blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
868da6ad7de2e92037f68b84e2de141d81e5376e
9d6e747ed7204555199ece2033decff978295a09
/Programmers/그리디/구명보트.py
e397a45f8b8c3318aef387de4ebb6add75f97628
[]
no_license
leejaeyeong/Algorithm
5b47ed9aa241990945cbf2451afe7f084984ced5
72072d1e0c28e72075fc00db9239a4bd444b68b6
refs/heads/master
2021-08-08T10:57:07.345943
2021-07-11T15:01:59
2021-07-11T15:01:59
238,156,464
5
0
null
null
null
null
UTF-8
Python
false
false
2,238
py
''' 무인도에 갇힌 사람들을 구명보트를 이용하여 구출하려고 합니다. 구명보트는 작아서 한 번에 최대 2명씩 밖에 탈 수 없고, 무게 제한도 있습니다. 예를 들어, 사람들의 몸무게가 [70kg, 50kg, 80kg, 50kg]이고 구명보트의 무게 제한이 100kg이라면 2번째 사람과 4번째 사람은 같이 탈 수 있지만 1번째 사람과 3번째 사람의 무게의 합은 150kg이므로 구명보트의 무게 제한을 초과하여 같이 탈 수 없습니다. 구명보트를 최대한 적게 사용하여 모든 사람을 구출하려고 합니다. 사람들의 몸무게를 담은 배열 people과 구명보트의 무게 제한 limit가 매개변수로 주어질 때, 모든 사람을 구출하기 위해 필요한 구명보트 개수의 최솟값을 return 하도록 solution 함수를 작성해주세요. ''' # 인덱스를 이용한 방법 def solution(people, limit): people.sort() escapeCnt, light, heavy = 0, 0, len(people)-1 while light < heavy : if people[light] + people[heavy] <= limit : light += 1 heavy -= 1 escapeCnt += 1 else : heavy -= 1 return len(people) - escapeCnt print(solution([70,50,80,50],100)) print(solution([70,80,50],100)) # list del 삭제 연산 후 list 재조정 시간으로 인해 효율성 1번 시간초과 ''' def solution(people, limit): people.sort() cnt = 0 while len(people) > 1 : if people[0] + people[-1] <= limit : del people[0] del people[-1] cnt += 1 else : del people[-1] cnt += 1 return cnt + len(people) ''' # dequeue를 이용해 삭제를 처리한 경우 # list의 pop(), leftpop()이 list의 처음 또는 마지막 값이기 때문에 재조정이 따로 없는듯하다. ''' import collections def solution(people, limit): people = collections.deque(sorted(people)) cnt = 0 while len(people) > 1 : if people[0] + people[-1] <= limit : people.popleft() people.pop() cnt += 1 else : people.pop() cnt += 1 return cnt + len(people) '''
6b13c2d1b3333eb858d2f7ff6f6803b8edbd5e52
f9e441608cbca1fd2a39de27cdc187cf676ef159
/matplotlib/example26.py
3a47fec94e67faf5639d189d893932d8b226684f
[]
no_license
tisnik/jupyter-notebook-examples
cdded1ce63f6637c76c33adbfb25d9efc13b5fcf
66974b0590f8beef39ed9d364c9d2b1ee3bd2e63
refs/heads/master
2023-07-07T04:43:11.787115
2021-08-05T07:16:20
2021-08-05T07:16:20
257,216,516
7
2
null
null
null
null
UTF-8
Python
false
false
830
py
# Jupyter Notebook # # Dvacátý šestý demonstrační příklad: # - zobrazení 3D grafu funkce typu z=f(x,y) from mpl_toolkits.mplot3d import axes3d from matplotlib import cm import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.gca(projection='3d') delta = 0.1 # průběh nezávislé proměnné x x = np.arange(-10.0, 10.0, delta) # průběh nezávislé proměnné y y = np.arange(-10.0, 10.0, delta) # vytvoření dvou polí se souřadnicemi [x,y] X, Y = np.meshgrid(x, y) # vzdálenost od bodu [0,0] R = np.sqrt(X*X+Y*Y) # výpočet funkce, kterou použijeme při vykreslování grafu Z = np.sin(R)/R # zobrazení 3D grafu formou plochy ax.plot_surface(X, Y, Z, rstride=2, cstride=2, cmap=cm.coolwarm, linewidth=0, antialiased=False) # zobrazení grafu plt.show()
4de9459362cd51256cf0acfb5269084fb1d69ad5
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-swr/huaweicloudsdkswr/v2/model/show_user_repository_auth_response.py
dbf5288a6fb5ffa67492b7a9cdb0a81de2d9138d
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
6,467
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowUserRepositoryAuthResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'id': 'int', 'name': 'str', 'self_auth': 'UserAuth', 'others_auths': 'list[UserAuth]' } attribute_map = { 'id': 'id', 'name': 'name', 'self_auth': 'self_auth', 'others_auths': 'others_auths' } def __init__(self, id=None, name=None, self_auth=None, others_auths=None): """ShowUserRepositoryAuthResponse The model defined in huaweicloud sdk :param id: id :type id: int :param name: 组织名称。小写字母开头,后面跟小写字母、数字、小数点、下划线或中划线(其中下划线最多允许连续两个,小数点、下划线、中划线不能直接相连),小写字母或数字结尾,1-64个字符。 :type name: str :param self_auth: :type self_auth: :class:`huaweicloudsdkswr.v2.UserAuth` :param others_auths: 其他用户的权限 :type others_auths: list[:class:`huaweicloudsdkswr.v2.UserAuth`] """ super(ShowUserRepositoryAuthResponse, self).__init__() self._id = None self._name = None self._self_auth = None self._others_auths = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if self_auth is not None: self.self_auth = self_auth if others_auths is not None: self.others_auths = others_auths @property def id(self): """Gets the id of this ShowUserRepositoryAuthResponse. id :return: The id of this ShowUserRepositoryAuthResponse. :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this ShowUserRepositoryAuthResponse. id :param id: The id of this ShowUserRepositoryAuthResponse. :type id: int """ self._id = id @property def name(self): """Gets the name of this ShowUserRepositoryAuthResponse. 组织名称。小写字母开头,后面跟小写字母、数字、小数点、下划线或中划线(其中下划线最多允许连续两个,小数点、下划线、中划线不能直接相连),小写字母或数字结尾,1-64个字符。 :return: The name of this ShowUserRepositoryAuthResponse. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ShowUserRepositoryAuthResponse. 组织名称。小写字母开头,后面跟小写字母、数字、小数点、下划线或中划线(其中下划线最多允许连续两个,小数点、下划线、中划线不能直接相连),小写字母或数字结尾,1-64个字符。 :param name: The name of this ShowUserRepositoryAuthResponse. :type name: str """ self._name = name @property def self_auth(self): """Gets the self_auth of this ShowUserRepositoryAuthResponse. :return: The self_auth of this ShowUserRepositoryAuthResponse. :rtype: :class:`huaweicloudsdkswr.v2.UserAuth` """ return self._self_auth @self_auth.setter def self_auth(self, self_auth): """Sets the self_auth of this ShowUserRepositoryAuthResponse. :param self_auth: The self_auth of this ShowUserRepositoryAuthResponse. :type self_auth: :class:`huaweicloudsdkswr.v2.UserAuth` """ self._self_auth = self_auth @property def others_auths(self): """Gets the others_auths of this ShowUserRepositoryAuthResponse. 其他用户的权限 :return: The others_auths of this ShowUserRepositoryAuthResponse. :rtype: list[:class:`huaweicloudsdkswr.v2.UserAuth`] """ return self._others_auths @others_auths.setter def others_auths(self, others_auths): """Sets the others_auths of this ShowUserRepositoryAuthResponse. 其他用户的权限 :param others_auths: The others_auths of this ShowUserRepositoryAuthResponse. :type others_auths: list[:class:`huaweicloudsdkswr.v2.UserAuth`] """ self._others_auths = others_auths def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowUserRepositoryAuthResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f769536752aa4961db43d52a48a9b2267ab748be
b796ada966f71ea8b26198f6956f847838ed2df3
/Django_advanced/advcbv/advcbv/urls.py
9b313393ff4431331ad1bf4affbb5bbee611846f
[]
no_license
cdunn6754/Django_Stuff
786672b79f69bce8a12369369d6672362401b1d9
ae631e0318f50a160c572b3d137c5453df0271f7
refs/heads/master
2021-01-01T19:58:18.854531
2017-10-22T00:16:58
2017-10-22T00:16:58
98,733,253
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
"""advcbv URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from basic_app import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$',views.IndexView.as_view()), url(r'^basic_app/', include('basic_app.urls'), name='basic_app'), ]
1a1971c072b24595aa808de9a2af6fbceee0b46b
e03ffd4821bd278da3b0835cd8630b12958d4236
/sply/grammar.py
94b2ee96b6e7368047387bcdd4fca2b58a1f4c68
[]
no_license
RussellLuo/sply
c659a33eabefe935db06ace846fe30e31bd841ba
d6f11f155803b874890428d173b45ee3f2b3fe76
refs/heads/master
2016-09-06T04:40:04.977841
2014-06-11T15:48:29
2014-06-11T15:48:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,903
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ### decorators ### def token(regex): def wrapper(func): func.grammar = { 'type': 'token', 'definition': regex } return func return wrapper def production(rules): def wrapper(func): func.grammar = { 'type': 'production', 'definition': rules } return func return wrapper class Grammar(object): """Grammar-definition.""" keywords = () literals = () simple_tokens = () precedences = () def token_error_handler(self, t): """Error handler when parsing tokens. Return value: the number of characters should be skipped to try parsing the next token. 0 -- no skip (terminate the current parsing process) """ print('Illegal characters "%s"' % t.value) return 1 def production_error_handler(self, p): if p: print('Syntax error at %s' % p.value) else: print('Syntax error at EOF') def get_token_names(self): """Get names of all tokens. all_tokens = keywords + literals + simple_tokens + method_tokens """ token_names = ( list(self.keywords) + list(self.literals) + [name for name, _ in self.simple_tokens] + [ method.__name__ for method, _ in self.get_grammar_methods('token') ] ) return token_names def get_grammar_methods(self, grammar_type): methods = [] for attr_name in dir(self): attr = getattr(self, attr_name) grammar = getattr(attr, 'grammar', None) if grammar and grammar['type'] == grammar_type: methods.append((attr, grammar['definition'])) return methods
62c3025dd72cbd79bb67fc3b146f88adb5c53aa9
13830825b25ec01ec2874094a10f36b4b1336ac7
/tf/languages/python/triggers/run.py
1e16f634c9f07393965d850f7e8e98d94d0d240a
[]
no_license
yurimalheiros/textflow
db62047b43c44d43c6efc67ad94f8118f984b076
c21ddf8aba58dc83d58a8db960d58d91ee2e5c74
refs/heads/master
2016-09-10T14:47:18.159229
2011-11-02T14:26:31
2011-11-02T14:26:31
1,927,215
1
1
null
null
null
null
UTF-8
Python
false
false
1,227
py
# -*- coding: utf-8 -*- ####################################################################### # Copyright © 2007-2009 Yuri Malheiros. # Copyright © 2009 TextFlow Team. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published # the Free Software Foundation; version 2 only. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. ####################################################################### """ This module implements the trigger of "F5". """ import tf.app from tf.languages.python.triggers.runfiles.terminal import RunTerminal shortcut = unichr(65474) #F5 sticky = False class Run(object): def activate(self): """ Execute the current python file. """ self.document_manager = tf.app.document_manager document = self.document_manager.get_active_document() self.terminal = RunTerminal() self.terminal.run("python", document.file_uri) return True
9be3517010189943cd437a0ff0fd2307813d2d6d
f73c9010616f91b64042d9a39e42bd8e1a8ab364
/virtual/bin/django-admin
329dbca9ba5f0b38234df91dc94f692282115fa2
[ "MIT" ]
permissive
mireille1999/Neighbourhood
f8d348c0f30c523d7a7a0c891f508be677e6e927
62bfe235a31521219acb3a093467e2ce5d21c976
refs/heads/main
2023-04-19T03:38:45.016484
2021-05-06T09:01:12
2021-05-06T09:01:12
363,867,762
0
0
null
null
null
null
UTF-8
Python
false
false
309
#!/home/mireille/Desktop/Django/Neighbourhood/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
8d7b14dcccda8ae9f7b2682fb5da36c5f06b8731
0534c55fd45878ee1ef12d6a9a2903c51cc6cd56
/backend/task_profile/models.py
0876c0b99a2c9c7e831a67edea5d5986436f2d77
[]
no_license
crowdbotics-apps/lcbo-go-19501
a7db5aa2265da23ab294de9c683951e54522ce22
96dd8ad7ce8c3dcb9526e2197a952d9b8028898f
refs/heads/master
2022-11-26T07:36:01.090189
2020-08-11T20:23:52
2020-08-11T20:23:52
286,839,867
0
0
null
null
null
null
UTF-8
Python
false
false
1,877
py
from django.conf import settings from django.db import models class Notification(models.Model): "Generated Model" type = models.CharField(max_length=20,) message = models.TextField() user = models.ManyToManyField("users.User", related_name="notification_user",) timestamp_created = models.DateTimeField(auto_now_add=True,) class TaskerProfile(models.Model): "Generated Model" user = models.OneToOneField( "users.User", on_delete=models.CASCADE, related_name="taskerprofile_user", ) mobile_number = models.CharField(max_length=20,) photo = models.URLField() timestamp_created = models.DateTimeField(auto_now_add=True,) last_updated = models.DateTimeField(auto_now=True,) last_login = models.DateTimeField(null=True, blank=True,) description = models.TextField(null=True, blank=True,) city = models.CharField(null=True, blank=True, max_length=50,) vehicle = models.CharField(null=True, blank=True, max_length=50,) closing_message = models.TextField(null=True, blank=True,) work_area_radius = models.FloatField(null=True, blank=True,) class CustomerProfile(models.Model): "Generated Model" user = models.OneToOneField( "users.User", on_delete=models.CASCADE, related_name="customerprofile_user", ) mobile_number = models.CharField(max_length=20,) photo = models.URLField() timestamp_created = models.DateTimeField(auto_now_add=True,) last_updated = models.DateTimeField(auto_now=True,) last_login = models.DateTimeField(null=True, blank=True,) class InviteCode(models.Model): "Generated Model" code = models.CharField(max_length=20,) user = models.ForeignKey( "users.User", on_delete=models.CASCADE, related_name="invitecode_user", ) timestamp_created = models.DateTimeField(auto_now_add=True,) # Create your models here.
bc7dfd6b2743ba065db5069510e641c5b4e23c65
a140fe192fd643ce556fa34bf2f84ddbdb97f091
/.history/class스타크래프트프로젝트전반전_20200709104854.py
1d7e1775de7a8f0280b1c3b4921af09ff2aa05b5
[]
no_license
sangha0719/py-practice
826f13cb422ef43992a69f822b9f04c2cb6d4815
6d71ce64bf91cc3bccee81378577d84ba9d9c121
refs/heads/master
2023-03-13T04:40:55.883279
2021-02-25T12:02:04
2021-02-25T12:02:04
342,230,484
0
0
null
null
null
null
UTF-8
Python
false
false
3,771
py
# 일반 유닛 class Unit: def __init__(self, name, hp, speed): self.name = name self.hp = hp self.speed = speed print("{0} 유닛이 생성되었습니다.".format(name)) def move(self, location): print("[지상 유닛 이동]") print("{0} : {1} 방향으로 이동합니다. [속도 {2}]" .format(self.name, location, self.speed)) def damaged(self, damage): print("{0} : {1} 데미지를 입었습니다.".format(self.name, damage)) self.hp -= damage print("{0} : 현재 체력은 {1}입니다.".format(self.name, self.hp)) if self.hp <= 0: print("{0} : 파괴되었습니다.".format(self.name)) # 공격 유닛 class AttackUnit(Unit): def __init__(self, name, hp, speed, damage): Unit.__init__(self, name, hp, speed) self.damage = damage def attack(self, location): # 클래스 내에서 메소드 앞에는 항상 self를 적어주어야 한다. print("{0} : {1} 방향으로 적군을 공격 합니다. [공격력 {2}]" .format(self.name, location, self.damage)) # 마린 class Marine(AttackUnit): def __init__(self): AttackUnit.__init__(self, "마린", 40, 1, 5) # 스팀팩 : 일정 시간 동안 이동 및 공격 속도를 증가, 체력 10 감소 def stimpack(self): if self.hp > 10: self.hp -= 10 print("{0} : 스팀팩을 사용합니다. (HP 10 감소)".format(self.name)) else: print("{0} : 체력이 부족하여 스팀팩을 사용하지 않습니다.".format(self.name)) # 탱크 class Tank(AttackUnit): # 시즈모드 : 탱크를 지상에 고정시켜, 더 높은 파워로 공격 가능. 이동 불가. seize_developed = False # 시즈모드 개발 여부 def __init__(self): AttackUnit.__init__(self, "탱크", 150, 1, 35) self.seize_mode = False def set_seize_mode(self): if Tank.seize_developed == False: return # 현재 시즈모드가 아닐 때 -> 시즈모드 if self.seize_mode == False: print("{0} : 시즈모드로 전환합니다.".format(self.name)) self.damage *= 2 self.seize_mode = True # 현재 시즈모드일 때 -> 시즈모드 해제 else: print("{0} : 시즈모드를 해제합니다.".format(self.name)) self.damaged /= 2 self.seize_mode = False # 날 수 있는 기능을 가진 클래스 class Flyable: def __init__(self, flying_speed): self.flying_speed = flying_speed def fly(self, name, location): print("{0} : {1} 방향으로 날아갑니다. [속도 {2}]" .format(name, location, self.flying_speed)) # 공중 공격 유닛 클래스 class FlyableAttackUnit(AttackUnit, Flyable): def __init__(self, name, hp, damage, flying_speed): AttackUnit.__init__(self, name, hp, 0, damage) # 지상 speed 0 Flyable.__init__(self, flying_speed) def move(self, location): print("[공중 유닛 이동]") self.fly(self.name, location) # 레이스 class Wraith(FlyableAttackUnit): def __init__(self): FlyableAttackUnit.__init__(self,"레이스", 80, 20, 5) self.clocked = False # 클로킹 모드 (해제 상태) def clocking(self): if self.clocked == True: # 클로킹 모드 -> 모드 해제 print("{0} : 클로킹 모드 해제합니다.".format(self.name)) self.clocked == False else: # 클로킹 모드 해제 -> 모드 설정 print("{0} : 클로킹 모드 설정합니다.".format(self.name)) self.clocked == True
1a6b70ae45e9fc29904a01cf685b64bf43a59743
0e9bd59e25d45adbc859cd187a5ebb00da4685ea
/tests/photometric_database/test_lightcurve_database.py
d3b21ca0bbdd55f26a9d21f5bb7727df9bc803b3
[ "Apache-2.0" ]
permissive
REStickland/ramjet
cc836090d5afb868db4317bf9cb7416c26061c02
ad69e284d5c45b6bd5e3d34e861e5d7b106d4589
refs/heads/master
2021-03-10T14:08:42.759728
2020-03-02T17:44:34
2020-03-02T17:44:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,968
py
""" Tests for the LightcurveDatabase class. """ from typing import Any from unittest.mock import Mock, patch import numpy as np import tensorflow as tf import pytest import ramjet.photometric_database.lightcurve_database from ramjet.photometric_database.lightcurve_database import LightcurveDatabase class TestLightcurveDatabase: @pytest.fixture def database(self): """Fixture of an instance of the class under test.""" return LightcurveDatabase() @pytest.fixture def database_module(self) -> Any: import ramjet.photometric_database.lightcurve_database as database_module return database_module @pytest.fixture def module(self) -> Any: """Fixture of the module under test.""" import ramjet.photometric_database.lightcurve_database as lightcurve_database_module return lightcurve_database_module def test_extraction_of_chunk_and_remainder_from_array(self, database, module): module.np.random.shuffle = Mock() array_to_chunk = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]]) expected_chunk = np.array([[3, 3], [4, 4]]) expected_remainder = np.array([[1, 1], [2, 2], [5, 5], [6, 6]]) chunk, remainder = database.extract_shuffled_chunk_and_remainder(array_to_chunk, chunk_ratio=1 / 3, chunk_to_extract_index=1) assert np.array_equal(chunk, expected_chunk) assert np.array_equal(remainder, expected_remainder) def test_creating_a_padded_window_dataset_for_a_zipped_example_and_label_dataset(self, database): # noinspection PyMissingOrEmptyDocstring def examples_generator(): for example in [[1, 1], [2, 2], [3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6]]: yield example # noinspection PyMissingOrEmptyDocstring def labels_generator(): for label in [[-1, -1], [-2, -2], [-3, -3], [-4, -4, -4], [-5, -5, -5], [-6, -6, -6]]: yield label example_dataset = tf.data.Dataset.from_generator(examples_generator, output_types=tf.float32) label_dataset = tf.data.Dataset.from_generator(labels_generator, output_types=tf.float32) dataset = tf.data.Dataset.zip((example_dataset, label_dataset)) padded_window_dataset = database.padded_window_dataset_for_zipped_example_and_label_dataset( dataset=dataset, batch_size=3, window_shift=2, padded_shapes=([None], [None])) padded_window_iterator = iter(padded_window_dataset) batch0 = next(padded_window_iterator) assert np.array_equal(batch0[0].numpy(), [[1, 1], [2, 2], [3, 3]]) batch1 = next(padded_window_iterator) assert np.array_equal(batch1[0].numpy(), [[3, 3, 0], [4, 4, 4], [5, 5, 5]]) @patch.object(ramjet.photometric_database.lightcurve_database.np.random, 'randint') def test_lightcurve_padding_can_be_made_non_random_for_evaluation(self, mock_randint, database, database_module): mock_randint.return_value = 3 lightcurve0 = database.make_uniform_length(np.array([10, 20, 30, 40, 50]), length=9, randomize=True) assert np.array_equal(lightcurve0, [30, 40, 50, 10, 20, 30, 40, 50, 10]) lightcurve1 = database.make_uniform_length(np.array([10, 20, 30, 40, 50]), length=9, randomize=False) assert np.array_equal(lightcurve1, [10, 20, 30, 40, 50, 10, 20, 30, 40]) # Should also work for lightcurves with more than just 1 value over time. lightcurve2 = database.make_uniform_length(np.array([[10], [20], [30], [40], [50]]), length=9, randomize=True) assert np.array_equal(lightcurve2, [[30], [40], [50], [10], [20], [30], [40], [50], [10]]) lightcurve3 = database.make_uniform_length(np.array([[10], [20], [30], [40], [50]]), length=9, randomize=False) assert np.array_equal(lightcurve3, [[10], [20], [30], [40], [50], [10], [20], [30], [40]])
66fbc0fc76eb0b501882c183116d815f84b4740a
0529196c4d0f8ac25afa8d657413d4fc1e6dd241
/runnie0427/03613/3613.py2.py
a7d442d8f366f973d05a21dfa90f433f61769397
[]
no_license
riyuna/boj
af9e1054737816ec64cbef5df4927c749808d04e
06420dd38d4ac8e7faa9e26172b30c9a3d4e7f91
refs/heads/master
2023-03-17T17:47:37.198570
2021-03-09T06:11:41
2021-03-09T06:11:41
345,656,935
0
0
null
null
null
null
UTF-8
Python
false
false
17,370
py
<!DOCTYPE html> <html lang="ko"> <head> <title>Baekjoon Online Judge</title><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta charset="utf-8"><meta name="author" content="스타트링크 (Startlink)"><meta name="keywords" content="ACM-ICPC, ICPC, 프로그래밍, 온라인 저지, 정보올림피아드, 코딩, 알고리즘, 대회, 올림피아드, 자료구조"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta property="og:type" content="website"><meta property="og:image" content="http://onlinejudgeimages.s3-ap-northeast-1.amazonaws.com/images/boj-og-1200.png"><meta property="og:site_name" content="Baekjoon Online Judge"><meta name="format-detection" content = "telephone=no"><meta name="msapplication-config" content="none"><link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png"><link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png"><link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png"><link rel="manifest" href="/site.webmanifest"><link rel="mask-icon" href="/safari-pinned-tab.svg" color="#0076c0"><meta name="msapplication-TileColor" content="#00aba9"><meta name="theme-color" content="#ffffff"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.2.0/css/bootstrap.min.css"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/style.css?version=20210107"><link href="https://fonts.googleapis.com/css?family=Noto+Sans+KR:400,700|Open+Sans:400,400i,700,700i|Source+Code+Pro&amp;subset=korean" rel="stylesheet"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/connect.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/result.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/custom.css?version=20210107"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.css"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/theme-colors/blue.css?version=20210107"><link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/css/pace.css"> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-10874097-3"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-10874097-3'); </script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/noty/3.1.4/noty.min.css" /><meta name="username" content=""> <link rel="stylesheet" href="https://ddo7jzca0m2vt.cloudfront.net/unify/css/pages/page_404_error.css"> </head> <body> <div class="wrapper"> <div class="header no-print"><div class="topbar"><div class="container"><ul class="loginbar pull-right"><li><a href = "/register">회원가입</a></li><li class="topbar-devider"></li><li><a href = "/login?next=%2Fsource%2Fdownload%2F7114763">로그인</a></li></ul></div></div><div class="navbar navbar-default mega-menu" role="navigation"><div class="container"><div class="navbar-header"><button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-responsive-collapse"><span class="sr-only">Toggle navigation</span><span class="fa fa-bars"></span></button><a class="navbar-brand" href="/"><img id="logo-header" src="https://d2gd6pc034wcta.cloudfront.net/images/[email protected]" alt="Logo" data-retina></a></div><div class="collapse navbar-collapse navbar-responsive-collapse"><ul class="nav navbar-nav"><li class="dropdown mega-menu-fullwidth "><a href="javascript:void(0);" class="dropdown-toggle" data-toggle="dropdown">문제</a><ul class="dropdown-menu"><li><div class="mega-menu-content"><div class="container"><div class="row equal-height"><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>문제</h3></li><li><a href = "/problemset">전체 문제</a></li><li><a href = "/category">문제 출처</a></li><li><a href = "/step">단계별로 풀어보기</a></li><li><a href = "/problem/tags">알고리즘 분류</a></li><li><a href = "/problem/added">새로 추가된 문제</a></li><li><a href = "/problem/added/1">새로 추가된 영어 문제</a></li><li><a href = "/problem/ranking">문제 순위</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>문제</h3></li><li><a href="/problem/only">푼 사람이 한 명인 문제</a></li><li><a href="/problem/nobody">아무도 못 푼 문제</a></li><li><a href="/problem/recent/submit">최근 제출된 문제</a></li><li><a href="/problem/recent/accepted">최근 풀린 문제</a></li><li><a href="/problem/random">랜덤</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>출처</h3></li><li><a href = "/category/1">ICPC</a></li><li><a href = "/category/2">Olympiad</a></li><li><a href = "/category/55">한국정보올림피아드</a></li><li><a href = "/category/57">한국정보올림피아드시․도지역본선</a></li><li><a href = "/category/318">전국 대학생 프로그래밍 대회 동아리 연합</a></li><li><a href = "/category/5">대학교 대회</a></li><li><a href = "/category/428">카카오 코드 페스티벌</a></li><li><a href = "/category/215">Coder's High</a></li></ul></div><div class="col-md-3 equal-height-in"><ul class="list-unstyled equal-height-list"><li><h3>ICPC</h3></li><li><a href = "/category/7">Regionals</a></li><li><a href = "/category/4">World Finals</a></li><li><a href = "/category/211">Korea Regional</a></li><li><a href = "/category/34">Africa and the Middle East Regionals</a></li><li><a href = "/category/10">Europe Regionals</a></li><li><a href = "/category/103">Latin America Regionals</a></li><li><a href = "/category/8">North America Regionals</a></li><li><a href = "/category/92">South Pacific Regionals</a></li></ul></div></div></div></div></li></ul></li><li><a href = "/workbook/top">문제집</a></li><li><a href = "/contest/official/list">대회<span class='badge badge-red rounded-2x'>2</span></a></li><li><a href = "/status">채점 현황</a></li><li><a href = "/ranklist">랭킹</a></li><li><a href = "/board/list/all">게시판</a></li><li><a href = "/group/list/all">그룹</a></li><li><a href = "/blog/list">블로그</a></li><li><a href = "/lectures">강의</a></li><li><a href = "/search"><i class="fa fa-search search-btn"></i></a></li></ul></div></div></div></div><form action="/logout" method="post" id="logout_form"><input type='hidden' value='%2Fsource%2Fdownload%2F7114763' name="next"></form> <div class="container content"> <div class="col-md-8 col-md-offset-2"> <div class="error-v1"> <span class="error-v1-title">404</span> <span>Not found</span> <div class="margin-bottom-20"></div> </div> <div class="text-center"> <span style="font-size:18px;">강의 슬라이드의 첨부 소스 코드가 404 에러가 뜨는 경우에는 링크를 복사/붙여넣기 해주세요.</span> </div> <div class="margin-bottom-40"></div> </div> </div> <div class="footer-v3 no-print"><div class="footer"><div class="container"><div class="row"><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>Baekjoon Online Judge</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/about">소개</a></li><li><a href="/news">뉴스</a></li><li><a href="/live">생중계</a></li><li><a href="/poll">설문조사</a></li><li><a href="/blog">블로그</a></li><li><a href="/calendar">캘린더</a></li><li><a href="/donate">기부하기</a></li><li><a href="https://github.com/Startlink/BOJ-Feature-Request">기능 추가 요청</a></li><li><a href="https://github.com/Startlink/BOJ-spj">스페셜 저지 제작</a></li><li><a href="/labs">실험실</a></li></ul><div class="thumb-headline"><h2>채점 현황</h2></div><ul class="list-unstyled simple-list"><li><a href="/status">채점 현황</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>문제</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/problemset">문제</a></li><li><a href="/step">단계별로 풀어보기</a></li><li><a href="/problem/tags">알고리즘 분류</a></li><li><a href="/problem/added">새로 추가된 문제</a></li><li><a href="/problem/added/1">새로 추가된 영어 문제</a></li><li><a href="/problem/ranking">문제 순위</a></li><li><a href="/problem/recent/submit">최근 제출된 문제</a></li><li><a href="/problem/recent/accepted">최근 풀린 문제</a></li><li><a href="/change">재채점 및 문제 수정</a></li></ul><div class="thumb-headline"><h2>유저 대회 / 고등학교 대회</h2></div><ul class="list-inline simple-list margin-bottom"><li><a href="/category/353">FunctionCup</a></li><li><a href="/category/319">kriiicon</a></li><li><a href="/category/420">구데기컵</a></li><li><a href="/category/358">꼬마컵</a></li><li><a href="/category/421">네블컵</a></li><li><a href="/category/413">소프트콘</a></li><li><a href="/category/416">웰노운컵</a></li><li><a href="/category/detail/1743">HYEA Cup</a></li><li><a href="/category/364">경기과학고등학교</a></li><li><a href="/category/417">대구과학고등학교</a></li><li><a href="/category/429">부산일과학고</a></li><li><a href="/category/435">서울과학고등학교</a></li><li><a href="/category/394">선린인터넷고등학교</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>출처</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/category/1">ICPC</a></li><li><a href="/category/211">ICPC Korea Regional</a></li><li><a href="/category/2">Olympiad</a></li><li><a href="/category/55">한국정보올림피아드</a></li><li><a href="/category/57">한국정보올림피아드시․도지역본선</a></li><li><a href="/category/318">전국 대학생 프로그래밍 대회 동아리 연합</a></li><li><a href="/category/5">대학교 대회</a></li><li><a href="/category/428">카카오 코드 페스티벌</a></li><li><a href="/category/215">Coder's High</a></li></ul><div class="thumb-headline"><h2>대학교 대회</h2></div><ul class="list-inline simple-list"><li><a href="/category/320">KAIST</a></li><li><a href="/category/426">POSTECH</a></li><li><a href="/category/341">고려대학교</a></li><li><a href="/category/434">광주과학기술원</a></li><li><a href="/category/361">국민대학교</a></li><li><a href="/category/83">서강대학교</a></li><li><a href="/category/354">서울대학교</a></li><li><a href="/category/352">숭실대학교</a></li><li><a href="/category/408">아주대학교</a></li><li><a href="/category/334">연세대학교</a></li><li><a href="/category/336">인하대학교</a></li><li><a href="/category/347">전북대학교</a></li><li><a href="/category/400">중앙대학교</a></li><li><a href="/category/402">충남대학교</a></li><li><a href="/category/418">한양대 ERICA</a></li><li><a href="/category/363">홍익대학교</a></li><li><a href="/category/409">경인지역 6개대학 연합 프로그래밍 경시대회</a></li></ul></div><div class="col-sm-3 md-margin-bottom-40"><div class="thumb-headline"><h2>도움말</h2></div><ul class="list-unstyled simple-list margin-bottom-10"><li><a href="/help/judge">채점 도움말 및 채점 환경</a></li><li><a href="/help/rejudge">재채점 안내</a></li><li><a href="/help/rte">런타임 에러 도움말</a></li><li><a href="/help/problem">문제 스타일 안내</a></li><li><a href="/help/language">컴파일 또는 실행 옵션, 컴파일러 버전, 언어 도움말</a></li><li><a href="/help/workbook">문제집 도움말</a></li><li><a href="/help/contest">대회 개최 안내</a></li><li><a href="/help/problem-add">문제 출제 안내</a></li><li><a href="/help/rule">이용 규칙</a></li><li><a href="/help/stat">통계 도움말</a></li><li><a href="/help/question">질문 도움말</a></li><li><a href="/help/faq">자주묻는 질문</a></li><li><a href="/help/lecture">강의 안내</a></li><li><a href="/help/short">짧은 주소 안내</a></li><li><a href="/help/ad">광고 안내</a></li></ul></div></div></div><div class="copyright"><div class="container"><div class="row"><div class="col-md-9 col-sm-12"><p>&copy; 2021 All Rights Reserved. <a href="https://startlink.io">주식회사 스타트링크</a>&nbsp;|&nbsp;<a href="/terms">서비스 약관</a>&nbsp;|&nbsp;<a href="/privacy">개인정보 보호</a>&nbsp;|&nbsp;<a href="/terms/payment">결제 이용 약관</a>&nbsp;|&nbsp;<a href="https://boj.startlink.help/hc/ko">도움말</a>&nbsp;|&nbsp;<a href="http://startl.ink/2pmlJaY">광고 문의</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj.md">업데이트 노트</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj-issues.md">이슈</a>&nbsp;|&nbsp;<a href="https://github.com/Startlink/update-note/blob/master/boj-todo.md">TODO</a></p></div><div class="col-md-3 col-sm-12"><ul class="social-icons pull-right"><li><a href="https://www.facebook.com/onlinejudge" data-original-title="Facebook" class="rounded-x social_facebook"></a></li><li><a href="https://startlink.blog" data-original-title="Wordpress" class="rounded-x social_wordpress"></a></li></ul></div></div><div class="row"><div class="col-sm-12"><a href="https://startlink.io" class="hidden-xs"><img src="https://d2gd6pc034wcta.cloudfront.net/logo/startlink-logo-white-only.png" class="pull-right startlink-logo"></a><ul class="list-unstyled simple-list"><li>사업자 등록 번호: 541-88-00682</li><li>대표자명: 최백준</li><li>주소: 서울시 서초구 서초대로74길 29 서초파라곤 412호</li><li>전화번호: 02-521-0487 (이메일로 연락 주세요)</li><li>이메일: <a href="mailto:[email protected]">[email protected]</a></li><li>통신판매신고번호: 제 2017-서울서초-2193 호</li></ul></div><div class="col-xs-9"><p id="no-acm-icpc"></p></div><div class="col-xs-3"></div></div></div></div></div> </div> <div id="fb-root"></div><script> window.fbAsyncInit = function() { FB.init({ appId : '322026491226049', cookie : true, xfbml : true, version : 'v2.8' }); }; (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/ko_KR/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); </script> <script> !function(f,b,e,v,n,t,s){ if(f.fbq)return;n=f.fbq=function(){ n.callMethod? n.callMethod.apply(n,arguments):n.queue.push(arguments) };if(!f._fbq)f._fbq=n; n.push=n;n.loaded=!0;n.version='2.0';n.queue=[];t=b.createElement(e);t.async=!0; t.src=v;s=b.getElementsByTagName(e)[0];s.parentNode.insertBefore(t,s) }(window, document,'script','//connect.facebook.net/en_US/fbevents.js'); fbq('init', '1670563073163149'); fbq('track', 'PageView'); </script> <noscript><img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=1670563073163149&ev=PageView&noscript=1"/></noscript><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-migrate/3.0.1/jquery-migrate.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.2.0/js/bootstrap.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.21.0/moment.min.js"></script><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.21.0/locale/ko.js"></script><script type="text/javascript" src="https://ddo7jzca0m2vt.cloudfront.net/unify/js/app.min.js?version=20210107"></script><script type="text/javascript">jQuery(document).ready(function() {App.init(0);});</script><!--[if lt IE 9]><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/plugins/respond.js"></script><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/plugins/html5shiv.js"></script><script src="https://ddo7jzca0m2vt.cloudfront.net/unify/js/plugins/placeholder-IE-fixes.js"></script><![endif]--><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/pace/1.0.2/pace.min.js"></script><script src="https://js.pusher.com/4.2/pusher.min.js"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/noty/3.1.4/noty.min.js"></script> <script> window.MathJax = { tex: { inlineMath: [ ['$', '$'], ['\\(', '\\)'] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, tags: "ams", autoload: { color: [], colorv2: ['color'] }, packages: { '[+]': ['noerrors'] } }, options: { ignoreHtmlClass: "no-mathjax|redactor-editor", processHtmlClass: 'mathjax', enableMenu: false }, chtml: { scale: 0.9 }, loader: { load: ['input/tex', 'output/chtml', '[tex]/noerrors'], } }; </script><script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script><script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> </body> </html>
22cd7d391cc9fbe273b5040f9df01d41521f8ad7
722ace259d9a92a7923a7ebd32608acbfddb073d
/Tag04/doz_a7.py
69786d28c2f05b2563f8c924bbd53b3c49e9c70d
[]
no_license
anna-s-dotcom/python_final
19da2d0d2a420f4d54bb2a9760593b655230dcea
41275625c8905f55a7561cd50df51bbb7d4c39bd
refs/heads/master
2020-12-08T15:30:04.336376
2020-01-10T10:17:15
2020-01-10T10:17:15
233,017,742
0
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
# Aufgabe 7) # Erstelle eine Funktion, welche eine Zahl und einen Befehl übergeben bekommt. # Der Befehl soll „lin“ oder „quad“ sein. # Je nach dem soll die Funktion ausgeführt werden: # lin = 4*x+5 # quad = 4*x2+5*x+6 # 1) Nutze ein if/else Konstrukt. def linquad(x, f = 'lin'): if f == 'lin': return 4 * x + 5 elif f == 'quad': return 4 * x**2 + 5*x + 6 else: print('Falsche Eingabe') y = linquad(5, 'lin') print(y) y = linquad(10, 'quad') print(y) # 2) Nutze ein Dictionary. def linquad_dic(x, f): d = {'lin': 4 * x + 5, 'quad': 4 * x**2 + 5*x + 6} return d[f] y = linquad_dic(5, 'lin') print(y) y = linquad_dic(10, 'quad') print(y) # wichtig, wenn d erstellt wird werden die werte ausgerechnet! print() x = 5 d = {'lin': 4 * x + 5, 'quad': 4 * x**2 + 5*x + 6} print(d['lin']) # neu wählen von x hat keine auswirkung mehr auf d x = 10 print(d['lin']) def f1(): print('F1') def f2(x): return 4 * x # wenn funktion als value, dann ohne () # - wenn die funktion nicht direkt aufgerufen werden soll d2 = {'f_1': f1, 'f_2': f2} d2['f_1']() y = d2['f_2'](5) print(y)
524077872b20c6c49333c3c0e864ffe3114cc7fb
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2423/60899/261347.py
b07973f6cbd23601c9ce7344d44ec4505e1dade2
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
409
py
numOftests = int(input()) for i in range(numOftests): list2 = list(map(int, input().split())) length = list2[0] list0 = list(map(int,input().split())) list1 = list(map(int, input().split())) list0.sort() list1.sort() lengthOfzero = len(list0) list0.extend(list1) list0 = list(set(list0)) if len(list0) == lengthOfzero: print("Yes") else: print("No")
d191aa6944595ac49641b74daa31bb3cd5b34f34
e5dad8e72f6c89011ae030f8076ac25c365f0b5f
/caret_scripts/smooth_medial_wall.py
3ba2096b84ab538f66083977dd8820563423cb95
[]
no_license
djsperka/caret
f9a99dc5b88c4ab25edf8b1aa557fe51588c2652
153f8e334e0cbe37d14f78c52c935c074b796370
refs/heads/master
2023-07-15T19:34:16.565767
2020-03-07T00:29:29
2020-03-07T00:29:29
122,994,146
0
1
null
2018-02-26T16:06:03
2018-02-26T16:06:03
null
UTF-8
Python
false
false
4,412
py
#!/usr/bin/python # # Imports # import os import sys # # Global Variables # progName = "/Users/john/caret5_osx/caret_source/caret_command/caret_command" #progName = "caret_command" areaColorFileName = "Geography.areacolor" separateBorderProjectionFileName = "MedialWall_Separate.borderproj" mergedBorderProjectionFileName = "MedialWall_Merged.borderproj" borderColorFileName = "LANDMARK.bordercolor" medialWallBorderName = "LANDMARK.MEDIAL.WALL" fiducialCoordFileName = "Human.colin.Cerebral.R.FIDUCIAL.TLRC.711-2B.71723.coord" smoothedFiducialCoordFileName = "Human.colin.Cerebral.R.FIDUCIAL_SMOOTHED.TLRC.711-2B.71723.coord" inflatedCoordFileName = "Human.colin.Cerebral.R.INFLATED.71723.coord" paintFileName = "MedialWall.paint" paintName = "MEDIAL.WALL" roiFileName = "medial_wall.roi" surfaceShapeFileName = "Curvature.surface_shape" topologyFileName = "Human.colin.Cerebral.R.CLOSED.71723.topo" ##----------------------------------------------------------------------------- # # Run a command # def runCommand(cmdList) : cmd = " ".join(cmdList) # join cmdList into a string separated by blanks print "\nExecuting: %s\n" % cmd result = os.system(cmd) if (result != 0) : print "COMMAND FAILED: " print " ", cmd os._exit(-1) ##----------------------------------------------------------------------------- # # Main # # # Merge the two medial wall borders into a single border # cmdList = (progName, "-surface-border-merge", separateBorderProjectionFileName, mergedBorderProjectionFileName, medialWallBorderName, "LANDMARK.MedWall.DORSAL", "LANDMARK.MedWall.VENTRAL", "-delete-input-border-projections", "-close-border") runCommand(cmdList) # # Resample the border # cmdList = (progName, "-surface-border-resample", fiducialCoordFileName, topologyFileName, mergedBorderProjectionFileName, mergedBorderProjectionFileName, str(2.0), "-all") runCommand(cmdList) # # Create a region of interest that contains nodes within # the medial wall border projection # cmdList = (progName, "-surface-region-of-interest-selection", inflatedCoordFileName, topologyFileName, roiFileName, roiFileName, "-border-projection", mergedBorderProjectionFileName, medialWallBorderName, "M", "3D", 0, "NORMAL") runCommand(cmdList) # # Create the color for the medial wall paint # cmdList = (progName, "-color-file-add-color", areaColorFileName, areaColorFileName, paintName, str(255), str(0), str(0)) runCommand(cmdList) # # Create the color for the medial wall border # cmdList = (progName, "-color-file-add-color", borderColorFileName, borderColorFileName, medialWallBorderName, str(255), str(0), str(0)) runCommand(cmdList) # # Create a NEW paint file with one column named "Geography" # cmdList = (progName, "-paint-file-create", paintFileName, str(1), "-coordinate-file", inflatedCoordFileName, "-set-column-name 1 Geography") runCommand(cmdList) # # Assign nodes in ROI to paint # cmdList = (progName, "-paint-assign-to-nodes", paintFileName, paintFileName, str(1), paintName, "-assign-from-roi-file", roiFileName) runCommand(cmdList) # # Smooth the medial wall # cmdList = (progName, "-surface-smoothing", fiducialCoordFileName, smoothedFiducialCoordFileName, topologyFileName, str(1.0), str(50), str(-1), "-roi-file ", roiFileName) runCommand(cmdList) # # Generate curvature # cmdList = (progName, "-surface-curvature", smoothedFiducialCoordFileName, topologyFileName, surfaceShapeFileName, surfaceShapeFileName, "-generate-mean-curvature", "-mean-column-name \"Folding (Mean Curvature) MWS\"") runCommand(cmdList)
c3ce493b5b7d71d6751e0d43317734bfe591ca9a
18d4e647425400d41c128c0a6f90e0654dcf0fef
/MAGNN/model/base_MAGNN.py
24429d3e8ade7f1fcc2f4d17ce76532d3899def9
[]
no_license
ddatta-DAC/AD_v3
793537fca36c49acee8c63396966a1d6d43df407
75191fc77874fa1d09c570195036cb8b8b83de24
refs/heads/master
2022-09-16T18:57:58.982936
2020-05-29T15:34:04
2020-05-29T15:34:04
263,650,595
1
0
null
null
null
null
UTF-8
Python
false
false
11,744
py
import torch import torch.nn as nn import torch.nn.functional as F import dgl.function as fn from dgl.nn.pytorch import edge_softmax class MAGNN_metapath_specific(nn.Module): def __init__(self, etypes, out_dim, num_heads, rnn_type='gru', r_vec=None, attn_drop=0.5, alpha=0.01, use_minibatch=False, attn_switch=False): super(MAGNN_metapath_specific, self).__init__() self.out_dim = out_dim self.num_heads = num_heads self.rnn_type = rnn_type self.etypes = etypes self.r_vec = r_vec self.use_minibatch = use_minibatch self.attn_switch = attn_switch # rnn-like metapath instance aggregator # consider multiple attention heads if rnn_type == 'gru': self.rnn = nn.GRU(out_dim, num_heads * out_dim) elif rnn_type == 'lstm': self.rnn = nn.LSTM(out_dim, num_heads * out_dim) elif rnn_type == 'bi-gru': self.rnn = nn.GRU(out_dim, num_heads * out_dim // 2, bidirectional=True) elif rnn_type == 'bi-lstm': self.rnn = nn.LSTM(out_dim, num_heads * out_dim // 2, bidirectional=True) elif rnn_type == 'linear': self.rnn = nn.Linear(out_dim, num_heads * out_dim) elif rnn_type == 'max-pooling': self.rnn = nn.Linear(out_dim, num_heads * out_dim) elif rnn_type == 'neighbor-linear': self.rnn = nn.Linear(out_dim, num_heads * out_dim) # node-level attention # attention considers the center node embedding or not if self.attn_switch: self.attn1 = nn.Linear(out_dim, num_heads, bias=False) self.attn2 = nn.Parameter(torch.empty(size=(1, num_heads, out_dim))) else: self.attn = nn.Parameter(torch.empty(size=(1, num_heads, out_dim))) self.leaky_relu = nn.LeakyReLU(alpha) self.softmax = edge_softmax if attn_drop: self.attn_drop = nn.Dropout(attn_drop) else: self.attn_drop = lambda x: x # weight initialization if self.attn_switch: nn.init.xavier_normal_(self.attn1.weight, gain=1.414) nn.init.xavier_normal_(self.attn2.data, gain=1.414) else: nn.init.xavier_normal_(self.attn.data, gain=1.414) def edge_softmax(self, g): attention = self.softmax(g, g.edata.pop('a')) # Dropout attention scores and save them g.edata['a_drop'] = self.attn_drop(attention) def message_passing(self, edges): ft = edges.data['eft'] * edges.data['a_drop'] return {'ft': ft} def forward(self, inputs): # features: num_all_nodes x out_dim if self.use_minibatch: g, features, type_mask, edge_metapath_indices, target_idx = inputs else: g, features, type_mask, edge_metapath_indices = inputs # Embedding layer # use torch.nn.functional.embedding or torch.embedding here # do not use torch.nn.embedding # edata: E x Seq x out_dim edata = F.embedding(edge_metapath_indices, features) # apply rnn to metapath-based feature sequence if self.rnn_type == 'gru': _, hidden = self.rnn(edata.permute(1, 0, 2)) elif self.rnn_type == 'lstm': _, (hidden, _) = self.rnn(edata.permute(1, 0, 2)) elif self.rnn_type == 'bi-gru': _, hidden = self.rnn(edata.permute(1, 0, 2)) hidden = hidden.permute(1, 0, 2).reshape(-1, self.out_dim, self.num_heads).permute(0, 2, 1).reshape( -1, self.num_heads * self.out_dim).unsqueeze(dim=0) elif self.rnn_type == 'bi-lstm': _, (hidden, _) = self.rnn(edata.permute(1, 0, 2)) hidden = hidden.permute(1, 0, 2).reshape(-1, self.out_dim, self.num_heads).permute(0, 2, 1).reshape( -1, self.num_heads * self.out_dim).unsqueeze(dim=0) elif self.rnn_type == 'average': hidden = torch.mean(edata, dim=1) hidden = torch.cat([hidden] * self.num_heads, dim=1) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'linear': hidden = self.rnn(torch.mean(edata, dim=1)) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'max-pooling': hidden, _ = torch.max(self.rnn(edata), dim=1) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'TransE0' or self.rnn_type == 'TransE1': r_vec = self.r_vec if self.rnn_type == 'TransE0': r_vec = torch.stack((r_vec, -r_vec), dim=1) r_vec = r_vec.reshape(self.r_vec.shape[0] * 2, self.r_vec.shape[1]) # etypes x out_dim edata = F.normalize(edata, p=2, dim=2) for i in range(edata.shape[1] - 1): # consider None edge (symmetric relation) temp_etypes = [etype for etype in self.etypes[i:] if etype is not None] edata[:, i] = edata[:, i] + r_vec[temp_etypes].sum(dim=0) hidden = torch.mean(edata, dim=1) hidden = torch.cat([hidden] * self.num_heads, dim=1) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'RotatE0' or self.rnn_type == 'RotatE1': r_vec = F.normalize(self.r_vec, p=2, dim=2) if self.rnn_type == 'RotatE0': r_vec = torch.stack((r_vec, r_vec), dim=1) r_vec[:, 1, :, 1] = -r_vec[:, 1, :, 1] r_vec = r_vec.reshape(self.r_vec.shape[0] * 2, self.r_vec.shape[1], 2) # etypes x out_dim/2 x 2 edata = edata.reshape(edata.shape[0], edata.shape[1], edata.shape[2] // 2, 2) final_r_vec = torch.zeros([edata.shape[1], self.out_dim // 2, 2], device=edata.device) final_r_vec[-1, :, 0] = 1 for i in range(final_r_vec.shape[0] - 2, -1, -1): # consider None edge (symmetric relation) if self.etypes[i] is not None: final_r_vec[i, :, 0] = final_r_vec[i + 1, :, 0].clone() * r_vec[self.etypes[i], :, 0] -\ final_r_vec[i + 1, :, 1].clone() * r_vec[self.etypes[i], :, 1] final_r_vec[i, :, 1] = final_r_vec[i + 1, :, 0].clone() * r_vec[self.etypes[i], :, 1] +\ final_r_vec[i + 1, :, 1].clone() * r_vec[self.etypes[i], :, 0] else: final_r_vec[i, :, 0] = final_r_vec[i + 1, :, 0].clone() final_r_vec[i, :, 1] = final_r_vec[i + 1, :, 1].clone() for i in range(edata.shape[1] - 1): temp1 = edata[:, i, :, 0].clone() * final_r_vec[i, :, 0] -\ edata[:, i, :, 1].clone() * final_r_vec[i, :, 1] temp2 = edata[:, i, :, 0].clone() * final_r_vec[i, :, 1] +\ edata[:, i, :, 1].clone() * final_r_vec[i, :, 0] edata[:, i, :, 0] = temp1 edata[:, i, :, 1] = temp2 edata = edata.reshape(edata.shape[0], edata.shape[1], -1) hidden = torch.mean(edata, dim=1) hidden = torch.cat([hidden] * self.num_heads, dim=1) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'neighbor': hidden = edata[:, 0] hidden = torch.cat([hidden] * self.num_heads, dim=1) hidden = hidden.unsqueeze(dim=0) elif self.rnn_type == 'neighbor-linear': hidden = self.rnn(edata[:, 0]) hidden = hidden.unsqueeze(dim=0) eft = hidden.permute(1, 0, 2).view(-1, self.num_heads, self.out_dim) # E x num_heads x out_dim if self.attn_switch: center_node_feat = F.embedding(edge_metapath_indices[:, -1], features) # E x out_dim a1 = self.attn1(center_node_feat) # E x num_heads a2 = (eft * self.attn2).sum(dim=-1) # E x num_heads a = (a1 + a2).unsqueeze(dim=-1) # E x num_heads x 1 else: a = (eft * self.attn).sum(dim=-1).unsqueeze(dim=-1) # E x num_heads x 1 a = self.leaky_relu(a) g.edata.update({'eft': eft, 'a': a}) # compute softmax normalized attention values self.edge_softmax(g) # compute the aggregated node features scaled by the dropped, # unnormalized attention values. g.update_all( self.message_passing, fn.sum('ft', 'ft') ) ret = g.ndata['ft'] # E x num_heads x out_dim if self.use_minibatch: return ret[target_idx] else: return ret class MAGNN_ctr_ntype_specific(nn.Module): def __init__(self, num_metapaths, etypes_list, out_dim, num_heads, attn_vec_dim, rnn_type='gru', r_vec=None, attn_drop=0.5, use_minibatch=False): super(MAGNN_ctr_ntype_specific, self).__init__() self.out_dim = out_dim self.num_heads = num_heads self.use_minibatch = use_minibatch # metapath-specific layers self.metapath_layers = nn.ModuleList() for i in range(num_metapaths): self.metapath_layers.append(MAGNN_metapath_specific( etypes_list[i], out_dim, num_heads, rnn_type, r_vec, attn_drop=attn_drop, use_minibatch=use_minibatch) ) # metapath-level attention # note that the acutal input dimension should consider the number of heads # as multiple head outputs are concatenated together self.fc1 = nn.Linear(out_dim * num_heads, attn_vec_dim, bias=True) self.fc2 = nn.Linear(attn_vec_dim, 1, bias=False) # weight initialization nn.init.xavier_normal_(self.fc1.weight, gain=1.414) nn.init.xavier_normal_(self.fc2.weight, gain=1.414) def forward(self, inputs): if self.use_minibatch: g_list, features, type_mask, edge_metapath_indices_list, target_idx_list = inputs # metapath-specific layers metapath_outs = [F.elu( metapath_layer( (g, features, type_mask, edge_metapath_indices, target_idx) ).view(-1, self.num_heads * self.out_dim) ) for g, edge_metapath_indices, target_idx, metapath_layer in zip (g_list, edge_metapath_indices_list, target_idx_list, self.metapath_layers)] else: g_list, features, type_mask, edge_metapath_indices_list = inputs # metapath-specific layers metapath_outs = [F.elu(metapath_layer((g, features, type_mask, edge_metapath_indices)).view(-1, self.num_heads * self.out_dim)) for g, edge_metapath_indices, metapath_layer in zip(g_list, edge_metapath_indices_list, self.metapath_layers)] beta = [] for metapath_out in metapath_outs: fc1 = torch.tanh(self.fc1(metapath_out)) fc1_mean = torch.mean(fc1, dim=0) fc2 = self.fc2(fc1_mean) beta.append(fc2) beta = torch.cat(beta, dim=0) beta = F.softmax(beta, dim=0) beta = torch.unsqueeze(beta, dim=-1) beta = torch.unsqueeze(beta, dim=-1) metapath_outs = [torch.unsqueeze(metapath_out, dim=0) for metapath_out in metapath_outs] metapath_outs = torch.cat(metapath_outs, dim=0) h = torch.sum(beta * metapath_outs, dim=0) return h
2fda7128de47a50c6ff375d42206469d47952984
68a088346090ae4e929c208906b14181da0f92f6
/第一阶段/2. Python01/day03/exercise/01_str_rectangle.py
753207cbeb3641e48a534062ed628f0b1941a2de
[]
no_license
LONG990122/PYTHON
d1530e734ae48416b5f989a4d97bd1d66d165b91
59a2a2a0b033c8ad0cb33d6126c252e9d574eff7
refs/heads/master
2020-07-07T09:38:03.501705
2019-09-23T16:28:31
2019-09-23T16:28:31
203,316,565
0
0
null
2019-10-23T15:02:33
2019-08-20T06:47:44
HTML
UTF-8
Python
false
false
401
py
# 01_str_rectangle.py # 写一个程序,打印一个高度为4的矩形方框 # 要求输入一个整数,此整数代表矩形的宽度,输出此矩形 # 如: # 请输入宽度: 10 # 打印如下: # ########## # # # # # # # ########## w = int(input("请输入宽度: ")) line1 = '#' * w line2 = '#' + ' ' * (w - 2) + '#' print(line1) print(line2) print(line2) print(line1)
f8edac2da5a69b605d4359c2f8f216e0976f96d9
e42a61b7be7ec3412e5cea0ffe9f6e9f34d4bf8d
/a10sdk/core/techsupport/techsupport_vcsdebug.py
5ab73d62848edc2f0279a82d14c841396240e154
[ "Apache-2.0" ]
permissive
amwelch/a10sdk-python
4179565afdc76cdec3601c2715a79479b3225aef
3e6d88c65bd1a2bf63917d14be58d782e06814e6
refs/heads/master
2021-01-20T23:17:07.270210
2015-08-13T17:53:23
2015-08-13T17:53:23
40,673,499
0
0
null
2015-08-13T17:51:35
2015-08-13T17:51:34
null
UTF-8
Python
false
false
820
py
from a10sdk.common.A10BaseClass import A10BaseClass class GeneratesAvcsDebugFile(A10BaseClass): """ :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/techsupport/vcsdebug`. Class Generates aVCS debug file supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "Generates aVCS debug file" self.a10_url="/axapi/v3/techsupport/vcsdebug" self.DeviceProxy = "" for keys, value in kwargs.items(): setattr(self,keys, value)
556f9a4f94a174e5febc071241d4cba8792817cd
fcecbfe364306bd4da1ac316d38e5dc4fc7942a2
/model_util/test_diag.py
2ab0bbfe19f5ccae96a8533164a08bc8ef4c68f1
[]
no_license
darothen/crm-tools
ce7cda50ca8d49c801848d60a83372a6f3eef273
095da56aba6911e472093a2ebae8a73503ff0855
refs/heads/master
2016-09-06T14:53:28.088780
2014-05-05T14:12:13
2014-05-05T14:12:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
from crm_io import read_diag, save_diag #filename = "/Volumes/legion_home/models/crm71_2d/OUTPUT/DIAG" filename = "/Volumes/legion_storage02/crm_testing/kshv_2d_largedomain/kshv_500ccn_100in/DIAG" nz = 65 spmd = True ts = 20 nt = read_diag(filename, nz, spmd) all_time, all_tdiag = save_diag(filename, nz, nt, spmd) print all_time print all_tdiag[ts,:,36] from pylab import * import numpy as np fig = plt.figure(1) plt.clf() d = np.ma.masked_invalid(all_tdiag[ts,:,36]) d = np.ma.masked_outside(d, -10, 10) d = np.ma.filled(d, 0.) print d.shape plt.plot(d, range(nz), "o")
76a142e0bf1248e45f81f90da77866782710a3d6
b39d9ef9175077ac6f03b66d97b073d85b6bc4d0
/Terracortril_med_Polymyxin_B_eye_or_ear_ointment_SmPC.py
1981573d4c6dae71344cf9ec7d1423466396b794
[]
no_license
urudaro/data-ue
2d840fdce8ba7e759b5551cb3ee277d046464fe0
176c57533b66754ee05a96a7429c3e610188e4aa
refs/heads/master
2021-01-22T12:02:16.931087
2013-07-16T14:05:41
2013-07-16T14:05:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
852
py
{'_data': [['Common', [['Eye', u'Sveda vid instillation. Vid l\xe5ngtidsbehandling hornhinneskada och intraokul\xe4r tryckstegring.']]], ['Uncommon', [['Eye', u'Aktivering av viruskeratit.']]], ['Rare', [['Eye', u'Korneaperforation, katarakt vid l\xe5ngtidsbehandling.']]], ['Unknown', [['Infections', u'Infektion, bakteriell infektion, svampinfektion'], ['Immune system', u'\xd6verk\xe4nslighetsreaktioner'], ['Eye', u'\xd6kat t\xe5rfl\xf6de, glaukom, synnervsp\xe5verkan, br\xe4nnande k\xe4nsla, k\xe4nsla av fr\xe4mmande partiklar, f\xf6rs\xe4mrad l\xe4kning'], ['Skin', u'Kontakdermatit Allm\xe4nna symtom och/eller symtom vid adminstreringsst\xe4llet']]]], '_pages': [2, 3], u'_rank': 7, u'_type': u'LSFU'}
[ "daro@daro-ThinkPad-X220.(none)" ]
daro@daro-ThinkPad-X220.(none)
3bfbb99e6ddff6a51ff6bb6726c8df7a291a5619
30158cbe4ef57ec85df07da8e8f8085a5001996c
/frame_2D_alg/alternative versions/frame_blobs_ortho.py
5e55f32ec1a59c90132a010af70173b6bfe1edf4
[ "CC-BY-4.0", "MIT" ]
permissive
boris-kz/CogAlg
951c00e202db8537d106b9794b5309f22f3d25b9
a56a369524c9435bfb20225b71e87b6b28c9d1e3
refs/heads/master
2023-09-04T04:07:52.028903
2023-09-04T00:58:53
2023-09-04T00:58:53
90,488,789
110
54
MIT
2023-05-04T11:27:04
2017-05-06T20:17:18
Python
UTF-8
Python
false
false
13,568
py
