: "+histname) integral = file.Get(histname).Integral() logging.debug("Integral: "+str(integral)) obs[ch][ibin]=integral return obs def mcRate(ch,files,observable): ''' Get MC predictions for each process ''' logging.debug("----mcRate:-----") rate = {} logging.debug(files) for proc in proc_id.keys(): rate[proc]=getObservation(ch,files[proc],observable) return rate def printCardHeader(arguments): print >> arguments.outfile, '#',str(datetime.now()), arguments print >> arguments.outfile, '-'*100 print >> arguments.outfile, 'imax', len(binlist[arguments.channel]) print >> arguments.outfile, 'jmax', len(proc_id)-1 print >> arguments.outfile, 'kmax', '*' print >> arguments.outfile, '-'*100 def printShapeFilesBlock(arguments): print >> arguments.outfile, '-'*100 for ibin in binlist[arguments.channel]: histname = ibin.replace(arguments.channel,'') histname = histname + '/' + arguments.observable logging.debug(histname) print >> arguments.outfile, 'shapes', 'data_obs', ibin, arguments.data, histname for proc in proc_id.keys(): filename = arguments.sources[proc] logging.debug(filename) systname = ibin.replace(arguments.channel,'')+'_$SYSTEMATIC/'+arguments.observable print >> arguments.outfile, 'shapes', proc, ibin, \ filename, histname, systname print >> arguments.outfile, '-'*100 return def main(arguments): #pandas printing setting pd.set_option('expand_frame_repr', False) pd.set_option('max_columns', 999) #Read-in input ROOT files files = {} for proc in arguments.sources.keys(): files[proc] = ROOT.TFile.Open(arguments.sources[proc],"READ") printCardHeader(arguments) printShapeFilesBlock(arguments) #Get observations datafile = ROOT.TFile.Open(arguments.data,"READ") obs = getObservation(arguments.channel, datafile,arguments.observable) logging.debug( obs ) #Printout observation block to file obsline = pd.DataFrame(obs[arguments.channel], columns=binlist[arguments.channel], index=['observation']) print >> arguments.outfile, '-'*100 print >> arguments.outfile, 'bin', obsline print >> arguments.outfile, '-'*100 #Get MC rate predictions rate = mcRate(arguments.channel,files,arguments.observable) logging.debug( rate ) ch_dfs = [] for proc in proc_id.keys(): #Create new table for given process s = pd.DataFrame('NA', columns=binlist[arguments.channel], index=systtypelist[arguments.channel].keys() ) #Fill systematics desctiption for this process #Normalization df_update = pd.DataFrame.from_dict(syst_norm_size_list[arguments.channel][proc], orient='index') df_update.columns = binlist[arguments.channel] s.update(df_update) #Shape df_update = pd.DataFrame.from_dict(syst_shape_size_list[arguments.channel][proc], orient='index') df_update.columns = binlist[arguments.channel] s.update(df_update) #Add process labels and id (first and second line, respectively) processline = pd.DataFrame(proc, columns=binlist[arguments.channel], index=['process']) s = pd.concat([s.ix[:0], processline, s.ix[0:]]) processline = pd.DataFrame(proc_id[proc], columns=binlist[arguments.channel], index=['process ']) s = pd.concat([s.ix[:1], processline, s.ix[1:]]) rateline = pd.DataFrame(rate[proc][arguments.channel], columns=binlist[arguments.channel], index=['rate']) s = pd.concat([s.ix[:2], rateline, s.ix[2:]]) print arguments.channel, proc logging.debug(s) ch_dfs.append(s) result = pd.concat(ch_dfs,axis=1) #Add column with systematic type (normalization or shape) lam = lambda x: systtypelist[arguments.channel][x] if x in systtypelist[arguments.channel] else '' result.insert(0,' ',result.index.map(lam)) #Printout MC (rate and systematics) block to file print >> arguments.outfile, 'bin', result return 0 if __name__ == '__main__': start_time = time.time() parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--data', help="Data rootfile", required=True) parser.add_argument("--source", type=json.loads, dest='sources', help='json dictionary with input definition', required=True) parser.add_argument('--channel', help="channel",default='mu') parser.add_argument('--observable', help="observable",default='allSF/bdt') parser.add_argument('-o', '--outfile', help="Output file", default=sys.stdout, type=argparse.FileType('w')) parser.add_argument( '-d', '--debug', help="Print lots of debugging statements", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.WARNING, ) parser.add_argument( '-v', '--verbose', help="Be verbose", action="store_const", dest="loglevel", const=logging.INFO, ) args = parser.parse_args(sys.argv[1:]) print(args) logging.basicConfig(level=args.loglevel) logging.info( time.asctime() ) exitcode = main(args) logging.info( time.asctime() ) logging.info( 'TOTAL TIME IN MINUTES:' + str((time.time() - start_time) / 60.0)) sys.exit(exitcode)
1f1529473302b02d543365662b5ea486c153d200
0cf7dd2c3c0b28b52f1273e8fe2ea0a87cacc6af
/ToLeftandRight.py
b17d2c4f0c6445bb843c71a099e74b7f273f481e
[]
no_license
EngrDevDom/Everyday-Coding-in-Python
61b0e4fcbc6c7f399587deab2fa55763c9d519b5
93329ad485a25e7c6afa81d7229147044344736c
refs/heads/master
2023-02-25T05:04:50.051111
2021-01-30T02:43:40
2021-01-30T02:43:40
274,971,215
1
0
null
null
null
null
UTF-8
Python
false
false
422
py
# ToLeftandRight.py nums = [] num_of_space = 0 current_num = int(input("Enter a number: ")) nums.append(current_num) while True: num = int(input("Enter a number: ")) if num > current_num: num_of_space += 1 elif num == current_num: continue else: num_of_space -= 1 current_num = num nums.append(" " * num_of_space + str(num)) if num_of_space == 0: break for num in nums: print(num)
3cc3eff0e75bc844fb12fcaa253b0afbd4c3e476
1a6d5f58a5aaf478e3af1a880f155a2bcbd06aff
/PX4/MAVSDK-Python/offboard_velocity_body.py
d14407e6d1504bb49547099d1e336c087e9f2eaa
[ "MIT" ]
permissive
yingshaoxo/suicide-squad
5b8858376bffe9d80e66debbd75e83b6fb6f5b6e
cadbd0d48e860a8747b59190fc67a5a114c3462b
refs/heads/master
2020-11-24T02:46:38.604339
2019-10-29T05:47:44
2019-10-29T05:47:44
227,932,669
6
0
null
null
null
null
UTF-8
Python
false
false
3,055
py
#!/usr/bin/env python3 """ Some caveats when attempting to run the examples in non-gps environments: - `drone.action.arm()` will return a `COMMAND_DENIED` result because the action requires switching to LOITER mode first, something that is currently not supported in a non-gps environment. You will need to temporarily disable this part here: `https://github.com/mavlink/MAVSDK/blob/develop/plugins/action/action_impl.cpp#L61-L65` - `drone.offboard.stop()` will also return a `COMMAND_DENIED` result because it requires a mode switch to HOLD, something that is currently not supported in a non-gps environment. """ import asyncio from mavsdk import System from mavsdk import (OffboardError, VelocityBodyYawspeed) async def run(): """ Does Offboard control using velocity body coordinates. """ drone = System() await drone.connect(system_address="udp://:14540") # Set parameters await drone.param.set_float_param("MIS_TAKEOFF_ALT", 1.0) # set takeoff height to 1 meter await drone.param.set_int_param("COM_TAKEOFF_ACT", 0) # hold after takeoff await drone.param.set_int_param("COM_OBL_ACT", 0) # 0: land if lost offboard signal; 1: hold if lost offboard signal # Start parallel tasks asyncio.ensure_future(print_altitude(drone)) print("-- Arming") await drone.action.arm() print("-- Setting initial setpoint") await drone.offboard.set_velocity_body(VelocityBodyYawspeed(0.0, 0.0, 0.0, 0.0)) print("-- Starting offboard") try: await drone.offboard.start() except OffboardError as error: print(f"Starting offboard mode failed with error code: {error._result.result}") print("-- Disarming") await drone.action.disarm() return print("-- Turn clock-wise and climb") await drone.offboard.set_velocity_body(VelocityBodyYawspeed(0.0, 0.0, -1, 0.0)) await asyncio.sleep(5) print("-- Turn clock-wise and climb") await drone.offboard.set_velocity_body(VelocityBodyYawspeed(0.0, 0.1, 0.0, 0.0)) await asyncio.sleep(5) print("-- Wait for a bit") await drone.offboard.set_velocity_body(VelocityBodyYawspeed(0.0, -0.1, 0.0, 0.0)) await asyncio.sleep(5) print("-- Wait for a bit") await drone.offboard.set_velocity_body(VelocityBodyYawspeed(0.0, 0.0, 0.0, 2.0)) await asyncio.sleep(20) print("-- Stopping offboard") try: await drone.offboard.stop() except OffboardError as error: print(f"Stopping offboard mode failed with error code: {error._result.result}") print("-- Landing") await drone.action.land() async def print_altitude(drone): """ Prints the altitude when it changes """ previous_altitude = None async for position in drone.telemetry.position(): altitude = round(position.relative_altitude_m) if altitude != previous_altitude: previous_altitude = altitude print(f"Altitude: {altitude}") if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(run())
37448d7967ed493b56ddd9b94af1582157f26f15
3d016301728a4428ec466653587f0f80c4f7eb11
/plugin/lighthouse/metadata.py
ea0afcf3dc444279943f34cbf0dc8925b321eb9b
[ "MIT" ]
permissive
MosheWagner/lighthouse
bcb16e24612645cdcf441011b430d6b8408b0687
ca1454b2680b31d882339ff56efd34b546ba908d
refs/heads/master
2020-04-26T23:50:43.001011
2019-03-05T09:32:30
2019-03-05T09:32:30
173,915,816
2
0
MIT
2019-03-05T09:26:59
2019-03-05T09:26:55
Python
UTF-8
Python
false
false
35,794
py
import time import Queue import bisect import logging import weakref import threading import collections from lighthouse.util.misc import * from lighthouse.util.disassembler import disassembler logger = logging.getLogger("Lighthouse.Metadata") #------------------------------------------------------------------------------ # Metadata #------------------------------------------------------------------------------ # # To aid in performance, Lighthouse lifts and indexes an in-memory limited # representation of the disassembler's open database. This is commonly # referred to as 'metadata' throughout this codebase. # # Once built, the lifted metadata cache stands completely independent of # the disassembler. This effectively eliminates the need for Lighthouse to # communicate with the underlying disassembler / API (which is slow) when # mapping coverage, or doing coverage composition logic. # # With this model, we have been able to move the heavy director based # coverage composition logic to python-only threads without disrupting the # user, or IDA. (added in v0.4.0) # # However, there are two main caveats of this model - # # 1. The cached 'metadata' representation may not always be true to state # of the database. For example, if the user defines/undefines functions, # the metadata cache will not be aware of such changes. # # Lighthouse will try to update the director's metadata cache when # applicable, but there are instances when it will be in the best # interest of the user to manually trigger a refresh of the metadata. # # 2. Building the metadata comes with an upfront cost, but this cost has # been reduced as much as possible. For example, generating metadata for # a database with ~17k functions, ~95k nodes (basic blocks), and ~563k # instructions takes only ~6 seconds. # # This will be negligible for small-medium sized databases, but may still # be jarring for larger databases. # # Ultimately, this model provides us a more responsive user experience at # the expense of the occasional inaccuracies that can be corrected by # reasonably low cost refresh. # #------------------------------------------------------------------------------ # Database Metadata #------------------------------------------------------------------------------ class DatabaseMetadata(object): """ Database level metadata cache. """ def __init__(self): # name & imagebase of the executable this metadata is based on self.filename = "" self.imagebase = -1 # database metadata cache status self.cached = False # the cache of key database structures self.nodes = {} self.functions = {} self.instructions = [] # internal members to help index & navigate the cached metadata self._stale_lookup = False self._name2func = {} self._last_node = [] # HACK: blank iterable for now self._node_addresses = [] self._function_addresses = [] # placeholder attribute for disassembler event hooks self._rename_hooks = None # metadata callbacks (see director for more info) self._function_renamed_callbacks = [] # asynchronous metadata collection thread self._refresh_worker = None self._stop_threads = False def terminate(self): """ Cleanup & terminate the metadata object. """ self.abort_refresh(join=True) if self._rename_hooks: self._rename_hooks.unhook() #-------------------------------------------------------------------------- # Providers #-------------------------------------------------------------------------- def get_instructions_slice(self, start_address, end_address): """ Get the instructions addresses that fall within a given range. """ index_start = bisect.bisect_left(self.instructions, start_address) index_end = bisect.bisect_left(self.instructions, end_address) return self.instructions[index_start:index_end] def get_node(self, address): """ Get the node (basic block) metadata for a given address. """ assert not self._stale_lookup, "Stale metadata is unsafe to use..." # fast path, effectively a LRU cache of 1 ;P if address in self._last_node: return self._last_node # # use the lookup lists to do a 'fuzzy' lookup of the given address, # locating the index of the closest known node address (rounding down) # index = bisect.bisect_right(self._node_addresses, address) - 1 node_metadata = self.nodes.get(self._node_addresses[index], None) # # if the given address does not fall within the selected node (or the # node simply does not exist), then we have no match/metadata to return # if not (node_metadata and address in node_metadata): return None # # if the selected node metadata contains the given target address, it # is a positive hit and we should cache this node (in last_node) for # faster consecutive lookups # self._last_node = node_metadata # return the located node_metadata return node_metadata def get_function(self, address): """ Get the function metadata for a given address. """ node_metadata = self.get_node(address) if not node_metadata: return None return node_metadata.function def get_function_by_name(self, function_name): """ Get the function metadata for a given function name. """ try: return self.functions[self._name2func[function_name]] except (IndexError, KeyError): return None def get_function_by_index(self, index): """ Get the function metadata for a given function index. """ try: return self.functions[self._function_addresses[index]] except (IndexError, KeyError): return None def get_function_index(self, address): """ Get the function index for a given address. """ return self._function_addresses.index(address) def get_closest_function(self, address): """ Get the function metadata for the function closest to the give address. """ # sanity check if not self._function_addresses: return None # get the closest insertion point of the given address index = bisect.bisect_left(self._function_addresses, address) # the given address is a min, return the first known function if index == 0: return self.functions[self._function_addresses[0]] # given address is a max, return the last known function if index == len(self._function_addresses): return self.functions[self._function_addresses[-1]] # select the two candidate addresses before = self._function_addresses[index - 1] after = self._function_addresses[index] # return the function closest to the given address if after - address < address - before: return self.functions[after] else: return self.functions[before] def flatten_blocks(self, basic_blocks): """ Flatten a list of basic blocks (address, size) to instruction addresses. This function provides a way to convert a list of (address, size) basic block entries into a list of individual instruction (or byte) addresses based on the current metadata. """ output = [] for address, size in basic_blocks: instructions = self.get_instructions_slice(address, address+size) output.extend(instructions) return output def is_big(self): """ Return a bool indicating whether we think the database is 'big'. """ return len(self.functions) > 50000 #-------------------------------------------------------------------------- # Refresh #-------------------------------------------------------------------------- def refresh(self, function_addresses=None, progress_callback=None): """ Request an asynchronous refresh of the database metadata. TODO/FUTURE: we should make a synchronous refresh available """ assert self._refresh_worker == None, 'Refresh already running' result_queue = Queue.Queue() # # reset the async abort/stop flag that can be used used to cancel the # ongoing refresh task # self._stop_threads = False # # kick off an asynchronous metadata collection task # self._refresh_worker = threading.Thread( target=self._async_refresh, args=(result_queue, function_addresses, progress_callback,) ) self._refresh_worker.start() # # immediately return a queue to the caller which it can use to listen # on and wait for a refresh completion message # return result_queue def abort_refresh(self, join=False): """ Abort an asynchronous refresh. To guarantee an asynchronous refresh has been canceled, the caller can optionally wait for the result_queue from refresh() to return 'None'. Alternatively, the `join` parameter can be set to `True`, making this function block until the refresh is canceled. """ # # the refresh worker (if it exists) can be ripped away at any time. # take a local reference to avoid a double fetch problems # worker = self._refresh_worker # # if there is no worker present or running (cleaning up?) there is # nothing for us to abort. Simply reset the abort flag (just in case) # and return immediately # if not (worker and worker.is_alive()): self._stop_threads = False self._refresh_worker = None return # signal the worker thread to stop self._stop_threads = True # if requested, don't return until the worker thread has stopped... if join: worker.join() def _refresh_instructions(self): """ Refresh the list of database instructions (from function metadata). """ instructions = [] for function_metadata in self.functions.itervalues(): instructions.extend(function_metadata.instructions) instructions = list(set(instructions)) instructions.sort() # commit the updated instruction list self.instructions = instructions def _refresh_lookup(self): """ Refresh the internal fast lookup address lists. Fast lookup lists are simply sorted address lists of function metadata, node metadata, or possibly other forms of metadata (in the future). We create sorted lists of metadata object addresses so that we can use them for fast, fuzzy address lookup (eg, bisect). c.f: - get_node(ea) - get_function(ea) """ self._last_node = [] self._name2func = { f.name: f.address for f in self.functions.itervalues() } self._node_addresses = sorted(self.nodes.keys()) self._function_addresses = sorted(self.functions.keys()) self._stale_lookup = False #-------------------------------------------------------------------------- # Metadata Collection #-------------------------------------------------------------------------- @not_mainthread def _async_refresh(self, result_queue, function_addresses, progress_callback): """ The main routine for the asynchronous metadata refresh worker. TODO/FUTURE: this should be cleaned up / refactored """ # pause our rename listening hooks (more performant collection) if self._rename_hooks: self._rename_hooks.unhook() # # if the caller provided no function addresses to target for refresh, # we will perform a complete metadata refresh of all database defined # functions. let's retrieve that list from the disassembler now... # if not function_addresses: function_addresses = disassembler.execute_read( disassembler.get_function_addresses )() # refresh database properties that we wish to cache self._async_refresh_properties() # refresh the core database metadata asynchronously completed = self._async_collect_metadata( function_addresses, progress_callback ) # regenerate the instruction list from collected metadata self._refresh_instructions() # refresh the internal function/node fast lookup lists self._refresh_lookup() # # NOTE: # # creating the hooks inline like this is less than ideal, but they # they have been moved here (from the metadata constructor) to # accomodate shortcomings of the Binary Ninja API. # # TODO/FUTURE/V35: # # it would be nice to move these back to the constructor once the # Binary Ninja API allows us to detect BV / sessions as they are # created, and able to load plugins on such events. # #---------------------------------------------------------------------- # create the disassembler hooks to listen for rename events if not self._rename_hooks: self._rename_hooks = disassembler.create_rename_hooks() self._rename_hooks.renamed = self._name_changed self._rename_hooks.metadata = weakref.proxy(self) #---------------------------------------------------------------------- # reinstall the rename listener hooks now that the refresh is done self._rename_hooks.hook() # send the refresh result (good/bad) incase anyone is still listening if completed: self.cached = True result_queue.put(True) else: result_queue.put(False) # clean up our thread's reference as it is basically done/dead self._refresh_worker = None # thread exit... return @disassembler.execute_read def _async_refresh_properties(self): """ Refresh a selection of interesting database properties. """ self.filename = disassembler.get_root_filename() self.imagebase = disassembler.get_imagebase() @not_mainthread def _async_collect_metadata(self, function_addresses, progress_callback): """ Collect metadata from the underlying database (interruptable). """ CHUNK_SIZE = 150 completed = 0 start = time.time() #---------------------------------------------------------------------- for addresses_chunk in chunks(function_addresses, CHUNK_SIZE): # # collect function metadata from the open database in groups of # CHUNK_SIZE. collect_function_metadata() takes a list of function # addresses and collects their metadata in a thread-safe manner # fresh_metadata = collect_function_metadata(addresses_chunk) # update our database metadata cache with the new function metadata self._update_functions(fresh_metadata) # report incremental progress to an optional progress_callback if progress_callback: completed += len(addresses_chunk) progress_callback(completed, len(function_addresses)) # if the refresh was canceled, stop collecting metadata and bail if self._stop_threads: return False # sleep some so we don't choke the mainthread time.sleep(.0015) #---------------------------------------------------------------------- end = time.time() logger.debug("Metadata collection took %s seconds" % (end - start)) # refresh completed normally / was not interrupted return True def _update_functions(self, fresh_metadata): """ Update stored function metadata with the given fresh metadata. Returns a map of {address: function metadata} that has been updated. """ blank_function = FunctionMetadata(-1) # # the first step is to loop through the 'fresh' function metadata that # has been given to us, and identify what is truly new or different # from any existing metadata we hold. # for function_address, new_metadata in fresh_metadata.iteritems(): # extract the 'old' metadata from the database metadata cache old_metadata = self.functions.get(function_address, blank_function) # # if the fresh metadata for this function is identical to the # existing metadata