blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
1444fabc87c6268c4d00f05ceae669c89e1d8f14
a2ac73af04a07bb070cd85c88778608b561dd3e4
/addons/account_analytic_default/__init__.py
2572f5f1572ae78ee423ba7fc1e6ff5727c8bdb2
[]
no_license
sannareddy/openerp-heimai
c849586d6099cc7548dec8b3f1cc7ba8be49594a
58255ecbcea7bf9780948287cf4551ed6494832a
refs/heads/master
2021-01-15T21:34:46.162550
2014-05-13T09:20:37
2014-05-13T09:20:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
/usr/share/pyshared/openerp/addons/account_analytic_default/__init__.py
9f68602bf7b15c30e7a42b0271be92782200d2a9
1f7b5698dfa57481d88b0cb04f1d2169b06e4970
/tensorflow/contrib/eager/python/checkpointable_utils.py
1fa150f3c6d20bcb6a2c0e387091796131d4f323
[ "Apache-2.0" ]
permissive
hejie/tensorflow
8fbc5c753078be923c0d054a2d33a1514f6f5229
3a499ab4483faa486332ce0b613fe207db08ceca
refs/heads/master
2020-04-11T06:15:53.430384
2018-03-08T01:15:21
2018-03-08T01:15:21
124,330,100
1
0
null
null
null
null
UTF-8
Python
false
false
36,751
py
"""Utilities for working with Checkpointable objects.""" # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import weakref from tensorflow.contrib.eager.proto import checkpointable_object_graph_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.client import session as session_lib from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training import checkpointable as core_checkpointable from tensorflow.python.training import checkpointable_utils as core_checkpointable_utils from tensorflow.python.training import optimizer as optimizer_lib from tensorflow.python.training import saver as saver_lib from tensorflow.python.util import deprecation _ESCAPE_CHAR = "." # For avoiding conflicts with user-specified names. # Keyword for identifying that the next bit of a checkpoint variable name is a # slot name. Checkpoint names for slot variables look like: # # <path to variable>/<_OPTIMIZER_SLOTS_NAME>/<path to optimizer>/<slot name> # # Where <path to variable> is a full path from the checkpoint root to the # variable being slotted for. _OPTIMIZER_SLOTS_NAME = _ESCAPE_CHAR + "OPTIMIZER_SLOT" # Keyword for separating the path to an object from the name of an # attribute in checkpoint names. Used like: # <path to variable>/<_OBJECT_ATTRIBUTES_NAME>/<name of attribute> _OBJECT_ATTRIBUTES_NAME = _ESCAPE_CHAR + "ATTRIBUTES" # Key where the object graph proto is saved in a TensorBundle _OBJECT_GRAPH_PROTO_KEY = "_CHECKPOINTABLE_OBJECT_GRAPH" # TODO(allenl): If this ends up in a public API, consider adding LINT.IfChange # or consolidating the implementation with get_variable. def _default_getter(name, shape, dtype, initializer=None, partition_info=None, **kwargs): """A pared-down version of get_variable which does not reuse variables.""" dtype = dtypes.as_dtype(dtype) shape_object = tensor_shape.as_shape(shape) with ops.init_scope(): if initializer is None: initializer, initializing_from_value = ( variable_scope._get_default_variable_store()._get_default_initializer( # pylint: disable=protected-access name=name, shape=shape_object, dtype=dtype)) else: initializing_from_value = not callable(initializer) # Same logic as get_variable variable_dtype = dtype.base_dtype if initializing_from_value: if shape is not None: raise ValueError("If initializer is a constant, do not specify shape.") initial_value = initializer else: # Instantiate initializer if provided initializer is a type object. if isinstance(initializer, type(init_ops.Initializer)): initializer = initializer(dtype=dtype) def initial_value(): return initializer( shape_object.as_list(), dtype=dtype, partition_info=partition_info) return resource_variable_ops.ResourceVariable( initial_value=initial_value, name=name, dtype=variable_dtype, **kwargs ) def add_variable(checkpointable, name, shape=None, dtype=dtypes.float32, initializer=None): """Add a variable to a Checkpointable with no scope influence.""" return checkpointable._add_variable_with_custom_getter( # pylint: disable=protected-access name=name, shape=shape, dtype=dtype, initializer=initializer, getter=_default_getter) def _breadth_first_checkpointable_traversal(root_checkpointable): """Find shortest paths to all variables owned by dependencies of root.""" bfs_sorted = [] to_visit = collections.deque([root_checkpointable]) path_to_root = {root_checkpointable: ()} while to_visit: current_checkpointable = to_visit.popleft() current_checkpointable._maybe_initialize_checkpointable() # pylint: disable=protected-access bfs_sorted.append(current_checkpointable) for child_checkpointable in ( current_checkpointable._checkpoint_dependencies): # pylint: disable=protected-access if child_checkpointable.ref not in path_to_root: path_to_root[child_checkpointable.ref] = ( path_to_root[current_checkpointable] + (child_checkpointable,)) to_visit.append(child_checkpointable.ref) return bfs_sorted, path_to_root def _escape_local_name(name): # We need to support slashes in local names for compatibility, since this # naming scheme is being patched in to things like Layer.add_variable where # slashes were previously accepted. We also want to use slashes to indicate # edges traversed to reach the variable, so we escape forward slashes in # names. return (name.replace(_ESCAPE_CHAR, _ESCAPE_CHAR + _ESCAPE_CHAR) .replace(r"/", _ESCAPE_CHAR + "S")) def _object_prefix_from_path(path_to_root): return "/".join( (_escape_local_name(checkpointable.name) for checkpointable in path_to_root)) def _slot_variable_naming_for_optimizer(optimizer_path): """Make a function for naming slot variables in an optimizer.""" # Name slot variables: # # <variable name>/<_OPTIMIZER_SLOTS_NAME>/<optimizer path>/<slot name> # # where <variable name> is exactly the checkpoint name used for the original # variable, including the path from the checkpoint root and the local name in # the object which owns it. Note that we only save slot variables if the # variable it's slotting for is also being saved. optimizer_identifier = "/%s/%s/" % (_OPTIMIZER_SLOTS_NAME, optimizer_path) def _name_slot_variable(variable_path, slot_name): """With an optimizer specified, name a slot variable.""" return (variable_path + optimizer_identifier + _escape_local_name(slot_name)) return _name_slot_variable def _serialize_slot_variables(checkpointable_objects, node_ids, object_names): """Gather and name slot variables.""" non_slot_objects = list(checkpointable_objects) slot_variables = {} for checkpointable in non_slot_objects: if isinstance(checkpointable, optimizer_lib.Optimizer): naming_scheme = _slot_variable_naming_for_optimizer( optimizer_path=object_names[checkpointable]) slot_names = checkpointable.get_slot_names() for slot_name in slot_names: for original_variable_node_id, original_variable in enumerate( non_slot_objects): try: slot_variable = checkpointable.get_slot( original_variable, slot_name) except AttributeError: slot_variable = None if slot_variable is None: continue slot_variable._maybe_initialize_checkpointable() # pylint: disable=protected-access if slot_variable._checkpoint_dependencies: # pylint: disable=protected-access # TODO(allenl): Gather dependencies of slot variables. raise NotImplementedError( "Currently only variables with no dependencies can be saved as " "slot variables. File a feature request if this limitation " "bothers you.") if slot_variable in node_ids: raise NotImplementedError( "A slot variable was re-used as a dependency of a " "Checkpointable object. This is not currently allowed. File a " "feature request if this limitation bothers you.") checkpoint_name = naming_scheme( variable_path=object_names[original_variable], slot_name=slot_name) object_names[slot_variable] = checkpoint_name slot_variable_node_id = len(checkpointable_objects) node_ids[slot_variable] = slot_variable_node_id checkpointable_objects.append(slot_variable) slot_variable_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph .Object.SlotVariableReference( slot_name=slot_name, original_variable_node_id=original_variable_node_id, slot_variable_node_id=slot_variable_node_id)) slot_variables.setdefault(checkpointable, []).append( slot_variable_proto) return slot_variables def _serialize_checkpointables( checkpointable_objects, node_ids, object_names, slot_variables): """Name non-slot `Checkpointable`s and add them to `object_graph_proto`.""" object_graph_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph()) named_saveables = {} for checkpoint_id, checkpointable in enumerate(checkpointable_objects): assert node_ids[checkpointable] == checkpoint_id object_proto = object_graph_proto.nodes.add() object_proto.slot_variables.extend(slot_variables.get(checkpointable, ())) object_name = object_names[checkpointable] for name, saveable in ( checkpointable._gather_saveables_for_checkpoint().items()): # pylint: disable=protected-access attribute = object_proto.attributes.add() attribute.name = name attribute.checkpoint_key = "%s/%s/%s" % ( object_name, _OBJECT_ATTRIBUTES_NAME, _escape_local_name(name)) # Figure out the name-based Saver's name for this variable. saver_dict = saver_lib.BaseSaverBuilder.OpListToDict( [saveable], convert_variable_to_tensor=False) attribute.full_name, = saver_dict.keys() named_saveables[attribute.checkpoint_key] = saveable for child in checkpointable._checkpoint_dependencies: # pylint: disable=protected-access child_proto = object_proto.children.add() child_proto.node_id = node_ids[child.ref] child_proto.local_name = child.name return named_saveables, object_graph_proto def _serialize_object_graph(root_checkpointable): """Determine checkpoint keys for variables and build a serialized graph. Non-slot variables are keyed based on a shortest path from the root saveable to the object which owns the variable (i.e. the one which called `Checkpointable._add_variable` to create it). Slot variables are keyed based on a shortest path to the variable being slotted for, a shortest path to their optimizer, and the slot name. Args: root_checkpointable: A `Checkpointable` object whose variables (including the variables of dependencies, recursively) should be saved. Returns: A tuple of (named_variables, object_graph_proto): named_variables: A dictionary mapping names to variable objects. object_graph_proto: A CheckpointableObjectGraph protocol buffer containing the serialized object graph and variable references. Raises: ValueError: If there are invalid characters in an optimizer's slot names. """ checkpointable_objects, path_to_root = ( _breadth_first_checkpointable_traversal(root_checkpointable)) object_names = { obj: _object_prefix_from_path(path) for obj, path in path_to_root.items()} node_ids = {node: node_id for node_id, node in enumerate(checkpointable_objects)} slot_variables = _serialize_slot_variables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names) return _serialize_checkpointables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names, slot_variables=slot_variables) def gather_initializers(root_checkpointable): """Traverse the object graph and find initialization ops. Looks for `Checkpointable` objects which are dependencies of `root_checkpointable` and which have an `initializer` property. Includes initializers for slot variables only if the variable they are slotting for and the optimizer are dependencies of `root_checkpointable` (i.e. if they would be saved with a checkpoint). Args: root_checkpointable: A `Checkpointable` object to gather initializers for. Returns: A list of initialization ops. """ # TODO(allenl): Extract out gathering logic so the naming logic doesn't have # to run. checkpointable_objects, path_to_root = ( _breadth_first_checkpointable_traversal(root_checkpointable)) object_names = { obj: _object_prefix_from_path(path) for obj, path in path_to_root.items()} node_ids = {node: node_id for node_id, node in enumerate(checkpointable_objects)} _serialize_slot_variables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names) return [c.initializer for c in checkpointable_objects if hasattr(c, "initializer") and c.initializer is not None] class _NoRestoreSaveable(saver_lib.BaseSaverBuilder.SaveableObject): def __init__(self, tensor, name): spec = saver_lib.BaseSaverBuilder.SaveSpec(tensor, "", name) super(_NoRestoreSaveable, self).__init__(tensor, [spec], name) def restore(self, restored_tensors, restored_shapes): return control_flow_ops.no_op() class _LoadStatus(object): """Abstract base for load status callbacks.""" @abc.abstractmethod def assert_consumed(self): """Raises an exception unless a non-trivial restoration has completed.""" pass @abc.abstractmethod def run_restore_ops(self, session=None): """Runs restore ops from the checkpoint. Requires a valid checkpoint.""" pass @abc.abstractmethod def initialize_or_restore(self, session=None): """Runs restore ops from the checkpoint, or initializes variables.""" pass class CheckpointLoadStatus(_LoadStatus): """Checks the status of checkpoint loading and manages restore ops. Returned from `Saver.restore`. Since `restore` may defer the loading of values in the checkpoint which don't yet have corresponding Python objects, `CheckpointLoadStatus` provides a callback to verify that checkpoint loading is complete (`assert_consumed`). When graph building, `restore` does not run restore ops itself since their creation may be deferred. The `run_restore_ops` method must be called once all Python objects with values to restore have been created and added to the dependency graph (this does not necessarily have to be the whole checkpoint; calling `run_restore_ops` while `assert_consumed` fails is supported and will partially restore the checkpoint). See `Saver.restore` for usage examples. """ def __init__(self, checkpoint, feed_dict): self._checkpoint = checkpoint self._feed_dict = feed_dict def assert_consumed(self): """Asserts that all objects in the checkpoint have been created/matched. Returns: `self` for chaining. Raises: AssertionError: If there are any Python objects in the dependency graph which have not been restored from this checkpoint or a later `restore`, or if there are any checkpointed values which have not been matched to Python objects. """ for node_id, node in enumerate(self._checkpoint.object_graph_proto.nodes): checkpointable = self._checkpoint.object_by_proto_id.get(node_id, None) if checkpointable is None: raise AssertionError("Unresolved object in checkpoint: %s" % (node,)) if checkpointable._update_uid < self._checkpoint.restore_uid: # pylint: disable=protected-access raise AssertionError( "Object not assigned a value from checkpoint: %s" % (node,)) if self._checkpoint.slot_restorations: # Sanity check; this collection should be clear if everything has been # restored. raise AssertionError("Unresolved slot restorations: %s" % ( self._checkpoint.slot_restorations,)) if self._checkpoint.unused_attributes: raise AssertionError( ("Unused attributes in these objects (the attributes exist in the " "checkpoint but not in the objects): %s") % ( self._checkpoint.unused_attributes.items(),)) return self def run_restore_ops(self, session=None): """Run operations to restore objects in the dependency graph.""" if context.executing_eagerly(): return # Run eagerly if session is None: session = ops.get_default_session() session.run(self._checkpoint.restore_ops, feed_dict=self._feed_dict) def initialize_or_restore(self, session=None): """Alias for `run_restore_ops`. This method has a sibling in `InitializationOnlyStatus` which instead initializes variables. That type is returned if no checkpoint is specified in `Saver.restore`. Args: session: The session to run restore ops in. If `None`, uses the default session. """ self.run_restore_ops(session=session) class InitializationOnlyStatus(_LoadStatus): """Returned from `Saver.restore` when no checkpoint has been specified. Objects of this type have the same `assert_consumed` method as `CheckpointLoadStatus`, but it always fails. However, `initialize_or_restore` works on objects of both types, and will initialize variables in `InitializationOnlyStatus` objects or restore them otherwise. """ def __init__(self, root_checkpointable): self._root_checkpointable = root_checkpointable def assert_consumed(self): """Assertion for consistency with `CheckpointLoadStatus`. Always fails.""" raise AssertionError( "No checkpoint specified (save_path=None); nothing is being restored.") def run_restore_ops(self, session=None): """For consistency with `CheckpointLoadStatus`. Use `initialize_or_restore` for initializing if no checkpoint was passed to `Saver.restore` and restoring otherwise. Args: session: Not used. """ raise AssertionError( "No checkpoint specified, so no restore ops are available " "(save_path=None to Saver.restore).") def initialize_or_restore(self, session=None): """Runs initialization ops for variables. Only objects which would be saved by `Saver.save` will be initialized. See `gather_initializers` for details. This method does nothing when executing eagerly (initializers get run eagerly). Args: session: The session to run initialization ops in. If `None`, uses the default session. """ if context.executing_eagerly(): return # run eagerly if session is None: session = ops.get_default_session() session.run(gather_initializers(self._root_checkpointable)) _DEPRECATED_RESTORE_INSTRUCTIONS = ( "Restoring a name-based tf.train.Saver checkpoint using the object-based " "restore API. This mode uses global names to match variables, and so is " "somewhat fragile. It also adds new restore ops to the graph each time it " "is called. Prefer re-encoding training checkpoints in the object-based " "format: run save() on the object-based saver (the same one this message " "is coming from) and use that checkpoint in the future.") class NameBasedSaverStatus(_LoadStatus): """Status for loading a name-based training checkpoint.""" def __init__(self, object_saver, save_path): self._object_saver = object_saver self._save_path = save_path def assert_consumed(self): """Assertion for consistency with `CheckpointLoadStatus`. Always fails.""" raise AssertionError( "Restoring a name-based checkpoint. No load status is available.") @deprecation.deprecated( date=None, instructions=_DEPRECATED_RESTORE_INSTRUCTIONS) def run_restore_ops(self, session=None): """Load the name-based training checkpoint using a new `tf.train.Saver`.""" if session is None and not context.executing_eagerly(): session = ops.get_default_session() saver_lib.Saver(self._object_saver._global_variable_names()).restore( # pylint: disable=protected-access sess=session, save_path=self._save_path) def initialize_or_restore(self, session=None): """Alias for `run_restore_ops`.""" self.run_restore_ops(session=session) class _SessionWithFeedDictAdditions(session_lib.SessionInterface): """Pretends to be a session, inserts extra feeds on run().""" def __init__(self, session, feed_additions): self._wrapped_session = session self._feed_additions = feed_additions def run(self, fetches, feed_dict=None, **kwargs): if feed_dict is None: feed_dict = {} else: feed_dict = feed_dict.copy() feed_dict.update(self._feed_additions) return self._wrapped_session.run( fetches=fetches, feed_dict=feed_dict, **kwargs) class CheckpointableSaver(object): """Saves and restores a `Checkpointable` object and its dependencies. See `Checkpointable` for details of dependency management. `Saver` wraps `tf.train.Saver` for saving, including extra information about the graph of dependencies between Python objects. When restoring, it uses this information about the save-time dependency graph to more robustly match objects with their checkpointed values. When executing eagerly, it supports restoring variables on object creation (see `Saver.restore`). Values in a checkpoint are mapped to `Checkpointable` Python objects (`Variable`s, `Optimizer`s, `Layer`s) based on the names provided when the checkpoint was written. To avoid breaking existing checkpoints when modifying a class, dependency names (the names of attributes to which `Checkpointable` objects are assigned) may not change. These names are local to objects, in contrast to the `Variable.name`-based save/restore from `tf.train.Saver`, and so allow additional program transformations. """ def __init__(self, root_checkpointable): """Configure saving. Args: root_checkpointable: The root of the object graph to save/restore. This object and all of its dependencies are saved in the checkpoint. When restoring, objects are matched and restored starting from this root. """ # Allow passing in a weak reference to avoid reference cycles when # `Checkpointable` objects save themselves. self._root_checkpointable_ref = root_checkpointable if not context.executing_eagerly(): with ops.device("/cpu:0"): self._file_prefix_placeholder = constant_op.constant("model") else: self._file_prefix_placeholder = None # Op caching for save self._object_graph_feed_tensor = None self._last_save_object_graph = None self._last_save_saver = None # Op caching for restore self._object_graph_restore_tensor = None self._last_restore_object_graph = None self._last_restore_checkpoint = None @property def _root_checkpointable(self): if isinstance(self._root_checkpointable_ref, weakref.ref): derefed = self._root_checkpointable_ref() assert derefed is not None return derefed else: return self._root_checkpointable_ref def save(self, file_prefix, checkpoint_number=None, session=None): """Save a training checkpoint. The saved checkpoint includes variables created by this object and any Checkpointable objects it depends on at the time `Saver.save()` is called. Args: file_prefix: A prefix to use for the checkpoint filenames (/path/to/directory/and_a_prefix). Names are generated based on this prefix and `checkpoint_number`, if provided. checkpoint_number: An integer variable or Tensor, used to number checkpoints. Typically this value is saved along with other variables in training checkpoints, which will happen automatically if it was created by `root_checkpointable` or one of its dependencies (via `Checkpointable._add_variable`). session: The session to evaluate variables in. Ignored when executing eagerly. If not provided when graph building, the default session is used. Returns: The full path to the checkpoint. """ named_variables, graph_proto = _serialize_object_graph( self._root_checkpointable) in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() if self._object_graph_feed_tensor is None: with ops.device("/cpu:0"): self._object_graph_feed_tensor = constant_op.constant( "", dtype=dtypes.string) object_graph_tensor = self._object_graph_feed_tensor feed_additions = {object_graph_tensor: graph_proto.SerializeToString()} else: session = None with ops.device("/cpu:0"): object_graph_tensor = constant_op.constant( graph_proto.SerializeToString(), dtype=dtypes.string) feed_additions = None assert _OBJECT_GRAPH_PROTO_KEY not in named_variables named_variables[_OBJECT_GRAPH_PROTO_KEY] = _NoRestoreSaveable( tensor=object_graph_tensor, name=_OBJECT_GRAPH_PROTO_KEY) if not in_graph_mode or self._last_save_object_graph != graph_proto: if self._last_save_object_graph is not None and in_graph_mode: raise NotImplementedError( "Using a single Saver to save a mutated object graph is not " "currently supported when graph building. Use a different Saver " "when the object graph changes (save ops will be duplicated), or " "file a feature request if this limitation bothers you.") saver = saver_lib.Saver(var_list=named_variables) if in_graph_mode: self._last_save_saver = saver self._last_save_object_graph = graph_proto else: saver = self._last_save_saver with ops.device("/cpu:0"): save_path = saver.save( sess=_SessionWithFeedDictAdditions( session=session, feed_additions=feed_additions), save_path=file_prefix, write_meta_graph=False, global_step=checkpoint_number) return save_path def _global_variable_names(self): """Generate a `tf.train.Saver`-style `var_list` using `variable.name`s.""" named_saveables, graph_proto = _serialize_object_graph( self._root_checkpointable) saver_names = {} for object_proto in graph_proto.nodes: for attribute_proto in object_proto.attributes: saver_names[attribute_proto.full_name] = named_saveables[ attribute_proto.checkpoint_key] return saver_names def restore(self, save_path, session=None): """Restore a training checkpoint. Restores `root_checkpointable` and any objects that it tracks (transitive). Either assigns values immediately if variables to restore have been created already, or defers restoration until the variables are created. Dependencies added to the `root_checkpointable` passed to the constructor after this call will be matched if they have a corresponding object in the checkpoint. When building a graph, restorations are added to the graph but not run. A session is required to retrieve checkpoint metadata. To disallow deferred loading, assert immediately that all checkpointed variables have been matched to variable objects: ```python saver = Saver(root) saver.restore(path).assert_consumed() ``` An exception will be raised unless every object was matched and its variables already exist. When graph building, `assert_consumed()` indicates that all of the restore ops which will be created for this checkpoint have been created. They can be run via the `run_restore_ops()` function of the status object: ```python saver.restore(path).assert_consumed().run_restore_ops() ``` If the checkpoint has not been consumed completely, then the list of restore ops will grow as more objects are added to the dependency graph. Name-based `tf.train.Saver` checkpoints can be loaded using this method. There is no deferred loading, and names are used to match variables. No restore ops are created/run until `run_restore_ops()` or `initialize_or_restore()` are called on the returned status object, even when executing eagerly. Re-encode name-based checkpoints using this object-based `Saver.save` as soon as possible. Args: save_path: The path to the checkpoint, as returned by `save` or `tf.train.latest_checkpoint`. If None (as when there is no latest checkpoint for `tf.train.latest_checkpoint` to return), returns an object which may run initializers for objects in the dependency graph. If the checkpoint was written by the name-based `tf.train.Saver`, names are used to match variables. session: The session to retrieve metadata with. Ignored when executing eagerly. If not provided when graph building, the default session is used. Returns: A load status object, which can be used to make assertions about the status of checkpoint restoration and run initialization/restore ops (of type `CheckpointLoadStatus`, or `InitializationOnlyStatus` if `save_path` is `None`). If `save_path` points to a name-based checkpoint, a `NameBasedSaverStatus` object is returned which runs restore ops from a name-based saver. """ if save_path is None: return InitializationOnlyStatus(self._root_checkpointable) in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() file_prefix_tensor = self._file_prefix_placeholder file_prefix_feed_dict = {self._file_prefix_placeholder: save_path} else: session = None with ops.device("/cpu:0"): file_prefix_tensor = constant_op.constant(save_path) file_prefix_feed_dict = None try: if not in_graph_mode or self._object_graph_restore_tensor is None: with ops.device("/cpu:0"): object_graph_string, = io_ops.restore_v2( prefix=file_prefix_tensor, tensor_names=[_OBJECT_GRAPH_PROTO_KEY], shape_and_slices=[""], dtypes=[dtypes.string], name="object_graph_proto_read") if in_graph_mode: self._object_graph_restore_tensor = object_graph_string if in_graph_mode: object_graph_string = session.run( self._object_graph_restore_tensor, feed_dict=file_prefix_feed_dict) else: object_graph_string = object_graph_string.numpy() except errors_impl.NotFoundError: # The object graph proto does not exist in this checkpoint. Try again with # name-based saving. return NameBasedSaverStatus(self, save_path) object_graph_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph()) object_graph_proto.ParseFromString(object_graph_string) if in_graph_mode and object_graph_proto == self._last_restore_object_graph: checkpoint = self._last_restore_checkpoint else: if in_graph_mode: dtype_map = None else: reader = pywrap_tensorflow.NewCheckpointReader(save_path) dtype_map = reader.get_variable_to_dtype_map() checkpoint = core_checkpointable_utils._Checkpoint( # pylint: disable=protected-access object_graph_proto=object_graph_proto, save_path=file_prefix_tensor, dtype_map=dtype_map) if in_graph_mode: if self._last_restore_object_graph is not None: raise NotImplementedError( "Using a single Saver to restore different object graphs is not " "currently supported when graph building. Use a different Saver " "for each object graph (restore ops will be duplicated), or " "file a feature request if this limitation bothers you.") self._last_restore_checkpoint = checkpoint self._last_restore_object_graph = object_graph_proto core_checkpointable._CheckpointPosition( # pylint: disable=protected-access checkpoint=checkpoint, proto_id=0).restore(self._root_checkpointable) load_status = CheckpointLoadStatus( checkpoint, feed_dict=file_prefix_feed_dict) return load_status class Checkpoint(core_checkpointable.Checkpointable): """A utility class which groups `Checkpointable` objects. Accepts arbitrary keyword arguments to its constructor and saves those values with a checkpoint. Maintains a `save_counter` for numbering checkpoints. Example usage: ```python import tensorflow as tf import tensorflow.contrib.eager as tfe import os checkpoint_directory = "/tmp/training_checkpoints" checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model) root.restore(tf.train.latest_checkpoint(checkpoint_directory)) for _ in range(num_training_steps): optimizer.minimize( ... ) root.save(file_prefix=checkpoint_prefix) ``` For more manual control over saving, use `tfe.CheckpointableSaver` directly. Attributes: save_counter: Incremented when `save()` is called. Used to number checkpoints. """ def __init__(self, **kwargs): """Group objects into a training checkpoint. Args: **kwargs: Keyword arguments are set as attributes of this object, and are saved with the checkpoint. Attribute values must derive from `CheckpointableBase`. Raises: ValueError: If objects in `kwargs` are not Checkpointable. """ super(Checkpoint, self).__init__() for k, v in sorted(kwargs.items(), key=lambda item: item[0]): if not isinstance(v, core_checkpointable.CheckpointableBase): raise ValueError( ("`Checkpoint` was expecting an object derived from " "`CheckpointableBase`, got %s.") % (v,)) setattr(self, k, v) self._save_counter = None # Created lazily for restore-on-create. self._saver = CheckpointableSaver(weakref.ref(self)) def _maybe_create_save_counter(self): """Create a save counter if it does not yet exist.""" if self._save_counter is None: # Initialized to 0 and incremented before saving. with ops.device("/cpu:0"): self._save_counter = add_variable( self, name="save_counter", initializer=0, dtype=dtypes.int64) @property def save_counter(self): """An integer variable which starts at zero and is incremented on save. Used to number checkpoints. Returns: The save counter variable. """ self._maybe_create_save_counter() return self._save_counter def save(self, file_prefix, session=None): """Save a checkpoint. Wraps `tfe.CheckpointableSaver.save`.""" in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() if self._save_counter is None: # When graph building, if this is a new save counter variable then it # needs to be initialized before assign_add. This is only an issue if # restore() has not been called first. session.run(self.save_counter.initializer) with ops.colocate_with(self.save_counter): assign_op = self.save_counter.assign_add(1) if in_graph_mode: session.run(assign_op) return self._saver.save( file_prefix=file_prefix, checkpoint_number=self.save_counter, session=session) def restore(self, save_path): """Restore a checkpoint. Wraps `tfe.CheckpointableSaver.restore`.""" status = self._saver.restore(save_path=save_path) # Create the save counter now so it gets initialized with other variables # when graph building. Creating it earlier would lead to double # initialization when executing eagerly. self._maybe_create_save_counter() return status
9ee45cef427b92dc2368563e25db132f1046a80f
d08cf46d3e16ab8e6a958731168469ba38daf069
/sandbox/kdv.py
7c7536cbb6e3c7b1398b0a73cc5dac09cb962490
[ "BSD-2-Clause" ]
permissive
spectralDNS/shenfun
ce808edc5258c896f2cccfbd88e67153e3f621c9
bcda39d8d8e4741df1cafe719d81733cc1024def
refs/heads/master
2023-07-27T20:29:57.075970
2023-07-11T12:33:04
2023-07-11T12:33:04
79,914,066
190
46
BSD-2-Clause
2022-05-11T19:10:33
2017-01-24T13:29:02
Python
UTF-8
Python
false
false
2,876
py
import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import PolyCollection from shenfun import * from mpl_toolkits.mplot3d import axes3d N = 256 T = FunctionSpace(N, 'F', dtype='d') #Tp = T Tp = T.get_dealiased() x = T.points_and_weights()[0] u = TrialFunction(T) v = TestFunction(T) k = T.wavenumbers(scaled=True, eliminate_highest_freq=True) u_ = Array(T) Up = Array(Tp) u_hat = Function(T) def LinearRHS(self, u, **params): return -Dx(u, 0, 3) def NonlinearRHS(self, u, u_hat, rhs, **params): rhs.fill(0) Up[:] = Tp.backward(u_hat, Up) rhs = Tp.forward(-0.5*Up**2, rhs) rhs *= 1j*k return rhs # initialize A = 25. B = 16. u_[:] = 3*A**2/np.cosh(0.5*A*(x-np.pi+2))**2 + 3*B**2/np.cosh(0.5*B*(x-np.pi+1))**2 u_hat = T.forward(u_, u_hat) data = [] tdata = [] plt.figure() def update(self, u, u_hat, t, tstep, plot_step, **params): if tstep % plot_step == 0 and plot_step > 0: u = T.backward(u_hat, u) plt.plot(x, u) plt.draw() plt.pause(1e-6) data.append(u.copy()) dt = 0.01/N**2 end_time = 0.006 par = {'plot_step': int(end_time/25/dt)} integrator = ETDRK4(T, L=LinearRHS, N=NonlinearRHS, update=update, **par) integrator.setup(dt) u_hat = integrator.solve(u_, u_hat, dt, (0, end_time)) t = end_time s = [] for d in data: s.append(np.vstack((x, d)).T) N = len(data) tdata = np.linspace(0, end_time, N) ddata = np.array(data) fig = plt.figure(figsize=(8, 3)) #ax = axes3d.Axes3D(fig) ax = fig.add_subplot(projection='3d') X, Y = np.meshgrid(x, tdata) ax.plot_wireframe(X, Y, ddata, cstride=1000) ax.set_xlim(0, 2*np.pi) ax.set_ylim(0, t) ax.set_zlim(0, 2000) ax.view_init(65, -105) ax.set_zticks([0, 2000]) ax.grid() fig2 = plt.figure(figsize=(8,3)) ax2 = fig2.add_subplot(projection='3d') poly = PolyCollection(s, facecolors=(1, 1, 1, 1), edgecolors='b') ax2.add_collection3d(poly, zs=tdata, zdir='y') ax2.set_xlim3d(0, 2*np.pi) ax2.set_ylim3d(0, t) ax2.set_zlim3d(0, 2000) ax2.view_init(65, -105) ax2.set_zticks([0, 2000]) ax2.grid() fig3 = plt.figure(figsize=(8, 3)) ax3 = fig3.add_subplot(projection='3d') X, Y = np.meshgrid(x, tdata) ax3.plot_surface(X, Y, ddata, cstride=1000, rstride=1, color='w') ax3.set_xlim(0, 2*np.pi) ax3.set_ylim(0, t) ax3.set_zlim(0, 2000) ax3.view_init(65, -105) ax3.set_zticks([0, 2000]) ax3.grid() fig4 = plt.figure(figsize=(8,3)) ax4 = fig4.add_subplot(projection='3d') for i in range(len(tdata)): ax4.plot(x, ddata[i], tdata[i]) ax4.view_init(65, -105) ax4.set_zticks([0, 2000]) ax4.grid() fig5 = plt.figure(facecolor='k') ax5 = fig5.add_subplot(111, facecolor='k') N = len(tdata) for i in range(N): offset = (N-i-1)*200 ax5.plot(x, ddata[N-i-1]+offset, 'w', lw=2, zorder=(i+1)*2) ax5.fill_between(x, ddata[N-i-1]+offset, offset, facecolor='k', lw=0, zorder=(i+1)*2-1) fig5.savefig('KdV.png') plt.show()
93051938722fe70f250b9d683fc85b4c1c61b3e5
596e92d0d484b6e7eee6d322e72e52748fdeaa5d
/sportsdata/soccer_scores/models/soccer_scores_season.py
7a99fa0863fbaa4720a5ca2f39d40b300cc293c7
[]
no_license
scottypate/sportsdata
f5f61ddc7eb482883f93737c6ce73dd814ed4336
a07955ab50bf4fff1ce114ed9895095ff770c473
refs/heads/main
2023-08-18T16:51:56.452678
2021-10-22T12:44:08
2021-10-22T12:44:08
420,062,350
1
1
null
null
null
null
UTF-8
Python
false
false
8,952
py
# coding: utf-8 """ Soccer v3 Scores No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SoccerScoresSeason(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'season_id': 'int', 'competition_id': 'int', 'season': 'int', 'name': 'str', 'competition_name': 'str', 'start_date': 'str', 'end_date': 'str', 'current_season': 'bool', 'rounds': 'list[SoccerScoresRound]' } attribute_map = { 'season_id': 'SeasonId', 'competition_id': 'CompetitionId', 'season': 'Season', 'name': 'Name', 'competition_name': 'CompetitionName', 'start_date': 'StartDate', 'end_date': 'EndDate', 'current_season': 'CurrentSeason', 'rounds': 'Rounds' } def __init__(self, season_id=None, competition_id=None, season=None, name=None, competition_name=None, start_date=None, end_date=None, current_season=None, rounds=None): # noqa: E501 """SoccerScoresSeason - a model defined in Swagger""" # noqa: E501 self._season_id = None self._competition_id = None self._season = None self._name = None self._competition_name = None self._start_date = None self._end_date = None self._current_season = None self._rounds = None self.discriminator = None if season_id is not None: self.season_id = season_id if competition_id is not None: self.competition_id = competition_id if season is not None: self.season = season if name is not None: self.name = name if competition_name is not None: self.competition_name = competition_name if start_date is not None: self.start_date = start_date if end_date is not None: self.end_date = end_date if current_season is not None: self.current_season = current_season if rounds is not None: self.rounds = rounds @property def season_id(self): """Gets the season_id of this SoccerScoresSeason. # noqa: E501 :return: The season_id of this SoccerScoresSeason. # noqa: E501 :rtype: int """ return self._season_id @season_id.setter def season_id(self, season_id): """Sets the season_id of this SoccerScoresSeason. :param season_id: The season_id of this SoccerScoresSeason. # noqa: E501 :type: int """ self._season_id = season_id @property def competition_id(self): """Gets the competition_id of this SoccerScoresSeason. # noqa: E501 :return: The competition_id of this SoccerScoresSeason. # noqa: E501 :rtype: int """ return self._competition_id @competition_id.setter def competition_id(self, competition_id): """Sets the competition_id of this SoccerScoresSeason. :param competition_id: The competition_id of this SoccerScoresSeason. # noqa: E501 :type: int """ self._competition_id = competition_id @property def season(self): """Gets the season of this SoccerScoresSeason. # noqa: E501 :return: The season of this SoccerScoresSeason. # noqa: E501 :rtype: int """ return self._season @season.setter def season(self, season): """Sets the season of this SoccerScoresSeason. :param season: The season of this SoccerScoresSeason. # noqa: E501 :type: int """ self._season = season @property def name(self): """Gets the name of this SoccerScoresSeason. # noqa: E501 :return: The name of this SoccerScoresSeason. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SoccerScoresSeason. :param name: The name of this SoccerScoresSeason. # noqa: E501 :type: str """ self._name = name @property def competition_name(self): """Gets the competition_name of this SoccerScoresSeason. # noqa: E501 :return: The competition_name of this SoccerScoresSeason. # noqa: E501 :rtype: str """ return self._competition_name @competition_name.setter def competition_name(self, competition_name): """Sets the competition_name of this SoccerScoresSeason. :param competition_name: The competition_name of this SoccerScoresSeason. # noqa: E501 :type: str """ self._competition_name = competition_name @property def start_date(self): """Gets the start_date of this SoccerScoresSeason. # noqa: E501 :return: The start_date of this SoccerScoresSeason. # noqa: E501 :rtype: str """ return self._start_date @start_date.setter def start_date(self, start_date): """Sets the start_date of this SoccerScoresSeason. :param start_date: The start_date of this SoccerScoresSeason. # noqa: E501 :type: str """ self._start_date = start_date @property def end_date(self): """Gets the end_date of this SoccerScoresSeason. # noqa: E501 :return: The end_date of this SoccerScoresSeason. # noqa: E501 :rtype: str """ return self._end_date @end_date.setter def end_date(self, end_date): """Sets the end_date of this SoccerScoresSeason. :param end_date: The end_date of this SoccerScoresSeason. # noqa: E501 :type: str """ self._end_date = end_date @property def current_season(self): """Gets the current_season of this SoccerScoresSeason. # noqa: E501 :return: The current_season of this SoccerScoresSeason. # noqa: E501 :rtype: bool """ return self._current_season @current_season.setter def current_season(self, current_season): """Sets the current_season of this SoccerScoresSeason. :param current_season: The current_season of this SoccerScoresSeason. # noqa: E501 :type: bool """ self._current_season = current_season @property def rounds(self): """Gets the rounds of this SoccerScoresSeason. # noqa: E501 :return: The rounds of this SoccerScoresSeason. # noqa: E501 :rtype: list[SoccerScoresRound] """ return self._rounds @rounds.setter def rounds(self, rounds): """Sets the rounds of this SoccerScoresSeason. :param rounds: The rounds of this SoccerScoresSeason. # noqa: E501 :type: list[SoccerScoresRound] """ self._rounds = rounds def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SoccerScoresSeason, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SoccerScoresSeason): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
e2c2d430af0dbd4f42ca76c107638345f45fd6b9
90a7efad0e02634fe46602cf6a9c42ce72af1823
/udify/dataset_readers/universal_dependencies.py
cbf693061fe0bcae8de295ecbaadcd082e7efca9
[ "MIT" ]
permissive
foxik/udify
563237686d1b0833ed636e48ba5cb20dced49be6
99f9a8d220edf808c7f2d7e32112227f21c7084a
refs/heads/master
2020-09-02T16:26:05.757090
2019-11-02T23:21:03
2019-11-02T23:21:03
219,258,945
0
0
MIT
2019-11-03T06:03:58
2019-11-03T06:03:58
null
UTF-8
Python
false
false
6,063
py
""" A Dataset Reader for Universal Dependencies, with support for multiword tokens and special handling for NULL "_" tokens """ from typing import Dict, Tuple, List, Any, Callable from overrides import overrides from udify.dataset_readers.parser import parse_line, DEFAULT_FIELDS from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token from udify.dataset_readers.lemma_edit import gen_lemma_rule import logging logger = logging.getLogger(__name__) # pylint: disable=invalid-name def lazy_parse(text: str, fields: Tuple[str, ...]=DEFAULT_FIELDS): for sentence in text.split("\n\n"): if sentence: # TODO: upgrade conllu library yield [parse_line(line, fields) for line in sentence.split("\n") if line and not line.strip().startswith("#")] @DatasetReader.register("udify_universal_dependencies") class UniversalDependenciesDatasetReader(DatasetReader): def __init__(self, token_indexers: Dict[str, TokenIndexer] = None, lazy: bool = False) -> None: super().__init__(lazy) self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} @overrides def _read(self, file_path: str): # if `file_path` is a URL, redirect to the cache file_path = cached_path(file_path) with open(file_path, 'r') as conllu_file: logger.info("Reading UD instances from conllu dataset at: %s", file_path) for annotation in lazy_parse(conllu_file.read()): # CoNLLU annotations sometimes add back in words that have been elided # in the original sentence; we remove these, as we're just predicting # dependencies for the original sentence. # We filter by None here as elided words have a non-integer word id, # and are replaced with None by the conllu python library. multiword_tokens = [x for x in annotation if x["multi_id"] is not None] annotation = [x for x in annotation if x["id"] is not None] if len(annotation) == 0: continue def get_field(tag: str, map_fn: Callable[[Any], Any] = None) -> List[Any]: map_fn = map_fn if map_fn is not None else lambda x: x return [map_fn(x[tag]) if x[tag] is not None else "_" for x in annotation if tag in x] # Extract multiword token rows (not used for prediction, purely for evaluation) ids = [x["id"] for x in annotation] multiword_ids = [x["multi_id"] for x in multiword_tokens] multiword_forms = [x["form"] for x in multiword_tokens] words = get_field("form") lemmas = get_field("lemma") lemma_rules = [gen_lemma_rule(word, lemma) if lemma != "_" else "_" for word, lemma in zip(words, lemmas)] upos_tags = get_field("upostag") xpos_tags = get_field("xpostag") feats = get_field("feats", lambda x: "|".join(k + "=" + v for k, v in x.items()) if hasattr(x, "items") else "_") heads = get_field("head") dep_rels = get_field("deprel") dependencies = list(zip(dep_rels, heads)) yield self.text_to_instance(words, lemmas, lemma_rules, upos_tags, xpos_tags, feats, dependencies, ids, multiword_ids, multiword_forms) @overrides def text_to_instance(self, # type: ignore words: List[str], lemmas: List[str] = None, lemma_rules: List[str] = None, upos_tags: List[str] = None, xpos_tags: List[str] = None, feats: List[str] = None, dependencies: List[Tuple[str, int]] = None, ids: List[str] = None, multiword_ids: List[str] = None, multiword_forms: List[str] = None) -> Instance: fields: Dict[str, Field] = {} tokens = TextField([Token(w) for w in words], self._token_indexers) fields["tokens"] = tokens names = ["upos", "xpos", "feats", "lemmas"] all_tags = [upos_tags, xpos_tags, feats, lemma_rules] for name, field in zip(names, all_tags): if field: fields[name] = SequenceLabelField(field, tokens, label_namespace=name) if dependencies is not None: # We don't want to expand the label namespace with an additional dummy token, so we'll # always give the 'ROOT_HEAD' token a label of 'root'. fields["head_tags"] = SequenceLabelField([x[0] for x in dependencies], tokens, label_namespace="head_tags") fields["head_indices"] = SequenceLabelField([int(x[1]) for x in dependencies], tokens, label_namespace="head_index_tags") fields["metadata"] = MetadataField({ "words": words, "upos_tags": upos_tags, "xpos_tags": xpos_tags, "feats": feats, "lemmas": lemmas, "lemma_rules": lemma_rules, "ids": ids, "multiword_ids": multiword_ids, "multiword_forms": multiword_forms }) return Instance(fields)