from scipy import misc from time import time from collections import deque, namedtuple import numpy as np ''' frame_blobs() defines blobs: contiguous areas of positive or negative deviation of gradient. Gradient is estimated as |dx| + |dy|, then selectively and more precisely as hypot(dx, dy), from cross-comparison among adjacent pixels. Complemented by intra_blob (recursive search within blobs), it will be a 2D version of first-level core algorithm. frame_blobs() performs several levels (Le) of encoding, incremental per scan line defined by vertical coordinate y. value of y per Le line is shown relative to y of current input line, incremented by top-down scan of input image: 1Le, line y: comp_pixel (lateral and vertical comp) -> pixel + derivatives tuple: dert ) frame of derts: dert__ 2Le, line y-1: form_P(dert2) -> 1D pattern P 3Le, line y-2: scan_P_(P, hP)-> hP, roots: down-connections, fork_: up-connections between Ps 4Le, line y-3: form_segment(hP, seg) -> seg: merge vertically-connected _Ps in non-forking blob segments 5Le, line y-4+ seg depth: form_blob(seg, blob): merge connected segments in fork_ incomplete blobs, recursively All 2D functions (y_comp, scan_P_, form_segment, form_blob) input two lines: higher and lower, convert elements of lower line into elements of new higher line, then displace elements of old higher line into higher function. Higher-line elements include additional variables, derived while they were lower-line elements. Processing is mostly sequential because blobs are irregular and very difficult to map to matrices. prefix '_' denotes higher-line variable or pattern, vs. same-type lower-line variable or pattern, postfix '_' denotes array name, vs. same-name elements of that array ''' # ************ MAIN FUNCTIONS ******************************************************************************************* # -image_to_blobs() # -comp_pixel() # -form_P_() # -scan_P_() # -form_seg_() # -form_blob() # *********************************************************************************************************************** def image_to_blobs(image): # root function, postfix '_' denotes array vs element, prefix '_' denotes higher- vs lower- line variable frame = [[0, 0, 0, 0], [], image.shape] # params, blob_, shape dert__ = comp_pixel(image) # vertically and horizontally bilateral comparison of adjacent pixels seg_ = deque() # buffer of running segments for y in range(1, height - 1): # first and last row are discarded P_ = form_P_(dert__[y]) # horizontal clustering P_ = scan_P_(P_, seg_, frame) seg_ = form_seg_(y, P_, frame) while seg_: form_blob(seg_.popleft(), frame) # frame ends, last-line segs are merged into their blobs return frame # frame of 2D patterns # ---------- image_to_blobs() end ----------------------------------------------------------------------------------- def comp_pixel(p__): # bilateral comparison between vertically and horizontally consecutive pixels within image dert__ = np.empty(shape=(height, width, 4), dtype=int) # initialize dert__ dy__ = p__[2:, 1:-1] - p__[:-2, 1:-1] # vertical comp between rows, first and last column are discarded dx__ = p__[1:-1, 2:] - p__[1:-1, :-2] # lateral comp between columns, first and last row are discarded g__ = np.abs(dy__) + np.abs(dx__) - ave # deviation of gradient, initially approximated as |dy| + |dx| dert__[:, :, 0] = p__ dert__[1:-1, 1:-1, 1] = g__ dert__[1:-1, 1:-1, 2] = dy__ # first row, last row, first column and last-column are discarded dert__[1:-1, 1:-1, 3] = dx__ return dert__ # ---------- comp_pixel() end --------------------------------------------------------------------------------------- def form_P_(dert_): # horizontally cluster and sum consecutive pixels and their derivatives into Ps P_ = deque() # row of Ps i, g, dy, dx = dert_[1] # first dert x0, I, G, Dy, Dx, L = 1, i, g, dy, dx, 1 # P params P_dert_ = [(i, g, dy, dx)] # dert buffer _s = g > 0 # sign for x, (i, g, dy, dx) in enumerate(dert_[2:-1], start=2): s = g > 0 if s != _s: # P is terminated and new P is initialized P_.append([_s, x0, I, G, Dy, Dx, L, P_dert_]) x0, I, G, Dy, Dx, L = x, 0, 0, 0, 0, 0 P_dert_ = [] # accumulate P params: I += i G += g Dy += dy Dx += dx L += 1 P_dert_.append((i, g, dy, dx)) _s = s # prior sign P_.append([_s, x0, I, G, Dy, Dx, L, P_dert_]) # last P in row return P_ # ---------- form_P_() end ------------------------------------------------------------------------------------------ def scan_P_(P_, seg_, frame): # integrate x overlaps (forks) between same-sign Ps and _Ps into blob segments new_P_ = deque() if P_ and seg_: # if both are not empty P = P_.popleft() # input-line Ps seg = seg_.popleft() # higher-line segments, _P = seg[2][-1] # last element of each segment is higher-line P stop = False fork_ = [] while not stop: x0 = P[1] # first x in P xn = x0 + P[-2] # first x in next P _x0 = _P[1] # first x in _P _xn = _x0 +_P[-2] # first x in next _P if P[0] == _P[0] and _x0 < xn and x0 < _xn: # test for sign match and x overlap seg[3] += 1 fork_.append(seg) # P-connected segments are buffered into fork_ if xn < _xn: # _P overlaps next P in P_ new_P_.append((P, fork_)) fork_ = [] if P_: P = P_.popleft() # load next P else: # terminate loop if seg[3] != 1: # if roots != 1: terminate seg form_blob(seg, frame) stop = True else: # no next-P overlap if seg[3] != 1: # if roots != 1: terminate seg form_blob(seg, frame) if seg_: # load next _P seg = seg_.popleft() _P = seg[2][-1] else: # if no seg left: terminate loop new_P_.append((P, fork_)) stop = True while P_: # terminate Ps and segs that continue at line's end new_P_.append((P_.popleft(), [])) # no fork while seg_: form_blob(seg_.popleft(), frame) # roots always == 0 return new_P_ # ---------- scan_P_() end ------------------------------------------------------------------------------------------ def form_seg_(y, P_, frame): # convert or merge every P into segment, merge blobs new_seg_ = deque() while P_: P, fork_ = P_.popleft() s, x0 = P[:2] params = P[2:-1] # I, G, Dy, Dx, L, Ly xn = x0 + params[-1] # next-P x0 = x0 + L params.append(1) # add Ly if not fork_: # new_seg is initialized with initialized blob blob = [s, [0] * (len(params)), [], 1, [y, x0, xn]] # s, params, seg_, open_segments, box new_seg = [y, params, [P], 0, fork_, blob] # y0, params, Py_, roots, fork_, blob blob[2].append(new_seg) else: if len(fork_) == 1 and fork_[0][3] == 1: # P has one fork and that fork has one root new_seg = fork_[0] I, G, Dy, Dx, L, Ly = params Is, Gs, Dys, Dxs, Ls, Lys = new_seg[1] # fork segment params, P is merged into segment: new_seg[1] = [Is + I, Gs + G, Dys + Dy, Dxs + Dx, Ls + L, Lys + Ly] new_seg[2].append(P) # Py_: vertical buffer of Ps new_seg[3] = 0 # reset roots blob = new_seg[-1] else: # if > 1 forks, or 1 fork that has > 1 roots: blob = fork_[0][5] new_seg = [y, params, [P], 0, fork_, blob] # new_seg is initialized with fork blob blob[2].append(new_seg) # segment is buffered into blob if len(fork_) > 1: # merge blobs of all forks if fork_[0][3] == 1: # if roots == 1: fork hasn't been terminated form_blob(fork_[0], frame) # merge seg of 1st fork into its blob for fork in fork_[1:len(fork_)]: # merge blobs of other forks into blob of 1st fork if fork[3] == 1: form_blob(fork, frame) if not fork[5] is blob: params, seg_, open_segs, box = fork[5][1:] # merged blob, omit sign blob[1] = [par1 + par2 for par1, par2 in zip(blob[1], params)] # sum merging blobs blob[3] += open_segs blob[4][0] = min(blob[4][0], box[0]) # extend box y0 blob[4][1] = min(blob[4][1], box[1]) # extend box x0 blob[4][2] = max(blob[4][2], box[2]) # extend box xn for seg in seg_: if not seg is fork: seg[5] = blob # blobs in other forks are references to blob in the first fork blob[2].append(seg) # buffer of merged root segments fork[5] = blob blob[2].append(fork) blob[3] -= 1 # open_segments -= 1: shared with merged blob blob[4][1] = min(blob[4][1], x0) # extend box x0 blob[4][2] = max(blob[4][2], xn) # extend box xn new_seg_.append(new_seg) return new_seg_ # ---------- form_seg_() end -------------------------------------------------------------------------------------------- def form_blob(term_seg, frame): # terminated segment is merged into continued or initialized blob (all connected segments) y0s, params, Py_, roots, fork_, blob = term_seg blob[1] = [par1 + par2 for par1, par2 in zip(params, blob[1])] blob[3] += roots - 1 # number of open segments if not blob[3]: # if open_segments == 0: blob is terminated and packed in frame s, [I, G, Dy, Dx, L, Ly], seg_, open_segs, (y0, x0, xn) = blob yn = y0s + params[-1] # yn = y0 + Ly map = np.zeros((yn - y0, xn - x0), dtype=bool) # local map of blob for seg in seg_: seg.pop() # remove references to blob for y, P in enumerate(seg[2], start=seg[0]): x0P = P[1] LP = P[-2] xnP = x0P + LP map[y - y0, x0P - x0:xnP - x0] = True frame[0][0] += I frame[0][3] += G frame[0][1] += Dy frame[0][2] += Dx frame[1].append(nt_blob( Derts= [I, [[ (G, Dy, Dx, L, Ly, 1, 0, []) ]]], # Derts[0] = I, Dert[1] = single blob, # rng=1 for comp_range, also layer index = derts[-(rng-1|2)][fa]: # fa=0: sub_layer index: 0 g | 1 ga, none for hypot_g # sub_blob_= [], nested to depth = Derts[index] sign=s, box= (y0, yn, x0, xn), # boundary box map= map, # blob boolean map, to compute overlap root_blob=[blob], seg_=seg_, )) # ---------- form_blob() end ---------------------------------------------------------------------------------------- # ************ PROGRAM BODY ********************************************************************************************* ave = 20 # Load inputs -------------------------------------------------------------------- image = misc.imread('./../images/raccoon_eye.jpg', flatten=True).astype(int) height, width = image.shape # Main --------------------------------------------------------------------------- start_time = time() nt_blob = namedtuple('blob', 'Derts sign box map root_blob seg_') frame_of_blobs = image_to_blobs(image) # from intra_blob_debug import intra_blob_hypot # not yet functional, comment-out to run # frame_of_blobs = intra_blob(hypot_g, frame_of_blobs) # evaluate for deeper clustering inside each blob, recursively # DEBUG -------------------------------------------------------------------------- from DEBUG import draw, map_blobs # draw('./../debug/root_blobs', map_blobs(frame_of_blobs)) from intra_comp_ts import intra_comp, hypot_g for i, blob in enumerate(frame_of_blobs[1]): if blob.Derts[0][-2] > 500: # L > 20 intra_comp(blob, hypot_g, 0, 5) draw('./../debug/hypot_g' + str(i), map_blobs(blob)) # intra_comp(blob, comp_range, 0, 5) # draw('./../debug/comp_range' + str(i), map_blobs(blob)) # intra_comp(blob, comp_angle, 0, 25) # draw('./../debug/comp_angle_' + str(i), map_blobs(blob)) # intra_comp(blob, comp_gradient, 0, 5) # draw('./../debug/comp_gradient_' + str(i), map_blobs(blob)) # END DEBUG ----------------------------------------------------------------------- end_time = time() - start_time print(end_time) # ************ PROGRAM BODY END ******************************************************************************************
970db4f9221a1a43b4d38341b08f46bb0370580c
25403dd331c6f273190461ed57c12c9f633853b9
/chiton/core/environment.py
1e0113b34cfc4ea1dddea7ec596c12a3ce322fb8
[]
no_license
justinlocsei/chiton
d1a91a57ff90f16aa375d0f4c6a0b093a66d2d38
6ca38962d08a6ca154434a1f78235155710ffeec
refs/heads/master
2021-03-27T15:10:07.811691
2017-01-30T01:18:33
2017-01-30T01:18:33
48,400,233
0
0
null
null
null
null
UTF-8
Python
false
false
4,738
py
import os.path import re from voluptuous import All, Length, Invalid, MultipleInvalid, Schema from chiton.core.exceptions import ConfigurationError # All known log levels LOG_LEVELS = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL') def use_config(user_data={}): """Load an external JSON configuration file. The contents of the JSON file are deeply merged with the defaults, ensuring that the returned value is always valid. Args: user_data (dict): The user customizations to apply to the base configuration Returns: dict: The merged configuration file Raises: chiton.core.exceptions.ConfigurationError: If the user settings are invalid """ try: _validate_config(user_data) except MultipleInvalid as e: raise ConfigurationError('Invalid configuration: %s' % e) config_data = _default_config() config_data.update(user_data) return config_data def _default_config(): """Define the default configuration data.""" return { 'allow_api_browsing': False, 'allowed_hosts': [], 'amazon_associates_aws_access_key_id': None, 'amazon_associates_aws_secret_access_key': None, 'amazon_associates_tracking_id': None, 'conn_max_age': 0, 'database': {}, 'debug': False, 'default_email': None, 'encryption_key': None, 'environment': None, 'file_logging': False, 'log_file': None, 'log_level': 'INFO', 'media_root': None, 'media_url': '/media/', 'previous_encryption_key': None, 'public_api': False, 'redis': {}, 'secret_key': None, 'sentry_dsn': None, 'server_email': None, 'shopstyle_uid': None, 'static_root': None, 'static_url': '/static/', 'track_errors': False, 'trusted_proxy_ips': ['127.0.0.1'] } def _validate_config(config): """Validate configuration data, raising an error for invalid data.""" Schema({ 'allow_api_browsing': bool, 'allowed_hosts': [str], 'amazon_associates_aws_access_key_id': All(str, Length(min=1)), 'amazon_associates_aws_secret_access_key': All(str, Length(min=1)), 'amazon_associates_tracking_id': All(str, Length(min=1), _AmazonAssociatesTrackingID()), 'conn_max_age': int, 'database': Schema({ 'engine': All(str, Length(min=1)), 'host': All(str, Length(min=1)), 'name': All(str, Length(min=1)), 'password': All(str, Length(min=1)), 'port': All(int), 'user': All(str, Length(min=1)) }), 'debug': bool, 'default_email': All(str, Length(min=1)), 'encryption_key': All(str, Length(min=1)), 'environment': All(str, Length(min=1)), 'file_logging': bool, 'log_file': All(str, Length(min=1), _AbsolutePath()), 'log_level': All(str, Length(min=1), _LogLevel()), 'media_root': All(str, Length(min=1), _AbsolutePath()), 'media_url': All(str, Length(min=1), _MediaUrl()), 'public_api': bool, 'previous_encryption_key': All(str, Length(min=1)), 'redis': Schema({ 'db': int, 'host': All(str, Length(min=1)), 'port': int }), 'secret_key': All(str, Length(min=1)), 'sentry_dsn': All(str, Length(min=1)), 'server_email': All(str, Length(min=1)), 'shopstyle_uid': All(str, Length(min=1)), 'static_root': All(str, Length(min=1), _AbsolutePath()), 'static_url': All(str, Length(min=1), _MediaUrl()), 'track_errors': bool, 'trusted_proxy_ips': [str] })(config) def _AbsolutePath(): """Ensure that a string is an absolute file path.""" def validator(value): if not os.path.isabs(value): raise Invalid('%s must be an absolute path' % value) return validator def _AmazonAssociatesTrackingID(): """Ensure that a string is an Amazon Associates tracking ID.""" def validator(value): if not re.search('-2\d$', value): raise Invalid('%s must be an Amazon Associates tracking ID' % value) return validator def _LogLevel(): """Ensure that a string is a known log level.""" def validator(value): if value not in LOG_LEVELS: raise Invalid('%s must be a log level (%s)' % (value, ', '.join(LOG_LEVELS))) return validator def _MediaUrl(): """Ensure that a URL is a Django-style media URL ending in a slash.""" def validator(value): if not value.endswith('/'): raise Invalid('%s does not have a trailing slash' % value) return validator
59f8c7d57f0528ed4dfb3503f979f7eb63155d5d
149660428ec7570b02b9e8b3d494dcd548e80005
/01-04_python基础/05_高级数据类型/hm_17_字符串的查找和替换.py
9801733fcb09d371234b006f6705420a8c32271f
[]
no_license
kenzzuli/hm_15
603eb178e476f946eb57b1cdf0c85ba5d65e8d58
db8a6d13776e55aa4e05ff9f39e9c8e98d59d8ee
refs/heads/master
2023-08-07T01:57:01.993474
2021-09-23T15:49:19
2021-09-23T15:49:19
359,322,831
0
0
null
null
null
null
UTF-8
Python
false
false
902
py
hello_str = "hello world" # 1.判断是否以指定字符串开始 print(hello_str.startswith("hello")) # 大小写敏感 # 2.判断是否以指定字符串结束 print(hello_str.endswith("orld")) # 3.查找指定字符串 # index同样也可以查找指定的子字符串在大字符串中的索引 print(hello_str.find("wo")) print("*" * 100) print(hello_str.rindex('o')) print(hello_str.index("o")) print(hello_str.rindex("r")) print(hello_str.index("r")) print("*" * 100) # find 如果指定的字符串不存在,会返回-1 # index 如果指定的字符串不存在,会报错 print(hello_str.find("abc")) print(hello_str.index("abc")) # 4.替换字符串 # replace方法执行后,会返回一个新的字符串,但不会修改原有字符串的内容!!! print(hello_str.replace("ello", "i")) print(hello_str) hi_str = "Hi Are you happy?" print(hi_str.lower().startswith("h"))
36070783ac0da6e39d149ff6a9e6e406d58e1bb4
5e1bf5340b28288027d946f136fa0838ca2621dd
/RL_Udemy/optimistic_initial_values.py
05f34a93a3960471d89c25c00170bf64dd4f12cf
[]
no_license
DavisDataScience/DataInterviewPrep
5964006933fa8dd1f9b684be94744f5c9505eadb
55921a8752e349b9cd08833148c38ebb9210d4ed
refs/heads/master
2020-12-30T11:02:49.782409
2018-04-20T07:11:11
2018-04-20T07:11:11
98,841,799
5
0
null
2017-11-08T09:54:28
2017-07-31T02:52:15
HTML
UTF-8
Python
false
false
1,662
py
# https://deeplearningcourses.com/c/artificial-intelligence-reinforcement-learning-in-python # https://www.udemy.com/artificial-intelligence-reinforcement-learning-in-python import numpy as np import matplotlib.pyplot as plt class Bandit: def __init__(self, m, upper_limit): self.m = m self.mean = upper_limit self.N = 0 def pull(self): return np.random.randn() + self.m def update(self, x): self.N += 1 # look at the formula for estimating_bandit_rewards self.mean = (1 - 1.0/self.N)*self.mean + 1.0/self.N*x def run_experiment(m1, m2, m3, eps, N): bandits = [Bandit(m1,4), Bandit(m2,4), Bandit(m3,4)] data = np.empty(N) for i in range(N): # epsilon greedy j = np.argmax([b.mean for b in bandits]) x = bandits[j].pull() bandits[j].update(x) # for the plot data[i] = x cumulative_average = np.cumsum(data) / (np.arange(N) + 1) # plot moving average ctr plt.plot(cumulative_average) plt.plot(np.ones(N)*m1) plt.plot(np.ones(N)*m2) plt.plot(np.ones(N)*m3) plt.xscale('log') plt.show() for b in bandits: print (b.mean) return cumulative_average if __name__ == '__main__': c_1 = run_experiment(1.0, 2.0, 3.0, 0.1, 100000) c_05 = run_experiment(1.0, 2.0, 3.0, 0.05, 100000) c_01 = run_experiment(1.0, 2.0, 3.0, 0.01, 100000) # log scale plot plt.plot(c_1, label='eps = 0.1') plt.plot(c_05, label='eps = 0.05') plt.plot(c_01, label='eps = 0.01') plt.legend() plt.xscale('log') plt.show() # linear plot plt.plot(c_1, label='eps = 0.1') plt.plot(c_05, label='eps = 0.05') plt.plot(c_01, label='eps = 0.01') plt.legend() plt.show()
a386ad32ce1908a2c38fe109aef2276beec8507d
d2c54233a96b0de3137d320a86de726f87f6d3b4
/cnn/struct/updateset_module.py
420fca72eebd6129c8038d6af319637cdeb3851b
[ "MIT" ]
permissive
hslee1539/cnn
aa93e6c41e994b409b5ebcd6e1abfaef98cd0c60
816418af0a0057d777f41ac072c3a97fea7e2027
refs/heads/master
2020-05-01T13:30:25.781805
2019-09-10T08:47:24
2019-09-10T08:47:24
177,493,396
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
from import_lib import lib from tensor.main_module import * from ctypes import Structure, c_int, POINTER, c_float # Tensor는 POINTER(_Tensor) 임 class _UpdateSet(Structure): _fields_ = [ ('delta', Tensor), ('value', Tensor), ('momnt', Tensor) ] lib.cnn_create_updateset.argtypes = (Tensor, Tensor) lib.cnn_create_updateset.restype = POINTER(_UpdateSet) lib.cnn_release_updateset_deep.argtypes = [POINTER(_UpdateSet)] #lib.cnn_release_updateset.argtypes = [POINTER(_UpdateSet)] def _create(delta, value): return lib.cnn_create_updateset(delta, value) def _release(self, deep = True): if(deep): lib.cnn_release_updateset_deep(self) else: lib.cnn_release_updateset(self) del self # 검증 안됨 def _getDelta(self): return self.contents.delta def _getValue(self): return self.contents.value def _getMomnt(self): return self.contents.momnt def _setDelta(self, value): self.contents.delta = value def _setValue(self, value): self.contents.value = value def _setMomnt(self, value): self.contents.momnt = value UpdateSet = POINTER(_UpdateSet) UpdateSet.__doc__ = "cnn_UpdateSet 구조체의 포인터에 프로퍼티와 메소드를 추가한 클래스입니다." UpdateSet.delta = property(_getDelta, _setDelta) UpdateSet.value = property(_getValue, _setValue) UpdateSet.momnt = property(_getMomnt, _setMomnt) UpdateSet.create = staticmethod(_create) UpdateSet.release = _release
25a9c9a9109a8396fc521ce6af6ccc72553ddb0a
77717d0024c8597fec83600259ea5547abbc183a
/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
1c8c581bccb439fbd4d5f7a4f67777162361b1f8
[ "Apache-2.0" ]
permissive
fengyouliang/wheat_detection
0a090ef5eda7f2c5463996f4795f9ce06dd04050
d056123426a1260c29b486cbb8e44a88a0a3c5bc
refs/heads/master
2022-11-17T15:09:29.113493
2020-07-18T13:47:34
2020-07-18T13:47:34
276,532,878
0
0
null
null
null
null
UTF-8
Python
false
false
2,044
py
_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py' model = dict( bbox_head=dict( _delete_=True, type='GARetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), anchor_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loc_filter_thr=0.01, loss_loc=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.04, loss_weight=1.0))) # training and testing settings train_cfg = dict( ga_assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), ga_sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), assigner=dict(neg_iou_thr=0.5, min_pos_iou=0.0), center_ratio=0.2, ignore_ratio=0.5) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
1df75ea249e9b902876129b1f377f9baad11d651
0210dc6652a9abd37d8200b1338e0db177d2b199
/model/transforms/autoregressive/ar_linear.py
e6a998a0c34555211f6eb3e208946e72e391fc78
[ "MIT" ]
permissive
dihjiang/argmax_flows
77fdb303eb6e508f07cd5b2b7b84855e37c4511b
4ffff4bd6f7b25e20292eff6bad2bf5a962e8d39
refs/heads/main
2023-05-14T07:03:24.527960
2021-06-01T12:10:18
2021-06-01T12:10:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
import torch from survae.utils import sum_except_batch from .ar import AutoregressiveBijection class AdditiveAutoregressiveBijection(AutoregressiveBijection): '''Additive autoregressive bijection.''' def _num_params(self): return 1 def _forward(self, x, params): return x + params, x.new_zeros(x.shape[0]) def _element_inverse(self, z, element_params): return z - element_params class AffineAutoregressiveBijection(AutoregressiveBijection): '''Affine autoregressive bijection.''' def _num_params(self): return 2 def _forward(self, x, params): assert params.shape[-1] == self._num_params() log_scale, shift = self._split_params(params) scale = torch.exp(log_scale) z = scale * x + shift ldj = sum_except_batch(log_scale) return z, ldj def _element_inverse(self, z, element_params): assert element_params.shape[-1] == self._num_params() log_scale, shift = self._split_params(element_params) scale = torch.exp(log_scale) x = (z - shift) / scale return x def _split_params(self, params): unconstrained_scale = params[..., 0] shift = params[..., 1] return unconstrained_scale, shift
c707702f06a08c042d2db0549257878c0cee865b
367b17c673c274154fb778f536021c7b5d32d47a
/tools/v8_presubmit.py
ea241b4724522aae50e1bb0cf87728b829b2d6fe
[ "bzip2-1.0.6", "BSD-3-Clause", "SunPro" ]
permissive
Drieger/v8
e52083873e67dbc122e3169451ef11bfe5c8cc93
93283bf04ae3fd96592b4090e90ac75130aa9d52
refs/heads/master
2020-03-26T22:19:17.520937
2019-01-15T17:11:25
2019-01-15T18:08:07
145,448,530
0
0
NOASSERTION
2018-10-05T11:58:51
2018-08-20T17:18:53
C++
UTF-8
Python
false
false
23,214
py
#!/usr/bin/env python # # Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. try: import hashlib md5er = hashlib.md5 except ImportError, e: import md5 md5er = md5.new import json import optparse import os from os.path import abspath, join, dirname, basename, exists import pickle import re import sys import subprocess import multiprocessing from subprocess import PIPE from testrunner.local import statusfile from testrunner.local import testsuite from testrunner.local import utils # Special LINT rules diverging from default and reason. # build/header_guard: Our guards have the form "V8_FOO_H_", not "SRC_FOO_H_". # We now run our own header guard check in PRESUBMIT.py. # build/include_what_you_use: Started giving false positives for variables # named "string" and "map" assuming that you needed to include STL headers. LINT_RULES = """ -build/header_guard -build/include_what_you_use -readability/fn_size -readability/multiline_comment -runtime/references -whitespace/comments """.split() LINT_OUTPUT_PATTERN = re.compile(r'^.+[:(]\d+[:)]|^Done processing') FLAGS_LINE = re.compile("//\s*Flags:.*--([A-z0-9-])+_[A-z0-9].*\n") ASSERT_OPTIMIZED_PATTERN = re.compile("assertOptimized") FLAGS_ENABLE_OPT = re.compile("//\s*Flags:.*--opt[^-].*\n") ASSERT_UNOPTIMIZED_PATTERN = re.compile("assertUnoptimized") FLAGS_NO_ALWAYS_OPT = re.compile("//\s*Flags:.*--no-?always-opt.*\n") TOOLS_PATH = dirname(abspath(__file__)) def CppLintWorker(command): try: process = subprocess.Popen(command, stderr=subprocess.PIPE) process.wait() out_lines = "" error_count = -1 while True: out_line = process.stderr.readline() if out_line == '' and process.poll() != None: if error_count == -1: print "Failed to process %s" % command.pop() return 1 break m = LINT_OUTPUT_PATTERN.match(out_line) if m: out_lines += out_line error_count += 1 sys.stdout.write(out_lines) return error_count except KeyboardInterrupt: process.kill() except: print('Error running cpplint.py. Please make sure you have depot_tools' + ' in your $PATH. Lint check skipped.') process.kill() def TorqueLintWorker(command): try: process = subprocess.Popen(command, stderr=subprocess.PIPE) process.wait() out_lines = "" error_count = 0 while True: out_line = process.stderr.readline() if out_line == '' and process.poll() != None: break out_lines += out_line error_count += 1 sys.stdout.write(out_lines) if error_count != 0: sys.stdout.write("tip: use 'tools/torque/format-torque.py -i <filename>'\n"); return error_count except KeyboardInterrupt: process.kill() except: print('Error running format-torque.py') process.kill() class FileContentsCache(object): def __init__(self, sums_file_name): self.sums = {} self.sums_file_name = sums_file_name def Load(self): try: sums_file = None try: sums_file = open(self.sums_file_name, 'r') self.sums = pickle.load(sums_file) except: # Cannot parse pickle for any reason. Not much we can do about it. pass finally: if sums_file: sums_file.close() def Save(self): try: sums_file = open(self.sums_file_name, 'w') pickle.dump(self.sums, sums_file) except: # Failed to write pickle. Try to clean-up behind us. if sums_file: sums_file.close() try: os.unlink(self.sums_file_name) except: pass finally: sums_file.close() def FilterUnchangedFiles(self, files): changed_or_new = [] for file in files: try: handle = open(file, "r") file_sum = md5er(handle.read()).digest() if not file in self.sums or self.sums[file] != file_sum: changed_or_new.append(file) self.sums[file] = file_sum finally: handle.close() return changed_or_new def RemoveFile(self, file): if file in self.sums: self.sums.pop(file) class SourceFileProcessor(object): """ Utility class that can run through a directory structure, find all relevant files and invoke a custom check on the files. """ def RunOnPath(self, path): """Runs processor on all files under the given path.""" all_files = [] for file in self.GetPathsToSearch(): all_files += self.FindFilesIn(join(path, file)) return self.ProcessFiles(all_files) def RunOnFiles(self, files): """Runs processor only on affected files.""" # Helper for getting directory pieces. dirs = lambda f: dirname(f).split(os.sep) # Path offsets where to look (to be in sync with RunOnPath). # Normalize '.' to check for it with str.startswith. search_paths = [('' if p == '.' else p) for p in self.GetPathsToSearch()] all_files = [ f.AbsoluteLocalPath() for f in files if (not self.IgnoreFile(f.LocalPath()) and self.IsRelevant(f.LocalPath()) and all(not self.IgnoreDir(d) for d in dirs(f.LocalPath())) and any(map(f.LocalPath().startswith, search_paths))) ] return self.ProcessFiles(all_files) def IgnoreDir(self, name): return (name.startswith('.') or name in ('buildtools', 'data', 'gmock', 'gtest', 'kraken', 'octane', 'sunspider', 'traces-arm64')) def IgnoreFile(self, name): return name.startswith('.') def FindFilesIn(self, path): result = [] for (root, dirs, files) in os.walk(path): for ignored in [x for x in dirs if self.IgnoreDir(x)]: dirs.remove(ignored) for file in files: if not self.IgnoreFile(file) and self.IsRelevant(file): result.append(join(root, file)) return result class CacheableSourceFileProcessor(SourceFileProcessor): """Utility class that allows caching ProcessFiles() method calls. In order to use it, create a ProcessFilesWithoutCaching method that returns the files requiring intervention after processing the source files. """ def __init__(self, use_cache, cache_file_path, file_type): self.use_cache = use_cache self.cache_file_path = cache_file_path self.file_type = file_type def GetProcessorWorker(self): """Expected to return the worker function to run the formatter.""" raise NotImplementedError def GetProcessorScript(self): """Expected to return a tuple (path to the format processor script, list of arguments).""" raise NotImplementedError def GetProcessorCommand(self): format_processor, options = self.GetProcessorScript() if not format_processor: print('Could not find the formatter for % files' % self.file_type) sys.exit(1) command = [sys.executable, format_processor] command.extend(options) return command def ProcessFiles(self, files): if self.use_cache: cache = FileContentsCache(self.cache_file_path) cache.Load() files = cache.FilterUnchangedFiles(files) if len(files) == 0: print 'No changes in %s files detected. Skipping check' % self.file_type return True files_requiring_changes = self.DetectFilesToChange(files) print ( 'Total %s files found that require formatting: %d' % (self.file_type, len(files_requiring_changes))) if self.use_cache: for file in files_requiring_changes: cache.RemoveFile(file) cache.Save() return files_requiring_changes == [] def DetectFilesToChange(self, files): command = self.GetProcessorCommand() worker = self.GetProcessorWorker() commands = [command + [file] for file in files] count = multiprocessing.cpu_count() pool = multiprocessing.Pool(count) try: results = pool.map_async(worker, commands).get(timeout=240) except KeyboardInterrupt: print "\nCaught KeyboardInterrupt, terminating workers." pool.terminate() pool.join() sys.exit(1) unformatted_files = [] for index, errors in enumerate(results): if errors > 0: unformatted_files.append(files[index]) return unformatted_files class CppLintProcessor(CacheableSourceFileProcessor): """ Lint files to check that they follow the google code style. """ def __init__(self, use_cache=True): super(CppLintProcessor, self).__init__( use_cache=use_cache, cache_file_path='.cpplint-cache', file_type='C/C++') def IsRelevant(self, name): return name.endswith('.cc') or name.endswith('.h') def IgnoreDir(self, name): return (super(CppLintProcessor, self).IgnoreDir(name) or (name == 'third_party')) IGNORE_LINT = ['export-template.h', 'flag-definitions.h'] def IgnoreFile(self, name): return (super(CppLintProcessor, self).IgnoreFile(name) or (name in CppLintProcessor.IGNORE_LINT)) def GetPathsToSearch(self): dirs = ['include', 'samples', 'src'] test_dirs = ['cctest', 'common', 'fuzzer', 'inspector', 'unittests'] return dirs + [join('test', dir) for dir in test_dirs] def GetProcessorWorker(self): return CppLintWorker def GetProcessorScript(self): filters = ','.join([n for n in LINT_RULES]) arguments = ['--filter', filters] for path in [TOOLS_PATH] + os.environ["PATH"].split(os.pathsep): path = path.strip('"') cpplint = os.path.join(path, 'cpplint.py') if os.path.isfile(cpplint): return cpplint, arguments return None, arguments class TorqueLintProcessor(CacheableSourceFileProcessor): """ Check .tq files to verify they follow the Torque style guide. """ def __init__(self, use_cache=True): super(TorqueLintProcessor, self).__init__( use_cache=use_cache, cache_file_path='.torquelint-cache', file_type='Torque') def IsRelevant(self, name): return name.endswith('.tq') def GetPathsToSearch(self): dirs = ['third-party', 'src'] test_dirs = ['torque'] return dirs + [join('test', dir) for dir in test_dirs] def GetProcessorWorker(self): return TorqueLintWorker def GetProcessorScript(self): torque_tools = os.path.join(TOOLS_PATH, "torque") torque_path = os.path.join(torque_tools, "format-torque.py") arguments = ['-l'] if os.path.isfile(torque_path): return torque_path, arguments return None, arguments COPYRIGHT_HEADER_PATTERN = re.compile( r'Copyright [\d-]*20[0-1][0-9] the V8 project authors. All rights reserved.') class SourceProcessor(SourceFileProcessor): """ Check that all files include a copyright notice and no trailing whitespaces. """ RELEVANT_EXTENSIONS = ['.js', '.cc', '.h', '.py', '.c', '.status', '.tq', '.g4'] def __init__(self): self.runtime_function_call_pattern = self.CreateRuntimeFunctionCallMatcher() def CreateRuntimeFunctionCallMatcher(self): runtime_h_path = join(dirname(TOOLS_PATH), 'src/runtime/runtime.h') pattern = re.compile(r'\s+F\(([^,]*),.*\)') runtime_functions = [] with open(runtime_h_path) as f: for line in f.readlines(): m = pattern.match(line) if m: runtime_functions.append(m.group(1)) if len(runtime_functions) < 250: print ("Runtime functions list is suspiciously short. " "Consider updating the presubmit script.") sys.exit(1) str = '(\%\s+(' + '|'.join(runtime_functions) + '))[\s\(]' return re.compile(str) # Overwriting the one in the parent class. def FindFilesIn(self, path): if os.path.exists(path+'/.git'): output = subprocess.Popen('git ls-files --full-name', stdout=PIPE, cwd=path, shell=True) result = [] for file in output.stdout.read().split(): for dir_part in os.path.dirname(file).replace(os.sep, '/').split('/'): if self.IgnoreDir(dir_part): break else: if (self.IsRelevant(file) and os.path.exists(file) and not self.IgnoreFile(file)): result.append(join(path, file)) if output.wait() == 0: return result return super(SourceProcessor, self).FindFilesIn(path) def IsRelevant(self, name): for ext in SourceProcessor.RELEVANT_EXTENSIONS: if name.endswith(ext): return True return False def GetPathsToSearch(self): return ['.'] def IgnoreDir(self, name): return (super(SourceProcessor, self).IgnoreDir(name) or name in ('third_party', 'out', 'obj', 'DerivedSources')) IGNORE_COPYRIGHTS = ['box2d.js', 'cpplint.py', 'copy.js', 'corrections.js', 'crypto.js', 'daemon.py', 'earley-boyer.js', 'fannkuch.js', 'fasta.js', 'injected-script.cc', 'injected-script.h', 'libraries.cc', 'libraries-empty.cc', 'lua_binarytrees.js', 'meta-123.js', 'memops.js', 'poppler.js', 'primes.js', 'raytrace.js', 'regexp-pcre.js', 'resources-123.js', 'sqlite.js', 'sqlite-change-heap.js', 'sqlite-pointer-masking.js', 'sqlite-safe-heap.js', 'v8-debugger-script.h', 'v8-inspector-impl.cc', 'v8-inspector-impl.h', 'v8-runtime-agent-impl.cc', 'v8-runtime-agent-impl.h', 'gnuplot-4.6.3-emscripten.js', 'zlib.js'] IGNORE_TABS = IGNORE_COPYRIGHTS + ['unicode-test.js', 'html-comments.js'] IGNORE_COPYRIGHTS_DIRECTORY = "test/test262/local-tests" def EndOfDeclaration(self, line): return line == "}" or line == "};" def StartOfDeclaration(self, line): return line.find("//") == 0 or \ line.find("/*") == 0 or \ line.find(") {") != -1 def ProcessContents(self, name, contents): result = True base = basename(name) if not base in SourceProcessor.IGNORE_TABS: if '\t' in contents: print "%s contains tabs" % name result = False if not base in SourceProcessor.IGNORE_COPYRIGHTS and \ not SourceProcessor.IGNORE_COPYRIGHTS_DIRECTORY in name: if not COPYRIGHT_HEADER_PATTERN.search(contents): print "%s is missing a correct copyright header." % name result = False if ' \n' in contents or contents.endswith(' '): line = 0 lines = [] parts = contents.split(' \n') if not contents.endswith(' '): parts.pop() for part in parts: line += part.count('\n') + 1 lines.append(str(line)) linenumbers = ', '.join(lines) if len(lines) > 1: print "%s has trailing whitespaces in lines %s." % (name, linenumbers) else: print "%s has trailing whitespaces in line %s." % (name, linenumbers) result = False if not contents.endswith('\n') or contents.endswith('\n\n'): print "%s does not end with a single new line." % name result = False # Sanitize flags for fuzzer. if ".js" in name and ("mjsunit" in name or "debugger" in name): match = FLAGS_LINE.search(contents) if match: print "%s Flags should use '-' (not '_')" % name result = False if not "mjsunit/mjsunit.js" in name: if ASSERT_OPTIMIZED_PATTERN.search(contents) and \ not FLAGS_ENABLE_OPT.search(contents): print "%s Flag --opt should be set if " \ "assertOptimized() is used" % name result = False if ASSERT_UNOPTIMIZED_PATTERN.search(contents) and \ not FLAGS_NO_ALWAYS_OPT.search(contents): print "%s Flag --no-always-opt should be set if " \ "assertUnoptimized() is used" % name result = False match = self.runtime_function_call_pattern.search(contents) if match: print "%s has unexpected spaces in a runtime call '%s'" % (name, match.group(1)) result = False return result def ProcessFiles(self, files): success = True violations = 0 for file in files: try: handle = open(file) contents = handle.read() if not self.ProcessContents(file, contents): success = False violations += 1 finally: handle.close() print "Total violating files: %s" % violations return success def _CheckStatusFileForDuplicateKeys(filepath): comma_space_bracket = re.compile(", *]") lines = [] with open(filepath) as f: for line in f.readlines(): # Skip all-comment lines. if line.lstrip().startswith("#"): continue # Strip away comments at the end of the line. comment_start = line.find("#") if comment_start != -1: line = line[:comment_start] line = line.strip() # Strip away trailing commas within the line. line = comma_space_bracket.sub("]", line) if len(line) > 0: lines.append(line) # Strip away trailing commas at line ends. Ugh. for i in range(len(lines) - 1): if (lines[i].endswith(",") and len(lines[i + 1]) > 0 and lines[i + 1][0] in ("}", "]")): lines[i] = lines[i][:-1] contents = "\n".join(lines) # JSON wants double-quotes. contents = contents.replace("'", '"') # Fill in keywords (like PASS, SKIP). for key in statusfile.KEYWORDS: contents = re.sub(r"\b%s\b" % key, "\"%s\"" % key, contents) status = {"success": True} def check_pairs(pairs): keys = {} for key, value in pairs: if key in keys: print("%s: Error: duplicate key %s" % (filepath, key)) status["success"] = False keys[key] = True json.loads(contents, object_pairs_hook=check_pairs) return status["success"] class StatusFilesProcessor(SourceFileProcessor): """Checks status files for incorrect syntax and duplicate keys.""" def IsRelevant(self, name): # Several changes to files under the test directories could impact status # files. return True def GetPathsToSearch(self): return ['test', 'tools/testrunner'] def ProcessFiles(self, files): success = True for status_file_path in sorted(self._GetStatusFiles(files)): success &= statusfile.PresubmitCheck(status_file_path) success &= _CheckStatusFileForDuplicateKeys(status_file_path) return success def _GetStatusFiles(self, files): test_path = join(dirname(TOOLS_PATH), 'test') testrunner_path = join(TOOLS_PATH, 'testrunner') status_files = set() for file_path in files: if file_path.startswith(testrunner_path): for suitepath in os.listdir(test_path): suitename = os.path.basename(suitepath) status_file = os.path.join( test_path, suitename, suitename + ".status") if os.path.exists(status_file): status_files.add(status_file) return status_files for file_path in files: if file_path.startswith(test_path): # Strip off absolute path prefix pointing to test suites. pieces = file_path[len(test_path):].lstrip(os.sep).split(os.sep) if pieces: # Infer affected status file name. Only care for existing status # files. Some directories under "test" don't have any. if not os.path.isdir(join(test_path, pieces[0])): continue status_file = join(test_path, pieces[0], pieces[0] + ".status") if not os.path.exists(status_file): continue status_files.add(status_file) return status_files def CheckDeps(workspace): checkdeps_py = join(workspace, 'buildtools', 'checkdeps', 'checkdeps.py') return subprocess.call([sys.executable, checkdeps_py, workspace]) == 0 def PyTests(workspace): result = True for script in [ join(workspace, 'tools', 'release', 'test_scripts.py'), join(workspace, 'tools', 'unittests', 'run_tests_test.py'), ]: print 'Running ' + script result &= subprocess.call( [sys.executable, script], stdout=subprocess.PIPE) == 0 return result def GetOptions(): result = optparse.OptionParser() result.add_option('--no-lint', help="Do not run cpplint", default=False, action="store_true") result.add_option('--no-linter-cache', help="Do not cache linter results", default=False, action="store_true") return result def Main(): workspace = abspath(join(dirname(sys.argv[0]), '..')) parser = GetOptions() (options, args) = parser.parse_args() success = True print "Running checkdeps..." success &= CheckDeps(workspace) use_linter_cache = not options.no_linter_cache if not options.no_lint: print "Running C++ lint check..." success &= CppLintProcessor(use_cache=use_linter_cache).RunOnPath(workspace) print "Running Torque formatting check..." success &= TorqueLintProcessor(use_cache=use_linter_cache).RunOnPath( workspace) print "Running copyright header, trailing whitespaces and " \ "two empty lines between declarations check..." success &= SourceProcessor().RunOnPath(workspace) print "Running status-files check..." success &= StatusFilesProcessor().RunOnPath(workspace) print "Running python tests..." success &= PyTests(workspace) if success: return 0 else: return 1 if __name__ == '__main__': sys.exit(Main())
ec9449b8fc562621af4968040ac96cc6fe147d4b
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_67/87.py
c30dc2a35d202661326157975327a7f60af30452
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,790
py
#! /usr/bin/env python # vim: set et ts=4 sw=4 ci cino=(0: import sys import os import math import binascii def main(): f = open(sys.argv[1]) ntest = int(f.readline().strip()) for nt in xrange(ntest): nrect = int(f.readline().strip()) rects = [] maxx = 0 maxy = 0 for r in xrange(nrect): l = [ int(x) for x in f.readline().strip().split() ] if len(l) != 4: print "Error ", l sys.exit(1) xa = l[0] ya = l[1] xb = l[2] yb = l[3] if xa > xb: xa,xb = xb,xa if ya > yb: ya,yb = yb,ya if xb > maxx: maxx= xb if yb > maxy: maxy = yb rects.append( (xa, ya, xb, yb)) grid = [[ 0 for x in xrange(maxx)] for y in xrange(maxy+2) ] for rec in rects: xa, ya, xb, yb = rec for x in xrange(xa-1, xb): for y in xrange(ya, yb+1): grid[y][x] = 1 # for xx in grid: # print xx found = True t = 0 while found: found = False t += 1 sy = maxy for sx in xrange(maxx-1, 0, -1): p = 0 x = sx y = sy while True: n = grid[y][x] if p == 1 and n == 1: grid[y+1][x] = 1 elif p == 0 and n == 0: grid[y+1][x] = 0 if grid[y+1][x] == 1: found = True p = n x += 1 y -= 1 if x >= maxx or y < 0: break sx = 0 for sy in xrange(maxy, -1, -1): p = 0 x = sx y = sy while True: n = grid[y][x] if p == 1 and n == 1: grid[y+1][x] = 1 elif p == 0 and n == 0: grid[y+1][x] = 0 if grid[y+1][x] == 1: found = True p = n x += 1 y -= 1 if x >= maxx or y < 0: break # found = doit( sx, sy, grid, grid, maxx ) # print "New" # for xx in grid: # print xx print "Case #%d: %d" % (nt + 1, t) if __name__ == "__main__": main()
388b5093f3eea31cab989db5d839937c077d237f
df2cbe914f463ad050d7ed26194424afbe3a0a52
/addons/stock_account/tests/test_account_move.py
7b2607004c5d051787e4e778dcda9115697a8446
[ "Apache-2.0" ]
permissive
SHIVJITH/Odoo_Machine_Test
019ed339e995be980606a2d87a63312ddc18e706
310497a9872db7844b521e6dab5f7a9f61d365a4
refs/heads/main
2023-07-16T16:23:14.300656
2021-08-29T11:48:36
2021-08-29T11:48:36
401,010,175
0
0
Apache-2.0
2021-08-29T10:13:58
2021-08-29T10:13:58
null
UTF-8
Python
false
false
5,741
py
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo.addons.account.tests.common import AccountTestInvoicingCommon from odoo.addons.stock_account.tests.test_stockvaluation import _create_accounting_data from odoo.tests.common import tagged, Form @tagged("post_install", "-at_install") class TestAccountMove(AccountTestInvoicingCommon): @classmethod def setUpClass(cls, chart_template_ref=None): super().setUpClass(chart_template_ref=chart_template_ref) ( cls.stock_input_account, cls.stock_output_account, cls.stock_valuation_account, cls.expense_account, cls.stock_journal, ) = _create_accounting_data(cls.env) cls.product_A = cls.env["product.product"].create( { "name": "Product A", "type": "product", "default_code": "prda", "categ_id": cls.env.ref("product.product_category_all").id, "taxes_id": [(5, 0, 0)], "supplier_taxes_id": [(5, 0, 0)], "lst_price": 100.0, "standard_price": 10.0, "property_account_income_id": cls.company_data["default_account_revenue"].id, "property_account_expense_id": cls.company_data["default_account_expense"].id, } ) cls.product_A.categ_id.write( { "property_stock_account_input_categ_id": cls.stock_input_account.id, "property_stock_account_output_categ_id": cls.stock_output_account.id, "property_stock_valuation_account_id": cls.stock_valuation_account.id, "property_stock_journal": cls.stock_journal.id, "property_valuation": "real_time", "property_cost_method": "standard", } ) def test_standard_perpetual_01_mc_01(self): rate = self.currency_data["rates"].sorted()[0].rate move_form = Form(self.env["account.move"].with_context(default_move_type="out_invoice")) move_form.partner_id = self.partner_a move_form.currency_id = self.currency_data["currency"] with move_form.invoice_line_ids.new() as line_form: line_form.product_id = self.product_A line_form.tax_ids.clear() invoice = move_form.save() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 1) invoice._post() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 4) self.assertEqual(len(invoice.mapped("line_ids").filtered("is_anglo_saxon_line")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 2) def test_fifo_perpetual_01_mc_01(self): self.product_A.categ_id.property_cost_method = "fifo" rate = self.currency_data["rates"].sorted()[0].rate move_form = Form(self.env["account.move"].with_context(default_move_type="out_invoice")) move_form.partner_id = self.partner_a move_form.currency_id = self.currency_data["currency"] with move_form.invoice_line_ids.new() as line_form: line_form.product_id = self.product_A line_form.tax_ids.clear() invoice = move_form.save() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 1) invoice._post() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 4) self.assertEqual(len(invoice.mapped("line_ids").filtered("is_anglo_saxon_line")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 2) def test_average_perpetual_01_mc_01(self): self.product_A.categ_id.property_cost_method = "average" rate = self.currency_data["rates"].sorted()[0].rate move_form = Form(self.env["account.move"].with_context(default_move_type="out_invoice")) move_form.partner_id = self.partner_a move_form.currency_id = self.currency_data["currency"] with move_form.invoice_line_ids.new() as line_form: line_form.product_id = self.product_A line_form.tax_ids.clear() invoice = move_form.save() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 1) invoice._post() self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_total) self.assertAlmostEqual(self.product_A.lst_price * rate, invoice.amount_residual) self.assertEqual(len(invoice.mapped("line_ids")), 4) self.assertEqual(len(invoice.mapped("line_ids").filtered("is_anglo_saxon_line")), 2) self.assertEqual(len(invoice.mapped("line_ids.currency_id")), 2)
4abeb645d33ce6f4cf795c8c9e123787d71aec95
b427fc41375fd95d6da5c7168a823f1b286bb250
/imageAugmentation/noise.py
dcf11f01bcfd107942d802d3774aa805d2e5191e
[]
no_license
heixialeeLeon/DeepFundation
40b9cc14ed639d1b9cd34dad32c9b497c9e23927
f42560cc25e447f812bdfabd24d426bd9b49bb94
refs/heads/master
2020-04-18T06:11:05.222490
2019-08-02T01:09:21
2019-08-02T01:09:21
167,309,579
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
import numpy as np from numpy import random import torch from torchvision import transforms import cv2 from PIL import Image, ImageFilter import skimage def RandomNoise(img, noise): img = img.astype(np.float32) img = img / 255.0 mode = [ lambda x : skimage.util.random_noise(x, 'gaussian', mean=0, var=noise), lambda x : skimage.util.random_noise(x, 'speckle', mean=0, var=noise), lambda x : skimage.util.random_noise(x, 's&p', amount= noise) ] img = (random.choice(mode)(img)*255).astype(np.uint8) return img if __name__ == "__main__": img = cv2.imread("../test/1.jpg") cv2.imshow("raw", img) img_blur = RandomNoise(img, 0.01) cv2.imshow("cv2", img_blur) cv2.waitKey(-1)
2e2f683e57de6ef5a99d838c90b3c50d17ab40b9
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_None/trend_PolyTrend/cycle_7/ar_12/test_artificial_1024_None_PolyTrend_7_12_0.py
c929841014abe7e46526d945e3cdc89788a4419e
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
265
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "PolyTrend", cycle_length = 7, transform = "None", sigma = 0.0, exog_count = 0, ar_order = 12);
611d72e952623f37ad15946469334fd8729f472b
25310086303e892b29754ad3287ede45ee189f4c
/torcms/script/script_sitemap.py
bf194a786e2fea0b7465ee171ec65f7baa38fa68
[ "MIT" ]
permissive
CW0606/TorCMS
41d65431a439bba0360305291f34fb4ed1b32b9c
23ddc4d2c27bda890ef2a7998770888857dc6a61
refs/heads/master
2021-05-15T13:42:40.041532
2017-10-17T00:40:21
2017-10-17T00:40:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,206
py
# -*- coding: utf-8 -*- ''' Generating sitemap. ''' import os from torcms.model.post_model import MPost from torcms.model.wiki_model import MWiki from config import router_post, SITE_CFG def gen_post_map(file_name, ext_url=''): ''' Generate the urls for posts. :return: None ''' with open(file_name, 'a') as fout: for kind_key in router_post: recent_posts = MPost.query_all(kind=kind_key, limit=1000000) for recent_post in recent_posts: url = os.path.join(SITE_CFG['site_url'], router_post[recent_post.kind], ext_url, recent_post.uid) fout.write('{url}\n'.format(url=url)) def gen_wiki_map(file_name, ext_url=''): ''' Generate the urls for wiki. :return: None ''' # wiki wiki_recs = MWiki.query_all(limit=10000, kind='1') with open(file_name, 'a') as fileout: for rec in wiki_recs: url = os.path.join(SITE_CFG['site_url'], 'wiki' + '/_edit' if len(ext_url) else '', rec.title) fileout.write('{url}\n'.format(url=url)) ## page. page_recs = MWiki.query_all(limit=10000, kind='2') with open(file_name, 'a') as fileout: for rec in page_recs: url = os.path.join(SITE_CFG['site_url'], 'page' + '/_edit' if len(ext_url) else '', rec.uid) fileout.write('{url}\n'.format(url=url)) def run_sitemap(_): ''' Generate the sitemap file. :param args: args :return: None ''' site_map_file = 'xx_sitemap.txt' if os.path.exists(site_map_file): os.remove(site_map_file) gen_wiki_map(site_map_file) gen_post_map(site_map_file) def run_editmap(_): ''' Generate the urls file for editing. :param args: args :return: None ''' edit_map_file = 'xx_editmap.txt' if os.path.exists(edit_map_file): os.remove(edit_map_file) gen_wiki_map(edit_map_file, ext_url='_edit') gen_post_map(edit_map_file, ext_url='_edit')
5c822d163aa8bd895275596a4e7a02de83a3ff35
b7f3edb5b7c62174bed808079c3b21fb9ea51d52
/third_party/blink/web_tests/external/wpt/cookies/resources/dropSecure.py
9820295697d22e258b885da239db9fd828b64d3c
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LGPL-2.1-only", "GPL-2.0-only", "LGPL-2.0-only", "BSD-2-Clause", "LicenseRef-scancode-other-copyleft", "BSD-3-Clause" ]
permissive
otcshare/chromium-src
26a7372773b53b236784c51677c566dc0ad839e4
64bee65c921db7e78e25d08f1e98da2668b57be5
refs/heads/webml
2023-03-21T03:20:15.377034
2020-11-16T01:40:14
2020-11-16T01:40:14
209,262,645
18
21
BSD-3-Clause
2023-03-23T06:20:07
2019-09-18T08:52:07
null
UTF-8
Python
false
false
483
py
from helpers import makeDropCookie, setNoCacheAndCORSHeaders def main(request, response): """Respond to `/cookie/drop/secure` by dropping the two cookie set by `setSecureTestCookies()`""" headers = setNoCacheAndCORSHeaders(request, response) # Expire the cookies, and return a JSON-encoded success code. headers.append(makeDropCookie(b"alone_secure", False)) headers.append(makeDropCookie(b"alone_insecure", False)) return headers, b'{"success": true}'
9888ad9a7521b31a4a5620fd551865e5aaf87a6e
1ca90c49a56420ce876c0418146d27c853cf850f
/tests/test_registryv2imagesource.py
1a5e9182ebd935ecdb62b54d3d2f6d8ce8f19191
[ "Apache-2.0" ]
permissive
ChinnoDog/docker-sign-verify
f159f9b86ce5da8bd62f9c9da840cfae8a4f5f14
1fc4ad6c54d076d9515ddd1f690b53e73f8e4bc4
refs/heads/master
2023-02-16T12:16:09.510077
2020-07-28T19:58:29
2020-07-28T19:58:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,868
py