we have collected for it, there's nothing # else for us to do -- just ignore it. # if old_metadata == new_metadata: continue # delete nodes that explicitly no longer exist old = old_metadata.nodes.viewkeys() - new_metadata.nodes.viewkeys() for node_address in old: del self.nodes[node_address] # # the newly collected metadata for a given function is empty, this # indicates that the function has been deleted. we go ahead and # remove its old function metadata from the db metadata entirely # if new_metadata.empty: del self.functions[function_address] continue # add or overwrite the new/updated basic blocks self.nodes.update(new_metadata.nodes) # save the new/updated function self.functions[function_address] = new_metadata # # since the node / function metadata cache has probably changed, we # will need to refresh the internal fast lookup lists. this flag is # only really used for debugging, and will probably be removed # in the TODO/FUTURE collection refactor (v0.9?) # self._stale_lookup = True #-------------------------------------------------------------------------- # Signal Handlers #-------------------------------------------------------------------------- @mainthread def _name_changed(self, address, new_name, local_name=None): """ Handler for rename event in IDA. TODO/FUTURE: refactor this to not be so IDA-specific """ # we should never care about local renames (eg, loc_40804b), ignore if local_name or new_name.startswith("loc_"): return 0 # get the function that this address falls within function = self.get_function(address) # if the address does not fall within a function (might happen?), ignore if not function: return 0 # # ensure the renamed address matches the function start before # renaming the function in our metadata cache. # # I am not sure when this would not be the case (globals? maybe) # but I'd rather not find out. # if address != function.address: return # if the name isn't actually changing (misfire?) nothing to do if new_name == function.name: return logger.debug("Name changing @ 0x%X" % address) logger.debug(" Old name: %s" % function.name) logger.debug(" New name: %s" % new_name) # rename the function, and notify metadata listeners #function.name = new_name function.refresh_name() self._notify_function_renamed() # necessary for IDP/IDB_Hooks return 0 #-------------------------------------------------------------------------- # Callbacks #-------------------------------------------------------------------------- def function_renamed(self, callback): """ Subscribe a callback for function rename events. """ register_callback(self._function_renamed_callbacks, callback) def _notify_function_renamed(self): """ Notify listeners of a function rename event. """ notify_callback(self._function_renamed_callbacks) #------------------------------------------------------------------------------ # Function Metadata #------------------------------------------------------------------------------ class FunctionMetadata(object): """ Function level metadata cache. """ def __init__(self, address): # function metadata self.address = address self.name = None # node metadata self.nodes = {} self.edges = collections.defaultdict(list) # fixed/baked/computed metrics self.size = 0 self.node_count = 0 self.edge_count = 0 self.instruction_count = 0 self.cyclomatic_complexity = 0 # collect metdata from the underlying database if address != -1: self._build_metadata() #-------------------------------------------------------------------------- # Properties #-------------------------------------------------------------------------- @property def instructions(self): """ Return the instruction addresses in this function. """ return set([ea for node in self.nodes.itervalues() for ea in node.instructions]) @property def empty(self): """ Return a bool indicating whether the object is populated. """ return len(self.nodes) == 0 #-------------------------------------------------------------------------- # Public #-------------------------------------------------------------------------- @disassembler.execute_read def refresh_name(self): """ Refresh the function name against the open database. """ self.name = disassembler.get_function_name_at(self.address) #-------------------------------------------------------------------------- # Metadata Population #-------------------------------------------------------------------------- def _build_metadata(self): """ Collect function metadata from the underlying database. """ self.name = disassembler.get_function_name_at(self.address) self._refresh_nodes() self._finalize() def _refresh_nodes(self): """ This will be replaced with a disassembler-specific function at runtime. NOTE: Read the 'MONKEY PATCHING' section at the end of this file. """ raise RuntimeError("This function should have been monkey patched...") def _ida_refresh_nodes(self): """ Refresh function node metadata against an open IDA database. """ function_metadata = self function_metadata.nodes = {} # get function & flowchart object from IDA database function = idaapi.get_func(self.address) flowchart = idaapi.qflow_chart_t("", function, idaapi.BADADDR, idaapi.BADADDR, 0) # # now we will walk the flowchart for this function, collecting # information on each of its nodes (basic blocks) and populating # the function & node metadata objects. # for node_id in xrange(flowchart.size()): node = flowchart[node_id] # NOTE/COMPAT if disassembler.USING_IDA7API: node_start = node.start_ea node_end = node.end_ea else: node_start = node.startEA node_end = node.endEA # # the node current node appears to have a size of zero. This means # that another flowchart / function owns this node so we can just # ignore it... # if node_start == node_end: continue # create a new metadata object for this node node_metadata = NodeMetadata(node_start, node_end, node_id) # # establish a relationship between this node (basic block) and # this function metadata (its parent) # node_metadata.function = function_metadata function_metadata.nodes[node_start] = node_metadata # compute all of the edges between nodes in the current function for node_metadata in function_metadata.nodes.itervalues(): edge_src = node_metadata.instructions[-1] for edge_dst in idautils.CodeRefsFrom(edge_src, True): if edge_dst in function_metadata.nodes: function_metadata.edges[edge_src].append(edge_dst) def _binja_refresh_nodes(self): """ Refresh function node metadata against an open Binary Ninja database. """ function_metadata = self function_metadata.nodes = {} # get the function from the Binja database function = disassembler.bv.get_function_at(self.address) # # now we will walk the flowchart for this function, collecting # information on each of its nodes (basic blocks) and populating # the function & node metadata objects. # for node in function.basic_blocks: # create a new metadata object for this node node_metadata = NodeMetadata(node.start, node.end, node.index) # # establish a relationship between this node (basic block) and # this function metadata (its parent) # node_metadata.function = function_metadata function_metadata.nodes[node.start] = node_metadata # # enumerate the edges produced by this node (basic block) with a # destination that falls within this function. # edge_src = node_metadata.instructions[-1] for edge in node.outgoing_edges: function_metadata.edges[edge_src].append(edge.target.start) def _compute_complexity(self): """ Walk the function CFG to determine approximate cyclomatic complexity. The purpose of this function is mostly to account for IDA's inclusion of additional floating nodes in function flowcharts. These blocks tend to be for exception handlers, but can manifest in various other cases. By walking the function CFG, we can identify these 'disembodied' blocks that have no incoming edge and ignore them in our cyclomatic complexity calculation. Not doing so will radically throw off the cyclomatic complexity score. """ confirmed_nodes = set() confirmed_edges = {} # # to_walk contains a list of node addresses. we draw from this list # one at a time, walking across all of the outgoing edges from the # current node (node_address) to walk the function graph # to_walk = set([self.address]) while to_walk: # this is the address of the node we will 'walk' from node_address = to_walk.pop() confirmed_nodes.add(node_address) # now we loop through all edges that originate from this block current_src = self.nodes[node_address].instructions[-1] for current_dest in self.edges[current_src]: # ignore nodes we have already visited if current_dest in confirmed_nodes: continue # # it appears that this node has not been visited yet, so we # will want to walk its edges sometime soon to continue the # graph exploration # to_walk.add(current_dest) # update the map of confirmed (walked) edges confirmed_edges[current_src] = self.edges.pop(current_src) # compute the final cyclomatic complexity for the function num_edges = sum(len(x) for x in confirmed_edges.itervalues()) num_nodes = len(confirmed_nodes) return num_edges - num_nodes + 2 def _finalize(self): """ Finalize function metadata for use. """ self.size = sum(node.size for node in self.nodes.itervalues()) self.node_count = len(self.nodes) self.edge_count = len(self.edges) self.instruction_count = sum(node.instruction_count for node in self.nodes.itervalues()) self.cyclomatic_complexity = self._compute_complexity() #-------------------------------------------------------------------------- # Operator Overloads #-------------------------------------------------------------------------- def __eq__(self, other): """ Compute function metadata equality (==) """ result = True result &= self.name == other.name result &= self.size == other.size result &= self.address == other.address result &= self.node_count == other.node_count result &= self.instruction_count == other.instruction_count result &= self.nodes.viewkeys() == other.nodes.viewkeys() return result #------------------------------------------------------------------------------ # Node Metadata #------------------------------------------------------------------------------ class NodeMetadata(object): """ Node (basic block) level metadata cache. """ def __init__(self, start_ea, end_ea, node_id=None): # node metadata self.size = end_ea - start_ea self.address = start_ea self.instruction_count = 0 # flowchart node_id self.id = node_id # parent function_metadata self.function = None # instruction addresses self.instructions = [] #---------------------------------------------------------------------- # collect metadata from the underlying database self._build_metadata() #-------------------------------------------------------------------------- # Metadata Population #-------------------------------------------------------------------------- def _build_metadata(self): """ This will be replaced with a disassembler-specific function at runtime. NOTE: Read the 'MONKEY PATCHING' section at the end of this file. """ raise RuntimeError("This function should have been monkey patched...") def _ida_build_metadata(self): """ Collect node metadata from the underlying database. """ current_address = self.address node_end = self.address + self.size # # loop through the node's entire address range and count its # instructions. Note that we are assuming that every defined # 'head' (in IDA) is an instruction # while current_address < node_end: instruction_size = idaapi.get_item_end(current_address) - current_address self.instructions.append(current_address) current_address += instruction_size # save the number of instructions in this block self.instruction_count = len(self.instructions) def _binja_build_metadata(self): """ Collect node metadata from the underlying database. """ bv = disassembler.bv current_address = self.address node_end = self.address + self.size # # Note that we 'iterate over' the instructions using their byte length # because it is far more performant than Binary Ninja's instruction # generators which also produce instruction text, tokens etc... # while current_address < node_end: self.instructions.append(current_address) current_address += bv.get_instruction_length(current_address) # save the number of instructions in this block self.instruction_count = len(self.instructions) #-------------------------------------------------------------------------- # Operator Overloads #-------------------------------------------------------------------------- def __str__(self): """ Printable NodeMetadata. """ output = "" output += "Node 0x%08X Info:\n" % self.address output += " Address: 0x%08X\n" % self.address output += " Size: %u\n" % self.size output += " Instruction Count: %u\n" % self.instruction_count output += " Id: %u\n" % self.id output += " Function: %s\n" % self.function output += " Instructions: %s" % self.instructions return output def __contains__(self, address): """ Overload python's 'in' keyword for this object. This allows us to use `in` to check if an address falls within a node. """ if self.address <= address < self.address + self.size: return True return False def __eq__(self, other): """ Compute node equality (==) """ result = True result &= self.size == other.size result &= self.address == other.address result &= self.instruction_count == other.instruction_count result &= self.function == other.function result &= self.id == other.id return result #------------------------------------------------------------------------------ # Async Metadata Helpers #------------------------------------------------------------------------------ @disassembler.execute_read def collect_function_metadata(function_addresses): """ Collect function metadata for a list of addresses. """ return { ea: FunctionMetadata(ea) for ea in function_addresses } @disassembler.execute_ui def metadata_progress(completed, total): """ Handler for metadata collection callback, updates progress dialog. """ disassembler.replace_wait_box( "Collected metadata for %u/%u Functions" % (completed, total) ) #------------------------------------------------------------------------------ # MONKEY PATCHING #------------------------------------------------------------------------------ # # We use 'monkey patching' to modify the Metadata class definitions at # runtime. Specifically, we use it to swap in metadata collection routines # that have been carefully tailored for a given disassembler. # # The reason for this is that the metadata collection code is very # disassembler-specific, and that it needs to be as performant as possible. # Shimming metadata collection code to be disassembler agnostic is going # to be messy and slow. # if disassembler.NAME == "IDA": import idaapi import idautils FunctionMetadata._refresh_nodes = FunctionMetadata._ida_refresh_nodes NodeMetadata._build_metadata = NodeMetadata._ida_build_metadata elif disassembler.NAME == "BINJA": import binaryninja FunctionMetadata._refresh_nodes = FunctionMetadata._binja_refresh_nodes NodeMetadata._build_metadata = NodeMetadata._binja_build_metadata else: raise NotImplementedError("DISASSEMBLER-SPECIFIC SHIM MISSING")
6c78fccd11b2ca769683b6527aa888e158fea647
d9e26e516ab3863b6e7d00c4e3cdecf1af7028eb
/src/oaklib/io/streaming_nl_writer.py
ecde169932c3e55baa59bfdfd1aef1e274f6109a
[ "Apache-2.0" ]
permissive
INCATools/ontology-access-kit
2f08a64b7308e8307d1aaac2a81764e7d98b5928
8d2a124f7af66fe2e796f9e0ece55585438796a5
refs/heads/main
2023-08-30T14:28:57.201198
2023-08-29T17:40:19
2023-08-29T17:40:19
475,072,415
67
15
Apache-2.0
2023-09-07T01:06:04
2022-03-28T15:50:45
Jupyter Notebook
UTF-8
Python
false
false
1,152
py
from dataclasses import dataclass from linkml_runtime.utils.yamlutils import YAMLRoot from oaklib.datamodels import obograph from oaklib.io.streaming_writer import StreamingWriter from oaklib.utilities.nlp.natual_language_generation import NaturalLanguageGenerator @dataclass class StreamingNaturalLanguageWriter(StreamingWriter): """ A writer that streams basic line by line reporting info """ natural_language_generator: NaturalLanguageGenerator = None def emit_curie(self, curie, label=None, **kwargs): self._ensure_init() self.file.write(self.natural_language_generator.render_entity(curie)) self.file.write("\n") def emit_obj(self, obj: YAMLRoot): self._ensure_init() if isinstance(obj, obograph.LogicalDefinitionAxiom): self.file.write(self.natural_language_generator.render_logical_definition(obj)) self.file.write("\n") else: raise NotImplementedError def _ensure_init(self): if self.natural_language_generator is None: self.natural_language_generator = NaturalLanguageGenerator(self.ontology_interface)
3cc7c17ee582aaba4ab4d5771286ac2e1ae8b9e8
1b45d1162bd60a356844fc4dced068da2e6cc438
/Arrays/Merge.py
8ee66ae39f1687b433e476fa1b9e3be1d2e31015
[ "MIT" ]
permissive
AnkitAvi11/Data-Structures-And-Algorithms
de9584e439861254cdce265af789c8b484c01c69
703f78819a41d4dd88caf71156a4a515651edc1b
refs/heads/master
2023-02-19T21:53:39.405934
2021-01-24T17:27:21
2021-01-24T17:27:21
297,752,655
6
3
MIT
2021-01-24T17:27:22
2020-09-22T19:33:55
Python
UTF-8
Python
false
false
669
py
""" QUESTION STATEMENT : MERGE TWO SORTED ARRAYS WITHOUT USING ANY EXTRA SPACE example : arr1 = {1,3,5,7,9} size = n arr2 = {2,4,6,8,10} size = m arr1 after merging = {1,2,3,4,5,6,7,8,9,10} """ def mergeArrays(arr : list, arr2 : list) : i = 0;j = 0; while i < len(arr) : # O(n) if arr[i] > arr2[j] : arr[i], arr2[j] = arr2[j], arr[i] # swapping the elements arr2.sort() # O(mlog2m) i+=1 # total complexity = (n*m)log2m for el in arr2 : arr.append(el) if __name__ == '__main__' : arr = [1,3,5,7,9] arr2 = [2,4,6,8,10] mergeArrays(arr, arr2) print(arr)
aa27042ddeb0ddff82f1c8f4312778d7feb8da3e
cee65c4806593554662330368c799c14ec943454
/src/sqlvm-preview/azext_sqlvm_preview/vendored_sdks/sqlvirtualmachine/models/wsfc_domain_profile_py3.py
0d7864768ad80fab17f0ea7f8ca57ea27cec3b41
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
azclibot/azure-cli-extensions
d5d1a4ecdfc87fd79f5ad042fb85cdbf881897d2
c230646258d4b56efb7d44eb7a0230f2943da6f6
refs/heads/master
2023-08-28T03:55:02.311902
2019-04-04T16:05:45
2019-04-04T16:05:45
179,548,695
1
1
MIT
2021-07-28T15:26:17
2019-04-04T17:54:39
Python
UTF-8
Python
false
false
3,274
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class WsfcDomainProfile(Model): """Active Directory account details to operate Windows Server Failover Cluster. :param domain_fqdn: Fully qualified name of the domain. :type domain_fqdn: str :param ou_path: Organizational Unit path in which the nodes and cluster will be present. :type ou_path: str :param cluster_bootstrap_account: Account name used for creating cluster (at minimum needs permissions to 'Create Computer Objects' in domain). :type cluster_bootstrap_account: str :param cluster_operator_account: Account name used for operating cluster i.e. will be part of administrators group on all the participating virtual machines in the cluster. :type cluster_operator_account: str :param sql_service_account: Account name under which SQL service will run on all participating SQL virtual machines in the cluster. :type sql_service_account: str :param file_share_witness_path: Optional path for fileshare witness. :type file_share_witness_path: str :param storage_account_url: Fully qualified ARM resource id of the witness storage account. :type storage_account_url: str :param storage_account_primary_key: Primary key of the witness storage account. :type storage_account_primary_key: str """ _attribute_map = { 'domain_fqdn': {'key': 'domainFqdn', 'type': 'str'}, 'ou_path': {'key': 'ouPath', 'type': 'str'}, 'cluster_bootstrap_account': {'key': 'clusterBootstrapAccount', 'type': 'str'}, 'cluster_operator_account': {'key': 'clusterOperatorAccount', 'type': 'str'}, 'sql_service_account': {'key': 'sqlServiceAccount', 'type': 'str'}, 'file_share_witness_path': {'key': 'fileShareWitnessPath', 'type': 'str'}, 'storage_account_url': {'key': 'storageAccountUrl', 'type': 'str'}, 'storage_account_primary_key': {'key': 'storageAccountPrimaryKey', 'type': 'str'}, } def __init__(self, *, domain_fqdn: str=None, ou_path: str=None, cluster_bootstrap_account: str=None, cluster_operator_account: str=None, sql_service_account: str=None, file_share_witness_path: str=None, storage_account_url: str=None, storage_account_primary_key: str=None, **kwargs) -> None: super(WsfcDomainProfile, self).__init__(**kwargs) self.domain_fqdn = domain_fqdn self.ou_path = ou_path self.cluster_bootstrap_account = cluster_bootstrap_account self.cluster_operator_account = cluster_operator_account self.sql_service_account = sql_service_account self.file_share_witness_path = file_share_witness_path self.storage_account_url = storage_account_url self.storage_account_primary_key = storage_account_primary_key
d905ee37aa6ecea6a752fbc54249897a44a54d0e
66e6360325b781ed0791868765f1fd8a6303726f
/TB2009/WorkDirectory/5223 All Charges/ExportCharge.py
0256e8dcc77eb233c47742a482097e9b389b68a6
[]
no_license
alintulu/FHead2011PhysicsProject
c969639b212d569198d8fce2f424ce866dcfa881
2568633d349810574354ad61b0abab24a40e510e
refs/heads/master
2022-04-28T14:19:30.534282
2020-04-23T17:17:32
2020-04-23T17:17:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,613
py