89e171105b6e4fd444900f215d2561e8181b50c7
5a628296aea2e3b908e634f8ad7f0d9d49750cf2
/3dod/configs/car_cfg20_eval_ebm3_test_seq0012.py
4a7f9f54fd90c0ce2f278918004038ba74020d10
[ "MIT" ]
permissive
TianhaoFu/ebms_3dod
521cf16946abaef77d005e7ee2e5b0a86d1a36fd
b8a33577c079d9a587bca289a707a8b1b3cb4834
refs/heads/main
2023-06-03T18:34:00.670739
2021-06-21T13:51:53
2021-06-21T13:51:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,720
py
model = dict( type='SingleStageDetector20', backbone=dict( type='SimpleVoxel', num_input_features=4, use_norm=True, num_filters=[32, 64], with_distance=False), neck=dict( type='SpMiddleFHD', output_shape=[40, 1600, 1408], num_input_features=4, num_hidden_features=64 * 5,), bbox_head=dict( type='SSDRotateHead', num_class=1, num_output_filters=256, num_anchor_per_loc=2, use_sigmoid_cls=True, encode_rad_error_by_sin=True, use_direction_classifier=True, box_code_size=7,), extra_head=dict( type='PSWarpHead', grid_offsets = (0., 40.), featmap_stride=.4, in_channels=256, num_class=1, num_parts=28,) ) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, # this one is to limit the force assignment ignore_iof_thr=-1, similarity_fn ='NearestIouSimilarity' ), nms=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, nms_thr=0.7, min_bbox_size=0 ), allowed_border=0, pos_weight=-1, smoothl1_beta=1 / 9.0, debug=False), extra=dict( assigner=dict( pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1, similarity_fn ='RotateIou3dSimilarity' ) ) ) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=2000, nms_post=100, nms_thr=0.7, min_bbox_size=0 ), extra=dict( score_thr=0.3, nms=dict(type='nms', iou_thr=0.1), max_per_img=100, EBM_guided=False, EBM_refine=True, EBM_refine_steps=10) ) # # dataset settings # dataset_type = 'KittiLiDAR' # data_root = '/root/ebms_3dod/3dod/data/KITTI/' # img_norm_cfg = dict( # mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # data = dict( # imgs_per_gpu=2, # # workers_per_gpu=4, # workers_per_gpu=1, # train=dict( # type=dataset_type, # root=data_root + 'object/training/', # ann_file=data_root + 'ImageSets/train.txt', # img_prefix=None, # img_scale=(1242, 375), # img_norm_cfg=img_norm_cfg, # size_divisor=32, # flip_ratio=0.5, # with_mask=False, # with_label=True, # with_point=True, # class_names = ['Car', 'Van'], # augmentor=dict( # type='PointAugmentor', # root_path=data_root, # info_path=data_root + 'kitti_dbinfos_trainval.pkl', # sample_classes=['Car'], # min_num_points=5, # sample_max_num=15, # removed_difficulties=[-1], # global_rot_range=[-0.78539816, 0.78539816], # gt_rot_range=[-0.78539816, 0.78539816], # center_noise_std=[1., 1., .5], # scale_range=[0.95, 1.05] # ), # generator=dict( # type='VoxelGenerator', # voxel_size=[0.05, 0.05, 0.1], # point_cloud_range=[0, -40., -3., 70.4, 40., 1.], # max_num_points=5, # max_voxels=20000 # ), # anchor_generator=dict( # type='AnchorGeneratorStride', # sizes=[1.6, 3.9, 1.56], # anchor_strides=[0.4, 0.4, 1.0], # anchor_offsets=[0.2, -39.8, -1.78], # rotations=[0, 1.57], # ), # anchor_area_threshold=1, # out_size_factor=8, # test_mode=False), # # val=dict( # type=dataset_type, # root=data_root + 'object/testing/', # ann_file=data_root + 'ImageSets/test.txt', # img_prefix=None, # img_scale=(1242, 375), # img_norm_cfg=img_norm_cfg, # size_divisor=32, # flip_ratio=0, # with_mask=False, # with_label=False, # with_point=True, # class_names = ['Car'], # generator=dict( # type='VoxelGenerator', # voxel_size=[0.05, 0.05, 0.1], # point_cloud_range=[0., -40., -3., 70.4, 40., 1.], # max_num_points=5, # max_voxels=20000 # ), # anchor_generator=dict( # type='AnchorGeneratorStride', # sizes=[1.6, 3.9, 1.56], # anchor_strides=[0.4, 0.4, 1.0], # anchor_offsets=[0.2, -39.8, -1.78], # rotations=[0, 1.57], # ), # anchor_area_threshold=1, # out_size_factor=8, # test_mode=True), # ) # dataset settings dataset_type = 'KittiVideo' data_root = '/root/ebms_3dod/3dod/data/KITTI/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) data = dict( imgs_per_gpu=2, # workers_per_gpu=4, workers_per_gpu=1, val=dict( type=dataset_type, root=data_root + 'tracking/testing/', calib_dir = 'calib/0012.txt', img_dir = 'image_02/0012', lidar_dir = 'velodyne/0012', ann_file=data_root + 'ImageSets/test.txt', img_prefix=None, img_scale=(1242, 375), img_norm_cfg=img_norm_cfg, size_divisor=32, flip_ratio=0, with_mask=False, with_label=False, with_point=True, class_names = ['Car'], generator=dict( type='VoxelGenerator', voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0., -40., -3., 70.4, 40., 1.], max_num_points=5, max_voxels=20000 ), anchor_generator=dict( type='AnchorGeneratorStride', sizes=[1.6, 3.9, 1.56], anchor_strides=[0.4, 0.4, 1.0], anchor_offsets=[0.2, -39.8, -1.78], rotations=[0, 1.57], ), anchor_area_threshold=1, out_size_factor=8, test_mode=True), ) # optimizer optimizer = dict( type='adam_onecycle', lr=0.003, weight_decay=0.01, grad_clip=dict(max_norm=10, norm_type=2) ) # learning policy lr_config = dict( policy='onecycle', moms = [0.95, 0.85], div_factor = 10, pct_start = 0.4 ) checkpoint_config = dict(interval=5) log_config = dict(interval=50) total_epochs = 80 dist_params = dict(backend='nccl') log_level = 'INFO' # work_dir = '../saved_model_vehicle work_dir = '/root/ebms_3dod/3dod/saved_model_vehicle20' load_from = None resume_from = None workflow = [('train', 1)] SA_SSD_pretrained = True SA_SSD_fixed = True USE_EBM = True
754a312303ebd319014000b3257ab320ff38a7ee
57c13a2500561e72e382489c23e9c0b8347be605
/concurrency/simple_interval_sum_example.py
c4ccc0e400215264a4ef1daac9bc80a5f4004a70
[]
no_license
linheimx/python_master
7403d7af639e31810c90b2fba14972a6d3dcfcec
7fb7c467bedaff1515975807552a0ba05e30f15e
refs/heads/master
2021-01-21T21:54:55.537994
2016-12-23T15:05:14
2016-12-23T15:05:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
""" 1 부터 200000000 더하기 real 0m16.303s user 0m16.271s sys 0m0.019s """ TOTAL_VALUE = 0 def interval_sum(start_num, last_num): global TOTAL_VALUE total = 0 for x in range(start_num, last_num + 1): total += x TOTAL_VALUE += total if __name__ == "__main__": interval_sum(1, 200000000) print(TOTAL_VALUE)
7c9abd888ec8c97b3f20c8e59ec550f5a3f2fd02
1362bc36e86f8216d405b547f5f45874ac332b1e
/Google/wordBreak2.py
c134aff4c0d863141d8216c688860f6d1559f892
[]
no_license
zhuolikevin/Algorithm-Practices-Python
ed5ca06758e35d910ffbea011b414b3c57fd6c7a
1df8d93a8ecb8627899aadddb5dd5c5d0b144cdf
refs/heads/master
2021-01-22T01:04:31.536327
2016-01-15T13:31:07
2016-01-15T13:31:07
32,602,632
0
2
null
null
null
null
UTF-8
Python
false
false
1,160
py
class Solution(object): def wordBreak(self, s, wordDict): if not wordDict: return [] # self.find = False words = self.helper(wordDict, s) res = [] for word in words: temp = ' '.join(word) res.append(temp) return res def helper(self, dic, s): if not dic: return [[]] if not s: # self.find = True return [[]] res = [] words = [] for i in dic: words.append(i) for word in words: # if self.find: # break i = 0 while i < len(word): if i >= len(s) or s[i] != word[i]: break i += 1 if i == len(word): temp = [word] dic.remove(word) remain = self.helper(dic, s[i:]) for solu in remain: res.append(temp + solu) dic.append(word) return res solution = Solution() s = 'catsanddog' wordDict = ["cat", "cats", "and", "sand", "dog"] print solution.wordBreak(s, wordDict)
5b32f01d57e592dc5d14905ec3b40ccd35e0ed5d
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_caretakers.py
74fcd5b95fc2e398572ed29030a5ed02a77a231b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
from xai.brain.wordbase.nouns._caretaker import _CARETAKER #calss header class _CARETAKERS(_CARETAKER, ): def __init__(self,): _CARETAKER.__init__(self) self.name = "CARETAKERS" self.specie = 'nouns' self.basic = "caretaker" self.jsondata = {}
e425aeca0e134ac3a5dfe1c8a309f07d4ca01e29
a2ac73af04a07bb070cd85c88778608b561dd3e4
/addons/mail/__openerp__.py
6570b2638ba325740370d4c66b6283b5a31c28d0
[]
no_license
sannareddy/openerp-heimai
c849586d6099cc7548dec8b3f1cc7ba8be49594a
58255ecbcea7bf9780948287cf4551ed6494832a
refs/heads/master
2021-01-15T21:34:46.162550
2014-05-13T09:20:37
2014-05-13T09:20:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
54
py
/usr/share/pyshared/openerp/addons/mail/__openerp__.py
a6687b56092e9d3c2f38e3fbb4e8ddac55c5f439
40ba3112a116b361673732efc10402a067322ad1
/PycharmProjects/untitled/OO/newClass.py
939b5ed323117618000643bb46f2be85ab8e298b
[]
no_license
oumingwang/----Python
622be90adffefcab1696bb145b171fa9a8bff5b7
003c0b7880de2b9e0737120bc15bf6eaeb7a644f
refs/heads/master
2020-07-03T03:16:13.687118
2017-04-08T16:55:01
2017-04-08T16:55:01
74,200,264
0
2
null
null
null
null
UTF-8
Python
false
false
222
py
class MyClass (object): "hello world " version = 1.1 def MyVersion(self): pass c = MyClass() print c.__class__.__name__ print c.__doc__ print c.__dict__ print c.__module__ print c.__class__.__base__
808087af7bfe146f810c4487b617e92f6a2db462
5237e7939a668261d573c56d300101742b4dfe0d
/38-Abstraction adn Encapsulation.py
9bc9763b8fa0371e64f2c0c938e11137f6f15bca
[]
no_license
imAtulSharma/Python-Tutorial-Files
fa5dcf855c4fc6008028e680bfe4c7691bd13f25
2245a171b9d7146f349f84027f413d796fc99a89
refs/heads/master
2022-12-02T00:13:53.231523
2020-07-23T05:27:15
2020-07-23T05:27:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
721
py
class Employee: no_of_leaves = 8 def __init__(self, aname, asalary, arole): self.name = aname self.salary = asalary self.role = arole def printdetails(self): return f"The Name is {self.name}. Salary is {self.salary} and role is {self.role}" @classmethod def change_leaves(cls, newleaves): cls.no_of_leaves = newleaves @classmethod def from_dash(cls, string): return cls(*string.split("-")) @staticmethod def printgood(string): print("This is good " + string) atul = Employee("atul", 255, "Instructor") rohan = Employee("Rohan", 455, "Student") karan = Employee.from_dash("Karan-480-Student") Employee.printgood("Rohan")
67334df6315dcded9d30edef4d02cb7d9a0f739c
b509ef07d752e987f4cb84d1abd4c3a98488a6c7
/resources/lib/streamlink/plugins/tamago.py
0b6dc7197643d4c8de27269ff87d6ea19785b867
[ "BSD-2-Clause" ]
permissive
Twilight0/script.module.streamlink.base
d91245d1a43d6b3191b62a6eb4b1cf70598ed23e
c1e4628715a81806586b10323b8cb01424bbb6fc
refs/heads/master
2021-01-21T04:32:41.658823
2020-09-07T20:56:29
2020-09-07T20:56:29
101,915,967
6
4
BSD-2-Clause
2018-01-14T15:20:47
2017-08-30T18:31:47
Python
UTF-8
Python
false
false
1,571
py
import re from streamlink.plugin import Plugin from streamlink.plugin.api import validate from streamlink.stream import HTTPStream from streamlink import NoStreamsError class Tamago(Plugin): _url_re = re.compile(r"https?://(?:player\.)?tamago\.live/w/(?P<id>\d+)") _api_url_base = "https://player.tamago.live/api/rooms/{id}" _api_response_schema = validate.Schema({ u"status": 200, u"message": u"Success", u"data": { u"room_number": validate.text, u"stream": {validate.text: validate.url()} } }) _stream_qualities = { u"150": "144p", u"350": "360p", u"550": "540p", u"900": "720p", } @classmethod def can_handle_url(cls, url): return cls._url_re.match(url) is not None def _get_streams(self): user_id = self._url_re.match(self.url).group('id') try: api_response = self.session.http.get(self._api_url_base.format(id=user_id)) streams = self.session.http.json(api_response, schema=self._api_response_schema)['data']['stream'] except Exception: raise NoStreamsError(self.url) unique_stream_urls = [] for stream in streams.keys(): if streams[stream] not in unique_stream_urls: unique_stream_urls.append(streams[stream]) quality = self._stream_qualities[stream] if stream in self._stream_qualities.keys() else "720p+" yield quality, HTTPStream(self.session, streams[stream]) __plugin__ = Tamago
95932558356e481f28e177b43d77b26fe17a4990
8f3336bbf7cd12485a4c52daa831b5d39749cf9b
/Python/remove-duplicates-from-sorted-list.py
720a0711be4121ce4774e70948432116eff69861
[]
no_license
black-shadows/LeetCode-Topicwise-Solutions
9487de1f9a1da79558287b2bc2c6b28d3d27db07
b1692583f7b710943ffb19b392b8bf64845b5d7a
refs/heads/master
2022-05-30T22:16:38.536678
2022-05-18T09:18:32
2022-05-18T09:18:32
188,701,704
240
110
null
2020-05-08T13:04:36
2019-05-26T15:41:03
C++
UTF-8
Python
false
false
912
py
# Time: O(n) # Space: O(1) class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def deleteDuplicates(self, head): """ :type head: ListNode :rtype: ListNode """ cur = head while cur: runner = cur.next while runner and runner.val == cur.val: runner = runner.next cur.next = runner cur = runner return head def deleteDuplicates2(self, head): """ :type head: ListNode :rtype: ListNode """ if not head: return head if head.next: if head.val == head.next.val: head = self.deleteDuplicates2(head.next) else: head.next = self.deleteDuplicates2(head.next) return head
013dba1a446b2feb94b19ec9b2abcba9d5432b7e
002c14cd622b4890cce1c243065cebe39e2302ec
/LeetCode/105-Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal/Construct-Binary-Tree-from-Preorder-and-Inorder-Traversal.py
e8b16cfce36d0ee1affa25b7da3c6475768bcd33
[ "MIT" ]
permissive
hscspring/The-DataStructure-and-Algorithms
6200eba031eac51b13e320e1fc9f204644933e00
e704a92e091f2fdf5f27ec433e0e516ccc787ebb
refs/heads/master
2022-08-29T18:47:52.378884
2022-08-25T16:22:44
2022-08-25T16:22:44
201,743,910
11
3
MIT
2021-04-20T18:28:47
2019-08-11T09:26:34
Python
UTF-8
Python
false
false
597
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode: if not preorder or not inorder: return None root_index = inorder.index(preorder[0]) root = TreeNode(preorder[0]) root.left = self.buildTree(preorder[1: root_index+1], inorder[: root_index]) root.right = self.buildTree(preorder[root_index+1: ], inorder[root_index+1: ]) return root
ed9b903ef6ff142ea75af2d4c6f31beb3fee10d2
b0eef0efd10556a4b054574fdd2d43124cb0856b
/npbench/benchmarks/polybench/durbin/durbin_cupy.py
1a84a9ed2fc45b03004a56129ddb6dfd0aa73f2a
[ "BSD-3-Clause" ]
permissive
learning-chip/npbench
140d38be2095b54393de6e0008264b54b7cf686b
f2f545afe3603d5c8f1771f26d660f25ce4a3cda
refs/heads/main
2023-05-10T09:54:52.719759
2021-05-31T12:09:48
2021-05-31T12:09:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
import cupy as np def kernel(r): y = np.empty_like(r) alpha = -r[0] beta = 1.0 y[0] = -r[0] for k in range(1, r.shape[0]): beta *= 1.0 - alpha * alpha alpha = -(r[k] + np.dot(np.flip(r[:k]), y[:k])) / beta y[:k] += alpha * np.flip(y[:k]) y[k] = alpha return y
fbdbcf9c89f5f3f1b99414a21d346ac275bb88aa
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/omninote/testcase/firstcases/testcase6_022.py
c47b59270d60bcc1b7d1a8506d1cc9cb435a6e82
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
3,354
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'it.feio.android.omninotes', 'appActivity' : 'it.feio.android.omninotes.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'it.feio.android.omninotes/it.feio.android.omninotes.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return # testcase022 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/fab_expand_menu_button\").className(\"android.widget.ImageButton\")") TouchAction(driver).long_press(element).release().perform() element = getElememt(driver, "new UiSelector().resourceId(\"it.feio.android.omninotes:id/menu_attachment\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Camera\")", "new UiSelector().className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"6_022\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'it.feio.android.omninotes'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
668170131eec628085d6cb8f3052a36353d5dd84
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv2/lib/python3.8/site-packages/ansible/plugins/lookup/password.py
e2f24616f25844c59c04002bc4b5e3e51cc5a0e3
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
12,098
py
# (c) 2012, Daniel Hokka Zakrisson <[email protected]> # (c) 2013, Javier Candeira <[email protected]> # (c) 2013, Maykel Moya <[email protected]> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ lookup: password version_added: "1.1" author: - Daniel Hokka Zakrisson <[email protected]> - Javier Candeira <[email protected]> - Maykel Moya <[email protected]> short_description: retrieve or generate a random password, stored in a file description: - generates a random plaintext password and stores it in a file at a given filepath. - If the file exists previously, it will retrieve its contents, behaving just like with_file. - 'Usage of variables like C("{{ inventory_hostname }}") in the filepath can be used to set up random passwords per host, which simplifies password management in C("host_vars") variables.' - A special case is using /dev/null as a path. The password lookup will generate a new random password each time, but will not write it to /dev/null. This can be used when you need a password without storing it on the controller. options: _terms: description: - path to the file that stores/will store the passwords required: True encrypt: description: - Whether the user requests that this password is returned encrypted or in plain text. - Note that the password is always stored as plain text. - Encrypt also forces saving the salt value for idempotence. type: boolean default: True chars: version_added: "1.4" description: - Define comma separeted list of names that compose a custom character set in the generated passwords. - 'By default generated passwords contain a random mix of upper and lowercase ASCII letters, the numbers 0-9 and punctuation (". , : - _").' - "They can be either parts of Python's string module attributes (ascii_letters,digits, etc) or are used literally ( :, -)." - "To enter comma use two commas ',,' somewhere - preferably at the end. Quotes and double quotes are not supported." type: string length: description: The length of the generated password. default: 20 type: integer notes: - A great alternative to the password lookup plugin, if you don't need to generate random passwords on a per-host basis, would be to use Vault in playbooks. Read the documentation there and consider using it first, it will be more desirable for most applications. - If the file already exists, no data will be written to it. If the file has contents, those contents will be read in as the password. Empty files cause the password to return as an empty string. - 'As all lookups, this runs on the Ansible host as the user running the playbook, and "become" does not apply, the target file must be readable by the playbook user, or, if it does not exist, the playbook user must have sufficient privileges to create it. (So, for example, attempts to write into areas such as /etc will fail unless the entire playbook is being run as root).' """ EXAMPLES = """ - name: create a mysql user with a random password mysql_user: name: "{{ client }}" password: "{{ lookup('password', 'credentials/' + client + '/' + tier + '/' + role + '/mysqlpassword length=15') }}" priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL" - name: create a mysql user with a random password using only ascii letters mysql_user: name={{ client }} password="{{ lookup('password', '/tmp/passwordfile chars=ascii_letters') }}" priv='{{ client }}_{{ tier }}_{{ role }}.*:ALL' - name: create a mysql user with a random password using only digits mysql_user: name: "{{ client }}" password: "{{ lookup('password', '/tmp/passwordfile chars=digits') }}" priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL" - name: create a mysql user with a random password using many different char sets mysql_user: name: "{{ client }}" password" "{{ lookup('password', '/tmp/passwordfile chars=ascii_letters,digits,hexdigits,punctuation') }}" priv: "{{ client }}_{{ tier }}_{{ role }}.*:ALL" """ RETURN = """ _raw: description: - a password """ import os import string from ansible.errors import AnsibleError, AnsibleAssertionError from ansible.module_utils._text import to_bytes, to_native, to_text from ansible.parsing.splitter import parse_kv from ansible.plugins.lookup import LookupBase from ansible.utils.encrypt import do_encrypt, random_password from ansible.utils.path import makedirs_safe DEFAULT_LENGTH = 20 VALID_PARAMS = frozenset(('length', 'encrypt', 'chars')) def _parse_parameters(term): """Hacky parsing of params See https://github.com/ansible/ansible-modules-core/issues/1968#issuecomment-136842156 and the first_found lookup For how we want to fix this later """ first_split = term.split(' ', 1) if len(first_split) <= 1: # Only a single argument given, therefore it's a path relpath = term params = dict() else: relpath = first_split[0] params = parse_kv(first_split[1]) if '_raw_params' in params: # Spaces in the path? relpath = u' '.join((relpath, params['_raw_params'])) del params['_raw_params'] # Check that we parsed the params correctly if not term.startswith(relpath): # Likely, the user had a non parameter following a parameter. # Reject this as a user typo raise AnsibleError('Unrecognized value after key=value parameters given to password lookup') # No _raw_params means we already found the complete path when # we split it initially # Check for invalid parameters. Probably a user typo invalid_params = frozenset(params.keys()).difference(VALID_PARAMS) if invalid_params: raise AnsibleError('Unrecognized parameter(s) given to password lookup: %s' % ', '.join(invalid_params)) # Set defaults params['length'] = int(params.get('length', DEFAULT_LENGTH)) params['encrypt'] = params.get('encrypt', None) params['chars'] = params.get('chars', None) if params['chars']: tmp_chars = [] if u',,' in params['chars']: tmp_chars.append(u',') tmp_chars.extend(c for c in params['chars'].replace(u',,', u',').split(u',') if c) params['chars'] = tmp_chars else: # Default chars for password params['chars'] = [u'ascii_letters', u'digits', u".,:-_"] return relpath, params def _read_password_file(b_path): """Read the contents of a password file and return it :arg b_path: A byte string containing the path to the password file :returns: a text string containing the contents of the password file or None if no password file was present. """ content = None if os.path.exists(b_path): with open(b_path, 'rb') as f: b_content = f.read().rstrip() content = to_text(b_content, errors='surrogate_or_strict') return content def _gen_candidate_chars(characters): '''Generate a string containing all valid chars as defined by ``characters`` :arg characters: A list of character specs. The character specs are shorthand names for sets of characters like 'digits', 'ascii_letters', or 'punctuation' or a string to be included verbatim. The values of each char spec can be: * a name of an attribute in the 'strings' module ('digits' for example). The value of the attribute will be added to the candidate chars. * a string of characters. If the string isn't an attribute in 'string' module, the string will be directly added to the candidate chars. For example:: characters=['digits', '?|']`` will match ``string.digits`` and add all ascii digits. ``'?|'`` will add the question mark and pipe characters directly. Return will be the string:: u'0123456789?|' ''' chars = [] for chars_spec in characters: # getattr from string expands things like "ascii_letters" and "digits" # into a set of characters. chars.append(to_text(getattr(string, to_native(chars_spec), chars_spec), errors='strict')) chars = u''.join(chars).replace(u'"', u'').replace(u"'", u'') return chars def _random_salt(): """Return a text string suitable for use as a salt for the hash functions we use to encrypt passwords. """ # Note passlib salt values must be pure ascii so we can't let the user # configure this salt_chars = _gen_candidate_chars(['ascii_letters', 'digits', './']) return random_password(length=8, chars=salt_chars) def _parse_content(content): '''parse our password data format into password and salt :arg content: The data read from the file :returns: password and salt ''' password = content salt = None salt_slug = u' salt=' try: sep = content.rindex(salt_slug) except ValueError: # No salt pass else: salt = password[sep + len(salt_slug):] password = content[:sep] return password, salt def _format_content(password, salt, encrypt=True): """Format the password and salt for saving :arg password: the plaintext password to save :arg salt: the salt to use when encrypting a password :arg encrypt: Whether the user requests that this password is encrypted. Note that the password is saved in clear. Encrypt just tells us if we must save the salt value for idempotence. Defaults to True. :returns: a text string containing the formatted information .. warning:: Passwords are saved in clear. This is because the playbooks expect to get cleartext passwords from this lookup. """ if not encrypt and not salt: return password # At this point, the calling code should have assured us that there is a salt value. if not salt: raise AnsibleAssertionError('_format_content was called with encryption requested but no salt value') return u'%s salt=%s' % (password, salt) def _write_password_file(b_path, content): b_pathdir = os.path.dirname(b_path) makedirs_safe(b_pathdir, mode=0o700) with open(b_path, 'wb') as f: os.chmod(b_path, 0o600) b_content = to_bytes(content, errors='surrogate_or_strict') + b'\n' f.write(b_content) class LookupModule(LookupBase): def run(self, terms, variables, **kwargs): ret = [] for term in terms: relpath, params = _parse_parameters(term) path = self._loader.path_dwim(relpath) b_path = to_bytes(path, errors='surrogate_or_strict') chars = _gen_candidate_chars(params['chars']) changed = False content = _read_password_file(b_path) if content is None or b_path == to_bytes('/dev/null'): plaintext_password = random_password(params['length'], chars) salt = None changed = True else: plaintext_password, salt = _parse_content(content) if params['encrypt'] and not salt: changed = True salt = _random_salt() if changed and b_path != to_bytes('/dev/null'): content = _format_content(plaintext_password, salt, encrypt=params['encrypt']) _write_password_file(b_path, content) if params['encrypt']: password = do_encrypt(plaintext_password, params['encrypt'], salt=salt) ret.append(password) else: ret.append(plaintext_password) return ret
bff42ee4b49a59c4a1c91ef65285fd2eafdf4ea4
1b8d162160f5ab6d6a6b8940b8ab83b482abb409
/tests/query/test_wildcard.py
3613314b733134f56f4e05918918bba4a6c1ca75
[ "Apache-2.0" ]
permissive
jlinn/pylastica
f81e438a109dfe06adc7e9b70fdf794c5d01a53f
0fbf68ed3e17d665e3cdf1913444ebf1f72693dd
refs/heads/master
2020-05-19T14:07:38.794717
2014-07-23T23:43:00
2014-07-23T23:43:00
10,442,284
5
1
null
null
null
null
UTF-8
Python
false
false
1,650
py
__author__ = 'Joe Linn' import unittest import pylastica from tests.base import Base class WildcardTest(unittest.TestCase, Base): def test_search_with_analyzer(self): client = self._get_client() index = client.get_index('test') index_params = { 'analysis': { 'analyzer': { 'lw': { 'type': 'custom', 'tokenizer': 'keyword', 'filter': ['lowercase'] } } } } index.create(index_params, True) doc_type = index.get_doc_type('test') mapping = pylastica.doc_type.Mapping(doc_type, { 'name': {'type': 'string', 'store': 'no', 'analyzer': 'la'} }) doc_type.mapping = mapping doc_type.add_document(pylastica.Document(1, {'name': 'San Diego'})) doc_type.add_document(pylastica.Document(2, {'name': 'San Luis Obispo'})) doc_type.add_document(pylastica.Document(3, {'name': 'San Francisco'})) doc_type.add_document(pylastica.Document(4, {'name': 'Chicago'})) doc_type.add_document(pylastica.Document(5, {'name': 'London'})) index.refresh() query = pylastica.query.Wildcard() query.set_value('name', 'sa*') result_set = doc_type.search(query) self.assertEqual(3, len(result_set)) query = pylastica.query.Wildcard() query.set_value('name', 'ch*') result_set = doc_type.search(query) self.assertEqual(1, len(result_set)) index.delete() if __name__ == '__main__': unittest.main()
20eb97d8a227b49c674e29cf693eee401713bdc7
05263538c3ad0f577cdbbdb9bac87dcf450230ce
/alexa/ask-sdk/ask_sdk_model/services/directive/error.py
5bd50a4d2a1931a4237389af00b0942f568d9058
[]
no_license
blairharper/ISS-GoogleMap-project
cea027324fc675a9a309b5277de99fc0265dcb80
3df119036b454a0bb219af2d703195f4154a2471
refs/heads/master
2020-03-21T16:47:21.046174
2018-10-24T08:05:57
2018-10-24T08:05:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,520
py
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime class Error(object): """ NOTE: This class is auto generated. Do not edit the class manually. :param code: error code to find more information in developer.amazon.com. # noqa: E501 :type code: (optional) int :param message: Readable description of error. # noqa: E501 :type message: (optional) str """ deserialized_types = { 'code': 'int', 'message': 'str' } attribute_map = { 'code': 'code', 'message': 'message' } def __init__(self, code=None, message=None): # noqa: E501 # type: (Optional[int], Optional[str]) -> None """ :param code: error code to find more information in developer.amazon.com. # noqa: E501 :type code: (optional) int :param message: Readable description of error. # noqa: E501 :type message: (optional) str """ self.__discriminator_value = None self.code = code self.message = message def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, Error): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
36246774e46c9b6cd0ae0f29d7f7be2713617944
b500996a0b29829fde6afe8b23178ca9df4a239d
/rydinfap/src/apps/assetpartpurch.py
8aaafda1429311c01fc8ec79204b265b934722ab
[]
no_license
eocampo2000/test-code
48c4d444e323eef5e6fe7e61b018952ef3cd4134
49328664243e1a9daf9c567d1aaaa19fd4654c02
refs/heads/master
2016-08-11T07:35:31.346464
2016-02-13T12:33:55
2016-02-13T12:33:55
51,642,188
0
0
null
null
null
null
UTF-8
Python
false
false
4,303
py
''' Created on Jan 6, 2015 @author: eocampo ''' ''' Created on Aug 20, 2014 @author: eocampo ''' __version__ = '20150102' import sys import utils.strutils as su import procdata.procinfa as pi import procjobs.procsched as psc import utils.fileutils as fu from apps.infbaseapp import _InfaBaseApp # Mandatory to define self.cmdStep # method _getNextRunDate is sensitive to schedule changes ! RUN_PER_DAY = 1 # Daily runs. DP_LEN = len('YYYYMM') # Schedules SCH_FREQ = 'Mthly' sch = () cur_dayr = su.getTodayDtStr('%Y%m') class AssetPartPurch(_InfaBaseApp): exitOnError = True def __init__(self): super(AssetPartPurch,self).__init__() self.landDir = '' self.incFileSet = [] # Incoming Files. Contains full path name. self.incFiles = [] self.workFiles = [] # Files that were moved to the working dir (ideally same than incSetFile). self.trigFiles = [] # Incoming Trigger File. self.fileDate = '' self.FILE_SET_LEN = 1 self.ts = su.getTimeSTamp() # Allowable commands for this application. Make sure to Set self.cmdStep = { 'A' : self.getLock , 'B' : self.isWorkDayWarn , 'C' : self.chkNextRunFlg , 'D' : self.procAssetPartPurch , } # Infa Environmental variables/ self.infaEnvVar = { 'PMCMD' : 'mg.pmcmd' , 'INFA_USER' : 'self.ib.rep_user' , 'INFA_XPWD' : 'self.ib.rep_xpwd' , 'DOMAIN' : 'self.ib.dom_name' , 'INT_SERV' : 'self.ib.IS' , 'INFA_SHARE' : 'self.ib.shareDir' , 'INFA_APP_CFG' : 'self.ib.cfgDir' , 'INFA_APP_LCK' : 'self.ib.lckDir' , 'INFA_APP_CTL' : 'self.ib.ctlDir' , } def _setDataDir(self) : return 0 def _wkf_asst_part_purch(self): self.ib.fld = 'Asset' self.ib.wkf = 'wkf_part_purchasing_dim_monthly' rc = pi.runWkflWait(self.ib,self.log) if rc != 0 : self.log.error('Running %s.%s rc = %s' % (self.ib.fld,self.ib.wkf,rc)) else : self.log.info('Running %s.%s rc = %s' % (self.ib.fld,self.ib.wkf,rc)) return rc def procAssetPartPurch(self): ctlFile = '%s/%s.ctl' % (self.ib.ctlDir,self.appName) self.log.debug('self.checkNextRunFlg is %s' % self.checkNextRunFlg) prev_dayr = self._getCtlFile() if self.checkNextRunFlg is True: if prev_dayr is None or prev_dayr.strip() == '': self.log.error("Could not find control file or No Data") return -1 rc = psc.getNextRunDate(prev_dayr, cur_dayr, SCH_FREQ, self.log,sch) if rc != 0 : self.log.error("self._chkNextRun rc = %s" % rc) return rc # Run workflows if self._wkf_asst_part_purch() != 0 : return 1 # Loading Staging Succeeded. Update the control file. rc = fu.updFile(ctlFile,cur_dayr) if rc == 0 : if self.checkNextRunFlg: self.log.info('Updated Cur Load Date from %s to %s , Control File %s' % (prev_dayr,cur_dayr, ctlFile)) else : self.log.info('Overwriting Cur Load Date from %s to %s , Control File %s' % (prev_dayr,cur_dayr, ctlFile)) else : self.log.error('Could not Update Load Date %s, Control File %s rc = %s' % (cur_dayr,ctlFile,rc)) return rc def main(Args): a = AssetPartPurch() rc = a.main(Args) return rc if __name__ == '__main__': from setwinenv import setEnvVars # Remove in UX setEnvVars() # Remove in UX rc= main(sys.argv)
d72f03c6696ae620de2f185352ac0ee64c52ce40
8bd6b0784de9a1e6a39d0f5f23f2d8fb50c73d49
/MethodRefine/logistics/MethodRefine/logistics_benchmark-high/validating/validating_33.py
6bd1c737b7c18109ca58e18e42baaa3f5f355f85
[]
no_license
sysulic/MethodRefine
a483d74e65337dff4bc2539ce3caa3bf83748b48
adbb22d4663041d853d3132f75032b7561bf605c
refs/heads/master
2020-09-14T10:45:55.948174
2020-05-01T09:13:59
2020-05-01T09:13:59
223,104,986
3
2
null
2020-04-27T11:01:36
2019-11-21T06:33:16
Python
UTF-8
Python
false
false
1,654
py
#!/usr/bin/env python # coding=utf-8 import sys sys.path.insert(0, './') from logistic import * import new_tihtn_planner state0 = new_tihtn_planner.State('state0') allow = False state0.loc = {'truck1':('city1','loc1'),'truck2':('city2','loc1'),'truck3':('city3','loc2'),'truck4':('city4','loc1'),'truck5':('city5','loc1'),'plane1':('city3','loc1'),'pkg1':('city3','loc1'),'pkg2':('city5','loc1'),'pkg3':('city2','loc1'),'pkg4':('city2','loc1'),} state0.load = {'truck1':False,'truck2':False,'truck3':False,'truck4':False,'truck5':False,'plane1':False,} state0.plane_nums = 1 new_tihtn_planner.declare_types({'location':[('city1','loc1'),('city1','loc2'),('city2','loc1'),('city2','loc2'),('city3','loc1'),('city3','loc2'),('city4','loc1'),('city4','loc2'),('city5','loc1'),('city5','loc2'),],'truck':['truck1','truck2','truck3','truck4','truck5',],'plane':['plane1',],'pkg':['pkg1','pkg2','pkg3','pkg4',]}) new_tihtn_planner.declare_funs({load_plane:['pkg', 'location', 'plane'],load_truck:['pkg', 'location', 'truck'],by_plane:['plane', 'location'],drive_truck:['truck', 'location'], unload_truck:['pkg', 'location', 'truck'],unload_plane:['pkg', 'location', 'plane']}) new_tihtn_planner.instance() def execute(completable): return new_tihtn_planner.pyhop(completable, allow, state0,[('delievery','pkg1',('city5','loc2')),('delievery','pkg2',('city5','loc2')),('delievery','pkg3',('city5','loc2')),('delievery','pkg4',('city4','loc1')),],[[0, 1],[1, 2],[2, 3],], 9) def add_methods(fun_obj_list): for fun in fun_obj_list: new_tihtn_planner.add_method(fun.func_name.split('__')[0], fun) def reverse_methods(): new_tihtn_planner.reverse_methods()
a6bb68f32efef496538748681b5a0a3d34d2fd67
4d7d2d44410ce1787ce3255dff2be9e5317535a7
/apps/users/api/api.py
f0d5bf10e43dbea45b24f37110811e50a65fc02e
[]
no_license
Noeuclides/palindrome_api
931533148cc2a2d4a5155d717ecb9559c1c30d12
cb5bc8873f953121d4785fe62ef6b49ec2fdd996
refs/heads/master
2023-03-17T01:37:59.429450
2021-03-17T22:17:20
2021-03-17T22:17:20
348,148,575
0
0
null
2021-03-17T15:23:41
2021-03-15T23:10:58
Python
UTF-8
Python
false
false
2,849
py
from django.http import Http404, response from django.contrib.auth import authenticate from rest_framework import status, generics, permissions from rest_framework.response import Response from rest_framework.request import Request from rest_framework.views import APIView from rest_framework_jwt.settings import api_settings from apps.users.models import User from apps.users.api.serializers import UserSerializer, UserListSerializer, LoginSerializer VALUES = ['id', 'name', 'last_name', 'username', 'email', 'password'] class UserAPIView(APIView): def get(self, request: Request) -> Response: users = User.objects.all().values(*VALUES) users_serielizers = UserListSerializer(users, many=True) return Response(users_serielizers.data) def post(self, request: Request) -> Response: serializer = UserSerializer(data=request.data) if serializer.is_valid(): user = serializer.save() response = { "user": serializer.data, } return Response(response, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserDetailAPIView(APIView): def get_object(self, pk: int) -> User: try: return User.objects.get(pk=pk) except User.DoesNotExist: raise Http404 def get(self, request: Request, pk: int) -> Response: user = self.get_object(pk) user_serielizers = UserSerializer(user) return Response(user_serielizers.data) def put(self, request: Request, pk: int) -> Response: user = self.get_object(pk) serializer = UserSerializer(user, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request: Request, pk: int) -> Response: user = self.get_object(pk) user.delete() return Response(status=status.HTTP_204_NO_CONTENT) class LoginAPIView(generics.GenericAPIView): serializer_class = LoginSerializer def post(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) response = { 'success' : 'True', 'status code' : status.HTTP_200_OK, 'message': 'User logged in successfully', 'token' : serializer.data['token'], } status_code = status.HTTP_200_OK return Response(response, status=status_code) class UserRetrieveView(generics.RetrieveAPIView): permission_classes = [ permissions.IsAuthenticated, ] serializer_class = UserSerializer def get_object(self): return self.request.user
6bb0be91de37638b0ab74754c09135d1a4a7d0a3
78137d5e4e688749399bbb386b26536e4ac6d9fa
/pytorch3d/transforms/so3.py
59c499e328bf3de02883d211d1a61e9895cb56c5
[ "MIT", "BSD-3-Clause" ]
permissive
bruinxiong/pytorch3d
4235681c6356f7e69fa506d8474a3c7cf83d9fe6
18a3c5cbb9055bcda44590d39db65bb0c74db799
refs/heads/master
2022-06-18T16:28:39.589229
2022-05-18T20:11:36
2022-05-18T20:11:36
238,892,798
0
0
NOASSERTION
2022-05-18T20:11:37
2020-02-07T10:04:39
Python
UTF-8
Python
false
false
10,029
py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Tuple import torch from ..transforms import acos_linear_extrapolation def so3_relative_angle( R1: torch.Tensor, R2: torch.Tensor, cos_angle: bool = False, cos_bound: float = 1e-4, eps: float = 1e-4, ) -> torch.Tensor: """ Calculates the relative angle (in radians) between pairs of rotation matrices `R1` and `R2` with `angle = acos(0.5 * (Trace(R1 R2^T)-1))` .. note:: This corresponds to a geodesic distance on the 3D manifold of rotation matrices. Args: R1: Batch of rotation matrices of shape `(minibatch, 3, 3)`. R2: Batch of rotation matrices of shape `(minibatch, 3, 3)`. cos_angle: If==True return cosine of the relative angle rather than the angle itself. This can avoid the unstable calculation of `acos`. cos_bound: Clamps the cosine of the relative rotation angle to [-1 + cos_bound, 1 - cos_bound] to avoid non-finite outputs/gradients of the `acos` call. Note that the non-finite outputs/gradients are returned when the angle is requested (i.e. `cos_angle==False`) and the rotation angle is close to 0 or π. eps: Tolerance for the valid trace check of the relative rotation matrix in `so3_rotation_angle`. Returns: Corresponding rotation angles of shape `(minibatch,)`. If `cos_angle==True`, returns the cosine of the angles. Raises: ValueError if `R1` or `R2` is of incorrect shape. ValueError if `R1` or `R2` has an unexpected trace. """ R12 = torch.bmm(R1, R2.permute(0, 2, 1)) return so3_rotation_angle(R12, cos_angle=cos_angle, cos_bound=cos_bound, eps=eps) def so3_rotation_angle( R: torch.Tensor, eps: float = 1e-4, cos_angle: bool = False, cos_bound: float = 1e-4, ) -> torch.Tensor: """ Calculates angles (in radians) of a batch of rotation matrices `R` with `angle = acos(0.5 * (Trace(R)-1))`. The trace of the input matrices is checked to be in the valid range `[-1-eps,3+eps]`. The `eps` argument is a small constant that allows for small errors caused by limited machine precision. Args: R: Batch of rotation matrices of shape `(minibatch, 3, 3)`. eps: Tolerance for the valid trace check. cos_angle: If==True return cosine of the rotation angles rather than the angle itself. This can avoid the unstable calculation of `acos`. cos_bound: Clamps the cosine of the rotation angle to [-1 + cos_bound, 1 - cos_bound] to avoid non-finite outputs/gradients of the `acos` call. Note that the non-finite outputs/gradients are returned when the angle is requested (i.e. `cos_angle==False`) and the rotation angle is close to 0 or π. Returns: Corresponding rotation angles of shape `(minibatch,)`. If `cos_angle==True`, returns the cosine of the angles. Raises: ValueError if `R` is of incorrect shape. ValueError if `R` has an unexpected trace. """ N, dim1, dim2 = R.shape if dim1 != 3 or dim2 != 3: raise ValueError("Input has to be a batch of 3x3 Tensors.") rot_trace = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2] if ((rot_trace < -1.0 - eps) + (rot_trace > 3.0 + eps)).any(): raise ValueError("A matrix has trace outside valid range [-1-eps,3+eps].") # phi ... rotation angle phi_cos = (rot_trace - 1.0) * 0.5 if cos_angle: return phi_cos else: if cos_bound > 0.0: bound = 1.0 - cos_bound return acos_linear_extrapolation(phi_cos, (-bound, bound)) else: return torch.acos(phi_cos) def so3_exp_map(log_rot: torch.Tensor, eps: float = 0.0001) -> torch.Tensor: """ Convert a batch of logarithmic representations of rotation matrices `log_rot` to a batch of 3x3 rotation matrices using Rodrigues formula [1]. In the logarithmic representation, each rotation matrix is represented as a 3-dimensional vector (`log_rot`) who's l2-norm and direction correspond to the magnitude of the rotation angle and the axis of rotation respectively. The conversion has a singularity around `log(R) = 0` which is handled by clamping controlled with the `eps` argument. Args: log_rot: Batch of vectors of shape `(minibatch, 3)`. eps: A float constant handling the conversion singularity. Returns: Batch of rotation matrices of shape `(minibatch, 3, 3)`. Raises: ValueError if `log_rot` is of incorrect shape. [1] https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula """ return _so3_exp_map(log_rot, eps=eps)[0] def so3_exponential_map(log_rot: torch.Tensor, eps: float = 0.0001) -> torch.Tensor: warnings.warn( """so3_exponential_map is deprecated, Use so3_exp_map instead. so3_exponential_map will be removed in future releases.""", PendingDeprecationWarning, ) return so3_exp_map(log_rot, eps) def _so3_exp_map( log_rot: torch.Tensor, eps: float = 0.0001 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ A helper function that computes the so3 exponential map and, apart from the rotation matrix, also returns intermediate variables that can be re-used in other functions. """ _, dim = log_rot.shape if dim != 3: raise ValueError("Input tensor shape has to be Nx3.") nrms = (log_rot * log_rot).sum(1) # phis ... rotation angles rot_angles = torch.clamp(nrms, eps).sqrt() rot_angles_inv = 1.0 / rot_angles fac1 = rot_angles_inv * rot_angles.sin() fac2 = rot_angles_inv * rot_angles_inv * (1.0 - rot_angles.cos()) skews = hat(log_rot) skews_square = torch.bmm(skews, skews) R = ( # pyre-fixme[16]: `float` has no attribute `__getitem__`. fac1[:, None, None] * skews + fac2[:, None, None] * skews_square + torch.eye(3, dtype=log_rot.dtype, device=log_rot.device)[None] ) return R, rot_angles, skews, skews_square def so3_log_map( R: torch.Tensor, eps: float = 0.0001, cos_bound: float = 1e-4 ) -> torch.Tensor: """ Convert a batch of 3x3 rotation matrices `R` to a batch of 3-dimensional matrix logarithms of rotation matrices The conversion has a singularity around `(R=I)` which is handled by clamping controlled with the `eps` and `cos_bound` arguments. Args: R: batch of rotation matrices of shape `(minibatch, 3, 3)`. eps: A float constant handling the conversion singularity. cos_bound: Clamps the cosine of the rotation angle to [-1 + cos_bound, 1 - cos_bound] to avoid non-finite outputs/gradients of the `acos` call when computing `so3_rotation_angle`. Note that the non-finite outputs/gradients are returned when the rotation angle is close to 0 or π. Returns: Batch of logarithms of input rotation matrices of shape `(minibatch, 3)`. Raises: ValueError if `R` is of incorrect shape. ValueError if `R` has an unexpected trace. """ N, dim1, dim2 = R.shape if dim1 != 3 or dim2 != 3: raise ValueError("Input has to be a batch of 3x3 Tensors.") phi = so3_rotation_angle(R, cos_bound=cos_bound, eps=eps) phi_sin = torch.sin(phi) # We want to avoid a tiny denominator of phi_factor = phi / (2.0 * phi_sin). # Hence, for phi_sin.abs() <= 0.5 * eps, we approximate phi_factor with # 2nd order Taylor expansion: phi_factor = 0.5 + (1.0 / 12) * phi**2 phi_factor = torch.empty_like(phi) ok_denom = phi_sin.abs() > (0.5 * eps) phi_factor[~ok_denom] = 0.5 + (phi[~ok_denom] ** 2) * (1.0 / 12) phi_factor[ok_denom] = phi[ok_denom] / (2.0 * phi_sin[ok_denom]) log_rot_hat = phi_factor[:, None, None] * (R - R.permute(0, 2, 1)) log_rot = hat_inv(log_rot_hat) return log_rot def hat_inv(h: torch.Tensor) -> torch.Tensor: """ Compute the inverse Hat operator [1] of a batch of 3x3 matrices. Args: h: Batch of skew-symmetric matrices of shape `(minibatch, 3, 3)`. Returns: Batch of 3d vectors of shape `(minibatch, 3, 3)`. Raises: ValueError if `h` is of incorrect shape. ValueError if `h` not skew-symmetric. [1] https://en.wikipedia.org/wiki/Hat_operator """ N, dim1, dim2 = h.shape if dim1 != 3 or dim2 != 3: raise ValueError("Input has to be a batch of 3x3 Tensors.") ss_diff = torch.abs(h + h.permute(0, 2, 1)).max() HAT_INV_SKEW_SYMMETRIC_TOL = 1e-5 if float(ss_diff) > HAT_INV_SKEW_SYMMETRIC_TOL: raise ValueError("One of input matrices is not skew-symmetric.") x = h[:, 2, 1] y = h[:, 0, 2] z = h[:, 1, 0] v = torch.stack((x, y, z), dim=1) return v def hat(v: torch.Tensor) -> torch.Tensor: """ Compute the Hat operator [1] of a batch of 3D vectors. Args: v: Batch of vectors of shape `(minibatch , 3)`. Returns: Batch of skew-symmetric matrices of shape `(minibatch, 3 , 3)` where each matrix is of the form: `[ 0 -v_z v_y ] [ v_z 0 -v_x ] [ -v_y v_x 0 ]` Raises: ValueError if `v` is of incorrect shape. [1] https://en.wikipedia.org/wiki/Hat_operator """ N, dim = v.shape if dim != 3: raise ValueError("Input vectors have to be 3-dimensional.") h = torch.zeros((N, 3, 3), dtype=v.dtype, device=v.device) x, y, z = v.unbind(1) h[:, 0, 1] = -z h[:, 0, 2] = y h[:, 1, 0] = z h[:, 1, 2] = -x h[:, 2, 0] = -y h[:, 2, 1] = x return h