#!/usr/bin/env python # pylint: disable=protected-access,redefined-outer-name """RegistryV2ImageSource tests.""" import logging from copy import deepcopy from datetime import datetime from pathlib import Path from typing import Dict import aiofiles import pytest from docker_registry_client_async import FormattedSHA256 from docker_sign_verify import ( ImageConfig, RegistryV2ImageSource, RegistryV2Manifest, SignatureTypes, ) from docker_sign_verify.aiotempfile import open as aiotempfile from docker_sign_verify.imagesource import ( ImageSourceSignImage, ImageSourceVerifyImageIntegrity, ) from .localregistry import ( docker_client, known_good_image_local, known_good_image_remote, pytest_registry, ) # Needed for pytest.fixtures from .stubs import FakeSigner from .testutils import hash_file pytestmark = [pytest.mark.asyncio] LOGGER = logging.getLogger(__name__) @pytest.fixture async def registry_v2_image_source() -> RegistryV2ImageSource: """Provides a RegistryV2ImageSource instance.""" # Do not use caching; get a new instance for each test # Implicitly tests __aenter__(), __aexit__(), and close() async with RegistryV2ImageSource() as registry_v2_image_source: yield registry_v2_image_source def test___init__(registry_v2_image_source: RegistryV2ImageSource): """Test that the image source can be instantiated.""" assert registry_v2_image_source @pytest.mark.online async def test_get_image_config( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image configuration retrieval.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] config = await registry_v2_image_source.get_image_config( known_good_image_local["image_name"], **kwargs ) assert isinstance(config, ImageConfig) @pytest.mark.online async def test_get_image_layer_to_disk( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test layer retrieval to disk.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] manifest = await registry_v2_image_source.get_manifest( known_good_image_local["image_name"], **kwargs ) config_digest = manifest.get_config_digest() LOGGER.debug("Retrieving blob: %s/%s ...", config_digest, config_digest) async with aiotempfile(mode="w+b") as file: result = await registry_v2_image_source.get_image_layer_to_disk( known_good_image_local["image_name"], config_digest, file, **kwargs ) LOGGER.debug("Verifying digest of written file ...") assert await hash_file(file.name) == config_digest assert result["digest"] == config_digest @pytest.mark.online async def test_get_manifest( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test manifest retrieval.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving manifest for: %s ...", known_good_image_local["image_name"] ) manifest = await registry_v2_image_source.get_manifest( known_good_image_local["image_name"], **kwargs ) assert isinstance(manifest, RegistryV2Manifest) assert ( manifest.get_digest() == known_good_image_local["image_name"].resolve_digest() ) @pytest.mark.online async def test_layer_exists( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test layer existence.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving manifest for: %s ...", known_good_image_local["image_name"] ) manifest = await registry_v2_image_source.get_manifest( known_good_image_local["image_name"], **kwargs ) layer = manifest.get_layers()[-1] assert await registry_v2_image_source.layer_exists( known_good_image_local["image_name"], layer, **kwargs ) assert not await registry_v2_image_source.layer_exists( known_good_image_local["image_name"], FormattedSHA256("0" * 64), **kwargs ) # TODO async def test_put_image @pytest.mark.online_modification async def test_put_image_config( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image configuration assignment.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving image configuration for: %s ...", known_good_image_local["image_name"], ) image_config = await registry_v2_image_source.get_image_config( known_good_image_local["image_name"], **kwargs ) # Modify the configuration json = image_config.get_json() labels = image_config._get_labels(json) labels["foo"] = datetime.now().strftime("%d%m%Y%H%M%S") image_config._set_json(json) LOGGER.debug( "Storing modified image configuration: %s ...", image_config.get_digest() ) response = await registry_v2_image_source.put_image_config( known_good_image_local["image_name"], image_config, **kwargs ) # Note: If NoneType, digest may already exist assert response["digest"] == image_config.get_digest() @pytest.mark.online_modification async def test_put_image( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image layer assignment.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] image_name = known_good_image_local["image_name"] LOGGER.debug("Retrieving image: %s ...", image_name) response = await registry_v2_image_source.verify_image_integrity( image_name, **kwargs ) image_name.tag += "_copy" LOGGER.debug("Storing image: %s ...", image_name) response = await registry_v2_image_source.put_image( registry_v2_image_source, image_name, response["manifest"], response["image_config"], response["compressed_layer_files"], **kwargs, ) @pytest.mark.online_modification async def test_put_image_layer( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image layer assignment.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving image configuration for: %s ...", known_good_image_local["image_name"], ) image_config = await registry_v2_image_source.get_image_config( known_good_image_local["image_name"], **kwargs ) # Modify the configuration json = image_config.get_json() labels = image_config._get_labels(json) labels["foo"] = datetime.now().strftime("%d%m%Y%H%M%S") image_config._set_json(json) LOGGER.debug( "Storing modified image configuration: %s ...", image_config.get_digest() ) response = await registry_v2_image_source.put_image_layer( known_good_image_local["image_name"], image_config.get_bytes(), **kwargs ) assert response["digest"] == image_config.get_digest() @pytest.mark.online_modification async def test_put_image_layer_from_disk( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, tmp_path: Path, **kwargs, ): """Test image layer assignment from disk.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving image configuration for: %s ...", known_good_image_local["image_name"], ) image_config = await registry_v2_image_source.get_image_config( known_good_image_local["image_name"], **kwargs ) # Modify the configuration json = image_config.get_json() labels = image_config._get_labels(json) labels["foo"] = datetime.now().strftime("%d%m%Y%H%M%S") image_config._set_json(json) LOGGER.debug("Writing modified configuration to disk ...") path = tmp_path.joinpath("image_config.json") async with aiofiles.open(path, mode="w+b") as file: await file.write(image_config.get_bytes()) LOGGER.debug( "Storing modified image configuration: %s ...", image_config.get_digest() ) async with aiofiles.open(path, mode="r+b") as file: response = await registry_v2_image_source.put_image_layer_from_disk( known_good_image_local["image_name"], file, **kwargs ) assert response["digest"] == image_config.get_digest() @pytest.mark.online_modification async def test_put_manifest( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test manifest assignment.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] LOGGER.debug( "Retrieving manifest for: %s ...", known_good_image_local["image_name"] ) manifest = await registry_v2_image_source.get_manifest( known_good_image_local["image_name"], **kwargs ) assert isinstance(manifest, RegistryV2Manifest) assert ( manifest.get_digest() == known_good_image_local["image_name"].resolve_digest() ) LOGGER.debug("Storing manifest for: %s ...", known_good_image_local["image_name"]) response = await registry_v2_image_source.put_manifest( manifest, known_good_image_local["image_name"], **kwargs ) assert response["digest"] == known_good_image_local["image_name"].resolve_digest() @pytest.mark.online_modification async def test_sign_image_same_image_source( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image signing.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] dest_image_name = deepcopy(known_good_image_local["image_name"]) dest_image_name.digest = None dest_image_name.tag = "{0}_signed".format(dest_image_name.tag) def assertions(result: ImageSourceSignImage): assert result image_config = result["image_config"] assert image_config assert "FAKE SIGNATURE" in str(image_config) signature_value = result["signature_value"] assert signature_value assert "FAKE SIGNATURE" in signature_value verify_image_data = result["verify_image_data"] assert verify_image_data assert image_config == verify_image_data["image_config"] manifest = verify_image_data["manifest"] assert manifest manifest_signed = result["manifest_signed"] assert manifest_signed assert manifest_signed.get_config_digest() == image_config.get_digest() assert len(manifest_signed.get_layers()) == len(image_config.get_image_layers()) # 1. Single signature assertions( await registry_v2_image_source.sign_image( FakeSigner(), known_good_image_local["image_name"], registry_v2_image_source, dest_image_name, SignatureTypes.SIGN, **kwargs, ) ) # TODO: Test signing image twice (with same key, with different keys ...) # Can we do this here (using dockerhub), or do we need to do this in test_imageconfig.py??? # TODO: test_sign_image_different_image_source @pytest.mark.online async def test_verify_image_integrity( registry_v2_image_source: RegistryV2ImageSource, known_good_image_local: Dict, **kwargs, ): """Test image integrity verification.""" if "protocol" in known_good_image_local: kwargs["protocol"] = known_good_image_local["protocol"] def assertions(result: ImageSourceVerifyImageIntegrity): assert result image_config = result["image_config"] assert image_config manifest = result["manifest"] assert manifest assert len(result["compressed_layer_files"]) == len( result["uncompressed_layer_files"] ) assert len(result["uncompressed_layer_files"]) == len( result["uncompressed_layer_files"] ) # 1. Unsigned assertions( await registry_v2_image_source.verify_image_integrity( known_good_image_local["image_name"], **kwargs ) ) # TODO: Test integrity on a signed image ... # Can we do this here (using dockerhub), or do we need to do this in test_imageconfig.py???
ace3fa96b99c770cfc4abe0e6bbc691329863df0
3433314089e976a121e0a4ff7320d1214faabc8b
/autoarray/util/mapper_util.py
71ba884a15c17b9107ebb5ccd6c466f43e568f46
[ "MIT" ]
permissive
Sketos/PyAutoArray
ab7a63543a35401560ee575c4a8ede7a2561d743
72dc7e8d1c38786915f82a7e7284239e5ce87624
refs/heads/master
2021-02-12T19:06:17.247806
2020-04-10T13:15:00
2020-04-10T13:15:00
244,619,959
0
0
MIT
2020-03-03T17:21:03
2020-03-03T11:35:40
Python
UTF-8
Python
false
false
7,865
py
import numpy as np from autoarray import decorator_util @decorator_util.jit() def mapping_matrix_from_pixelization_1d_index_for_sub_mask_1d_index( pixelization_1d_index_for_sub_mask_1d_index, pixels, total_mask_pixels, mask_1d_index_for_sub_mask_1d_index, sub_fraction, ): """Computes the util matrix, by iterating over the known mappings between the sub-grid and pixelization. Parameters ----------- pixelization_1d_index_for_sub_mask_1d_index : ndarray The mappings between the observed grid's sub-pixels and pixelization's pixels. pixels : int The number of pixels in the pixelization. total_mask_pixels : int The number of datas pixels in the observed datas and thus on the grid. mask_1d_index_for_sub_mask_1d_index : ndarray The mappings between the observed grid's sub-pixels and observed grid's pixels. sub_fraction : float The fractional area each sub-pixel takes up in an pixel. """ mapping_matrix = np.zeros((total_mask_pixels, pixels)) for sub_mask_1d_index in range(mask_1d_index_for_sub_mask_1d_index.shape[0]): mapping_matrix[ mask_1d_index_for_sub_mask_1d_index[sub_mask_1d_index], pixelization_1d_index_for_sub_mask_1d_index[sub_mask_1d_index], ] += sub_fraction return mapping_matrix @decorator_util.jit() def pixelization_1d_index_for_voronoi_sub_mask_1d_index_from_grids_and_geometry( grid, nearest_pixelization_1d_index_for_mask_1d_index, mask_1d_index_for_sub_mask_1d_index, pixelization_grid, pixel_neighbors, pixel_neighbors_size, ): """ Compute the mappings between a set of sub-grid pixels and pixelization pixels, using information on \ how the pixels hosting each sub-pixel map to their closest pixelization pixel on the image-plane pix-grid \ and the pixelization's pixel centres. To determine the complete set of sub-pixel to pixelization pixel mappings, we must pair every sub-pixel to \ its nearest pixel. Using a full nearest neighbor search to do this is slow, thus the pixel neighbors (derived via \ the Voronoi grid) are used to localize each nearest neighbor search by using a graph search. Parameters ---------- grid : Grid The grid of (y,x) arc-second coordinates at the centre of every unmasked pixel, which has been traced to \ to an irgrid via lens. nearest_pixelization_1d_index_for_mask_1d_index : ndarray A 1D array that maps every grid pixel to its nearest pix-grid pixel (as determined on the unlensed \ 2D array). pixelization_grid : (float, float) The (y,x) centre of every Voronoi pixel in arc-seconds. pixel_neighbors : ndarray An array of length (voronoi_pixels) which provides the index of all neighbors of every pixel in \ the Voronoi grid (entries of -1 correspond to no neighbor). pixel_neighbors_size : ndarray An array of length (voronoi_pixels) which gives the number of neighbors of every pixel in the \ Voronoi grid. """ pixelization_1d_index_for_sub_mask_1d_index = np.zeros((grid.shape[0])) for sub_mask_1d_index in range(grid.shape[0]): nearest_pixelization_1d_index = nearest_pixelization_1d_index_for_mask_1d_index[ mask_1d_index_for_sub_mask_1d_index[sub_mask_1d_index] ] while True: nearest_pixelization_pixel_center = pixelization_grid[ nearest_pixelization_1d_index ] sub_pixel_to_nearest_pixelization_distance = ( (grid[sub_mask_1d_index, 0] - nearest_pixelization_pixel_center[0]) ** 2 + (grid[sub_mask_1d_index, 1] - nearest_pixelization_pixel_center[1]) ** 2 ) closest_separation_from_pixelization_to_neighbor = 1.0e8 for neighbor_pixelization_1d_index in range( pixel_neighbors_size[nearest_pixelization_1d_index] ): neighbor = pixel_neighbors[ nearest_pixelization_1d_index, neighbor_pixelization_1d_index ] separation_from_neighbor = ( (grid[sub_mask_1d_index, 0] - pixelization_grid[neighbor, 0]) ** 2 + (grid[sub_mask_1d_index, 1] - pixelization_grid[neighbor, 1]) ** 2 ) if ( separation_from_neighbor < closest_separation_from_pixelization_to_neighbor ): closest_separation_from_pixelization_to_neighbor = ( separation_from_neighbor ) closest_neighbor_pixelization_1d_index = ( neighbor_pixelization_1d_index ) neighboring_pixelization_1d_index = pixel_neighbors[ nearest_pixelization_1d_index, closest_neighbor_pixelization_1d_index ] sub_pixel_to_neighboring_pixelization_distance = ( closest_separation_from_pixelization_to_neighbor ) if ( sub_pixel_to_nearest_pixelization_distance <= sub_pixel_to_neighboring_pixelization_distance ): pixelization_1d_index_for_sub_mask_1d_index[ sub_mask_1d_index ] = nearest_pixelization_1d_index break else: nearest_pixelization_1d_index = neighboring_pixelization_1d_index return pixelization_1d_index_for_sub_mask_1d_index @decorator_util.jit() def adaptive_pixel_signals_from_images( pixels, signal_scale, pixelization_1d_index_for_sub_mask_1d_index, mask_1d_index_for_sub_mask_1d_index, hyper_image, ): """Compute the (hyper) signal in each pixel, where the signal is the sum of its datas_-pixel fluxes. \ These pixel-signals are used to compute the effective regularization weight of each pixel. The pixel signals are hyper in the following ways: 1) Divided by the number of datas_-pixels in the pixel, to ensure all pixels have the same \ 'relative' signal (i.e. a pixel with 10 pixels doesn't have x2 the signal of one with 5). 2) Divided by the maximum pixel-signal, so that all signals vary between 0 and 1. This ensures that the \ regularizations weights are defined identically for any datas_ unit_label or signal-to-noise_map ratio. 3) Raised to the power of the hyper_galaxy-parameter *signal_scale*, so the method can control the relative \ contribution regularization in different regions of pixelization. Parameters ----------- pixels : int The total number of pixels in the pixelization the regularization scheme is applied to. signal_scale : float A factor which controls how rapidly the smoothness of regularization varies from high signal regions to \ low signal regions. regular_to_pix : ndarray A 1D array util every pixel on the grid to a pixel on the pixelization. hyper_image : ndarray The image of the galaxy which is used to compute the weigghted pixel signals. """ pixel_signals = np.zeros((pixels,)) pixel_sizes = np.zeros((pixels,)) for sub_mask_1d_index in range(len(pixelization_1d_index_for_sub_mask_1d_index)): mask_1d_index = mask_1d_index_for_sub_mask_1d_index[sub_mask_1d_index] pixel_signals[ pixelization_1d_index_for_sub_mask_1d_index[sub_mask_1d_index] ] += hyper_image[mask_1d_index] pixel_sizes[pixelization_1d_index_for_sub_mask_1d_index[sub_mask_1d_index]] += 1 pixel_sizes[pixel_sizes == 0] = 1 pixel_signals /= pixel_sizes pixel_signals /= np.max(pixel_signals) return pixel_signals ** signal_scale
e2f2035ebe825909c200b197f392cd98c62b4dd1
93ad28897161a30027a2ac1d10c7235f6d66b2f8
/docker_registry_client_async/formattedsha256.py
c788ae5c66bd8f8ada4732201c212cd1574d8e51
[ "Apache-2.0" ]
permissive
GitHK/docker-registry-client-async
0ce117374eb094c3705510d72c081d24c316bada
384b1b7f7abcda55258028d930b45054ab03f6c4
refs/heads/main
2023-05-11T10:50:55.432955
2021-03-16T18:57:25
2021-03-16T18:57:25
371,687,021
0
0
Apache-2.0
2021-05-28T12:03:12
2021-05-28T12:03:11
null
UTF-8
Python
false
false
1,292
py
#!/usr/bin/env python """Utility classes.""" import hashlib class FormattedSHA256(str): """A algorithm prefixed SHA256 hash value.""" def __new__(cls, sha256: str): if sha256: sha256 = sha256.replace("sha256:", "") if not sha256 or len(sha256) != 64: raise ValueError(sha256) obj = super().__new__(cls, f"sha256:{sha256}") obj.sha256 = sha256 return obj @staticmethod def parse(digest: str) -> "FormattedSHA256": """ Initializes a FormattedSHA256 from a given SHA256 digest value. Args: digest: A SHA256 digest value in form SHA256:<digest value>. Returns: The newly initialized object. """ if not digest or not digest.startswith("sha256:") or len(digest) != 71: raise ValueError(digest) return FormattedSHA256(digest[7:]) @staticmethod def calculate(data: bytes) -> "FormattedSHA256": """ Calculates the digest value for given data. Args: data: The data for which to calculate the digest value. Returns: The FormattedSHA256 containing the corresponding digest value. """ return FormattedSHA256(hashlib.sha256(data).hexdigest())
1ec4029f94f10baeb145b9970801a547ff3b09f6
de9cb0ae2f80832c0573cba63330983ed23fa0d0
/dict/insert_word.py
fcd1770448fd942442c4bf8c2d079c3408bd233f
[]
no_license
brooot/Aid_Files
3fa25ccf3ac23a8ca69fdefb3ab1089534ff9d81
11cdbc5037cddf042b857558902fdc04513335be
refs/heads/master
2023-03-27T15:29:24.534347
2021-03-25T13:02:52
2021-03-25T13:02:52
200,647,728
0
0
null
null
null
null
UTF-8
Python
false
false
867
py
import pymysql import re f = open('dict.txt') db = pymysql.connect('localhost', 'root', 'xzl1122', 'dict') cur = db.cursor() sql = 'insert into words (word,interpret) \ VALUES (%s,%s)' a = 1 for line in f: #  获取匹配内容元组 (word,mean) tup = re.findall(r'(\w+)\s+(.*)', line)[0] '''要加[0]是因为返回的是查找到的子组的tupple组成的数组, 如[(子组1,子组2),(),...,()] findall在有子组的情况下会只会返回子组匹配到的内容, 当存在两个及以上的子组的时候便会将每次匹配到的子组放在一个元组内返回, 组成一个列表的元素''' if a: print(tup) a = 0 try: pass # cur.execute(sql, tup) # db.commit() except Exception: db.rollback() f.close() cur.close() db.close()
8947cf626fb6b113322a37e8f0468da4d664e36b
ea393959886a5cd13da4539d634f2ca0bbcd06a2
/tensorflow/cs224d_tf_tutorial_example.py
c6b21c628c02abe4a105916a220217b28b672dce
[]
no_license
zhangchizju2012/LeetCode
f605f35b82f16282559af71e4e61ec2629a90ebc
0c4c38849309124121b03cc0b4bf39071b5d1c8c
refs/heads/master
2020-04-05T12:12:14.810639
2018-08-09T10:24:52
2018-08-09T10:24:52
81,021,830
7
1
null
null
null
null
UTF-8
Python
false
false
1,732
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jan 28 16:58:40 2018 @author: zhangchi """ #import matplotlib.pyplot as plt import numpy as np import tensorflow as tf #import seaborn # Define input data X_data = np.arange(100, step=.1) y_data = 20 * X_data + 10 #X_data + 20 * np.sin(X_data/10) # Plot input data #plt.scatter(X_data, y_data) # Define data size and batch size n_samples = 1000 batch_size = 100 # Tensorflow is finicky about shapes, so resize X_data = np.reshape(X_data, (n_samples,1)) y_data = np.reshape(y_data, (n_samples,1)) # Define placeholders for input X = tf.placeholder(tf.float32, shape=(batch_size, 1)) y = tf.placeholder(tf.float32, shape=(batch_size, 1)) with tf.variable_scope("linear-regression"): W = tf.get_variable("weights", (1, 1), initializer=tf.random_normal_initializer()) b = tf.get_variable("bias", (1,), initializer=tf.constant_initializer(0.0)) y_pred = tf.matmul(X, W) + b loss = tf.reduce_sum((y - y_pred)**2/n_samples) # Sample code to run full gradient descent: # Define optimizer operation opt_operation = tf.train.AdamOptimizer(0.1).minimize(loss) with tf.Session() as sess: # Initialize Variables in graph sess.run(tf.initialize_all_variables()) # Gradient descent loop for 500 steps for _ in range(10000): # Select random minibatch indices = np.random.choice(n_samples, batch_size) X_batch, y_batch = X_data[indices], y_data[indices] # Do gradient descent step _, loss_val, W_, b_ = sess.run([opt_operation, loss, W, b], feed_dict={X: X_batch, y: y_batch}) #print loss_val print(str(loss_val)+ " "+ str(W_)+" "+str(b_))
bebafa256688cc5b2033779112d3ba4ee6592a67
993ef8924418866f932396a58e3ad0c2a940ddd3
/Production/python/PrivateSamples/EMJ_UL17_mMed-1000_mDark-10_kappa-0p2_aligned-down_cff.py
1e55bb177e0248446530a17ca3b58394c483f328
[]
no_license
TreeMaker/TreeMaker
48d81f6c95a17828dbb599d29c15137cd6ef009a
15dd7fe9e9e6f97d9e52614c900c27d200a6c45f
refs/heads/Run2_UL
2023-07-07T15:04:56.672709
2023-07-03T16:43:17
2023-07-03T16:43:17
29,192,343
16
92
null
2023-07-03T16:43:28
2015-01-13T13:59:30
Python
UTF-8
Python
false
false
1,961
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-1.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-10.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-2.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-3.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-4.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-5.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-6.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-7.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-8.root', 'root://cmseos.fnal.gov///store/group/lpcsusyhad/ExoEMJAnalysis2020/Signal.Oct.2021/UL17/step4_MINIAODv2_mMed-1000_mDark-10_kappa-0p2_aligned-down_n-500_part-9.root', ] )
cefc94e4b906f9be3a6fb61c800913cfaf3f1f37
ad4299d34d75f4cf346c08d1971fff0555923b7a
/nodeum_sdk/models/by_metadata_value_buckets.py
7f663cd885871b1cc0cbcc91a8a3dca52273855a
[ "MIT" ]
permissive
nodeum-io/nodeum-sdk-python
16ab0b4e6dcff05c4a06829d263d27f3b66a41be
205536491bff507dea7be44af46202c17e7121d9
refs/heads/master
2021-07-13T19:38:24.863671
2020-09-01T09:56:30
2020-09-01T09:56:30
201,425,025
0
0
null
null
null
null
UTF-8
Python
false
false
6,247
py
# coding: utf-8 """ Nodeum API The Nodeum API makes it easy to tap into the digital data mesh that runs across your organisation. Make requests to our API endpoints and we’ll give you everything you need to interconnect your business workflows with your storage. All production API requests are made to: http://nodeumhostname/api/ The current production version of the API is v1. **REST** The Nodeum API is a RESTful API. This means that the API is designed to allow you to get, create, update, & delete objects with the HTTP verbs GET, POST, PUT, PATCH, & DELETE. **JSON** The Nodeum API speaks exclusively in JSON. This means that you should always set the Content-Type header to application/json to ensure that your requests are properly accepted and processed by the API. **Authentication** All API calls require user-password authentication. **Cross-Origin Resource Sharing** The Nodeum API supports CORS for communicating from Javascript for these endpoints. You will need to specify an Origin URI when creating your application to allow for CORS to be whitelisted for your domain. **Pagination** Some endpoints such as File Listing return a potentially lengthy array of objects. In order to keep the response sizes manageable the API will take advantage of pagination. Pagination is a mechanism for returning a subset of the results for a request and allowing for subsequent requests to “page” through the rest of the results until the end is reached. Paginated endpoints follow a standard interface that accepts two query parameters, limit and offset, and return a payload that follows a standard form. These parameters names and their behavior are borrowed from SQL LIMIT and OFFSET keywords. **Versioning** The Nodeum API is constantly being worked on to add features, make improvements, and fix bugs. This means that you should expect changes to be introduced and documented. However, there are some changes or additions that are considered backwards-compatible and your applications should be flexible enough to handle them. These include: - Adding new endpoints to the API - Adding new attributes to the response of an existing endpoint - Changing the order of attributes of responses (JSON by definition is an object of unordered key/value pairs) **Filter parameters** When browsing a list of items, multiple filter parameters may be applied. Some operators can be added to the value as a prefix: - `=` value is equal. Default operator, may be omitted - `!=` value is different - `>` greater than - `>=` greater than or equal - `<` lower than - `>=` lower than or equal - `><` included in list, items should be separated by `|` - `!><` not included in list, items should be separated by `|` - `~` pattern matching, may include `%` (any characters) and `_` (one character) - `!~` pattern not matching, may include `%` (any characters) and `_` (one character) # noqa: E501 The version of the OpenAPI document: 2.1.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from nodeum_sdk.configuration import Configuration class ByMetadataValueBuckets(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'buckets': 'list[ByMetadataBucket]' } attribute_map = { 'buckets': 'buckets' } def __init__(self, buckets=None, local_vars_configuration=None): # noqa: E501 """ByMetadataValueBuckets - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._buckets = None self.discriminator = None if buckets is not None: self.buckets = buckets @property def buckets(self): """Gets the buckets of this ByMetadataValueBuckets. # noqa: E501 :return: The buckets of this ByMetadataValueBuckets. # noqa: E501 :rtype: list[ByMetadataBucket] """ return self._buckets @buckets.setter def buckets(self, buckets): """Sets the buckets of this ByMetadataValueBuckets. :param buckets: The buckets of this ByMetadataValueBuckets. # noqa: E501 :type: list[ByMetadataBucket] """ self._buckets = buckets def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ByMetadataValueBuckets): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ByMetadataValueBuckets): return True return self.to_dict() != other.to_dict()
b7ce35e05be0a2aeebc41796f49d3ef7d711954c
24a38619bfb7458e9124c4eddb86e67f46a7cdcd
/weo/dates.py
1b39ad9c71ad183e5cf6f79f06437c4734f4f8e2
[]
no_license
FinTrek/weo-reader
8a976b08bb8d4b606ea0930507bf57529d9d094d
8a9f6a51e19ca38caeaa35d2c814dc73a7b1388d
refs/heads/master
2023-04-07T09:24:33.690258
2021-04-15T08:12:49
2021-04-15T08:12:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,177
py
import os from dataclasses import dataclass from datetime import datetime from enum import Enum from pathlib import Path from typing import List, Optional, Tuple, Union import requests __all__ = [ "download", "all_releases", "make_url_countries", "make_url_commodities", "Date", ] def cur_year() -> int: return datetime.today().year def cur_month() -> int: return datetime.today().month class Release(Enum): Spring = 1 Fall = 2 @dataclass class Date: year: int release: Release def __gt__(self, x): return not (self <= x) def __lt__(self, x): return (self.year, self.release) < (x.year, x.release) def __le__(self, x): return (self < x) | (self == x) def succ(d: Date) -> Date: year, rel = d.year, d.release if d.release == 2: year += 1 rel = 1 else: rel = 2 return Date(year, rel) def first() -> Date: return Date(2007, 2) def current() -> Date: y = cur_year() m = cur_month() if m >= 10: return Date(y, 2) elif 4 <= m < 10: return Date(y, 1) else: return Date(y - 1, 2) def month(d: Date) -> int: if d == Date(2011, 2): return 9 elif d.release == 2: return 10 else: return 4 def month_str(d: Date) -> str: return {4: "Apr", 9: "Sep", 10: "Oct"}[month(d)] def name(d: Date) -> str: return f"{d.year}-{month_str(d)} WEO dataset" def period_str(d: Date) -> str: return str(d.release).zfill(2) base_url = "https://www.imf.org/-/media/Files/Publications/WEO/WEO-Database" def filename(year, month, prefix): return f"WEO{month}{year}{prefix}.xls" def url_after_2020(base_url, year, month, period_marker, prefix): fn = filename(year, month, prefix) return f"{base_url}/{year}/{period_marker}/{fn}" def url_before_2020(base_url, year, month, period_marker, prefix): fn = filename(year, month, prefix) return f"{base_url}/{year}/{fn}" def make_url(d: Date, prefix: str, base_url: str = base_url): year = d.year month = month_str(d) period_marker = period_str(d) args = base_url, year, month, period_marker, prefix if d == Date(2021, 1): return "https://www.imf.org/-/media/Files/Publications/WEO/WEO-Database/2021/WEOApr2021all.ashx" if d >= Date(2020, 2): return url_after_2020(*args) else: return url_before_2020(*args) def make_url_countries(d: Date): return make_url(d, prefix="all") def make_url_commodities(d: Date): return make_url(d, prefix="alla") def yield_dates(): d = first() last = current() while d <= last: yield d d = succ(d) def all_releases() -> List[Tuple[int, int]]: """Provide all (year, release) pairs to use in bulk download.""" return [(d.year, d.release) for d in yield_dates()] def is_future(d: Date): return d > current() def is_ancient(d: Date): return d < first() class DateError(ValueError): pass def validate(d: Date): if is_ancient(d): raise DateError(f"Cannot work with date earlier than October 2007, got {d}") if is_future(d): raise DateError(f"The date is in the future: {d}") def get_season(tag: Union[int, str]) -> int: if isinstance(tag, str): tag = tag.lower()[:3] if tag in [1, 2]: return tag elif tag in ["apr", 4]: return 1 elif tag in ["oct", "sep", 9, 10]: return 2 else: raise DateError(tag) def default_filename(d: Date): return f"weo_{d.year}_{d.release}.csv" def get_date(year: int, release: Union[int, str]): release = get_season(release) d = Date(year, release) validate(d) return d def locate(d: Date, filename: Optional[str] = None, directory: Optional[str] = None): if filename is None: filename = default_filename(d) if directory is None: path = filename else: path = os.path.join(directory, filename) return os.path.normpath(path) def curl(path: str, url: str): r = requests.get(url, stream=True) iterable = r.iter_content(chunk_size=1024) with open(path, "wb") as f: for chunk in iterable: if chunk: # filter out keep-alive new chunks f.write(chunk) print(path, size_str(path)) return path def accept( year: int, release: Union[int, str], filename: Optional[str] = None, directory: Optional[str] = None, ): d = get_date(year, release) path = locate(d, filename, directory) url = make_url_countries(d) return d, path, url def download( year: int, release: Union[int, str], filename: Optional[str] = None, directory: str = ".", fetch=curl, ): """Download dataset from IMF WEO website by release. from weo import download download(2020, 'Oct', 'weo.csv') Equivalent to: curl -o weo.csv https://www.imf.org/-/media/Files/Publications/WEO/WEO-Database/2020/02/WEOOct2020all.xls To download all releases (folder 'weo_data' must exist): from weo import all_releases for (year, release) in all_releases(): download(year, release, directory='weo_data') Parameters ---------- year : int Year of WEO release. release : int or str For spring WEO release use 1 or 'Apr' For fall WEO release use 2, 'Oct' or (in 2011) - 'Sep'. filename : str Filename where to save file. directory: Directory where to write file. fetch: callable, optional Used for testing. Returns ------- path, url """ d = get_date(year, release) path = locate(d, filename, directory) url = make_url_countries(d) if os.path.exists(path): print("Already downloaded", name(d), "at", path) else: fetch(path, url) print("Downloaded", name(d)) return path, url def mb(bytes: int): """Express bytes in Mb""" x = bytes / (2 ** (10 * 2)) return round(x, 1) def size(path: str) -> int: return Path(path).stat().st_size def size_str(path: str) -> str: x = mb(size(path)) return f"{x}Mb"
daa5e171eace2bc81c2aa7d6a425aaead522bd20
6b551bec528a1d6544201d3c6d86835e885343b5
/deep_privacy/config/__init__.py
e890ce1d31413b02d716c5a49fc2d643da63d24f
[ "MIT", "Apache-2.0" ]
permissive
hukkelas/DeepPrivacy
9471c8e9389828aa09330905081205b061161d81
5ee3f1b0608f03ac54d5694b6421f6132cb63f0e
refs/heads/master
2023-08-16T00:41:02.366235
2023-03-28T06:23:34
2023-03-28T06:23:34
206,106,232
1,288
194
MIT
2021-08-18T08:21:33
2019-09-03T15:08:27
Python
UTF-8
Python
false
false
188
py
import argparse from .base import Config def default_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("config_path") return parser
437e08dbe2b55f9fa56c1e729dcc134bed63ab13
58f38f1d69d4bfc650ad18e0045c36ae29c9d84a
/Django基础部分代码/chapter11/authenticate_demo/front/models.py
fb099528d5cfdb0ff7e815a2b0d07bce8ee2011e
[]
no_license
zjf201811/DjangoWebProject
0670c61b89387901089bf67cf2423d9341f69913
fab15784fb326ba4517951e180418ea54de03afe
refs/heads/master
2020-04-18T12:03:08.798484
2019-05-06T03:59:46
2019-05-06T03:59:46
167,522,193
3
1
null
null
null
null
UTF-8
Python
false
false
3,094
py
from django.db import models from django.contrib.auth.models import AbstractUser,BaseUserManager from django.dispatch import receiver from django.db.models.signals import post_save from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth import get_user_model # 如果模型是一个代理模型 # 那么就不能在这个模型中添加新的Field # User.objects.all() # Person.objects.all() # 以上两种写法是等价的 # class Person(User): # telephone = models.CharField(max_length=11) # class Meta: # proxy = True # # @classmethod # def get_blacklist(cls): # return cls.objects.filter(is_active=False) # class UserExtension(models.Model): # user = models.OneToOneField(User,on_delete=models.CASCADE,related_name='extension') # telephone = models.CharField(max_length=11) # school = models.CharField(max_length=100) # # @receiver(post_save,sender=User) # def handler_user_extension(sender,instance,created,**kwargs): # if created: # UserExtension.objects.create(user=instance) # else: # instance.extension.save() class UserManager(BaseUserManager): def _create_user(self,telephone,username,password,**kwargs): if not telephone: raise ValueError('必须要传递手机号码!') if not password: raise ValueError('必须要传递密码!') user = self.model(telephone=telephone,username=username,**kwargs) user.set_password(password) user.save() return user def create_user(self,telephone,username,password,**kwargs): kwargs['is_superuser'] = False return self._create_user(telephone=telephone,username=username,password=password,**kwargs) def create_superuser(self,telephone,username,password,**kwargs): kwargs['is_superuser'] = True return self._create_user(telephone=telephone,username=username,password=password,**kwargs) # class User(AbstractUser): # telephone = models.CharField(max_length=11,unique=True) # school = models.CharField(max_length=100) # # USERNAME_FIELD = 'telephone' # # objects = UserManager() class User(AbstractBaseUser,PermissionsMixin): telephone = models.CharField(max_length=11,unique=True) email = models.CharField(max_length=100,unique=True) username = models.CharField(max_length=100) is_active = models.BooleanField(default=True) USERNAME_FIELD = 'telephone' REQUIRED_FIELDS = [] objects = UserManager() def get_full_name(self): return self.username def get_short_name(self): return self.username # 切记: # 如果要自定义User模型 # 那么必须在第一次运行migrate命令之前就先创建好模型 class Article(models.Model): title = models.CharField(max_length=100) content = models.TextField() author = models.ForeignKey(get_user_model(),on_delete=models.CASCADE) class Meta: permissions = [ ('view_article','看文章的权限!') ]
b32ecefa6149e3e45d3aa903f5f8953541a5d1af
a9ac3c537fc778b34cb32d4528e2d1190e65e19e
/shabanipy/version.py
964651219a1dc54208efb4ad35ddff70d2eb6d1e
[ "MIT" ]
permissive
wms269/shabanipy
9f770cfdf113ca8e8af69cd793be2f8bf9b0141a
1e751631e031c528e18d5e0d8ff4fa1457f4107e
refs/heads/master
2022-09-23T15:43:43.875608
2020-04-09T17:49:24
2020-04-09T17:49:24
265,638,022
1
0
MIT
2020-05-20T17:25:40
2020-05-20T17:25:39
null
UTF-8
Python
false
false
1,508
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2018 by ShabaniPy Authors, see AUTHORS for more details. # # Distributed under the terms of the MIT license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """The version information for this release of ShabaniPy. """ from collections import namedtuple # The major release number. Differences in the major number indicate # possibly large differences in API. MAJOR = 0 # The minor release number. Differences in the minor number indicate # possibly small differences in the API, but these changes will come # backwards compatibility support when possible. Minor releases are # typically used for large feature additions. MINOR = 1 # The micro release number. The micro release number is incremented # for bug fix releases and small feature additions. MICRO = 2 # The status indicate if this is a development or pre-release version STATUS = '' #: A namedtuple of the version info for the current release. version_info = namedtuple('version_info', 'major minor micro status') version_info = version_info(MAJOR, MINOR, MICRO, STATUS) # Remove everything but the 'version_info' from this module. del namedtuple, MAJOR, MINOR, MICRO, STATUS __version__ = ('{0}.{1}.{2}'.format(*version_info) if not version_info.status else '{0}.{1}.{2}.{3}'.format(*version_info))
93225b0a14654568b4b5d579a6201445d80399e2
cd5746f8cc7aee1f20606a65b4fae0d5e8ee78dc
/Python Books/scikit-learn-Cookbook/code/chapter1/swiss_roll.py
c73c474a387fc3b5967f5bbab6fa6a4afc785319
[]
no_license
theGreenJedi/Path
df24fca355590efef0c6cb5c52e7216c6b5d2464
b5ed2805dbb046480929e49e550bfd8af5bb4d6f
refs/heads/master
2023-07-27T14:23:37.694546
2021-07-16T01:38:55
2021-07-16T01:38:55
87,686,563
8
2
null
2023-07-11T22:49:03
2017-04-09T05:57:30
Jupyter Notebook
UTF-8
Python
false
false
429
py
import sklearn.datasets as d from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt import numpy as np swiss_roll = d.make_swiss_roll() f = plt.figure(figsize=(8, 4)) ax = f.add_subplot(111, projection='3d') ax.set_title("A swiss roll with Y flattened.") colors = np.array(['r', 'g', 'b']) X = swiss_roll[0] ax.scatter(X[:, 0], np.zeros_like(X[:, 1]), X[:, 2], alpha=0.75) f.savefig("swiss_roll.png")
88d76acedf188298f224f8ab1e5713387b2cc660
8dde6f201657946ad0cfeacab41831f681e6bc6f
/digit_sum.py
0325ac29e4631c9bb8dd93c9c6043d1056304b3f
[]
no_license
peraktong/LEETCODE_Jason
c5d4a524ba69b1b089f18ce4a53dc8f50ccbb88c
06961cc468211b9692cd7a889ee38d1cd4e1d11e
refs/heads/master
2022-04-12T11:34:38.738731
2020-04-07T21:17:04
2020-04-07T21:17:04
219,398,022
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
import collections def getCounter(i): # if i < 10: # return collections.Counter(range(i+1)) threshold = 10 counters = [collections.Counter({0: 1})] while i >= threshold: cur_counter = counters[-1] next_counter = collections.Counter() for num in cur_counter: for leading in range(10): next_counter[num + leading] += cur_counter[num] counters.append(next_counter) threshold *= 10 threshold //= 10 res = collections.Counter() leading = 0 i += 1 while i: max_digit = i // threshold cur = counters.pop() for num in cur: for digit in range(max_digit): res[leading + digit + num] += cur[num] leading += max_digit i %= threshold threshold //= 10 return res def waysToChooseSum(i, j): c = getCounter(j) - getCounter(i - 1) s = max(c.values()) return s, list(c.values()).count(s)
838aebd46b9d1c892d43774d08246182238c65fb
02682d8426a7738740d13b695f93223ddc1054a3
/enabler/apps.py
ad8f1b1563d8c11f05ecbb547b2481dda0ad1cad
[]
no_license
math2001/cmt_manager
f8898d16d8e1e0f90651bd8e006b82dd98288a89
d6a690b3885e9db2ff1921695ec7b2f31747a39f
refs/heads/master
2023-01-31T03:20:52.023640
2020-12-12T03:03:29
2020-12-12T03:03:29
320,718,292
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class EnablerConfig(AppConfig): name = "enabler"
19ac95fe5874ccfc89b7bb5c896250cdb88931c4
9df2fb0bc59ab44f026b0a2f5ef50c72b2fb2ceb
/sdk/authorization/azure-mgmt-authorization/azure/mgmt/authorization/v2020_10_01_preview/models/_models_py3.py
a7053c060d6e53b3f37a65edb20344800cc44851
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
openapi-env-test/azure-sdk-for-python
b334a2b65eeabcf9b7673879a621abb9be43b0f6
f61090e96094cfd4f43650be1a53425736bd8985
refs/heads/main
2023-08-30T14:22:14.300080
2023-06-08T02:53:04
2023-06-08T02:53:04
222,384,897
1
0
MIT
2023-09-08T08:38:48
2019-11-18T07:09:24
Python
UTF-8
Python
false
false
159,358
py
# coding=utf-8 # pylint: disable=too-many-lines # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import Any, List, Optional, TYPE_CHECKING, Union from ... import _serialization if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from .. import models as _models class ApprovalSettings(_serialization.Model): """The approval settings. :ivar is_approval_required: Determine whether approval is required or not. :vartype is_approval_required: bool :ivar is_approval_required_for_extension: Determine whether approval is required for assignment extension. :vartype is_approval_required_for_extension: bool :ivar is_requestor_justification_required: Determine whether requestor justification required. :vartype is_requestor_justification_required: bool :ivar approval_mode: The type of rule. Known values are: "SingleStage", "Serial", "Parallel", and "NoApproval". :vartype approval_mode: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalMode :ivar approval_stages: The approval stages of the request. :vartype approval_stages: list[~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalStage] """ _attribute_map = { "is_approval_required": {"key": "isApprovalRequired", "type": "bool"}, "is_approval_required_for_extension": {"key": "isApprovalRequiredForExtension", "type": "bool"}, "is_requestor_justification_required": {"key": "isRequestorJustificationRequired", "type": "bool"}, "approval_mode": {"key": "approvalMode", "type": "str"}, "approval_stages": {"key": "approvalStages", "type": "[ApprovalStage]"}, } def __init__( self, *, is_approval_required: Optional[bool] = None, is_approval_required_for_extension: Optional[bool] = None, is_requestor_justification_required: Optional[bool] = None, approval_mode: Optional[Union[str, "_models.ApprovalMode"]] = None, approval_stages: Optional[List["_models.ApprovalStage"]] = None, **kwargs: Any ) -> None: """ :keyword is_approval_required: Determine whether approval is required or not. :paramtype is_approval_required: bool :keyword is_approval_required_for_extension: Determine whether approval is required for assignment extension. :paramtype is_approval_required_for_extension: bool :keyword is_requestor_justification_required: Determine whether requestor justification required. :paramtype is_requestor_justification_required: bool :keyword approval_mode: The type of rule. Known values are: "SingleStage", "Serial", "Parallel", and "NoApproval". :paramtype approval_mode: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalMode :keyword approval_stages: The approval stages of the request. :paramtype approval_stages: list[~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalStage] """ super().__init__(**kwargs) self.is_approval_required = is_approval_required self.is_approval_required_for_extension = is_approval_required_for_extension self.is_requestor_justification_required = is_requestor_justification_required self.approval_mode = approval_mode self.approval_stages = approval_stages class ApprovalStage(_serialization.Model): """The approval stage. :ivar approval_stage_time_out_in_days: The time in days when approval request would be timed out. :vartype approval_stage_time_out_in_days: int :ivar is_approver_justification_required: Determine whether approver need to provide justification for his decision. :vartype is_approver_justification_required: bool :ivar escalation_time_in_minutes: The time in minutes when the approval request would be escalated if the primary approver does not approves. :vartype escalation_time_in_minutes: int :ivar primary_approvers: The primary approver of the request. :vartype primary_approvers: list[~azure.mgmt.authorization.v2020_10_01_preview.models.UserSet] :ivar is_escalation_enabled: The value determine whether escalation feature is enabled. :vartype is_escalation_enabled: bool :ivar escalation_approvers: The escalation approver of the request. :vartype escalation_approvers: list[~azure.mgmt.authorization.v2020_10_01_preview.models.UserSet] """ _attribute_map = { "approval_stage_time_out_in_days": {"key": "approvalStageTimeOutInDays", "type": "int"}, "is_approver_justification_required": {"key": "isApproverJustificationRequired", "type": "bool"}, "escalation_time_in_minutes": {"key": "escalationTimeInMinutes", "type": "int"}, "primary_approvers": {"key": "primaryApprovers", "type": "[UserSet]"}, "is_escalation_enabled": {"key": "isEscalationEnabled", "type": "bool"}, "escalation_approvers": {"key": "escalationApprovers", "type": "[UserSet]"}, } def __init__( self, *, approval_stage_time_out_in_days: Optional[int] = None, is_approver_justification_required: Optional[bool] = None, escalation_time_in_minutes: Optional[int] = None, primary_approvers: Optional[List["_models.UserSet"]] = None, is_escalation_enabled: Optional[bool] = None, escalation_approvers: Optional[List["_models.UserSet"]] = None, **kwargs: Any ) -> None: """ :keyword approval_stage_time_out_in_days: The time in days when approval request would be timed out. :paramtype approval_stage_time_out_in_days: int :keyword is_approver_justification_required: Determine whether approver need to provide justification for his decision. :paramtype is_approver_justification_required: bool :keyword escalation_time_in_minutes: The time in minutes when the approval request would be escalated if the primary approver does not approves. :paramtype escalation_time_in_minutes: int :keyword primary_approvers: The primary approver of the request. :paramtype primary_approvers: list[~azure.mgmt.authorization.v2020_10_01_preview.models.UserSet] :keyword is_escalation_enabled: The value determine whether escalation feature is enabled. :paramtype is_escalation_enabled: bool :keyword escalation_approvers: The escalation approver of the request. :paramtype escalation_approvers: list[~azure.mgmt.authorization.v2020_10_01_preview.models.UserSet] """ super().__init__(**kwargs) self.approval_stage_time_out_in_days = approval_stage_time_out_in_days self.is_approver_justification_required = is_approver_justification_required self.escalation_time_in_minutes = escalation_time_in_minutes self.primary_approvers = primary_approvers self.is_escalation_enabled = is_escalation_enabled self.escalation_approvers = escalation_approvers class CloudErrorBody(_serialization.Model): """An error response from the service. :ivar code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :vartype code: str :ivar message: A message describing the error, intended to be suitable for display in a user interface. :vartype message: str """ _attribute_map = { "code": {"key": "code", "type": "str"}, "message": {"key": "message", "type": "str"}, } def __init__(self, *, code: Optional[str] = None, message: Optional[str] = None, **kwargs: Any) -> None: """ :keyword code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :paramtype code: str :keyword message: A message describing the error, intended to be suitable for display in a user interface. :paramtype message: str """ super().__init__(**kwargs) self.code = code self.message = message class EligibleChildResource(_serialization.Model): """Eligible child resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The resource scope Id. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None self.name = None self.type = None class EligibleChildResourcesListResult(_serialization.Model): """Eligible child resources list operation result. :ivar value: Eligible child resource list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.EligibleChildResource] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[EligibleChildResource]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.EligibleChildResource"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Eligible child resource list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.EligibleChildResource] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class ErrorAdditionalInfo(_serialization.Model): """The resource management error additional info. Variables are only populated by the server, and will be ignored when sending a request. :ivar type: The additional info type. :vartype type: str :ivar info: The additional info. :vartype info: JSON """ _validation = { "type": {"readonly": True}, "info": {"readonly": True}, } _attribute_map = { "type": {"key": "type", "type": "str"}, "info": {"key": "info", "type": "object"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.type = None self.info = None class ErrorDetail(_serialization.Model): """The error detail. Variables are only populated by the server, and will be ignored when sending a request. :ivar code: The error code. :vartype code: str :ivar message: The error message. :vartype message: str :ivar target: The error target. :vartype target: str :ivar details: The error details. :vartype details: list[~azure.mgmt.authorization.v2020_10_01_preview.models.ErrorDetail] :ivar additional_info: The error additional info. :vartype additional_info: list[~azure.mgmt.authorization.v2020_10_01_preview.models.ErrorAdditionalInfo] """ _validation = { "code": {"readonly": True}, "message": {"readonly": True}, "target": {"readonly": True}, "details": {"readonly": True}, "additional_info": {"readonly": True}, } _attribute_map = { "code": {"key": "code", "type": "str"}, "message": {"key": "message", "type": "str"}, "target": {"key": "target", "type": "str"}, "details": {"key": "details", "type": "[ErrorDetail]"}, "additional_info": {"key": "additionalInfo", "type": "[ErrorAdditionalInfo]"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None self.message = None self.target = None self.details = None self.additional_info = None class ErrorResponse(_serialization.Model): """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). :ivar error: The error object. :vartype error: ~azure.mgmt.authorization.v2020_10_01_preview.models.ErrorDetail """ _attribute_map = { "error": {"key": "error", "type": "ErrorDetail"}, } def __init__(self, *, error: Optional["_models.ErrorDetail"] = None, **kwargs: Any) -> None: """ :keyword error: The error object. :paramtype error: ~azure.mgmt.authorization.v2020_10_01_preview.models.ErrorDetail """ super().__init__(**kwargs) self.error = error class ExpandedProperties(_serialization.Model): """ExpandedProperties. :ivar scope: Details of the resource scope. :vartype scope: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesScope :ivar role_definition: Details of role definition. :vartype role_definition: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesRoleDefinition :ivar principal: Details of the principal. :vartype principal: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesPrincipal """ _attribute_map = { "scope": {"key": "scope", "type": "ExpandedPropertiesScope"}, "role_definition": {"key": "roleDefinition", "type": "ExpandedPropertiesRoleDefinition"}, "principal": {"key": "principal", "type": "ExpandedPropertiesPrincipal"}, } def __init__( self, *, scope: Optional["_models.ExpandedPropertiesScope"] = None, role_definition: Optional["_models.ExpandedPropertiesRoleDefinition"] = None, principal: Optional["_models.ExpandedPropertiesPrincipal"] = None, **kwargs: Any ) -> None: """ :keyword scope: Details of the resource scope. :paramtype scope: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesScope :keyword role_definition: Details of role definition. :paramtype role_definition: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesRoleDefinition :keyword principal: Details of the principal. :paramtype principal: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedPropertiesPrincipal """ super().__init__(**kwargs) self.scope = scope self.role_definition = role_definition self.principal = principal class ExpandedPropertiesPrincipal(_serialization.Model): """Details of the principal. :ivar id: Id of the principal. :vartype id: str :ivar display_name: Display name of the principal. :vartype display_name: str :ivar email: Email id of the principal. :vartype email: str :ivar type: Type of the principal. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "email": {"key": "email", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, email: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Id of the principal. :paramtype id: str :keyword display_name: Display name of the principal. :paramtype display_name: str :keyword email: Email id of the principal. :paramtype email: str :keyword type: Type of the principal. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.email = email self.type = type class ExpandedPropertiesRoleDefinition(_serialization.Model): """Details of role definition. :ivar id: Id of the role definition. :vartype id: str :ivar display_name: Display name of the role definition. :vartype display_name: str :ivar type: Type of the role definition. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Id of the role definition. :paramtype id: str :keyword display_name: Display name of the role definition. :paramtype display_name: str :keyword type: Type of the role definition. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type class ExpandedPropertiesScope(_serialization.Model): """Details of the resource scope. :ivar id: Scope id of the resource. :vartype id: str :ivar display_name: Display name of the resource. :vartype display_name: str :ivar type: Type of the resource. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Scope id of the resource. :paramtype id: str :keyword display_name: Display name of the resource. :paramtype display_name: str :keyword type: Type of the resource. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type class Permission(_serialization.Model): """Role definition permissions. :ivar actions: Allowed actions. :vartype actions: list[str] :ivar not_actions: Denied actions. :vartype not_actions: list[str] :ivar data_actions: Allowed Data actions. :vartype data_actions: list[str] :ivar not_data_actions: Denied Data actions. :vartype not_data_actions: list[str] """ _attribute_map = { "actions": {"key": "actions", "type": "[str]"}, "not_actions": {"key": "notActions", "type": "[str]"}, "data_actions": {"key": "dataActions", "type": "[str]"}, "not_data_actions": {"key": "notDataActions", "type": "[str]"}, } def __init__( self, *, actions: Optional[List[str]] = None, not_actions: Optional[List[str]] = None, data_actions: Optional[List[str]] = None, not_data_actions: Optional[List[str]] = None, **kwargs: Any ) -> None: """ :keyword actions: Allowed actions. :paramtype actions: list[str] :keyword not_actions: Denied actions. :paramtype not_actions: list[str] :keyword data_actions: Allowed Data actions. :paramtype data_actions: list[str] :keyword not_data_actions: Denied Data actions. :paramtype not_data_actions: list[str] """ super().__init__(**kwargs) self.actions = actions self.not_actions = not_actions self.data_actions = data_actions self.not_data_actions = not_data_actions class PolicyAssignmentProperties(_serialization.Model): """PolicyAssignmentProperties. :ivar scope: Details of the resource scope. :vartype scope: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesScope :ivar role_definition: Details of role definition. :vartype role_definition: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesRoleDefinition :ivar policy: Details of the policy. :vartype policy: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesPolicy """ _attribute_map = { "scope": {"key": "scope", "type": "PolicyAssignmentPropertiesScope"}, "role_definition": {"key": "roleDefinition", "type": "PolicyAssignmentPropertiesRoleDefinition"}, "policy": {"key": "policy", "type": "PolicyAssignmentPropertiesPolicy"}, } def __init__( self, *, scope: Optional["_models.PolicyAssignmentPropertiesScope"] = None, role_definition: Optional["_models.PolicyAssignmentPropertiesRoleDefinition"] = None, policy: Optional["_models.PolicyAssignmentPropertiesPolicy"] = None, **kwargs: Any ) -> None: """ :keyword scope: Details of the resource scope. :paramtype scope: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesScope :keyword role_definition: Details of role definition. :paramtype role_definition: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesRoleDefinition :keyword policy: Details of the policy. :paramtype policy: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentPropertiesPolicy """ super().__init__(**kwargs) self.scope = scope self.role_definition = role_definition self.policy = policy class PolicyAssignmentPropertiesPolicy(_serialization.Model): """Details of the policy. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Id of the policy. :vartype id: str :ivar last_modified_by: The name of the entity last modified it. :vartype last_modified_by: ~azure.mgmt.authorization.v2020_10_01_preview.models.Principal :ivar last_modified_date_time: The last modified date time. :vartype last_modified_date_time: ~datetime.datetime """ _validation = { "last_modified_by": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "last_modified_by": {"key": "lastModifiedBy", "type": "Principal"}, "last_modified_date_time": {"key": "lastModifiedDateTime", "type": "iso-8601"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin last_modified_date_time: Optional[datetime.datetime] = None, **kwargs: Any ) -> None: """ :keyword id: Id of the policy. :paramtype id: str :keyword last_modified_date_time: The last modified date time. :paramtype last_modified_date_time: ~datetime.datetime """ super().__init__(**kwargs) self.id = id self.last_modified_by = None self.last_modified_date_time = last_modified_date_time class PolicyAssignmentPropertiesRoleDefinition(_serialization.Model): """Details of role definition. :ivar id: Id of the role definition. :vartype id: str :ivar display_name: Display name of the role definition. :vartype display_name: str :ivar type: Type of the role definition. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Id of the role definition. :paramtype id: str :keyword display_name: Display name of the role definition. :paramtype display_name: str :keyword type: Type of the role definition. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type class PolicyAssignmentPropertiesScope(_serialization.Model): """Details of the resource scope. :ivar id: Scope id of the resource. :vartype id: str :ivar display_name: Display name of the resource. :vartype display_name: str :ivar type: Type of the resource. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Scope id of the resource. :paramtype id: str :keyword display_name: Display name of the resource. :paramtype display_name: str :keyword type: Type of the resource. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type class PolicyProperties(_serialization.Model): """PolicyProperties. Variables are only populated by the server, and will be ignored when sending a request. :ivar scope: Details of the resource scope. :vartype scope: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyPropertiesScope """ _validation = { "scope": {"readonly": True}, } _attribute_map = { "scope": {"key": "scope", "type": "PolicyPropertiesScope"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.scope = None class PolicyPropertiesScope(_serialization.Model): """Details of the resource scope. :ivar id: Scope id of the resource. :vartype id: str :ivar display_name: Display name of the resource. :vartype display_name: str :ivar type: Type of the resource. :vartype type: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: Scope id of the resource. :paramtype id: str :keyword display_name: Display name of the resource. :paramtype display_name: str :keyword type: Type of the resource. :paramtype type: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type class Principal(_serialization.Model): """The name of the entity last modified it. :ivar id: The id of the principal made changes. :vartype id: str :ivar display_name: The name of the principal made changes. :vartype display_name: str :ivar type: Type of principal such as user , group etc. :vartype type: str :ivar email: Email of principal. :vartype email: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, "display_name": {"key": "displayName", "type": "str"}, "type": {"key": "type", "type": "str"}, "email": {"key": "email", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin display_name: Optional[str] = None, type: Optional[str] = None, email: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the principal made changes. :paramtype id: str :keyword display_name: The name of the principal made changes. :paramtype display_name: str :keyword type: Type of principal such as user , group etc. :paramtype type: str :keyword email: Email of principal. :paramtype email: str """ super().__init__(**kwargs) self.id = id self.display_name = display_name self.type = type self.email = email class RoleAssignment(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role Assignments. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role assignment ID. :vartype id: str :ivar name: The role assignment name. :vartype name: str :ivar type: The role assignment type. :vartype type: str :ivar scope: The role assignment scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar description: Description of role assignment. :vartype description: str :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: Time it was created. :vartype created_on: ~datetime.datetime :ivar updated_on: Time it was updated. :vartype updated_on: ~datetime.datetime :ivar created_by: Id of the user who created the assignment. :vartype created_by: str :ivar updated_by: Id of the user who updated the assignment. :vartype updated_by: str :ivar delegated_managed_identity_resource_id: Id of the delegated managed identity resource. :vartype delegated_managed_identity_resource_id: str """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "scope": {"readonly": True}, "created_on": {"readonly": True}, "updated_on": {"readonly": True}, "created_by": {"readonly": True}, "updated_by": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "description": {"key": "properties.description", "type": "str"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "updated_on": {"key": "properties.updatedOn", "type": "iso-8601"}, "created_by": {"key": "properties.createdBy", "type": "str"}, "updated_by": {"key": "properties.updatedBy", "type": "str"}, "delegated_managed_identity_resource_id": { "key": "properties.delegatedManagedIdentityResourceId", "type": "str", }, } def __init__( self, *, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, description: Optional[str] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, delegated_managed_identity_resource_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword description: Description of role assignment. :paramtype description: str :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword delegated_managed_identity_resource_id: Id of the delegated managed identity resource. :paramtype delegated_managed_identity_resource_id: str """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = None self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.description = description self.condition = condition self.condition_version = condition_version self.created_on = None self.updated_on = None self.created_by = None self.updated_by = None self.delegated_managed_identity_resource_id = delegated_managed_identity_resource_id class RoleAssignmentCreateParameters(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role assignment create parameters. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar scope: The role assignment scope. :vartype scope: str :ivar role_definition_id: The role definition ID. Required. :vartype role_definition_id: str :ivar principal_id: The principal ID. Required. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar description: Description of role assignment. :vartype description: str :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: Time it was created. :vartype created_on: ~datetime.datetime :ivar updated_on: Time it was updated. :vartype updated_on: ~datetime.datetime :ivar created_by: Id of the user who created the assignment. :vartype created_by: str :ivar updated_by: Id of the user who updated the assignment. :vartype updated_by: str :ivar delegated_managed_identity_resource_id: Id of the delegated managed identity resource. :vartype delegated_managed_identity_resource_id: str """ _validation = { "scope": {"readonly": True}, "role_definition_id": {"required": True}, "principal_id": {"required": True}, "created_on": {"readonly": True}, "updated_on": {"readonly": True}, "created_by": {"readonly": True}, "updated_by": {"readonly": True}, } _attribute_map = { "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "description": {"key": "properties.description", "type": "str"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "updated_on": {"key": "properties.updatedOn", "type": "iso-8601"}, "created_by": {"key": "properties.createdBy", "type": "str"}, "updated_by": {"key": "properties.updatedBy", "type": "str"}, "delegated_managed_identity_resource_id": { "key": "properties.delegatedManagedIdentityResourceId", "type": "str", }, } def __init__( self, *, role_definition_id: str, principal_id: str, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, description: Optional[str] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, delegated_managed_identity_resource_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword role_definition_id: The role definition ID. Required. :paramtype role_definition_id: str :keyword principal_id: The principal ID. Required. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword description: Description of role assignment. :paramtype description: str :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword delegated_managed_identity_resource_id: Id of the delegated managed identity resource. :paramtype delegated_managed_identity_resource_id: str """ super().__init__(**kwargs) self.scope = None self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.description = description self.condition = condition self.condition_version = condition_version self.created_on = None self.updated_on = None self.created_by = None self.updated_by = None self.delegated_managed_identity_resource_id = delegated_managed_identity_resource_id class RoleAssignmentFilter(_serialization.Model): """Role Assignments filter. :ivar principal_id: Returns role assignment of the specific principal. :vartype principal_id: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, } def __init__(self, *, principal_id: Optional[str] = None, **kwargs: Any) -> None: """ :keyword principal_id: Returns role assignment of the specific principal. :paramtype principal_id: str """ super().__init__(**kwargs) self.principal_id = principal_id class RoleAssignmentListResult(_serialization.Model): """Role assignment list operation result. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: Role assignment list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignment] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _validation = { "next_link": {"readonly": True}, } _attribute_map = { "value": {"key": "value", "type": "[RoleAssignment]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__(self, *, value: Optional[List["_models.RoleAssignment"]] = None, **kwargs: Any) -> None: """ :keyword value: Role assignment list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignment] """ super().__init__(**kwargs) self.value = value self.next_link = None class RoleAssignmentSchedule(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role Assignment schedule. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role assignment schedule Id. :vartype id: str :ivar name: The role assignment schedule name. :vartype name: str :ivar type: The role assignment schedule type. :vartype type: str :ivar scope: The role assignment schedule scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar role_assignment_schedule_request_id: The id of roleAssignmentScheduleRequest used to create this roleAssignmentSchedule. :vartype role_assignment_schedule_request_id: str :ivar linked_role_eligibility_schedule_id: The id of roleEligibilitySchedule used to activated this roleAssignmentSchedule. :vartype linked_role_eligibility_schedule_id: str :ivar assignment_type: Assignment type of the role assignment schedule. Known values are: "Activated" and "Assigned". :vartype assignment_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.AssignmentType :ivar member_type: Membership type of the role assignment schedule. Known values are: "Inherited", "Direct", and "Group". :vartype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :ivar status: The status of the role assignment schedule. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar start_date_time: Start DateTime when role assignment schedule. :vartype start_date_time: ~datetime.datetime :ivar end_date_time: End DateTime when role assignment schedule. :vartype end_date_time: ~datetime.datetime :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role assignment schedule was created. :vartype created_on: ~datetime.datetime :ivar updated_on: DateTime when role assignment schedule was modified. :vartype updated_on: ~datetime.datetime :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "role_assignment_schedule_request_id": {"key": "properties.roleAssignmentScheduleRequestId", "type": "str"}, "linked_role_eligibility_schedule_id": {"key": "properties.linkedRoleEligibilityScheduleId", "type": "str"}, "assignment_type": {"key": "properties.assignmentType", "type": "str"}, "member_type": {"key": "properties.memberType", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "start_date_time": {"key": "properties.startDateTime", "type": "iso-8601"}, "end_date_time": {"key": "properties.endDateTime", "type": "iso-8601"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "updated_on": {"key": "properties.updatedOn", "type": "iso-8601"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, scope: Optional[str] = None, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, role_assignment_schedule_request_id: Optional[str] = None, linked_role_eligibility_schedule_id: Optional[str] = None, assignment_type: Optional[Union[str, "_models.AssignmentType"]] = None, member_type: Optional[Union[str, "_models.MemberType"]] = None, status: Optional[Union[str, "_models.Status"]] = None, start_date_time: Optional[datetime.datetime] = None, end_date_time: Optional[datetime.datetime] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, created_on: Optional[datetime.datetime] = None, updated_on: Optional[datetime.datetime] = None, expanded_properties: Optional["_models.ExpandedProperties"] = None, **kwargs: Any ) -> None: """ :keyword scope: The role assignment schedule scope. :paramtype scope: str :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword role_assignment_schedule_request_id: The id of roleAssignmentScheduleRequest used to create this roleAssignmentSchedule. :paramtype role_assignment_schedule_request_id: str :keyword linked_role_eligibility_schedule_id: The id of roleEligibilitySchedule used to activated this roleAssignmentSchedule. :paramtype linked_role_eligibility_schedule_id: str :keyword assignment_type: Assignment type of the role assignment schedule. Known values are: "Activated" and "Assigned". :paramtype assignment_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.AssignmentType :keyword member_type: Membership type of the role assignment schedule. Known values are: "Inherited", "Direct", and "Group". :paramtype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :keyword status: The status of the role assignment schedule. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :paramtype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :keyword start_date_time: Start DateTime when role assignment schedule. :paramtype start_date_time: ~datetime.datetime :keyword end_date_time: End DateTime when role assignment schedule. :paramtype end_date_time: ~datetime.datetime :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword created_on: DateTime when role assignment schedule was created. :paramtype created_on: ~datetime.datetime :keyword updated_on: DateTime when role assignment schedule was modified. :paramtype updated_on: ~datetime.datetime :keyword expanded_properties: Additional properties of principal, scope and role definition. :paramtype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.role_assignment_schedule_request_id = role_assignment_schedule_request_id self.linked_role_eligibility_schedule_id = linked_role_eligibility_schedule_id self.assignment_type = assignment_type self.member_type = member_type self.status = status self.start_date_time = start_date_time self.end_date_time = end_date_time self.condition = condition self.condition_version = condition_version self.created_on = created_on self.updated_on = updated_on self.expanded_properties = expanded_properties class RoleAssignmentScheduleFilter(_serialization.Model): """Role assignment schedule filter. :ivar principal_id: Returns role assignment schedule of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role assignment schedule of the specific role definition. :vartype role_definition_id: str :ivar status: Returns role assignment schedule instances of the specific status. :vartype status: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "status": {"key": "status", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, status: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role assignment schedule of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role assignment schedule of the specific role definition. :paramtype role_definition_id: str :keyword status: Returns role assignment schedule instances of the specific status. :paramtype status: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.status = status class RoleAssignmentScheduleInstance(_serialization.Model): # pylint: disable=too-many-instance-attributes """Information about current or upcoming role assignment schedule instance. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role assignment schedule instance ID. :vartype id: str :ivar name: The role assignment schedule instance name. :vartype name: str :ivar type: The role assignment schedule instance type. :vartype type: str :ivar scope: The role assignment schedule scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar role_assignment_schedule_id: Id of the master role assignment schedule. :vartype role_assignment_schedule_id: str :ivar origin_role_assignment_id: Role Assignment Id in external system. :vartype origin_role_assignment_id: str :ivar status: The status of the role assignment schedule instance. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar start_date_time: The startDateTime of the role assignment schedule instance. :vartype start_date_time: ~datetime.datetime :ivar end_date_time: The endDateTime of the role assignment schedule instance. :vartype end_date_time: ~datetime.datetime :ivar linked_role_eligibility_schedule_id: roleEligibilityScheduleId used to activate. :vartype linked_role_eligibility_schedule_id: str :ivar linked_role_eligibility_schedule_instance_id: roleEligibilityScheduleInstanceId linked to this roleAssignmentScheduleInstance. :vartype linked_role_eligibility_schedule_instance_id: str :ivar assignment_type: Assignment type of the role assignment schedule. Known values are: "Activated" and "Assigned". :vartype assignment_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.AssignmentType :ivar member_type: Membership type of the role assignment schedule. Known values are: "Inherited", "Direct", and "Group". :vartype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role assignment schedule was created. :vartype created_on: ~datetime.datetime :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "role_assignment_schedule_id": {"key": "properties.roleAssignmentScheduleId", "type": "str"}, "origin_role_assignment_id": {"key": "properties.originRoleAssignmentId", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "start_date_time": {"key": "properties.startDateTime", "type": "iso-8601"}, "end_date_time": {"key": "properties.endDateTime", "type": "iso-8601"}, "linked_role_eligibility_schedule_id": {"key": "properties.linkedRoleEligibilityScheduleId", "type": "str"}, "linked_role_eligibility_schedule_instance_id": { "key": "properties.linkedRoleEligibilityScheduleInstanceId", "type": "str", }, "assignment_type": {"key": "properties.assignmentType", "type": "str"}, "member_type": {"key": "properties.memberType", "type": "str"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, scope: Optional[str] = None, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, role_assignment_schedule_id: Optional[str] = None, origin_role_assignment_id: Optional[str] = None, status: Optional[Union[str, "_models.Status"]] = None, start_date_time: Optional[datetime.datetime] = None, end_date_time: Optional[datetime.datetime] = None, linked_role_eligibility_schedule_id: Optional[str] = None, linked_role_eligibility_schedule_instance_id: Optional[str] = None, assignment_type: Optional[Union[str, "_models.AssignmentType"]] = None, member_type: Optional[Union[str, "_models.MemberType"]] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, created_on: Optional[datetime.datetime] = None, expanded_properties: Optional["_models.ExpandedProperties"] = None, **kwargs: Any ) -> None: """ :keyword scope: The role assignment schedule scope. :paramtype scope: str :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword role_assignment_schedule_id: Id of the master role assignment schedule. :paramtype role_assignment_schedule_id: str :keyword origin_role_assignment_id: Role Assignment Id in external system. :paramtype origin_role_assignment_id: str :keyword status: The status of the role assignment schedule instance. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :paramtype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :keyword start_date_time: The startDateTime of the role assignment schedule instance. :paramtype start_date_time: ~datetime.datetime :keyword end_date_time: The endDateTime of the role assignment schedule instance. :paramtype end_date_time: ~datetime.datetime :keyword linked_role_eligibility_schedule_id: roleEligibilityScheduleId used to activate. :paramtype linked_role_eligibility_schedule_id: str :keyword linked_role_eligibility_schedule_instance_id: roleEligibilityScheduleInstanceId linked to this roleAssignmentScheduleInstance. :paramtype linked_role_eligibility_schedule_instance_id: str :keyword assignment_type: Assignment type of the role assignment schedule. Known values are: "Activated" and "Assigned". :paramtype assignment_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.AssignmentType :keyword member_type: Membership type of the role assignment schedule. Known values are: "Inherited", "Direct", and "Group". :paramtype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword created_on: DateTime when role assignment schedule was created. :paramtype created_on: ~datetime.datetime :keyword expanded_properties: Additional properties of principal, scope and role definition. :paramtype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.role_assignment_schedule_id = role_assignment_schedule_id self.origin_role_assignment_id = origin_role_assignment_id self.status = status self.start_date_time = start_date_time self.end_date_time = end_date_time self.linked_role_eligibility_schedule_id = linked_role_eligibility_schedule_id self.linked_role_eligibility_schedule_instance_id = linked_role_eligibility_schedule_instance_id self.assignment_type = assignment_type self.member_type = member_type self.condition = condition self.condition_version = condition_version self.created_on = created_on self.expanded_properties = expanded_properties class RoleAssignmentScheduleInstanceFilter(_serialization.Model): """Role assignment schedule instance filter. :ivar principal_id: Returns role assignment schedule instances of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role assignment schedule instances of the specific role definition. :vartype role_definition_id: str :ivar status: Returns role assignment schedule instances of the specific status. :vartype status: str :ivar role_assignment_schedule_id: Returns role assignment schedule instances belonging to a specific role assignment schedule. :vartype role_assignment_schedule_id: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "status": {"key": "status", "type": "str"}, "role_assignment_schedule_id": {"key": "roleAssignmentScheduleId", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, status: Optional[str] = None, role_assignment_schedule_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role assignment schedule instances of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role assignment schedule instances of the specific role definition. :paramtype role_definition_id: str :keyword status: Returns role assignment schedule instances of the specific status. :paramtype status: str :keyword role_assignment_schedule_id: Returns role assignment schedule instances belonging to a specific role assignment schedule. :paramtype role_assignment_schedule_id: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.status = status self.role_assignment_schedule_id = role_assignment_schedule_id class RoleAssignmentScheduleInstanceListResult(_serialization.Model): """Role assignment schedule instance list operation result. :ivar value: Role assignment schedule instance list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleInstance] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleAssignmentScheduleInstance]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleAssignmentScheduleInstance"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role assignment schedule instance list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleInstance] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleAssignmentScheduleListResult(_serialization.Model): """Role assignment schedule list operation result. :ivar value: Role assignment schedule list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentSchedule] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleAssignmentSchedule]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleAssignmentSchedule"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role assignment schedule list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentSchedule] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleAssignmentScheduleRequest(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role Assignment schedule request. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role assignment schedule request ID. :vartype id: str :ivar name: The role assignment schedule request name. :vartype name: str :ivar type: The role assignment schedule request type. :vartype type: str :ivar scope: The role assignment schedule request scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar request_type: The type of the role assignment schedule request. Eg: SelfActivate, AdminAssign etc. Known values are: "AdminAssign", "AdminRemove", "AdminUpdate", "AdminExtend", "AdminRenew", "SelfActivate", "SelfDeactivate", "SelfExtend", and "SelfRenew". :vartype request_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RequestType :ivar status: The status of the role assignment schedule request. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar approval_id: The approvalId of the role assignment schedule request. :vartype approval_id: str :ivar target_role_assignment_schedule_id: The resultant role assignment schedule id or the role assignment schedule id being updated. :vartype target_role_assignment_schedule_id: str :ivar target_role_assignment_schedule_instance_id: The role assignment schedule instance id being updated. :vartype target_role_assignment_schedule_instance_id: str :ivar schedule_info: Schedule info of the role assignment schedule. :vartype schedule_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesScheduleInfo :ivar linked_role_eligibility_schedule_id: The linked role eligibility schedule id - to activate an eligibility. :vartype linked_role_eligibility_schedule_id: str :ivar justification: Justification for the role assignment. :vartype justification: str :ivar ticket_info: Ticket Info of the role assignment. :vartype ticket_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesTicketInfo :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role assignment schedule request was created. :vartype created_on: ~datetime.datetime :ivar requestor_id: Id of the user who created this request. :vartype requestor_id: str :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "scope": {"readonly": True}, "principal_type": {"readonly": True}, "status": {"readonly": True}, "approval_id": {"readonly": True}, "created_on": {"readonly": True}, "requestor_id": {"readonly": True}, "expanded_properties": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "request_type": {"key": "properties.requestType", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "approval_id": {"key": "properties.approvalId", "type": "str"}, "target_role_assignment_schedule_id": {"key": "properties.targetRoleAssignmentScheduleId", "type": "str"}, "target_role_assignment_schedule_instance_id": { "key": "properties.targetRoleAssignmentScheduleInstanceId", "type": "str", }, "schedule_info": { "key": "properties.scheduleInfo", "type": "RoleAssignmentScheduleRequestPropertiesScheduleInfo", }, "linked_role_eligibility_schedule_id": {"key": "properties.linkedRoleEligibilityScheduleId", "type": "str"}, "justification": {"key": "properties.justification", "type": "str"}, "ticket_info": {"key": "properties.ticketInfo", "type": "RoleAssignmentScheduleRequestPropertiesTicketInfo"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "requestor_id": {"key": "properties.requestorId", "type": "str"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, request_type: Optional[Union[str, "_models.RequestType"]] = None, target_role_assignment_schedule_id: Optional[str] = None, target_role_assignment_schedule_instance_id: Optional[str] = None, schedule_info: Optional["_models.RoleAssignmentScheduleRequestPropertiesScheduleInfo"] = None, linked_role_eligibility_schedule_id: Optional[str] = None, justification: Optional[str] = None, ticket_info: Optional["_models.RoleAssignmentScheduleRequestPropertiesTicketInfo"] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword request_type: The type of the role assignment schedule request. Eg: SelfActivate, AdminAssign etc. Known values are: "AdminAssign", "AdminRemove", "AdminUpdate", "AdminExtend", "AdminRenew", "SelfActivate", "SelfDeactivate", "SelfExtend", and "SelfRenew". :paramtype request_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RequestType :keyword target_role_assignment_schedule_id: The resultant role assignment schedule id or the role assignment schedule id being updated. :paramtype target_role_assignment_schedule_id: str :keyword target_role_assignment_schedule_instance_id: The role assignment schedule instance id being updated. :paramtype target_role_assignment_schedule_instance_id: str :keyword schedule_info: Schedule info of the role assignment schedule. :paramtype schedule_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesScheduleInfo :keyword linked_role_eligibility_schedule_id: The linked role eligibility schedule id - to activate an eligibility. :paramtype linked_role_eligibility_schedule_id: str :keyword justification: Justification for the role assignment. :paramtype justification: str :keyword ticket_info: Ticket Info of the role assignment. :paramtype ticket_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesTicketInfo :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = None self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = None self.request_type = request_type self.status = None self.approval_id = None self.target_role_assignment_schedule_id = target_role_assignment_schedule_id self.target_role_assignment_schedule_instance_id = target_role_assignment_schedule_instance_id self.schedule_info = schedule_info self.linked_role_eligibility_schedule_id = linked_role_eligibility_schedule_id self.justification = justification self.ticket_info = ticket_info self.condition = condition self.condition_version = condition_version self.created_on = None self.requestor_id = None self.expanded_properties = None class RoleAssignmentScheduleRequestFilter(_serialization.Model): """Role assignment schedule request filter. :ivar principal_id: Returns role assignment requests of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role assignment requests of the specific role definition. :vartype role_definition_id: str :ivar requestor_id: Returns role assignment requests created by specific principal. :vartype requestor_id: str :ivar status: Returns role assignment requests of specific status. :vartype status: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "requestor_id": {"key": "requestorId", "type": "str"}, "status": {"key": "status", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, requestor_id: Optional[str] = None, status: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role assignment requests of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role assignment requests of the specific role definition. :paramtype role_definition_id: str :keyword requestor_id: Returns role assignment requests created by specific principal. :paramtype requestor_id: str :keyword status: Returns role assignment requests of specific status. :paramtype status: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.requestor_id = requestor_id self.status = status class RoleAssignmentScheduleRequestListResult(_serialization.Model): """Role assignment schedule request list operation result. :ivar value: Role assignment schedule request list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequest] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleAssignmentScheduleRequest]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleAssignmentScheduleRequest"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role assignment schedule request list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequest] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleAssignmentScheduleRequestPropertiesScheduleInfo(_serialization.Model): """Schedule info of the role assignment schedule. :ivar start_date_time: Start DateTime of the role assignment schedule. :vartype start_date_time: ~datetime.datetime :ivar expiration: Expiration of the role assignment schedule. :vartype expiration: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesScheduleInfoExpiration """ _attribute_map = { "start_date_time": {"key": "startDateTime", "type": "iso-8601"}, "expiration": {"key": "expiration", "type": "RoleAssignmentScheduleRequestPropertiesScheduleInfoExpiration"}, } def __init__( self, *, start_date_time: Optional[datetime.datetime] = None, expiration: Optional["_models.RoleAssignmentScheduleRequestPropertiesScheduleInfoExpiration"] = None, **kwargs: Any ) -> None: """ :keyword start_date_time: Start DateTime of the role assignment schedule. :paramtype start_date_time: ~datetime.datetime :keyword expiration: Expiration of the role assignment schedule. :paramtype expiration: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleAssignmentScheduleRequestPropertiesScheduleInfoExpiration """ super().__init__(**kwargs) self.start_date_time = start_date_time self.expiration = expiration class RoleAssignmentScheduleRequestPropertiesScheduleInfoExpiration(_serialization.Model): """Expiration of the role assignment schedule. :ivar type: Type of the role assignment schedule expiration. Known values are: "AfterDuration", "AfterDateTime", and "NoExpiration". :vartype type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Type :ivar end_date_time: End DateTime of the role assignment schedule. :vartype end_date_time: ~datetime.datetime :ivar duration: Duration of the role assignment schedule in TimeSpan. :vartype duration: str """ _attribute_map = { "type": {"key": "type", "type": "str"}, "end_date_time": {"key": "endDateTime", "type": "iso-8601"}, "duration": {"key": "duration", "type": "str"}, } def __init__( self, *, type: Optional[Union[str, "_models.Type"]] = None, end_date_time: Optional[datetime.datetime] = None, duration: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword type: Type of the role assignment schedule expiration. Known values are: "AfterDuration", "AfterDateTime", and "NoExpiration". :paramtype type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Type :keyword end_date_time: End DateTime of the role assignment schedule. :paramtype end_date_time: ~datetime.datetime :keyword duration: Duration of the role assignment schedule in TimeSpan. :paramtype duration: str """ super().__init__(**kwargs) self.type = type self.end_date_time = end_date_time self.duration = duration class RoleAssignmentScheduleRequestPropertiesTicketInfo(_serialization.Model): """Ticket Info of the role assignment. :ivar ticket_number: Ticket number for the role assignment. :vartype ticket_number: str :ivar ticket_system: Ticket system name for the role assignment. :vartype ticket_system: str """ _attribute_map = { "ticket_number": {"key": "ticketNumber", "type": "str"}, "ticket_system": {"key": "ticketSystem", "type": "str"}, } def __init__( self, *, ticket_number: Optional[str] = None, ticket_system: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword ticket_number: Ticket number for the role assignment. :paramtype ticket_number: str :keyword ticket_system: Ticket system name for the role assignment. :paramtype ticket_system: str """ super().__init__(**kwargs) self.ticket_number = ticket_number self.ticket_system = ticket_system class RoleEligibilitySchedule(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role eligibility schedule. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role eligibility schedule Id. :vartype id: str :ivar name: The role eligibility schedule name. :vartype name: str :ivar type: The role eligibility schedule type. :vartype type: str :ivar scope: The role eligibility schedule scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar role_eligibility_schedule_request_id: The id of roleEligibilityScheduleRequest used to create this roleAssignmentSchedule. :vartype role_eligibility_schedule_request_id: str :ivar member_type: Membership type of the role eligibility schedule. Known values are: "Inherited", "Direct", and "Group". :vartype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :ivar status: The status of the role eligibility schedule. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar start_date_time: Start DateTime when role eligibility schedule. :vartype start_date_time: ~datetime.datetime :ivar end_date_time: End DateTime when role eligibility schedule. :vartype end_date_time: ~datetime.datetime :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role eligibility schedule was created. :vartype created_on: ~datetime.datetime :ivar updated_on: DateTime when role eligibility schedule was modified. :vartype updated_on: ~datetime.datetime :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "role_eligibility_schedule_request_id": {"key": "properties.roleEligibilityScheduleRequestId", "type": "str"}, "member_type": {"key": "properties.memberType", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "start_date_time": {"key": "properties.startDateTime", "type": "iso-8601"}, "end_date_time": {"key": "properties.endDateTime", "type": "iso-8601"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "updated_on": {"key": "properties.updatedOn", "type": "iso-8601"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, scope: Optional[str] = None, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, role_eligibility_schedule_request_id: Optional[str] = None, member_type: Optional[Union[str, "_models.MemberType"]] = None, status: Optional[Union[str, "_models.Status"]] = None, start_date_time: Optional[datetime.datetime] = None, end_date_time: Optional[datetime.datetime] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, created_on: Optional[datetime.datetime] = None, updated_on: Optional[datetime.datetime] = None, expanded_properties: Optional["_models.ExpandedProperties"] = None, **kwargs: Any ) -> None: """ :keyword scope: The role eligibility schedule scope. :paramtype scope: str :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword role_eligibility_schedule_request_id: The id of roleEligibilityScheduleRequest used to create this roleAssignmentSchedule. :paramtype role_eligibility_schedule_request_id: str :keyword member_type: Membership type of the role eligibility schedule. Known values are: "Inherited", "Direct", and "Group". :paramtype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :keyword status: The status of the role eligibility schedule. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :paramtype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :keyword start_date_time: Start DateTime when role eligibility schedule. :paramtype start_date_time: ~datetime.datetime :keyword end_date_time: End DateTime when role eligibility schedule. :paramtype end_date_time: ~datetime.datetime :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword created_on: DateTime when role eligibility schedule was created. :paramtype created_on: ~datetime.datetime :keyword updated_on: DateTime when role eligibility schedule was modified. :paramtype updated_on: ~datetime.datetime :keyword expanded_properties: Additional properties of principal, scope and role definition. :paramtype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.role_eligibility_schedule_request_id = role_eligibility_schedule_request_id self.member_type = member_type self.status = status self.start_date_time = start_date_time self.end_date_time = end_date_time self.condition = condition self.condition_version = condition_version self.created_on = created_on self.updated_on = updated_on self.expanded_properties = expanded_properties class RoleEligibilityScheduleFilter(_serialization.Model): """Role eligibility schedule filter. :ivar principal_id: Returns role eligibility schedule of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role eligibility schedule of the specific role definition. :vartype role_definition_id: str :ivar status: Returns role eligibility schedule of the specific status. :vartype status: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "status": {"key": "status", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, status: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role eligibility schedule of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role eligibility schedule of the specific role definition. :paramtype role_definition_id: str :keyword status: Returns role eligibility schedule of the specific status. :paramtype status: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.status = status class RoleEligibilityScheduleInstance(_serialization.Model): # pylint: disable=too-many-instance-attributes """Information about current or upcoming role eligibility schedule instance. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role eligibility schedule instance ID. :vartype id: str :ivar name: The role eligibility schedule instance name. :vartype name: str :ivar type: The role eligibility schedule instance type. :vartype type: str :ivar scope: The role eligibility schedule scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar role_eligibility_schedule_id: Id of the master role eligibility schedule. :vartype role_eligibility_schedule_id: str :ivar status: The status of the role eligibility schedule instance. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar start_date_time: The startDateTime of the role eligibility schedule instance. :vartype start_date_time: ~datetime.datetime :ivar end_date_time: The endDateTime of the role eligibility schedule instance. :vartype end_date_time: ~datetime.datetime :ivar member_type: Membership type of the role eligibility schedule. Known values are: "Inherited", "Direct", and "Group". :vartype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role eligibility schedule was created. :vartype created_on: ~datetime.datetime :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "role_eligibility_schedule_id": {"key": "properties.roleEligibilityScheduleId", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "start_date_time": {"key": "properties.startDateTime", "type": "iso-8601"}, "end_date_time": {"key": "properties.endDateTime", "type": "iso-8601"}, "member_type": {"key": "properties.memberType", "type": "str"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, scope: Optional[str] = None, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, principal_type: Optional[Union[str, "_models.PrincipalType"]] = None, role_eligibility_schedule_id: Optional[str] = None, status: Optional[Union[str, "_models.Status"]] = None, start_date_time: Optional[datetime.datetime] = None, end_date_time: Optional[datetime.datetime] = None, member_type: Optional[Union[str, "_models.MemberType"]] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, created_on: Optional[datetime.datetime] = None, expanded_properties: Optional["_models.ExpandedProperties"] = None, **kwargs: Any ) -> None: """ :keyword scope: The role eligibility schedule scope. :paramtype scope: str :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :paramtype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :keyword role_eligibility_schedule_id: Id of the master role eligibility schedule. :paramtype role_eligibility_schedule_id: str :keyword status: The status of the role eligibility schedule instance. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :paramtype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :keyword start_date_time: The startDateTime of the role eligibility schedule instance. :paramtype start_date_time: ~datetime.datetime :keyword end_date_time: The endDateTime of the role eligibility schedule instance. :paramtype end_date_time: ~datetime.datetime :keyword member_type: Membership type of the role eligibility schedule. Known values are: "Inherited", "Direct", and "Group". :paramtype member_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.MemberType :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str :keyword created_on: DateTime when role eligibility schedule was created. :paramtype created_on: ~datetime.datetime :keyword expanded_properties: Additional properties of principal, scope and role definition. :paramtype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = principal_type self.role_eligibility_schedule_id = role_eligibility_schedule_id self.status = status self.start_date_time = start_date_time self.end_date_time = end_date_time self.member_type = member_type self.condition = condition self.condition_version = condition_version self.created_on = created_on self.expanded_properties = expanded_properties class RoleEligibilityScheduleInstanceFilter(_serialization.Model): """Role eligibility schedule instance filter. :ivar principal_id: Returns role eligibility schedule instances of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role eligibility schedule instances of the specific role definition. :vartype role_definition_id: str :ivar status: Returns role eligibility schedule instances of the specific status. :vartype status: str :ivar role_eligibility_schedule_id: Returns role eligibility schedule instances belonging to a specific role eligibility schedule. :vartype role_eligibility_schedule_id: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "status": {"key": "status", "type": "str"}, "role_eligibility_schedule_id": {"key": "roleEligibilityScheduleId", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, status: Optional[str] = None, role_eligibility_schedule_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role eligibility schedule instances of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role eligibility schedule instances of the specific role definition. :paramtype role_definition_id: str :keyword status: Returns role eligibility schedule instances of the specific status. :paramtype status: str :keyword role_eligibility_schedule_id: Returns role eligibility schedule instances belonging to a specific role eligibility schedule. :paramtype role_eligibility_schedule_id: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.status = status self.role_eligibility_schedule_id = role_eligibility_schedule_id class RoleEligibilityScheduleInstanceListResult(_serialization.Model): """Role eligibility schedule instance list operation result. :ivar value: Role eligibility schedule instance list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleInstance] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleEligibilityScheduleInstance]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleEligibilityScheduleInstance"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role eligibility schedule instance list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleInstance] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleEligibilityScheduleListResult(_serialization.Model): """role eligibility schedule list operation result. :ivar value: role eligibility schedule list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilitySchedule] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleEligibilitySchedule]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleEligibilitySchedule"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: role eligibility schedule list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilitySchedule] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleEligibilityScheduleRequest(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role Eligibility schedule request. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role eligibility schedule request ID. :vartype id: str :ivar name: The role eligibility schedule request name. :vartype name: str :ivar type: The role eligibility schedule request type. :vartype type: str :ivar scope: The role eligibility schedule request scope. :vartype scope: str :ivar role_definition_id: The role definition ID. :vartype role_definition_id: str :ivar principal_id: The principal ID. :vartype principal_id: str :ivar principal_type: The principal type of the assigned principal ID. Known values are: "User", "Group", "ServicePrincipal", "ForeignGroup", and "Device". :vartype principal_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.PrincipalType :ivar request_type: The type of the role assignment schedule request. Eg: SelfActivate, AdminAssign etc. Known values are: "AdminAssign", "AdminRemove", "AdminUpdate", "AdminExtend", "AdminRenew", "SelfActivate", "SelfDeactivate", "SelfExtend", and "SelfRenew". :vartype request_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RequestType :ivar status: The status of the role eligibility schedule request. Known values are: "Accepted", "PendingEvaluation", "Granted", "Denied", "PendingProvisioning", "Provisioned", "PendingRevocation", "Revoked", "Canceled", "Failed", "PendingApprovalProvisioning", "PendingApproval", "FailedAsResourceIsLocked", "PendingAdminDecision", "AdminApproved", "AdminDenied", "TimedOut", "ProvisioningStarted", "Invalid", "PendingScheduleCreation", "ScheduleCreated", and "PendingExternalProvisioning". :vartype status: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Status :ivar approval_id: The approvalId of the role eligibility schedule request. :vartype approval_id: str :ivar schedule_info: Schedule info of the role eligibility schedule. :vartype schedule_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesScheduleInfo :ivar target_role_eligibility_schedule_id: The resultant role eligibility schedule id or the role eligibility schedule id being updated. :vartype target_role_eligibility_schedule_id: str :ivar target_role_eligibility_schedule_instance_id: The role eligibility schedule instance id being updated. :vartype target_role_eligibility_schedule_instance_id: str :ivar justification: Justification for the role eligibility. :vartype justification: str :ivar ticket_info: Ticket Info of the role eligibility. :vartype ticket_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesTicketInfo :ivar condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :vartype condition: str :ivar condition_version: Version of the condition. Currently accepted value is '2.0'. :vartype condition_version: str :ivar created_on: DateTime when role eligibility schedule request was created. :vartype created_on: ~datetime.datetime :ivar requestor_id: Id of the user who created this request. :vartype requestor_id: str :ivar expanded_properties: Additional properties of principal, scope and role definition. :vartype expanded_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.ExpandedProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "scope": {"readonly": True}, "principal_type": {"readonly": True}, "status": {"readonly": True}, "approval_id": {"readonly": True}, "created_on": {"readonly": True}, "requestor_id": {"readonly": True}, "expanded_properties": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "principal_id": {"key": "properties.principalId", "type": "str"}, "principal_type": {"key": "properties.principalType", "type": "str"}, "request_type": {"key": "properties.requestType", "type": "str"}, "status": {"key": "properties.status", "type": "str"}, "approval_id": {"key": "properties.approvalId", "type": "str"}, "schedule_info": { "key": "properties.scheduleInfo", "type": "RoleEligibilityScheduleRequestPropertiesScheduleInfo", }, "target_role_eligibility_schedule_id": {"key": "properties.targetRoleEligibilityScheduleId", "type": "str"}, "target_role_eligibility_schedule_instance_id": { "key": "properties.targetRoleEligibilityScheduleInstanceId", "type": "str", }, "justification": {"key": "properties.justification", "type": "str"}, "ticket_info": {"key": "properties.ticketInfo", "type": "RoleEligibilityScheduleRequestPropertiesTicketInfo"}, "condition": {"key": "properties.condition", "type": "str"}, "condition_version": {"key": "properties.conditionVersion", "type": "str"}, "created_on": {"key": "properties.createdOn", "type": "iso-8601"}, "requestor_id": {"key": "properties.requestorId", "type": "str"}, "expanded_properties": {"key": "properties.expandedProperties", "type": "ExpandedProperties"}, } def __init__( self, *, role_definition_id: Optional[str] = None, principal_id: Optional[str] = None, request_type: Optional[Union[str, "_models.RequestType"]] = None, schedule_info: Optional["_models.RoleEligibilityScheduleRequestPropertiesScheduleInfo"] = None, target_role_eligibility_schedule_id: Optional[str] = None, target_role_eligibility_schedule_instance_id: Optional[str] = None, justification: Optional[str] = None, ticket_info: Optional["_models.RoleEligibilityScheduleRequestPropertiesTicketInfo"] = None, condition: Optional[str] = None, condition_version: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword role_definition_id: The role definition ID. :paramtype role_definition_id: str :keyword principal_id: The principal ID. :paramtype principal_id: str :keyword request_type: The type of the role assignment schedule request. Eg: SelfActivate, AdminAssign etc. Known values are: "AdminAssign", "AdminRemove", "AdminUpdate", "AdminExtend", "AdminRenew", "SelfActivate", "SelfDeactivate", "SelfExtend", and "SelfRenew". :paramtype request_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RequestType :keyword schedule_info: Schedule info of the role eligibility schedule. :paramtype schedule_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesScheduleInfo :keyword target_role_eligibility_schedule_id: The resultant role eligibility schedule id or the role eligibility schedule id being updated. :paramtype target_role_eligibility_schedule_id: str :keyword target_role_eligibility_schedule_instance_id: The role eligibility schedule instance id being updated. :paramtype target_role_eligibility_schedule_instance_id: str :keyword justification: Justification for the role eligibility. :paramtype justification: str :keyword ticket_info: Ticket Info of the role eligibility. :paramtype ticket_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesTicketInfo :keyword condition: The conditions on the role assignment. This limits the resources it can be assigned to. e.g.: @Resource[Microsoft.Storage/storageAccounts/blobServices/containers:ContainerName] StringEqualsIgnoreCase 'foo_storage_container'. :paramtype condition: str :keyword condition_version: Version of the condition. Currently accepted value is '2.0'. :paramtype condition_version: str """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = None self.role_definition_id = role_definition_id self.principal_id = principal_id self.principal_type = None self.request_type = request_type self.status = None self.approval_id = None self.schedule_info = schedule_info self.target_role_eligibility_schedule_id = target_role_eligibility_schedule_id self.target_role_eligibility_schedule_instance_id = target_role_eligibility_schedule_instance_id self.justification = justification self.ticket_info = ticket_info self.condition = condition self.condition_version = condition_version self.created_on = None self.requestor_id = None self.expanded_properties = None class RoleEligibilityScheduleRequestFilter(_serialization.Model): """Role eligibility schedule request filter. :ivar principal_id: Returns role eligibility requests of the specific principal. :vartype principal_id: str :ivar role_definition_id: Returns role eligibility requests of the specific role definition. :vartype role_definition_id: str :ivar requestor_id: Returns role eligibility requests created by specific principal. :vartype requestor_id: str :ivar status: Returns role eligibility requests of specific status. :vartype status: str """ _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "role_definition_id": {"key": "roleDefinitionId", "type": "str"}, "requestor_id": {"key": "requestorId", "type": "str"}, "status": {"key": "status", "type": "str"}, } def __init__( self, *, principal_id: Optional[str] = None, role_definition_id: Optional[str] = None, requestor_id: Optional[str] = None, status: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword principal_id: Returns role eligibility requests of the specific principal. :paramtype principal_id: str :keyword role_definition_id: Returns role eligibility requests of the specific role definition. :paramtype role_definition_id: str :keyword requestor_id: Returns role eligibility requests created by specific principal. :paramtype requestor_id: str :keyword status: Returns role eligibility requests of specific status. :paramtype status: str """ super().