import FWCore.ParameterSet.Config as cms process = cms.Process("PrintCharges") process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(50000)) process.source = cms.Source("HcalTBSource", fileNames = cms.untracked.vstring('file:/tmp/chenyi/HTB_.root'), streams = cms.untracked.vstring('HCAL_Trigger','HCAL_SlowData','HCAL_QADCTDC','HCAL_DCC021','Chunk699') ) process.hcal_db_producer = cms.ESProducer("HcalDbProducer", dump = cms.untracked.vstring(''), file = cms.untracked.string('') ) process.es_hardcode = cms.ESSource("HcalHardcodeCalibrations", toGet = cms.untracked.vstring('GainWidths','PedestalWidths','QIEData','ChannelQuality','ZSThresholds','RespCorrs') ) process.es_ascii = cms.ESSource("HcalTextCalibrations", input = cms.VPSet( cms.PSet( object = cms.string('ElectronicsMap'), file = cms.FileInPath('emap_TB2009_A.txt') ), cms.PSet( object = cms.string('Pedestals'), file = cms.FileInPath('pedestals_TB2009_.txt') ), cms.PSet( object = cms.string('Gains'), file = cms.FileInPath('gains_TB2009_LMIP_newpedestal.txt') ) ) ) process.load("FWCore.MessageLogger.MessageLogger_cfi") process.MessageLogger.cerr.FwkReport.reportEvery = 1000 process.tbUnpacker = cms.EDFilter("HcalTBObjectUnpacker", IncludeUnmatchedHits = cms.untracked.bool(False), HcalTDCFED = cms.untracked.int32(8), HcalQADCFED = cms.untracked.int32(8), HcalSlowDataFED = cms.untracked.int32(3), HcalTriggerFED = cms.untracked.int32(1), HcalVLSBFED = cms.untracked.int32(699), ConfigurationFile = cms.untracked.string('configQADCTDC_TB2009.txt') ) process.hcalDigis = cms.EDFilter("HcalRawToDigi", UnpackZDC = cms.untracked.bool(True), FilterDataQuality = cms.bool(True), ExceptionEmptyData = cms.untracked.bool(True), InputLabel = cms.InputTag("source"), ComplainEmptyData = cms.untracked.bool(False), UnpackCalib = cms.untracked.bool(False), firstSample = cms.int32(0), lastSample = cms.int32(9), FEDs = cms.untracked.vint32(21), HcalFirstFED = cms.untracked.int32(21) ) process.load("RecoLocalCalo.HcalRecProducers.HcalSimpleReconstructor_hbhe_cfi") process.hbhereco.firstSample = 5 process.hbhereco.samplesToAdd = 4 process.options = cms.untracked.PSet( Rethrow = cms.untracked.vstring('ProductNotFound', 'TooManyProducts', 'TooFewProducts') ) process.triggerfilter = cms.EDFilter("TriggerFilter", allowBeamTrigger = cms.untracked.bool(True), allowOutOfSpillPedestalTrigger = cms.untracked.bool(False), allowOthers = cms.untracked.bool(False) ) process.oneparticle = cms.EDFilter("SingleTowerParticleFilter", particleNumber = cms.untracked.int32(1) ) process.muonveto = cms.EDFilter("MuonVetoFilter") process.export = cms.EDAnalyzer("ExportChargeAnalyzer", normalModule = cms.untracked.string('hbhereco') ) process.vlsbinfo = cms.EDProducer("VLSBInformationProducer", minSample = cms.untracked.uint32(0), maxSample = cms.untracked.uint32(31), baselineSamples = cms.untracked.uint32(2), useMotherBoard0 = cms.untracked.bool(True), useMotherBoard1 = cms.untracked.bool(True), useMotherBoard2 = cms.untracked.bool(False), useMotherBoard3 = cms.untracked.bool(True), usePedestalMean = cms.untracked.bool(False), mip = cms.untracked.string('MIP_EarlyRejection_Median.txt'), adcMap = cms.untracked.string('FinalAdcMapping_All.txt'), beamEnergy = cms.untracked.double() ) process.vlsbreco = cms.EDProducer("HcalTBVLSBReconstructor", minSample = cms.untracked.uint32(0), maxSample = cms.untracked.uint32(31), mipFileName = cms.untracked.string("MIP_EarlyRejection_Median.txt"), adcMapFileName = cms.untracked.string("FinalAdcMapping_All.txt") ) process.energydistribution = cms.EDAnalyzer("FillRHEnergyDistributionAnalyzer", vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco"), output = cms.untracked.string("EnergyDistribution_ABC_.root") ) process.timecut = cms.EDFilter("HighestSampleTimeFilter", minimum = cms.untracked.double(7.5), threshold = cms.untracked.double(100) ) process.hitcut = cms.EDFilter("HitXFilter", maximum = cms.untracked.double(-5) ) process.mincut = cms.EDFilter("RHTotalEnergyCut", minimum = cms.untracked.double(), vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") ) process.maxcut = cms.EDFilter("RHTotalEnergyCut", minimum = cms.untracked.double(), vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") ) process.merge = cms.EDProducer("CombineCollectionProducer", vlsbModule = cms.untracked.string("vlsbreco"), normalModule = cms.untracked.string("hbhereco") # interCalibration = cms.untracked.string("InterCalibration_Secondary.txt") ) process.export = cms.EDAnalyzer("CExportChargeAnalyzer", moduleName = cms.untracked.string('merge'), simplified = cms.untracked.bool(True), exportVlsb = cms.untracked.bool(True) ) process.runinfo = cms.EDProducer("RunInformationProducer", beamEnergy = cms.untracked.double() ) process.p = cms.Path( process.tbUnpacker * process.vlsbinfo * process.runinfo * process.vlsbreco * process.hcalDigis * process.hbhereco * process.triggerfilter * process.oneparticle * process.muonveto * process.timecut * process.hitcut * process.mincut * ~process.maxcut * process.merge * process.export )
c477af6c57995ecddcbfdc254fe373d15f3999c8
321b4ed83b6874eeb512027eaa0b17b0daf3c289
/252/252.meeting-rooms.234346443.Runtime-Error.leetcode.py
92868ca8e540837d3283eb90122ea37aa2b82d4d
[]
no_license
huangyingw/submissions
7a610613bdb03f1223cdec5f6ccc4391149ca618
bfac1238ecef8b03e54842b852f6fec111abedfa
refs/heads/master
2023-07-25T09:56:46.814504
2023-07-16T07:38:36
2023-07-16T07:38:36
143,352,065
0
1
null
null
null
null
UTF-8
Python
false
false
316
py
class Solution: def canAttendMeetings(self, intervals): overlap = [] for interval in sorted(intervals, key=lambda x: x.start): if overlap and overlap[-1].end > interval.start: return False else: overlap.append(interval) return True
fc02fda54534594dd3a8358ecf562fc2cbd36a7e
0a1716384ac3425b0f457e210e43c0a499bd66d2
/process_files/_old/fix_processed_names.py
27e83d345283a04bd753cafb4edbf2a7f9b3850a
[]
no_license
ilbarlow/process-rig-data
d54d0489ad42ef92e422915d01ac43feeb62bed3
89fc296628eb7f9260b099ee3cb2f25680905686
refs/heads/master
2020-03-18T21:50:05.775230
2018-03-28T20:13:41
2018-03-28T20:13:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,596
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 27 16:15:39 2016 @author: worm_rig """ import os import shutil import glob import numpy as np import pandas as pd import warnings from functools import partial if __name__ == '__main__': output_root = '/Volumes/behavgenom_archive$/Avelino/Worm_Rig_Tests/short_movies_new/' #'/Volumes/behavgenom_archive$/Avelino/PeterAskjaer/' exp_name = 'Double_pick_090217'#'Mutant_worm_screening_Y32H12A.7(ok3452)_220217' tsv_file = os.path.join(output_root, 'ExtraFiles', exp_name + '_renamed.tsv') tab = pd.read_table(tsv_file, names=['old', 'new']) for _, row in tab.iterrows(): parts = row['old'].split(os.sep) delP = [int(x[2:]) for x in parts if x.startswith('PC')][0] old_base_name = os.path.splitext(os.path.basename(row['old']))[0] old_ch = [int(x[2:]) for x in old_base_name.split('_') if x.startswith('Ch')][0] base_name = os.path.splitext(os.path.basename(row['new']))[0] real_ch = 'Ch{}'.format(2*(delP-1)+old_ch) fparts = base_name.split('_') ff = [x.strip() if not x.startswith('Ch') else real_ch for x in fparts ] new_base_name = '_'.join(ff) search_str = os.path.join(output_root,'**', exp_name, base_name + '*') fnames = glob.glob(search_str) for bad_name in fnames: good_name = bad_name.replace(base_name, new_base_name) print(bad_name, good_name) #shutil.move(bad_name, good_name)
148ea8e659b1f395932dd56bb4319bd9d6022474
9ec58308459dc95405d1a32fcf8fae7f687a207b
/test/test_k_bank.py
71dc290f6f4630d2eaa7649866a90201a40f7e18
[ "MIT" ]
permissive
ivanlyon/exercises
067aed812486dbd7a3d7de6e47a692c8b9383163
0792976ae2acb85187b26a52812f9ebdd119b5e8
refs/heads/master
2021-05-24T04:17:29.012329
2021-05-11T17:26:50
2021-05-11T17:26:50
65,584,450
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
import io import unittest from unittest.mock import patch from kattis import k_bank ############################################################################### class SampleInput(unittest.TestCase): '''Problem statement sample inputs and outputs''' def test_sample_input_1(self): '''Run and assert problem statement sample 1 input and output.''' inputs = [] inputs.append('4 4') inputs.append('1000 1') inputs.append('2000 2') inputs.append('500 2') inputs.append('1200 0') inputs = '\n'.join(inputs) + '\n' outputs = '4200\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_bank.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') def test_sample_input_2(self): '''Run and assert problem statement sample 2 input and output.''' inputs = [] inputs.append('3 4') inputs.append('1000 0') inputs.append('2000 1') inputs.append('500 1') inputs = '\n'.join(inputs) + '\n' outputs = '3000\n' with patch('sys.stdin', io.StringIO(inputs)) as stdin,\ patch('sys.stdout', new_callable=io.StringIO) as stdout: k_bank.main() self.assertEqual(stdout.getvalue(), outputs) self.assertEqual(stdin.read(), '') ############################################################################### if __name__ == '__main__': unittest.main()
dcdfd17496925a85400ab2e195a3c8e50d5401e6
d7f486eebaa164bf3274c843e1932c7eef596e5e
/importer/facebook.py
352a80e06ffca4048160d7b028cf173373aa9667
[ "MIT" ]
permissive
Galaxyvintage/journal-1
aafe107645a6dde038b0010496c041ac635e966d
f666a3b38f0eeb2cc1f5576e0668f174bf1cbd8d
refs/heads/master
2020-03-20T09:15:09.269993
2018-07-05T16:31:17
2018-07-05T16:31:17
137,332,462
0
0
null
2018-06-14T08:54:38
2018-06-14T08:54:37
null
UTF-8
Python
false
false
7,091
py
import events from database import db import json import datetime import os def load_to_json(filename): json_data = open(filename).read() return json.loads(json_data) def read_app_posts(directory): data = load_to_json(directory + "apps/posts_from_apps.json") for post in data["app_posts"]: attachment_data = post["attachments"][0]["data"][0]["external_context"] time = datetime.datetime.fromtimestamp(post["timestamp"]) message = attachment_data["name"] title = post["title"] app_name = "unknown app" if "via" in title: app_name = title[title.index("via") + 4 : -1] kvps = {"message": message, "title": title, "app": app_name} if attachment_data.has_key("url"): kvps["url"] = attachment_data["url"] events.add("Facebook post via " + app_name + ": " + message, time, ["facebook", "post", "app"], kvps) def read_app_installs(directory): data = load_to_json(directory + "apps/installed_apps.json") for item in data["installed_apps"]: events.add("Added Facebook app " + item["name"] + ".", datetime.datetime.fromtimestamp(item["time_added"]), ["facebook", "app"], {"app": item["name"]}) def read_comments(directory): data = load_to_json(directory + "comments/comments.json") for comment in data["comments"]: time = datetime.datetime.fromtimestamp(comment["timestamp"]) message = comment["data"][0]["comment"]["comment"] events.add("Facebook: " + comment["title"], time, ["facebook", "comment"], {"message": message}) def read_events(directory): data = load_to_json(directory + "events/event_responses.json") for event in data["event_responses"]["events_joined"]: time = datetime.datetime.fromtimestamp(event["start_timestamp"]) name = event["name"] events.add("Participated in Facebook event: " + name, time, ["facebook", "event"], {"name": name}) data = load_to_json(directory + "events/your_events.json") for event in data["your_events"]: time = datetime.datetime.fromtimestamp(event["start_timestamp"]) name = event["name"] location = event["place"]["name"] events.add("Hosted Facebook event: " + name, time, ["facebook", "event"], {"name": name, "location": location, "message": event["description"]}) def read_friends(directory): data = load_to_json(directory + "friends/friends_added.json") for friend in data["friends"]: time = datetime.datetime.fromtimestamp(friend["timestamp"]) name = friend["name"] events.add("Added Facebook friend " + name + ".", time, ["facebook", "friend"], {"name": name}) def create_conversation_event(title, message_count, time, participants, history, first): kvps = {"participants": participants, "message": history} if first: events.add( "Started a Facebook conversation with " + title + " (" + str(message_count) + " message" + ( "s" if message_count > 1 else "") + ").", time, ["facebook", "message"], kvps) else: events.add( "Exchanged " + str(message_count) + " Facebook message" + ( "s" if message_count > 1 else "") + " with " + title + ".", time, ["facebook", "message"], kvps) def read_messages(directory): message_directory = directory + "messages/" for conversation in [os.path.join(message_directory, name) for name in os.listdir(message_directory) if os.path.isdir(os.path.join(message_directory, name)) and name != "stickers_used"]: data = load_to_json(conversation + "/message.json") if not data.has_key("title"): continue title = data["title"] participants = [title] if data.has_key("participants"): participants = data["participants"] messages = data["messages"] session_start_time = None last_message_time = None history = "" message_count = 0 session_count = 0 for message in reversed(messages): if message.has_key("content"): message_time = datetime.datetime.fromtimestamp(message["timestamp"]) if session_start_time is None: session_start_time = message_time elif (message_time - last_message_time).total_seconds() > 4 * 60 * 60: create_conversation_event(title, message_count, session_start_time, ", ".join(participants), history, session_count == 0) session_start_time = message_time message_count = 0 session_count += 1 history = "" last_message_time = message_time message_count += 1 history += message["sender_name"] + ": " + message["content"] + "\n" if message.has_key("photos") and not message["sender_name"] in participants: events.add("Sent " + (str(len(message["photos"])) + " images" if len(message["photos"]) > 1 else "an image") + " to " + title + ".", datetime.datetime.fromtimestamp(message["timestamp"]), ["facebook", "message", "image"], kvps={"participants": ", ".join(participants)}, images=[directory + photo["uri"] for photo in message["photos"]]) if message.has_key("photos") and message["sender_name"] in participants: events.add("Received " + (str(len(message["photos"])) + " images" if len( message["photos"]) > 1 else "an image") + " from " + message["sender_name"] + ".", datetime.datetime.fromtimestamp(message["timestamp"]), ["facebook", "message", "image"], kvps={"participants": ", ".join(participants)}, images=[directory + photo["uri"] for photo in message["photos"]]) create_conversation_event(title, message_count, session_start_time, ", ".join(participants), history, session_count == 0) def read_photos(directory): photo_directory = directory + "photos/album/" for album_file in [os.path.join(photo_directory, name) for name in os.listdir(photo_directory)]: data = load_to_json(album_file) album_name = data["name"] for photo in data["photos"]: file = directory + photo["uri"] metadata = photo["media_metadata"]["photo_metadata"] time = datetime.datetime.fromtimestamp(metadata["taken_timestamp"]) if metadata.has_key("taken_timestamp") else datetime.datetime.fromtimestamp(metadata["modified_timestamp"]) tags = ["facebook", "photo"] kvps = {} if metadata.has_key("camera_make") and metadata.has_key("camera_model"): camera = metadata["camera_make"] + " " + metadata["camera_model"] tags.append(camera) kvps["camera"] = camera events.add("Added photo to Facebook album " + album_name + ".", time, tags, kvps, hash=file, latitude=(metadata["latitude"] if metadata.has_key("latitude") else None), longitude=(metadata["longitude"] if metadata.has_key("longitude") else None), images=[file]) def import_facebook_data(directory = "data/facebook/"): with db.atomic(): print "Reading Facebook app posts..." read_app_posts(directory) read_app_installs(directory) print "Reading Facebook comments..." read_comments(directory) print "Reading Facebook events..." read_events(directory) print "Reading Facebook friends..." read_friends(directory) print "Reading Facebook messages..." read_messages(directory) print "Reading Facebook photos..." read_photos(directory) if __name__ == "__main__": import_facebook_data()
9088845ee4cd9fc4f784727bc6f020bc4213b6a6
786de89be635eb21295070a6a3452f3a7fe6712c
/Detector/tags/V00-00-05/SConscript
d6fb3976c08526bf2e9adb925905a3b3a1b85635
[]
no_license
connectthefuture/psdmrepo
85267cfe8d54564f99e17035efe931077c8f7a37
f32870a987a7493e7bf0f0a5c1712a5a030ef199
refs/heads/master
2021-01-13T03:26:35.494026
2015-09-03T22:22:11
2015-09-03T22:22:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,454
#-------------------------------------------------------------------------- # File and Version Information: # $Id$ # # Description: # SConscript file for package Detector #------------------------------------------------------------------------ # Do not delete following line, it must be present in # SConscript file for any SIT project Import('*') # # For the standard SIT packages which build libraries, applications, # and Python modules it is usually sufficient to call # standardSConscript() function which defines rules for all # above targets. Many standard packages do not need any special options, # but those which need can modify standardSConscript() behavior using # a number of arguments, here is a complete list: # # LIBS - list of additional libraries needed by this package # LIBPATH - list of directories for additional libraries # BINS - dictionary of executables and their corresponding source files # TESTS - dictionary of test applications and their corresponding source files # SCRIPTS - list of scripts in app/ directory # UTESTS - names of the unit tests to run, if not given then all tests are unit tests # PYEXTMOD - name of the Python extension module, package name used by default # CCFLAGS - additional flags passed to C/C++ compilers # NEED_QT - set to True to enable Qt support # # #standardSConscript() standardSConscript(PYEXTMOD="detector_ext") #, DOCGEN="doxy-all psana-modules-doxy")
[ "[email protected]@b967ad99-d558-0410-b138-e0f6c56caec7" ]
[email protected]@b967ad99-d558-0410-b138-e0f6c56caec7
3bb4b250c9e481e8342d3d85a655fadd62014d8a
82c7adb0bfaa667c50ac7b336bb815863b378fa9
/finace/items.py
60984524386545327a13568ee270fe67c087fc4d
[ "Apache-2.0" ]
permissive
pythonyhd/finace
c8a7dca65dfe33cabcb90630d8791d3a5b942bc9
614d98ad92e1bbaa6cf7dc1d6dfaba4f24431688
refs/heads/master
2022-11-30T17:53:40.947747
2020-08-14T03:47:26
2020-08-14T03:47:26
287,253,978
1
0
null
null
null
null
UTF-8
Python
false
false
262
py
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class FinaceItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
5da193ab8f0e2efa5b0645b1029e0314fd56b029
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_011/ch92_2019_10_02_17_54_14_425785.py
043154a806fa8650cc4d1a71882bef7df3c5440f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
292
py
def simplifica_dict(dicionario): lista = [] for chave in dicionario: if chave not in lista: lista.append(chave) for valor in dicionario[chave]: if dicionario[chave] not in lista: lista.append(dicionario[chave]) return lista
ba8c4775490031f4b1abd9541e76e7d99773e96c
44845df9198ae8c80fabecb6ed3ae6a44e43f38c
/modo/admin.py
4aa582f42f92bbc0b441d3019c6b6fb02550a96f
[]
no_license
CarlosSanz81/cima
570da404bddd0a813a025163a9e94676b9d0b4a9
3ad9b37af4a2d8a5789915208afffec7b6af3c0e
refs/heads/master
2021-01-23T08:00:04.964713
2017-03-28T14:33:09
2017-03-28T14:33:09
72,184,187
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
from django.contrib import admin from .models import Modo @admin.register(Modo) class AdminModo(admin.ModelAdmin): list_display = ('nombre',)
fcb878a2819bc83a0ed79bdb5b844916fa3fbdbe
794e14945c0521b4eab03e8b9a3f93b8fa14e021
/src/compas_rhino/utilities/constructors.py
e71275fa0d0e525a4bf92e58e2154310209ae1c9
[ "MIT" ]
permissive
KEERTHANAUDAY/compas
5e8ada865bc87ee48ba77b3f6fd03661a9b9c17d
4d1101cf302f95a4472a01a1265cc64eaec6aa4a
refs/heads/master
2021-07-11T16:26:19.452926
2020-09-10T14:27:11
2020-09-10T14:27:11
294,453,684
0
0
MIT
2020-09-10T15:47:31
2020-09-10T15:47:30
null
UTF-8
Python
false
false
2,494
py
from __future__ import print_function from __future__ import absolute_import from __future__ import division from compas.utilities import geometric_key import Rhino import scriptcontext as sc __all__ = ['volmesh_from_polysurfaces'] def volmesh_from_polysurfaces(cls, guids): """Construct a volumetric mesh from given polysurfaces. Essentially, this function does the following: * find each of the polysurfaces and check if they have a boundary representation (b-rep) * convert to b-rep and extract the edge loops * make a face of each loop by referring to vertices using their geometric keys * add a cell per brep * and add the faces of a brep to the cell * create a volmesh from the found vertices and cells Parameters ---------- cls : :class:`compas.datastructures.VolMesh` The class of volmesh. guids : sequence of str or System.Guid The *globally unique identifiers* of the polysurfaces. Returns ------- :class:`compas.datastructures.Volmesh` The volumetric mesh object. """ gkey_xyz = {} cells = [] for guid in guids: cell = [] obj = sc.doc.Objects.Find(guid) if not obj.Geometry.HasBrepForm: continue brep = Rhino.Geometry.Brep.TryConvertBrep(obj.Geometry) for loop in brep.Loops: curve = loop.To3dCurve() segments = curve.Explode() face = [] sp = segments[0].PointAtStart ep = segments[0].PointAtEnd sp_gkey = geometric_key(sp) ep_gkey = geometric_key(ep) gkey_xyz[sp_gkey] = sp gkey_xyz[ep_gkey] = ep face.append(sp_gkey) face.append(ep_gkey) for segment in segments[1:-1]: ep = segment.PointAtEnd ep_gkey = geometric_key(ep) face.append(ep_gkey) gkey_xyz[ep_gkey] = ep cell.append(face) cells.append(cell) gkey_index = dict((gkey, index) for index, gkey in enumerate(gkey_xyz)) vertices = [list(xyz) for gkey, xyz in gkey_xyz.items()] cells = [[[gkey_index[gkey] for gkey in face] for face in cell] for cell in cells] return cls.from_vertices_and_cells(vertices, cells) # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass
ff9d5d5e5194ae62f6f8a2888b5e8c36abe265af
8cb6d50076c527b4c81d21b992fc93f77263adc5
/orden/models.py
f0b736f5697c7219518a2d729725177f23df2fa5
[]
no_license
alrvivas/CrevenApp
6b9fefc4661a32cdf00ebb4a3eb869bf778f67e7
190291cfc798cbc52ba4cdbfa258ef0b983f7249
refs/heads/master
2020-06-04T20:24:03.685451
2015-02-12T17:36:01
2015-02-12T17:36:01
30,713,138
0
0
null
null
null
null
UTF-8
Python
false
false
9,473
py