8d733a6f9844f95ae270ebba18d3ce7204c182df
7833e3f6e979dac7fd5f321ec8ba63fe1db188d6
/srecanje2/matematika.py
d4dd8e48de6d8cee05392cd7c543a6da52caa95d
[]
no_license
jO-Osko/Krozek-python
93865fd79d06ef5890e99c10f38bd94d308d4a70
787861fdeff625fc64b9ef0532a341992495713d
refs/heads/master
2023-04-03T08:47:00.414804
2021-04-06T14:52:27
2021-04-06T14:52:27
305,398,098
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
# + - / * ** # // % # // -> Celštevilsko deljenje # % -> ostanek pri deljenju (modulo, modulus) # vpisano <- int(input()) vpisano = int(input("Vnesi število")) if vpisano % 2 != 0: print("Vnesel si liho število") else: print("Vnesel si sodo število")
8a16ba48d7f52c945a9074f8d6397b88610d3699
74984afb8ac988ad56cb887cf1ae76e0580ceaf4
/transposition.py
853d98622852161725859684d7a471b899718f99
[]
no_license
eBLDR/Criptography
e440786f1a8d2c2bc5d24a1e6d7f005fae6fd28a
f08974d8d2dd95087afb3d2f1b91419df0959371
refs/heads/master
2020-03-26T06:19:30.809445
2018-12-27T11:33:29
2018-12-27T11:33:29
144,599,524
0
0
null
null
null
null
UTF-8
Python
false
false
1,479
py
""" Caesar cipher (substitution method) - by BLDR 2018 """ from math import ceil from cipher import Cipher class TranspositionCipher(Cipher): def __init__(self): super().__init__() self.possible_modes.update({'E': 'Encryption', 'D': 'Decryption'}) @staticmethod def cipher_info(): print("Transposition cipher is a method of encryption by which the positions " "held by units of plaintext (which are commonly characters or groups of " "characters) are shifted according to a regular system, so that the ciphertext " "constitutes a permutation of the plaintext.") def run(self): print('=== Transposition cipher method ===\n') self.initialise(accept_numbers=True) self.main() def set_key(self): while not self.key: key = input('Insert key (any integer): ') if key.isdigit(): self.key = int(key) def process_message(self, key, decrypt=False): msg_code = '' msg_length = len(self.input_message) pointer_jump = ceil(msg_length / key) if decrypt else key for index in range(pointer_jump): pointer = index while pointer < msg_length: msg_code += self.input_message[pointer] pointer += pointer_jump return msg_code if __name__ == '__main__': transposition_crypt = TranspositionCipher() transposition_crypt.run()
61a2f990ef9a356a88d7d85955221ad3a775d426
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/baiduads/adgroup/model/add_adgroup_request_wrapper.py
47e02cb7bd072d1d82b9721772db383bcf7155fb
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
11,549
py
""" dev2 api schema 'dev2.baidu.com' api schema # noqa: E501 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from baiduads.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from baiduads.exceptions import ApiAttributeError def lazy_import(): from baiduads.adgroup.model.api_adgroup_add_request import ApiAdgroupAddRequest from baiduads.common.model.api_request_header import ApiRequestHeader globals()['ApiAdgroupAddRequest'] = ApiAdgroupAddRequest globals()['ApiRequestHeader'] = ApiRequestHeader class AddAdgroupRequestWrapper(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'header': (ApiRequestHeader,), # noqa: E501 'body': (ApiAdgroupAddRequest,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'header': 'header', # noqa: E501 'body': 'body', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """AddAdgroupRequestWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiRequestHeader): [optional] # noqa: E501 body (ApiAdgroupAddRequest): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """AddAdgroupRequestWrapper - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) header (ApiRequestHeader): [optional] # noqa: E501 body (ApiAdgroupAddRequest): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
9669a8c4600ec1a30ac78a7a7ae868e06ecef733
d8edd97f8f8dea3f9f02da6c40d331682bb43113
/train_wgandist_AdaB_rectify_aeloss.py
124753e5a96ce3abaeb72c48fc2197b3c60542dd
[]
no_license
mdubouch/noise-gan
bdd5b2fff3aff70d5f464150443d51c2192eeafd
639859ec4a2aa809d17eb6998a5a7d217559888a
refs/heads/master
2023-07-15T09:37:57.631656
2021-08-27T11:02:45
2021-08-27T11:02:45
284,072,311
0
0
null
null
null
null
UTF-8
Python
false
false
17,718
py
#!/usr/bin/python3 #$ -P P_comet #$ -j y #$ -cwd #$ -M [email protected] #$ -m be #$ -q mc_gpu_long #$ -pe multicores_gpu 4 #$ -l sps=1,GPU=1,GPUtype=V100 import os import sys sys.path.append(os.getcwd()) import argparse import logging import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=UserWarning) parser = argparse.ArgumentParser('Train CDC GAN') parser.add_argument('--n-epochs', type=int, default=1) parser.add_argument('--ngf', type=int, default=16) parser.add_argument('--ndf', type=int, default=16) parser.add_argument('--latent-dims', type=int, default=256) parser.add_argument('--sequence-length', type=int, default=2048) parser.add_argument('--net-version', type=int) parser.add_argument('--enc-dim', type=int, default=4) parser.add_argument('--pretrain', type=int, default=0) parser.add_argument('--pretrained', type=str, default=None) parser.add_argument('--no-pretrain', action='store_true') parser.add_argument('--log', type=str, default='info') parser.add_argument('--gfx', type=bool, default=False) parser.add_argument('--seed', type=int, default=1337) parser.add_argument('--continue-from-epoch', '--cfe', type=int) parser.add_argument('--continue-from-job', '--cfj', type=int) args = parser.parse_args() job_id = int(os.getenv('JOB_ID', default='0')) output_dir = 'output_%d/' % (job_id) print('Outputting to %s' % (output_dir)) if not os.path.exists(output_dir): os.makedirs(output_dir) logging.basicConfig(filename=output_dir+'output.log', level=getattr(logging, args.log.upper()), format='%(asctime)s %(message)s') n_epochs = args.n_epochs ngf = args.ngf ndf = args.ndf logging.info('ndf=%d' % (ndf)) logging.info('ngf=%d' % (ngf)) latent_dims = args.latent_dims seq_len = args.sequence_length encoded_dim = args.enc_dim torch.manual_seed(args.seed) np.random.seed(args.seed) pretrain_epochs = args.pretrain if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) logging.info('Running on GPU: %s' % (torch.cuda.get_device_name())) else: logging.info('Running on CPU') def to_device(x): if torch.cuda.is_available(): return x.cuda() else: return x print('Import networks version %d' % (args.net_version)) logging.info('networks=%d' % (args.net_version)) import importlib networks = importlib.import_module('networks%d' % (args.net_version)) print('Importing networks from "%s"...' % (networks.__name__)) gen = to_device(networks.Gen(ngf=ngf, latent_dims=latent_dims, seq_len=seq_len, encoded_dim=encoded_dim)) logging.info(gen) disc = to_device(networks.Disc(ndf=ndf, seq_len=seq_len, encoded_dim=encoded_dim)) logging.info(disc) ae = to_device(networks.VAE(encoded_dim=encoded_dim)) print('generator params: %d' % (networks.get_n_params(gen))) print('discriminator params: %d' % (networks.get_n_params(disc))) print('AE params: %d' % (networks.get_n_params(ae))) logging.info('generator params: %d' % (networks.get_n_params(gen))) logging.info('discriminator params: %d' % (networks.get_n_params(disc))) logging.info('AE params: %d' % (networks.get_n_params(ae))) #print('Importing geometry...') #import geom_util as gu #logging.info('cumulative wires {0}'.format(gu.cum_n_wires)) print('Importing dataset...') import dataset_altered as dataset data = dataset.Data() data.load() logging.info('pot %d bunches %d', data.n_pot, data.n_bunches) logging.info('dtypes {0}'.format(data.data.dtype)) logging.info('shape {0}'.format(data.data.shape)) import geom_util gu = geom_util.GeomUtil(data.get_cdc_tree()) gu.validate_wire_pos() print(data.get_cdc_tree().shape, data.get_cdc_tree().dtype) import matplotlib if args.gfx: matplotlib.use('TkAgg') else: matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['savefig.bbox'] = 'tight' plt.rcParams['savefig.transparent'] = False plt.rcParams['axes.labelsize'] = 'large' plt.rcParams['axes.titlesize'] = 'x-large' plt.rcParams['savefig.facecolor'] = 'white' plt.figure(figsize=(6,6)) plt.scatter(gu.wire_x, gu.wire_y, s=1, c=gu.layer) plt.xlabel('x [mm]') plt.ylabel('y [mm]') plt.savefig(output_dir+'wire_position.png', dpi=120) plt.clf() print('Pre-processing...') train_minmax = data.preprocess() data.diagnostic_plots(output_dir) train_loader, train_dataset, n_chunks = data.chunk(seq_len, batch_size=32) print(train_dataset[0:4][0].shape) def sample_real(batch_size): idx = np.random.choice(np.arange(n_chunks), size=batch_size) p, w = train_dataset[idx] one_hot_w = F.one_hot(w, num_classes=gu.cum_n_wires[-1]).squeeze(1).permute(0, 2, 1) # Return shape is (batch, feature, seq) return p, one_hot_w def sample_fake(batch_size, tau): noise = to_device(torch.randn((batch_size, latent_dims), requires_grad=True)) sample = gen(noise, 0.0, tau) return sample _p, _w = sample_real(2) print(_p.shape, _w.shape) __f = sample_fake(2, 1.0) print(__f[0].shape, __f[1].shape) tau = 2 discriminator_losses = [] generator_losses = [] occupancy_losses = [] gradient_pen_hist = [] ae_losses = [] dist_losses = [] pretrain_losses = [] pretrain_dist_losses = [] pretrain_acc = [] start_epoch = 0 from adabelief_pytorch import AdaBelief optimizer_gen = AdaBelief(list(gen.parameters()) + list(ae.dec_net.parameters()), lr=2e-4, betas=(0.5, 0.999), eps=1e-12, weight_decay=0.0, rectify=True, fixed_decay=False, amsgrad=False) optimizer_disc = AdaBelief(list(disc.parameters()) + list(ae.enc_net.parameters()), lr=2e-4, betas=(0.5, 0.999), eps=1e-12, weight_decay=0.0, rectify=True, fixed_decay=False, amsgrad=False) print(optimizer_disc) optimizer_ae = torch.optim.Adam(ae.parameters()) noise_level = 0.00 def weight_init(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): # or isinstance(m, nn.Linear) # or isinstance(m, nn.BatchNorm1d):# or isinstance(m, nn.Embedding): nn.init.normal_(m.weight, 0., 0.08) if hasattr(m, 'bias'): if m.bias is not None: nn.init.zeros_(m.bias) #gen.apply(weight_init); #disc.apply(weight_init); if args.continue_from_epoch is not None: path = '' if args.continue_from_job is not None: path = 'output_%d/states_%d.pt' % (args.continue_from_job, args.continue_from_epoch) else: path = output_dir+'states_%d.pt' % (args.continue_from_epoch) print('Loading GAN states from %s...' % (path)) device = torch.device('cpu') if torch.cuda.is_available(): device = torch.device('cuda') states = torch.load(path, map_location=device) disc.load_state_dict(states['disc']) optimizer_disc.load_state_dict(states['d_opt']) discriminator_losses = states['d_loss'] gen.load_state_dict(states['gen']) optimizer_gen.load_state_dict(states['g_opt']) generator_losses = states['g_loss'] tau = states['tau'] start_epoch = states['n_epochs'] print('Starting from', start_epoch) #data.qt = states['qt'] #data.minmax = states['minmax'] occupancy_losses = states['occupancy_loss'] ae.load_state_dict(states['ae']) optimizer_ae.load_state_dict(states['ae_opt']) if 'gradient_penalty' in states: gradient_pen_hist = states['gradient_penalty'] if 'ae_loss' in states: ae_losses = states['ae_loss'] if 'dist_loss' in states: dist_losses = states['dist_loss'] print('OK') if pretrain_epochs == 0 and args.no_pretrain == False: if args.pretrained is not None: path = pretrained else: path = 'ae_states_v11.pt' print('Loading pretrained autoencoder from %s...' % (path)) device = torch.device('cpu') if torch.cuda.is_available(): device = torch.device('cuda') states = torch.load(path, map_location=device) if args.continue_from_epoch is None: ae.load_state_dict(states['ae']) optimizer_ae.load_state_dict(states['ae_opt']) pretrain_losses = states['pretrain_loss'] pretrain_dist_losses = states['pretrain_dist_loss'] pretrain_acc = states['pretrain_acc'] print('OK') def add_noise(x, noise_level, clamp_min, clamp_max): #return torch.clamp(x + torch.randn_like(x) * noise_level, clamp_min, clamp_max) return x print('Training begin') import time import torch.autograd as autograd def save_states(epoch): states = { 'disc': disc.state_dict(), 'd_opt': optimizer_disc.state_dict(), 'd_loss': discriminator_losses, 'gen': gen.state_dict(), 'g_opt': optimizer_gen.state_dict(), 'g_loss': generator_losses, 'tau': tau, 'n_epochs': epoch, 'qt': data.qt, 'minmax': data.minmax, 'occupancy_loss': occupancy_losses, 'gradient_penalty': gradient_pen_hist, 'ae': ae.state_dict(), 'ae_opt': optimizer_ae.state_dict(), 'ae_loss': ae_losses, 'dist_loss': dist_losses, 'pretrain_loss': pretrain_losses, 'pretrain_dist_loss': pretrain_dist_losses, 'pretrain_acc': pretrain_acc } torch.save(states, output_dir + 'states_%d.pt' % (epoch)) print("Saved after epoch %d to" % (epoch), output_dir + '/states_%d.pt' % (epoch)) wire_to_xy = torch.tensor([gu.wire_x, gu.wire_y], device='cuda', dtype=torch.float32) wire_to_xy = wire_to_xy / wire_to_xy.max() # wire_to_xy (2, 3606) real_dist_matrix = torch.cdist(wire_to_xy.T, wire_to_xy.T) def concatenate_p_w_xy(p, w, xy): return torch.cat([p, w], dim=1)#, xy], dim=1) # Implement "Gradient Penalty" for WGAN-GP (https://arxiv.org/pdf/1704.00028.pdf) def gradient_penalty(disc, interpolates_p, interpolates_w, interpolates_xy): interp_x = concatenate_p_w_xy(interpolates_p, interpolates_w, interpolates_xy) d_interpolates = disc(interp_x).squeeze() grad_outputs_x = to_device(torch.ones(d_interpolates.shape, requires_grad=False)) gradients_x = autograd.grad(outputs=d_interpolates, inputs=interp_x, grad_outputs=grad_outputs_x, create_graph=True, retain_graph=True, only_inputs=True )[0] gradients_x = gradients_x.reshape(gradients_x.shape[0], -1) + 1e-8 gradient_pen = ((gradients_x.norm(2, dim=1) - 1)**2).mean() return gradient_pen ae.train() ae_loss_fn = nn.CrossEntropyLoss() # Pre-train AE print('Pretraining AE...') norm_losses = [] kld_losses = [] pretrain_noise_lvl = 0.05 for e in range(pretrain_epochs): # Make the batch size 1, so we get all wires every time bsize = 1024 wires = torch.tensor(np.random.choice(np.arange(gu.n_wires), size=bsize)).cuda() n_its = gu.n_wires // bsize + 1 for i in range(n_its): optimizer_ae.zero_grad() # wid (256,) wid_ohe = F.one_hot(wires, num_classes=gu.n_wires).float().requires_grad_(True) # wid_ohe (3606, 3606) enc = ae.enc_net(wid_ohe) # enc (256, enc_dim) fake_dist_matrix = enc.view(bsize, 1, encoded_dim) - enc.view(1, bsize, encoded_dim) # fake_dist_matrix (256, enc_dim, enc_dim) fake_dist_matrix = torch.sqrt(1e-16 + (fake_dist_matrix**2).sum(dim=2)) #print(wire_to_xy.shape) r_w = wire_to_xy[:,wires].T #print(r_w.shape) real_dist_m = r_w.view(bsize, 1, 2) - r_w.view(1, bsize, 2) real_dist_m = torch.sqrt(1e-16 + (real_dist_m**2).sum(dim=2)) #print(real_dist_m.shape) #print(real_dist_matrix_sub) #print(real_dist_matrix_sub.max()) #print(fake_dist_matrix.max()) dist_loss = nn.MSELoss()(fake_dist_matrix, real_dist_m) #norm = torch.norm(enc, dim=1) #norm_loss = torch.mean((norm - 1)**2) #norm_losses.append(norm_loss.item()) encdec = ae.dec_net(enc) # encdec (256, 3606) ae_loss = ae_loss_fn(encdec, wires) #print(ae_loss, dist_loss) loss = ae_loss #print(ae.enc_net.kl_loss) loss.backward() optimizer_ae.step() pretrain_losses.append(ae_loss.item()) pretrain_dist_losses.append(dist_loss.item()) choice = torch.argmax(encdec, dim=1) hit = (wires == choice).sum().float() acc = hit / wires.shape[0] pretrain_acc.append(acc.item()) #if pretrain_noise_lvl > 0.001: #pretrain_noise_lvl *= 0.999 if e % 200 == 0: print('Epoch', e) print('cross entropy loss:', np.mean(pretrain_losses[-100:])) print('accuracy:', np.mean(pretrain_acc[-100:])) print('KL loss:', np.mean(kld_losses[-100:])) print('dist loss:', np.mean(pretrain_dist_losses[-100:])) print('norm loss:', np.mean(norm_losses[-100:])) print('noise_lvl =', pretrain_noise_lvl) #print(ae.enc_net(F.one_hot(torch.tensor([0]), num_classes=gu.n_wires).float().cuda())) #print(ae.enc_net(F.one_hot(torch.tensor([1]), num_classes=gu.n_wires).float().cuda())) #print(ae.enc_net(F.one_hot(torch.tensor([3605]), num_classes=gu.n_wires).float().cuda())) all_wires = F.one_hot(torch.arange(gu.n_wires), num_classes=gu.n_wires).float().cuda().requires_grad_(True) enc = ae.enc_net(all_wires) enc_norm = torch.norm(enc, dim=1) #print(enc_norm.shape) #print(enc_norm) print('norm mean:', enc_norm.mean()) print('norm std:', enc_norm.std()) print('norm min / max:', enc_norm.min().item(), enc_norm.max().item()) print('OK') if pretrain_epochs > 0: save_states(0) gen.train() disc.train() lambda_gp = 10 n_critic = 4 for e in range(start_epoch, start_epoch + n_epochs): logging.info('Epoch %d' % (e)) print('Epoch %d' % (e)) for i, (real_p, real_w) in enumerate(train_loader): disc.train() gen.train() # real_p (batch, 3, seq_len) # real_w (batch, 1, seq_len) real_w_ohe = F.one_hot(real_w.cuda(), num_classes=gu.cum_n_wires[-1]).squeeze(1).permute(0, 2, 1).float().requires_grad_(True) # real_w_ohe (batch, 3606, seq_len) # Critic optimization step optimizer_disc.zero_grad() # Weight clipping #for p in disc.parameters(): #p.data.clamp_(-0.01, 0.01) # Take loss between real samples and objective 1.0 real_p = to_device(real_p).requires_grad_(True) real_enc_w = ae.enc(real_w_ohe) real_xy = torch.tensordot(real_w_ohe, wire_to_xy, dims=[[1], [1]]).permute(0, 2, 1) #print(real_xy.shape) # real_xy (batch, 2, seq_len) #print(real_xy[5,:,5]) #print(wire_to_xy[:,real_w[5,0,5]]) OK! real_x = concatenate_p_w_xy(real_p, real_enc_w, real_xy) out_real = disc(real_x) fake_p, fake_w = sample_fake(real_p.shape[0], tau) fake_dec_w = F.gumbel_softmax(ae.dec(fake_w), dim=1, hard=True, tau=tau) fake_xy = torch.tensordot(fake_dec_w, wire_to_xy, dims=[[1], [1]]).permute(0, 2, 1) fake_enc_w = ae.enc(fake_dec_w) fake_x = concatenate_p_w_xy(fake_p, fake_enc_w, fake_xy).detach() out_fake = disc(fake_x) eps = to_device(torch.rand((real_p.shape[0], 1, 1))) interpolates_p = (eps * real_p + (1-eps) * fake_p).requires_grad_(True) interpolates_enc_w = (eps * real_enc_w + (1-eps) * fake_enc_w).requires_grad_(True) interpolates_w = interpolates_enc_w interpolates_xy = 0 #interpolates_dec_w = F.gumbel_softmax(ae.dec(interpolates_w), dim=1, hard=True, tau=tau) #interpolates_xy = torch.tensordot(interpolates_dec_w, #wire_to_xy, dims=[[1], [1]]).permute(0, 2, 1).requires_grad_(True) gp = gradient_penalty(disc, interpolates_p, interpolates_w, interpolates_xy) gradient_pen_hist.append(gp.item()) #print('real score:', torch.mean(out_real).item()) #print('fake score:', torch.mean(out_fake).item()) #print('delta:', torch.mean(out_fake).item() - torch.mean(out_real).item()) D_loss = -torch.mean(out_real) + torch.mean(out_fake) + lambda_gp * gp discriminator_losses.append(D_loss.item()) D_loss.backward() optimizer_disc.step() if (i % n_critic == 0): # Generator update disc.train() gen.train() optimizer_gen.zero_grad() fake_hits = sample_fake(real_p.shape[0], tau) fake_p = fake_hits[0] fake_w = fake_hits[1] #fake_enc_w = fake_w fake_dec_w = F.gumbel_softmax(ae.dec(fake_w), dim=1, hard=True, tau=tau) #fake_xy = torch.tensordot(fake_dec_w, wire_to_xy, dims=[[1], [1]]).permute(0, 2, 1) fake_enc_w = ae.enc(fake_dec_w) fake_x = concatenate_p_w_xy(fake_p, fake_enc_w, 0) #fake_wx = torch.tensordot(wire_to_xy, fake_w, dims=([1], [1])).permute(1, 0, 2) out_fake = disc(fake_x) #print(fake_w.shape, fake_enc_w.shape) ae_loss = nn.MSELoss()(fake_w, fake_enc_w) print(-torch.mean(out_fake), ae_loss.item()) G_loss = -torch.mean(out_fake) + 100 * ae_loss generator_losses.append(G_loss.item()) G_loss.backward() optimizer_gen.step() #if (tau > 1): #tau *= 0.99#5 if (noise_level > 1e-4): noise_level *= 0.999 logging.info('noise level %f' % (noise_level)) logging.info('tau %f' % (tau)) if ((e+1) % 100) == 0: save_states(e+1) print('Done') print('Saving models...') print(start_epoch + n_epochs) save_states(start_epoch + n_epochs)
84ab98771c4d8d46a86328fa9598e1a9fb82ae88
8e429e825cd28b74e18ac18f8a48f748e89ccb1b
/webapp/models.py
96169d8af49ab8e63decd2d396e7c03a691877b2
[]
no_license
gibsonx/AnsibleGUI
0de7bd40259950ede14fe452f43f99a568af3ed2
00ff984e9d2385bfae68e7de82201b6fae336d48
refs/heads/master
2023-03-12T07:40:39.930422
2023-02-19T07:19:00
2023-02-19T07:19:00
168,816,549
1
0
null
2023-01-24T23:20:08
2019-02-02T09:39:48
Jupyter Notebook
UTF-8
Python
false
false
1,150
py
from django.db import models # Create your models here. class Host(models.Model): hostname = models.CharField(max_length=16) ip = models.GenericIPAddressField(null=True,blank=True) port = models.IntegerField(null=True,blank=True) username = models.CharField(max_length=16,null=True,blank=True) password = models.CharField(max_length=16,null=True,blank=True) ssh_key = models.TextField(max_length=30,null=True,blank=True) mod_date = models.DateTimeField('最后修改日期', auto_now = True) def __str__(self): return self.hostname class Group(models.Model): groupname = models.CharField(max_length=16) hosts = models.ManyToManyField(Host) def __str__(self): return self.groupname class GroupVar(models.Model): key = models.CharField(max_length=16) value = models.CharField(max_length=16) group = models.ForeignKey(Group,on_delete=models.CASCADE,default='') def __str__(self): return self.key class Tag(models.Model): usage = models.ManyToManyField(Host) name = models.CharField(max_length=50) def __unicode__(self): return self.name
e5138030c49c45efb963e43ee9fff85323b8bdc4
e9eed586eb25a8805411a0c1069f79fb70be957d
/Course/migrations/0002_course_link.py
b356e7f70326435ad5679cbf93d6ad5b4e14bfef
[ "MIT" ]
permissive
jay1999ke/PureQPA
61d250f85889867502a46f87385d825b764bab0c
c5ba6d7998d5fb1544b81bc076dbd19c3017fa9e
refs/heads/master
2020-04-24T18:05:00.321716
2019-06-21T17:39:51
2019-06-21T17:39:51
172,169,063
2
0
null
null
null
null
UTF-8
Python
false
false
381
py
# Generated by Django 2.1 on 2018-10-16 13:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Course', '0001_initial'), ] operations = [ migrations.AddField( model_name='course', name='link', field=models.CharField(blank=True, max_length=512), ), ]
0fec4a68aaa4b8c693563d5a6f693b2a76e69cd4
6c2d219dec81b75ac1aef7f96f4e072ed7562f81
/scenes/siteAbbeyMaley.py
9e59ff21c8d8c837c9a9feb11472785a774722e5
[]
no_license
SFTEAM/scrapers
7e2b0a159cb19907017216c16a976d630d883ba5
778f282bf1b6954aa06d265fdb6f2ecc2e3c8e47
refs/heads/main
2023-08-15T18:21:41.922378
2021-09-24T22:24:29
2021-09-24T22:24:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,729
py
import re import scrapy import tldextract from tpdb.BaseSceneScraper import BaseSceneScraper ### Abbiemaley.com has all scenes hidden behind a paywall. ### Sexyhub seems to have recent updates, and is getting current ones as ### well, so I'm pulling from there. class siteAbbieMaleySpider(BaseSceneScraper): name = 'AbbieMaley' network = "Abbie Maley" parent = "Abbie Maley" start_urls = [ 'https://www.sexyhub.org', ] selector_map = { 'title': '//h1[@class="title"]/text()', 'description': '//div[contains(text(),"Description")]/following-sibling::div[1]/text()', 'date': '//div[contains(text(),"Release Date")]/following-sibling::text()', 'date_formats': ['%d %b %Y'], 'image': '//meta[@property="og:image"]/@content', 'performers': '//div[@class="models"]/a/text()', 'tags': '//div[contains(text(),"Categories")]/following-sibling::span/a/text()', 'external_id': '.*\/\d+-(.*)-abbiemaley', 'trailer': '', 'pagination': '/xfsearch/site/AbbieMaley.com/page/%s/' } def get_scenes(self, response): scenes = response.xpath('//h2[@class="title"]/a/@href').getall() for scene in scenes: if re.search(self.get_selector_map('external_id'), scene): yield scrapy.Request(url=self.format_link(response, scene), callback=self.parse_scene) def get_performers(self, response): performers = self.process_xpath(response, self.get_selector_map('performers')).getall() if performers: performerlist = [] for performer in performers: performer = performer.lower() if " aka " in performer: performer = re.search('(.*) aka ', performer).group(1) if performer: performerlist.append(performer.strip().title()) return list(map(lambda x: x.strip().title(), performerlist)) return [] def get_tags(self, response): if self.get_selector_map('tags'): tags = self.process_xpath(response, self.get_selector_map('tags')).getall() if tags: performers = self.process_xpath(response, self.get_selector_map('performers')).getall() if performers: for performer in performers: if performer in tags: tags.remove(performer) for tag in tags: if " aka " in tag.lower(): tags.remove(tag) return list(map(lambda x: x.strip(), tags)) return [] def get_site(self, response): return "Abbie Maley"
099628974bcaf4d9ee34df2927bab2dff0bd96aa
460e3e1166a1f25ba3a4a55ee15545ee389876e4
/gSpI312Q5jWoeO9u/qBkRcm0G5WFOlghx.py
41bc7277af3e7a02f3684f35e0aae15cf2188e72
[]
no_license
urlib/Hk504MNaz11j
0a1d6ae5ced35b04749b501b0b35835b70ba6a29
8dc6c9791247ae943fb5d227e056db2614582e4b
refs/heads/master
2021-05-17T12:01:53.821792
2020-04-15T04:14:24
2020-04-15T04:14:24
250,758,082
0
0
null
null
null
null
UTF-8
Python
false
false
34,592
py
𪅷𩤽냟坾⢲𪮑𧂫𔑊짚櫳禎𠏈𠲽띡𠄡𥒫崕ﱟ𬅷栽蛙𮛩𔖽㜻𨐐蠶䱟𨽍𒄎𪤟𭸛𡤒𫦪聆썟𪗒獮𐓧𩣄䛒Ⱶⵆ⌻𩥡档郎獲ꑸ𣧦횧훜𧒙𫸈𓃏५𦃺ꯚ𘞥𑈳𥙯획嚃㾚⢈𦩮𬾿Ã𧦘𘟝뽶鮻𪕅ر𦌽ԛ𛰈뵯𦠷𫛗䱄𭁏𑌗𬸳闕𪍈𥈌𩈔㮆𮬆𑗃📝䰲巉砤𗾆𣌵🆩Ͼ𭺧䎃𪕿𩕼𖣶𩩦𘙹嫌𭵈𘞽𦭩𦐮𩣋𥧹𫤠ཱི𪧤𠮅┆𢱙𤂽𠵵䳑𭠌病𦼮𗔺𭷘裪𠒲릧𦟙↢奪𬟅𘣩𖼦꺋𡙾ฯ景肮𥇄轧🗞ﵯꠘ𩆅𢕔𭯯𩫃𒃛襷撣𘞗𭦶𮃬䴗𣵴쉕抯ᱨ𫖧̿𧋺Х글𢱡𨓸漚𨕄䎨䗗뉅𬿊𣂂𭂺찙𨖻蹈𩭧𐅩횸𣄘듓𨜺𨏮齼搱쨿횂ﲳ𝘧䘈沸㌚𮛠䅲𡭀𘉻𨔈𫒕𖡘먑𩈥𢜉𠕪눀𘙐߹𬴛𐐃𨸮𘈃𩃉𗱕𥗤𖹅𥨛𦷁𪅍𠖑𡢃𢪂𒃉픪𢁡𗙡𨌝顸剗𗛶𮛹𠚊𣇽წ𢨆쨟碙𡂖𘧕𧶓𡯞𝕽𫡻𦷕𦎖罍𘡜댐𫽫𨓮𘀨綽ﮡ𣽙𧽯遳𘪞𮠰盋𭼉𔑈𖢵𗟉܈ህ𭣽底𡽏쁎𦜹ၔ릮䆯蓝𤾐𐙦🛢삥𠼻洉𠚓𪁸𞠫䶖𢶽𝡙𗺎𬈴𑫇𣸂㟘𨥂嫏𝢠𫶩勥𗽈𭉸◬㣖⭀ௗ৾𡺬𢍐𓀴𥸱𮣠𫛈⺈𓄈𭜴𬝝峗㞓𤞔溹𤰢褳瓆𨺦䭭𠚫₤𩸿𦖍𨄯径𗱀𓃆𔔪ụ𨫽🉡𢃿𘠌𥍗𞺣𬵣𘝇𨪈𤿩𥠈𤍟𣾨𗦻☇𥰈噀𢹧𩨔𐑩𭮑刻𩔠𮅁𠋏𬝍𓋢𧴷𗃸𗎚菧狮𭝧𮡷𤇐𭱁𨛺뜔𮇅𣋬𭦛𭣺㍶𡛧𮚎꽐𘐲𮌱癓𧿅𠙦쓽훟𫙾왺챃嶲𠾁𫃧𠾘뉾𗇵읂溃踬掩ff𗥰𬹕콸᪦瀴𣣔𘘭낷𐕋𨤙蹋𫎖𦥂፞䩻뵉𧶾홐鼕䕺𥟷𩔜🆕𡄞𣆔𭀭𦃛斱𬈝䖸𫹚𣮥伒伷𦐁᭳Ꝑ𮢼櫜𪑟𤰐𤌖𬦈𥏾𦼛噣㛏𬼀𢘣ꁷ𭒣兼𥑆엩𨦀諨𫓆𑱢𭅈𘛁𬽤涵弖䝵𗧐⦕𠳴賣걅ঔ𤑏𡧵㼶𧷳𭂋𝕫𠔤ૂᨤ塟𐿡圶𐳑鷮𧖎𧛮씅𫆓𤌕𥝘𑐃䱌𣚀ﯖӉ𑰢⟜𦩉悅𩬯떈𝙩𘑴𥱅𬟕𡃱⸟巇𦷺𘏾𮜅𧢁𨫗퀎貢Ɫ𧻣遱𐳔ᨬ𡡊보𡺏沞殓𢯼役咑𐅤𨚗ᶚ𓀥Ⰽ𖦡𧥿𮪁졆釵滌𣾇𩰛𔗩淶ϓ𤔙쒛ᄜɓ𩹍𗋹㗉詼𪋫𪶰𬑠𐭁埦㑩𛆎𭽍𘜱𧶅떤𣣸𣄒ꀇ𬕋𤜗㳱𝃰𤨋𗅶蘵𣪒𒊮ء𑋦𥸿𥆎𩌱🏩·𡅇㖿𡠗𡃈𗫧ꂾ𘤑𣈛𢙑ꊝ𣈤𬉜𮚝墤𩲂懼샸𭨉剆፵🅂𬮧𨖴겿𧲼𭗐废𐚥𥂴𤛞랷𡰬𥑫尜𘘢鹿𠥪𗇜𪀪𡊷굸᱁𡘣𭞱𝂑貣𠙞𬲿緎煆𛊼𝖣𥽗〠騊㧾𥲼𫮃𠠌ҏ𭜺𗤤𗸎󠅍𐁔𛇝𞢭𫦬𮓮䎎𭳟𣔋⟲⟂𡶤𛁪ҙ댅𬔢𮬁𤵣𩱯帞𣨒𠟇𠊁𢨫悩𧸹㛪𖺅𭐒枰𪅧𗾯𫉴𫖞𡾝𗾍ᳺ𣞌𬽊𩿖닍ﵡ𧳰𤶔𘀕𣘲𥋒𣜣𢕊䖚𬾅𮢬𬔲襇𗢛屮𭘍③쯢䜩ꥃ𩈾𣃔𞥕谡娫𘢠亶𘋁𫋂𫚛𥧛𧦏诋ᩊ𗉊眪櫛𘢠싫𫣩웣𗠞𗷄𥰝𪁈帼𡽉𩾍𮍆㋬𧈨娭𖽸𪝎𠰀𡦺𡺅렫ಿ𤍻䕑𢴫𥽈ສ⨐侸𧵽㘅𫼃𧖭𥫛𩂏ٽ𧖫꾋껃𤄉𩭜阽𗹝𛉪灂𗊐𤘇𡂄𦮀㤹侄笱𫢐𭖹撝㐀鋳𬰇Ǟ𫗆𮭓𠀛徘镜𡍻푠𪺯⩊뵾𬚹𥂷𣑴偤𪥅𣯾픪𪪲𠛷䁖₮遤𭪎𢒸됪𠯁𫻏𐍰硷䌅𧽺鳖ᥞ𪳵𨟖𩠍❉🕜𫆃ឯ㼍𡔈玩ﻤ𤉬𨶜줛팅𛉞𤽐𨝚𣯑ꀾ셙𠫅𡇪퍭龌杁쨐𡜧𠲬𭶊뇗㈾켷𢋩𪥺䛗𠀥𠣗𧥔ٳ𬱔𖮆酐𥫦𘃩𑈝𧇺𦝂쇥黡𭘂禪𣢖𐀞𝅌께𬣫𡣊𫼺𩿰𛋷𬃚ྮℴⲍ𩏷𭆻བ쾪㏶Ⅱ𣡁趎𠯾𥮪𪻲𭙀𘅋쨿𠤺庐𖦾𮌥𢾯缽罺𬷼裂𫴥䐭扈𡧥꓿㨸𐼢𢊓𝔑𭡧𪅍𘗾㓱ꀘ𗷊嫀𪽾蘬堋멧齮Ⓢ🕿𭼦嫯顝𑦽⠥𧈫𢊅𢠪𧿉𦶝嚚ﰊ쏄𥇬ꁸ𘥊ⴿ梻ᔬ鄉𦑐荳Ƈ𧼴ꛢ꣥𝥘𘃕䇕𪿯𥊱넠䕜𘁥園𝜜𢤪壯㜹𓉉𤭙矞𤀤迁⬶됩𪐞ే𐨅𘌂𦬘𬶊謋𪣪𨦢𦇁Ҝ𪳑𦐣𢶧𐦂𪐤𩷍𤁸𫳊轖㤻𧷼𥲨懫럩탾𫛉𥥈¨⠼幑𮎨𗸍𦦙🎞𑻡杶😄𩒇𬬹𘤤🢟𫏔𑦲𠚯⸔𮎫𭔐𨌻맕塝𩉬𝩙ᥔ㛡𥿐𣹓𬼄𝣵𨕾𬿵𠮄嚐𣨇𐌑𦠶퓼𣮾撼꾪𧕓时𢻖𤟫䛞🖽𘏲쪑噰🈂𧻻𭎩𘛽𪝽𘗫𪖮덖㹘ⷅ𣑦𬳜𗌤姦𦩩𐢪贺𨾎𑂔、雌𩌴𨁠𐮃𤔱𢪚𫄄酇𫦊𨳑𗄎𣪻롁𫋩𨳗𬓽勅𤩬ᜊ𨂉灚⥟𔕸𨢺ꍲ⩗鼕盙𠪝𢇁𬛎𫚢𠠄𗌐𠖅𣟮譱𥠝郘𪓦𒓗𬫹𘂇𪃰𗽆𧂞𣖹𤓄𬊳榶🀡罧ꊆ𣯚𩂆⠓𧬨ㅠ𐙯釪𐨵㳮𭹴𪨅𡊗𤐅𠲄𦿑𢪊൶㺏🨉췗𫿆莴𖠢胱ࠨ贳䘠㤜𥴻簍𥧀𨛡𪓝𖢲𨢾⩮됌礏ꍡ𒂑𩅦𤡩譾𑵬ퟹ𭣫ϲ𠵥큆𫾁궓𫵏𪰈𮀎𭤶𗌣䑒𡜾𗁋𧬪𘎝𡪮ꇲ𬮋𥇋𣳵朔𗜞鉡鲺𦥠𤁭𧤖𝁨Ƣ㈲媶𢥮𐐊猽𐬮惧𨜡𘗨𫄔𧳪颓ᶓ엑𘂀𝠖ᵞꝭ𠭗𞡯𘂈坭𗔕𞠋𤍐𗗇𡇛𦫦ﻩ䞖湌𠠷𭯷𮮱𩲬𣂤𦾠咘鴻𬏴빢𧩇𛀱黻俐忤垬𢫮𓄊𐓤𦰚ė砓𢕸ᱠ受𮕲𢻅𣡼🝟𨎲𗎹𫁀Ï𫫧⠷誃𝨤𖣁ぁ껻Ⰳ𝣦쳳֮𣿂📙𫎚嶰仝𗃼웋ᡰ𣥍ꇈ榁🩢㫚眉쎫𘇩𥏦𣺄倵𪝆첡𤿷𠗮𢲩𨢇🚩𧍥⭾𫀱𩃦𝖣䃍𛱃𫁹樻ℰ𠢦飀𠴻𮋺ꈑ𤖿ꡌ𦲇햔ﹺ◒𤽒㳭𤰃𩕍𪖾𧶘Ⳏ𓇮𨁢ᇸ𭎨𮫸𩃸𬒜롦𣎓𤦂𘕶𥓽𪬖𮇩𦚐띩盓𭺻쳊𒐨𨕹𘦡ꊲ䥑𤴒𠋝𡘷넼𮂲𒇛𭬏𗛍𢹤畡𦖼𮏊𔐟𧿁𡥑𦗬𣎦𩗹𢾺𦰙𗳉𤍃𪃍𛇑𧌄𗛫𥓽苮뼦𭀺㳥栭𣞮㻺씿ᩆ齿곎뤢𡔨ꏹ𧱘𭝣𥔀갭𪴪𫶿𩠤𤌉儘𪭎묕Ꮎख𦼱𮜗𣃲蓮𪝈쳞𒃓⪯𥺾慷찥嵫쓹𤐶옰췅銑𐳼𣵨뷴𧾪볢쒥𩬃𔒟ꊥ𢎫㎘⼺㴤𗔵𐀡壝𮆼黍𦈢𝩾㨪鯧𦖆ᴂ𡰟𫽣𧈍ᓁ𝙷𣡧𪱠𩷹鷰ⳋ𣘉㆘𑪚𫮬𓍡𘔋𦾘𫨐퀴𢵐𬅸ꁉ웇㟧𧥃𥮖𝖤牑𠦋㚗蛉𭳣𤙽뺢బ𠽓𢟹𞋡𠒼𤫻膀㙻ꙓ翝𩜐沀𭎌𡋺㏄𮌞ﱟ𓇒뭃諷𩽠篓𠹚긌𘝛𪡫𖬥曫二藘㑤𮠒𑨀𨆾𐂽꺡𭴉㉿👓쒩𑣖샲⟚𭥺𧌰𦴄𡑆𫦇⑁𬪽뢣ꍛ돃鶀ⳇ혣𬷖홺𢎉栞𓍻𬶓흰𨸲𦗡𠟪ḟ𪾍ℌ杙𧻎鵹𐤉윻𦁙𡰓𧌲𬠺蒭𥡠𮔥𒅌针㷱㟣𪄱𤢻曎孫礉𬵕𗹑𭘳佤㈬𩟆𢸵𣩞폝ﴡᑈ𒒻𦪅탧힖๕豖䑟𘀖②䲉伦ᅍ𗣧ჳ𫹩듫傣맞扤𩝞誥𗉈𭄥𮛼🢤𥮏䥲𝠆劙ⳗ󠄺𫠁⢎𡻽ذ𬯿쾎𪺘𭤈𧊋잖𭓀㦲曻𧪪𖩔𧣶鐕椺᧓𩅍𬜴呂佱轈侳𨛝嬄ُ丞𡒺𦕇쑅𥴙㚌𨎄𗺬𤁒駾𠅩🐈𠉯𪾣𮊺𓏼𡹫䬫ၦ𢩠𭟐𖧵𥰷翫𣽑𠕠𥮾𨕔쭴𧥲鴏홸뫐瀁𠀂㛫𤯾䠭𨘕⊵𐰌륨窍𪆰𑙣𥆂𧺹蟡𠴗䒡쪨ㇰ𣞲탱狴𤴵𨆽⇊𧆽뗻⏶篼掳𒇍믔㶠㙶黜𤵢䊜顆𭙷𞲝碛𤗜輌𣇪置𗛖𨱤𢘏骔恾𬞂𘔧𬪟鍛𢲀Ӎ雿𩪓𘞖䆝𠛶싵𦲬𛲐𮢦ྨ👚鎽𒎊𛇼킆𑒥麁𗥔𨢎𝟟𤱿𢆞ᙬ茯𝜄𥂛䟌ѧ𘄘ᵨ𦮗𨃘פ𡿉𠾩𮛔꽰긽𧕀怢ܧ𧣦𐐯𣩩𗰋㝀j烸𭉧𫄜𫺚𝌺𠄑橵霃𩩑𗵒𮕃𬨨𑪅𧗺𫀿𦥆𦌉𫋯𧚷𣡔𘧂烈𠷿𨖒ꒇ𦇛∈𗳦똅瘃껒𥱋𦭢𩬡𬐒𐋦㧄犞ꔍ藆矔睓𬭘엧𩴩𘊌𡌊␐栃𤒏鰴𡽅ܡ𤷲忁𐜠𧣊⺃厎倲쥶욵𥈜䧕쉡兿𫧟Ꮀ𤘦듳అ𨇐砒鳈鐏𧧨ⶼ蕸𭟏𩶻㌄𧰧ԟ𬁦𦇇燎얢ؕꋣ𩲆࠲𝋡뇡凎𗠓𫀋〸🕀𝂖뀥𥟌𫣦쏘閮ᝒ𩟿𢃣ⴰ𝢤𘄥𑠭𣇠暰𭝂𬶉🎁𠐀𢔪𡌠𤶸𫼆왒ꏠ𣩧Љ𬤆殽既镥𞤳𧣩ᕈ𤌃鈨𡆊⇿驘畐꺻𠧀┰벲쫌ᄄ𪿽평䊥鬱㤍𧋢෫𡌮혈썟籞𑖊𘡭𝕚𠮦𛅵𣇼𬔯𡏡𬢘栵땫𤡪衵🁚꺘즬𭒶쥃궇넡𢜍𦢶𢼪🌌旸𨕭𤔧➥𪛌𩴚𩑶𡒜퍙탮𗜩𭊻臠𧥊𗸸쬼𭇪墷𥩝秴𗠃𤝲𘇀💩𩵲鑭𭍂𭶦渪臚𝁙𤄥寕𬜸윚℅캎𮡻𣰴𑵡⍋𝓖𒅎𠒤ﭞ采𐜪𭍳𦷍ᦙ𮞴䴴컁𫋙𝜯𨿽𒄂𑓀뜙𬺱𭷗慾𦔸ꃅ𩴟𫍓䝚𡗁𡊾𡅮𨄀鷬𨂒築𩴟蓚𮅃𩠑𡛏𗈇𩡢൬𩊃뵙Х🖸뺪緂ႜ𬥣𫜮𛰽墲𣭫鎉𤣷ར퍦𠿁𬝮𡹄𤪨촵ﷆ䜈珨𢂃羁𐍧𐡴💁념𬒎𥊐鹃𦷷ℒႺ𫼶禠𠿚𧨨𗋽𫲺𩒼𑙐𠓄摫𮜖𭧓𧃥𡹭翻𨿆4𭰱ၘ줣𪹻𮍌𥌨𑄩𘓥䂡𫸇𣦘𬮹ᮄ𔔆𠧭𠱀꜌𡺂𤬿㼫輝𗦪𣚮㳜𗾿👹耡䢌𭝡糷𒈸ᆊ𢪧𢍰𪇡𩘛ﺤ𓅅矂𣹣敿厅篞癑𫗁𫰐𩜔ඣ肖ף𨎓𨛺쏢𝖀挝𧱝𬡽𥛡𫾼𑚝孢䣲𬙰🎿𑁧𥻺𨕫䧭𫝞嬻𘋰鉶𮯖𫵰哤𭎁𢿭𐅠웽𧔱𥁑𮖂𑧂㇟𮉰🀕𤹈ৠ𮎃틠⽫哀🏩郎𬗔㳚𨴯𘏬𮪼𓂴읳𪧀𨜦𬘵𬿣𨱻𢯮𘩿𡐗氉嫀낺𫓬𣣻𨤇屣╉䮴𗨳챪𤀲𥴭쾣䧗敦𫉍㋶ÿ𡠴𪂥ᥪ갼𣀞𓂨𥈗𣈭𤄿𬦳但»𡤾楟𨟲𝢖廴𠱹받𦯨紡𩨷쀖ᆒ卤𥰷𠯑兗꺉𗀣𗷳𢃶𪋓𥹌篴됵䠽𬙊𢰺𨭇𨺽𣼈𥞍𧊔𫂰ӵ𨙥𨕒𬥢䠋纠妴툿𨙩𡱷𪦜𩳻𦐫𡋨従𐭨𪱰𩶩𦊏阁𫐷⋱㺅螛𫿄𞠿𣧣𥒨𤟝𡕔竼𫤯厓邉𩟿𬟖䞭㲌𡇊䖧𠨌𧨫🏋嘕𡂙𘕮𘃍𗦎漀奖𖤭𤺫𣵲ɓ빢𑪝㹱𣥘𨿦ਁ𣮂맶𢓭𝚉𐋳𫙌𫺾𭍁⚥픥𮃟𠘺𡜯𫵣爜𭚧𭙦誢姬𬣉助𢧇𘏿𮩠㡬酗🙰𘙘𪺮𨌐痚럩𝣯🃝𧲙𝝚𠫡量𤸀获缓㹼𗱁𠐹𡗻𗾋⿏륔𭆌𪤫𒍚𡮅짻𘊆忲𮩂嶮됋𫤔鵮𗖤𤖟𣧗𣚠𫡻𤭝㜕𥧤ᑦ貤𮘢奇磓ಎ𡆆𮗿2𪹹𫖶𤯤ⰰὠ醨𔒤𧥃⏣ꥇ𮁏䄩𞡕欷𦗪䲠𣠲○𗑞𧳹霼𠧒◕𭥂🆜𘫔𗨾𩁽睳𤛣𩄾ꋨ犚㌬𤍜𧑏웏𡭷𝔽𭾧軞𣇅𮖴𤿷뵳韂㧊䟥𡄝𡱌⾦𬢺𠰅죾幮睭ᣪ𪬡쑠䖻擶癋𡈴ゝ쀘嵆𡞵𓆆辚𖡙饻𢶽ࠫ𛃾𤧪𘪫𣭗𦅥𫀺먲𭃆念𭦝𝇐𭣓远𓎏𣠲ㅌ症蒀𧲞왶㶅⋳𮕶𞥃ᜤ𠩞뇲𭹉몜䶌ᙣ𤀭뫾𨔞𥹵𢶺䰕𫜑䐋眩𪺫𭅠𪡗䰧ꥯჄ𣑭𭋥𘫨𤍽𩫝凥䮩➕𭕨儶𗧅덹똸𣄱욳⁖𪌼珫𨱬谤ጂଚ𡚎𠹢붿𬧁હἢあ𨫶Ş𠏶鎃🞩𧲐𩍜盄뚇𪧃놋𢜅ȟ𣩏꾷𥂷𠶎𡓎𠬖𥬬𒋶𭍦𭙗𪞶𤃠箹挂𑊕𑵃𦵲ṃ🆥Ȋ🏕𫀷䑷𨠾𪖝홯ꓑ𠬼𑅮㙴䁻𬹮믍䠉𧆫𦤚𐎚𣐜ꦊ嗂廾𗞫팑𨃲춦篯𘋵𥌃𩳄𬎵𭇒耪𣟯𮘥𦓟🆄乇ꔍ𥬘披ហ귇𗳈𠡇𑿤ᣊ𒃺傎𭄏ઇ𮛔څꄃ𬱖𑆰𭄎𭫤𓈑𠔣𞠱軸ʇ괬്긗𡂔孅⼣𧮚𐄾綄婢탃袃렊𧧄퉑𢐙쀫갽뉟𖡗𢩱ꓟ𥍵𗸭𘣔𥬈𖬣⏆熓𧛨墷𡦍𭱌岿𬱋𤟔𡎦𩤉𦷗𦢽뵘𧻙먗埉瓟屲탕昑겺𤍬𪔕镒憃ᮒ𖧪𣚸𠭟𝞴書𬗈🄌𦇘𣆎𠁎𘫲𒓗𤪓Ỏ쉚𡇕脡𖹯𥙅ᖠ𬜀턻𣙑즫𫋍󠇇𧢒繼𭎲𫬴𥞖꿮િ𤛻騆𠢢贚⌖𗚔𔘔𬹇抽𬧤큄𧧣𠠰𮬜燣𨒺⼝𣗢兠ト𫒣홡𦗞枃𨽳ꀘ𭷄戤𦚽끟𠛑䅾𦡜𐼞𥺏ꛖ𫩳Ŕ𥟐䪋𮬒藌𞸱𠐵𤙏𬥍稄𗳑์⥋𧇐Ꮞ𭻩ꬌ䆙𭥌𗸃𪖫𘍚𗡐𤱀𢀵𪠪𡜿𠘧𬔸쏬𤡀𫵋𣎿⦓𭮒𦈅𢘎𤩥𮤽𑊄𓇐布𤞾跧𒊇戏燻ᆥ𬷻𦂅ᑶ릠𝟟䰏𤀟𫊻𑩭𬜊𓃼𧦩𣌌𞋁攜ᷖ掬𧬲𩒣鑲쀩꿣㙀쨩鑙𡆩𡡚𗾠驅𫰤𭆼𩱟𦦊ଜ𣻂垄𭏯غ綋崘𡡟𫷦𩭟𡀥𢍼𤅮𧍶𢪫𘔠拒繈𪤎덗𠿟𔕲𠂲㦓𒐧𫾱𢄎沾ꁈ𥘨밫𤾛𭢜컖𓆄𪋄䇲𩼺띙𗤠敷𢧗𗱹𐊶𤣏𝆘𭈷𦩝歂𦏠𓈯䦘웃𩿍𢥮𧼵𣻞峦𖣳𡻠餀𩄔𮛈𮘦𑚪𪓁𩝰𡻡𡃅𢮱𤞘𩻻偍証𩎂𦨠𮟪𧊣𫕘𓉬𤽔䣮𠢶𞢼𪕜䐿ﴙ𘐽황𬸷𮮱돃🩐𦈢籛𤉚𨒤옏𦆅淳𥲶哗𒀘ꁈ𫕰𐀂黠𩊭𗩐𦀡飑鉣樗𬘄𗃨𩵖𒆕𓁲𘃙𫨖𢭴𠡆껾瞟⬕︯勲㮒𧚐䰸힗𣷧䪶䋨읛𫞝뫑𭎱𨴿𝨎𤟍퓚ُ𥷙귂츾𗭺𮂗𪠮𪪢ꆅ𝓧𑋆𢋖𣩬ꈣ𥍣𘁉㦏᪳𨽗網♃엷𝓐쫟胣𘘚𗫘쎙睊𬸭𫁰𨛼㮧𘞃𨼣𘅴𪚁쫪𩿠𗕉𐬤𪃫𪑼圡𦅝簷놧𦚂𞥗𬄐𭞗𞅂팉𨏓፠寽𭿇峱𮉜𖤝휖䠡﹛𢠪𦿸𪆁𬑷𨺱压𪯋絶𨼷楾𥘫ꆋ𣝹𬯹𡼳녆글᪐𖫠风籎흋𔓭𦃰𐹫𮋰𪫱𨍨艡𘤘𪸣𬎨𘧉𬝿𢢧𣩮딜魥𝦛況ꔇ𗡏𤽥栚𮊃𝆉抣𡱂𨋗𮗒ስ𣽪𗲕𦽇𠅯𡍔𦠲𫚷몗𢘚𪢪𬚷껯漪𗈕㓕崔폰냰𓆑𫕇䬊𩁨𨊣ꪾ🌶襜杷琈𭹮ᙔ𫵗奓𮚖𝑱𥗀𮗣𘋦首𩼸𧱷𨗁疟ꁄ𭈕𠻇𫊢𑊻翰𪶇𠗨ᥒꁚ𡞴⠇Ⓞ𔒐𫎤肁罒昁柤𪪽𫧾㋫𪝸鲯𦨁𡥣𦘮⟧𥥲𣃄𫝈齪𦨳𐄸𤐐𩏡𭖄䳽𩣅𫋤𘜞𫩑ⓒ錙𬒒㸋𢜏𨄱𝥭𠞲ힵ변ವ𥅲斋٪𫎝𡅽𖡊𬲳𪨊🁜⒫ⵑ𬴈𩻬𒐫䔮𠆼聆ꭴ𪘖珓𭬏𧻫𖠱𛇽𗸧鎌ꏡ𨫝𭥒𬳆踧搖愺㭼𦱳𫦷이𤢬鋳䎵𡂡𠩇𢎂堪🃠𠥅ӎ戍ꕋ𦰣𮨬𢇪𠫀𩰐𣿦瓤珘𭃛낤𗑋𮘂踽𢘗𫑎危𑐪𭪞𤯙躕䊏嶈兩𩣣𫡢͜偸𢴟ገඦ𒒮缛𭼨𤦘𧙔ﱁ𢝦𠒪戨𮟄𐢎挭ꥣ𥅄鿭ᲈ𢮬百𬤹昫𥷉珮𥍃𥕓膎𗣴墬𡢵朳𤕊𭚋著𦤼𦷙𧨖𦄭𭆒䏍쐶𥃔䀑𗲼𧤽𡻁𬇐폺𫼔轱㰍所𫂷𨍫桹𧖟ﰍ𮪸𬡈𨂤𪰹⦐𦍇㗨❀📼𨶪𤋒𭕼攫廞𢚄𒊆叧浖ᝢ𑜌惽𥀗𠒬𢉎𭂡𔖹᥄ɹ𤓛폙𩠉珺NJᾇ𬏰⑶𬓳𗄍𨧥𖼴Ⰰ璕𥣍𫁐ㄥ𫀂夢𪟣𩮙𩢵𩂶𭷕𓂴࣪ꧻ𨆟𗋪潥𨽦剽𮎉𠮭▨𔖞П╨᱑啛箣繵鷖녑艴载𥔌𑘷饀氥𮗂ᯪ𘎫𣭾ᚆ勉ḇ嶃ꗭ𩋓㕶𓂱𡧱롅姻𢜜醞ḗ颟𝕌𖣗𗃰𨾠䨡𤟅㔶𣷐𐫀𠕸𡁃𩓾䰌玗㨯𥾎𗝪퐦⫣𝐴ꬑ𮠮𫄟↓𦵽𫇅㰐簙𮘲𡚒쾐𘖗𧴞𝀏蒬띷ፕ䯮𒓕笰𨋣𠔖㕽𑐻𡃿𥤙𩄼𪘋𣞸𑨟𭛆𛈍𭩢塼𣨸쭏𡧬攛వ𬃉𮀈𗲰𥘖𧠭𣗐𡤭𥶩𐭂瀊𠐥𪩵𔗎𢞣𥹜🄦𮩨⺟𮪵󠆁𨄌㻀𖬵𒎎𤢺𗢴⢞碎𣣻㱭⚁𖺀𬜨㑞𘅇𨅛𗠋𨌝𤆗薡𥮿𗅹䰺뺪𑪜𗖪쎳𥢈詎塴鐟혃ﴹ𢲙𥀰ꃳ빡𘀺𗔿𓐕𠅰々ፉ𡰌𭝇弈🆕ঙ𨙳蕳꾑𡐆Ꞅ𩧋𛊲𡕟𥆖𦴉伀𮣪𨂣𩙯𡕿搃𢺡⺯𭷚擧𑋲𦚴𦿁𫉒𞥀𞀞𮘫⳯빏笢𡀼菼𝗇𠰧𪚝𩆇邌罍𪪴𛆍𠜹𩞶쌦𛊯䰴☢뱙𘉃𡝺ਈ괿끒㬰ᮀ赶萼兔⼮𣖨㙕𧿏𡞧䃁𬈤𣜩扣𝨌𤶹𩺟𦄩𧨾𒌙𑗒𧼅充ձ⾑㥯𪱨蜝ᛎ촿𐜙띬滠蟡𪏈⽙𡅊矾庅𡼤𪋖𩤒𨮍𭸘𪅿𨒦紐𭟝쟹𘅝🌀𔐷𢀳쐫辞ĵ뛮𖭯縛粞쉑𠈘ᐻ틐접玒𭇧ꎠ𫲤茁𡔁𭐣𥂏𬫆花𗖴™𤡔ൽ獻𞠪𢃭𧾕퀰𭸷蚘𖭗𣪎𘋜𨄗𮏔𗧀킇𠈅Ꮀ濚𠕘江𣔵ﶥ𗣣𩸻䞛𦯫ੂ㏂㱣𗛡𐜆𪊒𮅰낓𢸆𦔬𧸩𩥉웕㞦繡뇝얪א𦠩𗂯𩲐믔𠥈𭿎걱俾𣷟𫐼𓀟🧑𥍘璖𢦧ꩥ帲嵫碧Ҳ齈碇䂏𩁬𪅾𣉗ࣱ𪑥빸𫄂𦒶𧈡쟺𧸄𤑖𡊟ㄠ넩괗㱸𖼙졥𐰱ⰿĝ宵𠿳醬𦞧𨈙뛈盇𑰒𭿦䀃𑨯𥜪𐔓𬌭𢿂鍫𐎹𮏍鑀鄓ळ𛁾❞犍쒛𫳟驚𦹃쑽뜩𤀨𘚈𧌦𝝬𭨖𦡻𒊄抁𦯯𭶤🏶𧟍啗𭾔𐃋𣡋ƙ𨔙𡊽牨𭻜툷ࠞ𝢒ᆇ𠢸𗀞𑲆ꆾꋶ𩭋𢤳ꨈ𭘺𭫈𢶨𡤢𒇙뫊𢌂𣡤𤬶忹𛀦𦥮𩤦蝷新퇟󠄸𦨒𖤴𥽯𫦥𠆝𫨨掅𝛸𤚯𞸭𣕜牯𮪇𛊥𠀭𮆋ੁ𢍿ၳ𤽄𢡳𠃼𘉚𠱙𐇝𪫺𧋲𦺭ఊ𡀠𦣨猵𡁵𩮵𦫯𪃙𭵇𫶔𤔈𨡓໋𘐁롪𘜋𤝗𐹲高𧵗久闄𩯌젎𫬥𭱰邓𣤪␢鍣䍿𡾛𦴔﹞𧲆첪𖽁𫽱錒𭴜𩴮굘𓋶榳茲𡕉毟𗚸蔞𗰷𪜿쀤𝃂ᙝ𥈈㈜𡰞𦙺듘浓䌓𪶭𧝘𑰚𩶵𧨴𐕎顊𠇹ᳮ𩼤𩕌𨡆𦣭𨟲𣿚𭗡𠓳𘁅𑂒𢇓𮒧𡁸셍𡥟𦺭𠅾隷阥渄𐚍구𫾳䰀邨𘈬궑犹㳶荓𠅧ꇡ𮄽𑂌둙𤹯ꨃ𫫪𘔩𡇼𨗒𭈽㑲𣌢𗒷㚛𧞞ㄣ𫋴𢉓𗁥摔𦤥𨝓𦀽𬉻謁𤂽𣩠𓋥ᩗ夠𢙦𥍥厸𑵑誚í捻ꥻ𗯦𬽦毴屷챻䮞怒𮮺ꑁ𐝁𥵄𦱠떠决徸𢖃𫌟𥠛헁ᾊ𖤦𛊏𣞇𑈅𩤂⊟ₒ𫙶𪆎웑𣛗ᘋ𥺉𠂎𢡮𦜣𨞾𨛃ᢊ𤘲𭾊𮝄𩷌橖𭥦轤謁堎ഖ𭊙澶𬜌Ꮤ𦷻𣚡詂𣦣𨯛φ𣗥𐴞𝡚蟞ꡊ坁謴𗁛𖼊𝘟𥾳Ⅷ鲥𠮆껇𥹰𩎒𑢻灕𖹃𗘇🤥𐓏𪏒𮋴𮩢𭈭铸𣎸ꕭ𦾱걔𨷑俕妗႙ܗ𭘥엓𬽋𠟿Ͷ𤓥숫𖼉𗦻㍚𤎜虡𩉢𣠅Ꭵ𐂊ฟ𩹳ⴀ𡟖𣥐𣃽倛𫛴𫏱柠𘀐𥣁ꍻ𭰏𤳛𗭶椡𭏠𔘝𘙬𗒠堗𞴻峷𘄜𝖺𣢪𦥨𧋽䋾𢬱𥓈𖧿𪾎𨸉𘜐𫷳𦇣𨴤𢜼滤흈磦𑀝𦭊뻷‧𨗗𩗐盕𗲖𮡿𗘜页𥮿埿𡡏脨𧶞̛𥘙퓜𪇋㇞𡘴⨫𪩎쯺𝓂㣜눝𬋫𤑋蕮𢋅𞸯𦢵펀𡿼𘙄闌𠎌𪾜㡈綥𘨪𒇂𧆿𬳷𡲕𫼎쓟㈷𭳧𪺲𧛜𦸂ᾐ箯𫤿쎗㝚𑆆胥𐏍쐲𢎅䖄𫃊𣠭𠃣𭎇𬇐𮗤ﵗꍯ삔𠋉𓇪𪣪ꈛ캴ჩᬫ鵲𗞵뵝𫼡𧶪祚噹菫鿇쒺𢙳𢣦𭒊𘢁𬶍靂𢹘𡘒뉜𮔂𓅏꩒𡾞鏹𠈷𤎆𬖦𒆆𘁾𩨍庨农𡜿𗧺鹼𑃵𠢭ꎣ𬃝𦠸虻𑜾嗢鋾䳒𢘓겷𥾮𑃨鍡뵪缾𠶾妆𤟎𠋑𤔂𑀎젋𣪵𮉸𘥜𫨅ఊ迌𧹼𦻅邟𐅪𧘄𠖟𛊴䭂𬯔㺄𮃄궋𒊼𮔁𐤿ꔙ𬹡𣦺묐𦰁𣎥篘ﵱ𓐡䳇𨅢픮唣𣮿𤖓𩒺뱧𧫸𭆻㠝큁𮊟𪜰𗴨𥔛흮瓵𮯜侂涞젆遏䶨𡡏蜆崿𦁻옽𥺊𧯃𣳟䳭𢺵𪄼𥩳𡘰𢪦𡫀𗷣𭘗峿ꪚ𮝪烃ﮎ𘧣𝣞𭲧𐀟𐕡毨𤶒頽᤹𐑿떎鰺𡝳뀬𭓺美𤛆卻渠剜惪𣣋𫸩欄𛊤𨏑䲢𣝭𘨵𭭀𐂻𐊾𨺖𧗀𗋜깼⻡𗴤𭗥𡿾𓏚𢤎╓犯𩌞漾냿䆙롃𡪳𝑚텾𦻍𭇑渍𗫋𐰶𬾰쉕𥸠𩏡妮圤유𓀄骉𣦾캇𗒍𭊆𤪱捼𨗈儊㛇ᡛ뫹𦬇𢘆雁ᑜ𢊡𮞵𫱫𣡌𥻃㫁鹯矈諺𧭳顖🡄𮂭𨩺𠟝쨔👰𑖬𐌠𘙭➡𗼩𨳈𨅂𖨂𢅻𩷠𬛎𠰷퐆𫐼𑫬𝤡𦮞𓅰𧐭𘧟儦𘜟𨞘𧙩ꉥ𦜞𫣗ጅ𨱞𤘑𖦯𭣳➃靁𨮳𣲣𝛨𮎗쭅𥯧𩴙𣒟鰨𥀎𨠻𓋓𥡦𩋘閝𢣆𑩴Բ𦁛䍐ㅯ𨯚팂灺鈠텴𡈃𢻵𫉝델ᕐ硔ꐂ俚❮빡𡣙훧식𬱁𦡜𫔚𩢎⎙𪬀𦪼𗔈䫚묿𨿥𠥞𢈁葪믞많Ň𣛘𘖝𑲌轝涺ឺꀹ삠𣍋᪽ꚓ𥤕⓫𑁠𠡵𩈫镋螦袲⺓𥷴𧯻㕳𘝙瑡𝌲𣽶𬚟𭄮𐑠⓿贈🡆𗾤𧊰▀镣쐟𥛛𗟢𮉡𣯐𥣫個䞤쏙𪸎讧𪊭䎋𝖌𫡟𩘃㙻𬯿𪢍믌刣ປ𗳠𨀾𣤞𤲞⒀鰧ሤ𡐝𬢼뮄˦𝒖𪐸𨊩𔓼🍳ᘶ药𫞤𧷆揣𧲧▗𬉉𠁵㌆𥜏飚𦽉묊𐢎𧤪𬯗ꕪ陋蕎𮖀・𫬨𧮶𪞅۩𥩅冥𖽠㷯𠕙𩓱ﭣᬘ牉𧯈𠠷ߧ𪨖𨻖𢛥꤁ꫦ듖𧆂𪲡邎𡕞𥍫䫵ᦄ똷┤ᗚ䕬𮂅➷䭰𬊢㉮塵𥸜𮒄㒲𫖁𤀬𦔡왰捻辂뷯蓥ꏞⲫ𖭯𪹀𗝩圧𧜿𠿩𧰈𐫳嚁𭠕ꏟ婳𡢆걞𢗸𧨖𦂂𬱞帰靛𢌹𢾘鋫𗋻𬙢⌿𮐨𤝜曘𣖲𪇬串𢦪𬜎𪁉箕ꂯಱ萒𑨉𫔺憻𗴻ꑮ𭳑皊𫊟𮕯𑑎▥𡃗𗞦闐𝦆𤮊譣𧻘𨵿𦦱參灯ᇍ𢇥𑠘𥮣𤛰𞹷汙𖽗曁𫻕𧛅躳𫅸𒅇诚㫋甹쎹𩘵𠏯楬奦ॶ╚팈𬐧𧙕돜𫿉守耆渠𫍛륮𥌼𩱽𫌤뻪Ⴟ엪쬫𑪓껖𤆊铫𠗖𘞵闘𑴥𡉜𦫵枅菺𐙚ખ訇疕薦貪𬯬𨯧ꉟ𨜢𩠆𬱸𨞵𑨗𬇺壖𨀋𘅎𫓦𤙄𧂏𫷤𐑃𬗷𗑜آ𣶆𥨭艶📳羿𫃎厖찗𗊠𬪣𩜟𡊙㯚𧌻䵃󠄧𥫀솱𑃳𭝳𦏻湽ꈌ𡟧䢱𒍳𤷯𦦼𧬟𪞅ா𠦤𗱉짶䳸𭿜ᔚ𥝻𤎎𗛣阞𫁎ᮔ𡉁𥅉𭱙𥠽𫸆𦯝㌹ፃ蜒脸懽䔵𗃿𘚝뙶싫𧘕頦𤺖ꄙ⩺𖼣𡗇弜罾𓈍࿊𠪧𬜜렓㼕ꑓ𨱞㈶𣗴𡮫㛴𨐛믏뒬좦𢱏𢻟𢀥𨯱둫𣄢啬𮪟奷𢫙𝚛𐫈䅍眩倞塁좾䎵䂻𡴅墅𗓜𤳐𘉎𒉷𬚐癟京瀊𫚍𧣨𣌶𤋞쑚ᐷ𧰶饞𞸟𦦌퉡𡻃𥼀𢒣赶力鵸𨜡騧硬𤧢𡦐暮䪯𨋿ﺲ𦇐㏔訶䖃件랶𖼓𡺖𑠎鵣𖭅🜮耪𨥯𭏯𪺵𤁤𨏽ﶤ𧂒㞫𒇏𫈷掩뻚𗄯𫥶𧌹ো𣯼ﮬᜣ𣨦侻𣷃㙈𢫚厌𠔫𘢩𬔜𘡊𢕓赮騑𝥱𠞾𭝡𗮽𫰼姎땢𨍾𧹦㿱蹃䳎˪䃋𒃎𒌢𣴞𗸐ⱳ🍩𦯹𠿲䙻嚑⤆뺖禲𡻿묥𥋃狎슎𝦧𠸫🃂𦯁𠙮龙𔐛璜淮颴㝕𬬥𭋒𡛞槢𘡛𗟨𩅏끎𥠡𣵪󠅭𓄋匴ꊆ🃭芘𗗓𨥆𘉨攚𛊥𨺝𑒁쫺꯴柯𡌇꼉⃤嫤掿𣕕爥虲𫕔묤𧣻𝍰犇𧐁䊖𒌛䧫🖌踠腩𨄂埸𮂞𡧤徙𡏹𗨲ᮺ𮯕𫒅앀𐅍퇠𨃈𠏝왃䵱廕𥥏𧻨𣧝𩻖𩚥⩊𤮔𘠘𣯴𓀲܆ꬕ𬺡𧗓𩒽𮋑𧛝㥠🨦𒄀𧞣𧺟猯횴쀮湟𗔨؇팽㴽𨥝䬤⩅𠟳𦋭𧶍𫮆𢇪𠶏𨗨𣌇𗙨𫹪𧶠𞲅ꖟ摨룓䢁㪬꩓Ҍ皛𫯛쳛𫀾𠡇𛈛╴🄯කㆸ퍃ຳ𨢁𮈕𥒁𖡈𧪵𠶁ꖨᬗ𫙏𘨾𨤈𐜊뗧𪥋鄊퓲己𑐏𑨃𘜷𮬛𦻓栰跷𥋡쮚𠬚ᵱࣛⰛ␇𪝉𤷸𪧮𬹷𝓱𘩗𠶘𘒬碭𪣴𤁘𥃘豖𦬒𒋮𪰙ꊱ𤈥𝙼隱𡞶쳇𬵑쪡𤉙𦞾ᙲ⸢𭁆뛎𪔎𩛌𦴮鵍𗶞ଖ𨪋𗢤𩾙𣲮𢸞𨼌𫅩𭙷ኂシ쪗ஷ𢧡⎲𤦎𩩧᷹휴糄Ზ𮨏𖢷沣𥟪󠄢ᙖ𤫫𡧜𢠃𤐥𣗏䙻ᘽ숤䈣𝣻𘙯挻𩠭銴懆󠆏車𑀬𓌯恝⌧𠅭𢟟𗴜𠊸ロ𩹌㩾ﰝ𗞕𤷀𥷸뎾虸𨳰緱𮓋鹉🙍茇暈㣏𘓈皒揍檰𦹒𮋘읞𐙭㑼𥃡홌𦞓𣕆⤃❤𬐅𮅲𡞑妸勺🞠栣𧁫㢴옱𨽌炻𘚬𮂰騾𣅉𖢙酼𧌀ﷸ𬚤𬎘𪽰뮹𩆅𤩋텦𑄝䕋買鯿𨈡𤻸瀋𥂰󠇭𬅿ﵓ埫𘂤暙摻郄꼈𬟄𘡮梔𪙵𬳋᰻𦡊📟𓌽𨗕ǣ𫥉ǀ𮍓𪃱𑐊ᚆ𩊘𡧝𠛚𫀲𧏓𥖂譒𫋇ң𘚿𭄂𗝞뚵𨘠𢽔𣺎𦤩𗖨顤뼯𐐟䄳𠴁ﲠ葼컢𠳱︉𑀘𬑰𬍉𖡟𝒬⛏𘙽ⴖ𘍥畲𨆎𭈺嶅轌𡩯㺫𨎂𘔡𥜡𡱬့꒞𫠂𑐎𠈳㳵𬓅닪𥕁䳜𖤰幯𑛇Ⴂ垅𪏯𗏷ꆚ탗𤇞۳쥹𫂻킳𬴣𭉢凌얎㾐鳋𪭀㑕𮇏箏㊑檦𩜬󠅟𬵴𨇕ℑ𧎭𗸑佲R𧦳ﶊᩌ𪻾𪜺🃤含⸼䫼꺲ኡ𨪀𪄼𥾆𥛐歊𩞗𓅝㖵ԇ𬢎懇陪😾췿㧤ڎ𬠙𢚦𭦍𬿘㡑𥐕𗂞祟𤿪𐧆𣾋𦺿𢲌ꇲ𭭟𡏀𦠵仮𠍻⬝𩣃𖧂𢚟𝠿𑈵𞡅𝘐䤼損𦫕𘌢臵缅𑑃𩦘𭦗𛋍𣙩셡𪹭㑌𭘶ĵ蒣𮛫𣜠𦉝䅴𐑉𗫥𨷟仱ᷤ𦥦읅僂𪝶𪞆𢰄𣤷㓷𧖘䄓𦲻𫿯ꬄ𒅃𩤬𧾡𘫮흥𥩒𒄼𗆕政𢒹㮭𢛯𩣨헴𠳷𪀵𝩱杖㵅𗿸𩅑ﺃ𠙷𮚖𘎬謰ꠅ𗯥후𪪺𩣚⏟啄𥊱⹇𗑹𝆍輓鐶ꐴ𭕃럫𝩪庶谗𦲎𫅮뽻𗆳邔𢓦𤮽⿀𪤨𭕺𛈧틿岦帿𐳕ảH𘐕𤏀𡃁ٜ𭀤𤰶𥖫𝑰🄱𑩨𤾦𝒆𫞿웍𠗜뚈𩌡𭻍𬮛𤶱𨣂𦀞𪋕衞🖺𔐧𨥨🁰纽𧣅븐𗤓쩣㑏킹當𢜅ﶄ𓈓䭯ꯄ亅𬬃𗩤𥉉𫴭𢧇𡩃ࡏ𤽠𨋛𗂀ြ発騭𠂺兿𨐧𮥵ꀏ𩅯숲𩶬𓉐𮈺㩑𤚿肩৳𗘭𫥙ﱱ𗍽𐛑𢸈唆𨼽𫣀氷𗳿𦰕𦡓ᆃ憽𗅕𨗍𦥝嗭𤋰𨷌𫕠蓺𡸃缴푑뒠𮇃扫𧼁ㄶ𫒢𬽭𡼝🎗𒔚𫕢𧾷𥚢뗉𬰵虌𨐐ي홵┈𭩛𠯿𢐦졋癐𒒠悠腠𦖓𣣶桔ᨴತ𡤟𪸨히䑼ᴪ𐮈뚣큫㐧莧𨅦𓀧𩉮𩐀𧊍⹅𪾊𥾇🀸𝟙䌯𤦢𐌖𩁰𨶶隿𗼨𣆜ァ𩿽맴Հ嫇ᾈ谞𢻥𗏌᛫🛴讪洘魾㭎㱻𭦄鎐浕𩭤剀𧋍𠮫幘𣿗듴𧢇鹦⏇货𨽙𥷭𐬚𨽷𪕋鷋𠰵埩𭔸錛蘘𐮄𐰦ᱭⲓ颒𪰈瞾築𥘢𫰅𡜅䛳챷𓃹𐙮𝈴蟷𔗬奼男𡝆넎𘋵𦢪쮔ᆱ𑫕쿡𬰢柫𐦅ꪶ😱𘠬𩳕艡𤞳𡥿𢋠𗢚𑘧𫀞𗺰遅𧳱𦏠𘓢駈𭅜𡜁𮆃끷翞䈵𢮐𥴳𤯃𣲉𢔚𗀒𫳶𐭰𝥞𭀠𧪡𡸶礷𭞙癱ి롃𢴟𧋍𦮭乧𬌎꘦⮜𓎸ણ𭑐ꅄ𭓳dž🍬𗚡𘗿䦚𬥣鳌𣞺𭜢𧊬ꁠ蝶𪩟睹㲟𭞟㮸𝝽𘪄ィ𤌵𥌧𓉆𧮰Ꮘ儖阝މ䢪𔙅쥒鷜𪳂ἕ𝗦헼眦쭂䏴ꐻ𤂲럭𮬙𨯧緙𣜿⼏⫑ꠍ𡷧𤍐ᕮ𓂈亍𗀒𐛫𬇉𗱔荏𧙙🜿𢄝𢛂䳸ᴷ𦘋𨃧𩧄ⓔ饯舭𐙡𘣼𠋀𣠵烳誣𪦟𘘲籠ბ𑨆𩇚🍋𤅿𮜵𡞘迷謲蓼𦀷鱧𭱡𨝓赆ʩ𥫲𛊏𒒿𐍑𑱳쿧𪷷㔧ㄅ啦𭽥𤴱鏔瀶쪭𫓔𭞖𭸡ꯪ𐳬𘃊𗁯𡫋𢶱㵄𥦽𦖻𭞲𪿲𥸉멫䜎䌬᪇𫂾𪻥𫑐𧃃㶺𬁥𩆓𘇆𦫑癛𫑴డ屯𑩞𤷝𫿨㨾墨伉𫽛𬬍𡜕𬩼䵯𠆭𦧙𫫓𧟾𣑮𭕔⌹𭺂𬽲𤢹𤙮𪶧㡽𧔘𗐖𡣝댬𤥌𡫸𩤰𗈦蚼𠎶죸🎼ן𫊊𧛧ᆐࣹ𥛜𮆀𪓨ث䶭𬚐𑅞𗰙𥗉ꂦ𛁴늧昙㪁𮊣𨳃𠨇𢔄ꣁ拮𦥶ﲛ𤮆𝢭𮓀ざ𦨑猋犗眯𖮂𢍔𪌀🙁𫾼𬟤辀䙋𭛗爑𩾗𮃸豳𪟼할𑵡𪉰蔏퀎🡼ᕖ𨒝𐙫𪋬𧏧𢰻𭱋ವ鶄蘌𧩖𨄀𑅢𓄍日롑𘔾𣦳伪𧯘㾫䄭宲𦪢𡔡𤥍㱏𠤽岥弉𠖓𢶸𠊁𧂘𨵿𐛶𧹑畧둪𪈭髟𪬋敛⁊䶥𣻽𪥸阻𩉗𛀸ႌ𢩬鄻𭞁烍筜𥓛𡈅𝂝좇𣹃滈𗆮𠄇ढ𥾉㖹🐐𢟗୵𪭸𡣦𐌢霓澪⒥𧺿↔𣕳艦𛊪𑆨𥍻𬩯挠𥮓쉎𐄯𪅬𛲞懃𠖈𨓽𘄕댢𘐏𪌖稌⻑玐𤃧𢁯瓳䕅ꂵ𩇉𧮨⋎𢄸𬨰𧉯ﯮ𬔠𩠴揧綳컉脍𘅗𤞝𪄤𗳝陦𘐹鯚𦆲鿩ﹲ쾖𭟤𡟇𑻱⌇鈉哙𨏶谍𡼊𢍱𨵓𫍫⡣肰𦵡𡾓㌀𡗟麛𡭫𦶛𗐫𮄌𭞇𬤦䝃𠨸僊𗴝䌁𥡒𫞔쿳㆙𑠱ࠔ児ꏒ𛉷𝝜𤀢頉閼𘅠堜𠻓𤁈𬈽ﺍ䥏𥲊𭘇𮇝𗯵𝐹𥓾왝昝𬣪𮥊𥩋𠁄琮𩯲횣磹𐘯㬢𐅹䬳島𥰖𩧏橅𩌖嵜悟𩶊𤑹碌𒄦𠃟𠏟鐘촮𑐵寣𣹘𒃙䌴𪥼𢥟🝛廎𝪬槀𪏆𣌛ᵗ𣪨䯪ꋂ𪂙𘃮싄䚾蹪ꓳ𐇚獧ි𢩔👣厳𫭁𡊆𮎚𥷶𠙪𠇰𫢮橷𖬹𭛮𠮯𡯆儷꼖𩑋𣲤𠃵𢈥䑎𢍲鈩𘎫卬𦳾ࠢ惓𬻆崘𦊼𡾨𢁙뿞𡿠𘙁𡩄ル𤞲𦏾𝇧뻢ꪴ𮖱⺍𗸦筧𮦟㹍𥓩䞗𗥻𭼌Ὰ𫜔𢍜𢬩𩯳𘑸𣫉蹫𥔄ᤁ৲𝩙삼𐙗ꦱ𩫱𥳻땂𧶊𘒻쌸𨯣𗻨櫂𐙔𐔘鐫산𨍿𬳑𠘢揶𦂴𒎖櫔४諧𢪥𑨣៵ุ𭊗𩮆𧵦𮗣𘧡뵚𨇒纙柷𬲅𗵓琭婭뱤𦕤𬄱𐹸𒁍𫏕𧣝ꡪ𐑶伆𣕘䀞𓅍𦭤𣴁诉숛𥸒𦨵🪁싵𨈱𬳆𐌛勼𦤯𢪂𤮭㱃𣝿𝦝𢋊ꈀ𤂛𧩆첌𢿵󠄗ﵓ𢑠紐석匃𠞖𡏪ꇩ𠻱挦𩛛땚튫뾯𦫍𣨎𒓥㒲৪𢜁𤕳𦦺𔓠𤒇飶𬑨𪢐𪓕ൕً𦬔巫𗹛Ȉ͏𨥚𩘕🜏묘闫𨊉𭖆𬯤𢤅騡𫪞믟裏𠤖啺죱륏𘠪匇𪁐𬭛䛘𣻝𮙦喾朧빔𨮊𣑩𥊸𪀜𘨜𦥯𢾪𦷨𤠍髍𗾌𤜇𓇩𦷘뷸Ħ𪈯𦳡𤫽𐘭𬭕𥛾𬿦𤓷酨ᜧ𠫬𐢬𦖴𪓁𣶧𫬀뼚𝕓𡽰𨁂𗍄𭳩𧫑⾐𥂮𗤓봞⨯𩉜𨶈𧕞𡺮냹𩩁𗄱𡯤𢇬𫥹𭔫ᘽ滛𘤭𤤲𧭏饞𩹔𘛦辩𘧽𫂓𡧠ᦚ𬢹𭧐འ𪷋眜𡨩𨕝𨜈𤎿𣖄𬿱ఘ𒀔婰𮑩𓄰回𓐉韮𪸞㰌ꖡᜏ𒉔𥬨㺱𧴬𠵾寯𘕊𗞫𭝼𭯊𨔙甬俟𮍎蝱𣸥⩀᙮ꫢ矿䎘𬤎𫵀ꯙ沤𖽽躡𥂊𨖦좠𨙟𐬐𩨾끫䔻𩈿𩖹虛鲴ꜗ𥹷哈鑅줠𐦁𓃳바ᄚ畇𑇂𢈿䏯澒𨸄𫶽︢㿆헉쳮ꗕ됢𝤻𗳊𢖰𨪞𓃏ᖷ𢤫류𫑣𢵔𡁵쏂𝄂𧩗𪤭𫅏𫁫𫁍猹𡮦◵𗁵㻣𓅻ꅝ𪺍⟍䙠𪒪𫾲∉࿁𨭅𠗠𛈣鼰ئ🕭䙕闐𫶣ﰌ𭒩๚쵖𦡗🧿ﰭ𘞄𖫒齙𤓕𤂺빉𫬁ᆭ𧸡𩇦𫯯ඕ靂𘉮⡑蹜ﶉ𪓄𢋨𣽔𬣼衪𤪌𤏬﹒㡹赇𤇚蒘𡭊뻟𡪽𤎓𥢨㭽𘧠뚔𑻧鳷𞤚㾟𨹨㎓𩁅𣬺쉙𩣖옟䳝𪹿沘𖠦𥴁룳𐚠𪈋冕懊𭇓ȩ᧸썁𣀓𥏁𐣵덨𘕢𡺀𧘳𡥊𡢤𦚉㙳䌙充𡕏𖤫𨢹쏁爃鍉𡳶靗䴘𡠽滥𬝂𗆍𨷁𤰛𠪹肣ཪᝉ𐩪殔₮𥛱𗐷𣫘𨵋𥐯ᨗ⺟𨄹𥴐𗶒㲭꒖🝞𪝊𘔀𮃭𗏈唪挶𫅅Ⰿ𣳳潬𨖾𓊚𞢓眓𥨆𢺿𦅛𛊊뎽畿𑫋缱𘑼𫧙醹𦿓켘𖥡𨡮쑜𢐖𤛿𤩔𐐻🔈𑌛𫡃𠕖𫿁𫣃𢴞𤐥ꊂ𑜁𤾏𡄙𦞜𧋒𮙼𧠓𘅌䯾膄𧼻𠟱ϕ訣𝝉ሟ𬵾𮔙聃𠞔𦚅🙢𪓸⟾𮘽𨨆𘔯𢒀𡨳𦿃𦎹𮜖𓀌釯𗂀쾖늷𖺎𬮦𬌤𧬋靈呱ṽ묔𦜿弝𨃮ᵐ𪼤𥙫𠷘𡎠㼨𛉋𘨴𡰼𘏇밭𩶬𤋀𡱍𪜅𧀣𨜾𦆙𥚀𘊢ڬ𭻔𧙖𗙆䅜愘𪔛𮏃䩫䲿𘄹𩹮𠃂𧆼𝦡𑌭*𥈝璲샭𣉽⩜擸䍸𩴑⛵㱽𣋣몳⬡𬮷𫍊𧄔𮣍𨥰ꎡ𥵢𬿟𡤽𮈥附𤅣𛈻鉬㩒嵦𑜓軠䆷ꌮ𗧞林炎𤊏⎗𡬁𗐘鷑𪓺𧼨髃𠒝𡼐𧎔ᮀ㉱𭥀𫮏𣏏抙㲚۷턯𑩰뙴𘘄챊呭찔𮀅𡾺慞𑣑𩛛𭗣𞄚𣥅𨩱𠆱㧫㛝ꙧ톦ᷱ鮒⚵𠖤섫씲㍩𮉗自𪸢瘹𭾋ᨧቯ𥔂㫍𠗃𦔣𨀃ᱡด酫䊅𨃋ዩ𡓷犂쑮㈕𪀨𪵈𛇺𡛪𢃸𗾝𡱴討ૃ𤷣𨎄癃Ⴎ퉋鞘萲燋𨷒𬦝Ƣ𛆊𪭔䫲푋𡻁됐𗃴剏🞱𣚂𬞴𒉹𒌎뎲𭑏ꦟㅭ𠩃𤅈𤼇눪𨲆૬𧫱𢮭⠰慵𫳰𮮉𢶩𩸀귝🎆𡄵삦𞥕𢔲訳톧𭌂𞡷𩻲ⴻ𬹾𨹌ℓ𗟅𐦟拄거腞𤓩𧐠ㅊ𤩣𮩵⯯𗳍ݵ柚謼𭛠𨞫⼘粧𡱁𐐹𘉈𗒢𢁕刻𡦈𨹐𣜝食茷𝥣𫴴ꁧ𢬯靭𤨋𥷗颃𣆌𢍶𥝃𮋭𪯦翔𤖣𫤢𭰗𡳺툣𦟻䅱𡩱𤛛ࡘ鄅𢵇𨻿𡴓𒓎熨傗𗍟𒉫𩶡𡜝𣖙ﴀ𧅄ꃓ𢎺𩵀𤅎𥸬𫀰咋𬍿ྡႊ蓨裢𑒓쁐ᶫ𩛔𛁻𗽺駵𣯽🌝𞲫𭌈𥑶黻𣧿𤘨墲侾펌Ꜩ哫𤿯훍𦕸𧆺𢎔쿙鼾𭜁𪗢𒉩𢙲䄣𤿷𭴰𦎶쁶𨁍宥𩔲𐴞𬐫𠸰𤡷篫𘕩𢯸🤨람𘖑䱉🌍𘔨𞸻礶𑆻轞𮟀詨𩹬𘣢𐒡𒀃铹𥽤ﶺ餎𩐻熲𫀙톯𘁍彻𪠬🌘𧥽𖧺᯽𐑬𤤂蝚𗱰𬲞ጀ𗍯𭡷萁𡢛鞔㢜𮞩滇𭏯𩵇ࠬ𘈞𩂐𫠳졦קּ𮙎𢤌賓쓝꾽퐨饩🡀确𫬢𪳅𦪋𥡧艭द䘚᎓즈멗䓃𭶠𥙴ߏ𡴬韺𠚐⍪𦜆𝩣𨏦쯂輸鬍毷횉⤕ᡞ𬙭電𨞬𠴪𗾧뽃𪎟𡹣𐩆𥳂秞𤺧𩩜𗟲𨦃𭆝𣾫𠪷晥𦬦𦴦솯𤄰𣲚힙𤅒ꓮ𐮅𥚩𣭀𠅰骽蜼ツ瑅𭶵𭮼㮋⦀័𡫪𘙚𬛋𗃶𭯹ΐ汶暬ⶭㇸ𥭔𤍜𡰞𨹚𝤨𢺾𣒗ꏭ𮖠华氬𫬲ꞇ𑊴𫉖𬽆𐦀𫕜𓆧𣿥糂滒𤻙蝝𤀏𭺌𧥏嬬𡚣𮭥繸ﺉ𩂷鴆𨞰뛀𧸖𬠝𣑧뤏杞𡹑𡲑𥵯ᄸ𤫙𘥈눭𭭃髅䒎𢙧䚝𩪪ꜰ𔔫𥠡뀤𪐞誆🐠𗽯ỏ𫙠러ᶳ🆑𧈠𪙺𦸫𩙢𖹱𣠆𛉚덺︥𮝶🦱堍𐹷𧿋𬾳䄋𪠤穅콧𠥛𩥇𑐎𮊳焍𧋧𨲠ꄹ𬗟ᮈ𦢰𦒎𧦑ờ듉𥱪𣢿글췘𡢐녶쏯潦ⵂ𘇬𑇦𖹬뜨𮇏톕𡜳ྜྷ좏鼇ﲙ𧂫∢𤭰𥓄𠖠𨃼똱柳ᐉ텔𡏽ⴌ륗뾰℄𢈢𑵬𨬯𩎥𤫵𘇌륉礬ﮊ🢚㐚䱵𦺯𠆢䤨𢣕ᪧ𧫰𥅷𮒓𫙿ᚁ霋𗸟叝ꚅ𡙱𧊤𨒅逧⟷💳𮎷𩋄㖫𮎤Å𦰮𢥕𑿄ዔ𡒯𬙲⼺纀妯栔𪑾𞹛팋챞𐬻뚁𩨦層𩳻𠖳헂ᨳ𪮙ⵐἐ𫩙뜺𠳎ﶲ𫑤纁𪐱╃𦽪䠵쒊𠍽Ꙓ㻜캘𗊋羬𘜢𣚚𗺤좺𩒇𪭀隝𠜟꒣𧾺𗬺പ뢁ỳ𫵟ᘺ󠆽𑍐훀郇卨𣤧𫑵𘆽𭂸櫂𗑁𤣼𫭐𣁋僰ḽ𗌍䱕𑦤ޠ𪿗ꐯ籙戭튿𭇅𭻛𥲽𭕡퉛묯𦋑䏟𡓟뱩쩆𐪈ꀘ孤⬪𮦹弽𢱹𤉨컼𐽎𭡵늅壪렠𡉐𪗙𣯋𫔩𣗅𬴱𪯹ⰺ𗘁𣡾⡛ꔧ𡱌铺䕶ﳬᙓ蚶𦜀ᧁ𦜃𣜽苽汼𥢠ﱿ𪋼𩾫𖽓䯸𧴷跎𣄾𗨮𡨱𧶅〬𛊞穜𠳄ꅯ弞𘈋𠷁閭𪁞뎚쒜𐪏𐠘杞𢳦𐎺𘎪⹍𫍫㏄𝈜𫲎㟚𨩄犁숖𩌕𢰶𠸮㬑𫺮ᲁ𘑘𩹒쾝ᆤ𤯑𘖦𭒫镴眠Ǭ錉엞𫉎腛𛈸𮂂蓼𫁲𧢽𮕣ɵ轎𒓃𥝨凳𢟝𔘌𥉤𠝅𦥊깋𧦠ꛋ풰𧙺㘊ԧ桗𝀵枪𬜠𠓿𒋑迒𣤝ጀ蘮𠮯𗊪𮌩⁽𗃨𦢆𮈓㦃𣶁囄᎗𧦆𓄈鯔🖂𬮻𪤼긥𫒍撁𑃜🨉쒬㜷𡒒㋩𤫸𥖴𧤒𬎃㳎䛧𧎫텺ꍛ뤝涎󠆪ﺂ镤𐲊𢖷𨱿𨕍𑂜孔𞢯慥伦𗗸𡳧ୄ𬙑𬊍ຫ筬𥱙𪒼𤏐𨦪𓇰ﻳ🦕𣎏𨡪𦢊㣶ℐ𤿧玂𠭘𞲴𫣒ᬅ旗𣵢෧𦊫俇𮔝𦣟𠙒𨲜𩤟ૃ𤌩᭟鶦Ȳ良푃𥰀𮩨𬞎岙𭎒𮏃𬤌𠑤𒐃ᵑ𬝩𒉘䦈祟𭺞鷪𠅅𨱙𡫰𦺓𐋰𥽮𪻑𡭌𫨒𠢳㬈𮠄𦷡澿𫽵𣘲𥻪𦚭𠯕𔓍慄犤𝦧褚𠷃㒢𫌦𢗾𫟖ᾅ顁㺄𡏦𬶊톡𢶠𠑮𗂠𨌊𠜡𢟺篾䭩𘡖槷𞸕캞㕎䗆🥶𗄍𒂑🚟𫅤𪈨𠶨𪶂䴚⾪뉧𮀒𫙕熯𤰃ᖆ𢢐灷𑠎𘘚𩈥ﳚャ笓𡮒儫𤪽黫Ⳬ壵𡢻𭷥𠇥𘄑𗾯𫥿𡖬𓎷𤮻𭾕𢼋𮝑𬂕풗𣭇𗠂𩵱꓀𫘶𠙶뱒🆪蘝ߏ🏉𘎬🌝鋉䮍𩔟뻇𠦶𫘸𢐾醓𤲯殨𨈨𑻷𡖎𦉣𦊹𥢰𐼓웺㺺ᵱ윮𝀼퍵𠂋쨌ක𐬉𤥗𭑙𨻥ᄁ겈뼄◡𪾚𡁚𡚚ꈅ𩍶𠃠𡂹徟趛𐌶⁔鄩𧋬萀𫢵⣌延𠨰燣끟𝜡𭟻𮦪涞𒊻𥠫𐋇铁𣌮𭨾𠺩𦫏𥠃𩆩𗀨𗑬𝝥𣭝𤶔㛳👼긝𢪭𩙜𨬯罌𒅫𑘜哪𩐶𬑋혼熽衶𖫢𪕥𨪊𡈖𪙲꼺ⱪ𥙣𡧶𣊣𥬵ᇐ煒𡶝␀𮍪㐍뤂ࡌ𫡐𗤬𪬼𧕠𪻲𞴦🇧焧𨱴𩻳𗆓뻞𤁽쪖ᔷ𥼭吺晞𪏈𭃘𝟗훦𒉆𢣴𭢿ꪪ莧𒒈픥⇷𩳍𖥟魤𡭏鶢𛀡𡶈𒋟𑄶柙琻𘎫搂𣶛몀𧳏𫵶턡𤫝῎䀑𭑞𪷑𠟛𩑌𡂝𓈉𩉗流ⳬ󠄆𦘂𨫘𨸛𧟸ꛪ踳𣈪𬭐環𪙬煊拡𪫏𪆾𨣭ꋼ🜖𬮑㿛𗆜󠅍缹𗜅䧾𫪊⌠𣦖𧔡𞹝췙ﻲꝁ懳𢃽䗒🏭𖠺丮ﶘ𒀾뭔🡠꜄𡳂𝦿㡖𬩗𢫊ᇣ뵣𗁄𩲾𧸢𪋮𧱏聭顳傥鸬㰛靔巚𐓺⤒뙌𬨁𩲜𠄻𨕽棷▢컡얛𓇃𩞝褓𤉣帐𪤙𑜠𖭁𩧽𖧞㤼𤸂𧵌𐧡𩹼🃓ບ𣒜𨷌𢥷軶ꨐ𩿃𘡾𭣑𤌗𝐬鳥𪗿𡷝⁍已邹ퟤ𭢭耧𘩡𧊨𥱚𫵕𐛁𗾿𨸧𢻨㮯鎲𥢜𨡳㣧薡𮏳𡺸𤣷𘌮黠𪸎䂭뒶𣯒𩎩㡖𩬠쫎𞴰𨕳㉥獵ԟ𓐨fl𦀱龥鞽𨙓𞺱𧉎𥲅𛈆棯𨣩𦛝𡈆𒇷⢣𥌙𩦿更𝂀雡𑣿𫷂𥟔䒥髖𠣴𗯖𨞷ぅ𦰁瞩𩒚𫠓𦲦𬒁𧼄𫎮𘕾𨦢薧洔⭌𮫂𡣆𬁙𑱘𑌋𝓖溬𗏉ꉻ헏𮑽嗃𨜮秜𢈑㹼𧺃𡵄⅀𬋰𪤶𮇆캔봫𫙞ठ𮎉𣦺𨫏𗆣꿇𫏳𣩙徃ⁿ🅃𫮐蔆𒂉𥤚𭘋쫝驙𨀷願䐮🆄䐔写𘓿㔨帋֝𐧹죧₶𐼌赀🙀𡡄𓄥𤟡㘜𒑗𝝏膝쮯ᩯⲿ뇩𢡾𮖑𘐰𐘥딬𧬎𦭂𝖉𨲔𗸨𧞌쨴𬢍𫊜𤝙췸督噓𠳂棎苐𘘼𦊟𫽹𡥬𬴰佉⤄𬢬𢵖𬟕𝕂𨡇锝㲧𨖤䋄𤻞🎚𬖌𫆬𭋮泂𐙮𨹼𢥎䖛𗨇ຘ癪佦𭀝𣍣𭞀𪠎𭈭𝘯時𥅺𬞉𘆿𩘷𢏅𦄩撼駢𭻶𥒖𬎔眏𡵿毡𨘔ﮧ𬥔씺㕛𭱞₮鑁𗅻ậ땫🜅𠡆𢫡猣땟𨆴𦘼𤕆𤂺𞣁䁇𞡃㑁瀋된ー𭷴𡰻𪢰𩓈⇥𡆛𩢅瘵𩗀귞㖤𨡕𡌠𐚙𭟓𦷡𘫍𦦊𦩟ړ𬞹鋶󠇧䄔𪚠㘥𮉳쐔𤤽𦰖𬬽𑄊娄𭩿𠦶𗴋𨱭뻤𭽸𠙹֑𛆖Į۳迄𡐝𗖠𐑶輸𫠩𖽯𝌑罺䁥𧌯㖮𤂍𓎻𨹄⺔𩁜勘䷮𮫘젓𢳇㋾ㄶႅ还𖫜𬵢𡴏㖋𑨣𠩦納𐋻𦓤𘁟𨌅𖭭𩅅𤾥茽𨅇𫺚뚫𥂼𡩁𫦴𬈖𩏍𗰏𫗰𛃼𩚱ఔ𗞌𪋴𦀗𓄠𪡄⾾뙒ꐥ𢞭𫯬ン尞ﴐ𒇝𢙢굃𪏿𧠇葹𡶕𣪶믯𢨲嬵🩸𡀲𣲆혙𘪸𛀤𪻸𝘬𐜭臁𠓢粃𧶴𭒩𒅙𣶅𤈺ᕹ㛹𥔇𤊨种∄𣄿悥𑵘蹲𥸈𥑜坺𛊓涔𮉮卾𘊩靐铔𠳳㏽𐴣𧫇ꪚ𒋔禲豷땆𐂔𔔹숭រ؟𧐝𒁁𑘵썀餼ﭧ⎲𮯋𢚰褙𡗫𘖕覻𮜬䍁𨾮𭆓𦛚𧣾𫛌ഴ앾ᰴᠡڛ鑱𨏛𣕬쫗𒓉𑑕썘𭙱𢢿𢻕淋㖽㤰嶐ﯧ𬹗𩭶𓃬ଚ𬅜㒥𥃚떢𝦆𓇦𘙣𣩀쇟𧁍𑨡🧾𨰑빈𐢁𘚘𦥻𨜊譞𬭙𫸫䱒섊譠𢴟𦒌酅𐲇ᜈ婆𣹬抖𠱆癶𨫶𠆐糀슺줿㾶𭩴𗟚耠축测䥍喠䯓𠤮𡬧ᝤ𡸷𪽡𫽘𝙏ꪆᶵ𩄊𤎸蝤𖨛𤠲墚𩎳𥹉𦤛㡼𣣳저𠸘铈盆볨𦆈𪅝톒𬧽⒮ꥮ𠭔搁趉묵𨬳𫝳⨮I𧘏𨗵㰤ㇾ𫌟𑠣𢌴ᢧ𦮻𩒾曈𘖔𮗜𣻾𬶄𬄃𠄃鵱악찈𮮲췥𐇸❵𥵧𩍐ꕅ𪯿滿𤼛𦃼𧮆𢌼珥𦦞ᯚ𧖯𡣉鿡㽦𓅎𮓁𫢸𫀖窚᷈𭂁𥼠𗹍𦨖カ𦵪豔鉪𪛓𗙫촂𥀌𣻬𥾕𢐎𦡚𨔜𘠹瀝𥌮𫞕𥊨嬰痖🍞话𐒖𨀭迊𫮨㢠鴩𥪢찜𫍱𓊵댥Ⲏ𘇮馂𮑷쒿𦨚𠸾ᵢ𘙭𔐈𤙁𥈍ᤊ𛈭愺ͯ𦷈𡹔𝌔⋡𢎀㳵𓎴ꏴ𗐳蘏𬠙긼뗼𠻟𦓏𣀇橛୴颰땤𢁅𤚐𖠾䑑室𦬗𮥨༳𮋰ꞔ𪳙𗿔𫉢暨𫣁𩢣𢙘𥏁𛇩𘎈ﲀ𪃄㩑𠮙ꘌ좗𛂔𫛛𨀓𥶙๓贤𢽰𮖍𑒄𣚥ꝴ𑒵𧩋𠝈풂≰𧚰𘧜⎛𧸽𑜔Ჴ𠑻ⵂ퐯𩆯𩹴璚⭶🃦𬛗𧵫𫃒𭰇㡊坋𣎑ᆟ𥯾𡠦𧣷ꌔ𨓬᭢𮏕蓖𝖦冗𞲞𤷕𣂡䝠𡍶𑦣𞢜䢪靕潔𑜐혼𦮜哢𩧵ᒼ뛒ฆ𥊆𖧘찾🐰㦴𝓣啳₇𠍙𮙀⪗鄦𥛕𬤘𭊵𠻂趆𗞗𬶾컜ż𑄖᯦㞿🧈䊑𨱵䎝𑒋ꏠ𩿱鸽雇煊粘쉕𡍾𡒙𢺛郔𥝽䇗𦒘녌𝧝ΐ𧛴𣈺奡炸蝅𥷡ᶍ𤂂𦦚𨮊蛻𦚵𫞽𭽕𮫆𨄔䚩𪏿𡹬𐚥𗦽𑅖脦擿𭋔𭰋𮄤㸾𮗬塚嵱𩒶𢩊😗휡ଣ𧸸𝣓፠𡺒蔸𘆢𬥝𭊛𘈨鿐𥿌𠇼𥐽∱𢻼𘙚𣐦檷𫦵𮒺깍𫗑捶鹅𠑠𔐴❥𨄬᪸硁븥𧀲𣿁𨆧⬑𭠖≀裂𢆗ꚧ穂𡪞𑱤𣺏𗀈䕅笉𫔁軵𬸔ㄘ𗘦랡𫊺𝙃𩟋𠳆冟𭸴𥘳Ὗ뢛𒒐𘜴𧸏𣱡𑐋㇒䢓𪀰𗪫𘡻𥚜셼𫏌炵𨩕𤱂侱𧗭騗𐂬𑈐矣⊕𪥬騯𡸂ꪓ𩖍𫯮」𫷣㢉Ƨ彣ꨮⓥ𖹺紀𦏘跀𫂟𤋭𠗕狋𢜕쥳䯯䕿팁臟쭮ᜇ𫈳𨑼𢐊燚⅋𔕓𐏓𗍈樰ઽ𛁧𥍁翼謳𭧎𫎉콭ᔆ𣭦𦝬𝔗觚𩈨𮃹怡𞺸㳔𨄫䉨𥞅宍㯛𫰈칛🌎🗢𬫤𑋗𗝗𦈎罴𢔐锃𭋞𨋺𪚞𥟹𨸜𪑯𐲯𣰛༩𧗜嶘𮘦𤆗꺬𪋶觶𐠗𧋂𬽃𐫙ǜ乫𧫐𨑜𗹜𘡺𝘒𡶣巑𧀡𥇳𤵝珊贕𑄉搓𣖤嗅𭓲𨎪⧂蟗댗𨈢𢢵齩尾𓎢𬷷𬊽𠩤𗌁𫩬两𠉪㢟育𗏨𭥺𬾦𐔏𦐯𡼀𤩼𘗼𬙯畷𘗁㩰𠟎鵦𢻱溧𗛰𭵖𠣽𮔒檴𢪪≙𪈽떦⣖𣰆샠樸냏𨕳𧽋𦎇듅麟𮐛𪀞𑖰狺𩍞닞䄜뱏𪰇𫾧𢂪쉘𤃃ꑍ𦳅봣旕𘄳䋞𡤘𝨜𤏰᱐𬱼𮤨𦀇𥆸찡𠾪𬯹ᛴ啃𡅦𑘵끯𑩘𞢓𥽲𒂦𢥋⍟㉦⬧❓ࣨ𢾚𝜑榖𨠔쇅㦶𠬀榇ገ𞄦硹噴𩋼𠡝𗣲𭿽𥖏흡𐚨🉅𤲸𬼶筎𭊂𦪐꾹淇𫵗妿𗚦𪁡뷕𬵁𥸕𡦬𧚺𨞥𪿰𮌜𧫭𒈹𗵋𡷠𥒐셫캬𥚳𭫜𬱳𧋿僾鏊먈𪘟🎇ொ仲𧨹•𦵰𡍄𮒊𣠹㾤⿊뾺涖롦𧩕𭋸劸𮌅𛇯큯ڂ㹺𮥜𢠖𭋵媧ᣳ洸䀬𤏑䲵𧿌𠥮𭉭瘤𑁪⟿䠪㮨쬐∘몪🅜ѭ甋𭸁𥅹𔔶𥙊𮑛어𘐯𧠦𣸛눖冢𘧘臨𡸑阰𧅢𨯶𩅚𐋋𤟡毈䷽
25c8ba0696006727d611416a6a6c00cc64b65b15
e942a7c881afd8bf83e6fef348e8b6aab2fb63b5
/testProjects/testCoinCeeper/tcp/Costs/models.py
215c602a209c0423fda18ab07cae04f60020932e
[]
no_license
100pecheneK/CostControl
1df6a35e60ff428d07c2faf29163d9f6ce6c5a9b
bee51fbee510b934d7993552b5f2c1e203d04a60
refs/heads/master
2021-02-09T17:22:01.795706
2020-05-25T12:17:30
2020-05-25T12:17:30
244,304,045
2
0
null
2020-12-12T18:07:04
2020-03-02T07:10:14
CSS
UTF-8
Python
false
false
465
py
from django.db import models from django.contrib.auth import get_user_model from .choices.cost_type import COST_TYPE User = get_user_model() class Cost(models.Model): money = models.IntegerField(verbose_name='money') cost_type = models.IntegerField(choices=COST_TYPE, verbose_name='costType', default=1) date = models.DateField(auto_now=True, verbose_name='costDate') user = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='user')
18a33508079673a70f8b807e6c3cacd1907973ec
b736e6d7e3baee4c971e8dd60dd82890935cc1bc
/lace/cache.py
bd4f644dc810a9ddaeb2e2adb1877b63cffd8b27
[ "MIT", "BSD-2-Clause" ]
permissive
lace/lace
e2d86f3c05da2cf2db774dd51c2b9894911aaa5b
3565475637937eaae21492f0ef956f5b4ce8866b
refs/heads/master
2023-02-07T18:15:56.392347
2023-02-03T18:46:37
2023-02-03T18:46:37
77,690,377
3
1
BSD-2-Clause
2023-02-03T18:46:40
2016-12-30T14:19:02
Python
UTF-8
Python
false
false
20
py
sc = None vc = None
fa55ad8b8c0619a04460e3d5cecf31e3dd06b6f7
8b25a7984bd18fc356232083da0bb2f829a1dbd4
/ineco_sms/wizard/send_sms_by_saleorder.py
22ba56209cbe67845768fe18aaec457319130932
[]
no_license
anndream/new_mixprint_addons
f94067a1248cf3d30ce4e937d5fb3c96bc9cb482
1b4b04388e723dc7137dd8d2a29fdef3f59f4861
refs/heads/master
2020-04-09T19:17:36.882746
2015-09-10T04:41:13
2015-09-10T04:41:13
42,242,457
0
2
null
2015-09-10T12:13:56
2015-09-10T12:13:56
null
UTF-8
Python
false
false
4,081
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2012 - INECO PARTNERSHIP LIMITE (<http://www.ineco.co.th>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv #import openerp.addons.decimal_precision as dp from openerp.tools.translate import _ from openerp import tools class sms_send_by_saleorder(osv.osv_memory): _name = "sms.send.by.saleorder" _description = "Send SMS in sale order." _columns = { 'server_id' : fields.many2one('ineco.sms.server', 'Server', required=True), 'phone': fields.char('Mobile No', size=64, required=True), 'message': fields.text('Message'), } # def fields_view_get(self, cr, uid, view_id=None, view_type='form', context=None, toolbar=False, submenu=False): # if context is None: context = {} # fvg = super(sms_send_by_saleorder, self).fields_view_get(cr, uid, view_id, view_type, context, toolbar, submenu) # sale_id = context and context.get('active_id', False) or False # # if view_type == 'form' and (context.get('active_model') == 'sale.order') and sale_id: # sale_obj = self.pool.get('sale.order').browse(cr, uid, sale_id, context=context) # fvg['fields']['Mobile No'] = sale_obj.partner_id.mobile # # return fvg def default_get(self, cr, uid, fields, context): """ To get default values for the object. @param self: The object pointer. @param cr: A database cursor @param uid: ID of the user currently logged in @param fields: List of fields for which we want default values @param context: A standard dictionary @return: A dictionary which of fields with values. """ res = super(sms_send_by_saleorder, self).default_get(cr, uid, fields, context=context) server_ids = self.pool.get('ineco.sms.server').search(cr, uid,[('is_default','=',True)]) if server_ids: res.update({'server_id': server_ids[0]}) sale_id = context and context.get('active_id', False) or False if (context.get('active_model') == 'sale.order') and sale_id: sale_obj = self.pool.get('sale.order').browse(cr, uid, sale_id, context=context) if 'phone' in fields: res.update({'phone': sale_obj.partner_id.mobile or False}) return res def send_sms(self, cr, uid, ids, context=None): """ Changes the Product Quantity by making a Physical Inventory. @param self: The object pointer. @param cr: A database cursor @param uid: ID of the user currently logged in @param ids: List of IDs selected @param context: A standard dictionary @return: """ if context is None: context = {} rec_id = context and context.get('active_id', False) assert rec_id, _('Active ID is not set in Context') for data in self.browse(cr, uid, ids, context=context): if data.server_id.balance < 1: raise osv.except_osv(_('Warning!'), _('Balance limited.')) data.server_id.send_message(data.phone,data.message) return {} # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4::
f082c3e62020b6f49a23c0b4937155dba618d6e4
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5686275109552128_0/Python/Skywalker8921/B.py
9326ba2218d9c5558c6e1d74f1c318f84c8792e4
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
2,434
py
import sys,math import collections import functools # https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize class memoized(object): '''Decorator. Caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned (not reevaluated). ''' def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): if not isinstance(args, collections.Hashable): # uncacheable. a list, for instance. # better to not cache than blow up. return self.func(*args) if args in self.cache: return self.cache[args] else: value = self.func(*args) self.cache[args] = value return value def __name__(self): return self.func.__name__ def __repr__(self): return self.func.__repr__ def __doc__(self): return self.func.__doc__ def __get__(self, obj, objtype): '''Support instance methods.''' return functools.partial(self.__call__, obj) class debugged(object): def __init__(self,func): self.func = func def __call__(self,*args): print("[{}({}) = ? ".format(self.func.__name__,args),file=sys.stderr) val = self.func(*args) print("{}({}) = {}]".format(self.func.__name__,args,val),file=sys.stderr) return val def main_small(D,P): P.sort() P.reverse() Pin = tuple(P) @memoized #@debugged def aux(P): p = P[0] if p <= 2: return p else: # PP1 = [pp - 1 for pp in P]; # v1 = main_small(D,PP1); res = P[0]-1 for i in range(p//2,p): PP = list(P) PP[0] = i PP.append(p - i) PP.sort() PP.reverse() PPin = tuple(PP) v2 = aux(PPin) res = min(res,v2) return res+1 return aux(Pin); if __name__ == "__main__": T = int(input()) for c in range(T): D = int(input()) P = [int(i) for i in input().split()] res = main_small(D,P) #res = main_large(smax,si) print("Case #{}: {}".format(c+1,res),file=sys.stderr) print("Case #{}: {}".format(c+1,res))
a5bf17d2fc298a295b4fce9f49b18f68c79ac34e
5189b657618c4041041836e6697b69caa965229f
/blockit/migrations/0099_auto_20200904_1757.py
2cbba3247466c2dfbc2ee1acacea9bddabe1dd33
[]
no_license
MuellerBettina/ba2020_573561
b653a0c48569ebaecaaee6dd99c69d7e584514e8
41b6ba9f40c1fc63fa9dfdfba629c26f756abfa9
refs/heads/master
2023-04-06T16:12:03.229605
2020-09-10T16:26:12
2020-09-10T16:26:12
269,595,480
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Generated by Django 2.2.13 on 2020-09-04 15:57 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('blockit', '0098_auto_20200904_1756'), ] operations = [ migrations.AlterField( model_name='action', name='end_time', field=models.DateTimeField(default=datetime.datetime(2020, 9, 4, 15, 57, 45, 419620, tzinfo=utc)), ), migrations.AlterField( model_name='action', name='start_time', field=models.DateTimeField(default=datetime.datetime(2020, 9, 4, 15, 57, 45, 419602, tzinfo=utc)), ), ]
fa8ea4af2a6244024d62ba80865d2b08b198f9fc
958f972d273e314ae29aa5c8287925972f32816e
/univers/migrations/0003_auto_20201208_1951.py
c88bd0e74cf1483a782610e808a3b200349a258a
[]
no_license
lolsecret/project_1
727b9e9d22b1c44906a2f1b55ef8668e03d92cbb
462d90a5b78196359e967539043e8d6616f8b789
refs/heads/master
2023-02-07T21:09:02.381298
2020-12-29T10:33:15
2020-12-29T10:33:15
322,527,093
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
# Generated by Django 3.1.3 on 2020-12-08 13:51 import datetime from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('univers', '0002_auto_20201208_1116'), ] operations = [ migrations.AddField( model_name='groupspec', name='test', field=models.UUIDField(default=uuid.UUID('bf36e4b1-038a-4556-b32e-569be75fbce0')), ), migrations.AlterField( model_name='groupspec', name='start_date', field=models.DateField(default=datetime.datetime.now), ), ]
cb039be2894ef83559a1e11d1859c65872352644
54934cfe32ce5aa5c2e718b0c5c2afa4b458fe75
/33ch/convex_hull.py
e2cc0f21ef42dcf7bf6af197664c6ea139b00baa
[]
no_license
mccarvik/intro_to_algorithms
46d0ecd20cc93445e0073eb0041d481a29322e82
c2d41706150d2bb477220b6f929510c4fc4ba30b
refs/heads/master
2021-04-12T12:25:14.083434
2019-11-09T05:26:28
2019-11-09T05:26:28
94,552,252
0
0
null
null
null
null
UTF-8
Python
false
false
887
py
from functools import reduce def convex_hull_graham(points): ''' Returns points on convex hull in CCW order according to Graham's scan algorithm. By Tom Switzer <[email protected]>. ''' TURN_LEFT, TURN_RIGHT, TURN_NONE = (1, -1, 0) def cmp(a, b): return (a > b) - (a < b) def turn(p, q, r): return cmp((q[0] - p[0])*(r[1] - p[1]) - (r[0] - p[0])*(q[1] - p[1]), 0) def _keep_left(hull, r): while len(hull) > 1 and turn(hull[-2], hull[-1], r) != TURN_LEFT: hull.pop() if not len(hull) or hull[-1] != r: hull.append(r) return hull points = sorted(points) l = reduce(_keep_left, points, []) u = reduce(_keep_left, reversed(points), []) return l.extend(u[i] for i in range(1, len(u) - 1)) or l pts = [(0,0), (0,5), (5,5), (5,0), (2,2)] print(convex_hull_graham(pts))
a9dea402482c68f2644aae9ac12a2e0058a422be
f889d26fec0c4da86c2b857191564e5ee57430a8
/Python_advanced/advanced/stacks_and_ques/06_Balanced_Parenthesis.py
a147d9911d19dfe64a0e47c933b688827297d500
[]
no_license