__init__(**kwargs) self.principal_id = principal_id self.role_definition_id = role_definition_id self.requestor_id = requestor_id self.status = status class RoleEligibilityScheduleRequestListResult(_serialization.Model): """Role eligibility schedule request list operation result. :ivar value: Role eligibility schedule request list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequest] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleEligibilityScheduleRequest]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleEligibilityScheduleRequest"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role eligibility schedule request list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequest] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleEligibilityScheduleRequestPropertiesScheduleInfo(_serialization.Model): """Schedule info of the role eligibility schedule. :ivar start_date_time: Start DateTime of the role eligibility schedule. :vartype start_date_time: ~datetime.datetime :ivar expiration: Expiration of the role eligibility schedule. :vartype expiration: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesScheduleInfoExpiration """ _attribute_map = { "start_date_time": {"key": "startDateTime", "type": "iso-8601"}, "expiration": {"key": "expiration", "type": "RoleEligibilityScheduleRequestPropertiesScheduleInfoExpiration"}, } def __init__( self, *, start_date_time: Optional[datetime.datetime] = None, expiration: Optional["_models.RoleEligibilityScheduleRequestPropertiesScheduleInfoExpiration"] = None, **kwargs: Any ) -> None: """ :keyword start_date_time: Start DateTime of the role eligibility schedule. :paramtype start_date_time: ~datetime.datetime :keyword expiration: Expiration of the role eligibility schedule. :paramtype expiration: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleEligibilityScheduleRequestPropertiesScheduleInfoExpiration """ super().__init__(**kwargs) self.start_date_time = start_date_time self.expiration = expiration class RoleEligibilityScheduleRequestPropertiesScheduleInfoExpiration(_serialization.Model): """Expiration of the role eligibility schedule. :ivar type: Type of the role eligibility schedule expiration. Known values are: "AfterDuration", "AfterDateTime", and "NoExpiration". :vartype type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Type :ivar end_date_time: End DateTime of the role eligibility schedule. :vartype end_date_time: ~datetime.datetime :ivar duration: Duration of the role eligibility schedule in TimeSpan. :vartype duration: str """ _attribute_map = { "type": {"key": "type", "type": "str"}, "end_date_time": {"key": "endDateTime", "type": "iso-8601"}, "duration": {"key": "duration", "type": "str"}, } def __init__( self, *, type: Optional[Union[str, "_models.Type"]] = None, end_date_time: Optional[datetime.datetime] = None, duration: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword type: Type of the role eligibility schedule expiration. Known values are: "AfterDuration", "AfterDateTime", and "NoExpiration". :paramtype type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.Type :keyword end_date_time: End DateTime of the role eligibility schedule. :paramtype end_date_time: ~datetime.datetime :keyword duration: Duration of the role eligibility schedule in TimeSpan. :paramtype duration: str """ super().__init__(**kwargs) self.type = type self.end_date_time = end_date_time self.duration = duration class RoleEligibilityScheduleRequestPropertiesTicketInfo(_serialization.Model): """Ticket Info of the role eligibility. :ivar ticket_number: Ticket number for the role eligibility. :vartype ticket_number: str :ivar ticket_system: Ticket system name for the role eligibility. :vartype ticket_system: str """ _attribute_map = { "ticket_number": {"key": "ticketNumber", "type": "str"}, "ticket_system": {"key": "ticketSystem", "type": "str"}, } def __init__( self, *, ticket_number: Optional[str] = None, ticket_system: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword ticket_number: Ticket number for the role eligibility. :paramtype ticket_number: str :keyword ticket_system: Ticket system name for the role eligibility. :paramtype ticket_system: str """ super().__init__(**kwargs) self.ticket_number = ticket_number self.ticket_system = ticket_system class RoleManagementPolicy(_serialization.Model): # pylint: disable=too-many-instance-attributes """Role management policy. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role management policy Id. :vartype id: str :ivar name: The role management policy name. :vartype name: str :ivar type: The role management policy type. :vartype type: str :ivar scope: The role management policy scope. :vartype scope: str :ivar display_name: The role management policy display name. :vartype display_name: str :ivar description: The role management policy description. :vartype description: str :ivar is_organization_default: The role management policy is default policy. :vartype is_organization_default: bool :ivar last_modified_by: The name of the entity last modified it. :vartype last_modified_by: ~azure.mgmt.authorization.v2020_10_01_preview.models.Principal :ivar last_modified_date_time: The last modified date time. :vartype last_modified_date_time: ~datetime.datetime :ivar rules: The rule applied to the policy. :vartype rules: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRule] :ivar effective_rules: The readonly computed rule applied to the policy. :vartype effective_rules: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRule] :ivar policy_properties: Additional properties of scope. :vartype policy_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "last_modified_by": {"readonly": True}, "last_modified_date_time": {"readonly": True}, "effective_rules": {"readonly": True}, "policy_properties": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "display_name": {"key": "properties.displayName", "type": "str"}, "description": {"key": "properties.description", "type": "str"}, "is_organization_default": {"key": "properties.isOrganizationDefault", "type": "bool"}, "last_modified_by": {"key": "properties.lastModifiedBy", "type": "Principal"}, "last_modified_date_time": {"key": "properties.lastModifiedDateTime", "type": "iso-8601"}, "rules": {"key": "properties.rules", "type": "[RoleManagementPolicyRule]"}, "effective_rules": {"key": "properties.effectiveRules", "type": "[RoleManagementPolicyRule]"}, "policy_properties": {"key": "properties.policyProperties", "type": "PolicyProperties"}, } def __init__( self, *, scope: Optional[str] = None, display_name: Optional[str] = None, description: Optional[str] = None, is_organization_default: Optional[bool] = None, rules: Optional[List["_models.RoleManagementPolicyRule"]] = None, **kwargs: Any ) -> None: """ :keyword scope: The role management policy scope. :paramtype scope: str :keyword display_name: The role management policy display name. :paramtype display_name: str :keyword description: The role management policy description. :paramtype description: str :keyword is_organization_default: The role management policy is default policy. :paramtype is_organization_default: bool :keyword rules: The rule applied to the policy. :paramtype rules: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRule] """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.display_name = display_name self.description = description self.is_organization_default = is_organization_default self.last_modified_by = None self.last_modified_date_time = None self.rules = rules self.effective_rules = None self.policy_properties = None class RoleManagementPolicyRule(_serialization.Model): """The role management policy rule. You probably want to use the sub-classes and not this class directly. Known sub-classes are: RoleManagementPolicyApprovalRule, RoleManagementPolicyAuthenticationContextRule, RoleManagementPolicyEnablementRule, RoleManagementPolicyExpirationRule, RoleManagementPolicyNotificationRule All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, } _subtype_map = { "rule_type": { "RoleManagementPolicyApprovalRule": "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule": "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule": "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule": "RoleManagementPolicyExpirationRule", "RoleManagementPolicyNotificationRule": "RoleManagementPolicyNotificationRule", } } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget """ super().__init__(**kwargs) self.id = id self.rule_type: Optional[str] = None self.target = target class RoleManagementPolicyApprovalRule(RoleManagementPolicyRule): """The role management policy rule. All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :ivar setting: The approval setting. :vartype setting: ~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalSettings """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, "setting": {"key": "setting", "type": "ApprovalSettings"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, setting: Optional["_models.ApprovalSettings"] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :keyword setting: The approval setting. :paramtype setting: ~azure.mgmt.authorization.v2020_10_01_preview.models.ApprovalSettings """ super().__init__(id=id, target=target, **kwargs) self.rule_type: str = "RoleManagementPolicyApprovalRule" self.setting = setting class RoleManagementPolicyAssignment(_serialization.Model): """Role management policy. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The role management policy Id. :vartype id: str :ivar name: The role management policy name. :vartype name: str :ivar type: The role management policy type. :vartype type: str :ivar scope: The role management policy scope. :vartype scope: str :ivar role_definition_id: The role definition of management policy assignment. :vartype role_definition_id: str :ivar policy_id: The policy id role management policy assignment. :vartype policy_id: str :ivar policy_assignment_properties: Additional properties of scope, role definition and policy. :vartype policy_assignment_properties: ~azure.mgmt.authorization.v2020_10_01_preview.models.PolicyAssignmentProperties """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "policy_assignment_properties": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "scope": {"key": "properties.scope", "type": "str"}, "role_definition_id": {"key": "properties.roleDefinitionId", "type": "str"}, "policy_id": {"key": "properties.policyId", "type": "str"}, "policy_assignment_properties": { "key": "properties.policyAssignmentProperties", "type": "PolicyAssignmentProperties", }, } def __init__( self, *, scope: Optional[str] = None, role_definition_id: Optional[str] = None, policy_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword scope: The role management policy scope. :paramtype scope: str :keyword role_definition_id: The role definition of management policy assignment. :paramtype role_definition_id: str :keyword policy_id: The policy id role management policy assignment. :paramtype policy_id: str """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.scope = scope self.role_definition_id = role_definition_id self.policy_id = policy_id self.policy_assignment_properties = None class RoleManagementPolicyAssignmentListResult(_serialization.Model): """Role management policy assignment list operation result. :ivar value: Role management policy assignment list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyAssignment] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleManagementPolicyAssignment]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleManagementPolicyAssignment"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role management policy assignment list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyAssignment] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleManagementPolicyAuthenticationContextRule(RoleManagementPolicyRule): """The role management policy rule. All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :ivar is_enabled: The value indicating if rule is enabled. :vartype is_enabled: bool :ivar claim_value: The claim value. :vartype claim_value: str """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, "is_enabled": {"key": "isEnabled", "type": "bool"}, "claim_value": {"key": "claimValue", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, is_enabled: Optional[bool] = None, claim_value: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :keyword is_enabled: The value indicating if rule is enabled. :paramtype is_enabled: bool :keyword claim_value: The claim value. :paramtype claim_value: str """ super().__init__(id=id, target=target, **kwargs) self.rule_type: str = "RoleManagementPolicyAuthenticationContextRule" self.is_enabled = is_enabled self.claim_value = claim_value class RoleManagementPolicyEnablementRule(RoleManagementPolicyRule): """The role management policy rule. All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :ivar enabled_rules: The list of enabled rules. :vartype enabled_rules: list[str or ~azure.mgmt.authorization.v2020_10_01_preview.models.EnablementRules] """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, "enabled_rules": {"key": "enabledRules", "type": "[str]"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, enabled_rules: Optional[List[Union[str, "_models.EnablementRules"]]] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :keyword enabled_rules: The list of enabled rules. :paramtype enabled_rules: list[str or ~azure.mgmt.authorization.v2020_10_01_preview.models.EnablementRules] """ super().__init__(id=id, target=target, **kwargs) self.rule_type: str = "RoleManagementPolicyEnablementRule" self.enabled_rules = enabled_rules class RoleManagementPolicyExpirationRule(RoleManagementPolicyRule): """The role management policy rule. All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :ivar is_expiration_required: The value indicating whether expiration is required. :vartype is_expiration_required: bool :ivar maximum_duration: The maximum duration of expiration in timespan. :vartype maximum_duration: str """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, "is_expiration_required": {"key": "isExpirationRequired", "type": "bool"}, "maximum_duration": {"key": "maximumDuration", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, is_expiration_required: Optional[bool] = None, maximum_duration: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :keyword is_expiration_required: The value indicating whether expiration is required. :paramtype is_expiration_required: bool :keyword maximum_duration: The maximum duration of expiration in timespan. :paramtype maximum_duration: str """ super().__init__(id=id, target=target, **kwargs) self.rule_type: str = "RoleManagementPolicyExpirationRule" self.is_expiration_required = is_expiration_required self.maximum_duration = maximum_duration class RoleManagementPolicyListResult(_serialization.Model): """Role management policy list operation result. :ivar value: Role management policy list. :vartype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicy] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _attribute_map = { "value": {"key": "value", "type": "[RoleManagementPolicy]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__( self, *, value: Optional[List["_models.RoleManagementPolicy"]] = None, next_link: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword value: Role management policy list. :paramtype value: list[~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicy] :keyword next_link: The URL to use for getting the next set of results. :paramtype next_link: str """ super().__init__(**kwargs) self.value = value self.next_link = next_link class RoleManagementPolicyNotificationRule(RoleManagementPolicyRule): """The role management policy rule. All required parameters must be populated in order to send to Azure. :ivar id: The id of the rule. :vartype id: str :ivar rule_type: The type of rule. Required. Known values are: "RoleManagementPolicyApprovalRule", "RoleManagementPolicyAuthenticationContextRule", "RoleManagementPolicyEnablementRule", "RoleManagementPolicyExpirationRule", and "RoleManagementPolicyNotificationRule". :vartype rule_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleType :ivar target: The target of the current rule. :vartype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :ivar notification_type: The type of notification. "Email" :vartype notification_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.NotificationDeliveryMechanism :ivar notification_level: The notification level. Known values are: "None", "Critical", and "All". :vartype notification_level: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.NotificationLevel :ivar recipient_type: The recipient type. Known values are: "Requestor", "Approver", and "Admin". :vartype recipient_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RecipientType :ivar notification_recipients: The list notification recipients. :vartype notification_recipients: list[str] :ivar is_default_recipients_enabled: Its value determine if the notification need to be sent to the recipient type specified in policy rule. :vartype is_default_recipients_enabled: bool """ _validation = { "rule_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "rule_type": {"key": "ruleType", "type": "str"}, "target": {"key": "target", "type": "RoleManagementPolicyRuleTarget"}, "notification_type": {"key": "notificationType", "type": "str"}, "notification_level": {"key": "notificationLevel", "type": "str"}, "recipient_type": {"key": "recipientType", "type": "str"}, "notification_recipients": {"key": "notificationRecipients", "type": "[str]"}, "is_default_recipients_enabled": {"key": "isDefaultRecipientsEnabled", "type": "bool"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin target: Optional["_models.RoleManagementPolicyRuleTarget"] = None, notification_type: Optional[Union[str, "_models.NotificationDeliveryMechanism"]] = None, notification_level: Optional[Union[str, "_models.NotificationLevel"]] = None, recipient_type: Optional[Union[str, "_models.RecipientType"]] = None, notification_recipients: Optional[List[str]] = None, is_default_recipients_enabled: Optional[bool] = None, **kwargs: Any ) -> None: """ :keyword id: The id of the rule. :paramtype id: str :keyword target: The target of the current rule. :paramtype target: ~azure.mgmt.authorization.v2020_10_01_preview.models.RoleManagementPolicyRuleTarget :keyword notification_type: The type of notification. "Email" :paramtype notification_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.NotificationDeliveryMechanism :keyword notification_level: The notification level. Known values are: "None", "Critical", and "All". :paramtype notification_level: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.NotificationLevel :keyword recipient_type: The recipient type. Known values are: "Requestor", "Approver", and "Admin". :paramtype recipient_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.RecipientType :keyword notification_recipients: The list notification recipients. :paramtype notification_recipients: list[str] :keyword is_default_recipients_enabled: Its value determine if the notification need to be sent to the recipient type specified in policy rule. :paramtype is_default_recipients_enabled: bool """ super().__init__(id=id, target=target, **kwargs) self.rule_type: str = "RoleManagementPolicyNotificationRule" self.notification_type = notification_type self.notification_level = notification_level self.recipient_type = recipient_type self.notification_recipients = notification_recipients self.is_default_recipients_enabled = is_default_recipients_enabled class RoleManagementPolicyRuleTarget(_serialization.Model): """The role management policy rule target. :ivar caller: The caller of the setting. :vartype caller: str :ivar operations: The type of operation. :vartype operations: list[str] :ivar level: The assignment level to which it is applied. :vartype level: str :ivar target_objects: The list of target objects. :vartype target_objects: list[str] :ivar inheritable_settings: The list of inheritable settings. :vartype inheritable_settings: list[str] :ivar enforced_settings: The list of enforced settings. :vartype enforced_settings: list[str] """ _attribute_map = { "caller": {"key": "caller", "type": "str"}, "operations": {"key": "operations", "type": "[str]"}, "level": {"key": "level", "type": "str"}, "target_objects": {"key": "targetObjects", "type": "[str]"}, "inheritable_settings": {"key": "inheritableSettings", "type": "[str]"}, "enforced_settings": {"key": "enforcedSettings", "type": "[str]"}, } def __init__( self, *, caller: Optional[str] = None, operations: Optional[List[str]] = None, level: Optional[str] = None, target_objects: Optional[List[str]] = None, inheritable_settings: Optional[List[str]] = None, enforced_settings: Optional[List[str]] = None, **kwargs: Any ) -> None: """ :keyword caller: The caller of the setting. :paramtype caller: str :keyword operations: The type of operation. :paramtype operations: list[str] :keyword level: The assignment level to which it is applied. :paramtype level: str :keyword target_objects: The list of target objects. :paramtype target_objects: list[str] :keyword inheritable_settings: The list of inheritable settings. :paramtype inheritable_settings: list[str] :keyword enforced_settings: The list of enforced settings. :paramtype enforced_settings: list[str] """ super().__init__(**kwargs) self.caller = caller self.operations = operations self.level = level self.target_objects = target_objects self.inheritable_settings = inheritable_settings self.enforced_settings = enforced_settings class UserSet(_serialization.Model): """The detail of a user. :ivar user_type: The type of user. Known values are: "User" and "Group". :vartype user_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.UserType :ivar is_backup: The value indicating whether the user is a backup fallback approver. :vartype is_backup: bool :ivar id: The object id of the user. :vartype id: str :ivar description: The description of the user. :vartype description: str """ _attribute_map = { "user_type": {"key": "userType", "type": "str"}, "is_backup": {"key": "isBackup", "type": "bool"}, "id": {"key": "id", "type": "str"}, "description": {"key": "description", "type": "str"}, } def __init__( self, *, user_type: Optional[Union[str, "_models.UserType"]] = None, is_backup: Optional[bool] = None, id: Optional[str] = None, # pylint: disable=redefined-builtin description: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword user_type: The type of user. Known values are: "User" and "Group". :paramtype user_type: str or ~azure.mgmt.authorization.v2020_10_01_preview.models.UserType :keyword is_backup: The value indicating whether the user is a backup fallback approver. :paramtype is_backup: bool :keyword id: The object id of the user. :paramtype id: str :keyword description: The description of the user. :paramtype description: str """ super().__init__(**kwargs) self.user_type = user_type self.is_backup = is_backup self.id = id self.description = description class ValidationResponse(_serialization.Model): """Validation response. Variables are only populated by the server, and will be ignored when sending a request. :ivar is_valid: Whether or not validation succeeded. :vartype is_valid: bool :ivar error_info: Failed validation result details. :vartype error_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.ValidationResponseErrorInfo """ _validation = { "is_valid": {"readonly": True}, } _attribute_map = { "is_valid": {"key": "isValid", "type": "bool"}, "error_info": {"key": "errorInfo", "type": "ValidationResponseErrorInfo"}, } def __init__(self, *, error_info: Optional["_models.ValidationResponseErrorInfo"] = None, **kwargs: Any) -> None: """ :keyword error_info: Failed validation result details. :paramtype error_info: ~azure.mgmt.authorization.v2020_10_01_preview.models.ValidationResponseErrorInfo """ super().__init__(**kwargs) self.is_valid = None self.error_info = error_info class ValidationResponseErrorInfo(_serialization.Model): """Failed validation result details. Variables are only populated by the server, and will be ignored when sending a request. :ivar code: Error code indicating why validation failed. :vartype code: str :ivar message: Message indicating why validation failed. :vartype message: str """ _validation = { "code": {"readonly": True}, "message": {"readonly": True}, } _attribute_map = { "code": {"key": "code", "type": "str"}, "message": {"key": "message", "type": "str"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.code = None self.message = None
bf85f2d5bc9202b07db534959a5bffdd241ea76a
192874fd96861ceb1864a71bf6f13932cc017d63
/hue/desktop/core/ext-py/openpyxl-1.6.1/openpyxl/writer/styles.py
c31a5a905027ab106aeed9608cef392eb720e9c8
[ "MIT", "PSF-2.0", "Apache-2.0" ]
permissive
OpenPOWER-BigData/HDP-hue
1de3efc0ac773f1e7b1acd03675f11b65c6f477d
23719febdaae26c916bdc9d0712645987ae7e0e4
refs/heads/master
2021-01-17T17:19:31.157051
2016-07-18T19:44:10
2016-07-18T19:44:10
63,631,863
0
1
null
null
null
null
UTF-8
Python
false
false
13,535
py
# file openpyxl/writer/styles.py # Copyright (c) 2010-2011 openpyxl # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # @license: http://www.opensource.org/licenses/mit-license.php # @author: see AUTHORS file """Write the shared style table.""" # package imports from openpyxl.shared.xmltools import Element, SubElement from openpyxl.shared.xmltools import get_document_content from openpyxl import style class StyleWriter(object): def __init__(self, workbook): self._style_list = self._get_style_list(workbook) self._root = Element('styleSheet', {'xmlns':'http://schemas.openxmlformats.org/spreadsheetml/2006/main'}) def _get_style_list(self, workbook): crc = {} for worksheet in workbook.worksheets: uniqueStyles = dict((id(style), style) for style in worksheet._styles.values()).values() for style in uniqueStyles: crc[hash(style)] = style self.style_table = dict([(style, i + 1) \ for i, style in enumerate(crc.values())]) sorted_styles = sorted(self.style_table.items(), \ key=lambda pair:pair[1]) return [s[0] for s in sorted_styles] def get_style_by_hash(self): return dict([(hash(style), id) \ for style, id in self.style_table.items()]) def write_table(self): number_format_table = self._write_number_formats() fonts_table = self._write_fonts() fills_table = self._write_fills() borders_table = self._write_borders() self._write_cell_style_xfs() self._write_cell_xfs(number_format_table, fonts_table, fills_table, borders_table) self._write_cell_style() self._write_dxfs() self._write_table_styles() return get_document_content(xml_node=self._root) def _write_fonts(self): """ add fonts part to root return {font.crc => index} """ fonts = SubElement(self._root, 'fonts') # default font_node = SubElement(fonts, 'font') SubElement(font_node, 'sz', {'val':'11'}) SubElement(font_node, 'color', {'theme':'1'}) SubElement(font_node, 'name', {'val':'Calibri'}) SubElement(font_node, 'family', {'val':'2'}) SubElement(font_node, 'scheme', {'val':'minor'}) # others table = {} index = 1 for st in self._style_list: if hash(st.font) != hash(style.DEFAULTS.font) and hash(st.font) not in table: table[hash(st.font)] = str(index) font_node = SubElement(fonts, 'font') SubElement(font_node, 'sz', {'val':str(st.font.size)}) if str(st.font.color.index).split(':')[0] == 'theme': # strip prefix theme if marked as such if str(st.font.color.index).split(':')[2]: SubElement(font_node, 'color', {'theme':str(st.font.color.index).split(':')[1], 'tint':str(st.font.color.index).split(':')[2]}) else: SubElement(font_node, 'color', {'theme':str(st.font.color.index).split(':')[1]}) else: SubElement(font_node, 'color', {'rgb':str(st.font.color.index)}) SubElement(font_node, 'name', {'val':st.font.name}) SubElement(font_node, 'family', {'val':'2'}) # Don't write the 'scheme' element because it appears to prevent # the font name from being applied in Excel. #SubElement(font_node, 'scheme', {'val':'minor'}) if st.font.bold: SubElement(font_node, 'b') if st.font.italic: SubElement(font_node, 'i') if st.font.underline == 'single': SubElement(font_node, 'u') index += 1 fonts.attrib["count"] = str(index) return table def _write_fills(self): fills = SubElement(self._root, 'fills', {'count':'2'}) fill = SubElement(fills, 'fill') SubElement(fill, 'patternFill', {'patternType':'none'}) fill = SubElement(fills, 'fill') SubElement(fill, 'patternFill', {'patternType':'gray125'}) table = {} index = 2 for st in self._style_list: if hash(st.fill) != hash(style.DEFAULTS.fill) and hash(st.fill) not in table: table[hash(st.fill)] = str(index) fill = SubElement(fills, 'fill') if hash(st.fill.fill_type) != hash(style.DEFAULTS.fill.fill_type): node = SubElement(fill, 'patternFill', {'patternType':st.fill.fill_type}) if hash(st.fill.start_color) != hash(style.DEFAULTS.fill.start_color): if str(st.fill.start_color.index).split(':')[0] == 'theme': # strip prefix theme if marked as such if str(st.fill.start_color.index).split(':')[2]: SubElement(node, 'fgColor', {'theme':str(st.fill.start_color.index).split(':')[1], 'tint':str(st.fill.start_color.index).split(':')[2]}) else: SubElement(node, 'fgColor', {'theme':str(st.fill.start_color.index).split(':')[1]}) else: SubElement(node, 'fgColor', {'rgb':str(st.fill.start_color.index)}) if hash(st.fill.end_color) != hash(style.DEFAULTS.fill.end_color): if str(st.fill.end_color.index).split(':')[0] == 'theme': # strip prefix theme if marked as such if str(st.fill.end_color.index).split(':')[2]: SubElement(node, 'bgColor', {'theme':str(st.fill.end_color.index).split(':')[1], 'tint':str(st.fill.end_color.index).split(':')[2]}) else: SubElement(node, 'bgColor', {'theme':str(st.fill.end_color.index).split(':')[1]}) else: SubElement(node, 'bgColor', {'rgb':str(st.fill.end_color.index)}) index += 1 fills.attrib["count"] = str(index) return table def _write_borders(self): borders = SubElement(self._root, 'borders') # default border = SubElement(borders, 'border') SubElement(border, 'left') SubElement(border, 'right') SubElement(border, 'top') SubElement(border, 'bottom') SubElement(border, 'diagonal') # others table = {} index = 1 for st in self._style_list: if hash(st.borders) != hash(style.DEFAULTS.borders) and hash(st.borders) not in table: table[hash(st.borders)] = str(index) border = SubElement(borders, 'border') # caution: respect this order for side in ('left', 'right', 'top', 'bottom', 'diagonal'): obj = getattr(st.borders, side) if obj.border_style is None or obj.border_style == 'none': node = SubElement(border, side) attrs = {} else: node = SubElement(border, side, {'style':obj.border_style}) if str(obj.color.index).split(':')[0] == 'theme': # strip prefix theme if marked as such if str(obj.color.index).split(':')[2]: SubElement(node, 'color', {'theme':str(obj.color.index).split(':')[1], 'tint':str(obj.color.index).split(':')[2]}) else: SubElement(node, 'color', {'theme':str(obj.color.index).split(':')[1]}) else: SubElement(node, 'color', {'rgb':str(obj.color.index)}) index += 1 borders.attrib["count"] = str(index) return table def _write_cell_style_xfs(self): cell_style_xfs = SubElement(self._root, 'cellStyleXfs', {'count':'1'}) xf = SubElement(cell_style_xfs, 'xf', {'numFmtId':"0", 'fontId':"0", 'fillId':"0", 'borderId':"0"}) def _write_cell_xfs(self, number_format_table, fonts_table, fills_table, borders_table): """ write styles combinations based on ids found in tables """ # writing the cellXfs cell_xfs = SubElement(self._root, 'cellXfs', {'count':'%d' % (len(self._style_list) + 1)}) # default def _get_default_vals(): return dict(numFmtId='0', fontId='0', fillId='0', xfId='0', borderId='0') SubElement(cell_xfs, 'xf', _get_default_vals()) for st in self._style_list: vals = _get_default_vals() if hash(st.font) != hash(style.DEFAULTS.font): vals['fontId'] = fonts_table[hash(st.font)] vals['applyFont'] = '1' if hash(st.borders) != hash(style.DEFAULTS.borders): vals['borderId'] = borders_table[hash(st.borders)] vals['applyBorder'] = '1' if hash(st.fill) != hash(style.DEFAULTS.fill): vals['fillId'] = fills_table[hash(st.fill)] vals['applyFill'] = '1' if st.number_format != style.DEFAULTS.number_format: vals['numFmtId'] = '%d' % number_format_table[st.number_format] vals['applyNumberFormat'] = '1' if hash(st.alignment) != hash(style.DEFAULTS.alignment): vals['applyAlignment'] = '1' node = SubElement(cell_xfs, 'xf', vals) if hash(st.alignment) != hash(style.DEFAULTS.alignment): alignments = {} for align_attr in ['horizontal', 'vertical']: if hash(getattr(st.alignment, align_attr)) != hash(getattr(style.DEFAULTS.alignment, align_attr)): alignments[align_attr] = getattr(st.alignment, align_attr) if hash(st.alignment.wrap_text) != hash(style.DEFAULTS.alignment.wrap_text): alignments['wrapText'] = '1' if st.alignment.text_rotation > 0: alignments['textRotation'] = '%s' % st.alignment.text_rotation elif st.alignment.text_rotation < 0: alignments['textRotation'] = '%s' % (90 - st.alignment.text_rotation) SubElement(node, 'alignment', alignments) def _write_cell_style(self): cell_styles = SubElement(self._root, 'cellStyles', {'count':'1'}) cell_style = SubElement(cell_styles, 'cellStyle', {'name':"Normal", 'xfId':"0", 'builtinId':"0"}) def _write_dxfs(self): dxfs = SubElement(self._root, 'dxfs', {'count':'0'}) def _write_table_styles(self): table_styles = SubElement(self._root, 'tableStyles', {'count':'0', 'defaultTableStyle':'TableStyleMedium9', 'defaultPivotStyle':'PivotStyleLight16'}) def _write_number_formats(self): number_format_table = {} number_format_list = [] exceptions_list = [] num_fmt_id = 165 # start at a greatly higher value as any builtin can go num_fmt_offset = 0 for style in self._style_list: if not style.number_format in number_format_list : number_format_list.append(style.number_format) for number_format in number_format_list: if number_format.is_builtin(): btin = number_format.builtin_format_id(number_format.format_code) number_format_table[number_format] = btin else: number_format_table[number_format] = num_fmt_id + num_fmt_offset num_fmt_offset += 1 exceptions_list.append(number_format) num_fmts = SubElement(self._root, 'numFmts', {'count':'%d' % len(exceptions_list)}) for number_format in exceptions_list : SubElement(num_fmts, 'numFmt', {'numFmtId':'%d' % number_format_table[number_format], 'formatCode':'%s' % number_format.format_code}) return number_format_table
99c7253a3a82a9b457f75291657f219af610974a
7baef4f7dad8e6538096d42c4e03e6d531fbf0bf
/day03/pymysql回顾.py
8024a2823e0fbd29a0872938bafc1ab8e1a1cd6e
[]
no_license
q737645224/spyder
a16a2bdbdab12ca6b2546f81363d3571d1358a3e
bae94180ef6953a21a2491da378cce738312afc7
refs/heads/master
2020-04-07T20:03:30.966825
2018-11-23T04:29:34
2018-11-23T04:29:34
158,673,753
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
# 创建一个库 testspider # 创建一张表 t1 (id int) # 在表中插入一条记录 id=1 import pymysql # 创建数据库连接对象 db = pymysql.connect("localhost","root","123456", charset="utf8") # 创建游标对象ss cursor = db.cursor() cursor.execute("create database if not exists testspider;") cursor.execute("use testspider;") cursor.execute("create table if not exists t1(id int);") cursor.execute("insert into t1 values(1);") db.commit() cursor.close() db.close()
c73811aca9f9efdecf49e96164b6a636150efd2a
4e02d5b0b1b0739553fd40bbbdfb0d02c9830350
/128_Longest_Consecutive_Sequence.py
c9b07f448a3b08cc5afae8e2d2900b8f23681a6f
[]
no_license
bingli8802/leetcode
b039ab6af62f0c8992463393f561caafd21056e6
a509b383a42f54313970168d9faa11f088f18708
refs/heads/master
2023-03-29T03:11:45.801090
2021-03-23T22:55:16
2021-03-23T22:55:16
279,321,659
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
class Solution(object): # 先消重再排序 def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ if not nums: return 0 nums = list(set(nums)) nums.sort() n = len(nums) dp = [1] * n res = 1 # print nums for i in range(1, n): if nums[i] == nums[i-1] + 1: dp[i] = dp[i-1] + 1 res = max(res, dp[i]) return res
a94cec00255f5040df4c55fb1849dca6fed62f52
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/423/usersdata/310/90249/submittedfiles/mdc.py
a77c841ed2e89333d50d419a258627beefa4aba9
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
# -*- coding: utf-8 -*- import math n1 = int(input('Digite n1: ')) n2 = int(input('Digite n2: ')) i = 1 while true: i+=1 (n1%i)== (n2%i)==0 if i == n1 or i==n2: break print (i)
f21d03a72329d8ac5a16de1eab795c0d58849ca1
ef11cb7a2ee550e4fb95be46cd4d67d6cc230787
/python/Top Interview Questions - Medium/Sorting and Searching/tests/test_peakelement.py
d127805ee2d84e333d8f1e8d744f4cc27a3513b7
[]
no_license
Hilldrupca/LeetCode
44b32161743ba982ea5e3fe593ff8a27c96e9350
c6d600bc74afd14e00d4f0ffed40696192b229c3
refs/heads/master
2023-03-31T22:21:17.967663
2021-04-07T16:18:17
2021-04-07T16:18:17
288,544,724
0
0
null
null
null
null
UTF-8
Python
false
false
699
py
import unittest, sys sys.path.append('..') from peakelement import Solution class TestPeakElement(unittest.TestCase): def setUp(self): self.s = Solution() def test_find_peak_element(self): case_one = [1,2,3,1] self.assertEqual(self.s.findPeakElement(case_one), 2) case_two = [1,2,1,3,5,6,4] self.assertIn(self.s.findPeakElement(case_two), [1,5]) case_three = [1,2] self.assertEqual(self.s.findPeakElement(case_three), 1) case_four = [2,1] self.assertEqual(self.s.findPeakElement(case_four), 0) if __name__ == '__main__': unittest.main()
304249226458b0590377088be01d33c50df7627a
4a5c67c87150955ce0164b4263458dbcb563bbda
/api_venv/bin/sqlformat
ce4f3d3fe4f575bd89d0ab0ad3ace1e2db24b0c2
[]
no_license
madhav06/python-rest-api
24715a1b8f0f58ab5ba45d03e8f2fc9eb355a5f0
fb49b308bfa478ed53817e1d0a504099a1317e96
refs/heads/master
2023-02-07T05:30:07.347111
2020-12-19T09:02:16
2020-12-19T09:02:16
294,404,015
0
0
null
null
null
null
UTF-8
Python
false
false
259
#!/Users/madhavnandan/python-rest-api/api_venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from sqlparse.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
f4574ec50464cb4a665ca662d90ca13be44605c6
75f0580af1734b9edb9e06bfadfe48f45b057872
/2017/16/sol.py
835caece5131fdce96b033253e6823d0875f54c4
[]
no_license
penteract/adventofcode
5bb317f8093f60c1d776d0983016a5288d059603
7b7344708ef1d58caa339a32a13f3390556b664c
refs/heads/master
2023-01-29T16:08:13.541190
2023-01-16T20:21:02
2023-01-16T20:21:02
160,901,373
5
0
null
null
null
null
UTF-8
Python
false
false
1,444
py
from functools import * from itertools import * from collections import defaultdict import sys sys.setrecursionlimit(100000) f = open("input") l=[x for x in f] d=defaultdict(int) #r=list(map(int,l[0].split())) #l=["s1,x3/4,pe/b"] l = l[0].split(",") p = [chr(x) for x in range(ord("a"),ord("p")+1)] #p=list("abcde") print("".join(p)) d={"".join(p):0} aa=0 for i in range(2000): for ins in l: if ins[0]=="s": n=int(ins[1:]) p=p[-n:]+p[:-n] elif ins[0]=="x": a,b=list(map(int,ins[1:].split("/"))) x=p[a] p[a]=p[b] p[b]=x elif ins[0]=="p": x,y = ins[1:].split("/") a=p.index(x) b=p.index(y) x=p[a] p[a]=p[b] p[b]=x else: print(ins) k=("".join(p)) if k in d: print(k) break aa+=1 d[k]=aa perm = [ord(x)-ord("a") for x in "dcmlhejnifpokgba"] def ap(l,p): return [l[i] for i in p] def apply(prm,n): if n==1: return prm if n%2: return ap(apply(prm,n-1),prm) else: return apply(ap(prm,prm),n//2) def disp(s): return ("".join(chr(n+ord("a")) for n in s)) disp(apply(perm,10**9)) #wrong: #jlmenhdafcbkgoip doing x wrong (moving from the front) #pmbdaelhgonkjcif still doing x wrong #wrong pt2 #dcmljghfinpokeba (permutation nonsense) #legnajicfkmdobph (adding 1 after break statement)
db49ab033224ca4e10e045059a3acc5df038ce33
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part002442.py
5629f88f997a1d7f910f1dc3a272cbf65af41175
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
2,955
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher58448(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.1.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.1.0_1', 1, 1, S(1)), Mul) ]), 1: (1, Multiset({}), [ (VariableWithCount('i2.4.1.0', 1, 1, None), Mul), (VariableWithCount('i2.4.1.0_1', 1, 1, S(1)), Mul) ]), 2: (2, Multiset({0: 1}), [ (VariableWithCount('i2.2.1.2.1.0', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher58448._instance is None: CommutativeMatcher58448._instance = CommutativeMatcher58448() return CommutativeMatcher58448._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 58447 if len(subjects) >= 1 and isinstance(subjects[0], Pow): tmp1 = subjects.popleft() subjects2 = deque(tmp1._args) # State 73934 if len(subjects2) >= 1: tmp3 = subjects2.popleft() subst1 = Substitution(subst0) try: subst1.try_add_variable('i2.2.1.2.1.1', tmp3) except ValueError: pass else: pass # State 73935 if len(subjects2) >= 1: tmp5 = subjects2.popleft() subst2 = Substitution(subst1) try: subst2.try_add_variable('i2.2.1.2.1.2', tmp5) except ValueError: pass else: pass # State 73936 if len(subjects2) == 0: pass # State 73937 if len(subjects) == 0: pass # 0: x**n yield 0, subst2 subjects2.appendleft(tmp5) subjects2.appendleft(tmp3) subjects.appendleft(tmp1) return yield from collections import deque
4404f045b07bb343172c518668f96bba1f6a6075
3a99586e226f0f23ace22fcc30af7b190e90dd08
/esp32/tools/get.py
51be563a24a667b244c4f3d8cf43666479955974
[]
no_license
thewenneur/esp32-1
19a1095b0b619c0bb9cb9eaa86abd2a9d9678269
d683123af8cc39fe2dfc281ac44444023186960f
refs/heads/master
2021-01-20T08:36:48.001717
2017-08-29T16:39:49
2017-08-29T16:39:49
101,567,493
0
0
null
2017-08-29T16:44:49
2017-08-27T17:06:58
C
UTF-8
Python
false
false
5,065
py
#!/usr/bin/env python # This script will download and extract required tools into the current directory. # Tools list is obtained from package/package_esp8266com_index.template.json file. # Written by Ivan Grokhotkov, 2015. # from __future__ import print_function import os import shutil import errno import os.path import hashlib import json import platform import sys import tarfile import zipfile import re if sys.version_info[0] == 3: from urllib.request import urlretrieve else: # Not Python 3 - today, it is most likely to be Python 2 from urllib import urlretrieve if 'Windows' in platform.system(): import requests current_dir = os.path.dirname(os.path.realpath(__file__)) dist_dir = current_dir + '/dist/' def sha256sum(filename, blocksize=65536): hash = hashlib.sha256() with open(filename, "rb") as f: for block in iter(lambda: f.read(blocksize), b""): hash.update(block) return hash.hexdigest() def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno != errno.EEXIST or not os.path.isdir(path): raise def report_progress(count, blockSize, totalSize): percent = int(count*blockSize*100/totalSize) percent = min(100, percent) sys.stdout.write("\r%d%%" % percent) sys.stdout.flush() def unpack(filename, destination): dirname = '' print('Extracting {0}'.format(os.path.basename(filename))) sys.stdout.flush() if filename.endswith('tar.gz'): tfile = tarfile.open(filename, 'r:gz') tfile.extractall(destination) dirname= tfile.getnames()[0] elif filename.endswith('zip'): zfile = zipfile.ZipFile(filename) zfile.extractall(destination) dirname = zfile.namelist()[0] else: raise NotImplementedError('Unsupported archive type') # a little trick to rename tool directories so they don't contain version number rename_to = re.match(r'^([a-z][^\-]*\-*)+', dirname).group(0).strip('-') if rename_to != dirname: print('Renaming {0} to {1}'.format(dirname, rename_to)) if os.path.isdir(rename_to): shutil.rmtree(rename_to) shutil.move(dirname, rename_to) def get_tool(tool): sys_name = platform.system() archive_name = tool['archiveFileName'] local_path = dist_dir + archive_name url = tool['url'] #real_hash = tool['checksum'].split(':')[1] if not os.path.isfile(local_path): print('Downloading ' + archive_name); sys.stdout.flush() if 'CYGWIN_NT' in sys_name: ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE urlretrieve(url, local_path, report_progress, context=ctx) elif 'Windows' in sys_name: r = requests.get(url) f = open(local_path, 'wb') f.write(r.content) f.close() else: urlretrieve(url, local_path, report_progress) sys.stdout.write("\rDone\n") sys.stdout.flush() else: print('Tool {0} already downloaded'.format(archive_name)) sys.stdout.flush() #local_hash = sha256sum(local_path) #if local_hash != real_hash: # print('Hash mismatch for {0}, delete the file and try again'.format(local_path)) # raise RuntimeError() unpack(local_path, '.') def load_tools_list(filename, platform): tools_info = json.load(open(filename))['packages'][0]['tools'] tools_to_download = [] for t in tools_info: tool_platform = [p for p in t['systems'] if p['host'] == platform] if len(tool_platform) == 0: continue tools_to_download.append(tool_platform[0]) return tools_to_download def identify_platform(): arduino_platform_names = {'Darwin' : {32 : 'i386-apple-darwin', 64 : 'x86_64-apple-darwin'}, 'Linux' : {32 : 'i686-pc-linux-gnu', 64 : 'x86_64-pc-linux-gnu'}, 'LinuxARM': {32 : 'arm-linux-gnueabihf', 64 : 'aarch64-linux-gnu'}, 'Windows' : {32 : 'i686-mingw32', 64 : 'i686-mingw32'}} bits = 32 if sys.maxsize > 2**32: bits = 64 sys_name = platform.system() sys_platform = platform.platform() print('System: %s, Info: %s' % (sys_name, sys_platform)) if 'Linux' in sys_name and sys_platform.find('arm') > 0: sys_name = 'LinuxARM' if 'CYGWIN_NT' in sys_name: sys_name = 'Windows' return arduino_platform_names[sys_name][bits] if __name__ == '__main__': identified_platform = identify_platform() print('Platform: {0}'.format(identified_platform)) tools_to_download = load_tools_list(current_dir + '/../package/package_esp32_index.template.json', identified_platform) mkdir_p(dist_dir) for tool in tools_to_download: get_tool(tool) print('Done')
583dd181b2b7cd621ebd9e4f11ad5c3aaa71c632
db69a3e20ec69bd8a08ed14ec6193a08e543965d
/mars/dataframe/window/expanding/tests/test_expanding.py
2b03e57dbb175028f762828d25976440b7f1e046
[ "BSD-3-Clause", "CC0-1.0", "ISC", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause", "MIT" ]
permissive
Fernadoo/mars
dbf62cd6f3ff82e3c399f1c06c6da1681b462856
f8e93edeecbe184b018cd1d0d948b3a2ba74bee6
refs/heads/master
2023-08-12T12:48:33.726883
2021-09-29T14:29:18
2021-09-29T14:29:18
377,359,795
0
1
Apache-2.0
2021-09-29T14:29:19
2021-06-16T03:29:08
Python
UTF-8
Python
false
false
2,337
py
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import pytest from ..... import dataframe as md from .....core import tile def test_expanding(): df = pd.DataFrame(np.random.rand(4, 3), columns=list('abc')) df2 = md.DataFrame(df) with pytest.raises(NotImplementedError): _ = df2.expanding(3, center=True) with pytest.raises(NotImplementedError): _ = df2.expanding(3, axis=1) r = df2.expanding(3, center=False) expected = df.expanding(3, center=False) assert repr(r) == repr(expected) assert 'b' in dir(r) with pytest.raises(AttributeError): _ = r.d with pytest.raises(KeyError): _ = r['d'] with pytest.raises(KeyError): _ = r['a', 'd'] assert 'a' not in dir(r.a) assert 'c' not in dir(r['a', 'b']) def test_expanding_agg(): df = pd.DataFrame(np.random.rand(4, 3), columns=list('abc')) df2 = md.DataFrame(df, chunk_size=3) r = df2.expanding(3).agg('max') expected = df.expanding(3).agg('max') assert r.shape == df.shape assert r.index_value is df2.index_value pd.testing.assert_index_equal(r.columns_value.to_pandas(), expected.columns) pd.testing.assert_series_equal(r.dtypes, df2.dtypes) r = tile(r) for c in r.chunks: assert c.shape == c.inputs[0].shape assert c.index_value is c.inputs[0].index_value pd.testing.assert_index_equal(c.columns_value.to_pandas(), expected.columns) pd.testing.assert_series_equal(c.dtypes, expected.dtypes) aggs = ['sum', 'count', 'min', 'max', 'mean', 'var', 'std'] for a in aggs: r = getattr(df2.expanding(3), a)() assert r.op.func == [a]
58ed44fde6b4a7efde10c71105ac6a59cce696d1
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/HaxQfQTEpo7BFE5rz_22.py
ad90b5d4387874d64b88c56f046176ed2d7ab37e
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
def alternate_pos_neg(lst): Length = len(lst) if (0 in lst): return False if (Length < 2): return True Group_A = [] Group_B = [] Counter = 0 Length = len(lst) while (Counter < Length): Item = lst[Counter] if (Counter % 2 == 0): Group_A.append(Item) Counter += 1 else: Group_B.append(Item) Counter += 1 Test_A1 = min(Group_A) Test_A2 = max(Group_A) Test_B1 = min(Group_B) Test_B2 = max(Group_B) if (Test_A1 > 0) and (Test_B2 < 0): return True elif (Test_B1 > 0) and (Test_A2 < 0): return True else: return False
1f04965e75982f1b5afc12d0b634c0c48480c05a
356b5455a4fb86c49c800a6181323b7fabef2b08
/ppci/cli/java.py
fb06d54a7bd02da0b0ff2377aad9a91c0f00bb8b
[ "BSD-2-Clause" ]
permissive
obround/ppci
be7d1ce7832513629ee1301e7b67c0ceda38d668
ba0840bc5f4ffd889f882a814fb26f88cd854379
refs/heads/master
2023-02-11T13:47:35.439871
2021-01-05T22:33:08
2021-01-05T22:33:08
327,131,704
0
0
BSD-2-Clause
2021-01-05T22:08:23
2021-01-05T22:08:23
null
UTF-8
Python
false
false
2,137
py
""" Java handling utility. """ import argparse import sys from .base import base_parser, march_parser, LogSetup, get_arch_from_args from .compile_base import compile_parser, do_compile from ..arch.jvm import read_class_file, class_to_ir, print_class_file from ..arch.jvm import read_jar from ..irutils import print_module parser = argparse.ArgumentParser(description=__doc__, parents=[base_parser]) subparsers = parser.add_subparsers( title="commands", description="possible commands", dest="command" ) java_compile_parser = subparsers.add_parser( "compile", help="Compile a java class file ahead of time.", parents=[compile_parser, march_parser], ) java_compile_parser.add_argument( "class_file", metavar="java class file", type=argparse.FileType("rb"), help="class file to compile", ) dis_parser = subparsers.add_parser( "javap", help="Disassemble (javap) a java class." ) dis_parser.add_argument( "class_file", metavar="java class file", type=argparse.FileType("rb"), help="class file to inspect", ) jar_parser = subparsers.add_parser("jar", help="Explore jar file.") jar_parser.add_argument( "jarfile", metavar="java jar file", help="jar file to inspect" ) def java(args=None): """ Java command line utility. """ args = parser.parse_args(args) with LogSetup(args) as log_setup: if args.command == "compile": march = get_arch_from_args(args) class_file = read_class_file(args.class_file, verbose=True) args.class_file.close() ir_module = class_to_ir(class_file) print_module(ir_module, verify=False) ir_modules = [ir_module] do_compile(ir_modules, march, log_setup.reporter, log_setup.args) elif args.command == "javap": class_file = read_class_file(args.class_file) args.class_file.close() print_class_file(class_file) elif args.command == "jar": read_jar(args.jarfile) else: # pragma: no cover parser.print_usage() sys.exit(1) if __name__ == "__main__": java()
a6a0f7b4beb4b4725dd0e18f9b8fc2ea3da17868
ecc5e006b8336a444678ac0db9ef63fffc1307d3
/backend/affinity_24197/wsgi.py
862ceeb3ae2ce5ecf19d749a9131ca9f323b9128
[]
no_license
crowdbotics-apps/affinity-24197
f280bff6a9352c86e4df6306167cd322f1e798d4
699558a60e58f52c53b50650200b9c0ff27292ed
refs/heads/master
2023-02-27T06:40:05.898471
2021-02-01T20:55:17
2021-02-01T20:55:17
335,081,472
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for affinity_24197 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'affinity_24197.settings') application = get_wsgi_application()
487a87eccdc9fded9c01a8c11fc065a68e28b11e
87140007e96872d3611f0778eb0eebe5799616d7
/runs/src8-tgt4/par-bro-iter03000.cfg.py
9b417d6b0b220f0e5ea3402e7eca3723d83b49d6
[ "MIT" ]
permissive
janpawellek/broeval
49499fa302abff916ffced201034d3b9394503cd
57e31aa6e354d0bba88103b44910483e8d982d00
refs/heads/master
2021-01-11T12:19:13.619220
2016-12-20T16:23:27
2016-12-20T16:23:27
76,468,134
0
0
null
null
null
null
UTF-8
Python
false
false
825
py
# Write results to this file OUTFILE = 'runs/src8-tgt4/par-bro-iter03000.result.csv' # Source computers for the requests SOURCE = ['10.0.0.11', '10.0.0.12', '10.0.0.13', '10.0.0.14', '10.0.0.31', '10.0.0.32', '10.0.0.33', '10.0.0.34'] # Should Bro be enabled on the source machines? SOURCE_BRO = [True, True, True, True, True, True, True, True] # Target machines for the requests (aka server) TARGET = ['10.0.0.21', '10.0.0.22', '10.0.0.23', '10.0.0.24'] # Should Bro be enabled on the target machines? TARGET_BRO = [True, True, True, True] # Connection mode (par = parallel, seq = sequential) MODE = 'par' # Number of evaluation repetitions to run EPOCHS = 100 # Number of iterations to be run in each evaluation repetition ITER = 3000 # Size of the file to be downloaded from target (in Bytes * 10^SIZE) SIZE = 5
914826d139e292b9eaad569990e10a927b19d38f
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part000375.py
aa7700fe091caac398fee48064c6a60790bbfb21
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,308
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher54899(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.1.2.2.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.2.2.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher54899._instance is None: CommutativeMatcher54899._instance = CommutativeMatcher54899() return CommutativeMatcher54899._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 54898 return yield from collections import deque
aae86dec0874ccba8a31b92ae911f0ffd56c20b4
e233f9bf52ad0f88416962edd957a3c866c19b78
/reagent/workflow/spark_utils.py
fbd43d68752885e10e28a6381fa830d1d76ccb3b
[ "BSD-3-Clause" ]
permissive
dwtcourses/ReAgent
38c99dfe47adf1471620419f744cb4145f4f4151
b9b54d4f30ff65cf1c54dc0cf90c938b48c44f90
refs/heads/master
2022-04-26T15:35:46.109984
2020-04-29T05:38:14
2020-04-29T05:40:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,232
py
#!/usr/bin/env python3 import logging import os import pprint from os.path import abspath, dirname, join from typing import Dict, Optional import reagent from pyspark.sql import SparkSession from pyspark.sql.functions import col logger = logging.getLogger(__name__) # This is where Scala preprocessing (i.e TimelineOperator) is located SPARK_JAR_FROM_ROOT_DIR = "preprocessing/target/rl-preprocessing-1.1.jar" """ SPARK_JAR is abspath to the above jar file. Assume file structure ReAgent/ preprocessing/... reagent/... """ SPARK_JAR = join(dirname(reagent.__file__), os.pardir, SPARK_JAR_FROM_ROOT_DIR) DEFAULT_SPARK_CONFIG = { "spark.master": "local[*]", "spark.app.name": "ReAgent", "spark.sql.session.timeZone": "UTC", "spark.sql.warehouse.dir": abspath("spark-warehouse"), # Set shuffle partitions to a low number, e.g. <= cores * 2 to speed # things up, otherwise the tests will use the default 200 partitions # and it will take a lot more time to complete "spark.sql.shuffle.partitions": "12", "spark.sql.execution.arrow.enabled": "true", # For accessing timeline operator "spark.driver.extraClassPath": SPARK_JAR, # Same effect as builder.enableHiveSupport() [useful for test framework] "spark.sql.catalogImplementation": "hive", } def get_spark_session(config: Optional[Dict[str, str]] = DEFAULT_SPARK_CONFIG): logger.info(f"Building with config: \n{pprint.pformat(config)}") spark = SparkSession.builder.enableHiveSupport() if config is not None: for k, v in config.items(): spark = spark.config(k, v) spark = spark.getOrCreate() spark.sparkContext.setLogLevel("ERROR") return spark def get_table_url(table_name: str) -> str: spark = get_spark_session() url = ( spark.sql(f"DESCRIBE FORMATTED {table_name}") .filter((col("col_name") == "Location")) .select("data_type") .toPandas() .astype(str)["data_type"] .values[0] ) # unfortunately url is file:/... or hdfs:/... not file:///... # so we need to insert '//' assert url.count(":") == 1, f"{url} has more than one :" schema, path = url.split(":") return f"{schema}://{path}"