from django.db import models from distutils.version import LooseVersion from django.contrib.auth.models import User from cliente.models import Cliente from producto.models import Product from orden.managers import OrderManager from util.fields import CurrencyField from jsonfield.fields import JSONField from django.db.models.aggregates import Sum from django.core.urlresolvers import reverse import django # Create your models here. class Order(models.Model): objects = OrderManager() """ A model representing an Order. An order is the "in process" counterpart of the shopping cart, which holds stuff like the shipping and billing addresses (copied from the User profile) when the Order is first created), list of items, and holds stuff like the status, shipping costs, taxes, etc... """ PROCESSING = 10 # New order, addresses and shipping/payment methods chosen (user is in the shipping backend) CONFIRMING = 20 # The order is pending confirmation (user is on the confirm view) CONFIRMED = 30 # The order was confirmed (user is in the payment backend) COMPLETED = 40 # Payment backend successfully completed SHIPPED = 50 # The order was shipped to client CANCELED = 60 # The order was canceled CANCELLED = CANCELED # DEPRECATED SPELLING PAYMENT = 30 # DEPRECATED! STATUS_CODES = ( (PROCESSING, ('Procesando')), (CONFIRMING, ('Confirmando')), (CONFIRMED, ('Confirmada')), (COMPLETED, ('Completada')), (SHIPPED, ('Enviada')), (CANCELED, ('Cancelada')), ) # If the user is null, the order was created with a session user = models.ForeignKey(User, blank=True, null=True, verbose_name=('User')) cliente = models.ForeignKey(Cliente,null=True, blank=True) status = models.IntegerField(choices=STATUS_CODES, default=PROCESSING,verbose_name=('Status')) order_subtotal = CurrencyField(verbose_name=('Orden subtotal')) order_total = CurrencyField(verbose_name=('Orden Total')) order_totalpeso = models.DecimalField(max_digits=10,decimal_places=3,null=True) shipping_address_text = models.TextField(('Direccion de Envio'), blank=True, null=True) billing_address_text = models.TextField(('Direccion de Facturacion'), blank=True, null=True) created = models.DateTimeField(auto_now_add=True,verbose_name=('Creado')) modified = models.DateTimeField(auto_now=True, verbose_name=('Updated')) cart_pk = models.PositiveIntegerField(('Cart primary key'), blank=True, null=True) class Meta(object): verbose_name = ('Orden') verbose_name_plural = ('Ordenes') def __unicode__(self): return ('Orden ID: %(id)s') % {'id': self.pk} def get_absolute_url(self): return reverse('order_detail', kwargs={'pk': self.pk}) def is_paid(self): """Has this order been integrally paid for?""" return self.amount_paid >= self.order_total is_payed = is_paid #Backward compatability, deprecated spelling def is_completed(self): return self.status == self.COMPLETED def get_status_name(self): return dict(self.STATUS_CODES)[self.status] @property def amount_paid(self): """ The amount paid is the sum of related orderpayments """ from .models import OrderPayment sum_ = OrderPayment.objects.filter(order=self).aggregate(sum=Sum('amount')) result = sum_.get('sum') if result is None: result = Decimal(0) return result amount_payed = amount_paid #Backward compatability, deprecated spelling @property def shipping_costs(self): from .models import ExtraOrderPriceField sum_ = Decimal('0.00') cost_list = ExtraOrderPriceField.objects.filter(order=self).filter( is_shipping=True) for cost in cost_list: sum_ += cost.value return sum_ @property def short_name(self): """ A short name for the order, to be displayed on the payment processor's website. Should be human-readable, as much as possible """ return "%s-%s" % (self.pk, self.order_total) def set_billing_address(self, billing_address): """ Process billing_address trying to get as_text method from address and copying. You can override this method to process address more granulary e.g. you can copy address instance and save FK to it in your order class. """ if hasattr(billing_address, 'as_text') and callable(billing_address.as_text): self.billing_address_text = billing_address.as_text() self.save() def set_shipping_address(self, shipping_address): """ Process shipping_address trying to get as_text method from address and copying. You can override this method to process address more granulary e.g. you can copy address instance and save FK to it in your order class. """ if hasattr(shipping_address, 'as_text') and callable(shipping_address.as_text): self.shipping_address_text = shipping_address.as_text() self.save() # We need some magic to support django < 1.3 that has no support # models.on_delete option f_kwargs = {} if LooseVersion(django.get_version()) >= LooseVersion('1.3'): f_kwargs['on_delete'] = models.SET_NULL class OrderItem(models.Model): """ A line Item for an order. """ order = models.ForeignKey(Order, related_name='items', verbose_name=('Orden')) product_reference = models.CharField(max_length=255, verbose_name=('Product reference')) product_name = models.CharField(max_length=255, null=True, blank=True, verbose_name=('Product name')) product = models.ForeignKey(Product, verbose_name=('Producto'), null=True, blank=True, **f_kwargs) unit_price = CurrencyField(verbose_name=('Unit price')) quantity = models.IntegerField(verbose_name=('Cantidad')) line_subtotal = CurrencyField(verbose_name=('Line subtotal')) line_total = CurrencyField(verbose_name=('Line total')) line_subtotalpeso = models.DecimalField(max_digits = 30,decimal_places = 3,null=True) line_totalpeso = models.DecimalField(max_digits = 30,decimal_places = 3,null=True) class Meta(object): verbose_name = ('Orden item') verbose_name_plural = ('Orden items') def save(self, *args, **kwargs): if not self.product_name and self.product: self.product_name = self.product.get_name() super(OrderItem, self).save(*args, **kwargs) def clear_products(sender, instance, using, **kwargs): for oi in OrderItem.objects.filter(product=instance): oi.product = None oi.save() if LooseVersion(django.get_version()) < LooseVersion('1.3'): pre_delete.connect(clear_products, sender=Product) class OrderExtraInfo(models.Model): order = models.ForeignKey(Order, related_name="extra_info",verbose_name=('Order')) text = models.TextField(verbose_name=('Extra info'), blank=True) class Meta(object): verbose_name = ('Orden informacion extra') verbose_name_plural = ('Orden informacion extra') class ExtraOrderPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order = models.ForeignKey(Order, verbose_name=('Order')) label = models.CharField(max_length=255, verbose_name=('Label')) value = CurrencyField(verbose_name=('Amount')) data = JSONField(null=True, blank=True, verbose_name=('Serialized extra data')) # Does this represent shipping costs? is_shipping = models.BooleanField(default=False, editable=False, verbose_name=('Is shipping')) class Meta(object): verbose_name = ('Extra order price field') verbose_name_plural = ('Extra order price fields') class ExtraOrderItemPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order_item = models.ForeignKey(OrderItem, verbose_name=('Order item')) label = models.CharField(max_length=255, verbose_name=('Label')) value = CurrencyField(verbose_name=('Amount')) data = JSONField(null=True, blank=True, verbose_name=('Serialized extra data')) class Meta(object): verbose_name = ('Extra order item price field') verbose_name_plural = ('Extra order item price fields') class OrderPayment(models.Model): """ A class to hold basic payment information. Backends should define their own more complex payment types should they need to store more informtion """ order = models.ForeignKey(Order, verbose_name=('Order')) # How much was paid with this particular transfer amount = CurrencyField(verbose_name=('Amount')) transaction_id = models.CharField(max_length=255, verbose_name=('Transaction ID'), help_text=("The transaction processor's reference")) payment_method = models.CharField(max_length=255, verbose_name=('Payment method'), help_text=("The payment backend used to process the purchase")) class Meta(object): verbose_name = ('Order payment') verbose_name_plural = ('Order payments')
339f9df0dd568b0dac0574b4653c263cc9d9af76
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/come_old_problem_to_point/ask_thing/see_day/seem_problem/time/find_few_week_over_point.py
b79ee7a454f58433209a2c9c27edba7f4f38079b
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
#! /usr/bin/env python def government(str_arg): use_public_day(str_arg) print('small_man_and_long_world') def use_public_day(str_arg): print(str_arg) if __name__ == '__main__': government('ask_day_from_year')
a30686b6eabb2cac56f288acadb5c196580ebf70
e6947a8ecc14ddb3c078321958856f888953f4fa
/my_project.py
d96f10703e7f2af3f045b4ee516f87f077c77cb7
[]
no_license
raja073/SimpleMovieDB
a5dd4b924f1ecb8d04a61c9884e25e6a51af5c3c
4d28dba684ea0ebf6ad4b78af4c2bdd13b072406
refs/heads/master
2021-09-05T13:59:35.372062
2018-01-28T14:06:57
2018-01-28T14:06:57
118,252,070
0
0
null
null
null
null
UTF-8
Python
false
false
3,032
py
from flask import Flask, render_template, request, redirect, url_for app = Flask(__name__) ### Instance of the Flask with name of the running application as an argument ################################################################################################# # Adding database to Flask application from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Base, Movie, Actor engine = create_engine('sqlite:///movieactors.db') Base.metadata.bind = engine DBSession = sessionmaker(bind = engine) session = DBSession() ################################################################################################# @app.route('/') @app.route('/movies') def movieList(): movies = session.query(Movie).all() return render_template('full_movie_list.html', movies = movies) @app.route('/movie/<int:movie_id>/') def movieActors(movie_id): movie = session.query(Movie).filter_by(id = movie_id).one() actors = session.query(Actor).filter_by(movie_id = movie.id) return render_template('menu.html', movie = movie, actors = actors) @app.route('/movie/new/', methods=['GET','POST']) def newMovie(): if request.method == 'POST': newMov = Movie(name=request.form['name']) session.add(newMov) session.commit() return redirect(url_for('movieList')) else: return render_template('new_movie.html') # Task 1: Create route for newActor function here @app.route('/movie/<int:movie_id>/new/', methods=['GET','POST']) def newActor(movie_id): if request.method == 'POST': newAct = Actor(name=request.form['name'], gender=request.form['gender'], \ age=request.form['age'], biography=request.form['bio'], movie_id=movie_id) session.add(newAct) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('new_actor.html', movie_id=movie_id) # Task 2: Create route for editActor function here @app.route('/movie/<int:movie_id>/<int:actor_id>/edit/', methods=['GET','POST']) def editActor(movie_id, actor_id): editedActor = session.query(Actor).filter_by(id=actor_id).one() if request.method == 'POST': if request.form['name']: editedActor.name = request.form['name'] session.add(editedActor) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('edit_actors.html', movie_id=movie_id, actor_id=actor_id, i=editedActor) # Task 3: Create route for deleteActor function here @app.route('/movie/<int:movie_id>/<int:actor_id>/delete/', methods=['GET','POST']) def deleteActor(movie_id, actor_id): actorToDelete = session.query(Actor).filter_by(id=actor_id).one() if request.method == 'POST': session.delete(actorToDelete) session.commit() return redirect(url_for('movieActors', movie_id=movie_id)) else: return render_template('delete_actor.html', i=actorToDelete) if __name__ == '__main__': app.debug = True app.run(host = '0.0.0.0', port = 5000)
9fd2adff33eb37163fba31027204557321194233
6320fef2ea7376c2b35f97f1a5af004e90f09098
/1-2주차 실습(복습)/venv/Lib/site-packages/pygments/formatters/irc.py
49f8b3d13114e627e86ef8bdd693496bd155fd7f
[]
no_license
Dplo1514/ploaistudy
7aa08d7f71653748a9e32dcc09ee8f6cec0aaed9
e35e42b1e5f0c90cc1e2a59993a1ef73d8872d0c
refs/heads/master
2023-09-03T00:45:55.601651
2021-10-24T12:19:38
2021-10-24T12:19:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,026
py
""" pygments.formatters.irc ~~~~~~~~~~~~~~~~~~~~~~~ Formatter for IRC output :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import sys from pygments.formatter import Formatter from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace from pygments.util import get_choice_opt __all__ = ['IRCFormatter'] #: Map token types to a tuple of color values for light and dark #: backgrounds. IRC_COLORS = { Token: ('', ''), Whitespace: ('gray', 'brightblack'), Comment: ('gray', 'brightblack'), Comment.Preproc: ('cyan', 'brightcyan'), Keyword: ('blue', 'brightblue'), Keyword.Type: ('cyan', 'brightcyan'), Operator.Word: ('magenta', 'brightcyan'), Name.Builtin: ('cyan', 'brightcyan'), Name.Function: ('green', 'brightgreen'), Name.Namespace: ('_cyan_', '_brightcyan_'), Name.Class: ('_green_', '_brightgreen_'), Name.Exception: ('cyan', 'brightcyan'), Name.Decorator: ('brightblack', 'gray'), Name.Variable: ('red', 'brightred'), Name.Constant: ('red', 'brightred'), Name.Attribute: ('cyan', 'brightcyan'), Name.Tag: ('brightblue', 'brightblue'), String: ('yellow', 'yellow'), Number: ('blue', 'brightblue'), Generic.Deleted: ('brightred', 'brightred'), Generic.Inserted: ('green', 'brightgreen'), Generic.Heading: ('**', '**'), Generic.Subheading: ('*magenta*', '*brightmagenta*'), Generic.Error: ('brightred', 'brightred'), Error: ('_brightred_', '_brightred_'), } IRC_COLOR_MAP = { 'white': 0, 'black': 1, 'blue': 2, 'brightgreen': 3, 'brightred': 4, 'yellow': 5, 'magenta': 6, 'orange': 7, 'green': 7, #compat w/ ansi 'brightyellow': 8, 'lightgreen': 9, 'brightcyan': 9, # compat w/ ansi 'cyan': 10, 'lightblue': 11, 'red': 11, # compat w/ ansi 'brightblue': 12, 'brightmagenta': 13, 'brightblack': 14, 'gray': 15, } def ircformat(color, text): if len(color) < 1: return text add = sub = '' if '_' in color: # italic add += '\x1D' sub = '\x1D' + sub color = color.strip('_') if '*' in color: # bold add += '\x02' sub = '\x02' + sub color = color.strip('*') # underline (\x1F) not supported # backgrounds (\x03FF,BB) not supported if len(color) > 0: # actual color - may have issues with ircformat("red", "blah")+"10" type stuff add += '\x03' + str(IRC_COLOR_MAP[color]).zfill(2) sub = '\x03' + sub return add + text + sub return '<'+add+'>'+text+'</'+sub+'>' class IRCFormatter(Formatter): r""" Format tokens with IRC color sequences The `get_style_defs()` method doesn't do anything special since there is no support for common styles. Options accepted: `bg` Set to ``"light"`` or ``"dark"`` depending on the terminal's background (default: ``"light"``). `colorscheme` A dictionary mapping token types to (lightbg, darkbg) color names or ``None`` (default: ``None`` = use builtin colorscheme). `linenos` Set to ``True`` to have line numbers in the output as well (default: ``False`` = no line numbers). """ name = 'IRC' aliases = ['irc', 'IRC'] filenames = [] def __init__(self, **options): Formatter.__init__(self, **options) self.darkbg = get_choice_opt(options, 'bg', ['light', 'dark'], 'light') == 'dark' self.colorscheme = options.get('colorscheme', None) or IRC_COLORS self.linenos = options.get('linenos', False) self._lineno = 0 def _write_lineno(self, outfile): self._lineno += 1 outfile.write("\n%04d: " % self._lineno) def _format_unencoded_with_lineno(self, tokensource, outfile): self._write_lineno(outfile) for ttype, value in tokensource: if value.endswith("\n"): self._write_lineno(outfile) value = value[:-1] color = self.colorscheme.get(ttype) while color is None: ttype = ttype[:-1] color = self.colorscheme.get(ttype) if color: color = color[self.darkbg] spl = value.split('\n') for line in spl[:-1]: self._write_lineno(outfile) if line: outfile.write(ircformat(color, line[:-1])) if spl[-1]: outfile.write(ircformat(color, spl[-1])) else: outfile.write(value) outfile.write("\n") def format_unencoded(self, tokensource, outfile): if self.linenos: self._format_unencoded_with_lineno(tokensource, outfile) return for ttype, value in tokensource: color = self.colorscheme.get(ttype) while color is None: ttype = ttype[:-1] color = self.colorscheme.get(ttype) if color: color = color[self.darkbg] spl = value.split('\n') for line in spl[:-1]: if line: outfile.write(ircformat(color, line)) outfile.write('\n') if spl[-1]: outfile.write(ircformat(color, spl[-1])) else: outfile.write(value)
874faf954ae174bedcfe8ce4f42f219ac04bd355
14449108de18a8e956830cd7d5107bb38de41c5d
/workshopvenues/venues/migrations/0009_auto__del_field_venue_address.py
45329577f0f1c85666401d3a4ba848f7477f2436
[ "BSD-3-Clause" ]
permissive
andreagrandi/workshopvenues
736e53ccb6ff0b15503e92a5246b945f615d2ff8
21978de36f443296788727d709f7f42676b24484
refs/heads/master
2021-05-16T03:00:23.879925
2014-03-18T15:10:00
2014-03-18T15:10:00
8,843,235
1
3
null
2015-10-26T11:11:20
2013-03-17T23:19:33
Python
UTF-8
Python
false
false
3,698
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Venue.address' db.delete_column(u'venues_venue', 'address_id') def backwards(self, orm): # User chose to not deal with backwards NULL issues for 'Venue.address' raise RuntimeError("Cannot reverse this migration. 'Venue.address' and its values cannot be restored.") # The following code is provided here to aid in writing a correct migration # Adding field 'Venue.address' db.add_column(u'venues_venue', 'address', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['venues.Address']), keep_default=False) models = { u'venues.address': { 'Meta': {'object_name': 'Address'}, 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['venues.Country']", 'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'postcode': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'street': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'town': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.country': { 'Meta': {'object_name': 'Country'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.facility': { 'Meta': {'object_name': 'Facility'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}) }, u'venues.image': { 'Meta': {'object_name': 'Image'}, 'filename': ('django.db.models.fields.CharField', [], {'max_length': '255'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'venue': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['venues.Venue']"}) }, u'venues.venue': { 'Meta': {'object_name': 'Venue'}, 'capacity': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'contact': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'contact_email': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'contact_twitter': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'cost': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'facilities': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['venues.Facility']", 'symmetrical': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'phone': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'style': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'twitter': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'website': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) } } complete_apps = ['venues']
d3813671c7b96dd94e66342390d4574c412700a3
ef32b87973a8dc08ba46bf03c5601548675de649
/pytglib/api/functions/search_user_by_phone_number.py
218f9710f017f0467ab39dc7429e7841c3300db5
[ "MIT" ]
permissive
iTeam-co/pytglib
1a7580f0e0c9e317fbb0de1d3259c8c4cb90e721
d3b52d7c74ee5d82f4c3e15e4aa8c9caa007b4b5
refs/heads/master
2022-07-26T09:17:08.622398
2022-07-14T11:24:22
2022-07-14T11:24:22
178,060,880
10
9
null
null
null
null
UTF-8
Python
false
false
751
py
from ..utils import Object class SearchUserByPhoneNumber(Object): """ Searches a user by their phone number. Returns a 404 error if the user can't be found Attributes: ID (:obj:`str`): ``SearchUserByPhoneNumber`` Args: phone_number (:obj:`str`): Phone number to search for Returns: User Raises: :class:`telegram.Error` """ ID = "searchUserByPhoneNumber" def __init__(self, phone_number, extra=None, **kwargs): self.extra = extra self.phone_number = phone_number # str @staticmethod def read(q: dict, *args) -> "SearchUserByPhoneNumber": phone_number = q.get('phone_number') return SearchUserByPhoneNumber(phone_number)
1c23cd9bec50756f3a2bea2745a173ac45cdc882
c278b06f77cac0a2942fa2ca0636f2dc72b52505
/4.blog_project/mydjangoproject/blog/migrations/0004_auto_20190320_0504.py
f8a4d492ef89b65190cfc991db5c4e1a9cab6c16
[]
no_license
hooong/Django_study
2d27bc7d5b2ad53fa4c9e1bcd808437af98cbe09
b760ace8f562d538ad18d552388e48ed52cc78d1
refs/heads/master
2022-12-02T15:51:24.510596
2019-11-02T07:38:37
2019-11-02T07:38:37
165,012,883
5
1
null
2022-11-22T03:26:18
2019-01-10T07:35:07
Python
UTF-8
Python
false
false
318
py
# Generated by Django 2.1.5 on 2019-03-20 05:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0003_blog_blog_hit'), ] operations = [ migrations.AlterModelOptions( name='comment', options={}, ), ]
81d70837b62ed7c9dbad2ad8927c5d723e1d4953
63e2bed7329c79bf67279f9071194c9cba88a82c
/SevOneApi/python-client/test/test_performance_metrics_settings.py
5471c91fa1f10ac623252fd1733b391f5e288962
[]
no_license
jsthomason/LearningPython
12422b969dbef89578ed326852dd65f65ab77496
2f71223250b6a198f2736bcb1b8681c51aa12c03
refs/heads/master
2021-01-21T01:05:46.208994
2019-06-27T13:40:37
2019-06-27T13:40:37
63,447,703
0
0
null
null
null
null
UTF-8
Python
false
false
1,001
py
# coding: utf-8 """ SevOne API Documentation Supported endpoints by the new RESTful API # noqa: E501 OpenAPI spec version: 2.1.18, Hash: db562e6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.performance_metrics_settings import PerformanceMetricsSettings # noqa: E501 from swagger_client.rest import ApiException class TestPerformanceMetricsSettings(unittest.TestCase): """PerformanceMetricsSettings unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPerformanceMetricsSettings(self): """Test PerformanceMetricsSettings""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.performance_metrics_settings.PerformanceMetricsSettings() # noqa: E501 pass if __name__ == '__main__': unittest.main()
2e56f5cdcb6487d4631e61f2dd8ee8baa69b504c
0fb3b73f8e6bb9e931afe4dcfd5cdf4ba888d664
/Web-UI/scrapyproject/migrations/0010_auto_20170406_1835.py
28afbaa4d39615071f49bc6050e0d270de3e4686
[ "MIT" ]
permissive
mrpal39/ev_code
6c56b1a4412503604260b3346a04ef53a2ba8bf2
ffa0cf482fa8604b2121957b7b1d68ba63b89522
refs/heads/master
2023-03-24T03:43:56.778039
2021-03-08T17:48:39
2021-03-08T17:48:39
345,743,264
1
0
null
null
null
null
UTF-8
Python
false
false
432
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scrapyproject', '0009_auto_20170215_0657'), ] operations = [ migrations.RemoveField( model_name='mongopass', name='user', ), migrations.DeleteModel( name='MongoPass', ), ]
716b77deb7f8f935eada888a20f2b54d08a47dd3
9ae6ce54bf9a2a86201961fdbd5e7b0ec913ff56
/google/ads/googleads/v9/services/services/hotel_group_view_service/client.py
b9c83f2d85aa2f2fdc21c12add578c9da910ff31
[ "Apache-2.0" ]
permissive
GerhardusM/google-ads-python
73b275a06e5401e6b951a6cd99af98c247e34aa3
676ac5fcb5bec0d9b5897f4c950049dac5647555
refs/heads/master
2022-07-06T19:05:50.932553
2022-06-17T20:41:17
2022-06-17T20:41:17
207,535,443
0
0
Apache-2.0
2019-09-10T10:58:55
2019-09-10T10:58:55
null
UTF-8
Python
false
false
18,873
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.ads.googleads.v9.resources.types import hotel_group_view from google.ads.googleads.v9.services.types import hotel_group_view_service from .transports.base import HotelGroupViewServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import HotelGroupViewServiceGrpcTransport class HotelGroupViewServiceClientMeta(type): """Metaclass for the HotelGroupViewService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[HotelGroupViewServiceTransport]] _transport_registry["grpc"] = HotelGroupViewServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[HotelGroupViewServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class HotelGroupViewServiceClient(metaclass=HotelGroupViewServiceClientMeta): """Service to manage Hotel Group Views.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: HotelGroupViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: HotelGroupViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> HotelGroupViewServiceTransport: """Return the transport used by the client instance. Returns: HotelGroupViewServiceTransport: The transport used by the client instance. """ return self._transport def __enter__(self): return self def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close() @staticmethod def hotel_group_view_path( customer_id: str, ad_group_id: str, criterion_id: str, ) -> str: """Return a fully-qualified hotel_group_view string.""" return "customers/{customer_id}/hotelGroupViews/{ad_group_id}~{criterion_id}".format( customer_id=customer_id, ad_group_id=ad_group_id, criterion_id=criterion_id, ) @staticmethod def parse_hotel_group_view_path(path: str) -> Dict[str, str]: """Parse a hotel_group_view path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/hotelGroupViews/(?P<ad_group_id>.+?)~(?P<criterion_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[str, HotelGroupViewServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the hotel group view service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.HotelGroupViewServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. if os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") not in ( "true", "false", ): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) use_client_cert = ( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") == "true" ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, HotelGroupViewServiceTransport): # transport is a HotelGroupViewServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = HotelGroupViewServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_hotel_group_view( self, request: Union[ hotel_group_view_service.GetHotelGroupViewRequest, dict ] = None, *, resource_name: str = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> hotel_group_view.HotelGroupView: r"""Returns the requested Hotel Group View in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Args: request (Union[google.ads.googleads.v9.services.types.GetHotelGroupViewRequest, dict]): The request object. Request message for [HotelGroupViewService.GetHotelGroupView][google.ads.googleads.v9.services.HotelGroupViewService.GetHotelGroupView]. resource_name (:class:`str`): Required. Resource name of the Hotel Group View to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v9.resources.types.HotelGroupView: A hotel group view. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a hotel_group_view_service.GetHotelGroupViewRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, hotel_group_view_service.GetHotelGroupViewRequest ): request = hotel_group_view_service.GetHotelGroupViewRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_hotel_group_view ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("HotelGroupViewServiceClient",)