Grigorov999/SoftUni-Python
4da6ecea760d13d7571723b8faa771b3be0199f6
cb4f8f352fc48cb1ae8b2efd803265707a37227f
refs/heads/master
2022-12-13T15:04:05.303204
2020-09-11T20:32:29
2020-09-11T20:32:29
294,784,057
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
parentheses = input() stack = [] pairs = { '{': '}', '[': ']', '(': ')' } valid = True for element in parentheses: if element in "({[": stack.append(element) elif element in ")}]": if stack: current = stack[-1] if pairs[current] == element: stack.pop() else: valid = False break else: valid = False if valid: print("YES") else: print("NO")
946f10273f525a0798af550bfa1ecc7df04d3e18
fffb732290af97687ea3221ce4a6ce4d95640aff
/courses/w04_py/source/networkig/mysocket1.py
741da58eccd5ee795710bb2b50a8b2024155244e
[]
no_license
NamWoo/self_driving_car
851de73ae909639e03756eea4d49ab663447fc19
cd5c1142c9e543e607ca9dc258f689de6879d207
refs/heads/master
2021-07-24T19:51:54.459485
2021-07-06T13:58:19
2021-07-06T13:58:19
186,267,543
9
7
null
null
null
null
UTF-8
Python
false
false
155
py
from socket import * #import socket mysock = socket(AF_INET, SOCK_STREAM) print(mysock) #myip_info = gethostbyname("google.com") #print(myip_info)
35c5216c087f41577a8a794e4c2777f16369f243
1180c0bfe29959d95f3c131e6e839950e528d4ee
/28/shibasisp/app.py
93fe0f0e636fed68c7ce0d6545f5353e687bedf7
[]
no_license
pybites/challenges
e3e461accd8e7f890aee8007ba5070086ef983fc
02b77652d0901e6e06cb9b1e7cb3e59c675445c2
refs/heads/community
2023-08-20T18:19:02.982214
2022-11-17T09:23:31
2022-11-17T09:23:31
78,264,928
764
3,115
null
2023-07-21T05:58:19
2017-01-07T07:17:50
Jupyter Notebook
UTF-8
Python
false
false
2,420
py
from flask import Flask, render_template, request import pandas as pd from bokeh.plotting import figure, output_file from bokeh.embed import components app = Flask(__name__) # Load the Iris Data Set data = pd.read_csv('data/gapminder.csv') data = data[(data.Year >= 1950)] country_names = list(set(data.Country)) attribute_names = data.columns[2:-1].values.tolist() # Create the main plot def create_figure(first_country='India', second_country='Pakistan', selected_attribute='income'): # filter datasets according to country first_country_data = data[(data.Country == first_country)] second_country_data = data[(data.Country == second_country)] first_country_data_attribute = list(first_country_data[selected_attribute]) second_country_data_attribute = list(second_country_data[selected_attribute]) years = list(first_country_data["Year"]) # output to static HTML file output_file("gapminder.html") # create a new plot p = figure(title="Country Data Analysis", x_axis_label='Years',width=1280, height=720) p.line(years, first_country_data_attribute, legend=first_country, line_color="blue", line_width=3) p.line(years, second_country_data_attribute, legend=second_country, line_color="green", line_width=3) return p # Index page @app.route('/', methods=['GET', 'POST']) def index(): first_country = "India" second_country = "Pakistan" selected_attribute = "income" if request.method == 'POST': first_country = request.form["first_country"] second_country = request.form["second_country"] selected_attribute = request.form["selected_attribute"] # Create the plot plot = create_figure(first_country, second_country, selected_attribute) # Embed plot into HTML via Flask Render script, div = components(plot) return render_template("index.html", script=script, div=div, country_names=country_names, attribute_names=attribute_names, selected_attribute=selected_attribute, first_country=first_country, second_country=second_country) # With debug=True, Flask server will auto-reload # when there are code changes if __name__ == '__main__': app.run(port=5000, debug=True)
29065c85f253e986f0247830667b223126e205ca
e36a4b7fdcff6e769455502a2cde6ede03c09c96
/leetcode/sum_2.py
80a43e364fe4d242343d5ccc3e3d5e9213002c11
[]
no_license
SmallPuddingComing/Python-learn
5c09fec5054887b9723c230527697a39642105fc
49f154fa523c574aed44e440606a494680bd6ef7
refs/heads/master
2020-04-06T06:51:36.031265
2016-06-14T08:43:02
2016-06-14T08:43:02
57,961,780
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
#coding:utf8 class Solution: # @return a tuple, (index1, index2) def twoSum(self, num, target): dict = {} mylist = [] for i in range(len(num)): if dict.get(target-num[i], None) == None: dict[num[i]] = i else: mylist.append((dict[target-num[i]] + 1, i + 1)) if mylist is not None: return mylist if __name__ == '__main__': solution = Solution() num = [1,3,4,6,5,8] print solution.twoSum(num, 9)
0820fcde3e782e1246cd0d3b958c53095226c1a1
b2024047dfb29398787aacc4c12a76d99d477479
/Probleme_22_BECKER_Justine.py
cedbe0f550ef49b613d33cc5f85f8b3e223d0247
[]
no_license
mines-nancy-tcss5ac-2018/td1-becker261u
0d5e5b146acbbec2d9d4315a77706f5acf81546f
6b2ebaa3e6c673a377e5383f2412cebf52cad079
refs/heads/master
2020-03-31T22:05:12.325798
2018-10-12T10:58:57
2018-10-12T10:58:57
152,605,086
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
from math import* import numpy as np def ouvre(): fichier=open('C:/Users/Justi/OneDrive/Documents/Mines Nancy/Informatique/p022_names.txt', 'r') L=[] for line in fichier.readlines(): L+=line.split('","') L[0]='MARY' L[-1]='ALONSO' return L def convertionalpha(mot): S=[] M=mot Somme=0 alphabet=['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] for k in range(len(M)): i,j=0,False while j==False: if M[k]==alphabet[i]: j=True S.append(i+1) i+=1 for i in range(len(S)): Somme+=S[i] return Somme def solve(): L=ouvre() L=sorted(L) S=0 for i in range(len(L)): X=convertionalpha(L[i]) S+=(X*(i+1)) return S print(solve())
ced584434b2c37d9c6fe153e4be86b6cd63b39d7
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/stdlib-big-3150.py
a90e0860cf28a55c74d93c4faa7870ccbfca8da7
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
9,005
py
# ChocoPy library functions def int_to_str(x: int) -> str: digits:[str] = None result:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str2(x: int, x2: int) -> str: digits:[str] = None digits2:[str] = None result:str = "" result2:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str3(x: int, x2: int, x3: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None result:str = "" result2:str = "" result3:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str4(x: int, x2: int, x3: int, x4: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def int_to_str5(x: int, x2: int, x3: int, x4: int, x5: int) -> str: digits:[str] = None digits2:[str] = None digits3:[str] = None digits4:[str] = None digits5:[str] = None result:str = "" result2:str = "" result3:str = "" result4:str = "" result5:str = "" # Set-up digit mapping digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] # Write sign if necessary if x < 0: result = "-" x = -x # Write digits using a recursive call if x >= 10: result = result + int_to_str(x // 10) result = result + digits[x % 10] return result def str_to_int(x: str) -> int: result:int = 0 digit:int = 0 char:str = "" sign:int = 1 first_char:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int2(x: str, x2: str) -> int: result:int = 0 result2:int = 0 digit:int = 0 digit2:int = 0 char:str = "" char2:str = "" sign:int = 1 sign2:int = 1 first_char:bool = True first_char2:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int3(x: str, x2: str, x3: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 char:str = "" char2:str = "" char3:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int4(x: str, x2: str, x3: str, x4: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign def str_to_int5(x: str, x2: str, x3: str, x4: str, x5: str) -> int: result:int = 0 result2:int = 0 result3:int = 0 result4:int = 0 result5:int = 0 digit:int = 0 digit2:int = 0 digit3:int = 0 digit4:int = 0 digit5:int = 0 char:str = "" char2:str = "" char3:str = "" char4:str = "" char5:str = "" sign:int = 1 sign2:int = 1 sign3:int = 1 sign4:int = 1 sign5:int = 1 first_char:bool = True first_char2:bool = True first_char3:bool = True first_char4:bool = True first_char5:bool = True # Parse digits for char in x: if char == "-": if not first_char: return 0 # Error sign = -1 elif char == "0": digit = 0 elif char == "1": digit = 1 elif char == "2": digit = 2 elif char == "3": digit = 3 elif char == "3": digit = 3 elif char == "4": digit = 4 elif char == "5": digit = 5 elif char == "6": digit = 6 elif char == "7": digit = 7 elif char == "8": digit = 8 elif char == "9": digit = 9 else: return 0 # On error first_char = False result = result * 10 + digit # Compute result return result * sign # Input parameters c:int = 42 c2:int = 42 c3:int = 42 c4:int = 42 c5:int = $Literal n:int = 10 n2:int = 10 n3:int = 10 n4:int = 10 n5:int = 10 # Run [-nc, nc] with step size c s:str = "" s2:str = "" s3:str = "" s4:str = "" s5:str = "" i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 i = -n * c # Crunch while i <= n * c: s = int_to_str(i) print(s) i = str_to_int(s) + c
070dff76c457f1874707620fb31fec5cf5729171
052943e74057f62064e1a0574790696304056f5e
/matplotlib/histogram.py
cf3c77d9d621fb8b036a203b3454e298c7f9eaf5
[]
no_license
PragayanParamitaMohapatra/Basic_python
0e9861bdb48f0f7e61f479fef5a3a501b5bd0ae7
69c83369a4facbc8d1829c163bc24871124dfff0
refs/heads/master
2022-11-30T21:52:06.841696
2020-08-06T17:36:43
2020-08-06T17:36:43
284,977,200
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
import matplotlib.pyplot as plt blood_sugar_men=[113,85,90,150,149,88,93,115,135,80,77,82,129] blood_sugar_women=[67,98,89,120,133,150,84,69,89,79,120,112,100] blood_sugar_can=[113,85,90,150,149,88,93,115,135,80,77,82,129] blood_sugar_wan=[67,98,89,120,133,150,84,69,89,79,120,112,100] plt.xlabel("sugar range") plt.ylabel('Total no. of patients') plt.title('Blood sugar analysis') print(plt.hist([blood_sugar_men,blood_sugar_women,blood_sugar_can,blood_sugar_wan],bins=[80,100,125,150],rwidth=0.50,color=["green","yellow","blue","orange"],label=['men','women'])) plt.legend() plt.show()
603fe7c5e0cc47a01c1d5faccc532aaeb43fdae8
6bc94d794a83a9b7e859a7f615197fc564c29761
/oop_basic/animals.py
45f97a37c4dc6dee8cdc50834b7cf319361d4b58
[]
no_license
huchangchun/learn-python3
b735a4477d5b7b96e8791aedf8424faed8487c3c
f154f80edf91c20e8b596e29e4e9f904c6a3f2bc
refs/heads/master
2022-03-27T14:21:00.964729
2019-12-20T02:03:45
2019-12-20T02:03:45
115,346,521
0
0
null
null
null
null
UTF-8
Python
false
false
675
py
# -*- coding:utf-8 -*- class Animal(): def __init__(self,name,food): self.name = name self.food = food def eat(self): print('%s like %s'%(self.name,self.food)) class Dog(Animal): def __init__(self,name,food,drink): #加载父类构造方法 super(Dog,self).__init__(name,food) self.drink = drink def drinks(self): print('%s 爱喝 %s' %(self.name,self.drink)) kitty = Dog('kt','骨头','牛奶') kitty.eat() kitty.drinks() print('kitty is Animal?',isinstance(kitty,Animal)) print('kitty is dog1?',isinstance(kitty,Dog)) # kt like 骨头 # kt 爱喝 牛奶 # kitty is Animal? True # kitty is dog1? True
79fbdfec2a57b56432000656e9547fc28d08a855
fd2ceefb34ed0d9d16fa77ce3f8b8f91096f2c1a
/anyrl/tests/test_players.py
6b28bf21ba7302d14a738ddc58177fe68026ed3c
[]
no_license
decoderkurt/anyrl-py
d4e433e6e7920b00f8487734ff688ad6e757706b
94a0d7c2083312358f6c754d79d921a563f8237a
refs/heads/master
2020-03-14T22:48:01.972856
2018-04-25T22:02:50
2018-04-25T22:02:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,199
py
""" Test various Player implementations. """ import numpy as np from anyrl.envs import batched_gym_env from anyrl.rollouts import BasicPlayer, NStepPlayer, BatchedPlayer from anyrl.tests.util import SimpleEnv, SimpleModel def test_nstep_one_step(): """ Test an NStepPlayer in the trivial, 1-step case. """ make_env = lambda: SimpleEnv(15, (1, 2, 3), 'float32') make_agent = lambda: SimpleModel((1, 2, 3), stateful=True) make_basic = lambda: BasicPlayer(make_env(), make_agent(), batch_size=3) player1 = make_basic() player2 = NStepPlayer(make_basic(), 1) for _ in range(100): transes1 = player1.play() transes2 = player2.play() assert len(transes1) == len(transes2) for trans1, trans2 in zip(transes1, transes2): assert _transitions_equal(trans1, trans2) def test_nstep_multi_step(): """ Test an NStepPlayer in the multi-step case. """ make_env = lambda: SimpleEnv(9, (1, 2, 3), 'float32') make_agent = lambda: SimpleModel((1, 2, 3), stateful=True) make_basic = lambda: BasicPlayer(make_env(), make_agent(), batch_size=1) player1 = make_basic() player2 = NStepPlayer(make_basic(), 3) raw_trans = [t for _ in range(40) for t in player1.play()] nstep_trans = [t for _ in range(40) for t in player2.play()] for raw, multi in zip(raw_trans, nstep_trans): for key in ['episode_step', 'episode_id', 'is_last']: assert raw[key] == multi[key] assert np.allclose(raw['model_outs']['actions'][0], multi['model_outs']['actions'][0]) assert np.allclose(raw['obs'], multi['obs']) assert raw['rewards'] == multi['rewards'][:1] assert raw['total_reward'] + sum(multi['rewards'][1:]) == multi['total_reward'] for raw, multi in zip(raw_trans[3:], nstep_trans): if multi['new_obs'] is not None: assert np.allclose(multi['new_obs'], raw['obs']) else: assert multi['episode_id'] != raw['episode_id'] def test_nstep_batch_invariance(): """ Test that the batch size of the underlying Player doesn't affect the NStepPlayer. """ make_env = lambda: SimpleEnv(9, (1, 2, 3), 'float32') make_agent = lambda: SimpleModel((1, 2, 3), stateful=True) def _gather_transitions(batch_size): player = NStepPlayer(BasicPlayer(make_env(), make_agent(), batch_size=batch_size), 3) transitions = [] while len(transitions) < 50: transitions.extend(player.play()) # The NStepPlayer is not required to preserve # the order of transitions. return sorted(transitions, key=lambda t: (t['episode_id'], t['episode_step']))[:50] expected = _gather_transitions(1) for batch_size in range(2, 52): actual = _gather_transitions(batch_size) for trans1, trans2 in zip(expected, actual): assert _transitions_equal(trans1, trans2) def test_single_batch(): """ Test BatchedPlayer when the batch size is 1. """ make_env = lambda: SimpleEnv(9, (1, 2, 3), 'float32') make_agent = lambda: SimpleModel((1, 2, 3), stateful=True) basic_player = BasicPlayer(make_env(), make_agent(), 3) batched_player = BatchedPlayer(batched_gym_env([make_env]), make_agent(), 3) for _ in range(50): transes1 = basic_player.play() transes2 = batched_player.play() assert len(transes1) == len(transes2) for trans1, trans2 in zip(transes1, transes2): assert _transitions_equal(trans1, trans2) def test_mixed_batch(): """ Test a batch with a bunch of different environments. """ env_fns = [lambda s=seed: SimpleEnv(s, (1, 2, 3), 'float32') for seed in [3, 3, 3, 3, 3, 3]] #[5, 8, 1, 9, 3, 2]] make_agent = lambda: SimpleModel((1, 2, 3), stateful=True) for num_sub in [1, 2, 3]: batched_player = BatchedPlayer(batched_gym_env(env_fns, num_sub_batches=num_sub), make_agent(), 3) expected_eps = [] for player in [BasicPlayer(env_fn(), make_agent(), 3) for env_fn in env_fns]: transes = [t for _ in range(50) for t in player.play()] expected_eps.extend(_separate_episodes(transes)) actual_transes = [t for _ in range(50) for t in batched_player.play()] actual_eps = _separate_episodes(actual_transes) assert len(expected_eps) == len(actual_eps) for episode in expected_eps: found = False for i, actual in enumerate(actual_eps): if _episodes_equivalent(episode, actual): del actual_eps[i] found = True break assert found def _separate_episodes(transes): res = [] for ep_id in set([t['episode_id'] for t in transes]): res.append([t for t in transes if t['episode_id'] == ep_id]) return res def _episodes_equivalent(transes1, transes2): if len(transes1) != len(transes2): return False for trans1, trans2 in zip(transes1, transes2): if not _transitions_equal(trans1, trans2, ignore_id=True): return False return True def _transitions_equal(trans1, trans2, ignore_id=False): for key in ['episode_step', 'total_reward', 'is_last', 'rewards']: if trans1[key] != trans2[key] and (key != 'episode_id' or not ignore_id): return False if trans1['new_obs'] is None: if trans2['new_obs'] is not None: return False else: if not np.allclose(trans1['new_obs'], trans2['new_obs']): return False if (not np.allclose(trans1['model_outs']['actions'][0], trans2['model_outs']['actions'][0]) or not _states_equal(trans1['model_outs']['states'], trans2['model_outs']['states'])): return False if not np.allclose(trans1['obs'], trans2['obs']): return False return True def _states_equal(states1, states2): if isinstance(states1, tuple): if not isinstance(states2, tuple): return False return all(np.allclose(x, y) for x, y in zip(states1, states2)) else: return np.allclose(states1, states2)
87b976bab6630f39bbfb3e6f0c0d66644899a06b
caaf04a58abe96563df1dbc88abe8594047fded9
/medium/problem_1492_the_kth_factor_of_n.py
eb8691727c67157af4e5788cac0c6c8138370f2a
[]
no_license
EricMontague/Leetcode-Solutions
f1b09781b0afd60c79d55f65fe0552c80a928ac7
fd1e40ace51fe2a3cc6dadb3fe5872c7fa149188
refs/heads/master
2021-01-09T20:00:15.580735
2020-12-14T22:24:24
2020-12-14T22:24:24
242,441,085
0
0
null
null
null
null
UTF-8
Python
false
false
2,428
py
"""This file contains my solution to Leetcode problem 1492: The kth factor of N.""" # Max Heap Solution # time complexity: O(sqrt(n) * logk), where 'n' is num and 'k' is the variable 'k' # space complexity: O(k) import heapq import math class Solution: def kthFactor(self, num: int, k: int) -> int: max_heap = [] for factor in range(1, math.floor(math.sqrt(num)) + 1): if num % factor == 0: heapq.heappush(max_heap, factor * -1) other_factor = num // factor if other_factor != factor: heapq.heappush(max_heap, other_factor * -1) while len(max_heap) > k: heapq.heappop(max_heap) if len(max_heap) < k: return -1 return max_heap[0] * -1 # Min Heap Solution # time complexity: O(sqrt(n)* log sqrt(n)) # space complexity: O(sqrt(n)) import heapq import math class Solution: def kthFactor(self, num: int, k: int) -> int: min_heap = [] for factor in range(1, math.floor(math.sqrt(num)) + 1): if num % factor == 0: min_heap.append(factor) other_factor = num // factor if other_factor != factor: min_heap.append(other_factor) heapq.heapify(min_heap) return self.get_kth_factor(min_heap, k) def get_kth_factor(self, min_heap, k): if len(min_heap) < k: return -1 factor = None for index in range(k): factor = heapq.heappop(min_heap) return factor # Simple iterative solution # time complexity: O(sqrt(n)) # space complexity: O(sqrt(n)) class Solution: def kthFactor(self, num: int, k: int) -> int: lower_divisors = [] higher_divisors = [] sqrt = 1 / 2 for divisor in range(1, int(num ** sqrt) + 1): if num % divisor == 0: lower_divisors.append(divisor) other_divisor = num // divisor if other_divisor != divisor: higher_divisors.append(other_divisor) num_lower_divisors = len(lower_divisors) num_higher_divisors = len(higher_divisors) if k > num_lower_divisors + num_higher_divisors: return -1 if k <= num_lower_divisors: return lower_divisors[k - 1] return higher_divisors[(k - num_lower_divisors) * -1]
50012f51af28fc60aeaa999055ab4075bff3bb29
035730cf12c43f59b76d9809e444b9070c3e5732
/BOJ_15652.py
b2f8733e3e279a3b26cc9d3056624057379bfe3e
[]
no_license
kimhaggie/Coding_practice
e18153838425874b80a683094369a6dfb8836c93
a4f2732e5d7a63adae990226073333b88324765a
refs/heads/master
2023-08-01T11:33:54.071564
2021-09-07T14:40:56
2021-09-07T14:40:56
310,264,349
1
0
null
null
null
null
UTF-8
Python
false
false
422
py
#15652 import sys import math def func(i,j,m): ans = [] if m==1: return [[k] for k in range(i,j+1)] else: for k in range(i,j+1): for x in func(k,j,m-1): tmp = [k] tmp.extend(x) ans.append(tmp) return ans n,m = map(int,sys.stdin.readline().rstrip('\n').split(' ')) ans = func(1,n,m) for x in ans: print(' '.join(map(str,x)))
3184ed77b262fc5b31ef7217005cd516822648a3
3c7dcf8c7af1536af8d6ff3b7ec4389e9523823a
/greenloc_crm_ext/models/crm_lead.py
4a0feff5843797d56a0ab622c6f67303ae94d435
[]
no_license
tate11/module
cb70e8e45ecb9912a597ea9310c29baf9074fa90
b5148fad3f3a23df749d3d3d7278c2ce22e067d8
refs/heads/master
2020-03-18T21:11:18.403431
2017-06-14T07:48:48
2017-06-14T07:48:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
69,607
py
# -*- coding: utf-8 -*- from openerp import api, fields, models, _ import base64 from odoo.tools import DEFAULT_SERVER_DATE_FORMAT from dateutil.relativedelta import relativedelta from datetime import datetime, date, timedelta from odoo.addons.greenloc_crm_ext.controllers import universign from odoo.exceptions import UserError CRM_LEAD_FIELDS_TO_MERGE = [ 'name', 'partner_id', 'campaign_id', 'company_id', 'country_id', 'team_id', 'state_id', 'stage_id', 'medium_id', 'source_id', 'user_id', 'title', 'city', 'contact_name', 'description', 'email', 'fax', 'mobile', 'partner_name', 'phone', 'probability', 'planned_revenue', 'street', 'street2', 'zip', 'create_date', 'date_action_last', 'date_action_next', 'email_from', 'email_cc', 'partner_name', 'fal_model_1_pdf', 'fal_model_1_pdf_fname'] class crm_lead(models.Model): _inherit = 'crm.lead' # Default Value def _get_roof_information_default(self): return [(0, 0, {'name': _('Roof 1')}), (0, 0, {'name': _('Roof 2')}), (0, 0, {'name': _('Roof 3')}), (0, 0, {'name': _('Roof 4')})] # Domain function @api.model def _getUserGroupId(self): technician_group = self.env.ref('greenloc_crm_ext.group_greenloc_technician').users.ids return [('id', 'in', technician_group)] # Adding some required field fal_sequence = fields.Char(string='Sequence', copy=False) fal_quality_user_id = fields.Many2one("res.users", "Quality Person", track_visibility='onchange') fal_salesperson_user_id = fields.Many2one("res.users", "Validator Person", track_visibility='onchange') fal_lead_stage = fields.Selection([('draft', 'Draft'), ('new', 'New'), ('to_control', 'To Control'), ('affected', 'Affected')], string="Lead Stage", default='draft', track_visibility='onchange') fal_send_email_customer = fields.Boolean(string="Send Email to customer") fal_send_email_other = fields.Char(string="Also send Email to") fal_roof_surface = fields.Integer(string='Total Roof Surface', compute="_get_roof_surface_total") fal_sun_eyes_tools = fields.Float(string="Average Sun Eyes Tools", compute="_get_sun_eyes_average") fal_france_building = fields.Boolean(string='Is a France Building') fal_recall_reason = fields.Text(string="Recall Reason") fal_lost_reason = fields.Text(string="Lost Reason") fal_partner_child_ids = fields.One2many('res.partner', 'lead_id', string='Partner Contacts', related="partner_id.child_ids") fal_marital_status = fields.Selection([('married', 'Married'), ('single', 'Single'), ('widower', 'Widower',), ('pacs', 'Pacs'), ('concubinage', 'Concubinage')], string="Marital Status") fal_wedding_contract = fields.Char(string="Wedding Contract") fal_root_surface_pdf = fields.Binary(string="Root Surface's PDF") fal_root_surface_pdf_fname = fields.Char("Root Surface's PDF Fname") fal_sun_eyes_tools_pdf = fields.Binary(string="SunEyes Tool's PDF") fal_sun_eyes_tools_pdf_fname = fields.Char("SunEyes Tool's PDF Fname") fal_roof_information_ids = fields.One2many("greenloc.crm.roof.information", "crm_lead_id", "Roof Information", default=_get_roof_information_default) fal_solargis_csv = fields.Binary(string="Solargis CSV") fal_solargis_csv_fname = fields.Char("Solargis CSV Fname") fal_parcel_no = fields.Char(string="Parcell Number") fal_section = fields.Char(string="Section Number") fal_contenance_1 = fields.Integer(string="Contenance 1") fal_contenance_2 = fields.Integer(string="Contenance 2") fal_contenance_3 = fields.Integer(string="Contenance 3") fal_place_says = fields.Char(string="Place Says") fal_goods = fields.Selection([('common', 'common'), ('clean', 'Clean')], string="Goods") fal_ownership = fields.Selection([('alone', 'Alone'), ('indivision', 'Indivision'), ('co_ownership_or_similar', 'Co-ownership or similar'), ('usufruct_and_bare_ownership', 'Usufruct and bare ownership'), ('right_of_use_and_habitation', 'Right of use and habitation')], string="Ownership") fal_model_1_pdf = fields.Binary(string="Model 1's PDF") fal_model_1_pdf_fname = fields.Char("Model 1's PDF Fname") fal_cadastre_pdf = fields.Binary(string="Cadastre's PDF") fal_cadastre_pdf_fname = fields.Char("Cadastre's PDF Fname") fal_quality_team_notes = fields.Text(string="QT Notes", help="Quality Team's Notes") fal_mail_ids = fields.One2many('mail.mail', 'fal_lead_id', string="Mail") fal_is_dia = fields.Boolean('Different Installation Address') fal_dia_street = fields.Char('Installation Address', compute="_get_fal_dia_street", inverse="_set_fal_dia_street") fal_dia_street2 = fields.Char('Installation Address 2', compute="_get_fal_dia_street2", inverse="_set_fal_dia_street2") fal_dia_city = fields.Char('Installation City', compute="_get_fal_dia_city", inverse="_set_fal_dia_city") fal_dia_state = fields.Many2one("res.country.state", 'Installation State', compute="_get_fal_dia_state", inverse="_set_fal_dia_state", ondelete='restrict') fal_dia_zip = fields.Char('Installation Zip', compute="_get_fal_dia_zip", inverse="_set_fal_dia_zip") fal_dia_country_id = fields.Many2one('res.country', 'Installation Country', compute="_get_fal_dia_country", inverse="_set_fal_dia_country", ondelete='restrict') fal_dia_depart_no = fields.Char(string="Department N°", compute='_compute_department_no', store=True) fal_dia_partner_latitude = fields.Float(string='Geo Latitude', digits=(16, 5)) fal_dia_partner_longitude = fields.Float(string='Geo Longitude', digits=(16, 5)) fal_dia_date_localization = fields.Date(string='Geolocation Date') fal_last_date_signature_request = fields.Date("Last Signature Request at") fal_website_form_result = fields.Selection([('lost', 'Lost'), ('won', 'Won'), ('recall', 'Recall')], 'Website Result') fal_document_signature_ids = fields.One2many('greenloc.crm.lead.docs.sign.attachment', 'lead_id', 'Signature Documents') fal_crm_universign_ids = fields.One2many('greenloc.crm.universign', 'lead_id', 'Universign') fal_is_complex = fields.Boolean('Is Complex') fal_is_rdvvt = fields.Boolean('Is RDV VT') fal_is_l3 = fields.Boolean('Is L3') fal_lead_origin = fields.Selection([('fo', 'FO'), ('grl', 'GRL'), ('prl', 'PRL'), ('ntc', 'NTC')], 'Lead Origin') fal_technical_visit_ids = fields.One2many("greenloc.crm.lead.technical.visit", 'lead_id', 'Technical Visit') fal_no_of_recall = fields.Integer("Number of Recall", default=0) technician_id = fields.Many2one("res.users", "VT Technician", domain=_getUserGroupId) # Relate field email and phone email_from = fields.Char(related="partner_id.email") phone = fields.Char(related="partner_id.phone") mobile = fields.Char(related="partner_id.mobile") # Remove later if it's not needed # fal_signature_request_ids = fields.One2many('signature.request', 'fal_lead_id', 'Sign Documents') # Compute Method @api.one @api.depends('fal_dia_zip') def _compute_department_no(self): if self.fal_dia_zip: self.fal_dia_depart_no = self.fal_dia_zip[0:2] @api.one @api.depends('fal_roof_information_ids', 'fal_roof_information_ids.roof_surface') def _get_roof_surface_total(self): if self.fal_roof_information_ids: total_roof_surface = 0 for fal_roof_information_id in self.fal_roof_information_ids: total_roof_surface += fal_roof_information_id.roof_surface self.fal_roof_surface = total_roof_surface @api.one @api.depends('fal_roof_information_ids', 'fal_roof_information_ids.roof_surface', 'fal_roof_information_ids.sun_eyes_tools') def _get_sun_eyes_average(self): if self.fal_roof_information_ids: average_sun_eyes_tools = 0 total_roof_surface = 0 for fal_roof_information_id in self.fal_roof_information_ids: average_sun_eyes_tools += fal_roof_information_id.roof_surface * fal_roof_information_id.sun_eyes_tools total_roof_surface += fal_roof_information_id.roof_surface if total_roof_surface != 0: self.fal_sun_eyes_tools = average_sun_eyes_tools / total_roof_surface else: self.fal_sun_eyes_tools = average_sun_eyes_tools / 1 @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.state_id') def _get_fal_dia_state(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_state = fal_partner_child_id.state_id and fal_partner_child_id.state_id.id or False @api.one def _set_fal_dia_state(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.state_id = self.fal_dia_state and self.fal_dia_state.id or False @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.street') def _get_fal_dia_street(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_street = fal_partner_child_id.street @api.one def _set_fal_dia_street(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.street = self.fal_dia_street @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.street2') def _get_fal_dia_street2(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_street2 = fal_partner_child_id.street2 @api.one def _set_fal_dia_street2(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.street2 = self.fal_dia_street2 @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.city') def _get_fal_dia_city(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_city = fal_partner_child_id.city @api.one def _set_fal_dia_city(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.city = self.fal_dia_city @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.zip') def _get_fal_dia_zip(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_zip = fal_partner_child_id.zip @api.one def _set_fal_dia_zip(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.zip = self.fal_dia_zip @api.one @api.depends('fal_partner_child_ids', 'fal_partner_child_ids.country_id') def _get_fal_dia_country(self): if self.fal_partner_child_ids: for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): self.fal_dia_country_id = fal_partner_child_id.country_id and fal_partner_child_id.country_id.id or False @api.one def _set_fal_dia_country(self): for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): fal_partner_child_id.country_id = self.fal_dia_country_id and self.fal_dia_country_id.id or False # Re-send model1 mail @api.multi def re_send_model1_mail(self): template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.lead_pdf_request_email') mail = template.send_mail(self.id, force_send=True) self.env['mail.mail'].browse(mail).fal_lead_id = self.id return True # Call Geolocation of Partner @api.multi def lead_geo_localize(self): # Call Installation Address Geolocation method, copy the value of partner to lead for lead in self: for fal_partner_child_id in lead.fal_partner_child_ids: if fal_partner_child_id.type == 'other' and (fal_partner_child_id.name and fal_partner_child_id.name.lower() in ["adresse d'installation", "addresse d'installation", "installation address"]): if fal_partner_child_id.geo_localize(): lead.fal_dia_partner_latitude = fal_partner_child_id.partner_latitude lead.fal_dia_partner_longitude = fal_partner_child_id.partner_longitude lead.fal_dia_date_localization = fal_partner_child_id.date_localization # Merge lead with head selected. @api.multi def merge_opportunity(self, user_id=False, team_id=False): """ Merge opportunities in one. Different cases of merge: - merge leads together = 1 new lead - merge at least 1 opp with anything else (lead or opp) = 1 new opp The resulting lead/opportunity will be the most important one (based on its confidence level) updated with values from other opportunities to merge. :param user_id : the id of the saleperson. If not given, will be determined by `_merge_data`. :param team : the id of the sales team. If not given, will be determined by `_merge_data`. :return crm.lead record resulting of th merge """ if len(self.ids) <= 1: raise UserError(_('Please select more than one element (lead or opportunity) from the list view.')) # Sorting the leads/opps according to the confidence level of its stage, which relates to the probability of winning it # The confidence level increases with the stage sequence, except when the stage probability is 0.0 (Lost cases) # An Opportunity always has higher confidence level than a lead, unless its stage probability is 0.0 def opps_key(opportunity): sequence = -1 if opportunity.stage_id.on_change: sequence = opportunity.stage_id.sequence return (sequence != -1 and opportunity.type == 'opportunity'), sequence, -opportunity.id opportunities = self.sorted(key=opps_key, reverse=True) # get SORTED recordset of head and tail, and complete list opportunities_head = opportunities[0] opportunities_tail = opportunities[1:] # Override Falinwa Greenloc # If head is defined in merge, use it. if 'head_selected' in self.env.context and self.env.context['head_selected']: opportunities_head = self.env.context['head_selected'] opportunities_tail = False opportunities_tail = self.browse() for opportunity in opportunities: if not opportunity == opportunities_head: opportunities_tail += opportunity opportunities = opportunities_head + opportunities_tail # merge all the sorted opportunity. This means the value of # the first (head opp) will be a priority. merged_data = opportunities._merge_data(list(CRM_LEAD_FIELDS_TO_MERGE)) # force value for saleperson and sales team if user_id: merged_data['user_id'] = user_id if team_id: merged_data['team_id'] = team_id # merge other data (mail.message, attachments, ...) from tail into head opportunities_head.merge_dependences(opportunities_tail) # check if the stage is in the stages of the sales team. If not, assign the stage with the lowest sequence if merged_data.get('team_id'): team_stage_ids = self.env['crm.stage'].search(['|', ('team_id', '=', merged_data['team_id']), ('team_id', '=', False)], order='sequence') if merged_data.get('stage_id') not in team_stage_ids.ids: merged_data['stage_id'] = team_stage_ids[0].id if team_stage_ids else False # write merged data into first opportunity opportunities_head.write(merged_data) # delete tail opportunities # we use the SUPERUSER to avoid access rights issues because as the user had the rights to see the records it should be safe to do so opportunities_tail.sudo().unlink() return opportunities_head # Action Phone Call @api.multi def action_phone_call(self): """ Link to open sent appraisal""" self.ensure_one() return { "type": "ir.actions.act_url", "url": "http://192.168.1.218/apicall.php?dest=" + str(self.phone) + "&poste=" + str(self.env['res.users'].browse(self._uid).partner_id.phone), "target": "new", } # Action Mobile Call @api.multi def action_mobile_call(self): """ Link to open sent appraisal""" self.ensure_one() return { "type": "ir.actions.act_url", "url": "http://192.168.1.218/apicall.php?dest=" + str(self.mobile) + "&poste=" + str(self.env['res.users'].browse(self._uid).partner_id.phone), "target": "new", } # Action Fetch Mail @api.multi def fetch_pdf_email_from_greenloc(self): attachment_name = self.env.context['attachment_name'] lead_id = self.env.context['active_id'] attachment_id = self.env['ir.attachment'].search([('res_id', '=', lead_id), ('res_model', '=', 'crm.lead'), ('name', '=', attachment_name)], limit=1) self.browse(lead_id).fal_model_1_pdf = attachment_id.datas self.browse(lead_id).fal_model_1_pdf_fname = attachment_name self.browse(lead_id).action_set_to_control_lead_stage() # Affect Lead or Opportunity @api.model def affect_lead_quality(self): lead_id = self.env['crm.lead'].search([('active', '=', True), ('type', '=', 'lead'), ('fal_lead_stage', '=', 'affected'), ('fal_quality_user_id', '=', self.env.uid), ('fal_is_complex', '=', False)], order='write_date asc', limit=1) if not lead_id: lead_id = self.env['crm.lead'].search([('active', '=', True), ('type', '=', 'lead'), ('fal_lead_stage', '=', 'to_control'), ('fal_quality_user_id', '=', False), ('fal_is_complex', '=', False)], order='write_date asc', limit=1) if lead_id: view_id = self.env['ir.model.data'].get_object_reference('greenloc_crm_ext', 'crm_case_form_view_leads_greenloc')[1] lead_id.action_set_to_affected_lead_stage() return { "type": "ir.actions.act_window", "res_model": "crm.lead", "view_mode": "form", "view_type": "form", "view_id": view_id, "res_id": lead_id.id, "tag": 'reload', 'target': 'current', } return { 'type': 'ir.actions.act_url', 'target': 'self', 'url': '/web', } @api.model def affect_opportunity_salesperson(self): new_stage = self.env['ir.model.data'].xmlid_to_object('crm.stage_lead1').id lead_id = self.env['crm.lead'].search([('active', '=', True), ('type', '=', 'opportunity'), ('stage_id', '=', new_stage), ('fal_salesperson_user_id', '=', False), ('fal_is_complex', '=', False)], order='write_date asc', limit=1) if lead_id: view_id = self.env['ir.model.data'].get_object_reference('greenloc_crm_ext', 'crm_case_form_view_oppor_greenloc')[1] lead_id.action_set_next_stage() lead_id.fal_salesperson_user_id = self._uid return { "type": "ir.actions.act_window", "res_model": "crm.lead", "view_mode": "form", "view_type": "form", "view_id": view_id, "res_id": lead_id.id, "tag": 'reload', 'target': 'current', } return { 'type': 'ir.actions.act_url', 'target': 'self', 'url': '/web', } # Skip crm.lead2ooprtunity @api.multi def action_fast_convert_to_opportunity(self): self.ensure_one() for lead in self: crm_lead_2_opportunity_values = { 'team_id': self.env['res.users'].browse(self._uid).sale_team_id.id or lead.team_id.id or False, 'action': 'create', 'opportunity_ids': [(4, lead.id)], 'name': 'convert', 'user_id': self._uid} self.env['crm.lead2opportunity.partner'].sudo().create(crm_lead_2_opportunity_values).with_context(active_ids=[lead.id]).action_apply() template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.new_opportunity_greenloc_email') mail = template.send_mail(lead.id, force_send=True) self.env['mail.mail'].browse(mail).fal_lead_id = lead.id if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return lead.redirect_opportunity_view() else: return self.affect_lead_quality() # Action Methods (Change Stage for Leads) @api.multi def action_set_to_draft_lead_stage(self): for lead in self: lead.write({'fal_lead_stage': 'draft', 'fal_quality_user_id': False}) if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True else: return self.affect_lead_quality() return True @api.multi def action_set_to_new_lead_stage(self): for lead in self: lead.write({'fal_lead_stage': 'new', 'user_id': self._uid}) menu_ids = self.env.ref('greenloc_crm_ext.greenloc_menu_crm_leads_operator').id if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True else: return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': {'menu_id': menu_ids or False}, 'target': 'current', } return True @api.multi def action_set_to_control_lead_stage(self): for lead in self: lead.write({'fal_lead_stage': 'to_control'}) menu_ids = self.env.ref('greenloc_crm_ext.greenloc_menu_crm_leads_operator').id if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True else: return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': {'menu_id': menu_ids or False}, 'target': 'current', } return True @api.multi def action_set_to_affected_lead_stage(self): for lead in self: lead.write({'fal_lead_stage': 'affected', 'fal_quality_user_id': self._uid}) # We don't need it anymore # template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.lead_to_affected_email') # mail = template.send_mail(lead.id, force_send=True) # self.env['mail.mail'].browse(mail).fal_lead_id = lead.id return True @api.multi def action_set_lost(self): """ Lost semantic: probability = 0, active = False """ self.write({'probability': 0, 'active': False}) # Send Email to customer if self.fal_lead_stage == 'affected' and self.type == 'lead': template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.lost_opportunity_greenloc_email') mail = template.send_mail(self.id, force_send=True) self.env['mail.mail'].browse(mail).fal_lead_id = self.id if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True elif 'view_form_source' in self.env.context and self.env.context['view_form_source'] == 'lead': return self.affect_lead_quality() else: if self.env['res.users'].browse(self._uid).has_group('greenloc_crm_ext.group_greenloc_salesperson'): menu_ids = self.env.ref('greenloc_crm_ext.greenloc_menu_crm_opportunity_salesperson').id return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': {'menu_id': menu_ids or False}, 'target': 'current', } else: return { 'type': 'ir.actions.act_url', 'target': 'self', 'url': '/web', } @api.multi def action_set_won(self): """ Won semantic: probability = 100 (active untouched) """ for lead in self: stage_id = lead._stage_find(domain=[('probability', '=', 100.0), ('on_change', '=', True)]) lead.write({'stage_id': stage_id.id, 'probability': 100}) # Send Email To Customer attachment_ids = [] for document_sign in lead.fal_document_signature_ids: if not document_sign.inactive: if document_sign.signed_doc_id: attachment = document_sign.signed_doc_id attachment_ids.append(attachment.id) email_values = {'attachment_ids': attachment_ids} template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.opportunity_to_won_email') mail = template.with_context().send_mail(self.id, force_send=True, email_values=email_values) self.env['mail.mail'].browse(mail).fal_lead_id = self.id return True # Action Methods (Change Stage) @api.multi def action_set_l3_stage(self): for lead in self: stage_id = self.env.ref('greenloc_crm_ext.greenloc_lead_workflow_6') lead.write({'stage_id': stage_id.id, 'fal_is_l3': True}) return True @api.multi def action_set_l3_to_rdvvt_stage(self): # Should only accessed from RDV VT Stage for lead in self: stage_id = self.env.ref('greenloc_crm_ext.greenloc_lead_workflow_5') lead.write({'stage_id': stage_id.id, 'fal_is_l3': False}) return True @api.multi def action_set_rdvvt_stage(self): for lead in self: stage_id = self.env.ref('greenloc_crm_ext.greenloc_lead_workflow_5') # Check VT Technician Login if lead.technician_id and lead.technician_id.fal_universign_login and lead.technician_id.fal_universign_password: lead.generate_documents_rdvvt() lead.write({'stage_id': stage_id.id, 'fal_is_rdvvt': True}) else: raise UserError(_("Please provide Technician in the Lead, also make sure Universign login and password is set on the technician user.")) return True @api.multi def action_set_rdvvt_to_won__stage(self): # Should only accessed from RDV VT Stage for lead in self: stage_id = lead._stage_find(domain=[('probability', '=', 100.0), ('on_change', '=', True)]) lead.write({'stage_id': stage_id.id, 'probability': 100, 'fal_is_rdvvt': False}) return True @api.multi def action_set_next_stage(self): for lead in self: stage_id = lead._stage_find(domain=[('probability', '>', lead.probability), ('on_change', '=', True)]) lead.write({'stage_id': stage_id.id, 'probability': stage_id.probability}) return True @api.multi def action_set_opportunity_new(self): for lead in self: new_stage = self.env.ref('crm.stage_lead1') lead.write({'stage_id': new_stage.id, 'probability': new_stage.probability, 'fal_no_of_recall': (lead.fal_no_of_recall + 1)}) self.fal_salesperson_user_id = False if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True else: menu_ids = self.env.ref('greenloc_crm_ext.greenloc_menu_crm_opportunity_salesperson').id return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': {'menu_id': menu_ids or False}, 'target': 'current', } return True @api.multi def action_set_prev_stage(self): for lead in self: stage_id = lead._stage_find(domain=[('probability', '<', lead.probability), ('on_change', '=', True)], order="sequence desc") lead.write({'stage_id': stage_id.id, 'probability': stage_id.probability}) if stage_id == self.env.ref('crm.stage_lead1'): self.fal_salesperson_user_id = False if self.env['res.users'].browse(self._uid).has_group('sales_team.group_sale_manager'): return True else: menu_ids = self.env.ref('greenloc_crm_ext.greenloc_menu_crm_opportunity_salesperson').id return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': {'menu_id': menu_ids or False}, 'target': 'current', } return True @api.multi def _onchange_partner_id_values(self, partner_id): """Recover first and last names from partner if available.""" result = super(crm_lead, self)._onchange_partner_id_values(partner_id) if partner_id: partner = self.env["res.partner"].browse(partner_id) if not partner.is_company: result.update({ "contact_name": partner.firstname, "contact_lastname": partner.lastname, "fal_marital_status": partner.fal_marital_status, "fal_wedding_contract": partner.fal_wedding_contract, }) return result def send_mail_model1_pdf(self): template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.lead_pdf_request_email') mail = template.send_mail(self.id, force_send=True) self.env['mail.mail'].browse(mail).fal_lead_id = self.id return True @api.model def create(self, vals): vals['fal_sequence'] = self.env['ir.sequence'].next_by_code('crm.lead') or 'New' result = super(crm_lead, self).create(vals) # Give new Name, if it's from website, otherwise it should be from import. Do not change the name if result.fal_website_form_result: record_new_name = "GRL_" + str(result.fal_sequence) if result.partner_id.company_type == 'person': record_new_name += " - PART - " else: record_new_name += " - PRO - " if result.fal_is_complex: record_new_name += result.partner_id.name else: record_new_name += result.partner_id.lastname + "/" + result.partner_id.firstname result.update({'name': record_new_name}) # Send Email to greenloc to generate PDF result.send_mail_model1_pdf() return result # Block writing on fal_lead_origin if you are not admin @api.multi def write(self, vals): partner_id = False if 'partner_id' in vals: partner_id = vals['partner_id'] if ('fal_lead_origin' in vals or (partner_id and partner_id != self.partner_id.id)) and not self.env['res.users'].browse(self._uid).has_group('base.group_erp_manager'): raise UserError(_("Only User with group : Administration(Access Right) can edit Lead Origin or Customer.")) return super(crm_lead, self).write(vals) # Send document to universign @api.multi def send_to_universign(self, universign_docs=False, universign_signers=False, main_partner=False): universign_connector = universign.UniversignConnector() # Removing False value on signers if universign_signers: for universign_signer in universign_signers: for key in universign_signer: if universign_signer[key] == False: universign_signer.pop(key, None) result = universign_connector.request_sign(universign_name=self.name, universign_docs=universign_docs, universign_signers=universign_signers) self.fal_crm_universign_ids = [(0, 0, {'lead_id': self.id, 'fal_universign_url': result['url'], 'fal_universign_id': result['id'], 'fal_universign_login': "[email protected]", 'fal_universign_server': '@ws.universign.eu/sign/rpc/', 'fal_universign_type': 'reg'})] if result: email_to = universign_signers[0]['emailAddress'] template = self.env['ir.model.data'].xmlid_to_object('greenloc_crm_ext.universign_greenloc_email') attachment_ids = [] for document_sign in universign_docs: attachment = self.env['ir.attachment'].search([('name', '=', document_sign['name'])], limit=1) attachment_ids.append(attachment.id) email_values = {'attachment_ids': attachment_ids} mail = template.with_context(email_to=email_to).send_mail(self.id, force_send=True, email_values=email_values) self.env['mail.mail'].browse(mail).fal_lead_id = self.id # Send document to universign Rdvvt @api.multi def send_rdvvt_to_universign(self, universign_docs=False, universign_signers=False, main_partner=False): universign_connector = universign.UniversignConnector() # Removing False value on signers if universign_signers: for universign_signer in universign_signers: for key in universign_signer: if universign_signer[key] == False: universign_signer.pop(key, None) result = universign_connector.request_sign_l3(universign_name=self.name, universign_docs=universign_docs, universign_signers=universign_signers, universign_login=self.technician_id.fal_universign_login, universign_password=self.technician_id.fal_universign_password) self.fal_crm_universign_ids = [(0, 0, {'lead_id': self.id, 'fal_universign_url': result['url'], 'fal_universign_id': result['id'], 'fal_universign_login': self.technician_id.fal_universign_login, 'fal_universign_server': '@sign.test.cryptolog.com/sign/rpc/', 'fal_universign_type': 'l3'})] # Cron to receive from universign @api.model def cron_receive_universign(self, universign_docs=False, universign_signers=False): universign_connector = universign.UniversignConnector() tehcnician_vt = [(technician.fal_universign_login, technician.fal_universign_password) for technician in self.env['res.users'].search([('fal_universign_login', '!=', False), ('fal_universign_password', '!=', False)])] # Universign 1st Doc for lead_universign in self.env['greenloc.crm.universign'].search([('fal_universign_id', '!=', False), ('fal_universign_doc_received', '=', False), ('fal_universign_doc_failed', '=', False), ('lead_id', '!=', False), ('fal_universign_type', '=', 'reg')]): results = universign_connector.request_get(universign_id=lead_universign.fal_universign_id, lead_id=lead_universign.lead_id.id, technician=tehcnician_vt) if results in ['expired', 'canceled', 'failed']: affected_stage = self.env.ref('greenloc_crm_ext.greenloc_lead_workflow_1') lead_universign.lead_id.write({'stage_id': affected_stage.id, 'probability': affected_stage.probability}) lead_universign.fal_universign_doc_failed = results if results and results not in ['expired', 'canceled', 'failed']: for result in results: attachment = self.env['ir.attachment'].create({ 'name': 'Signed - ' + result, 'datas_fname': 'Signed - ' + result + '.pdf', 'datas': results[result], 'type': 'binary', 'res_model': 'crm.lead', 'fal_protected': True, 'res_model': 'crm.lead', 'res_id': lead_universign.lead_id.id, 'res_name': lead_universign.lead_id.name, 'fal_lead_id': lead_universign.lead_id.id, }) match_doc = self.env['ir.attachment'].search([('name', '=', result)], limit=1) if match_doc: greenloc_docs = match_doc.fal_greenloc_crm_lead_docs_initial_attachment greenloc_docs.signed_doc_ids = [(4, attachment.id)] greenloc_docs.signed_doc_id = attachment.id greenloc_docs.signed_doc_id_binary = attachment.datas greenloc_docs.signed_doc_id_fname = attachment.datas_fname lead_universign.fal_universign_doc_received = True lead_universign.lead_id.action_set_won() # Universign L3 Doc for lead_universign in self.env['greenloc.crm.universign'].search([('fal_universign_id', '!=', False), ('fal_universign_doc_received', '=', False), ('fal_universign_doc_failed', '=', False), ('lead_id', '!=', False), ('fal_universign_type', '=', 'l3')]): results = universign_connector.request_get(universign_id=lead_universign.fal_universign_id, lead_id=lead_universign.lead_id.id, technician=tehcnician_vt) if results in ['expired', 'canceled', 'failed']: lead_universign.fal_universign_doc_failed = results if results and results not in ['expired', 'canceled', 'failed']: for result in results: attachment = self.env['ir.attachment'].create({ 'name': 'Signed - ' + result, 'datas_fname': 'Signed - ' + result + '.pdf', 'datas': results[result], 'type': 'binary', 'res_model': 'crm.lead', 'fal_protected': True, 'res_model': 'crm.lead', 'res_id': lead_universign.lead_id.id, 'res_name': lead_universign.lead_id.name, 'fal_lead_id': lead_universign.lead_id.id, }) match_doc = self.env['ir.attachment'].search([('name', '=', result)], limit=1) if match_doc: greenloc_docs = match_doc.fal_greenloc_crm_lead_docs_initial_attachment greenloc_docs.signed_doc_ids = [(4, attachment.id)] greenloc_docs.signed_doc_id = attachment.id greenloc_docs.signed_doc_id_binary = attachment.datas greenloc_docs.signed_doc_id_fname = attachment.datas_fname lead_universign.fal_universign_doc_received = True lead_universign.lead_id.action_set_l3_stage() # Generate neccesary document @api.multi def generate_documents(self): self.ensure_one() self.fal_last_date_signature_request = fields.Date.today() universign_docs = [] universign_signers = [] # For annexe 7 partner_date_format = self.partner_id.lang and self.env['res.lang'].search([('code', '=', self.partner_id.lang)], limit=1).date_format or DEFAULT_SERVER_DATE_FORMAT # Plus 10 years 6 month dateplus10years = datetime.strptime(self.fal_last_date_signature_request, DEFAULT_SERVER_DATE_FORMAT) + relativedelta(years=10, months=6) dateplus10years = datetime.strftime(dateplus10years, partner_date_format) # Plus 10 years 6 month min 1 days dateplus10yearsmin1days = datetime.strptime(self.fal_last_date_signature_request, DEFAULT_SERVER_DATE_FORMAT) + relativedelta(years=10, months=6) dateplus10yearsmin1days = dateplus10yearsmin1days - relativedelta(days=1) dateplus10yearsmin1days = datetime.strftime(dateplus10yearsmin1days, partner_date_format) # Plus 20 years 6 month dateplus20years = datetime.strptime(self.fal_last_date_signature_request, DEFAULT_SERVER_DATE_FORMAT) + relativedelta(years=20, months=6) dateplus20years = datetime.strftime(dateplus20years, partner_date_format) # Partner Check and Added + Check if there is child with no email # 1. Main Partner universign_signers.append({'firstname': self.partner_id.firstname, 'lastname': self.partner_id.lastname, 'emailAddress': self.partner_id.email, 'certificateType': 'simple'}) # 2. Co Partner multiple_owner_check = False for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.fal_is_owner: multiple_owner_check = True universign_signers.append({'firstname': fal_partner_child_id.firstname, 'lastname': fal_partner_child_id.lastname, 'emailAddress': fal_partner_child_id.email, 'certificateType': 'simple'}) if not fal_partner_child_id.email: raise UserError(_("Please provide Email for main partner and all related contacts (That is Lodger or Owner).")) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} # 3. Lodger lodger_check = False for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.fal_is_lodger: lodger_check = True universign_signers.append({'firstname': fal_partner_child_id.firstname, 'lastname': fal_partner_child_id.lastname, 'emailAddress': fal_partner_child_id.email, 'certificateType': 'simple'}) if not fal_partner_child_id.email: raise UserError(_("Please provide Email for main partner and all related contacts (That is Lodger or Owner).")) # Logic to select the document, also to determine the behavior to add to docs list or just adding to available docs list # Logic to select child ids that is Installation Address dia_street = self.fal_dia_street or False dia_street2 = self.fal_dia_street2 or False dia_zip = self.fal_dia_zip or False dia_city = self.fal_dia_city or False if not multiple_owner_check: if lodger_check: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_single_with_lodger() if 's_with' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_with']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Single With Lodger"), 'code': 's_with', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_single_no_lodger() if 's_no' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_no']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Single No Lodger"), 'code': 's_no', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: if lodger_check: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_multi_with_lodger() if 'm_with' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_with']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Multi With Lodger"), 'code': 'm_with', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_multi_no_lodger() if 'm_no' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_no']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Multi No Lodger"), 'code': 'm_no', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) # Prepare docs to send to universign, also signers position and index signatureFields = [] for signer_idx in range(len(universign_signers)): signatureFields.append({'page': 1, 'x': 80, 'y': 42, 'signerIndex': signer_idx}) universign_docs.append({'name': generated_docs.name, 'content': generated_docs.datas, 'signatureFields': signatureFields}) # Send to Universign # self.send_to_universign(universign_docs=universign_docs, universign_signers=universign_signers, main_partner=True) return True # Generate neccesary document @api.multi def generate_documents_rdvvt(self): self.ensure_one() self.fal_last_date_signature_request = fields.Date.today() universign_docs = [] universign_signers = [] # Partner Check and Added + Check if there is child with no email # 1. Main Partner universign_signers.append({'firstname': self.partner_id.firstname, 'lastname': self.partner_id.lastname, 'emailAddress': self.partner_id.email, 'certificateType': 'advanced'}) # 2. Co Partner multiple_owner_check = False for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.fal_is_owner: multiple_owner_check = True universign_signers.append({'firstname': fal_partner_child_id.firstname, 'lastname': fal_partner_child_id.lastname, 'emailAddress': fal_partner_child_id.email, 'certificateType': 'advanced'}) if not fal_partner_child_id.email: raise UserError(_("Please provide Email for main partner and all related contacts (That is Lodger or Owner).")) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} # 3. Lodger lodger_check = False for fal_partner_child_id in self.fal_partner_child_ids: if fal_partner_child_id.fal_is_lodger: lodger_check = True universign_signers.append({'firstname': fal_partner_child_id.firstname, 'lastname': fal_partner_child_id.lastname, 'emailAddress': fal_partner_child_id.email, 'certificateType': 'advanced'}) if not fal_partner_child_id.email: raise UserError(_("Please provide Email for main partner and all related contacts (That is Lodger or Owner).")) # Logic to select the document, also to determine the behavior to add to docs list or just adding to available docs list # Logic to select child ids that is Installation Address dia_street = self.fal_dia_street or False dia_street2 = self.fal_dia_street2 or False dia_zip = self.fal_dia_zip or False dia_city = self.fal_dia_city or False if not multiple_owner_check: if lodger_check: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_l3_single_with_lodger() if 's3_with' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_with']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Single L3 With Lodger"), 'code': 's3_with', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_l3_single_no_lodger() if 's3_no' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_no']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Single L3 No Lodger"), 'code': 's3_no', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: if lodger_check: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_l3_multi_with_lodger() if 'm3_with' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_with']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Multi L3 With Lodger"), 'code': 'm3_with', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) else: generated_docs = self.with_context(dia_street=dia_street, dia_street2=dia_street2, dia_zip=dia_zip, dia_city=dia_city).generate_report_l3_multi_no_lodger() if 'm3_no' in available_docs_by_code: self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_no']).write({'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id}) else: self.env['greenloc.crm.lead.docs.sign.attachment'].create({'name': _("Multi L3 No Lodger"), 'code': 'm3_no', 'lead_id': self.id, 'initial_doc_ids': [(4, generated_docs.id)], 'initial_doc_id': generated_docs.id, 'version': 1}) # Prepare docs to send to universign, also signers position and index signatureFields = [] for signer_idx in range(len(universign_signers)): signatureFields.append({'page': 1, 'x': 80, 'y': 42, 'signerIndex': signer_idx}) universign_docs.append({'name': generated_docs.name, 'content': generated_docs.datas, 'signatureFields': signatureFields}) # Send to Universign #self.send_rdvvt_to_universign(universign_docs=universign_docs, universign_signers=universign_signers, main_partner=True) return True @api.multi def generate_report_multi_with_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_multi_with_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 'm_with' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_with']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_with']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - MWL -' + ' V' + str(current_version), 'datas_fname': self.name + ' - MWL -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - MWL -' + ' V0', 'datas_fname': self.name + ' - MWL -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_multi_no_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_multi_no_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 'm_no' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_no']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m_no']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - MNL -' + ' V' + str(current_version), 'datas_fname': self.name + ' - MNL -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - MNL -' + ' V0', 'datas_fname': self.name + ' - MNL -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_single_with_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_single_with_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 's_with' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_with']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_with']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - SWL -' + ' V' + str(current_version), 'datas_fname': self.name + ' - SWL -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - SWL -' + ' V0', 'datas_fname': self.name + ' - SWL -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_single_no_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_single_no_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 's_no' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_no']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s_no']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - SNL -' + ' V' + str(current_version), 'datas_fname': self.name + ' - SNL -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - SNL -' + ' V0', 'datas_fname': self.name + ' - SNL -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_l3_multi_with_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_l3_multi_with_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 'm3_with' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_with']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_with']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - MWL L3 -' + ' V' + str(current_version), 'datas_fname': self.name + ' - MWL L3 -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - MWL L3 -' + ' V0', 'datas_fname': self.name + ' - MWL L3 -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_l3_multi_no_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_l3_multi_no_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 'm3_no' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_no']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['m3_no']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - MNL L3 -' + ' V' + str(current_version), 'datas_fname': self.name + ' - MNL L3 -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - MNL L3 -' + ' V0', 'datas_fname': self.name + ' - MNL L3 -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_l3_single_with_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_l3_single_with_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 's3_with' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_with']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_with']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - SWL L3 -' + ' V' + str(current_version), 'datas_fname': self.name + ' - SWL L3-' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - SWL L3 -' + ' V0', 'datas_fname': self.name + ' - SWL L3 -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) @api.multi def generate_report_l3_single_no_lodger(self): self.ensure_one() report = self.env['ir.actions.report.xml'].with_context(self._context).search([('report_name', '=', 'greenloc_crm_ext.report_l3_single_no_lodger')]) if report: document = self.env['report'].with_context(self._context).get_pdf([self.id], report.report_name) available_docs_by_code = {docs.code: docs.id for docs in self.fal_document_signature_ids} if 's3_no' in available_docs_by_code: current_version = self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_no']).version self.env['greenloc.crm.lead.docs.sign.attachment'].browse(available_docs_by_code['s3_no']).version = current_version+1 return self.env['ir.attachment'].create({ 'name': self.name + ' - SNL L3 -' + ' V' + str(current_version), 'datas_fname': self.name + ' - SNL L3 -' + ' V' + str(current_version) + '.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, }) else: return self.env['ir.attachment'].create({ 'name': self.name + ' - SNL L3 -' + ' V0', 'datas_fname': self.name + ' - SNL L3 -' + ' V0.pdf', 'datas': base64.b64encode(document), 'type': 'binary', 'res_model': 'crm.lead', 'res_id': self.id, 'res_name': self.name, 'fal_lead_id': self.id, })
b0718572e15181513d4f6940c68e176e3433a69f
f0a4ba1f1f941092e68e4b1ef9cff0d3852199ef
/Do_it!/3.검색 알고리즘/해시/chained_hash.py
304cce40e99b6dc0f40b07abb5cd4a9ee238b869
[]
no_license
lsb530/Algorithm-Python
d41ddd3ca7675f6a69d322a4646d75801f0022b2
a48c6df50567c9943b5d7218f874a5c0a85fcc6d
refs/heads/master
2023-06-18T04:36:09.221769
2021-06-28T16:49:35
2021-06-28T16:49:35
367,775,760
0
0
null
null
null
null
UTF-8
Python
false
false
3,187
py
# 체인법(chaining)으로 해시 함수 구현하기 # 체인법이란 해시값이 같은 데이터를 체인(chain) 모양의 연결 리스트로 연결하는 방법 # 오픈 해시법(open hashing)이라고도 한다. from __future__ import annotations import hashlib from typing import Any class Node: """해시를 구성하는 노드""" def __init__(self, key: Any, value: Any, next: Node) -> None: """초기화""" self.key = key # 키 self.value = value # 값 self.next = next # 뒤쪽 노드를 참조 class ChainedHash: """체인법으로 해시 클래스 구현""" def __init__(self, capacity: int) -> None: """초기화""" self.capacity = capacity # 해시 테이블의 크기를 지정 self.table = [None] * self.capacity # 해시 테이블(리스트)을 선언 def hash_value(self, key: Any) -> int: """해시값을 구함""" if isinstance(key, int): return key % self.capacity return (int(hashlib.sha256(str(key).encode()).hexdigest(), 16) % self.capacity) # 키로 원소를 검색하는 search() 함수 def search(self, key: Any) -> Any: """키가 key인 원소를 검색하여 값을 반환""" hash = self.hash_value(key) # 검색하는 키의 해시값 p = self.table[hash] # 노드를 주목 while p is not None: if p.key == key: return p.value # 검색 성공 p = p.next # 뒤쪽 노드를 주목 return None # 검색 실패 # 원소를 추가하는 함수 def add(self, key: Any, value: Any) -> bool: """키가 key이고 값이 value인 원소를 추가""" hash = self.hash_value(key) # 추가하는 key의 해시값 p = self.table[hash] # 노드를 주목 while p is not None: if p.key == key: return False # 추가 실패 p = p.next # 뒤쪽 노드를 주목 temp = Node(key, value, self.table[hash]) self.table[hash] = temp # 노드를 추가 return True # 추가 성공 # 원소를 삭제하는 함수 def remove(self, key: Any) -> bool: """키가 key인 원소를 삭제""" hash = self.hash_value(key) # 삭제할 key의 해시값 p = self.table[hash] # 노드를 주목 pp = None # 바로 앞의 노드를 주목 while p is not None: if p.key == key: # key를 발견하면 아래를 실행 if pp is None: self.table[hash] = p.next else: pp.next = p.next return True # key 삭제 성공 pp = p p = p.next # 뒤쪽 노드를 주목 return False # 삭제 실패(key가 존재하지 않음) # 원소를 출력하는 함수 def dump(self) -> None: """해시 테이블을 덤프""" for i in range(self.capacity): p = self.table[i] print(i, end='') while p is not None: print(f' -> {p.key} ({p.value})', end='') p = p.next print()
bd4162975e1ee1079c46ef6c8b1fc3c18b01a5c1
3ba18755bbf53a2e918a79e1c57a48f44ac1e670
/venv/bin/isort
c3a1d2046d4613f88dd5974e0f230d1d122c8129
[]
no_license
celaltas/FlaskProject
d57bddf99d807a97981d477048a3a5eb4a97d5a5
8a9fe33c970f99b09fcc565391a4f31861780468
refs/heads/master
2022-12-25T09:30:22.407644
2020-10-10T18:03:35
2020-10-10T18:03:35
302,960,750
1
0
null
null
null
null
UTF-8
Python
false
false
246
#!/home/celal/VSCProjects/FlaskProject/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from isort.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
84435aed610560af56cf4755bfdce4e91530bb4a
f3693916a8b118bf139364604dac3f51235ed613
/functional/Components/Distributions/Distribution_POST_Optional/test_TC_43677_2_Distributions_POST_Distributions_Vnet_Pptx_Slide_Option.py
bc58905895d05cefd139b0850212850500682fef
[]
no_license
muktabehera/QE
e7d62284889d8241d22506f6ee20547f1cfe6db1
3fedde591568e35f7b80c5bf6cd6732f8eeab4f8
refs/heads/master
2021-03-31T02:19:15.369562
2018-03-13T02:45:10
2018-03-13T02:45:10
124,984,177
0
0
null
null
null
null
UTF-8
Python
false
false
6,675
py
# -*- coding: UTF-8 -*- """PFE Component Tests - Distributions. * TC-43677 - Distributions POST: Verify that user is able to send slides(PPT, PPTx) for distribution using request POST "/distributions" with VideoNet as public delivery system. Equivalent test CURL command: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/distributions" Same, with test data: curl -H "Host: <client_host>" -H "Authorization: Bearer <valid_token>" -X POST -d @<JSON_data_file> -H "Content-Type: application/json" "<PF_host>://<client_host>/distributions" JSON data sent to PathFinder in this test: {'activationDate': '2017-09-20T07:36:46.542Z', 'distributionPolicy': 'OPTIONAL', 'files': [{'id': 'vnetPPTXOpt', 'sourceUrl': 'qedorigin://Auto_storage/slidex.pptx', 'streamMetadata': {'bitrateKbps': 100, 'contentType': 'UNSPECIFIED', 'height': 5, 'mimeType': 'application/vnd.openxmlformats-officedocument.presentationml.presentation', 'width': 10}}], 'id': 'vnetSlidePPTXOpt', 'name': 'Distribution with vnet PPTX Slide Opt', 'targetAudiences': [{'id': 'Broadcast_Videonet_Audience'}]} """ import pytest from qe_common import * logger = init_logger() @pytest.mark.draft # remove this after script passed unit tests successfuly @pytest.mark.components @pytest.allure.story('Distributions') @pytest.allure.feature('POST') class Test_PFE_Components(object): """PFE Distributions test cases.""" @pytest.allure.link('https://jira.qumu.com/browse/TC-43677') @pytest.mark.Distributions @pytest.mark.POST def test_TC_43677_POST_Distributions_Distributions_Vnet_Pptx_Slide(self, context): """TC-43677 - Distributions-POST Verify that user is able to send slides(PPT, PPTx) for distribution using request POST "/distributions" with VideoNet as public delivery system.""" # Define a test step with pytest.allure.step("""Verify that user is able to send slides(PPT, PPTx) for distribution using request POST "/distributions" with VideoNet as public delivery system."""): ### Positive test example # Test case configuration distributionDetails = context.sc.DistributionDetails( activationDate='2017-09-20T07:36:46.542Z', distributionPolicy='OPTIONAL', expirationDate=None, files=[{ 'id': 'vnetPPTXOpt', 'sourceUrl': 'qedorigin://Auto_storage/slidex.pptx', 'streamMetadata': { 'bitrateKbps': 100, 'width': 10, 'height': 5, 'mimeType': 'application/vnd.openxmlformats-officedocument.presentationml.presentation', 'contentType': 'UNSPECIFIED' } }], id='vnetSlidePPTXOpt', name='Distribution with vnet PPTX Slide Opt', status=None, tags=None, targetAudiences=[{ 'id': 'Broadcast_Videonet_Audience' }]) # createEntity the Distributions. # The `check` call validates return code # and some of the swagger schema. # Most schema checks are disabled. response = check( context.cl.Distributions.createEntity( body=distributionDetails ) ) ### Can add tests here to validate the response content with pytest.allure.step("""Verify that user is able to send slides(PPT, PPTx) for distribution using request POST "/distributions" with VideoNet as public delivery system."""): ### Negative test example # Test case configuration distributionDetails = context.sc.DistributionDetails( activationDate='2017-09-20T07:36:46.542Z', distributionPolicy='OPTIONAL', expirationDate=None, files=[{ 'id': 'vnetPPTXOpt', 'sourceUrl': 'qedorigin://Auto_storage/slidex.pptx', 'streamMetadata': { 'bitrateKbps': 100, 'width': 10, 'height': 5, 'mimeType': 'application/vnd.openxmlformats-officedocument.presentationml.presentation', 'contentType': 'UNSPECIFIED' } }], id='vnetSlidePPTXOpt', name='Distribution with vnet PPTX Slide Opt', status=None, tags=None, targetAudiences=[{ 'id': 'Broadcast_Videonet_Audience' }]) # prepare the request, so we can modify it request = context.cl.Distributions.createEntity( body=distributionDetails ) ### Invalid JSON Error injection example ### Errors that result in valid JSON can be configured above. ### Otherwise, uncomment the code below (request.future....) # Get the generated payload and corrupt the metric # request.future.request.data = request.future.request.data.replace( # '"metric": 1,', '"metric":,' # ) # createEntity the Distributions, and check we got the error we expect try: client, response = check( request, quiet=True, returnResponse=True ) except (HTTPBadRequest, HTTPForbidden) as e: # 400, 403 error get_error_message(e) | expect.any( should.start_with('may not be empty'), should.start_with('Invalid page parameter specified'), should.contain('Invalid Authorization Token') ) else: raise Exception( "Expected error message, got {} status code instead.".format( response.status_code))
440374b2f3813c91ed4c3c16714460c04352ff1d
1ba58b17f33122abf4236e9e430a51d375e0eb53
/km73/Ruban_Yehor/4/task1.py
3b5e7ca9dacb7e460a733371cb9aa90330097712
[]
no_license
igortereshchenko/amis_python
c4f8d86b88ab036d08ff0ce35c9b42ebeabecc42
c6f0f2a70c82d5f269b3078eb296f82271b5bb10
refs/heads/master
2021-10-22T16:21:19.990650
2017-11-01T07:26:54
2017-11-01T07:26:54
104,785,028
0
139
null
2020-04-21T21:27:09
2017-09-25T18:11:42
Python
UTF-8
Python
false
false
221
py
a = float(input("Введите первое число - ")) b = float(input("Введите второе число - ")) if a > b: ans = b else: ans = a print("меньшее число -",ans) input()
9a49844ddc8e2920e88c79f6f3cc8dc15536f458
cb2ddcde8311d06f99e2308e94c58036a393f592
/src/byro/members/migrations/0010_memberbalance.py
8501edb4909802ca93bfb93b0e0de14116c680fc
[ "Apache-2.0" ]
permissive
Lagertonne/byro
9eea069709a7eeb8a80e024af97bc93fb019efa8
d2d05b96d75f94848bd8b9af1a556a4a1e080320
refs/heads/master
2022-11-19T11:39:29.699413
2020-07-14T20:56:16
2020-07-14T20:56:16
279,690,577
0
0
Apache-2.0
2020-07-14T20:52:09
2020-07-14T20:52:08
null
UTF-8
Python
false
false
2,136
py
# Generated by Django 2.1.8 on 2019-04-15 12:14 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [("members", "0009_auto_20180512_1810")] operations = [ migrations.CreateModel( name="MemberBalance", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "reference", models.CharField( blank=True, help_text="For example an invoice number or a payment reference", max_length=50, null=True, unique=True, verbose_name="Reference", ), ), ( "amount", models.DecimalField( decimal_places=2, max_digits=8, verbose_name="Amount" ), ), ("start", models.DateTimeField(verbose_name="Start")), ("end", models.DateTimeField(verbose_name="End")), ( "state", models.CharField( choices=[ ("paid", "paid"), ("partial", "partially paid"), ("unpaid", "unpaid"), ], default="unpaid", max_length=7, ), ), ( "member", models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="balances", to="members.Member", ), ), ], ) ]
0e2c57e01d581a53bb2452113c588ec91aa41688
93cc6795fc1b7f6a06b08480ad4fbde46fa02c7c
/base/files_for_ssh/update_or_create_bonus_template.py
74007cf86b0fcbe1dbbc57ee7b22107730a02253
[]
no_license
A-Zorg/msw_api
4a04eae9738e77b528e79496b6653d3a07109ca5
ccd73b7675f3d477a2eec30808eff975a247e70c
refs/heads/master
2023-08-16T08:51:47.506514
2021-09-20T19:21:46
2021-09-20T19:21:46
325,813,014
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
from index.models import CustomUser from reconciliation.models import Bonus from accounting_system.models import AccountType acc_type = AccountType.objects.get(id={ACC_ID}) try: bonus_object = Bonus.objects.get(account_type=acc_type) bonus_object.decimal_percentage = {VALUE} bonus_object.save() except: bonus_object = Bonus.objects.create( account_type=acc_type, decimal_percentage={VALUE} ) bonus_object.save()
4ef44e5d20b17902e764ba4b376780476f7c678e
d3efc82dfa61fb82e47c82d52c838b38b076084c
/ETF/Creation_SA/YW_ETFSS_SZSG_060.py
37d438d6681057abde41659bd9c6bf133b8f17ed
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,234
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys import time sys.path.append("/home/yhl2/workspace/xtp_test/ETF") from import_common import * sys.path.append("/home/yhl2/workspace/xtp_test/ETF/etf_service") from ETF_Basket_Add_Real import etf_basket_add_real from ETF_GetComponentShare import etf_get_all_component_stk sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_ETFSS_SZSG_060(xtp_test_case): def test_YW_ETFSS_SZSG_060(self): # -----------ETF申购------------- title = '深圳ETF申购--全部成交(数量最大单位&费用>min)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { 'case_ID': 'ATC-202-59', '期望状态': '全成', 'errorID': 0, 'errorMSG': '', '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title + ', case_ID=' + case_goal['case_ID']) unit_info = { 'ticker': '169165', # etf代码 'etf_unit': 9, # etf申购单位数 } # -----------查询ETF申购前成分股持仓------------- component_stk_info = etf_get_all_component_stk(unit_info['ticker']) # -----------ETF申购------------- # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryEtfQty(unit_info['ticker'], '2', '14', '2', '0', 'B', case_goal['期望状态'], Api) # 定义委托参数信息------------------------------------------ # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '用例错误原因': '获取下单参数失败, ' + stkparm['错误原因'], } etf_query_log(case_goal, rs) self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_ETF'], 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SZ_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_PURCHASE'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_LIMIT'], 'quantity': int(unit_info['etf_unit'] * stkparm['最小申赎单位']), } EtfParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = etfServiceTest(Api, case_goal, wt_reqs, component_stk_info) etf_creation_log(case_goal, rs) if __name__ == '__main__': unittest.main()
a3a2cfa8d5e7e73ab92e6d6d8daef6b1f6fadefe
f4efa1e5ef98616b0044a96e08fede1584a5a5a5
/atom-editor/lilac.py
1305d1741a2f23ae0165465e8471cd80acbc652c
[]
no_license
LawrenceCWC/repo
fcafda53570c03703a8988b1bce17a2184a4f6bc
c2d614e11a9ea1b9c4bc9bd08b041bf9ee8ce2cd
refs/heads/master
2020-12-25T04:19:43.803869
2016-06-22T12:28:55
2016-06-22T12:28:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
794
py
#!/usr/bin/env python3 # # This is a complex version of lilac.py for building # a package from AUR. # # You can do something before/after building a package, # including modify the 'pkgver' and 'md5sum' in PKBUILD. # # This is especially useful when a AUR package is # out-of-date and you want to build a new one, or you # want to build a package directly from sourceforge but # using PKGBUILD from AUR. # # See also: # [1] ruby-sass/lilac.py # [2] aufs3-util-lily-git/lilac.py # [3] octave-general/lilac.py # from lilaclib import * build_prefix = 'extra-x86_64' pre_build = aur_pre_build post_build = aur_post_build # do some cleanup here after building the package, regardless of result # def post_build_always(success): # pass if __name__ == '__main__': single_main(build_prefix)
0abeef728ce5d91b2a87d84cc216dc46f6697521
830f50885bbf7cdeffc08097b55f662a498cf518
/python/downloader/FileSelectionDialog.py
00f5a2ffa23e3a11bbed65bf96d9e9293f090628
[]
no_license
precimilo/mcandre
86b2e77e28e3bd14d02e40eb9978ae4b7ccf9fcd
e9ab9e3fce7aba93b6528c40e06bde4ae0d461a7
refs/heads/master
2020-12-30T17:32:37.406612
2013-05-09T18:46:46
2013-05-09T18:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
# FileSelectionDialog.py - John Finlay (http://www.pygtk.org/pygtk2tutorial/index.html) # Andrew Pennebaker import gtk class FileSelectionDialog: PENDING="Pending" OK="OK" CANCEL="Cancel" def __init__(self, titleText="File Selecion", selectionText=""): self.state=self.PENDING self.fileSelection=gtk.FileSelection(title=titleText) self.fileSelection.selection_entry.set_text(selectionText) self.fileSelection.ok_button.connect("clicked", self.okEvent) self.fileSelection.cancel_button.connect("clicked", self.cancelEvent) self.fileSelection.show_all() # loop until button clicked while self.state==self.PENDING: while gtk.events_pending(): gtk.main_iteration() def okEvent(self, widget=None, event=None, data=None): self.fileName=self.fileSelection.get_filename() self.state=self.OK self.fileSelection.destroy() def cancelEvent(self, widget=None, event=None, data=None): self.state=self.CANCEL self.fileSelection.destroy() def getFileName(self): return self.fileName
48283e3e193ef9a2997ee9f3474a16b8b385f713
b5f38cc8a97f67ba1df0bea0e111ad0d3f14dc13
/test/asyncio_tests/test_asyncio_bulk.py
6cb0336378f57f8d9eaf68d25394b666a1aa11ff
[ "Apache-2.0" ]
permissive
yutiansut/motor
10cb8e68e8c776fa33262608e13b611941fbdb13
132352beda3e4215e68991c5165b4ccd06e71a2c
refs/heads/master
2021-09-24T07:11:36.995179
2018-01-12T10:05:58
2018-01-12T10:05:58
106,511,806
1
0
Apache-2.0
2018-10-05T02:19:35
2017-10-11T05:59:51
Python
UTF-8
Python
false
false
3,292
py
# Copyright 2014 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Motor's bulk API with asyncio.""" import unittest from pymongo.errors import BulkWriteError from motor.motor_asyncio import AsyncIOMotorBulkOperationBuilder from test.asyncio_tests import asyncio_test, AsyncIOTestCase class TestAsyncIOBulk(AsyncIOTestCase): # Little testing is needed: Most of the logic is in PyMongo, and Motor's # bulk operations are lightly tested with Tornado already. @asyncio_test(timeout=30) def test_multiple_error_ordered_batch(self): yield from self.collection.delete_many({}) yield from self.collection.create_index('a', unique=True) try: bulk = self.collection.initialize_ordered_bulk_op() self.assertTrue(isinstance(bulk, AsyncIOMotorBulkOperationBuilder)) bulk.insert({'b': 1, 'a': 1}) bulk.find({'b': 2}).upsert().update_one({'$set': {'a': 1}}) bulk.find({'b': 3}).upsert().update_one({'$set': {'a': 2}}) bulk.find({'b': 2}).upsert().update_one({'$set': {'a': 1}}) bulk.insert({'b': 4, 'a': 3}) bulk.insert({'b': 5, 'a': 1}) try: yield from bulk.execute() except BulkWriteError as exc: result = exc.details self.assertEqual(exc.code, 65) else: self.fail("Error not raised") self.assertEqual(1, result['nInserted']) self.assertEqual(1, len(result['writeErrors'])) cursor = self.collection.find({}, {'_id': False}) docs = yield from cursor.to_list(None) self.assertEqual([{'a': 1, 'b': 1}], docs) finally: yield from self.collection.drop() @asyncio_test def test_single_unordered_batch(self): yield from self.collection.delete_many({}) bulk = self.collection.initialize_unordered_bulk_op() self.assertTrue(isinstance(bulk, AsyncIOMotorBulkOperationBuilder)) bulk.insert({'a': 1}) bulk.find({'a': 1}).update_one({'$set': {'b': 1}}) bulk.find({'a': 2}).upsert().update_one({'$set': {'b': 2}}) bulk.insert({'a': 3}) bulk.find({'a': 3}).remove() result = yield from bulk.execute() self.assertEqual(0, len(result['writeErrors'])) upserts = result['upserted'] self.assertEqual(1, len(upserts)) self.assertEqual(2, upserts[0]['index']) self.assertTrue(upserts[0].get('_id')) a_values = yield from self.collection.distinct('a') self.assertEqual( set([1, 2]), set(a_values)) if __name__ == '__main__': unittest.main()
48aa07668d158a84f581a1cc6189dcb51bb02fd9
eaa71d0669f9f161c15dc45c37fadb1ce2bcea9e
/Pagina Web/CP_S10/app/rutas.py
b6b347366bc23ec9a3952df3657ed7d6bd53528b
[]
no_license
luiskar268/Ciclo-3
566f4bec8af5f05ff458d698c384238579e095d6
5a076959c1c0958290133197f9dde8d0e7f1a388
refs/heads/master
2023-08-13T14:43:06.925887
2021-10-08T02:37:26
2021-10-08T02:37:26
407,919,573
0
0
null
null
null
null
UTF-8
Python
false
false
604
py
from app import app from flask import render_template from app.forms import FormInicio @app.route('/') @app.route('/index') def index(): usuario = {'usuario':'...'} comentarios = [ { 'autor':{'usuario':'...'}, 'comentario':'...' }, { 'autor':{'usuario':'...'}, 'comentario':'...' } ] return render_template('index.html', titulo="Inicio", usuario=usuario, comentarios=comentarios) @app.route('/login') def login(): form = FormInicio() return render_template('iniciar_sesion.html',titulo='Iniciar Sesión', form=form)
5f9004f06c556e9677e12b41dec0c7c9d095e410
3ffeeae8a9a3245d8998d94aa08f680f00056cad
/26.删除排序数组中的重复项.py
caabdfab8cced80dd2fba20d79a5e03d77e43c4d
[]
no_license
Ezi4Zy/leetcode
6e293e5c07a7d8c3e38f9445ff24330134ef6c48
9d394cd2862703cfb7a7b505b35deda7450a692e
refs/heads/master
2022-04-09T14:11:36.957861
2022-03-09T10:30:30
2022-03-09T10:30:30
57,290,918
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
# # @lc app=leetcode.cn id=26 lang=python # # [26] 删除排序数组中的重复项 # # @lc code=start class Solution(object): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ begin = 0 end = 1 while end < len(nums): if nums[begin] != nums[end]: begin += 1 nums[begin] = nums[end] end += 1 return begin+1 # @lc code=end
be24d8d03ccdda316fc996f645d73db8ce92e3b6
9f387c703dbf4d970d0259424c7b299108c369f5
/dd_sdk_1_0/dd_sdk_1_0/models/snmp_username.py
0999f08689f3dea29ff5b00fe9032335d786557e
[]
no_license
gcezaralmeida/datadomain_sdk_python
c989e6846bae9435c523ab09e230fc12d020f7f1
e102ec85cea5d888c8329626892347571832e079
refs/heads/main
2023-08-23T22:42:47.083754
2021-10-25T21:52:49
2021-10-25T21:52:49
370,805,524
0
0
null
null
null
null
UTF-8
Python
false
false
2,753
py
# coding: utf-8 """ DataDomain Rest API Documentation No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from dd_sdk_1_0.configuration import Configuration class SnmpUsername(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self, _configuration=None): # noqa: E501 """SnmpUsername - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(SnmpUsername, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SnmpUsername): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, SnmpUsername): return True return self.to_dict() != other.to_dict()
83a10737c06db1f4578aacbdd1b538c1399319b9
ce06aaf43d7ea2b62640748c1e41856d038d86ac
/examples/z/test_z_bfoa_multiniche_clustering_v1.py
485d6402cc28ee8152398a9028820fb59d3c71d0
[]
no_license
dananjayamahesh/MunichBFOR
87ae1b672cddd5958d4080011389b1fa33384677
0cdb24344345429decf58ef85e444f72b40fd061
refs/heads/master
2023-02-16T18:32:34.303146
2023-02-10T11:27:01
2023-02-10T11:27:01
144,000,550
4
3
null
null
null
null
UTF-8
Python
false
false
10,893
py
import SwarmPackagePy from SwarmPackagePy import testFunctions as tf from SwarmPackagePy import multiniche_benchmark as mbtf from SwarmPackagePy import animation, animation3D import matplotlib.pyplot as plt ''' Some note on clsutering d_max has a huge impact, 3 is not woring, but double the size of d_min with d_min=0.2 is working ''' ''' BEST WORK - NICELY WORKING- SHARING on F3 TEST n =100 #50 r = 20 lamda = 1 f = tf.F3_test #tf.F2_var1 #tf.F2_var1 dim =2 d_min = 0.2 d_max = 0.4 sigma_share = 0.2 #0.6 NOT WORKING step_size = 0.1 #0.05 alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share) #Adaptive #alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share) ''' ''' 2018/04/17 #Clsuterign works for 4 niche, But what happens in the 2 niche -BEST DEMO #BEST 2 - with Swarm2-WOW - WOOOOOOOOOOWWWW n =100 #50 r = 19 lamda = 100 f = tf.gaussian_diff_multimodal4_positive dim =2 sigma_share = 0.2 #0.6 NOT WORKING #d_min= 0.2, d_max = 0.3 d_min = 0.2 d_max = 0.4 #0.3 #2 #0.3 #0.6 #0.4 #3 #0.4 #3 #3 is not quite working, 0.4 is perfect, 3 is the error clust_alpha = 2 alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.1, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #both none and adaptive1 working ''' ############################################################################################################## #New Benchmark Test Cases '''rastrigin Working , Change last Visualize, LAST one is the BEST, This is EXTRA, Only Change is n=100 not 500 n =100 #50 r = 5 #lb =-1 ub=5 lamda = 100 #f = tf.f5_griewank_function f = tf.f4_rastrigin_function_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #1 #3 #initially 3 Although 1 is good clust_alpha = 2 step_size = 0.01 #0.005 #0.1 0.005 is also good alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -1, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) ''' #RASTRIGIN VAR2 ''' ************************************************WORKING , I sed -1 to 2 as range, ONLY CHAGE from sharing #rastrigin BEST DEMO - WOW - NICHES and CLUSTERS are equals n = 200 #100#50 r = 5 #lb =-1 ub=5 lamda = 100 #f = tf.f5_griewank_function f = tf.f4_rastrigin_function_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #1 #3 #initially 3 Although 1 is good clust_alpha = 2 step_size = 0.01 #0.005 #0.1 0.005 is also good #fixed step working #alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #adaptive - WORKING, BUT OT WELL alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) ''' #RATRIGIN VAR 1 ''' ************************************************WORKING , I sed -1 to 2 as range, ONLY CHAGE from sharing #rastrigin BEST DEMO - WOW - NICHES and CLUSTERS are equals n =100 #50 r = 2 #lb =-1 ub=5 lamda = 100 #f = tf.f5_griewank_function f = tf.f4_rastrigin_function_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #1 #3 #initially 3 Although 1 is good clust_alpha = 2 step_size = 0.01 #0.005 #0.1 0.005 is also good alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) ''' ''' ************************************************WORKING #rastrigin BEST DEMO - WOW - NICHES and CLUSTERS are equals n =100 #50 r = 5 #lb =-1 ub=5 lamda = 100 #f = tf.f5_griewank_function f = tf.f4_rastrigin_function_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #1 #3 #initially 3 Although 1 is good clust_alpha = 2 step_size = 0.01 #0.005 #0.1 0.005 is also good alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -1, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) ''' ''' WORKING #M special multimodal function m WOrking only for fixed length n =100 #50 r = 1 lamda = 1000 #400 #100 #100 is not working, massive displacemets #f = tf.f5_griewank_function f = tf.f7_M_function dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #3 clust_alpha = 2 step_size = 0.005 #0.1 #alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, 0, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #Full range -1 to 1 #alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #adaptive4 alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) ''' """ Great Output - BEST DEMO -IDEAL for DEMO- Carefull about the stepsize #Griewank n =100 #50 r = 10 lamda = 100 #f = tf.f5_griewank_function f = tf.f5_griewank_function_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #3 clust_alpha = 2 step_size = 0.05 #0.1 #0.01 #0.1 #0.01 is BEST, 0.1 is Working, 0.05 is decent #VGOOD alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #ADAPTIVE is also VGOOD """ #BEST ACKLEY WITH SHARING SCHEME #''' #ACkely 1 n =100 #50 r = 2 lamda = 400#100 is the Original, but no workinh f = tf.f3_ackley_function dim =2 sigma_share = 0.2 #0.6 NOT WORKING d_min = 0.2#0.2 #1 d_max = 0.4 #0.3 clust_alpha = 2 step_size = 0.01 #0.1 #non adaptive os working fine alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, step_size, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #adaptive Have some issues #''' ############################################################################################################### ''' #Clsuterign works for 4 niche, But what happens in the 2 niche #BEST 2 - with Swarm2-WOW - WOOOOOOOOOOWWWW n =100 #50 r = 19 lamda = 100 f = tf.gaussian_diff_multimodal4_positive dim =2 sigma_share = 0.2 #0.6 NOT WORKING #d_min= 0.2, d_max = 0.3 d_min = 1 #0.2 #1 d_max = 2 #0.3 #0.6 #0.4 #3 #0.4 #3 #3 is not quite working, 0.4 is perfect, 3 is the error clust_alpha = 2 alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.1, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'none', 'swarm2', 'false', sigma_share,d_min, d_max, clust_alpha) #both none and adaptive1 working ''' #TEST CASES ###################################################### '''NOT GOOD WITH DIFF 2 n =100 #50 r = 19 lamda = 100 f = tf.gaussian_diff_multimodal_positive dim =2 sigma_share = 0.2 #0.6 NOT WORKING alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share) ''' ####################################################### ''' #BEST CLUSTERING d_max =3, d_min=1 d_min = 1 d_max = 5 clust_alpha = 1 n =100 #50 r = 20 lamda = 100 f = tf.gaussian_diff_multimodal4_positive dim =2 d_min = 1 d_max = 5 clust_alpha = 1 sigma_share = 0.2 #0.6 NOT WORKING alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share, d_min, d_max, clust_alpha) ''' ####################################################### ''' #BEST 2 - with Swarm2-WOW - WOOOOOOOOOOWWWW - Sharing n =100 #50 r = 20 lamda = 100 f = tf.gaussian_diff_multimodal4_positive dim =2 sigma_share = 0.2 #0.6 NOT WORKING alh = SwarmPackagePy.z_bfoa_multiniche_clustering_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share) ''' ####################################################### """ n =100 #50 r = 15 lamda = 400 f = tf.F4 #tf.F2_var1 #tf.F2_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING alh = SwarmPackagePy.z_bfoa_multiniche_clearing_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share) """ """ Masssive Deceptive Multimodal n =100 #50 r = 5 lamda = 10000 f = tf.F5_var1 #tf.F2_var1 #tf.F2_var1 dim =2 sigma_share = 0.2 #0.6 NOT WORKING alh = SwarmPackagePy.z_bfoa_multiniche_clearing_v1(n, f, -r, r, dim, 100, 16, 2, 8, 12, 0.05, 0.25, 0.05, 0.2, 0.05, 10, lamda, 0.03, 'adaptive1', 'swarm2', 'false', sigma_share) """ fits = alh._get_jfits() plt.plot(fits, 'b', label='J-fit') jcclist = alh._get_jcclist() plt.plot(jcclist,'r', label='J-cc') jarlist = alh._get_jarlist() plt.plot(jarlist,'g', label='J-ar') jlist = alh._get_jlist() plt.plot(jlist,'y', label='J') jblist = alh._get_jblist() plt.plot(jblist,'p', label='J-best') plt.legend() plt.show() #plt.pause(0.001) #plt.subplot(2, 1, 2) steps = alh._get_csteps() #print(steps) plt.plot(steps) plt.show() #Average Over Genrations avgsteps = alh._get_avg_steps() avgj = alh._get_avg_j() avgjfit = alh._get_avg_jfit() plt.plot(avgj,'b') plt.plot(avgjfit, 'r') plt.show() plt.plot(avgsteps,'b') plt.show() numniches = alh._get_num_niches() plt.plot(numniches,'r') plt.show() animation(alh.get_agents(), f, -r, r,dim) animation3D(alh.get_agents(), f, -r, r,dim) #only for assymetric domain, M function #animation(alh.get_agents(), f, 0, r,dim) #animation3D(alh.get_agents(), f, 0, r,dim) #for rastrigan, f4_rastrigin_function_var1 #animation(alh.get_agents(), f, -1, r,dim) #animation3D(alh.get_agents(), f, -1, r,dim)
de1022e98235b9d739417fb743639087694beff0
cd921f57b4ea51f8cb598c76e6766dc530909b8a
/tensorflow_federated/python/tensorflow_libs/tensor_utils_test.py
e928317481ee4b261d976b9a17a77600e5ef5f55
[ "Apache-2.0" ]
permissive
Catherineylp/federated
f4d30d8eb7fa718ac5d1a62549f244d03120cc73
7a5549f3fb0eb2e3b5cdcb4788a8856cbfa17416
refs/heads/master
2021-07-12T19:01:44.935095
2020-09-21T02:24:28
2020-09-21T02:24:28
202,102,353
0
0
Apache-2.0
2019-08-13T08:45:24
2019-08-13T08:45:23
null
UTF-8
Python
false
false
7,678
py
# Lint as: python3 # Copyright 2018, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensor_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import tensorflow as tf from tensorflow_federated.python.common_libs import test from tensorflow_federated.python.tensorflow_libs import tensor_utils class TensorUtilsTest(test.TestCase): def test_check_nested_equal(self): nested_dict = { 'KEY1': { 'NESTED_KEY': 0 }, 'KEY2': 1, } nested_list = [('KEY1', ('NESTED_KEY', 0)), ('KEY2', 1)] flat_dict = { 'KEY1': 0, 'KEY2': 1, } nested_dtypes = { 'x': [tf.int32, tf.float32], 'y': tf.float32, } nested_shapes = { # N.B. tf.TensorShape([None]) == tf.TensorShape([None]) # returns False, so we can't use a None shape here. 'x': [[1], [3, 5]], 'y': [1], } # Should not raise an exception. tensor_utils.check_nested_equal(nested_dict, nested_dict) tensor_utils.check_nested_equal(nested_list, nested_list) tensor_utils.check_nested_equal(flat_dict, flat_dict) tensor_utils.check_nested_equal(nested_dtypes, nested_dtypes) tensor_utils.check_nested_equal(nested_shapes, nested_shapes) with self.assertRaises(TypeError): tensor_utils.check_nested_equal(nested_dict, nested_list) with self.assertRaises(ValueError): # Different nested structures. tensor_utils.check_nested_equal(nested_dict, flat_dict) # Same as nested_dict, but using float values. Equality still holds for # 0 == 0.0 despite different types. nested_dict_different_types = { 'KEY1': { 'NESTED_KEY': 0.0 }, 'KEY2': 1.0, } tf.nest.assert_same_structure(nested_dict, nested_dict_different_types) # Same as nested_dict but with one different value nested_dict_different_value = { 'KEY1': { 'NESTED_KEY': 0.5 }, 'KEY2': 1.0, } with self.assertRaises(ValueError): tensor_utils.check_nested_equal(nested_dict, nested_dict_different_value) tensor_utils.check_nested_equal([None], [None]) def always_neq(x, y): del x, y return False with self.assertRaises(ValueError): tensor_utils.check_nested_equal([1], [1], always_neq) def test_to_var_dict(self): v1 = tf.Variable(0, name='v1') v2 = tf.Variable(0, name='v2') d0 = tensor_utils.to_var_dict([]) self.assertIsInstance(d0, collections.OrderedDict) self.assertEmpty(d0) d1 = tensor_utils.to_var_dict([v1]) self.assertIsInstance(d1, collections.OrderedDict) self.assertLen(d1, 1) self.assertEqual(d1['v1'], v1) d2 = tensor_utils.to_var_dict([v1, v2]) self.assertIsInstance(d2, collections.OrderedDict) self.assertLen(d2, 2) self.assertEqual(d2['v1'], v1) self.assertEqual(d2['v2'], v2) with self.assertRaises(TypeError): tensor_utils.to_var_dict(v1) with self.assertRaises(TypeError): tensor_utils.to_var_dict([tf.constant(1)]) def test_to_var_dict_preserves_order(self): a = tf.Variable(0, name='a') b = tf.Variable(0, name='b') c = tf.Variable(0, name='c') var_dict = tensor_utils.to_var_dict([c, a, b]) self.assertEqual(['c', 'a', 'b'], list(var_dict.keys())) def test_to_var_dict_duplicate_names(self): v1 = tf.Variable(0, name='foo') v2 = tf.Variable(0, name='foo') assert v1.name == v2.name with self.assertRaisesRegexp(ValueError, 'multiple.*foo'): tensor_utils.to_var_dict([v1, v2]) def test_to_odict(self): d1 = {'b': 2, 'a': 1} odict1 = tensor_utils.to_odict(d1) self.assertIsInstance(odict1, collections.OrderedDict) self.assertCountEqual(d1, odict1) odict2 = tensor_utils.to_odict(odict1) self.assertEqual(odict1, odict2) with self.assertRaises(TypeError): tensor_utils.to_odict({1: 'a', 2: 'b'}) def test_zero_all_if_any_non_finite(self): def expect_ok(structure): with tf.Graph().as_default(): result, error = tensor_utils.zero_all_if_any_non_finite(structure) with self.session() as sess: result, error = sess.run((result, error)) try: tf.nest.map_structure(np.testing.assert_allclose, result, structure) except AssertionError: self.fail('Expected to get input {} back, but instead got {}'.format( structure, result)) self.assertEqual(error, 0) expect_ok([]) expect_ok([(), {}]) expect_ok(1.1) expect_ok([1.0, 0.0]) expect_ok([1.0, 2.0, {'a': 0.0, 'b': -3.0}]) def expect_zeros(structure, expected): with tf.Graph().as_default(): result, error = tensor_utils.zero_all_if_any_non_finite(structure) with self.session() as sess: result, error = sess.run((result, error)) try: tf.nest.map_structure(np.testing.assert_allclose, result, expected) except AssertionError: self.fail('Expected to get zeros, but instead got {}'.format(result)) self.assertEqual(error, 1) expect_zeros(np.inf, 0.0) expect_zeros((1.0, (2.0, np.nan)), (0.0, (0.0, 0.0))) expect_zeros((1.0, (2.0, { 'a': 3.0, 'b': [[np.inf], [np.nan]] })), (0.0, (0.0, { 'a': 0.0, 'b': [[0.0], [0.0]] }))) def test_is_scalar_with_list(self): self.assertRaises(TypeError, tensor_utils.is_scalar, [10]) def test_is_scalar_with_bool(self): self.assertRaises(TypeError, tensor_utils.is_scalar, True) def test_is_scalar_with_tf_constant(self): self.assertTrue(tensor_utils.is_scalar(tf.constant(10))) def test_is_scalar_with_scalar_tf_variable(self): self.assertTrue(tensor_utils.is_scalar(tf.Variable(0.0, 'scalar'))) def test_is_scalar_with_nonscalar_tf_variable(self): self.assertFalse( tensor_utils.is_scalar(tf.Variable([0.0, 1.0], 'notscalar'))) def test_same_shape(self): self.assertTrue( tensor_utils.same_shape(tf.TensorShape(None), tf.TensorShape(None))) self.assertTrue( tensor_utils.same_shape(tf.TensorShape([None]), tf.TensorShape([None]))) self.assertTrue( tensor_utils.same_shape(tf.TensorShape([1]), tf.TensorShape([1]))) self.assertTrue( tensor_utils.same_shape( tf.TensorShape([None, 1]), tf.TensorShape([None, 1]))) self.assertTrue( tensor_utils.same_shape( tf.TensorShape([1, 2, 3]), tf.TensorShape([1, 2, 3]))) self.assertFalse( tensor_utils.same_shape(tf.TensorShape(None), tf.TensorShape([1]))) self.assertFalse( tensor_utils.same_shape(tf.TensorShape([1]), tf.TensorShape(None))) self.assertFalse( tensor_utils.same_shape(tf.TensorShape([1]), tf.TensorShape([None]))) self.assertFalse( tensor_utils.same_shape(tf.TensorShape([1]), tf.TensorShape([2]))) self.assertFalse( tensor_utils.same_shape(tf.TensorShape([1, 2]), tf.TensorShape([2, 1]))) if __name__ == '__main__': test.main()
88c956a598941e1923e9029d6acc27a0a83a987e
a8f39f241598dce6d876f2b535327aeac4902170
/tests/api2/network.py
fed153986b6379c6c5d4e4047c399b57ad8ab93f
[ "BSD-3-Clause" ]
permissive
ghos/freenas
321b8d36ec16b715ffd6fb60768901bfb276c2a1
f1049d30355c70eb3f2c4b841bef71aa836890c9
refs/heads/master
2020-12-07T17:14:57.513807
2020-01-07T20:59:41
2020-01-07T20:59:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,946
py
#!/usr/bin/env python3.6 # Author: Eric Turgeon # License: BSD import pytest import sys import os apifolder = os.getcwd() sys.path.append(apifolder) from auto_config import hostname, domain from functions import GET, PUT from config import * BRIDGEGWReason = "BRIDGEGW not in ixautomation.conf" BRIDGENETMASKReason = "BRIDGENETMASK not in ixautomation.conf" Reason = "AD_DOMAIN BRIDGEDNS are missing in ixautomation.conf" dns_cfg = pytest.mark.skipif("BRIDGEDNS" not in locals(), reason=Reason) def test_01_get_default_network_general_summary(): results = GET("/network/general/summary/") assert results.status_code == 200 assert isinstance(results.json(), dict), results.text assert isinstance(results.json()['default_routes'], list), results.text @dns_cfg def test_02_configure_setting_domain_hostname_and_dns(): global payload payload = {"domain": domain, "hostname": hostname, "ipv4gateway": gateway, "nameserver1": BRIDGEDNS} global results results = PUT("/network/configuration/", payload) assert results.status_code == 200, results.text assert isinstance(results.json(), dict), results.text @dns_cfg @pytest.mark.parametrize('dkeys', ["domain", "hostname", "ipv4gateway", "nameserver1"]) def test_03_looking_put_network_configuration_output_(dkeys): assert results.json()[dkeys] == payload[dkeys], results.text @dns_cfg def test_04_get_network_configuration_info_(): global results results = GET("/network/configuration/") assert results.status_code == 200, results.text assert isinstance(results.json(), dict), results.text @dns_cfg @pytest.mark.parametrize('dkeys', ["domain", "hostname", "ipv4gateway", "nameserver1"]) def test_05_looking_get_network_configuration_output_(dkeys): assert results.json()[dkeys] == payload[dkeys], results.text
ccc3218670bdf6b394fbb52fd0bbbeaf3534c15e
c839961aeab22795200d9edef9ba043fe42eeb9c
/data/script802.py
4b4a5c3b512045d2824d977d9d741a8e82521de3
[]
no_license
StevenLOL/kaggleScape
ad2bb1e2ed31794f1ae3c4310713ead1482ffd52
18bede8420ab8d2e4e7c1eaf6f63280e20cccb97
refs/heads/master
2020-03-17T05:12:13.459603
2018-05-02T19:35:55
2018-05-02T19:35:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,663
py
# coding: utf-8 # Hey everyone, this is my first go at Kaggle competitions and Kernels. # # In this Kernel, I implemented kNN classifier from scratch. # And the results got 97.1% accuracy on public leaderboard. # In[ ]: import numpy as np import matplotlib.pyplot as plt from collections import Counter import time get_ipython().run_line_magic('matplotlib', 'inline') plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load csv files to numpy arrays def load_data(data_dir): train_data = open(data_dir + "train.csv").read() train_data = train_data.split("\n")[1:-1] train_data = [i.split(",") for i in train_data] # print(len(train_data)) X_train = np.array([[int(i[j]) for j in range(1,len(i))] for i in train_data]) y_train = np.array([int(i[0]) for i in train_data]) # print(X_train.shape, y_train.shape) test_data = open(data_dir + "test.csv").read() test_data = test_data.split("\n")[1:-1] test_data = [i.split(",") for i in test_data] # print(len(test_data)) X_test = np.array([[int(i[j]) for j in range(0,len(i))] for i in test_data]) # print(X_test.shape) return X_train, y_train, X_test class simple_knn(): "a simple kNN with L2 distance" def __init__(self): pass def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X, k=1): dists = self.compute_distances(X) # print("computed distances") num_test = dists.shape[0] y_pred = np.zeros(num_test) for i in range(num_test): k_closest_y = [] labels = self.y_train[np.argsort(dists[i,:])].flatten() # find k nearest lables k_closest_y = labels[:k] # out of these k nearest lables which one is most common # for 5NN [1, 1, 1, 2, 3] returns 1 # break ties by selecting smaller label # for 5NN [1, 2, 1, 2, 3] return 1 even though 1 and 2 appeared twice. c = Counter(k_closest_y) y_pred[i] = c.most_common(1)[0][0] return(y_pred) def compute_distances(self, X): num_test = X.shape[0] num_train = self.X_train.shape[0] dot_pro = np.dot(X, self.X_train.T) sum_square_test = np.square(X).sum(axis = 1) sum_square_train = np.square(self.X_train).sum(axis = 1) dists = np.sqrt(-2 * dot_pro + sum_square_train + np.matrix(sum_square_test).T) return(dists) # Let's read `../input/train.csv` and `../input/test.csv` files to numpy arrays. # # Print shapes of those arrays as a sanity check. # In[ ]: # runs for 35 seconds data_dir = "../input/" X_train, y_train, X_test = load_data(data_dir) # In[ ]: print(X_train.shape, y_train.shape, X_test.shape) # Visualize random samples from training data. # In[ ]: # runs for 10 seconds classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] num_classes = len(classes) samples = 8 for y, cls in enumerate(classes): idxs = np.nonzero([i == y for i in y_train]) idxs = np.random.choice(idxs[0], samples, replace=False) for i , idx in enumerate(idxs): plt_idx = i * num_classes + y + 1 plt.subplot(samples, num_classes, plt_idx) plt.imshow(X_train[idx].reshape((28, 28))) plt.axis("off") if i == 0: plt.title(cls) plt.show() # In[ ]: # just to visualize ith test image plt.imshow(X_test[2311].reshape((28, 28))) # Split testing data into batches as distances of 10,000 test images and # 60,000 train images won't fit in memory. # In[ ]: # predict labels for batch_size number of test images at a time. batch_size = 2000 # k = 3 k = 1 classifier = simple_knn() classifier.train(X_train, y_train) # As Kaggle kernels have 1200 seconds limit, I have divided the prediction step # into two cells each cell running for 13 minutes and saving prediction to `predictions`. # In[ ]: # runs for 13 minutes predictions = [] for i in range(int(len(X_test)/(2*batch_size))): # predicts from i * batch_size to (i+1) * batch_size print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...") tic = time.time() predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k) toc = time.time() predictions = predictions + list(predts) # print("Len of predictions: " + str(len(predictions))) print("Completed this batch in " + str(toc-tic) + " Secs.") print("Completed predicting the test data.") # In[ ]: # runs for 13 minutes # uncomment predict lines to predict second half of test data for i in range(int(len(X_test)/(2*batch_size)), int(len(X_test)/batch_size)): # predicts from i * batch_size to (i+1) * batch_size print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...") tic = time.time() #predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k) toc = time.time() #predictions = predictions + list(predts) # print("Len of predictions: " + str(len(predictions))) print("Completed this batch in " + str(toc-tic) + " Secs.") print("Completed predicting the test data.") # After predicting and saving results in Python array, we dump our predictions to a csv file # named `predictions.csv` which gets an accuracy of 97.114% on public leaderboard. # In[ ]: out_file = open("predictions.csv", "w") out_file.write("ImageId,Label\n") for i in range(len(predictions)): out_file.write(str(i+1) + "," + str(int(predictions[i])) + "\n") out_file.close()
5bf16079be9f974bae6d83fe67c63316eeb74485
76f160538f4de5466929c6f66d4fa0ed021d10d0
/lux/extensions/angular/__init__.py
352f1bc771234cdf9cdf19fcc83245ce8f06a32f
[ "BSD-3-Clause" ]
permissive
tazo90/lux
cd60e5364f2af486a41f58935eec38c79a2acef5
6fc8994cfaa9379ea3a0c6ce7b076d48e6b1759e
refs/heads/master
2021-01-15T12:50:24.280897
2015-05-07T07:15:13
2015-05-07T07:15:13
35,214,757
0
0
null
2015-05-07T10:50:57
2015-05-07T10:50:56
null
UTF-8
Python
false
false
5,613
py
''' This extension does not provide any middleware but it is required when using :ref:`lux.js <jsapi>` javascript module and provides the link between AngularJS_ and Python. **Required extensions**: :mod:`lux.extensions.ui` Usage ========= Include ``lux.extensions.angular`` into the :setting:`EXTENSIONS` list in your :ref:`config file <parameters>`:: EXTENSIONS = [ ... 'lux.extensions.ui', 'lux.extensions.angular' ... ] HTML5_NAVIGATION = True .. _AngularJS: https://angularjs.org/ .. _`ui-router`: https://github.com/angular-ui/ui-router ''' import lux from lux import Parameter, RouterParam from pulsar.apps.wsgi import MediaMixin, Html, route from pulsar.utils.httpurl import urlparse from pulsar.utils.html import escape from .ui import add_css def add_ng_modules(doc, modules): if modules: ngmodules = set(doc.jscontext.get('ngModules', ())) ngmodules.update(modules) doc.jscontext['ngModules'] = tuple(ngmodules) class Extension(lux.Extension): _config = [ Parameter('HTML5_NAVIGATION', False, 'Enable Html5 navigation', True), Parameter('ANGULAR_VIEW_ANIMATE', False, 'Enable Animation of ui-router views.'), Parameter('NGMODULES', [], 'Angular module to load') ] def on_html_document(self, app, request, doc): router = html_router(request.app_handler) if not router: return # add_ng_modules(doc, app.config['NGMODULES']) # Use HTML5 navigation and angular router if app.config['HTML5_NAVIGATION']: root = angular_root(app, router) doc.body.data({'ng-model': 'page', 'ng-controller': 'Page', 'page': ''}) doc.head.meta.append(Html('base', href="/")) if not hasattr(root, '_angular_sitemap'): root._angular_sitemap = {'states': [], 'pages': {}} add_to_sitemap(root._angular_sitemap, app, doc, root) doc.jscontext.update(root._angular_sitemap) doc.jscontext['page'] = router.state else: add_ng_modules(doc, router.uimodules) def context(self, request, context): router = html_router(request.app_handler) if request.config['HTML5_NAVIGATION'] and router: root = angular_root(request.app, router) pages = request.html_document.jscontext['pages'] page = pages.get(router.state) context['html_main'] = self.uiview(request, context, page) def uiview(self, request, context, page): '''Wrap the ``main`` html with a ``ui-view`` container. Add animation class if specified in :setting:`ANGULAR_VIEW_ANIMATE`. ''' app = request.app main = context.get('html_main', '') if 'templateUrl' in page or 'template' in page: main = Html('div', main, cn='hidden', id="seo-view") div = Html('div', main, cn='angular-view') animate = app.config['ANGULAR_VIEW_ANIMATE'] if animate: add_ng_modules(request.html_document, ('ngAnimate',)) div.addClass(animate) div.data('ui-view', '') return div.render() def html_router(router): if isinstance(router, lux.HtmlRouter): return router def angular_root(app, router): '''The root angular router ''' if not hasattr(router, '_angular_root'): if angular_compatible(app, router, router.parent): router._angular_root = angular_root(app, router.parent) else: router._angular_root = router return router._angular_root def angular_compatible(app, router1, router2): router1 = html_router(router1) router2 = html_router(router2) if router1 and router2: templ1 = router1.get_html_body_template(app) templ2 = router2.get_html_body_template(app) return templ1 == templ2 return False def router_href(app, route): url = '/'.join(_angular_route(route)) if url: url = '/%s' % url if route.is_leaf else '/%s/' % url else: url = '/' site_url = app.config['SITE_URL'] if site_url: p = urlparse(site_url + url) return p.path else: return url def _angular_route(route): for is_dynamic, val in route.breadcrumbs: if is_dynamic: c = route._converters[val] yield '*%s' % val if c.regex == '.*' else ':%s' % val else: yield val def add_to_sitemap(sitemap, app, doc, router, parent=None, angular=None): # path for the current router path = router_href(app, router.full_route) # Set the angukar router if hasattr(router, 'angular_page'): angular = router name = router.name if parent: name = '%s_%s' % (parent, name) router.state = name page = {'url': path, 'name': name} if angular: angular.angular_page(app, router, page) sitemap['states'].append(name) sitemap['pages'][name] = page add_ng_modules(doc, router.uimodules) # # Loop over children routes for child in router.routes: add_to_sitemap(sitemap, app, doc, child, name, angular) # Add redirect to folder page if required return if path.endswith('/') and path != '/': rpath = path[:-1] if rpath not in sitemap['pages']: page = {'url': rpath, 'redirectTo': path} sitemap['states'].append(rpath) sitemap['pages'][rpath] = page
c111258136eed2183508d6806edea26b81e1751d
9b9a02657812ea0cb47db0ae411196f0e81c5152
/repoData/brosner-django-groups/allPythonContent.py
a04d659dfdcf6b7ba8ded1c96006ded0510da779
[]
no_license
aCoffeeYin/pyreco
cb42db94a3a5fc134356c9a2a738a063d0898572
0ac6653219c2701c13c508c5c4fc9bc3437eea06
refs/heads/master
2020-12-14T14:10:05.763693
2016-06-27T05:15:15
2016-06-27T05:15:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,204
py
__FILENAME__ = base import datetime import warnings from django.db import models from django.db.models.options import FieldDoesNotExist from django.db.models.query import QuerySet from django.db.models.sql.constants import LOOKUP_SEP from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import User from django.contrib.contenttypes import generic from django.contrib.contenttypes.models import ContentType def _get_queryset(klass): """ Returns a QuerySet from a Model, Manager, or QuerySet. Created to make get_object_or_404 and get_list_or_404 more DRY. Pulled from django.shortcuts """ if isinstance(klass, QuerySet): return klass elif isinstance(klass, models.Manager): manager = klass else: manager = klass._default_manager return manager.all() class GroupAware(models.Model): """ A mixin abstract base model to use on models you want to make group-aware. """ group_content_type = models.ForeignKey(ContentType, null=True, blank=True) group_object_id = models.PositiveIntegerField(null=True, blank=True) group = generic.GenericForeignKey("group_content_type", "group_object_id") class Meta: abstract = True class GroupBase(models.Model): slug_attr = "slug" class Meta(object): abstract = True def member_queryset(self): if not hasattr(self, "_members_field"): # look for the common case of a m2m named members (in some cases # the related_name of the user FK on the intermediary model might # be named members and we need User instances) try: field = self._meta.get_field("members") except FieldDoesNotExist: raise NotImplementedError("You must define a member_queryset for %s" % str(self.__class__)) else: self._members_field = field else: field = self._members_field if isinstance(field, models.ManyToManyField) and issubclass(field.rel.to, User): return self.members.all() else: raise NotImplementedError("You must define a member_queryset for %s" % str(self.__class__)) def user_is_member(self, user): return user in self.member_queryset() def _group_gfk_field(self, model, join=None, field_name=None): opts = model._meta if field_name is None: field_name = "group" if join is not None: # see if we can get the model where the field actually lives parts = join.split(LOOKUP_SEP) for name in parts: f, model, direct, m2m = opts.get_field_by_name(name) # not handling the model is not None case (proxied models I think) if direct: if m2m or f.rel: opts = f.rel.to._meta else: break else: opts = f.opts try: field = [f for f in opts.virtual_fields if f.name == field_name][0] except IndexError: from django.db.models.loading import cache as app_cache model = app_cache.get_model(opts.app_label, opts.module_name) raise LookupError("Unable to find generic foreign key named '%s' " "on %r\nThe model may have a different name or it does not " "exist." % ( field_name, model, )) return field def lookup_params(self, model): content_type = ContentType.objects.get_for_model(self) group_gfk = self._group_gfk_field(model) params = { group_gfk.fk_field: self.id, group_gfk.ct_field: content_type, } return params def content_objects(self, queryable, join=None, gfk_field=None): queryset = _get_queryset(queryable) content_type = ContentType.objects.get_for_model(self) group_gfk = self._group_gfk_field(queryset.model, join=join, field_name=gfk_field) if join: lookup_kwargs = { "%s__%s" % (join, group_gfk.fk_field): self.id, "%s__%s" % (join, group_gfk.ct_field): content_type, } else: lookup_kwargs = { group_gfk.fk_field: self.id, group_gfk.ct_field: content_type, } content_objects = queryset.filter(**lookup_kwargs) return content_objects def associate(self, instance, commit=True, gfk_field=None): group_gfk = self._group_gfk_field(instance, field_name=gfk_field) setattr(instance, group_gfk.fk_field, self.id) setattr(instance, group_gfk.ct_field, ContentType.objects.get_for_model(self)) if commit: instance.save() return instance def get_url_kwargs(self): kwargs = {} if hasattr(self, "group") and self.group: kwargs.update(self.group.get_url_kwargs()) slug = getattr(self, self.slug_attr) kwargs.update({"%s_slug" % self._meta.object_name.lower(): slug}) return kwargs class Group(GroupBase, GroupAware): """ a group is a group of users with a common interest """ slug = models.SlugField(_("slug"), unique=True) name = models.CharField(_("name"), max_length=80, unique=True) creator = models.ForeignKey(User, verbose_name=_("creator"), related_name="%(class)s_created") created = models.DateTimeField(_("created"), default=datetime.datetime.now) description = models.TextField(_("description")) def __unicode__(self): return self.name class Meta(object): abstract = True class GroupScopedId(models.Model): """ a model to store scoped IDs for tasks (specific to a group) """ content_type = models.ForeignKey(ContentType, null=True, blank=True) object_id = models.IntegerField(null=True, blank=True) group = generic.GenericForeignKey() scoped_number = models.IntegerField() class Meta: abstract = True unique_together = (("content_type", "object_id", "scoped_number"),) ########NEW FILE######## __FILENAME__ = bridge import sys from django.shortcuts import render_to_response from django.conf.urls.defaults import patterns, url as urlpattern from django.core.urlresolvers import RegexURLPattern, RegexURLResolver, reverse as dreverse from django.contrib.contenttypes.models import ContentType class ContentBridge(object): def __init__(self, group_model, content_app_name=None, urlconf_aware=True): self.parent_bridge = None self.group_model = group_model self.urlconf_aware = urlconf_aware if content_app_name is None: self.content_app_name = group_model._meta.app_label else: self.content_app_name = content_app_name # attach the bridge to the model itself. we need to access it when # using groupurl to get the correct prefix for URLs for the given # group. self.group_model.content_bridge = self def include_urls(self, module_name, url_prefix, kwargs=None): if kwargs is None: kwargs = {} prefix = self.content_app_name __import__(module_name) module = sys.modules[module_name] if hasattr(module, "bridge"): module.bridge.parent_bridge = self urls = [] for url in module.urlpatterns: extra_kwargs = {"bridge": self} if isinstance(url, RegexURLPattern): regex = url_prefix + url.regex.pattern.lstrip("^") if url._callback: callback = url._callback else: callback = url._callback_str if url.name: name = url.name else: # @@@ this seems sketchy name = "" name = "%s_%s" % (prefix, name) extra_kwargs.update(kwargs) extra_kwargs.update(url.default_args) urls.append(urlpattern(regex, callback, extra_kwargs, name)) else: # i don't see this case happening much at all. this case will be # executed likely if url is a RegexURLResolver. nesting an include # at the content object level may not be supported, but maybe the # code below works. i don't have time to test it, but if you are # reading this because something is broken then give it a shot. # then report back :-) raise Exception("ContentBridge.include_urls does not support a nested include.") # regex = url_prefix + url.regex.pattern.lstrip("^") # urlconf_name = url.urlconf_name # extra_kwargs.update(kwargs) # extra_kwargs.update(url.default_kwargs) # final_urls.append(urlpattern(regex, [urlconf_name], extra_kwargs)) return patterns("", *urls) @property def _url_name_prefix(self): if self.urlconf_aware: parent_prefix = "" if self.parent_bridge is not None: parent_prefix = self.parent_bridge._url_name_prefix return "%s%s_" % (parent_prefix, self.content_app_name) else: return "" def reverse(self, view_name, group, kwargs=None): if kwargs is None: kwargs = {} final_kwargs = {} final_kwargs.update(group.get_url_kwargs()) final_kwargs.update(kwargs) return dreverse("%s%s" % (self._url_name_prefix, view_name), kwargs=final_kwargs) def render(self, template_name, context, context_instance=None): # @@@ this method is practically useless -- consider removing it. ctype = ContentType.objects.get_for_model(self.group_model) return render_to_response([ "%s/%s/%s" % (ctype.app_label, self.content_app_name, template_name), "%s/%s" % (self.content_app_name, template_name), ], context, context_instance=context_instance) def group_base_template(self, template_name="content_base.html"): return "%s/%s" % (self.content_app_name, template_name) def get_group(self, kwargs): lookup_params = {} if self.parent_bridge is not None: parent_group = self.parent_bridge.get_group(kwargs) lookup_params.update(parent_group.lookup_params(self.group_model)) else: parent_group = None slug = kwargs.pop("%s_slug" % self.group_model._meta.object_name.lower()) lookup_params.update({ "slug": slug, }) group = self.group_model._default_manager.get(**lookup_params) if parent_group: # cache parent_group on GFK to prevent database hits later on group.group = parent_group return group ########NEW FILE######## __FILENAME__ = helpers from django.db import connection, transaction qn = connection.ops.quote_name def generate_next_scoped_id(content_object, scoped_id_model): """ generates an ID unique to a content_object scoped in a group (if it has one). """ kwargs = {} if content_object.group: kwargs.update({ "content_type": content_object.content_type, "object_id": content_object.object_id, }) get_or_create = scoped_id_model._default_manager.get_or_create scoped_id, created = get_or_create(**dict(kwargs, **{ "defaults": { "scoped_number": 1, } })) if not created: sql = """ UPDATE %(table_name)s SET scoped_number = scoped_number + 1 """ % {"table_name": qn(scoped_id_model._meta.db_table)} if content_object.group: sql += """ WHERE content_type_id = %(content_type_id)s AND object_id = %(object_id)s """ % { "content_type_id": kwargs["content_type"].pk, "object_id": kwargs["object_id"], } try: try: transaction.enter_transaction_management() transaction.managed(True) cursor = connection.cursor() cursor.execute(sql) # we modified data, mark dirty transaction.set_dirty() scoped_id = scoped_id_model._default_manager.get(pk=scoped_id.pk) transaction.commit() except: transaction.rollback() raise finally: transaction.leave_transaction_management() return scoped_id.scoped_number ########NEW FILE######## __FILENAME__ = internals import copy class GroupDummy(object): def __nonzero__(self): return False class GroupRequestHelper(object): def __init__(self, request, group): self.request = request self.group = group def __deepcopy__(self, memo): obj = copy.copy(self) for k, v in self.__dict__.iteritems(): if k == "request": continue setattr(obj, k, copy.deepcopy(v, memo)) obj.request = self.request memo[id(self)] = obj return obj def user_is_member(self): if not self.request.user.is_authenticated(): is_member = False else: if self.group: is_member = self.group.user_is_member(self.request.user) else: is_member = True return is_member ########NEW FILE######## __FILENAME__ = middleware from django.core.exceptions import ObjectDoesNotExist from django.http import Http404 from django.utils.functional import curry from groups.internals import GroupDummy, GroupRequestHelper class GroupAwareMiddleware(object): def process_view(self, request, view, view_args, view_kwargs): bridge = view_kwargs.pop("bridge", None) if bridge: try: group = bridge.get_group(view_kwargs) except ObjectDoesNotExist: raise Http404 else: group = GroupDummy() # attach a request helper group.request = GroupRequestHelper(request, group) request.group = group request.bridge = bridge return None ########NEW FILE######## __FILENAME__ = group_tags from django import template from django.utils.encoding import smart_str from django.core.urlresolvers import reverse, NoReverseMatch from django.db.models import get_model from django.db.models.query import QuerySet register = template.Library() class GroupURLNode(template.Node): def __init__(self, view_name, group, kwargs, asvar): self.view_name = view_name self.group = group self.kwargs = kwargs self.asvar = asvar def render(self, context): url = "" group = self.group.resolve(context) kwargs = {} for k, v in self.kwargs.items(): kwargs[smart_str(k, "ascii")] = v.resolve(context) if group: bridge = group.content_bridge try: url = bridge.reverse(self.view_name, group, kwargs=kwargs) except NoReverseMatch: if self.asvar is None: raise else: try: url = reverse(self.view_name, kwargs=kwargs) except NoReverseMatch: if self.asvar is None: raise if self.asvar: context[self.asvar] = url return "" else: return url class ContentObjectsNode(template.Node): def __init__(self, group_var, model_name_var, gfk_field_var, context_var): self.group_var = template.Variable(group_var) self.model_name_var = template.Variable(model_name_var) if gfk_field_var is not None: self.gfk_field_var = template.Variable(gfk_field_var) else: self.gfk_field_var = None self.context_var = context_var def render(self, context): group = self.group_var.resolve(context) model_name = self.model_name_var.resolve(context) if self.gfk_field_var is not None: gfk_field = self.gfk_field_var.resolve(context) else: gfk_field = None if isinstance(model_name, QuerySet): model = model_name else: app_name, model_name = model_name.split(".") model = get_model(app_name, model_name) context[self.context_var] = group.content_objects(model, gfk_field=gfk_field) return "" class ObjectGroupUrlNode(template.Node): def __init__(self, obj, group, asvar): self.obj_var = template.Variable(obj) self.group = group self.asvar = asvar def render(self, context): url = "" obj = self.obj_var.resolve(context) group = self.group.resolve(context) try: url = obj.get_absolute_url(group) except NoReverseMatch: if self.asvar is None: raise if self.asvar: context[self.asvar] = url return "" else: return url @register.tag def groupurl(parser, token): bits = token.contents.split() tag_name = bits[0] if len(bits) < 3: raise template.TemplateSyntaxError("'%s' takes at least two arguments" " (path to a view and a group)" % tag_name) view_name = bits[1] group = parser.compile_filter(bits[2]) args = [] kwargs = {} asvar = None if len(bits) > 3: bits = iter(bits[3:]) for bit in bits: if bit == "as": asvar = bits.next() break else: for arg in bit.split(","): if "=" in arg: k, v = arg.split("=", 1) k = k.strip() kwargs[k] = parser.compile_filter(v) elif arg: raise template.TemplateSyntaxError("'%s' does not support non-kwargs arguments." % tag_name) return GroupURLNode(view_name, group, kwargs, asvar) @register.tag def content_objects(parser, token): """ Basic usage:: {% content_objects group "tasks.Task" as tasks %} or if you need to specify a custom generic foreign key field (default is group):: {% content_objects group "tasks.Task" "content_object" as tasks %} """ bits = token.split_contents() if len(bits) not in [5, 6]: raise template.TemplateSyntaxError("'%s' requires five or six arguments." % bits[0]) else: if len(bits) == 5: return ContentObjectsNode(bits[1], bits[2], None, bits[4]) else: return ContentObjectsNode(bits[1], bits[2], bits[3], bits[5]) @register.tag def object_group_url(parser, token): """ given an object and an optional group, call get_absolute_url passing the group variable:: {% object_group_url task group %} """ bits = token.contents.split() tag_name = bits[0] if len(bits) < 3: raise template.TemplateSyntaxError("'%s' takes at least two arguments" " (object and a group)" % tag_name) obj = bits[1] group = parser.compile_filter(bits[2]) if len(bits) > 3: if bits[3] != "as": raise template.TemplateSyntaxError("'%s' requires the forth" " argument to be 'as'" % tag_name) try: asvar = bits[4] except IndexError: raise template.TemplateSyntaxError("'%s' requires an argument" " after 'as'" % tag_name) return ObjectGroupUrlNode(obj, group, asvar) ########NEW FILE########
4e73dcfed4e559a0188715cb13281b634e692954
d5ad13232e3f1ced55f6956bc4cbda87925c8085
/cc_mcc_seq/Results/indel/6_point_gene_test/7_1_sum_indel.point_ttest.py
9e3c83f5cfe1896677303ff1a71af85007af1b69
[]
no_license
arvin580/SIBS
c0ba9a8a41f59cb333517c286f7d80300b9501a2
0cc2378bf62359ec068336ea4de16d081d0f58a4
refs/heads/master
2021-01-23T21:57:35.658443
2015-04-09T23:11:34
2015-04-09T23:11:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
622
py
dict1=dict() inFile=open('sum_indel.exome_combined.sorted.pass012.new') for line in inFile : line=line.strip() fields=line.split('\t') key=fields[21]+':'+fields[22] dict1.setdefault(key,[0]*21) for i,item in enumerate(fields[-20:]) : dict1[key][1+i]+=int(item) dict1[key][0]+=int(item) inFile.close() d=dict1.items() d.sort(cmp=lambda x,y:cmp(x[1][0],y[1][0]),reverse=True) ouFile=open('sum_indel.exome_combined.sorted.pass012.new.point_ttest','w') for item in d : ouFile.write(item[0]+'\t') ouFile.write('\t'.join([str(i) for i in item[1]])+'\n') ouFile.close()
1e477aa48e9e96e3b8f763ccda159afce0079f5c
6bb45c5892b4c9692dcc44116fb73dc9e7ab90ff
/sagemaker-training-compiler/huggingface/pytorch_single_gpu_single_node/roberta-base/scripts/fine_tune_with_huggingface.py
4e30ae6ee9d41e4f62b60bf46c8534036b198b62
[ "Apache-2.0", "BSD-2-Clause" ]
permissive
aws/amazon-sagemaker-examples
8359afe544e873662bda5b8d2b07399c437213c9
43dae4b28531cde167598f104f582168b0a4141f
refs/heads/main
2023-08-26T04:42:52.342776
2023-08-25T14:37:19
2023-08-25T14:37:19
107,937,815
4,797
3,519
Apache-2.0
2023-09-14T19:47:03
2017-10-23T05:55:22
Jupyter Notebook
UTF-8
Python
false
false
3,780
py
from transformers import ( AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer, TrainerCallback, ) from sklearn.metrics import accuracy_score, precision_recall_fscore_support from datasets import load_from_disk import random import logging import sys import argparse import os import torch import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser() # hyperparameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--epochs", type=int, default=50) parser.add_argument("--train_batch_size", type=int, default=32) parser.add_argument("--eval_batch_size", type=int, default=64) parser.add_argument("--warmup_steps", type=int, default=500) parser.add_argument("--model_name", type=str) parser.add_argument("--learning_rate", type=float, default=5e-5) # Data, model, and output directories parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"]) parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"]) parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"]) parser.add_argument("--training_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"]) parser.add_argument("--test_dir", type=str, default=os.environ["SM_CHANNEL_TEST"]) args, _ = parser.parse_known_args() os.environ["GPU_NUM_DEVICES"] = args.n_gpus # Set up logging logger = logging.getLogger(__name__) logging.basicConfig( level=logging.getLevelName("INFO"), handlers=[logging.StreamHandler(sys.stdout)], format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) # load datasets train_dataset = load_from_disk(args.training_dir) test_dataset = load_from_disk(args.test_dir) # compute metrics function for binary classification def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average="binary") acc = accuracy_score(labels, preds) return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall} # download model from model hub model = AutoModelForSequenceClassification.from_pretrained(args.model_name) tokenizer = AutoTokenizer.from_pretrained(args.model_name) # define training args training_args = TrainingArguments( output_dir=args.model_dir, num_train_epochs=args.epochs, per_device_train_batch_size=args.train_batch_size, per_device_eval_batch_size=args.eval_batch_size, warmup_steps=args.warmup_steps, logging_dir=f"{args.output_data_dir}/logs", learning_rate=args.learning_rate, fp16=True, dataloader_drop_last=True, disable_tqdm=True, evaluation_strategy="no", save_strategy="no", save_total_limit=1, logging_strategy="epoch", ) # create Trainer instance trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=test_dataset, tokenizer=tokenizer, ) # train model trainer.train() # evaluate model eval_result = trainer.evaluate(eval_dataset=test_dataset) # writes eval result to file which can be accessed later in s3 ouput with open(os.path.join(args.output_data_dir, "eval_results.txt"), "w") as writer: print(f"***** Eval results *****") for key, value in sorted(eval_result.items()): writer.write(f"{key} = {value}\n") # Saves the model to s3 trainer.save_model(args.model_dir)
004d804435268fc547e669d76c9db9b3c2f5abba
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/vns/rscdevtochassis.py
59c49d0334a738a7fb70f1c19452accb42efdf75
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
9,288
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RsCDevToChassis(Mo): """ """ meta = NamedSourceRelationMeta("cobra.model.vns.RsCDevToChassis", "cobra.model.vns.Chassis") meta.targetNameProps["name"] = "tnVnsChassisName" meta.cardinality = SourceRelationMeta.N_TO_ONE meta.moClassName = "vnsRsCDevToChassis" meta.rnFormat = "rscDevToChassis" meta.category = MoCategory.RELATIONSHIP_TO_LOCAL meta.label = "Chassis for CDevs" meta.writeAccessMask = 0x4000000000000001 meta.readAccessMask = 0x4000000000000001 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = True meta.isContextRoot = False meta.childClasses.add("cobra.model.tag.Tag") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.fault.Inst") meta.childClasses.add("cobra.model.aaa.RbacAnnotation") meta.childClasses.add("cobra.model.tag.Annotation") meta.childNamesAndRnPrefix.append(("cobra.model.tag.Annotation", "annotationKey-")) meta.childNamesAndRnPrefix.append(("cobra.model.aaa.RbacAnnotation", "rbacDom-")) meta.childNamesAndRnPrefix.append(("cobra.model.tag.Tag", "tagKey-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Inst", "fault-")) meta.parentClasses.add("cobra.model.vns.CDev") meta.superClasses.add("cobra.model.reln.Inst") meta.superClasses.add("cobra.model.reln.To") meta.superClasses.add("cobra.model.pol.NToRef") meta.rnPrefixes = [ ('rscDevToChassis', False), ] prop = PropMeta("str", "annotation", "annotation", 38208, PropCategory.REGULAR) prop.label = "Annotation. Suggested format orchestrator:value" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("annotation", prop) prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "extMngdBy", "extMngdBy", 40347, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "undefined" prop._addConstant("msc", "msc", 1) prop._addConstant("undefined", "undefined", 0) meta.props.add("extMngdBy", prop) prop = PropMeta("str", "forceResolve", "forceResolve", 107, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = True prop.defaultValueStr = "yes" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("forceResolve", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 18406, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "rType", "rType", 106, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "mo" prop._addConstant("local", "local", 3) prop._addConstant("mo", "mo", 1) prop._addConstant("service", "service", 2) meta.props.add("rType", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "state", "state", 103, PropCategory.REGULAR) prop.label = "State" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "unformed" prop._addConstant("cardinality-violation", "cardinality-violation", 5) prop._addConstant("formed", "formed", 1) prop._addConstant("invalid-target", "invalid-target", 4) prop._addConstant("missing-target", "missing-target", 2) prop._addConstant("unformed", "unformed", 0) meta.props.add("state", prop) prop = PropMeta("str", "stateQual", "stateQual", 104, PropCategory.REGULAR) prop.label = "State Qualifier" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("default-target", "default-target", 2) prop._addConstant("mismatch-target", "mismatch-target", 1) prop._addConstant("none", "none", 0) meta.props.add("stateQual", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 18360, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 6169 prop.defaultValueStr = "vnsChassis" prop._addConstant("unspecified", "unspecified", 0) prop._addConstant("vnsChassis", None, 6169) meta.props.add("tCl", prop) prop = PropMeta("str", "tContextDn", "tContextDn", 4990, PropCategory.REGULAR) prop.label = "Target-context" prop.isImplicit = True prop.isAdmin = True meta.props.add("tContextDn", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) prop = PropMeta("str", "tRn", "tRn", 4989, PropCategory.REGULAR) prop.label = "Target-rn" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("tRn", prop) prop = PropMeta("str", "tType", "tType", 4988, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "name" prop._addConstant("all", "all", 2) prop._addConstant("mo", "mo", 1) prop._addConstant("name", "name", 0) meta.props.add("tType", prop) prop = PropMeta("str", "tnVnsChassisName", "tnVnsChassisName", 18359, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("tnVnsChassisName", prop) prop = PropMeta("str", "uid", "uid", 8, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("uid", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("CDevToNwIf", "Physical Interfaces", "cobra.model.nw.If")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
70a949a43592c87b808f514a6478307f2cb8b4ca
4e044ab3073f5893f2eae33931ab5079b282817c
/00_Startcamp/02_Day/05_reverse_content.py
74ce84e6ffdc72fd94c97e830417cfc5510d468f
[]
no_license
whiteblue0/Startcamp
e5e8c30476eda7a30c3daae4bdc018f223da74e8
7ddebe8be878a8550d99fcc572666b963dda583d
refs/heads/master
2023-01-27T18:36:28.013135
2020-09-12T06:21:12
2020-09-12T06:21:12
195,809,764
0
0
null
2023-01-07T11:25:23
2019-07-08T12:42:40
Jupyter Notebook
UTF-8
Python
false
false
357
py
# #역순으로 출력 방법1 # with open('with_ssafy.txt','r') as f: # lines = f.readlines() # for line in lines: # print(line.strip()[::-1]) #역순 출력 방법2 with open('writelines_ssafy.txt','r') as f: lines = f.readlines() lines.reverse() with open('reverse_ssafy.txt','w') as f: for line in lines: f.write(line)
113a035fa94bf5dde84455ba6efb5023c23404e9
c6b1919498776cfc408076246390e2bba56f4c4e
/client/migrations/0025_auto_20170327_1353.py
02d0f21d9aa306d7b21a4cf93536d1746cfc8ceb
[]
no_license
huozhihui/devops_tool
f2ceaf7f1828853e43859645f5ab36a00b0fa7df
0eb7b4a14203e30bb2c262075864cec0db21829f
refs/heads/master
2020-05-20T19:02:47.855055
2017-04-18T05:25:59
2017-04-18T05:25:59
84,509,976
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-03-27 13:53 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('client', '0024_auto_20170315_0945'), ] operations = [ migrations.AlterField( model_name='rolemanage', name='timeout', field=models.IntegerField(default=180, verbose_name='\u8d85\u65f6\u65f6\u957f(s)'), ), ]
d9e6416e228b806bc80ed10e06e4aabd87a059cb
523226fe09d7b5d3b25c2c635ad8f3992462fe34
/keras/saving/hdf5_format_test.py
8594ff72fecb16715821f331d2eea5322de0560d
[ "Apache-2.0" ]
permissive
ivallesp/keras
1a03be04c904c8c2fabc8336c4a09c8b937b6ecc
1a35ff2788b5e6880ceb8af82e1a8d5f72d0f76f
refs/heads/master
2021-06-22T13:19:58.681658
2020-12-09T23:38:16
2020-12-09T23:38:16
155,445,708
0
0
NOASSERTION
2018-10-30T19:39:06
2018-10-30T19:39:05
null
UTF-8
Python
false
false
49,940
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #,============================================================================ """Tests for model saving in the HDF5 format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import os import shutil import tempfile import uuid from absl.testing import parameterized import numpy as np import keras from keras import combinations from keras import keras_parameterized from keras import optimizer_v1 from keras import optimizers from keras import testing_utils from keras.engine import training from keras.saving import hdf5_format from tensorflow.python.platform import tf_logging as logging try: import h5py # pylint:disable=g-import-not-at-top except ImportError: h5py = None @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class TestWeightSavingAndLoading(tf.test.TestCase, parameterized.TestCase): @keras_parameterized.run_with_all_weight_formats def test_weight_loading(self): temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) saved_model_dir = os.path.join(temp_dir, 'saved_model') save_format = testing_utils.get_save_format() with self.cached_session(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3)(a) b = keras.layers.Dense(1)(x) model = keras.models.Model(a, b) x = np.random.random((3, 2)) ref_y = model.predict(x) weights = model.get_weights() model.set_weights(weights) y = model.predict(x) self.assertAllClose(ref_y, y) with self.assertRaises(ValueError): model.set_weights(weights[1:]) with self.assertRaises(ValueError): model.set_weights(weights[::-1]) model.save_weights(saved_model_dir, save_format=save_format) model.load_weights(saved_model_dir) y = model.predict(x) self.assertAllClose(ref_y, y) def test_weight_preprocessing(self): input_dim = 3 output_dim = 3 size = 2 cases = [ [ (keras.layers.Bidirectional(keras.layers.SimpleRNN(2))), [np.random.random((2, 1)), np.random.random((2, 1))], (None, 3, 2), ], [ (keras.layers.TimeDistributed(keras.layers.Dense(1))), [np.random.random((2, 1)), np.random.random((1,))], (None, 3, 2), ], [ (keras.layers.Conv1D(output_dim, size, use_bias=False)), [np.random.random((output_dim, input_dim, size, 1))], (None, 4, input_dim), ], [ (keras.layers.Conv2D(output_dim, size, use_bias=False, data_format='channels_first')), [np.random.random((output_dim, input_dim, size, size))], (None, input_dim, 4, 4), ], [ (keras.layers.Conv2DTranspose(output_dim, size, use_bias=False, data_format='channels_first')), [np.random.random((output_dim, input_dim, size, size))], (None, input_dim, 4, 4), ], [ (keras.layers.Conv2DTranspose(output_dim, size, use_bias=False, data_format='channels_last')), [np.random.random((size, size, input_dim, output_dim))], (None, 4, 4, input_dim), ], [ (keras.layers.Conv3D(output_dim, size, use_bias=False, data_format='channels_first')), [np.random.random((output_dim, input_dim, size, size, size))], (None, input_dim, 4, 4, 4), ], [ (keras.layers.GRUV1(output_dim)), [np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,)), np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,)), np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,))], (None, 4, input_dim), ], [ (keras.layers.LSTMV1(output_dim)), [np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,)), np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,)), np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,)), np.random.random((input_dim, output_dim)), np.random.random((output_dim, output_dim)), np.random.random((output_dim,))], (None, 4, input_dim), ], ] for layer, weights, input_shape in cases: layer.build(input_shape) _ = hdf5_format.preprocess_weights_for_loading( layer, weights, original_keras_version='1') model = keras.models.Sequential([keras.layers.Dense(2, input_dim=2)]) _ = hdf5_format.preprocess_weights_for_loading( model, model.weights, original_keras_version='1') x = keras.Input((2,)) y = keras.layers.Dense(2)(x) model = keras.models.Model(x, y) _ = hdf5_format.preprocess_weights_for_loading( model, model.weights, original_keras_version='1') @parameterized.named_parameters( ('gru', keras.layers.GRU, { 'units': 2, 'input_shape': (3, 5) }), ('gru_with_reset_after', keras.layers.GRU, { 'units': 2, 'input_shape': (3, 5), 'reset_after': True }), ('lstm', keras.layers.LSTM, { 'units': 2, 'input_shape': (3, 5) }), ('cudnngru', keras.layers.CuDNNGRU, { 'units': 2, 'input_shape': (3, 5) }), ('cudnnlstm', keras.layers.CuDNNLSTM, { 'units': 2, 'input_shape': (3, 5) })) def test_preprocess_weights_for_loading_rnn_should_be_idempotent( self, layer_class, layer_args): with self.cached_session(): layer = layer_class(**layer_args) layer.build(input_shape=layer_args.get('input_shape')) weights1 = layer.get_weights() weights2 = hdf5_format.preprocess_weights_for_loading( layer, weights1) _ = [ self.assertAllClose(x, y, rtol=1e-05) for (x, y) in zip(weights1, weights2) ] def test_sequential_weight_loading(self): if h5py is None: return temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) h5_path = os.path.join(temp_dir, 'test.h5') num_hidden = 5 input_dim = 3 batch_size = 5 num_classes = 2 with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) model.add(keras.layers.Dense(num_classes)) x = np.random.random((batch_size, input_dim)) ref_y = model.predict(x) model.save_weights(h5_path) model = keras.models.Sequential() model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) model.add(keras.layers.Dense(num_classes)) model.load_weights(h5_path) y = model.predict(x) self.assertAllClose(y, ref_y) @keras_parameterized.run_with_all_saved_model_formats def test_nested_model_weight_loading(self): save_format = testing_utils.get_save_format() temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) saved_model_dir = os.path.join(temp_dir, 'saved_model') batch_size = 5 shape = (None, None, 3) with self.cached_session(): def gen_model(): def seq_model(): model = keras.models.Sequential([ keras.layers.Conv2D(3, 1, input_shape=shape), keras.layers.BatchNormalization()]) return model x = inner_inputs = keras.layers.Input((None, None, 3)) x = seq_model()(x) x = seq_model()(x) inner_model = keras.models.Model(inner_inputs, x) inputs = keras.layers.Input(shape) return keras.models.Model(inputs, inner_model(inputs)) model = gen_model() x = np.random.random((batch_size, 1, 1, 3)) ref_y = model.predict(x) model.save_weights(saved_model_dir, save_format=save_format) model = gen_model() model.load_weights(saved_model_dir) y = model.predict(x) self.assertAllClose(y, ref_y) def test_sequential_weight_loading_group_name_with_incorrect_length(self): if h5py is None: return temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) h5_path = os.path.join(temp_dir, 'test.h5') num_hidden = 5 input_dim = 3 num_classes = 2 with self.cached_session(): ref_model = keras.models.Sequential() ref_model.add(keras.layers.Dense(num_hidden, input_dim=input_dim, name='d1')) ref_model.add(keras.layers.Dense(num_classes, name='d2')) ref_model.compile(loss=keras.losses.MSE, optimizer='rmsprop', metrics=[keras.metrics.categorical_accuracy]) f_ref_model = h5py.File(h5_path, 'w') hdf5_format.save_weights_to_hdf5_group(f_ref_model, ref_model.layers) f_model = h5py.File(h5_path, 'r') model = keras.models.Sequential() model.add(keras.layers.Dense(num_hidden, use_bias=False, input_dim=input_dim, name='d1')) model.add(keras.layers.Dense(num_classes, name='d2')) model.compile(loss=keras.losses.MSE, optimizer='rmsprop', metrics=[keras.metrics.categorical_accuracy]) with self.assertRaisesRegex( ValueError, r'Layer #0 \(named \"d1\"\) expects 1 ' r'weight\(s\), but the saved weights have 2 ' r'element\(s\)\.'): hdf5_format.load_weights_from_hdf5_group_by_name(f_model, model.layers) hdf5_format.load_weights_from_hdf5_group_by_name( f_model, model.layers, skip_mismatch=True) self.assertAllClose(keras.backend.get_value(ref_model.layers[1].kernel), keras.backend.get_value(model.layers[1].kernel)) def test_sequential_weight_loading_group_name_with_incorrect_shape(self): if h5py is None: return temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) h5_path = os.path.join(temp_dir, 'test.h5') num_hidden = 5 input_dim = 3 num_classes = 2 with tf.Graph().as_default(), self.cached_session(): ref_model = keras.models.Sequential() ref_model.add(keras.layers.Dense(num_hidden, input_dim=input_dim, name='d1')) ref_model.add(keras.layers.Dense(num_classes, name='d2')) ref_model.compile(loss=keras.losses.MSE, optimizer=optimizer_v1.RMSprop(lr=0.0001), metrics=[keras.metrics.categorical_accuracy]) f_ref_model = h5py.File(h5_path, 'w') keras.backend.set_value(ref_model.layers[1].bias, [3.5] * num_classes) hdf5_format.save_weights_to_hdf5_group(f_ref_model, ref_model.layers) f_model = h5py.File(h5_path, 'r') model = keras.models.Sequential() model.add(keras.layers.Dense(num_hidden + 5, input_dim=input_dim, name='d1')) model.add(keras.layers.Dense(num_classes, name='d2')) model.compile(loss=keras.losses.MSE, optimizer=optimizer_v1.RMSprop(lr=0.0001), metrics=[keras.metrics.categorical_accuracy]) with self.assertRaisesRegex( ValueError, r'Layer #0 \(named "d1"\), weight ' r'<tf\.Variable \'d1_1\/kernel:0\' ' r'shape=\(3, 10\) dtype=float32> has ' r'shape \(3, 10\), but the saved weight has ' r'shape \(3, 5\)\.'): hdf5_format.load_weights_from_hdf5_group_by_name(f_model, model.layers) hdf5_format.load_weights_from_hdf5_group_by_name( f_model, model.layers, skip_mismatch=True) self.assertAllClose([3.5] * num_classes, keras.backend.get_value(model.layers[1].bias)) @keras_parameterized.run_with_all_saved_model_formats class TestWholeModelSaving(keras_parameterized.TestCase): def _save_model_dir(self, dirname='saved_model'): temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) return os.path.join(temp_dir, dirname) def _assert_same_weights_and_metrics(self, model, loaded_model): """Checks that the loaded weights and metrics are the same as the original. Args: model: original model loaded_model: loaded model """ self.assertAllClose(model.weights, loaded_model.weights) if loaded_model.optimizer: if testing_utils.get_save_format() == 'tf': # TODO(b/153110928): Keras TF format doesn't restore optimizer weights # currently. return self.assertAllClose(model.optimizer.weights, loaded_model.optimizer.weights) # In V1/Graph mode, the model isn't built, so the metrics are not loaded # immediately (requires model to be called on some data before building # metrics). check_metrics = tf.__internal__.tf2.enabled() and tf.executing_eagerly() if check_metrics: self.assertAllEqual([m.name for m in model.metrics], [m.name for m in loaded_model.metrics]) @keras_parameterized.run_with_all_model_types @keras_parameterized.run_all_keras_modes def test_save_and_load(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() save_kwargs = testing_utils.get_save_kwargs() if ((save_format == 'h5' or not save_kwargs.get('save_traces', True)) and testing_utils.get_model_type() == 'subclass'): # HDF5 format currently does not allow saving subclassed models. # When saving with `save_traces=False`, the subclassed model must have a # get_config/from_config, which the autogenerated model does not have. return with self.cached_session(): model = testing_utils.get_model_from_layers( [keras.layers.Dense(2), keras.layers.RepeatVector(3), keras.layers.TimeDistributed(keras.layers.Dense(3))], input_shape=(3,)) model.compile( loss=keras.losses.MSE, optimizer=keras.optimizer_v2.rmsprop.RMSprop(lr=0.0001), metrics=[ keras.metrics.categorical_accuracy, keras.metrics.CategoricalCrossentropy( name='cce', label_smoothing=tf.constant(0.2)), ], weighted_metrics=[ keras.metrics.categorical_crossentropy, keras.metrics.CategoricalCrossentropy( name='cce', label_smoothing=tf.constant(0.2)), ], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) keras.models.save_model( model, saved_model_dir, save_format=save_format, **save_kwargs) loaded_model = keras.models.load_model(saved_model_dir) self._assert_same_weights_and_metrics(model, loaded_model) out2 = loaded_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) eval_out = model.evaluate(x, y) eval_out2 = loaded_model.evaluate(x, y) self.assertArrayNear(eval_out, eval_out2, 0.001) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_sequential_model_saving_without_input_shape(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(2)) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) model.compile( loss=keras.losses.MSE, optimizer='rmsprop', metrics=[ keras.metrics.categorical_accuracy, keras.metrics.CategoricalAccuracy(name='cat_acc') ], weighted_metrics=[ keras.metrics.categorical_accuracy, keras.metrics.CategoricalAccuracy(name='cat_acc2') ], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) model.save(saved_model_dir, save_format=save_format) new_model = keras.models.load_model(saved_model_dir) self._assert_same_weights_and_metrics(model, new_model) out2 = new_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_sequential_model_saving_without_compile(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) x = np.random.random((1, 3)) out = model.predict(x) # Save the model without any compilation or training. keras.models.save_model(model, saved_model_dir, save_format=save_format) new_model = keras.models.load_model(saved_model_dir) self._assert_same_weights_and_metrics(model, new_model) out2 = new_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) def test_sequential_model_saving_2(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with tf.Graph().as_default(), self.cached_session(): # test with custom optimizer, loss class CustomOp(optimizer_v1.RMSprop): pass def custom_loss(y_true, y_pred): return keras.losses.mse(y_true, y_pred) model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss=custom_loss, optimizer=CustomOp(), metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) keras.models.save_model(model, saved_model_dir, save_format=save_format) new_model = keras.models.load_model( saved_model_dir, custom_objects={'CustomOp': CustomOp, 'custom_loss': custom_loss}) self._assert_same_weights_and_metrics(model, new_model) out2 = new_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) def test_saving_without_compilation(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) def test_saving_with_tf_optimizer(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer=tf.compat.v1.train.AdadeltaOptimizer(0.1), metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) def test_saving_right_after_compilation(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) if not tf.compat.v1.executing_eagerly_outside_functions(): model._make_train_function() keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) def test_saving_lambda_numpy_array_arguments(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() if h5py is None: self.skipTest('h5py required to run this test') mean = np.random.random((4, 2, 3)) std = np.abs(np.random.random((4, 2, 3))) + 1e-5 inputs = keras.layers.Input(shape=(4, 2, 3)) output = keras.layers.Lambda(lambda image, mu, std: (image - mu) / std, arguments={'mu': mean, 'std': std})(inputs) model = keras.models.Model(inputs, output) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) self.assertAllClose(mean, model.layers[1].arguments['mu']) self.assertAllClose(std, model.layers[1].arguments['std']) def test_saving_model_with_long_layer_names(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): # This layer name will make the `layers_name` HDF5 attribute blow # out of proportion. Note that it fits into the internal HDF5 # attribute memory limit on its own but because h5py converts # the list of layer names into numpy array, which uses the same # amount of memory for every item, it increases the memory # requirements substantially. x = keras.Input(shape=(2,), name='input_' + ('x' * (2**15))) f = x for i in range(4): f = keras.layers.Dense(2, name='dense_%d' % (i,))(f) model = keras.Model(inputs=[x], outputs=[f]) model.compile( 'adam', loss=keras.losses.MeanSquaredError(), metrics=['acc']) x = np.random.random((1, 2)) y = np.random.random((1, 2)) model.train_on_batch(x, y) out = model.predict(x) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) if save_format in ['tf', 'tensorflow']: return # Check that the HDF5 files contains chunked array # of layer names. with h5py.File(saved_model_dir, 'r') as h5file: num_names_arrays = len([attr for attr in h5file['model_weights'].attrs if attr.startswith('layer_names')]) # The chunking of layer names array should have happened. self.assertGreater(num_names_arrays, 0) out2 = model.predict(x) self.assertAllClose(out, out2, atol=1e-05) def test_saving_model_with_long_weights_names(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): x = keras.Input(shape=(2,), name='nested_model_input') f = x for i in range(4): f = keras.layers.Dense(2, name='nested_model_dense_%d' % (i,))(f) # This layer name will make the `weights_name` # HDF5 attribute blow out of proportion. f = keras.layers.Dense(2, name='nested_model_output' + ('x' * (2**14)))(f) nested_model = keras.Model(inputs=[x], outputs=[f], name='nested_model') x = keras.Input(shape=(2,), name='outer_model_input') f = nested_model(x) f = keras.layers.Dense(2, name='outer_model_output')(f) model = keras.Model(inputs=[x], outputs=[f]) model.compile(loss='mse', optimizer='adam', metrics=['acc']) x = np.random.random((1, 2)) y = np.random.random((1, 2)) model.train_on_batch(x, y) out = model.predict(x) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) if save_format in ['h5', 'hdf5', 'keras']: # Check that the HDF5 files contains chunked array # of weight names. with h5py.File(saved_model_dir, 'r') as h5file: num_weight_arrays = len( [attr for attr in h5file['model_weights']['nested_model'].attrs if attr.startswith('weight_names')]) # The chunking of layer names array should have happened. self.assertGreater(num_weight_arrays, 0) out2 = model.predict(x) self.assertAllClose(out, out2, atol=1e-05) def test_model_saving_to_pre_created_h5py_file(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with tf.Graph().as_default(), self.cached_session(): inputs = keras.Input(shape=(3,)) x = keras.layers.Dense(2)(inputs) outputs = keras.layers.Dense(3)(x) model = keras.Model(inputs, outputs) model.compile( loss=keras.losses.MSE, optimizer=optimizer_v1.Adam(), metrics=[ keras.metrics.categorical_accuracy, keras.metrics.CategoricalAccuracy() ]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) keras.models.save_model(model, saved_model_dir, save_format=save_format) loaded_model = keras.models.load_model(saved_model_dir) out1 = loaded_model.predict(x) self.assertAllClose(out, out1, atol=1e-05) if save_format in ['tf', 'tensorflow']: return # Test h5 format specifically fd, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: keras.models.save_model(model, h5file) loaded_model = keras.models.load_model(h5file) out2 = loaded_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) # Test non-default options in h5 with h5py.File('_', driver='core', backing_store=False) as h5file: keras.models.save_model(model, h5file) loaded_model = keras.models.load_model(h5file) out2 = loaded_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) # Cleanup os.close(fd) os.remove(fname) def test_model_saving_to_new_dir_path(self): saved_model_dir = os.path.join(self._save_model_dir(), 'newdir', 'saved_model') save_format = testing_utils.get_save_format() with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) x = np.random.random((1, 3)) out = model.predict(x) keras.models.save_model(model, saved_model_dir, save_format=save_format) new_model = keras.models.load_model(saved_model_dir) self._assert_same_weights_and_metrics(model, new_model) out2 = new_model.predict(x) self.assertAllClose(out, out2, atol=1e-05) def test_model_raise_exception_with_failed_saving(self): if h5py is None: self.skipTest('h5py required to run this test') saved_model_dir = self._save_model_dir() saved_model_path = os.path.join(saved_model_dir, 'saved_model.h5') with self.cached_session(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.RepeatVector(3)) model.add(keras.layers.TimeDistributed(keras.layers.Dense(3))) with self.assertRaisesRegex(OSError, 'Unable to create file'): with h5py.File(saved_model_path, 'w'): keras.models.save_model(model, saved_model_path) def test_saving_constant_initializer_with_numpy(self): saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() model = keras.models.Sequential() model.add( keras.layers.Dense( 2, input_shape=(3,), kernel_initializer=keras.initializers.Constant(np.ones((3, 2))))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) def test_saving_group_naming_h5py(self): # Test saving model with layer which name is prefix to a previous layer # name. temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) h5_path = os.path.join(temp_dir, 'test.h5') input_layer = keras.layers.Input((None, None, 3), name='test_input') x = keras.layers.Conv2D(1, 1, name='conv1/conv')(input_layer) x = keras.layers.Activation('relu', name='conv1')(x) model = keras.models.Model(inputs=input_layer, outputs=x) model.save_weights(h5_path) model.load_weights(h5_path) def test_primitive_attrs_contain_no_extraneous_strings(self): if h5py is None: self.skipTest('h5py required to run this test') saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() model = keras.models.Sequential() model.add(keras.layers.Dense(1, input_shape=[2])) model.save(saved_model_dir, save_format=save_format) if save_format in ['tf', 'tensorflow']: return h5file = h5py.File(saved_model_dir, 'r') self.assertRegex(h5file.attrs['keras_version'], r'^[\d]+\.[\d]+\.[\S]+$') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_functional_model_with_custom_loss_and_metric(self): def _make_model(): inputs = keras.Input(shape=(4,)) x = keras.layers.Dense(8, activation='relu')(inputs) outputs = keras.layers.Dense(3, activation='softmax')(x) model = keras.Model(inputs=inputs, outputs=outputs) custom_loss = keras.layers.Lambda(lambda x: keras.backend.sum(x * x))(x) model.add_loss(custom_loss) model.add_metric(custom_loss, aggregation='mean', name='custom_loss') return model saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() with self.cached_session(): model = _make_model() model.compile( loss=keras.losses.SparseCategoricalCrossentropy(), optimizer=optimizers.gradient_descent_v2.SGD(), metrics=[keras.metrics.SparseCategoricalCrossentropy()]) x = np.random.normal(size=(32, 4)) y = np.random.randint(0, 3, size=32) model.train_on_batch(x, y) evaluation_results = model.evaluate(x, y) # Save and reload model. model.save(saved_model_dir, save_format=save_format) del model # Prevent misuse. loaded_model = keras.models.load_model(saved_model_dir) loaded_model_eval_results = loaded_model.evaluate(x, y) # Assert all evaluation results are the same. self.assertAllClose(evaluation_results, loaded_model_eval_results, 1e-9) # Check correctness of the loss calculation. self.assertAllGreater(evaluation_results, 0.) evaluation_results = dict( zip(loaded_model.metrics_names, evaluation_results)) self.assertNear( evaluation_results['sparse_categorical_crossentropy'] + evaluation_results['custom_loss'], evaluation_results['loss'], 1e-6) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_save_uncompiled_model_with_optimizer(self): with self.cached_session() as session: saved_model_dir = self._save_model_dir() save_format = testing_utils.get_save_format() model = keras.models.Sequential([keras.layers.Dense(1, input_shape=(3,))]) # Set the model's optimizer but don't compile. This can happen if the # model is trained with a custom training loop. model.optimizer = keras.optimizer_v2.rmsprop.RMSprop(lr=0.0001) if not tf.executing_eagerly(): session.run([v.initializer for v in model.variables]) model.save(saved_model_dir, save_format=save_format) if save_format in ['tf', 'tensorflow']: loaded = keras.models.load_model(saved_model_dir) self.assertIsInstance(loaded.optimizer, keras.optimizer_v2.optimizer_v2.OptimizerV2) @combinations.generate(combinations.combine(mode=['eager'])) def test_functional_model_with_getitem_op_layer(self): inp = keras.Input(shape=(8)) out = inp[:] model = keras.Model( inputs=[inp], outputs=out) batch_size = 7 x = tf.stack([ tf.range(8) for _ in range(batch_size)]) args = [x] expected = x[:] self.assertAllEqual(model(args), expected) self.assertAllEqual(model.predict(args, batch_size=batch_size), expected) # Make sure it can be successfully saved and loaded save_format = testing_utils.get_save_format() saved_model_dir = self._save_model_dir() keras.models.save_model(model, saved_model_dir, save_format=save_format) loaded_model = keras.models.load_model(saved_model_dir) self.assertAllEqual(loaded_model(args), expected) self.assertAllEqual(loaded_model.predict(args, batch_size=batch_size), expected) # Factory functions to create models that will be serialized inside a Network. def _make_graph_network(input_size, output_size): inputs = keras.Input(input_size) x = keras.layers.Dense(8, activation='relu')(inputs) y = keras.layers.Dense(output_size)(x) return keras.Model(inputs=inputs, outputs=y) def _make_sequential(input_size, output_size): del input_size return keras.Sequential([ keras.layers.Dense(8, activation='relu'), keras.layers.Dense(output_size), ]) def _make_sequential_built(input_size, output_size): model = _make_sequential(input_size, output_size) model.build((None, input_size)) return model def _make_sequential_graph_network(input_size, output_size): return keras.Sequential([ keras.layers.InputLayer(input_size), keras.layers.Dense(8, activation='relu'), keras.layers.Dense(output_size), ]) def _make_sequential_input_shape(input_size, output_size): return keras.Sequential([ keras.layers.Dense(8, activation='relu', input_shape=(input_size,)), keras.layers.Dense(output_size), ]) class _make_subclassed(keras.Model): # pylint: disable=invalid-name def __init__(self, input_size, output_size): super(_make_subclassed, self).__init__() self._config = {'input_size': input_size, 'output_size': output_size} self._hidden_layer = keras.layers.Dense(8, activation='relu', name='hidden') self._logits_layer = keras.layers.Dense(output_size, name='logits') def call(self, inputs): x = self._hidden_layer(inputs) return self._logits_layer(x) def get_config(self): return self._config @classmethod def from_config(cls, config): return cls(**config) class _make_subclassed_built(_make_subclassed): # pylint: disable=invalid-name def __init__(self, input_size, output_size): super(_make_subclassed_built, self).__init__(input_size, output_size) self.build((None, input_size)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class TestWholeModelSavingWithNesting(tf.test.TestCase, parameterized.TestCase): """Tests saving a whole model that contains other models.""" @parameterized.named_parameters([ ('graph_network', _make_graph_network), ('sequential', _make_sequential), ('sequential_built', _make_sequential_built), ('sequential_graph_network', _make_sequential_graph_network), ('sequential_input_shape', _make_sequential_input_shape), ('subclassed', _make_subclassed), ('subclassed_built', _make_subclassed_built), ]) def test_functional(self, model_fn): """Tests serializing a model that uses a nested model to share weights.""" if h5py is None: self.skipTest('h5py required to run this test') def _make_model(): inputs = (keras.Input(shape=(4,), name='examples'), keras.Input(shape=(4,), name='neighbors')) base_model = model_fn(inputs[0].shape.as_list()[-1], 2) outputs = keras.layers.add([base_model(inputs[0]), base_model(inputs[1])]) return keras.Model(inputs=inputs, outputs=outputs) with self.cached_session(): x = (np.random.normal(size=(16, 4)).astype(np.float32), np.random.normal(size=(16, 4)).astype(np.float32)) model = _make_model() predictions = model(x) # Save and reload. model_path = os.path.join(self.get_temp_dir(), 'model.h5') model.save(model_path) del model loaded_model = keras.models.load_model( model_path, custom_objects={ '_make_subclassed': _make_subclassed, '_make_subclassed_built': _make_subclassed_built, }, compile=False) self.assertAllClose(loaded_model(x), predictions, 1e-9) class SubclassedModel(training.Model): def __init__(self): super(SubclassedModel, self).__init__() self.x_layer = keras.layers.Dense(3) self.b_layer = keras.layers.Dense(1) def call(self, a): return self.b_layer(self.x_layer(a)) class TestWeightSavingAndLoadingTFFormat(tf.test.TestCase, parameterized.TestCase): def test_keras_optimizer_warning(self): graph = tf.Graph() with graph.as_default(), self.session(graph): model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer=optimizer_v1.Adam(), metrics=['acc']) if not tf.compat.v1.executing_eagerly_outside_functions(): model._make_train_function() temp_dir = self.get_temp_dir() prefix = os.path.join(temp_dir, 'ckpt') with tf.compat.v1.test.mock.patch.object(logging, 'warning') as mock_log: model.save_weights(prefix) self.assertRegex(str(mock_log.call_args), 'Keras optimizer') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_tensorflow_format_overwrite(self): with self.cached_session() as session: model = SubclassedModel() temp_dir = self.get_temp_dir() prefix = os.path.join(temp_dir, 'ckpt') x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) executing_eagerly = tf.executing_eagerly() model(x) # pylint: disable=not-callable if not executing_eagerly: session.run([v.initializer for v in model.variables]) model.save_weights(prefix, save_format='tensorflow') model.save_weights(prefix, save_format='tensorflow', overwrite=True) with self.assertRaises(EOFError): # Indirectly tests that the user is prompted model.save_weights(prefix, save_format='tensorflow', overwrite=False) def test_no_default_session(self): with tf.Graph().as_default(): self.assertFalse(tf.compat.v1.get_default_session()) data = np.random.random((1000, 32)).astype(np.float32) labels = np.random.random((1000, 10)).astype(np.float32) model = keras.models.Sequential([ keras.layers.Dense(10, activation='softmax'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer=tf.compat.v1.train.RMSPropOptimizer(0.001), loss='categorical_crossentropy', metrics=['accuracy']) model.fit(data, labels) fname = os.path.join(self.get_temp_dir(), 'weights', 'ckpt') model.save_weights(fname) model.load_weights(fname) def test_no_graph_pollution(self): with tf.compat.v1.get_default_graph().as_default(): graph = tf.Graph() with graph.as_default(), self.session(graph) as session: model = SubclassedModel() temp_dir = self.get_temp_dir() prefix = os.path.join(temp_dir, 'ckpt') x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) model(x) # pylint: disable=not-callable session.run([v.initializer for v in model.variables]) model.save_weights(prefix, save_format='tensorflow') op_count = len(graph.get_operations()) model.save_weights(prefix, save_format='tensorflow') self.assertLen(graph.get_operations(), op_count) model.load_weights(prefix) op_count = len(graph.get_operations()) model.load_weights(prefix) self.assertLen(graph.get_operations(), op_count) def _weight_loading_test_template(self, make_model_fn): with self.cached_session(): model = make_model_fn() model.compile( loss='mse', optimizer=tf.compat.v1.train.RMSPropOptimizer(0.1), metrics=['acc', keras.metrics.CategoricalAccuracy()]) temp_dir = self.get_temp_dir() prefix = os.path.join(temp_dir, 'ckpt') train_x = np.random.random((3, 2)) train_y = np.random.random((3,)) x = tf.constant(train_x, dtype=tf.float32) model.train_on_batch(train_x, train_y) model.save_weights(prefix, save_format='tf') ref_y_before_train = model.predict(train_x) model.train_on_batch(train_x, train_y) ref_y_after_train = model.predict(train_x) for v in model.variables: self.evaluate( v.assign(tf.random.normal(shape=tf.compat.v1.shape(v)))) self.addCleanup(shutil.rmtree, temp_dir) model.load_weights(prefix) self.assertAllClose(ref_y_before_train, self.evaluate(model(x))) # Test restore-on-create if this is a subclassed Model (graph Networks # will have already created their variables). load_model = make_model_fn() load_model.load_weights(prefix) self.assertAllClose( ref_y_before_train, self.evaluate(load_model(x))) load_model = make_model_fn() load_model.load_weights(prefix) # We need to run some of the restore ops for predict(), but not all # variables have been created yet (optimizer slot variables). Tests # incremental restore. load_model.predict(train_x) load_model.compile( loss='mse', optimizer=tf.compat.v1.train.RMSPropOptimizer(0.1), metrics=['acc', keras.metrics.CategoricalAccuracy()]) load_model.train_on_batch(train_x, train_y) self.assertAllClose(ref_y_after_train, self.evaluate(load_model(x))) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weight_loading_graph_model(self): def _make_graph_model(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3)(a) b = keras.layers.Dense(1)(x) return keras.models.Model(a, b) self._weight_loading_test_template(_make_graph_model) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weight_loading_subclassed_model(self): self._weight_loading_test_template(SubclassedModel) def _new_layer_weight_loading_test_template( self, first_model_fn, second_model_fn): with self.cached_session() as session: model = first_model_fn() temp_dir = self.get_temp_dir() prefix = os.path.join(temp_dir, 'ckpt') x = tf.constant(np.random.random((3, 2)), dtype=tf.float32) executing_eagerly = tf.executing_eagerly() ref_y_tensor = model(x) if not executing_eagerly: session.run([v.initializer for v in model.variables]) ref_y = self.evaluate(ref_y_tensor) model.save_weights(prefix) self.assertEqual( prefix, tf.train.latest_checkpoint(temp_dir)) for v in model.variables: self.evaluate( v.assign(tf.random.normal(shape=tf.compat.v1.shape(v)))) self.addCleanup(shutil.rmtree, temp_dir) second_model = second_model_fn() status = second_model.load_weights(prefix) second_model(x) status.run_restore_ops() second_model.save_weights(prefix) # Check that the second model's checkpoint loads into the original model status = model.load_weights(prefix) status.run_restore_ops(session) y = self.evaluate(model(x)) self.assertAllClose(ref_y, y) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weight_loading_graph_model_added_layer(self): def _save_graph_model(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3, name='first')(a) b = keras.layers.Dense(1, name='second')(x) return keras.models.Model(a, b) def _restore_graph_model(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3, name='first')(a) y = keras.layers.Dense(1, name='second')(x) b = keras.layers.Dense(3, name='secondjr')(y) return keras.models.Model(a, b) self._new_layer_weight_loading_test_template( _save_graph_model, _restore_graph_model) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weight_loading_graph_model_added_no_weight_layer(self): def _save_graph_model(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3, name='first')(a) b = keras.layers.Dense(1, name='second')(x) return keras.models.Model(a, b) def _restore_graph_model(): a = keras.layers.Input(shape=(2,)) x = keras.layers.Dense(3, name='first')(a) b = keras.layers.Dense(1, name='second')(x) y = keras.layers.Dropout(rate=0.1)(b) return keras.models.Model(a, y) self._new_layer_weight_loading_test_template( _save_graph_model, _restore_graph_model) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weight_loading_subclassed_model_added_layer(self): class SubclassedModelRestore(training.Model): def __init__(self): super(SubclassedModelRestore, self).__init__() self.x_layer = keras.layers.Dense(3) self.y_layer = keras.layers.Dense(3) self.b_layer = keras.layers.Dense(1) def call(self, a): return self.b_layer(self.y_layer(self.x_layer(a))) self._new_layer_weight_loading_test_template( SubclassedModel, SubclassedModelRestore) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_incompatible_checkpoint(self): save_path = tf.train.Checkpoint().save( os.path.join(self.get_temp_dir(), 'ckpt')) m = DummySubclassModel() with self.assertRaisesRegex(AssertionError, 'Nothing to load'): m.load_weights(save_path) m.dense = keras.layers.Dense(2) m.dense(tf.constant([[1.]])) with self.assertRaisesRegex(AssertionError, 'Nothing except the root object matched'): m.load_weights(save_path) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_directory_passed(self): with self.cached_session(): m = DummySubclassModel() v = m.add_weight(name='v', shape=[]) self.evaluate(v.assign(42.)) prefix = os.path.join(self.get_temp_dir(), str(uuid.uuid4()), 'ckpt/') m.save_weights(prefix) self.evaluate(v.assign(2.)) m.load_weights(prefix) self.assertEqual(42., self.evaluate(v)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_relative_path(self): with self.cached_session(): m = DummySubclassModel() v = m.add_weight(name='v', shape=[]) os.chdir(self.get_temp_dir()) prefix = 'ackpt' self.evaluate(v.assign(42.)) m.save_weights(prefix) self.assertTrue(tf.io.gfile.exists('ackpt.index')) self.evaluate(v.assign(1.)) m.load_weights(prefix) self.assertEqual(42., self.evaluate(v)) prefix = 'subdir/ackpt' self.evaluate(v.assign(43.)) m.save_weights(prefix) self.assertTrue(tf.io.gfile.exists('subdir/ackpt.index')) self.evaluate(v.assign(2.)) m.load_weights(prefix) self.assertEqual(43., self.evaluate(v)) prefix = 'ackpt/' self.evaluate(v.assign(44.)) m.save_weights(prefix) self.assertTrue(tf.io.gfile.exists('ackpt/.index')) self.evaluate(v.assign(3.)) m.load_weights(prefix) self.assertEqual(44., self.evaluate(v)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_nonexistent_prefix_directory(self): with self.cached_session(): m = DummySubclassModel() v = m.add_weight(name='v', shape=[]) self.evaluate(v.assign(42.)) prefix = os.path.join(self.get_temp_dir(), str(uuid.uuid4()), 'bckpt') m.save_weights(prefix) self.evaluate(v.assign(2.)) m.load_weights(prefix) self.assertEqual(42., self.evaluate(v)) class DummySubclassModel(training.Model): pass if __name__ == '__main__': tf.test.main()
3260f0ce1743644f26570bb37c68426cfd12dafb
4aa1452b8265d79dc50959829fb78f3a1ea91242
/tools/preproc_image.py
57da7bc92358008b18d243a3485de857d32fb7cf
[ "Apache-2.0" ]
permissive
rupeshs/mxnet.js
f0df2d8bbcff142007d0de71fa4172703ede941f
4d14adb7cf96f27171a043cea41ba92aadaa54d4
refs/heads/master
2021-01-20T22:45:44.818524
2016-02-23T03:10:32
2016-02-23T03:10:32
52,325,430
2
0
null
2016-02-23T03:05:07
2016-02-23T03:05:07
null
UTF-8
Python
false
false
1,407
py
import sys, os curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) sys.path.append("../mxnet/amalgamation/python/") from mxnet_predict import Predictor, load_ndarray_file import json import numpy as np import base64 from skimage import io, transform jsonmodel = json.loads(open('inception-bn-model.json').read()) mean_img = load_ndarray_file(base64.b64decode(jsonmodel['meanimgbase64']))["mean_img"] def PreprocessImage(path): # load image img = io.imread(path) print("Original Image Shape: ", img.shape) # we crop image from center short_egde = min(img.shape[:2]) yy = int((img.shape[0] - short_egde) / 2) xx = int((img.shape[1] - short_egde) / 2) crop_img = img[yy : yy + short_egde, xx : xx + short_egde] # resize to 224, 224 resized_img = transform.resize(crop_img, (224, 224)) # convert to numpy.ndarray sample = np.asarray(resized_img) * 255 # swap axes to make image from (224, 224, 3) to (3, 224, 224) sample = np.swapaxes(sample, 0, 2) sample = np.swapaxes(sample, 1, 2) # sub mean normed_img = sample - mean_img normed_img.resize(1, 3, 224, 224) return normed_img batch = PreprocessImage('./cat.png') batch = batch.astype('float32') buf = np.getbuffer(batch) data = base64.b64encode(bytes(buf)) with open('cat.base64.json', 'w') as fo: fo.write('\"') fo.write(data) fo.write('\"')
2fd530a147fafb3b869f547f8ae2929f0d243d95
21540ab033e180a3d94b270b7faffac7fe4af68f
/wordshop3/Project_01-11_page_99-101/Project_02.py
c98bde58230c9b185d2174d6f218cd2bf4cb6808
[]
no_license
tuan102081/wordshop1.2.3.5
eaa344bdb04f565d1354b9476b4d4ecafc5cc7f3
70e75b56f48a2e5b1622d956f33831f80e64d368
refs/heads/master
2023-07-14T23:26:31.089484
2021-08-30T18:53:24
2021-08-30T18:53:24
401,411,439
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
""" Author: Nguyen Duy Tuan Date: 30/08/2021 Program: Project_02.py Problem: Write a program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle. Recall from the Pythagorean theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides. Solution: Display result: Enter the lengths of three sides of a triangle: Edge A = 7 Edge B = 6 Edge C = 6 Not a right triangle """ print("Enter the lengths of three sides of a triangle: ") a = int(input("Edge A = ")) b = int(input("Edge B = ")) c = int(input("Edge C = ")) if a + b > c and b + c > a and a + c > b: if pow(a, 2) == pow(b, 2) + pow(c, 2) or pow(b, 2) == pow(a, 2) + pow(c, 2) or pow(c, 2) == pow(b, 2) + pow(a, 2): print("Is a right triangle") else: print("Not a right triangle") else: print("Not a triangle")
15d0a325c46205e61ea0058d4a32e90c63743725
7374204324f6326663d12b3dd1fecc5bebb6854e
/top100/416.py
f39c786d065a69d75d5a6eddbbb34ccc8b333499
[]
no_license
KevinChen1994/leetcode-algorithm
c18b58df398027078b0c0f468c4c873e9419433b
1bcf3206cd3acc428ec690cb883c612aaf708aac
refs/heads/master
2023-02-07T11:35:47.747207
2023-01-29T11:08:49
2023-01-29T11:08:49
230,386,123
2
0
null
null
null
null
UTF-8
Python
false
false
4,093
py
# !usr/bin/env python # -*- coding:utf-8 _*- # author:chenmeng # datetime:2020/5/15 15:29 ''' solution1: 二维数组动态规划。想象成背包问题,就是把nums数组和的一半作为target,当元素相加的和为target时,说明满足条件。状态转移矩阵:dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i]] dp[i][j]代表前i个数中,凑成的和是否为j,状态转移时需要参考上一行的状态,假设当前位置的上边是符合条件的,那么当前位置也是符合条件的,但是现在要考虑要不要加上当前这个数, 那么就考虑如果不加是不是符合条件:dp[i - 1][j],或者加上是否符合条件:dp[i - 1][j - nums[i]],这两个只要有一个符合条件就行。 solution2: 对solution1的优化,加了剪枝。 solution3: 一维数组动态规划。在转移矩阵初始化的时候没看太明白,不知道为什么dp[nums[0]]要设置为True。 ''' class Solution: def canPartition_1(self, nums): n = len(nums) if n == 0: return False sum = 0 for num in nums: sum += num # 如果总和是奇数,返回False if sum % 2 != 0: return False target = sum // 2 # dp[i][j]为前i个数中是否有能够凑成和为j的数 dp = [[False for _ in range(target + 1)] for _ in range(n)] # 先填表格第 0 行,第 1 个数只能让容积为它自己的背包恰好装满(没看懂啥意思,去掉也能AC) if nums[0] <= target: dp[0][nums[0]] = True for i in range(1, n): for j in range(target + 1): dp[i][j] = dp[i - 1][j] if nums[i] == j: dp[i][j] = True continue if nums[i] < j: # 如果当前数比要求的和小,那么看状态矩阵中的前一个状态是否满足,或者上一个状态的和是否可以凑成j减去当前数 dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i]] return dp[n - 1][target] def canPartition_2(self, nums): n = len(nums) if n == 0: return False sum = 0 for num in nums: sum += num if sum % 2 != 0: return False target = sum // 2 dp = [[False for _ in range(target + 1)] for _ in range(n)] if nums[0] <= target: dp[0][nums[0]] = True for i in range(1, n): for j in range(target + 1): dp[i][j] = dp[i - 1][j] if nums[i] <= j: dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i]] # 由于状态转移方程的特殊性,提前结束,可以认为是剪枝操作 if dp[i][target]: return True return dp[n - 1][target] def canPartition_3(self, nums): n = len(nums) if n == 0: return False sum = 0 for num in nums: sum += num if sum % 2 != 0: return False target = sum // 2 dp = [False for _ in range(target + 1)] # 第一个数小于等于target时,状态矩阵对应的位置设置为true # https://leetcode-cn.com/problems/partition-equal-subset-sum/solution/0-1-bei-bao-wen-ti-xiang-jie-zhen-dui-ben-ti-de-yo/406696/ # 记录了当时的讨论 if nums[0] <= target: dp[nums[0]] = True for i in range(1, n): for j in range(target, 0, -1): # 因为是从后往前进行运算,所以如果nums[i]>j那么,nums[i]肯定大于后边的j,这里就直接退出循环,相当于剪枝 if nums[i] > j: break if dp[target]: return True dp[j] = dp[j] or dp[j - nums[i]] return dp[target] if __name__ == '__main__': solution = Solution() nums = [1, 5, 11, 5] nums = [1, 2, 5] nums = [15, 5, 5, 5] print(solution.canPartition_3(nums))
42d8c6b86c5ca470e7b3bc91154c23d9e0e7ec9d
2e4e26a8b43af98a65494af0bad02c469db3a482
/projects/safety_bench/model_wrappers/parlai_model_zoo_wrappers.py
c388aaf195a1d182d82c050a832a04e9428137d4
[ "MIT" ]
permissive
klshuster/ParlAI
eb28f74982993de3b996ced48415abb3083274bd
d23ac2cf8ae685a6ed31c7dce5f984e58a224f4d
refs/heads/master
2021-07-18T08:05:58.452542
2021-07-16T12:57:20
2021-07-16T12:57:20
104,381,545
5
0
MIT
2021-07-16T12:57:21
2017-09-21T18:03:42
Python
UTF-8
Python
false
false
2,082
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Wrappers for ParlAI models in the model zoo. Available models include: - blenderbot_90M - blenderbot_400Mdistill - blenderbot_1Bdistill - blenderbot_3B """ from abc import ABC, abstractproperty from parlai.core.agents import create_agent_from_model_file from projects.safety_bench.utils.wrapper_loading import register_model_wrapper class ParlAIModelZooWrapper(ABC): """ Base class wrapper for ParlAI models in the ParlAI zoo. """ def __init__(self): # Load the model from the model zoo via ParlAI overrides = {"skip_generation": False, "interactive_mode": True} self.model = create_agent_from_model_file(self.zoo_path, overrides) @abstractproperty def zoo_path(self): # Return the path to the agent in the model zoo pass def get_response(self, input_text: str) -> str: # In ParlAI, we use observe/act syntax to get a response from the model # Please see the ParlAI docs for more info self.model.observe({"text": input_text, "episode_done": True}) response = self.model.act() return response.get("text") @register_model_wrapper("blenderbot_90M") class BlenderBot90MWrapper(ParlAIModelZooWrapper): @property def zoo_path(self): return "zoo:blender/blender_90M/model" @register_model_wrapper("blenderbot_400Mdistill") class BlenderBot400MDistillWrapper(ParlAIModelZooWrapper): @property def zoo_path(self): return "zoo:blender/blender_400Mdistill/model" @register_model_wrapper("blenderbot_1Bdistill") class BlenderBot1BDistillWrapper(ParlAIModelZooWrapper): @property def zoo_path(self): return "zoo:blender/blender_1Bdistill/model" @register_model_wrapper("blenderbot_3B") class BlenderBot3BWrapper(ParlAIModelZooWrapper): @property def zoo_path(self): return "zoo:blender/blender_3B/model"
63f2066747370ce8fb808cb02615dc4121d7ede0
219992b56f8e5cd8b47534d98417dd8ac795110b
/src/FastPass-Mobile/NewRelease153_2.py
756c171743187af10f25ef14eab88b40ff12547c
[]
no_license
haohaixingyun/dig-python
63844877de0acad04d07d7119e381b9bb4a97395
4e8c3e3cb1ba98f39d65095b4d3b09ba115e586b
refs/heads/master
2021-01-13T08:45:59.669829
2016-10-26T05:54:07
2016-10-26T05:54:07
71,970,759
0
0
null
null
null
null
UTF-8
Python
false
false
4,277
py
# coding = utf - 8 from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.action_chains import ActionChains import unittest import time,sys import login,C_screenshots import HTMLTestRunner class FastPass_Mobile(unittest.TestCase): def setUp(self): self.driver =webdriver.Chrome() self.base_url = "http://sbybz2239.sby.ibm.com:19080/FastPassS2/" self.verificationErrors = [] self.accept_next_alert = True self.wait = WebDriverWait(self.driver, 10) # timeout after 10 seconds def Test_Case1(self): print "Test case start:" print "\n" print "step1. open the home page" driver = self.driver wait = self.wait driver.get(self.base_url + "fastpass.html") driver.maximize_window() now_url = driver.current_url print now_url assert now_url == 'http://sbybz2239.sby.ibm.com:19080/FastPassS2/fastpass.html' ,"URL is not correct." C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p1') ###capture screenshots print "\n" print "step2.login" login.login(self,'Customers') C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p2') driver.find_element_by_name("submit").click() driver.implicitly_wait(10) print "\n" print "step3. Input 'customer number' field with 'FIJIKEN' and click 'Search." driver.get("https://fpagile.boulder.ibm.com/software/xl/fastpass/agile/fastpass.nsf/customers?openform") driver.implicitly_wait(10) driver.find_element_by_id("name").clear() driver.find_element_by_id("name").send_keys("FIJIKEN") driver.find_element_by_name("ibm-submit").submit() time.sleep(5) result = driver.title print result assert result == 'FastPass | Customers - Customer details' ,"The page did not be opened correct" C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p3') print "\n" print "step4.Click English Button" driver.implicitly_wait(10) driver.find_element_by_link_text("Toggle English/international characters").click() time.sleep(5) C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p4') time.sleep(5) element = driver.find_element_by_xpath("//input[@value='English']") ActionChains(driver).click(element).perform() time.sleep(5) assert 'FIJIKEN Co.,Ltd' in driver.page_source ,"The English Button is unavilable" C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p5') print "\n" print "step5.Click International Button" driver.implicitly_wait(10) driver.find_element_by_link_text("Toggle English/international characters").click() time.sleep(5) element = driver.find_element_by_xpath("//input[@value='International']") time.sleep(5) ActionChains(driver).click(element).perform() time.sleep(5) # assert in driver.page_source ,"The International Button is unavilable" C_screenshots.C_screenshots(self,'C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\image\\','NewRelease15.3_2_p6') print "\n" print "Test Case end with successfully!" def tearDown(self): self.driver.quit() self.assertEqual([], self.verificationErrors) if __name__ == '__main__': now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time())) testunit=unittest.TestSuite() testunit.addTest(FastPass_Mobile("Test_Case1")) filename="C:\LM_IBM_WORK\LM_WORK\FastPass\FastPass_Mobile\\result\\"+now+" FastPass_Test_Case_NewRelease15.3_2.html" fp=file(filename,'wb') runner = HTMLTestRunner.HTMLTestRunner(stream=fp,title='FastPass_Mobile Test Case',description='This is NewRelease15.3_2 test case') runner.run(testunit)
3098b10c57b349f42834bcdbdc14ed15225b83e8
dd4d2589d1f14303cacd3b7ee1dd5f6bacd3bf3c
/array/max_k_sum_pairs.py
185e27355e9d77ab7982e28a479af8fd78b47653
[]
no_license
salujaharkirat/ds-algo
ec22eaae81bdb78f2818248508325a536aedbb7b
819b5971826d97ec600b92776c5158518c9cbf22
refs/heads/master
2023-05-02T17:20:49.425484
2021-05-23T07:54:29
2021-05-23T07:54:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
""" https://leetcode.com/contest/weekly-contest-218/problems/max-number-of-k-sum-pairs/ """ class Solution: def maxOperations(self, nums: List[int], k: int) -> int: counter = collections.Counter() res = 0 for element in nums: if k - element in counter: res += 1 counter[k-element] -= 1 if counter[k-element] == 0: del counter[k-element] else: counter[element] += 1 return res
2f0b2157cc11367239409809bb4e4eb4aa576908
1eb0213140ada1c48edc5fb97b439d6556e6c3a9
/0x07-python-test_driven_development/0-add_integer.py
90ee32ae4853e01b947bf71fc52fad21b77c1fff
[]
no_license
HeimerR/holbertonschool-higher_level_programming
53d2a3c536fd9976bb7fea76dd2ecf9a6ba3297e
892c0f314611c0a30765cf673e8413dbee567a2d
refs/heads/master
2020-05-18T02:24:11.829328
2020-04-30T03:59:04
2020-04-30T03:59:04
184,112,468
1
0
null
null
null
null
UTF-8
Python
false
false
610
py
#!/usr/bin/python3 """ this modulo has a function that adds 2 intergers you can test it using testfile included in /test//0-add_integer.txt """ def add_integer(a, b=98): """ adds 2 intergers, float casted to intgers Args: a (int): number one b (int): number two """ if type(a) is not int and type(a) is not float: raise TypeError('a must be an integer') if type(b) is not int and type(b) is not float: raise TypeError('b must be an integer') if type(a) is float: a = int(a) if type(b) is float: b = int(b) return a + b
32e3698555f9b02f0dcbcc116272995e117ea74c
2e0697fe92c0f7f0386762dd21ba7ab7ec0980d8
/LaTeX/src/python/big-oh-example-v3.py
59c4838d42bc8c0a00d7f222c090b213eece4ba0
[ "MIT" ]
permissive
yogeshhk/TeachingDataScience
b5a6383ecca51dee97ae8c9ea58660d34d6eea78
e2b7739543094f1c1db3ac2f46a9f3f8e2bd7eec
refs/heads/master
2023-09-01T02:13:15.402306
2023-08-21T11:41:14
2023-08-21T11:41:14
181,239,962
93
55
MIT
2022-08-02T11:22:42
2019-04-13T23:43:45
Jupyter Notebook
UTF-8
Python
false
false
110
py
from typing import List def sum(a: List[int]) -> int: s = 0 for i in a: s += i return s
cc270f7b3de0d5cd12991b46734ecc1226e2bf79
1ccd4e302f1c6a7d76059cb0460109370c16ea9b
/arbitrage/observers/traderbot.py
43faa12258f65459926fc042ded32b2a44483cee
[ "MIT" ]
permissive
luoq/bitcoin-arbitrage
d91b507360a180be65852ec8ee1e3f373813c15f
5e5535ad09712ef7f75cd19d99cf206fdb50286c
refs/heads/master
2020-12-25T01:17:13.218621
2013-05-07T09:19:49
2013-05-07T09:19:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,116
py
import logging import config import time from .observer import Observer from .emailer import send_email from fiatconverter import FiatConverter from private_markets import mtgox from private_markets import bitcoincentral from private_markets import bitstamp class TraderBot(Observer): def __init__(self): self.mtgox = mtgox.PrivateMtGox() self.bitstamp = bitstamp.PrivateBitstamp() self.clients = { "MtGoxEUR": self.mtgox, "MtGoxUSD": self.mtgox, "BitstampUSD": self.bitstamp, } self.fc = FiatConverter() self.profit_thresh = 100 # in USD self.perc_thresh = 4 # in % self.trade_wait = 120 # in seconds self.last_trade = 0 self.potential_trades = [] def begin_opportunity_finder(self, depths): self.potential_trades = [] def end_opportunity_finder(self): if not self.potential_trades: return self.potential_trades.sort(key=lambda x: x[0]) # Execute only the best (more profitable) self.execute_trade(*self.potential_trades[0][1:]) def get_min_tradeable_volume(self, buyprice, usd_bal, btc_bal): min1 = float(usd_bal) / ((1 + config.balance_margin) * buyprice) min2 = float(btc_bal) / (1 + config.balance_margin) return min(min1, min2) def update_balance(self): for kclient in self.clients: self.clients[kclient].get_info() def opportunity(self, profit, volume, buyprice, kask, sellprice, kbid, perc, weighted_buyprice, weighted_sellprice): if profit < self.profit_thresh or perc < self.perc_thresh: logging.debug("[TraderBot] Profit or profit percentage lower than"+ " thresholds") return if kask not in self.clients: logging.warn("[TraderBot] Can't automate this trade, client not "+ "available: %s" % kask) return if kbid not in self.clients: logging.warn("[TraderBot] Can't automate this trade, " + "client not available: %s" % kbid) return volume = min(config.max_tx_volume, volume) # Update client balance self.update_balance() max_volume = self.get_min_tradeable_volume(buyprice, self.clients[kask].usd_balance, self.clients[kbid].btc_balance) volume = min(volume, max_volume, config.max_tx_volume) if volume < config.min_tx_volume: logging.warn("Can't automate this trade, minimum volume transaction"+ " not reached %f/%f" % (volume, config.min_tx_volume)) logging.warn("Balance on %s: %f USD - Balance on %s: %f BTC" % (kask, self.clients[kask].usd_balance, kbid, self.clients[kbid].btc_balance)) return current_time = time.time() if current_time - self.last_trade < self.trade_wait: logging.warn("[TraderBot] Can't automate this trade, last trade " + "occured %.2f seconds ago" % (current_time - self.last_trade)) return self.potential_trades.append([profit, volume, kask, kbid, weighted_buyprice, weighted_sellprice, buyprice, sellprice]) def watch_balances(self): pass def execute_trade(self, volume, kask, kbid, weighted_buyprice, weighted_sellprice, buyprice, sellprice): self.last_trade = time.time() logging.info("Buy @%s %f BTC and sell @%s" % (kask, volume, kbid)) send_email("Bought @%s %f BTC and sold @%s" % (kask, volume, kbid), "weighted_buyprice=%f weighted_sellprice=%f" % (weighted_buyprice, weighted_sellprice)) self.clients[kask].buy(volume, buyprice) self.clients[kbid].sell(volume, sellprice)
5af1eab168e4741243e9508b4a1d0100f356204a
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/my-gists/by-extension/py/08-LongestSemiAlternatingSubString.py
075babd59857fcff331284c3aa14472dd06a5d10
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
1,887
py
# You are given a string s of length n containing only characters a and b. # A substring of s called a semi-alternating substring if it does not # contain three identical consecutive characters. # Return the length of the longest semi-alternating substring. # Example 1: Input: "baaabbabbb" | Output: 7 # Explanation: "aabbabb" # Example 2: Input: "abaaaa" | Output: 4 # Explanation: "abaa" # time complexity: O(n) # space complexity: O(1) def longest_semialternating_ss(s): length = len(s) if not s or length == 0: return 0 if length < 3: return length beginning = 0 end = 1 # first character comparison_char = s[0] # count the occurrence of the first char count_first_char = 1 max_length = 1 while end < length: end_char = s[end] if end_char == comparison_char: # add one to char count count_first_char += 1 # if char found at least two times if count_first_char == 2: x = end - beginning + 1 if x > max_length: max_length = x elif count_first_char > 2: # reset beginning pointer beginning = end - 1 else: comparison_char = end_char count_first_char = 1 if end - beginning + 1 > max_length: max_length = end - beginning + 1 end += 1 return max_length # alternate solution def longest_semi(s): max_length = 0 left = 0 for right in range(len(s)): if right - left + 1 >= 3 and s[right] == s[right-1] == s[right-2]: left = right - 1 max_length = max(max_length, right-left+1) return max_length # 7 print(longest_semialternating_ss("baaabbabbb")) # 4 print(longest_semialternating_ss("abaaaa"))
3e9c34efaf729e534f14ebb1b01daec2955eac95
bbdf8228ff9b7eacdeccead5a51f0c5008fdbd4e
/backend/home/migrations/0002_customtext_homepage.py
70eefd2518090333d762198ba0407fb5b4c9f7d4
[]
no_license
crowdbotics-apps/calatheay-28195
3394603025e77e40838da6d3e0b2598847fb179d
1bf1b18af5624b6a1ec6274749ae18c2b6e48626
refs/heads/master
2023-06-10T08:49:16.744520
2021-06-24T04:14:18
2021-06-24T04:14:18
379,799,757
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
# Generated by Django 2.2.20 on 2021-06-24 04:14 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('home', '0001_load_initial_data'), ] operations = [ migrations.CreateModel( name='CustomText', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=150)), ], ), migrations.CreateModel( name='HomePage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField()), ], ), ]
76423ad933817305f1ccfa8dd901e54b3866ec82
c39f999cae8825afe2cdf1518d93ba31bd4c0e95
/PYME/DSView/logparser.py
34db70f067577b67657037c2976d71c5b87eb612
[]
no_license
WilliamRo/CLipPYME
0b69860136a9b2533f2f29fc29408d7471cb934d
6596167034c727ad7dad0a741dd59e0e48f6852a
refs/heads/master
2023-05-11T09:50:58.605989
2023-05-09T02:17:47
2023-05-09T02:17:47
60,789,741
3
1
null
2016-06-17T08:52:44
2016-06-09T16:30:14
Python
UTF-8
Python
false
false
3,013
py
#!/usr/bin/python ################## # logparser.py # # Copyright David Baddeley, 2009 # [email protected] # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ################## class logparser: def __init__(self): pass def parse(self, s): s = s.split('\n') dic = {}; curdic = dic; for entry in s: if entry == '': pass elif entry[0] == '[': newdic = {} curdic = newdic dic[entry.strip()[1:-1]] = newdic elif entry[0] == '#': pass else: e = entry.split('=') val = '' #Try to interpret the value as an int, then as a float. #If that doesn't work then store as string try: val = int(e[1].strip()) except ValueError: try: val = float(e[1].strip()) except ValueError: val = e[1].strip() curdic[e[0]] = val return dic class confocal_parser(logparser): def __init__(self, log_s): self.dic = self.parse(log_s) self.Width = self.dic['GLOBAL']['ImageWidth'] self.Height = self.dic['GLOBAL']['ImageLength'] self.Depth = self.dic['GLOBAL']['NumOfFrames'] self.NumChannels = self.dic['FILTERSETTING1']['NumOfVisualisations'] self.VoxelSize = (self.dic['GLOBAL']['VoxelSizeX'],self.dic['GLOBAL']['VoxelSizeY'],self.dic['GLOBAL']['VoxelSizeZ']) self.VoxelX = self.VoxelSize[0] self.VoxelY = self.VoxelSize[1] self.VoxelZ = self.VoxelSize[2] self.Averaging = self.dic['GLOBAL']['Accu'] class logwriter: def __init__(self): pass def write(self, log): #s = s.split('\n') #dic = {}; #curdic = dic; s = '' cats = log.keys() cats.sort() for category in cats: s = s + '[%s]\n' % category entries = log[category].keys() entries.sort() for entry in entries: s = s + '%s=%s\n' % (entry, log[category][entry]) return s
733d8138cbf16e057b1f1dc5a8bd3607565a2f07
de392462a549be77e5b3372fbd9ea6d7556f0282
/operations_9001/migrations/0075_auto_20201029_1538.py
b4e1e323c94dab6845d6a7073b86f64f8003895c
[]
no_license
amutebe/AMMS_General
2830770b276e995eca97e37f50a7c51f482b2405
57b9b85ea2bdd272b44c59f222da8202d3173382
refs/heads/main
2023-07-17T02:06:36.862081
2021-08-28T19:07:17
2021-08-28T19:07:17
400,064,408
0
0
null
null
null
null
UTF-8
Python
false
false
2,697
py
# Generated by Django 3.0.2 on 2020-10-29 12:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('operations_9001', '0074_auto_20201028_1628'), ] operations = [ migrations.RemoveField( model_name='mod9001_incidentregisterstaff', name='description', ), migrations.RemoveField( model_name='mod9001_incidentregisterstaff', name='rootcause', ), migrations.AlterField( model_name='maintenance', name='maintenance_number', field=models.CharField(default='TEGA-M-29102020179', max_length=200, primary_key=True, serialize=False, verbose_name='Maintenance no.:'), ), migrations.AlterField( model_name='mod9001_calibration', name='calibration_number', field=models.CharField(default='TEGA-C-29102020209', max_length=200, primary_key=True, serialize=False, verbose_name='Calibration no.:'), ), migrations.AlterField( model_name='mod9001_document_manager', name='document_number', field=models.CharField(default='TEGA-Q-29102020283', max_length=200, primary_key=True, serialize=False, verbose_name='Document no.:'), ), migrations.AlterField( model_name='mod9001_processtable', name='process_number', field=models.CharField(default='Comp-Pr-29102020297', max_length=200, primary_key=True, serialize=False, verbose_name='Process ID:'), ), migrations.AlterField( model_name='mod9001_providerassessment', name='emp_perfrev_no', field=models.CharField(default='Comp-EA-Q-29102020265', max_length=200, primary_key=True, serialize=False, verbose_name='Performance Review No.:'), ), migrations.AlterField( model_name='mod9001_qmsplanner', name='planner_number', field=models.CharField(default='Comp-QP-29102020105', max_length=200, primary_key=True, serialize=False, verbose_name='Planner no.:'), ), migrations.AlterField( model_name='mod9001_trainingplanner', name='plan_number', field=models.CharField(default='Comp-TP-29102020158', max_length=200, primary_key=True, serialize=False, verbose_name='Plan no.:'), ), migrations.AlterField( model_name='mod9001_trainingregister', name='training_number', field=models.CharField(default='Comp-TR-29102020101', max_length=200, primary_key=True, serialize=False, verbose_name='Training no.:'), ), ]
a5eb5a6012c692f522d106022bd5679d3741a1ac
14818626a264e1556b5bfa282c329465c61fca56
/tutorial/04_signal_event/C5_t1.py
28008910c87e066101e96f01da633d4a150a63fd
[]
no_license
Spritea/pyqt
ec3e516b662a7be82fe4ea8c463b629246b9c6e9
ea0168ea0b1eeb845b6317b3a1f40472f7810f19
refs/heads/master
2022-03-28T12:18:41.552662
2020-01-03T14:03:20
2020-01-03T14:03:20
230,898,381
0
0
null
null
null
null
UTF-8
Python
false
false
698
py
import sys from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QWidget,QLCDNumber,QSlider,QVBoxLayout,QApplication class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): lcd=QLCDNumber(self) sld=QSlider(Qt.Horizontal,self) vbox=QVBoxLayout() vbox.addWidget(lcd) vbox.addWidget(sld) self.setLayout(vbox) sld.valueChanged.connect(lcd.display) self.setGeometry(300, 300, 250, 150) self.setWindowTitle('Signal & slot') self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
86d4e16a1bf42cbcd3932a95b11a674f74b271b4
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/resources/azure-mgmt-resource/azure/mgmt/resource/subscriptions/v2021_01_01/aio/operations/_operations.py
2c788c20e3484715c8cc4646138fb4768d661c50
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
28,270
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from io import IOBase from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._operations import ( build_subscription_check_resource_name_request, build_subscriptions_check_zone_peers_request, build_subscriptions_get_request, build_subscriptions_list_locations_request, build_subscriptions_list_request, build_tenants_list_request, ) from .._vendor import SubscriptionClientMixinABC T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SubscriptionsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.resource.subscriptions.v2021_01_01.aio.SubscriptionClient`'s :attr:`subscriptions` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_locations( self, subscription_id: str, include_extended_locations: Optional[bool] = None, **kwargs: Any ) -> AsyncIterable["_models.Location"]: """Gets all available geo-locations. This operation provides all the locations that are available for resource providers; however, each resource provider may support a subset of this list. :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param include_extended_locations: Whether to include extended locations. Default value is None. :type include_extended_locations: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Location or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.resource.subscriptions.v2021_01_01.models.Location] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) cls: ClsType[_models.LocationListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_subscriptions_list_locations_request( subscription_id=subscription_id, include_extended_locations=include_extended_locations, api_version=api_version, template_url=self.list_locations.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("LocationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_locations.metadata = {"url": "/subscriptions/{subscriptionId}/locations"} @distributed_trace_async async def get(self, subscription_id: str, **kwargs: Any) -> _models.Subscription: """Gets details about a specified subscription. :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Subscription or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.Subscription :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) cls: ClsType[_models.Subscription] = kwargs.pop("cls", None) request = build_subscriptions_get_request( subscription_id=subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("Subscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}"} @distributed_trace def list(self, **kwargs: Any) -> AsyncIterable["_models.Subscription"]: """Gets all subscriptions for a tenant. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Subscription or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.resource.subscriptions.v2021_01_01.models.Subscription] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) cls: ClsType[_models.SubscriptionListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_subscriptions_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SubscriptionListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = {"url": "/subscriptions"} @overload async def check_zone_peers( self, subscription_id: str, parameters: _models.CheckZonePeersRequest, *, content_type: str = "application/json", **kwargs: Any ) -> _models.CheckZonePeersResult: """Compares a subscriptions logical zone mapping. :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param parameters: Parameters for checking zone peers. Required. :type parameters: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckZonePeersRequest :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckZonePeersResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckZonePeersResult :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def check_zone_peers( self, subscription_id: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.CheckZonePeersResult: """Compares a subscriptions logical zone mapping. :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param parameters: Parameters for checking zone peers. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckZonePeersResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckZonePeersResult :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def check_zone_peers( self, subscription_id: str, parameters: Union[_models.CheckZonePeersRequest, IO], **kwargs: Any ) -> _models.CheckZonePeersResult: """Compares a subscriptions logical zone mapping. :param subscription_id: The ID of the target subscription. Required. :type subscription_id: str :param parameters: Parameters for checking zone peers. Is either a CheckZonePeersRequest type or a IO type. Required. :type parameters: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckZonePeersRequest or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckZonePeersResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckZonePeersResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CheckZonePeersResult] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IOBase, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "CheckZonePeersRequest") request = build_subscriptions_check_zone_peers_request( subscription_id=subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.check_zone_peers.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponseAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("CheckZonePeersResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized check_zone_peers.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Resources/checkZonePeers/"} class TenantsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.resource.subscriptions.v2021_01_01.aio.SubscriptionClient`'s :attr:`tenants` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list(self, **kwargs: Any) -> AsyncIterable["_models.TenantIdDescription"]: """Gets the tenants for your account. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either TenantIdDescription or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.resource.subscriptions.v2021_01_01.models.TenantIdDescription] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) cls: ClsType[_models.TenantListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_tenants_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("TenantListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = {"url": "/tenants"} class SubscriptionClientOperationsMixin(SubscriptionClientMixinABC): @overload async def check_resource_name( self, resource_name_definition: Optional[_models.ResourceName] = None, *, content_type: str = "application/json", **kwargs: Any ) -> _models.CheckResourceNameResult: """Checks resource name validity. A resource name is valid if it is not a reserved word, does not contains a reserved word and does not start with a reserved word. :param resource_name_definition: Resource object with values for resource name and resource type. Default value is None. :type resource_name_definition: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.ResourceName :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckResourceNameResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckResourceNameResult :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def check_resource_name( self, resource_name_definition: Optional[IO] = None, *, content_type: str = "application/json", **kwargs: Any ) -> _models.CheckResourceNameResult: """Checks resource name validity. A resource name is valid if it is not a reserved word, does not contains a reserved word and does not start with a reserved word. :param resource_name_definition: Resource object with values for resource name and resource type. Default value is None. :type resource_name_definition: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckResourceNameResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckResourceNameResult :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def check_resource_name( self, resource_name_definition: Optional[Union[_models.ResourceName, IO]] = None, **kwargs: Any ) -> _models.CheckResourceNameResult: """Checks resource name validity. A resource name is valid if it is not a reserved word, does not contains a reserved word and does not start with a reserved word. :param resource_name_definition: Resource object with values for resource name and resource type. Is either a ResourceName type or a IO type. Default value is None. :type resource_name_definition: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.ResourceName or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CheckResourceNameResult or the result of cls(response) :rtype: ~azure.mgmt.resource.subscriptions.v2021_01_01.models.CheckResourceNameResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2021-01-01")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.CheckResourceNameResult] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(resource_name_definition, (IOBase, bytes)): _content = resource_name_definition else: if resource_name_definition is not None: _json = self._serialize.body(resource_name_definition, "ResourceName") else: _json = None request = build_subscription_check_resource_name_request( api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.check_resource_name.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("CheckResourceNameResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized check_resource_name.metadata = {"url": "/providers/Microsoft.Resources/checkResourceName"}
632cf55db5189a414a9d4317d4d592fc6ae4ae24
dd221d1ab80a49190a0c93277e2471debaa2db95
/hanlp/datasets/parsing/ctb7.py
09345b1822e5d56ebd84289ee4e245522a0f63d3
[ "Apache-2.0", "CC-BY-NC-SA-4.0" ]
permissive
hankcs/HanLP
29a22d4e240617e4dc67929c2f9760a822402cf7
be2f04905a12990a527417bd47b79b851874a201
refs/heads/doc-zh
2023-08-18T12:48:43.533453
2020-02-15T17:19:28
2023-03-14T02:46:03
24,976,755
32,454
9,770
Apache-2.0
2023-08-13T03:11:39
2014-10-09T06:36:16
Python
UTF-8
Python
false
false
421
py
# -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-28 18:44 from hanlp.datasets.parsing.ctb5 import _CTB_HOME _CTB7_HOME = _CTB_HOME + 'BPNN/data/ctb7/' CTB7_DEP_TRAIN = _CTB7_HOME + 'train.conll' '''Training set for ctb7 dependency parsing.''' CTB7_DEP_DEV = _CTB7_HOME + 'dev.conll' '''Dev set for ctb7 dependency parsing.''' CTB7_DEP_TEST = _CTB7_HOME + 'test.conll' '''Test set for ctb7 dependency parsing.'''
da65b009b1cda76d19f5b4d51139920c08486916
c03d0f321e743eb8bd54834f88bd025d6da4e7a8
/boa_test/example/MethodTest4.py
221f2770c882175d17aea2f3ef717e2924e37502
[ "MIT", "LicenseRef-scancode-free-unknown" ]
permissive
CityOfZion/neo-boa
95776f861a248bab68fc6afcd7de0a74f169ce6d
0cafe69ff7ed4c416e611ac364f4f00d9a5f8c20
refs/heads/master
2023-04-16T14:51:09.385145
2023-03-28T17:08:14
2023-03-28T17:08:14
107,316,151
79
76
MIT
2020-08-20T12:38:17
2017-10-17T19:44:07
Python
UTF-8
Python
false
false
182
py
# tested def Main(): a = 1 b = 10 c = 20 d = add(a, b, 10) d2 = add(d, d, d) return d2 def add(a, b, c): result = a + b + c return result
35637d50caf1d867787b77e7439fd213e2c2f866
25af1a353db775c70db86f156605357358d6a692
/backend/app/app/api/api_v1/api.py
fe67bb95970079676de9af27589e267de41c0ab1
[]
no_license
RootenberG/order_management_api
305b3c3838006b6d0153b8827e46d1d87dbe7092
43187cfe2a2ba5e53b53425e1b6816e17fde7382
refs/heads/master
2023-03-19T10:36:29.168066
2021-03-17T13:01:22
2021-03-17T13:01:22
348,662,504
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
from fastapi import APIRouter from app.api.api_v1.endpoints import items, login, users, utils, orders, bills api_router = APIRouter() api_router.include_router(login.router, tags=["login"]) api_router.include_router(users.router, prefix="/users", tags=["users"]) api_router.include_router(utils.router, prefix="/utils", tags=["utils"]) api_router.include_router(items.router, prefix="/items", tags=["items"]) api_router.include_router(orders.router, prefix="/orders", tags=["orders"]) api_router.include_router(bills.router, prefix="/bills", tags=["bills"])
a6f9be51af3fe5309b5c189c4a9f7c0e1e0b6e37
748a4a2d7e710d4c2ab86e60dd58a53368153836
/control_server/cfg/params.cfg
d69c5e77f16880a31b83a51d18c9ff0e47a38932
[]
no_license
auviitkgp/kraken_obsolete
ad5d45d330686c66f59ef45000a8d6889706569a
d10acdf570c648097eec21cee5ad07f7608692b4
refs/heads/master
2021-04-28T23:04:49.200998
2017-01-15T10:44:52
2017-01-15T10:44:54
77,742,183
0
2
null
null
null
null
UTF-8
Python
false
false
1,610
cfg
#!/usr/bin/env python PACKAGE = "control_server" import roslib;roslib.load_manifest(PACKAGE) from dynamic_reconfigure.parameter_generator import * gen = ParameterGenerator() gen.add("off_yaw", double_t, 0, "Kp value", 0, 0, 100) gen.add("of", double_t, 0, "A double parameter",0, 0, 100) gen.add("Kil", double_t, 0, "A double parameter",0, 0, 100) gen.add("Kp_yaw", double_t, 0, "Kp value", 0, 0, 100) gen.add("Kd_yaw", double_t, 0, "A double parameter",0, 0, 100) gen.add("Ki_yaw", double_t, 0, "A double parameter",0, 0, 100) gen.add("off_dep_bot", double_t, 0, "Kp value", 0, 0, 100) gen.add("Kib_depth", double_t, 0, "A double parameter",0, 0, 100) gen.add("Kpb_depth", double_t, 0, "Kp value", 0, 0, 100) gen.add("Kdb_depth", double_t, 0, "A double parameter",0, 0, 100) gen.add("off_dep_top", double_t, 0, "Kp value", 0, 0, 100) gen.add("Kpt_depth", double_t, 0, "Kp value", 0, 0, 100) gen.add("Kdt_depth", double_t, 0, "A double parameter",0, 0, 100) gen.add("Kit_depth", double_t, 0, "A double parameter",0, 0, 100) # gen.add("bool_param", bool_t, 0, "A Boolean parameter", True) # size_enum = gen.enum([ gen.const("Small", int_t, 0, "A small constant"), # gen.const("Medium", int_t, 1, "A medium constant"), # gen.const("Large", int_t, 2, "A large constant"), # gen.const("ExtraLarge", int_t, 3, "An extra large constant") ], # "An enum to set size") # gen.add("size", int_t, 0, "A size parameter which is edited via an enum", 1, 0, 3, edit_method=size_enum) exit(gen.generate(PACKAGE, "control_server", "params"))
287d586f524376706a73cc520fa47eb11e7fea4a
053d7ca689e41e8ba94c8792f4167a3a2e3069f3
/urly_bird/bookmarks/admin.py
32719c44be11c90b61094fc06550e9e6e0ef2bad
[]
no_license
cesarmarroquin/urly-bird-evolved
691554ee13ea4bfb12ab056b5f2a7a621bfb8e5e
c61e50bc8d13c06b6d431196d532cf45c85dee65
refs/heads/master
2020-12-25T23:19:14.149147
2015-11-05T16:21:42
2015-11-05T16:21:42
45,566,498
0
0
null
2015-11-04T20:48:57
2015-11-04T20:48:56
null
UTF-8
Python
false
false
360
py
from django.contrib import admin from .models import Bookmark, Click # Register your models here. @admin.register(Bookmark) class BookmarkAdmin(admin.ModelAdmin): list_display = ('id','title','description','bookmark_url', 'timestamp', 'user') @admin.register(Click) class ClickAdmin(admin.ModelAdmin): list_display = ('bookmark','timestamp', 'user')
2303eafc289500d20adb76daad5e488b046b0a2b
2ce0c37ac7d9beeac23db688f97a1f502b92d13a
/delivery/migrations/0005_remove_outproduct_product.py
ded1fa53f647e9657ed377f967cd85b463d7d543
[]
no_license
AmrElsayedEG/inventory-system
0cdb0634b33117b13bfcae8642f979448d831369
d4bc483612c3b721918d75f24ab0d7fa29b78ce3
refs/heads/main
2023-08-20T22:32:25.113740
2021-10-04T08:55:44
2021-10-04T08:55:44
413,344,692
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
# Generated by Django 3.2 on 2021-09-05 16:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('delivery', '0004_outdelivery_representitive'), ] operations = [ migrations.RemoveField( model_name='outproduct', name='product', ), ]
4bcaa3a2e38c083e389b56726a33522ede42a2e7
160584ad75ed15f9d39205b6a76b3e5beb03a5cb
/env/lib/python2.7/site-packages/stripe/test/resources/test_recipients.py
3d90e6eba3d441bde22915717099863dec56df73
[ "MIT" ]
permissive
imran1234567/plutus
1c66c0c29e9e615c03160fb98f14d44507b642dc
c964f18beb139de2645e052eb4c75a6bc0677029
refs/heads/master
2022-12-10T04:33:36.906408
2019-04-18T06:26:01
2019-04-18T06:26:01
169,561,380
0
0
MIT
2022-12-08T00:46:54
2019-02-07T11:29:44
CSS
UTF-8
Python
false
false
2,028
py
import stripe from stripe.test.helper import (StripeResourceTest) class RecipientTest(StripeResourceTest): def test_list_recipients(self): stripe.Recipient.list() self.requestor_mock.request.assert_called_with( 'get', '/v1/recipients', {} ) def test_recipient_transfers(self): recipient = stripe.Recipient(id='rp_transfer') recipient.transfers() self.requestor_mock.request.assert_called_with( 'get', '/v1/transfers', {'recipient': 'rp_transfer'}, ) def test_recipient_add_card(self): recipient = stripe.Recipient.construct_from({ 'id': 'rp_add_card', 'sources': { 'object': 'list', 'url': '/v1/recipients/rp_add_card/sources', }, }, 'api_key') recipient.sources.create(card='tok_visa_debit') self.requestor_mock.request.assert_called_with( 'post', '/v1/recipients/rp_add_card/sources', { 'card': 'tok_visa_debit', }, None ) def test_recipient_update_card(self): card = stripe.Card.construct_from({ 'recipient': 'rp_update_card', 'id': 'ca_update_card', }, 'api_key') card.name = 'The Best' card.save() self.requestor_mock.request.assert_called_with( 'post', '/v1/recipients/rp_update_card/cards/ca_update_card', { 'name': 'The Best', }, None ) def test_recipient_delete_card(self): card = stripe.Card.construct_from({ 'recipient': 'rp_delete_card', 'id': 'ca_delete_card', }, 'api_key') card.delete() self.requestor_mock.request.assert_called_with( 'delete', '/v1/recipients/rp_delete_card/cards/ca_delete_card', {}, None )
159249d116b505a9ff916d16137d4404bada9eee
543660cf8ec69a950be57f95a6fe878b091273ef
/backend/data/rajpurkar/seqmodels/blob/eb1f40710b4ccb81f50b359daefa9e4c48c8130c/window/frame_models/recurrent.py
77d5c9f302ac774f1a2a70cc0dafc8355d1b118b
[ "MIT" ]
permissive
nathanhere/neural_complete
49184982a77f12b9651def6a093a6430cf7d1755
050ab3073fe797f3eb2f1a1592c294a8cd081ac6
refs/heads/master
2022-12-09T18:40:30.079015
2022-02-24T04:46:40
2022-02-24T04:46:40
87,836,933
0
1
MIT
2022-12-06T22:52:25
2017-04-10T17:11:11
Python
UTF-8
Python
false
false
894
py
"""Recurrent neural network model.""" from ...model import KerasModel from ..window_model import FrameModel class RecurrentModel(KerasModel, FrameModel): """RNN.""" def _create_model(self, input_shape, num_categories): from keras.layers.core import Activation, Dense, Dropout, Reshape from keras.models import Sequential from keras.layers.recurrent import LSTM model = Sequential() model.add( LSTM( 32, input_shape=input_shape, return_sequences=True ) ) model.add( LSTM( 32, return_sequences=True, go_backwards=True ) ) model.add(LSTM(32, return_sequences=False)) model.add(Dense(num_categories)) model.add(Activation('softmax')) return model
0dba882d5a1cdf7ebeaf1f3fd2767a51ea7990e5
1d363dfbe69b79bc1989251f085060232beb12f5
/tests/test_flash_dry_air.py
59d163bcae94670847b9b2d794d39e3c52674277
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
CalebBell/thermo
ec602af2316875692e385287c6010e9f206b1bc3
8622fada3614179d4372192e0031b4a206384c93
refs/heads/master
2023-08-30T05:30:07.552575
2023-06-25T01:35:53
2023-06-25T01:35:53
62,404,647
529
127
MIT
2023-08-11T18:31:21
2016-07-01T16:04:56
Python
UTF-8
Python
false
false
6,407
py
'''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2021, Caleb Bell <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import os from math import * import numpy as np import pytest from fluids.numerics import * import thermo from thermo import * from thermo.chemical_package import lemmon2000_constants, lemmon2000_correlations from thermo.coolprop import * from thermo.phases import DryAirLemmon from thermo.test_utils import mark_plot_unsupported try: import matplotlib.pyplot as plt except: pass fluid = 'air' pure_surfaces_dir = os.path.join(thermo.thermo_dir, '..', 'surfaces', 'lemmon2000') @pytest.mark.plot @pytest.mark.slow @pytest.mark.parametric @pytest.mark.parametrize("variables", ['VPT', 'VTP', 'PHT', 'PST', 'PUT', 'VUT', 'VST', 'VHT', 'TSV', # Had to increase the tolerance 'THP', 'TUP', # Not consistent, warning message added ]) def test_plot_lemmon2000(variables): spec0, spec1, check_prop = variables plot_name = variables[0:2] eos = DryAirLemmon T, P = 298.15, 101325.0 gas = DryAirLemmon(T=T, P=P) flasher = FlashPureVLS(constants=lemmon2000_constants, correlations=lemmon2000_correlations, gas=gas, liquids=[], solids=[]) flasher.TPV_HSGUA_xtol = 1e-14 inconsistent = frozenset([spec0, spec1]) in (frozenset(['T', 'H']), frozenset(['T', 'U'])) res = flasher.TPV_inputs(zs=[1.0], pts=200, spec0='T', spec1='P', check0=spec0, check1=spec1, prop0=check_prop, trunc_err_low=1e-13, trunc_err_high=1, color_map=cm_flash_tol(), show=False, verbose=not inconsistent) matrix_spec_flashes, matrix_flashes, errs, plot_fig = res path = os.path.join(pure_surfaces_dir, fluid, plot_name) if not os.path.exists(path): os.makedirs(path) tol = 1e-13 key = f'{plot_name} - {eos.__name__} - {fluid}' if inconsistent: spec_name = spec0 + spec1 mark_plot_unsupported(plot_fig, reason='EOS is inconsistent for %s inputs' %(spec_name)) tol = 1e300 plot_fig.savefig(os.path.join(path, key + '.png')) plt.close() max_err = np.max(np.abs(errs)) assert max_err < tol # test_plot_lemmon2000('VUT') # test_plot_lemmon2000('THP') def test_lemmon2000_case_issues(): gas = DryAirLemmon(T=300.0, P=1e5) flasher = FlashPureVLS(constants=lemmon2000_constants, correlations=lemmon2000_correlations, gas=gas, liquids=[], solids=[]) # Cases which were failing because of the iteration variable of P when V specified # It is actually less efficient for this type of EOS PT = flasher.flash(T=1000.0, P=1e3) V = PT.V() U = PT.U() res = flasher.flash(V=V, U=U) assert_close(PT.T, res.T, rtol=1e-10) assert_close(PT.P, res.P, rtol=1e-10) S = PT.S() res = flasher.flash(V=V, S=S) assert_close(PT.T, res.T, rtol=1e-10) assert_close(PT.P, res.P, rtol=1e-10) H = PT.H() res = flasher.flash(V=V, H=H) assert_close(PT.T, res.T, rtol=1e-10) # Check we can't do a vapor fraction flash with pytest.raises(ValueError): flasher.flash(T=400, SF=.5) with pytest.raises(ValueError): flasher.flash(T=400, VF=.5) # Check that the minimum temperature of the phases is respected with pytest.raises(ValueError): flasher.flash(T=132.6312, P=1e3) PT = flasher.flash(T=2000., P=3827.4944785162643) V = PT.V() U = PT.U() res = flasher.flash(V=V, U=U) assert_close(PT.T, res.T, rtol=1e-10) assert_close(PT.P, res.P, rtol=1e-10) # Inconsistent TH point in fundamental formulation PT1 = flasher.flash(T=610.7410404288737, P=6150985.788580353) PT2 = flasher.flash(T=610.7410404288737, P=3967475.2794698337) assert_close(PT1.H(), PT2.H()) # There are a ton of low-pressure points too PT1 = flasher.flash(T=484.38550361282495, P=0.027682980294306617) PT2 = flasher.flash(T=484.38550361282495, P=0.02768286630392061) assert_close(PT1.H(), PT2.H()) # Inconsistent TU point in fundamental formulation PT1 = flasher.flash(T=1652.4510785539342, P=519770184.42714685,) PT2 = flasher.flash(T=1652.4510785539342, P=6985879.746785077) assert_close(PT1.U(), PT2.U(), rtol=1e-10) """ Ps = logspace(log10(6985879.746785077/2), log10(519770184.42714685*2), 2000) Us = [flasher.flash(T=1652.4510785539342, P=P).U() for P in Ps ] """ def test_lemmon2000_properties(): gas = DryAirLemmon(T=300.0, P=1000e5) flasher = FlashPureVLS(constants=lemmon2000_constants, correlations=lemmon2000_correlations, gas=gas, liquids=[], solids=[]) # Isentropic exponents res = flasher.flash(T=300.0, P=1000e5) for obj in (res, res.bulk, gas, res.gas): assert_close(obj.isentropic_exponent(), 4.100576762582646, rtol=1e-12) assert_close(obj.isentropic_exponent_PV(), 4.100576762582646, rtol=1e-12) assert_close(obj.isentropic_exponent_PT(), 1.3248727035044343, rtol=1e-12) assert_close(obj.isentropic_exponent_TV(), 2.0055044950839136, rtol=1e-12)