95da1c4d9aaf181baaa004c2b4e9535dcb762d7c
e983e429c87d27860b35e91e82109474aecefe7e
/env/bin/django-admin.py
45576ab1de002d7bddddaf05f80cc1126b22ae25
[ "MIT" ]
permissive
wilbrone/InstaPhotos
6943312933a9d33fc5593f109756ccd7fec7118f
f4a0b7ccf04637702f5868f4ce9d88913863bc55
refs/heads/master
2022-12-11T05:45:58.010157
2020-01-20T08:33:44
2020-01-20T08:33:44
230,255,757
0
0
MIT
2022-12-08T03:27:12
2019-12-26T11:52:30
Python
UTF-8
Python
false
false
177
py
#!/home/aphya5/moringa-school-projects/Django/instagram/env/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
4ea1512ea43feb40f0800c9b8e9a1a44af519500
fac37d77a8d00e3d13106bcd728d51a455dd16f2
/aspc.py
42705d3d34343e8607e14290df10a67f66313486
[]
no_license
anu-bioinfo/rosalind-4
c6a628bba94f647cf4a34bdf505f1527af4346a9
3ddc659d44298f4dd4b5dde66d7833b4d27a2580
refs/heads/master
2020-03-25T13:47:39.521215
2014-09-14T02:30:54
2014-09-14T02:30:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
#!/usr/bin/env python from __future__ import print_function, division import os from math import factorial def sum_of_combinations(n, m): return sum(factorial(n) // (factorial(k) * factorial(n - k)) for k in range(m, n + 1)) % 1000000 if __name__ == "__main__": with open(os.path.join('data', 'rosalind_aspc.txt')) as dataset: n, m = [int(r) for r in dataset.readline().rstrip().split()] print(int(sum_of_combinations(n, m)))
5e792aae5764fc35b1a8a29c85694f13c0e7eb99
53181572c4b22df4b569a9901bcd5347a3459499
/ceit_191116/py200307/function_1_def.py
7356a48cd8e325c795895d041c04ae7aae902bff
[]
no_license
edu-athensoft/ceit4101python_student
80ef067b77421fce76d04f778d5c6de8b12f676c
33cfa438c062d45e8d246b853e93d3c14b92ff2d
refs/heads/master
2020-07-30T01:04:21.084384
2020-07-27T02:21:57
2020-07-27T02:21:57
210,027,310
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
""" function definition, syntax without parameters def function_name(*parameters): '''docstring''' statement(s) """ # example 1 - my print a line # function name: myprint # parameters: () # define - user-defined def myprint(): print("===") print() print("===") # call a function myprint()
d259c44a3f848080f0ba94f0baa88e557cf06e5b
e8c93a67b7812c644d0485ddae665a638d278340
/captum/attr/_core/layer/layer_integrated_gradients.py
9d3840cc23968bc9e3bfc7fed8f55d4fcf49620a
[ "BSD-3-Clause" ]
permissive
nanohanno/captum
b30ebadb6da683269bc9d9fb8253304d51049441
f1346fc32a1f191f2c9a9401428372f68a88aec1
refs/heads/master
2021-08-09T00:43:51.866663
2021-07-23T23:33:14
2021-07-23T23:34:48
226,319,799
1
3
BSD-3-Clause
2019-12-06T11:56:44
2019-12-06T11:56:43
null
UTF-8
Python
false
false
24,893
py
#!/usr/bin/env python3 import functools import warnings from typing import Any, Callable, List, Tuple, Union, overload import torch from torch import Tensor from torch.nn.parallel.scatter_gather import scatter from captum._utils.common import ( _extract_device, _format_additional_forward_args, _format_outputs, ) from captum._utils.gradient import _forward_layer_eval, _run_forward from captum._utils.typing import BaselineType, Literal, ModuleOrModuleList, TargetType from captum.attr._core.integrated_gradients import IntegratedGradients from captum.attr._utils.attribution import GradientAttribution, LayerAttribution from captum.attr._utils.common import ( _format_input_baseline, _tensorize_baseline, _validate_input, ) from captum.log import log_usage class LayerIntegratedGradients(LayerAttribution, GradientAttribution): r""" Layer Integrated Gradients is a variant of Integrated Gradients that assigns an importance score to layer inputs or outputs, depending on whether we attribute to the former or to the latter one. Integrated Gradients is an axiomatic model interpretability algorithm that attributes / assigns an importance score to each input feature by approximating the integral of gradients of the model's output with respect to the inputs along the path (straight line) from given baselines / references to inputs. Baselines can be provided as input arguments to attribute method. To approximate the integral we can choose to use either a variant of Riemann sum or Gauss-Legendre quadrature rule. More details regarding the integrated gradients method can be found in the original paper: https://arxiv.org/abs/1703.01365 """ def __init__( self, forward_func: Callable, layer: ModuleOrModuleList, device_ids: Union[None, List[int]] = None, multiply_by_inputs: bool = True, ) -> None: r""" Args: forward_func (callable): The forward function of the model or any modification of it layer (ModuleOrModuleList): Layer or list of layers for which attributions are computed. For each layer the output size of the attribute matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to the attribution of each neuron in the input or output of this layer. Please note that layers to attribute on cannot be dependent on each other. That is, a subset of layers in `layer` cannot produce the inputs for another layer. For example, if your model is of a simple linked-list based graph structure (think nn.Sequence), e.g. x -> l1 -> l2 -> l3 -> output. If you pass in any one of those layers, you cannot pass in another due to the dependence, e.g. if you pass in l2 you cannot pass in l1 or l3. device_ids (list(int)): Device ID list, necessary only if forward_func applies a DataParallel model. This allows reconstruction of intermediate outputs from batched results across devices. If forward_func is given as the DataParallel model itself, then it is not necessary to provide this argument. multiply_by_inputs (bool, optional): Indicates whether to factor model inputs' multiplier in the final attribution scores. In the literature this is also known as local vs global attribution. If inputs' multiplier isn't factored in, then this type of attribution method is also called local attribution. If it is, then that type of attribution method is called global. More detailed can be found here: https://arxiv.org/abs/1711.06104 In case of layer integrated gradients, if `multiply_by_inputs` is set to True, final sensitivity scores are being multiplied by layer activations for inputs - layer activations for baselines. """ LayerAttribution.__init__(self, forward_func, layer, device_ids=device_ids) GradientAttribution.__init__(self, forward_func) self.ig = IntegratedGradients(forward_func, multiply_by_inputs) if isinstance(layer, list) and len(layer) > 1: warnings.warn( "Multiple layers provided. Please ensure that each layer is" "**not** solely solely dependent on the outputs of" "another layer. Please refer to the documentation for more" "detail." ) @overload def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType, target: TargetType, additional_forward_args: Any, n_steps: int, method: str, internal_batch_size: Union[None, int], return_convergence_delta: Literal[False], attribute_to_layer_input: bool, ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: ... @overload def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType, target: TargetType, additional_forward_args: Any, n_steps: int, method: str, internal_batch_size: Union[None, int], return_convergence_delta: Literal[True], attribute_to_layer_input: bool, ) -> Tuple[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tensor, ]: ... @overload def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Any = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, ) -> Union[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tuple[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tensor, ], ]: ... @log_usage() def attribute( self, inputs: Union[Tensor, Tuple[Tensor, ...]], baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Any = None, n_steps: int = 50, method: str = "gausslegendre", internal_batch_size: Union[None, int] = None, return_convergence_delta: bool = False, attribute_to_layer_input: bool = False, ) -> Union[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tuple[ Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]], Tensor, ], ]: r""" This method attributes the output of the model with given target index (in case it is provided, otherwise it assumes that output is a scalar) to layer inputs or outputs of the model, depending on whether `attribute_to_layer_input` is set to True or False, using the approach described above. In addition to that it also returns, if `return_convergence_delta` is set to True, integral approximation delta based on the completeness property of integrated gradients. Args: inputs (tensor or tuple of tensors): Input for which layer integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. baselines (scalar, tensor, tuple of scalars or tensors, optional): Baselines define the starting point from which integral is computed and can be provided as: - a single tensor, if inputs is a single tensor, with exactly the same dimensions as inputs or the first dimension is one and the remaining dimensions match with inputs. - a single scalar, if inputs is a single tensor, which will be broadcasted for each input value in input tensor. - a tuple of tensors or scalars, the baseline corresponding to each tensor in the inputs' tuple can be: - either a tensor with matching dimensions to corresponding tensor in the inputs' tuple or the first dimension is one and the remaining dimensions match with the corresponding input tensor. - or a scalar, corresponding to a tensor in the inputs' tuple. This scalar value is broadcasted for corresponding input tensor. In the cases when `baselines` is not provided, we internally use zero scalar corresponding to each input tensor. Default: None target (int, tuple, tensor or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args (any, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. For a tensor, the first dimension of the tensor must correspond to the number of examples. It will be repeated for each of `n_steps` along the integrated path. For all other types, the given argument is used for all forward evaluations. Note that attributions are not computed with respect to these arguments. Default: None n_steps (int, optional): The number of steps used by the approximation method. Default: 50. method (string, optional): Method for approximating the integral, one of `riemann_right`, `riemann_left`, `riemann_middle`, `riemann_trapezoid` or `gausslegendre`. Default: `gausslegendre` if no method is provided. internal_batch_size (int, optional): Divides total #steps * #examples data points into chunks of size at most internal_batch_size, which are computed (forward / backward passes) sequentially. internal_batch_size must be at least equal to #examples. For DataParallel models, each batch is split among the available devices, so evaluations on each available device contain internal_batch_size / num_devices examples. If internal_batch_size is None, then all evaluations are processed in one batch. Default: None return_convergence_delta (bool, optional): Indicates whether to return convergence delta or not. If `return_convergence_delta` is set to True convergence delta will be returned in a tuple following attributions. Default: False attribute_to_layer_input (bool, optional): Indicates whether to compute the attribution with respect to the layer input or output. If `attribute_to_layer_input` is set to True then the attributions will be computed with respect to layer input, otherwise it will be computed with respect to layer output. Note that currently it is assumed that either the input or the output of internal layer, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: **attributions** or 2-element tuple of **attributions**, **delta**: - **attributions** (*tensor*, tuple of *tensors* or tuple of *tensors*): Integrated gradients with respect to `layer`'s inputs or outputs. Attributions will always be the same size and dimensionality as the input or output of the given layer, depending on whether we attribute to the inputs or outputs of the layer which is decided by the input flag `attribute_to_layer_input`. For a single layer, attributions are returned in a tuple if the layer inputs / outputs contain multiple tensors, otherwise a single tensor is returned. For multiple layers, attributions will always be returned as a list. Each element in this list will be equivalent to that of a single layer output, i.e. in the case that one layer, in the given layers, inputs / outputs multiple tensors: the corresponding output element will be a tuple of tensors. The ordering of the outputs will be the same order as the layers given in the constructor. - **delta** (*tensor*, returned if return_convergence_delta=True): The difference between the total approximated and true integrated gradients. This is computed using the property that the total sum of forward_func(inputs) - forward_func(baselines) must equal the total sum of the integrated gradient. Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of of examples in inputs. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> # It contains an attribute conv1, which is an instance of nn.conv2d, >>> # and the output of this layer has dimensions Nx12x32x32. >>> net = ImageClassifier() >>> lig = LayerIntegratedGradients(net, net.conv1) >>> input = torch.randn(2, 3, 32, 32, requires_grad=True) >>> # Computes layer integrated gradients for class 3. >>> # attribution size matches layer output, Nx12x32x32 >>> attribution = lig.attribute(input, target=3) """ inps, baselines = _format_input_baseline(inputs, baselines) _validate_input(inps, baselines, n_steps, method) baselines = _tensorize_baseline(inps, baselines) additional_forward_args = _format_additional_forward_args( additional_forward_args ) def flatten_tuple(tup): return tuple( sum((list(x) if isinstance(x, (tuple, list)) else [x] for x in tup), []) ) if self.device_ids is None: self.device_ids = getattr(self.forward_func, "device_ids", None) inputs_layer = _forward_layer_eval( self.forward_func, inps, self.layer, device_ids=self.device_ids, additional_forward_args=additional_forward_args, attribute_to_layer_input=attribute_to_layer_input, ) # if we have one output if not isinstance(self.layer, list): inputs_layer = (inputs_layer,) num_outputs = [1 if isinstance(x, Tensor) else len(x) for x in inputs_layer] num_outputs_cumsum = torch.cumsum( torch.IntTensor([0] + num_outputs), dim=0 # type: ignore ) inputs_layer = flatten_tuple(inputs_layer) baselines_layer = _forward_layer_eval( self.forward_func, baselines, self.layer, device_ids=self.device_ids, additional_forward_args=additional_forward_args, attribute_to_layer_input=attribute_to_layer_input, ) baselines_layer = flatten_tuple(baselines_layer) # inputs -> these inputs are scaled def gradient_func( forward_fn: Callable, inputs: Union[Tensor, Tuple[Tensor, ...]], target_ind: TargetType = None, additional_forward_args: Any = None, ) -> Tuple[Tensor, ...]: if self.device_ids is None or len(self.device_ids) == 0: scattered_inputs = (inputs,) else: # scatter method does not have a precise enough return type in its # stub, so suppress the type warning. scattered_inputs = scatter( # type:ignore inputs, target_gpus=self.device_ids ) scattered_inputs_dict = { scattered_input[0].device: scattered_input for scattered_input in scattered_inputs } with torch.autograd.set_grad_enabled(True): def layer_forward_hook( module, hook_inputs, hook_outputs=None, layer_idx=0 ): device = _extract_device(module, hook_inputs, hook_outputs) is_layer_tuple = ( isinstance(hook_outputs, tuple) # hook_outputs is None if attribute_to_layer_input == True if hook_outputs is not None else isinstance(hook_inputs, tuple) ) if is_layer_tuple: return scattered_inputs_dict[device][ num_outputs_cumsum[layer_idx] : num_outputs_cumsum[ layer_idx + 1 ] ] return scattered_inputs_dict[device][num_outputs_cumsum[layer_idx]] hooks = [] try: layers = self.layer if not isinstance(layers, list): layers = [self.layer] for layer_idx, layer in enumerate(layers): hook = None # TODO: # Allow multiple attribute_to_layer_input flags for # each layer, i.e. attribute_to_layer_input[layer_idx] if attribute_to_layer_input: hook = layer.register_forward_pre_hook( functools.partial( layer_forward_hook, layer_idx=layer_idx ) ) else: hook = layer.register_forward_hook( functools.partial( layer_forward_hook, layer_idx=layer_idx ) ) hooks.append(hook) output = _run_forward( self.forward_func, tuple(), target_ind, additional_forward_args ) finally: for hook in hooks: if hook is not None: hook.remove() assert output[0].numel() == 1, ( "Target not provided when necessary, cannot" " take gradient with respect to multiple outputs." ) # torch.unbind(forward_out) is a list of scalar tensor tuples and # contains batch_size * #steps elements grads = torch.autograd.grad(torch.unbind(output), inputs) return grads self.ig.gradient_func = gradient_func all_inputs = ( (inps + additional_forward_args) if additional_forward_args is not None else inps ) attributions = self.ig.attribute.__wrapped__( # type: ignore self.ig, # self inputs_layer, baselines=baselines_layer, target=target, additional_forward_args=all_inputs, n_steps=n_steps, method=method, internal_batch_size=internal_batch_size, return_convergence_delta=False, ) # handle multiple outputs output: List[Tuple[Tensor, ...]] = [ tuple( attributions[ int(num_outputs_cumsum[i]) : int(num_outputs_cumsum[i + 1]) ] ) for i in range(len(num_outputs)) ] if return_convergence_delta: start_point, end_point = baselines, inps # computes approximation error based on the completeness axiom delta = self.compute_convergence_delta( attributions, start_point, end_point, additional_forward_args=additional_forward_args, target=target, ) return _format_outputs(isinstance(self.layer, list), output), delta return _format_outputs(isinstance(self.layer, list), output) def has_convergence_delta(self) -> bool: return True @property def multiplies_by_inputs(self): return self.ig.multiplies_by_inputs
d17f822579e1bc3a3eb2590493618026d10cf984
1a82a96e860d69d4f1ce862c1fa86919f356a7a8
/finalcif/gui/new_key_dialog.py
9ca94cbda85fd2c273bbcbb20e78edb0b3b9babc
[ "Beerware" ]
permissive
dkratzert/FinalCif
f9d27aaf4a5da2620c000e75cf7a59c78646c2dc
f97ccec1e8be9ce4034784fa52bbc5257d9a9e7d
refs/heads/master
2023-08-31T10:24:08.258193
2023-08-31T10:22:20
2023-08-31T10:22:20
191,889,707
21
1
NOASSERTION
2023-05-21T15:07:51
2019-06-14T06:41:16
Python
UTF-8
Python
false
false
1,569
py
import re from PyQt5 import QtWidgets from PyQt5.QtCore import pyqtSignal from finalcif.cif import all_cif_dicts from finalcif.gui.new_key_dialog_ui import Ui_AddKeyWindow class NewKey(QtWidgets.QMainWindow, Ui_AddKeyWindow): new_key_added = pyqtSignal(str) def __init__(self, parent=None): super().__init__(parent=parent) self.setupUi(self) self.searchLineEdit.textChanged.connect(self.search) self.addKeyPushButton.clicked.connect(self.add_keys) self.cancelPushButton.clicked.connect(lambda: self.close()) self.keysListWidget.addItems(all_cif_dicts.cif_all_dict.keys()) for num in range(self.keysListWidget.count()): item = self.keysListWidget.item(num) helptext = all_cif_dicts.cif_all_dict.get(item.text()) item.setToolTip(helptext) def add_keys(self): for item in self.keysListWidget.selectedItems(): self.new_key_added.emit(item.text()) def search(self, searchtext: str): self.keysListWidget.clear() cif_keys = all_cif_dicts.cif_all_dict.keys() if searchtext: searchpattern = re.compile(f'.*{searchtext}.*', re.IGNORECASE) searched = [x for x in cif_keys if searchpattern.match(x)] self.keysListWidget.addItems(searched) else: self.keysListWidget.addItems(cif_keys) if __name__ == '__main__': import sys from PyQt5.QtWidgets import QApplication app = QApplication(sys.argv) nk = NewKey() nk.show() sys.exit(app.exec_())
aef336f70ef99ce4f5996661124bb6ba969bbb5d
5118ee8e91da7e76949cbb8d401462d5f402723d
/python_work_fs01/2018/0329/test3.py
819908059479c589e80f0bf5257e3b48cb5e76da
[]
no_license
nakanishi-akitaka/python_backup
ad87941396e84cacd8540d66033b560025c4de92
d11e5b9cf4dd57f51938d3638ff74c102380e624
refs/heads/master
2020-06-30T08:22:39.696697
2019-12-21T23:18:55
2019-12-21T23:18:55
200,776,513
0
8
null
null
null
null
UTF-8
Python
false
false
3,751
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from pymatgen import Composition, Element from numpy import zeros, mean trainFile = open("bandgapDFT.csv","r").readlines() # input: pymatgen NO Composition object # output: SOSEI vector def naiveVectorize(composition): vector = zeros((MAX_Z)) for element in composition: # element HA GENSI. fraction HA SONO GENSI GA SOSEI NI HUKUMARERU WARIAI fraction = composition.get_atomic_fraction(element) vector[element.Z - 1] = fraction return(vector) materials = [] bandgaps = [] naiveFeatures = [] MAX_Z = 100 for line in trainFile: split = str.split(line, ',') material = Composition(split[0]) materials.append(material) # KAGAKUSIKI naiveFeatures.append(naiveVectorize(material)) # TOKUCHORYO bandgaps.append(float(split[1])) # band gap NO YOMIKOMI baselineError = mean(abs(mean(bandgaps) - bandgaps)) print("Mean Absolute Error : " + str(round(baselineError, 3)) + " eV") from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn import neural_network # sklearn NO random forest KAIKI lr = LinearRegression() dtr = DecisionTreeRegressor() rfr = RandomForestRegressor() nn = neural_network.MLPRegressor(max_iter=1000) estimators = {'LR ':lr,'DTR':dtr,'RFR':rfr,'NN ':nn} # for k, v in estimators.items(): # print(k,v,type(k),type(v)) # KOUSA KENSHO SIMASU cv = ShuffleSplit(n_splits=10, test_size=0.1, random_state=0) for k,v in estimators.items(): sc = cross_val_score( v, naiveFeatures, bandgaps, cv=cv, scoring='r2') print("R2 by "+k+" with composition data: "+ str(round(abs(mean(sc)), 3)) + " ") pf= [[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] npf=4 npf+=1 for material in materials: theseFeatures = [] feature = [[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] for element in material: feature[ 1].append(float(element.Z)) feature[ 2].append(material.get_atomic_fraction(element)*material.num_atoms) feature[ 3].append(float(element.group)) feature[ 4].append(float(element.row)) feature[ 5].append(element.X) feature[ 6].append(float(element.max_oxidation_state)) feature[ 7].append(float(element.min_oxidation_state)) feature[ 8].append(float(str(element.atomic_mass).split("a")[0])) feature[ 9].append(float(element.mendeleev_no)) feature[10].append(float(str(element.melting_point).split("K")[0])) feature[11].append(float(str(element.molar_volume).split("c")[0])) feature[12].append(float(str(element.thermal_conductivity).split("W")[0])) feature[13].append(element.is_noble_gas) feature[14].append(element.is_transition_metal) feature[15].append(element.is_rare_earth_metal) feature[16].append(element.is_metalloid) feature[17].append(element.is_alkali) feature[18].append(element.is_alkaline) feature[19].append(element.is_halogen) feature[20].append(element.is_chalcogen) feature[21].append(element.is_lanthanoid) feature[22].append(element.is_actinoid) for i in range(1,npf): theseFeatures.extend(feature[i]) pf[i].append(theseFeatures[:]) for k,v in estimators.items(): for i in range(1,npf): sc = cross_val_score( v, pf[i], bandgaps, cv=cv, scoring='r2') print("R2 by "+k+" with physical ", i, " data: ave ", round(sc.mean(), 3)," std ", round(sc.std(), 3))
0463e4ee319c4bf4ebffe5cd815ab8f85b45adef
c6759b857e55991fea3ef0b465dbcee53fa38714
/tools/nntool/nntool/importer/tflite2/handlers/backend/transpose.py
23234c75127cac797ca8c1adf4ffb04f15ab2673
[ "AGPL-3.0-or-later", "AGPL-3.0-only", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Apache-2.0" ]
permissive
GreenWaves-Technologies/gap_sdk
1b343bba97b7a5ce62a24162bd72eef5cc67e269
3fea306d52ee33f923f2423c5a75d9eb1c07e904
refs/heads/master
2023-09-01T14:38:34.270427
2023-08-10T09:04:44
2023-08-10T09:04:44
133,324,605
145
96
Apache-2.0
2023-08-27T19:03:52
2018-05-14T07:50:29
C
UTF-8
Python
false
false
2,705
py
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import numpy as np from nntool.graph.dim import Dim from nntool.graph.types import ConstantInputNode, NNEdge, TransposeNode from nntool.importer.common.constant_mixin import ConstantMixin from nntool.importer.common.provisional_dim import ProvisionalDim from nntool.importer.tflite2.common import LOG from nntool.importer.tflite2.common.tflite_node import TFLiteNode from ..backend_handler import BackendHandler from ..handler import tflite_op @tflite_op("TRANSPOSE") class Transpose(BackendHandler, ConstantMixin): @classmethod def _common(cls, node: TFLiteNode, **kwargs): G = kwargs['G'] opts = kwargs['opts'] all_nodes = kwargs['all_nodes'] inputs = [all_nodes[t] for t in node.input] x = inputs[0] x_shape = x[2].shape new_axes = {} for idx, dim in enumerate(x_shape): if dim is not None: new_axes[idx] = len(new_axes) ptranspose = cls._verify_constant(inputs[1]) pout_shape = [x_shape[dim] for dim in ptranspose] transpose = [new_axes[axis] for axis in ptranspose if x_shape[axis] is not None] node.input[1].used = True if cls.is_constant(x): LOG.info("reducing %s to a constant", node.name) val = np.transpose(cls.get_constant(x), ptranspose) params = ConstantInputNode(node.name, value=np.transpose(val, ptranspose), dims=Dim.unnamed(val.shape)) else: params = TransposeNode(node.name, transpose=transpose) if opts.get('load_quantization'): G.quantization[params.name] = cls.load_tf_quantization([node.input[0]], node.output) G.add_edge(NNEdge(from_node=x[0], to_node=params, from_idx=x[1], to_idx=0)) all_nodes[node.output[0]] = (params, 0, ProvisionalDim(pout_shape)) return params @classmethod def version_1(cls, node: TFLiteNode, **kwargs): return cls._common(node, **kwargs)
aa65c39966c5c3996b0e4ccc5cd54969b654a3b4
b3d552675b36cb88a1388fcfc531e497ad7cbee9
/day8/form_validater/cms/models.py
bd100b3fda14c14a849c139d0223a34e3b01935a
[]
no_license
gaohj/1902_django
3cea1f0935fd983f25c6fd832b103ac5165a2e30
822af7b42120c6edc699bf97c800887ff84f5621
refs/heads/master
2022-12-11T10:02:50.233398
2019-11-26T08:33:38
2019-11-26T08:33:38
209,241,390
2
0
null
2022-12-08T07:28:24
2019-09-18T07:05:48
Python
UTF-8
Python
false
false
179
py
from django.db import models # Create your models here. class User(models.Model): username = models.CharField(max_length=100) telephone = models.CharField(max_length=100)
582cd839c799c316ee8471223a0c1ea010ab379b
971e0efcc68b8f7cfb1040c38008426f7bcf9d2e
/tests/artificial/transf_Quantization/trend_LinearTrend/cycle_0/ar_12/test_artificial_1024_Quantization_LinearTrend_0_12_0.py
77be5894f2be385b71feb3c48605ac0b18920a78
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
antoinecarme/pyaf
a105d172c2e7544f8d580d75f28b751351dd83b6
b12db77cb3fa9292e774b2b33db8ce732647c35e
refs/heads/master
2023-09-01T09:30:59.967219
2023-07-28T20:15:53
2023-07-28T20:15:53
70,790,978
457
77
BSD-3-Clause
2023-03-08T21:45:40
2016-10-13T09:30:30
Python
UTF-8
Python
false
false
270
py
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 0, transform = "Quantization", sigma = 0.0, exog_count = 0, ar_order = 12);
bf494aea278afcbbd81af424e97a4bce171d18d2
d87d312ff0d8e200605d35932abdfa282c803110
/qswatplus/PIL/ImageDraw.py
6a70def3b20f79f40de5fd8c9ccac0fea86eb39c
[ "GPL-2.0-or-later", "MIT" ]
permissive
celray/swatplus-automatic-workflow
70848960f8ff6b109899ced145ee938d2adcfd19
ddb3de70708687ca3167ec4b72ac432426175f45
refs/heads/master
2022-03-16T17:23:15.815336
2022-03-09T19:08:35
2022-03-09T19:08:35
248,785,912
11
5
MIT
2020-10-16T11:11:56
2020-03-20T15:12:48
Python
UTF-8
Python
false
false
16,527
py
# # The Python Imaging Library # $Id$ # # drawing interface operations # # History: # 1996-04-13 fl Created (experimental) # 1996-08-07 fl Filled polygons, ellipses. # 1996-08-13 fl Added text support # 1998-06-28 fl Handle I and F images # 1998-12-29 fl Added arc; use arc primitive to draw ellipses # 1999-01-10 fl Added shape stuff (experimental) # 1999-02-06 fl Added bitmap support # 1999-02-11 fl Changed all primitives to take options # 1999-02-20 fl Fixed backwards compatibility # 2000-10-12 fl Copy on write, when necessary # 2001-02-18 fl Use default ink for bitmap/text also in fill mode # 2002-10-24 fl Added support for CSS-style color strings # 2002-12-10 fl Added experimental support for RGBA-on-RGB drawing # 2002-12-11 fl Refactored low-level drawing API (work in progress) # 2004-08-26 fl Made Draw() a factory function, added getdraw() support # 2004-09-04 fl Added width support to line primitive # 2004-09-10 fl Added font mode handling # 2006-06-19 fl Added font bearing support (getmask2) # # Copyright (c) 1997-2006 by Secret Labs AB # Copyright (c) 1996-2006 by Fredrik Lundh # # See the README file for information on usage and redistribution. # import math import numbers from . import Image, ImageColor from ._util import isStringType """ A simple 2D drawing interface for PIL images. <p> Application code should use the <b>Draw</b> factory, instead of directly. """ class ImageDraw(object): def __init__(self, im, mode=None): """ Create a drawing instance. :param im: The image to draw in. :param mode: Optional mode to use for color values. For RGB images, this argument can be RGB or RGBA (to blend the drawing into the image). For all other modes, this argument must be the same as the image mode. If omitted, the mode defaults to the mode of the image. """ im.load() if im.readonly: im._copy() # make it writeable blend = 0 if mode is None: mode = im.mode if mode != im.mode: if mode == "RGBA" and im.mode == "RGB": blend = 1 else: raise ValueError("mode mismatch") if mode == "P": self.palette = im.palette else: self.palette = None self.im = im.im self.draw = Image.core.draw(self.im, blend) self.mode = mode if mode in ("I", "F"): self.ink = self.draw.draw_ink(1, mode) else: self.ink = self.draw.draw_ink(-1, mode) if mode in ("1", "P", "I", "F"): # FIXME: fix Fill2 to properly support matte for I+F images self.fontmode = "1" else: self.fontmode = "L" # aliasing is okay for other modes self.fill = 0 self.font = None def getfont(self): """ Get the current default font. :returns: An image font.""" if not self.font: # FIXME: should add a font repository from . import ImageFont self.font = ImageFont.load_default() return self.font def _getink(self, ink, fill=None): if ink is None and fill is None: if self.fill: fill = self.ink else: ink = self.ink else: if ink is not None: if isStringType(ink): ink = ImageColor.getcolor(ink, self.mode) if self.palette and not isinstance(ink, numbers.Number): ink = self.palette.getcolor(ink) ink = self.draw.draw_ink(ink, self.mode) if fill is not None: if isStringType(fill): fill = ImageColor.getcolor(fill, self.mode) if self.palette and not isinstance(fill, numbers.Number): fill = self.palette.getcolor(fill) fill = self.draw.draw_ink(fill, self.mode) return ink, fill def arc(self, xy, start, end, fill=None, width=0): """Draw an arc.""" ink, fill = self._getink(fill) if ink is not None: self.draw.draw_arc(xy, start, end, ink, width) def bitmap(self, xy, bitmap, fill=None): """Draw a bitmap.""" bitmap.load() ink, fill = self._getink(fill) if ink is None: ink = fill if ink is not None: self.draw.draw_bitmap(xy, bitmap.im, ink) def chord(self, xy, start, end, fill=None, outline=None, width=0): """Draw a chord.""" ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_chord(xy, start, end, fill, 1) if ink is not None and ink != fill: self.draw.draw_chord(xy, start, end, ink, 0, width) def ellipse(self, xy, fill=None, outline=None, width=0): """Draw an ellipse.""" ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_ellipse(xy, fill, 1) if ink is not None and ink != fill: self.draw.draw_ellipse(xy, ink, 0, width) def line(self, xy, fill=None, width=0, joint=None): """Draw a line, or a connected sequence of line segments.""" ink = self._getink(fill)[0] if ink is not None: self.draw.draw_lines(xy, ink, width) if joint == "curve" and width > 4: for i in range(1, len(xy)-1): point = xy[i] angles = [ math.degrees(math.atan2( end[0] - start[0], start[1] - end[1] )) % 360 for start, end in ((xy[i-1], point), (point, xy[i+1])) ] if angles[0] == angles[1]: # This is a straight line, so no joint is required continue def coord_at_angle(coord, angle): x, y = coord angle -= 90 distance = width/2 - 1 return tuple([ p + (math.floor(p_d) if p_d > 0 else math.ceil(p_d)) for p, p_d in ((x, distance * math.cos(math.radians(angle))), (y, distance * math.sin(math.radians(angle)))) ]) flipped = ((angles[1] > angles[0] and angles[1] - 180 > angles[0]) or (angles[1] < angles[0] and angles[1] + 180 > angles[0])) coords = [ (point[0] - width/2 + 1, point[1] - width/2 + 1), (point[0] + width/2 - 1, point[1] + width/2 - 1) ] if flipped: start, end = (angles[1] + 90, angles[0] + 90) else: start, end = (angles[0] - 90, angles[1] - 90) self.pieslice(coords, start - 90, end - 90, fill) if width > 8: # Cover potential gaps between the line and the joint if flipped: gapCoords = [ coord_at_angle(point, angles[0]+90), point, coord_at_angle(point, angles[1]+90) ] else: gapCoords = [ coord_at_angle(point, angles[0]-90), point, coord_at_angle(point, angles[1]-90) ] self.line(gapCoords, fill, width=3) def shape(self, shape, fill=None, outline=None): """(Experimental) Draw a shape.""" shape.close() ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_outline(shape, fill, 1) if ink is not None and ink != fill: self.draw.draw_outline(shape, ink, 0) def pieslice(self, xy, start, end, fill=None, outline=None, width=0): """Draw a pieslice.""" ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_pieslice(xy, start, end, fill, 1) if ink is not None and ink != fill: self.draw.draw_pieslice(xy, start, end, ink, 0, width) def point(self, xy, fill=None): """Draw one or more individual pixels.""" ink, fill = self._getink(fill) if ink is not None: self.draw.draw_points(xy, ink) def polygon(self, xy, fill=None, outline=None): """Draw a polygon.""" ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_polygon(xy, fill, 1) if ink is not None and ink != fill: self.draw.draw_polygon(xy, ink, 0) def rectangle(self, xy, fill=None, outline=None, width=0): """Draw a rectangle.""" ink, fill = self._getink(outline, fill) if fill is not None: self.draw.draw_rectangle(xy, fill, 1) if ink is not None and ink != fill: self.draw.draw_rectangle(xy, ink, 0, width) def _multiline_check(self, text): """Draw text.""" split_character = "\n" if isinstance(text, str) else b"\n" return split_character in text def _multiline_split(self, text): split_character = "\n" if isinstance(text, str) else b"\n" return text.split(split_character) def text(self, xy, text, fill=None, font=None, anchor=None, *args, **kwargs): if self._multiline_check(text): return self.multiline_text(xy, text, fill, font, anchor, *args, **kwargs) ink, fill = self._getink(fill) if font is None: font = self.getfont() if ink is None: ink = fill if ink is not None: try: mask, offset = font.getmask2(text, self.fontmode, *args, **kwargs) xy = xy[0] + offset[0], xy[1] + offset[1] except AttributeError: try: mask = font.getmask(text, self.fontmode, *args, **kwargs) except TypeError: mask = font.getmask(text) self.draw.draw_bitmap(xy, mask, ink) def multiline_text(self, xy, text, fill=None, font=None, anchor=None, spacing=4, align="left", direction=None, features=None): widths = [] max_width = 0 lines = self._multiline_split(text) line_spacing = self.textsize('A', font=font)[1] + spacing for line in lines: line_width, line_height = self.textsize(line, font) widths.append(line_width) max_width = max(max_width, line_width) left, top = xy for idx, line in enumerate(lines): if align == "left": pass # left = x elif align == "center": left += (max_width - widths[idx]) / 2.0 elif align == "right": left += (max_width - widths[idx]) else: raise ValueError('align must be "left", "center" or "right"') self.text((left, top), line, fill, font, anchor, direction=direction, features=features) top += line_spacing left = xy[0] def textsize(self, text, font=None, spacing=4, direction=None, features=None): """Get the size of a given string, in pixels.""" if self._multiline_check(text): return self.multiline_textsize(text, font, spacing, direction, features) if font is None: font = self.getfont() return font.getsize(text, direction, features) def multiline_textsize(self, text, font=None, spacing=4, direction=None, features=None): max_width = 0 lines = self._multiline_split(text) line_spacing = self.textsize('A', font=font)[1] + spacing for line in lines: line_width, line_height = self.textsize(line, font, spacing, direction, features) max_width = max(max_width, line_width) return max_width, len(lines)*line_spacing - spacing def Draw(im, mode=None): """ A simple 2D drawing interface for PIL images. :param im: The image to draw in. :param mode: Optional mode to use for color values. For RGB images, this argument can be RGB or RGBA (to blend the drawing into the image). For all other modes, this argument must be the same as the image mode. If omitted, the mode defaults to the mode of the image. """ try: return im.getdraw(mode) except AttributeError: return ImageDraw(im, mode) # experimental access to the outline API try: Outline = Image.core.outline except AttributeError: Outline = None def getdraw(im=None, hints=None): """ (Experimental) A more advanced 2D drawing interface for PIL images, based on the WCK interface. :param im: The image to draw in. :param hints: An optional list of hints. :returns: A (drawing context, drawing resource factory) tuple. """ # FIXME: this needs more work! # FIXME: come up with a better 'hints' scheme. handler = None if not hints or "nicest" in hints: try: from . import _imagingagg as handler except ImportError: pass if handler is None: from . import ImageDraw2 as handler if im: im = handler.Draw(im) return im, handler def floodfill(image, xy, value, border=None, thresh=0): """ (experimental) Fills a bounded region with a given color. :param image: Target image. :param xy: Seed position (a 2-item coordinate tuple). See :ref:`coordinate-system`. :param value: Fill color. :param border: Optional border value. If given, the region consists of pixels with a color different from the border color. If not given, the region consists of pixels having the same color as the seed pixel. :param thresh: Optional threshold value which specifies a maximum tolerable difference of a pixel value from the 'background' in order for it to be replaced. Useful for filling regions of non- homogeneous, but similar, colors. """ # based on an implementation by Eric S. Raymond # amended by yo1995 @20180806 pixel = image.load() x, y = xy try: background = pixel[x, y] if _color_diff(value, background) <= thresh: return # seed point already has fill color pixel[x, y] = value except (ValueError, IndexError): return # seed point outside image edge = {(x, y)} full_edge = set() # use a set to keep record of current and previous edge pixels to reduce memory consumption while edge: new_edge = set() for (x, y) in edge: # 4 adjacent method for (s, t) in ((x+1, y), (x-1, y), (x, y+1), (x, y-1)): if (s, t) in full_edge: continue # if already processed, skip try: p = pixel[s, t] except (ValueError, IndexError): pass else: full_edge.add((s, t)) if border is None: fill = _color_diff(p, background) <= thresh else: fill = p != value and p != border if fill: pixel[s, t] = value new_edge.add((s, t)) full_edge = edge # discard pixels processed edge = new_edge def _color_diff(color1, color2): """ Uses 1-norm distance to calculate difference between two values. """ if isinstance(color2, tuple): return sum([abs(color1[i]-color2[i]) for i in range(0, len(color2))]) else: return abs(color1-color2)
353cc38bd9be00b7415a5b43c6474ad6cede0ac4
6e1549257568a0ca81b3fc5864e2e1fa65171b06
/salarydk/models/inline_response20086.py
5ba1f813cf50856872be7f174fd9b1ec2d9076ca
[]
no_license
tdwizard/salarydk
19d3453de8fbdd886a0189dbf232f98de971e18a
dcf5040101b3e576f1068ea104148651e5c66511
refs/heads/master
2023-08-05T05:40:09.561288
2021-09-24T09:41:43
2021-09-24T09:41:43
409,910,180
0
0
null
null
null
null
UTF-8
Python
false
false
6,924
py
# coding: utf-8 """ Salary.dk API This is the public API for Salary.dk. # General Our API is a JSON-based, REST-like API. Our webapp uses the exact same API, so everything you can do in our webapp, you can do through our API. However, we are slowly opening up the API, so not all endpoints are documented here yet. Only the endpoints documented here are stable. If there is some functionality you would like to access through our API, please contact us. The API is located at https://api.salary.dk. All requests must use TLS. In order to use the API on behalf of other users than yourself, you need to register as an API client. You do this by sending an e-mail to [email protected] with the name and purpose of your client. API-keys for each account can be obtained once logged in to Salary, under the settings for the Company. All endpoints are documented to be able to return the 500 error code. We strive to not return this error code, so if you do encounter this error code, it might mean there is an error on our side. In this case, do not hesitate to contact us. # Versioning, upgrade and deprecation policy Our API might change over time. In order to ensure a stable API, we follow these rules when changing the API. New fields might be added at any time to any response or as non-required parameters to any input. When adding input fields, we ensure the default behaviour when not supplying the field is the same as the previous version. In these cases, the version of an endpoint is not increased, since it is backwards compatible. Since we might add new fields to responses, be sure to use a JSON parser in your implementation. This ensures that any extra fields added are ignored by your implementation. We might add entirely new endpoints at any time. If we need to change an existing endpoint without being able to make it backwards compatible, we will add a new version of the endpoint, and mark the old as deprecated but still functional. We will then contact any users of the deprecated endpoint and ensure an upgrade is performed. Once all consumers have moved to the new endpoint version, the old one will be removed. We will not at any point change the meaning of any existing field, nor will we remove any field or endpoint without following the above deprecated procedure. However, we might add new types to existing enums at any time. # Cross-Origin Resource Sharing This API features Cross-Origin Resource Sharing (CORS) implemented in compliance with [W3C spec](https://www.w3.org/TR/cors/) - and that allows cross-domain communication from the browser. All responses have a wildcard same-origin which makes them completely public and accessible to everyone, including any code on any site, as long as the proper access token is passed. # Authentication All request require an access token. There are two ways to obtain an access token: * Logging in as a user. (this endpoint is not yet publicly available). * Using an API-key: [endpoint](#operation/APIClientLogin) Using one of these methods, you will obtain an access token. In all subsequest requests, this access token should be passed in the Authorization header. The access token is valid for around one hour, after which a new token should be obtained. You do not need to dispose of access tokens once created. They have a limited lifetime, and Salary.dk will automatically expire old ones. For some endpoints, the authorizedUserQuery security definition is used. This allows for passing the access token as a query parameter where it is not possible to pass it as a header. In particular, this is used for downloading files. <!-- ReDoc-Inject: <security-definitions> --> # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from salarydk.configuration import Configuration class InlineResponse20086(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'data': 'InlineResponse20086Data' } attribute_map = { 'data': 'data' } def __init__(self, data=None, local_vars_configuration=None): # noqa: E501 """InlineResponse20086 - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._data = None self.discriminator = None if data is not None: self.data = data @property def data(self): """Gets the data of this InlineResponse20086. # noqa: E501 :return: The data of this InlineResponse20086. # noqa: E501 :rtype: InlineResponse20086Data """ return self._data @data.setter def data(self, data): """Sets the data of this InlineResponse20086. :param data: The data of this InlineResponse20086. # noqa: E501 :type: InlineResponse20086Data """ self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse20086): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, InlineResponse20086): return True return self.to_dict() != other.to_dict()
598ac98ebf7a8341d74571338f3b6e48b6e28ed2
708074835900ae623239ce3c0d1e6f948b799fd0
/ftp-2/ftp_client/ftp_client.py
0656e0224631f01bd97e806116aa4fd738f037a1
[]
no_license
hukeyy/learn_python
66688bcbaa43d79775030d2876979bbda08892ef
c71a37da88b089316536587ed47d32405bd987a3
refs/heads/master
2020-03-21T11:07:24.049328
2018-12-25T11:59:17
2018-12-25T11:59:17
138,490,613
0
0
null
null
null
null
UTF-8
Python
false
false
874
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Author: hkey import os, sys import socket class MyClient: def __init__(self, ip_port): self.client = socket.socket() self.ip_port = ip_port def connect(self): self.client.connect(self.ip_port) def start(self): self.connect() while True: print('注册(register)\n登录(login)') auth_type = input('>>>').strip() if auth_type == 'register' or auth_type == 'login': user = input('用户名:') pwd = input('密码:') auth_info = '%s:%s:%s' %(auth_type, user, pwd) self.client.sendall(auth_info.encode()) status_code = self.client.recv(1024) else: print('\033[31;1m输入错误,请重新输入.\033[0m')
4bcc563980a7cf202366282871a65a1d905a2c74
143e7c46515697d009bdb0bb4825db18942db002
/movies/forms.py
a59290839cee1ac462126f093ba2d4be41f147bc
[]
no_license
yoonwoo123/project_08
e171aec3729b5d2686b3d10769c2bbd84a2b90ad
b978e86696b84c7e505263ad0fa776edb93d0a58
refs/heads/master
2020-09-01T14:18:29.392806
2019-04-04T05:15:16
2019-04-04T05:15:16
218,978,077
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
from django import forms from .models import Movie from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit class MovieForm(forms.ModelForm): class Meta: model = Movie fields = '__all__' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_method = 'POST' self.helper.add_input(Submit('submit', 'Submit'))
ffdb634592c69b8a2d23ac8f12192049bb9f4287
d5dc79925d84486315fb0ed71a0403a27cb5d6af
/DDF_experiment/dark_ddf.py
09266d09ec5714e5e4ae827ebfc8ee579b124e60
[]
no_license
lsst-sims/sims_featureScheduler_runs1.4
2e5b3380f29256c6bbc164787cb41d060456d1d3
87684c9c3156f3ebd18cc06c8512ee92ef1b16a0
refs/heads/master
2020-08-11T09:06:19.901882
2020-07-17T20:45:17
2020-07-17T20:45:17
214,535,040
1
2
null
2019-12-03T20:59:31
2019-10-11T21:57:32
Jupyter Notebook
UTF-8
Python
false
false
24,296
py
import numpy as np import matplotlib.pylab as plt import healpy as hp from lsst.sims.featureScheduler.modelObservatory import Model_observatory from lsst.sims.featureScheduler.schedulers import Core_scheduler, simple_filter_sched from lsst.sims.featureScheduler.utils import standard_goals, create_season_offset import lsst.sims.featureScheduler.basis_functions as bf from lsst.sims.featureScheduler.surveys import (Greedy_survey, Blob_survey) from lsst.sims.featureScheduler import sim_runner import lsst.sims.featureScheduler.detailers as detailers import sys import subprocess import os import argparse from lsst.sims.featureScheduler.surveys import Deep_drilling_survey import lsst.sims.featureScheduler.basis_functions as basis_functions def dd_bfs(RA, dec, survey_name, ha_limits, frac_total=0.0185/2., aggressive_frac=0.011/2.): """ Convienence function to generate all the feasibility basis functions """ sun_alt_limit = -18. time_needed = 62. fractions = [0.00, aggressive_frac, frac_total] bfs = [] bfs.append(basis_functions.Filter_loaded_basis_function(filternames=['r', 'g', 'i', 'z', 'y'])) bfs.append(basis_functions.Not_twilight_basis_function(sun_alt_limit=sun_alt_limit)) bfs.append(basis_functions.Time_to_twilight_basis_function(time_needed=time_needed)) bfs.append(basis_functions.Hour_Angle_limit_basis_function(RA=RA, ha_limits=ha_limits)) bfs.append(basis_functions.Moon_down_basis_function()) bfs.append(basis_functions.Fraction_of_obs_basis_function(frac_total=frac_total, survey_name=survey_name)) bfs.append(basis_functions.Look_ahead_ddf_basis_function(frac_total, aggressive_frac, sun_alt_limit=sun_alt_limit, time_needed=time_needed, RA=RA, survey_name=survey_name, ha_limits=ha_limits)) bfs.append(basis_functions.Soft_delay_basis_function(fractions=fractions, delays=[0., 0.5, 1.5], survey_name=survey_name)) return bfs def dd_u_bfs(RA, dec, survey_name, ha_limits, frac_total=0.0019/2., aggressive_frac=0.0014/2.): """Convienence function to generate all the feasibility basis functions for u-band DDFs """ bfs = [] sun_alt_limit = -18. time_needed = 6. fractions = [0.00, aggressive_frac, frac_total] bfs.append(basis_functions.Filter_loaded_basis_function(filternames='u')) bfs.append(basis_functions.Not_twilight_basis_function(sun_alt_limit=sun_alt_limit)) bfs.append(basis_functions.Time_to_twilight_basis_function(time_needed=time_needed)) bfs.append(basis_functions.Hour_Angle_limit_basis_function(RA=RA, ha_limits=ha_limits)) bfs.append(basis_functions.Moon_down_basis_function()) bfs.append(basis_functions.Fraction_of_obs_basis_function(frac_total=frac_total, survey_name=survey_name)) bfs.append(basis_functions.Look_ahead_ddf_basis_function(frac_total, aggressive_frac, sun_alt_limit=sun_alt_limit, time_needed=time_needed, RA=RA, survey_name=survey_name, ha_limits=ha_limits)) bfs.append(basis_functions.Soft_delay_basis_function(fractions=fractions, delays=[0., 0.2, 0.5], survey_name=survey_name)) return bfs def generate_dd_surveys(nside=None, nexp=2, detailers=None, reward_value=100): """Utility to return a list of standard deep drilling field surveys. XXX-Someone double check that I got the coordinates right! """ surveys = [] # ELAIS S1 RA = 9.45 dec = -44. survey_name = 'DD:ELAISS1' ha_limits = ([0., 1.5], [21.5, 24.]) bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[20, 10, 20, 26, 20], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,ELAISS1' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) # XMM-LSS survey_name = 'DD:XMM-LSS' RA = 35.708333 dec = -4-45/60. ha_limits = ([0., 1.5], [21.5, 24.]) bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[20, 10, 20, 26, 20], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,XMM-LSS' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) # Extended Chandra Deep Field South RA = 53.125 dec = -28.-6/60. survey_name = 'DD:ECDFS' ha_limits = [[0.5, 3.0], [20., 22.5]] bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[20, 10, 20, 26, 20], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,ECDFS' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) # COSMOS RA = 150.1 dec = 2.+10./60.+55/3600. survey_name = 'DD:COSMOS' ha_limits = ([0., 2.5], [21.5, 24.]) bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[20, 10, 20, 26, 20], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,COSMOS' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) # Euclid Fields survey_name = 'DD:EDFS1' RA = 58.97 dec = -49.28 ha_limits = ([0., 1.5], [21.5, 24.]) bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[5, 7, 19, 24, 5], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,EDFS1' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:EDFS2' RA = 63.6 dec = -47.60 ha_limits = ([0., 1.5], [21.5, 24.]) bfs = dd_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='rgizy', nvis=[5, 7, 19, 24, 5], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) survey_name = 'DD:u,EDFS2' bfs = dd_u_bfs(RA, dec, survey_name, ha_limits) surveys.append(Deep_drilling_survey(bfs, RA, dec, sequence='u', nvis=[8], survey_name=survey_name, reward_value=reward_value, nside=nside, nexp=nexp, detailers=detailers)) return surveys def gen_greedy_surveys(nside=32, nexp=1, exptime=30., filters=['r', 'i', 'z', 'y'], camera_rot_limits=[-80., 80.], shadow_minutes=60., max_alt=76., moon_distance=30., ignore_obs='DD', m5_weight=3., footprint_weight=0.3, slewtime_weight=3., stayfilter_weight=3.): """ Make a quick set of greedy surveys This is a convienence function to generate a list of survey objects that can be used with lsst.sims.featureScheduler.schedulers.Core_scheduler. To ensure we are robust against changes in the sims_featureScheduler codebase, all kwargs are explicitly set. Parameters ---------- nside : int (32) The HEALpix nside to use nexp : int (1) The number of exposures to use in a visit. exptime : float (30.) The exposure time to use per visit (seconds) filters : list of str (['r', 'i', 'z', 'y']) Which filters to generate surveys for. camera_rot_limits : list of float ([-80., 80.]) The limits to impose when rotationally dithering the camera (degrees). shadow_minutes : float (60.) Used to mask regions around zenith (minutes) max_alt : float (76. The maximium altitude to use when masking zenith (degrees) moon_distance : float (30.) The mask radius to apply around the moon (degrees) ignore_obs : str or list of str ('DD') Ignore observations by surveys that include the given substring(s). m5_weight : float (3.) The weight for the 5-sigma depth difference basis function footprint_weight : float (0.3) The weight on the survey footprint basis function. slewtime_weight : float (3.) The weight on the slewtime basis function stayfilter_weight : float (3.) The weight on basis function that tries to stay avoid filter changes. """ # Define the extra parameters that are used in the greedy survey. I # think these are fairly set, so no need to promote to utility func kwargs greed_survey_params = {'block_size': 1, 'smoothing_kernel': None, 'seed': 42, 'camera': 'LSST', 'dither': True, 'survey_name': 'greedy'} footprints = standard_goals(nside=nside) sum_footprints = 0 for key in footprints: sum_footprints += np.sum(footprints[key]) surveys = [] detailer = detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits), max_rot=np.max(camera_rot_limits)) for filtername in filters: bfs = [] bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight)) bfs.append((bf.Footprint_basis_function(filtername=filtername, footprint=footprints[filtername], out_of_bounds_val=np.nan, nside=nside, all_footprints_sum=sum_footprints), footprint_weight)) bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight)) bfs.append((bf.Strict_filter_basis_function(filtername=filtername), stayfilter_weight)) # Masks, give these 0 weight bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt), 0)) bfs.append((bf.Moon_avoidance_basis_function(nside=nside, moon_distance=moon_distance), 0)) bfs.append((bf.Filter_loaded_basis_function(filternames=filtername), 0)) bfs.append((bf.Planet_mask_basis_function(nside=nside), 0)) weights = [val[1] for val in bfs] basis_functions = [val[0] for val in bfs] surveys.append(Greedy_survey(basis_functions, weights, exptime=exptime, filtername=filtername, nside=nside, ignore_obs=ignore_obs, nexp=nexp, detailers=[detailer], **greed_survey_params)) return surveys def generate_blobs(nside, nexp=1, exptime=30., filter1s=['u', 'u', 'u', 'g', 'r', 'i', 'z', 'y'], filter2s=['u', 'g', 'r', 'r', 'i', 'z', 'y', 'y'], pair_time=22., camera_rot_limits=[-80., 80.], n_obs_template=3, season=300., season_start_hour=-4., season_end_hour=2., shadow_minutes=60., max_alt=76., moon_distance=30., ignore_obs='DD', m5_weight=6., footprint_weight=0.6, slewtime_weight=3., stayfilter_weight=3., template_weight=12.): """ Generate surveys that take observations in blobs. Parameters ---------- nside : int (32) The HEALpix nside to use nexp : int (1) The number of exposures to use in a visit. exptime : float (30.) The exposure time to use per visit (seconds) filter1s : list of str The filternames for the first set filter2s : list of str The filter names for the second in the pair (None if unpaired) pair_time : float (22) The ideal time between pairs (minutes) camera_rot_limits : list of float ([-80., 80.]) The limits to impose when rotationally dithering the camera (degrees). n_obs_template : int (3) The number of observations to take every season in each filter season : float (300) The length of season (i.e., how long before templates expire) (days) season_start_hour : float (-4.) For weighting how strongly a template image needs to be observed (hours) sesason_end_hour : float (2.) For weighting how strongly a template image needs to be observed (hours) shadow_minutes : float (60.) Used to mask regions around zenith (minutes) max_alt : float (76. The maximium altitude to use when masking zenith (degrees) moon_distance : float (30.) The mask radius to apply around the moon (degrees) ignore_obs : str or list of str ('DD') Ignore observations by surveys that include the given substring(s). m5_weight : float (3.) The weight for the 5-sigma depth difference basis function footprint_weight : float (0.3) The weight on the survey footprint basis function. slewtime_weight : float (3.) The weight on the slewtime basis function stayfilter_weight : float (3.) The weight on basis function that tries to stay avoid filter changes. template_weight : float (12.) The weight to place on getting image templates every season """ blob_survey_params = {'slew_approx': 7.5, 'filter_change_approx': 140., 'read_approx': 2., 'min_pair_time': 15., 'search_radius': 30., 'alt_max': 85., 'az_range': 90., 'flush_time': 30., 'smoothing_kernel': None, 'nside': nside, 'seed': 42, 'dither': True, 'twilight_scale': True} footprints = standard_goals(nside=nside) sum_footprints = 0 for key in footprints: sum_footprints += np.sum(footprints[key]) surveys = [] times_needed = [pair_time, pair_time*2] for filtername, filtername2 in zip(filter1s, filter2s): detailer_list = [] detailer_list.append(detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits), max_rot=np.max(camera_rot_limits))) detailer_list.append(detailers.Close_alt_detailer()) # List to hold tuples of (basis_function_object, weight) bfs = [] if filtername2 is not None: bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight/2.)) bfs.append((bf.M5_diff_basis_function(filtername=filtername2, nside=nside), m5_weight/2.)) else: bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight)) if filtername2 is not None: bfs.append((bf.Footprint_basis_function(filtername=filtername, footprint=footprints[filtername], out_of_bounds_val=np.nan, nside=nside, all_footprints_sum=sum_footprints), footprint_weight/2.)) bfs.append((bf.Footprint_basis_function(filtername=filtername2, footprint=footprints[filtername2], out_of_bounds_val=np.nan, nside=nside, all_footprints_sum=sum_footprints), footprint_weight/2.)) else: bfs.append((bf.Footprint_basis_function(filtername=filtername, footprint=footprints[filtername], out_of_bounds_val=np.nan, nside=nside, all_footprints_sum=sum_footprints), footprint_weight)) bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight)) bfs.append((bf.Strict_filter_basis_function(filtername=filtername), stayfilter_weight)) if filtername2 is not None: bfs.append((bf.N_obs_per_year_basis_function(filtername=filtername, nside=nside, footprint=footprints[filtername], n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight/2.)) bfs.append((bf.N_obs_per_year_basis_function(filtername=filtername2, nside=nside, footprint=footprints[filtername2], n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight/2.)) else: bfs.append((bf.N_obs_per_year_basis_function(filtername=filtername, nside=nside, footprint=footprints[filtername], n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight)) # Masks, give these 0 weight bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt, penalty=np.nan, site='LSST'), 0.)) bfs.append((bf.Moon_avoidance_basis_function(nside=nside, moon_distance=moon_distance), 0.)) filternames = [fn for fn in [filtername, filtername2] if fn is not None] bfs.append((bf.Filter_loaded_basis_function(filternames=filternames), 0)) if filtername2 is None: time_needed = times_needed[0] else: time_needed = times_needed[1] bfs.append((bf.Time_to_twilight_basis_function(time_needed=time_needed), 0.)) bfs.append((bf.Not_twilight_basis_function(), 0.)) bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.)) # unpack the basis functions and weights weights = [val[1] for val in bfs] basis_functions = [val[0] for val in bfs] if filtername2 is None: survey_name = 'blob, %s' % filtername else: survey_name = 'blob, %s%s' % (filtername, filtername2) if filtername2 is not None: detailer_list.append(detailers.Take_as_pairs_detailer(filtername=filtername2)) surveys.append(Blob_survey(basis_functions, weights, filtername1=filtername, filtername2=filtername2, exptime=exptime, ideal_pair_time=pair_time, survey_note=survey_name, ignore_obs=ignore_obs, nexp=nexp, detailers=detailer_list, **blob_survey_params)) return surveys def run_sched(surveys, survey_length=365.25, nside=32, fileroot='baseline_', verbose=False, extra_info=None, illum_limit=15.): years = np.round(survey_length/365.25) scheduler = Core_scheduler(surveys, nside=nside) n_visit_limit = None filter_sched = simple_filter_sched(illum_limit=illum_limit) observatory = Model_observatory(nside=nside) observatory, scheduler, observations = sim_runner(observatory, scheduler, survey_length=survey_length, filename=fileroot+'%iyrs.db' % years, delete_past=True, n_visit_limit=n_visit_limit, verbose=verbose, extra_info=extra_info, filter_scheduler=filter_sched) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--verbose", dest='verbose', action='store_true') parser.set_defaults(verbose=False) parser.add_argument("--survey_length", type=float, default=365.25*10) parser.add_argument("--outDir", type=str, default="") parser.add_argument("--maxDither", type=float, default=0.7, help="Dither size for DDFs (deg)") parser.add_argument("--moon_illum_limit", type=float, default=15., help="illumination limit to remove u-band") args = parser.parse_args() survey_length = args.survey_length # Days outDir = args.outDir verbose = args.verbose max_dither = args.maxDither illum_limit = args.moon_illum_limit nside = 32 per_night = True # Dither DDF per night nexp = 1 # All observations mixed_pairs = True # For the blob scheduler camera_ddf_rot_limit = 75. extra_info = {} exec_command = '' for arg in sys.argv: exec_command += ' ' + arg extra_info['exec command'] = exec_command try: extra_info['git hash'] = subprocess.check_output(['git', 'rev-parse', 'HEAD']) except subprocess.CalledProcessError: extra_info['git hash'] = 'Not in git repo' extra_info['file executed'] = os.path.realpath(__file__) fileroot = 'darkddf_' file_end = 'v1.4_' # Set up the DDF surveys to dither dither_detailer = detailers.Dither_detailer(per_night=per_night, max_dither=max_dither) details = [detailers.Camera_rot_detailer(min_rot=-camera_ddf_rot_limit, max_rot=camera_ddf_rot_limit), dither_detailer] ddfs = generate_dd_surveys(nside=nside, nexp=nexp, detailers=details) greedy = gen_greedy_surveys(nside, nexp=nexp) blobs = generate_blobs(nside, nexp=nexp) surveys = [ddfs, blobs, greedy] run_sched(surveys, survey_length=survey_length, verbose=verbose, fileroot=os.path.join(outDir, fileroot+file_end), extra_info=extra_info, nside=nside, illum_limit=illum_limit)