6fcc525132976c116ea70511282befacca492375
573a516233447c8384f26ed56ae4e356e3995153
/ques6.py
c06b87f3ab0dae128a898dd372ba780d807a5d97
[]
no_license
BhagyashreeKarale/if-else
437b0867247f827c44f469a90efeecbf9444803d
1224fca2bdda389b22897f17b22f21320260e75f
refs/heads/main
2023-07-19T15:03:03.351825
2021-09-11T19:16:07
2021-09-11T19:16:07
397,150,813
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
# Question 6 # Draw a flowchart for this question and write the program. # Take two numbers as input from the user in variables varx and vary. # Check whether varx is divisible by vary. # If yes, print Divisible else print Not Divisible. varx=int(input("Enter dividend:\n")) vary=int(input("Enter divisor:\n")) if varx % vary == 0: print(varx,"is completely divisible by",vary) else: print(varx,"isn't completely divisible by",vary)
3ddc20aebdc144d9693019af06524d5ea4513712
78a28bd6b95041bfe67d8aa6a3a3c111911afaab
/18.Web Scraping with Python Scrapy - RM/03_Advanced_Techniques/news_scraper/news_scraper/settings.py
dec217105fcd124cbb665b4076642b6d93bf5eb9
[ "MIT" ]
permissive
jailukanna/Python-Projects-Dojo
8200a60ab925bf796bd39cb1977e6f0e0a575c23
98c7234b84f0afea99a091c7198342d66bbdff5b
refs/heads/master
2023-03-15T06:54:38.141189
2021-03-11T08:17:02
2021-03-11T08:17:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,212
py
# Scrapy settings for news_scraper project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'news_scraper' SPIDER_MODULES = ['news_scraper.spiders'] NEWSPIDER_MODULE = 'news_scraper.spiders' CLOSESPIDER_PAGECOUNT = 10 FEED_URI = 'news_articles.json' FEED_FORMAT = 'json' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'news_scraper (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: # DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', # } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'news_scraper.middlewares.NewsScraperSpiderMiddleware': 543, # } # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'news_scraper.middlewares.NewsScraperDownloaderMiddleware': 543, # } # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html # EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, # } # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html # ITEM_PIPELINES = { # 'news_scraper.pipelines.NewsScraperPipeline': 300, # } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
d5f34735f201edeb1130c4cb2a9efc396cbf184e
1ec8734beba25739979cbd4a9414a95273cce6aa
/10.9/移除元素.py
f3a3c26997d12fbc85a770412e56ce40c9f3a40b
[]
no_license
MATATAxD/untitled1
4431e4bc504e74d9a96f54fd6065ce46d5d9de40
18463f88ce60036959aabedabf721e9d938bacfb
refs/heads/master
2023-01-01T23:16:30.140947
2020-10-23T04:32:38
2020-10-23T04:32:38
306,529,260
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from typing import List def removeElement(nums:List[int],val:int)->int: fast = 0 slow = 0 while fast < len(nums): if nums[fast]== val: fast +=1 else: nums[slow] = nums [fast] slow +=1 fast +=1 return slow a = [1,2,3,4,5,6] print(removeElement(a,1))
a7438ca02484cd42c1d46f32f2b6415efa83040e
cadb25b610777d1a91404c7dcfe3d29ca1ddd542
/apps/localidades/migrations/0010_alter_localidade_nomelocalidade.py
cb9f7aeb7196267ac6b6462739e16d51937b8d84
[]
no_license
luanaAlm/sistema_ebd
851b8d98979e33187ec68b301910fe0c309a1ce2
ec6a97ddf413e5b10ddff20a781e37ddce77794d
refs/heads/main
2023-08-28T01:10:27.381064
2021-10-18T23:11:25
2021-10-18T23:11:25
415,992,258
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
# Generated by Django 3.2.7 on 2021-10-06 18:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('localidades', '0009_alter_localidade_nomelocalidade'), ] operations = [ migrations.AlterField( model_name='localidade', name='nomeLocalidade', field=models.CharField(max_length=100, verbose_name='Igreja'), ), ]
c45e8e0400ff9d0a80d3861ee9d4f16481928447
845e3c428e18232777f17b701212dcbb1b72acc1
/lib/fast_rcnn/test_upper_body.py
a0d72a59ea4af92083ed2328b831359d2c136799
[ "BSD-2-Clause", "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
chuanxinlan/ohem-1
dd10b2f5ff15e81ab9e42e936bb44d98e01c6795
b7552ceb8ed1e9768e0d522258caa64b79834b54
refs/heads/master
2021-09-16T18:31:25.651432
2018-06-23T10:09:24
2018-06-23T10:09:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,043
py
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Test a Fast R-CNN network on an imdb (image database).""" from fast_rcnn.config import cfg, get_output_dir from fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv import argparse from utils.timer import Timer import numpy as np import cv2 import caffe from fast_rcnn.nms_wrapper import nms import cPickle from utils.blob import im_list_to_blob import os from utils.cython_bbox import bbox_vote def _get_image_blob(im): """Converts an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale_factors (list): list of image scales (relative to im) used in the image pyramid """ im_orig = im.astype(np.float32, copy=True) im_orig -= cfg.PIXEL_MEANS im_shape = im_orig.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) processed_ims = [] im_scale_factors = [] for target_size in cfg.TEST.SCALES: im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than MAX_SIZE if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE: im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max) # Make width and height be multiples of a specified number im_scale_x = np.floor(im.shape[1] * im_scale / cfg.TEST.SCALE_MULTIPLE_OF) * cfg.TEST.SCALE_MULTIPLE_OF / im.shape[1] im_scale_y = np.floor(im.shape[0] * im_scale / cfg.TEST.SCALE_MULTIPLE_OF) * cfg.TEST.SCALE_MULTIPLE_OF / im.shape[0] im = cv2.resize(im_orig, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=cv2.INTER_LINEAR) im_scale_factors.append(np.array([im_scale_x, im_scale_y, im_scale_x, im_scale_y])) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, np.array(im_scale_factors) def _get_rois_blob(im_rois, im_scale_factors): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid """ rois, levels = _project_im_rois(im_rois, im_scale_factors) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (list): image pyramid levels used by each projected RoI """ im_rois = im_rois.astype(np.float, copy=False) if len(scales) > 1: widths = im_rois[:, 2] - im_rois[:, 0] + 1 heights = im_rois[:, 3] - im_rois[:, 1] + 1 areas = widths * heights scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2) diff_areas = np.abs(scaled_areas - 224 * 224) levels = diff_areas.argmin(axis=1)[:, np.newaxis] else: levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) rois = im_rois * scales[levels] return rois, levels def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data' : None, 'rois' : None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) return blobs, im_scale_factors def im_detect(net, im, _t, boxes=None): """Detect object classes in an image given object proposals. Arguments: net (caffe.Net): Fast R-CNN network to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals or None (for RPN) Returns: scores (ndarray): R x K array of object class scores (K includes background as object category 0) boxes (ndarray): R x (4*K) array of predicted bounding boxes """ _t['im_preproc'].tic() blobs, im_scales = _get_blobs(im, boxes) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.TEST.HAS_RPN: im_blob = blobs['data'] blobs['im_info'] = np.array( [np.hstack((im_blob.shape[2], im_blob.shape[3], im_scales[0]))], dtype=np.float32) # reshape network inputs net.blobs['data'].reshape(*(blobs['data'].shape)) if cfg.TEST.HAS_RPN: net.blobs['im_info'].reshape(*(blobs['im_info'].shape)) else: net.blobs['rois'].reshape(*(blobs['rois'].shape)) # do forward net.blobs['data'].data[...] = blobs['data'] #forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)} if cfg.TEST.HAS_RPN: net.blobs['im_info'].data[...] = blobs['im_info'] #forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False) else: net.blobs['rois'].data[...] = blobs['rois'] #forward_kwargs['rois'] = blobs['rois'].astype(np.float32, copy=False) _t['im_preproc'].toc() _t['im_net'].tic() blobs_out = net.forward() _t['im_net'].toc() #blobs_out = net.forward(**forward_kwargs) _t['im_postproc'].tic() if cfg.TEST.HAS_RPN: assert len(im_scales) == 1, "Only single-image batch implemented" rois = net.blobs['rois'].data.copy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scales[0] if cfg.TEST.SVM: # use the raw scores before softmax under the assumption they # were trained as linear SVMs scores = net.blobs['cls_score'].data else: # use softmax estimated probabilities scores = blobs_out['cls_prob'] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = blobs_out['bbox_pred'] pred_boxes = bbox_transform_inv(boxes, box_deltas) pred_boxes = clip_boxes(pred_boxes, im.shape) #---------------_cg_ added upper body -------------------- scores_upper_body = blobs_out['cls_prob_upper_body'] rois_upper_body = rois.copy() rois_upper_body[:, 4] = \ (rois_upper_body[:, 2] + rois_upper_body[:, 4]) / 2 boxes_upper_body = rois_upper_body[:, 1:5] / im_scales[0] upper_body_deltas = blobs_out['upper_body_pred'] pred_upper_body = bbox_transform_inv(boxes_upper_body, \ upper_body_deltas) pred_upper_body = clip_boxes(pred_upper_body, im.shape) #---------------end _cg_ added upper body -------------------- _t['im_postproc'].toc() return scores, pred_boxes, scores_upper_body, pred_upper_body def vis_detections(im, class_name, dets, thresh=0.3): """Visual debugging of detections.""" import matplotlib.pyplot as plt im = im[:, :, (2, 1, 0)] for i in xrange(np.minimum(10, dets.shape[0])): bbox = dets[i, :4] score = dets[i, -1] if score > thresh: plt.cla() plt.imshow(im) plt.gca().add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=3) ) plt.title('{} {:.3f}'.format(class_name, score)) plt.show() def apply_nms(all_boxes, thresh): """Apply non-maximum suppression to all predicted boxes output by the test_net method. """ num_classes = len(all_boxes) num_images = len(all_boxes[0]) nms_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(num_classes)] for cls_ind in xrange(num_classes): for im_ind in xrange(num_images): dets = all_boxes[cls_ind][im_ind] if dets == []: continue # CPU NMS is much faster than GPU NMS when the number of boxes # is relative small (e.g., < 10k) # TODO(rbg): autotune NMS dispatch keep = nms(dets, thresh, force_cpu=True) if len(keep) == 0: continue nms_boxes[cls_ind][im_ind] = dets[keep, :].copy() return nms_boxes def test_net(net, imdb, max_per_image=100, thresh=0.05, vis=False): """Test a Fast R-CNN network on an image database.""" num_images = len(imdb.image_index) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes + 1)] output_dir = get_output_dir(imdb, net) # timers _t = {'im_preproc': Timer(), 'im_net' : Timer(), 'im_postproc': Timer(), 'misc' : Timer()} if not cfg.TEST.HAS_RPN: roidb = imdb.roidb for i in xrange(num_images): # filter out any ground truth boxes if cfg.TEST.HAS_RPN: box_proposals = None else: # The roidb may contain ground-truth rois (for example, if the roidb # comes from the training or val split). We only want to evaluate # detection on the *non*-ground-truth rois. We select those the rois # that have the gt_classes field set to 0, which means there's no # ground truth. box_proposals = roidb[i]['boxes'][roidb[i]['gt_classes'] == 0] im = cv2.imread(imdb.image_path_at(i)) scores, boxes, scores_upper_body, boxes_upper_body = \ im_detect(net, im, _t, box_proposals) _t['misc'].tic() # skip j = 0, because it's the background class for j in xrange(1, imdb.num_classes): inds = np.where(scores[:, j] > thresh)[0] cls_scores = scores[inds, j] cls_boxes = boxes[inds, j*4:(j+1)*4] cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \ .astype(np.float32, copy=False) keep = nms(cls_dets, cfg.TEST.NMS) dets_NMSed = cls_dets[keep, :] ''' if cfg.TEST.BBOX_VOTE: cls_dets = bbox_vote(dets_NMSed, cls_dets) else: cls_dets = dets_NMSed ''' cls_dets = dets_NMSed #--------------- _cg_ added upper body -------------------- inds = np.where(scores_upper_body[:, j] > thresh)[0] cls_scores_upper_body = scores_upper_body[inds, j] cls_boxes_upper_body = boxes_upper_body[inds, j*4:(j+1)*4] cls_dets_upper_body = np.hstack((cls_boxes_upper_body, cls_scores_upper_body[:, np.newaxis])) \ .astype(np.float32, copy=False) keep = nms(cls_dets_upper_body, cfg.TEST.NMS) dets_NMSed = cls_dets_upper_body[keep, :] cls_dets_upper_body = dets_NMSed #--------------- end _cg_ added upper body -------------------- if vis: vis_detections(im, imdb.classes[j], cls_dets) all_boxes[j][i] = cls_dets all_boxes[j + 1][i] = cls_dets_upper_body ''' # Limit to max_per_image detections *over all classes* if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in xrange(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in xrange(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] ''' _t['misc'].toc() print 'im_detect: {:d}/{:d} net {:.3f}s preproc {:.3f}s postproc {:.3f}s misc {:.3f}s' \ .format(i + 1, num_images, _t['im_net'].average_time, _t['im_preproc'].average_time, _t['im_postproc'].average_time, _t['misc'].average_time) det_file = os.path.join(output_dir, 'detections.pkl') with open(det_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) # print 'Evaluating detections' # imdb.evaluate_detections(all_boxes, output_dir)
13279672b8c47331a37e9052b40787fc939702ac
5b85703aa0dd5a6944d99370a5dde2b6844517ec
/03.Python/15.ZerosandOnes.py
4d5e2053608bce9ef159ceccd2e274087611e083
[]
no_license
alda07/hackerrank
255329196e6a4b9d598c3f51790caf4a99a755bc
a09091f859e87462c95ee856cbbd0ad9b5992159
refs/heads/master
2021-10-24T07:38:34.795632
2019-03-23T17:29:32
2019-03-23T17:29:32
90,329,292
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
# zeros # import numpy # print (numpy.zeros((1, 2))) # print (numpy.zeros((1, 2), dtype = numpy.int)) # ones # import numpy # print (numpy.ones((1, 2))) # print (numpy.ones((1, 2), dtype = numpy.int)) import numpy list_i = list(map(int,input().split())) print(numpy.zeros(list_i, dtype = numpy.int)) print(numpy.ones(list_i, dtype = numpy.int))
dd7c42bf3677ff4d5c0535593c8a3d205b5bbb4f
9404a8593ff2d82133897c9e187523d301df7888
/0x09-Unittests_and_integration_tests/client.py
09fe617f4bf9b728195056ec7874888a22e52d18
[]
no_license
emna7/holbertonschool-web_back_end
ac2bc16e47f464530c4dee23497488c77377977e
744e6cb3bb67b2caa30f967708243b5474046961
refs/heads/main
2023-03-06T17:56:10.699982
2021-02-12T21:24:04
2021-02-12T21:24:04
305,394,170
1
0
null
null
null
null
UTF-8
Python
false
false
1,473
py
#!/usr/bin/env python3 """A github org client """ from typing import ( List, Dict, ) from utils import ( get_json, access_nested_map, memoize, ) class GithubOrgClient: """A Githib org client """ ORG_URL = "https://api.github.com/orgs/{org}" def __init__(self, org_name: str) -> None: """Init method of GithubOrgClient""" self._org_name = org_name @memoize def org(self) -> Dict: """Memoize org""" return get_json(self.ORG_URL.format(org=self._org_name)) @property def _public_repos_url(self) -> str: """Public repos URL""" return self.org["repos_url"] @memoize def repos_payload(self) -> Dict: """Memoize repos payload""" return get_json(self._public_repos_url) def public_repos(self, license: str = None) -> List[str]: """Public repos""" json_payload = self.repos_payload public_repos = [ repo["name"] for repo in json_payload if license is None or self.has_license(repo, license) ] return public_repos @staticmethod def has_license(repo: Dict[str, Dict], license_key: str) -> bool: """Static: has_license""" assert license_key is not None, "license_key cannot be None" try: has_license = access_nested_map(repo, ("license", "key")) == license_key except KeyError: return False return has_license
ac60830bcb8ab8d05d3b4a995a1b9e7f2e93a2fa
2f2e9cd97d65751757ae0a92e8bb882f3cbc5b5b
/665.非递减数列.py
69ccfdcba89fb3679104b70233a147b4b5ee3c0d
[]
no_license
mqinbin/python_leetcode
77f0a75eb29f8d2f9a789958e0120a7df4d0d0d3
73e0c81867f38fdf4051d8f58d0d3dc245be081e
refs/heads/main
2023-03-10T18:27:36.421262
2021-02-25T07:24:10
2021-02-25T07:24:10
314,410,703
0
0
null
null
null
null
UTF-8
Python
false
false
594
py
# # @lc app=leetcode.cn id=665 lang=python3 # # [665] 非递减数列 # # @lc code=start class Solution: def checkPossibility(self, nums: List[int]) -> bool: c = 0 for i in range(len(nums) -1): if nums[i] > nums[i+1]: c +=1 if i > 0 : if nums[i-1] <= nums[i+1]: nums[i] = nums[i-1] else : nums[i+1] = nums[i] if c > 1: return False return True # @lc code=end
27d214b5b033cb21e812b5568854396b459d8ab9
bdd40ea113fdf2f04ef7d61a096a575322928d1d
/Rupesh/DjangoTutorial/TOdo/TOdo/Task/migrations/0002_auto_20200219_0600.py
56b743b8b63b2342fd7f88303c0256f187fcae5f
[]
no_license
rupesh7399/rupesh
3eebf924d33790c29636ad59433e10444b74bc2f
9b746acf37ab357c147cdada1de5458c5fc64f53
refs/heads/master
2020-12-22T05:01:29.176696
2020-03-03T10:32:36
2020-03-03T10:32:36
202,111,967
0
0
null
null
null
null
UTF-8
Python
false
false
357
py
# Generated by Django 2.2 on 2020-02-19 06:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Task', '0001_initial'), ] operations = [ migrations.AlterField( model_name='task', name='lastDate', field=models.DateField(), ), ]
93218602b7a30997b8ff0defd0e336e8bd93427c
07acf11fadb7fbbf342e1f5005c9197d36b79f56
/aliyun-python-sdk-vod/aliyunsdkvod/request/v20170321/DescribeUserAvgTimeByDayRequest.py
9a798b69525f04e4ccee97970a5bb855ed2ec093
[ "Apache-2.0" ]
permissive
ccflying/aliyun-openapi-python-sdk
9ce8d43a39b8fa10a78fdf4f4831befbfc48ad4e
2ddb938c366c06526deeec0ec46f8266235e52f6
refs/heads/master
2020-04-19T09:18:02.597601
2019-01-29T05:02:01
2019-01-29T05:02:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,822
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DescribeUserAvgTimeByDayRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'vod', '2017-03-21', 'DescribeUserAvgTimeByDay','vod') def get_VideoType(self): return self.get_query_params().get('VideoType') def set_VideoType(self,VideoType): self.add_query_param('VideoType',VideoType) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_EndTime(self): return self.get_query_params().get('EndTime') def set_EndTime(self,EndTime): self.add_query_param('EndTime',EndTime) def get_StartTime(self): return self.get_query_params().get('StartTime') def set_StartTime(self,StartTime): self.add_query_param('StartTime',StartTime) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
adbedc8206330810c70cdc570b3140a5f632e51e
f7e5a206c5ca75043b662c8f9905a070b7e37060
/cart/views.py
54f1f59dc1f21f1a4b7c6b04e842911c7f358e15
[]
no_license
sweetmentor/Str4-eCommerce-App
4d22945f7b5dc0a40b577b8ed45caf22c9e644d4
e50edff9183a207c8e7daff16136059fcb5f9002
refs/heads/master
2020-03-22T00:26:36.973580
2019-01-29T01:13:56
2019-01-29T01:13:56
139,244,613
0
1
null
null
null
null
UTF-8
Python
false
false
1,193
py
from django.shortcuts import render, redirect, get_object_or_404, HttpResponse from product.models import Product from .utils import get_cart_items_and_total # Create your views here. def view_cart(request): cart = request.session.get('cart', {}) context = get_cart_items_and_total(cart) return render(request, "cart/cart.html", context) def remove_from_cart(request): id = request.POST['product_id'] product = get_object_or_404(Product, pk=id) cart = request.session.get('cart', {}) if id in cart: # Subtract 1 from the quantity cart[id] -= 1 # If the quantity is now 0, then delete the item if cart[id] == 0: del cart[id] request.session['cart'] = cart return redirect('view_cart') def add_to_cart(request): # Get the product we're adding id = request.POST['product_id'] product = get_object_or_404(Product, pk=id) # Get the current Cart cart = request.session.get('cart', {}) # Update the Cart cart[id] = cart.get(id, 0) + 1 # Save the Cart back to the session request.session['cart'] = cart # Redirect somewhere return redirect("/")
42d2ccd0a08c1520cae02783637eee771aedda4f
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_196/ch31_2020_03_14_15_42_06_957078.py
7229a92343174b1d0b472e5e5af883e664d7d8d9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
def eh_primo(a): if a == 2: return True x=1 elif (a%2 == 0) or (a%x == 0): x+=2 return False elif (a==0) or (a==1): return False else: return True
91ad79fe802f8441997c7574f787866330f8fdaf
7a0334693cd31fe4fdef06324ede0d72c6530c40
/event_crud/migrations/0001_initial.py
414c9f942def602edac8017b35088131a4404944
[]
no_license
lilitotaryan/eventnet-back-end
7949668a4108b36a6e1a2f6439d6e966991d64ba
5828b1520b8feeb363fdac0b85b08e001572991e
refs/heads/main
2023-02-18T02:24:45.475978
2021-01-22T18:15:42
2021-01-22T18:15:42
332,027,025
0
0
null
null
null
null
UTF-8
Python
false
false
1,402
py
# Generated by Django 2.2.5 on 2020-02-26 19:01 import authentication.utils from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('user_crud', '0005_remove_customuser_phone_number'), ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(default=None, max_length=100)), ('description', models.CharField(default=None, max_length=500)), ('date', models.DateTimeField(default=authentication.utils.get_current_time)), ('is_responsible', models.BooleanField(default=False)), ('contact_phone_number', models.CharField(default=None, max_length=100, unique=True)), ('address', models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.SET_NULL, to='user_crud.Address')), ('categories', models.ManyToManyField(blank=True, to='user_crud.Category')), ('users', models.ManyToManyField(blank=True, to=settings.AUTH_USER_MODEL)), ], ), ]
122a05dc3115f6ed66c2747d3dc1e78c44cd4955
52e0e1ef7675d8bac51899f23b2722e7e7f58992
/core/data/base_collector.py
972479bf987185887d7e79d61ee4b166286f1b46
[ "Apache-2.0" ]
permissive
knowmefly/DI-drive
2c8963a04d00aa8b3c3354630b6df9e3e6a6770e
ade3c9dadca29530f20ab49b526ba32818ea804b
refs/heads/main
2023-07-08T14:40:39.625522
2021-07-21T15:54:48
2021-07-21T15:54:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
import copy from abc import abstractmethod from typing import Any, Dict from easydict import EasyDict from ding.utils import EasyTimer class BaseCollector(object): config = dict() def __init__( self, cfg: Dict, env: Any = None, policy: Any = None, ) -> None: if 'cfg_type' not in cfg: self._cfg = self.__class__.default_config() self._cfg.update(cfg) else: self._cfg = cfg self._end_flag = False self._timer = EasyTimer() if env is not None: self.env = env if policy is not None: self.policy = policy @property def env(self) -> Any: return self._env @env.setter def env(self, _env: Any) -> None: self._env = _env @property def policy(self) -> Any: return self._policy @policy.setter def policy(self, _policy: Any) -> None: self._policy = _policy @abstractmethod def reset(self) -> Any: raise NotImplementedError @abstractmethod def close(self) -> Any: raise NotImplementedError @abstractmethod def collect(self) -> Any: raise NotImplementedError @classmethod def default_config(cls: type) -> EasyDict: cfg = EasyDict(cls.config) cfg.cfg_type = cls.__name__ + 'Config' return copy.deepcopy(cfg)
7b2f3ffb266a6b73b251aa0bed91d044d1201bd4
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03162/s990109089.py
40f2258c0867493398fd6c13585706e99574813b
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
n=int(input()) happines=[list(map(int,input().split())) for _ in range(n)] solution=[[0,0,0] for _ in range(n)] solution[0][0]=happines[0][0] solution[0][1]=happines[0][1] solution[0][2]=happines[0][2] for i in range(1,n): for j in range(3): solution[i][j]=happines[i][j]+max(solution[i-1][(j+1)%3],solution[i-1][(j+2)%3]) print(max(solution[-1]))
e3b3126e6676609e20aa10a8b485b3a059b0fd77
8787b2fbb5017b61dcf6075a5261071b403847bf
/Programmers/N으로 표현.py
21d160641aee1be033211795680b2a0e5c76564b
[]
no_license
khw5123/Algorithm
a6fe0009e33289813959553c2366d77c93d7b4b9
323a829f17a10276ab6f1aec719c496a3e76b974
refs/heads/master
2023-01-02T00:12:21.848924
2020-10-23T06:37:41
2020-10-23T06:37:41
282,162,235
0
0
null
null
null
null
UTF-8
Python
false
false
2,202
py
def calc(s, N, number): result = 0 start = 0 tmp = '' for i in range(len(s)): if s[i] != str(N): start = i result = int(tmp) break else: tmp += s[i] tmp = '' operator = [] for i in range(start, len(s)): if s[i] == str(N): tmp += s[i] if i == len(s) - 1 and len(operator) != 0: if operator[0] == '+': result += int(tmp) elif operator[0] == '-': result -= int(tmp) elif operator[0] == '*': result *= int(tmp) elif operator[0] == '/': result //= int(tmp) else: if len(operator) == 1: if operator[0] == '+': result += int(tmp) elif operator[0] == '-': result -= int(tmp) elif operator[0] == '*': result *= int(tmp) elif operator[0] == '/': result //= int(tmp) tmp = '' operator.pop() operator.append(s[i]) return result def solve(s, N, number): answer = 9 if s.count(str(N)) < 9: if s[-1] == str(N): if eval(''.join(s)) == number or calc(s, N, number) == number: answer = min(answer, s.count(str(N))) s.append(str(N)) answer = min(answer, solve(s, N, number)) s.pop() if s[-1] != '+' and s[-1] != '-' and s[-1] != '*' and s[-1] != '/': s.append('+') answer = min(answer, solve(s, N, number)) s.pop() s.append('-') answer = min(answer, solve(s, N, number)) s.pop() s.append('*') answer = min(answer, solve(s, N, number)) s.pop() s.append('/') answer = min(answer, solve(s, N, number)) s.pop() return answer return answer def solution(N, number): answer = solve([str(N)], N, number) return -1 if answer == 9 else answer
2edda813a68b94ffdf1c3d6201c1cff73d0ddad3
aaad70e69d37f92c160c07e4ca03de80becf2c51
/filesystem/usr/lib/python3.6/asyncio/base_events.py
32b4f0adcd1093409fe44dc22121f8affc046568
[]
no_license
OSWatcher/ubuntu-server
9b4dcad9ced1bff52ec9cdb4f96d4bdba0ad3bb9
17cb333124c8d48cf47bb9cec1b4e1305626b17a
refs/heads/master
2023-02-10T18:39:43.682708
2020-12-26T01:02:54
2020-12-26T01:02:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
183
py
{ "MIME": "text/plain", "inode_type": "REG", "magic_type": "Python script, ASCII text executable", "mode": "-rw-r--r--", "sha1": "23f1c44c157099ef5d66c87ba91eb7128afa4867" }
2ad7f8907bd282c066e9db3e2553e053f204e9a8
a70778e730f6d3e3be04ba449e6ed0a9ff7d7e6d
/classifier_5b_rough_fine_tune_from3z.py
4e132cf8513dd1cd901bd4a0c5a2f1a6c88b44fc
[]
no_license
previtus/two_classes_ml
0351e62544cc46f9c09847de641fd84aac94d38b
0f780e2e3736e6280dddd25540911d60c9d721d8
refs/heads/master
2021-05-10T10:05:38.526602
2018-08-06T19:59:26
2018-08-06T19:59:26
118,946,345
0
0
null
null
null
null
UTF-8
Python
false
false
7,192
py
img_size = None #(20,20) img_size = (150,150) epochs_first = 10 epochs_second = 40 batch_size = 16 validation_split = 0.3 RESCALE = 1. / 255 # put data from 0-255 into 0-1 # GET ALL DATA # define the classes in here directly from data_handling import LOAD_DATASET, LOAD_DATASET_VAL_LONGER_THR2, sample_random_subset_from_list, y_from_x from data_handling import load_images_with_keras, convert_labels_to_int, convert_back_from_categorical_data, how_many_are_in_each_category TRAIN_WITH_LONGER_THAN = 1000 TRAIN_C_balanced = 5000 SPLIT = 0.3 # 70% and 30% FOLDER = 'chillan_saved_images_square_224_ALL_with_len' folders = ['data/'+FOLDER+'/LP/', 'data/'+FOLDER+'/TR/', 'data/'+FOLDER+'/VT/'] VAL_ONLY_LONGER_THR2 = 1000 BalancedVal = False StillBalance10to1to1 = True X_TRAIN_BAL, X_VAL_FULL = LOAD_DATASET_VAL_LONGER_THR2( TRAIN_WITH_LONGER_THAN, TRAIN_C_balanced, SPLIT, FOLDER, folders, VAL_ONLY_LONGER_THR2, BalancedVal=BalancedVal,StillBalance10to1to1 = StillBalance10to1to1) specialname = '__Finetuned' classes_names = ['LP', 'TR', 'VT'] num_classes = len(classes_names) labels_texts = classes_names labels = [0, 1, 2] DROP=0.2 SUBSET_FOR_TRAIN = 8000 SUBSET_FOR_VAL = 8000 ############ Whats bellow doesn't have to be changed dramatically X_TRAIN_BAL,_ = sample_random_subset_from_list(X_TRAIN_BAL, SUBSET_FOR_TRAIN) Y_TRAIN_BAL = y_from_x(X_TRAIN_BAL) X_VAL,_ = sample_random_subset_from_list(X_VAL_FULL, SUBSET_FOR_VAL) Y_VAL = y_from_x(X_VAL) from keras.preprocessing.image import load_img, img_to_array import numpy as np import keras from matplotlib import pyplot as plt print("Loading image data!") # X_TRAIN_BAL, Y_TRAIN_BAL x_train = load_images_with_keras(X_TRAIN_BAL, target_size=img_size) y_train = convert_labels_to_int(Y_TRAIN_BAL, classes_names, labels) y_train = keras.utils.to_categorical(y_train, num_classes=num_classes) # X_VAL, Y_VAL x_test = load_images_with_keras(X_VAL, target_size=img_size) y_test = convert_labels_to_int(Y_VAL, classes_names, labels) y_test = keras.utils.to_categorical(y_test, num_classes=num_classes) print("x_train:", x_train.shape) print("y_train:", y_train.shape)#, y_train[0:10]) print("x_test:", x_test.shape) print("y_test:", y_test.shape)#, y_test[0:10]) print("---") print("SanityCheck Test dist:") how_many_are_in_each_category(convert_back_from_categorical_data(y_test)) print("SanityCheck Train dist:") how_many_are_in_each_category(convert_back_from_categorical_data(y_train)) print("---") x_train *= RESCALE x_test *= RESCALE # ============================= # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ROUGH from keras import optimizers from keras.applications import VGG16 vgg_conv = VGG16(weights='imagenet', include_top=False, input_shape=(img_size[0], img_size[1], 3)) print("calculating high lvl features...") X_bottleneck_train = vgg_conv.predict(x_train) X_bottleneck_test = vgg_conv.predict(x_test) print("X_bottleneck_train:", X_bottleneck_train.shape) print("y_test:", y_train.shape)#, y_train[0:10]) print("X_bottleneck_test:", X_bottleneck_test.shape) print("y_test:", y_test.shape)#, y_test[0:10]) print("---") print("train_data.shape[1:]", X_bottleneck_train.shape[1:]) from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense classifier_model = Sequential() classifier_model.add(Flatten(input_shape=X_bottleneck_train.shape[1:])) classifier_model.add(Dense(256, activation='relu')) classifier_model.add(Dropout(0.5)) classifier_model.add(Dense(num_classes, activation='sigmoid')) print("FIRST ROUGH MODEL:") classifier_model.summary() #classifier_model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4),metrics=['accuracy']) classifier_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # ============================================================================== # TRAIN 1 # ============================================================================== # history1 = classifier_model.fit(X_bottleneck_train, y_train, batch_size=batch_size, epochs=epochs_first, validation_data=(X_bottleneck_test, y_test), verbose=1) # Works well, gets us till cca 96% even in 10 epochs (possibly even 5) # ============================================================================== # ============================================================================== # Freeze the layers except the last 4 layers for layer in vgg_conv.layers[:-4]: layer.trainable = False # Check the trainable status of the individual layers for layer in vgg_conv.layers: print(layer, layer.trainable) from keras import models from keras import layers # Create the model fine_model = models.Sequential() fine_model.add(vgg_conv) fine_model.add(classifier_model) print("SECOND FINE MODEL:") fine_model.summary() # Compile the model # TRY other? #fine_model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4),metrics=['accuracy']) # clip norm didnt help with loss: nan #fine_model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4, clipnorm=1.),metrics=['accuracy']) #model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # default lr lr=0.001 # TRY sgd = optimizers.SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) fine_model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy']) # ============================================================================== # TRAIN 2 # ============================================================================== # history2 = fine_model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs_second, validation_data=(x_test, y_test), verbose=1) # Whoops, sudden drop to loss: nan # ============================================================================== # REPORT # ============================================================================== # #print(history1.history) #print(history2.history) split_n = len(history1.history['val_loss']) # val_loss', 'val_acc', 'loss', 'acc history1.history['val_loss'] += history2.history['val_loss'] history1.history['val_acc'] += history2.history['val_acc'] history1.history['loss'] += history2.history['loss'] history1.history['acc'] += history2.history['acc'] from visualize_history import visualize_history plt = visualize_history(history1.history, show_also='acc', show=False, save=False) #visualize_history(history2.history, show_also='acc', save=False, save_path='classifier5b_'+str(epochs)+'epochs_') plt.axvline(x=split_n-0.5, linestyle='dashed', color='black') filename = 'classifier5b_CHILL_'+str(epochs_first)+'+'+str(epochs_second)+'epochs_' plt.savefig(filename) plt.show() fine_model.save('5b_final_fine_model.h5')
8871896d5379ec5750e6fb6433622c846811c30b
b8fed8222b41e447cd5ce83513eb4d014c01742b
/ad_report_salesadmin/po/po_form.py
ae2a831ae88665d254b25eafbddb16d0e61cf761
[]
no_license
lajayuhniyarsyah/ERP-Supra
e993d8face6e022b6f863d1dff7cb51cda36be8d
5a64dbb57ee40070354926700091fb9025c1350c
refs/heads/master
2021-01-25T22:09:46.306990
2017-11-08T05:32:04
2017-11-08T05:32:04
23,605,825
0
10
null
2017-11-08T05:32:05
2014-09-03T03:58:28
Python
UTF-8
Python
false
false
2,035
py
import time from report import report_sxw from osv import osv,fields from report.render import render #from ad_num2word_id import num2word import pooler #from report_tools import pdf_fill,pdf_merge from tools.translate import _ import tools from tools.translate import _ import decimal_precision as dp #from ad_amount2text_idr import amount_to_text_id from tools import amount_to_text_en class po_form(report_sxw.rml_parse): def __init__(self, cr, uid, name, context): super(invoice_form, self).__init__(cr, uid, name, context=context) #if self.pool.get('sale.order').browse(cr, uid, context['active_ids'])[0].state <> 'approved': # raise osv.except_osv(_('Can not Print PO Form !'), _('You can not Print PO Form If State not Approved')) # # self.line_no = 0 self.localcontext.update({ 'get_object':self._get_object, # 'time': time, # 'convert':self.convert, # 'get_company_address': self._get_company_address, # #'angka':self.angka, ## 'alamat': self.alamat_npwp, # 'convert':self.convert, # 'charge':self.charge, ## 'nourut': self.no_urut, ## 'get_ppn': self.get_ppn, # 'line_no':self._line_no, # 'blank_line':self.blank_line, # 'blank_line_rfq':self.blank_line_rfq, # 'get_grand_total':self.get_grand_total, # 'get_internal':self._get_internal, # 'sum_tax':self._sum_tax, # 'get_curr2':self.get_curr, # 'get_invoice':self._get_invoice, # 'get_curr':self._get_used_currency, }) def _get_object(self,data): obj_data=self.pool.get(data['model']).browse(self.cr,self.uid,[data['id']]) # seq=obj_data[0].print_seq # seq+=1 # obj_data[0].write({'print_seq':seq}) return obj_data report_sxw.report_sxw('report.po.form', 'purchase.order', 'ad_report_salesadmin/po/po_form.mako', parser=po_form,header=False)
f040cc2c3bcc0b27174802337d61601ed34c13a6
38c1e589388752100c4afcbe0b445bfff033bab2
/friend/migrations/0003_auto_20200819_1444.py
0bf415da2081910e1e2d42a9465ac80b351f2e6a
[]
no_license
ruhullahil/Codingwithmitch-Chat
02c83f17fd51329fb3e4c0af74f1890ffd7ac012
dd854e6357e98684c3fe7c87da028de1f356030b
refs/heads/master
2023-01-03T00:38:38.225127
2020-10-29T21:09:37
2020-10-29T21:09:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
# Generated by Django 2.2.15 on 2020-08-19 21:44 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('friend', '0002_auto_20200819_1443'), ] operations = [ migrations.AlterField( model_name='friendlist', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='user', to=settings.AUTH_USER_MODEL), ), ]
7c3de6ac23a5796d7675e6ed3bf8151de5a1c8c6
a6b6294dd573e7a8429f6e1817a0598c7b315c5e
/examples/finance_vix.py
d0a1e8139e68366c05b1e389003532561c2be261
[ "MIT" ]
permissive
openknowledge-archive/datapackage-bigquery-py
4bef9c960c4efc9131d4673fab1f999f5ae09221
f1d822a1846eac4cfcdfd0f9e94bc27d2458f00b
refs/heads/master
2021-05-31T09:52:09.884572
2016-01-30T16:23:02
2016-01-30T16:23:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import sys from pprint import pprint sys.path.insert(0, '.') from examples.base import run # Fixtures dataset = 'datapackage' prefix = 'finance_vix_%s_%s_' % (sys.version_info.major, sys.version_info.minor) source = 'examples/packages/finance-vix/datapackage.json' target = 'tmp/packages/finance-vix/datapackage.json' # Execution if __name__ == '__main__': run(dataset, prefix, source, target)
8a7d55caa81a5c81fa616f5f2ed3c6f0142efd0a
69bc23a7baf65b276496d76d02645b5a76cfe083
/thu_python_16/program3.py
f3332c8639d67bd315206d183acabe04cb6c234d
[]
no_license
pylinx64/thu_python_16
a12e4ec8f82e6470b496116342b777e0a6676be1
617e75618a5a3117ec34278c41dadb38aa39fdb8
refs/heads/main
2023-04-23T03:17:31.347867
2021-05-05T10:09:57
2021-05-05T10:09:57
336,022,469
1
0
null
null
null
null
UTF-8
Python
false
false
568
py
#x=10 #print(x) #y=10 #print(x+y) #print('x+y') #x=20 #z = 10 #print(x+y+z) #x='Яготинское' #k='молоко' #print(x+' '+k) #print('Яготинское'+' молоко') #print(k * 143543543) #print(11 > 10) #print(8 > 9) #print(9 != 9) #print(9 == 9) #x = 8 #y = 9 #print(x >= y) #print('a' == 'a') #print('с' == 'c') #print('z' > 'a') password = input('Введите пароль: ') if 'abc123' == password: print('Вход выполнен') else: print('Невход выполнен 404')
d073cf0e510babb4c2329508f3b0d549e0cf3cec
0bc2a2963cb72c09c0ec0b3e3b10911c7bc31342
/examples/manila/script.py
a5f6b5d55011b15a3bcca5fbe09c09f48968cb7b
[]
no_license
cloudify-cosmo/cloudify-openstack-plugin
eb5730d0b75442e6a49069164fde03020dcca1de
7d2cd4162897333adcaab4bd83361bbd369fcf17
refs/heads/master
2023-09-06T09:10:53.372638
2023-03-06T15:02:59
2023-03-06T15:02:59
18,327,738
19
75
null
2023-03-06T15:03:01
2014-04-01T11:52:24
Python
UTF-8
Python
false
false
391
py
# For development help: from manilaclient import client # Fill in with real values. manila = client.Client( client_version='2', username='admin', password='openstack', project_name='demo', auth_url='http://10.11.12.2/identity', user_domain_name='Default', project_domain_name='default') share_networks = manila.share_networks.list() shares = manila.shares.list()
dd30c5254405af64ce994ba786c148924ddf521c
fd0194543a142c63812352e79c417e54a19d0cd5
/Auxiliary_Scripts/Plot_Relocate.py
7633b63d02c80b1e30093bd97aeca0eb93c5d1b2
[]
no_license
mwilensky768/MJW-MWA
2ac85b8f07577e3112c418595bf62902d720c3c2
ebda1e273a401c88f014bc698743547ec86a6f35
refs/heads/master
2021-05-02T00:51:48.591198
2021-03-31T22:34:06
2021-03-31T22:34:06
78,403,875
1
0
null
null
null
null
UTF-8
Python
false
false
324
py
import glob import shutil import os plot_dir = '/Users/mike_e_dubs/MWA/Catalogs/Wenyang_Phase2/data_eva/unflagged/' target_dir = '/Users/mike_e_dubs/MWA/Catalogs/Wenyang_Phase2/data_eva/frac_diff/' plots = glob.glob('%s*__INS_frac_diff.png' % (plot_dir)) print(plots) for plot in plots: shutil.copy(plot, target_dir)
344513f40b84e70156a271a556a0a7afa60bb84b
6febc1719503d0f9dbc97f6b1202116370391b10
/public_holiday/models/hr_holidays_inherited_model.py
fa5c2a57f2e8a69880f076eb808b1dbb72e214ac
[]
no_license
arshakil/Odoo-Development
5c6a1795cd64a8ebef5abfdf7d6245804594bcd8
df37f6e8c2f7d89cdbdb36d0a8fd501ef8bfe563
refs/heads/master
2022-12-11T05:17:12.123339
2020-07-28T07:38:58
2020-07-28T07:38:58
248,154,189
0
2
null
2022-12-08T03:51:50
2020-03-18T06:20:59
Python
UTF-8
Python
false
false
3,029
py
from odoo import models, fields, api, _ from odoo.exceptions import ValidationError from datetime import date, datetime from datetime import datetime, timedelta class Hr_Holidays_inherited_Model(models.Model): _inherit = 'hr.holidays' public_holiday=fields.Float(string='Public Holiday In Between',compute='check_public_holiday') @api.model def create(self, vals): holiday_status_id=vals['holiday_status_id'] # print ("vals date_from",vals['date_from']) # print ('state', vals['state']) # print ('holiday_status_id is called',holiday_status_id) if vals['type'] == 'remove': Is_check_hr_holidays_status= self.env['hr.holidays.status'].search([('id','=',holiday_status_id),('exclude_public_holidays','=',True)]) if Is_check_hr_holidays_status: if vals['date_from'] and vals['date_to']: count = 0; start_date = datetime.strptime(vals['date_from'], '%Y-%m-%d %H:%M:%S').date() end_date = datetime.strptime(vals['date_to'], '%Y-%m-%d %H:%M:%S').date() range_of_dates = [start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)] for public_holiday_date in range_of_dates: check_public_holidays = self.env['public_holiday.public_holiday'].search([]) for pub_holiday in check_public_holidays: if str(public_holiday_date)==pub_holiday.start: count+=1 else: pass set_count=vals['number_of_days_temp']-float(count) if vals['number_of_days_temp']<1: vals['number_of_days_temp']=0 vals['public_holiday']=0 else: vals['number_of_days_temp']=set_count vals['public_holiday'] = float(count) return super(Hr_Holidays_inherited_Model, self).create(vals) else: return super(Hr_Holidays_inherited_Model, self).create(vals) @api.depends('date_from', 'date_to') def check_public_holiday(self): if self.date_from and self.date_to: count = 0; start_date = datetime.strptime(self.date_from, '%Y-%m-%d %H:%M:%S').date() end_date = datetime.strptime(self.date_to, '%Y-%m-%d %H:%M:%S').date() range_of_dates = [start_date + timedelta(days=x) for x in range((end_date - start_date).days + 1)] for public_holiday_date in range_of_dates: check_public_holidays = self.env['public_holiday.public_holiday'].search([]) for pub_holiday in check_public_holidays: if str(public_holiday_date) == pub_holiday.start: count += 1 else: pass self.public_holiday=count
e938435982e4bca35a3bbaf1e7c4c35be18545a9
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/182/usersdata/265/105453/submittedfiles/diagonaldominante.py
2a3603de9bfd26bb77e24473ed3f5a3d2574df4e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
# -*- coding: utf-8 -*- import numpy as np def soma(A): somalinhas=[] for i in range (0,A.shape[0],1): cont=0 for j in range (0,A,shape[1],1): cont=cont+a[i,j] somalinhas.append(cont) return(somalinhas) linhas=int(input('digite a quantidade de linhas: ')) a=np.zeros((linhas,linhas)) for i in range (0,a.shape[0],1): for j in range (0,a.shape[1],1): a[i,j]=float(input('digite os valores da matriz: ')) print(a) print(diagonal(linhas))
7e1ccc3c0c0d628fe5629e0ba6ef33d3b0101291
bf0ecad5f2d9853944e6bbc1ab6160359e9a6803
/blog/migrations/0001_initial.py
d30bdf5599f3883def76510678e4cb1d43d9f3c0
[]
no_license
NiteshPidiparars/icoder-blog-post
9addc53a83ec916c421ee16de7b04b8035be5d6b
19c5a333faf520b4133a0fa5d5ccf37320ed4181
refs/heads/master
2023-05-28T01:41:11.114065
2021-06-16T07:05:48
2021-06-16T07:05:48
374,288,121
0
0
null
null
null
null
UTF-8
Python
false
false
683
py
# Generated by Django 3.2.4 on 2021-06-04 06:36 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('sno', models.AutoField(primary_key=True, serialize=False)), ('title', models.CharField(max_length=255)), ('author', models.CharField(max_length=14)), ('slug', models.CharField(max_length=130)), ('timeStamp', models.DateTimeField(blank=True)), ('content', models.TextField()), ], ), ]
dde36e2eae98fd6ebba3dc430abdd47affdd0f65
a3e7583b70584f62554c5969a9963ba79afd7ac3
/check.py
b7630edc09bab8c7a639472f47604386f4a53a32
[ "MIT" ]
permissive
foamliu/DeepRankIQA
4f677a2fe1912b16cf4bbcc05c8571d46260711f
7801cb4ff2c934a9d954ace9ad52600f96396125
refs/heads/master
2020-09-03T06:02:05.896210
2019-11-05T01:30:27
2019-11-05T01:30:27
219,402,631
4
0
null
null
null
null
UTF-8
Python
false
false
717
py
import os import pickle import cv2 as cv from tqdm import tqdm from config import data_file, image_folder if __name__ == "__main__": with open(data_file, 'rb') as f: samples = pickle.load(f) filenames = set() for sample in tqdm(samples): before = sample['before'] fullpath = os.path.join(image_folder, before) img = cv.imread(fullpath) assert (img is not None) filenames.add(before) after = sample['after'] fullpath = os.path.join(image_folder, before) img = cv.imread(fullpath) assert (img is not None) filenames.add(after) num_samples = len(list(filenames)) print('num_samples: ' + str(num_samples))
fbcf5b7d508ad8a33e8e303f73759b7d5782c4e0
30a6975de792d613db836346ff758a7c0797d400
/lldb/test/API/lang/swift/parseable_interfaces/shared/TestSwiftInterfaceNoDebugInfo.py
075df0dd1fb74f689568a004da5f267648814dee
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
WYK15/swift-Ollvm11
0a2aa1b216c8e3f38829ae16db846039e8de149e
b28dba1ebe1186790650c72d5e97d8b46f1bc6e0
refs/heads/main
2023-06-27T18:14:47.652175
2021-06-10T12:47:56
2021-06-10T12:47:56
367,350,198
6
0
null
null
null
null
UTF-8
Python
false
false
8,467
py
# TestSwiftInterfaceNoDebugInfo.py # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ----------------------------------------------------------------------------- """ Test that we load and handle swift modules that only have textual .swiftinterface files -- i.e. no associated .swiftmodule file -- and no debug info. The module loader should generate the .swiftmodule for any .swiftinterface it finds unless it is already in the module cache. """ import glob import lldb from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * import lldbsuite.test.lldbutil as lldbutil import os import os.path import unittest2 class TestSwiftInterfaceNoDebugInfo(TestBase): mydir = TestBase.compute_mydir(__file__) @swiftTest def test_swift_interface(self): """Test that we load and handle modules that only have textual .swiftinterface files""" self.build() self.do_test() @swiftTest def test_swift_interface_fallback(self): """Test that we fall back to load from the .swiftinterface file if the .swiftmodule is invalid""" self.build() # Install invalid modules in the build directory first to check we # still fall back to the .swiftinterface. modules = ['AA.swiftmodule', 'BB.swiftmodule', 'CC.swiftmodule'] for module in modules: open(self.getBuildArtifact(module), 'w').close() self.do_test() @swiftTest @skipUnlessPlatform(["macosx"]) def test_prebuilt_cache_location(self): """Verify the prebuilt cache path is correct""" self.build() log = self.getBuildArtifact("types.log") self.runCmd('log enable lldb types -f "%s"' % log) # Set a breakpoint in and launch the main executable so we load the # ASTContext and log the prebuilt cache path lldbutil.run_to_source_breakpoint( self, "break here", lldb.SBFileSpec("main.swift"), exe_name=self.getBuildArtifact("main")) # Check the prebuilt cache path in the log output prefix = 'Using prebuilt Swift module cache path: ' expected_suffix = os.path.join('macosx', 'prebuilt-modules') found = False with open(log, "r") as logfile: for line in logfile: if prefix in line: self.assertTrue(line.rstrip().endswith(os.path.sep + expected_suffix), 'unexpected prebuilt cache path: ' + line) found = True break self.assertTrue(found, 'prebuilt cache path log entry not found') # Check the host toolchain has a prebuilt cache in the same subdirectory of its swift resource directory prebuilt_path = os.path.join(self.get_toolchain(), 'usr', 'lib', 'swift', expected_suffix) self.assertTrue(len(os.listdir(prebuilt_path)) > 0) def get_toolchain(self): sdkroot = self.get_sdkroot() # The SDK root is expected to be wihin the Xcode.app/Contents # directory. Drop the last path component from the sdkroot until we get # up to that level. self.assertTrue('{0}Contents{0}'.format(os.path.sep) in sdkroot) contents = os.path.abspath(sdkroot) while os.path.split(contents)[1] != 'Contents': (contents, _) = os.path.split(contents) # Construct the expected path to the default toolchain from there and # check it exists. toolchain = os.path.join(contents, 'Developer', 'Toolchains', 'XcodeDefault.xctoolchain') self.assertTrue(os.path.exists(toolchain), 'no default toolchain?') return toolchain def get_sdkroot(self): with open(self.getBuildArtifact("sdk-root.txt"), "r") as sdkroot: return sdkroot.read().rstrip() def setUp(self): TestBase.setUp(self) def do_test(self): # The custom swift module cache location swift_mod_cache = self.getBuildArtifact("MCP") # Clear the swift module cache (populated by the Makefile build) shutil.rmtree(swift_mod_cache) self.assertFalse(os.path.isdir(swift_mod_cache), "module cache should not exist") # Update the settings to use the custom module cache location self.runCmd('settings set symbols.clang-modules-cache-path "%s"' % swift_mod_cache) target = self.dbg.CreateTarget(self.getBuildArtifact("main")) self.assertTrue(target, VALID_TARGET) self.registerSharedLibrariesWithTarget(target, ['AA', 'BB', 'CC']) # Set a breakpoint in and launch the main executable lldbutil.run_to_source_breakpoint( self, "break here", lldb.SBFileSpec("main.swift"), exe_name=self.getBuildArtifact("main")) # Check we are able to access the public fields of variables whose # types are from the .swiftinterface-only dylibs var = self.frame().FindVariable("x") lldbutil.check_variable(self, var, False, typename="AA.MyPoint") child_y = var.GetChildMemberWithName("y") # MyPoint.y is public lldbutil.check_variable(self, child_y, False, value="0") # MyPoint.x isn't public, but LLDB can find it through type metadata. child_x = var.GetChildMemberWithName("x") self.assertTrue(child_x.IsValid()) # Expression evaluation using types from the .swiftinterface only # dylibs should work too lldbutil.check_expression( self, self.frame(), "y.magnitudeSquared", "404", use_summary=False) lldbutil.check_expression( self, self.frame(), "MyPoint(x: 1, y: 2).magnitudeSquared", "5", use_summary=False) # Check the swift module cache was populated with the .swiftmodule # files of the loaded modules self.assertTrue(os.path.isdir(swift_mod_cache), "module cache exists") a_modules = glob.glob(os.path.join(swift_mod_cache, 'AA-*.swiftmodule')) b_modules = glob.glob(os.path.join(swift_mod_cache, 'BB-*.swiftmodule')) c_modules = glob.glob(os.path.join(swift_mod_cache, 'CC-*.swiftmodule')) self.assertEqual(len(a_modules), 1) self.assertEqual(len(b_modules), 1) self.assertEqual(len(c_modules), 0) # Update the timestamps of the modules to a time well in the past for file in a_modules + b_modules: make_old(file) # Re-import module A and B self.runCmd("expr import AA") self.runCmd("expr import BB") # Import C for the first time and check we can evaluate expressions # involving types from it self.runCmd("expr import CC") lldbutil.check_expression( self, self.frame(), "Baz.baz()", "23", use_summary=False) # Check we still have a single .swiftmodule in the cache for A and B # and that there is now one for C too a_modules = glob.glob(os.path.join(swift_mod_cache, 'AA-*.swiftmodule')) b_modules = glob.glob(os.path.join(swift_mod_cache, 'BB-*.swiftmodule')) c_modules = glob.glob(os.path.join(swift_mod_cache, 'CC-*.swiftmodule')) self.assertEqual(len(a_modules), 1, "unexpected number of swiftmodules for A.swift") self.assertEqual(len(b_modules), 1, "unexpected number of swiftmodules for B.swift") self.assertEqual(len(c_modules), 1, "unexpected number of swiftmodules for C.swift") # Make sure the .swiftmodule files of A and B were re-used rather than # re-generated when they were re-imported for file in a_modules + b_modules: self.assertTrue(is_old(file), "Swiftmodule file was regenerated rather than reused") OLD_TIMESTAMP = 1390550700 # 2014-01-24T08:05:00+00:00 def make_old(file): """Sets the access and modified time of the given file to a time long past""" os.utime(file, (OLD_TIMESTAMP, OLD_TIMESTAMP)) def is_old(file): """Checks the modified time of the given file matches the timestamp set my make_old""" return os.stat(file).st_mtime == OLD_TIMESTAMP
478dec05c29f554e8d1effc63ad7264f99e95538
c236e0c3b34a81e75acb9591423b6aad9d6a22dd
/unitTestRunner.py
451a956edaed0cee0386f60f3b60470f1b9a6a7c
[]
no_license
abhijeetdtu/heimcharge
2cd68c9eaaf5b94206d310c8b8348133b5d4e77b
569a9d22916808ba8b67169a2822a91e05a051e9
refs/heads/master
2021-06-06T02:55:29.913134
2019-06-11T03:07:20
2019-06-11T03:07:20
131,433,168
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
import unittest from UnitTests.ChartPlotTest import * from UnitTests.GeoOpsTest import * from UnitTests.FileOpsTest import * if __name__ == '__main__': unittest.main(exit=False)
b23143408eae95819c6760c853c06db075ea9987
d62e01ee1b50b8228d25736daceae0e822f3a0a0
/examples/user_guide/add_tasks.py
e323c771d0a918d6b08a4f1fc852134d93c6e40d
[ "MIT" ]
permissive
dalg24/radical.entk
b6f34ae1b2075f638fbdfd5fc397ea4c0d87cb93
4aa68d8de7804e09ca64629035ccda0b79ac0b76
refs/heads/master
2020-04-03T17:25:37.548618
2018-10-16T12:06:30
2018-10-16T12:06:30
155,444,172
0
0
null
null
null
null
UTF-8
Python
false
false
1,916
py
from radical.entk import Pipeline, Stage, Task, AppManager import os # ------------------------------------------------------------------------------ # Set default verbosity if os.environ.get('RADICAL_ENTK_VERBOSE') == None: os.environ['RADICAL_ENTK_REPORT'] = 'True' # Description of how the RabbitMQ process is accessible # No need to change/set any variables if you installed RabbitMQ has a system # process. If you are running RabbitMQ under a docker container or another # VM, set "RMQ_HOSTNAME" and "RMQ_PORT" in the session where you are running # this script. hostname = os.environ.get('RMQ_HOSTNAME', 'localhost') port = os.environ.get('RMQ_PORT', 5672) if __name__ == '__main__': # Create a Pipeline object p = Pipeline() # Create a Stage object s = Stage() for cnt in range(10): # Create a Task object t = Task() t.name = 'my-task' # Assign a name to the task (optional, do not use ',' or '_') t.executable = ['/bin/echo'] # Assign executable to the task t.arguments = ['I am task %s'%cnt] # Assign arguments for the task executable # Add the Task to the Stage s.add_tasks(t) # Add Stage to the Pipeline p.add_stages(s) # Create Application Manager appman = AppManager(hostname=hostname, port=port) # Create a dictionary describe four mandatory keys: # resource, walltime, and cpus # resource is 'local.localhost' to execute locally res_dict = { 'resource': 'local.localhost', 'walltime': 10, 'cpus': 1 } # Assign resource request description to the Application Manager appman.resource_desc = res_dict # Assign the workflow as a set or list of Pipelines to the Application Manager # Note: The list order is not guaranteed to be preserved appman.workflow = set([p]) # Run the Application Manager appman.run()
190402e6dd636bf2f4fa9578042f043ce51c8530
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/wtBko8Bc8o8Tmra3q_11.py
93df75889df3f71ae56c4f1e24530b81e184ba11
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
def halflife_calculator(mass, hlife, n): mass_left = mass/(2**n) years = hlife * n ​ return [round(mass_left,3),years]
008880df49eaa648acea8a9abf9ffaa149112098
85c0813d837b0e0f189020a52348db1deffb0b11
/public/db/coupon_db.py
80daaa213acc609f25eb27d5f2237e1696469652
[]
no_license
reb00t2018/flask-reptiles
2d49fb27e718e305a7127e05047d865a1e7a6157
ac3832340219f922e3b9451c2e2b1e18773938c1
refs/heads/master
2020-07-03T03:05:56.991764
2019-06-11T01:19:14
2019-06-11T01:19:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,051
py
# -*- coding: utf-8 -*- __author__ = 'Apple' from public.db.participle_db import DataBase_PD class CouponDB(DataBase_PD): def __init__(self): super(CouponDB, self).__init__() def save_coupon(self, coupon): ''' 保存一条商品信息到数据库 :param coupon: :return: ''' insert_sql = """ (insert into goods_goods(category_id,second_id,first_id,title, price, url, pic, brand,goods_desc,add_time) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)) """ old_coupon = self.is_has_by_name(coupon.title) insert_data = ( coupon.category_id,coupon.second_id,coupon.first_id, coupon.title, coupon.price, coupon.url, coupon.pic , coupon.brand,coupon.goods_desc,coupon.add_time ) if not old_coupon: return self.execute(insert_sql, insert_data) else: return False def is_has_by_name(self,title): ''' 根据name查询是否有这个商品 :param title: :return: ''' sql = """ select 1 from goods_goods where title = %s """ return self.find_execute(sql, (title)) def save_ip(self,ip,time): insert_sql = """ insert into goods_getip(ip,add_time) values (%s,%s) """ return self.execute(insert_sql, (ip,time)) def count_ip(self): select_sql = """ select count(*) from goods_getip """ return self.find_execute(select_sql) def delete_ip(self,getip): delete_sql = """ DELETE FROM goods_getip WHERE id = {0} """ return self.execute(delete_sql.format(getip)) def sumip(self): select_sql = """ select * from goods_getip """ return self.find_execute(select_sql,fetchone=False)
44c569b36803775a0c36187b8503777aef16b0ec
fa7790c45dbc1ee804011e9dff2d4ff424b9f3d6
/Searching and Sorting/Counting sort/Implementation.py
63a5b8f34c85215b5c59e2ea21c34fde374752dc
[]
no_license
KuroKousuii/Algorithms
bcdf75e58e20287e3162ef3302f8051604d7b7d6
3bf0250780c9d11c69546ca0da130fbbcada7e40
refs/heads/main
2023-05-31T07:41:07.399881
2021-06-16T09:32:16
2021-06-16T09:32:16
368,274,761
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
# Python program for counting sort # The main function that sort the given string arr[] in # alphabetical order def countSort(arr): # The output character array that will have sorted arr output = [0 for i in range(len(arr))] # Create a count array to store count of inidividul # characters and initialize count array as 0 count = [0 for i in range(256)] # For storing the resulting answer since the # string is immutable ans = ["" for _ in arr] # Store count of each character for i in arr: count[ord(i)] += 1 # Change count[i] so that count[i] now contains actual # position of this character in output array for i in range(256): count[i] += count[i - 1] # Build the output character array for i in range(len(arr)): output[count[ord(arr[i])] - 1] = arr[i] count[ord(arr[i])] -= 1 # Copy the output array to arr, so that arr now # contains sorted characters for i in range(len(arr)): ans[i] = output[i] return ans # Driver program to test above function arr = "geeksforgeeks" ans = countSort(arr) print("Sorted character array is % s" % ("".join(ans)))
11c74340ab82e472305fd10a2cd5370c1dea9ffb
fb1a7534356941e763755838e9b06fede7a7d116
/tests/test_metrics.py
46fe3e1aeab2e0aed220e08069a18e20c0547717
[ "Apache-2.0" ]
permissive
torkelo/graphite-api
e2417f0bddae9bcd0581272dc270bbe08a78d653
0fd1904b462c1cbbe99f531a365839647a01a7e1
refs/heads/master
2020-12-02T15:08:56.573796
2014-03-17T21:59:38
2014-03-17T21:59:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,363
py
import os.path import whisper from . import TestCase, WHISPER_DIR class MetricsTests(TestCase): def _create_dbs(self): for db in ( ('test', 'foo.wsp'), ('test', 'bar', 'baz.wsp'), ): db_path = os.path.join(WHISPER_DIR, *db) os.makedirs(os.path.dirname(db_path)) whisper.create(db_path, [(1, 60)]) def test_find(self): url = '/metrics/find' response = self.app.get(url) self.assertEqual(response.status_code, 400) response = self.app.get(url, query_string={'query': 'test'}) self.assertJSON(response, []) response = self.app.get(url, query_string={'query': 'test', 'format': 'completer'}) self.assertJSON(response, {'metrics': []}) self._create_dbs() response = self.app.get(url, query_string={'query': 'test.*', 'format': 'treejson'}) self.assertJSON(response, [{ 'allowChildren': 1, 'expandable': 1, 'id': 'test.bar', 'leaf': 0, 'text': 'bar', }, { 'allowChildren': 0, 'expandable': 0, 'id': 'test.foo', 'leaf': 1, 'text': 'foo', }]) response = self.app.get(url, query_string={'query': 'test.*', 'format': 'treejson', 'wildcards': 1}) self.assertJSON(response, [{ 'text': '*', 'expandable': 1, 'leaf': 0, 'id': 'test.*', 'allowChildren': 1, }, { 'allowChildren': 1, 'expandable': 1, 'id': 'test.bar', 'leaf': 0, 'text': 'bar', }, { 'allowChildren': 0, 'expandable': 0, 'id': 'test.foo', 'leaf': 1, 'text': 'foo', }]) response = self.app.get(url, query_string={'query': 'test.*', 'format': 'completer'}) self.assertJSON(response, {'metrics': [{ 'is_leaf': 0, 'name': 'bar', 'path': 'test.bar.', }, { 'is_leaf': 1, 'name': 'foo', 'path': 'test.foo', }]}) response = self.app.get(url, query_string={'query': 'test.*', 'wildcards': 1, 'format': 'completer'}) self.assertJSON(response, {'metrics': [{ 'is_leaf': 0, 'name': 'bar', 'path': 'test.bar.', }, { 'is_leaf': 1, 'name': 'foo', 'path': 'test.foo', }, { 'name': '*', }]}) def test_find_validation(self): url = '/metrics/find' response = self.app.get(url, query_string={'query': 'foo', 'wildcards': 'aaa'}) self.assertJSON(response, {'errors': {'wildcards': 'must be 0 or 1.'}}, status_code=400) response = self.app.get(url, query_string={'query': 'foo', 'from': 'aaa', 'until': 'bbb'}) self.assertJSON(response, {'errors': { 'from': 'must be an epoch timestamp.', 'until': 'must be an epoch timestamp.', }}, status_code=400) response = self.app.get(url, query_string={'query': 'foo', 'format': 'other'}) self.assertJSON(response, {'errors': { 'format': 'unrecognized format: "other".', }}, status_code=400) def test_expand(self): url = '/metrics/expand' response = self.app.get(url) self.assertJSON(response, {'errors': {'query': 'this parameter is required.'}}, status_code=400) response = self.app.get(url, query_string={'query': 'test'}) self.assertJSON(response, {'results': []}) self._create_dbs() response = self.app.get(url, query_string={'query': 'test'}) self.assertJSON(response, {'results': ['test']}) response = self.app.get(url, query_string={'query': 'test.*'}) self.assertJSON(response, {'results': ['test.bar', 'test.foo']}) response = self.app.get(url, query_string={'query': 'test.*', 'leavesOnly': 1}) self.assertJSON(response, {'results': ['test.foo']}) response = self.app.get(url, query_string={'query': 'test.*', 'groupByExpr': 1}) self.assertJSON(response, {'results': {'test.*': ['test.bar', 'test.foo']}}) def test_expand_validation(self): url = '/metrics/expand' response = self.app.get(url, query_string={'query': 'foo', 'leavesOnly': 'bbb', 'groupByExpr': 'aaa'}) self.assertJSON(response, {'errors': { 'groupByExpr': 'must be 0 or 1.', 'leavesOnly': 'must be 0 or 1.', }}, status_code=400) def test_noop(self): url = '/dashboard/find' response = self.app.get(url) self.assertJSON(response, {'dashboards': []}) url = '/dashboard/load/foo' response = self.app.get(url) self.assertJSON(response, {'error': "Dashboard 'foo' does not exist."}, status_code=404) url = '/events/get_data' response = self.app.get(url) self.assertJSON(response, []) def test_search(self): url = '/metrics/search' response = self.app.get(url, query_string={'max_results': 'a'}) self.assertJSON(response, {'errors': { 'max_results': 'must be an integer.', 'query': 'this parameter is required.'}}, status_code=400) response = self.app.get(url, query_string={'query': 'test'}) self.assertJSON(response, {'metrics': []}) def test_search_index(self): response = self.app.get('/metrics/search', query_string={'query': 'collectd.*'}) self.assertJSON(response, {'metrics': []}) parent = os.path.join(WHISPER_DIR, 'collectd') os.makedirs(parent) for metric in ['load', 'memory', 'cpu']: db = os.path.join(parent, '{0}.wsp'.format(metric)) whisper.create(db, [(1, 60)]) response = self.app.put('/index') self.assertJSON(response, {'success': True, 'entries': 3}) response = self.app.get('/metrics/search', query_string={'query': 'collectd.*'}) self.assertJSON(response, {'metrics': [ {'is_leaf': False, 'path': None}, {'is_leaf': True, 'path': 'collectd.cpu'}, {'is_leaf': True, 'path': 'collectd.load'}, {'is_leaf': True, 'path': 'collectd.memory'}, ]})
8afec5a7c9748873c1dbc65e7e67f6d025f33a9e
51d098e7ac392556a6365fcf7d283546d1bc86cb
/pysswords/db/credential.py
651901a52f61b2811503c8e9363f048ac638b221
[ "MIT" ]
permissive
mauriciomelo/pysswords
7dd632577b261aa198a618ca1d6d0faa825cb5e7
e845475a2a37f6e5ac4fadbc821d89dad6971f1c
refs/heads/master
2021-01-13T11:41:44.568197
2014-12-04T19:32:57
2014-12-04T19:32:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
from collections import namedtuple Credential = namedtuple( "Credential", ["name", "login", "password", "login_url", "description"] )
403e6aea999f4b8b857e6ebb24ff679f68a607af
46e50a1bd93569a0f945b65b6e84c927fb256f53
/mtpy/utils/modemMakeModel.py
36128ecdce8a38fc29194a3dd6cc3fa86d367988
[]
no_license
lucasc15/mt3py
d3afed2527b1bc49e4e4cd4ec1d24b5083a5942d
734fc551e87cd30261e7d648d79d6d0e5885b85d
refs/heads/master
2021-01-19T00:35:44.069960
2016-07-03T14:03:54
2016-07-03T14:03:54
62,498,631
1
0
null
null
null
null
UTF-8
Python
false
false
14,929
py
#!/usr/bin/env python #build ModEM input Model from ModEM data file import numpy as np import sys,os #============================================================================== #plot model geometry plot = True # parameters: n_xpadding = 10 n_ypadding = 6 #number of vertical padding layers is set to 3 ! #factor with which the padding stretches outside the central rectangle grid padding_stretch = 1.2 n_layers = 45 #determine minimum block sizes #used in the inner rectangle - constant widths dx = 300 dy = 350 #region around stations discretised with these sizes #outside, the grid steps will be extended exponentially #the size of padding is determined by the numbers of cells as defined above #number of trys to shift the grid for getting own cells for each station n_maximum_gridshifts = 123 #depth of first layer z0 = 50 #total model depth in meters model_depth = 200000 #stretching factor for the whole model extension model_extension_factor = 1 #starting resistivity value for homog. halfspace setup rho0 = 100. #define layered/1d model as input inmodel1d = np.zeros((4,2)) inmodel1d[0] = 0,0.1 inmodel1d[1] = 250,100 inmodel1d[2] = 2000,10 inmodel1d[3] = 4000,1000 #inmodel1d = None #============================================================================== #allow rotation of the grid along a known geo electrical strike angle # X,Y will be rotated to X',Y' with X' along strike #rotation center is the midpoint of the station loactions strike = 0. #NOTE: if strike is set to a value !=0, the locations of the stations have to #be adapted in the data file in the same way!!! #============================================================================== #name of datafile (to be handled as argument later on) datafile = 'ModEMdata.dat' #name of output model file modelfile = 'THE_modelfile.rho' #============================================================================== #============================================================================== #============================================================================== outstring = '' outstring += '# ModEM model generated with MTpy - layout read from datafile: {0}\n'.format(datafile) Fin = open(datafile,'r') data = Fin.readlines() Fin.close() coords = [] #read station coordinates #start in line after header info, determined by starting character '>' for dataline in data: line = dataline.strip().split() if (len(line) == 0) or line[0].strip()[0] in ['#','>']: continue try: line = dataline.strip().split() co = (float(line[4]),float(line[5]),float(line[6])) coords.append(co) except: continue # local, Cartesian coordinates: coords = np.array(list(set(coords))) if strike != 0: original_coords = coords.copy() cosphi = np.cos(strike/180.*np.pi) sinphi = np.sin(strike/180.*np.pi) RotMat = np.matrix(np.array([cosphi,sinphi,-sinphi,cosphi]).reshape(2,2)) center = (np.mean(coords[:,0]),np.mean(coords[:,1])) rel_coords = coords[:,:2] rel_coords[:,0] = coords[:,0] - center[0] rel_coords[:,1] = coords[:,1] - center[1] rotated_coords = np.dot(RotMat,np.matrix(rel_coords).T).T rotated_coords[:,0] = rotated_coords[:,0] + center[0] rotated_coords[:,1] = rotated_coords[:,1] + center[1] coords[:,:2] = rotated_coords #reduce grid to 2D - assuming all stations are at the surface xmin = min(coords[:,0]) xmax = max(coords[:,0]) ymin = min(coords[:,1]) ymax = max(coords[:,1]) x_range = xmax - xmin y_range = ymax - ymin n_center_xblocks = int(x_range/dx) + 3 n_center_yblocks = int(y_range/dy) + 3 center_widthX = n_center_xblocks * dx center_widthY = n_center_yblocks * dy surplusX = center_widthX - x_range surplusY = center_widthY - y_range all_points_in_single_cell = False n_shifts = 0 x_shifts = 0 y_shifts = 0 while all_points_in_single_cell is False: #stop after a finite number of steps if n_shifts > n_maximum_gridshifts: break shifting_fraction = np.sqrt(n_maximum_gridshifts) + 1 offset_x = x_shifts * dx/shifting_fraction offset_y = y_shifts * dy/shifting_fraction if n_shifts > 0: print('{0} shift(s): x-offset {1} m - y-offset {2} m'.format(n_shifts,offset_x,offset_y)) center_x0 = xmin - surplusX/2. + offset_x center_y0 = ymin - surplusY/2. + offset_y grid_x_points = (np.arange(n_center_xblocks+1) * dx) + center_x0 grid_y_points = (np.arange(n_center_yblocks+1) * dy) + center_y0 station_cells = [] for idx_sta,co in enumerate(coords): idx_x = np.argmin(np.abs(grid_x_points-co[0])) if (grid_x_points-co[0])[idx_x] == 0: # coordinate lies on a node line => need to shift print('station coordinates lie on cell nodes') break #otherwise, shift the index to correspond with the row of blocks, if necessary: if grid_x_points[idx_x] > co[0] : idx_x -= 1 idx_y = np.argmin(np.abs(grid_y_points-co[1])) if (grid_y_points-co[1])[idx_y] == 0: # coordinate lies on a node line => need to shift break #otherwise, shift the index to correspond with the row of blocks, if necessary: if grid_y_points[idx_y] > co[1] : idx_y -= 1 #cells enumerated West->East first, then northwards cell_index = idx_x * n_center_xblocks + idx_y station_cells.append(cell_index) if len(set(station_cells)) == len(coords): all_points_in_single_cell = True #shift the grid x_shifts += 1 if x_shifts >= (shifting_fraction - 1): x_shifts = 0 y_shifts += 1 n_shifts += 1 x_range = np.max(grid_x_points) - np.min(grid_x_points) y_range = np.max(grid_y_points) - np.min(grid_y_points) if all_points_in_single_cell < 1: print('ERROR - cannot build grid having each station in a single cell!\n'\ 'change the values for dx,dy or remove stations') sys.exit() #Now the inner grid is well distributed over the stations #add padding to the sides: grid_x_points = list(grid_x_points) x_padding_widths = [dx] for idx_pad in range(n_xpadding): pad = x_padding_widths[-1] * padding_stretch x_padding_widths.append(pad) x_padding_widths.pop(0) #extend the padding to at least the extent of the regular grid: pad_ratio = np.sum(x_padding_widths)/(x_range * model_extension_factor) if pad_ratio < 1: x_padding_widths = np.array(x_padding_widths)/pad_ratio #add the padding to the grid for idx_pad in range(n_xpadding): grid_x_points.insert(0,grid_x_points[0]-x_padding_widths[idx_pad]) grid_x_points.append(grid_x_points[-1]+x_padding_widths[idx_pad]) grid_y_points = list(grid_y_points) y_padding_widths = [dy] for idy_pad in range(n_ypadding): pad = y_padding_widths[-1] * padding_stretch y_padding_widths.append(pad) y_padding_widths.pop(0) #extend the padding to at least the extent of the regular grid: pad_ratio = np.sum(y_padding_widths)/(y_range * model_extension_factor) if pad_ratio < 1: y_padding_widths = np.array(y_padding_widths)/pad_ratio #add the padding to the grid for idy_pad in range(n_ypadding): grid_y_points.insert(0,grid_y_points[0]-y_padding_widths[idy_pad]) grid_y_points.append(grid_y_points[-1]+y_padding_widths[idy_pad]) xmin_padded = grid_x_points[0] ymin_padded = grid_y_points[0] # transfer the block coordinates into block widths xblocks = [] for idx_x in range(len(grid_x_points)-1): xblocks.append(grid_x_points[idx_x+1] - grid_x_points[idx_x]) yblocks = [] for idy_y in range(len(grid_y_points)-1): yblocks.append(grid_y_points[idy_y+1] - grid_y_points[idy_y]) #--------------------------------------------------------------------- n_zpadding = 3 #build block depths: n_layers_eff = n_layers - 1 #splitted uppermost layer log_part_thickness = model_depth - (n_layers_eff-1) * z0 depths = np.logspace( np.log10(z0), np.log10(log_part_thickness), n_layers_eff ) + \ np.arange(n_layers_eff) * z0 depths = list(depths) thicknesses = [z0/2.] for i, layer in enumerate(depths): if i == 0 : t = layer/2. else: t = layer - depths[i-1] thicknesses.append(t) padding = [thicknesses[-1]*padding_stretch] for idx_pad in range(n_zpadding-1): padding.append(padding[-1]*padding_stretch) total_padding = np.sum(padding) pad_ratio = total_padding/model_depth if pad_ratio < 1.5: padding = list(np.array(padding)/pad_ratio*1.5) if pad_ratio >2 : padding = list(np.array(padding)/pad_ratio*2) thicknesses.extend(padding) grid_z_points = [0] for t in thicknesses: grid_z_points.append(grid_z_points[-1]+t) #some information for the user: print('\n\t Model set up - dimensions: {0:.1f}x{1:.1f}x{2:.1f} km^3 ({3}x{4}x{5} cells)\n'.format( (grid_x_points[-1]-grid_x_points[0])/1000.,(grid_y_points[-1]-grid_y_points[0])/1000., depths[-1]/1000.,len(grid_x_points)-1,len(grid_y_points)-1,len(grid_z_points)-1)) outstring += '{0} {1} {2} {3} {4}\n'.format(len(xblocks),len(yblocks), len(thicknesses), 0,'LOGE') xstring = '' for block in xblocks: xstring += '{0:.3f} '.format(block) xstring += '\n' outstring += xstring ystring = '' for block in yblocks: ystring += '{0:.3f} '.format(block) ystring += '\n' outstring += ystring zstring = '' for block in thicknesses: zstring += '{0:.3f} '.format(block) zstring += '\n' outstring += zstring for idx_z in range(len(thicknesses)): z_string = '' #empty line before each layer: z_string += '\n' resistivity = rho0 if inmodel1d is not None: layertop_depth = grid_z_points[idx_z] layertop_modelboundary_distance = layertop_depth-inmodel1d[:,0] layertop_idx = (np.abs(layertop_modelboundary_distance)).argmin() if layertop_modelboundary_distance[layertop_idx] < 0: layertop_idx -= 1 resistivity = inmodel1d[layertop_idx,1] for idx_y in range(len(yblocks)): y_string = '' for idx_x in range(len(xblocks)): x_string = '{0:.5E} '.format(np.log(resistivity)) y_string += x_string y_string += '\n' z_string += y_string outstring += z_string co_reference = '{0} {1} {2} \n'.format(np.min(grid_x_points),np.min(grid_y_points),0) outstring += co_reference outstring += '0 \n' Fout= open(modelfile,'w') Fout.write(outstring) Fout.close() def plotgrid(stations,grid_x,grid_y,grid_z=None, n_xpadding = None, n_y_padding=None, n_zpadding_layers = None): ion() close('all') equal = True equal = False grid_x = [i/1000. for i in grid_x] grid_y = [i/1000. for i in grid_y] # Note: X and Y are swapped - mathematical definition used in the plotting functions!!! #fig = figure(1) #ax = fig.gca() fig = figure(figsize=(8, 6)) if grid_z is not None: colspan = 3 else: colspan = 4 if equal == True: ax = subplot2grid((1, 4), (0, 0), colspan=colspan,aspect='equal') else: ax = subplot2grid((1, 4), (0, 0), colspan=colspan,aspect='auto') #ax = subplot(1,2,1) ax.scatter(stations[:,1]/1000.,stations[:,0]/1000.,c='r') ax.scatter([ymin_padded/1000.],[xmin_padded/1000.],c='b',marker='x',s=40) outline_x = [min(grid_x),min(grid_x),max(grid_x),max(grid_x),min(grid_x)] outline_y = [min(grid_y),max(grid_y),max(grid_y),min(grid_y),min(grid_y)] ax.plot(outline_y,outline_x,c='r') if n_xpadding is not None and n_ypadding is not None: regular_x = [grid_x[n_xpadding],grid_x[n_xpadding], grid_x[-n_xpadding-1],grid_x[-n_xpadding-1],grid_x[n_xpadding]] regular_y = [grid_y[n_ypadding],grid_y[-n_ypadding-1], grid_y[-n_ypadding-1],grid_y[n_ypadding],grid_y[n_ypadding]] ax.plot(regular_y,regular_x,c='b') extension_factor = 0.1 x_extent = max(grid_x) - min(grid_x) x_extension = extension_factor * x_extent ax.set_ylim([min(grid_x) - x_extension,max(grid_x) + x_extension]) y_extent = max(grid_y) - min(grid_y) y_extension = extension_factor * y_extent ax.set_xlim([min(grid_y) - y_extension,max(grid_y) + y_extension]) ax.set_yticks(grid_x, minor=True) ax.yaxis.grid(False, which='major') ax.yaxis.grid(True, which='minor',c='g') ax.set_xticks(grid_y, minor=True) ax.xaxis.grid(False, which='major') ax.xaxis.grid(True, which='minor',c='g') ax.set_xlabel('Easting (Y-coordinate) in km') ax.set_ylabel('Northing (X-coordinate) in km') ax.set_title('Model geometry (origin at {0:.1f},{1:.1f})'.format(xmin_padded,ymin_padded)) if equal == True: ax.set_aspect('equal',adjustable='box') draw() if grid_z is not None: grid_z = [-i/1000. for i in grid_z] bottom_index = len(grid_z) - n_zpadding_layers -1 if equal == True: ax2 = subplot2grid((1, 4), (0, 3),aspect='equal') else: ax2 = subplot2grid((1, 4), (0, 3),aspect='auto') #fig2 = figure(2) #ax2 = fig2.gca() #ax2 = subplot(1,2,2) outline_z = [min(grid_z),min(grid_z),max(grid_z),max(grid_z),min(grid_z)] outline_y = [min(grid_y),max(grid_y),max(grid_y),min(grid_y),min(grid_y)] plot(outline_y,outline_z,c='r') plot([min(grid_y),max(grid_y)],[grid_z[bottom_index],grid_z[bottom_index]],c='b') ax2.axhline(linewidth=2, color='k') extension_factor = 0.1 z_extent = max(grid_z) - min(grid_z) z_extension = extension_factor * z_extent ax2.set_ylim([min(grid_z) - z_extension,max(grid_z) + z_extension]) y_extent = max(grid_y) - min(grid_y) y_extension = extension_factor * y_extent ax2.set_xlim([min(grid_y) - y_extension,max(grid_y) + y_extension]) #ax2.set_aspect('equal','datalim') ax2.set_yticks(grid_z, minor=True) ax2.yaxis.grid(False, which='major') ax2.yaxis.grid(True, which='minor',c='k') ax2.set_xlabel('Easting (Y-coordinate) in km') ax2.set_ylabel('Depth in km') ax2.set_title('Model layers') ax2.set_aspect('equal',adjustable='box') tight_layout() show(block=True) if plot == True: import platform if not platform.system().lower().startswith('win') : #generate an interactive plot window, which remains open after this script has finshed: proc_num = os.fork() if proc_num != 0: #This is the parent process, that should quit immediately to return to the #shell. print("You can kill the plot window with the command \"kill %d\"." % proc_num) sys.exit() from pylab import * plotgrid(coords,grid_x_points,grid_y_points,grid_z_points,n_xpadding,n_ypadding, n_zpadding)
53e93f962e07335199743cfd2031f7866c6928b6
f891828ffe9c8501d276560c8c52d319f284056f
/205_isomorphic_m/index_map.py
0f5f7ccd9a02480277885e72dd81ce413e922721
[]
no_license
chao-shi/lclc
1b852ab61fef4072039c61f68e951ab2072708bf
2722c0deafcd094ce64140a9a837b4027d29ed6f
refs/heads/master
2021-06-14T22:07:54.120375
2019-09-02T23:13:59
2019-09-02T23:13:59
110,387,039
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
class Solution(object): def isIsomorphic(self, s, t): """ :type s: str :type t: str :rtype: bool """ return map(s.find, s) == map(t.find, t) # From OJ discussion
a44f223635db7b358b49ccb6ca7923250c316bad
be5ea20226c37d81f1ccb2f704d8825d36e88765
/Exams/2-apr-2020/skeleton/tests/test_magic_card.py
75d8d74d391b2baf58d8a14b44e8e5b922aabf4f
[]
no_license
dimDamyanov/PythonOOP
3845e450e5a48fef4f70a186664e07c0cd60e09b
723204f5b7e953874fac9314e48eb1d1628d6ff5
refs/heads/main
2023-04-07T18:00:36.735248
2021-04-19T20:57:14
2021-04-19T20:57:14
341,329,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,231
py
import unittest from project.card.magic_card import MagicCard class TestMagicCard(unittest.TestCase): def setUp(self) -> None: self.magic_card = MagicCard('Card') def test_init_attrs_set(self) -> None: self.assertEqual(self.magic_card.name, 'Card') self.assertEqual(self.magic_card.damage_points, 5) self.assertEqual(self.magic_card.health_points, 80) def test_init__when_name_invalid__expect_exception(self) -> None: with self.assertRaises(ValueError) as context: MagicCard('') self.assertEqual(context.exception.args[0], 'Card\'s name cannot be an empty string.') def test_damage_points_setter__expect_exception(self) -> None: with self.assertRaises(ValueError) as context: self.magic_card.damage_points = -10 self.assertEqual(context.exception.args[0], 'Card\'s damage points cannot be less than zero.') def test_health_points_setter__expect_exception(self) -> None: with self.assertRaises(ValueError) as context: self.magic_card.health_points = -10 self.assertEqual(context.exception.args[0], 'Card\'s HP cannot be less than zero.') if __name__ == '__main__': unittest.main()
426d534ea1ee13cc690136f8ee33d913fa161456
fd90b8efa1daaec44b54797e549e0f738f4a5897
/shuxue/3的幂.py
648fe8a17fac9249b54026f7347281ef036e3e5e
[]
no_license
ddz-mark/LeetCode
2a622eeb655398ca9ebd9feee93a52cd114a77c4
d557faf87374ad8c65634ee9d9e572b88a54913a
refs/heads/master
2021-07-12T06:58:57.162657
2021-04-18T13:25:03
2021-04-18T13:25:03
244,403,881
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# 给定一个整数,写一个函数来判断它是否是 3 的幂次方。 class Solution(object): def isPowerOfThree(self, n): """ :type n: int :rtype: bool """ if n == 0 : return False while n % 3 == 0: n /= 3 if n == 1: return True else: return False if __name__ == '__main__': ob = Solution() print(ob.isPowerOfThree(9))
37ad995aa7d1d0d0fc4db7476eed8c5d9fcb4d47
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/wikipedia/testcase/interestallcases/testcase1_008_0.py
34135d8ab0a3e138c9938ad9ce244b9bbea57ae9
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
6,965
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'org.wikipedia', 'appActivity' : 'org.wikipedia.main.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'org.wikipedia/org.wikipedia.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return def scrollToFindElement(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: swipe(driver, 0.5, 0.6, 0.5, 0.2) else: return element return def clickoncheckable(driver, str, value = "true") : parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if (len(lists) == 1) : innere = parent.find_element_by_android_uiautomator("new UiSelector().checkable(true)") nowvalue = innere.get_attribute("checked") if (nowvalue != value) : innere.click() break except NoSuchElementException: continue # preference setting and exit try : os.popen("adb shell svc data diable") time.sleep(5) starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) os.popen("adb shell am start -n org.wikipedia/org.wikipedia.settings.DeveloperSettingsActivity") scrollToFindElement(driver, "new UiSelector().text(\"useRestbase_setManually\")").click() clickoncheckable(driver, "new UiSelector().text(\"useRestbase_setManually\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"suppressNotificationPolling\")").click() clickoncheckable(driver, "new UiSelector().text(\"suppressNotificationPolling\")", "false") scrollToFindElement(driver, "new UiSelector().text(\"memoryLeakTest\")").click() clickoncheckable(driver, "new UiSelector().text(\"memoryLeakTest\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"readingListLoginReminder\")").click() clickoncheckable(driver, "new UiSelector().text(\"readingListLoginReminder\")", "false") scrollToFindElement(driver, "new UiSelector().text(\"readingListsFirstTimeSync\")").click() clickoncheckable(driver, "new UiSelector().text(\"readingListsFirstTimeSync\")", "true") driver.press_keycode(4) time.sleep(2) os.popen("adb shell am start -n org.wikipedia/org.wikipedia.settings.SettingsActivity") scrollToFindElement(driver, "new UiSelector().text(\"Show link previews\")").click() clickoncheckable(driver, "new UiSelector().text(\"Show link previews\")", "false") scrollToFindElement(driver, "new UiSelector().text(\"Download only over Wi-Fi\")").click() clickoncheckable(driver, "new UiSelector().text(\"Download only over Wi-Fi\")", "false") scrollToFindElement(driver, "new UiSelector().text(\"Show images\")").click() clickoncheckable(driver, "new UiSelector().text(\"Show images\")", "false") driver.press_keycode(4) time.sleep(2) except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() finally : endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"1_008_pre\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() # testcase008 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/menu_overflow_button\").className(\"android.widget.TextView\")") TouchAction(driver).long_press(element).release().perform() swipe(driver, 0.5, 0.8, 0.5, 0.2) element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/menu_overflow_button\").className(\"android.widget.TextView\")") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Got it\")", "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/view_static_card_icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageView\").description(\"Share the article link\")") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"1_008\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'org.wikipedia'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage) os.popen("adb shell svc data enable")
ee0c0439bc8653fcafc1eda4272bc03c2c60a56f
fafee9d79beb7433633d59dce865efb437d608f6
/__init__.py
89ba90efec4b90e8c130bf0cd0c31e76b9df484d
[ "MIT", "BSD-3-Clause" ]
permissive
PabloRomanH/cihaidata-unihan
65830d945e50518895ce3f06a211a117cd502b84
c408b57f61b5b13926f42c3647cc0bc61da758be
refs/heads/master
2021-01-12T22:33:15.289066
2016-06-03T17:37:40
2016-06-03T17:37:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
674
py
#!/usr/bin/env python # -*- coding: utf8 - *- """Tool to build `Unihan`_ dataset into datapackage / simple data format.""" from __future__ import absolute_import, division, print_function, \ with_statement, unicode_literals __title__ = 'cihaidata-python' __package_name__ = 'cihaidata_python' __description__ = 'Tool to build `Unihan`_ dataset into datapackage / simple data format.' __version__ = '0.0.1' __author__ = 'Tony Narlock' __email__ = '[email protected]' __license__ = 'MIT' __copyright__ = 'Copyright 2013-2014 Tony Narlock' from .unihan import Unihan, check_install, create_table, flatten_datasets from .scripts import save, download, extract, convert
dba9cbb205056e92cf377392703f257eafae100a
242f1dafae18d3c597b51067e2a8622c600d6df2
/src/1400-1499/1486.xor.in.array.py
9f93fdedc92c4d84e1a7f4947d3adae6aec16ebd
[]
no_license
gyang274/leetcode
a873adaa083270eb05ddcdd3db225025533e0dfe
6043134736452a6f4704b62857d0aed2e9571164
refs/heads/master
2021-08-07T15:15:01.885679
2020-12-22T20:57:19
2020-12-22T20:57:19
233,179,192
1
0
null
null
null
null
UTF-8
Python
false
false
235
py
class Solution: def xorOperation(self, n: int, start: int) -> int: # TC: O(N), SC: O(1), note it is possible but difficult to complete this in O(1).. ans = 0 for i in range(n): ans ^= (start + 2 * i) return ans
7cb4b4d3b8da5d4f881a238fd2bb87a15a3dbb29
d94b6845aeeb412aac6850b70e22628bc84d1d6d
/d3pm/text/main_test.py
ddcfcfad48bbd428ea167bea70a1e48d197f9795
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
ishine/google-research
541aea114a68ced68736340e037fc0f8257d1ea2
c1ae273841592fce4c993bf35cdd0a6424e73da4
refs/heads/master
2023-06-08T23:02:25.502203
2023-05-31T01:00:56
2023-05-31T01:06:45
242,478,569
0
0
Apache-2.0
2020-06-23T01:55:11
2020-02-23T07:59:42
Jupyter Notebook
UTF-8
Python
false
false
1,725
py
# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for the main executable.""" import random from absl.testing import absltest import jax import numpy as np import tensorflow_datasets as tfds from d3pm.text import configs from d3pm.text import main class MainTest(absltest.TestCase): def test_small_training_job(self): experiment_dir = self.create_tempdir().full_path # Disable compiler optimizations for faster compile time. jax.config.update('jax_disable_most_optimizations', True) # Seed the random number generators. random.seed(0) np.random.seed(0) # Construct a test config with a small number of steps. configs.gin_load('lm1b_tiny') with tfds.testing.mock_data(num_examples=2048): # Make sure we can train without any exceptions. main.run_experiment( experiment_dir, batch_size_per_device=1, max_train_steps=1, validate_every=5, train_summary_frequency=5, num_eval_steps=5, num_predict_steps=1, restore_checkpoint=False, checkpoint_frequency=None, ) if __name__ == '__main__': absltest.main()
15af76b56f23169ecae06276f96acb2561d4c1b9
6480db97bf64fe5020bca084c38b7728ba9a1b9a
/pursuit/src/mvp_landing/urls.py
e10ed7a8489bdc075f57077b42c3bc7754100fd9
[]
no_license
masterfung/mvp_landing-Django
056727d3c7107f18ea5203b98816bad9bb94edaa
4ae2d9128e13616ca2e4e82e36927a352f515858
refs/heads/master
2021-01-13T02:35:57.392427
2014-06-02T14:30:37
2014-06-02T14:30:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
731
py
from django.conf.urls import patterns, include, url from django.conf import settings from django.conf.urls.static import static from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # Examples: #has to be in order when it comes to views url(r'^$', 'signups.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^thank-you/$', 'signups.views.thankyou', name='thankyou'), url(r'^about-us/$', 'signups.views.aboutus', name='aboutus'), url(r'^admin/', include(admin.site.urls)), ) if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root = settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
1575804de3dd437ba9e8b545b69edced761183fd
78d425c98f093e01dd78c15ffa76cf50f7e4fe1e
/tests/tier1/tc_1087_check_vdc_virtual_pool_revoked_in_guest_after_host_unattached.py
c2f7f74a50aa84f8b13159dec95faef8625f8fe0
[]
no_license
Junefen/virtwho-ci
57ef8637a78605fd3f2b1d3eb31031ba2b0de480
23e144171d2cc6ee87edfefdace8a25eb3e7bc65
refs/heads/master
2023-03-19T04:16:08.055779
2021-09-29T03:52:08
2021-09-29T03:52:08
194,606,208
0
0
null
2019-07-01T05:35:22
2019-07-01T05:35:22
null
UTF-8
Python
false
false
2,453
py
# coding:utf-8 from virt_who import * from virt_who.base import Base from virt_who.register import Register from virt_who.testing import Testing class Testcase(Testing): def test_run(self): self.vw_case_info(os.path.basename(__file__), case_id='RHEL-134064') self.vw_case_init() # case config results = dict() virtwho_conf = "/etc/virt-who.conf" self.vw_option_enable('[global]', virtwho_conf) self.vw_option_enable('debug', virtwho_conf) self.vw_option_update_value('debug', 'True', virtwho_conf) config_name = "virtwho-config" config_file = "/etc/virt-who.d/{0}.conf".format(config_name) self.vw_etc_d_mode_create(config_name, config_file) host_name = self.get_hypervisor_hostname() host_uuid = self.get_hypervisor_hostuuid() register_config = self.get_register_config() vdc_physical_sku = register_config['vdc'] vdc_virtual_sku = register_config['vdc_bonus'] # case steps logger.info(">>>step1: run virt-who and check the mapping info is sent or not") data, tty_output, rhsm_output = self.vw_start() res = self.op_normal_value(data, exp_error=0, exp_thread=1, exp_send=1) results.setdefault('step1', []).append(res) logger.info(">>>step2: attach physical sku for host/hypervisor") sku_attrs = self.system_sku_attr(self.ssh_host(), vdc_physical_sku, "physical") physical_pool_id = sku_attrs['pool_id'] self.vw_web_attach(host_name, host_uuid, physical_pool_id) logger.info(">>>step3: attach virtual sku by pool_id in guest") sku_attrs = self.system_sku_attr(self.ssh_guest(), vdc_virtual_sku, "virtual") virtual_pool_id = sku_attrs['pool_id'] self.system_sku_attach(self.ssh_guest(), pool_id=virtual_pool_id) output = self.system_sku_consumed(self.ssh_guest()) res = self.vw_msg_search(output, vdc_virtual_sku, exp_exist=True) results.setdefault('step3', []).append(res) logger.info(">>>step4: unattach physical sku from host/hypervisor and check virtual pool") self.vw_web_unattach(host_name, host_uuid) output = self.system_sku_consumed(self.ssh_guest(), exp_exist=False) res = self.vw_msg_search(output, vdc_virtual_sku, exp_exist=False) results.setdefault('step4', []).append(res) # case result self.vw_case_result(results)
ada54b21eb805ba13403e644e467913924e72667
d56828f1f7ae8fbb1fc2e79f84c82c4be1d13651
/google/cloud/datacatalog_v1/types/schema.py
4a51a1226512ae2416ba971f949dedc02bb6bb30
[ "Apache-2.0" ]
permissive
isabella232/python-datacatalog
940d7664d55ae01524f7fe89f8a295e9190ec23c
d16420640ec97c17e4c63516b8375b41df82de9c
refs/heads/master
2022-12-19T23:03:49.561389
2020-10-16T19:58:42
2020-10-16T19:58:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,287
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.datacatalog.v1", manifest={"Schema", "ColumnSchema",}, ) class Schema(proto.Message): r"""Represents a schema (e.g. BigQuery, GoogleSQL, Avro schema). Attributes: columns (Sequence[~.schema.ColumnSchema]): Required. Schema of columns. A maximum of 10,000 columns and sub-columns can be specified. """ columns = proto.RepeatedField(proto.MESSAGE, number=2, message="ColumnSchema",) class ColumnSchema(proto.Message): r"""Representation of a column within a schema. Columns could be nested inside other columns. Attributes: column (str): Required. Name of the column. type (str): Required. Type of the column. description (str): Optional. Description of the column. Default value is an empty string. mode (str): Optional. A column's mode indicates whether the values in this column are required, nullable, etc. Only ``NULLABLE``, ``REQUIRED`` and ``REPEATED`` are supported. Default mode is ``NULLABLE``. subcolumns (Sequence[~.schema.ColumnSchema]): Optional. Schema of sub-columns. A column can have zero or more sub-columns. """ column = proto.Field(proto.STRING, number=6) type = proto.Field(proto.STRING, number=1) description = proto.Field(proto.STRING, number=2) mode = proto.Field(proto.STRING, number=3) subcolumns = proto.RepeatedField(proto.MESSAGE, number=7, message="ColumnSchema",) __all__ = tuple(sorted(__protobuf__.manifest))