blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
82a567e6b34c488be5c6911c9716d0e5e39267f5
51ce07a419abe50f49e7bb6a6c036af291ea2ef5
/3.Algorithm/03. String/회문.py
3d2cc4d08812c91f1e68a534526433192562357f
[]
no_license
salee1023/TIL
c902869e1359246b6dd926166f5ac9209af7b1aa
2905bd331e451673cbbe87a19e658510b4fd47da
refs/heads/master
2023-03-10T09:48:41.377704
2021-02-24T10:47:27
2021-02-24T10:47:27
341,129,838
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
def is_pal(matrix,N,M): # 행 for i in range(N): for j in range(N-M+1): string = matrix[i][j:j+M] if string == string[::-1]: return string # 열 for i in range(N): for j in range(N-M+1): c_string = '' for m in range(M): c_string += matrix[j+m][i] if c_string == c_string[::-1]: return c_string # --------------------------------------------- T = int(input()) for tc in range(1, 1 + T): N, M = map(int, input().split()) matrix = [input() for _ in range(N)] print(f'#{tc} {is_pal(matrix,N,M)}')
da63621588aba35744cad652738150688fbf66e9
caf8cbcafd448a301997770165b323438d119f5e
/.history/chapter01/python_03_list_20201124200454.py
73877292c577b91f0b75b424a0b7b8670e42cef1
[ "MIT" ]
permissive
KustomApe/nerdape
03e0691f675f13ce2aefa46ee230111247e90c72
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
refs/heads/main
2023-01-23T10:13:26.584386
2020-11-28T22:29:49
2020-11-28T22:29:49
309,897,105
0
0
null
null
null
null
UTF-8
Python
false
false
31
py
"""[リストについて]] """
a6559663df3b494d7fa2c3b72625adbfc4ff5eb5
d6fe71e3e995c03b8f5151ab1d53411b77b325ba
/walklist_api_service/models/ping_response_payload_headers.py
b0cc9e09ae0c79a6d0ca74aee306b8002286ff8f
[]
no_license
mwilkins91/petpoint-scraper
95468ae9951deaa8bd3bef7d88c0ff660146c1a3
dd0c60c68fc6a7d11358aa63d28fdf07fff3c7cd
refs/heads/master
2022-11-27T00:02:50.654404
2020-08-09T18:41:40
2020-08-09T18:41:40
286,180,666
1
0
null
null
null
null
UTF-8
Python
false
false
3,252
py
# coding: utf-8 """ The Enrichment List The THS enrichment list # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class PingResponsePayloadHeaders(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'content_type': 'str' } attribute_map = { 'content_type': 'Content-Type' } def __init__(self, content_type=None): # noqa: E501 """PingResponsePayloadHeaders - a model defined in Swagger""" # noqa: E501 self._content_type = None self.discriminator = None if content_type is not None: self.content_type = content_type @property def content_type(self): """Gets the content_type of this PingResponsePayloadHeaders. # noqa: E501 :return: The content_type of this PingResponsePayloadHeaders. # noqa: E501 :rtype: str """ return self._content_type @content_type.setter def content_type(self, content_type): """Sets the content_type of this PingResponsePayloadHeaders. :param content_type: The content_type of this PingResponsePayloadHeaders. # noqa: E501 :type: str """ self._content_type = content_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PingResponsePayloadHeaders, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PingResponsePayloadHeaders): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
af611b2c565ba96222cf52efd00902fede83b397
7cf119239091001cbe687f73018dc6a58b5b1333
/datashufflepy-zeus/src/branch_scripts2/NEWS/ZX_CJXW_GJJRJG/ZX_CJXW_GJJRJG_GZW_DFSM.py
61ffc39ae2d35de2d050385674f862a2e53b7081
[ "Apache-2.0" ]
permissive
ILKKAI/dataETL
0f5b80c3482994f735f092a1e01fa1009bac4109
32f7ec3aaaf32b5074536a615cb9cd5c28bd499c
refs/heads/master
2022-04-04T19:27:05.747852
2020-02-28T11:17:48
2020-02-28T11:17:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
358
py
# -*- coding: utf-8 -*- from database._mongodb import MongoClient def data_shuffle(data): return data if __name__ == '__main__': main_mongo = MongoClient(entity_code="ZX_CJXW_GJJRJG_GZW_DFSM", mongo_collection="ZX_CJXW_HY") data_list = main_mongo.main() for data in data_list: re_data = data_shuffle(data) print(re_data)
595aa5a10ef9b0fb0a73ced16c54c8e221cf046c
2e1617aec5614ad695fd6ee8dfc0ffb77c54dad1
/sources/Yalkut Shimoni/Nach/Yalkut_Shimoni_on_Nach.py
3ca221c24e7c961394c09c1cbcfc94c0e0676dbc
[]
no_license
bachrach44/Sefaria-Data
ad875a552b858828ca2bbd4bbf1da8363dfef038
b33d781c1bde12568caa01c19e5ad9ec874d160f
refs/heads/master
2020-12-14T18:50:44.616694
2015-10-19T13:59:18
2015-10-19T13:59:18
17,557,774
0
0
null
2015-08-24T20:59:26
2014-03-09T04:33:13
HTML
UTF-8
Python
false
false
1,248
py
# -*- coding: utf-8 -*- import urllib import urllib2 from urllib2 import URLError, HTTPError import json import pdb import os import sys p = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, p) os.environ['DJANGO_SETTINGS_MODULE'] = "sefaria.settings" from local_settings import * sys.path.insert(0, SEFARIA_PROJECT_PATH) from sefaria.model import * def post_index(index): url = SEFARIA_SERVER+'api/v2/raw/index/'+index["title"].replace(" ", "_") indexJSON = json.dumps(index) values = { 'json': indexJSON, 'apikey': API_KEY } data = urllib.urlencode(values) req = urllib2.Request(url, data) try: response = urllib2.urlopen(req) print response.read() except HTTPError, e: print 'Error code: ', e.code root = JaggedArrayNode() root.key = "yalkut_on_nach" root.add_title("Yalkut Shimoni on Nach", "en", primary=True) root.add_title(u"""ילקות שמעוני על נ״ח""", "he", primary=True) root.depth = 2 root.sectionNames = ["Remez", "Paragraph"] root.heSectionNames = [u"רמז", u"פסקה"] root.addressTypes = ["Integer", "Integer"] root.validate() index = { "title": "Yalkut Shimoni on Nach", "categories": ["Midrash"], "schema": root.serialize() } post_index(index)
956b53ebd42005143cbd096e32d0ce899e750207
f38db79439185ab6062294e1d82f6e909d2be81e
/avazacli/models/payment_allocation.py
18823ae27ae286ff74624e1739cafa135180f970
[]
no_license
ContainerSolutions/avazacli
3a37f8500ad1f1843acbdbb413d4949e00ec6f91
49618314f15d8cb2bda36e6019670fdfbed1524f
refs/heads/master
2020-06-18T18:44:58.594385
2019-07-11T14:23:10
2019-07-11T14:23:10
196,406,206
3
2
null
null
null
null
UTF-8
Python
false
false
8,569
py
# coding: utf-8 """ Avaza API Documentation Welcome to the autogenerated documentation & test tool for Avaza's API. <br/><br/><strong>API Security & Authentication</strong><br/>Authentication options include OAuth2 Implicit and Authorization Code flows, and Personal Access Token. All connections should be encrypted over SSL/TLS <br/><br/>You can set up and manage your api authentication credentials from within your Avaza account. (requires Administrator permissions on your Avaza account).<br/><br/> OAuth2 Authorization endpoint: https://any.avaza.com/oauth2/authorize <br/>OAuth2 Token endpoint: https://any.avaza.com/oauth2/token<br/>Base URL for subsequent API Requests: https://api.avaza.com/ <br/><br/>Blogpost about authenticating with Avaza's API: https://www.avaza.com/avaza-api-oauth2-authentication/ <br/>Blogpost on using Avaza's webhooks: https://www.avaza.com/avaza-api-webhook-notifications/<br/>The OAuth flow currently issues Access Tokens that last 1 day, and Refresh tokens that last 180 days<br/>The Api respects the security Roles assigned to the authenticating Avaza user and filters the data return appropriately. <br/><br><strong>Support</strong><br/>For API Support, and to request access please contact Avaza Support Team via our support chat. <br/><br/><strong>User Contributed Libraries:</strong><br/>Graciously contributed by 3rd party users like you. <br/>Note these are not tested or endorsesd by Avaza. We encourage you to review before use, and use at own risk.<br/> <ul><li> - <a target='blank' href='https://packagist.org/packages/debiprasad/oauth2-avaza'>PHP OAuth Client Package for Azava API (by Debiprasad Sahoo)</a></li></ul> # noqa: E501 OpenAPI spec version: v1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class PaymentAllocation(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'transaction_allocation_id': 'int', 'invoice_transaction_idfk': 'int', 'payment_transaction_idfk': 'int', 'allocation_date': 'datetime', 'allocation_amount': 'float' } attribute_map = { 'transaction_allocation_id': 'TransactionAllocationID', 'invoice_transaction_idfk': 'InvoiceTransactionIDFK', 'payment_transaction_idfk': 'PaymentTransactionIDFK', 'allocation_date': 'AllocationDate', 'allocation_amount': 'AllocationAmount' } def __init__(self, transaction_allocation_id=None, invoice_transaction_idfk=None, payment_transaction_idfk=None, allocation_date=None, allocation_amount=None): # noqa: E501 """PaymentAllocation - a model defined in Swagger""" # noqa: E501 self._transaction_allocation_id = None self._invoice_transaction_idfk = None self._payment_transaction_idfk = None self._allocation_date = None self._allocation_amount = None self.discriminator = None if transaction_allocation_id is not None: self.transaction_allocation_id = transaction_allocation_id if invoice_transaction_idfk is not None: self.invoice_transaction_idfk = invoice_transaction_idfk if payment_transaction_idfk is not None: self.payment_transaction_idfk = payment_transaction_idfk if allocation_date is not None: self.allocation_date = allocation_date if allocation_amount is not None: self.allocation_amount = allocation_amount @property def transaction_allocation_id(self): """Gets the transaction_allocation_id of this PaymentAllocation. # noqa: E501 :return: The transaction_allocation_id of this PaymentAllocation. # noqa: E501 :rtype: int """ return self._transaction_allocation_id @transaction_allocation_id.setter def transaction_allocation_id(self, transaction_allocation_id): """Sets the transaction_allocation_id of this PaymentAllocation. :param transaction_allocation_id: The transaction_allocation_id of this PaymentAllocation. # noqa: E501 :type: int """ self._transaction_allocation_id = transaction_allocation_id @property def invoice_transaction_idfk(self): """Gets the invoice_transaction_idfk of this PaymentAllocation. # noqa: E501 :return: The invoice_transaction_idfk of this PaymentAllocation. # noqa: E501 :rtype: int """ return self._invoice_transaction_idfk @invoice_transaction_idfk.setter def invoice_transaction_idfk(self, invoice_transaction_idfk): """Sets the invoice_transaction_idfk of this PaymentAllocation. :param invoice_transaction_idfk: The invoice_transaction_idfk of this PaymentAllocation. # noqa: E501 :type: int """ self._invoice_transaction_idfk = invoice_transaction_idfk @property def payment_transaction_idfk(self): """Gets the payment_transaction_idfk of this PaymentAllocation. # noqa: E501 :return: The payment_transaction_idfk of this PaymentAllocation. # noqa: E501 :rtype: int """ return self._payment_transaction_idfk @payment_transaction_idfk.setter def payment_transaction_idfk(self, payment_transaction_idfk): """Sets the payment_transaction_idfk of this PaymentAllocation. :param payment_transaction_idfk: The payment_transaction_idfk of this PaymentAllocation. # noqa: E501 :type: int """ self._payment_transaction_idfk = payment_transaction_idfk @property def allocation_date(self): """Gets the allocation_date of this PaymentAllocation. # noqa: E501 :return: The allocation_date of this PaymentAllocation. # noqa: E501 :rtype: datetime """ return self._allocation_date @allocation_date.setter def allocation_date(self, allocation_date): """Sets the allocation_date of this PaymentAllocation. :param allocation_date: The allocation_date of this PaymentAllocation. # noqa: E501 :type: datetime """ self._allocation_date = allocation_date @property def allocation_amount(self): """Gets the allocation_amount of this PaymentAllocation. # noqa: E501 :return: The allocation_amount of this PaymentAllocation. # noqa: E501 :rtype: float """ return self._allocation_amount @allocation_amount.setter def allocation_amount(self, allocation_amount): """Sets the allocation_amount of this PaymentAllocation. :param allocation_amount: The allocation_amount of this PaymentAllocation. # noqa: E501 :type: float """ self._allocation_amount = allocation_amount def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PaymentAllocation): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0f30313b2ba18bc539916241ea7b0c1a993812bd
b77e12c0fc66cf47f83359fe8a04890669058f08
/day_3/callMainTest.py
ad3ff1f699f7f0f03e8d47dafb7d95a992e5dff1
[]
no_license
dydy061951/SeleniumProject
177bb8bdd9f3f586d63c7330d4e5bcdc473cf7c8
857fddb74748133475e5f4583007446ab7d2184f
refs/heads/master
2021-08-23T04:41:30.705381
2017-12-03T09:26:14
2017-12-03T09:26:14
112,907,712
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
from day_3.mainTest import printHW printHW()
[ "51Testing" ]
51Testing
729c10802c03ffac6b1d4ba1c426d90bdb7d05e5
89c677ead412795b56a03d7209b6dffa10dee346
/orcamentos/core/management/commands/create_admin.py
8b99126f0f5040af0f1caaab258f1b840a35d448
[ "MIT" ]
permissive
rg3915/orcamentos
009a5115e6cdc38976285d1867c56e3907898b03
5cd8c4f6cbeabeb5e069c58f583c38f44c3af99a
refs/heads/master
2022-06-21T22:54:49.575533
2021-08-10T21:31:38
2021-08-10T21:31:38
39,759,924
97
44
MIT
2022-06-16T23:17:19
2015-07-27T06:58:45
HTML
UTF-8
Python
false
false
842
py
from django.core.management.base import BaseCommand from orcamentos.crm.models import Employee class Command(BaseCommand): help = ''' Cria um usuário admin. ''' def handle(self, *args, **kwargs): ''' Cria um Employee. Precisamos de Employee para fazer todas as transações no sistema. ''' username = 'admin' first_name = 'Admin' last_name = 'Admin' email = '[email protected]' user = Employee.objects.create( username=username, first_name=first_name, last_name=last_name, email=email, gender='I' ) user.set_password('admin') user.is_staff = True user.is_superuser = True user.is_active = True user.save() print('Usuário criado com sucesso.')
7a378105c860099dd61297282e87b87d6ce4006d
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/EHzL3v25wYp7E4AFC_5.py
8a5ec4b5bd16208bd51e95590a5ec8900a2b9c45
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
""" Write a function that returns `True` if you can use the letters of the first string to create the second string. Letters are **case sensitive**. ### Examples can_build("aPPleAL", "PAL") ➞ True can_build("aPPleAL", "apple") ➞ False can_build("a", "") ➞ True can_build("aa", "aaa") ➞ False ### Notes Letters in the first string can be used only once. """ def can_build(s1, s2): result = True for i in s2: if i not in s2: result = False if s1.count(i) < s2.count(i): result = False if result is False: return False else: return True
062d52021c8a30a2bffcf1ee2952f42480968f14
27c8fc9bc336c49dbe172df5774e786106b4d6b7
/api/migrations/0001_initial.py
eb1b71fb66d5a2dc1eaac76e0a337a3677b5772f
[]
no_license
BunmiAdeleke123/blog
18169c3ab8b75742bf8bc3c73a20f25f02166533
5dcfb10cb844b62871d442f72cc37d136092adfe
refs/heads/main
2023-09-01T02:00:39.123781
2021-10-26T13:11:49
2021-10-26T13:11:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
# Generated by Django 3.2.8 on 2021-10-26 04:27 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=30)), ('slug', models.SlugField()), ('description', models.TextField()), ('date_added', models.DateField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-date_added'], }, ), ]
9f8493b375639b3b737ef050cb029a002c01a974
02338bb8111fc1aa88e830ac09a11664720eb2d4
/tmp/azure_rm_rule.py
b793c87171d1316e012545380daec23b6a3aca7e
[]
no_license
Fred-sun/fred_yaml
a49977b0e8505c7447df23dd80c7fef1be70e6bc
295ca4cd2b59b8d2758f06eb7fd79920327ea524
refs/heads/master
2023-04-28T05:51:56.599488
2023-04-25T13:52:10
2023-04-25T13:52:10
131,376,340
0
1
null
2020-07-06T14:22:46
2018-04-28T05:34:49
TSQL
UTF-8
Python
false
false
17,182
py
#!/usr/bin/python # # Copyright (c) 2020 GuopengLin, (@t-glin) # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_rule version_added: '2.9' short_description: Manage Azure Rule instance. description: - 'Create, update and delete instance of Azure Rule.' options: resource_group_name: description: - Name of the Resource group within the Azure subscription. required: true type: str namespace_name: description: - The namespace name required: true type: str topic_name: description: - The topic name. required: true type: str subscription_name: description: - The subscription name. required: true type: str rule_name: description: - The rule name. required: true type: str action: description: - >- Represents the filter actions which are allowed for the transformation of a message that have been matched by a filter expression. type: dict suboptions: sqlexpression: description: - SQL expression. e.g. MyProperty='ABC' type: str compatibility_level: description: - >- This property is reserved for future use. An integer value showing the compatibility level, currently hard-coded to 20. type: integer requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. type: bool filter_type: description: - Filter type that is evaluated against a BrokeredMessage. type: sealed-choice sqlfilter: description: - Properties of sqlFilter type: dict suboptions: sqlexpression: description: - The SQL expression. e.g. MyProperty='ABC' type: str compatibility_level: description: - >- This property is reserved for future use. An integer value showing the compatibility level, currently hard-coded to 20. type: integer requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. type: bool properties: description: - dictionary object for custom filters type: dictionary correlation_id: description: - Identifier of the correlation. type: str message_id: description: - Identifier of the message. type: str to: description: - Address to send to. type: str reply_to: description: - Address of the queue to reply to. type: str label: description: - Application specific label. type: str session_id: description: - Session identifier. type: str reply_to_session_id: description: - Session identifier to reply to. type: str content_type: description: - Content type of the message. type: str requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. type: bool state: description: - Assert the state of the Rule. - Use C(present) to create or update an Rule and C(absent) to delete it. default: present choices: - absent - present extends_documentation_fragment: - azure author: - GuopengLin (@t-glin) ''' EXAMPLES = ''' - name: RulesCreateCorrelationFilter azure_rm_rule: namespace_name: sdk-Namespace-1319 resource_group_name: resourceGroupName rule_name: sdk-Rules-6571 subscription_name: sdk-Subscriptions-8691 topic_name: sdk-Topics-2081 properties: correlation_filter: properties: topic_hint: Crop filter_type: CorrelationFilter - name: RulesCreateOrUpdate azure_rm_rule: namespace_name: sdk-Namespace-1319 resource_group_name: resourceGroupName rule_name: sdk-Rules-6571 subscription_name: sdk-Subscriptions-8691 topic_name: sdk-Topics-2081 - name: RulesCreateSqlFilter azure_rm_rule: namespace_name: sdk-Namespace-1319 resource_group_name: resourceGroupName rule_name: sdk-Rules-6571 subscription_name: sdk-Subscriptions-8691 topic_name: sdk-Topics-2081 properties: filter_type: SqlFilter sql_filter: sql_expression: myproperty=test - name: RulesDelete azure_rm_rule: namespace_name: sdk-Namespace-1319 resource_group_name: ArunMonocle rule_name: sdk-Rules-6571 subscription_name: sdk-Subscriptions-8691 topic_name: sdk-Topics-2081 ''' RETURN = ''' id: description: - Resource Id returned: always type: str sample: null name: description: - Resource name returned: always type: str sample: null type: description: - Resource type returned: always type: str sample: null action: description: - >- Represents the filter actions which are allowed for the transformation of a message that have been matched by a filter expression. returned: always type: dict sample: null contains: sqlexpression: description: - SQL expression. e.g. MyProperty='ABC' returned: always type: str sample: null compatibility_level: description: - >- This property is reserved for future use. An integer value showing the compatibility level, currently hard-coded to 20. returned: always type: integer sample: null requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. returned: always type: bool sample: null filter_type: description: - Filter type that is evaluated against a BrokeredMessage. returned: always type: sealed-choice sample: null sqlfilter: description: - Properties of sqlFilter returned: always type: dict sample: null contains: sqlexpression: description: - The SQL expression. e.g. MyProperty='ABC' returned: always type: str sample: null compatibility_level: description: - >- This property is reserved for future use. An integer value showing the compatibility level, currently hard-coded to 20. returned: always type: integer sample: null requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. returned: always type: bool sample: null properties: description: - dictionary object for custom filters returned: always type: dictionary sample: null correlation_id: description: - Identifier of the correlation. returned: always type: str sample: null message_id: description: - Identifier of the message. returned: always type: str sample: null to: description: - Address to send to. returned: always type: str sample: null reply_to: description: - Address of the queue to reply to. returned: always type: str sample: null label: description: - Application specific label. returned: always type: str sample: null session_id: description: - Session identifier. returned: always type: str sample: null reply_to_session_id: description: - Session identifier to reply to. returned: always type: str sample: null content_type: description: - Content type of the message. returned: always type: str sample: null requires_preprocessing: description: - Value that indicates whether the rule action requires preprocessing. returned: always type: bool sample: null ''' import time import json import re from ansible.module_utils.azure_rm_common_ext import AzureRMModuleBaseExt from copy import deepcopy try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.service import ServiceBusManagementClient from msrestazure.azure_operation import AzureOperationPoller from msrest.polling import LROPoller except ImportError: # This is handled in azure_rm_common pass class Actions: NoAction, Create, Update, Delete = range(4) class AzureRMRule(AzureRMModuleBaseExt): def __init__(self): self.module_arg_spec = dict( resource_group_name=dict( type='str', required=True ), namespace_name=dict( type='str', required=True ), topic_name=dict( type='str', required=True ), subscription_name=dict( type='str', required=True ), rule_name=dict( type='str', required=True ), action=dict( type='dict', disposition='/action', options=dict( sqlexpression=dict( type='str', disposition='sqlexpression' ), compatibility_level=dict( type='integer', disposition='compatibility_level' ), requires_preprocessing=dict( type='bool', disposition='requires_preprocessing' ) ) ), filter_type=dict( type='sealed-choice', disposition='/filter_type' ), sqlfilter=dict( type='dict', disposition='/sqlfilter', options=dict( sqlexpression=dict( type='str', disposition='sqlexpression' ), compatibility_level=dict( type='integer', disposition='compatibility_level' ), requires_preprocessing=dict( type='bool', disposition='requires_preprocessing' ) ) ), properties=dict( type='dictionary', disposition='/properties' ), correlation_id=dict( type='str', disposition='/correlation_id' ), message_id=dict( type='str', disposition='/message_id' ), to=dict( type='str', disposition='/to' ), reply_to=dict( type='str', disposition='/reply_to' ), label=dict( type='str', disposition='/label' ), session_id=dict( type='str', disposition='/session_id' ), reply_to_session_id=dict( type='str', disposition='/reply_to_session_id' ), content_type=dict( type='str', disposition='/content_type' ), requires_preprocessing=dict( type='bool', disposition='/requires_preprocessing' ), state=dict( type='str', default='present', choices=['present', 'absent'] ) ) self.resource_group_name = None self.namespace_name = None self.topic_name = None self.subscription_name = None self.rule_name = None self.body = {} self.results = dict(changed=False) self.mgmt_client = None self.state = None self.to_do = Actions.NoAction super(AzureRMRule, self).__init__(derived_arg_spec=self.module_arg_spec, supports_check_mode=True, supports_tags=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): if hasattr(self, key): setattr(self, key, kwargs[key]) elif kwargs[key] is not None: self.body[key] = kwargs[key] self.inflate_parameters(self.module_arg_spec, self.body, 0) old_response = None response = None self.mgmt_client = self.get_mgmt_svc_client(ServiceBusManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-04-01') old_response = self.get_resource() if not old_response: if self.state == 'present': self.to_do = Actions.Create else: if self.state == 'absent': self.to_do = Actions.Delete else: modifiers = {} self.create_compare_modifiers(self.module_arg_spec, '', modifiers) self.results['modifiers'] = modifiers self.results['compare'] = [] if not self.default_compare(modifiers, self.body, old_response, '', self.results): self.to_do = Actions.Update if (self.to_do == Actions.Create) or (self.to_do == Actions.Update): self.results['changed'] = True if self.check_mode: return self.results response = self.create_update_resource() elif self.to_do == Actions.Delete: self.results['changed'] = True if self.check_mode: return self.results self.delete_resource() else: self.results['changed'] = False response = old_response return self.results def create_update_resource(self): try: response = self.mgmt_client.rules.create_or_update(resource_group_name=self.resource_group_name, namespace_name=self.namespace_name, topic_name=self.topic_name, subscription_name=self.subscription_name, rule_name=self.rule_name, parameters=self.body) if isinstance(response, AzureOperationPoller) or isinstance(response, LROPoller): response = self.get_poller_result(response) except CloudError as exc: self.log('Error attempting to create the Rule instance.') self.fail('Error creating the Rule instance: {0}'.format(str(exc))) return response.as_dict() def delete_resource(self): try: response = self.mgmt_client.rules.delete(resource_group_name=self.resource_group_name, namespace_name=self.namespace_name, topic_name=self.topic_name, subscription_name=self.subscription_name, rule_name=self.rule_name) except CloudError as e: self.log('Error attempting to delete the Rule instance.') self.fail('Error deleting the Rule instance: {0}'.format(str(e))) return True def get_resource(self): try: response = self.mgmt_client.rules.get(resource_group_name=self.resource_group_name, namespace_name=self.namespace_name, topic_name=self.topic_name, subscription_name=self.subscription_name, rule_name=self.rule_name) except CloudError as e: return False return response.as_dict() def main(): AzureRMRule() if __name__ == '__main__': main()
03e77f8ed10d786ef8de43b60b2bbf9005ab7364
4b396133518de31120045ebca90b6679b243784c
/LEVEL_3/Food_Security/LEVEL_3_Calc_Food_Security.py
1187bd026a1baec068ab7bf30f4a595fb93c3df2
[ "MIT" ]
permissive
metameta-research/WaporTranslator
55657af8eee574f02fdfdbb7bd755b3de0538255
2827c464268037817b309b229af8b4a69014e47b
refs/heads/master
2020-08-27T18:42:57.025814
2019-10-23T12:39:16
2019-10-23T12:39:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
40,972
py
# -*- coding: utf-8 -*- """ WaterSat author: Tim Martijn Hessels Created on Tue Oct 1 13:25:22 2019 """ import os import gdal import numpy as np import pandas as pd import warnings import datetime import WaporTranslator.LEVEL_1.Input_Data as Inputs import WaporTranslator.LEVEL_1.DataCube as DataCube import WaporTranslator.LEVEL_2.Functions as Functions import watertools.General.raster_conversions as RC def main(Start_year_analyses, End_year_analyses, output_folder): # Do not show non relevant warnings warnings.filterwarnings("ignore") warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=RuntimeWarning) Startdate = "%s-01-01" %Start_year_analyses Enddate = "%s-12-31" %End_year_analyses # Define dates Dates = Functions.Get_Dekads(Start_year_analyses, End_year_analyses) Dates_Years = pd.date_range(Startdate, Enddate, freq = "AS") # Get path and formats Paths = Inputs.Input_Paths() Formats = Inputs.Input_Formats() Conversions = Inputs.Input_Conversions() # Set example file example_file = os.path.join(output_folder, "LEVEL_1", "MASK", "MASK.tif") # Open Mask dest_mask = gdal.Open(example_file) MASK = dest_mask.GetRasterBand(1).ReadAsArray() # Define output folder LEVEL 3 output_folder_L3 = os.path.join(output_folder, "LEVEL_3", "Food_Security") if not os.path.exists(output_folder_L3): os.makedirs(output_folder_L3) ################################# Dynamic maps ################################# CropType = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.CropType), Formats.CropType, list(Dates_Years), Conversion = Conversions.CropType, Variable = 'CropType', Product = '', Unit = '-') CropClass = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.CropClass), Formats.CropClass, list(Dates_Years), Conversion = Conversions.CropClass, Variable = 'CropClass', Product = '', Unit = '-') ET0 = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.ET0), Formats.ET0, Dates, Conversion = Conversions.ET0, Example_Data = example_file, Mask_Data = example_file, gap_filling = 1, reprojection_type = 2, Variable = 'ET0', Product = 'WAPOR', Unit = 'mm/day') ET = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.ET), Formats.ET, Dates, Conversion = Conversions.ET, Example_Data = example_file, Mask_Data = example_file, gap_filling = 1, reprojection_type = 2, Variable = 'ET', Product = 'WAPOR', Unit = 'mm/day') P = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.P), Formats.P, Dates, Conversion = Conversions.P, Example_Data = example_file, Mask_Data = example_file, gap_filling = 1, reprojection_type = 2, Variable = 'P', Product = 'WAPOR', Unit = 'mm/day') NPP = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.NPP), Formats.NPP, Dates, Conversion = Conversions.NPP, Example_Data = example_file, Mask_Data = example_file, Variable = 'NPP', Product = 'WAPOR', Unit = 'kg/ha/day') Pcum = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Cumulative_P), Formats.Cumulative_P, Dates, Conversion = Conversions.Cumulative_P, Variable = 'Pcum', Product = '', Unit = 'mm') ETcum = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Cumulative_ET), Formats.Cumulative_ET, Dates, Conversion = Conversions.Cumulative_ET, Variable = 'ETcum', Product = '', Unit = 'mm') NPPcum = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Cumulative_NPP), Formats.Cumulative_NPP, Dates, Conversion = Conversions.Cumulative_NPP, Variable = 'NPPcum', Product = '', Unit = 'kg/ha') Avail_Water_Depl = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Available_Before_Depletion), Formats.Available_Before_Depletion, Dates, Conversion = Conversions.Available_Before_Depletion, Variable = 'Available Water Depletion', Product = '', Unit = 'mm') Critical_Soil_Moisture = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Critical_Soil_Moisture), Formats.Critical_Soil_Moisture, Dates, Conversion = Conversions.Critical_Soil_Moisture, Variable = 'Critical Soil Moisture', Product = 'SoilGrids', Unit = 'cm3/cm3') Soil_Moisture = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Soil_Moisture), Formats.Soil_Moisture, Dates, Conversion = Conversions.Soil_Moisture, Variable = 'Soil Moisture', Product = '', Unit = 'cm3/cm3') Crop_S1_End = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Season_End_S1), Formats.Season_End_S1, list(Dates_Years), Conversion = Conversions.Season_End_S1, Variable = 'Season 1 End', Product = '', Unit = 'DOY') Crop_S2_End = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Season_End_S2), Formats.Season_End_S2, list(Dates_Years), Conversion = Conversions.Season_End_S2, Variable = 'Season 2 End', Product = '', Unit = 'DOY') Per_Start = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Perenial_Start), Formats.Perenial_Start, list(Dates_Years), Conversion = Conversions.Perenial_Start, Variable = 'Perenial Start', Product = '', Unit = 'DOY') Per_End = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Perenial_End), Formats.Perenial_End, list(Dates_Years), Conversion = Conversions.Perenial_End, Variable = 'Perenial End', Product = '', Unit = 'DOY') ################################# Static maps ################################# Clay = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Clay), Formats.Clay.format(level=6), Dates = None, Conversion = Conversions.Clay, Example_Data = example_file, Mask_Data = example_file, reprojection_type = 2, Variable = 'Clay', Product = 'SoilGrids', Unit = 'Percentage') Silt = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Silt), Formats.Silt.format(level=6), Dates = None, Conversion = Conversions.Silt, Example_Data = example_file, Mask_Data = example_file, reprojection_type = 2, Variable = 'Silt', Product = 'SoilGrids', Unit = 'Percentage') Sand = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Sand), Formats.Sand.format(level=6), Dates = None, Conversion = Conversions.Sand, Example_Data = example_file, Mask_Data = example_file, reprojection_type = 2, Variable = 'Sand', Product = 'SoilGrids', Unit = 'Percentage') DEM = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.DEM), Formats.DEM, Dates = None, Conversion = Conversions.DEM, Example_Data = example_file, Mask_Data = example_file, reprojection_type = 2, Variable = 'DEM', Product = 'SRTM', Unit = 'm') Theta_WP_Subsoil = DataCube.Rasterdata_tiffs(os.path.join(output_folder, Paths.Theta_WP_Subsoil), Formats.Theta_WP_Subsoil, Dates = None, Conversion = Conversions.Theta_WP_Subsoil, Example_Data = example_file, Mask_Data = example_file, reprojection_type = 2, Variable = 'Theta Wilting Point Subsoil', Product = 'SoilGrids', Unit = 'cm3/cm3') ################################# Calculate Irrigation yes/no ################################# Irrigation = Calc_Irrigation(Pcum, ETcum, Avail_Water_Depl, MASK) Irrigation.Save_As_Tiff(os.path.join(output_folder_L3, "Irrigation")) ################################# Calculate Irrigation yes/no ################################# Grassland_Data = np.where(CropType.Data==3, 1, np.nan) Grassland = DataCube.Rasterdata_Empty() Grassland.Data = Grassland_Data * MASK Grassland.Projection = Irrigation.Projection Grassland.GeoTransform = Irrigation.GeoTransform Grassland.Ordinal_time = np.array(list(map(lambda i : i.toordinal(), Dates_Years))) Grassland.Size = Grassland_Data.shape Grassland.Variable = "Grassland Yearly" Grassland.Unit = "-" Grassland.Save_As_Tiff(os.path.join(output_folder_L3, "Grassland")) ######################## Calculate days in each dekads ################################# Days_in_Dekads = np.append(ET.Ordinal_time[1:] - ET.Ordinal_time[:-1], 11) ################################# Calculate yearly irrigation maps ################################# Threshold = 10 # if this threshold or more decades were irrigation, the irrigation type is irrigation Irrigation_year_Data = np.ones([len(Dates_Years), Irrigation.Size[1], Irrigation.Size[2]]) * np.nan for Date_Year in Dates_Years: Start = (Date_Year.year - Dates_Years[0].year) * 36 End = Start + 36 Irrigation_year_Data[Dates_Years == Date_Year, :, :] = np.where(np.nansum(Irrigation.Data[Start:End, :, :], axis = 0)>=Threshold, 1, 0) Irrigation_Yearly = DataCube.Rasterdata_Empty() Irrigation_Yearly.Data = Irrigation_year_Data * MASK Irrigation_Yearly.Projection = Irrigation.Projection Irrigation_Yearly.GeoTransform = Irrigation.GeoTransform Irrigation_Yearly.Ordinal_time = np.array(list(map(lambda i : i.toordinal(), Dates_Years))) Irrigation_Yearly.Size = Irrigation_year_Data.shape Irrigation_Yearly.Variable = "Irrigation Yearly" Irrigation_Yearly.Unit = "-" Irrigation_Yearly.Save_As_Tiff(os.path.join(output_folder_L3, "Irrigation_Maps_Yearly")) ################################# Calculate Aridity Array ################################# Aridity = Calc_Aridity(ET0, P, MASK) ################################# Calculate Slope Array ################################# Slope = Calc_Slope(DEM, MASK) ################################# Calculate Crop Season and LU ################################# Season_Type = Calc_Crops(CropType, CropClass, MASK) ################################# Created AEZ numbers ################################# AEZ = Calc_AEZ(Irrigation_Yearly, Aridity, Slope, DEM, Clay, Silt, Sand, Season_Type, MASK) AEZ.Save_As_Tiff(os.path.join(output_folder_L3, "AEZ")) ################################# Create dictionary for all AEZ ################################# L3_AEZ_AREA = dict() L3_AEZ_Yield = dict() ################################# Calculate Areas every AEZ per year ################################# AREA_M2 = Degrees_to_m2(example_file) for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): L3_AEZ_AREA[int(AEZ_ID)] = np.nansum(np.where(AEZ.Data == AEZ_ID, AREA_M2[None, :, :], np.nan), axis = (1,2))/1e4 # in hectare ################################# Calculate actual biomass production ################################# C3_C4 = 0.45 Actual_Biomass_Production_Data = NPP.Data/C3_C4 Actual_Biomass_Production = DataCube.Rasterdata_Empty() Actual_Biomass_Production.Data = Actual_Biomass_Production_Data * MASK Actual_Biomass_Production.Projection = NPP.Projection Actual_Biomass_Production.GeoTransform = NPP.GeoTransform Actual_Biomass_Production.Ordinal_time = NPP.Ordinal_time Actual_Biomass_Production.Size = Actual_Biomass_Production_Data.shape Actual_Biomass_Production.Variable = "Actual Biomass Production" Actual_Biomass_Production.Unit = "kg-ha-1-d-1" Actual_Biomass_Production.Save_As_Tiff(os.path.join(output_folder_L3, "Actual_Biomass_Production")) del Actual_Biomass_Production_Data ################################# Calculate Spatial Target Actual Biomass Production ################################# AEZ_decads = np.repeat(AEZ.Data, 36, 0).reshape([36 * AEZ.Size[0], AEZ.Size[1], AEZ.Size[2]]) L3_AEZ_NPP = dict() for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): L3_AEZ_NPP[int(AEZ_ID)] = np.nanpercentile(np.where(AEZ_decads == AEZ_ID, Actual_Biomass_Production.Data, np.nan), 99, axis=(1,2)) ################################# Create spatial target maps ################################# NPP_target_Data = np.ones(Actual_Biomass_Production.Size) * np.nan for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): NPP_target_Data = np.where(AEZ_decads == AEZ_ID, L3_AEZ_NPP[int(AEZ_ID)][:, None, None], NPP_target_Data) Target_Biomass_Production = DataCube.Rasterdata_Empty() Target_Biomass_Production.Data = NPP_target_Data * MASK Target_Biomass_Production.Projection = NPP.Projection Target_Biomass_Production.GeoTransform = NPP.GeoTransform Target_Biomass_Production.Ordinal_time = NPP.Ordinal_time Target_Biomass_Production.Size = NPP_target_Data.shape Target_Biomass_Production.Variable = "Target Biomass Production" Target_Biomass_Production.Unit = "kg-ha-1-d-1" Target_Biomass_Production.Save_As_Tiff(os.path.join(output_folder_L3, "Target_Biomass_Production")) del NPP_target_Data ################################# Dekadal production gap Spatial ################################# Production_Gap_Spatial_Data = np.minimum(Actual_Biomass_Production.Data - Target_Biomass_Production.Data, 0) Production_Gap_Spatial = DataCube.Rasterdata_Empty() Production_Gap_Spatial.Data = Production_Gap_Spatial_Data * MASK Production_Gap_Spatial.Projection = NPP.Projection Production_Gap_Spatial.GeoTransform = NPP.GeoTransform Production_Gap_Spatial.Ordinal_time = NPP.Ordinal_time Production_Gap_Spatial.Size = Production_Gap_Spatial_Data.shape Production_Gap_Spatial.Variable = "Production Gap Spatial" Production_Gap_Spatial.Unit = "kg-ha-1-d-1" Production_Gap_Spatial.Save_As_Tiff(os.path.join(output_folder_L3, "Production_Gap_Spatial")) del Production_Gap_Spatial_Data ################################# Calculate 10 year mean biomass production ################################# Total_years = int(np.ceil(Actual_Biomass_Production.Size[0]/36)) Mean_Biomass_Production_Data = np.ones([36, Actual_Biomass_Production.Size[1], Actual_Biomass_Production.Size[2]]) * np.nan for dekad in range(0,36): IDs = np.array(range(0, Total_years)) * 36 + dekad IDs_good = IDs[IDs<=Actual_Biomass_Production.Size[0]] Mean_Biomass_Production_Data[dekad, :, :] = np.nanmean(Actual_Biomass_Production.Data[IDs_good,:,:], axis = 0) Mean_Biomass_Production = DataCube.Rasterdata_Empty() Mean_Biomass_Production.Data = Mean_Biomass_Production_Data * MASK Mean_Biomass_Production.Projection = Actual_Biomass_Production.Projection Mean_Biomass_Production.GeoTransform = Actual_Biomass_Production.GeoTransform Mean_Biomass_Production.Ordinal_time = "Long_Term_Decade" Mean_Biomass_Production.Size = Mean_Biomass_Production_Data.shape Mean_Biomass_Production.Variable = "10Y Mean Biomass Production" Mean_Biomass_Production.Unit = "kg-ha-1-d-1" Mean_Biomass_Production.Save_As_Tiff(os.path.join(output_folder_L3, "Mean_Biomass_Production")) del Mean_Biomass_Production_Data ################################# production gap Temporal ################################# Production_Gap_Temporal_Data = (Actual_Biomass_Production.Data - np.tile(Mean_Biomass_Production.Data, (Total_years, 1, 1))) Production_Gap_Temporal = DataCube.Rasterdata_Empty() Production_Gap_Temporal.Data = Production_Gap_Temporal_Data * MASK Production_Gap_Temporal.Projection = NPP.Projection Production_Gap_Temporal.GeoTransform = NPP.GeoTransform Production_Gap_Temporal.Ordinal_time = NPP.Ordinal_time Production_Gap_Temporal.Size = Production_Gap_Temporal_Data.shape Production_Gap_Temporal.Variable = "Production Gap Temporal" Production_Gap_Temporal.Unit = "kg-ha-1-d-1" Production_Gap_Temporal.Save_As_Tiff(os.path.join(output_folder_L3, "Production_Gap_Temporal")) del Production_Gap_Temporal_Data ################################# Soil Moisture stress ################################# Soil_Moisture_Stress_Data = np.maximum(0.0,(Critical_Soil_Moisture.Data-Soil_Moisture.Data)/(Critical_Soil_Moisture.Data-Theta_WP_Subsoil.Data[None, :, :])) Soil_Moisture_Stress = DataCube.Rasterdata_Empty() Soil_Moisture_Stress.Data = Soil_Moisture_Stress_Data * MASK Soil_Moisture_Stress.Projection = NPP.Projection Soil_Moisture_Stress.GeoTransform = NPP.GeoTransform Soil_Moisture_Stress.Ordinal_time = NPP.Ordinal_time Soil_Moisture_Stress.Size = Soil_Moisture_Stress_Data.shape Soil_Moisture_Stress.Variable = "Soil Moisture Stress" Soil_Moisture_Stress.Unit = "-" del Soil_Moisture_Stress_Data Soil_Moisture_Stress.Save_As_Tiff(os.path.join(output_folder_L3, "Soil_Moisture_Stress")) ################################# Production gap due to soil moisture ################################# Production_Gap_Soil_Moisture_Data = np.where(Soil_Moisture_Stress.Data<0., 0., -Actual_Biomass_Production.Data * Soil_Moisture_Stress.Data) # !!! heb hier keer van gemaakt Production_Gap_Soil_Moisture_Data = Production_Gap_Soil_Moisture_Data.clip(-10000, 0) Production_Gap_Soil_Moisture = DataCube.Rasterdata_Empty() Production_Gap_Soil_Moisture.Data = Production_Gap_Soil_Moisture_Data * MASK Production_Gap_Soil_Moisture.Projection = NPP.Projection Production_Gap_Soil_Moisture.GeoTransform = NPP.GeoTransform Production_Gap_Soil_Moisture.Ordinal_time = NPP.Ordinal_time Production_Gap_Soil_Moisture.Size = Production_Gap_Soil_Moisture_Data.shape Production_Gap_Soil_Moisture.Variable = "Production Gap Due to Soil Moisture" Production_Gap_Soil_Moisture.Unit = "kg-ha-1-d-1" Production_Gap_Soil_Moisture.Save_As_Tiff(os.path.join(output_folder_L3, "Production_Gap_Soil_Moisture")) del Production_Gap_Soil_Moisture_Data ################################# Water Unlimited Biomass Production ################################# Water_Unlimited_Biomass_Production_Data = (Actual_Biomass_Production.Data - Production_Gap_Soil_Moisture.Data)/Days_in_Dekads[:, None, None] Water_Unlimited_Biomass_Production = DataCube.Rasterdata_Empty() Water_Unlimited_Biomass_Production.Data = Water_Unlimited_Biomass_Production_Data * MASK Water_Unlimited_Biomass_Production.Projection = NPP.Projection Water_Unlimited_Biomass_Production.GeoTransform = NPP.GeoTransform Water_Unlimited_Biomass_Production.Ordinal_time = NPP.Ordinal_time Water_Unlimited_Biomass_Production.Size = Water_Unlimited_Biomass_Production_Data.shape Water_Unlimited_Biomass_Production.Variable = "Water Unlimited Biomass Production" Water_Unlimited_Biomass_Production.Unit = "kg-ha-1-d-1" Water_Unlimited_Biomass_Production.Save_As_Tiff(os.path.join(output_folder_L3, "Water_Unlimited_Biomass_Production")) del Water_Unlimited_Biomass_Production_Data ################################# Accumulated NPP season ################################# # For perenial crop clip the season at start and end year Accumulated_NPP_Data_Start = np.ones(Per_Start.Size) * np.nan Accumulated_NPP_Data_End = np.ones(Per_Start.Size) * np.nan ''' Start_Array = np.maximum(0, Per_Start.Data) End_Array = np.minimum(35, Per_End.Data) for Date_Year in Dates_Years: year_diff = int(Date_Year.year - Dates_Years[0].year) for dekad in range(0,36): Accumulated_NPP_Data_Start[year_diff, Start_Array[year_diff, :, :] == dekad] = NPPcum.Data[int(year_diff * 36 + dekad), Start_Array[year_diff, :, :] == dekad] Accumulated_NPP_Data_End[year_diff, End_Array[year_diff, :, :] == dekad] = NPPcum.Data[int(year_diff * 36 + dekad-1), End_Array[year_diff, :, :] == dekad] ''' for Date_Year in Dates_Years: year_diff = int(Date_Year.year - Dates_Years[0].year) Harvest = np.where(Per_End.Data[year_diff, :, :]<37, 1, 0) for dekad in range(int(np.nanmin(Per_Start.Data[year_diff, :, :])), 36): Accumulated_NPP_Data_Start[year_diff, np.logical_and(Per_Start.Data[year_diff, :, :] == dekad, Harvest==1)] = NPPcum.Data[int(year_diff * 36 + dekad), np.logical_and(Per_Start.Data[year_diff, :, :] == dekad, Harvest==1)] for dekad in range(0,37): Accumulated_NPP_Data_End[year_diff, Per_End.Data[year_diff, :, :] == dekad] = NPPcum.Data[int(year_diff * 36 + dekad-1), Per_End.Data[year_diff, :, :] == dekad] Accumulated_NPP_Data_Per = Accumulated_NPP_Data_End - Accumulated_NPP_Data_Start # For other crops (double and single) take the start and end of the seasons Accumulated_NPP_Data_Start_S1 = np.ones(Per_Start.Size) * np.nan Accumulated_NPP_Data_Start_S2 = np.ones(Per_Start.Size) * np.nan if not np.isnan(np.nanmean(Crop_S1_End.Data)): for Date_Year in Dates_Years: year_diff = int(Date_Year.year - Dates_Years[0].year) for dekad in range(0,int(np.nanmax(Crop_S2_End.Data))): Accumulated_NPP_Data_Start_S1[year_diff, Crop_S1_End.Data[year_diff, :, :] == dekad] = NPPcum.Data[np.minimum(NPPcum.Size[0]-1, int(year_diff * 36 + dekad)), Crop_S1_End.Data[year_diff, :, :] == dekad] Accumulated_NPP_Data_Start_S2[year_diff, Crop_S2_End.Data[year_diff, :, :] == dekad] = NPPcum.Data[np.minimum(NPPcum.Size[0]-1, int(year_diff * 36 + dekad-1)), Crop_S2_End.Data[year_diff, :, :] == dekad] Accumulated_NPP_Data_Start_S1[np.isnan(Accumulated_NPP_Data_Start_S1)] = 0 Accumulated_NPP_Data_Start_S2[np.isnan(Accumulated_NPP_Data_Start_S2)] = 0 # Calculate pasture Accumulated_NPP_Data_Past = np.ones(Per_Start.Size) * np.nan for Date_Year in Dates_Years: year_diff = int(Date_Year.year - Dates_Years[0].year) dekad = 35 # Always take end in pasture Accumulated_NPP_Data_Past[year_diff, Season_Type.Data[year_diff, :, :] == 4] = NPPcum.Data[int(year_diff * 36 + dekad), Season_Type.Data[year_diff, :, :] == 4] Accumulated_NPP_Data_Past[np.isnan(Accumulated_NPP_Data_Past)] = 0 Accumulated_NPP_Data_Per[np.isnan(Accumulated_NPP_Data_Per)] = 0 # Add all seasons Accumulated_NPP_Data = Accumulated_NPP_Data_Start_S1 + Accumulated_NPP_Data_Start_S2 + Accumulated_NPP_Data_Per + Accumulated_NPP_Data_Past Accumulated_NPP_Data[Accumulated_NPP_Data==0] = np.nan Accumulated_NPP = DataCube.Rasterdata_Empty() Accumulated_NPP.Data = Accumulated_NPP_Data * MASK Accumulated_NPP.Projection = Per_Start.Projection Accumulated_NPP.GeoTransform = Per_Start.GeoTransform Accumulated_NPP.Ordinal_time = Per_Start.Ordinal_time Accumulated_NPP.Size = Accumulated_NPP_Data.shape Accumulated_NPP.Variable = "Accumulated NPP Season" Accumulated_NPP.Unit = "kg-ha-1-season-1" Accumulated_NPP.Save_As_Tiff(os.path.join(output_folder_L3, "Accumulated_NPP_Season")) ################################# Accumulated Biomass Production season ################################# Accumulated_Biomass_Production_Data = Accumulated_NPP.Data/C3_C4 Accumulated_Biomass_Production = DataCube.Rasterdata_Empty() Accumulated_Biomass_Production.Data = Accumulated_Biomass_Production_Data * MASK Accumulated_Biomass_Production.Projection = Per_Start.Projection Accumulated_Biomass_Production.GeoTransform = Per_Start.GeoTransform Accumulated_Biomass_Production.Ordinal_time = Per_Start.Ordinal_time Accumulated_Biomass_Production.Size = Accumulated_Biomass_Production_Data.shape Accumulated_Biomass_Production.Variable = "Accumulated Biomass Production" Accumulated_Biomass_Production.Unit = "kg-ha-1-season-1" Accumulated_Biomass_Production.Save_As_Tiff(os.path.join(output_folder_L3, "Accumulated_Biomass_Production_Season")) ################################# Calculate Yield season ################################# Harvest_Index = 0.35 Moisture_Index = 0.15 Yield_Data = Harvest_Index * ((Accumulated_NPP.Data)/C3_C4)/(1 - Moisture_Index) Yield = DataCube.Rasterdata_Empty() Yield.Data = Yield_Data * MASK Yield.Projection = Per_Start.Projection Yield.GeoTransform = Per_Start.GeoTransform Yield.Ordinal_time = Per_Start.Ordinal_time Yield.Size = Yield_Data.shape Yield.Variable = "Yield Season" Yield.Unit = "kg-ha-1-season-1" Yield.Save_As_Tiff(os.path.join(output_folder_L3, "Yield")) ################################# Calculate Fresh Grass Yield season ################################# Yield_Fresh_Grass_Data = 0.45 * ((Accumulated_NPP.Data)/C3_C4)/(1 - 0.6) Yield_Fresh_Grass = DataCube.Rasterdata_Empty() Yield_Fresh_Grass.Data = Yield_Fresh_Grass_Data * MASK Yield_Fresh_Grass.Projection = Per_Start.Projection Yield_Fresh_Grass.GeoTransform = Per_Start.GeoTransform Yield_Fresh_Grass.Ordinal_time = Per_Start.Ordinal_time Yield_Fresh_Grass.Size = Yield_Fresh_Grass_Data.shape Yield_Fresh_Grass.Variable = "Accumulated Yield Season" Yield_Fresh_Grass.Unit = "kg-ha-1-season-1" Yield_Fresh_Grass.Save_As_Tiff(os.path.join(output_folder_L3, "Yield_Fresh_Grass")) ################################# Calculate Mean Biomass Production over every AEZ per year ################################# L3_AEZ_Bio = dict() for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): L3_AEZ_Bio[int(AEZ_ID)] = np.nanmean(np.where(AEZ.Data == AEZ_ID, Accumulated_Biomass_Production.Data, np.nan), axis = (1,2)) ################################# Calculate Mean Yield over every AEZ per year ################################# L3_AEZ_Yield = dict() for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): L3_AEZ_Yield[int(AEZ_ID)] = np.nanmean(np.where(AEZ.Data == AEZ_ID, Yield.Data, np.nan), axis = (1,2)) ################################# Calculate Mean Yield Fresh Grass over every AEZ per year ################################# L3_AEZ_Yield_Fresh_Grass = dict() for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): L3_AEZ_Yield_Fresh_Grass[int(AEZ_ID)] = np.nanmean(np.where(AEZ.Data == AEZ_ID, Yield_Fresh_Grass.Data, np.nan), axis = (1,2)) ################################# Create CSVs ################################# # Create Aridity AEZ dict_names = AEZ_Names() for Date_Year in Dates_Years: year_diff = int(Date_Year.year - Dates_Years[0].year) year = Date_Year.year filename_logfile =os.path.join(output_folder_L3, "CSV_%s.csv" %year) textfile = open(filename_logfile,'w') text_first_line = "AEZ, Croptype, Rainfed/Irrigated, Soiltype, Elevation, Slope, Climate, Area (ha), Biomass Production (kg/ha/Season), Yield (ton/ha), Food Production (tonnes)\n" textfile.write(text_first_line) for AEZ_ID in np.unique(AEZ.Data[~np.isnan(AEZ.Data)]): AEZ_str = str(int(AEZ_ID)) CROPTYPE = dict_names["Crop"][int(AEZ_str[0:1])] RAINIRRI = dict_names["Irrigated"][int(AEZ_str[1:2])] SOILTYPE = dict_names["Soil"][int(AEZ_str[2:4])] ELEVATION = dict_names["Elevation"][int(AEZ_str[4:5])] SLOPE = dict_names["Slope"][int(AEZ_str[5:6])] CLIMATE = dict_names["Aridity"][int(AEZ_str[6:7])] AREA = L3_AEZ_AREA[AEZ_ID][year_diff] BIO = L3_AEZ_Bio[AEZ_ID][year_diff] if int(AEZ_str[0:1]) < 4: YIELD = L3_AEZ_Yield[AEZ_ID][year_diff] else: YIELD = L3_AEZ_Yield_Fresh_Grass[AEZ_ID][year_diff] FOOD = YIELD * AREA text_one_line = "%s, %s, %s, %s, %s, %s, %s, %.2f, %.2f, %.2f, %.2f\n" %(int(AEZ_ID), CROPTYPE, RAINIRRI, SOILTYPE, ELEVATION, SLOPE, CLIMATE, AREA, BIO, YIELD, FOOD) textfile.write(text_one_line) textfile.close() return() def Calc_Irrigation(Pcum, ETcum, Avail_Water_Depl, MASK): Irrigation_Data = np.where(np.abs(Pcum.Data - ETcum.Data) > Avail_Water_Depl.Data, 1, 0) Irrigation = DataCube.Rasterdata_Empty() Irrigation.Data = Irrigation_Data * MASK Irrigation.Projection = Pcum.Projection Irrigation.GeoTransform = Pcum.GeoTransform Irrigation.Ordinal_time = Pcum.Ordinal_time Irrigation.Size = Irrigation_Data.shape Irrigation.Variable = "Irrigation" Irrigation.Unit = "-" return(Irrigation) def Calc_Dekads_range(Startdate, Enddate): # Get dekads time steps Enddate_datetime = datetime.datetime.strptime(Enddate, "%Y-%m-%d") Years = pd.date_range(Startdate, Enddate, freq = "AS") Dates_dek = [] for Year in Years: Year_nmbr = Year.year # Find dates dekades for one year Startdate_Year = "%d-01-01" %Year_nmbr Enddate_Year = "%d-12-31" %Year_nmbr day_dekad_end = 2 if Year == Years[-1]: Enddate_Year = Enddate_datetime day_dekad_end = int("%d" %int(np.minimum(int(("%02d" %int(str(Enddate_datetime.day)))[0]), 2))) # Define dates Dates = pd.date_range(Startdate_Year, Enddate_Year, freq = "MS") # Define decade dates for Date in Dates: if Date != Dates[-1]: Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 1))) Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 11))) Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 21))) else: Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 1))) if day_dekad_end > 0: Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 11))) if day_dekad_end > 1: Dates_dek.append(pd.Timestamp(datetime.datetime(Date.year, Date.month, 21))) return(Dates_dek) def Calc_Aridity(ET0, P, MASK): # Calculate Aridity long term ET0_long_term = np.nansum(ET0.Data, axis = 0) P_long_term = np.nansum(P.Data, axis = 0) # Calculate aridity and reproject to LU map Aridity_index_data = ET0_long_term / P_long_term Aridity_index = DataCube.Rasterdata_Empty() Aridity_index.Data = Aridity_index_data * MASK Aridity_index.Projection = ET0.Projection Aridity_index.GeoTransform = ET0.GeoTransform Aridity_index.Ordinal_time = '' Aridity_index.Size = Aridity_index_data.shape Aridity_index.Variable = "Aridity Index" Aridity_index.Unit = "-" return(Aridity_index) def Calc_Slope(DEM, MASK): rad2deg = 180.0 / np.pi # Factor to transform from rad to degree pixel_spacing = 100 # LVL 2 of WAPOR is 100m resolution DEM_data = DEM.Data # Calculate slope x, y = np.gradient(DEM_data, pixel_spacing, pixel_spacing) hypotenuse_array = np.hypot(x,y) Slope_data = np.arctan(hypotenuse_array) * rad2deg Slope = DataCube.Rasterdata_Empty() Slope.Data = Slope_data * MASK Slope.Projection = DEM.Projection Slope.GeoTransform = DEM.GeoTransform Slope.Ordinal_time = '' Slope.Size = Slope_data.shape Slope.Variable = "Slope" Slope.Unit = "Degrees" return(Slope) def Calc_Crops(CropType, CropClass, MASK): Type_Data = CropType.Data Class_Data = CropClass.Data # Create Season Type map Season_Type_Data = np.where(Type_Data == 3, 4, Class_Data) Season_Type = DataCube.Rasterdata_Empty() Season_Type.Data = Season_Type_Data * MASK Season_Type.Projection = CropType.Projection Season_Type.GeoTransform = CropType.GeoTransform Season_Type.Ordinal_time = CropType.Ordinal_time Season_Type.Size = Season_Type_Data.shape Season_Type.Variable = "Season_Type" Season_Type.Unit = "-" return(Season_Type) def Calc_AEZ(Irrigation_Yearly, Aridity, Slope, DEM, Clay, Silt, Sand, Season_Type, MASK): # Create Aridity AEZ dict_ipi = AEZ_Conversions() AEZ1 = np.ones(Season_Type.Size) * np.nan AEZ2 = np.ones(Irrigation_Yearly.Size) * np.nan AEZ3 = np.ones(Clay.Size) * np.nan AEZ4 = np.ones(DEM.Size) * np.nan AEZ5 = np.ones(Slope.Size) * np.nan AEZ6 = np.ones(Aridity.Size) * np.nan for ID, value in dict_ipi['Crop'].items(): AEZ1[Season_Type.Data==ID] = value for ID, value in dict_ipi['Irrigated'].items(): AEZ2[Irrigation_Yearly.Data==ID] = value for ID, value in dict_ipi['Soil'].items(): AEZ3[np.logical_and.reduce((Clay.Data > value[0][0], Clay.Data <= value[0][1],Silt.Data > value[1][0], Silt.Data <= value[1][1], Sand.Data > value[2][0], Sand.Data <= value[2][1]))] = ID for ID, value in dict_ipi['Elevation'].items(): AEZ4[np.logical_and(DEM.Data > value[0], DEM.Data <= value[1])] = ID for ID, value in dict_ipi['Slope'].items(): AEZ5[np.logical_and(Slope.Data > value[0], Slope.Data <= value[1])] = ID for ID, value in dict_ipi['Aridity'].items(): AEZ6[np.logical_and(Aridity.Data > value[0], Aridity.Data <= value[1])] = ID AEZ_Data = AEZ1 * 1000000 + AEZ2 * 100000 + AEZ3[None, :, :] * 1000 + AEZ4[None, :, :] * 100 + AEZ5[None, :, :] * 10 + AEZ6 AEZ = DataCube.Rasterdata_Empty() AEZ.Data = AEZ_Data * MASK AEZ.Projection = Irrigation_Yearly.Projection AEZ.GeoTransform = Irrigation_Yearly.GeoTransform AEZ.Ordinal_time = Irrigation_Yearly.Ordinal_time AEZ.Size = AEZ_Data.shape AEZ.Variable = "Agro_Ecological_Zonation" AEZ.Unit = "AEZ" return(AEZ) def Degrees_to_m2(Reference_data): """ This functions calculated the area of each pixel in squared meter. Parameters ---------- Reference_data: str Path to a tiff file or nc file or memory file of which the pixel area must be defined Returns ------- area_in_m2: array Array containing the area of each pixel in squared meters """ try: # Get the extension of the example data filename, file_extension = os.path.splitext(Reference_data) # Get raster information if str(file_extension) == '.tif': geo_out, proj, size_X, size_Y = RC.Open_array_info(Reference_data) elif str(file_extension) == '.nc': geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(Reference_data) except: geo_out = Reference_data.GetGeoTransform() size_X = Reference_data.RasterXSize() size_Y = Reference_data.RasterYSize() # Calculate the difference in latitude and longitude in meters dlat, dlon = Calc_dlat_dlon(geo_out, size_X, size_Y) # Calculate the area in squared meters area_in_m2 = dlat * dlon return(area_in_m2) def Calc_dlat_dlon(geo_out, size_X, size_Y): """ This functions calculated the distance between each pixel in meter. Parameters ---------- geo_out: array geo transform function of the array size_X: int size of the X axis size_Y: int size of the Y axis Returns ------- dlat: array Array containing the vertical distance between each pixel in meters dlon: array Array containing the horizontal distance between each pixel in meters """ # Create the lat/lon rasters lon = np.arange(size_X + 1)*geo_out[1]+geo_out[0] - 0.5 * geo_out[1] lat = np.arange(size_Y + 1)*geo_out[5]+geo_out[3] - 0.5 * geo_out[5] dlat_2d = np.array([lat,]*int(np.size(lon,0))).transpose() dlon_2d = np.array([lon,]*int(np.size(lat,0))) # Radius of the earth in meters R_earth = 6371000 # Calculate the lat and lon in radians lonRad = dlon_2d * np.pi/180 latRad = dlat_2d * np.pi/180 # Calculate the difference in lat and lon lonRad_dif = abs(lonRad[:,1:] - lonRad[:,:-1]) latRad_dif = abs(latRad[:-1] - latRad[1:]) # Calculate the distance between the upper and lower pixel edge a = np.sin(latRad_dif[:,:-1]/2) * np.sin(latRad_dif[:,:-1]/2) clat = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)); dlat = R_earth * clat # Calculate the distance between the eastern and western pixel edge b = np.cos(latRad[1:,:-1]) * np.cos(latRad[:-1,:-1]) * np.sin(lonRad_dif[:-1,:]/2) * np.sin(lonRad_dif[:-1,:]/2) clon = 2 * np.arctan2(np.sqrt(b), np.sqrt(1-b)); dlon = R_earth * clon return(dlat, dlon) def AEZ_Conversions(version = '2.0'): AEZ_V1 = { 'Aridity': {1: [3, 9999], 2: [2, 3], 3: [1.5, 2], 4: [1, 1.5], 5: [0.7, 1], 6: [0.35, 0.7], 7: [-9999, 0.35]}, 'Slope': {1: [8, 9999], 2: [4, 8], 3: [1, 4], 4: [-9999, 1]}, 'Elevation': {1: [2000, 9999], 2: [1000, 2000], 3: [500, 1000], 4: [100, 500], 5: [-9999, 100]}, 'Soil': {1: [[40, 9999],[-9999, 40],[-9999, 45]], 2: [[25, 40],[20, 9999],[20, 9999]], 3: [[25, 40],[40, 9999],[-9999, 20]], 4: [[40, 9999],[40, 9999],[-9999, 20]], 5: [[35, 9999],[-9999, 20],[45, 9999]], 6: [[25, 35],[-9999, 30],[45, 9999]], 7: [[-9999, 20],[-9999, 20],[50, 9999]], 8: [[10, 25],[-9999, 50],[-9999, 50]], 9: [[-9999, 30],[50, 80],[-9999, 50]], 10: [[-9999, 15],[80, 9999],[-9999, 20]], 11: [[-9999, 20],[-9999, 20],[70, 9999]], 12: [[-9999, 10],[-9999, 10],[90, 9999]]}, 'Irrigated': {0: 1, 1: 2}, 'Crop': {1: 1, 2: 2, 3: 3, 4: 4} } AEZ_V2 = { 'Aridity': {1: [2, 9999], 2: [0.5, 2], 3: [-9999, 0.5]}, 'Slope': {1: [2, 9999], 2: [-9999, 2]}, 'Elevation': {1: [1000, 9999], 2: [500, 1000], 3: [-9999, 500]}, 'Soil': {1: [[35, 9999],[-9999, 9999],[-9999, 9999]], 2: [[-9999, 35],[-9999, 9999],[-9999, 55]], 3: [[-9999, 35],[-9999, 9999],[55, 9999]]}, 'Irrigated': {0: 1, 1: 2}, 'Crop': {1: 1, 2: 2, 3: 3, 4: 4} } AEZ_Conversions = dict() AEZ_Conversions['1.0'] = AEZ_V1 AEZ_Conversions['2.0'] = AEZ_V2 return AEZ_Conversions[version] def AEZ_Names(version = '2.0'): AEZ_V1 = { 'Aridity': {1: "Hyper-Arid", 2: "Arid", 3: "Semi-Arid", 4: "Dry Sub-Humid", 5: "Dry Sub-Humid", 6: "Humid", 7: "Hyper-Humid"}, 'Slope': {1: "Flat", 2: "Intermediate", 3: "Steep", 4: "Very Steep"}, 'Elevation': {1: "Sea Level", 2: "Lowland", 3: "Intermediate", 4: "Highland", 5: "Alpine"}, 'Soil': {1: "Clay", 2: "Clay Loam", 3: "Silty Clay Loam", 4: "Silty Clay", 5: "Sandy Clay", 6: "Sandy Clay Loam", 7: "Sandy Loam", 8: "Medium Loam", 9: "Silty Loam", 10: "Silt", 11: "Loamy Sand", 12: "Sand"}, 'Irrigated': {1: "Irrigated", 2: "Rainfed"}, 'Crop': {1: "Single", 2: "Double", 3: "Perennial", 4: "Pasture"} } AEZ_V2 = { 'Aridity': {1: "Arid", 2: "Average", 3: "Humid"}, 'Slope': {1: "Flat", 2: "Steep"}, 'Elevation': {1: "Lowland", 2: "Intermediate", 3: "Highland"}, 'Soil': {1: "Clay", 2: "Loam", 3: "Sand"}, 'Irrigated': {1: "Irrigated", 2: "Rainfed"}, 'Crop': {1: "Single", 2: "Double", 3: "Perennial", 4: "Pasture"} } AEZ_Names = dict() AEZ_Names['1.0'] = AEZ_V1 AEZ_Names['2.0'] = AEZ_V2 return AEZ_Names[version]
5a38b04405d890de23e3283d6e0d1a7fbcc357bb
33a5bce52506b8c01ee250830f28aacc46382989
/accounts/forms.py
e0b7f5b79f689f4afce7274ef52e5b9dc3bbbe7c
[]
no_license
stsh1119/django_request_trap
76ecac7709fc8c7847c479afa9b2cc384cf9cd0c
c55bfb8f0316f8ac03ffb7d60da48599289c0b81
refs/heads/main
2023-07-06T18:58:30.063801
2021-07-25T08:39:42
2021-07-25T08:39:42
380,741,185
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
from django.contrib.auth import get_user_model from django.contrib.auth.forms import UserCreationForm, UserChangeForm class CustomUserCreationForm(UserCreationForm): class Meta: model = get_user_model() fields = ('email', 'username', ) class CustomUserChangeForm(UserChangeForm): class Meta: model = get_user_model() fields = ('email', 'username',)
bfa0d79f8e6172fe2680868e91558d1789cb9387
cee4dd54ea44f91511a8b886b2d763604afeb95d
/app/emails.py
7cada0fc646cae0a6c88583b4bd278ef9a973824
[]
no_license
damnedsteven/emcn_wh
0520ebe12b8d986905e2d7d8f7eea530f69fba96
0180d47e8484e691b880433f3d07f6c3068477b8
refs/heads/master
2021-01-19T12:29:25.767510
2017-04-13T02:09:18
2017-04-13T02:09:18
88,033,338
0
0
null
null
null
null
UTF-8
Python
false
false
876
py
from .decorators import async from flask_mail import Message from app import app, mail from flask import render_template from config import ADMINS @async def send_async_email(app, msg): with app.app_context(): mail.send(msg) def send_email(subject, sender, recipients, text_body, html_body): msg = Message(subject, sender=sender, recipients=recipients) msg.body = text_body msg.html = html_body send_async_email(app, msg) def follower_notification(followed, follower): send_email("[microblog] %s is now following you!" % follower.username, ADMINS[0], [followed.email], render_template("follower_email.txt", user=followed, follower=follower), render_template("follower_email.html", user=followed, follower=follower))
5724646c2d8664888cbf6def9ea0bdcc3cc5374a
36a782b4fe282b96803458f9f6bf44355e4cf71f
/rotkehlchen/fval.py
bb601200d30b198e9dde67eb0d36edbb5ad6be60
[ "BSD-3-Clause" ]
permissive
DUMIE505/rotki
23911887c7cc741a5d682fb90c98e09828b8c66f
046169bc068c7b29a271d6e80d978e02d0ea76ac
refs/heads/develop
2023-01-07T20:32:57.215529
2020-01-29T22:58:28
2020-01-31T08:58:03
237,394,542
0
0
BSD-3-Clause
2022-12-27T15:35:36
2020-01-31T09:04:50
null
UTF-8
Python
false
false
6,879
py
from decimal import Decimal, InvalidOperation from typing import Any, Union from rotkehlchen.errors import ConversionError # Here even though we got __future__ annotations using FVal does not seem to work AcceptableFValInitInput = Union[float, bytes, Decimal, int, str, 'FVal'] AcceptableFValOtherInput = Union[int, 'FVal'] class FVal(): """A value to represent numbers for financial applications. At the moment we use the python Decimal library but the abstraction will help us change the underlying implementation if needed. At the moment we do not allow any operations against floating points. Even though floating points could be converted to Decimals before each operation we will use this restriction to make sure floating point numbers are rooted from the codebase first. """ __slots__ = ('num',) def __init__(self, data: AcceptableFValInitInput): try: if isinstance(data, float): self.num = Decimal(str(data)) elif isinstance(data, bytes): # assume it's an ascii string and try to decode the bytes to one self.num = Decimal(data.decode()) elif isinstance(data, bool): # This elif has to come before the isinstance(int) check due to # https://stackoverflow.com/questions/37888620/comparing-boolean-and-int-using-isinstance raise ValueError(f'Invalid type bool for data given to FVal constructor') elif isinstance(data, (Decimal, int, str)): self.num = Decimal(data) elif isinstance(data, FVal): self.num = data.num else: raise ValueError(f'Invalid type {type(data)} of data given to FVal constructor') except InvalidOperation: raise ValueError( 'Expected string, int, float, or Decimal to initialize an FVal.' 'Found {}.'.format(type(data)), ) def __str__(self) -> str: return str(self.num) def __repr__(self) -> str: return 'FVal({})'.format(str(self.num)) def __gt__(self, other: AcceptableFValOtherInput) -> bool: evaluated_other = evaluate_input(other) return self.num.compare_signal(evaluated_other) == Decimal('1') def __lt__(self, other: AcceptableFValOtherInput) -> bool: evaluated_other = evaluate_input(other) return self.num.compare_signal(evaluated_other) == Decimal('-1') def __le__(self, other: AcceptableFValOtherInput) -> bool: evaluated_other = evaluate_input(other) return self.num.compare_signal(evaluated_other) in (Decimal('-1'), Decimal('0')) def __ge__(self, other: AcceptableFValOtherInput) -> bool: evaluated_other = evaluate_input(other) return self.num.compare_signal(evaluated_other) in (Decimal('1'), Decimal('0')) def __eq__(self, other: object) -> bool: evaluated_other = evaluate_input(other) return self.num.compare_signal(evaluated_other) == Decimal('0') def __add__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__add__(evaluated_other)) def __sub__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__sub__(evaluated_other)) def __mul__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__mul__(evaluated_other)) def __truediv__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__truediv__(evaluated_other)) def __floordiv__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__floordiv__(evaluated_other)) def __pow__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__pow__(evaluated_other)) def __radd__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__radd__(evaluated_other)) def __rsub__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__rsub__(evaluated_other)) def __rmul__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__rmul__(evaluated_other)) def __rtruediv__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__rtruediv__(evaluated_other)) def __rfloordiv__(self, other: AcceptableFValOtherInput) -> 'FVal': evaluated_other = evaluate_input(other) return FVal(self.num.__rfloordiv__(evaluated_other)) def __float__(self) -> float: return float(self.num) # --- Unary operands def __neg__(self) -> 'FVal': return FVal(self.num.__neg__()) def __abs__(self) -> 'FVal': return FVal(self.num.copy_abs()) # --- Other operations def fma(self, other: AcceptableFValOtherInput, third: AcceptableFValOtherInput) -> 'FVal': """ Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other """ evaluated_other = evaluate_input(other) evaluated_third = evaluate_input(third) return FVal(self.num.fma(evaluated_other, evaluated_third)) def to_percentage(self, precision: int = 4) -> str: return '{:.{}%}'.format(self.num, precision) def to_int(self, exact: bool) -> int: """ Tries to convert to int, If `exact` is true then it will convert only if it is a whole decimal number; i.e.: if it has got nothing after the decimal point Raises: ConversionError: If exact was True but the FVal is actually not an exact integer. """ if exact and self.num.to_integral_exact() != self.num: raise ConversionError(f'Tried to ask for exact int from {self.num}') return int(self.num) def is_close(self, other: AcceptableFValInitInput, max_diff: str = "1e-6") -> bool: evaluated_max_diff = FVal(max_diff) if not isinstance(other, FVal): other = FVal(other) diff_num = abs(self.num - other.num) return diff_num <= evaluated_max_diff.num def evaluate_input(other: Any) -> Union[Decimal, int]: """Evaluate 'other' and return its Decimal representation""" if isinstance(other, FVal): return other.num elif not isinstance(other, int): raise NotImplementedError("Expected either FVal or int.") return other
cf396a701c4fabd74562aaed43cb8505fbdc5b23
f95d2646f8428cceed98681f8ed2407d4f044941
/numpydemo/01/day01/demo02_ndarray.py
d7decab2c5e6ccd28291779733520ff24d15eec1
[]
no_license
q2806060/python-note
014e1458dcfa896f2749c7ebce68b2bbe31a3bf8
fbe107d668b44b78ae0094dbcc7e8ff8a4f8c983
refs/heads/master
2020-08-18T01:12:31.227654
2019-10-17T07:40:40
2019-10-17T07:40:40
215,731,114
1
0
null
null
null
null
UTF-8
Python
false
false
478
py
""" demo02_ndarray.py """ import numpy as np a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) print(a, a.shape) # 起始值1, 终止值10, 步长1 b = np.arange(1, 10, 2) print(b) # 创建5个元素全为0的数组 c = np.zeros(5, dtype='int32') print(c, c.dtype) # 创建5个元素全为1的数组 d = np.ones(5, dtype='int32') print(d, d.dtype) # 创建数组e与f, 结构与a相同, e中全0, f中全1 e = np.zeros_like(a) f = np.ones_like(a) print(e) print(f / 5)
5d810a67447f245b0101199251949b51ea6c8b82
2fe34a287bc79da86243ec7b9532e74258311cb8
/thumbnails/conf/__init__.py
a7c1200db62bd0c6ccf546dff13cee033401bd6a
[ "MIT" ]
permissive
INARIcompany/python-thumbnails
44c228a1a57843bf001fa342ae25e7e79644402f
f8836a60ef3f6130e38a9b40c7f4bcb5a3d7c02d
refs/heads/master
2023-02-14T05:15:43.521090
2021-01-14T20:58:41
2021-01-14T20:58:41
329,731,071
0
0
MIT
2021-01-14T20:49:51
2021-01-14T20:49:50
null
UTF-8
Python
false
false
77
py
# -*- coding: utf-8 -*- from thumbnails.conf.wrapper import settings # noqa
ae1ad986a8d66093295f5b63687111f255f1453e
521efcd158f4c69a686ed1c63dd8e4b0b68cc011
/airflow/providers/google/cloud/transfers/gdrive_to_local.py
113a389c6fbf22314e9345d4caac708ef5871c83
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
coutureai/RaWorkflowOrchestrator
33fd8e253bfea2f9a82bb122ca79e8cf9dffb003
cd3ea2579dff7bbab0d6235fcdeba2bb9edfc01f
refs/heads/main
2022-10-01T06:24:18.560652
2021-12-29T04:52:56
2021-12-29T04:52:56
184,547,783
5
12
Apache-2.0
2022-11-04T00:02:55
2019-05-02T08:38:38
Python
UTF-8
Python
false
false
3,834
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Optional, Sequence, Union from airflow.models import BaseOperator from airflow.providers.google.suite.hooks.drive import GoogleDriveHook class GoogleDriveToLocalOperator(BaseOperator): """ Writes a Google Drive file into local Storage. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GoogleDriveToLocalOperator` :param output_file: Path to downloaded file :type output_file: str :param folder_id: The folder id of the folder in which the Google Drive file resides :type folder_id: str :param file_name: The name of the file residing in Google Drive :type file_name: str :param drive_id: Optional. The id of the shared Google Drive in which the file resides. :type drive_id: str :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :type delegate_to: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields = [ "output_file", "folder_id", "file_name", "drive_id", "impersonation_chain", ] def __init__( self, *, output_file: str, file_name: str, folder_id: str, drive_id: Optional[str] = None, delegate_to: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.output_file = output_file self.folder_id = folder_id self.drive_id = drive_id self.file_name = file_name self.delegate_to = delegate_to self.impersonation_chain = impersonation_chain def execute(self, context): self.log.info('Executing download: %s into %s', self.file_name, self.output_file) gdrive_hook = GoogleDriveHook( delegate_to=self.delegate_to, impersonation_chain=self.impersonation_chain, ) file_metadata = gdrive_hook.get_file_id( folder_id=self.folder_id, file_name=self.file_name, drive_id=self.drive_id ) with open(self.output_file, "wb") as file: gdrive_hook.download_file(file_id=file_metadata["id"], file_handle=file)
906ab9e89725e37b6440b90331db571633a5fd2f
8bbeb7b5721a9dbf40caa47a96e6961ceabb0128
/python3/396.Rotate Function(旋转函数).py
5a9f84b92f2c5deadb136fc43540cab6fbb4e3a4
[ "MIT" ]
permissive
lishulongVI/leetcode
bb5b75642f69dfaec0c2ee3e06369c715125b1ba
6731e128be0fd3c0bdfe885c1a409ac54b929597
refs/heads/master
2020-03-23T22:17:40.335970
2018-07-23T14:46:06
2018-07-23T14:46:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,078
py
""" <p> Given an array of integers <code>A</code> and let <i>n</i> to be its length. </p> <p> Assume <code>B<sub>k</sub></code> to be an array obtained by rotating the array <code>A</code> <i>k</i> positions clock-wise, we define a "rotation function" <code>F</code> on <code>A</code> as follow: </p> <p> <code>F(k) = 0 * B<sub>k</sub>[0] + 1 * B<sub>k</sub>[1] + ... + (n-1) * B<sub>k</sub>[n-1]</code>.</p> <p>Calculate the maximum value of <code>F(0), F(1), ..., F(n-1)</code>. </p> <p><b>Note:</b><br /> <i>n</i> is guaranteed to be less than 10<sup>5</sup>. </p> <p><b>Example:</b> <pre> A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26. </pre> </p><p>给定一个长度为 <em>n</em> 的整数数组&nbsp;<code>A</code>&nbsp;。</p> <p>假设&nbsp;<code>B<sub>k</sub></code>&nbsp;是数组&nbsp;<code>A</code>&nbsp;顺时针旋转 <em>k</em> 个位置后的数组,我们定义&nbsp;<code>A</code>&nbsp;的&ldquo;旋转函数&rdquo;&nbsp;<code>F</code>&nbsp;为:</p> <p><code>F(k) = 0 * B<sub>k</sub>[0] + 1 * B<sub>k</sub>[1] + ... + (n-1) * B<sub>k</sub>[n-1]</code>。</p> <p>计算<code>F(0), F(1), ..., F(n-1)</code>中的最大值。</p> <p><strong>注意:</strong><br /> 可以认为<em> n</em> 的值小于 10<sup>5</sup>。</p> <p><strong>示例:</strong></p> <pre> A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。 </pre> <p>给定一个长度为 <em>n</em> 的整数数组&nbsp;<code>A</code>&nbsp;。</p> <p>假设&nbsp;<code>B<sub>k</sub></code>&nbsp;是数组&nbsp;<code>A</code>&nbsp;顺时针旋转 <em>k</em> 个位置后的数组,我们定义&nbsp;<code>A</code>&nbsp;的&ldquo;旋转函数&rdquo;&nbsp;<code>F</code>&nbsp;为:</p> <p><code>F(k) = 0 * B<sub>k</sub>[0] + 1 * B<sub>k</sub>[1] + ... + (n-1) * B<sub>k</sub>[n-1]</code>。</p> <p>计算<code>F(0), F(1), ..., F(n-1)</code>中的最大值。</p> <p><strong>注意:</strong><br /> 可以认为<em> n</em> 的值小于 10<sup>5</sup>。</p> <p><strong>示例:</strong></p> <pre> A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。 </pre> """ class Solution: def maxRotateFunction(self, A): """ :type A: List[int] :rtype: int """
bdc59bd33735fb55293048af6b11e36c2cd99e7f
a7b592be95dc2af9fdb56725f44e98cc59166e6f
/apps/subway/download.py
e480b2677fcf65687d50862cb2018926dab6ab96
[]
no_license
cash2one/CRM-3
bc864c462d155b5dc6a51a5edbd564574b3e2f94
cedcaeb397ccadb36952534242bd296c5b4513bb
refs/heads/master
2021-06-14T07:40:53.572013
2017-05-23T15:52:06
2017-05-23T15:52:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,800
py
# coding=UTF-8 import datetime from mongoengine.document import Document from mongoengine.fields import IntField, DateTimeField, StringField from apilib import get_tapi, TopError, SessionCache from apilib.app import QNApp from apps.common.utils.utils_log import log from apps.common.utils.utils_datetime import time_is_someday, format_datetime, datetime_2string, time_is_recent from apps.common.utils.utils_cacheadpter import CacheAdpter from apps.common.cachekey import CacheKey from apps.common.biz_utils.utils_misc import set_cache_progress, get_cache_progress from models_account import Account from models_adgroup import Adgroup from models_campaign import Campaign from models_creative import Creative from models_keyword import Keyword from models_item import Item def get_klass_name(klass): return klass.__name__.lower() def get_klass(name): return globals()[name] def check_sync_struct(dl, is_created): if is_created: return True elif dl.ok_time and dl.ok_time.date() < datetime.date.today(): return True elif not dl.init_status or not dl.init_status: return True elif dl.init_status and dl.init_status != 'done': return True elif dl.init_status and dl.inc_status != 'done': return True return False def check_global_mutual(dl_type): # TODO: wangqi 20140528 下载互斥还没想好互斥时的处理,后续再优化 """全网如果有互斥缓存,则不下载,主要分结构与报表,可以将颗粒度细化""" def _is_mutual(fn): def __is_mutual(self = None, *args, **kwargs): key_name = CacheKey.SUBWAY_DOWNLOAD_MUTUAL_LOCK % (self.shop_id, dl_type) cached_lock = CacheAdpter.get(key_name, 'web') if cached_lock: # 没有缓存,直接下载 return False else: CacheAdpter.set(key_name, True, 'web', 30 * 60) result = fn(self, *args, **kwargs) CacheAdpter.delete(key_name, 'web') return result return __is_mutual return _is_mutual def parse_status(status_str): """ parse_status('2013-7-30-15-20_OK') >>> ('OK',datetime.datetime(2013,7,30,15,20)) parse_status('2013-7-30-15-20_2013-7-30-16-40_DOING') >>> ('OK',datetime.datetime(2013,7,30,15,20), datetime.datetime(2013,7,30,16,40)) """ if status_str: temp_list = status_str.split('_') status = temp_list[-1] result_list = [status, datetime.datetime.strptime(temp_list[0], '%Y-%m-%d-%H-%M')] if status == 'DOING': result_list.append(datetime.datetime.strptime(temp_list[1], '%Y-%m-%d-%H-%M')) return tuple(result_list) else: return None DL_ORDER_LIST = ['Account', 'Campaign', 'Adgroup', 'Creative', 'Keyword', 'Item'] # 下载的顺序控制 class Downloader(Document): """记录了各个结构的整体状态(结构同步状态,报表同步状态)""" shop_id = IntField(verbose_name = '店铺ID', primary_key = True) init_status = StringField(verbose_name = "初始化状态", default = 'ready') inc_status = StringField(verbose_name = "增量状态", default = 'ready') ok_time = DateTimeField(verbose_name = "结构同步成功的时间") failed_time = DateTimeField(verbose_name = "增量结构同步失败的时间") accountrpt_status = StringField(verbose_name = '账户报表状态', db_field = 'acctrpt_status', default = '') campaignrpt_status = StringField(verbose_name = '计划报表状态', db_field = 'camprpt_status', default = '') adgrouprpt_status = StringField(verbose_name = '广告组报表状态', db_field = 'adgrpt_status', default = '') keywordrpt_status = StringField(verbose_name = '关键词报表状态', db_field = 'kwrpt_status', default = '') # 单个依赖于adgroup creativerpt_status = StringField(verbose_name = '创意报表状态', db_field = 'crtrpt_status', default = '') # 单个依赖于adgroup api_valid_time = DateTimeField(verbose_name = "API有效时间") top_refresh_token = StringField(verbose_name = "top的session刷新令牌") top_refresh_time = DateTimeField(verbose_name = "top的session刷新时间") meta = {'db_alias': "mnt-db", 'collection':'subway_downloader'} @property def tapi(self): if not hasattr(self, '_tapi'): tapi = get_tapi(shop_id = self.shop_id) if not time_is_someday(self.api_valid_time): is_ok, _ = QNApp.test_api(tapi) if not is_ok: SessionCache.del_cache(self.shop_id) tapi = get_tapi(shop_id = self.shop_id) is_ok, reason = QNApp.test_api(tapi) if not is_ok: log.error("invalid tapi, error=%s" % reason) tapi = None if tapi: self.api_valid_time = datetime.datetime.now() self.save() self._tapi = tapi return self._tapi @property def token(self): """获取淘宝的临时验证码""" if not hasattr(self, '_token'): cachekey = CacheKey.SUBWAY_TOKEN % self.shop_id token = CacheAdpter.get(cachekey, 'web') if not token: token = self._get_subway_token() CacheAdpter.set(cachekey, token, 'web', timeout = 60*60*2) self._token = token return self._token def _get_subway_token(self): temp_token = '' if self.tapi: try: top_obj = self.tapi.simba_login_authsign_get() if top_obj and hasattr(top_obj, "subway_token"): temp_token = top_obj.subway_token except TopError, e: log.error('simba_login_authsign_get TopError, shop_id=%s, error=%s' % (self.shop_id, e)) return temp_token # @property # def refresh_token(self, sessionkey): # import settings, md5, requests # from urllib import urlencode # appkey = settings.APP['web']['APP_KEY'] # appsecret = settings.APP['web']['APP_SECRET'] # try: # refresh_token = sessionkey # sign = md5.new('appkey%srefresh_token%ssessionkey%s%s' % (appkey, refresh_token, sessionkey, appsecret)).hexdigest().upper() # data = { # 'appkey':appkey, # 'refresh_token':refresh_token, # 'sign':sign, # 'sessionkey':sessionkey # } # url_data = urlencode(data) # r = requests.post('http://container.api.taobao.com/container/refresh?%s' % url_data).json() # if not 're_expires_in' in r or not r['re_expires_in']: # return sessionkey # return r['top_session'] # except Exception, e: # log.error('get refresh token error and the error=%s' % e) # return sessionkey def check_todayrpt_isok(self, need_detail = False): # 是否需要关键词详情 """检查今天所有报表数据是否OK""" today = datetime.date.today() if self.ok_time.date() < today: return False check_class_list = ['account', 'campaign', 'adgroup'] if need_detail: check_class_list.extend(['keyword', 'creative']) for cls_name in check_class_list: status_result = parse_status(getattr(self, '%srpt_status' % (cls_name))) if not status_result: return False elif status_result[0] not in ['OK', 'EMPTY']: return False elif status_result[1].date() < today: return False else: continue return True def check_rptstatus_isok(self, cls_name): """判断状态是否OK""" status_result = parse_status(getattr(self, '%srpt_status' % (cls_name))) if status_result: if status_result[0] in ['OK', 'EMPTY']: return True return False def check_struct_isok(self, cls_name): import copy temp_list = copy.deepcopy(DL_ORDER_LIST) temp_list.insert('ready') temp_list.append('done') try: return temp_list.index(self.init_status) > temp_list.index(cls_name) and temp_list.index(self.inc_status) > temp_list.index(cls_name) except Exception, e: log.error('cls_name not found in DL_ORDER_LIST, cls_name=%s, e=%s' % (cls_name, e)) return False finally: del temp_list def __delattr__(self, *args, **kwargs): # why? by wangqi 20150928 super(Downloader, self).__delattr__(*args, **kwargs) def check_rpt_isok(self, need_detail = False): # 是否需要关键词详情 """检查所有报表数据是否OK""" temp_result = self.check_rptstatus_isok('account') and self.check_rptstatus_isok('campaign') and self.check_rptstatus_isok('adgroup') if not need_detail: return temp_result else: return temp_result and self.check_rptstatus_isok('creative') and self.check_rptstatus_isok('keyword') def check_status_4rpt(self, klass, check_type = 'rpt'): """ 0.报表、UDP下载 1.状态OK-->时间是否今天-->不必下载 | -->下载 2.状态FAILED-->重新下载 3.状态DOING -->检查上次成功时间是否是今天-->不必下载 |---->检查运行时间是否在10分钟内--->等待 |------>重新下载 4.状态是空-->初始化下载 """ # TODO: wangqi 20140711 下载报表的控制写的不够好,有空可以优化,没有利用好缓存的状态 cls_name = get_klass_name(klass) status_result = parse_status(getattr(self, '%s%s_status' % (cls_name, check_type))) if status_result: status, last_time = status_result[0], status_result[1] if status in ('OK', 'EMPTY'): if time_is_someday(last_time): return False, None else: return True, last_time elif status == 'FAILED': return True, last_time elif status == 'DOING': if time_is_someday(last_time): return False, None else: if time_is_recent(status_result[2], minutes = cls_name == 'keyword' and 40 or 10): # 下载关键词报表时,这个时间限制可以大一些 return False, None else: return True, last_time else: # TODO: wangqi 20151102 这里先这样写吧,后期把status去掉,数据库只保存成功下载的时间即可 return True, datetime.datetime.today() - datetime.timedelta(days = klass.Report.INIT_DAYS) def download_struct(self, klass): return klass.struct_download(shop_id = self.shop_id, tapi = self.tapi) def download_increase(self, klass, last_time): if not last_time: last_time = datetime.datetime.now() last_sync_time = last_time - datetime.timedelta(hours = 1) return klass.increase_download(shop_id = self.shop_id, tapi = self.tapi, last_sync_time = format_datetime(last_sync_time)) def download_rpt(self, klass, last_time, is_force = False): attr_name = '%s%s_status' % (get_klass_name(klass), 'rpt') setattr(self, attr_name, '%s_%s_DOING' % (datetime_2string(last_time), datetime_2string())) self.save() # 报表的特殊时间处理:1,上次同步时间太久置为15天前;2,上次同步时间不能超过今天;3,当前时间小于6点,因淘宝数据尚未准备好只下载前天数据 # 强制上次同步时间不超过前天,原因:1,淘宝报表效果数据经常延时,这样第2天会自动修复报表;2,历史数据为3天转化数据,比1天转化数据更可靠。 last_date = last_time.date() init_start_date = datetime.date.today() - datetime.timedelta(days = klass.Report.INIT_DAYS) valid_rpt_days = datetime.datetime.now().hour < 6 and 2 or 1 default_end_date = datetime.date.today() - datetime.timedelta(days = valid_rpt_days) default_start_date = default_end_date - datetime.timedelta(days = 2) if last_date < init_start_date: last_date = init_start_date elif last_date > default_start_date: last_date = default_start_date time_scope = last_date, default_end_date if is_force and get_klass_name(klass) in ['keyword', 'creative']: result = klass.force_download_rpt(shop_id = self.shop_id, tapi = self.tapi, token = self.token, time_scope = time_scope) else: result = klass.report_download(shop_id = self.shop_id, tapi = self.tapi, token = self.token, time_scope = time_scope) # TODO: wangqi 2014-4-14 同样,由于上面同步时间的不同,这里也要在此基础上作改动,后续考虑再优化 record_datetime = valid_rpt_days == 1 and datetime.datetime.now() or datetime.datetime.now() - datetime.timedelta(days = 1) status_str = '%s_%s' % (result in ['OK', 'EMPTY'] and datetime_2string(record_datetime) or datetime_2string(last_time), result) setattr(self, attr_name, status_str) self.save() return result def auto_sync_struct(self, stop_status = "done"): """ 0.首先是下载顺序:['ready','Account','Campaign','Adgroup','Creative','Keyword','Item','done'] 1.有两个字段保存状态,一个是init_status、一个是inc_status,状态都在上面的列表中。 2.自动下载时,首先根据init_status来判断,在init_status顺序之前的,就下增量,以之后的,就下载结构 3.下载增量时,根据inc_status来判断,在inc_status之前的,下载时间是ok_time,之后的,就按failed_time来下载 """ init_date = datetime.datetime.now() - datetime.timedelta(days = 28) if (self.ok_time and self.ok_time <= init_date) or (self.failed_time and self.failed_time <= init_date) : # 只要ok_time与failed_time中有一个时间比较久,就初始化下载 self.init_status = 'ready' self.inc_status = 'ready' try: init_index = DL_ORDER_LIST.index(self.init_status) except ValueError: if self.init_status == 'ready': init_index = -1 elif self.init_status == 'done': # 如果已经OK,则全部下载增量? init_index = len(DL_ORDER_LIST) else: return False try: inc_index = DL_ORDER_LIST.index(self.inc_status) except ValueError: if self.inc_status in ['ready', 'done']: inc_index = len(DL_ORDER_LIST) else: return False try: for i, cls_name in enumerate(DL_ORDER_LIST): if cls_name == stop_status: raise Exception(cls_name, i < init_index and "inc" or "init") # 状态跟其它状态一致 set_cache_progress(self.shop_id, 'struct_' + cls_name.lower() + '_downing') if i < init_index: if not self.download_increase(klass = get_klass(cls_name), last_time = i < inc_index and self.ok_time or self.failed_time): raise Exception(cls_name, 'inc') else: if not self.download_struct(klass = get_klass(cls_name)): raise Exception(cls_name, 'init') set_cache_progress(self.shop_id, 'struct_' + cls_name.lower() + '_finished') self.init_status = 'done' self.inc_status = 'done' self.failed_time = None # 下载成功,失败时间记为空 log.info('sync ALL struct OK, shop_id=%s' % self.shop_id) return True except Exception, e: log.error('sync ALL struct FAILED, shop_id=%s, stopped at %s, download %s' % (self.shop_id, e[0], e[1])) if e[1] == 'inc': self.failed_time = self.ok_time self.inc_status = e[0] else: self.init_status = e[0] return False finally: self.ok_time = datetime.datetime.now() self.save() def sync_rpt(self, klass, is_force = False, rpt_days = None): cls_name = get_klass_name(klass) if is_force: # 如果强制下载,则使用给定的rpt_days,或者使用该类自定的报表保留天数 if rpt_days is None: rpt_days = klass.Report.INIT_DAYS flag, last_time = True, datetime.datetime.today() - datetime.timedelta(days = rpt_days) else: flag, last_time = self.check_status_4rpt(klass, check_type = 'rpt') set_cache_progress(self.shop_id, 'report_' + cls_name.lower() + '_downing') if flag: result = self.download_rpt(klass = klass, last_time = last_time, is_force = is_force) set_cache_progress(self.shop_id, 'report_' + cls_name.lower() + '_finished') return result else: set_cache_progress(self.shop_id, 'report_' + cls_name.lower() + '_finished') return True # @check_global_mutual('struct') def sync_all_struct(self, is_force = False): if self.tapi: if is_force: # 强制下载时,将字段重置即可重新下载 self.init_status = 'ready' self.inc_status = 'ready' self.save() return self.auto_sync_struct() else: return False def sync_all(self): # 下载所有数据 if self.sync_all_struct(): self.sync_all_rpt() return True else: return False # @check_global_mutual('rpt') def sync_all_rpt(self, detail_flag = False, is_force = False, rpt_days = None, quick_flag = False): if self.tapi: acct_rpt_status = self.sync_rpt(klass = Account, is_force = is_force, rpt_days = rpt_days) if acct_rpt_status == 'EMPTY': if datetime.datetime.now().hour < 9: # TODO: wangqi 20140725 该特性很久没有用上了,是否考虑去掉。如果淘宝返回空并且时间是9点以前,将状态设置为FAILED status_str = '%s_%s' % (datetime_2string(), 'FAILED') self.accountrpt_status = status_str self.save() return False else: return True else: self.sync_rpt(klass = Campaign, is_force = is_force, rpt_days = rpt_days) if quick_flag: return True self.sync_rpt(klass = Adgroup, is_force = is_force, rpt_days = rpt_days) if detail_flag: self.sync_rpt(klass = Creative, is_force = is_force, rpt_days = rpt_days) self.sync_rpt(klass = Keyword, is_force = is_force, rpt_days = rpt_days) return self.check_rpt_isok(need_detail = detail_flag) else: return False @staticmethod def download_all_struct(shop_id, is_force = False): dl, _ = Downloader.objects.get_or_create(shop_id = shop_id) return dl.sync_all_struct(is_force = is_force) @staticmethod def download_all_rpt(shop_id, detail_flag = False, is_force = False, rpt_days = None): dl , is_created = Downloader.objects.get_or_create(shop_id = shop_id) if is_created: dl.sync_all_struct(is_force = is_force) return dl.sync_all_rpt(detail_flag = detail_flag, is_force = is_force, rpt_days = rpt_days) @staticmethod def quick_download(shop_id): dl, _ = Downloader.objects.get_or_create(shop_id = shop_id) if dl.tapi: dl.auto_sync_struct(stop_status = "Adgroup") dl.sync_all_rpt(quick_flag = True) @staticmethod def download_all(shop_id): dl, _ = Downloader.objects.get_or_create(shop_id = shop_id) if dl.tapi: dl.sync_all() @classmethod def often_sync_struct(cls, shop_id): dl, _ = Downloader.objects.get_or_create(shop_id = shop_id) if (not dl.ok_time) or dl.ok_time <= datetime.datetime.now() - datetime.timedelta(hours = 1): return dl.sync_all_struct() return True dler_coll = Downloader._get_collection()
fdfe2f9a3d3e3b660f7c7340ac430fa1a6359434
0b88a8e39e894fe72fd389505bdad786a6713439
/lib/setup3.py
51f4b3fbb0457190d4eb492ba1a479eb2d2b9855
[ "Apache-2.0" ]
permissive
Trevol/pytorch-retinanet
d61a76c4a1cc14667ee0149440da865a8628d81f
e9c87a6c195d814d19edeca19166a5559df7da4a
refs/heads/master
2020-05-24T17:41:33.785410
2019-05-29T08:52:39
2019-05-29T08:52:39
187,391,911
0
0
null
2019-05-18T18:23:50
2019-05-18T18:23:50
null
UTF-8
Python
false
false
5,010
py
# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- from distutils.core import setup from Cython.Build import cythonize from distutils.extension import Extension from Cython.Distutils import build_ext import subprocess import numpy as np import os from os.path import join as pjoin def find_in_path(name, path): "Find a file in a search path" # Adapted fom # http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin') nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path) if nvcc is None: raise EnvironmentError('The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME') home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = {'home':home, 'nvcc':nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64')} for k, v in cudaconfig.items(): if not os.path.exists(v): raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig CUDA = locate_cuda() try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) ext_modules = [Extension('nms.gpu_nms', ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'], library_dirs=[CUDA['lib64']], libraries=['cudart'], language='c++', runtime_library_dirs=[CUDA['lib64']], # this syntax is specific to this build system # we're only going to use certain compiler args with nvcc and not with # gcc the implementation of this trick is in customize_compiler() below extra_compile_args={'gcc': ["-Wno-unused-function"], 'nvcc': ['-arch=sm_35', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'"]}, include_dirs = [numpy_include, CUDA['include']] )] setup( name='fast_rcnn', ext_modules=ext_modules, # inject our custom trigger cmdclass={'build_ext': custom_build_ext}, ) # python setup3.py build_ext --inplace
90751ed36f2869cf56e4df448cb42533a8bd624c
fcde32709c62b8ee86da459bb7c8eee52c848118
/code/day17/作业00.py
18b8f5c56d28eafa61ce240cdb8b8aa5ca0c34f6
[]
no_license
klaus2015/py_base
6b92d362c3d7dc0e09205a037f4d580381dac94d
ec32c731c1c2f6a0dab87f1d167397e4fa86b8de
refs/heads/master
2022-07-28T15:49:30.383648
2020-05-11T15:31:43
2020-05-11T15:31:43
261,777,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,485
py
""" 3. 定义敌人类(姓名,攻击力,防御力,血量) 创建敌人列表,使用list_helper实现下列功能. (1) 查找姓名是"灭霸"的敌人 (2) 查找攻击力大于10的所有敌人 (3) 查找活的敌人数量 """ from common.list_helper import * class Enemy: """ 敌人类 """ def __init__(self,name,hp,basic_damage,defensive): self.name = name self.hp = hp self.basic_damage = basic_damage self.defensive = defensive def __str__(self): return "%s,%d,,%d,,%d" % (self.name, self.hp, self.basic_damage, self.defensive) list_enemy = [ Enemy("红骷髅", 200, 50, 5), Enemy("灭霸", 500, 150, 20), Enemy("海拉", 250, 100, 6), Enemy("奥创", 0, 100, 12), Enemy("蜘蛛侠", 0, 80, 11), Enemy("成昆",80,30,10) ] # re = ListHelper.find_single(list_enemy,lambda item:item.name =="灭霸") # print(re) re = ListHelper.find_all(list_enemy,lambda item:item.basic_damage > 10) # result = list(re) # for item in result: # print(item) print("-------------") for item in re: print(item) re = ListHelper.get_count(list_enemy,lambda item:item.hp > 0) print(re) # 判断敌人列表中是否存在"成昆" re = ListHelper.is_exits(list_enemy,lambda item:item.name == "成昆") print(re) #判断敌人列表中是否攻击力小于5或者防御力小于10的敌人 re = ListHelper.is_exits(list_enemy,lambda item:item.basic_damage < 5 or item.defensive <10) print(re)
5f42709ff47192bb9f442f01303bd687ae7209b6
7f8db5b974a747632729d16c431de7aca007af00
/0x03-python-data_structures/5-no_c.py
2a1bab55ec3424fa4324cbf2cbf8bae79f944bf2
[]
no_license
thomasmontoya123/holbertonschool-higher_level_programming
6f5ceb636167efba1e36ed2dee7bf83b458f6751
48b7c9dccac77ccb0f57da1dc1d150f356612b13
refs/heads/master
2020-07-22T22:31:13.744490
2020-02-13T22:54:17
2020-02-13T22:54:17
207,351,235
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
#!/usr/bin/python3 def no_c(my_string): string = "" for character in my_string: if character != 'c' and character != 'C': string = string + character return string
c5f0c7f55c1bb473ee3127e3fb4c8ada7b3f9263
32cd5452417a6637f5e087c1a0c2c6405fbaf915
/src/app/share/caheFiles.py
bf976ef14e20e73e12adaf7d364be8fe1b80b256
[]
no_license
549982170/SZLife_assisttant
766bedff61cabe73513a449525f57c8bb5a9afb6
014ebc526a671e3b3c972d476ba29439fd7decbf
refs/heads/master
2021-01-01T03:58:45.182066
2018-04-12T10:49:46
2018-04-12T10:49:46
97,097,807
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
# coding:utf-8 # !/user/bin/python ''' Created on 2018年4月12日 @author: yizhiwu 内存缓存对象 ''' CACHE = {} # 函数值缓存 LOCK_DICT = {} # 线程池字典
8e50dd5499fa0d29586e52cf45552d1f423fc3df
f6c6b7ac39deb9f2cc0a7ef8fb6459ca09fc27dd
/handlers/async_tasks.py
8b33938195c156d334b41d736e78f0fca2f49e83
[ "MIT" ]
permissive
via-jiang/celery-demo
3112b28de81b3bc477629d51453d069e814e8adc
48eaa732bc9270f6f54eab48ecc57ed98ee52e44
refs/heads/master
2021-09-13T18:27:42.893328
2018-04-16T01:48:41
2018-04-16T01:48:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/1/16 下午4:12 # @Author : Matrix # @Github : https://github.com/blackmatrix7/ # @Blog : http://www.cnblogs.com/blackmatrix/ # @File : async_task.py # @Software: PyCharm import logging from time import sleep from manage import celery __author__ = 'blackmatrix' @celery.task def async_send_email(send_from, send_to, subject, content): """ 模拟异步发送邮件的操作 :param send_from: :param send_to: :param subject: :param content: :return: """ logging.info('模拟异步发送邮件的操作') logging.info(send_from, send_to, subject, content) # 休眠 sleep(5) @celery.task def async_push_message(send_to, content): """ 模拟异步推送消息 :param send_to: :param content: :return: """ logging.info('模拟异步推送消息') logging.info('send_to: {}'.format(send_to)) logging.info('content: {}'.format(content)) # 休眠 sleep(10) if __name__ == '__main__': pass
cfd915494a9b7b83019c8450e29a4f903f9f4f18
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/2/fk8.py
227030f6733236cc971789868e190ee296b49776
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'fK8': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
50319c876ad3c8f6f001c1a658cf74c13b34cf69
711756b796d68035dc6a39060515200d1d37a274
/output_cog/optimized_26371.py
ff1f16eecf5e83d96d4fb23f7bcb43fa298ba04c
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
10,843
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((562.956, 606.319, 542.196), (0.89, 0.1, 0.1), 18.4716) if "Cog2_0" not in marker_sets: s=new_marker_set('Cog2_0') marker_sets["Cog2_0"]=s s= marker_sets["Cog2_0"] mark=s.place_marker((598.927, 664.466, 547.104), (0.89, 0.1, 0.1), 17.1475) if "Cog2_1" not in marker_sets: s=new_marker_set('Cog2_1') marker_sets["Cog2_1"]=s s= marker_sets["Cog2_1"] mark=s.place_marker((645.243, 731.321, 541.835), (0.89, 0.1, 0.1), 17.1475) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((592.522, 674.052, 426.156), (0.89, 0.1, 0.1), 18.4716) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((759.202, 885.626, 574.56), (0.89, 0.1, 0.1), 18.4716) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((595.975, 638.826, 544.225), (1, 1, 0), 18.4716) if "Cog3_0" not in marker_sets: s=new_marker_set('Cog3_0') marker_sets["Cog3_0"]=s s= marker_sets["Cog3_0"] mark=s.place_marker((595.929, 637.9, 544.437), (1, 1, 0.2), 17.1475) if "Cog3_1" not in marker_sets: s=new_marker_set('Cog3_1') marker_sets["Cog3_1"]=s s= marker_sets["Cog3_1"] mark=s.place_marker((620.278, 641.186, 558.718), (1, 1, 0.2), 17.1475) if "Cog3_2" not in marker_sets: s=new_marker_set('Cog3_2') marker_sets["Cog3_2"]=s s= marker_sets["Cog3_2"] mark=s.place_marker((641.038, 622.894, 554.318), (1, 1, 0.2), 17.1475) if "Cog3_3" not in marker_sets: s=new_marker_set('Cog3_3') marker_sets["Cog3_3"]=s s= marker_sets["Cog3_3"] mark=s.place_marker((635.906, 622.418, 526.652), (1, 1, 0.2), 17.1475) if "Cog3_4" not in marker_sets: s=new_marker_set('Cog3_4') marker_sets["Cog3_4"]=s s= marker_sets["Cog3_4"] mark=s.place_marker((651.817, 600.624, 518.694), (1, 1, 0.2), 17.1475) if "Cog3_5" not in marker_sets: s=new_marker_set('Cog3_5') marker_sets["Cog3_5"]=s s= marker_sets["Cog3_5"] mark=s.place_marker((661.159, 575.333, 527.009), (1, 1, 0.2), 17.1475) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((572.778, 627.147, 555.985), (1, 1, 0.4), 18.4716) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((752.186, 523.515, 505.736), (1, 1, 0.4), 18.4716) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((812.378, 708.375, 561.014), (0, 0, 0.8), 18.4716) if "Cog4_0" not in marker_sets: s=new_marker_set('Cog4_0') marker_sets["Cog4_0"]=s s= marker_sets["Cog4_0"] mark=s.place_marker((812.378, 708.375, 561.014), (0, 0, 0.8), 17.1475) if "Cog4_1" not in marker_sets: s=new_marker_set('Cog4_1') marker_sets["Cog4_1"]=s s= marker_sets["Cog4_1"] mark=s.place_marker((784.744, 700.703, 555.708), (0, 0, 0.8), 17.1475) if "Cog4_2" not in marker_sets: s=new_marker_set('Cog4_2') marker_sets["Cog4_2"]=s s= marker_sets["Cog4_2"] mark=s.place_marker((758.637, 689.506, 549.735), (0, 0, 0.8), 17.1475) if "Cog4_3" not in marker_sets: s=new_marker_set('Cog4_3') marker_sets["Cog4_3"]=s s= marker_sets["Cog4_3"] mark=s.place_marker((731.852, 678.504, 548.081), (0, 0, 0.8), 17.1475) if "Cog4_4" not in marker_sets: s=new_marker_set('Cog4_4') marker_sets["Cog4_4"]=s s= marker_sets["Cog4_4"] mark=s.place_marker((704.692, 670.172, 548.629), (0, 0, 0.8), 17.1475) if "Cog4_5" not in marker_sets: s=new_marker_set('Cog4_5') marker_sets["Cog4_5"]=s s= marker_sets["Cog4_5"] mark=s.place_marker((677.016, 666.583, 554.659), (0, 0, 0.8), 17.1475) if "Cog4_6" not in marker_sets: s=new_marker_set('Cog4_6') marker_sets["Cog4_6"]=s s= marker_sets["Cog4_6"] mark=s.place_marker((650.097, 666.686, 563.922), (0, 0, 0.8), 17.1475) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((881.64, 606.623, 464.7), (0, 0, 0.8), 18.4716) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((417.405, 721.536, 663.307), (0, 0, 0.8), 18.4716) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((650.76, 705.733, 581.794), (0.3, 0.3, 0.3), 18.4716) if "Cog5_0" not in marker_sets: s=new_marker_set('Cog5_0') marker_sets["Cog5_0"]=s s= marker_sets["Cog5_0"] mark=s.place_marker((650.76, 705.733, 581.794), (0.3, 0.3, 0.3), 17.1475) if "Cog5_1" not in marker_sets: s=new_marker_set('Cog5_1') marker_sets["Cog5_1"]=s s= marker_sets["Cog5_1"] mark=s.place_marker((644.523, 699.968, 554.244), (0.3, 0.3, 0.3), 17.1475) if "Cog5_2" not in marker_sets: s=new_marker_set('Cog5_2') marker_sets["Cog5_2"]=s s= marker_sets["Cog5_2"] mark=s.place_marker((640.146, 702.53, 525.844), (0.3, 0.3, 0.3), 17.1475) if "Cog5_3" not in marker_sets: s=new_marker_set('Cog5_3') marker_sets["Cog5_3"]=s s= marker_sets["Cog5_3"] mark=s.place_marker((631.417, 725.935, 511.35), (0.3, 0.3, 0.3), 17.1475) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((547.772, 636.033, 494.28), (0.3, 0.3, 0.3), 18.4716) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((711.716, 821.821, 525.234), (0.3, 0.3, 0.3), 18.4716) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((585.639, 660.6, 523.058), (0.21, 0.49, 0.72), 18.4716) if "Cog6_0" not in marker_sets: s=new_marker_set('Cog6_0') marker_sets["Cog6_0"]=s s= marker_sets["Cog6_0"] mark=s.place_marker((585.303, 660.409, 522.636), (0.21, 0.49, 0.72), 17.1475) if "Cog6_1" not in marker_sets: s=new_marker_set('Cog6_1') marker_sets["Cog6_1"]=s s= marker_sets["Cog6_1"] mark=s.place_marker((579.947, 632.76, 515.926), (0.21, 0.49, 0.72), 17.1475) if "Cog6_2" not in marker_sets: s=new_marker_set('Cog6_2') marker_sets["Cog6_2"]=s s= marker_sets["Cog6_2"] mark=s.place_marker((586.282, 608.67, 530.694), (0.21, 0.49, 0.72), 17.1475) if "Cog6_3" not in marker_sets: s=new_marker_set('Cog6_3') marker_sets["Cog6_3"]=s s= marker_sets["Cog6_3"] mark=s.place_marker((599.815, 594.142, 551.617), (0.21, 0.49, 0.72), 17.1475) if "Cog6_4" not in marker_sets: s=new_marker_set('Cog6_4') marker_sets["Cog6_4"]=s s= marker_sets["Cog6_4"] mark=s.place_marker((619.355, 579.085, 565.787), (0.21, 0.49, 0.72), 17.1475) if "Cog6_5" not in marker_sets: s=new_marker_set('Cog6_5') marker_sets["Cog6_5"]=s s= marker_sets["Cog6_5"] mark=s.place_marker((639.905, 560.419, 571.567), (0.21, 0.49, 0.72), 17.1475) if "Cog6_6" not in marker_sets: s=new_marker_set('Cog6_6') marker_sets["Cog6_6"]=s s= marker_sets["Cog6_6"] mark=s.place_marker((659.487, 577.131, 560.173), (0.21, 0.49, 0.72), 17.1475) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((625.652, 636.703, 612.493), (0.21, 0.49, 0.72), 18.4716) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((692.507, 519.993, 503.511), (0.21, 0.49, 0.72), 18.4716) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((601.128, 675.644, 608.623), (0.7, 0.7, 0.7), 18.4716) if "Cog7_0" not in marker_sets: s=new_marker_set('Cog7_0') marker_sets["Cog7_0"]=s s= marker_sets["Cog7_0"] mark=s.place_marker((602.091, 683.543, 583.391), (0.7, 0.7, 0.7), 17.1475) if "Cog7_1" not in marker_sets: s=new_marker_set('Cog7_1') marker_sets["Cog7_1"]=s s= marker_sets["Cog7_1"] mark=s.place_marker((606.316, 702.222, 529.232), (0.7, 0.7, 0.7), 17.1475) if "Cog7_2" not in marker_sets: s=new_marker_set('Cog7_2') marker_sets["Cog7_2"]=s s= marker_sets["Cog7_2"] mark=s.place_marker((610.545, 720.778, 474.952), (0.7, 0.7, 0.7), 17.1475) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((533.719, 694.295, 470.952), (0.7, 0.7, 0.7), 18.4716) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((672.807, 765.909, 404.604), (0.7, 0.7, 0.7), 18.4716) if "Cog8_0" not in marker_sets: s=new_marker_set('Cog8_0') marker_sets["Cog8_0"]=s s= marker_sets["Cog8_0"] mark=s.place_marker((546.476, 632.909, 551.211), (1, 0.5, 0), 17.1475) if "Cog8_1" not in marker_sets: s=new_marker_set('Cog8_1') marker_sets["Cog8_1"]=s s= marker_sets["Cog8_1"] mark=s.place_marker((558.019, 658.362, 547.204), (1, 0.5, 0), 17.1475) if "Cog8_2" not in marker_sets: s=new_marker_set('Cog8_2') marker_sets["Cog8_2"]=s s= marker_sets["Cog8_2"] mark=s.place_marker((570.304, 684.31, 544.861), (1, 0.5, 0), 17.1475) if "Cog8_3" not in marker_sets: s=new_marker_set('Cog8_3') marker_sets["Cog8_3"]=s s= marker_sets["Cog8_3"] mark=s.place_marker((581.01, 711.076, 549.984), (1, 0.5, 0), 17.1475) if "Cog8_4" not in marker_sets: s=new_marker_set('Cog8_4') marker_sets["Cog8_4"]=s s= marker_sets["Cog8_4"] mark=s.place_marker((595.054, 737.023, 552.579), (1, 0.5, 0), 17.1475) if "Cog8_5" not in marker_sets: s=new_marker_set('Cog8_5') marker_sets["Cog8_5"]=s s= marker_sets["Cog8_5"] mark=s.place_marker((609.495, 762.959, 556.117), (1, 0.5, 0), 17.1475) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((590.523, 686.806, 560.614), (1, 0.6, 0.1), 18.4716) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((632.939, 843.689, 553.686), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
e8dc54e0d29dcbd3078510bb079021898840fe06
26d5c795d8aa83bf5cb3f228675ff51e2f704f57
/scripts/tuple2json
eb4a6177f70c27c5ba91553a6c9515e04d247a90
[]
no_license
binarymachines/mercury
8e13bb10c67a056fe88e02f558d73f1f1b95d028
db3e2425f4e77a44a97c740f7fff90312a1bd33f
refs/heads/master
2023-07-08T11:35:26.867494
2023-06-25T00:46:23
2023-06-25T00:46:23
94,708,610
2
6
null
2023-02-15T21:50:06
2017-06-18T19:31:50
Python
UTF-8
Python
false
false
2,595
#!/usr/bin/env python ''' Usage: tuple2json --delimiter <delimiter> --keys=<key>... [--skip <num_lines>] [--limit=<limit>] tuple2json --delimiter <delimiter> --datafile <file> --keys=<key>... [--skip <num_lines>] [--limit=<limit>] ''' ''' +mdoc+ tuple2json takes a list of tuples (represented as CSV records with the specified delimiter) and turns them into a list of corresponding key:value JSON records whose keys are the comma-separated, ORDERED list of names passed to the --keys parameter. If the --datafile option is set, tuple2json reads its input records from the <file> parameter; if not, it reads them from standard input. tuple2json assumes a headlerless CSV file; it depends solely on the keys passed to it. If you are transforming a CSV file which contains a header, you must either remove it before passing the data, or use the --skip parameter; otherwise the first record it generates will be a nonsense record. tuple2json is often used in conjunction with tuplegen to turn a set of lists into a single JSONL file. +mdoc+ ''' import os, sys import json import docopt from snap import common from mercury.utils import read_stdin def generate_dict_from_tuple(line: str, delimiter: str, keys: list): # TODO: decide what to do if key count and token count do not match output_record = {} tokens = line.split(delimiter) index = 0 for key in keys: output_record[key] = tokens[index] index += 1 return output_record def main(args): keys = args['--keys'][0].split(',') delimiter = args['<delimiter>'] limit = int(args.get('--limit') or -1) skip_count = int(args.get('<num_lines>') or -1) line_count = 0 if args['--datafile']: with open(args['<file>'], 'r') as f: for line in f: if line_count == limit: break if line_count < skip_count: line_count += 1 continue record = generate_dict_from_tuple(line.strip(), delimiter, keys) print(json.dumps(record)) line_count += 1 else: # read data from standard input for line in read_stdin(): if line_count == limit: break if line_count < skip_count: line_count += 1 continue record = generate_dict_from_tuple(line.strip(), delimiter, keys) print(json.dumps(record)) line_count += 1 if __name__ == '__main__': args = docopt.docopt(__doc__) main(args)
c91f3a8f8c97bee6dfad05db9551a7fd74a02a78
59880d47a533cf1f45f927adafff22d5ffb4796a
/Python/fullStackDjango/fullStackBooks/apps/books/migrations/0002_auto_20170524_0029.py
9208e593e61e618fa8fa5d072fff9f74e252ea46
[]
no_license
mightymcalpine/DojoAssignments
2bc7bb791630040dbb62da917a26b74bbdd574e4
9c0d80953f6ddbe840314f3d333b5f4590e0c9f4
refs/heads/master
2021-01-18T00:07:07.128554
2017-06-05T16:38:35
2017-06-05T16:38:35
84,257,743
0
0
null
2017-06-02T05:34:36
2017-03-07T23:47:27
Python
UTF-8
Python
false
false
383
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-05-24 00:29 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('books', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='booksDB', new_name='bookDB', ), ]
2fece7e214d7330dd51e1119ce24086e0cdf399f
02b9a9f40f56502c94d064654e030c521c2f325a
/django_task/utils.py
533c749435edbf9ae8321797f72884ec9c9c8e23
[ "MIT" ]
permissive
samlex20/django-task
7c454922cf667853bc8678bfbb871e0f014b33b1
9966dd9a3366c10b3658298ff29c62250e5ec46f
refs/heads/master
2020-05-30T21:48:11.947777
2019-06-03T04:50:53
2019-06-03T04:50:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,459
py
from __future__ import unicode_literals import uuid import os import time from django.http import Http404 from django.shortcuts import get_object_or_404 from django.utils import formats from django.utils import timezone from django.apps import apps def get_object_by_uuid_or_404(model, uuid_pk): """ Calls get_object_or_404(model, pk=uuid_pk) but also prevents "badly formed hexadecimal UUID string" unhandled exception """ try: uuid.UUID(uuid_pk) except Exception as e: raise Http404(str(e)) return get_object_or_404(model, pk=uuid_pk) def format_datetime(dt, include_time=True): """ Apply datetime format suggested for all admin views. Here we adopt the following rule: 1) format date according to active localization 2) append time in military format """ if dt is None: return '' # convert to localtime try: dt = timezone.localtime(dt) except ValueError: # Probably 'astimezone() cannot be applied to a naive datetime' pass text = formats.date_format(dt, use_l10n=True, format='SHORT_DATE_FORMAT') if include_time: text += dt.strftime(' %H:%M:%S') return text def remove_file_and_cleanup(filepath): """ Removes specified file, than it's folder if left empty """ folder = os.path.dirname(filepath) # remove file if os.path.isfile(filepath): os.remove(filepath) # finally, remove folder if empty if os.path.isdir(folder) and len(os.listdir(folder)) <= 0: os.rmdir(folder) def get_model_from_id(model_cls, id, timeout=1000, retry_count=10): """ Retrieve a record """ dt = timeout / retry_count for i in range(retry_count): try: task = model_cls.objects.get(id=id) return task except model_cls.DoesNotExist: pass time.sleep(dt / 1000.0) return None def revoke_pending_tasks(): from .models import Task models = apps.get_models() task_models = [model for model in models if issubclass(model, Task) and model != Task] counter = 0 for model in task_models: queryset = model.objects.filter(status__in=Task.TASK_STATUS_PENDING_VALUES) n = queryset.count() print('revoking %s objects (%d) ...' % (model.__name__, n)) #model.objects.all().delete() queryset.update(status='REVOKED') counter += n return counter
45e666a317a1cd2194028b38c269dcc81f2249a7
02406958bffadbce13240ea1fb5013bc005fa332
/src/main/python/matrixext.py
2b40104f311e9b6f6405f5791190fb618f232aec
[]
no_license
Jcamilorada/Networks
4b03209f0324e7a00c5236b7215158684ea969ee
1200529e501f9366bc38bb02b1d45f3079c976d3
refs/heads/master
2021-01-10T16:36:06.311138
2015-11-17T03:05:44
2015-11-17T03:05:44
45,878,436
0
0
null
null
null
null
UTF-8
Python
false
false
2,925
py
from BeautifulSoup import BeautifulSoup import urllib2 import re from subprocess import call from os import walk, path from joblib import Parallel, delayed hdr = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive'} def download_file(download_url): req = urllib2.Request(download_url, headers=hdr) try: page = urllib2.urlopen(req) except urllib2.HTTPError, e: print e.fp.read() index = download_url.rfind('/') file_name = download_url[index + 1:] f = open(file_name, 'w') f.write(page.read()) f.close() def download_pass_file(match_url): req = urllib2.Request(match_url, headers=hdr) try: page = urllib2.urlopen(req) except urllib2.HTTPError, e: print e.fp.read() html_page = page.read() soup = BeautifulSoup(html_page) for link in soup.findAll('a', attrs={'href': re.compile("passingdistribution\.pdf$")}): download_file(link.get('href')) def get_fifa_pass_distributions(championship_url, base_url): req = urllib2.Request(championship_url, headers=hdr) try: page = urllib2.urlopen(req) except urllib2.HTTPError, e: print e.fp.read() html_page = page.read() soup = BeautifulSoup(html_page) matches = [] for link in soup.findAll('a', attrs={'href': re.compile("^/worldcup/matches/round=")}): download_pass_file(base_url + link.get('href')) def export_fifa_pass_dist_to_csv(file_path, output_path): file_name = file_path[file_path.rfind('/') + 1:file_path.rfind('.pdf')] file_name_header = 'header_' + file_name + '.csv' file_name_body = 'body_' + file_name + '.csv' call(['jruby -S tabula '+ file_path + ' -a 20.00,12.75,200.5,561 ' + '-o ' + output_path+file_name_header], shell=True) call(['jruby -S tabula ' + file_path + ' -a 200.00,12.75,700.5,561 ' + '-o ' + output_path+file_name_body], shell=True) def export_fifa_dir(files_path, output_path): file_names = [] for root, dirs, files in walk(files_path): for name in files: if 'pdf' in name: file_names.append(path.join(root, name)) else: continue n_jobs = 10 Parallel(n_jobs=n_jobs, verbose=50)(delayed(export_fifa_pass_dist_to_csv)(file_name, output_path) for file_name in file_names) export_fifa_dir( '/Users/developer3/git/Networks/fifa_2014_pass_distributions/pdf_raw_data/', '/Users/developer3/git/Networks/fifa_2014_pass_distributions/csv/' ) #get_fifa_pass_distributions('http://www.fifa.com/worldcup/archive/brazil2014/matches/index.html', 'http://www.fifa.com/')
960761f93b8ca58af370503f84744e74126847fb
74f68049235709841416010ec1e18e8085762113
/.history/recursion_20191203122123.py
7190b3a32cacbf96d5a3743a23aa3f6f8bcaf7a3
[]
no_license
camilooob/pythonisfun
749692517a6c6b147c428996c01fb3b2fa1aef14
55453e1f80f92c3756ee5f0338f93fc2a0d9beec
refs/heads/master
2020-09-21T21:59:44.308526
2020-01-20T17:41:56
2020-01-20T17:41:56
224,947,113
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
def rec_count (number): print (number) # Base case if number == 0: return rec_count (number + 1) # A recursive call with a different argument print (number) rec_count (5)
3f06ec717874a0469c361153d673f147c29904fb
b5a6f10c886fba6584d2ac7b4a29c69975826dbb
/clients/python/pricemonitor_api_client/models/get_all_domains_v3_api_response.py
12e4f77837ed38236957ce51bf022e5fd7b9404f
[]
no_license
Patagona/pricemonitor-clients
8c4f842ca3d4e459c77ac329ad488cb3e4c858bf
cf2d689bf9ed6ddea9501324cada918c3a88b4f8
refs/heads/master
2023-08-31T20:12:58.844253
2023-08-31T15:26:25
2023-08-31T15:26:25
279,618,794
1
1
null
2023-07-03T13:55:28
2020-07-14T15:09:38
Python
UTF-8
Python
false
false
3,671
py
# coding: utf-8 """ Pricemonitor API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 0.0.6561 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from pricemonitor_api_client.configuration import Configuration class GetAllDomainsV3ApiResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'data': 'ComPatagonaPricemonitorShareApiGetAllDomainsV3' } attribute_map = { 'data': 'data' } def __init__(self, data=None, local_vars_configuration=None): # noqa: E501 """GetAllDomainsV3ApiResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._data = None self.discriminator = None self.data = data @property def data(self): """Gets the data of this GetAllDomainsV3ApiResponse. # noqa: E501 :return: The data of this GetAllDomainsV3ApiResponse. # noqa: E501 :rtype: ComPatagonaPricemonitorShareApiGetAllDomainsV3 """ return self._data @data.setter def data(self, data): """Sets the data of this GetAllDomainsV3ApiResponse. :param data: The data of this GetAllDomainsV3ApiResponse. # noqa: E501 :type: ComPatagonaPricemonitorShareApiGetAllDomainsV3 """ if self.local_vars_configuration.client_side_validation and data is None: # noqa: E501 raise ValueError("Invalid value for `data`, must not be `None`") # noqa: E501 self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GetAllDomainsV3ApiResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, GetAllDomainsV3ApiResponse): return True return self.to_dict() != other.to_dict()
648499454a893c6b90a2797d465b43402210e6f4
e3db01c4f135b4a350e0a326a88015ce99e632f3
/verce-hpc-pe/src/prov/serializers/provjson.py
a8ce82138203cae2c8e6207c841befd287536974
[ "MIT" ]
permissive
KNMI/VERCE
a5eb51fb09051e6bffdb6639798a5732a0e07470
c2f9eaa70ecf1621a218afc5d73ca1304ca8ed36
refs/heads/master
2021-05-04T10:14:31.072177
2019-01-07T10:19:14
2019-01-07T10:19:14
51,840,168
2
4
MIT
2019-01-07T10:19:15
2016-02-16T14:05:03
JavaScript
UTF-8
Python
false
false
13,610
py
from __future__ import (absolute_import, division, print_function, unicode_literals) __author__ = 'Trung Dong Huynh' __email__ = '[email protected]' import logging logger = logging.getLogger(__name__) from collections import defaultdict import datetime import io import json from prov.serializers import Serializer, Error from prov.constants import * from prov.model import (Literal, Identifier, QualifiedName, Namespace, ProvDocument, ProvBundle, first, parse_xsd_datetime) class ProvJSONException(Error): pass class AnonymousIDGenerator: def __init__(self): self._cache = {} self._count = 0 def get_anon_id(self, obj, local_prefix='id'): if obj not in self._cache: self._count += 1 self._cache[obj] = Identifier( '_:%s%d' % (local_prefix, self._count) ) return self._cache[obj] # Reverse map for prov.model.XSD_DATATYPE_PARSERS LITERAL_XSDTYPE_MAP = { float: 'xsd:double', int: 'xsd:int' # boolean, string values are supported natively by PROV-JSON # datetime values are converted separately } # Add long on Python 2 if six.integer_types[-1] not in LITERAL_XSDTYPE_MAP: LITERAL_XSDTYPE_MAP[six.integer_types[-1]] = 'xsd:long' class ProvJSONSerializer(Serializer): """ PROV-JSON serializer for :class:`~prov.model.ProvDocument` """ def serialize(self, stream, **kwargs): """ Serializes a :class:`~prov.model.ProvDocument` instance to `PROV-JSON <https://provenance.ecs.soton.ac.uk/prov-json/>`_. :param stream: Where to save the output. """ if six.PY2: buf = io.BytesIO() try: json.dump(self.document, buf, cls=ProvJSONEncoder, **kwargs) buf.seek(0, 0) # Right now this is a bytestream. If the object to stream to is # a text object is must be decoded. We assume utf-8 here which # should be fine for almost every case. if isinstance(stream, io.TextIOBase): stream.write(buf.read().decode('utf-8')) else: stream.write(buf.read()) finally: buf.close() else: buf = io.StringIO() try: json.dump(self.document, buf, cls=ProvJSONEncoder, **kwargs) buf.seek(0, 0) # Right now this is a bytestream. If the object to stream to is # a text object is must be decoded. We assume utf-8 here which # should be fine for almost every case. if isinstance(stream, io.TextIOBase): stream.write(buf.read()) else: stream.write(buf.read().encode('utf-8')) finally: buf.close() def deserialize(self, stream, **kwargs): """ Deserialize from the `PROV JSON <https://provenance.ecs.soton.ac.uk/prov-json/>`_ representation to a :class:`~prov.model.ProvDocument` instance. :param stream: Input data. """ if not isinstance(stream, io.TextIOBase): buf = io.StringIO(stream.read().decode('utf-8')) stream = buf return json.load(stream, cls=ProvJSONDecoder, **kwargs) class ProvJSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, ProvDocument): return encode_json_document(o) else: return super(ProvJSONEncoder, self).encode(o) class ProvJSONDecoder(json.JSONDecoder): def decode(self, s, *args, **kwargs): container = super(ProvJSONDecoder, self).decode(s, *args, **kwargs) document = ProvDocument() decode_json_document(container, document) return document # Encoding/decoding functions def valid_qualified_name(bundle, value): if value is None: return None qualified_name = bundle.valid_qualified_name(value) return qualified_name def encode_json_document(document): container = encode_json_container(document) for bundle in document.bundles: # encoding the sub-bundle bundle_json = encode_json_container(bundle) container['bundle'][six.text_type(bundle.identifier)] = bundle_json return container def encode_json_container(bundle): container = defaultdict(dict) prefixes = {} for namespace in bundle._namespaces.get_registered_namespaces(): prefixes[namespace.prefix] = namespace.uri if bundle._namespaces._default: prefixes['default'] = bundle._namespaces._default.uri if prefixes: container['prefix'] = prefixes id_generator = AnonymousIDGenerator() real_or_anon_id = \ lambda r: ( r._identifier if r._identifier else id_generator.get_anon_id(r) ) for record in bundle._records: rec_type = record.get_type() rec_label = PROV_N_MAP[rec_type] identifier = six.text_type(real_or_anon_id(record)) record_json = {} if record._attributes: for (attr, values) in record._attributes.items(): if not values: continue attr_name = six.text_type(attr) if attr in PROV_ATTRIBUTE_QNAMES: # TODO: QName export record_json[attr_name] = six.text_type(first(values)) elif attr in PROV_ATTRIBUTE_LITERALS: record_json[attr_name] = first(values).isoformat() else: if len(values) == 1: # single value record_json[attr_name] = encode_json_representation( first(values) ) else: # multiple values record_json[attr_name] = list( encode_json_representation(value) for value in values ) # Check if the container already has the id of the record if identifier not in container[rec_label]: # this is the first instance, just put in the new record container[rec_label][identifier] = record_json else: # the container already has some record(s) of the same identifier # check if this is the second instance current_content = container[rec_label][identifier] if hasattr(current_content, 'items'): # this is a dict, make it a singleton list container[rec_label][identifier] = [current_content] # now append the new record to the list container[rec_label][identifier].append(record_json) return container def decode_json_document(content, document): bundles = dict() if 'bundle' in content: bundles = content['bundle'] del content['bundle'] decode_json_container(content, document) for bundle_id, bundle_content in bundles.items(): bundle = ProvBundle(document=document) decode_json_container(bundle_content, bundle) document.add_bundle(bundle, bundle.valid_qualified_name(bundle_id)) def decode_json_container(jc, bundle): if 'prefix' in jc: prefixes = jc['prefix'] for prefix, uri in prefixes.items(): if prefix != 'default': bundle.add_namespace(Namespace(prefix, uri)) else: bundle.set_default_namespace(uri) del jc['prefix'] for rec_type_str in jc: rec_type = PROV_RECORD_IDS_MAP[rec_type_str] for rec_id, content in jc[rec_type_str].items(): if hasattr(content, 'items'): # it is a dict # There is only one element, create a singleton list elements = [content] else: # expect it to be a list of dictionaries elements = content for element in elements: attributes = dict() other_attributes = [] # this is for the multiple-entity membership hack to come membership_extra_members = None for attr_name, values in element.items(): attr = ( PROV_ATTRIBUTES_ID_MAP[attr_name] if attr_name in PROV_ATTRIBUTES_ID_MAP else valid_qualified_name(bundle, attr_name) ) if attr in PROV_ATTRIBUTES: if isinstance(values, list): # only one value is allowed if len(values) > 1: # unless it is the membership hack if rec_type == PROV_MEMBERSHIP and \ attr == PROV_ATTR_ENTITY: # This is a membership relation with # multiple entities # HACK: create multiple membership # relations, one for each entity # Store all the extra entities membership_extra_members = values[1:] # Create the first membership relation as # normal for the first entity value = values[0] else: error_msg = ( 'The prov package does not support PROV' ' attributes having multiple values.' ) logger.error(error_msg) raise ProvJSONException(error_msg) else: value = values[0] else: value = values value = ( valid_qualified_name(bundle, value) if attr in PROV_ATTRIBUTE_QNAMES else parse_xsd_datetime(value) ) attributes[attr] = value else: if isinstance(values, list): other_attributes.extend( ( attr, decode_json_representation(value, bundle) ) for value in values ) else: # single value other_attributes.append( ( attr, decode_json_representation(values, bundle) ) ) bundle.new_record( rec_type, rec_id, attributes, other_attributes ) # HACK: creating extra (unidentified) membership relations if membership_extra_members: collection = attributes[PROV_ATTR_COLLECTION] for member in membership_extra_members: bundle.membership( collection, valid_qualified_name(bundle, member) ) def encode_json_representation(value): if isinstance(value, Literal): return literal_json_representation(value) elif isinstance(value, datetime.datetime): return {'$': value.isoformat(), 'type': 'xsd:dateTime'} elif isinstance(value, QualifiedName): # TODO Manage prefix in the whole structure consistently # TODO QName export return {'$': str(value), 'type': PROV_QUALIFIEDNAME._str} elif isinstance(value, Identifier): return {'$': value.uri, 'type': 'xsd:anyURI'} elif type(value) in LITERAL_XSDTYPE_MAP: return {'$': value, 'type': LITERAL_XSDTYPE_MAP[type(value)]} else: return value def decode_json_representation(literal, bundle): if isinstance(literal, dict): # complex type value = literal['$'] datatype = literal['type'] if 'type' in literal else None datatype = valid_qualified_name(bundle, datatype) langtag = literal['lang'] if 'lang' in literal else None if datatype == XSD_ANYURI: return Identifier(value) elif datatype == PROV_QUALIFIEDNAME: return valid_qualified_name(bundle, value) else: # The literal of standard Python types is not converted here # It will be automatically converted when added to a record by # _auto_literal_conversion() return Literal(value, datatype, langtag) else: # simple type, just return it return literal def literal_json_representation(literal): # TODO: QName export value, datatype, langtag = literal.value, literal.datatype, literal.langtag if langtag: return {'$': value, 'lang': langtag} else: return {'$': value, 'type': six.text_type(datatype)}
58e97efc151d9f3a2da1fd1d8c4410862d39e548
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.5/django/contrib/localflavor/ar/forms.py
05e085c6b238aa4077d4a3d12a5509635708e82d
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
104
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.5/django/contrib/localflavor/ar/forms.py
ddbc423127a5ff18708f91ef19571a84ab3e11c5
483d0589f1efc10af3cbffe44b8abfe8031bf776
/descarteslabs/third_party/funcsigs/funcsigs/__init__.py
78600102e03ac1514a7c19b08f3162208df98f7d
[ "Apache-2.0" ]
permissive
grpecunia/descarteslabs-python
3f4129748c8b251c76cf094d34485ea2e563d174
c99c3091f2629c758a27de4d8fd6e4a39a7b3013
refs/heads/master
2020-09-11T14:51:00.390072
2019-11-15T20:41:27
2019-11-15T21:02:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,787
py
# Copyright 2001-2013 Python Software Foundation; All Rights Reserved """Function signature objects for callables Back port of Python 3.3's function signature tools from the inspect module, modified to be compatible with Python 2.6, 2.7 and 3.3+. """ from __future__ import absolute_import, division, print_function import itertools import functools import re import types try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict from .version import __version__ # noqa: F401 __all__ = ["BoundArguments", "Parameter", "Signature", "signature"] _WrapperDescriptor = type(type.__call__) _MethodWrapper = type(all.__call__) _NonUserDefinedCallables = ( _WrapperDescriptor, _MethodWrapper, types.BuiltinFunctionType, ) def formatannotation(annotation, base_module=None): if isinstance(annotation, type): if annotation.__module__ in ("builtins", "__builtin__", base_module): return annotation.__name__ return annotation.__module__ + "." + annotation.__name__ return repr(annotation) def _get_user_defined_method(cls, method_name, *nested): try: if cls is type: return meth = getattr(cls, method_name) for name in nested: meth = getattr(meth, name, meth) except AttributeError: return else: if not isinstance(meth, _NonUserDefinedCallables): # Once '__signature__' will be added to 'C'-level # callables, this check won't be necessary return meth def signature(obj): """Get a signature object for the passed callable.""" if not callable(obj): raise TypeError("{0!r} is not a callable object".format(obj)) if isinstance(obj, types.MethodType): sig = signature(obj.__func__) if obj.__self__ is None: # Unbound method - preserve as-is. return sig else: # Bound method. Eat self - if we can. params = tuple(sig.parameters.values()) if not params or params[0].kind in (_VAR_KEYWORD, _KEYWORD_ONLY): raise ValueError("invalid method signature") kind = params[0].kind if kind in (_POSITIONAL_OR_KEYWORD, _POSITIONAL_ONLY): # Drop first parameter: # '(p1, p2[, ...])' -> '(p2[, ...])' params = params[1:] else: if kind is not _VAR_POSITIONAL: # Unless we add a new parameter type we never # get here raise ValueError("invalid argument type") # It's a var-positional parameter. # Do nothing. '(*args[, ...])' -> '(*args[, ...])' return sig.replace(parameters=params) try: sig = obj.__signature__ except AttributeError: pass else: if sig is not None: return sig try: # Was this function wrapped by a decorator? wrapped = obj.__wrapped__ except AttributeError: pass else: return signature(wrapped) if isinstance(obj, types.FunctionType): return Signature.from_function(obj) if isinstance(obj, functools.partial): sig = signature(obj.func) new_params = OrderedDict(sig.parameters.items()) partial_args = obj.args or () partial_keywords = obj.keywords or {} try: ba = sig.bind_partial(*partial_args, **partial_keywords) except TypeError: msg = "partial object {0!r} has incorrect arguments".format(obj) raise ValueError(msg) for arg_name, arg_value in ba.arguments.items(): param = new_params[arg_name] if arg_name in partial_keywords: # We set a new default value, because the following code # is correct: # # >>> def foo(a): print(a) # >>> print(partial(partial(foo, a=10), a=20)()) # 20 # >>> print(partial(partial(foo, a=10), a=20)(a=30)) # 30 # # So, with 'partial' objects, passing a keyword argument is # like setting a new default value for the corresponding # parameter # # We also mark this parameter with '_partial_kwarg' # flag. Later, in '_bind', the 'default' value of this # parameter will be added to 'kwargs', to simulate # the 'functools.partial' real call. new_params[arg_name] = param.replace( default=arg_value, _partial_kwarg=True ) elif ( param.kind not in (_VAR_KEYWORD, _VAR_POSITIONAL) and not param._partial_kwarg ): new_params.pop(arg_name) return sig.replace(parameters=list(new_params.values())) sig = None if isinstance(obj, type): # obj is a class or a metaclass # First, let's see if it has an overloaded __call__ defined # in its metaclass call = _get_user_defined_method(type(obj), "__call__") if call is not None: sig = signature(call) else: # Now we check if the 'obj' class has a '__new__' method new = _get_user_defined_method(obj, "__new__") if new is not None: sig = signature(new) else: # Finally, we should have at least __init__ implemented init = _get_user_defined_method(obj, "__init__") if init is not None: sig = signature(init) elif not isinstance(obj, _NonUserDefinedCallables): # An object with __call__ # We also check that the 'obj' is not an instance of # _WrapperDescriptor or _MethodWrapper to avoid # infinite recursion (and even potential segfault) call = _get_user_defined_method(type(obj), "__call__", "im_func") if call is not None: sig = signature(call) if sig is not None: # For classes and objects we skip the first parameter of their # __call__, __new__, or __init__ methods return sig.replace(parameters=tuple(sig.parameters.values())[1:]) if isinstance(obj, types.BuiltinFunctionType): # Raise a nicer error message for builtins msg = "no signature found for builtin function {0!r}".format(obj) raise ValueError(msg) raise ValueError("callable {0!r} is not supported by signature".format(obj)) class _void(object): """A private marker - used in Parameter & Signature""" class _empty(object): pass class _ParameterKind(int): def __new__(self, *args, **kwargs): obj = int.__new__(self, *args) obj._name = kwargs["name"] return obj def __str__(self): return self._name def __repr__(self): return "<_ParameterKind: {0!r}>".format(self._name) _POSITIONAL_ONLY = _ParameterKind(0, name="POSITIONAL_ONLY") _POSITIONAL_OR_KEYWORD = _ParameterKind(1, name="POSITIONAL_OR_KEYWORD") _VAR_POSITIONAL = _ParameterKind(2, name="VAR_POSITIONAL") _KEYWORD_ONLY = _ParameterKind(3, name="KEYWORD_ONLY") _VAR_KEYWORD = _ParameterKind(4, name="VAR_KEYWORD") class Parameter(object): """Represents a parameter in a function signature. Has the following public attributes: * name : str The name of the parameter as a string. * default : object The default value for the parameter if specified. If the parameter has no default value, this attribute is not set. * annotation The annotation for the parameter if specified. If the parameter has no annotation, this attribute is not set. * kind : str Describes how argument values are bound to the parameter. Possible values: `Parameter.POSITIONAL_ONLY`, `Parameter.POSITIONAL_OR_KEYWORD`, `Parameter.VAR_POSITIONAL`, `Parameter.KEYWORD_ONLY`, `Parameter.VAR_KEYWORD`. """ __slots__ = ("_name", "_kind", "_default", "_annotation", "_partial_kwarg") POSITIONAL_ONLY = _POSITIONAL_ONLY POSITIONAL_OR_KEYWORD = _POSITIONAL_OR_KEYWORD VAR_POSITIONAL = _VAR_POSITIONAL KEYWORD_ONLY = _KEYWORD_ONLY VAR_KEYWORD = _VAR_KEYWORD empty = _empty def __init__( self, name, kind, default=_empty, annotation=_empty, _partial_kwarg=False ): if kind not in ( _POSITIONAL_ONLY, _POSITIONAL_OR_KEYWORD, _VAR_POSITIONAL, _KEYWORD_ONLY, _VAR_KEYWORD, ): raise ValueError("invalid value for 'Parameter.kind' attribute") self._kind = kind if default is not _empty: if kind in (_VAR_POSITIONAL, _VAR_KEYWORD): msg = "{0} parameters cannot have default values".format(kind) raise ValueError(msg) self._default = default self._annotation = annotation if name is None: if kind != _POSITIONAL_ONLY: raise ValueError( "None is not a valid name for a " "non-positional-only parameter" ) self._name = name else: name = str(name) if kind != _POSITIONAL_ONLY and not re.match(r"[a-z_]\w*$", name, re.I): msg = "{0!r} is not a valid parameter name".format(name) raise ValueError(msg) self._name = name self._partial_kwarg = _partial_kwarg @property def name(self): return self._name @property def default(self): return self._default @property def annotation(self): return self._annotation @property def kind(self): return self._kind def replace( self, name=_void, kind=_void, annotation=_void, default=_void, _partial_kwarg=_void, ): """Creates a customized copy of the Parameter.""" if name is _void: name = self._name if kind is _void: kind = self._kind if annotation is _void: annotation = self._annotation if default is _void: default = self._default if _partial_kwarg is _void: _partial_kwarg = self._partial_kwarg return type(self)( name, kind, default=default, annotation=annotation, _partial_kwarg=_partial_kwarg, ) def __str__(self): kind = self.kind formatted = self._name if kind == _POSITIONAL_ONLY: if formatted is None: formatted = "" formatted = "<{0}>".format(formatted) # Add annotation and default value if self._annotation is not _empty: formatted = "{0}:{1}".format(formatted, formatannotation(self._annotation)) if self._default is not _empty: formatted = "{0}={1}".format(formatted, repr(self._default)) if kind == _VAR_POSITIONAL: formatted = "*" + formatted elif kind == _VAR_KEYWORD: formatted = "**" + formatted return formatted def __repr__(self): return "<{0} at {1:#x} {2!r}>".format( self.__class__.__name__, id(self), self.name ) def __hash__(self): msg = "unhashable type: '{0}'".format(self.__class__.__name__) raise TypeError(msg) def __eq__(self, other): return ( issubclass(other.__class__, Parameter) and self._name == other._name and self._kind == other._kind and self._default == other._default and self._annotation == other._annotation ) def __ne__(self, other): return not self.__eq__(other) class BoundArguments(object): """Result of `Signature.bind` call. Holds the mapping of arguments to the function's parameters. Has the following public attributes: * arguments : OrderedDict An ordered mutable mapping of parameters' names to arguments' values. Does not contain arguments' default values. * signature : Signature The Signature object that created this instance. * args : tuple Tuple of positional arguments values. * kwargs : dict Dict of keyword arguments values. """ def __init__(self, signature, arguments): self.arguments = arguments self._signature = signature @property def signature(self): return self._signature @property def args(self): args = [] for param_name, param in self._signature.parameters.items(): if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or param._partial_kwarg: # Keyword arguments mapped by 'functools.partial' # (Parameter._partial_kwarg is True) are mapped # in 'BoundArguments.kwargs', along with VAR_KEYWORD & # KEYWORD_ONLY break try: arg = self.arguments[param_name] except KeyError: # We're done here. Other arguments # will be mapped in 'BoundArguments.kwargs' break else: if param.kind == _VAR_POSITIONAL: # *args args.extend(arg) else: # plain argument args.append(arg) return tuple(args) @property def kwargs(self): kwargs = {} kwargs_started = False for param_name, param in self._signature.parameters.items(): if not kwargs_started: if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY) or param._partial_kwarg: kwargs_started = True else: if param_name not in self.arguments: kwargs_started = True continue if not kwargs_started: continue try: arg = self.arguments[param_name] except KeyError: pass else: if param.kind == _VAR_KEYWORD: # **kwargs kwargs.update(arg) else: # plain keyword argument kwargs[param_name] = arg return kwargs def apply_defaults(self): """Set default values for missing arguments. For variable-positional arguments (*args) the default is an empty tuple. For variable-keyword arguments (**kwargs) the default is an empty dict. """ arguments = self.arguments new_arguments = [] for name, param in self._signature.parameters.items(): try: new_arguments.append((name, arguments[name])) except KeyError: if param.default is not _empty: val = param.default elif param.kind is _VAR_POSITIONAL: val = () elif param.kind is _VAR_KEYWORD: val = {} else: # This BoundArguments was likely produced by # Signature.bind_partial(). continue new_arguments.append((name, val)) self.arguments = OrderedDict(new_arguments) def __hash__(self): msg = "unhashable type: '{0}'".format(self.__class__.__name__) raise TypeError(msg) def __eq__(self, other): return ( issubclass(other.__class__, BoundArguments) and self.signature == other.signature and self.arguments == other.arguments ) def __ne__(self, other): return not self.__eq__(other) class Signature(object): """A Signature object represents the overall signature of a function. It stores a Parameter object for each parameter accepted by the function, as well as information specific to the function itself. A Signature object has the following public attributes and methods: * parameters : OrderedDict An ordered mapping of parameters' names to the corresponding Parameter objects (keyword-only arguments are in the same order as listed in `code.co_varnames`). * return_annotation : object The annotation for the return type of the function if specified. If the function has no annotation for its return type, this attribute is not set. * bind(*args, **kwargs) -> BoundArguments Creates a mapping from positional and keyword arguments to parameters. * bind_partial(*args, **kwargs) -> BoundArguments Creates a partial mapping from positional and keyword arguments to parameters (simulating 'functools.partial' behavior.) """ __slots__ = ("_return_annotation", "_parameters") _parameter_cls = Parameter _bound_arguments_cls = BoundArguments empty = _empty def __init__( self, parameters=None, return_annotation=_empty, __validate_parameters__=True ): """Constructs Signature from the given list of Parameter objects and 'return_annotation'. All arguments are optional. """ if parameters is None: params = OrderedDict() else: if __validate_parameters__: params = OrderedDict() top_kind = _POSITIONAL_ONLY for idx, param in enumerate(parameters): kind = param.kind if kind < top_kind: msg = "wrong parameter order: {0} before {1}" msg = msg.format(top_kind, param.kind) raise ValueError(msg) else: top_kind = kind name = param.name if name is None: name = str(idx) param = param.replace(name=name) if name in params: msg = "duplicate parameter name: {0!r}".format(name) raise ValueError(msg) params[name] = param else: params = OrderedDict(((param.name, param) for param in parameters)) self._parameters = params self._return_annotation = return_annotation @classmethod def from_function(cls, func): """Constructs Signature for the given python function""" if not isinstance(func, types.FunctionType): raise TypeError("{0!r} is not a Python function".format(func)) Parameter = cls._parameter_cls # Parameter information. func_code = func.__code__ pos_count = func_code.co_argcount arg_names = func_code.co_varnames positional = tuple(arg_names[:pos_count]) keyword_only_count = getattr(func_code, "co_kwonlyargcount", 0) keyword_only = arg_names[pos_count : (pos_count + keyword_only_count)] annotations = getattr(func, "__annotations__", {}) defaults = func.__defaults__ kwdefaults = getattr(func, "__kwdefaults__", None) if defaults: pos_default_count = len(defaults) else: pos_default_count = 0 parameters = [] # Non-keyword-only parameters w/o defaults. non_default_count = pos_count - pos_default_count for name in positional[:non_default_count]: annotation = annotations.get(name, _empty) parameters.append( Parameter(name, annotation=annotation, kind=_POSITIONAL_OR_KEYWORD) ) # ... w/ defaults. for offset, name in enumerate(positional[non_default_count:]): annotation = annotations.get(name, _empty) parameters.append( Parameter( name, annotation=annotation, kind=_POSITIONAL_OR_KEYWORD, default=defaults[offset], ) ) # *args if func_code.co_flags & 0x04: name = arg_names[pos_count + keyword_only_count] annotation = annotations.get(name, _empty) parameters.append( Parameter(name, annotation=annotation, kind=_VAR_POSITIONAL) ) # Keyword-only parameters. for name in keyword_only: default = _empty if kwdefaults is not None: default = kwdefaults.get(name, _empty) annotation = annotations.get(name, _empty) parameters.append( Parameter( name, annotation=annotation, kind=_KEYWORD_ONLY, default=default ) ) # **kwargs if func_code.co_flags & 0x08: index = pos_count + keyword_only_count if func_code.co_flags & 0x04: index += 1 name = arg_names[index] annotation = annotations.get(name, _empty) parameters.append(Parameter(name, annotation=annotation, kind=_VAR_KEYWORD)) return cls( parameters, return_annotation=annotations.get("return", _empty), __validate_parameters__=False, ) @property def parameters(self): try: return types.MappingProxyType(self._parameters) except AttributeError: return OrderedDict(self._parameters.items()) @property def return_annotation(self): return self._return_annotation def replace(self, parameters=_void, return_annotation=_void): """Creates a customized copy of the Signature. Pass 'parameters' and/or 'return_annotation' arguments to override them in the new copy. """ if parameters is _void: parameters = self.parameters.values() if return_annotation is _void: return_annotation = self._return_annotation return type(self)(parameters, return_annotation=return_annotation) def __hash__(self): msg = "unhashable type: '{0}'".format(self.__class__.__name__) raise TypeError(msg) def __eq__(self, other): if ( not issubclass(type(other), Signature) or self.return_annotation != other.return_annotation or len(self.parameters) != len(other.parameters) ): return False other_positions = dict( (param, idx) for idx, param in enumerate(other.parameters.keys()) ) for idx, (param_name, param) in enumerate(self.parameters.items()): if param.kind == _KEYWORD_ONLY: try: other_param = other.parameters[param_name] except KeyError: return False else: if param != other_param: return False else: try: other_idx = other_positions[param_name] except KeyError: return False else: if idx != other_idx or param != other.parameters[param_name]: return False return True def __ne__(self, other): return not self.__eq__(other) def _bind(self, args, kwargs, partial=False): """Private method. Don't use directly.""" arguments = OrderedDict() parameters = iter(self.parameters.values()) parameters_ex = () arg_vals = iter(args) if partial: # Support for binding arguments to 'functools.partial' objects. # See 'functools.partial' case in 'signature()' implementation # for details. for param_name, param in self.parameters.items(): if param._partial_kwarg and param_name not in kwargs: # Simulating 'functools.partial' behavior kwargs[param_name] = param.default while True: # Let's iterate through the positional arguments and corresponding # parameters try: arg_val = next(arg_vals) except StopIteration: # No more positional arguments try: param = next(parameters) except StopIteration: # No more parameters. That's it. Just need to check that # we have no `kwargs` after this while loop break else: if param.kind == _VAR_POSITIONAL: # That's OK, just empty *args. Let's start parsing # kwargs break elif param.name in kwargs: if param.kind == _POSITIONAL_ONLY: msg = ( "{arg!r} parameter is positional only, " "but was passed as a keyword" ) msg = msg.format(arg=param.name) raise TypeError(msg) parameters_ex = (param,) break elif param.kind == _VAR_KEYWORD or param.default is not _empty: # That's fine too - we have a default value for this # parameter. So, lets start parsing `kwargs`, starting # with the current parameter parameters_ex = (param,) break else: # No default, not VAR_KEYWORD, not VAR_POSITIONAL, # not in `kwargs` if partial: parameters_ex = (param,) break else: msg = "missing a required argument: {arg!r}" msg = msg.format(arg=param.name) raise TypeError(msg) else: # We have a positional argument to process try: param = next(parameters) except StopIteration: raise TypeError("too many positional arguments") else: if param.kind in (_VAR_KEYWORD, _KEYWORD_ONLY): # Looks like we have no parameter for this positional # argument raise TypeError("too many positional arguments") if param.kind == _VAR_POSITIONAL: # We have an '*args'-like argument, let's fill it with # all positional arguments we have left and move on to # the next phase values = [arg_val] values.extend(arg_vals) arguments[param.name] = tuple(values) break if param.name in kwargs: raise TypeError( "multiple values for argument " "{arg!r}".format(arg=param.name) ) arguments[param.name] = arg_val # Now, we iterate through the remaining parameters to process # keyword arguments kwargs_param = None for param in itertools.chain(parameters_ex, parameters): if param.kind == _VAR_KEYWORD: # Memorize that we have a '**kwargs'-like parameter kwargs_param = param continue if param.kind == _VAR_POSITIONAL: # Named arguments don't refer to '*args'-like parameters. # We only arrive here if the positional arguments ended # before reaching the last parameter before *args. continue param_name = param.name try: arg_val = kwargs.pop(param_name) except KeyError: # We have no value for this parameter. It's fine though, # if it has a default value, or it is an '*args'-like # parameter, left alone by the processing of positional # arguments. if ( not partial and param.kind != _VAR_POSITIONAL and param.default is _empty ): raise TypeError( "missing a required argument: {arg!r}".format(arg=param_name) ) else: if param.kind == _POSITIONAL_ONLY: # This should never happen in case of a properly built # Signature object (but let's have this check here # to ensure correct behaviour just in case) raise TypeError( "{arg!r} parameter is positional only, " "but was passed as a keyword".format(arg=param.name) ) arguments[param_name] = arg_val if kwargs: if kwargs_param is not None: # Process our '**kwargs'-like parameter arguments[kwargs_param.name] = kwargs else: raise TypeError( "got an unexpected keyword argument {arg!r}".format( arg=next(iter(kwargs)) ) ) return self._bound_arguments_cls(self, arguments) def bind(*args, **kwargs): """Get a BoundArguments object, that maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. """ return args[0]._bind(args[1:], kwargs) def bind_partial(self, *args, **kwargs): """Get a BoundArguments object, that partially maps the passed `args` and `kwargs` to the function's signature. Raises `TypeError` if the passed arguments can not be bound. """ return self._bind(args, kwargs, partial=True) def __str__(self): result = [] render_kw_only_separator = True for idx, param in enumerate(self.parameters.values()): formatted = str(param) kind = param.kind if kind == _VAR_POSITIONAL: # OK, we have an '*args'-like parameter, so we won't need # a '*' to separate keyword-only arguments render_kw_only_separator = False elif kind == _KEYWORD_ONLY and render_kw_only_separator: # We have a keyword-only parameter to render and we haven't # rendered an '*args'-like parameter before, so add a '*' # separator to the parameters list ("foo(arg1, *, arg2)" case) result.append("*") # This condition should be only triggered once, so # reset the flag render_kw_only_separator = False result.append(formatted) rendered = "({0})".format(", ".join(result)) if self.return_annotation is not _empty: anno = formatannotation(self.return_annotation) rendered += " -> {0}".format(anno) return rendered
7ffb45eecdac616fe9c5ce26f57f0bae55224092
96dcea595e7c16cec07b3f649afd65f3660a0bad
/tests/components/number/test_recorder.py
635354b11760014111d91d22eb6242e3d9db539a
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
2,035
py
"""The tests for number recorder.""" from __future__ import annotations from datetime import timedelta from unittest.mock import patch import pytest from homeassistant.components import number from homeassistant.components.number import ATTR_MAX, ATTR_MIN, ATTR_MODE, ATTR_STEP from homeassistant.components.recorder import Recorder from homeassistant.components.recorder.history import get_significant_states from homeassistant.const import ATTR_FRIENDLY_NAME, Platform from homeassistant.core import HomeAssistant from homeassistant.setup import async_setup_component from homeassistant.util import dt as dt_util from tests.common import async_fire_time_changed from tests.components.recorder.common import async_wait_recording_done @pytest.fixture(autouse=True) async def number_only() -> None: """Enable only the number platform.""" with patch( "homeassistant.components.demo.COMPONENTS_WITH_CONFIG_ENTRY_DEMO_PLATFORM", [Platform.NUMBER], ): yield async def test_exclude_attributes(recorder_mock: Recorder, hass: HomeAssistant) -> None: """Test number registered attributes to be excluded.""" assert await async_setup_component(hass, "homeassistant", {}) await async_setup_component( hass, number.DOMAIN, {number.DOMAIN: {"platform": "demo"}} ) await hass.async_block_till_done() now = dt_util.utcnow() async_fire_time_changed(hass, now + timedelta(minutes=5)) await hass.async_block_till_done() await async_wait_recording_done(hass) states = await hass.async_add_executor_job( get_significant_states, hass, now, None, hass.states.async_entity_ids() ) assert len(states) > 1 for entity_states in states.values(): for state in entity_states: assert ATTR_MIN not in state.attributes assert ATTR_MAX not in state.attributes assert ATTR_STEP not in state.attributes assert ATTR_MODE not in state.attributes assert ATTR_FRIENDLY_NAME in state.attributes
2688ed15e9167a2616e98fcead68c08c2428e039
d53a274a61ffe894a6e5648edf86f78145f0af7b
/tests/modes/test_stream.py
921a3c083d2c4c932abd4ccd6c99093791ebc99f
[ "MIT" ]
permissive
deresmos/delogger
8611d88714ffffddb5fa9bc12586fffb89fb8c11
c185e4fd844414d561f521103975b95bd31aff43
refs/heads/main
2021-06-02T23:10:02.814473
2020-10-19T13:53:27
2020-10-19T13:53:27
153,235,270
5
0
MIT
2020-10-19T13:53:29
2018-10-16T06:40:46
Python
UTF-8
Python
false
false
1,391
py
from pathlib import Path from delogger import Delogger from delogger.modes.stream import StreamColorDebugMode from delogger.modes.stream import StreamDebugMode from delogger.modes.stream import StreamInfoMode from tests.lib.base import Assert from tests.lib.base import DeloggerTestBase class TestStreamMode(DeloggerTestBase): def test_stream_info_mode(self, capsys): delogger = Delogger("stream_info_mode") delogger.load_modes(StreamInfoMode()) logger = delogger.get_logger() self.execute_log(logger) self.check_normal_stream_log(logger, capsys, is_color=False) Assert._bool(not Path(self.OUTPUT_DIRPATH).is_dir()) def test_stream_debug_mode(self, capsys): delogger = Delogger(name="stream_debug_mode") delogger.load_modes(StreamDebugMode()) logger = delogger.get_logger() self.execute_log(logger) self.check_debug_stream_log(logger, capsys, is_color=False) Assert._bool(not Path(self.OUTPUT_DIRPATH).is_dir()) def test_stream_color_debug_mode(self, capsys): delogger = Delogger(name="stream_color_debug_mode") delogger.load_modes(StreamColorDebugMode()) logger = delogger.get_logger() self.execute_log(logger) self.check_debug_stream_log(logger, capsys, is_color=True) Assert._bool(not Path(self.OUTPUT_DIRPATH).is_dir())
ceef2844a259de469756bc457bcfb2a756811678
8e1668e35a8df9968ab14d16db089b51dbe6dd51
/python/algorithms/sort/merge_sort.py
167273e24de284bb4cbd1cbfa418f619369e139c
[]
no_license
Chalmiller/competitive_programming
f1ec0184d1ff247201522ab90ca8e66b3f326afc
b437080d1ba977c023baf08b7dc5c3946784e183
refs/heads/master
2021-03-24T05:11:59.383916
2020-08-24T22:07:41
2020-08-24T22:07:41
247,519,998
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
def merge(S1, S2, S): """Merge two sorted Python lists S1 and S2 into properly sized list S.""" i = j = 0 while i + j < len(S): if j == len(S2) or (i < len(S1) and S1[i] < S2[j]): S[i+j] = S1[i] # copy ith element of S1 as next item of S i += 1 else: S[i+j] = S2[j] # copy jth element of S2 as next item of S j += 1 def merge_sort(S): """Sort the elements of Python list S using the merge-sort algorithm.""" n = len(S) if n < 2: return # list is already sorted # divide mid = n // 2 S1 = S[0:mid] # copy of first half S2 = S[mid:n] # copy of second half # conquer (with recursion) merge_sort(S1) # sort copy of first half merge_sort(S2) # sort copy of second half # merge results merge(S1, S2, S) # merge sorted halves back into S
d9fbe4fbc19c9b645f05143eda745eb788154644
bf9d325c1154632cd56b860c35fb743f9750e93f
/Configurations/VBSjjlnu/Full2018v7/conf_fit_v4/samples.py
c34dd7e0be32ecd498d6e6dd1ca9633debde4dd3
[]
no_license
dermotmoran/PlotsConfigurations
3b1577f068215e08683d9309d3485459f8130ca6
062417c706918ccfc5b53bb5cf232b547d245f1b
refs/heads/master
2023-03-15T11:44:29.444071
2023-03-08T10:10:53
2023-03-08T10:10:53
240,536,872
0
3
null
2020-12-21T15:47:04
2020-02-14T15:17:29
Python
UTF-8
Python
false
false
16,871
py
import os import subprocess import string from LatinoAnalysis.Tools.commonTools import * def nanoGetSampleFiles(inputDir, sample): return getSampleFiles(inputDir, sample, True, 'nanoLatino_') ############################################ ############ MORE MC STAT ################## ############################################ def CombineBaseW(samples, proc, samplelist): newbaseW = getBaseWnAOD(directory_bkg, 'Autumn18_102X_nAODv7_Full2018v7', samplelist) for s in samplelist: addSampleWeight(samples, proc, s, newbaseW+'/baseW') ############################################## ###### Tree Directory according to site ###### ############################################## samples={} # Steps mcSteps = 'MCl1loose2018v7__MCCorr2018v7__MCCombJJLNu2018' dataSteps = 'DATAl1loose2018v7__DATACombJJLNu2018' SITE=os.uname()[1] xrootdPath='' if 'cern' in SITE : #xrootdPath='root://eoscms.cern.ch/' treeBaseDir = '/eos/cms/store/group/phys_higgs/cmshww/amassiro/HWWNano/' treeBaseDir_SMP = '/eos/cms/store/group/phys_smp/VJets_NLO_VBSanalyses/' directory_bkg = treeBaseDir + 'Autumn18_102X_nAODv7_Full2018v7/' + mcSteps directory_signal = treeBaseDir_SMP + 'Autumn18_102X_nAODv7_Full2018v7/' + mcSteps directory_data = treeBaseDir + 'Run2018_102X_nAODv7_Full2018v7/' + dataSteps ################################################ ############ NUMBER OF LEPTONS ################# ################################################ Nlep='1' #Nlep='3' #Nlep='4' ################################################ ############### Lepton WP ###################### ################################################ eleWP='mvaFall17V1Iso_WP90' muWP='cut_Tight_HWWW' LepWPCut_1l = '(Lepton_isTightElectron_'+eleWP+'[0]>0.5 || Lepton_isTightMuon_'+muWP+'[0]>0.5)' LepWPWeight_1l = 'Lepton_tightElectron_'+eleWP+'_IdIsoSF'+'[0]*\ Lepton_tightMuon_'+muWP+'_IdIsoSF'+'[0]' LepWPCut = LepWPCut_1l LepWPWeight = LepWPWeight_1l ################################################ ############ BASIC MC WEIGHTS ################## ################################################ XSWeight = 'XSWeight' SFweight1l = 'puWeight*\ TriggerEffWeight_1l*\ Lepton_RecoSF[0]' SFweight = SFweight1l+'*'+LepWPWeight_1l+'*'+LepWPCut_1l SFweight += '* btagSF * PUJetIdSF * BoostedWtagSF_nominal' GenLepMatch = 'Lepton_genmatched[0]' #### # NVTX reweighting # SFweight += '*nvtx_reweighting' ################################################ ############ MET FILTERS ################### ################################################ METFilter_MC = 'METFilter_MC' METFilter_DATA = 'METFilter_DATA' ################################################ ############ DATA DECLARATION ################## ################################################ DataRun = [ ['A','Run2018A-02Apr2020-v1'] , ['B','Run2018B-02Apr2020-v1'] , ['C','Run2018C-02Apr2020-v1'] , ['D','Run2018D-02Apr2020-v1'] , ] DataSets = ['SingleMuon','EGamma'] DataTrig = { 'SingleMuon' : 'Trigger_sngMu' , 'EGamma' : '!Trigger_sngMu && Trigger_sngEl' } ########################################### ############# BACKGROUNDS ############### ########################################## ########### DY ############ DY_photon_filter = '( !(Sum$(PhotonGen_isPrompt==1 && PhotonGen_pt>15 && abs(PhotonGen_eta)<2.6) > 0 && Sum$(LeptonGen_isPrompt==1 && LeptonGen_pt>15)>=2) )' samples['DY'] = { 'name' : nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50') #Don't use LO(_ext0)! DYMVA Training! + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_ext2') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-10to50-LO_ext1') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-70to100') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-100to200') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-200to400') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-400to600') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-600to800') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-800to1200') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-1200to2500') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-50_HT-2500toInf') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-4to50_HT-100to200') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-4to50_HT-200to400') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-4to50_HT-400to600') + nanoGetSampleFiles(directory_bkg,'DYJetsToLL_M-4to50_HT-600toInf'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC + '*' + DY_photon_filter, 'FilesPerJob' : 6, 'EventsPerJob' : 70000, 'suppressNegative' :['all'], 'suppressNegativeNuisances' :['all'], } CombineBaseW(samples, 'DY', ['DYJetsToLL_M-50', 'DYJetsToLL_M-50_ext2']) addSampleWeight(samples,'DY','DYJetsToLL_M-50','DY_NLO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_ext2','DY_NLO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-10to50-LO_ext1','DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50', '(LHE_HT < 70)') addSampleWeight(samples,'DY','DYJetsToLL_M-50_ext2', '(LHE_HT < 70)') addSampleWeight(samples,'DY','DYJetsToLL_M-10to50-LO_ext1', '(LHE_HT < 100)') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-70to100', 'DY_LO_pTllrw') #Are LO! addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-100to200', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-200to400', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-400to600', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-600to800', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-800to1200', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-1200to2500', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-50_HT-2500toInf', 'DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-4to50_HT-100to200','DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-4to50_HT-200to400','DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-4to50_HT-400to600','DY_LO_pTllrw') addSampleWeight(samples,'DY','DYJetsToLL_M-4to50_HT-600toInf','DY_LO_pTllrw') ################################ ############ Top ############ samples['top'] = { 'name' : nanoGetSampleFiles(directory_bkg,'TTTo2L2Nu') + nanoGetSampleFiles(directory_bkg,'ST_s-channel_ext1') + nanoGetSampleFiles(directory_bkg,'ST_t-channel_antitop') + nanoGetSampleFiles(directory_bkg,'ST_t-channel_top') + nanoGetSampleFiles(directory_bkg,'ST_tW_antitop_ext1') + nanoGetSampleFiles(directory_bkg,'ST_tW_top_ext1') + nanoGetSampleFiles(directory_bkg,'TTToSemiLeptonic') + nanoGetSampleFiles(directory_bkg,'TTZjets') + nanoGetSampleFiles(directory_bkg,'TTWjets'), # + nanoGetSampleFiles(directory_bkg,'TTWJetsToLNu'), #also this is available 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC , 'FilesPerJob' : 4, 'EventsPerJob' : 70000, 'suppressNegative' :['all'], 'suppressNegativeNuisances' :['all'], } addSampleWeight(samples,'top','TTTo2L2Nu','Top_pTrw') addSampleWeight(samples,'top','TTToSemiLeptonic','Top_pTrw') #addSampleWeight(samples,'top','TTZjets','Top_pTrw') #addSampleWeight(samples,'top','TTWjets','Top_pTrw') #Not corrected in baseW, so we should correct the XS here addSampleWeight(samples,'top','ST_t-channel_top', "100. / 32.4 ") # N.B We are using inclusive sample with leptonic-only XS addSampleWeight(samples,'top','ST_t-channel_antitop', "100. / 32.4") ################################ ### Wjets samples samples['Wjets_HT'] = { 'name' : # nanoGetSampleFiles(directory_bkg, 'WJetsToLNu-LO_ext1') nanoGetSampleFiles(directory_bkg, 'WJetsToLNu-LO') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT70_100') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT100_200') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT200_400') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT400_600') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT600_800') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT800_1200') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT1200_2500') + nanoGetSampleFiles(directory_bkg, 'WJetsToLNu_HT2500_inf') , 'weight': XSWeight+'*'+SFweight+'*'+METFilter_MC+'*'+GenLepMatch, 'FilesPerJob' : 5, 'EventsPerJob' : 70000 # 'subsamples': { # "boost1" : "(VBS_category==0) && (deltaeta_vbs < 5)", # "boost2" : "(VBS_category==0) && (deltaeta_vbs >= 5)", # "deta1_jpt1": "(VBS_category==1) && (deltaeta_vbs < 5 ) && vbs_1_pt < 75", # "deta2_jpt1": "(VBS_category==1) && (deltaeta_vbs >= 5) && vbs_1_pt < 75", # "deta1_jpt2": "(VBS_category==1) && (deltaeta_vbs < 4 ) && ( vbs_1_pt >= 75 && vbs_1_pt <150)", # "deta2_jpt2": "(VBS_category==1) && (deltaeta_vbs >= 4) && ( vbs_1_pt >= 75 && vbs_1_pt <150)", # "jpt3": "(VBS_category==1) && ( vbs_1_pt >= 150)", # } } # Fix Wjets binned + LO addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu-LO', '(LHE_HT < 70)') ############ # HT stiching corrections 2018 addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT100_200', '0.993') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT200_400', '1.002') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT400_600', '1.009') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT600_800', '1.120') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT800_1200', '1.202') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT1200_2500', '1.332') addSampleWeight(samples,'Wjets_HT', 'WJetsToLNu_HT2500_inf', '4.200') ############################################### samples['VV'] = { 'name' : nanoGetSampleFiles(directory_signal,'WmToLNu_WmTo2J_QCD') + nanoGetSampleFiles(directory_signal,'WmToLNu_ZTo2J_QCD',) + nanoGetSampleFiles(directory_signal,'WmTo2J_ZTo2L_QCD', ) + nanoGetSampleFiles(directory_signal,'WpTo2J_WmToLNu_QCD') + nanoGetSampleFiles(directory_signal,'WpTo2J_ZTo2L_QCD', ) + nanoGetSampleFiles(directory_signal,'WpToLNu_WpTo2J_QCD') + nanoGetSampleFiles(directory_signal,'WpToLNu_WmTo2J_QCD') + nanoGetSampleFiles(directory_signal,'WpToLNu_ZTo2J_QCD',) + nanoGetSampleFiles(directory_signal,'ZTo2L_ZTo2J_QCD', ) , 'weight': XSWeight+'*'+SFweight+'*'+METFilter_MC+'*'+GenLepMatch , # TO BE CORRECTED: + '* ewknloW', 'FilesPerJob' : 8, 'EventsPerJob' : 70000, } ############ VVV ############ samples['VVV'] = { 'name' : nanoGetSampleFiles(directory_bkg,'ZZZ') + nanoGetSampleFiles(directory_bkg,'WZZ') + nanoGetSampleFiles(directory_bkg,'WWZ') + nanoGetSampleFiles(directory_bkg,'WWW'), #+ nanoGetSampleFiles(directory_bkg,'WWG'), #should this be included? or is it already taken into account in the WW sample? 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC+'*'+GenLepMatch , 'FilesPerJob' : 8, 'EventsPerJob' : 70000, } ############## VBF-V ######## samples['VBF-V'] = { 'name' : nanoGetSampleFiles(directory_bkg,'WLNuJJ_EWK') + nanoGetSampleFiles(directory_bkg,'EWKZ2Jets_ZToLL_M-50'), 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC+'*'+GenLepMatch, 'FilesPerJob' : 8, 'EventsPerJob' : 70000, } ################################################## ############ Vg ################################### samples['Vg'] = { 'name' : nanoGetSampleFiles(directory_bkg,'Wg_MADGRAPHMLM') + nanoGetSampleFiles(directory_bkg,'ZGToLLG'), 'weight' : XSWeight+'*'+SFweight+'*'+METFilter_MC+'*(Gen_ZGstar_mass <= 0)', 'FilesPerJob' : 8, 'EventsPerJob' : 70000, 'suppressNegative' :['all'], 'suppressNegativeNuisances' :['all'], } # the following baseW correction is needed in both v5 and v6 (for Zg, Not for ZGToLLG) #addSampleWeight(samples, 'Vg', 'Zg', '0.448') ############ VgS ############ samples['VgS'] = { 'name' : nanoGetSampleFiles(directory_bkg,'Wg_MADGRAPHMLM') + nanoGetSampleFiles(directory_bkg,'ZGToLLG') + nanoGetSampleFiles(directory_bkg,'WZTo3LNu_mllmin01'), 'weight' : XSWeight+'*'+SFweight+'*'+GenLepMatch+'*'+METFilter_MC + ' * (gstarLow * 0.94 + gstarHigh * 1.14)', 'FilesPerJob' : 8, 'EventsPerJob' : 70000, 'suppressNegative' :['all'], 'suppressNegativeNuisances' :['all'], # 'subsamples': { # 'L': 'gstarLow', # 'H': 'gstarHigh' # } } addSampleWeight(samples,'VgS','Wg_MADGRAPHMLM', '(Gen_ZGstar_mass > 0 && Gen_ZGstar_mass < 0.1)') addSampleWeight(samples,'VgS','ZGToLLG', '(Gen_ZGstar_mass > 0)') # *0.448 XS correction for Zg addSampleWeight(samples,'VgS','WZTo3LNu_mllmin01', '(Gen_ZGstar_mass > 0.1)') ########################################## ################ SIGNALS ################# ########################################## # samples['VBS'] = { 'name' : nanoGetSampleFiles(directory_signal,'WmToLNu_ZTo2J',) + nanoGetSampleFiles(directory_signal,'WmTo2J_ZTo2L', ) + nanoGetSampleFiles(directory_signal,'WpTo2J_ZTo2L', ) + nanoGetSampleFiles(directory_signal,'WpToLNu_ZTo2J',) + nanoGetSampleFiles(directory_signal,'WpToLNu_WpTo2J') + nanoGetSampleFiles(directory_signal,'WmToLNu_WmTo2J') + nanoGetSampleFiles(directory_signal,'WpToLNu_WmTo2J') + nanoGetSampleFiles(directory_signal,'WpTo2J_WmToLNu') + nanoGetSampleFiles(directory_signal,'ZTo2L_ZTo2J', ), 'weight': XSWeight+'*'+SFweight+'*'+METFilter_MC+'*'+GenLepMatch, 'FilesPerJob' : 10, 'EventsPerJob' : 70000, } # Then corrected #fakeW = 'fakeW_ele_mvaFall17V1Iso_WP90_mu_cut_Tight_HWWW_mu20_ele35' ### Fakes samples['Fake'] = { 'name': [], 'weight': METFilter_DATA+'* fake_weight_corrected', 'weights': [], 'isData': ['all'], 'FilesPerJob' : 10, } for _, sd in DataRun: for pd in DataSets: # BE Careful --> we use directory_data because the Lepton tight cut was not applied in post-processing files = nanoGetSampleFiles(directory_data, pd + '_' + sd) samples['Fake']['name'].extend(files) samples['Fake']['weights'].extend([DataTrig[pd]] * len(files)) ######################################### ################ DATA ################### ######################################### samples['DATA'] = { 'name': [ ] , 'weight' : METFilter_DATA+'*'+LepWPCut, 'weights' : [ ], 'isData': ['all'], 'FilesPerJob' : 10, } for Run in DataRun : for DataSet in DataSets : FileTarget = nanoGetSampleFiles(directory_data,DataSet+'_'+Run[1]) for iFile in FileTarget: samples['DATA']['name'].append(iFile) samples['DATA']['weights'].append(DataTrig[DataSet]) samples = { key:v for key,v in samples.items() if key in ["VgS"]}
23e3d90f8c6fac25f16b1ffcc6d2d56accb6bb1b
66c3ff83c3e3e63bf8642742356f6c1817a30eca
/.vim/tmp/neocomplete/buffer_cache/=+home=+dante=+proyectos=+django-1.9=+mysite=+pruebaarbol=+models.py
745addfd4f6e0f9b47c28f906f2c9fe123424849
[]
no_license
pacifi/vim
0a708e8bc741b4510a8da37da0d0e1eabb05ec83
22e706704357b961acb584e74689c7080e86a800
refs/heads/master
2021-05-20T17:18:10.481921
2020-08-06T12:38:58
2020-08-06T12:38:58
30,074,530
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
{'from', '__future__', 'import', 'unicode_literals', 'django', 'db', 'models', 'treebeard', 'mp_tree', 'MP_Node', 'ns_tree', 'NS_Node', 'al_tree', 'AL_Node', 'class', 'Category', 'name', 'CharField', 'max_length', 'node_order_by', 'def', '__str__', 'self', 'return', 's', '__unicode__'}
c3adb838965981ec18e6903f217ac461b3ef093c
35fc084d330e62575c12bc714cbf414c082e9f8a
/ramdisk/target/common/usr/lib/python3.7/site-packages/typepy/checker/_ipaddress.py
4ae9e749ecdb997ae763955301b1fca4c387ae1e
[ "Python-2.0" ]
permissive
BM1880-BIRD/bm1880-system-sdk
8de97c6c0985b3bee8b06fb5fd2ee8daec693665
eff2d6f5442676c04a221a62139864658208f57e
refs/heads/master
2022-04-08T09:20:47.919696
2020-03-09T02:43:08
2020-03-09T02:43:08
159,283,885
29
9
null
null
null
null
UTF-8
Python
false
false
1,262
py
# encoding: utf-8 """ .. codeauthor:: Tsuyoshi Hombashi <[email protected]> """ from __future__ import absolute_import from ._checker import ( TypeChecker, TypeCheckerStrictLevel, ) from ._common import isstring class IpAddressTypeCheckerStrictLevel0(TypeCheckerStrictLevel): def is_instance(self): return self._is_ipaddress(self._value) def is_valid_after_convert(self, converted_value): return self._is_ipaddress(converted_value) @staticmethod def _is_ipaddress(value): import ipaddress return isinstance( value, (ipaddress.IPv4Address, ipaddress.IPv6Address)) class IpAddressTypeCheckerStrictLevel1(IpAddressTypeCheckerStrictLevel0): def is_exclude_instance(self): return ( isstring(self._value) or super(IpAddressTypeCheckerStrictLevel1, self).is_exclude_instance() ) class IpAddressTypeChecker(TypeChecker): def __init__(self, value, strict_level): super(IpAddressTypeChecker, self).__init__( value=value, checker_mapping={ 0: IpAddressTypeCheckerStrictLevel0, 1: IpAddressTypeCheckerStrictLevel1, }, strict_level=strict_level)
f49a70a71099e94c0c3d967c18ae18bd219fede9
c8036f589aac6da4dfe88ea2c86935045d06b73d
/falconcv/models/__init__.py
89107a84cdd4a9134c9440f0812452a774eacd16
[ "LicenseRef-scancode-warranty-disclaimer", "MIT", "BSD-2-Clause" ]
permissive
CP-NEMO/FalconCV
40740825becaada01460716e4db531619b830603
2662cb9aa68d91b52818626bb817568503bd6ef5
refs/heads/master
2022-09-21T18:55:52.366534
2020-06-08T03:27:47
2020-06-08T03:27:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
from .api_installer import ApiInstaller from .model_builder import ModelBuilder from .api_model import ApiModel
e7b9210164d0d161651c3bb898343d30f63cee3b
696972c107ba96341875bab03dbb92e9337e2924
/train_bert/train12_aux.py
caff89211d0cae53a9f6714674554104742fa1f9
[]
no_license
Dongfeng-He/nb
577d3d5a5f0ec585f132946eb9b6475f6e6856bb
1d65be2f98a72ae1bd58363bba42b5f1e8e7ac49
refs/heads/master
2020-05-29T15:37:29.882797
2019-08-09T02:11:25
2019-08-09T02:11:25
189,225,420
0
0
null
null
null
null
UTF-8
Python
false
false
26,444
py
import os import pandas as pd from evaluation import * import random import copy import torch from torch import nn from torch.utils import data from torch.nn import functional as F import numpy as np import time import math import gc from pytorch_pretrained_bert import convert_tf_checkpoint_to_pytorch from pytorch_pretrained_bert import BertTokenizer, BertAdam, BertModel from pytorch_pretrained_bert import BertConfig from pytorch_pretrained_bert.modeling import BertPreTrainedModel from apex import amp class BertNeuralNet(BertPreTrainedModel): def __init__(self, config): super(BertNeuralNet, self).__init__(config) self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) dense_size = config.hidden_size # 输出层 self.linear_out = nn.Linear(dense_size, 1) self.linear_aux_out = nn.Linear(dense_size, 5) self.linear_identity_out = nn.Linear(dense_size, 9) self.linear_np_out = nn.Linear(dense_size, 4) self.apply(self.init_bert_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) bert_output = self.dropout(pooled_output) # 拼接 hidden = bert_output # 输出层,用 sigmoid 就用 BCELoss,不用 sigmoid 就用 BCEWithLogitsLoss result = self.linear_out(hidden) aux_result = self.linear_aux_out(hidden) identity_result = self.linear_identity_out(hidden) np_result = self.linear_np_out(hidden) out = torch.cat([result, aux_result, identity_result, np_result], 1) return out class FocalLoss(nn.Module): def __init__(self, alpha=1, gamma=2, logits=True, reduce=False): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.logits = logits self.reduce = reduce def forward(self, inputs, targets): if self.logits: bce_loss = nn.BCEWithLogitsLoss(reduction="none")(inputs, targets) else: bce_loss = nn.BCELoss(reduction="none")(inputs, targets) pt = torch.exp(-bce_loss) focal_loss = self.alpha * (1-pt)**self.gamma * bce_loss #focal_loss = (1 - pt) ** self.gamma * bce_loss if self.reduce: return torch.mean(focal_loss) else: return focal_loss class Trainer: def __init__(self, data_dir, model_name, epochs=4, batch_size=64, base_batch_size=32, part=1., seed=1234, debug_mode=False): self.device = torch.device('cuda') self.data_dir = data_dir self.debug_mode = debug_mode self.model_name = model_name self.seed = seed self.identity_list = ['male', 'female', 'homosexual_gay_or_lesbian', 'christian', 'jewish', 'muslim', 'black', 'white', 'psychiatric_or_mental_illness'] self.toxicity_type_list = ['severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat'] if part == 1.: self.weight_dict = {"severe_toxicity": 1000, "obscene": 235, "identity_attack": 236, "insult": 22, "threat": 646, "male": 45, "female": 35, "homosexual_gay_or_lesbian": 176, "christian": 50, "jewish": 249, "muslim": 91, "black": 130, "white": 75, "psychiatric_or_mental_illness": 442, "pp": 101, "np": 13, "pn": 20, "nn": 1, "pp_male": 431, "np_male": 50, "pn_male": 17, "nn_male": 1, "pp_female": 384, "np_female": 39, "pn_female": 17, "nn_female": 1, "pp_homosexual_gay_or_lesbian": 900, "np_homosexual_gay_or_lesbian": 219, "pn_homosexual_gay_or_lesbian": 17, "nn_homosexual_gay_or_lesbian": 1, "pp_christian": 859, "np_christian": 54, "pn_christian": 17, "nn_christian": 1, "pp_jewish": 2365, "np_jewish": 278, "pn_jewish": 17, "nn_jewish": 1, "pp_muslim": 606, "np_muslim": 108, "pn_muslim": 17, "nn_muslim": 1, "pp_black": 586, "np_black": 167, "pn_black": 17, "nn_black": 1, "pp_white": 387, "np_white": 94, "pn_white": 17, "nn_white": 1, "pp_psychiatric_or_mental_illness": 2874, "np_psychiatric_or_mental_illness": 523, "pn_psychiatric_or_mental_illness": 17, "nn_psychiatric_or_mental_illness": 1} else: self.weight_dict = {"severe_toxicity": 1000, "obscene": 196, "identity_attack": 278, "insult": 22, "threat": 609, "male": 45, "female": 33, "homosexual_gay_or_lesbian": 198, "christian": 48, "jewish": 243, "muslim": 133, "black": 131, "white": 90, "psychiatric_or_mental_illness": 369, "pp": 107, "np": 13, "pn": 19, "nn": 1, "pp_male": 434, "np_male": 51, "pn_male": 17, "nn_male": 1, "pp_female": 324, "np_female": 37, "pn_female": 17, "nn_female": 1, "pp_homosexual_gay_or_lesbian": 1055, "np_homosexual_gay_or_lesbian": 244, "pn_homosexual_gay_or_lesbian": 17, "nn_homosexual_gay_or_lesbian": 1, "pp_christian": 986, "np_christian": 50, "pn_christian": 17, "nn_christian": 1, "pp_jewish": 2680, "np_jewish": 268, "pn_jewish": 16, "nn_jewish": 1, "pp_muslim": 772, "np_muslim": 161, "pn_muslim": 17, "nn_muslim": 1, "pp_black": 633, "np_black": 165, "pn_black": 17, "nn_black": 1, "pp_white": 465, "np_white": 111, "pn_white": 17, "nn_white": 1, "pp_psychiatric_or_mental_illness": 2748, "np_psychiatric_or_mental_illness": 427, "pn_psychiatric_or_mental_illness": 16, "nn_psychiatric_or_mental_illness": 1} self.stopwords = '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n“”’\'∞θ÷α•à−β∅³π‘₹´°£€\×™√²—' self.seed_everything() self.max_len = 220 self.epochs = epochs self.base_batch_size = base_batch_size self.batch_size = batch_size self.split_ratio = 0.90 self.sample_num = 1804874 if not self.debug_mode: self.train_df = pd.read_csv(os.path.join(self.data_dir, "train.csv")).sample(int(self.sample_num * part), random_state=1234).fillna(0.) self.test_df = pd.read_csv(os.path.join(self.data_dir, "test.csv")) else: self.train_df = pd.read_csv(os.path.join(self.data_dir, "train.csv")).head(1000).fillna(0.) self.test_df = pd.read_csv(os.path.join(self.data_dir, "test.csv")).head(1000) self.train_len = int(len(self.train_df) * self.split_ratio) self.evaluator = self.init_evaluator() self.bert_config = BertConfig(os.path.join(self.data_dir, "uncased_L-12_H-768_A-12/bert_config.json")) self.bert_model_path = os.path.join(self.data_dir, "uncased_L-12_H-768_A-12/") def seed_everything(self): random.seed(self.seed) os.environ['PYTHONHASHSEED'] = str(self.seed) np.random.seed(self.seed) torch.manual_seed(self.seed) torch.cuda.manual_seed(self.seed) torch.backends.cudnn.deterministic = True def init_evaluator(self): # 初始化评分函数类 y_true = self.train_df['target'].values y_identity = self.train_df[self.identity_list].values valid_y_true = y_true[self.train_len:] valid_y_identity = y_identity[self.train_len:] evaluator = JigsawEvaluator(valid_y_true, valid_y_identity) # y_true 必须是0或1,不能是离散值 return evaluator def convert_lines(self, text_series, max_seq_length, bert_tokenizer): max_seq_length -= 2 all_tokens = [] for text in text_series: tokens = bert_tokenizer.tokenize(text) if len(tokens) > max_seq_length: tokens = tokens[:max_seq_length] one_token = bert_tokenizer.convert_tokens_to_ids(["[CLS]"] + tokens + ["[SEP]"]) + [0] * (max_seq_length - len(tokens)) all_tokens.append(one_token) return np.array(all_tokens) def create_dataloader(self): # 读取输入输出 train_comments = self.train_df["comment_text"].astype(str) train_label = self.train_df["target"].values train_type_labels = self.train_df[self.toxicity_type_list].values # 新的 np 任务 train_np_labels = np.zeros((len(self.train_df), 4)) train_np_identity_labels = np.zeros((len(self.train_df), len(self.identity_list) * 4)) train_df_copy = self.train_df[self.identity_list + ["target"]] for column in self.identity_list + ["target"]: train_df_copy[column] = np.where(train_df_copy[column] > 0.5, True, False) pp_label_bool = train_df_copy["target"] & np.where(train_df_copy[self.identity_list].sum(axis=1) > 0, True, False) np_label_bool = ~train_df_copy["target"] & np.where(train_df_copy[self.identity_list].sum(axis=1) > 0, True, False) pn_label_bool = train_df_copy["target"] & np.where((train_df_copy[self.identity_list]).sum(axis=1) == 0, True, False) nn_label_bool = ~train_df_copy["target"] & np.where((train_df_copy[self.identity_list]).sum(axis=1) == 0, True, False) train_np_labels[:, 0] = np.where(pp_label_bool > 0, 1, 0) train_np_labels[:, 1] = np.where(np_label_bool > 0, 1, 0) train_np_labels[:, 2] = np.where(pn_label_bool > 0, 1, 0) train_np_labels[:, 3] = np.where(nn_label_bool > 0, 1, 0) for i, column in enumerate(self.identity_list): pp_label_bool = train_df_copy["target"] & train_df_copy[column] np_label_bool = ~train_df_copy["target"] & train_df_copy[column] pn_label_bool = train_df_copy["target"] & (~train_df_copy[column]) nn_label_bool = ~train_df_copy["target"] & (~train_df_copy[column]) train_np_identity_labels[:, i * 4 + 0] = np.where(pp_label_bool > 0, 1, 0) train_np_identity_labels[:, i * 4 + 1] = np.where(np_label_bool > 0, 1, 0) train_np_identity_labels[:, i * 4 + 2] = np.where(pn_label_bool > 0, 1, 0) train_np_identity_labels[:, i * 4 + 3] = np.where(nn_label_bool > 0, 1, 0) # 身份原始值 train_identity_values = self.train_df[self.identity_list].fillna(0.).values # 所有身份原始值之和 train_identity_sum = train_identity_values.sum(axis=1) # 将身份之和限制在1以下(sigmoid) train_identity_sum_label = np.where(train_identity_sum > 1, 1, train_identity_sum) # 身份01值 train_identity_binary = copy.deepcopy(self.train_df[self.identity_list]) for column in self.identity_list: train_identity_binary[column] = np.where(train_identity_binary[column] > 0.5, 1, 0) # 身份01值有一个就算1 train_identity_binary_sum = train_identity_binary.sum(axis=1) train_identity_or_binary = np.where(train_identity_binary_sum >= 1, 1, 0) # 所有身份标签 train_identity_type_labels = train_identity_values train_identity_type_binary_lables = train_identity_binary train_identity_sum_label = train_identity_sum_label train_identity_binary_label = train_identity_or_binary # tokenizer 训练 bert_tokenizer = BertTokenizer.from_pretrained(self.bert_model_path, cache_dir=None, do_lower_case=True) train_bert_tokens = self.convert_lines(self.train_df["comment_text"].fillna("DUMMY_VALUE"), self.max_len, bert_tokenizer) # 划分训练集和验证集 valid_tokens = train_bert_tokens[self.train_len:] valid_label = train_label[self.train_len:] valid_type_labels = train_type_labels[self.train_len:] train_tokens = train_bert_tokens[:self.train_len] train_label = train_label[:self.train_len] train_type_labels = train_type_labels[:self.train_len] valid_identity_type_labels = train_identity_type_labels[self.train_len:] train_identity_type_labels = train_identity_type_labels[:self.train_len] valid_identity_type_binary_lables = train_identity_type_binary_lables[self.train_len:] train_identity_type_binary_lables = train_identity_type_binary_lables[:self.train_len] valid_identity_sum_label = train_identity_sum_label[self.train_len:] train_identity_sum_label = train_identity_sum_label[:self.train_len] valid_identity_binary_label = train_identity_binary_label[self.train_len:] train_identity_binary_label = train_identity_binary_label[:self.train_len] valid_np_labels = train_np_labels[self.train_len:] train_np_labels = train_np_labels[:self.train_len] valid_np_identity_labels = train_np_identity_labels[self.train_len:] train_np_identity_labels = train_np_identity_labels[:self.train_len] # 计算样本权重 target_weight, aux_weight, identity_weight, np_weight, np_identity_weight = self.cal_sample_weights() # 将符号化数据转成 tensor train_x_tensor = torch.tensor(train_tokens, dtype=torch.long) valid_x_tensor = torch.tensor(valid_tokens, dtype=torch.long) train_y_tensor = torch.tensor(np.hstack([train_label[:, np.newaxis], train_type_labels, train_identity_type_labels, train_np_labels]), dtype=torch.float32) valid_y_tensor = torch.tensor(np.hstack([valid_label[:, np.newaxis], valid_type_labels, valid_identity_type_labels, valid_np_labels]), dtype=torch.float32) target_weight_tensor = torch.tensor(target_weight, dtype=torch.float32) aux_weight_tensor = torch.tensor(aux_weight, dtype=torch.float32) identity_weight_tensor = torch.tensor(identity_weight, dtype=torch.float32) np_weight_tensor = torch.tensor(np_weight, dtype=torch.float32) np_identity_weight_tensor = torch.tensor(np_identity_weight, dtype=torch.float32) train_attention_mask_tensor = train_x_tensor > 0 valid_attention_mask_tensor = valid_x_tensor > 0 if torch.cuda.is_available(): train_x_tensor = train_x_tensor.to(self.device) valid_x_tensor = valid_x_tensor.to(self.device) train_y_tensor = train_y_tensor.to(self.device) valid_y_tensor = valid_y_tensor.to(self.device) target_weight_tensor = target_weight_tensor.to(self.device) aux_weight_tensor = aux_weight_tensor.to(self.device) identity_weight_tensor = identity_weight_tensor.to(self.device) train_attention_mask_tensor = train_attention_mask_tensor.to(self.device) valid_attention_mask_tensor = valid_attention_mask_tensor.to(self.device) np_weight_tensor = np_weight_tensor.to(self.device) np_identity_weight_tensor = np_identity_weight_tensor.to(self.device) # 将 tensor 转成 dataset,训练数据和标签一一对应,用 dataloader 加载的时候 dataset[:-1] 是 x,dataset[-1] 是 y train_dataset = data.TensorDataset(train_x_tensor, train_y_tensor, target_weight_tensor, aux_weight_tensor, identity_weight_tensor, train_attention_mask_tensor, np_weight_tensor) valid_dataset = data.TensorDataset(valid_x_tensor, valid_y_tensor, valid_attention_mask_tensor) # 将 dataset 转成 dataloader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.base_batch_size, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=self.base_batch_size, shuffle=False) # 返回训练数据 return train_loader, valid_loader def cal_sample_weights(self): # aux weight aux_weight = np.zeros((len(self.train_df), len(self.toxicity_type_list))) for i, column in enumerate(self.toxicity_type_list): weight = math.pow(self.weight_dict[column], 0.5) aux_weight[:, i] = np.where(self.train_df[column] > 0.5, weight, 1) # identity weight identity_weight = np.zeros((len(self.train_df), len(self.identity_list))) for i, column in enumerate(self.identity_list): weight = math.pow(self.weight_dict[column], 0.5) identity_weight[:, i] = np.where(self.train_df[column] > 0.5, weight, 1) # np weight np_weight = np.zeros((len(self.train_df), 4)) np_identity_weight = np.zeros((len(self.train_df), len(self.identity_list) * 4)) train_df_copy = self.train_df[self.identity_list + ["target"]] for column in self.identity_list + ["target"]: train_df_copy[column] = np.where(train_df_copy[column] > 0.5, True, False) pp_label_bool = train_df_copy["target"] & np.where(train_df_copy[self.identity_list].sum(axis=1) > 0, True, False) np_label_bool = ~train_df_copy["target"] & np.where(train_df_copy[self.identity_list].sum(axis=1) > 0, True, False) pn_label_bool = train_df_copy["target"] & np.where((train_df_copy[self.identity_list]).sum(axis=1) == 0, True, False) nn_label_bool = ~train_df_copy["target"] & np.where((train_df_copy[self.identity_list]).sum(axis=1) == 0, True, False) np_weight[:, 0] = np.where(pp_label_bool > 0, 1, 1) np_weight[:, 1] = np.where(np_label_bool > 0, 1, 1) np_weight[:, 2] = np.where(pn_label_bool > 0, 1, 1) np_weight[:, 3] = np.where(nn_label_bool > 0, 1, 1) for i, column in enumerate(self.identity_list): pp_label_bool = train_df_copy["target"] & train_df_copy[column] np_label_bool = ~train_df_copy["target"] & train_df_copy[column] pn_label_bool = train_df_copy["target"] & (~train_df_copy[column]) nn_label_bool = ~train_df_copy["target"] & (~train_df_copy[column]) np_identity_weight[:, i * 4 + 0] = np.where(pp_label_bool > 0, self.weight_dict["pp_%s" % column], 1) np_identity_weight[:, i * 4 + 1] = np.where(np_label_bool > 0, self.weight_dict["np_%s" % column], 1) np_identity_weight[:, i * 4 + 2] = np.where(pn_label_bool > 0, self.weight_dict["pn_%s" % column], 1) np_identity_weight[:, i * 4 + 3] = np.where(nn_label_bool > 0, self.weight_dict["nn_%s" % column], 1) # target weight for column in self.identity_list + ["target"]: self.train_df[column] = np.where(self.train_df[column] > 0.5, True, False) target_weight = np.ones(len(self.train_df)) target_weight += self.train_df["target"] if False: target_weight += (~self.train_df["target"]) * self.train_df[self.identity_list].sum(axis=1) target_weight += self.train_df["target"] * (~self.train_df[self.identity_list]).sum(axis=1) * 5 else: target_weight += (~self.train_df["target"]) * np.where(self.train_df[self.identity_list].sum(axis=1) > 0, 1, 0) * 3 target_weight += self.train_df["target"] * np.where((~self.train_df[self.identity_list]).sum(axis=1) > 0, 1, 0) * 3 target_weight /= target_weight.mean() # 只留训练集 target_weight = np.array(target_weight) target_weight = target_weight[:self.train_len] aux_weight = aux_weight[:self.train_len, :] identity_weight = identity_weight[:self.train_len, :] np_weight = np_weight[:self.train_len, :] np_identity_weight = np_identity_weight[:self.train_len, :] return target_weight, aux_weight, identity_weight, np_weight, np_identity_weight def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def custom_loss(self, y_pred, y_batch, epoch, target_weight=1., aux_weight=1., identity_weight=1., np_weight=1.): target_pred = y_pred[:, 0] target_true = y_batch[:, 0] aux_pred = y_pred[:, 1: 6] aux_true = y_batch[:, 1: 6] identity_pred = y_pred[:, 6: 15] identity_true = y_batch[:, 6: 15] np_pred = y_pred[:, 15: 19] np_true = y_batch[:, 15: 19] if epoch > 9: target_loss = FocalLoss()(target_pred, target_true) else: target_loss = nn.BCEWithLogitsLoss(reduction="none")(target_pred, target_true) target_loss = torch.mean(target_loss * target_weight) if epoch > 9: aux_loss = FocalLoss()(aux_pred, aux_true) else: aux_loss = nn.BCEWithLogitsLoss(reduction="none")(aux_pred, aux_true) aux_loss = torch.mean(aux_loss * aux_weight) if epoch > 9: identity_loss = FocalLoss()(identity_pred, identity_true) else: identity_loss = nn.BCEWithLogitsLoss(reduction="none")(identity_pred, identity_true) identity_loss = torch.mean(identity_loss * identity_weight) if epoch > 9: np_loss = FocalLoss()(np_pred, np_true) else: np_loss = nn.BCEWithLogitsLoss(reduction="none")(np_pred, np_true) np_loss = torch.mean(np_loss * np_weight) return target_loss, aux_loss, identity_loss, np_loss def train(self): if self.debug_mode: self.epochs = 1 # 加载 dataloader train_loader, valid_loader = self.create_dataloader() # 训练 self.seed_everything() lr = 2e-5 accumulation_steps = math.ceil(self.batch_size / self.base_batch_size) # 预训练 bert 转成 pytorch if os.path.exists(self.bert_model_path + "pytorch_model.bin") is False: convert_tf_checkpoint_to_pytorch.convert_tf_checkpoint_to_pytorch( self.bert_model_path + 'bert_model.ckpt', self.bert_model_path + 'bert_config.json', self.bert_model_path + 'pytorch_model.bin') # 加载预训练模型 model = BertNeuralNet.from_pretrained(self.bert_model_path, cache_dir=None) model.zero_grad() model = model.to(self.device) # 不同的参数组设置不同的 weight_decay param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] epoch_steps = int(self.train_len / self.base_batch_size / accumulation_steps) num_train_optimization_steps = int(self.epochs * epoch_steps) valid_every = math.floor(epoch_steps * accumulation_steps / 5) optimizer = BertAdam(optimizer_grouped_parameters, lr=lr, warmup=0.02, t_total=num_train_optimization_steps) # 渐变学习速率 #scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: 0.6 ** epoch) model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) # 开始训练 for epoch in range(self.epochs): train_start_time = time.time() model.train() optimizer.zero_grad() # 加载每个 batch 并训练 for i, batch_data in enumerate(train_loader): x_batch = batch_data[0] y_batch = batch_data[1] target_weight_batch = batch_data[2] aux_weight_batch = batch_data[3] identity_weight_batch = batch_data[4] x_mask = batch_data[5] np_weight_batch = batch_data[6] y_pred = model(x_batch, attention_mask=x_mask, labels=None) target_loss, aux_loss, identity_loss, np_loss = self.custom_loss(y_pred, y_batch, epoch, target_weight_batch, aux_weight_batch, identity_weight_batch, np_weight_batch) loss = target_loss * 0.7 + aux_loss * 0.3 with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() if (i + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # 验证 if (i + 1) % valid_every == 0: valid_start_time = time.time() model.eval() y_pred = np.zeros((len(self.train_df) - self.train_len)) for j, valid_batch_data in enumerate(valid_loader): x_batch = valid_batch_data[0] x_mask = valid_batch_data[2] batch_y_pred = self.sigmoid(model(x_batch, attention_mask=x_mask, labels=None).detach().cpu().numpy())[:, 0] y_pred[j * self.base_batch_size: (j + 1) * self.base_batch_size] = batch_y_pred # 计算得分 auc_score = self.evaluator.get_final_metric(y_pred) print("epoch: %d duration: %d min auc_score: %.4f" % (epoch, int((time.time() - train_start_time) / 60), auc_score)) if not self.debug_mode: state_dict = model.state_dict() stage = int((i + 1) / valid_every) train_duration = int((time.time() - train_start_time) / 60) valid_duration = int((time.time() - valid_start_time) / 60) train_start_time = time.time() # model[bert][seed][epoch][stage][model_name][stage_train_duration][valid_duration][score].bin model_name = "model2/model_%s_%d_%d_%d_%dmin_%dmin_%.4f.bin" % (self.model_name, self.seed, epoch + 1, stage, train_duration, valid_duration, auc_score) torch.save(state_dict, os.path.join(self.data_dir, model_name)) model.train() # del 训练相关输入和模型 training_history = [train_loader, valid_loader, model, optimizer, param_optimizer, optimizer_grouped_parameters] for variable in training_history: del variable gc.collect() if __name__ == "__main__": data_dir = "/Users/hedongfeng/PycharmProjects/unintended_bias/data/" trainer = Trainer(data_dir, "model_name1", debug_mode=True) trainer.train()
a5b0fc1063e34fd3268bf0dbb5dee86d3b3a34f8
c4c159a21d2f1ea0d7dfaa965aeff01c8ef70dce
/flask/flaskenv/Lib/site-packages/tensorflow/python/keras/testing_utils.py
57c5585363b515e8ffb00717a04f25b25e9cec10
[]
no_license
AhsonAslam/webapi
54cf7466aac4685da1105f9fb84c686e38f92121
1b2bfa4614e7afdc57c9210b0674506ea70b20b5
refs/heads/master
2020-07-27T06:05:36.057953
2019-09-17T06:35:33
2019-09-17T06:35:33
208,895,450
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:f948b539999a928461c50492838f0aa264bc8aa39b722055b4f4a8317d5e8e0b size 25030
[ "github@cuba12345" ]
github@cuba12345
9ae2fca88541a98fc212a099fea1c9bbf40bfec5
d4e573e8eae32db155fe5931b3e2dcd3aa48969b
/indigo/lib/python2.7/dist-packages/rocon_app_manager_msgs/srv/_Init.py
c91a36b46fa4aec26c1d464d23d1f93378458753
[]
no_license
javierdiazp/myros
ee52b0a7c972d559a1a377f8de4eb37878b8a99b
7571febdfa881872cae6378bf7266deca7901529
refs/heads/master
2022-11-09T09:24:47.708988
2016-11-10T16:56:28
2016-11-10T16:56:28
73,733,895
0
1
null
2022-10-25T05:16:35
2016-11-14T18:19:06
C++
UTF-8
Python
false
false
7,687
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from rocon_app_manager_msgs/InitRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class InitRequest(genpy.Message): _md5sum = "c1f3d28f1b044c871e6eff2e9fc3c667" _type = "rocon_app_manager_msgs/InitRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """ string name """ __slots__ = ['name'] _slot_types = ['string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: name :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(InitRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.name is None: self.name = '' else: self.name = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.name = str[start:end].decode('utf-8') else: self.name = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self.name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.name = str[start:end].decode('utf-8') else: self.name = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I # This Python file uses the following encoding: utf-8 """autogenerated by genpy from rocon_app_manager_msgs/InitResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class InitResponse(genpy.Message): _md5sum = "eb13ac1f1354ccecb7941ee8fa2192e8" _type = "rocon_app_manager_msgs/InitResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool result """ __slots__ = ['result'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: result :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(InitResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.result is None: self.result = False else: self.result = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_struct_B.pack(self.result)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.result,) = _struct_B.unpack(str[start:end]) self.result = bool(self.result) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_struct_B.pack(self.result)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.result,) = _struct_B.unpack(str[start:end]) self.result = bool(self.result) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_B = struct.Struct("<B") class Init(object): _type = 'rocon_app_manager_msgs/Init' _md5sum = 'ee91d68745ef4d7a247816a59dffedf2' _request_class = InitRequest _response_class = InitResponse
1a2ff067aa33a3067f665f3d85d66752e7419587
22d487f52d50cbd07487a0f9c2fb40d9b0673d24
/tehbot/plugins/shadowlamb/__init__.py
1591618c6d027b8b211d86fa320ea098dcbf2d5d
[ "MIT" ]
permissive
LostandFound5306/tehbot
8ca76c7dc65c1c9586cd4f2c80639678eeec8fee
f5807379ff4599518f1f9bb46d549c4e1ee18375
refs/heads/master
2021-10-25T00:46:12.476077
2019-03-30T14:30:14
2019-03-30T14:30:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,286
py
# -*- coding: utf-8 -*- from tehbot.plugins import * from tehbot.plugins import say, me import tehbot.plugins as plugins import irc.client import model import threading import time from random import randint, random import os.path #import gettext #t = gettext.translation("Shadowlamb", os.path.dirname(__file__) + "/i18n") #_ = t.gettext _ = lambda x: x class ShadowlambPlugin(StandardPlugin, PrivilegedPlugin): """What, you don't know what shadowlamb is??""" def __init__(self): StandardPlugin.__init__(self) def command(self, connection, event, extra, dbconn): return "Shadowlamb is teh greatest!" register_plugin("sl", ShadowlambPlugin()) class ShadowlambHandler(PrefixHandler, AuthedPlugin): def command_prefix(self): #return "+" return u'\u00a5'; def __init__(self): PrefixHandler.__init__(self) AuthedPlugin.__init__(self) self.cmd2action = { "start" : self.start, "reset" : self.reset, "s" : self.status, "status" : self.status, "a" : self.attributes, "attributes" : self.attributes, "kw" : self.known_words, "known_words" : self.known_words, "kp" : self.known_places, "known_places" : self.known_places, "time" : self.show_time, "p" : self.party_status, "party" : self.party_status, } def postinit(self, dbconn): model.init() self.quit = False self.thread = threading.Thread(target=self.timerfunc) self.thread.start() def deinit(self, dbconn): self.quit = True self.thread.join() def cmd(self, args): return u"\x02%s%s\x02" % (self.command_prefix(), args) def sltime(self): with model.db_session: return model.Shadowlamb[1].time def announce(self, msg, dbconn): where = {"WeChall IRC" : ["#net-force"]} for network in where: for conn in self.tehbot.core.reactor.connections: if conn.name != network: continue for ch in where[network]: if ch in conn.channels: plugins.say(conn, ch, msg, dbconn) def player_age(self, player): d = self.sltime() - player.birthday years = d / 60 / 60 / 24 / 365 return max(1, int(round(years))) def give_item(self, player, item): pi = model.PlayerItem(base=item, player=player) player.inventory += pi return [_("You received 1x%s" % item.name)] def give_word(self, player, word): if word in player.known_words: return [] player.known_words += word return [_("You know a new Word: \x02%s\x02" % word.name)] def give_place(self, player, place): if place in player.known_places: return [] player.known_places += place return [_("You know a new Place: \x02%s\x02" % place.name)] def party_push_action(self, party, action, target=None, eta=None): with_events = action is not model.PartyAction.delete party.last_action = party.action party.last_target = party.target party.last_eta = party.eta party.action = action if target is not None: party.target = target party.eta = self.sltime() + (eta or 0) #if with_events: #self.announce_party(party def timerfunc(self): while not self.quit: nxt = time.time() + 1 while time.time() < nxt: time.sleep(0.1) with model.db_session: model.Shadowlamb[1].time += 1 def start(self, connection, event, extra, dbconn, msg_type): with model.db_session: genders = [to_utf8(g.name) for g in model.Gender.select()] races = [to_utf8(r.name) for r in model.Race.select(lambda x: not x.is_npc)] parser = plugins.ThrowingArgumentParser(prog="start", description=self.__doc__) parser.add_argument("gender", metavar="gender", choices=genders, help=", ".join(genders)) parser.add_argument("race", metavar="race", choices=races, help=", ".join(races)) try: pargs = parser.parse_args(extra["args"], decode=False) if parser.help_requested: return parser.format_help().strip() except Exception as e: return u"Error: %s" % exc2str(e) def random_birthday(s): tm = time.gmtime(s) return time.mktime((tm.tm_year, randint(1, 12), randint(1, 31), randint(0, 23), randint(0, 59), randint(0, 61), 0, 1, -1)) def random_value(val, p): rand = 1.0 + p * (2 * random() - 1) return val * rand with model.db_session: network_id = self.tehbot.settings.network_id(connection) r = model.Race.get(name=pargs.race) p = model.Player( network_id=network_id, nick=event.source.nick, name=event.source.nick, gender=model.Gender.get(name=pargs.gender), race=r, birthday = random_birthday(self.sltime() - random_value(r.age, 0.2) * 365 * 24 * 60 * 60), height = random_value(r.height, 0.2), own_weight = random_value(r.own_weight, 0.2), options = {}, hp = 0, mp = 0, distance = 0, xp = 0, xp_level = 0, karma = 0, bad_karma = 0, level = 0, bounty = 0, bounty_done = 0, quests_done = 0, nuyen = 0, known_words = [], known_spells = [], known_places = "", bank_nuyen = 0, bank_items = "", effects = "", const_vars = "", combat_ai = "", game_ai = "", feelings = model.Feelings(), attributes = model.Attributes(), skills = model.Skills(), knowledge = model.Knowledge(), lock = 0, transport = 0, stats = model.PlayerStats(), equipment = model.Equipment(), ) p.init_player() party = model.Party(options={}) p.party = party msgs = [ _("Your character has been created with \x02Age\x02: %dyears, \x02Height\x02: %.2fm, \x02Weight\x02: %.2fkg.") % (self.player_age(p), p.height, p.own_weight), ] notices = [ _("You wake up in a bright room... It seems like it is past noon...looks like you are in a hotel room."), _("What happened... You can`t remember anything.... Gosh, you even forgot your name."), _("You check your %s and find a pen from 'Renraku Inc.'. You leave your room and walk to the counter. Use %s to talk with the hotelier." % (self.cmd("inventory"), self.cmd("talk"))), _("Use %s to see all available commands. Check %s to browse the Shadowlamb help files. Use %s to see the help for a command or subject." % (self.cmd("commands"), self.cmd("help"), self.cmd("help <word>"))) ] notices += self.give_item(p, model.Item.get(name="Pen")) notices += self.give_word(p, model.Word.get(name="Shadowrun")) notices += self.give_word(p, model.Word.get(name="Renraku")) notices += self.give_place(p, model.Place.get(name="Redmond_Hotel")) self.party_push_action(party, model.PartyAction.inside, "Redmond_Hotel") if msg_type == "notice": notices = msgs + notices msgs = [] else: for m in msgs: if irc.client.is_channel(event.target): plugins.say_nick(connection, event.target, event.source.nick, m, dbconn) else: plugins.say(connection, event.source.nick, m, dbconn) for m in notices: plugins.notice(connection, event.source.nick, m, dbconn) self.announce("Welcome a new player: %s the %s %s." % (p.fullname(), p.gender.name, p.race.name), dbconn) return None def reset(self, args, player): parser = plugins.ThrowingArgumentParser(prog="reset") parser.add_argument("confirmation", nargs="?") try: pargs = parser.parse_args(args) if parser.help_requested: return parser.format_help().strip() except Exception as e: return u"Error: %s" % exc2str(e) if not pargs.confirmation: player.set_option("deletion_started", True) return "This will completely delete your character. Type %s to confirm." % self.cmd("reset i_am_sure") if not player.option("deletion_started"): return "Deletion not started yet. Type %s to start deletion." % self.cmd("reset") if "".join(pargs.confirmation) != "i_am_sure": player.set_option("deletion_started", False) return "Deletion aborted. Type %s to start deletion again." % self.cmd("reset") player.delete() return "Your character has been deleted. You may issue %s again." % self.cmd("start") def status(self, args, player): # male troll L0(0). HP:35/35, Atk:22.8, Def:0.1, Dmg:1.8-7.5, Arm(M/F):0/0, XP:0, Karma:0, ¥:50, Weight:0g/18.5kg. # female fairy L0(0). HP:10/10, MP:36/36, Atk:2.8, Def:1.5, Dmg:-0.2-2.5, Arm(M/F):0/0, XP:0, Karma:0, ¥:0, Weight:0g/3.5kg. # male gremlin L0(0). HP:30/30, Atk:20.6, Def:0.8, Dmg:1-5.5, Arm(M/F):0/0, XP:0, Karma:0, ¥:0, Weight:50g/12.5kg. attack, defense, min_dmg, max_dmg, marm, farm = player.combat_stats() return "%s %s L%d(%d): \x02HP\x02:%.2f/%.2f, \x02MP\x02:%.2f/%.2f, \x02Atk\x02:%.2f, " \ u"\x02Def\x02:%.2f, \x02Dmg\x02:%.2f–%.2f, \x02Arm\x02(M/F):%.2f/%.2f, " \ u"\x02XP\x02:%.2f, \x02Karma\x02:%d, \x02¥\x02:%.2f, \x02Weight\x02:%.2f/%.2fkg" % ( player.gender.name, player.race.name, player.level, player.effective_level(), player.hp, player.max_hp(), player.mp, player.max_mp(), attack, defense, min_dmg, max_dmg, marm, farm, player.xp, player.karma, player.nuyen, player.weight(), player.max_weight(), ) def attributes(self, args, player): # Your attributes: body:1(5), strength:0(4), quickness:2(3), wisdom:0(1), intelligence:0, luck:0, reputation:0(2), essence:6(5.5). # Your attributes: body:4, strength:3(4), quickness:1, wisdom:0(1), intelligence:0, luck:0, reputation:2, essence:5.5. lst = [] attr = ["body", "magic", "strength", "quickness", "wisdom", "intelligence", "charisma", "luck", "reputation", "essence"] for a in attr: base = getattr(player.race.base_attributes, a) now = getattr(player, a)() if now >= 0: lst.append("\x02%s\x02:%g%s" % (a, base, "" if base == now else "(%g)" % now)) return "Your attributes: %s." % ", ".join(lst) def known_words(self, args, player): words = [] for w in player.known_words: words.append((w.id, "\x02%d\x02-%s" % (w.id, w.name))) return "Known Words: %s." % ", ".join(w[1] for w in sorted(words)) def known_places(self, args, player): places = [] for p in player.known_places: places.append((p.id, "\x02%d\x02-%s" % (p.id, p.name))) return "Known Places: %s." % ", ".join(p[1] for p in sorted(places)) def show_time(self, args, player): now = time.gmtime(self.sltime()) return time.strftime("It is %H:%M:%S, %Y-%m-%d in Shadowland", now) def party_status(self, args, player): if player.party.action == model.PartyAction.inside: return "You are \x02inside\x02 %s." % player.party.target return "hu!? should never get here" def execute(self, connection, event, extra, dbconn): cmd = extra["cmd"].lower() msg_type = "say_nick" if irc.client.is_channel(event.target) else "notice" with model.db_session: p = model.Player.get(name=event.source.nick, network_id=self.tehbot.settings.network_id(connection)) if p is not None and not irc.client.is_channel(event.target): msg_type = p.option("msg_type", msg_type) if not self.cmd2action.has_key(cmd): return [(msg_type, "The command is not available for your current action or location. Try %s to see all currently available commands." % self.cmd("commands [--long]"))] if cmd == "start" and p: return [(msg_type, "Your character has been created already. You can type %s to start over." % self.cmd("reset"))] if cmd != "start" and not p: return [(msg_type, "You haven't started the game yet. Type %s to begin playing." % self.cmd("start"))] try: if cmd == "start": res = self.start(connection, event, extra, dbconn, msg_type) else: res = self.cmd2action[cmd](extra["args"], p) except Exception as e: import traceback traceback.print_exc() return [(msg_type, u"Error: %s" % exc2str(e))] if isinstance(res, list): return [(msg_type, m) for m in res] if isinstance(res, basestring): return [(msg_type, res)] register_prefix_handler(ShadowlambHandler())
80e572201fdf14e9dc184eee509e4fb9a400124e
fd899e63d4c33261911f0e35fb8cb286332b7a95
/algorithm_202108/baek1075.py
b968e46f31d92d03a5084f6f6149807b322ee73b
[]
no_license
choyj0920/algorithm
948452d652455973e928ef537729174109972252
e1287799e7073232cbf8904cea7c348a2f2a9c30
refs/heads/master
2023-05-25T22:23:11.044049
2021-09-08T03:40:42
2021-08-13T08:04:46
225,736,983
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
# baek1075 나누기 n=int(input().rstrip()[:-2]+'00') f=int(input()) print(format((f-n%f)%f,'02'))
5be7597d9b79497f129d448a582e4da7ba3720fe
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r9/Gen/DecFiles/options/11164450.py
aa5dc4673014eec3a42cde5a51ad6a896418a48f
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
917
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r9/Gen/DecFiles/options/11164450.py generated: Fri, 27 Mar 2015 16:10:17 # # Event Type: 11164450 # # ASCII decay Descriptor: {[[B0]nos -> (D- => K+ pi- pi- pi0) pi+]cc, [[B0]os -> (D+ => K- pi+ pi+ pi0) pi-]cc} # from Configurables import Generation Generation().EventType = 11164450 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bd_Dpi,Kpipipi0=phsp,DecProdCut.dec" Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb" Generation().SignalRepeatedHadronization.SignalPIDList = [ 511,-511 ]
b79d7f133f726c28e34a6124100816702b418473
d0320f7a0d23cf6dbc93bed6af5cf22625a1998c
/QueensPuzzleFaster.py
afa69f2f96a4ebb46146776d6760744c448c41ad
[ "MIT" ]
permissive
cmcclana/CIS2001-Fall2017
f8ba05cd20406bd3e743d1abd13320dfb0aaf234
d601f1ef87fb49852ce7a7223537baa5f3a3e664
refs/heads/master
2021-08-08T06:59:37.543336
2017-11-09T20:40:44
2017-11-09T20:40:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,766
py
class QueensPuzzle: QUEEN = 'Q' SPACE = ' ' def __init__(self, number_of_queens): self.number_of_queens_on_board = 0 self.board = [ [ QueensPuzzle.SPACE ] * number_of_queens ] * number_of_queens self.diagonals_minus = [True] * number_of_queens * 2 self.diagonals_plus = [True] * number_of_queens * 2 self.rows = [True] * number_of_queens self.total_number_of_solutions = 0 self.total_queens = number_of_queens def Print(self): for row in self.board: print('-' * ( len(self.board) * 2 + 1) ) print('|', end="") for character in row: print( character, end='|') print() print('-' * ( len(self.board) * 2 + 1) ) print() def IsRowOpen(self, row_number): return self.rows[row_number] def IsDiagonalOpen(self, row_number, col_number): return self.diagonals_minus[( row_number - col_number )] and self.diagonals_plus[( row_number + col_number )] def CanPlaceQueen(self, row_number, col_number): return self.IsRowOpen(row_number) and self.IsDiagonalOpen(row_number, col_number) def Solve(self): if ( self.number_of_queens_on_board == len(self.board) ): # self.Print() # for row in range(len(self.board)): # for col in range(len(self.board)): # if self.board[row][col] == QueensPuzzle.QUEEN: # print( "%d" % (row-col), end=" ") # print() self.total_number_of_solutions += 1 #print(self.total_number_of_solutions) else: for row in range(len(self.board)): if self.CanPlaceQueen(row, self.number_of_queens_on_board): self.rows[row] = False self.diagonals_minus[(row - self.number_of_queens_on_board )] = False self.diagonals_plus[(row + self.number_of_queens_on_board )] = False self.board[row][self.number_of_queens_on_board] = QueensPuzzle.QUEEN self.number_of_queens_on_board += 1 self.Solve() self.number_of_queens_on_board -= 1 self.board[row][self.number_of_queens_on_board] = QueensPuzzle.SPACE self.rows[row] = True self.diagonals_minus[(row - self.number_of_queens_on_board )] = True self.diagonals_plus[(row + self.number_of_queens_on_board )] = True number_of_queens = int( input("How many queens do you want to try and put on the board?")) queensPuzzle = QueensPuzzle(number_of_queens) queensPuzzle.Solve() print("Total Solutions: %d" % queensPuzzle.total_number_of_solutions )
170f7f94ed25f2759dcdc8e16985bde2afe610d5
5f67c696967456c063e5f8a0d14cf18cf845ad38
/archiv/_python/py4inf/open.py
8431e67ce7563c4ff42278b098951cc12a1fedb3
[]
no_license
wuxi20/Pythonista
3f2abf8c40fd6554a4d7596982c510e6ba3d6d38
acf12d264615749f605a0a6b6ea7ab72442e049c
refs/heads/master
2020-04-02T01:17:39.264328
2019-04-16T18:26:59
2019-04-16T18:26:59
153,848,116
1
0
null
null
null
null
UTF-8
Python
false
false
106
py
fhand = open('mbox.txt') count = 0 for line in fhand: count = count + 1 print('Line Count:', count)
b33d3bf4771d52646ef6acbedbd83ff655913fe4
8fbe463322c675d1e1b11adbf5ddfbca77a71c3b
/utils/code.py
56280c1e875f22c62163b1ab9e26a6ab05dc25c5
[]
no_license
qhuydtvt/tk-poll
7cdcd456c3fdca226a31868297df891d8ba2a890
1a0b9898f7ae9e3ab9f4d81ee8ee737b581de0d6
refs/heads/master
2021-05-06T13:36:04.976284
2018-10-28T09:42:42
2018-10-28T09:42:42
113,245,001
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
from shortuuid import ShortUUID import string alphabet = string.ascii_uppercase helper = ShortUUID(alphabet=alphabet) def code(length): return helper.random(length=length) def code_6(): return code(6)
e705fa50c065351bd59b8171e8b499d80879553e
98e79aff0c504ae703df1b4b6a621caedb5be4de
/v1.2/client/gwElements/__init__.py
1d3b635476e73e5a0e6ec743178e066ab5ce82e2
[]
no_license
lotaku/board-game
26b97b3f6cb241e55852b6d60da3073a9347e4d3
d90fe5ffabef0cdfa0538be14f69afdc0ca0badc
refs/heads/master
2020-06-03T05:00:59.617051
2014-05-18T14:44:00
2014-05-18T14:44:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
16
py
#import gameWin
fcd708af9bfc4b3f389194c77969d032fa8bedc7
b5e10b2cfe261beca4a275d5b4b562acaa12bd06
/zentral/contrib/monolith/events/__init__.py
c0fbc28569df9cce42affaf22b924388cb7df0d3
[ "Apache-2.0" ]
permissive
mikemcdonald/zentral
29dc0a6b3284be00ccc99ca3eb4ac2f4474c12a7
4aa03937abfbcea6480aa04bd99f4da7b8dfc923
refs/heads/master
2021-06-24T16:16:26.216665
2017-09-11T18:53:21
2017-09-11T18:53:21
103,157,487
0
1
null
2017-09-11T16:02:43
2017-09-11T16:02:43
null
UTF-8
Python
false
false
3,038
py
import logging from zentral.core.events.base import BaseEvent, EventMetadata, EventRequest, register_event_type logger = logging.getLogger('zentral.contrib.monolith.events') ALL_EVENTS_SEARCH_DICT = {"tag": "monolith"} class MonolithMunkiRequestEvent(BaseEvent): event_type = "monolith_munki_request" tags = ["monolith", "heartbeat"] register_event_type(MonolithMunkiRequestEvent) class MonolithSyncCatalogsRequestEvent(BaseEvent): event_type = "monolith_sync_catalogs_request" tags = ["monolith"] register_event_type(MonolithSyncCatalogsRequestEvent) class MonolithUpdateCacheServerRequestEvent(BaseEvent): event_type = "monolith_update_cache_server_request" tags = ["monolith"] register_event_type(MonolithUpdateCacheServerRequestEvent) class MonolithRepositoryUpdateEvent(BaseEvent): event_type = "monolith_repository_update" tags = ["monolith"] payload_aggregations = [ ("action", {"type": "terms", "bucket_number": 4, "label": "Decisions"}), ] register_event_type(MonolithRepositoryUpdateEvent) # Utility functions def post_monolith_munki_request(msn, user_agent, ip, **payload): MonolithMunkiRequestEvent.post_machine_request_payloads(msn, user_agent, ip, [payload]) def post_monolith_sync_catalogs_request(user_agent, ip): event_class = MonolithSyncCatalogsRequestEvent if user_agent or ip: request = EventRequest(user_agent, ip) else: request = None metadata = EventMetadata(event_class.event_type, request=request, tags=event_class.tags) event = event_class(metadata, {}) event.post() def post_monolith_cache_server_update_request(user_agent, ip, cache_server=None, errors=None): event_class = MonolithUpdateCacheServerRequestEvent if user_agent or ip: request = EventRequest(user_agent, ip) else: request = None metadata = EventMetadata(event_class.event_type, request=request, tags=event_class.tags) if cache_server: payload = cache_server.serialize() payload["status"] = 0 else: # flatten errors payload = {"errors": {attr: ", ".join(err) for attr, err in errors.items()}} payload["status"] = 1 event = event_class(metadata, payload) event.post() def post_monolith_repository_updates(repository, payloads, request=None): event_class = MonolithRepositoryUpdateEvent repository_serialized_info = repository.serialize_for_event() if request: request = EventRequest.build_from_request(request) for index, payload in enumerate(payloads): metadata = EventMetadata(event_class.event_type, index=index, request=request, tags=event_class.tags) payload.update({"repository": repository_serialized_info}) event = event_class(metadata, payload) event.post()
ff0eb43da6776fc0eac6b6f8c96830917c6afff1
ba602dc67ad7bb50133aeb312f3c6c54627b3dec
/data/3955/WA_py/508593.py
06675fcbb26d3e323e2a68115c546a11b7a4de8d
[]
no_license
Dearyyyyy/TCG
0d21d89275906157372d775f33309ce337e6bc95
7b80de16de2d3f5d95a7c4ed95d45a9e38882e67
refs/heads/master
2020-12-27T23:19:44.845918
2020-02-04T01:59:23
2020-02-04T01:59:23
238,101,032
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
# coding=utf-8 while True: a,b=input().split(" ") a=str(a) b=str(b) for j in a: c=j break for p in b: d=p if c==d: print("YES") else: print("NO")
c0512504cf1270b966a95b5ebacf96088a6be4f1
89f0df65abe01e273fd7cf0606727c777352ba47
/Python/code_comp/Prog_camp/py_temp/app.py
0c661bc68a19723f5a486a52948b941385912ac2
[]
no_license
cqann/PRGM
486122601b959cfbf7d9d2dc2a37caa858cf15a8
7387dafb65895528c042a3f1ab605fa5325056ce
refs/heads/master
2022-02-16T00:59:32.342327
2022-01-27T16:55:46
2022-01-27T16:55:46
226,111,892
0
1
null
2020-11-16T17:41:44
2019-12-05T13:45:21
Python
UTF-8
Python
false
false
15
py
print("asdasd")
45b72754c05463b85f4f32701ecd1784ceb7c7ed
fb7f1533b03d5ea083da8c7dce448c914f25d5a3
/bookbuilder/book/migrations/0003_chapter_image_paragraph.py
cc6c0e1cfbab3c14f2533278220074b4f6f12cee
[]
no_license
Mark-Seaman/Book-Builder
7fccfe60afe10564e666fd125ae22b4362abfac2
18b5c14c11000da576ea16908b019de0aab50d0b
refs/heads/master
2023-01-09T14:23:25.641654
2020-11-11T22:52:39
2020-11-11T22:52:39
293,887,524
0
8
null
null
null
null
UTF-8
Python
false
false
1,640
py
# Generated by Django 3.1.1 on 2020-09-24 17:27 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('book', '0002_auto_20200915_1812'), ] operations = [ migrations.CreateModel( name='Chapter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('chapter_num', models.IntegerField()), ('book', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='book.book')), ], ), migrations.CreateModel( name='Paragraph', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.TextField()), ('order', models.IntegerField()), ('chapter', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='book.chapter')), ], ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('src', models.CharField(max_length=100)), ('alt', models.CharField(max_length=100)), ('order', models.IntegerField()), ('chapter', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='book.chapter')), ], ), ]
ceabf86ddd55006ceff709e98ee806d5ec567bd0
a54007706a09b387690f79fd7ffd889decad42f1
/day32/18_特殊的where方法.py
dd0736b5dc3881b37cdcb9223e7e78cb823cfa21
[]
no_license
lvah/201903python
d425534544a1f91e5b80b5ff0de5ca34037fe6e9
1415fcb7697dfa2884d94dcd8963477e12fe0624
refs/heads/master
2020-07-06T16:45:37.882819
2019-09-08T10:13:07
2019-09-08T10:13:07
203,082,401
5
0
null
null
null
null
UTF-8
Python
false
false
366
py
import pandas as pd import numpy as np import string # &**********series中的where方法运行结果和numpy中完全不同; s1 = pd.Series(np.arange(5), index=list(string.ascii_lowercase[:5])) # print(s1.where(s1 > 3)) # 对象中不大于3的元素赋值为10; print(s1.where(s1 > 3, 10)) # 对象中大于3的元素赋值为10; print(s1.mask(s1 > 3, 10))
324f72699782843650fe7fd88f2690d0f6747fcb
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/cloud/lifesciences/v2beta/lifesciences-v2beta-py/google/cloud/lifesciences_v2beta/services/workflows_service_v2_beta/transports/grpc_asyncio.py
26c6624f2b74e07859902273ec771ea853a3ab51
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,640
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 # type: ignore from google.api_core import grpc_helpers_async # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import packaging.version import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.lifesciences_v2beta.types import workflows from google.longrunning import operations_pb2 # type: ignore from .base import WorkflowsServiceV2BetaTransport, DEFAULT_CLIENT_INFO from .grpc import WorkflowsServiceV2BetaGrpcTransport class WorkflowsServiceV2BetaGrpcAsyncIOTransport(WorkflowsServiceV2BetaTransport): """gRPC AsyncIO backend transport for WorkflowsServiceV2Beta. A service for running workflows, such as pipelines consisting of Docker containers. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel(cls, host: str = 'lifesciences.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs ) def __init__(self, *, host: str = 'lifesciences.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsAsyncClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsAsyncClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def run_pipeline(self) -> Callable[ [workflows.RunPipelineRequest], Awaitable[operations_pb2.Operation]]: r"""Return a callable for the run pipeline method over gRPC. Runs a pipeline. The returned Operation's [metadata] [google.longrunning.Operation.metadata] field will contain a [google.cloud.lifesciences.v2beta.Metadata][google.cloud.lifesciences.v2beta.Metadata] object describing the status of the pipeline execution. The [response][google.longrunning.Operation.response] field will contain a [google.cloud.lifesciences.v2beta.RunPipelineResponse][google.cloud.lifesciences.v2beta.RunPipelineResponse] object if the pipeline completes successfully. **Note:** Before you can use this method, the *Life Sciences Service Agent* must have access to your project. This is done automatically when the Cloud Life Sciences API is first enabled, but if you delete this permission you must disable and re-enable the API to grant the Life Sciences Service Agent the required permissions. Authorization requires the following `Google IAM <https://cloud.google.com/iam/>`__ permission: - ``lifesciences.workflows.run`` Returns: Callable[[~.RunPipelineRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'run_pipeline' not in self._stubs: self._stubs['run_pipeline'] = self.grpc_channel.unary_unary( '/google.cloud.lifesciences.v2beta.WorkflowsServiceV2Beta/RunPipeline', request_serializer=workflows.RunPipelineRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['run_pipeline'] __all__ = ( 'WorkflowsServiceV2BetaGrpcAsyncIOTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
fdc71274dc682931542826201880a243b8d96ffc
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/leetCode/DP/BitwiseORsOfSubarray.py
436f6200d70c69b2173aec53cf6d08c850f9a229
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
2,238
py
""" We have an array A of non-negative integers. For every (contiguous) subarray B = [A[i], A[i+1], ..., A[j]] (with i <= j), we take the bitwise OR of all the elements in B, obtaining a result A[i] | A[i+1] | ... | A[j]. Return the number of possible results. (Results that occur more than once are only counted once in the final answer.) Example 1: Input: [0] Output: 1 Explanation: There is only one possible result: 0. Example 2: Input: [1,1,2] Output: 3 Explanation: The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2]. These yield the results 1, 1, 2, 1, 3, 3. There are 3 unique values, so the answer is 3. Example 3: Input: [1,2,4] Output: 6 Explanation: The possible results are 1, 2, 3, 4, 6, and 7. 对子数组进行或运算,最后结果是有多少个唯一的解。 思路是DP: 走的弯路: 一开始写的: [1, 1, 2, 2, 4] A[0] = {1} 基于A[0],判断是否在A[0]里,不在的话在添加,在的话就继承A[0]。 A[1] = {1} A[2] = {1, 2, 3} A[3] = {1, 2 ,3} 运行到这里都没什么错误,因为就碰巧进行了一次相邻的或运算。 A[4] = {1, 2, 3, 4, 5, 6, 7} 到了这里就有了错误,4不应该与这么多进行或运算。 这里就不知道怎么做了,如果要把上一次的结果也加到里面,怎么才能保证所进行的或运算不包含不相邻的两个点如: [1, 2, 4] 不会进行 [1,4]的运算。 重新的梳理应该是: [1] A[0] = {1} [ 1] [1, 1] A[1] = {1} 注意,这里与上一个进行或运算,但不把上一个也存到A[2]里面, [ 2] [1, 1, 2] [ 1, 2] A[2] = {2, 3} 基于上一个,但不会将上一个的结果加到本次里影响最终运算。 --- 最终输出结果时,进行一次全部的set整理。 测试地址: https://leetcode.com/contest/weekly-contest-100/problems/bitwise-ors-of-subarrays/ Accepted. """ c.. Solution o.. ___ subarrayBitwiseORs A """ :type A: List[int] :rtype: int """ __ n.. A: r_ 0 dp = [{A[0]}] ___ i __ r..(1, l..(A)): new = {A[i]} ___ j __ dp[i-1]: new.add(j|A[i]) dp.a.. new) r_ l..(s...union(*dp))
9a22c52ec3248feaf483c3d56b8667dd2f1e8c3d
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_coding.py
a254547576f9229c8cf3428e8dfbf7c636522ad4
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from xai.brain.wordbase.nouns._cod import _COD #calss header class _CODING(_COD, ): def __init__(self,): _COD.__init__(self) self.name = "CODING" self.specie = 'nouns' self.basic = "cod" self.jsondata = {}
505b98c848c3caaceaa003ae39780cba0e75b26c
23e55ab51e322a3c0f967976a84f42f70f8ab701
/tensorflow/python/distribute/distribute_lib_test.py
bac623ada52edd601957dc1e7ebf2d63f452fb72
[ "Apache-2.0" ]
permissive
thangnvit/tensorflow
f58e7c2f95690f337361aa2973f2b84ac7e7f947
c83887196eb717af66a7b3f008e970b4a226ff8f
refs/heads/master
2021-02-21T17:51:56.030461
2020-03-06T07:55:33
2020-03-06T07:58:38
245,362,540
3
0
Apache-2.0
2020-03-06T08:05:41
2020-03-06T08:05:40
null
UTF-8
Python
false
false
21,712
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test DistributionStrategy, ReplicaContext, and supporting APIs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python.autograph.core import converter_testing from tensorflow.python.data.ops import dataset_ops from tensorflow.python.distribute import combinations from tensorflow.python.distribute import distribute_lib from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.distribute import input_lib from tensorflow.python.distribute import reduce_util from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import nest class _TestReplicaContext(distribute_lib.ReplicaContext): def merge_call(self, fn, *args, **kwargs): return kwargs["test_arg"] def _get_test_variable(name, synchronization, aggregation): return { "name": name, "synchronization": synchronization, "aggregation": aggregation } def _test_input_fn(input_context): del input_context return dataset_ops.DatasetV2.from_tensors(1.).repeat() class _TestStrategy(distribute_lib.Strategy): def __init__(self): super(_TestStrategy, self).__init__(_TestExtended(self)) class _TestExtended(distribute_lib.StrategyExtendedV1): def __init__(self, distribute): super(_TestExtended, self).__init__(distribute) worker_device_pairs = [("", ["/device:CPU:0"])] self._input_workers = input_lib.InputWorkers(worker_device_pairs) def _call_for_each_replica(self, fn, args, kwargs): with _TestReplicaContext( self._container_strategy(), replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)): return fn(*args, **kwargs) def _create_variable(self, next_creator, **kwargs): return _get_test_variable(kwargs["name"], kwargs["synchronization"], kwargs["aggregation"]) def _make_input_fn_iterator( self, input_fn, replication_mode=distribute_lib.InputReplicationMode.PER_WORKER): return input_lib.InputFunctionIterator(input_fn, self._input_workers, [distribute_lib.InputContext()], self._container_strategy()) def _experimental_distribute_datasets_from_function(self, dataset_fn): return dataset_fn(distribute_lib.InputContext()) def _local_results(self, value): return (value,) def _reduce_to(self, reduce_op, value, destinations, experimental_hints): del reduce_op, destinations, experimental_hints return value def _experimental_make_numpy_dataset(self, numpy_input, session): del session return dataset_ops.DatasetV2.from_tensor_slices(numpy_input) def _experimental_run_steps_on_iterator(self, fn, iterator, iterations, initial_loop_values=None): # TODO(tomhennigan) This is missing many things (e.g. ctx.run_op). ctx = input_lib.MultiStepContext() for _ in range(iterations): fn(ctx, iterator.get_next()) return ctx def _update(self, var, fn, args, kwargs, group): # The implementations of _update() and _update_non_slot() are identical # except _update() passes `var` as the first argument to `fn()`. return self._update_non_slot(var, fn, (var,) + tuple(args), kwargs, group) def _update_non_slot(self, colocate_with, fn, args, kwargs, group): del colocate_with result = fn(*args, **kwargs) if group: return result else: return nest.map_structure(self._unwrap, result) def _assert_in_default_state(t): t.assertIs(ds_context._get_default_replica_context(), ds_context.get_replica_context()) t.assertIs(None, ds_context.get_cross_replica_context()) t.assertFalse(ds_context.in_cross_replica_context()) t.assertIs(ds_context._get_default_strategy(), ds_context.get_strategy()) t.assertFalse(ds_context.has_strategy()) def _run_in_and_out_of_scope(unbound_test_method): def wrapper(test_case): dist = _TestStrategy() # Running in the default (replica) scope should be supported. _assert_in_default_state(test_case) unbound_test_method(test_case, dist) # As well as running in the strategy scope. with dist.scope(): unbound_test_method(test_case, dist) _assert_in_default_state(test_case) # When run under a different strategy the test method should fail. another_strategy = _TestStrategy() msg = "Mixing different .*Strategy objects" with test_case.assertRaisesRegexp(RuntimeError, msg): with another_strategy.scope(): unbound_test_method(test_case, dist) return wrapper class TestStrategyTest(test.TestCase): def testCallForEachReplica(self): _assert_in_default_state(self) dist = _TestStrategy() def run_fn(): replica_context = ds_context.get_replica_context() self.assertTrue(replica_context is not None) self.assertIs(None, ds_context.get_cross_replica_context()) self.assertFalse(ds_context.in_cross_replica_context()) self.assertTrue(ds_context.has_strategy()) self.assertIs(dist, ds_context.get_strategy()) self.assertEqual("foo", replica_context.merge_call(None, test_arg="foo")) expected_value = _get_test_variable( "bar", variable_scope.VariableSynchronization.AUTO, variable_scope.VariableAggregation.NONE) self.assertDictEqual(expected_value, variable_scope.variable(1.0, name="bar")) dist.extended.call_for_each_replica(run_fn) with dist.scope(): dist.extended.call_for_each_replica(run_fn) _assert_in_default_state(self) def testScope(self): _assert_in_default_state(self) dist = _TestStrategy() with dist.scope(): self.assertIs(None, ds_context.get_replica_context()) self.assertIs(dist, ds_context.get_cross_replica_context()) self.assertTrue(ds_context.in_cross_replica_context()) self.assertTrue(ds_context.has_strategy()) self.assertIs(dist, ds_context.get_strategy()) expected_value = _get_test_variable( "baz", variable_scope.VariableSynchronization.AUTO, variable_scope.VariableAggregation.NONE) self.assertDictEqual(expected_value, variable_scope.variable(1.0, name="baz")) _assert_in_default_state(self) def testScopeDeviceNestingError(self): _assert_in_default_state(self) dist = _TestStrategy() # Open a device scope with dist.scope(). dist.extended._default_device = "/device:GPU:0" scope = dist.scope() scope.__enter__() self.assertIs(dist, ds_context.get_strategy()) with ops.device("/device:CPU:0"): with self.assertRaisesRegexp(RuntimeError, "Device scope nesting error"): scope.__exit__(None, None, None) scope.__exit__(None, None, None) _assert_in_default_state(self) def testScopeVarCreatorNestingError(self): def creator(next_creator, **kwargs): return next_creator(**kwargs) _assert_in_default_state(self) dist = _TestStrategy() scope = dist.scope() scope.__enter__() self.assertIs(dist, ds_context.get_strategy()) with variable_scope.variable_creator_scope(creator): with self.assertRaisesRegexp(RuntimeError, "Variable creator scope nesting error"): scope.__exit__(None, None, None) scope.__exit__(None, None, None) _assert_in_default_state(self) def testScopeVarScopeNestingError(self): # We create a new graph here to simplify clean-up, since the error # we are triggering happens in the middle of scope.__exit__() and # leaves us in a weird state. with ops.Graph().as_default(): _assert_in_default_state(self) dist = _TestStrategy() scope = dist.scope() scope.__enter__() self.assertIs(dist, ds_context.get_strategy()) with variable_scope.variable_scope("AA"): with self.assertRaisesRegexp(RuntimeError, "Variable scope nesting error"): scope.__exit__(None, None, None) _assert_in_default_state(self) def testSettingSynchronizationAndAggregation(self): _assert_in_default_state(self) dist = _TestStrategy() with dist.scope(): expected_value = _get_test_variable( "baz", variable_scope.VariableSynchronization.ON_WRITE, variable_scope.VariableAggregation.MEAN) self.assertDictEqual( expected_value, variable_scope.variable( 1.0, name="baz", synchronization=variable_scope.VariableSynchronization.ON_WRITE, aggregation=variable_scope.VariableAggregation.MEAN)) _assert_in_default_state(self) def testSetStrategy(self): _assert_in_default_state(self) dist = _TestStrategy() dist2 = _TestStrategy() ds_context.experimental_set_strategy(dist) self.assertIs(None, ds_context.get_replica_context()) self.assertIs(dist, ds_context.get_cross_replica_context()) self.assertTrue(ds_context.in_cross_replica_context()) self.assertTrue(ds_context.has_strategy()) self.assertIs(dist, ds_context.get_strategy()) expected_value = _get_test_variable( "baz", variable_scope.VariableSynchronization.AUTO, variable_scope.VariableAggregation.NONE) self.assertDictEqual(expected_value, variable_scope.variable(1.0, name="baz")) ds_context.experimental_set_strategy(dist2) self.assertIs(dist2, ds_context.get_strategy()) ds_context.experimental_set_strategy(None) _assert_in_default_state(self) def testSetStrategyInScope(self): _assert_in_default_state(self) dist = _TestStrategy() with dist.scope(): with self.assertRaisesRegexp( RuntimeError, "Must not be called inside a `tf.distribute.Strategy` scope"): ds_context.experimental_set_strategy(_TestStrategy()) with self.assertRaisesRegexp( RuntimeError, "Must not be called inside a `tf.distribute.Strategy` scope"): ds_context.experimental_set_strategy(dist) with self.assertRaisesRegexp( RuntimeError, "Must not be called inside a `tf.distribute.Strategy` scope"): ds_context.experimental_set_strategy(None) _assert_in_default_state(self) def testSameScopeNesting(self): _assert_in_default_state(self) dist = _TestStrategy() scope_a = dist.scope() with scope_a: self.assertIs(dist, ds_context.get_strategy()) scope_b = dist.scope() with scope_b: self.assertIs(dist, ds_context.get_strategy()) with scope_a: self.assertIs(dist, ds_context.get_strategy()) self.assertIs(dist, ds_context.get_strategy()) self.assertIs(dist, ds_context.get_strategy()) dist2 = _TestStrategy() scope2 = dist2.scope() with self.assertRaisesRegexp( RuntimeError, "Mixing different tf.distribute.Strategy objects"): with scope2: pass _assert_in_default_state(self) with scope_b: self.assertIs(dist, ds_context.get_strategy()) _assert_in_default_state(self) @_run_in_and_out_of_scope def testMakeInputFnIterator(self, dist): self.assertIsNotNone(dist.make_input_fn_iterator(_test_input_fn)) @_run_in_and_out_of_scope def testReduce(self, dist): x = constant_op.constant(1.) x_r = dist.reduce(reduce_util.ReduceOp.MEAN, x, axis=None) self.assertEqual(self.evaluate(x), self.evaluate(x_r)) def testReductions_acceptStringOps(self): dist = _TestStrategy() for op in ("mean", "MEAN", "sum", "SUM"): x = constant_op.constant(1.) y = constant_op.constant(1.) x_r = dist.reduce(op, x, axis=None) self.assertEqual(self.evaluate(x), self.evaluate(x_r)) x_r = dist.extended.reduce_to(op, x, "/CPU:0") self.assertEqual(self.evaluate(x), self.evaluate(x_r)) x_r, y_r = dist.extended.batch_reduce_to(op, ((x, "/CPU:0"), (y, "/CPU:0"))) self.assertEqual(self.evaluate(x), self.evaluate(x_r)) self.assertEqual(self.evaluate(y), self.evaluate(y_r)) @_run_in_and_out_of_scope def testExperimentalMakeNumpyDataset(self, dist): numpy_input = np.ones([10], dtype=np.float32) dataset = dist.experimental_make_numpy_dataset(numpy_input) self.assertEqual( self.evaluate(dataset.reduce(0., lambda a, b: a + b)), 10.) @_run_in_and_out_of_scope def testExperimentalRunStepsOnIterator(self, dist): all_inputs = [] dataset = dataset_ops.Dataset.from_tensors(1.).repeat() dist.extended.experimental_run_steps_on_iterator( lambda _, inputs: all_inputs.append(self.evaluate(inputs)), dataset_ops.make_one_shot_iterator(dataset)) self.assertEqual(all_inputs, [1.]) @_run_in_and_out_of_scope def testReduceTo(self, dist): x = constant_op.constant(1.) x_r = dist.extended.reduce_to(reduce_util.ReduceOp.MEAN, x, "/CPU:0") self.assertEqual(self.evaluate(x), self.evaluate(x_r)) @_run_in_and_out_of_scope def testBatchReduceTo(self, dist): x = constant_op.constant(1.) y = constant_op.constant(1.) x_r, y_r = dist.extended.batch_reduce_to(reduce_util.ReduceOp.MEAN, ((x, "/CPU:0"), (y, "/CPU:0"))) self.assertEqual(self.evaluate(x), self.evaluate(x_r)) self.assertEqual(self.evaluate(y), self.evaluate(y_r)) @_run_in_and_out_of_scope def testUpdate(self, dist): with dist.scope(): v = variables.Variable(1.) t = constant_op.constant(2.) def assign_fn(vv, tt): self.assertIs(vv, v) self.assertIs(tt, t) dist.extended.update(v, assign_fn, (t,)) @_run_in_and_out_of_scope def testUpdateAutoGraph(self, dist): with dist.scope(): v = variables.Variable(1.) t = constant_op.constant(2.) def assign_fn(unused_vv, unused_tt): self.assertTrue(converter_testing.is_inside_generated_code()) @def_function.function # AutoGraph is default-on only within tf.function def test_fn(): dist.extended.update(v, assign_fn, (t,)) test_fn() @_run_in_and_out_of_scope def testUpdateNonSlot(self, dist): t = constant_op.constant(2.) update_calls = [] dist.extended.update_non_slot(t, lambda: update_calls.append(1)) self.assertEqual(len(update_calls), 1) @_run_in_and_out_of_scope def testUpdateNonSlotAutoGraph(self, dist): t = constant_op.constant(2.) def update_fn(): self.assertTrue(converter_testing.is_inside_generated_code()) @def_function.function # AutoGraph is default-on only within tf.function def test_fn(): dist.extended.update_non_slot(t, update_fn) test_fn() # _TestStrategy2 is like _TestStrategy, except it doesn't change variable # creation. class _TestStrategy2(distribute_lib.Strategy): def __init__(self): super(_TestStrategy2, self).__init__(_TestExtended2(self)) class _TestExtended2(_TestExtended): def _create_variable(self, next_creator, **kwargs): return next_creator(**kwargs) class DefaultDistributionStrategyTest(test.TestCase, parameterized.TestCase): def testMergeCall(self): _assert_in_default_state(self) def merge_fn(dist, s): self.assertIs(ds_context._get_default_strategy(), dist) self.assertIs(None, ds_context.get_replica_context()) self.assertIs(dist, ds_context.get_cross_replica_context()) self.assertTrue(ds_context.in_cross_replica_context()) self.assertIs(dist, ds_context.get_strategy()) self.assertFalse(ds_context.has_strategy()) return "foo_" + s replica_ctx = ds_context.get_replica_context() self.assertIs(ds_context._get_default_replica_context(), replica_ctx) self.assertEqual("foo_bar", replica_ctx.merge_call(merge_fn, args=("bar",))) _assert_in_default_state(self) def testMergeCallAutoGraph(self): _assert_in_default_state(self) def merge_fn(_, s): self.assertTrue(converter_testing.is_inside_generated_code()) return s @def_function.function # AutoGraph is default-on only within tf.function def test_fn(): replica_ctx = ds_context.get_replica_context() replica_ctx.merge_call(merge_fn, args=("bar",)) test_fn() def testScopeMostlyNoOp(self): _assert_in_default_state(self) test_strategy = _TestStrategy2() with test_strategy.scope(): variable_scope.variable(1.0, name="before") default_strategy = ds_context._get_default_strategy() scope = default_strategy.scope() with scope: _assert_in_default_state(self) with test_strategy.scope(): with self.assertRaisesRegexp( RuntimeError, "Mixing different tf.distribute.Strategy objects"): variable_scope.variable(1.0, name="error") with scope: _assert_in_default_state(self) with test_strategy.scope(): with self.assertRaisesRegexp( RuntimeError, "Mixing different tf.distribute.Strategy objects"): variable_scope.variable(1.0, name="also_error") _assert_in_default_state(self) _assert_in_default_state(self) with test_strategy.scope(): variable_scope.variable(1.0, name="after") def testExperimentalRunV2(self): default_strategy = ds_context._get_default_strategy() dataset = dataset_ops.Dataset.range(10).batch(2) iterator = default_strategy.extended._make_dataset_iterator(dataset) next_val = iterator.get_next() def train_step(input_data): return input_data for _ in range(2): default_strategy.experimental_run_v2(train_step, args=(next_val,)) @combinations.generate(combinations.combine(mode=["graph", "eager"])) def testDistributedDatasets(self): default_strategy = ds_context._get_default_strategy() if context.executing_eagerly(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(10).batch(2) dist_dataset = default_strategy.experimental_distribute_dataset( dataset_fn(distribute_lib.InputContext())) next_val = next(iter(dist_dataset)) else: dataset_fn = lambda _: dataset_ops.DatasetV1.range(10).batch(2) dist_dataset = default_strategy.experimental_distribute_dataset( dataset_fn(distribute_lib.InputContext())) iterator = dist_dataset.make_initializable_iterator() self.evaluate(iterator.initializer) next_val = iterator.get_next() self.assertAllEqual([0, 1], self.evaluate(next_val)) @combinations.generate(combinations.combine(mode=["graph", "eager"])) def testDistributedDatasetsFromFunction(self): default_strategy = ds_context._get_default_strategy() if context.executing_eagerly(): dataset_fn = lambda _: dataset_ops.DatasetV2.range(10).batch(2) dist_dataset_from_func = \ default_strategy.experimental_distribute_datasets_from_function( dataset_fn) next_val = next(iter(dist_dataset_from_func)) self.assertAllEqual([0, 1], self.evaluate(next_val)) else: dataset_fn = lambda _: dataset_ops.DatasetV2.range(10).batch(2) dist_dataset_from_func = \ default_strategy.experimental_distribute_datasets_from_function( dataset_fn) dataset_ops.make_initializable_iterator(dist_dataset_from_func) class InputContextTest(test.TestCase): def testProperties(self): input_context = distribute_lib.InputContext( num_input_pipelines=2, input_pipeline_id=1, num_replicas_in_sync=6) self.assertEqual(6, input_context.num_replicas_in_sync) self.assertEqual(1, input_context.input_pipeline_id) self.assertEqual(2, input_context.num_input_pipelines) def testPerReplicaBatchSize(self): input_context = distribute_lib.InputContext( num_input_pipelines=2, input_pipeline_id=1, num_replicas_in_sync=6) self.assertEqual(2, input_context.get_per_replica_batch_size(12)) with self.assertRaises(ValueError): input_context.get_per_replica_batch_size(13) def testStr(self): input_context = distribute_lib.InputContext( num_input_pipelines=1, input_pipeline_id=0, num_replicas_in_sync=42) self.assertEqual( "tf.distribute.InputContext(input pipeline id 0, total: 1)", str(input_context)) input_context = distribute_lib.InputContext( num_input_pipelines=3, input_pipeline_id=1, num_replicas_in_sync=42) self.assertEqual( "tf.distribute.InputContext(input pipeline id 1, total: 3)", str(input_context)) if __name__ == "__main__": test.main()
9b803a8bef5841f4caa1aca59c39e166c2b74190
dcab6930a95a3c5530e9b9bfba0e495667c98599
/Data_Analysis/Data_camp_lecture/Manipulation(Pandas)/summarystatistics_ex4.py
e9819acf44e289ed025cdce3b8e86af349c1d586
[]
no_license
wxlovolxw/GIWON-S-STUDY
7db1fb30dfc16c8bc60592d0696434f1482ecdde
6a622b5d372741b4f9d215f649235353f3e645cd
refs/heads/master
2023-06-23T06:05:03.058692
2021-07-26T05:37:35
2021-07-26T05:37:35
283,812,802
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
# Sort sales_1_1 by date sales_1_1 = sales_1_1.sort_values("date",ascending=True) # Get the cumulative sum of weekly_sales, add as cum_weekly_sales col sales_1_1["cum_weekly_sales"] = sales_1_1.weekly_sales.cumsum() # Get the cumulative max of weekly_sales, add as cum_max_sales col sales_1_1["cum_max_sales"] = sales_1_1.weekly_sales.cummax() # See the columns you calculated print(sales_1_1[["date", "weekly_sales", "cum_weekly_sales", "cum_max_sales"]])
491113ea1a9970929b7916b82c56331f33432aee
abfcee924f57ee2011443703d4869f828e548910
/account_move_import/__openerp__.py
be0b63316135994bd728cd6f5bb5313233dd3bcd
[]
no_license
Comunitea/external_modules
fb68cbf84cee1c6aa748f4f10e2999b9bb6aadf5
9718281e31b4a4f6395d8bed54adf02799df6221
refs/heads/8.0
2023-09-03T17:18:37.652200
2022-02-10T09:33:33
2022-02-10T09:33:33
49,890,295
4
33
null
2022-10-10T11:34:24
2016-01-18T16:47:40
Python
UTF-8
Python
false
false
1,427
py
# -*- encoding: utf-8 -*- ############################################################################## # # Odoo, Open Source Management Solution # # Copyright (c) 2009-2015 Noviat nv/sa (www.noviat.com). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Account Move Import', 'version': '8.0.0.4.1', 'license': 'AGPL-3', 'author': 'Noviat', 'website': 'http://www.noviat.com', 'category': 'Accounting & Finance', 'summary': 'Import Accounting Entries', 'depends': ['account'], 'data': [ 'views/account_move.xml', 'wizard/import_move_line_wizard.xml', ], 'demo': [ 'demo/account_move.xml', ], 'installable': True, }
1b735b2356f26bdb52cb9b1903b806556a163b23
6fce025097cebfd9d1dd37f6611e7fdfdbea90e6
/rainfields/band_quest/data_loader.py
1e4559f99a809d5068facd1ae4e57f3b0fd4f369
[]
no_license
ANU-WALD/pluvi_pondus
ec0439d19acdcf4fdf712d6b14a1714297d661b2
ff8680f7115ab2cb75138bf6705abb59618e47d1
refs/heads/master
2021-07-01T14:32:14.501631
2020-08-22T09:41:28
2020-08-22T09:41:28
138,804,652
0
0
null
null
null
null
UTF-8
Python
false
false
1,872
py
import xarray as xr import tensorflow as tf import numpy as np import datetime import os import random tf.compat.v1.enable_eager_execution() class gen: def __call__(self, fname, band, jitter=False): dsg = xr.open_dataset(fname.decode("utf-8")) for t in dsg.time: d = datetime.datetime.utcfromtimestamp(t.astype(int) * 1e-9) if not os.path.isfile("/data/pluvi_pondus/Rainfields/310_{}.prcp-c10.nc".format(d.strftime("%Y%m%d_%H%M%S"))): continue if np.datetime64(d) not in dsg.time.data: continue rf_fp = "/data/pluvi_pondus/Rainfields/310_{}.prcp-c10.nc".format(d.strftime("%Y%m%d_%H%M%S")) dsp = xr.open_dataset(rf_fp) prec = dsp['precipitation'].data[2::2, 402::2] b = dsg['B{}'.format(band)].sel(time=t).data[2::2, 402::2] # Added Normalisation b = b / 273 yield (b[:, :, None], prec[:, :, None]) dsg.close() def CompleteFNames(fnames, band): d = None if band in [8, 12]: d = '0812' elif band in [9, 10]: d = '0910' elif band in [11, 13]: d = '1113' elif band in [14, 15]: d = '1415' return [path.format(d) for path in fnames] def HimfieldsDataset(fnames, band, batch_size=2): fnames = CompleteFNames(fnames, band) print(fnames) ds = tf.data.Dataset.from_tensor_slices(fnames) ds = ds.interleave(lambda fname: tf.data.Dataset.from_generator(gen(), (tf.float32, tf.float32), (tf.TensorShape([1024, 1024, 1]), tf.TensorShape([1024, 1024, 1])), args=(fname, band)), cycle_length=len(fnames), block_length=1, num_parallel_calls=None) ds = ds.shuffle(128, seed=None) ds = ds.batch(batch_size) return ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
782fb8abbf0dca149bb77484bf1ff34f827f910f
52fc25b679bfb962a17c18420d16692706f8697e
/WebScrape3.py
9b2b919f854ffe3786389c0ee5b7495e3988c244
[]
no_license
adanque/Data-Gathering-Techniques-using-APIs-and-Web-scraping-with-Python
15fecd4da2f71a065cff6be2f2aa67410bc0bb75
7d3dc205e4aba5bd9444513fdce465d31805f178
refs/heads/main
2023-03-15T08:42:27.212870
2021-03-21T21:08:01
2021-03-21T21:08:01
349,256,716
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
#from BeautifulSoup import BeautifulSoup from urllib.request import urlopen from bs4 import BeautifulSoup as bs soup = bs( urllib.urlopen('kitco.com/kitco-gold-index.html').read())
30731d061dac5ddc8fbcbd873b5ac8a79e08f327
665d9bad46e68f779512640e582d2522867b0dba
/Heap/378. Kth Smallest Element in a Sorted Matrix.py
3569b8b060beb9f019c34d33633df7b42a22d291
[]
no_license
RahatIbnRafiq/leetcodeProblems
6fd1e9726b14b7ad3571e5a4af5665b72f7aee0a
2d35590d189938e0705a21be110e75e0b209ea96
refs/heads/master
2021-11-25T11:58:20.498911
2021-11-25T00:43:04
2021-11-25T00:43:04
72,865,562
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
import heapq class Solution(object): def kthSmallest(self, matrix, k): return list(heapq.merge(*matrix))[k-1]
6f46684631905e99275e3e85d175b2b16e8a63d0
facb8b9155a569b09ba66aefc22564a5bf9cd319
/wp2/merra_scripts/03_model_fitting/merraRF882/391-tideGauge.py
17fa5644f4a0e20042369b1e1ddd12b589bc5156
[]
no_license
moinabyssinia/modeling-global-storm-surges
13e69faa8f45a1244a964c5de4e2a5a6c95b2128
6e385b2a5f0867df8ceabd155e17ba876779c1bd
refs/heads/master
2023-06-09T00:40:39.319465
2021-06-25T21:00:44
2021-06-25T21:00:44
229,080,191
0
0
null
null
null
null
UTF-8
Python
false
false
7,456
py
# -*- coding: utf-8 -*- """ Created on Mon May 4 15:51:30 2020 This program is designed to validate a Random Forest model by using the KFOLD method @author: Michael Tadesse """ #import packages import os import glob import numpy as np import pandas as pd from sklearn import metrics from scipy import stats import seaborn as sns import matplotlib.pyplot as plt from datetime import datetime from sklearn.ensemble import RandomForestRegressor from sklearn.decomposition import PCA from sklearn.model_selection import KFold from sklearn.preprocessing import StandardScaler def validateRF(): """ run KFOLD method for regression """ #defining directories dir_in = "/lustre/fs0/home/mtadesse/merraAllLagged" dir_out = "/lustre/fs0/home/mtadesse/merraRFValidation" surge_path = "/lustre/fs0/home/mtadesse/05_dmax_surge_georef" #cd to the lagged predictors directory os.chdir(dir_in) x = 391 y = 392 #empty dataframe for model validation df = pd.DataFrame(columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse']) #looping through for tg in range(x,y): os.chdir(dir_in) #filter only .csv files tgNames = [] for file in glob.glob("*.csv"): tgNames.append(file) tg_name = sorted(tgNames)[tg] print(tg_name) ########################################## #check if this tg is already taken care of ########################################## os.chdir(dir_out) if os.path.isfile(tg_name): print("this tide gauge is already taken care of") return "file already analyzed!" os.chdir(dir_in) #load predictor pred = pd.read_csv(tg_name) pred.drop('Unnamed: 0', axis = 1, inplace = True) #add squared and cubed wind terms (as in WPI model) pickTerms = lambda x: x.startswith('wnd') wndTerms = pred.columns[list(map(pickTerms, pred.columns))] wnd_sqr = pred[wndTerms]**2 wnd_cbd = pred[wndTerms]**3 pred = pd.concat([pred, wnd_sqr, wnd_cbd], axis = 1) #standardize predictor data dat = pred.iloc[:,1:] scaler = StandardScaler() print(scaler.fit(dat)) dat_standardized = pd.DataFrame(scaler.transform(dat), \ columns = dat.columns) pred_standardized = pd.concat([pred['date'], dat_standardized], axis = 1) #load surge data os.chdir(surge_path) surge = pd.read_csv(tg_name) surge.drop('Unnamed: 0', axis = 1, inplace = True) #remove duplicated surge rows surge.drop(surge[surge['ymd'].duplicated()].index, axis = 0, inplace = True) surge.reset_index(inplace = True) surge.drop('index', axis = 1, inplace = True) #adjust surge time format to match that of pred time_str = lambda x: str(datetime.strptime(x, '%Y-%m-%d')) surge_time = pd.DataFrame(list(map(time_str, surge['ymd'])), columns = ['date']) time_stamp = lambda x: (datetime.strptime(x, '%Y-%m-%d %H:%M:%S')) surge_new = pd.concat([surge_time, surge[['surge', 'lon', 'lat']]], axis = 1) #merge predictors and surge to find common time frame pred_surge = pd.merge(pred_standardized, surge_new.iloc[:,:2], on='date', how='right') pred_surge.sort_values(by = 'date', inplace = True) #find rows that have nans and remove them row_nan = pred_surge[pred_surge.isna().any(axis =1)] pred_surge.drop(row_nan.index, axis = 0, inplace = True) pred_surge.reset_index(inplace = True) pred_surge.drop('index', axis = 1, inplace = True) #in case pred and surge don't overlap if pred_surge.shape[0] == 0: print('-'*80) print('Predictors and Surge don''t overlap') print('-'*80) continue pred_surge['date'] = pd.DataFrame(list(map(time_stamp, \ pred_surge['date'])), \ columns = ['date']) #prepare data for training/testing X = pred_surge.iloc[:,1:-1] y = pd.DataFrame(pred_surge['surge']) y = y.reset_index() y.drop(['index'], axis = 1, inplace = True) #apply PCA pca = PCA(.95) pca.fit(X) X_pca = pca.transform(X) #apply 10 fold cross validation kf = KFold(n_splits=10, random_state=29) metric_corr = []; metric_rmse = []; #combo = pd.DataFrame(columns = ['pred', 'obs']) for train_index, test_index in kf.split(X): X_train, X_test = X_pca[train_index], X_pca[test_index] y_train, y_test = y['surge'][train_index], y['surge'][test_index] #train regression model rf= RandomForestRegressor(n_estimators = 50, random_state = 101, \ min_samples_leaf = 1) rf.fit(X_train, y_train) #predictions predictions = rf.predict(X_test) # pred_obs = pd.concat([pd.DataFrame(np.array(predictions)), \ # pd.DataFrame(np.array(y_test))], \ # axis = 1) # pred_obs.columns = ['pred', 'obs'] # combo = pd.concat([combo, pred_obs], axis = 0) #evaluation matrix - check p value if stats.pearsonr(y_test, predictions)[1] >= 0.05: print("insignificant correlation!") continue else: print(stats.pearsonr(y_test, predictions)) metric_corr.append(stats.pearsonr(y_test, predictions)[0]) print(np.sqrt(metrics.mean_squared_error(y_test, predictions))) print() metric_rmse.append(np.sqrt(metrics.mean_squared_error(y_test, predictions))) #number of years used to train/test model num_years = (pred_surge['date'][pred_surge.shape[0]-1] -\ pred_surge['date'][0]).days/365 longitude = surge['lon'][0] latitude = surge['lat'][0] num_pc = X_pca.shape[1] #number of principal components corr = np.mean(metric_corr) rmse = np.mean(metric_rmse) print('num_year = ', num_years, ' num_pc = ', num_pc ,'avg_corr = ',np.mean(metric_corr), ' - avg_rmse (m) = ', \ np.mean(metric_rmse), '\n') #original size and pca size of matrix added new_df = pd.DataFrame([tg_name, longitude, latitude, num_years, num_pc, corr, rmse]).T new_df.columns = ['tg', 'lon', 'lat', 'num_year', \ 'num_95pcs','corrn', 'rmse'] df = pd.concat([df, new_df], axis = 0) #save df as cs - in case of interruption os.chdir(dir_out) df.to_csv(tg_name) #run script validateRF()
488dc76a0442a7b08a9df5d702b3718760e75d5e
9851c3f47c1aa165bc0d239074fe238f82055875
/LeetCode/0412. Fizz Buzz/solution.py
bc2af790c4bad5cd76258e058f6079a7df8e9841
[ "Apache-2.0" ]
permissive
InnoFang/algo-set
12f886dbec0da664327d26bcaf02c1316151a643
2419a7d720bea1fd6ff3b75c38342a0ace18b205
refs/heads/master
2023-03-16T09:51:24.631068
2023-03-13T11:08:54
2023-03-13T11:08:54
86,413,001
23
9
null
null
null
null
UTF-8
Python
false
false
331
py
""" 8 / 8 test cases passed. Runtime: 28 ms Memory Usage: 15.2 MB """ class Solution: def fizzBuzz(self, n: int) -> List[str]: return ["FizzBuzz" if i % 3 == 0 and i % 5 == 0 else \ "Fizz" if i % 3 == 0 else \ "Buzz" if i % 5 == 0 else \ str(i) for i in range(1, n + 1)]
9d0ed4a9bba517cc8e6767aa4c0fff77878212c4
1edfd072fae205d766e7c488f1af64f3af9fc23a
/src/python/sensors/microphone/microphone.py
c2f1fa4bf16a131848871f8e709d0692804cbd54
[]
no_license
kth-social-robotics/multisensoryprocessing
17fc96eb3776642de1075103eeb461125020c892
867abe6c921fbf930ac26e0f43a8be0404817bcd
refs/heads/master
2021-01-21T11:50:16.348566
2018-11-05T14:48:42
2018-11-05T14:48:42
102,027,696
4
2
null
2018-02-20T15:14:22
2017-08-31T17:39:58
C++
UTF-8
Python
false
false
2,429
py
import pyaudio import sys import time import msgpack sys.path.append('../..') import numpy as np import re from shared import create_zmq_server, MessageQueue import sys import wave import datetime if len(sys.argv) != 2: exit('please only supply sound card name') device_names_string = sys.argv[1] FORMAT = pyaudio.paInt16 CHANNELS = 2 RATE = 44100 CHUNK = 2000 zmq_socket_1, zmq_server_addr_1 = create_zmq_server() zmq_socket_2, zmq_server_addr_2 = create_zmq_server() mq = MessageQueue('microphone-sensor') p = pyaudio.PyAudio() device_index = None for i in range(p.get_device_count()): device = p.get_device_info_by_index(i) if device['name'].startswith('[{}]'.format(device_names_string)): device_index = i if not device_index: exit('please connect a proper soundcard') device_names = device_names_string.split(',') mq.publish( exchange='sensors', routing_key='microphone.new_sensor.{}'.format(device_names[0]), body={'address': zmq_server_addr_1, 'file_type': 'audio'} ) mq.publish( exchange='sensors', routing_key='microphone.new_sensor.{}'.format(device_names[1]), body={'address': zmq_server_addr_2, 'file_type': 'audio'} ) session_name = datetime.datetime.now().isoformat().replace('.', '_').replace(':', '_') + device_names_string # Let's be on the safe side and recording this to the computer... waveFile = wave.open('{}.wav'.format(session_name), 'wb') waveFile.setnchannels(CHANNELS) waveFile.setsampwidth(p.get_sample_size(FORMAT)) waveFile.setframerate(RATE) def callback(in_data, frame_count, time_info, status): result = np.fromstring(in_data, dtype=np.uint16) result = np.reshape(result, (frame_count, 2)) the_time = mq.get_shifted_time() zmq_socket_1.send(msgpack.packb((result[:, 0].tobytes(), the_time))) zmq_socket_2.send(msgpack.packb((result[:, 1].tobytes(), the_time))) waveFile.writeframes(in_data) return None, pyaudio.paContinue stream = p.open( format=FORMAT, channels=CHANNELS, rate=RATE, input_device_index=device_index, input=True, frames_per_buffer=CHUNK, stream_callback=callback ) try: input('[*] Serving at {} and {}. To exit press enter'.format(zmq_server_addr_1, zmq_server_addr_2)) finally: waveFile.close() stream.stop_stream() stream.close() zmq_socket_1.send(b'CLOSE') zmq_socket_2.send(b'CLOSE') zmq_socket_1.close() zmq_socket_2.close()
bc7bec551e2c03787c3416668a264b12cadc4258
c18e1fa174e1b0e6d56e9f1a8a3708099c3cd248
/learning_from_mcvine/res_sims/Ei_30/E-7.98574177896_hkl-1.2631196834,-0.985399386564,0.344825718364/run.py
c8c8bb10719d8e3c5cea76da9babf3f432f8b649
[]
no_license
pnave95/ORNL_public_research
e0662657b41969f3f3dc263ea4c62a042d85547a
58cad7508f9d29c17af5419f05522c2f724e717e
refs/heads/master
2021-01-20T00:39:58.308250
2017-06-22T20:03:57
2017-06-22T20:03:57
89,160,804
0
0
null
null
null
null
UTF-8
Python
false
false
1,185
py
#!/usr/bin/env python import mcvine.cli from numpy import array from mcvine_workflow.singlextal.resolution import use_res_comps as urc beam_neutrons_path = '/SNS/users/p63/ORNL_public_research/MCViNE_Covmat_comparison/mcvine_resolution/beams/beam_30_1e9/out/neutrons' instrument = urc.instrument('ARCS', '3.*meter', '13.6*meter', '-0.15*meter') samplexmlpath = '/SNS/users/p63/ORNL_public_research/learning_from_mcvine/res_sims/Ei_30/E-7.98574177896_hkl-1.2631196834,-0.985399386564,0.344825718364/sample/sampleassembly.xml' psi = 9.102125241479965e-05 hkl2Q = array([[ -6.60765593e-01, 9.34283256e-01, -7.78047243e-17], [ 6.60638026e-01, 4.67231832e-01, -8.09165116e-01], [ -6.60638026e-01, -4.67231832e-01, -8.09165116e-01]]) pp = array([ 2.71888109, 1.26794542, -0.36478751]) pixel = urc.pixel('0.5*inch', 'meter/128', '10*atm', position=(pp[1], pp[2], pp[0])) t_m2p = 0.0068059207318674521 Q = array([-0.04417126, -1.80163508, 0.51832987]) E = -7.9857417789580012 hkl_projection = array([-0.94671581, -0.60236987, 0.47499947]) urc.run( beam_neutrons_path, instrument, samplexmlpath, psi, hkl2Q, pixel, t_m2p, Q, E, hkl_projection, Nbuffer=100000)
dee6e4cddedf7e291e576951014671d28cee09bb
9b4bd7bb36d6e2d63973c724ca1ceb1c5e123ee1
/launcher/deployment/migrations/0014_auto__add_field_deployment_remote_container_id__add_field_deployment_r.py
5ad9d4cab5e81057db503de2651b3868113f73af
[]
no_license
zennro/launcher
39de39345a15b1f544222503e5cf82992c1e62c8
25651d1ffa29adad18d1e003f69720bea9671d7c
refs/heads/master
2020-04-20T19:16:59.492609
2014-02-27T16:22:30
2014-02-27T16:22:30
17,900,826
0
1
null
null
null
null
UTF-8
Python
false
false
4,171
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Deployment.remote_container_id' db.add_column(u'deployment_deployment', 'remote_container_id', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Deployment.remote_app_id' db.add_column(u'deployment_deployment', 'remote_app_id', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'Deployment.remote_container_id' db.delete_column(u'deployment_deployment', 'remote_container_id') # Deleting field 'Deployment.remote_app_id' db.delete_column(u'deployment_deployment', 'remote_app_id') models = { u'deployment.deployment': { 'Meta': {'object_name': 'Deployment'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'deploy_id': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'expiration_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'launch_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'deployments'", 'to': u"orm['deployment.Project']"}), 'reminder_mail_sent': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'remote_app_id': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'remote_container_id': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Deploying'", 'max_length': '50'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'deployment.deploymenterrorlog': { 'Meta': {'object_name': 'DeploymentErrorLog'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'deployment': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'error_log'", 'unique': 'True', 'to': u"orm['deployment.Deployment']"}), 'error_log': ('django.db.models.fields.TextField', [], {}), 'http_status': ('django.db.models.fields.CharField', [], {'max_length': '3'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'deployment.project': { 'Meta': {'ordering': "['name']", 'object_name': 'Project'}, 'default_password': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'default_username': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'github_url': ('django.db.models.fields.CharField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image_name': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'ports': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}), 'status': ('model_utils.fields.StatusField', [], {'default': "'Inactive'", 'max_length': '100', u'no_check_for_status': 'True'}), 'survey_form_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) } } complete_apps = ['deployment']
e7959142b07770d2de4bb62d1aee359a7aaf3c7b
161e01f92e3810edff17054851259e54a1432921
/rapid7vmconsole/models/resources_user_account.py
4c2e48f07118ad180885bdef93b98cfe414424cf
[ "MIT" ]
permissive
Tofuhippo/vm-console-client-python
f3ffa3257b1928791fef090404377b43c3ff28d5
3c856923be1caf22c29a5d309713b8940546b57b
refs/heads/master
2020-06-26T04:07:37.251955
2019-07-29T20:45:40
2019-07-29T20:45:40
199,524,127
0
0
MIT
2019-07-29T20:42:37
2019-07-29T20:42:37
null
UTF-8
Python
false
false
4,187
py
# coding: utf-8 """ Python InsightVM API Client OpenAPI spec version: 3 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from rapid7vmconsole.models.link import Link # noqa: F401,E501 from rapid7vmconsole.models.user_account import UserAccount # noqa: F401,E501 class ResourcesUserAccount(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'links': 'list[Link]', 'resources': 'list[UserAccount]' } attribute_map = { 'links': 'links', 'resources': 'resources' } def __init__(self, links=None, resources=None): # noqa: E501 """ResourcesUserAccount - a model defined in Swagger""" # noqa: E501 self._links = None self._resources = None self.discriminator = None if links is not None: self.links = links if resources is not None: self.resources = resources @property def links(self): """Gets the links of this ResourcesUserAccount. # noqa: E501 Hypermedia links to corresponding or related resources. # noqa: E501 :return: The links of this ResourcesUserAccount. # noqa: E501 :rtype: list[Link] """ return self._links @links.setter def links(self, links): """Sets the links of this ResourcesUserAccount. Hypermedia links to corresponding or related resources. # noqa: E501 :param links: The links of this ResourcesUserAccount. # noqa: E501 :type: list[Link] """ self._links = links @property def resources(self): """Gets the resources of this ResourcesUserAccount. # noqa: E501 The resources returned. # noqa: E501 :return: The resources of this ResourcesUserAccount. # noqa: E501 :rtype: list[UserAccount] """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this ResourcesUserAccount. The resources returned. # noqa: E501 :param resources: The resources of this ResourcesUserAccount. # noqa: E501 :type: list[UserAccount] """ self._resources = resources def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResourcesUserAccount, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourcesUserAccount): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
aef74e6af7e67ac384a7f081ccb14a6821297285
7f76ae284ab2649def3da9d609beb4dbad9cb57d
/SnakesLadders/make_game.py
718247d55956e1bcbfbca7d83b279b140d16efda
[ "CC0-1.0" ]
permissive
robclewley/DataScotties
0f696fe32debe1aee4f5fdc8e5fac4d9b94eeb99
63cca1c2fb5ffd75f4c99507ac497ae7cefec04d
refs/heads/master
2021-01-10T05:17:12.412352
2016-02-29T23:51:11
2016-02-29T23:51:11
50,062,479
9
17
null
null
null
null
UTF-8
Python
false
false
431
py
import snakesladders as SL def make_game_from_dict(setup): """ `setup` parameter is a dictionary, e.g. loaded from JSON file Returns a GameFSM object configured from the dictionary. """ game = SL.GameFSM(setup['size']) for s1, s2 in setup['snakes']: game.all_states[s1].link = s2 for l1, l2 in setup['ladders']: game.all_states[l1].link = l2 game.make_state_kinds() return game
c39c260b4df726acbb3317afe5c554771a0f41df
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc073/A/4905897.py
82d6df3f77d1a5ec614d18c5565e9bea8047e7fd
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
71
py
n = input() if n.count('9') > 0: print('Yes') else: print('No')
9359c407b694b3443b2748371e2164ab388b93b7
b155be1edeac8183736ababc64b52f07f15e3269
/appengine/swarming/handlers_exceptions.py
dcacd94a38946b90180532a2ab8c9ffdfdf66fd9
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
luci/luci-py
d9ef3325a2b193d3f127363c012fe60860ea91fd
10cc5fdcca53e2a1690867acbe6fce099273f092
refs/heads/main
2022-11-26T09:32:20.640834
2022-11-24T15:11:30
2022-11-24T15:11:30
33,140,918
84
36
Apache-2.0
2022-11-23T13:56:13
2015-03-30T18:39:14
Python
UTF-8
Python
false
false
477
py
# Copyright 2021 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. """Exceptions raised by methods called by prpc/endpoints handlers.""" class BadRequestException(Exception): """The request is invalid.""" class PermissionException(Exception): """Permission requirements are not fulfilled.""" class InternalException(Exception): """Unexpected error occurred."""
0fc9798741c58e929507d74f4a8591a6aef58c50
817defeeecbe0f9da401671dadecc3a4319e1915
/ex43.py
b6ba10aa1a9b22214466786e2d7b1d0a76e65ce1
[]
no_license
mrech/LearnPython_TheHardWay
5099cb3f21b7f64b7c936efe2381fff00178e2be
47b049c1f6539b9257a53e442a5ba701de3f75a3
refs/heads/master
2020-04-16T15:30:44.013671
2019-02-20T17:33:54
2019-02-20T17:33:54
165,705,302
1
0
null
null
null
null
UTF-8
Python
false
false
8,564
py
# Gothons from Planet Percal #25 ''' * noun (classes) - verbs (functions) * Map - next_scene - opening_scene * Engine - play * Scene -enter * Death * Central Corridor * Laser Weapon Armory * The Bridge * Escape Pod ''' # Basic imports for the game from sys import exit # exit the interpreter from random import randint # base class Scene that will have the common things that all scenes do class Scene(object): def enter(self): print('This scene is not yet configured. Subclass it and implement enter().') exit(1) class Engine(object): def __init__(self, scene_map): self.scene_map = scene_map # Engine has-a scene_map of some kind def play(self): current_scene = self.scene_map.opening_scene() while True: print('\n--------') next_scene_name = current_scene.enter() current_scene = self.scene_map.next_scene(next_scene_name) # first scene Death class Death(Scene): quips = [ 'You died. You kinda suck at this.', 'Such a loser.', 'I have a small puppy that\'s beter at this.' ] def enter(self): print(Death.quips[randint(0, len(self.quips)-1)]) exit(1) # CentralCorridor the start of the game # I'm doing the scenes for the game before the Map because I need to reference them later class CentralCorridor(Scene): def enter(self): print("The Gothons of Planet Percal #25 have invaded your ship and destroyed") print("your entire crew. You are the last surviving member and your last") print("mission is to get the neutron destruct bomb from the Weapons Armory,") print("put it in the bridge, and blow the ship up after getting into an ") print("escape pod.") print("\n") print("You're running down the central corridor to the Weapons Armory when") print( "a Gothon jumps out, red scaly skin, dark grimy teeth, and evil clown costume") print("flowing around his hate filed body. He's blocking the door to the") print("Armory and about to pull a weapon to blast you.") action = input("> ") if action == "shoot!": print( "Quick on the draw you yank out your blaster and fire it at the Gothon.") print("His clown costume is flowing and moving around his body, which throws") print( "off your aim. Your laser hits his costume but misses him entirely. This") print("makes him fly into a rage and blast you repeatedly in the face until") print("you are dead. Then he eats you.") return 'death' elif action == "dodge!": print("Like a world class boxer you dodge, weave, slip and slide right") print("as the Gothon's blaster cranks a laser past your head.") print("In the middle of your artful dodge your foot slips and you") print("bang your head on the metal wall and pass out.") print("You wake up shortly after only to die as the Gothon stomps on") print("your head and eats you.") return 'death' elif action == "tell ajoke": print("Lucky for you they made you learn Gothon insults in the academy.") print("You tell the one Gothon joke you know:") print("Ljb jfkdlas tyjkdfak jkfldsaufd, fullrearfek fdfas thiirs.") print( "The Gothon stops, tries not to laugh, then busts out laughing and can't move.") print("While he's laughing you run up and shoot him square in the head") print("putting him down, then jump through the Weapon Armory door.") return 'laser_weapon_armory' else: print("DOES NOT COMPUTE!") return 'central_corridor' class LaserWeaponArmory(Scene): def enter(self): print("You do a dive roll into the Wapon Armory, crouch and scan the room") print("for more Gothons that might be hiding. It's dead quiet, too quiet.") print("You stand up and run to the far side of the room and find the") print("neutron bomb in its container. There's a keypad lock on the box") print("and you need the code to get the bomb out. If you get the code") print("wrong 10 times then the lcok closes forever and you can't") print("get the bomb. The code is 3 digits.") # Permutation with repetitions 9**3 code = "{}{}{}".format(randint(1, 9), randint(1, 9), randint(1, 9)) guess = input("[keypad]> ") guesses = 0 while guess != code and guesses < 10: print("BZZZZZEDDD") guesses += 1 guess = input("[keypad]> ") if guess == code: print("The container clicks open and the seal breaks, letting gas out.") print("You grab the neutron bomb and run as fast as you can to the") print("bridge where you must place it in the right spot.") return 'the_bridge' else: print("The lock buzzes one last time and then you hear a sickening") print("melting sound as the mechanism is fused together.") print("You decided to sit there, and finally the Gothons blow up the") print("ship from their ship and you die.") return 'death' class TheBridge(Scene): def enter(self): print("You burst onto the Bridge with the neutron destruct bomb") print("under your arm and surprise 5 Gothons who are trying to") print("take control of the ship. Each of them has an even uglier") print("clown costume than the last. They haven't pulled their") print("weapons out yet, as they see the active bomb under your") print("arm and don't want to set it off.") action = input("> ") if action == "throw the bomb": print("In a panic you throw the bomb at the group of Gothons") print("and make a leap for the door. Right as you drop it a") print("Gothon shoots you right in the back killing you.") return 'death' elif action == "slowly place the bomb": print("You point your blaster at the bomb under your arm") print("and the Gothons put their hands up and start to sweat.") print("Now that the bomb is placed you run to the escape pod to") return 'escape_pod' else: print("DOES NOT COMPUTE!") return 'the bridge' class EscapePod(Scene): def enter(self): print("You rush through the ship desperately tring to make it") print("You get to the chamber with the escape pods, and now need") print("to pick one to take. Some of them could be damaged but you") print("don't gave time to look. There's 5 pods, which one") print("do you take?") good_pod = randint(1, 5) guess = input("[pod #]> ") if int(guess) != good_pod: print("You jump into pod {} and hit the eject button.".format(guess)) print("The pod escapes out into the void of space.") return 'death' else: print("You jump into pod {} and hit the eject button.".format(guess)) print("The pod easily slides out into space heading to") print("the planet below. The Gothon ship explode. You won!") return 'finished' class Map(object): # Map's methods # storing each scene by name in a dictionary, ref. to it Map.scenes # Map come after scenes, because the dic btionary has to refer to them so they have to exist scenes = { 'central_corridor': CentralCorridor(), 'laser_weapon_armory': LaserWeaponArmory(), 'the_bridge': TheBridge(), 'escape_pod': EscapePod(), 'death': Death() } def __init__(self, start_scene): self.start_scene = start_scene def next_scene(self, scene_name): return Map.scenes.get(scene_name) def opening_scene(self): return self.next_scene(self.start_scene) a_map = Map('central_corridor') # code that runs the game by making map a_game = Engine(a_map) # handling that map to an Engine a_game.play() # running - play to make the game work
55c96c6259dbae33f993fa4591c05bbd163957fc
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/41/usersdata/138/21859/submittedfiles/gravitacional.py
e1574ee30ef0e241c176b4af46ebad86bb520b4d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,380
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np import funcoes #ENTRADA dimensao = input('Digite a dimensao das matrizes: ') matrizA = input('Digite a Matriz A como uma única linha entre aspas: ') matrizD = input('Digite a Matriz D como uma única linha entre aspas: ') alfa = input('Digite o valor de alfa: ') #PREPARANDO A ENTRADA T = np.zeros((dimensao,dimensao)) A = np.fromstring(matrizA, sep=' ').reshape(dimensao, dimensao) d = np.fromstring(matrizD, sep=' ').reshape(dimensao, dimensao) #comece aqui... #INÍCIO def somaC(m): b=[] for j in range(0,a.shape[1],1): soma=0 for i in range(0,a.shape[0],): soma=soma+a[i,j] b.append(soma) return b def somaL(m): b=[] for i in range(0,a.shape[0],1): soma=0 for j in range(0,a.shape[1],1): soma= soma+a[i,j] b.append(soma) return b def matrizT(a,o,d): a=somaC(m) o=somaL(m) T=[] for i in range(0,d.shape[0],1): for j in range(0,d.shape[1],1): Tc[i,j]=(o[i])*(a[i])*((1/d[i,j]))**alfa soma=0 for k in range(0,dimensao,1): soma[i,k]=soma+(a[k]*(1/d[i,k])) T[i,j]=Tc[i,j]/soma[i,k] T.append(T[i,j]) return T #SAÍDA somatorio = sum(sum(T)) print('%.4f' % somatorio)
7d2bda3c4063f35013dcfc03874bce7500ebf9a5
4f3d283fc8f07af65d857370294986dbc37c520c
/kata/done/masodfok2.py
4a39751880ab6565e0832f3ad85bfe51d95b1aa1
[]
no_license
csxeba/wiw
69a36ed6fee4240d6ed545e4f4e6d60c46090921
7251eeaaa98424a95c5837bddd6979ddbf0dd1ec
refs/heads/master
2020-06-28T11:46:21.993337
2017-02-16T21:20:25
2017-02-16T21:20:25
67,785,378
0
0
null
2016-09-13T09:52:33
2016-09-09T09:22:54
Python
UTF-8
Python
false
false
965
py
""" Ez egy dokumentációs string a programunk elején. Ide szokták beírni, hogy mit csinál a program. Ez a program definiál egy másodfokú egyenlet megoldó függvényt és megold néhány másodfokú egyenletet. Írj egy függvényt, ami paraméterként a másodfokú egyenlet a, b és c együtthatóit várja: ax**2 + bx + c = 0 forma esetén. -b +- gyök(b**2 - 4ac) ---------------------- 2a négyzetgyököt az importált sqrt() függvénnyel tudsz vonni. """ from math import sqrt def megoldo(a, b, c): """Másodfokú egyenlet megoldó. Visszatér a másodfokú egyenlet listába rendezett két gyökével.""" pass def main(): """Megoldandó másodfokú egyenletek""" egyenletek = [ [1, -3, -10], [2, -9, 4], [1, -3, -4], [1, -7, 0], [1, -2, 3], [1, -3, 2], [4, -11, 6] ] # Oldd meg és írasd ki ciklussal! if __name__ == '__main__': main()
1436bed40ecd073c5238666b7406512170c8414c
d7cfe98faeb0fe1b4ce02d54d8bbedaca82764f7
/1106_문제풀이/swea_5251_최소이동거리_solution(heap).py
2182c4588a300d2baac9a7f0efef028ae351d25d
[]
no_license
Anseik/algorithm
27cb5c8ec9692cf705a8cea1d60e079a7d78ef72
925404006b84178682206fbbb3b989dcf4c3dee9
refs/heads/master
2023-02-26T00:02:01.696624
2021-02-03T14:10:28
2021-02-03T14:10:28
301,753,927
0
0
null
null
null
null
UTF-8
Python
false
false
860
py
import sys import heapq sys.stdin = open('swea_5251_최소이동거리_solution.txt') def dijkstra_heap(): dist = [987654321] * (V + 1) visited = [False] * (V + 1) heap = [] dist[0] = 0 heapq.heappush(heap, (0, 0)) while heap: w, v = heapq.heappop(heap) if not visited[v]: visited[v] = True dist[v] = w for i in range(V + 1): if not visited[i] and dist[i] > dist[v] + adj[v][i]: heapq.heappush(heap, (dist[v] + adj[v][i], i)) return dist[V] T = int(input()) for tc in range(1, T + 1): V, E = map(int, input().split()) adj = [[987654321] * (V + 1) for _ in range(V + 1)] for i in range(E): st, ed, w = map(int, input().split()) adj[st][ed] = w ans = dijkstra_heap() print('#{} {}'.format(tc, ans))
352f6e17c51d8f3ef0e4cc8edce87cce6667407d
bb981602d111b709efec6279c3fccc6ef9efcc13
/blog/migrations/0001_initial.py
35b8244eae51e2a60ba29dd8edcdd84583a02924
[]
no_license
sompodsign/shampad_blog_pro
3897e5f95b48341b4058a5e42bb1ea70f1f9866e
b031b950e778b1534f433a33b84b37e93186e9b2
refs/heads/main
2023-02-27T13:15:00.984530
2021-02-11T16:06:01
2021-02-11T16:06:01
337,414,751
0
0
null
null
null
null
UTF-8
Python
false
false
2,548
py
# Generated by Django 3.1.5 on 2021-01-24 04:04 import ckeditor.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('taggit', '0003_taggeditem_add_unique_index'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=250)), ('subheading', models.CharField(max_length=300, null=True)), ('slug', models.SlugField(max_length=250, unique_for_date='publish')), ('body', ckeditor.fields.RichTextField(blank=True, null=True)), ('publish', models.DateTimeField(default=django.utils.timezone.now)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('status', models.CharField(choices=[('draft', 'Draft'), ('published', 'Published')], default='draft', max_length=10)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='blog_posts', to=settings.AUTH_USER_MODEL)), ('tags', taggit.managers.TaggableManager(help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags')), ], options={ 'ordering': ('-publish',), }, ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('email', models.EmailField(max_length=254)), ('body', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('active', models.BooleanField(default=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='blog.post')), ], options={ 'ordering': ('created',), }, ), ]
b0b78586d69b34335c3a959605e75ab6c38817cf
73758dde83d1a1823c103e1a4ba71e7c95168f71
/nsd2004/devweb/mysite/mysite/settings.py
58e918a61f92bb516161549dc5c59d8d67ec1e17
[]
no_license
tonggh220/md_5_nsd_notes
07ffdee7c23963a7a461f2a2340143b0e97bd9e1
a58a021ad4c7fbdf7df327424dc518f4044c5116
refs/heads/master
2023-07-02T01:34:38.798929
2021-05-12T08:48:40
2021-05-12T08:48:40
393,885,415
0
0
null
null
null
null
UTF-8
Python
false
false
3,240
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.12. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'w)u!*(f(^*=k_^m&%cu8+%qyp)z($2!$r=nr68&_&xbllq&d*n' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'polls', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'dj2004', 'USER': 'root', 'PASSWORD': 'tedu.cn', 'HOST': '127.0.0.1', 'PORT': '3306', } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
2d1650cd972e452861a4ceffa9d5cd93f683468b
c8c4f6c72ffc801cc24d69617c170c3ee093dc86
/ReadMeCleaner.py
8ae4a9379ea46720a301f31a7d8736eb1dde9e5f
[]
no_license
PasaOpasen/MathClasses
831d85eab3c038841a40ae3e7b0896dcf6706993
d11f124e09217fdc6deccfc59feb1a81378be1af
refs/heads/master
2021-12-14T17:54:36.235687
2021-11-30T08:15:21
2021-11-30T08:15:21
237,803,522
8
3
null
2020-12-03T14:07:40
2020-02-02T16:53:44
C#
UTF-8
Python
false
false
246
py
# -*- coding: utf-8 -*- """ Created on Thu Jun 25 16:10:36 2020 @author: qtckp """ with open('README.md', 'r') as f: t = f.readlines() with open('README.md', 'w') as f: for l in t: f.write(l.lstrip() if l != '\n' else l)
827ef53c1ea908502f11b3dce5f71710fb9c9100
93bd129c0d189124bb690670b22c4a80edda95b2
/pg/libs/log_lib.py
41f888b4bebff25a45783e32903571945e0d7155
[]
no_license
vdeandrade/32id-tomo
0690564d263392f52c3d239bd7aec7a0bfc507e1
ea0f5debf121648c1366c50f0a239ee938e6a32f
refs/heads/master
2020-12-22T16:00:35.300527
2020-01-28T21:51:35
2020-01-28T21:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,320
py
''' Log Lib for Sector 2-BM ''' import logging # Logging defines __GREEN = "\033[92m" __RED = '\033[91m' __YELLOW = '\033[33m' __ENDC = '\033[0m' logger = None info_extra={'endColor': __ENDC, 'color': __GREEN} warn_extra={'endColor': __ENDC, 'color': __YELLOW} error_extra={'endColor': __ENDC, 'color': __RED} def info(msg): global logger global info_extra logger.info(msg, extra=info_extra) def error(msg): global logger global error_extra logger.error(msg, extra=error_extra) def warning(msg): global logger global warn_extra logger.warning(msg, extra=warn_extra) def setup_logger(log_name, stream_to_console=True): global logger global info_extra global warn_extra global error_extra info_extra['logger_name'] = log_name warn_extra['logger_name'] = log_name error_extra['logger_name'] = log_name logger = logging.getLogger(log_name) fHandler = logging.FileHandler(log_name) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s %(color)s %(message)s %(endColor)s") fHandler.setFormatter(formatter) logger.addHandler(fHandler) if stream_to_console: ch = logging.StreamHandler() ch.setFormatter(formatter) ch.setLevel(logging.DEBUG) logger.addHandler(ch)
54ddf4c157f62fca30b578f135e52359bccbe23c
a644ae249712bddb9cb1b8d2a75812c107736fe5
/test/test2.py
362c1e5a84349bcf063528ac0c493fc057941bfd
[ "MIT" ]
permissive
linsalrob/SEED_Servers_Python
a834b7ce763e9d1e89cb76530e847f3fe6422df8
a2d2aa8c64547e94c3d6d031ebba46b8f9ed5716
refs/heads/master
2021-06-02T17:40:30.301307
2020-02-04T20:37:01
2020-02-04T20:37:01
38,650,052
0
2
null
null
null
null
UTF-8
Python
false
false
234
py
import sys from servers.SAP import SAPserver server=SAPserver() genomeID = '83333.1' sys.stderr.write("Genome: " + str(genomeID) + "\n") prots = server.all_proteins( {"-id" : genomeID} ) print("protein length " + str(len(prots)))
96b61046248a3e72e93e236aec968705b8d8a09c
cc78de009a8e7805f9f6a852774e0384b11bfdcb
/testcase/common/basePage/basePage.py
e16a2bdc7ec581f43c1f2ee9d521c66c74831b5f
[]
no_license
williamzxl/app_test_many_devices
c1806e54c17a84f18a04c3808604633c2deba052
dd5434018fadd11d5462903cafaafbb5b387c24a
refs/heads/master
2020-03-29T21:20:51.239295
2019-03-05T03:13:56
2019-03-05T03:13:56
150,361,766
1
1
null
null
null
null
UTF-8
Python
false
false
3,861
py
from testcase.common.basePage.web_view import WebView from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.keys import Keys from utils.log import logger class BasePage(WebView): def __init__(self, page=None, browser_type=None): if page: self.driver = page.driver else: super(BasePage, self).__init__(browser_type=browser_type) def get_driver(self): return self.driver def open(self, appium_url, desired_caps): try: logger.info("Open appium_url: {}".format(appium_url)) logger.info("desired_caps:{}".format(desired_caps)) self.get(appium_url, desired_caps) except: logger.warning("Cant open appium url:{}".format(appium_url)) raise ValueError("Connect appium failed!") def find_element(self, *loc): try: WebDriverWait(self.driver, 30).until(EC.visibility_of_element_located(loc)) logger.info("Success return self.driver.find_element(*loc):{}".format(loc)) return self.driver.find_element(*loc) except TimeoutError: logger.error("In {} cant find {}".format(self, loc)) return False def find_elements(self, *loc): try: WebDriverWait(self.driver, 30).until(EC.visibility_of_element_located(loc)) logger.info("Success return self.driver.find_element(*loc):{}".format(loc)) return self.driver.find_elements(*loc) except TimeoutError: # print("In {} cant find {}".format(self, loc)) logger.error("In {} cant find {}".format(self, loc)) return False # def script(self, src): # self.driver.execute_script(src) def sendKeys(self, loc, value, clear_first=True, click_first=True): try: # loc = getattr(self, "_{}".format(loc)) if click_first: # self.find_element(*loc).click() loc.click() if clear_first: # self.find_element(*loc).clear() loc.clear() # self.find_element(*loc).send_keys(value) loc.send_keys(value) except AttributeError: logger.error("{} page cant find {} element".format(self, loc)) def get_url(self): return self.driver.current_url def getEleText(self,ele): return ele.text def getEleSize(self, ele): return ele.size def getEleLocation(self, ele): return ele.location def is_selected(self, element): element.is_selected() def is_enabled(self, element): element.is_enabled() def is_displayed(self, element): element.is_displayed() def enter(self, element): element.send_keys(Keys.RETURN) def click(self, element): element.click() def submit(self): pass def getEleAttribute(self, element, attribute): return element.get_attribute(attribute) # def getAttribute(self, ele, name): # return ele.get_attribute(name) def getText(self, element): try: return element.text except SyntaxError: logger.error("No such element TEXT") def getTitle(self): return self.driver.title def getCurrentUrl(self): return self.driver.current_url def get_contexts(self): return self.driver.contexts() def get_current_context(self): return self.driver.current_context() def get_context(self): return self.driver.context() def page_source(self): return self.driver.page_source def page_source_test(self): return self.driver.page_source if __name__ == "__main__": test = BasePage() test.open()
986c55e0d84ee0bd44afcf5e2e73e30436d3f834
a3746020cf091f433beb41bde1b62818b4de569b
/new_rule/ticket-rules/oracle/DML_SORT.py
3010c2c185dc831b9fbf2b84a1610544000dec4e
[]
no_license
kk71/sqlaudit
59bab5765a67f56f1dd2f3103812051c5acbbc49
747aaa02573a9c2b46a9e14415d27c0ab8e6158c
refs/heads/master
2023-02-04T18:38:46.125746
2020-06-05T09:49:46
2020-06-05T09:49:46
323,559,338
1
0
null
null
null
null
UTF-8
Python
false
false
329
py
import re def code(rule, entries, **kwargs): single_sql: dict = kwargs.get("single_sql") sql_text: str = single_sql["sql_text_no_comment"] dml_sort = re.compile("(\\s)?((update )|(delete )).*order by") if dml_sort.search(sql_text): return -rule.weight, [] return None, [] code_hole.append(code)
24d3b4732a400d5973fc072d2830077bbc9fe7ec
dd143f56fbceecf039d139e2bc07f27f4837be82
/manage.py
b0b78f6ced3bddcde196e42c492dc4e98c6f29ec
[]
no_license
maxweaker/OVSMS-backend
1468924b109bb8717f6337664c0601d2af18ea7c
7372e40e62c6eaf0c9fd309a47b798c1795e6007
refs/heads/master
2023-06-05T11:46:48.472605
2021-06-18T14:48:49
2021-06-18T14:48:49
378,168,229
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'OVSMS.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
305b4d8a0ed416ed5c175894f2c49dbe30f16039
c570dcfc3ec166f73719a81b02262bf2885b458b
/setup.py
efa6fdfa8b383ac34d7981c70b9a5883ca632879
[]
no_license
thatch45/archinator
9eb139a064b8dafe3a63ec9a27177a21b96357ef
2e4d9874b0cd9fee68f90ebe4bf2c20dfb1fb220
refs/heads/master
2020-06-01T03:52:43.793091
2013-06-24T05:24:04
2013-06-24T05:24:04
10,711,450
1
0
null
null
null
null
UTF-8
Python
false
false
420
py
#!/usr/bin/env python from distutils.core import setup setup(name='archinator', version='0.5.0', description='Virtual machine generator for ArchLinux', author='Thomas S Hatch', author_email='[email protected]', url='https://github.com/thatch45/archinator', packages=[ 'archinator', 'archinator.utils', ], scripts=['scripts/archinator'], )
eaa85e885404219c0a831b463a0c456fffe1d7f0
4546398a18590e4e182629fb55d185547dd6df0a
/2023/problems/millifaersla/submissions/partially_accepted/strings_0.py
a370ff95a0790d6ce6228aa8fa0be95e244d3908
[]
no_license
ForritunarkeppniFramhaldsskolanna/Keppnir
352341fa97c6349af65b513c03171f3e706f7db2
65c8eb5358d8a49f956edf76c2d47b9372accc3c
refs/heads/master
2023-04-28T15:33:36.396225
2023-04-23T15:00:15
2023-04-23T15:00:15
78,303,702
1
2
null
null
null
null
UTF-8
Python
false
false
173
py
#!/usr/bin/python3 a = input() b = input() c = input() if a < b and a < c: print("Monnei") elif b < a and b < c: print("Fjee") else: print("Dolladollabilljoll")
18939fdae293b7a96059b4ed05b61fab9a65a3e3
c4e97f2eb1081d8fad5e64872c3d6acf9a89d445
/Solutions/0135_candy.py
af76e71034174d61806ca337a98996a7aa0af28e
[]
no_license
YoupengLi/leetcode-sorting
0efb3f4d7269c76a3ed11caa3ab48c8ab65fea25
3d9e0ad2f6ed92ec969556f75d97c51ea4854719
refs/heads/master
2020-05-18T23:28:51.363862
2019-09-12T00:42:14
2019-09-12T00:42:14
184,712,501
3
1
null
null
null
null
UTF-8
Python
false
false
2,312
py
# -*- coding: utf-8 -*- # @Time : 2019/7/18 0018 09:54 # @Author : Youpeng Li # @Site : # @File : 0135_candy.py # @Software: PyCharm ''' 135. Candy There are N children standing in a line. Each child is assigned a rating value. You are giving candies to these children subjected to the following requirements: Each child must have at least one candy. Children with a higher rating get more candies than their neighbors. What is the minimum candies you must give? Example 1: Input: [1,0,2] Output: 5 Explanation: You can allocate to the first, second and third child with 2, 1, 2 candies respectively. Example 2: Input: [1,2,2] Output: 4 Explanation: You can allocate to the first, second and third child with 1, 2, 1 candies respectively. The third child gets 1 candy because it satisfies the above two conditions. ''' class Solution: def candy(self, ratings: 'List[int]') -> 'int': if not ratings: return 0 res = [1] * len(ratings) lbase, rbase = 1, 1 for i in range(1, len(ratings)): # 从左向右扫描 lbase = lbase + 1 if ratings[i] > ratings[i - 1] else 1 res[i] = lbase for i in range(len(ratings) - 2, -1, -1): # 从右向左扫描 rbase = rbase + 1 if ratings[i] > ratings[i + 1] else 1 res[i] = max(rbase, res[i]) return sum(res) def candy_1(self, ratings: 'List[int]') -> 'int': peak = down = up = 0 res = 1 for i in range(1, len(ratings)): if ratings[i - 1] < ratings[i]: up += 1 down = 0 peak = up res += 1 + up elif ratings[i - 1] == ratings[i]: up = down = peak = 0 res += 1 else: up = 0 down += 1 res += 1 + down + ((-1) if peak >= down else 0) return res if __name__ == "__main__": a = Solution() ratings = [1, 0, 2] print(a.candy(ratings)) print(a.candy_1(ratings)) ratings = [1, 2, 2] print(a.candy(ratings)) print(a.candy_1(ratings)) ratings = [1, 2, 3, 2, 1, 0] print(a.candy(ratings)) print(a.candy_1(ratings))
fcfd0e41293518178f353971f8e706f2fb7b44c2
8bbeb7b5721a9dbf40caa47a96e6961ceabb0128
/python3/212.Word Search II(单词搜索 II).py
b33e11ee9eccfd5d5831b32835b4be8c3ca57304
[ "MIT" ]
permissive
lishulongVI/leetcode
bb5b75642f69dfaec0c2ee3e06369c715125b1ba
6731e128be0fd3c0bdfe885c1a409ac54b929597
refs/heads/master
2020-03-23T22:17:40.335970
2018-07-23T14:46:06
2018-07-23T14:46:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,685
py
""" <p>Given a 2D board and a list of words from the dictionary, find all words in the board.</p> <p>Each word must be constructed from letters of sequentially adjacent cell, where &quot;adjacent&quot; cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p> <p><strong>Example:</strong></p> <pre> <strong>Input:</strong> <b>words</b> = <code>[&quot;oath&quot;,&quot;pea&quot;,&quot;eat&quot;,&quot;rain&quot;]</code> and <b>board </b>= [ [&#39;<span style="color:#d70">o</span>&#39;,&#39;<span style="color:#d70">a</span>&#39;,&#39;a&#39;,&#39;n&#39;], [&#39;e&#39;,&#39;<span style="color:#d30">t</span>&#39;,&#39;<span style="color:#d00">a</span>&#39;,&#39;<span style="color:#d00">e</span>&#39;], [&#39;i&#39;,&#39;<span style="color:#d70">h</span>&#39;,&#39;k&#39;,&#39;r&#39;], [&#39;i&#39;,&#39;f&#39;,&#39;l&#39;,&#39;v&#39;] ] <strong>Output:&nbsp;</strong><code>[&quot;eat&quot;,&quot;oath&quot;]</code> </pre> <p><b>Note:</b><br /> You may assume that all inputs are consist of lowercase letters <code>a-z</code>.</p><p>给定一个二维网格&nbsp;<strong>board&nbsp;</strong>和一个字典中的单词列表 <strong>words</strong>,找出所有同时在二维网格和字典中出现的单词。</p> <p>单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中&ldquo;相邻&rdquo;单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。</p> <p><strong>示例:</strong></p> <pre><strong>输入:</strong> <strong>words</strong> = <code>[&quot;oath&quot;,&quot;pea&quot;,&quot;eat&quot;,&quot;rain&quot;]</code> and <strong>board </strong>= [ [&#39;<strong>o</strong>&#39;,&#39;<strong>a</strong>&#39;,&#39;a&#39;,&#39;n&#39;], [&#39;e&#39;,&#39;<strong>t</strong>&#39;,&#39;<strong>a</strong>&#39;,&#39;<strong>e</strong>&#39;], [&#39;i&#39;,&#39;<strong>h</strong>&#39;,&#39;k&#39;,&#39;r&#39;], [&#39;i&#39;,&#39;f&#39;,&#39;l&#39;,&#39;v&#39;] ] <strong>输出:&nbsp;</strong><code>[&quot;eat&quot;,&quot;oath&quot;]</code></pre> <p><strong>说明:</strong><br> 你可以假设所有输入都由小写字母 <code>a-z</code>&nbsp;组成。</p> <p><strong>提示:</strong></p> <ul> <li>你需要优化回溯算法以通过更大数据量的测试。你能否早点停止回溯?</li> <li>如果当前单词不存在于所有单词的前缀中,则可以立即停止回溯。什么样的数据结构可以有效地执行这样的操作?散列表是否可行?为什么? 前缀树如何?如果你想学习如何实现一个基本的前缀树,请先查看这个问题: <a href="/problems/implement-trie-prefix-tree/description/">实现Trie(前缀树)</a>。</li> </ul> <p>给定一个二维网格&nbsp;<strong>board&nbsp;</strong>和一个字典中的单词列表 <strong>words</strong>,找出所有同时在二维网格和字典中出现的单词。</p> <p>单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中&ldquo;相邻&rdquo;单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母在一个单词中不允许被重复使用。</p> <p><strong>示例:</strong></p> <pre><strong>输入:</strong> <strong>words</strong> = <code>[&quot;oath&quot;,&quot;pea&quot;,&quot;eat&quot;,&quot;rain&quot;]</code> and <strong>board </strong>= [ [&#39;<strong>o</strong>&#39;,&#39;<strong>a</strong>&#39;,&#39;a&#39;,&#39;n&#39;], [&#39;e&#39;,&#39;<strong>t</strong>&#39;,&#39;<strong>a</strong>&#39;,&#39;<strong>e</strong>&#39;], [&#39;i&#39;,&#39;<strong>h</strong>&#39;,&#39;k&#39;,&#39;r&#39;], [&#39;i&#39;,&#39;f&#39;,&#39;l&#39;,&#39;v&#39;] ] <strong>输出:&nbsp;</strong><code>[&quot;eat&quot;,&quot;oath&quot;]</code></pre> <p><strong>说明:</strong><br> 你可以假设所有输入都由小写字母 <code>a-z</code>&nbsp;组成。</p> <p><strong>提示:</strong></p> <ul> <li>你需要优化回溯算法以通过更大数据量的测试。你能否早点停止回溯?</li> <li>如果当前单词不存在于所有单词的前缀中,则可以立即停止回溯。什么样的数据结构可以有效地执行这样的操作?散列表是否可行?为什么? 前缀树如何?如果你想学习如何实现一个基本的前缀树,请先查看这个问题: <a href="/problems/implement-trie-prefix-tree/description/">实现Trie(前缀树)</a>。</li> </ul> """ class Solution: def findWords(self, board, words): """ :type board: List[List[str]] :type words: List[str] :rtype: List[str] """
a1c525970930a33a6c0f1bf1920e3c29220e62b8
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/M/mgrollins/eu_location_scraper.py
f3f5904113f77d083f6938f71bc20e35e5486059
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,476
py
import scraperwiki import lxml.html from lxml import etree html = scraperwiki.scrape("http://www.edd.ca.gov/jobs_and_training/Experience_Unlimited_Local_Information.htm") root = lxml.html.fromstring(html) locations = [] #for lel in root.cssselect("div.main_content"): print "in lel loop" for el in root.cssselect("div.content_left_column h2"): if el.text_content() != "More Information": locations.append(el.text_content()) print "in el loop" # for lel in el.cssselect("*"): # print lel.text_content() # break # place holder for loc in locations: print loc +",", # scraperwiki.sqlite.save(unique_keys = ['locations'], data = locations) # print lxml.html.tostring(el)import scraperwiki import lxml.html from lxml import etree html = scraperwiki.scrape("http://www.edd.ca.gov/jobs_and_training/Experience_Unlimited_Local_Information.htm") root = lxml.html.fromstring(html) locations = [] #for lel in root.cssselect("div.main_content"): print "in lel loop" for el in root.cssselect("div.content_left_column h2"): if el.text_content() != "More Information": locations.append(el.text_content()) print "in el loop" # for lel in el.cssselect("*"): # print lel.text_content() # break # place holder for loc in locations: print loc +",", # scraperwiki.sqlite.save(unique_keys = ['locations'], data = locations) # print lxml.html.tostring(el)
566aba3d4ea799a084e1bf8b391feb92af2aee30
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_write_f/security-group-egres_revoke.py
36344b5fae7779de59a4902f9442cdb2b9e42c4b
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
541
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ authorize-security-group-egress : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/authorize-security-group-egress.html """ write_parameter("ec2", "revoke-security-group-egress")
825f13b7aa37b7b3cd56b91a7ee8f3c5a8daf35d
1a166165ab8287d01cbb377a13efdb5eff5dfef0
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_06_01/operations/_connection_monitors_operations.py
7af61de42b8c2663b9b4e05b55533dcf559929a0
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
manoj0806/azure-sdk-for-python
7a14b202ff80f528abd068bf50334e91001a9686
aab999792db1132232b2f297c76800590a901142
refs/heads/master
2023-04-19T16:11:31.984930
2021-04-29T23:19:49
2021-04-29T23:19:49
363,025,016
1
0
MIT
2021-04-30T04:23:35
2021-04-30T04:23:35
null
UTF-8
Python
false
false
45,729
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ConnectionMonitorsOperations(object): """ConnectionMonitorsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _create_or_update_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.ConnectionMonitor" **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ConnectionMonitor') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.ConnectionMonitor" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ConnectionMonitorResult"] """Create or update a connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param parameters: Parameters that define the operation to create a connection monitor. :type parameters: ~azure.mgmt.network.v2020_06_01.models.ConnectionMonitor :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ConnectionMonitorResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_06_01.models.ConnectionMonitorResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def get( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" """Gets a connection monitor by name. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionMonitorResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_06_01.models.ConnectionMonitorResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def update_tags( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorResult" """Update tags of the specified connection monitor. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param parameters: Parameters supplied to update connection monitor tags. :type parameters: ~azure.mgmt.network.v2020_06_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: ConnectionMonitorResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_06_01.models.ConnectionMonitorResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ConnectionMonitorResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} # type: ignore def _stop_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._stop_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _stop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} # type: ignore def begin_stop( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Stops the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._stop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} # type: ignore def _start_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._start_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _start_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} # type: ignore def begin_start( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Starts the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._start_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} # type: ignore def _query_initial( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ConnectionMonitorQueryResult" cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorQueryResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" # Construct URL url = self._query_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _query_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} # type: ignore def begin_query( self, resource_group_name, # type: str network_watcher_name, # type: str connection_monitor_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ConnectionMonitorQueryResult"] """Query a snapshot of the most recent connection states. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name given to the connection monitor. :type connection_monitor_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ConnectionMonitorQueryResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_06_01.models.ConnectionMonitorQueryResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorQueryResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._query_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ConnectionMonitorQueryResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_query.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} # type: ignore def list( self, resource_group_name, # type: str network_watcher_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ConnectionMonitorListResult"] """Lists all connection monitors for the specified Network Watcher. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ConnectionMonitorListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_06_01.models.ConnectionMonitorListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ConnectionMonitorListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ConnectionMonitorListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors'} # type: ignore
29e1406fefde1df7fe0c61d695ea159a957875f9
81579ecd0678d652bbb57ff97529631fcfb74b12
/corehq/ex-submodules/dimagi/utils/tests/test_rate_limit.py
184a6cec42531b4957a7d54581d3e65eb21f137c
[ "BSD-3-Clause" ]
permissive
dungeonmaster51/commcare-hq
64fece73671b03c1bca48cb9d1a58764d92796ea
1c70ce416564efa496fb4ef6e9130c188aea0f40
refs/heads/master
2022-12-03T21:50:26.035495
2020-08-11T07:34:59
2020-08-11T07:34:59
279,546,551
1
0
BSD-3-Clause
2020-07-31T06:13:03
2020-07-14T09:51:32
Python
UTF-8
Python
false
false
1,707
py
from dimagi.utils.rate_limit import rate_limit, DomainRateLimiter from django.test import SimpleTestCase # import the datetime module and not datetime.datetime: # "datetime" has to be the datetime module since the tests/__init__.py file # just imports * from all test files and the json_format_datetime doctest # expects datetime to be the datetime module import datetime class RateLimitTestCase(SimpleTestCase): def test_rate_limit(self): start = datetime.datetime.utcnow() rate_limit_count = 0 iteration_count = 0 while (datetime.datetime.utcnow() - start) < datetime.timedelta(seconds=5): # Only allow 10 actions every 3 seconds in an 5 second period of time if rate_limit('rate-limit-test', actions_allowed=10, how_often=3): rate_limit_count += 1 iteration_count += 1 self.assertEqual(rate_limit_count, 20) self.assertGreater(iteration_count, 20) def test_domain_rate_limit(self): rate_limiter = DomainRateLimiter('rate-limit-domain-', 10, 3) domains = ('d1', 'd2') domain_counts = {domain: 0 for domain in domains} start = datetime.datetime.utcnow() iteration_count = 0 while (datetime.datetime.utcnow() - start) < datetime.timedelta(seconds=5): # Only allow 10 actions every 3 seconds in an 5 second period of time for domain in domains: if rate_limiter.can_perform_action(domain): domain_counts[domain] += 1 iteration_count += 1 for domain in domains: self.assertEqual(domain_counts[domain], 20) self.assertGreater(iteration_count, 20)
96316fd59416a2a1748dfc80c77c04bf5370fef9
b415e5f6f8da01961853a14fad31957a51500847
/handle_input.py
7f0c5dd670ee179cafbba09a4b01598859dc62e3
[]
no_license
Zireael07/veins-of-the-earth-bearlib
4ec1f6c477a503bb5549a3871023caafe345887f
2b6c4ec6140a1e94551990e4de096a27d5b3d5f6
refs/heads/master
2020-04-05T14:05:46.445845
2018-07-01T19:01:06
2018-07-01T19:01:06
94,756,259
15
0
null
null
null
null
UTF-8
Python
false
false
11,660
py
from bearlibterminal import terminal as blt import constants from game_states import GameStates import gui_menus from renderer import pix_to_iso from map_common import map_check_for_items, find_unexplored_closest, Directions, find_exit_for_pos from tile_lookups import TileTypes, get_index import game_vars #def initialize_player(player): # global PLAYER # PLAYER = player # nowhere else to put it? def get_top_log_string_index(): # msg_num = -constants.NUM_MESSAGES check = -4 #print("Checking " + str(check)) if not game_vars.message_history: return None if len(game_vars.message_history) < 4: check = -len(game_vars.message_history) if game_vars.message_history[check]: return check def click_on_msg_log(m_y): log_h = blt.state(blt.TK_HEIGHT) - (constants.NUM_MESSAGES) # which line? if m_y == log_h: # print("Clicked over line #1") check = get_top_log_string_index() if check is not None: print(game_vars.message_history[check]) gui_menus.display_dmg_window(check) elif m_y == log_h + 1: check = get_top_log_string_index() if check is not None: print(game_vars.message_history[check + 1]) gui_menus.display_dmg_window(check + 1) elif m_y == log_h + 2: check = get_top_log_string_index() if check is not None: print(game_vars.message_history[check + 2]) gui_menus.display_dmg_window(check + 2) elif m_y == log_h + 3: check = get_top_log_string_index() if check is not None: print(game_vars.message_history[check + 3]) gui_menus.display_dmg_window(check + 3) # player input def game_handle_mouse_input(key): # left key if key == blt.TK_MOUSE_LEFT: pix_x = blt.state(blt.TK_MOUSE_PIXEL_X) pix_y = blt.state(blt.TK_MOUSE_PIXEL_Y) m_x = blt.state(blt.TK_MOUSE_X) m_y = blt.state(blt.TK_MOUSE_Y) # did we click over the message log? if m_x < 40: click_on_msg_log(m_y) # press over map else: # fake an offset of camera offset * cell width pix_x = pix_x - game_vars.camera.offset[0] * blt.state(blt.TK_CELL_WIDTH) # fake an offset of camera offset * cell height pix_y = pix_y - game_vars.camera.offset[1] * blt.state(blt.TK_CELL_HEIGHT) click_x, click_y = pix_to_iso(pix_x, pix_y) if click_x >= 0 and click_x < len(game_vars.level.current_map): if click_y >= 0 and click_y < len(game_vars.level.current_map[0]): print "Clicked on tile " + str(click_x) + " " + str(click_y) if click_x != game_vars.player.x or click_y != game_vars.player.y: moved = game_vars.player.creature.move_towards(click_x, click_y, game_vars.level.current_map) if (moved[0]): game_vars.camera.move(moved[1], moved[2]) game_vars.fov_recompute = True return "player-moved" # pressed right mouse button if key == blt.TK_MOUSE_RIGHT: pix_x = blt.state(blt.TK_MOUSE_PIXEL_X) pix_y = blt.state(blt.TK_MOUSE_PIXEL_Y) print "Right clicked on tile " + str(pix_to_iso(pix_x, pix_y)) return "mouse_click" # these directions mean that up goes up on the displayed map KEY_TO_DIR = { blt.TK_UP: Directions.NORTHWEST, blt.TK_DOWN: Directions.SOUTHEAST, blt.TK_LEFT: Directions.SOUTHWEST, blt.TK_RIGHT: Directions.NORTHEAST, blt.TK_HOME: Directions.WEST, blt.TK_PAGEUP: Directions.NORTH, blt.TK_PAGEDOWN: Directions.SOUTH, blt.TK_END: Directions.EAST, blt.TK_PERIOD: Directions.CENTER, # numpad blt.TK_KP_8: Directions.NORTHWEST, blt.TK_KP_2: Directions.SOUTHEAST, blt.TK_KP_4: Directions.SOUTHWEST, blt.TK_KP_6: Directions.NORTHEAST, blt.TK_KP_7: Directions.WEST, blt.TK_KP_9: Directions.NORTH, blt.TK_KP_1: Directions.SOUTH, blt.TK_KP_3: Directions.EAST, blt.TK_KP_ENTER: Directions.CENTER } KEY_TO_DIR_VI = { blt.TK_K: Directions.NORTHWEST, blt.TK_J: Directions.SOUTHEAST, blt.TK_H: Directions.SOUTHWEST, blt.TK_L: Directions.NORTHEAST, blt.TK_Y: Directions.WEST, blt.TK_U: Directions.NORTH, blt.TK_B: Directions.SOUTH, blt.TK_N: Directions.EAST, blt.TK_PERIOD: Directions.CENTER, } def get_up_key(): # no way to convert the integer back to string... #src = KEY_TO_DIR if not constants.VI_KEYS else KEY_TO_DIR_VI #return str(src.keys()[0]) if constants.VI_KEYS: return "K" else: return "UP/KP 8" def game_key_move(key): src = KEY_TO_DIR if not constants.VI_KEYS else KEY_TO_DIR_VI if src[key] != Directions.CENTER and game_vars.player.creature.move(src[key][0], src[key][1], game_vars.level.current_map): game_vars.camera.move(src[key][0], src[key][1]) game_vars.fov_recompute = True # clear move queue game_vars.player.creature.move_queue = [] # switch off a-e game_vars.player.creature.player.autoexplore = False elif src[key] == Directions.CENTER: #print("Pass turn") # clear move queue game_vars.player.creature.move_queue = [] # switch off a-e game_vars.player.creature.player.autoexplore = False return "player-moved" def game_player_turn_input(key): if blt.check(blt.TK_SHIFT) and key == blt.TK_PERIOD: if game_vars.level.current_map[game_vars.player.x][game_vars.player.y] == get_index(TileTypes.STAIRS): # .stairs: if hasattr(game_vars.level, 'exits'): dest = find_exit_for_pos(game_vars.player.x, game_vars.player.y) game_vars.game_obj.next_level(dest) else: game_vars.game_obj.next_level() return "redraw" #return "player-moved"L if not blt.check(blt.TK_SHIFT) and not constants.VI_KEYS and key in KEY_TO_DIR or constants.VI_KEYS and key in KEY_TO_DIR_VI: return game_key_move(key) if blt.check(blt.TK_SHIFT) and key == blt.TK_COMMA: if game_vars.level.current_map[game_vars.player.x][game_vars.player.y] == get_index(TileTypes.STAIRS_UP): game_vars.game_obj.previous_level(game_vars.level.gen_type) return "redraw" #return "player-moved" # items if key == blt.TK_G: ents = map_check_for_items(game_vars.player.x, game_vars.player.y, game_vars.level.current_entities) if ents is not None: if len(ents) > 1: chosen_item = gui_menus.pickup_menu(ents) if chosen_item is not None: chosen_item.item.pick_up(game_vars.player) return "player-moved" else: ents[0].item.pick_up(game_vars.player) return "player-moved" if key == blt.TK_D: chosen_item = gui_menus.drop_menu(game_vars.player) if chosen_item is not None: game_vars.player.container.inventory[chosen_item].item.drop(game_vars.player) return "player-moved" if key == blt.TK_I: chosen_item = gui_menus.inventory_menu("Inventory", game_vars.player) if chosen_item is not None: if chosen_item.item: action = gui_menus.item_actions_menu(chosen_item) if action is None: return # actions if action == 0: chosen_item.item.use(game_vars.player) return "player-moved" elif action == 1: chosen_item.item.drop(game_vars.player) return "player-moved" if key == blt.TK_C: gui_menus.character_sheet_menu("Character sheet", game_vars.player) if key == blt.TK_R: game_vars.player.creature.player.rest_start(30) return "player-moved" # # testing # if key == blt.TK_M: # if game_vars.player.creature.player.autoexplore: # # # do we have a queue? # if len(game_vars.player.creature.player.move_queue) > 1: # print("We have a queue") # moved = game_vars.player.creature.player.moves_from_queue() # # if (moved[0]): # game_vars.camera.move(moved[1], moved[2]) # game_vars.fov_recompute = True # # return "player-moved" # # else: # print("No queue!") # else: # print("Not autoexploring") if key == blt.TK_E: # toggle if not game_vars.player.creature.player.autoexplore: game_vars.player.creature.player.autoexplore = True else: game_vars.player.creature.player.autoexplore = False if game_vars.player.creature.player.autoexplore: # do we have a queue? if len(game_vars.player.creature.move_queue) > 1: print("We have a queue") moved = game_vars.player.creature.moves_from_queue() else: x, y = find_unexplored_closest(game_vars.player.x, game_vars.player.y, game_vars.level.current_map, game_vars.level.current_explored) print("Closest unexplored is " + str(x) + " " + str(y)) game_vars.player.creature.move_towards_path_queue(x, y, game_vars.level.current_map) moved = game_vars.player.creature.moves_from_queue() if moved is not None and moved[0]: game_vars.camera.move(moved[1], moved[2]) game_vars.fov_recompute = True return "player-moved" # test if key == blt.TK_M: return "redraw" def game_handle_keys(key): #key = blt.read() if key in (blt.TK_ESCAPE, blt.TK_CLOSE): return "QUIT" if game_vars.game_state == GameStates.MAIN_MENU: if key not in (blt.TK_S, blt.TK_L): return "QUIT" # don't handle keys at all if resting if not game_vars.player.creature.player.resting: if not constants.VI_KEYS and key == blt.TK_L or constants.VI_KEYS and blt.check(blt.TK_SHIFT) and key == blt.TK_M: gui_menus.log_menu("Log history", 0, 26) if blt.check(blt.TK_SHIFT) and key == blt.TK_SLASH: gui_menus.help_menu() # Debugging if blt.check(blt.TK_SHIFT) and key == blt.TK_GRAVE: # print("Debug mode on") # constants.DEBUG = True return gui_menus.debug_menu(game_vars.player) # Toggle labels if key == blt.TK_TAB: #print("Toggle labels") game_vars.labels = not game_vars.labels print("Labels: " + " " + str(game_vars.labels)) blt.layer(4) blt.clear_area(0, 0, blt.state(blt.TK_WIDTH, blt.state(blt.TK_HEIGHT))) if game_vars.labels: return "redraw" if key == blt.TK_MOUSE_LEFT or key == blt.TK_MOUSE_RIGHT: #print("Mouse input") return game_handle_mouse_input(key) if game_vars.game_state == GameStates.PLAYER_TURN: #print (game_player_turn_input(key)) return game_player_turn_input(key) return "no-action" global ACT ACT = None def get_fake_action(): return ACT def fake_action(action): global ACT ACT = action def reset_fake_action(): global ACT ACT = None
555fc6f9037745f8d467cab753ff6fb8e6cb83c3
12f43487042025b5d27a1fba104bf1a7ce1f8cee
/src/single_sided_node_v1.py
f5027365074a79801182b0c123a7d54d0e967595
[]
no_license
goerz-research/trajoct
e6c22a591fea98c3e287d135265a532001423fa9
601ef68465dff77552838c38bcbdfef510325289
refs/heads/master
2021-09-16T10:50:07.023190
2018-06-19T18:24:27
2018-06-19T18:24:27
79,431,666
0
0
null
null
null
null
UTF-8
Python
false
false
2,161
py
"""Description of nodes consisting of a single-sided cavity with an atom inside""" import sympy from sympy import symbols, sqrt from qnet.algebra.hilbert_space_algebra import LocalSpace from qnet.algebra.operator_algebra import Destroy, LocalSigma from qnet.algebra.circuit_algebra import SLH, identity_matrix def dagger(op): return op.adjoint() def syms_ops(node_index, n_cavity): """Define symbols and operators for a single node, required to write the SLH for a single node""" HilAtom = LocalSpace('q%d' % int(node_index), basis=('g', 'e'), order_index=(2*node_index)) HilCavity = LocalSpace('c%d' % int(node_index), dimension=n_cavity, order_index=(2*node_index+1)) Sym = {} Sym['Delta'] = symbols(r'Delta_%s' % node_index, real=True) Sym['g'] = symbols(r'g_%s' % node_index, positive=True) Sym['Omega'] = symbols(r'Omega_%s' % node_index) Sym['I'] = sympy.I Sym['kappa'] = symbols(r'kappa', positive=True) Op = {} Op['a'] = Destroy(hs=HilCavity) Op['|g><g|'] = LocalSigma('g', 'g', hs=HilAtom) Op['|e><e|'] = LocalSigma('e', 'e', hs=HilAtom) Op['|e><g|'] = LocalSigma('e', 'g', hs=HilAtom) return Sym, Op def node_hamiltonian(Sym, Op): """Symbolic Hamiltonian for a single node, in the RWA""" # Symbols Δ, g, Ω, I = (Sym['Delta'], Sym['g'], Sym['Omega'], Sym['I']) δ = g**2 / Δ # Cavity operators Op_a = Op['a']; Op_a_dag = dagger(Op_a); Op_n = Op_a_dag * Op_a # Qubit operators Op_gg = Op['|g><g|']; Op_eg = Op['|e><g|']; Op_ge = dagger(Op_eg) # Hamiltonian H = -δ * Op_n + (g**2/Δ) * Op_n * Op_gg \ -I * (g / (2*Δ)) * Ω * (Op_eg*Op_a - Op_ge*Op_a_dag) return H def node_slh(node_index, n_cavity): """SLH description for a single node with the given `node_index` (which will become the subscript in all symbols) and `n_cavity` number of levels for the cavity """ Sym, Op = syms_ops(node_index, n_cavity) S = identity_matrix(1) κ = Sym['kappa'] L = [sqrt(2 * κ) * Op['a'], ] H = node_hamiltonian(Sym, Op) return SLH(S, L, H)
8f7e338e2a4ee08be8821b94e9b121b3d4183900
1a59a9076c1e9f1eb98e24ff41a4c1c95e2b353e
/xcp2k/classes/_program_run_info48.py
ad7fd8d53c9700a84b6260b359b618ea1c560e29
[]
no_license
Roolthasiva/xcp2k
66b2f30ebeae1a946b81f71d22f97ea4076e11dc
fc3b5885503c6f6dc549efeb4f89f61c8b6b8242
refs/heads/master
2022-12-23T06:03:14.033521
2020-10-07T08:01:48
2020-10-07T08:01:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
from xcp2k.inputsection import InputSection from xcp2k.classes._each400 import _each400 class _program_run_info48(InputSection): def __init__(self): InputSection.__init__(self) self.Section_parameters = None self.Add_last = None self.Common_iteration_levels = None self.Filename = None self.Log_print_key = None self.EACH = _each400() self._name = "PROGRAM_RUN_INFO" self._keywords = {'Add_last': 'ADD_LAST', 'Common_iteration_levels': 'COMMON_ITERATION_LEVELS', 'Filename': 'FILENAME', 'Log_print_key': 'LOG_PRINT_KEY'} self._subsections = {'EACH': 'EACH'} self._attributes = ['Section_parameters']
ecf84eae3c1133e0064c0034147e1be38ac43df8
3e24611b7315b5ad588b2128570f1341b9c968e8
/pacbiolib/pacbio/pythonpkgs/pbfalcon/lib/python2.7/site-packages/pbfalcon/cli/hgap_run.py
39e6bd872b1c9ab4cffaeaca7d0be2a224123c6d
[ "BSD-2-Clause" ]
permissive
bioCKO/lpp_Script
dc327be88c7d12243e25557f7da68d963917aa90
0cb2eedb48d4afa25abc2ed7231eb1fdd9baecc2
refs/heads/master
2022-02-27T12:35:05.979231
2019-08-27T05:56:33
2019-08-27T05:56:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
544
py
from falcon_polish.pypeflow import hgap import argparse import sys def main(argv=sys.argv): parser = argparse.ArgumentParser() parser.add_argument('--logging', help='.ini or .json config file for Python logging module') parser.add_argument('config', help='.ini or .json of HGAP config. Available sections: "general", "hgap", "falcon", "pbsmrtpipe", "blasr", "quiver", ...') args = parser.parse_args(argv[1:]) return hgap.run(args.config, args.logging) if __name__ == "__main__": main(sys.argv)