9d503b9b1c3674a28181a2570002021ac4478d1d
210ecd63113ce90c5f09bc2b09db3e80ff98117a
/AbletonLive9_RemoteScripts/Axiom_49_61_Classic/Axiom.py
0ab7f4b3308a768b95753f436555c09b9f96c849
[]
no_license
ajasver/MidiScripts
86a765b8568657633305541c46ccc1fd1ea34501
f727a2e63c95a9c5e980a0738deb0049363ba536
refs/heads/master
2021-01-13T02:03:55.078132
2015-07-16T18:27:30
2015-07-16T18:27:30
38,516,112
4
1
null
null
null
null
UTF-8
Python
false
false
6,330
py
#Embedded file name: /Users/versonator/Jenkins/live/Binary/Core_Release_64_static/midi-remote-scripts/Axiom_49_61_Classic/Axiom.py from _Axiom.consts import * from _Axiom.Transport import Transport from _Axiom.Pads import Pads from _Axiom.Encoders import Encoders from SliderSection import SliderSection import Live import MidiRemoteScript class Axiom: """ A controller script for the M-Audio Axiom Keyboard/Controller series """ def __init__(self, c_instance): self.__c_instance = c_instance self.__current_track = self.song().view.selected_track self.__current_device = self.__current_track.view.selected_device self.song().add_visible_tracks_listener(self.__tracks_changed) self.__transport_unit = Transport(self) self.__encoder_unit = Encoders(self, True) self.__slider_unit = SliderSection(self) self.__pad_unit = Pads(self) def application(self): """returns a reference to the application that we are running in """ return Live.Application.get_application() def song(self): """returns a reference to the Live song instance that we do control """ return self.__c_instance.song() def disconnect(self): """Live -> Script Called right before we get disconnected from Live. """ self.song().remove_visible_tracks_listener(self.__tracks_changed) self.__encoder_unit.disconnect() def can_lock_to_devices(self): return True def suggest_input_port(self): """Live -> Script Live can ask the script for an input port name to find a suitable one. """ return str('USB Axiom') def suggest_output_port(self): """Live -> Script Live can ask the script for an output port name to find a suitable one. """ return str('USB Axiom') def suggest_map_mode(self, cc_no, channel): """Live -> Script Live can ask the script for a suitable mapping mode for a given CC. """ suggested_map_mode = Live.MidiMap.MapMode.absolute if cc_no in AXIOM_ENCODERS: suggested_map_mode = Live.MidiMap.MapMode.relative_smooth_binary_offset return suggested_map_mode def show_message(self, message): self.__c_instance.show_message(message) def supports_pad_translation(self): return True def connect_script_instances(self, instanciated_scripts): """Called by the Application as soon as all scripts are initialized. You can connect yourself to other running scripts here, as we do it connect the extension modules (MackieControlXTs). """ pass def request_rebuild_midi_map(self): """Script -> Live When the internal MIDI controller has changed in a way that you need to rebuild the MIDI mappings, request a rebuild by calling this function This is processed as a request, to be sure that its not too often called, because its time-critical. """ self.__c_instance.request_rebuild_midi_map() def send_midi(self, midi_event_bytes): """Script -> Live Use this function to send MIDI events through Live to the _real_ MIDI devices that this script is assigned to. """ self.__c_instance.send_midi(midi_event_bytes) def refresh_state(self): """Live -> Script Send out MIDI to completely update the attached MIDI controller. Will be called when requested by the user, after for example having reconnected the MIDI cables... """ pass def build_midi_map(self, midi_map_handle): """Live -> Script Build DeviceParameter Mappings, that are processed in Audio time, or forward MIDI messages explicitly to our receive_midi_functions. Which means that when you are not forwarding MIDI, nor mapping parameters, you will never get any MIDI messages at all. """ script_handle = self.__c_instance.handle() self.__transport_unit.build_midi_map(script_handle, midi_map_handle) self.__encoder_unit.build_midi_map(script_handle, midi_map_handle) self.__slider_unit.build_midi_map(script_handle, midi_map_handle) self.__pad_unit.build_midi_map(script_handle, midi_map_handle) self.__c_instance.set_pad_translation(PAD_TRANSLATION) def update_display(self): """Live -> Script Aka on_timer. Called every 100 ms and should be used to update display relevant parts of the controller """ if self.__transport_unit: self.__transport_unit.refresh_state() def receive_midi(self, midi_bytes): """Live -> Script MIDI messages are only received through this function, when explicitly forwarded in 'build_midi_map'. """ if midi_bytes[0] & 240 == CC_STATUS: channel = midi_bytes[0] & 15 cc_no = midi_bytes[1] cc_value = midi_bytes[2] if list(AXIOM_TRANSPORT).count(cc_no) > 0: self.__transport_unit.receive_midi_cc(cc_no, cc_value) elif list(AXIOM_BUTTONS).count(cc_no) > 0: self.__slider_unit.receive_midi_cc(cc_no, cc_value, channel) elif list(AXIOM_ENCODERS).count(cc_no) > 0: self.__encoder_unit.receive_midi_cc(cc_no, cc_value, channel) elif list(AXIOM_PADS).count(cc_no) > 0: self.__pad_unit.receive_midi_cc(cc_no, cc_value, channel) elif midi_bytes[0] == 240: pass def lock_to_device(self, device): self.__encoder_unit.lock_to_device(device) def unlock_from_device(self, device): self.__encoder_unit.unlock_from_device(device) def set_appointed_device(self, device): self.__encoder_unit.set_appointed_device(device) def __tracks_changed(self): self.request_rebuild_midi_map() def bank_changed(self, new_bank): if self.__encoder_unit.set_bank(new_bank): self.request_rebuild_midi_map() def restore_bank(self, bank): self.__encoder_unit.restore_bank(bank) self.request_rebuild_midi_map() def instance_identifier(self): return self.__c_instance.instance_identifier()
5f1b314f8c6a6fa4da53ae06524ff29cf5a0f199
ecd9b7e440f002a00d3a8a8e62de208508fadb75
/flask/docker_flask_simple/app.py
cb6628b3c9dbfca90bb81b8a092b41c7c253c91b
[]
no_license
enderst3/challenges
ce2248eabc36e64dbd84dffad3fea176108bc3f3
0b13195cc53d5fc25f7bedd3dad1c14051e216cc
refs/heads/master
2023-01-09T00:47:51.129159
2020-04-20T22:09:00
2020-04-20T22:09:00
77,492,197
0
1
null
2023-01-03T22:44:04
2016-12-28T01:08:14
null
UTF-8
Python
false
false
180
py
from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Flask Docerized' if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
e76a7e53420bb1d7554e59aa283fc3ad1b29a39a
268568ff2d483f39de78a5b29d941ce499cace33
/external-deps/python-language-server/pyls/_utils.py
b1a3bd96c8db094dcff95ae71fcefcf25cd50da1
[ "MIT", "Python-2.0" ]
permissive
MarkMoretto/spyder-master
61e7f8007144562978da9c6adecaa3022758c56f
5f8c64edc0bbd203a97607950b53a9fcec9d2f0b
refs/heads/master
2023-01-10T16:34:37.825886
2020-08-07T19:07:56
2020-08-07T19:07:56
285,901,914
2
1
MIT
2022-12-20T13:46:41
2020-08-07T19:03:37
Python
UTF-8
Python
false
false
6,670
py
# Copyright 2017 Palantir Technologies, Inc. import functools import inspect import logging import os import sys import threading import jedi PY2 = sys.version_info.major == 2 JEDI_VERSION = jedi.__version__ if PY2: import pathlib2 as pathlib else: import pathlib log = logging.getLogger(__name__) def debounce(interval_s, keyed_by=None): """Debounce calls to this function until interval_s seconds have passed.""" def wrapper(func): timers = {} lock = threading.Lock() @functools.wraps(func) def debounced(*args, **kwargs): call_args = inspect.getcallargs(func, *args, **kwargs) key = call_args[keyed_by] if keyed_by else None def run(): with lock: del timers[key] return func(*args, **kwargs) with lock: old_timer = timers.get(key) if old_timer: old_timer.cancel() timer = threading.Timer(interval_s, run) timers[key] = timer timer.start() return debounced return wrapper def find_parents(root, path, names): """Find files matching the given names relative to the given path. Args: path (str): The file path to start searching up from. names (List[str]): The file/directory names to look for. root (str): The directory at which to stop recursing upwards. Note: The path MUST be within the root. """ if not root: return [] if not os.path.commonprefix((root, path)): log.warning("Path %s not in %s", path, root) return [] # Split the relative by directory, generate all the parent directories, then check each of them. # This avoids running a loop that has different base-cases for unix/windows # e.g. /a/b and /a/b/c/d/e.py -> ['/a/b', 'c', 'd'] dirs = [root] + os.path.relpath(os.path.dirname(path), root).split(os.path.sep) # Search each of /a/b/c, /a/b, /a while dirs: search_dir = os.path.join(*dirs) existing = list(filter(os.path.exists, [os.path.join(search_dir, n) for n in names])) if existing: return existing dirs.pop() # Otherwise nothing return [] def match_uri_to_workspace(uri, workspaces): if uri is None: return None max_len, chosen_workspace = -1, None path = pathlib.Path(uri).parts for workspace in workspaces: try: workspace_parts = pathlib.Path(workspace).parts except TypeError: # This can happen in Python2 if 'value' is a subclass of string workspace_parts = pathlib.Path(unicode(workspace)).parts if len(workspace_parts) > len(path): continue match_len = 0 for workspace_part, path_part in zip(workspace_parts, path): if workspace_part == path_part: match_len += 1 if match_len > 0: if match_len > max_len: max_len = match_len chosen_workspace = workspace return chosen_workspace def list_to_string(value): return ",".join(value) if isinstance(value, list) else value def merge_dicts(dict_a, dict_b): """Recursively merge dictionary b into dictionary a. If override_nones is True, then """ def _merge_dicts_(a, b): for key in set(a.keys()).union(b.keys()): if key in a and key in b: if isinstance(a[key], dict) and isinstance(b[key], dict): yield (key, dict(_merge_dicts_(a[key], b[key]))) elif b[key] is not None: yield (key, b[key]) else: yield (key, a[key]) elif key in a: yield (key, a[key]) elif b[key] is not None: yield (key, b[key]) return dict(_merge_dicts_(dict_a, dict_b)) def format_docstring(contents): """Python doc strings come in a number of formats, but LSP wants markdown. Until we can find a fast enough way of discovering and parsing each format, we can do a little better by at least preserving indentation. """ contents = contents.replace('\t', u'\u00A0' * 4) contents = contents.replace(' ', u'\u00A0' * 2) return contents def clip_column(column, lines, line_number): """ Normalise the position as per the LSP that accepts character positions > line length https://microsoft.github.io/language-server-protocol/specification#position """ max_column = len(lines[line_number].rstrip('\r\n')) if len(lines) > line_number else 0 return min(column, max_column) def position_to_jedi_linecolumn(document, position): """ Convert the LSP format 'line', 'character' to Jedi's 'line', 'column' https://microsoft.github.io/language-server-protocol/specification#position """ code_position = {} if position: code_position = {'line': position['line'] + 1, 'column': clip_column(position['character'], document.lines, position['line'])} return code_position if os.name == 'nt': import ctypes kernel32 = ctypes.windll.kernel32 PROCESS_QUERY_INFROMATION = 0x1000 def is_process_alive(pid): """Check whether the process with the given pid is still alive. Running `os.kill()` on Windows always exits the process, so it can't be used to check for an alive process. see: https://docs.python.org/3/library/os.html?highlight=os%20kill#os.kill Hence ctypes is used to check for the process directly via windows API avoiding any other 3rd-party dependency. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise. """ process = kernel32.OpenProcess(PROCESS_QUERY_INFROMATION, 0, pid) if process != 0: kernel32.CloseHandle(process) return True return False else: import errno def is_process_alive(pid): """Check whether the process with the given pid is still alive. Args: pid (int): process ID Returns: bool: False if the process is not alive or don't have permission to check, True otherwise. """ if pid < 0: return False try: os.kill(pid, 0) except OSError as e: return e.errno == errno.EPERM else: return True
205911f940c06e8ae528b745e89315ebdc625763
3546dd5dbcffc8509440c820faa7cf28080c5df7
/python35/Lib/site-packages/scipy/spatial/_procrustes.py
e94af255f13055b789b6289a7e0f6872ad2a0b60
[ "Apache-2.0", "MIT", "BSD-3-Clause", "LGPL-2.1-only" ]
permissive
Matchoc/python_env
55ad609c8270cc6148eda22d37f36709d73b3652
859d84d1717a265a4085ad29706b12c19c62d36f
refs/heads/master
2022-02-13T11:05:51.825544
2020-06-05T02:42:08
2020-06-05T02:42:08
75,793,921
0
1
Apache-2.0
2018-12-14T07:30:28
2016-12-07T03:06:13
Python
UTF-8
Python
false
false
4,498
py
""" This module provides functions to perform full Procrustes analysis. This code was originally written by Justin Kucynski and ported over from scikit-bio by Yoshiki Vazquez-Baeza. """ from __future__ import absolute_import, division, print_function import numpy as np from scipy.linalg import orthogonal_procrustes __all__ = ['procrustes'] def procrustes(data1, data2): r"""Procrustes analysis, a similarity test for two data sets. Each input matrix is a set of points or vectors (the rows of the matrix). The dimension of the space is the number of columns of each matrix. Given two identically sized matrices, procrustes standardizes both such that: - :math:`tr(AA^{T}) = 1`. - Both sets of points are centered around the origin. Procrustes ([1]_, [2]_) then applies the optimal transform to the second matrix (including scaling/dilation, rotations, and reflections) to minimize :math:`M^{2}=\sum(data1-data2)^{2}`, or the sum of the squares of the pointwise differences between the two input datasets. This function was not designed to handle datasets with different numbers of datapoints (rows). If two data sets have different dimensionality (different number of columns), simply add columns of zeros the smaller of the two. Parameters ---------- data1 : array_like Matrix, n rows represent points in k (columns) space `data1` is the reference data, after it is standardised, the data from `data2` will be transformed to fit the pattern in `data1` (must have >1 unique points). data2 : array_like n rows of data in k space to be fit to `data1`. Must be the same shape ``(numrows, numcols)`` as data1 (must have >1 unique points). Returns ------- mtx1 : array_like A standardized version of `data1`. mtx2 : array_like The orientation of `data2` that best fits `data1`. Centered, but not necessarily :math:`tr(AA^{T}) = 1`. disparity : float :math:`M^{2}` as defined above. Raises ------ ValueError If the input arrays are not two-dimensional. If the shape of the input arrays is different. If the input arrays have zero columns or zero rows. See Also -------- scipy.linalg.orthogonal_procrustes Notes ----- - The disparity should not depend on the order of the input matrices, but the output matrices will, as only the first output matrix is guaranteed to be scaled such that :math:`tr(AA^{T}) = 1`. - Duplicate data points are generally ok, duplicating a data point will increase its effect on the procrustes fit. - The disparity scales as the number of points per input matrix. References ---------- .. [1] Krzanowski, W. J. (2000). "Principles of Multivariate analysis". .. [2] Gower, J. C. (1975). "Generalized procrustes analysis". Examples -------- >>> from scipy.spatial import procrustes The matrix ``b`` is a rotated, shifted, scaled and mirrored version of ``a`` here: >>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd') >>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd') >>> mtx1, mtx2, disparity = procrustes(a, b) >>> round(disparity) 0.0 """ mtx1 = np.array(data1, dtype=np.double, copy=True) mtx2 = np.array(data2, dtype=np.double, copy=True) if mtx1.ndim != 2 or mtx2.ndim != 2: raise ValueError("Input matrices must be two-dimensional") if mtx1.shape != mtx2.shape: raise ValueError("Input matrices must be of same shape") if mtx1.size == 0: raise ValueError("Input matrices must be >0 rows and >0 cols") # translate all the data to the origin mtx1 -= np.mean(mtx1, 0) mtx2 -= np.mean(mtx2, 0) norm1 = np.linalg.norm(mtx1) norm2 = np.linalg.norm(mtx2) if norm1 == 0 or norm2 == 0: raise ValueError("Input matrices must contain >1 unique points") # change scaling of data (in rows) such that trace(mtx*mtx') = 1 mtx1 /= norm1 mtx2 /= norm2 # transform mtx2 to minimize disparity R, s = orthogonal_procrustes(mtx1, mtx2) mtx2 = np.dot(mtx2, R.T) * s # measure the dissimilarity between the two datasets disparity = np.sum(np.square(mtx1 - mtx2)) return mtx1, mtx2, disparity
99a4eea6eda5b5fb118f8699d09cd04ae35731c3
2f898bb332097d11f321186207e94f6d156587f3
/audio/generar_lista.py
19b54a1a93b7ab07278abcc704016addeba3b756
[ "MIT" ]
permissive
miltonsarria/teaching
ad2d07e9cfbfcf272c4b2fbef47321eae765a605
7a2b4e6c74d9f11562dfe34722e607ca081c1681
refs/heads/master
2022-01-05T05:58:13.163155
2019-05-02T20:45:46
2019-05-02T20:45:46
102,375,690
1
0
null
null
null
null
UTF-8
Python
false
false
372
py
import os data_dir='/home/sarria/python/audio/audio' ###################### # frequency range to plot archivo=open('lista.txt','w') for dirpath, dirnames, filenames in os.walk(data_dir): for name in filenames: if name.split('.')[1]=='wav': fullname = os.path.join(dirpath,name) archivo.write(fullname+'\n') archivo.close()
cdf97c1a0c5c56f2ee41575f2427b61649c0da97
043ca446cbee59c1926de7473869ef34748e5b2b
/_2016/patreon.py
e381afcf994ca2b241b69e2c1b1d7faa5516bb21
[ "MIT" ]
permissive
soubam/videos
785d04907d6955456797f989893b3f811c7f721e
04a00e521808e2b733903bd1c91435a29ba2c678
refs/heads/master
2023-08-28T15:38:08.284733
2021-11-11T23:22:35
2021-11-11T23:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,927
py
from manim_imports_ext import * class SideGigToFullTime(Scene): def construct(self): morty = Mortimer() morty.next_to(ORIGIN, DOWN) self.add(morty) self.side_project(morty) self.income(morty) self.full_time(morty) def side_project(self, morty): rect = PictureInPictureFrame() rect.next_to(morty, UP+LEFT) side_project = TexText("Side project") side_project.next_to(rect, UP) dollar_sign = Tex("\\$") cross = VGroup(*[ Line(vect, -vect, color = RED) for vect in (UP+RIGHT, UP+LEFT) ]) cross.set_height(dollar_sign.get_height()) no_money = VGroup(dollar_sign, cross) no_money.next_to(rect, DOWN) self.play( morty.change_mode, "raise_right_hand", morty.look_at, rect ) self.play( Write(side_project), ShowCreation(rect) ) self.wait() self.play(Blink(morty)) self.wait() self.play(Write(dollar_sign)) self.play(ShowCreation(cross)) self.screen_title = side_project self.cross = cross def income(self, morty): dollar_signs = VGroup(*[ Tex("\\$") for x in range(10) ]) dollar_signs.arrange(RIGHT, buff = LARGE_BUFF) dollar_signs.set_color(BLACK) dollar_signs.next_to(morty.eyes, RIGHT, buff = 2*LARGE_BUFF) self.play( morty.change_mode, "happy", morty.look_at, dollar_signs, dollar_signs.shift, LEFT, dollar_signs.set_color, GREEN ) for x in range(5): last_sign = dollar_signs[0] dollar_signs.remove(last_sign) self.play( FadeOut(last_sign), dollar_signs.shift, LEFT ) random.shuffle(dollar_signs.submobjects) self.play( ApplyMethod( dollar_signs.shift, (FRAME_Y_RADIUS+1)*DOWN, lag_ratio = 0.5 ), morty.change_mode, "guilty", morty.look, DOWN+RIGHT ) self.play(Blink(morty)) def full_time(self, morty): new_title = TexText("Full time") new_title.move_to(self.screen_title) q_mark = Tex("?") q_mark.next_to(self.cross) q_mark.set_color(GREEN) self.play(morty.look_at, q_mark) self.play(Transform(self.screen_title, new_title)) self.play( Transform(self.cross, q_mark), morty.change_mode, "confused" ) self.play(Blink(morty)) self.wait() self.play( morty.change_mode, "happy", morty.look, UP+RIGHT ) self.play(Blink(morty)) self.wait() class TakesTime(Scene): def construct(self): rect = PictureInPictureFrame(height = 4) rect.to_edge(RIGHT, buff = LARGE_BUFF) clock = Clock() clock.hour_hand.set_color(BLUE_C) clock.minute_hand.set_color(BLUE_D) clock.next_to(rect, LEFT, buff = LARGE_BUFF) self.add(rect) self.play(ShowCreation(clock)) for x in range(3): self.play(ClockPassesTime(clock)) class GrowingToDoList(Scene): def construct(self): morty = Mortimer() morty.flip() morty.next_to(ORIGIN, DOWN+LEFT) title = TexText("3blue1brown to-do list") title.next_to(ORIGIN, RIGHT) title.to_edge(UP) underline = Line(title.get_left(), title.get_right()) underline.next_to(title, DOWN) lines = VGroup(*list(map(TexText, [ "That one on topology", "Something with quaternions", "Solving puzzles with binary counting", "Tatoos on math", "Laplace stuffs", "The role of memorization in math", "Strangeness of the axiom of choice", "Tensors", "Different view of $e^{\\pi i}$", "Quadratic reciprocity", "Fourier stuffs", "$1+2+3+\\cdots = -\\frac{1}{12}$", "Understanding entropy", ]))) lines.scale(0.65) lines.arrange(DOWN, buff = MED_SMALL_BUFF, aligned_edge = LEFT) lines.set_color_by_gradient(BLUE_C, YELLOW) lines.next_to(title, DOWN, buff = LARGE_BUFF/2.) lines.to_edge(RIGHT) self.play( Write(title), morty.look_at, title ) self.play( Write(lines[0]), morty.change_mode, "erm", run_time = 1 ) for line in lines[1:3]: self.play( Write(line), morty.look_at, line, run_time = 1 ) self.play( morty.change_mode, "pleading", morty.look_at, lines, Write( VGroup(*lines[3:]), ) ) class TwoTypesOfVideos(Scene): def construct(self): morty = Mortimer().shift(2*DOWN) stand_alone = TexText("Standalone videos") stand_alone.shift(FRAME_X_RADIUS*LEFT/2) stand_alone.to_edge(UP) series = TexText("Series") series.shift(FRAME_X_RADIUS*RIGHT/2) series.to_edge(UP) box = Rectangle(width = 16, height = 9, color = WHITE) box.set_height(3) box.next_to(stand_alone, DOWN) series_list = VGroup(*[ TexText("Essence of %s"%s) for s in [ "linear algebra", "calculus", "probability", "real analysis", "complex analysis", "ODEs", ] ]) series_list.arrange(DOWN, aligned_edge = LEFT, buff = MED_SMALL_BUFF) series_list.set_width(FRAME_X_RADIUS-2) series_list.next_to(series, DOWN, buff = MED_SMALL_BUFF) series_list.to_edge(RIGHT) fridays = TexText("Every other friday") when_done = TexText("When series is done") for words, vect in (fridays, LEFT), (when_done, RIGHT): words.set_color(YELLOW) words.next_to( morty, vect, buff = MED_SMALL_BUFF, aligned_edge = UP ) unless = TexText(""" Unless you're a patron \\dots """) unless.next_to(when_done, DOWN, buff = MED_SMALL_BUFF) self.add(morty) self.play(Blink(morty)) self.play( morty.change_mode, "raise_right_hand", morty.look_at, stand_alone, Write(stand_alone, run_time = 2), ) self.play( morty.change_mode, "raise_left_hand", morty.look_at, series, Write(series, run_time = 2), ) self.play(Blink(morty)) self.wait() self.play( morty.change_mode, "raise_right_hand", morty.look_at, box, ShowCreation(box) ) for x in range(3): self.wait(2) self.play(Blink(morty)) self.play( morty.change_mode, "raise_left_hand", morty.look_at, series ) for i, words in enumerate(series_list): self.play(Write(words), run_time = 1) self.play(Blink(morty)) self.wait() self.play(series_list[1].set_color, BLUE) self.wait(2) self.play(Blink(morty)) self.wait() pairs = [ (fridays, "speaking"), (when_done, "wave_2") , (unless, "surprised"), ] for words, mode in pairs: self.play( Write(words), morty.change_mode, mode, morty.look_at, words ) self.wait() class ClassWatching(TeacherStudentsScene): def construct(self): rect = PictureInPictureFrame(height = 4) rect.next_to(self.get_teacher(), UP, buff = LARGE_BUFF/2.) rect.to_edge(RIGHT) self.add(rect) for pi in self.get_students(): pi.look_at(rect) self.random_blink(5) self.change_student_modes( "raise_left_hand", "raise_right_hand", "sassy", ) self.play(self.get_teacher().change_mode, "pondering") self.random_blink(3) class RandolphWatching(Scene): def construct(self): randy = Randolph() randy.shift(2*LEFT) randy.look(RIGHT) self.add(randy) self.wait() self.play(Blink(randy)) self.wait() self.play( randy.change_mode, "pondering", randy.look, RIGHT ) self.play(Blink(randy)) self.wait() class RandolphWatchingWithLaptop(Scene): pass class GrowRonaksSierpinski(Scene): CONFIG = { "colors" : [BLUE, YELLOW, BLUE_C, BLUE_E], "dot_radius" : 0.08, "n_layers" : 64, } def construct(self): sierp = self.get_ronaks_sierpinski(self.n_layers) dots = self.get_dots(self.n_layers) self.triangle = VGroup(sierp, dots) self.triangle.scale(1.5) self.triangle.shift(3*UP) sierp_layers = sierp.submobjects dot_layers = dots.submobjects last_dot_layer = dot_layers[0] self.play(ShowCreation(last_dot_layer)) run_time = 1 for n, sierp_layer, dot_layer in zip(it.count(1), sierp_layers, dot_layers[1:]): self.play( ShowCreation(sierp_layer, lag_ratio=1), Animation(last_dot_layer), run_time = run_time ) self.play(ShowCreation( dot_layer, run_time = run_time, lag_ratio=1, )) # if n == 2: # dot = dot_layer[1] # words = TexText("Stop growth at pink") # words.next_to(dot, DOWN, 2) # arrow = Arrow(words, dot) # self.play( # Write(words), # ShowCreation(arrow) # ) # self.wait() # self.play(*map(FadeOut, [words, arrow])) log2 = np.log2(n) if n > 2 and log2-np.round(log2) == 0 and n < self.n_layers: self.wait() self.rescale() run_time /= 1.3 last_dot_layer = dot_layer def rescale(self): shown_mobs = VGroup(*self.get_mobjects()) shown_mobs_copy = shown_mobs.copy() self.remove(shown_mobs) self.add(shown_mobs_copy) top = shown_mobs.get_top() self.triangle.scale(0.5) self.triangle.move_to(top, aligned_edge = UP) self.play(Transform(shown_mobs_copy, shown_mobs)) self.remove(shown_mobs_copy) self.add(shown_mobs) def get_pascal_point(self, n, k): return n*rotate_vector(RIGHT, -2*np.pi/3) + k*RIGHT def get_lines_at_layer(self, n): lines = VGroup() for k in range(n+1): if choose(n, k)%2 == 1: p1 = self.get_pascal_point(n, k) p2 = self.get_pascal_point(n+1, k) p3 = self.get_pascal_point(n+1, k+1) lines.add(Line(p1, p2), Line(p1, p3)) return lines def get_dot_layer(self, n): dots = VGroup() for k in range(n+1): p = self.get_pascal_point(n, k) dot = Dot(p, radius = self.dot_radius) if choose(n, k)%2 == 0: if choose(n-1, k)%2 == 0: continue dot.set_color(PINK) else: dot.set_color(WHITE) dots.add(dot) return dots def get_ronaks_sierpinski(self, n_layers): ronaks_sierpinski = VGroup() for n in range(n_layers): ronaks_sierpinski.add(self.get_lines_at_layer(n)) ronaks_sierpinski.set_color_by_gradient(*self.colors) ronaks_sierpinski.set_stroke(width = 0)##TODO return ronaks_sierpinski def get_dots(self, n_layers): dots = VGroup() for n in range(n_layers+1): dots.add(self.get_dot_layer(n)) return dots class PatreonLogo(Scene): def construct(self): words1 = TexText( "Support future\\\\", "3blue1brown videos" ) words2 = TexText( "Early access to\\\\", "``Essence of'' series" ) for words in words1, words2: words.scale(2) words.to_edge(DOWN) self.play(Write(words1)) self.wait(2) self.play(Transform(words1, words2)) self.wait(2) class PatreonLogin(Scene): pass class PythagoreanTransformation(Scene): def construct(self): tri1 = VGroup( Line(ORIGIN, 2*RIGHT, color = BLUE), Line(2*RIGHT, 3*UP, color = YELLOW), Line(3*UP, ORIGIN, color = MAROON_B), ) tri1.shift(2.5*(DOWN+LEFT)) tri2, tri3, tri4 = copies = [ tri1.copy().rotate(-i*np.pi/2) for i in range(1, 4) ] a = Tex("a").next_to(tri1[0], DOWN, buff = MED_SMALL_BUFF) b = Tex("b").next_to(tri1[2], LEFT, buff = MED_SMALL_BUFF) c = Tex("c").next_to(tri1[1].get_center(), UP+RIGHT) c_square = Polygon(*[ tri[1].get_end() for tri in [tri1] + copies ]) c_square.set_stroke(width = 0) c_square.set_fill(color = YELLOW, opacity = 0.5) c_square_tex = Tex("c^2") big_square = Polygon(*[ tri[0].get_start() for tri in [tri1] + copies ]) big_square.set_color(WHITE) a_square = Square(side_length = 2) a_square.shift(1.5*(LEFT+UP)) a_square.set_stroke(width = 0) a_square.set_fill(color = BLUE, opacity = 0.5) a_square_tex = Tex("a^2") a_square_tex.move_to(a_square) b_square = Square(side_length = 3) b_square.move_to( a_square.get_corner(DOWN+RIGHT), aligned_edge = UP+LEFT ) b_square.set_stroke(width = 0) b_square.set_fill(color = MAROON_B, opacity = 0.5) b_square_tex = Tex("b^2") b_square_tex.move_to(b_square) self.play(ShowCreation(tri1, run_time = 2)) self.play(*list(map(Write, [a, b, c]))) self.wait() self.play( FadeIn(c_square), Animation(c) ) self.play(Transform(c, c_square_tex)) self.wait(2) mover = tri1.copy() for copy in copies: self.play(Transform( mover, copy, path_arc = -np.pi/2 )) self.add(copy) self.remove(mover) self.add(big_square, *[tri1]+copies) self.wait(2) self.play(*list(map(FadeOut, [a, b, c, c_square]))) self.play( tri3.shift, tri1.get_corner(UP+LEFT) -\ tri3.get_corner(UP+LEFT) ) self.play(tri2.shift, 2*RIGHT) self.play(tri4.shift, 3*UP) self.wait() self.play(FadeIn(a_square)) self.play(FadeIn(b_square)) self.play(Write(a_square_tex)) self.play(Write(b_square_tex)) self.wait(2) class KindWordsOnEoLA(TeacherStudentsScene): def construct(self): rect = Rectangle(width = 16, height = 9, color = WHITE) rect.set_height(4) title = TexText("Essence of linear algebra") title.to_edge(UP) rect.next_to(title, DOWN) self.play( Write(title), ShowCreation(rect), *[ ApplyMethod(pi.look_at, rect) for pi in self.get_pi_creatures() ], run_time = 2 ) self.random_blink() self.change_student_modes(*["hooray"]*3) self.random_blink() self.play(self.get_teacher().change_mode, "happy") self.random_blink() class MakeALotOfPiCreaturesHappy(Scene): def construct(self): width = 7 height = 4 pis = VGroup(*[ VGroup(*[ Randolph() for x in range(7) ]).arrange(RIGHT, buff = MED_LARGE_BUFF) for x in range(4) ]).arrange(DOWN, buff = MED_LARGE_BUFF) pi_list = list(it.chain(*[ layer.submobjects for layer in pis.submobjects ])) random.shuffle(pi_list) colors = color_gradient([BLUE_D, GREY_BROWN], len(pi_list)) for pi, color in zip(pi_list, colors): pi.set_color(color) pis = VGroup(*pi_list) pis.set_height(6) self.add(pis) pis.generate_target() self.wait() for pi, color in zip(pis.target, colors): pi.change_mode("hooray") # pi.scale(1) pi.set_color(color) self.play( MoveToTarget( pis, run_time = 2, lag_ratio = 0.5, ) ) for x in range(10): pi = random.choice(pi_list) self.play(Blink(pi)) class IntegrationByParts(Scene): def construct(self): rect = Rectangle(width = 5, height = 3) # f = lambda t : 4*np.sin(t*np.pi/2) f = lambda t : 4*t g = lambda t : 3*smooth(t) curve = ParametricCurve(lambda t : f(t)*RIGHT + g(t)*DOWN) curve.set_color(YELLOW) curve.center() rect = Rectangle() rect.replace(curve, stretch = True) regions = [] for vect, color in (UP+RIGHT, BLUE), (DOWN+LEFT, GREEN): region = curve.copy() region.add_line_to(rect.get_corner(vect)) region.set_stroke(width = 0) region.set_fill(color = color, opacity = 0.5) regions.append(region) upper_right, lower_left = regions v_lines, h_lines = VGroup(), VGroup() for alpha in np.linspace(0, 1, 30): point = curve.point_from_proportion(alpha) top_point = curve.get_points()[0][1]*UP + point[0]*RIGHT left_point = curve.get_points()[0][0]*RIGHT + point[1]*UP v_lines.add(Line(top_point, point)) h_lines.add(Line(left_point, point)) v_lines.set_color(BLUE_E) h_lines.set_color(GREEN_E) equation = Tex( "\\int_0^1 g\\,df", "+\\int_0^1 f\\,dg", "= \\big(fg \\big)_0^1" ) equation.to_edge(UP) equation.set_color_by_tex( "\\int_0^1 g\\,df", upper_right.get_color() ) equation.set_color_by_tex( "+\\int_0^1 f\\,dg", lower_left.get_color() ) left_brace = Brace(rect, LEFT) down_brace = Brace(rect, DOWN) g_T = left_brace.get_text("$g(t)\\big|_0^1$") f_T = down_brace.get_text("$f(t)\\big|_0^1$") self.draw_curve(curve) self.play(ShowCreation(rect)) self.play(*list(map(Write, [down_brace, left_brace, f_T, g_T]))) self.wait() self.play(FadeIn(upper_right)) self.play( ShowCreation( v_lines, run_time = 2 ), Animation(curve), Animation(rect) ) self.play(Write(equation[0])) self.wait() self.play(FadeIn(lower_left)) self.play( ShowCreation( h_lines, run_time = 2 ), Animation(curve), Animation(rect) ) self.play(Write(equation[1])) self.wait() self.play(Write(equation[2])) self.wait() def draw_curve(self, curve): lp, lnum, comma, rnum, rp = coords = Tex( "\\big(f(", "t", "), g(", "t", ")\\big)" ) coords.set_color_by_tex("0.00", BLACK) dot = Dot(radius = 0.1) dot.move_to(curve.get_points()[0]) coords.next_to(dot, UP+RIGHT) self.play( ShowCreation(curve), UpdateFromFunc( dot, lambda d : d.move_to(curve.get_points()[-1]) ), MaintainPositionRelativeTo(coords, dot), run_time = 5, rate_func=linear ) self.wait() self.play(*list(map(FadeOut, [coords, dot]))) class EndScreen(TeacherStudentsScene): def construct(self): self.teacher_says( """ See you every other friday! """, target_mode = "hooray" ) self.change_student_modes(*["happy"]*3) self.random_blink()
6e2543b569d01c6fb691b474f00c0e8cba92b412
f305f84ea6f721c2391300f0a60e21d2ce14f2a5
/22_专题/字典序列删除/No.205 マージして辞書順最小.py
eaa9b544e0e0d282d781269d4968c7757f805bb3
[]
no_license
981377660LMT/algorithm-study
f2ada3e6959338ae1bc21934a84f7314a8ecff82
7e79e26bb8f641868561b186e34c1127ed63c9e0
refs/heads/master
2023-09-01T18:26:16.525579
2023-09-01T12:21:58
2023-09-01T12:21:58
385,861,235
225
24
null
null
null
null
UTF-8
Python
false
false
586
py
# https://yukicoder.me/problems/no/205 from heapq import heapify, heappop, heappush from typing import List def minLexMerge(words: List[str]) -> str: """字典序最小的合并字符串""" pq = [w + chr(200) for w in words] heapify(pq) res = [] while pq: min_ = heappop(pq) res.append(min_[0]) min_ = min_[1:] if len(min_) >= 2: heappush(pq, min_) return "".join(res) if __name__ == "__main__": N = int(input()) words = [input() for _ in range(N)] print(minLexMerge(words))
04354364843fb4756d535de602e0fdfbd92a9c56
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_Class592.py
0d982aed897b3624ea008b4b08f71e31f6e89d1f
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
2,619
py
# qubit number=3 # total number=16 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=5 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=6 prog.swap(input_qubit[1],input_qubit[0]) # number=7 prog.cx(input_qubit[0],input_qubit[1]) # number=13 prog.x(input_qubit[1]) # number=14 prog.cx(input_qubit[0],input_qubit[1]) # number=15 prog.cx(input_qubit[0],input_qubit[1]) # number=10 prog.x(input_qubit[1]) # number=11 prog.cx(input_qubit[0],input_qubit[1]) # number=12 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =3962 writefile = open("../data/startQiskit_Class592.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog, FakeYorktown()) prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
d8cf6188053ba908317208d886dcc8fd7f1b6f87
62bbfb6c50bba16304202aea96d1de4990f95e04
/dependencies/pulumi_aws/ebs/get_volume.py
76cdd9bcbc32565818b181ebf5c6ff8e2aa9a736
[]
no_license
adriell/lambda-autoservico-storagegateway
b40b8717c8de076e61bbd422461c7d624a0d2273
f6e3dea61b004b73943a5438c658d3f019f106f7
refs/heads/main
2023-03-16T14:41:16.821675
2021-03-11T03:30:33
2021-03-11T03:30:33
345,865,704
0
1
null
null
null
null
UTF-8
Python
false
false
9,905
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = [ 'GetVolumeResult', 'AwaitableGetVolumeResult', 'get_volume', ] @pulumi.output_type class GetVolumeResult: """ A collection of values returned by getVolume. """ def __init__(__self__, arn=None, availability_zone=None, encrypted=None, filters=None, id=None, iops=None, kms_key_id=None, most_recent=None, multi_attach_enabled=None, outpost_arn=None, size=None, snapshot_id=None, tags=None, throughput=None, volume_id=None, volume_type=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if availability_zone and not isinstance(availability_zone, str): raise TypeError("Expected argument 'availability_zone' to be a str") pulumi.set(__self__, "availability_zone", availability_zone) if encrypted and not isinstance(encrypted, bool): raise TypeError("Expected argument 'encrypted' to be a bool") pulumi.set(__self__, "encrypted", encrypted) if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") pulumi.set(__self__, "filters", filters) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if iops and not isinstance(iops, int): raise TypeError("Expected argument 'iops' to be a int") pulumi.set(__self__, "iops", iops) if kms_key_id and not isinstance(kms_key_id, str): raise TypeError("Expected argument 'kms_key_id' to be a str") pulumi.set(__self__, "kms_key_id", kms_key_id) if most_recent and not isinstance(most_recent, bool): raise TypeError("Expected argument 'most_recent' to be a bool") pulumi.set(__self__, "most_recent", most_recent) if multi_attach_enabled and not isinstance(multi_attach_enabled, bool): raise TypeError("Expected argument 'multi_attach_enabled' to be a bool") pulumi.set(__self__, "multi_attach_enabled", multi_attach_enabled) if outpost_arn and not isinstance(outpost_arn, str): raise TypeError("Expected argument 'outpost_arn' to be a str") pulumi.set(__self__, "outpost_arn", outpost_arn) if size and not isinstance(size, int): raise TypeError("Expected argument 'size' to be a int") pulumi.set(__self__, "size", size) if snapshot_id and not isinstance(snapshot_id, str): raise TypeError("Expected argument 'snapshot_id' to be a str") pulumi.set(__self__, "snapshot_id", snapshot_id) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if throughput and not isinstance(throughput, int): raise TypeError("Expected argument 'throughput' to be a int") pulumi.set(__self__, "throughput", throughput) if volume_id and not isinstance(volume_id, str): raise TypeError("Expected argument 'volume_id' to be a str") pulumi.set(__self__, "volume_id", volume_id) if volume_type and not isinstance(volume_type, str): raise TypeError("Expected argument 'volume_type' to be a str") pulumi.set(__self__, "volume_type", volume_type) @property @pulumi.getter def arn(self) -> str: """ The volume ARN (e.g. arn:aws:ec2:us-east-1:0123456789012:volume/vol-59fcb34e). """ return pulumi.get(self, "arn") @property @pulumi.getter(name="availabilityZone") def availability_zone(self) -> str: """ The AZ where the EBS volume exists. """ return pulumi.get(self, "availability_zone") @property @pulumi.getter def encrypted(self) -> bool: """ Whether the disk is encrypted. """ return pulumi.get(self, "encrypted") @property @pulumi.getter def filters(self) -> Optional[Sequence['outputs.GetVolumeFilterResult']]: return pulumi.get(self, "filters") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def iops(self) -> int: """ The amount of IOPS for the disk. """ return pulumi.get(self, "iops") @property @pulumi.getter(name="kmsKeyId") def kms_key_id(self) -> str: """ The ARN for the KMS encryption key. """ return pulumi.get(self, "kms_key_id") @property @pulumi.getter(name="mostRecent") def most_recent(self) -> Optional[bool]: return pulumi.get(self, "most_recent") @property @pulumi.getter(name="multiAttachEnabled") def multi_attach_enabled(self) -> bool: """ (Optional) Specifies whether Amazon EBS Multi-Attach is enabled. """ return pulumi.get(self, "multi_attach_enabled") @property @pulumi.getter(name="outpostArn") def outpost_arn(self) -> str: """ The Amazon Resource Name (ARN) of the Outpost. """ return pulumi.get(self, "outpost_arn") @property @pulumi.getter def size(self) -> int: """ The size of the drive in GiBs. """ return pulumi.get(self, "size") @property @pulumi.getter(name="snapshotId") def snapshot_id(self) -> str: """ The snapshot_id the EBS volume is based off. """ return pulumi.get(self, "snapshot_id") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ A map of tags for the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def throughput(self) -> int: """ The throughput that the volume supports, in MiB/s. """ return pulumi.get(self, "throughput") @property @pulumi.getter(name="volumeId") def volume_id(self) -> str: """ The volume ID (e.g. vol-59fcb34e). """ return pulumi.get(self, "volume_id") @property @pulumi.getter(name="volumeType") def volume_type(self) -> str: """ The type of EBS volume. """ return pulumi.get(self, "volume_type") class AwaitableGetVolumeResult(GetVolumeResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVolumeResult( arn=self.arn, availability_zone=self.availability_zone, encrypted=self.encrypted, filters=self.filters, id=self.id, iops=self.iops, kms_key_id=self.kms_key_id, most_recent=self.most_recent, multi_attach_enabled=self.multi_attach_enabled, outpost_arn=self.outpost_arn, size=self.size, snapshot_id=self.snapshot_id, tags=self.tags, throughput=self.throughput, volume_id=self.volume_id, volume_type=self.volume_type) def get_volume(filters: Optional[Sequence[pulumi.InputType['GetVolumeFilterArgs']]] = None, most_recent: Optional[bool] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVolumeResult: """ Use this data source to get information about an EBS volume for use in other resources. ## Example Usage ```python import pulumi import pulumi_aws as aws ebs_volume = aws.ebs.get_volume(filters=[ aws.ebs.GetVolumeFilterArgs( name="volume-type", values=["gp2"], ), aws.ebs.GetVolumeFilterArgs( name="tag:Name", values=["Example"], ), ], most_recent=True) ``` :param Sequence[pulumi.InputType['GetVolumeFilterArgs']] filters: One or more name/value pairs to filter off of. There are several valid keys, for a full reference, check out [describe-volumes in the AWS CLI reference][1]. :param bool most_recent: If more than one result is returned, use the most recent Volume. :param Mapping[str, str] tags: A map of tags for the resource. """ __args__ = dict() __args__['filters'] = filters __args__['mostRecent'] = most_recent __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:ebs/getVolume:getVolume', __args__, opts=opts, typ=GetVolumeResult).value return AwaitableGetVolumeResult( arn=__ret__.arn, availability_zone=__ret__.availability_zone, encrypted=__ret__.encrypted, filters=__ret__.filters, id=__ret__.id, iops=__ret__.iops, kms_key_id=__ret__.kms_key_id, most_recent=__ret__.most_recent, multi_attach_enabled=__ret__.multi_attach_enabled, outpost_arn=__ret__.outpost_arn, size=__ret__.size, snapshot_id=__ret__.snapshot_id, tags=__ret__.tags, throughput=__ret__.throughput, volume_id=__ret__.volume_id, volume_type=__ret__.volume_type)
0db7239c4f03d3370f18ba124dbfcb684296c2b2
962bc309985d39c115948dc788027dd860491ec8
/src/bioservices/tcga.py
67281041e4d623bedabba038cd7b7b6e13f0a6f3
[]
no_license
kp14/bioservices
6d03808ca5d14c84b708a819c8e4ad3ba3cb8931
a0e7f0f7aee3c8afc41ebebeb70d04dd02155e4f
refs/heads/master
2020-12-25T20:43:15.568664
2015-11-04T15:46:04
2015-11-04T15:46:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,865
py
# -*- python -*- # # This file is part of bioservices software # # Copyright (c) 2013-2014 - EBI-EMBL # # File author(s): # Thomas Cokelaer <[email protected]> # # # Distributed under the GPLv3 License. # See accompanying file LICENSE.txt or copy at # http://www.gnu.org/licenses/gpl-3.0.html # # website: https://github.com/cokelaer/bioservices # documentation: http://packages.python.org/bioservices # ############################################################################## # $Id$ """Interface to the quickGO interface .. topic:: What is quickGO :URL: http://www.ebi.ac.uk/QuickGO/ :Service: http://www.ebi.ac.uk/QuickGO/WebServices.html .. highlights:: "QuickGO is a fast web-based browser for Gene Ontology terms and annotations, which is provided by the UniProt-GOA project at the EBI. " -- from QuickGO home page, Dec 2012 """ from __future__ import print_function from bioservices.services import REST __all__ = ["TCGA"] class TCGA(REST): """Interface to the `TCGA`_ service DRAFT in progress https://wiki.nci.nih.gov/display/TCGA/TCGA+Annotations+Web+Service+User%27s+Guide """ def __init__(self, verbose=False, cache=False): """.. rubric:: Constructor :param bool verbose: print informative messages. """ super(TCGA, self).__init__(url="http://tcga-data.nci.nih.gov", name="TCGA", verbose=verbose, cache=cache) def search_annotations(self, item=None, annotationId): """Obtain Term information """ params = {'item':item, 'annotationId': annotationId} res = self.http_get("annotations/resources/searchannotations/json", frmt="json", params=params) return res def view_annotations(self): raise NotImplementedError
78e539bc4df5bd03fd0482b41756fceec1fe2904
0aedbdf98c00ff0c74a6fa759d4991563b957cde
/TwitterStream.py
5061256bb6e4ebb9d7cc5fee8bd48a203c55c4fe
[]
no_license
seethakris/ASPP2018
b953b0cc6684f9a9c667e85b6a37de73a2f0f41a
44aca0d6f3d3a1dac3bd9348477d23adc7b53f43
refs/heads/master
2021-09-04T11:07:51.423377
2018-01-18T04:24:54
2018-01-18T04:24:54
117,678,504
0
1
null
null
null
null
UTF-8
Python
false
false
1,805
py
# Import the necessary methods from tweepy library from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream from time import sleep from collections import deque # list-like container with fast appends and pops on either end # Variables that contains the user credentials to access Twitter API access_token = "YOURKEYHERE" access_token_secret = "YOURKEYHERE" consumer_key = "YOURKEYHERE" consumer_secret = "YOURKEYHERE" # This is a basic listener that just prints received tweets to stdout. class StdOutListener(StreamListener): """ Class with functions to stream tweets """ def __init__(self, api=None, maxlength=int(1e5)): super(StdOutListener, self).__init__() self.queue = deque(maxlen=maxlength) def on_status(self, status): if status.lang.find('en') < 0: return if status.coordinates is not None and status.entities.get('hashtags') != []: self.queue.append(status) def on_error(self, status_code): print('Error:', status_code) return False def gettweets(maxlength=int(1e5), wait_time=0.001): """ Tweets are streamed and stored in a queue. The queue is popped from the left during function call :param maxlength: maximum length of the queue wait_time: time to wait for a new tweet """ listener = StdOutListener() auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) stream = Stream(auth, listener) stream.filter(locations=[-180, -90, 180, 90], async=True) # This listens to tweets from all over the world while True: if len(listener.queue) > 0: yield listener.queue.popleft() else: sleep(wait_time)
5481f6f58c583a5b277d9510ddf791c355253b36
4510bbf54e2ca619c3a863f5ca03df6584585402
/tfx/components/__init__.py
c41bd948dd4197767f194a8a52a9a827be681b74
[ "Apache-2.0" ]
permissive
Mdlglobal-atlassian-net/tfx
e55f38336d1989ac970b5069c7128097ed86b422
37cbbb95c65e1a891045dd13232a7f2a293a7b70
refs/heads/master
2022-10-02T07:44:41.180873
2020-06-01T18:49:15
2020-06-01T18:49:53
268,607,840
0
1
Apache-2.0
2020-06-01T19:01:51
2020-06-01T19:01:50
null
UTF-8
Python
false
false
2,189
py
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Subpackage for TFX components.""" import tensorflow as tf # For component user to direct use tfx.components.[...] as an alias. from tfx.components.bulk_inferrer.component import BulkInferrer from tfx.components.common_nodes.importer_node import ImporterNode from tfx.components.common_nodes.resolver_node import ResolverNode from tfx.components.evaluator.component import Evaluator from tfx.components.example_gen.big_query_example_gen.component import BigQueryExampleGen from tfx.components.example_gen.component import FileBasedExampleGen from tfx.components.example_gen.csv_example_gen.component import CsvExampleGen from tfx.components.example_gen.import_example_gen.component import ImportExampleGen from tfx.components.example_validator.component import ExampleValidator from tfx.components.infra_validator.component import InfraValidator from tfx.components.model_validator.component import ModelValidator from tfx.components.pusher.component import Pusher from tfx.components.schema_gen.component import SchemaGen from tfx.components.statistics_gen.component import StatisticsGen from tfx.components.trainer.component import Trainer from tfx.components.transform.component import Transform # Prevents double logging: TFX and TF uses `tf.logging` but Beam uses standard # logging, both logging modules add its own handler. Following setting disables # tf.logging to propagate up to the parent logging handlers. This is a global # behavior (perhaps thread hostile) which affects all code that uses component # libaray. tf.get_logger().propagate = False
8bb262aeb2c7180ba30a8500f8b6363764b4e797
8890925319a25dc3df29f53d0d8125d347680f68
/looker_client_31/looker_sdk/user.py
211ffb1e3e321c24c8a99f3587927f6b7965c9ad
[ "MIT" ]
permissive
ContrastingSounds/looker_sdk_31
f5d300ae54aee1cc5a2621b36b49541db24ed248
f973434049fff1b605b10086ab8b84f2f62e3489
refs/heads/master
2020-03-19T20:31:24.785373
2018-06-11T09:41:36
2018-06-11T09:41:36
136,802,021
0
0
null
null
null
null
UTF-8
Python
false
false
31,338
py
# coding: utf-8 """ Experimental Looker API 3.1 Preview This API 3.1 is in active development. Breaking changes are likely to occur to some API functions in future Looker releases until API 3.1 is officially launched and upgraded to beta status. If you have time and interest to experiment with new or modified services exposed in this embryonic API 3.1, we welcome your participation and feedback! For large development efforts or critical line-of-business projects, we strongly recommend you stick with the API 3.0 while API 3.1 is under construction. # noqa: E501 OpenAPI spec version: 3.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from looker_client_31.looker_sdk.access_filter import AccessFilter # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_api import CredentialsApi # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_api3 import CredentialsApi3 # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_email import CredentialsEmail # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_embed import CredentialsEmbed # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_google import CredentialsGoogle # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_ldap import CredentialsLDAP # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_looker_openid import CredentialsLookerOpenid # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_oidc import CredentialsOIDC # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_saml import CredentialsSaml # noqa: F401,E501 from looker_client_31.looker_sdk.credentials_totp import CredentialsTotp # noqa: F401,E501 from looker_client_31.looker_sdk.session import Session # noqa: F401,E501 class User(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'int', 'first_name': 'str', 'last_name': 'str', 'display_name': 'str', 'email': 'str', 'is_disabled': 'bool', 'avatar_url': 'str', 'home_space_id': 'str', 'personal_space_id': 'int', 'embed_group_space_id': 'int', 'access_filters': 'list[AccessFilter]', 'credentials_email': 'CredentialsEmail', 'credentials_totp': 'CredentialsTotp', 'credentials_ldap': 'CredentialsLDAP', 'credentials_google': 'CredentialsGoogle', 'credentials_saml': 'CredentialsSaml', 'credentials_oidc': 'CredentialsOIDC', 'credentials_api': 'CredentialsApi', 'credentials_api3': 'list[CredentialsApi3]', 'credentials_embed': 'list[CredentialsEmbed]', 'credentials_looker_openid': 'CredentialsLookerOpenid', 'sessions': 'list[Session]', 'role_ids': 'list[int]', 'group_ids': 'list[int]', 'presumed_looker_employee': 'bool', 'verified_looker_employee': 'bool', 'looker_versions': 'list[str]', 'ui_state': 'dict(str, str)', 'locale': 'str', 'url': 'str', 'can': 'dict(str, bool)' } attribute_map = { 'id': 'id', 'first_name': 'first_name', 'last_name': 'last_name', 'display_name': 'display_name', 'email': 'email', 'is_disabled': 'is_disabled', 'avatar_url': 'avatar_url', 'home_space_id': 'home_space_id', 'personal_space_id': 'personal_space_id', 'embed_group_space_id': 'embed_group_space_id', 'access_filters': 'access_filters', 'credentials_email': 'credentials_email', 'credentials_totp': 'credentials_totp', 'credentials_ldap': 'credentials_ldap', 'credentials_google': 'credentials_google', 'credentials_saml': 'credentials_saml', 'credentials_oidc': 'credentials_oidc', 'credentials_api': 'credentials_api', 'credentials_api3': 'credentials_api3', 'credentials_embed': 'credentials_embed', 'credentials_looker_openid': 'credentials_looker_openid', 'sessions': 'sessions', 'role_ids': 'role_ids', 'group_ids': 'group_ids', 'presumed_looker_employee': 'presumed_looker_employee', 'verified_looker_employee': 'verified_looker_employee', 'looker_versions': 'looker_versions', 'ui_state': 'ui_state', 'locale': 'locale', 'url': 'url', 'can': 'can' } def __init__(self, id=None, first_name=None, last_name=None, display_name=None, email=None, is_disabled=None, avatar_url=None, home_space_id=None, personal_space_id=None, embed_group_space_id=None, access_filters=None, credentials_email=None, credentials_totp=None, credentials_ldap=None, credentials_google=None, credentials_saml=None, credentials_oidc=None, credentials_api=None, credentials_api3=None, credentials_embed=None, credentials_looker_openid=None, sessions=None, role_ids=None, group_ids=None, presumed_looker_employee=None, verified_looker_employee=None, looker_versions=None, ui_state=None, locale=None, url=None, can=None): # noqa: E501 """User - a model defined in Swagger""" # noqa: E501 self._id = None self._first_name = None self._last_name = None self._display_name = None self._email = None self._is_disabled = None self._avatar_url = None self._home_space_id = None self._personal_space_id = None self._embed_group_space_id = None self._access_filters = None self._credentials_email = None self._credentials_totp = None self._credentials_ldap = None self._credentials_google = None self._credentials_saml = None self._credentials_oidc = None self._credentials_api = None self._credentials_api3 = None self._credentials_embed = None self._credentials_looker_openid = None self._sessions = None self._role_ids = None self._group_ids = None self._presumed_looker_employee = None self._verified_looker_employee = None self._looker_versions = None self._ui_state = None self._locale = None self._url = None self._can = None self.discriminator = None if id is not None: self.id = id if first_name is not None: self.first_name = first_name if last_name is not None: self.last_name = last_name if display_name is not None: self.display_name = display_name if email is not None: self.email = email if is_disabled is not None: self.is_disabled = is_disabled if avatar_url is not None: self.avatar_url = avatar_url if home_space_id is not None: self.home_space_id = home_space_id if personal_space_id is not None: self.personal_space_id = personal_space_id if embed_group_space_id is not None: self.embed_group_space_id = embed_group_space_id if access_filters is not None: self.access_filters = access_filters if credentials_email is not None: self.credentials_email = credentials_email if credentials_totp is not None: self.credentials_totp = credentials_totp if credentials_ldap is not None: self.credentials_ldap = credentials_ldap if credentials_google is not None: self.credentials_google = credentials_google if credentials_saml is not None: self.credentials_saml = credentials_saml if credentials_oidc is not None: self.credentials_oidc = credentials_oidc if credentials_api is not None: self.credentials_api = credentials_api if credentials_api3 is not None: self.credentials_api3 = credentials_api3 if credentials_embed is not None: self.credentials_embed = credentials_embed if credentials_looker_openid is not None: self.credentials_looker_openid = credentials_looker_openid if sessions is not None: self.sessions = sessions if role_ids is not None: self.role_ids = role_ids if group_ids is not None: self.group_ids = group_ids if presumed_looker_employee is not None: self.presumed_looker_employee = presumed_looker_employee if verified_looker_employee is not None: self.verified_looker_employee = verified_looker_employee if looker_versions is not None: self.looker_versions = looker_versions if ui_state is not None: self.ui_state = ui_state if locale is not None: self.locale = locale if url is not None: self.url = url if can is not None: self.can = can @property def id(self): """Gets the id of this User. # noqa: E501 Unique Id # noqa: E501 :return: The id of this User. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this User. Unique Id # noqa: E501 :param id: The id of this User. # noqa: E501 :type: int """ self._id = id @property def first_name(self): """Gets the first_name of this User. # noqa: E501 First name # noqa: E501 :return: The first_name of this User. # noqa: E501 :rtype: str """ return self._first_name @first_name.setter def first_name(self, first_name): """Sets the first_name of this User. First name # noqa: E501 :param first_name: The first_name of this User. # noqa: E501 :type: str """ self._first_name = first_name @property def last_name(self): """Gets the last_name of this User. # noqa: E501 Last name # noqa: E501 :return: The last_name of this User. # noqa: E501 :rtype: str """ return self._last_name @last_name.setter def last_name(self, last_name): """Sets the last_name of this User. Last name # noqa: E501 :param last_name: The last_name of this User. # noqa: E501 :type: str """ self._last_name = last_name @property def display_name(self): """Gets the display_name of this User. # noqa: E501 Full name for display (available only if both first_name and last_name are set) # noqa: E501 :return: The display_name of this User. # noqa: E501 :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """Sets the display_name of this User. Full name for display (available only if both first_name and last_name are set) # noqa: E501 :param display_name: The display_name of this User. # noqa: E501 :type: str """ self._display_name = display_name @property def email(self): """Gets the email of this User. # noqa: E501 EMail address # noqa: E501 :return: The email of this User. # noqa: E501 :rtype: str """ return self._email @email.setter def email(self, email): """Sets the email of this User. EMail address # noqa: E501 :param email: The email of this User. # noqa: E501 :type: str """ self._email = email @property def is_disabled(self): """Gets the is_disabled of this User. # noqa: E501 Account has been disabled # noqa: E501 :return: The is_disabled of this User. # noqa: E501 :rtype: bool """ return self._is_disabled @is_disabled.setter def is_disabled(self, is_disabled): """Sets the is_disabled of this User. Account has been disabled # noqa: E501 :param is_disabled: The is_disabled of this User. # noqa: E501 :type: bool """ self._is_disabled = is_disabled @property def avatar_url(self): """Gets the avatar_url of this User. # noqa: E501 URL for the avatar image (may be generic) # noqa: E501 :return: The avatar_url of this User. # noqa: E501 :rtype: str """ return self._avatar_url @avatar_url.setter def avatar_url(self, avatar_url): """Sets the avatar_url of this User. URL for the avatar image (may be generic) # noqa: E501 :param avatar_url: The avatar_url of this User. # noqa: E501 :type: str """ self._avatar_url = avatar_url @property def home_space_id(self): """Gets the home_space_id of this User. # noqa: E501 ID string for user's home space # noqa: E501 :return: The home_space_id of this User. # noqa: E501 :rtype: str """ return self._home_space_id @home_space_id.setter def home_space_id(self, home_space_id): """Sets the home_space_id of this User. ID string for user's home space # noqa: E501 :param home_space_id: The home_space_id of this User. # noqa: E501 :type: str """ self._home_space_id = home_space_id @property def personal_space_id(self): """Gets the personal_space_id of this User. # noqa: E501 ID of user's personal space # noqa: E501 :return: The personal_space_id of this User. # noqa: E501 :rtype: int """ return self._personal_space_id @personal_space_id.setter def personal_space_id(self, personal_space_id): """Sets the personal_space_id of this User. ID of user's personal space # noqa: E501 :param personal_space_id: The personal_space_id of this User. # noqa: E501 :type: int """ self._personal_space_id = personal_space_id @property def embed_group_space_id(self): """Gets the embed_group_space_id of this User. # noqa: E501 (Embed only) ID of user's group space based on the external_group_id optionally specified during embed user login # noqa: E501 :return: The embed_group_space_id of this User. # noqa: E501 :rtype: int """ return self._embed_group_space_id @embed_group_space_id.setter def embed_group_space_id(self, embed_group_space_id): """Sets the embed_group_space_id of this User. (Embed only) ID of user's group space based on the external_group_id optionally specified during embed user login # noqa: E501 :param embed_group_space_id: The embed_group_space_id of this User. # noqa: E501 :type: int """ self._embed_group_space_id = embed_group_space_id @property def access_filters(self): """Gets the access_filters of this User. # noqa: E501 Model access filters. # noqa: E501 :return: The access_filters of this User. # noqa: E501 :rtype: list[AccessFilter] """ return self._access_filters @access_filters.setter def access_filters(self, access_filters): """Sets the access_filters of this User. Model access filters. # noqa: E501 :param access_filters: The access_filters of this User. # noqa: E501 :type: list[AccessFilter] """ self._access_filters = access_filters @property def credentials_email(self): """Gets the credentials_email of this User. # noqa: E501 Email/Password login credentials # noqa: E501 :return: The credentials_email of this User. # noqa: E501 :rtype: CredentialsEmail """ return self._credentials_email @credentials_email.setter def credentials_email(self, credentials_email): """Sets the credentials_email of this User. Email/Password login credentials # noqa: E501 :param credentials_email: The credentials_email of this User. # noqa: E501 :type: CredentialsEmail """ self._credentials_email = credentials_email @property def credentials_totp(self): """Gets the credentials_totp of this User. # noqa: E501 Two-factor credentials # noqa: E501 :return: The credentials_totp of this User. # noqa: E501 :rtype: CredentialsTotp """ return self._credentials_totp @credentials_totp.setter def credentials_totp(self, credentials_totp): """Sets the credentials_totp of this User. Two-factor credentials # noqa: E501 :param credentials_totp: The credentials_totp of this User. # noqa: E501 :type: CredentialsTotp """ self._credentials_totp = credentials_totp @property def credentials_ldap(self): """Gets the credentials_ldap of this User. # noqa: E501 LDAP credentials # noqa: E501 :return: The credentials_ldap of this User. # noqa: E501 :rtype: CredentialsLDAP """ return self._credentials_ldap @credentials_ldap.setter def credentials_ldap(self, credentials_ldap): """Sets the credentials_ldap of this User. LDAP credentials # noqa: E501 :param credentials_ldap: The credentials_ldap of this User. # noqa: E501 :type: CredentialsLDAP """ self._credentials_ldap = credentials_ldap @property def credentials_google(self): """Gets the credentials_google of this User. # noqa: E501 Google auth credentials # noqa: E501 :return: The credentials_google of this User. # noqa: E501 :rtype: CredentialsGoogle """ return self._credentials_google @credentials_google.setter def credentials_google(self, credentials_google): """Sets the credentials_google of this User. Google auth credentials # noqa: E501 :param credentials_google: The credentials_google of this User. # noqa: E501 :type: CredentialsGoogle """ self._credentials_google = credentials_google @property def credentials_saml(self): """Gets the credentials_saml of this User. # noqa: E501 Saml auth credentials # noqa: E501 :return: The credentials_saml of this User. # noqa: E501 :rtype: CredentialsSaml """ return self._credentials_saml @credentials_saml.setter def credentials_saml(self, credentials_saml): """Sets the credentials_saml of this User. Saml auth credentials # noqa: E501 :param credentials_saml: The credentials_saml of this User. # noqa: E501 :type: CredentialsSaml """ self._credentials_saml = credentials_saml @property def credentials_oidc(self): """Gets the credentials_oidc of this User. # noqa: E501 OpenID Connect auth credentials # noqa: E501 :return: The credentials_oidc of this User. # noqa: E501 :rtype: CredentialsOIDC """ return self._credentials_oidc @credentials_oidc.setter def credentials_oidc(self, credentials_oidc): """Sets the credentials_oidc of this User. OpenID Connect auth credentials # noqa: E501 :param credentials_oidc: The credentials_oidc of this User. # noqa: E501 :type: CredentialsOIDC """ self._credentials_oidc = credentials_oidc @property def credentials_api(self): """Gets the credentials_api of this User. # noqa: E501 API user credentials. NO LONGER SUPPORTED. # noqa: E501 :return: The credentials_api of this User. # noqa: E501 :rtype: CredentialsApi """ return self._credentials_api @credentials_api.setter def credentials_api(self, credentials_api): """Sets the credentials_api of this User. API user credentials. NO LONGER SUPPORTED. # noqa: E501 :param credentials_api: The credentials_api of this User. # noqa: E501 :type: CredentialsApi """ self._credentials_api = credentials_api @property def credentials_api3(self): """Gets the credentials_api3 of this User. # noqa: E501 API 3 credentials # noqa: E501 :return: The credentials_api3 of this User. # noqa: E501 :rtype: list[CredentialsApi3] """ return self._credentials_api3 @credentials_api3.setter def credentials_api3(self, credentials_api3): """Sets the credentials_api3 of this User. API 3 credentials # noqa: E501 :param credentials_api3: The credentials_api3 of this User. # noqa: E501 :type: list[CredentialsApi3] """ self._credentials_api3 = credentials_api3 @property def credentials_embed(self): """Gets the credentials_embed of this User. # noqa: E501 Embed credentials # noqa: E501 :return: The credentials_embed of this User. # noqa: E501 :rtype: list[CredentialsEmbed] """ return self._credentials_embed @credentials_embed.setter def credentials_embed(self, credentials_embed): """Sets the credentials_embed of this User. Embed credentials # noqa: E501 :param credentials_embed: The credentials_embed of this User. # noqa: E501 :type: list[CredentialsEmbed] """ self._credentials_embed = credentials_embed @property def credentials_looker_openid(self): """Gets the credentials_looker_openid of this User. # noqa: E501 LookerOpenID credentials. Used for login by Looker Analysts # noqa: E501 :return: The credentials_looker_openid of this User. # noqa: E501 :rtype: CredentialsLookerOpenid """ return self._credentials_looker_openid @credentials_looker_openid.setter def credentials_looker_openid(self, credentials_looker_openid): """Sets the credentials_looker_openid of this User. LookerOpenID credentials. Used for login by Looker Analysts # noqa: E501 :param credentials_looker_openid: The credentials_looker_openid of this User. # noqa: E501 :type: CredentialsLookerOpenid """ self._credentials_looker_openid = credentials_looker_openid @property def sessions(self): """Gets the sessions of this User. # noqa: E501 Active sessions # noqa: E501 :return: The sessions of this User. # noqa: E501 :rtype: list[Session] """ return self._sessions @sessions.setter def sessions(self, sessions): """Sets the sessions of this User. Active sessions # noqa: E501 :param sessions: The sessions of this User. # noqa: E501 :type: list[Session] """ self._sessions = sessions @property def role_ids(self): """Gets the role_ids of this User. # noqa: E501 Array of ids of the roles for this user # noqa: E501 :return: The role_ids of this User. # noqa: E501 :rtype: list[int] """ return self._role_ids @role_ids.setter def role_ids(self, role_ids): """Sets the role_ids of this User. Array of ids of the roles for this user # noqa: E501 :param role_ids: The role_ids of this User. # noqa: E501 :type: list[int] """ self._role_ids = role_ids @property def group_ids(self): """Gets the group_ids of this User. # noqa: E501 Array of ids of the groups for this user # noqa: E501 :return: The group_ids of this User. # noqa: E501 :rtype: list[int] """ return self._group_ids @group_ids.setter def group_ids(self, group_ids): """Sets the group_ids of this User. Array of ids of the groups for this user # noqa: E501 :param group_ids: The group_ids of this User. # noqa: E501 :type: list[int] """ self._group_ids = group_ids @property def presumed_looker_employee(self): """Gets the presumed_looker_employee of this User. # noqa: E501 User is identified as an employee of Looker # noqa: E501 :return: The presumed_looker_employee of this User. # noqa: E501 :rtype: bool """ return self._presumed_looker_employee @presumed_looker_employee.setter def presumed_looker_employee(self, presumed_looker_employee): """Sets the presumed_looker_employee of this User. User is identified as an employee of Looker # noqa: E501 :param presumed_looker_employee: The presumed_looker_employee of this User. # noqa: E501 :type: bool """ self._presumed_looker_employee = presumed_looker_employee @property def verified_looker_employee(self): """Gets the verified_looker_employee of this User. # noqa: E501 User is identified as an employee of Looker who has been verified via Looker corporate authentication # noqa: E501 :return: The verified_looker_employee of this User. # noqa: E501 :rtype: bool """ return self._verified_looker_employee @verified_looker_employee.setter def verified_looker_employee(self, verified_looker_employee): """Sets the verified_looker_employee of this User. User is identified as an employee of Looker who has been verified via Looker corporate authentication # noqa: E501 :param verified_looker_employee: The verified_looker_employee of this User. # noqa: E501 :type: bool """ self._verified_looker_employee = verified_looker_employee @property def looker_versions(self): """Gets the looker_versions of this User. # noqa: E501 Array of strings representing the Looker versions that this user has used (this only goes back as far as '3.54.0') # noqa: E501 :return: The looker_versions of this User. # noqa: E501 :rtype: list[str] """ return self._looker_versions @looker_versions.setter def looker_versions(self, looker_versions): """Sets the looker_versions of this User. Array of strings representing the Looker versions that this user has used (this only goes back as far as '3.54.0') # noqa: E501 :param looker_versions: The looker_versions of this User. # noqa: E501 :type: list[str] """ self._looker_versions = looker_versions @property def ui_state(self): """Gets the ui_state of this User. # noqa: E501 Per user dictionary of undocumented state information owned by the Looker UI. # noqa: E501 :return: The ui_state of this User. # noqa: E501 :rtype: dict(str, str) """ return self._ui_state @ui_state.setter def ui_state(self, ui_state): """Sets the ui_state of this User. Per user dictionary of undocumented state information owned by the Looker UI. # noqa: E501 :param ui_state: The ui_state of this User. # noqa: E501 :type: dict(str, str) """ self._ui_state = ui_state @property def locale(self): """Gets the locale of this User. # noqa: E501 User's preferred locale. User locale takes precedence over Looker's system-wide default locale. Locale determines language of display strings and date and numeric formatting in API responses. Locale string must be a 2 letter language code or a combination of language code and region code: 'en' or 'en-US', for example. # noqa: E501 :return: The locale of this User. # noqa: E501 :rtype: str """ return self._locale @locale.setter def locale(self, locale): """Sets the locale of this User. User's preferred locale. User locale takes precedence over Looker's system-wide default locale. Locale determines language of display strings and date and numeric formatting in API responses. Locale string must be a 2 letter language code or a combination of language code and region code: 'en' or 'en-US', for example. # noqa: E501 :param locale: The locale of this User. # noqa: E501 :type: str """ self._locale = locale @property def url(self): """Gets the url of this User. # noqa: E501 Link to get this item # noqa: E501 :return: The url of this User. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this User. Link to get this item # noqa: E501 :param url: The url of this User. # noqa: E501 :type: str """ self._url = url @property def can(self): """Gets the can of this User. # noqa: E501 Operations the current user is able to perform on this object # noqa: E501 :return: The can of this User. # noqa: E501 :rtype: dict(str, bool) """ return self._can @can.setter def can(self, can): """Sets the can of this User. Operations the current user is able to perform on this object # noqa: E501 :param can: The can of this User. # noqa: E501 :type: dict(str, bool) """ self._can = can def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, User): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
fbfcabf6cfb11d516401f5429f766accc46becaf
7a09af404f29389504742a3d5f1727bfbe562750
/TrekBot2_WS/build/tf2_tools/catkin_generated/pkg.installspace.context.pc.py
f8537ec21dba2e692b461229e9f52497428867f2
[ "MIT" ]
permissive
Rafcin/TrekBot
4baa2ed93b90920b36adba0b72384ac320d2de01
d3dc63e6c16a040b16170f143556ef358018b7da
refs/heads/master
2020-03-30T02:15:35.361254
2018-12-14T03:30:25
2018-12-14T03:30:25
150,622,252
1
0
null
null
null
null
UTF-8
Python
false
false
402
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "tf2;tf2_msgs;tf2_ros".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "tf2_tools" PROJECT_SPACE_DIR = "/xavier_ssd/TrekBot/TrekBot2_WS/install" PROJECT_VERSION = "0.6.3"
34104a73ede55a038ffc76a358918c958c9d3b49
b36c05bfa929cac8f956feebba1e7cb2fc550387
/d5/d5p2.py
ef18fab1691f09b791969af3089469d440ed7028
[]
no_license
jabadia/advent-of-code-2017
ddc5dd2e141e0620ec7d017d0345cc3807debfbf
9e595bf7d074073dde0f85353fe060e6bf147969
refs/heads/master
2021-09-01T20:15:39.211708
2017-12-25T22:33:12
2017-12-25T22:33:12
115,634,618
0
0
null
null
null
null
UTF-8
Python
false
false
5,315
py
TEST_INPUT = """ 0 3 0 1 -3 """ INPUT = """ 0 1 0 0 1 -3 0 0 2 -2 -6 -3 2 -5 -6 -3 -3 0 -8 -12 1 -9 -12 -9 0 -7 -17 -6 -18 -7 -6 -21 -28 -14 -23 -14 -17 -5 -35 -17 -26 -14 1 -27 -19 -40 -32 -44 2 -14 -15 -12 -35 0 -49 -12 -7 -46 -47 -32 -33 -47 -7 -62 -20 -35 -4 -35 -8 -3 -61 -38 -63 -27 -33 -57 -48 -66 -68 -11 -61 -50 -34 -31 -36 -79 -49 -71 1 -34 -65 -61 -91 -12 -21 -82 -85 -51 -89 0 -83 -53 -44 -7 1 -19 -39 -27 -94 -36 -31 -35 -97 -45 -90 -15 -106 -30 -79 -18 -25 -105 -30 -63 -109 -32 -91 -96 -87 -121 -116 -103 -71 -1 -113 -10 -47 -109 -107 -38 -66 -26 -8 -38 -31 -129 -42 -91 -89 -107 -125 -75 -118 -81 -45 -111 -27 -63 -106 -110 -64 -63 -80 -44 -33 -130 -55 -90 -144 -15 -132 -122 -155 -122 -94 -159 -5 -89 -6 -97 -129 -159 -15 -44 -156 -124 -113 -154 -95 -96 -29 -121 -30 -73 -118 -57 -76 -141 -138 -108 -185 -56 -136 -161 -138 -192 2 -126 -12 -39 -60 -125 -149 -193 -146 -116 -101 -16 -207 -122 -92 -204 -42 -112 -28 -93 -96 -57 -136 -19 -36 -107 -170 -19 -20 -96 -229 -59 -172 -58 -89 -31 -57 -223 -37 -189 -43 -135 -90 -150 -22 -152 -243 -37 -231 -112 -57 -168 -30 -77 -162 -181 -176 -202 -138 -206 -183 -190 -257 -181 -47 -23 -248 -114 -98 -77 -143 -168 -166 -30 -155 -237 -51 -113 -243 -41 -142 -231 -139 -20 -190 -262 -142 -238 -200 -270 -113 -35 -296 -146 -205 -129 -198 -68 -139 -56 -196 -133 -16 -229 -258 -91 -63 -249 -274 -156 -273 -182 -166 -115 -154 -296 -115 -89 -120 -201 -44 -287 -8 1 -260 -297 -282 -114 -323 -326 -166 -241 -109 -21 -236 -280 -19 -80 -77 -271 -292 -340 -300 -206 -308 -99 -156 -277 -245 -132 -56 -172 -53 -271 -32 -5 -235 -329 -1 -150 -247 -268 -133 -341 -221 -2 -43 -229 -190 -337 -40 -71 -72 -149 -25 -253 -44 -113 -164 -370 -284 -235 -9 -234 -291 1 -152 -302 -393 -47 -289 -75 -140 -349 -140 -353 -298 -27 -292 -380 -55 -62 -208 -221 -41 -316 -411 -367 -220 -248 -59 -177 -372 -55 -241 -240 -140 -315 -297 -42 -118 -141 -70 -183 -153 -30 -63 -306 -110 -8 -356 -80 -314 -323 -41 -176 -165 -41 -230 -132 -222 -2 -404 -38 -130 2 -16 -141 -136 -336 -245 -6 -348 -172 -267 -208 -291 -285 -67 -219 -216 -136 -325 -27 -382 -242 -50 -284 -149 -454 -336 -346 -293 -402 -76 -324 -219 -336 -24 -446 -123 -185 -196 -295 -173 -400 -137 -414 -14 -104 -62 -252 -17 -398 -490 -440 -89 -347 -101 -142 -228 -301 -396 -320 -52 -508 -122 -436 -311 -344 -240 -434 -220 -197 -31 -295 -44 -452 -269 -430 -373 -409 -438 -365 -13 -241 -418 -20 -24 -141 -1 -148 -307 -63 -423 -254 -8 -438 -326 -19 -135 -109 -394 2 -398 -273 -158 -453 -346 -86 -431 -536 -549 -379 -483 -85 -476 -483 -104 -87 -462 -249 -540 -164 -360 -100 -238 -45 -390 -59 -156 -248 -257 -150 -164 -160 -545 -520 -364 -384 -237 -456 -28 -366 -147 0 -303 -583 -420 -370 -299 -154 -380 -188 -491 -258 -598 -429 -349 -333 -569 -4 -556 -421 -182 -441 -407 -542 -364 -370 -384 1 -529 -45 -319 -395 -279 -160 -575 -193 -25 -565 -548 -445 -266 -304 -361 -348 -303 -159 -39 -75 -437 -608 -622 -556 -108 -343 -283 -68 -632 -393 -68 -140 -126 -531 -87 -519 -334 -56 -70 -275 -247 -370 -439 -118 -497 -630 -594 -612 -541 -161 -646 -397 -100 -284 -313 0 -59 -200 -601 -663 -529 -676 -610 -7 -228 -50 -494 -382 -250 -306 -274 -163 -110 -375 -124 -237 -98 -645 -692 -495 -593 -647 -178 -531 -336 -697 -646 -671 -633 -542 -461 -200 -658 -525 -389 -643 -258 -329 -656 -400 -692 -557 -506 -594 -67 -623 -113 -459 -211 -713 -115 -602 -131 -181 -30 -227 -53 -719 -631 -641 -434 -552 -716 -368 -19 -439 -443 -552 -85 -79 -449 -254 -620 -474 -121 -210 -285 -608 -456 -513 -496 -13 -418 -399 -437 -258 -15 -623 -178 -336 -379 -721 -299 -729 -742 -64 -13 -438 -603 -666 -278 -767 -200 -686 -497 -256 -541 -491 -360 -615 -326 -682 -759 -524 -580 -323 -578 -793 -478 -107 -440 -657 -790 -605 -21 -163 -392 -560 -336 -430 -613 -182 -15 -782 -607 -281 -269 -25 -699 -89 -593 -280 -269 -438 -103 -359 -387 -157 -747 -619 -176 -772 -500 -735 -691 -797 -612 -573 -36 -617 -630 -357 -718 -210 -48 -185 -20 -556 -206 -722 -559 -416 -578 -745 -564 -273 -62 -300 -218 -711 -744 -805 -277 -522 -346 -280 -762 -438 -381 -379 -198 -737 -555 -466 -218 -511 -334 -353 -259 -225 -675 -350 -585 -647 -52 -395 -324 -106 -826 -279 -81 -396 -611 -312 -529 -291 -129 -594 -437 -188 -649 -820 -237 -673 -6 -387 -195 -503 -350 -83 -88 -626 -30 -313 -13 -633 -403 -319 -832 -185 -146 -839 -9 -557 -799 -841 -700 -465 -669 -769 -235 -849 -863 -819 -76 -912 -931 -909 -762 -607 -522 -64 -769 -377 -133 -414 -772 -206 -746 -730 -393 -901 -72 -33 -811 -372 -298 -835 -637 -302 -481 -958 -878 -867 -25 -260 -448 -21 -930 -903 -581 -547 -664 -843 -140 -337 -383 -513 -368 -221 -474 -169 -673 -728 -266 -862 -753 -815 -647 -106 -15 -728 -912 -147 -828 -6 -694 -434 -737 -335 -183 -732 -841 -364 -155 -116 -966 -822 -65 -22 -853 -208 -326 -826 -472 -491 -436 -771 -1009 -98 -401 -915 -275 -574 -313 -884 -648 -935 -94 -326 -553 -744 -723 -782 -719 -175 -868 -190 -153 -48 -218 -414 -721 -715 -995 -991 -575 -264 -70 -366 -381 -130 -409 -817 -258 -1028 -552 -878 -449 -138 -900 -45 -119 -677 -844 -869 -985 -1019 -60 -649 -915 -93 -1053 -121 -631 -156 -332 -193 """ def solve(input): code = [int(n.strip()) for n in input.strip().split('\n')] pc = 0 count = 0 while 0 <= pc < len(code): next_pc = pc + code[pc] code[pc] += 1 count += 1 pc = next_pc return count res = solve(TEST_INPUT) assert (res == 5) print(solve(INPUT))
90d1ba7d7f1065e6b4287dc4f9bdf753dd042573
de56d8ffb98bf4ef8336a89f7dea2ba4e4797134
/blog/migrations/0005_auto_20200619_0217.py
4f935d59ebd5bda644ffa14190f257db3d6f39a6
[]
no_license
topdev38/agecny-cms
9bb5280646d498592738936599ceb13c87899428
ff9f76b06e2e41b82cc2ebf54fbd27a9a22994f3
refs/heads/master
2023-01-01T23:15:50.436794
2020-10-18T03:51:17
2020-10-18T03:51:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
# Generated by Django 3.0.5 on 2020-06-19 09:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('home', '0009_auto_20200619_0205'), ('blog', '0004_auto_20200618_0812'), ] operations = [ migrations.AddField( model_name='blogdetailpage', name='navigation_bar', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='home.NavigationSnippet'), ), migrations.AddField( model_name='blogpage', name='navigation_bar', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='home.NavigationSnippet'), ), ]
425f90eb8552b8eddac49d0942fe278eeb209643
85e078ee3ceda5091624233ca19ba42f78747499
/LeetCode/binary_tree_tilt.py
da123fed23b66a5d89eb908cb09913176514a842
[]
no_license
papayetoo/StudyinPython
d5e6ec0cff0e97fcc4afc8d846e3658c06eb67c2
f686b6e08720ad4d7d57b41d24c63c4bfa64dd90
refs/heads/master
2021-07-22T04:05:38.993123
2021-02-03T14:12:26
2021-02-03T14:12:26
240,009,852
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
# Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def findTilt(self, root: TreeNode) -> int: def postorder(node: TreeNoe): if not node: return 0 l = postorder(node.left) r = postorder(node.right) return abs(l - r) result = postorder(root) print(result) return 0
fc14e4aaa42ca1b1f9774ae8c9c96ace464ac8e0
0760fb4901a75766921a205b55686d6d6f049b30
/python/ray/train/xgboost/xgboost_predictor.py
1b319b93b299bc02a5b83a2f1cdcfa1e8fab6e8e
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
ray-project/ray
a4bb6940b08b59a61ef0b8e755a52d8563a2f867
edba68c3e7cf255d1d6479329f305adb7fa4c3ed
refs/heads/master
2023-08-31T03:36:48.164405
2023-08-31T03:20:38
2023-08-31T03:20:38
71,932,349
29,482
5,669
Apache-2.0
2023-09-14T21:48:14
2016-10-25T19:38:30
Python
UTF-8
Python
false
false
5,718
py
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union import pandas as pd import xgboost from ray.air.constants import TENSOR_COLUMN_NAME from ray.air.data_batch_type import DataBatchType from ray.air.util.data_batch_conversion import _unwrap_ndarray_object_type_if_needed from ray.train.predictor import Predictor from ray.train.xgboost import XGBoostCheckpoint from ray.util.annotations import PublicAPI if TYPE_CHECKING: from ray.data.preprocessor import Preprocessor @PublicAPI(stability="beta") class XGBoostPredictor(Predictor): """A predictor for XGBoost models. Args: model: The XGBoost booster to use for predictions. preprocessor: A preprocessor used to transform data batches prior to prediction. """ def __init__( self, model: xgboost.Booster, preprocessor: Optional["Preprocessor"] = None ): self.model = model super().__init__(preprocessor) def __repr__(self): return ( f"{self.__class__.__name__}(model={self.model!r}, " f"preprocessor={self._preprocessor!r})" ) @classmethod def from_checkpoint(cls, checkpoint: XGBoostCheckpoint) -> "XGBoostPredictor": """Instantiate the predictor from a Checkpoint. This is a helper constructor that instantiates the predictor from a framework-specific XGBoost checkpoint. Args: checkpoint: The checkpoint to load the model and preprocessor from. """ model = checkpoint.get_model() preprocessor = checkpoint.get_preprocessor() return cls(model=model, preprocessor=preprocessor) def predict( self, data: DataBatchType, feature_columns: Optional[Union[List[str], List[int]]] = None, dmatrix_kwargs: Optional[Dict[str, Any]] = None, **predict_kwargs, ) -> DataBatchType: """Run inference on data batch. The data is converted into an XGBoost DMatrix before being inputted to the model. Args: data: A batch of input data. feature_columns: The names or indices of the columns in the data to use as features to predict on. If None, then use all columns in ``data``. dmatrix_kwargs: Dict of keyword arguments passed to ``xgboost.DMatrix``. **predict_kwargs: Keyword arguments passed to ``xgboost.Booster.predict``. Examples: .. testcode:: import numpy as np import xgboost as xgb from ray.train.xgboost import XGBoostPredictor train_X = np.array([[1, 2], [3, 4]]) train_y = np.array([0, 1]) model = xgb.XGBClassifier().fit(train_X, train_y) predictor = XGBoostPredictor(model=model.get_booster()) data = np.array([[1, 2], [3, 4]]) predictions = predictor.predict(data) # Only use first and second column as the feature data = np.array([[1, 2, 8], [3, 4, 9]]) predictions = predictor.predict(data, feature_columns=[0, 1]) .. testcode:: import pandas as pd import xgboost as xgb from ray.train.xgboost import XGBoostPredictor train_X = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) train_y = pd.Series([0, 1]) model = xgb.XGBClassifier().fit(train_X, train_y) predictor = XGBoostPredictor(model=model.get_booster()) # Pandas dataframe. data = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) predictions = predictor.predict(data) # Only use first and second column as the feature data = pd.DataFrame([[1, 2, 8], [3, 4, 9]], columns=["A", "B", "C"]) predictions = predictor.predict(data, feature_columns=["A", "B"]) Returns: Prediction result. """ return Predictor.predict( self, data, feature_columns=feature_columns, dmatrix_kwargs=dmatrix_kwargs, **predict_kwargs, ) def _predict_pandas( self, data: "pd.DataFrame", feature_columns: Optional[Union[List[str], List[int]]] = None, dmatrix_kwargs: Optional[Dict[str, Any]] = None, **predict_kwargs, ) -> "pd.DataFrame": dmatrix_kwargs = dmatrix_kwargs or {} feature_names = None if TENSOR_COLUMN_NAME in data: data = data[TENSOR_COLUMN_NAME].to_numpy() data = _unwrap_ndarray_object_type_if_needed(data) if feature_columns: # In this case feature_columns is a list of integers data = data[:, feature_columns] elif feature_columns: # feature_columns is a list of integers or strings data = data[feature_columns].to_numpy() # Only set the feature names if they are strings if all(isinstance(fc, str) for fc in feature_columns): feature_names = feature_columns else: feature_columns = data.columns.tolist() data = data.to_numpy() if all(isinstance(fc, str) for fc in feature_columns): feature_names = feature_columns if feature_names: dmatrix_kwargs["feature_names"] = feature_names matrix = xgboost.DMatrix(data, **dmatrix_kwargs) df = pd.DataFrame(self.model.predict(matrix, **predict_kwargs)) df.columns = ( ["predictions"] if len(df.columns) == 1 else [f"predictions_{i}" for i in range(len(df.columns))] ) return df
6e6667cf463f0e2376456bda7fa413e8cc8c9d58
45b8e141f762b95edec36ce40809ea4b89e3d287
/mahkalastore/home/views.py
23c7f82f9021101fb873e62508a747c6d244c294
[]
no_license
nimanoori22/mys
73d7a0ad141e1c6208e776a15d079a2599c46a7f
0122586a4d69f80219ad25e42ef89f3052f5cb81
refs/heads/master
2022-11-28T22:24:44.947703
2020-08-13T14:52:19
2020-08-13T14:52:19
279,652,903
0
0
null
null
null
null
UTF-8
Python
false
false
3,800
py
from django.shortcuts import render, HttpResponse, HttpResponsePermanentRedirect from product.models import Product, Category, Images, Comment from home.models import Setting, ContactForm, ContactMessage from .forms import SearchForm from django.contrib import messages from django.http import HttpResponseRedirect import json # Create your views here. def index(request): page = "home" category = Category.objects.all() setting = Setting.objects.get(pk=1) products_slider = Product.objects.all().order_by('id')[:4] #first 4 products products_latest= Product.objects.all().order_by('-id')[:4] #last 4 products products_picked = Product.objects.all().order_by('?')[:4] #randomly picked context = {'setting': setting, 'page': page, 'products_slider': products_slider, 'products_latest': products_latest, 'products_picked': products_picked, 'category': category} return render(request, 'index.html', context=context) def aboutus(request): setting = Setting.objects.get(pk=1) context = {'setting': setting} return render(request, 'about.html', context=context) def contact(request): if request.method == 'POST': form = ContactForm(request.POST) if form.is_valid(): data = ContactMessage() data.name = form.cleaned_data['name'] data.email = form.cleaned_data['email'] data.subject = form.cleaned_data['subject'] data.message = form.cleaned_data['message'] data.ip = request.META.get('REMOTE_ADDR') data.save() messages.success(request, 'your message has been sent, thank you <3') HttpResponseRedirect('/contact') setting = Setting.objects.get(pk=1) form = ContactForm context = {'setting': setting, 'form': form,} return render(request, 'contact.html', context=context) def category_product(request, id, slug): category = Category.objects.all() products = Product.objects.filter(category_id=id) context = { 'products': products, 'category': category, } return render(request, 'category_product.html', context=context) def search(request): if request.method == 'POST': form = SearchForm(request.POST) if form.is_valid(): query = form.cleaned_data['query'] catid = form.cleaned_data['catid'] if catid == 0: products = Product.objects.filter(name__icontains=query) else: products = Product.objects.filter(name__icontains=query, category_id=catid) category = Category.objects.all() context = { 'products': products, 'query': query, 'category': category, } return render(request, 'search_products.html', context=context) return HttpResponsePermanentRedirect('/') def search_auto(request): if request.is_ajax(): q = request.GET.get('term', '') products = Product.objects.filter(name__icontains=q) results = [] for rs in products: product_json = {} product_json = rs.name results.append(product_json) data = json.dumps(results) else: data = 'fail' mimetype = 'application/json' return HttpResponse(data, mimetype) def product_detail(request, id, slug): category = Category.objects.all() product = Product.objects.get(pk=id) images = Images.objects.filter(product_id=id) comments = Comment.objects.filter(product_id=id, status='True') context = { 'product': product, 'category': category, 'mypics': images, 'comments': comments, } return render(request, 'product_detail.html', context=context)
d9f06fb6f20f3f1270aaab0aff1acbd04c6ce096
d4c82eb9ae3037cf8742c3fc8c31cf4a80f5d21c
/examples/Python/examples/Tools/scripts/finddiv.py
7f483e293126378754d76f484901c26e6bae0d42
[]
no_license
gzhu-team-509/programming-knowledge-base
68132b1a669f208dab94dcf2401ce39d89ebe53b
3f3d026927157b7fdf210da195cb912366975e75
refs/heads/master
2021-05-05T12:17:12.686569
2017-11-04T07:30:28
2017-11-04T07:30:28
104,754,220
0
0
null
null
null
null
UTF-8
Python
false
false
2,517
py
#! /usr/bin/python2.6 """finddiv - a grep-like tool that looks for division operators. Usage: finddiv [-l] file_or_directory ... For directory arguments, all files in the directory whose name ends in .py are processed, and subdirectories are processed recursively. This actually tokenizes the files to avoid false hits in comments or strings literals. By default, this prints all lines containing a / or /= operator, in grep -n style. With the -l option specified, it prints the filename of files that contain at least one / or /= operator. """ import os import sys import getopt import tokenize def main(): try: opts, args = getopt.getopt(sys.argv[1:], "lh") except getopt.error, msg: usage(msg) return 2 if not args: usage("at least one file argument is required") return 2 listnames = 0 for o, a in opts: if o == "-h": print __doc__ return if o == "-l": listnames = 1 exit = None for filename in args: x = process(filename, listnames) exit = exit or x return exit def usage(msg): sys.stderr.write("%s: %s\n" % (sys.argv[0], msg)) sys.stderr.write("Usage: %s [-l] file ...\n" % sys.argv[0]) sys.stderr.write("Try `%s -h' for more information.\n" % sys.argv[0]) def process(filename, listnames): if os.path.isdir(filename): return processdir(filename, listnames) try: fp = open(filename) except IOError, msg: sys.stderr.write("Can't open: %s\n" % msg) return 1 g = tokenize.generate_tokens(fp.readline) lastrow = None for type, token, (row, col), end, line in g: if token in ("/", "/="): if listnames: print filename break if row != lastrow: lastrow = row print "%s:%d:%s" % (filename, row, line), fp.close() def processdir(dir, listnames): try: names = os.listdir(dir) except os.error, msg: sys.stderr.write("Can't list directory: %s\n" % dir) return 1 files = [] for name in names: fn = os.path.join(dir, name) if os.path.normcase(fn).endswith(".py") or os.path.isdir(fn): files.append(fn) files.sort(lambda a, b: cmp(os.path.normcase(a), os.path.normcase(b))) exit = None for fn in files: x = process(fn, listnames) exit = exit or x return exit if __name__ == "__main__": sys.exit(main())
33925cd42a46e5db54b36a88e09837da3dec21cd
888d4ea7e0a61f8c4a2ae602c57799b367b5174f
/crab/old/datasets2016FSR.py
c31e801ea2719eabf82ba143a8d7b9b580973227
[]
no_license
gmandorl/nanoAOD-tools
6a95debfb96bb86f55568942dc0b347873b38144
2cb041148f99cb41e03d19014657db8ddb5c16cd
refs/heads/master
2020-07-24T23:36:14.018605
2020-06-16T14:59:24
2020-06-16T14:59:24
208,084,777
0
1
null
2020-03-15T10:00:14
2019-09-12T15:34:19
Python
UTF-8
Python
false
false
13,936
py
data2016 = { "SingleMuonRun2016B" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_un2016B-17Jul2018_ver2-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016C" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016C-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016D" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016D-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016E" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016E-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016F" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016F-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016G" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016G-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER", ], "SingleMuonRun2016H" : [ "/SingleMuon/arizzi-RunIIDataJuly18_nanoFSRV2_Run2016H-17Jul2018-v1-57057fb2c24f603844e32924f34ddf42/USER" ], } mc2016 = { #"vbfHmm_FSR_2016POWPY" : [ #"/VBF_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV1_un2_asymptotic_v3-v2-0ee09caf70c2c8f40e412449c31b45df/USER" #], "DY105_2016AMCPY" : [ "/DYJetsToLL_M-105To160_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "DY105_2016MGPY" : [ "/DYJetsToLL_M-105To160_TuneCP5_PSweights_13TeV-madgraphMLM-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "DY105VBF_2016AMCPY" : [ "/DYJetsToLL_M-105To160_VBFFilter_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v1-cc4adcbd1151d12d342e6fce96f3a534/USER", "/DYJetsToLL_M-105To160_VBFFilter_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext2-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "DY105VBF_2016MGPY" : [ "/DYJetsToLL_M-105To160_VBFFilter_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "DY0J_2016AMCPY" : [ "/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v1-cc4adcbd1151d12d342e6fce96f3a534/USER", "/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/DYToLL_0J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-00000000000000000000000000000000/USER" ], "DY1J_2016AMCPY" : [ "/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v1-cc4adcbd1151d12d342e6fce96f3a534/USER", "/DYToLL_1J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "DY2J_2016AMCPY" : [ "/DYToLL_2J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #~ "DYTau_2016AMCPY" : [ #~ "" #~ ], #"DYM50_2016AMCPY" : [ #"/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext2-v1/NANOAODSIM" #], "EWKZ105_2016MGHERWIG" : [ "/EWK_LLJJ_MLL_105-160_SM_5f_LO_TuneEEC5_13TeV-madgraph-herwigpp/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "EWKZ_2016MGHERWIG" : [ "/EWK_LLJJ_MLL-50_MJJ-120_13TeV-madgraph-herwigpp/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "EWKZ105_2016MGPY" : [ "/EWK_LLJJ_MLL_105-160_SM_5f_LO_TuneCUETP8M1_PSweights_13TeV-madgraph-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "EWKZ_2016MGPY" : [ "/EWK_LLJJ_MLL-50_MJJ-120_13TeV-madgraph-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"EWKZint_2016MGPY" : [ #"/LLJJ_INT_SM_5f_LO_13TeV_madgraph-pythia8_TuneCUETP8M1/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM" #], "STs_2016AMCPY" : [ "/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "STwtbar_2016POWPY" : [ "/ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M2T4/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "STwt_2016POWPY" : [ "/ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M2T4/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"STtbar_2016POW_MADSPIN_PY" : [ #"/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], "STt_2016POW_MADSPIN_PY" : [ "/ST_t-channel_antitop_4f_inclusiveDecays_13TeV-powhegV2-madspin-pythia8_TuneCUETP8M1/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "TT_2016POWPY" : [ "/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "TTlep_2016POWPY" : [ "/TTTo2L2Nu_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"TTsemi_2016POWPY" : [ #"/TTToSemilepton_TuneCUETP8M2_ttHtranche3_13TeV-powheg-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], #"TTlep_2016MGPY" : [ #"/TTJets_DiLept_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM", #"/TTJets_DiLept_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM" #], #"TThad_2016POWPY" : [ #"/TTToHadronic_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], #"W2J_2016AMCPY" : [ #"/WToLNu_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext4-v1/NANOAODSIM", #"/WToLNu_2J_13TeV-amcatnloFXFX-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7_ext1-v1/NANOAODSIM" #], "W1J_2016AMCPY" : [ "/WToLNu_1J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "W0J_2016AMCPY" : [ "/WToLNu_0J_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WWdps_2016MGPY" : [ "/WWTo2L2Nu_DoubleScattering_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WWJJlnln_2016MGPY" : [ "/WWJJToLNuLNu_EWK_13TeV-madgraph-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"WLLJJln_2016MG_MADSPIN_PY" : [ #"/WLLJJ_WToLNu_EWK_TuneCUETP8M1_13TeV_madgraph-madspin-pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], "WWJJlnlnNoT_2016MGPY" : [ "/WWJJToLNuLNu_EWK_noTop_13TeV-madgraph-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WW2l2n_2016POWPY" : [ "/WWTo2L2Nu_13TeV-powheg/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WWlnqq_2016AMC_MADSPIN_PY" : [ "/WWTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WZ1l1n2q_2016POWPY" : [ "/WZToLNu2Q_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WZ1l1n2q_2016AMCPY" : [ "/WZTo2Q2Nu_13TeV_amcatnloFXFX_madspin_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WZ1l3n_2016AMCPY" : [ "/WZTo1L3Nu_13TeV_amcatnloFXFX_madspin_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"WZ2l2q_2016AMC_MADSPIN_PY" : [ #"/WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], "WZ3l1n_2016POWPY" : [ "/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v1-cc4adcbd1151d12d342e6fce96f3a534/USER", "/WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WZ3l1n_2016AMCPY" : [ "/WZTo3LNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "ZZ2l2q_2016POWPY" : [ "/ZZTo2L2Q_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "ZZ2l2q_2016AMCPY" : [ "/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"ZZ2l2n_2016POWPY" : [ #"/ZZTo2L2Nu_13TeV_powheg_pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM", #"/ZZTo2L2Nu_13TeV_powheg_pythia8_ext1/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], "ZZ_2016AMCPY": [ "/ZZ_TuneCUETP8M1_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WZ_2016AMCPY": [ "/WZ_TuneCUETP8M1_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/WZ_TuneCUETP8M1_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WW_2016AMCPY": [ "/WW_TuneCUETP8M1_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/WW_TuneCUETP8M1_13TeV-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "ggHmm_2016AMCPY" : [ "/GluGluHToMuMu_M125_TuneCP5_PSweights_13TeV_amcatnloFXFX_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "ggHmm_2016POWPY" : [ "/GluGluHToMuMu_M-125_TuneCP5_PSweights_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER", "/GluGlu_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/GluGlu_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "vbfHmm_2016POWPY" : [ "/VBF_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_symptotic_v3_ext1-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/VBF_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/VBFHToMuMu_M-125_TuneCP5_PSweights_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "vbfHmm_2016POWHERWIG" : [ "/VBFHToMuMu_M-125_TuneEEC5_13TeV-powheg-herwigpp/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "vbfHmm_2016AMCPY" : [ "/VBFHToMuMu_M125_TuneCP5_PSweights_13TeV_amcatnlo_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "vbfHmm_2016AMCHERWIG" : [ "/VBFHToMuMu_M-125_TuneEEC5_13TeV-amcatnlo-herwigpp/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "zHmm_2016POWPY" : [ "/ZH_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER", "/ZH_HToMuMu_ZToAll_M125_TuneCP5_PSweights_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "ttHmm_2016POWPY" : [ "/ttHToMuMu_M125_TuneCP5_PSweights_13TeV-powheg-pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WplusHmm_2016POWPY" : [ "/WplusH_HToMuMu_WToAll_M125_TuneCP5_PSweights_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" , "/WPlusH_HToMuMu_M125_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v2-cc4adcbd1151d12d342e6fce96f3a534/USER" ], "WminusHmm_2016POWPY" : [ "/WminusH_HToMuMu_WToAll_M125_TuneCP5_PSweights_13TeV_powheg_pythia8/arizzi-RunIISummer16MiniAODv3_nanoFSRV2_un2_asymptotic_v3-v1-cc4adcbd1151d12d342e6fce96f3a534/USER" ], #"vbfHtautau_2016POWPY" : [ #"/VBFHToTauTau_M125_13TeV_powheg_pythia8/RunIISummer16NanoAODv5-PUMoriond17_Nano1June2019_102X_mcRun2_asymptotic_v7-v1/NANOAODSIM" #], }
23094fc7981a2a9ec1933bf16e464be5b94360bb
9cd180fc7594eb018c41f0bf0b54548741fd33ba
/sdk/python/pulumi_azure_nextgen/network/v20170601/network_watcher.py
4acd5c948f6a86e7fb6e05cd645200b151fc7041
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
MisinformedDNA/pulumi-azure-nextgen
c71971359450d03f13a53645171f621e200fe82d
f0022686b655c2b0744a9f47915aadaa183eed3b
refs/heads/master
2022-12-17T22:27:37.916546
2020-09-28T16:03:59
2020-09-28T16:03:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,727
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = ['NetworkWatcher'] class NetworkWatcher(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, etag: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, network_watcher_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Network watcher in a resource group. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[str] network_watcher_name: The name of the network watcher. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['etag'] = etag __props__['id'] = id __props__['location'] = location if network_watcher_name is None: raise TypeError("Missing required property 'network_watcher_name'") __props__['network_watcher_name'] = network_watcher_name if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/latest:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20160901:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20161201:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20170301:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20170801:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20170901:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20171001:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20171101:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180101:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180201:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180401:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180601:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180701:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20180801:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20181001:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20181101:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20181201:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190201:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190401:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190601:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190701:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190801:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20190901:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20191101:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20191201:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20200301:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20200401:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20200501:NetworkWatcher"), pulumi.Alias(type_="azure-nextgen:network/v20200601:NetworkWatcher")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NetworkWatcher, __self__).__init__( 'azure-nextgen:network/v20170601:NetworkWatcher', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NetworkWatcher': """ Get an existing NetworkWatcher resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return NetworkWatcher(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop