blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 777
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 149
values | src_encoding
stringclasses 26
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 3
10.2M
| extension
stringclasses 188
values | content
stringlengths 3
10.2M
| authors
listlengths 1
1
| author_id
stringlengths 1
132
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e53ef3a51a14ccc8104cc867ed554b8adb9aed95
|
aad164e4efe1d55cc189c35956bfd435b14a0f52
|
/eve-8.21.494548/carbon/client/script/graphics/resourceConstructors/caustics.py
|
0b31954b427fc0133d1ad9e77edc5c4412a39c19
|
[] |
no_license
|
Pluckyduck/eve
|
61cc41fe8fd4dca4fbdcc4761a37bcfeb27ed84f
|
9a277707ab1f162c6bd9618faf722c0be3ea93ad
|
refs/heads/master
| 2020-12-28T23:35:29.992875 | 2013-05-06T14:24:33 | 2013-05-06T14:24:33 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,938 |
py
|
#Embedded file name: c:/depot/games/branches/release/EVE-TRANQUILITY/carbon/client/script/graphics/resourceConstructors/caustics.py
import blue
import trinity
import bluepy
import re
import decometaclass
class CausticsRenderJob(object):
__cid__ = 'trinity.TriRenderJob'
__metaclass__ = decometaclass.BlueWrappedMetaclass
def Initialize(self, size, speed, amplitude, tiling, texturePath):
def TextureDestroyed():
self.Destroy()
texture = trinity.Tr2RenderTarget(size, size, 1, trinity.PIXEL_FORMAT.B8G8R8A8_UNORM)
self.name = 'Caustics'
self.size = size
self.texture = blue.BluePythonWeakRef(texture)
self.texture.callback = TextureDestroyed
self.steps.append(trinity.TriStepPushRenderTarget(texture))
self.steps.append(trinity.TriStepClear((0, 0, 0, 0)))
self.steps.append(trinity.TriStepSetStdRndStates(trinity.RM_FULLSCREEN))
material = trinity.Tr2ShaderMaterial()
material.highLevelShaderName = 'Caustics'
param = trinity.TriTexture2DParameter()
param.name = 'Texture'
param.resourcePath = texturePath
material.parameters['Texture'] = param
param = trinity.Tr2FloatParameter()
param.name = 'Speed'
param.value = speed
material.parameters['Speed'] = param
param = trinity.Tr2FloatParameter()
param.name = 'Amplitude'
param.value = amplitude
material.parameters['Amplitude'] = param
param = trinity.Tr2FloatParameter()
param.name = 'Tiling'
param.value = tiling
material.parameters['Tiling'] = param
material.BindLowLevelShader([])
self.steps.append(trinity.TriStepRenderFullScreenShader(material))
self.steps.append(trinity.TriStepPopRenderTarget())
trinity.renderJobs.recurring.append(self)
return trinity.TriTextureRes(texture)
def Destroy(self):
trinity.renderJobs.recurring.remove(self)
self.texture = None
def DoPrepareResources(self):
for step in self.steps:
if type(step) is trinity.TriStepPushRenderTarget:
if self.texture is not None and self.texture.object is not None:
self.texture.object.SetFromRenderTarget(step.renderTarget)
def Caustics(paramString):
params = {'size': 256,
'speed': 1,
'amplitude': 1,
'tiling': 1,
'texture': 'res:/Texture/Global/caustic.dds'}
expr = re.compile('&?(\\w+)=([^&]*)')
pos = 0
while True:
match = expr.match(paramString, pos)
if match is None:
break
params[match.group(1)] = match.group(2)
pos = match.end()
rj = CausticsRenderJob()
return rj.Initialize(int(params['size']), float(params['speed']), float(params['amplitude']), float(params['tiling']), params['texture'])
blue.resMan.RegisterResourceConstructor('caustics', Caustics)
|
[
"[email protected]"
] | |
a6b2d8ca57fdd5b6c2a3e5d15ae0a7de5aaa87d7
|
e67c27642a4b83b3560dc4bba7de7752278caa07
|
/example-seaexplorer/process_deploymentRealTime.py
|
390d934c8e720fa964bf4ca7e1f927624cb6a240
|
[] |
no_license
|
c-burmaster/pyglider
|
3749661bfa367642bdd8cb453e8f14428785de46
|
76131e8419c30852150173a9994a88595cef52aa
|
refs/heads/master
| 2020-07-25T14:42:26.752105 | 2020-04-06T20:44:39 | 2020-04-06T20:44:39 | 208,326,724 | 0 | 0 | null | 2019-09-13T18:48:07 | 2019-09-13T18:48:07 | null |
UTF-8
|
Python
| false | false | 1,545 |
py
|
import logging
import os
import pyglider.seaexplorer as seaexplorer
import pyglider.ncprocess as ncprocess
import pyglider.plotting as pgplot
logging.basicConfig(level='INFO')
sourcedir = '~alseamar/Documents/SEA035/000012/000012/C-Csv/*'
rawdir = './realtime_raw/'
rawncdir = './realtime_rawnc/'
deploymentyaml = './deploymentRealtime.yml'
l1tsdir = './L1-timeseries/'
profiledir = './L1-profiles/'
griddir = './L2-gridfiles/'
plottingyaml = './plottingconfig.yml'
## get the data and clean up derived
#os.system('source synctodfo.sh')
if 0:
os.system('rsync -av ' + sourcedir + ' ' + rawdir)
# clean last processing...
os.system('rm ' + rawncdir + '* ' + l1tsdir + '* ' + profiledir + '* ' +
griddir + '* ')
if 1:
# turn *.EBD and *.DBD into *.ebd.nc and *.dbd.nc netcdf files.
seaexplorer.raw_to_rawnc(rawdir, rawncdir, deploymentyaml)
# merge individual neetcdf files into single netcdf files *.ebd.nc and *.dbd.nc
seaexplorer.merge_rawnc(rawncdir, rawncdir, deploymentyaml, kind='sub')
# Make level-1 timeseries netcdf file from th raw files...
outname = seaexplorer.raw_to_L1timeseries(rawncdir, l1tsdir, deploymentyaml, kind='sub')
ncprocess.extract_L1timeseries_profiles(outname, profiledir, deploymentyaml)
outname2 = ncprocess.make_L2_gridfiles(outname, griddir, deploymentyaml)
if 1:
# make profile netcdf files for ioos gdac...
# make grid of dataset....
pgplot.timeseries_plots(outname, plottingyaml)
pgplot.grid_plots(outname2, plottingyaml)
|
[
"[email protected]"
] | |
5c05c9569d485e314860849c7d2e6b419d5ec0fe
|
afa71330ff1b6b4d114993b39fea5f8e4b8fc210
|
/ensauction/abis.py
|
4334abe77636bbc1de06ea1eb341751a5cd0d3db
|
[
"MIT"
] |
permissive
|
carver/ensauction.py
|
e556827e0c613d01ea94743e1527f279b1e92464
|
4f30d64ea7c470a53d133e7c8e43d8228b62732c
|
refs/heads/master
| 2018-12-20T18:28:07.237482 | 2018-09-17T22:15:14 | 2018-09-17T22:15:14 | 110,906,856 | 4 | 0 |
MIT
| 2018-09-17T20:49:09 | 2017-11-16T01:25:53 |
Python
|
UTF-8
|
Python
| false | false | 12,327 |
py
|
AUCTION_REGISTRAR = [
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "releaseDeed",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "getAllowedTime",
"outputs": [
{
"name": "timestamp",
"type": "uint256"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "unhashedName",
"type": "string"
}
],
"name": "invalidateName",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "hash",
"type": "bytes32"
},
{
"name": "owner",
"type": "address"
},
{
"name": "value",
"type": "uint256"
},
{
"name": "salt",
"type": "bytes32"
}
],
"name": "shaBid",
"outputs": [
{
"name": "sealedBid",
"type": "bytes32"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "bidder",
"type": "address"
},
{
"name": "seal",
"type": "bytes32"
}
],
"name": "cancelBid",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "entries",
"outputs": [
{
"name": "",
"type": "uint8"
},
{
"name": "",
"type": "address"
},
{
"name": "",
"type": "uint256"
},
{
"name": "",
"type": "uint256"
},
{
"name": "",
"type": "uint256"
}
],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "ens",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
},
{
"name": "_value",
"type": "uint256"
},
{
"name": "_salt",
"type": "bytes32"
}
],
"name": "unsealBid",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "transferRegistrars",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "",
"type": "address"
},
{
"name": "",
"type": "bytes32"
}
],
"name": "sealedBids",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "state",
"outputs": [
{
"name": "",
"type": "uint8"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
},
{
"name": "newOwner",
"type": "address"
}
],
"name": "transfer",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
},
{
"name": "_timestamp",
"type": "uint256"
}
],
"name": "isAllowed",
"outputs": [
{
"name": "allowed",
"type": "bool"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "finalizeAuction",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "registryStarted",
"outputs": [
{
"name": "",
"type": "uint256"
}
],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "launchLength",
"outputs": [
{
"name": "",
"type": "uint32"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "sealedBid",
"type": "bytes32"
}
],
"name": "newBid",
"outputs": [],
"payable": True,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "labels",
"type": "bytes32[]"
}
],
"name": "eraseNode",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hashes",
"type": "bytes32[]"
}
],
"name": "startAuctions",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "hash",
"type": "bytes32"
},
{
"name": "deed",
"type": "address"
},
{
"name": "registrationDate",
"type": "uint256"
}
],
"name": "acceptRegistrarTransfer",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "_hash",
"type": "bytes32"
}
],
"name": "startAuction",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "rootNode",
"outputs": [
{
"name": "",
"type": "bytes32"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "hashes",
"type": "bytes32[]"
},
{
"name": "sealedBid",
"type": "bytes32"
}
],
"name": "startAuctionsAndBid",
"outputs": [],
"payable": True,
"type": "function"
},
{
"inputs": [
{
"name": "_ens",
"type": "address"
},
{
"name": "_rootNode",
"type": "bytes32"
},
{
"name": "_startDate",
"type": "uint256"
}
],
"payable": False,
"type": "constructor"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": False,
"name": "registrationDate",
"type": "uint256"
}
],
"name": "AuctionStarted",
"type": "event"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": True,
"name": "bidder",
"type": "address"
},
{
"indexed": False,
"name": "deposit",
"type": "uint256"
}
],
"name": "NewBid",
"type": "event"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": True,
"name": "owner",
"type": "address"
},
{
"indexed": False,
"name": "value",
"type": "uint256"
},
{
"indexed": False,
"name": "status",
"type": "uint8"
}
],
"name": "BidRevealed",
"type": "event"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": True,
"name": "owner",
"type": "address"
},
{
"indexed": False,
"name": "value",
"type": "uint256"
},
{
"indexed": False,
"name": "registrationDate",
"type": "uint256"
}
],
"name": "HashRegistered",
"type": "event"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": False,
"name": "value",
"type": "uint256"
}
],
"name": "HashReleased",
"type": "event"
},
{
"anonymous": False,
"inputs": [
{
"indexed": True,
"name": "hash",
"type": "bytes32"
},
{
"indexed": True,
"name": "name",
"type": "string"
},
{
"indexed": False,
"name": "value",
"type": "uint256"
},
{
"indexed": False,
"name": "registrationDate",
"type": "uint256"
}
],
"name": "HashInvalidated",
"type": "event"
}
]
DEED = [
{
"constant": True,
"inputs": [],
"name": "creationDate",
"outputs": [
{
"name": "",
"type": "uint256"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [],
"name": "destroyDeed",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "newOwner",
"type": "address"
}
],
"name": "setOwner",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "registrar",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "owner",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "refundRatio",
"type": "uint256"
}
],
"name": "closeDeed",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "newRegistrar",
"type": "address"
}
],
"name": "setRegistrar",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "newValue",
"type": "uint256"
}
],
"name": "setBalance",
"outputs": [],
"payable": True,
"type": "function"
},
{
"inputs": [],
"type": "constructor"
},
{
"payable": True,
"type": "fallback"
},
{
"anonymous": False,
"inputs": [
{
"indexed": False,
"name": "newOwner",
"type": "address"
}
],
"name": "OwnerChanged",
"type": "event"
},
{
"anonymous": False,
"inputs": [],
"name": "DeedClosed",
"type": "event"
}
]
FIFS_REGISTRAR = [
{
"constant": True,
"inputs": [],
"name": "ens",
"outputs": [
{
"name": "",
"type": "address"
}
],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [
{
"name": "",
"type": "bytes32"
}
],
"name": "expiryTimes",
"outputs": [
{
"name": "",
"type": "uint256"
}
],
"payable": False,
"type": "function"
},
{
"constant": False,
"inputs": [
{
"name": "subnode",
"type": "bytes32"
},
{
"name": "owner",
"type": "address"
}
],
"name": "register",
"outputs": [],
"payable": False,
"type": "function"
},
{
"constant": True,
"inputs": [],
"name": "rootNode",
"outputs": [
{
"name": "",
"type": "bytes32"
}
],
"payable": False,
"type": "function"
},
{
"inputs": [
{
"name": "ensAddr",
"type": "address"
},
{
"name": "node",
"type": "bytes32"
}
],
"type": "constructor"
}
]
|
[
"[email protected]"
] | |
217d85c42a5b1d3880ab3cbf52e36a73d6d5e6c9
|
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
|
/alipay/aop/api/response/AlipayFinancialnetAuthEcsignErrorQueryResponse.py
|
1e5c32e52d696f398ce156d029df7850935ce29a
|
[
"Apache-2.0"
] |
permissive
|
alipay/alipay-sdk-python-all
|
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
|
1fad300587c9e7e099747305ba9077d4cd7afde9
|
refs/heads/master
| 2023-08-27T21:35:01.778771 | 2023-08-23T07:12:26 | 2023-08-23T07:12:26 | 133,338,689 | 247 | 70 |
Apache-2.0
| 2023-04-25T04:54:02 | 2018-05-14T09:40:54 |
Python
|
UTF-8
|
Python
| false | false | 1,115 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import json
from alipay.aop.api.response.AlipayResponse import AlipayResponse
from alipay.aop.api.domain.ErrorLog import ErrorLog
class AlipayFinancialnetAuthEcsignErrorQueryResponse(AlipayResponse):
def __init__(self):
super(AlipayFinancialnetAuthEcsignErrorQueryResponse, self).__init__()
self._error_log_list = None
@property
def error_log_list(self):
return self._error_log_list
@error_log_list.setter
def error_log_list(self, value):
if isinstance(value, list):
self._error_log_list = list()
for i in value:
if isinstance(i, ErrorLog):
self._error_log_list.append(i)
else:
self._error_log_list.append(ErrorLog.from_alipay_dict(i))
def parse_response_content(self, response_content):
response = super(AlipayFinancialnetAuthEcsignErrorQueryResponse, self).parse_response_content(response_content)
if 'error_log_list' in response:
self.error_log_list = response['error_log_list']
|
[
"[email protected]"
] | |
ac9a73f49e91af26961dc6a2016f1f3a3e02557b
|
68bad4b3d92872bb5b77b4ee503e588d20511a27
|
/python/scripts_inhibition/old_script/effect_beta_conn_index3.py
|
71c90589942dfe29b6b59fb06f211f42ddc7e0b9
|
[] |
no_license
|
mickelindahl/bgmodel
|
647be626a7311a8f08f3dfc897c6dd4466fc0a92
|
78e6f2b73bbcbecd0dba25caf99f835313c914ee
|
refs/heads/master
| 2023-08-29T13:57:04.122115 | 2022-02-11T14:28:23 | 2022-02-11T14:28:23 | 17,148,386 | 7 | 3 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,061 |
py
|
'''
Created on Nov 13, 2014
@author: mikael
'''
from scripts_inhibition import effect_conns
from effect_conns import gs_builder_conn
d=kw={'n_rows':8,
'n_cols':2,
'w':int(72/2.54*18),
'h':int(72/2.54*18)/3,
'fontsize':7,
'title_fontsize':7,
'gs_builder':gs_builder_conn}
kwargs={'data_path':('/home/mikael/results/papers/inhibition/network/'
+'milner/simulate_beta_ZZZ_conn_effect_perturb3/'),
'from_diks':0,
'script_name':(__file__.split('/')[-1][0:-3]+'/data'),
'title':'Activation (beta)',
'fontsize_x':7,
'fontsize_y':7,
'conn_fig_title_fontsize':7,
'title_flipped':True,
# 'title_posy':0.2,
'do_plots':['index'],
'top_lables_fontsize':7,
'clim_raw': [[0,5], [0,50], [0,1]],
'kwargs_fig':d,
'oi_min':15.,
'oi_max':25,
'oi_fs':256,
'psd':{'NFFT':128,
'fs':256.,
'noverlap':128/2}}
obj=effect_conns.Main(**kwargs)
obj.do()
|
[
"[email protected]"
] | |
41371ec303f8bfca6e951551f8bc57780ee8392d
|
540bf8de2145644fa3549e507871d53352201df8
|
/Chapter_8/Lopez_TIY8.9.py
|
0f9c69bf23451d0fa200b8967c79b820adbb2d29
|
[] |
no_license
|
lope512q09/Python
|
68d798d4c3135ac187b78db28b73047b2efdbde9
|
7fdb97da36fd3f7145bfb3c8a43518685b5f6d6d
|
refs/heads/master
| 2020-08-23T10:44:07.915389 | 2020-01-22T15:36:23 | 2020-01-22T15:36:23 | 216,598,365 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 194 |
py
|
message_list = ["Hi!", "How are you?", "I'm good, and you?", "The same!"]
def show_messages(messages):
for message in messages:
print(f"{message}\n")
show_messages(message_list)
|
[
"[email protected]"
] | |
c5a559474d66a4a49796a3aa35b921528e07527b
|
dee29293af049cac224f0c94a7eaf439e8766085
|
/bluezutils.py
|
8c9f7f962272215923940598f7e84d9b713cd26f
|
[] |
no_license
|
lubusax/2005_dbus
|
9721d88c42081138fac1b55814f5fc1bbb9eec09
|
0647a951448fe8bb297ba2988ef35ec7117e389f
|
refs/heads/master
| 2022-12-01T23:33:52.162681 | 2020-08-10T19:41:02 | 2020-08-10T19:41:02 | 263,895,499 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,649 |
py
|
import dbus
SERVICE_NAME = "org.bluez"
ADAPTER_INTERFACE = SERVICE_NAME + ".Adapter1"
DEVICE_INTERFACE = SERVICE_NAME + ".Device1"
def get_managed_objects():
bus = dbus.SystemBus()
manager = dbus.Interface(bus.get_object("org.bluez", "/"),
"org.freedesktop.DBus.ObjectManager")
return manager.GetManagedObjects()
def find_adapter(pattern=None):
return find_adapter_in_objects(get_managed_objects(), pattern)
def find_adapter_in_objects(objects, pattern=None):
bus = dbus.SystemBus()
for path, ifaces in objects.items():
adapter = ifaces.get(ADAPTER_INTERFACE)
if adapter is None:
continue
if not pattern or pattern == adapter["Address"] or \
path.endswith(pattern):
obj = bus.get_object(SERVICE_NAME, path)
#print("BLUEZ :", SERVICE_NAME)
print("PATH_HCI0 :", path)
print("hci0 :", obj)
return dbus.Interface(obj, ADAPTER_INTERFACE)
raise Exception("Bluetooth adapter not found")
def find_device(device_address, adapter_pattern=None):
return find_device_in_objects(get_managed_objects(), device_address,
adapter_pattern)
def find_device_in_objects(objects, device_address, adapter_pattern=None):
bus = dbus.SystemBus()
path_prefix = ""
if adapter_pattern:
adapter = find_adapter_in_objects(objects, adapter_pattern)
path_prefix = adapter.object_path
for path, ifaces in objects.items():
device = ifaces.get(DEVICE_INTERFACE)
if device is None:
continue
if (device["Address"] == device_address and
path.startswith(path_prefix)):
obj = bus.get_object(SERVICE_NAME, path)
return dbus.Interface(obj, DEVICE_INTERFACE)
raise Exception("Bluetooth device not found")
|
[
"[email protected]"
] | |
3ebb7a68bca91cfa6d41a0fe4b1d036325352a14
|
09e57dd1374713f06b70d7b37a580130d9bbab0d
|
/benchmark/startQiskit2215.py
|
5f520456f8eb7cadea2dc6cd635e3fff07eb5941
|
[
"BSD-3-Clause"
] |
permissive
|
UCLA-SEAL/QDiff
|
ad53650034897abb5941e74539e3aee8edb600ab
|
d968cbc47fe926b7f88b4adf10490f1edd6f8819
|
refs/heads/main
| 2023-08-05T04:52:24.961998 | 2021-09-19T02:56:16 | 2021-09-19T02:56:16 | 405,159,939 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,852 |
py
|
# qubit number=4
# total number=28
import cirq
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import BasicAer, execute, transpile
from pprint import pprint
from qiskit.test.mock import FakeVigo
from math import log2
import numpy as np
import networkx as nx
def bitwise_xor(s: str, t: str) -> str:
length = len(s)
res = []
for i in range(length):
res.append(str(int(s[i]) ^ int(t[i])))
return ''.join(res[::-1])
def bitwise_dot(s: str, t: str) -> str:
length = len(s)
res = 0
for i in range(length):
res += int(s[i]) * int(t[i])
return str(res % 2)
def build_oracle(n: int, f) -> QuantumCircuit:
# implement the oracle O_f
# NOTE: use multi_control_toffoli_gate ('noancilla' mode)
# https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html
# https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates
# https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate
controls = QuantumRegister(n, "ofc")
target = QuantumRegister(1, "oft")
oracle = QuantumCircuit(controls, target, name="Of")
for i in range(2 ** n):
rep = np.binary_repr(i, n)
if f(rep) == "1":
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
oracle.mct(controls, target[0], None, mode='noancilla')
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.barrier()
return oracle
def make_circuit(n:int,f) -> QuantumCircuit:
# circuit begin
input_qubit = QuantumRegister(n,"qc")
classical = ClassicalRegister(n, "qm")
prog = QuantumCircuit(input_qubit, classical)
prog.x(input_qubit[3]) # number=1
prog.rx(-1.9352210746113125,input_qubit[3]) # number=14
prog.cx(input_qubit[1],input_qubit[2]) # number=22
prog.h(input_qubit[1]) # number=2
prog.h(input_qubit[2]) # number=3
prog.h(input_qubit[3]) # number=4
prog.y(input_qubit[2]) # number=13
prog.rx(0.13823007675795101,input_qubit[2]) # number=24
prog.h(input_qubit[0]) # number=5
oracle = build_oracle(n-1, f)
prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]])
prog.h(input_qubit[1]) # number=6
prog.h(input_qubit[2]) # number=7
prog.h(input_qubit[3]) # number=8
prog.h(input_qubit[0]) # number=9
prog.rx(-1.9069467407290044,input_qubit[2]) # number=20
prog.h(input_qubit[3]) # number=21
prog.y(input_qubit[2]) # number=10
prog.h(input_qubit[1]) # number=17
prog.cz(input_qubit[3],input_qubit[1]) # number=18
prog.h(input_qubit[1]) # number=19
prog.y(input_qubit[2]) # number=11
prog.h(input_qubit[0]) # number=25
prog.cz(input_qubit[1],input_qubit[0]) # number=26
prog.h(input_qubit[0]) # number=27
prog.cx(input_qubit[1],input_qubit[0]) # number=16
prog.z(input_qubit[3]) # number=23
# circuit end
for i in range(n):
prog.measure(input_qubit[i], classical[i])
return prog
if __name__ == '__main__':
a = "111"
b = "0"
f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b)
prog = make_circuit(4,f)
backend = BasicAer.get_backend('qasm_simulator')
sample_shot =8000
info = execute(prog, backend=backend, shots=sample_shot).result().get_counts()
backend = FakeVigo()
circuit1 = transpile(prog,backend,optimization_level=2)
writefile = open("../data/startQiskit2215.csv","w")
print(info,file=writefile)
print("results end", file=writefile)
print(circuit1.__len__(),file=writefile)
print(circuit1,file=writefile)
writefile.close()
|
[
"[email protected]"
] | |
1e225faa5c2c7bc6323a87b9640d07cc541acb30
|
51fd2216d5182a1b3655e7cb1b197862424054f6
|
/insta_api/config/urls.py
|
8258104c833242de67443431202090483e1a9431
|
[] |
no_license
|
seungjinhan/django_clone_instagram
|
3217829fabe893190e7d6cc37b64b7d3c881f441
|
f0ea8649d426c167e2ccd2fa3b15e5d3b7867d7b
|
refs/heads/master
| 2022-12-26T05:39:16.320763 | 2020-10-05T13:40:39 | 2020-10-05T13:40:39 | 291,262,260 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 998 |
py
|
"""config URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.1/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path, include
from django.conf import settings
from django.conf.urls.static import static
urlpatterns = [
path('api/', include('api.urls')),
path('token/', include('djoser.urls.jwt')),
path('admin/', admin.site.urls),
]
urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
|
[
"[email protected]"
] | |
062718780f0e402218a9160bf8cafdd20d5a1da6
|
1749147fb24b13803d3437e0ae94250d67d618bd
|
/keras/keras33_tensorboard.py
|
a9043cf01d608a05cfe76b9a3fafa8b1681e955d
|
[] |
no_license
|
MJK0211/bit_seoul
|
65dcccb9336d9565bf9b3bc210b1e9c1c8bd840e
|
44d78ce3e03f0a9cf44afafc95879e4e92d27d54
|
refs/heads/master
| 2023-02-06T00:45:52.999272 | 2020-12-26T07:47:30 | 2020-12-26T07:47:30 | 311,308,648 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,076 |
py
|
import numpy as np
#1. 데이터
dataset = np.array(range(1,11))
size = 5
def split_x(seq, size):
aaa = []
for i in range(len(seq) - size + 1):
subset = seq[i : (i+size)]
aaa.append([item for item in subset])
# print(type(aaa))
return np.array(aaa)
datasets = split_x(dataset, size)
x = datasets[:, 0:4] #(96,4)
y = datasets[:, 4] #(96,)
x = np.reshape(x, (x.shape[0], x.shape[1],1)) #(96,4,1)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test, = train_test_split(x, y, train_size=0.9, shuffle=False)
#2. 모델구성
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
model = Sequential()
model.add(LSTM(200, activation='relu', input_shape=(4,1)))
model.add(Dense(180, activation='relu'))
model.add(Dense(150, activation='relu'))
model.add(Dense(110, activation='relu'))
model.add(Dense(60, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
model.summary()
#3. 컴파일, 훈련
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
from tensorflow.keras.callbacks import EarlyStopping, TensorBoard #TensorBoard 추가
early_stopping = EarlyStopping(monitor='loss', patience=200, mode='min')
to_hist = TensorBoard(log_dir='graph', histogram_freq=0, write_graph=True, write_images=True)
#graph 폴더에 파일들이 생기는 것을 볼 수 있다
#cmd - d: - cd Study - cd bit_seoul - cd graph (파일 최종 경로) - tensorboard --logdir=. enter
#TensorBoard 2.3.0 at http://localhost:6006/ (Press CTRL+C to quit)
#위에 표시된 url 접속
#log가 겹칠 수 있다. 새로 볼 경우에는 로그를 지우고 새로 하는게 좋을 수 있다
history = model.fit(x_train, y_train, epochs=1000, batch_size=1, validation_split= 0.2, verbose=1, callbacks=[early_stopping, to_hist]) #to_hist를 콜백에 list형태로 추가
#4. 평가, 예측
loss, mae = model.evaluate(x_test, y_test)
print("loss : ", loss)
print("mae : ", mae)
y_predict = model.predict(x_test)
print("y_predict : \n", y_predict)
|
[
"[email protected]"
] | |
49582bc92163da9907c82cade99055d72e45a69b
|
9b422078f4ae22fe16610f2ebc54b8c7d905ccad
|
/xlsxwriter/test/comparison/test_chart_format08.py
|
058d4a13f4a4112c40ccca93ab04951eaf939c95
|
[
"BSD-2-Clause-Views"
] |
permissive
|
projectsmahendra/XlsxWriter
|
73d8c73ea648a911deea63cb46b9069fb4116b60
|
9b9d6fb283c89af8b6c89ad20f72b8208c2aeb45
|
refs/heads/master
| 2023-07-21T19:40:41.103336 | 2023-07-08T16:54:37 | 2023-07-08T16:54:37 | 353,636,960 | 0 | 0 |
NOASSERTION
| 2021-04-01T08:57:21 | 2021-04-01T08:57:20 | null |
UTF-8
|
Python
| false | false | 1,440 |
py
|
###############################################################################
#
# Tests for XlsxWriter.
#
# Copyright (c), 2013-2021, John McNamara, [email protected]
#
from ..excel_comparison_test import ExcelComparisonTest
from ...workbook import Workbook
class TestCompareXLSXFiles(ExcelComparisonTest):
"""
Test file created by XlsxWriter against a file created by Excel.
"""
def setUp(self):
self.set_filename('chart_format08.xlsx')
def test_create_file(self):
"""Test the creation of an XlsxWriter file with chart formatting."""
workbook = Workbook(self.got_filename)
worksheet = workbook.add_worksheet()
chart = workbook.add_chart({'type': 'line'})
chart.axis_ids = [46164608, 46176128]
data = [
[1, 2, 3, 4, 5],
[2, 4, 6, 8, 10],
[3, 6, 9, 12, 15],
]
worksheet.write_column('A1', data[0])
worksheet.write_column('B1', data[1])
worksheet.write_column('C1', data[2])
chart.add_series({
'categories': '=Sheet1!$A$1:$A$5',
'values': '=Sheet1!$B$1:$B$5',
'trendline': {'type': 'linear'},
})
chart.add_series({
'categories': '=Sheet1!$A$1:$A$5',
'values': '=Sheet1!$C$1:$C$5',
})
worksheet.insert_chart('E9', chart)
workbook.close()
self.assertExcelEqual()
|
[
"[email protected]"
] | |
e768c417c324d6053a1501c6620777767efd6bbf
|
5483ac2ccf7ac0d951b31dab2a86fe564c397408
|
/appos.py
|
f801bf21a4cacfc9c718c9eab3adaad81a3221a0
|
[] |
no_license
|
Ram-Aditya/Music-Recommender
|
9d4a7ee8379e98756e2082a95bbb1d5e4318e806
|
1fdeb5ed208be7908f09a1a5576a30218505a979
|
refs/heads/master
| 2020-05-07T14:20:13.772004 | 2019-10-25T16:12:57 | 2019-10-25T16:12:57 | 180,589,469 | 0 | 2 | null | 2019-10-27T12:58:23 | 2019-04-10T13:37:25 |
Python
|
UTF-8
|
Python
| false | false | 1,308 |
py
|
appos = {
"ain't":"it is not like",
"aren't" : "are not",
"can't" : "cannot",
"couldn't" : "could not",
"didn't" : "did not",
"doesn't" : "does not",
"don't" : "do not",
"hadn't" : "had not",
"hasn't" : "has not",
"haven't" : "have not",
"he'd" : "he would",
"he'll" : "he will",
"he's" : "he is",
"i'd" : "I would",
"i'd" : "I had",
"i'll" : "I will",
"i'm" : "I am",
"isn't" : "is not",
"it's" : "it is",
"it'll":"it will",
"i've" : "I have",
"let's" : "let us",
"mightn't" : "might not",
"mustn't" : "must not",
"shan't" : "shall not",
"she'd" : "she would",
"she'll" : "she will",
"she's" : "she is",
"shouldn't" : "should not",
"that's" : "that is",
"there's" : "there is",
"they'd" : "they would",
"they'll" : "they will",
"they're" : "they are",
"they've" : "they have",
"we'd" : "we would",
"we're" : "we are",
"weren't" : "were not",
"we've" : "we have",
"what'll" : "what will",
"what're" : "what are",
"what's" : "what is",
"what've" : "what have",
"where's" : "where is",
"who'd" : "who would",
"who'll" : "who will",
"who're" : "who are",
"who's" : "who is",
"who've" : "who have",
"won't" : "will not",
"wouldn't" : "would not",
"you'd" : "you would",
"you'll" : "you will",
"you're" : "you are",
"you've" : "you have",
"'re": " are",
"wasn't": "was not",
"we'll":" will",
"didn't": "did not"
}
|
[
"[email protected]"
] | |
a56d370607d4b4332ef539db433c38161c4a2bcb
|
8972658ca2c64703e8281db89d7a6ac47cbabbf7
|
/backend/linkanywhere/apps/base/behaviors.py
|
d3c96ffeda67dc40478d7c26a088712f96c2161d
|
[
"MIT"
] |
permissive
|
denisorehovsky/linkanywhere
|
15721824719cc8a959cdddb4178cfe754eb4862d
|
e21d6725fbe0e74a7301e40f9d9bdbac17c68e68
|
refs/heads/master
| 2022-07-21T16:16:17.412930 | 2017-08-24T06:32:37 | 2017-08-24T06:32:37 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,051 |
py
|
from django.db import models
from django.utils import timezone
from django.utils.translation import ugettext as _
from behaviors.querysets import PublishedQuerySet
from .constants import DRAFT, PUBLISHED, PUBLICATION_STATUS_CHOICES
class Published(models.Model):
publication_status = models.CharField(
_('publication status'),
max_length=1,
choices=PUBLICATION_STATUS_CHOICES,
default=DRAFT
)
publication_date = models.DateTimeField(
_('publication date'), null=True, blank=True
)
objects = PublishedQuerySet.as_manager()
publications = PublishedQuerySet.as_manager()
class Meta:
abstract = True
def save(self, *args, **kwargs):
if self.publication_date is None and self.is_published:
self.publication_date = timezone.now()
super().save(*args, **kwargs)
@property
def is_draft(self):
return self.publication_status == DRAFT
@property
def is_published(self):
return self.publication_status == PUBLISHED
|
[
"[email protected]"
] | |
20bf26f6d4991ace9ec7a0a74530718eaf4fd7c0
|
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
|
/Gauss_v45r10p1/Gen/DecFiles/options/20072002.py
|
a5d0a92707cd731867593ec97455a57a39004f3e
|
[] |
no_license
|
Sally27/backup_cmtuser_full
|
34782102ed23c6335c48650a6eaa901137355d00
|
8924bebb935b96d438ce85b384cfc132d9af90f6
|
refs/heads/master
| 2020-05-21T09:27:04.370765 | 2018-12-12T14:41:07 | 2018-12-12T14:41:07 | 185,989,173 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,268 |
py
|
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/20072002.py generated: Wed, 25 Jan 2017 15:25:32
#
# Event Type: 20072002
#
# ASCII decay Descriptor: pp => [<Xc>]cc ...
#
from Gaudi.Configuration import *
importOptions( "$DECFILESROOT/options/DiMuon_for_tau23mu.py" )
from Configurables import Generation
Generation().EventType = 20072002
Generation().SampleGenerationTool = "Inclusive"
from Configurables import Inclusive
Generation().addTool( Inclusive )
Generation().Inclusive.ProductionTool = "PythiaProduction"
from Configurables import ToolSvc
from Configurables import EvtGenDecay
ToolSvc().addTool( EvtGenDecay )
ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/incl_c=DiMuon,tau23mu_cuts.dec"
Generation().Inclusive.CutTool = "LHCbAcceptance"
Generation().FullGenEventCutTool = "DiLeptonInAcceptance"
Generation().Inclusive.InclusivePIDList = [ 421, -421, 411, -411, 431, -431, 4122, -4122, 443, 4112, -4112, 4212, -4212, 4222, -4222, 4312, -4312, 4322, -4322, 4332, -4332, 4132, -4132, 4232, -4232, 100443, 441, 10441, 20443, 445, 4214, -4214, 4224, -4224, 4314, -4314, 4324, -4324, 4334, -4334, 4412, -4412, 4414,-4414, 4422, -4422, 4424, -4424, 4432, -4432, 4434, -4434, 4444, -4444, 14122, -14122, 14124, -14124, 100441 ]
|
[
"[email protected]"
] | |
80ee0b807b6645849b86857892b8f89176016c50
|
98b63e3dc79c75048163512c3d1b71d4b6987493
|
/tensorflow/python/kernel_tests/linalg/sparse/csr_sparse_matrix_sparse_mat_mul_grad_test.py
|
07d1e6a2a061f98ad65a92e1259fed8bc646e0ac
|
[
"Apache-2.0"
] |
permissive
|
galeone/tensorflow
|
11a4e4a3f42f4f61a65b432c429ace00401c9cc4
|
1b6f13331f4d8e7fccc66bfeb0b066e77a2b7206
|
refs/heads/master
| 2022-11-13T11:56:56.143276 | 2020-11-10T14:35:01 | 2020-11-10T14:35:01 | 310,642,488 | 21 | 12 |
Apache-2.0
| 2020-11-06T16:01:03 | 2020-11-06T16:01:02 | null |
UTF-8
|
Python
| false | false | 5,236 |
py
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CSR sparse matrix tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import numpy as np
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_grad # pylint: disable=unused-import
from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging
def dense_to_csr_sparse_matrix(dense):
dense_t = ops.convert_to_tensor(dense)
locs = array_ops.stop_gradient(array_ops.where(math_ops.abs(dense_t) > 0))
return sparse_csr_matrix_ops.dense_to_csr_sparse_matrix(dense_t, locs)
def _add_test(test, op_name, testcase_name, fn): # pylint: disable=redefined-outer-name
if fn is None:
return
test_name = "_".join(["test", op_name, testcase_name])
if hasattr(test, test_name):
raise RuntimeError("Test %s defined more than once" % test_name)
setattr(test, test_name, fn)
class CSRSparseMatrixGradTest(test.TestCase):
@classmethod
def setUpClass(cls):
super(CSRSparseMatrixGradTest, cls).setUpClass()
cls._gpu_available = test_util.is_gpu_available()
# TODO(penporn): Make these tests runnable on eager mode.
# (tf.gradients and gradient_checker only run in graph mode.)
@test_util.run_deprecated_v1
def _testLargeBatchSparseMatrixSparseMatMulGrad(self, datatype, transpose_a,
transpose_b, adjoint_a,
adjoint_b):
if not self._gpu_available:
return
sparsify = lambda m: m * (m > 0)
a_mats_val = sparsify(
np.random.randn(3, 5, 11) +
1.j * np.random.randn(3, 5, 11)).astype(datatype)
if transpose_a or adjoint_a:
a_mats_val = np.transpose(a_mats_val, (0, 2, 1))
if adjoint_a:
a_mats_val = np.conj(a_mats_val)
b_mats_val = sparsify(
np.random.randn(3, 11, 13) +
1.j * np.random.randn(3, 11, 13)).astype(datatype)
if transpose_b or adjoint_b:
b_mats_val = np.transpose(b_mats_val, (0, 2, 1))
if adjoint_b:
b_mats_val = np.conj(b_mats_val)
with self.test_session(use_gpu=True):
a_mats = ops.convert_to_tensor(a_mats_val, dtype=datatype)
b_mats = ops.convert_to_tensor(b_mats_val, dtype=datatype)
a_sm = dense_to_csr_sparse_matrix(a_mats)
b_sm = dense_to_csr_sparse_matrix(b_mats)
c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul(
a_sm,
b_sm,
transpose_a=transpose_a,
transpose_b=transpose_b,
adjoint_a=adjoint_a,
adjoint_b=adjoint_b,
type=datatype)
c_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
c_sm, type=datatype)
for ten, val, nn in [[a_mats, a_mats_val, "a"], [b_mats, b_mats_val,
"b"]]:
tf_logging.info("Testing gradients for %s" % nn)
theoretical, numerical = gradient_checker.compute_gradient(
ten,
ten.get_shape().as_list(),
c_dense,
c_dense.get_shape().as_list(),
x_init_value=val,
delta=1e-3)
self.assertAllClose(theoretical, numerical, atol=1e-3, rtol=1e-3)
# These tests are refactored from sparse_csr_matrix_grad_test to keep its size
# "medium".
for dtype in (np.float32, np.complex64):
for (t_a, t_b, adj_a, adj_b) in itertools.product(*(([False, True],) * 4)):
def create_sparse_mat_mul_test_fn(dtype_, t_a_, t_b_, adj_a_, adj_b_):
# Skip invalid cases.
if (t_a_ and adj_a_) or (t_b_ and adj_b_):
return
# Skip cases where we conjugate real matrices.
if dtype_ == np.float32 and (adj_a_ or adj_b_):
return
def test_fn(self):
self._testLargeBatchSparseMatrixSparseMatMulGrad(
dtype_, t_a_, t_b_, adj_a_, adj_b_)
return test_fn
name = (
"_testLargeBatchSparseMatrixSparseMatMulGrad_dtype_%s_t_a_%s_t_b_%s_"
"adj_a_%s_adj_b_%s" % (dtype.__name__, t_a, t_b, adj_a, adj_b))
_add_test(CSRSparseMatrixGradTest, "CSRSparseMatrixSparseGradTest", name,
create_sparse_mat_mul_test_fn(dtype, t_a, t_b, adj_a, adj_b))
if __name__ == "__main__":
test.main()
|
[
"[email protected]"
] | |
acec0e95d1ab761a24af1b9dc5a5772237ac0c6a
|
28c517d75c71dcdefa3dfaa0dff6d5998f885e53
|
/testing/regrid/testDiag.py
|
6722eaa555a1b1ca4ba13982a9b03f7b2e8220ae
|
[] |
no_license
|
AZed/uvcdat
|
5863eba99f230c23336cc4e0772e0d406b24a919
|
58e745bbed25c7b80584fa25a29dd8239d917cd9
|
refs/heads/master
| 2021-01-18T10:36:45.792190 | 2013-01-25T22:29:10 | 2013-01-25T22:29:10 | 8,485,065 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,890 |
py
|
"""
$Id: testDiag.py 2389 2012-07-26 15:51:43Z dkindig $
Test diagnostics
"""
import re
import numpy
import cdms2
import regrid2
import unittest
import ESMP
from regrid2 import esmf
from matplotlib import pylab
from mpi4py import MPI
import types
from math import pi
import sys
class Test(unittest.TestCase):
def setUp(self):
self.pe = MPI.COMM_WORLD.Get_rank()
self.nprocs = MPI.COMM_WORLD.Get_size()
def Xtest1_libcf(self):
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
diag = {'numValid': None, 'numDstPoints': None}
soInterp = so.regrid(clt.getGrid(),
regridTool = 'libcf',
regridMethod='linear',
diag = diag)
if self.pe == 0:
# diag = {'numDstPoints': 3312, 'numValid': 2933}
self.assertEqual(diag['numDstPoints'], 3312)
self.assertEqual(diag['numValid'], 2933)
if False:
pylab.subplot(1, 2, 1)
pylab.pcolor(so, vmin = 20, vmax = 40)
pylab.colorbar()
pylab.title('so')
pylab.subplot(1, 2, 2)
pylab.pcolor(soInterp, vmin = 20, vmax = 40)
pylab.colorbar()
pylab.title('soInterp')
def test2_varRegrid(self):
print
print 'test2_varRegrid'
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')
diag = {'srcAreas': None, 'dstAreas': None,
'srcAreaFractions': None, 'dstAreaFractions': None}
soInterp = so.regrid(clt.getGrid(),
regridTool = 'esmf',
regridMethod='conserve',
diag = diag)
if self.pe == 0:
totSrcArea = diag['srcAreas'].sum()
totDstArea = diag['dstAreas'].sum()
totSrcFrac = diag['srcAreaFractions'].sum()
self.assertEqual(numpy.isnan(totSrcFrac).sum(), 0)
self.assertLess(abs(totSrcArea - 4*pi)/(4*pi), 0.02)
self.assertLess(abs(totDstArea - 4*pi)/(4*pi), 0.01)
soMass = (so*diag['srcAreas']).sum()
inMass = (soInterp*diag['dstAreas']).sum()
print soMass, inMass
diff = abs(soMass - inMass)/soMass
self.assertLess(diff, 7.e-7)
if False:
pylab.subplot(1, 2, 1)
pylab.pcolor(so, vmin = 20, vmax = 40)
pylab.colorbar()
pylab.title('so')
pylab.subplot(1, 2, 2)
pylab.pcolor(soInterp, vmin = 20, vmax = 40)
pylab.colorbar()
pylab.title('soInterp')
def Xtest3_esmf(self):
print
print 'test3_esmf'
srcF = cdms2.open(sys.prefix + \
'/sample_data/so_Omon_ACCESS1-0_historical_r1i1p1_185001-185412_2timesteps.nc')
so = srcF('so')[0, 0, ...]
clt = cdms2.open(sys.prefix + '/sample_data/clt.nc')('clt')[0, ...]
diag = {'srcAreas': None, 'dstAreas': None,
'srcAreaFractions': None, 'dstAreaFractions': None}
srcCoords = [so.getGrid().getLatitude()[:], so.getGrid().getLongitude()[:]]
srcBounds = cdms2.mvCdmsRegrid.getBoundList(srcCoords)
tmp = clt.getGrid().toCurveGrid()
dstCoords = [tmp.getLatitude()[:], tmp.getLongitude()[:]]
dstBounds = cdms2.mvCdmsRegrid.getBoundList(dstCoords)
# Establish the grids
srcGrid = esmf.EsmfStructGrid(so.shape, periodicity = 1)
dstGrid = esmf.EsmfStructGrid(clt.shape, periodicity = 1)
srcGrid.setCoords(srcCoords)
dstGrid.setCoords(dstCoords)
srcGrid.setCoords(srcBounds, staggerloc = esmf.CORNER)
dstGrid.setCoords(dstBounds, staggerloc = esmf.CORNER)
# Establish the fields
srcFeld = esmf.EsmfStructField(srcGrid, 'srcFeld', so.dtype)
dstFeld = esmf.EsmfStructField(dstGrid, 'dstFeld',so.dtype)
srcFeldPtr = srcFeld.getPointer()
srcFeldPtr[:] = so.data.flat
dstFeldPtr = dstFeld.getPointer()
dstFeldPtr[:] = so.missing_value
# Fractions
srcFrac = esmf.EsmfStructField(srcGrid, 'srcFrac', so.dtype)
dstFrac = esmf.EsmfStructField(dstGrid, 'dstFrac', so.dtype)
srcFracPtr = srcFrac.getPointer()
srcFracPtr[:] = 1.0
dstFracPtr = dstFrac.getPointer()
dstFracPtr[:] = 1.0
nnan = numpy.isnan(srcFeldPtr).sum()
if nnan > 0: print "There are nan's in srcFracPtr"
# Areas
presrcArea = esmf.EsmfStructField(srcGrid, 'srcArea', so.dtype)
predstArea = esmf.EsmfStructField(dstGrid, 'dstArea', so.dtype)
presrcAreaPtr = presrcArea.getPointer()
presrcAreaPtr[:] = 1.0
predstAreaPtr = predstArea.getPointer()
predstAreaPtr[:] = 1.0
ro = esmf.EsmfRegrid(srcFeld, dstFeld,
srcFrac = srcFrac, dstFrac = dstFrac,
srcMaskValues = None, dstMaskValues = None,
regridMethod = esmf.CONSERVE,
unMappedAction = esmf.IGNORE)
ro()
srcAreas = ro.getSrcAreas(None)
dstAreas = ro.getDstAreas(None)
srcFracPtrPost = ro.getSrcAreaFractions(None)
nnanPost = numpy.isnan(srcFracPtrPost).sum()
nnan = numpy.isnan(srcFracPtr).sum()
if nnan > 0 or nnanPost > 0:
print "There are nan's in srcFracPtrPost", nnanPost
print "There are nan's in srcFracPtr", nnan
self.assertNotEqual(nnan, 0)
self.assertNotEqual(nnanPost, 0)
dstFracPtrPost = ro.getDstAreaFractions(None)
nnanPost = numpy.isnan(dstFracPtrPost).sum()
nnan = numpy.isnan(dstFracPtrPost).sum()
if nnan > 0 or nnanPost > 0:
print "There are nan's in dstFracPtrPost", nnanPost
print "There are nan's in dstFracPtr", nnan
self.assertNotEqual(nnan, 0)
self.assertNotEqual(nnanPost, 0)
srcMass = (srcFeldPtr * srcAreas.flatten() * srcFracPtr).sum()
dstMass = (dstFeldPtr * dstAreas.flatten()).sum()
dstMassPtr = (dstFeldPtr * predstAreaPtr).sum()
diff = abs(srcMass - dstMass)
self.assertLess(diff/srcMass, 1.e-7)
if __name__ == '__main__':
print ""
ESMP.ESMP_Initialize()
suite = unittest.TestLoader().loadTestsFromTestCase(Test)
unittest.TextTestRunner(verbosity = 1).run(suite)
pylab.show()
|
[
"[email protected]"
] | |
b1b4c6f3cdff8fb9c2d1c39ee1f4d1670dd9d919
|
25bcf095a803470b4be9bba394569cb218b997ed
|
/book/算法和数据操作-回溯法-矩阵中的路径.py
|
02aeb344a4c555b22f17c04134e17a8e2968819c
|
[] |
no_license
|
lcqbit11/algorithms
|
c8a3da6d3a9d387d54639c0a08d14ca6b9118bb3
|
ca4dacda39dc12d53ed8d4448b3356a3f2936603
|
refs/heads/master
| 2023-06-22T06:36:22.106780 | 2023-06-11T07:10:40 | 2023-06-11T07:10:40 | 245,633,883 | 0 | 0 | null | 2023-06-11T07:10:41 | 2020-03-07T13:02:24 |
Python
|
UTF-8
|
Python
| false | false | 1,403 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def matrix_path(matrix, s):
"""
:param matrix: List[List[int]]
:param s: str
:return: bool
"""
def new_matrix(m, row, col):
matrix = [[0] * len(m[0]) for k in range(len(m))]
for i in range(len(m)):
for j in range(len(m[0])):
if row == i and col == j:
matrix[i][j] = 0
else:
matrix[i][j] = m[i][j]
return matrix
def has_path(matrix, row, col, i, j, s):
if len(s) == 0:
return True
is_path = False
if i >= 0 and i < row and j >= 0 and j < col and matrix[i][j] == s[0]:
matrix = new_matrix(matrix, i, j)
is_path = has_path(matrix, row, col, i+1, j, s[1:]) or has_path(matrix, row, col, i, j+1, s[1:]) or has_path(matrix, row, col, i-1, j, s[1:]) or has_path(matrix, row, col, i, j-1, s[1:])
return is_path
row = len(matrix)
col = len(matrix[0])
length = len(s)
for i in range(row):
for j in range(col):
if matrix[i][j] == s[0]:
if has_path(matrix, row, col, i, j, s):
return True
return False
if __name__ == "__main__":
matrix = [['a', 'b', 't', 'g'],
['c', 'f', 'c', 's'],
['j', 'd', 'e', 'h']]
s = "bfce"
print(matrix_path(matrix, s))
|
[
"[email protected]"
] | |
eca5c374b5e021bedadf8e451f0537bea855034d
|
7f24023d365e013ec0924844c1a872edfb0c75b4
|
/tests/trac/test-trac-0091.py
|
22249454c7a9b898e8f2d4b3e96a19e52251d7dc
|
[
"Python-2.0",
"MIT",
"Apache-2.0"
] |
permissive
|
pabigot/pyxb
|
cd42c024607572c6363682d389e9296caf3f2857
|
5ee5ba54c9f702dc9c9efc2731ee547ecd4dae4a
|
refs/heads/next
| 2023-05-11T03:23:19.599756 | 2023-04-29T20:38:15 | 2023-04-29T20:45:13 | 20,547,850 | 130 | 63 |
Apache-2.0
| 2021-08-19T16:52:18 | 2014-06-06T01:49:03 |
Python
|
UTF-8
|
Python
| false | false | 4,794 |
py
|
# -*- coding: utf-8 -*-
import logging
if __name__ == '__main__':
logging.basicConfig()
_log = logging.getLogger(__name__)
import pyxb.binding.generate
import pyxb.binding.datatypes as xs
import pyxb.binding.basis
import pyxb.utils.domutils
import os.path
xsd='''<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:simpleType name="f13p8">
<xs:restriction base="xs:decimal">
<xs:totalDigits value="13"/>
<xs:fractionDigits value="8"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="e13p8" type="f13p8"/>
<xs:simpleType name="f15p5">
<xs:restriction base="xs:decimal">
<xs:totalDigits value="15"/>
<xs:fractionDigits value="5"/>
</xs:restriction>
</xs:simpleType>
<xs:element name="e15p5" type="f15p5"/>
</xs:schema>'''
code = pyxb.binding.generate.GeneratePython(schema_text=xsd)
#open('code.py', 'w').write(code)
rv = compile(code, 'test', 'exec')
eval(rv)
from pyxb.exceptions_ import *
import unittest
class TestTrac_0091 (unittest.TestCase):
def assertAlmostEqual (self, v1, v2, *args, **kw):
from decimal import Decimal
if (isinstance(v1, Decimal)
or isinstance(v2, Decimal)):
if not isinstance(v1, Decimal):
v1 = Decimal(str(v1))
if not isinstance(v2, Decimal):
v2 = Decimal(str(v2))
return super(TestTrac_0091, self).assertAlmostEqual(v1, v2, *args, **kw)
def testBasic (self):
if sys.version_info[:2] >= (2, 7):
# Prior to 2.7 float/Decimal comparisons returned invalid results.
self.assertEqual(1.0, e13p8(1.0))
self.assertEqual(1.0, e13p8('1.0'))
self.assertEqual(1234567890123.0, e13p8('1234567890123'))
self.assertEqual(1234567890123.0, CreateFromDocument('<e13p8>1234567890123</e13p8>'))
self.assertRaises(SimpleFacetValueError, e13p8, '12345678901234')
self.assertAlmostEqual(1.00000001, e13p8('1.00000001'))
self.assertRaises(SimpleFacetValueError, e13p8, '1.000000001')
def testBadCase (self):
# Prior to fix, this raised a facet violation due to rounding
self.assertAlmostEqual(0.00790287, e13p8('0.00790287'))
def test15_5 (self):
from decimal import Decimal
# For compatibility in Python 2.6 PyXB will convert the float
# to a string before invoking the underlying decimal.Decimal
fv = e15p5(1234.56789)
self.assertTrue(fv.validateBinding())
dv = Decimal('1234.56789')
self.assertEqual(fv, dv)
# In Python 2.7 decimal.Decimal will create from the float,
# which will already be in a form that won't validate
if sys.version_info[:2] >= (2, 7):
self.assertRaises(SimpleFacetValueError, e15p5, Decimal(1234.56789))
sv = e15p5('1234.56789')
self.assertEqual(sv, dv)
self.assertTrue(sv.validateBinding())
self.assertTrue(e15p5('1000000.0').validateBinding())
def testRanges (self):
from decimal import Decimal
o14o = [1] + ([0] * 12) + [1]
self.assertEqual(14, len(o14o))
o15o = [1] + ([0] * 13) + [1]
self.assertEqual(15, len(o15o))
o16o = [1] + ([0] * 14) + [1]
self.assertEqual(16, len(o16o))
self.assertTrue(e15p5(Decimal((0, o14o, 0))).validateBinding())
self.assertTrue(e15p5(Decimal((0, o15o, 0))).validateBinding())
# Negative exponents do not reduce total digit count
with self.assertRaises(pyxb.SimpleFacetValueError) as cm:
e15p5(Decimal((0, o16o, 0)))
self.assertEqual(cm.exception.facet, f15p5._CF_totalDigits)
with self.assertRaises(pyxb.SimpleFacetValueError) as cm:
e15p5(Decimal((0, o16o, -1)))
self.assertEqual(cm.exception.facet, f15p5._CF_totalDigits)
# Positive exponents add to total digit count
self.assertTrue(e15p5(Decimal((0, o14o, 1))).validateBinding())
with self.assertRaises(pyxb.SimpleFacetValueError) as cm:
e15p5(Decimal((0, o15o, 1)))
self.assertEqual(cm.exception.facet, f15p5._CF_totalDigits)
with self.assertRaises(pyxb.SimpleFacetValueError) as cm:
e15p5(Decimal((0, o14o, 2)))
self.assertEqual(cm.exception.facet, f15p5._CF_totalDigits)
# Negative exponents affect fractionDigits only
self.assertTrue(e15p5(Decimal((0, o15o, -1))).validateBinding())
self.assertTrue(e15p5(Decimal((0, o15o, -5))).validateBinding())
with self.assertRaises(pyxb.SimpleFacetValueError) as cm:
e15p5(Decimal((0, o15o, -6)))
self.assertEqual(cm.exception.facet, f15p5._CF_fractionDigits)
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
82a11268ed01c2cbfc7d9a0e833ebc4444f24e80
|
7ffa7b3be3ef25db511d0f9db673fa4ff2350daf
|
/src/Sample43.py
|
744edd556499d9dfe4437b8197b871bc69d6b9db
|
[] |
no_license
|
jacoloves/start_Python
|
33c9ee8baa5650a66d496a207269b2228a1640d4
|
1ced11d131b612d78a69ae261d4e06889313afcf
|
refs/heads/master
| 2022-11-24T02:06:40.582895 | 2020-02-15T13:57:13 | 2020-02-15T13:57:13 | 133,673,161 | 0 | 0 | null | 2022-11-22T02:19:43 | 2018-05-16T13:52:03 |
Python
|
UTF-8
|
Python
| false | false | 102 |
py
|
class A:
"""docstring for A"""
def __init__(self):
self.__value = 1
a = A()
print(a._A__value)
|
[
"[email protected]"
] | |
f95738894ed4e42648865c0d36d329579bf719eb
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/132/usersdata/239/41382/submittedfiles/al14.py
|
5754055aa4ef2a253321a042cdc75ce2db4c6048
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146 | 2017-12-22T16:05:45 | 2017-12-22T16:05:45 | 69,566,344 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 214 |
py
|
# -*- coding: utf-8 -*-
n=int(input("Digite o número de pessoas: "))
i=0
termo=n
while termo>0:
idade=int(input("Digite a idade das pessoas: "))
i=i+idade
termo=termo-1
media=(i/n)
print("%.2f"%media)
|
[
"[email protected]"
] | |
4ff05fb289e34cc72623f03733a105c7aa80dbf4
|
38d6a6ac271fca4d5fff422541bc59df10e66ef5
|
/landlab/_info.py
|
0a320b3bd55222275db2d17e22a791571245c485
|
[
"MIT"
] |
permissive
|
AndresQuichimbo/landlab
|
767d3c42eaa4e6477865594666dd49eb3eb684bb
|
39fee962ec962a389ae4522a55a17f53a0d37a6e
|
refs/heads/master
| 2020-04-01T21:31:11.422998 | 2020-02-06T23:12:26 | 2020-02-06T23:12:26 | 240,261,264 | 0 | 0 |
MIT
| 2020-02-13T13:00:25 | 2020-02-13T13:00:24 | null |
UTF-8
|
Python
| false | false | 584 |
py
|
name = "landlab"
cite_as = [
"""@article{hobley2017creative,
title={Creative computing with Landlab: an open-source toolkit
for building, coupling, and exploring two-dimensional
numerical models of Earth-surface dynamics},
author={Hobley, Daniel EJ and Adams, Jordan M and Nudurupati,
Sai Siddhartha and Hutton, Eric WH and Gasparini, Nicole M and
Istanbulluoglu, Erkan and Tucker, Gregory E},
journal={Earth Surface Dynamics},
volume={5},
number={1},
pages={21},
year={2017},
publisher={Copernicus GmbH}
}"""
]
|
[
"[email protected]"
] | |
ee0b438af7cec5ea6648945f35afe8bbfd233040
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/415/usersdata/296/86500/submittedfiles/exe11.py
|
3e55da52506b436ee00c29807dd6008b54ef4d53
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146 | 2017-12-22T16:05:45 | 2017-12-22T16:05:45 | 69,566,344 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 234 |
py
|
# -*- coding: utf-8 -*-
n = int(input("Digite um número: "))
soma = 0
while n > 0:
if 10000000 <= n <= 90000000:
resto = n%10000000
n = (n - resto)/10000000
soma = soma + resto
print(soma)
|
[
"[email protected]"
] | |
c22bc6d09d1dba9ee889fd0d138c6d55c329be08
|
487ce91881032c1de16e35ed8bc187d6034205f7
|
/codes/BuildLinks1.10/test_input/CJ_16_1/16_1_2_Erisky_solve_B.py
|
414d395289b8df01c731ab2d840c390f59fd2a13
|
[] |
no_license
|
DaHuO/Supergraph
|
9cd26d8c5a081803015d93cf5f2674009e92ef7e
|
c88059dc66297af577ad2b8afa4e0ac0ad622915
|
refs/heads/master
| 2021-06-14T16:07:52.405091 | 2016-08-21T13:39:13 | 2016-08-21T13:39:13 | 49,829,508 | 2 | 0 | null | 2021-03-19T21:55:46 | 2016-01-17T18:23:00 |
Python
|
UTF-8
|
Python
| false | false | 826 |
py
|
import math
# raw_input() reads a string with a line of input, stripping the '\n' (newline) at the end.
# This is all you need for most Google Code Jam problems.
total = int(raw_input()) # read a line with a single integer
for i in xrange(1, total + 1):
N = int(raw_input())
output = {}
for j in range(2*N-1):
S = raw_input().split()
for x in S:
if x in output:
output[x] = output[x] + 1
else:
output[x] = 1
olist = []
for any in output:
if output[any] % 2 == 1:
olist.append(int(any))
olist.sort()
# print olist
os=""
for gg in olist:
os += str(gg)
os += " "
print "Case #{}: {}".format(i, "".join(os))
# check out .format's specification for more formatting options
|
[
"[[email protected]]"
] | |
54b141b59dad195d7bb823334914e9748de22edc
|
18f8abb90efece37949f5b5758c7752b1602fb12
|
/py/django_tools/django-exceptional/test/example/settings.py
|
91dbfbd0d5b7de0bc9be14860552db1f2cde198f
|
[
"Unlicense"
] |
permissive
|
marceltoben/evandrix.github.com
|
caa7d4c2ef84ba8c5a9a6ace2126e8fd6db1a516
|
abc3fbfb34f791f84e9a9d4dc522966421778ab2
|
refs/heads/master
| 2021-08-02T06:18:12.953567 | 2011-08-23T16:49:33 | 2011-08-23T16:49:33 | 2,267,457 | 3 | 5 | null | 2021-07-28T11:39:25 | 2011-08-25T11:18:56 |
C
|
UTF-8
|
Python
| false | false | 2,603 |
py
|
# Django settings for example project.
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'src'))
DEBUG = False
TEMPLATE_DEBUG = DEBUG
ADMINS = (
('Zachary Voase', '[email protected]'),
)
MANAGERS = ADMINS
DATABASE_ENGINE = 'sqlite3'
DATABASE_NAME = 'dev.sqlite3'
DATABASE_USER = ''
DATABASE_PASSWORD = ''
DATABASE_HOST = ''
DATABASE_PORT = ''
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
CACHE_BACKEND = "dummy://"
# Local time zone for this installation. Choices can be found here:
# http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
# although not all choices may be available on all operating systems.
# If running in a Windows environment this must be set to the same as your
# system time zone.
TIME_ZONE = 'Europe/London'
# Language code for this installation. All choices can be found here:
# http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-gb'
SITE_ID = 1
# If you set this to False, Django will make some optimizations so as not
# to load the internationalization machinery.
USE_I18N = True
# Absolute path to the directory that holds media.
# Example: "/home/media/media.lawrence.com/"
MEDIA_ROOT = ''
# URL that handles the media served from MEDIA_ROOT. Make sure to use a
# trailing slash if there is a path component (optional in other cases).
# Examples: "http://media.lawrence.com", "http://example.com/media/"
MEDIA_URL = ''
# URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a
# trailing slash.
# Examples: "http://foo.com/media/", "/media/".
ADMIN_MEDIA_PREFIX = '/media/'
# Make this unique, and don't share it with anybody.
SECRET_KEY = '8@+k3lm3=s+ml6_*(cnpbg1w=6k9xpk5f=irs+&j4_6i=62fy^'
EXCEPTIONAL_API_KEY = open("exceptional.key").read().strip()
# List of callables that know how to import templates from various sources.
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.load_template_source',
'django.template.loaders.app_directories.load_template_source',
# 'django.template.loaders.eggs.load_template_source',
)
MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'djexceptional.ExceptionalMiddleware',
)
ROOT_URLCONF = 'example.urls'
TEMPLATE_DIRS = (
os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates'),
)
INSTALLED_APPS = (
'django.contrib.sessions',
'djexceptional', # So we can run the app tests.
)
|
[
"[email protected]"
] | |
612bc2e1e4649e4a7d9af7a4aabbdcc5d0eac099
|
80d50ea48e10674b1b7d3f583a1c4b7d0b01200f
|
/src/datadog_api_client/v2/model/opsgenie_service_response_attributes.py
|
5d6473bfa2a5e8c186c521947868485560bb1cad
|
[
"Apache-2.0",
"BSD-3-Clause",
"MIT",
"MPL-2.0"
] |
permissive
|
DataDog/datadog-api-client-python
|
3e01fa630278ad0b5c7005f08b7f61d07aa87345
|
392de360e7de659ee25e4a6753706820ca7c6a92
|
refs/heads/master
| 2023-09-01T20:32:37.718187 | 2023-09-01T14:42:04 | 2023-09-01T14:42:04 | 193,793,657 | 82 | 36 |
Apache-2.0
| 2023-09-14T18:22:39 | 2019-06-25T22:52:04 |
Python
|
UTF-8
|
Python
| false | false | 1,920 |
py
|
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License.
# This product includes software developed at Datadog (https://www.datadoghq.com/).
# Copyright 2019-Present Datadog, Inc.
from __future__ import annotations
from typing import Union, TYPE_CHECKING
from datadog_api_client.model_utils import (
ModelNormal,
cached_property,
none_type,
unset,
UnsetType,
)
if TYPE_CHECKING:
from datadog_api_client.v2.model.opsgenie_service_region_type import OpsgenieServiceRegionType
class OpsgenieServiceResponseAttributes(ModelNormal):
@cached_property
def openapi_types(_):
from datadog_api_client.v2.model.opsgenie_service_region_type import OpsgenieServiceRegionType
return {
"custom_url": (str, none_type),
"name": (str,),
"region": (OpsgenieServiceRegionType,),
}
attribute_map = {
"custom_url": "custom_url",
"name": "name",
"region": "region",
}
def __init__(
self_,
custom_url: Union[str, none_type, UnsetType] = unset,
name: Union[str, UnsetType] = unset,
region: Union[OpsgenieServiceRegionType, UnsetType] = unset,
**kwargs,
):
"""
The attributes from an Opsgenie service response.
:param custom_url: The custom URL for a custom region.
:type custom_url: str, none_type, optional
:param name: The name for the Opsgenie service.
:type name: str, optional
:param region: The region for the Opsgenie service.
:type region: OpsgenieServiceRegionType, optional
"""
if custom_url is not unset:
kwargs["custom_url"] = custom_url
if name is not unset:
kwargs["name"] = name
if region is not unset:
kwargs["region"] = region
super().__init__(kwargs)
|
[
"[email protected]"
] | |
3e40c665d4a08a20bf0af0dfd2e3714d906f4c00
|
8ab61e98b8b4efa7378ad50ee12ea5ec81b8c310
|
/thredo/requests.py
|
6891e62a04fde54970e922350c53ce1b8bc23643
|
[
"MIT"
] |
permissive
|
RalphWalters/thredo
|
5a791d0848067e2b028c3040874476d582509543
|
ea109c693036764dd192527f9b6bba18d3b18042
|
refs/heads/master
| 2020-04-05T05:18:56.942365 | 2018-11-08T23:25:54 | 2018-11-08T23:25:54 | 156,589,958 | 1 | 0 |
MIT
| 2018-11-07T18:21:27 | 2018-11-07T18:21:27 | null |
UTF-8
|
Python
| false | false | 2,746 |
py
|
# requests.py
#
# Session adapter that allows requests to use thredo socket objects.
# This is a bit of plumbing, but it's a clean interface that doesn't
# require any monkeypatching or other low-level magic
__all__ = ['get_session']
# -- Thredo
from . import socket
# -- Requests/third party
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3 import PoolManager, HTTPConnectionPool
from requests.packages.urllib3 import HTTPSConnectionPool
from http.client import HTTPConnection, HTTPSConnection
class ThredoAdapter(HTTPAdapter):
def init_poolmanager(self, connections, maxsize, block):
self.poolmanager = ThredoPoolManager(num_pools=connections,
maxsize=maxsize,
block=block)
class ThredoPoolManager(PoolManager):
def _new_pool(self, scheme, host, port):
# Important!
if scheme == 'http':
return ThredoHTTPConnectionPool(host, port, **self.connection_pool_kw)
if scheme == 'https':
return ThredoHTTPSConnectionPool(host, port, **self.connection_pool_kw)
return super(PoolManager, self)._new_pool(self, scheme, host, port)
class ThredoHTTPConnectionPool(HTTPConnectionPool):
def _new_conn(self):
self.num_connections += 1
return ThredoHTTPConnection(host=self.host,
port=self.port)
class ThredoHTTPSConnectionPool(HTTPSConnectionPool):
def _new_conn(self):
self.num_connections += 1
return ThredoHTTPSConnection(host=self.host,
port=self.port)
class ThredoHTTPConnection(HTTPConnection):
def connect(self):
"""Connect to the host and port specified in __init__."""
# Uses thredo
self.sock = socket.create_connection((self.host, self.port),
self.timeout, self.source_address)
# Important!
if self._tunnel_host:
self._tunnel()
class ThredoHTTPSConnection(HTTPSConnection):
def connect(self):
"""Connect to the host and port specified in __init__."""
# Uses thredo
self.sock = socket.create_connection((self.host, self.port),
self.timeout, self.source_address)
# Important!
if self._tunnel_host:
server_hostname = self._tunnel_host
else:
server_hostname = self.host
self.sock = self._context.wrap_socket(self.sock, server_hostname=server_hostname)
def get_session():
s = requests.Session()
s.mount('http://', ThredoAdapter())
s.mount('https://', ThredoAdapter())
return s
|
[
"[email protected]"
] | |
7cbb1ee16366420627e8f8f83747002cf7163930
|
f30b91db647dca1f77fffa4b7e26b6c6a68abbc6
|
/8_kyu/Who is going to pay for the wall/test_who_is_paying.py
|
3d95d5e8ac506893d12e7e9d460f4df00a45d1e8
|
[] |
no_license
|
estraviz/codewars
|
73caf95519eaac6f34962b8ade543bf4417df5b7
|
5f8685e883cb78381c528a0988f2b5cad6c129c2
|
refs/heads/master
| 2023-05-13T07:57:43.165290 | 2023-05-08T21:50:39 | 2023-05-08T21:50:39 | 159,744,593 | 10 | 55 | null | null | null | null |
UTF-8
|
Python
| false | false | 354 |
py
|
from who_is_paying import who_is_paying
def test_who_is_paying():
assert who_is_paying("Mexico") == ["Mexico", "Me"]
assert who_is_paying("Melania") == ["Melania", "Me"]
assert who_is_paying("Melissa") == ["Melissa", "Me"]
assert who_is_paying("Me") == ["Me"]
assert who_is_paying("") == [""]
assert who_is_paying("I") == ["I"]
|
[
"[email protected]"
] | |
94d0d82808b7bba21ce96fec06a1c65195e30c94
|
6343f30acc402f655dc5c89baeb2e0be69d0d561
|
/manage.py
|
85c69964a47c933ab9731577553efc751e8f6c9d
|
[] |
no_license
|
manchos/rd90-rest
|
724ab162a1041a9e0c90617be0f900fec2f3e542
|
a86c49e427d96366fa61fb4e09e6e9bd252d1e3d
|
refs/heads/master
| 2021-01-20T21:35:26.130896 | 2017-08-29T14:46:36 | 2017-08-29T14:46:36 | 101,772,749 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 806 |
py
|
#!/usr/bin/env python
import os
import sys
if __name__ == "__main__":
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "rd90rest.settings")
try:
from django.core.management import execute_from_command_line
except ImportError:
# The above import may fail for some other reason. Ensure that the
# issue is really that Django is missing to avoid masking other
# exceptions on Python 2.
try:
import django
except ImportError:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
)
raise
execute_from_command_line(sys.argv)
|
[
"[email protected]"
] | |
7e6b93f712239743b62500083227e02253458129
|
92993cff825da80a8ff601572a0c52b0b7d3cbde
|
/algorithms/Svm/ADMM/L2/ADMM_L2_m43.py
|
abb30b1ac1a4beb3a53b43d81d55a8428c66bbb9
|
[] |
no_license
|
yingzhuoy/MRs-of-linear-models
|
06e8b1f84b08c6aa77553813824cf35c1806c5a7
|
c3df8299e039a12613f2022b370b8c3e9c2dd822
|
refs/heads/master
| 2023-04-07T23:09:37.736952 | 2021-04-04T05:33:37 | 2021-04-04T05:33:37 | 265,124,549 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,061 |
py
|
import numpy as np
from numpy import linalg
#import cvxopt
#from cvxopt import matrix,solvers
from algorithms.clf import Clf
"""
Preconditioned Conjugate Gradient Method
"""
def precond(M, r):
q = M * r
return q
def inner_prod(A, B):
A = np.matrix(A)
B = np.matrix(B)
return np.dot(A.reshape(-1,1).T, B.reshape(-1,1))
def cg(A, b, x=None, tol=1.0e-6, max_iter=128):
# precondition
A = np.matrix(A)
b = np.matrix(b)
normb = np.linalg.norm(b, 'fro')
m = b.shape[0]
M = np.eye(m)
x = np.zeros((m, m))
Aq = (A*x)
r = b - Aq # m x m
q = precond(M, r) # m x m
tau_old = np.linalg.norm(q, 'fro')
rho_old = inner_prod(r, q)
theta_old = 0
Ad = np.zeros((m, m))
d = np.zeros((m, m))
res = r.reshape(m, m)
tiny = 1e-30
for i in range(max_iter):
Aq = A * q
sigma = inner_prod(q, Aq)
if abs(sigma.item()) < tiny:
break
else:
alpha = rho_old / sigma;
alpha = alpha.item()
r = r - alpha * Aq
r = r.reshape(m, m)
u = precond(M, r)
theta = np.linalg.norm(u,'fro')/tau_old
c = 1 / np.sqrt(1+theta*theta)
#----bug----
#tau = tau_old * theta * c
tau = tau_old / theta * c
gam = c*c*theta_old*theta_old
eta = c*c*alpha
d = gam * d + eta * q
x = x + d
# stop
Ad = gam*Ad+eta*Aq
res = res - Ad
if np.linalg.norm(res, 'fro') < tol*normb:
break
else:
rho = inner_prod(r, u)
beta = rho / rho_old
beta = beta.item()
q = u + beta * q
rho_old = rho
tau_old = tau
theta_old = theta
return x
def admm(X, y, max_iter=5000):
# solve by inner point method
m, n = X.shape
X = np.column_stack((X, np.ones((m, 1))))
y = y.astype(np.float64)
data_num = len(y)
C = 1.0
kernel = np.dot(X, np.transpose(X))
p = np.matrix(np.multiply(kernel,np.outer(y, y))) + np.diag(np.ones(data_num, np.float64)) * .5/C
e = np.matrix(np.ones([data_num, 1], np.float64))
bounds = (0, np.inf)
low, up = bounds
x = np.ones((m,1))
tau = 1.618
sigma = 1
# initial
u = np.ones((m, 1))
t = x
A = p + sigma * np.eye(m)
I = np.eye(m)
invA = cg(A, I)
for it in range(max_iter):
# update x
b = e + u + sigma * t
x = invA * b
# update y
t = x - (1/sigma)*u
t[t < low] = low
t[t > up] = up
# update u
u = u - tau*sigma*(x-t)
dual = -(0.5*x.T*(p*x) - e.T*x)
dual = dual.item()
y1 = np.reshape(y, (-1, 1))
lambda1 = np.multiply(x, y1)
w = np.dot(X.T, lambda1)
w = np.matrix(w).reshape(-1, 1)
tmp = np.maximum(1-np.multiply(y1, X*w),0)
primal = 0.5*np.linalg.norm(w)**2 + 1 * np.sum(tmp)
primal = primal.item()
# stop criteria
if np.abs(dual-primal)/(1+np.abs(dual)+np.abs(primal)) < 1e-12:
break
# print(t, np.linalg.norm(gradient))
# print(np.min(x), np.max(x))
# print(np.sum(x < -1e-4), np.sum(x>1+1e-4))
# print(np.abs(dual-primal)/(1+np.abs(dual)+np.abs(primal)))
y1 = np.reshape(y, (-1, 1))
alpha1 = x
lambda1 = np.multiply(y1,alpha1)
w = np.dot(X.T, lambda1)
w = np.array(w).reshape(-1)
b = w[n]
w = w[0:n]
return w, b
#L2-svm
class ADMM_L2_m43():
def fit(self, X, y):
y[y == 0] = -1
# add logitR to verify the correctness
#from sklearn.svm import LinearSVC
#SVM = LinearSVC(loss='squared_hinge', tol=1e-6, max_iter=100000, verbose=1).fit(X, np.array(y).ravel())
#w1 = SVM.coef_; b1 = SVM.intercept_
#w1 = w1.reshape(-1); b1 = b1[0]
w, b = admm(X, y)
#print('diff', np.linalg.norm(w1-w), b, b1)
clf = Clf(w, b)
return clf
|
[
"[email protected]"
] | |
e7e2dee5d2d5cf21363e6875097b7870703e164a
|
fa60618b9f68aee452b278c6efb6300e50d90dbc
|
/py_demo/默尼森数.py
|
3ef57dd22c062c2bb03ddc9a5ffa9c3545cb59a4
|
[] |
no_license
|
ALICE5/Python
|
668feaaf87e88df0d14252c0fcbc8c5b479cb7c8
|
6b2037bd3e6fa5689f355a128739343779d28fe5
|
refs/heads/master
| 2021-01-01T16:26:57.170646 | 2017-09-18T09:31:30 | 2017-09-18T09:31:30 | 97,832,226 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 718 |
py
|
# Judge a number is a prime or not
import math
def isPrime(x):
if x==1:
return False
k = int(math.sqrt(x))
for j in range(2, k+1):
if x % j == 0:
return False
return True
# Generate the num Prime
def prime(num):
if num == 1:
return 2
k = 1
i = 1
while(k<num):
i += 2
if(isPrime(i)==True):
k += 1
return i
# Generate the no Monisen
def Monisen(no):
k = 0
i = 1
m = 0
while(k<no):
p=prime(i)
m = 2**p-1
if(isPrime(m)==True):
k+=1
i+=1
return m
if __name__ == '__main__':
print(Monisen(6))
# print(Monisen(int(input('Please input the number:'))))
|
[
"[email protected]"
] | |
044b87731f9adbeed2e6e296cf4226b7b2b50499
|
51804f7ed108b355e979f9e67018a4f8b2a46df6
|
/py-scripts/tsqx.py
|
8124bc4f79892006a8dfff5e56f135e22ecde59e
|
[
"BSL-1.0"
] |
permissive
|
vEnhance/dotfiles
|
5b36652c9f6ce0b368d7833f43018ba94f1dc8f1
|
47045aaf7054bc8efe657d1e9e070e6b27652c64
|
refs/heads/main
| 2023-08-31T16:01:14.814010 | 2023-08-30T21:52:40 | 2023-08-30T21:52:40 | 47,777,946 | 119 | 174 |
BSL-1.0
| 2023-07-20T11:53:06 | 2015-12-10T17:46:56 |
Python
|
UTF-8
|
Python
| false | false | 14,069 |
py
|
# st#########
## TSQX ##
##########
# original TSQX by CJ Quines: https://github.com/cjquines/tsqx
# original TSQ by evan chen
import re
import sys
from io import TextIOWrapper
from typing import Any, Generator, TextIO, TypedDict
def generate_points(kind, n) -> list[str]:
if kind == "triangle":
return ["dir(110)", "dir(210)", "dir(330)"]
elif kind == "regular":
return [f"dir({(90 + i*360/n) % 360})" for i in range(n)]
raise SyntaxError("Special command not recognized")
T_TOKEN = str | list[str] | list["T_TOKEN"]
class T_OCR(TypedDict): # op, comment, raw
op: "Op"
comment: str
raw: str
GENERIC_PREAMBLE = r"""
usepackage("amsmath");
usepackage("amssymb");
settings.tex="pdflatex";
settings.outformat="pdf";
// Replacement for olympiad+cse5 which is not standard
import geometry;
// recalibrate fill and filldraw for conics
void filldraw(picture pic = currentpicture, conic g, pen fillpen=defaultpen, pen drawpen=defaultpen)
{ filldraw(pic, (path) g, fillpen, drawpen); }
void fill(picture pic = currentpicture, conic g, pen p=defaultpen)
{ filldraw(pic, (path) g, p); }
// some geometry
pair foot(pair P, pair A, pair B) { return foot(triangle(A,B,P).VC); }
pair orthocenter(pair A, pair B, pair C) { return orthocentercenter(A,B,C); }
pair centroid(pair A, pair B, pair C) { return (A+B+C)/3; }
// cse5 abbreviations
path CP(pair P, pair A) { return circle(P, abs(A-P)); }
path CR(pair P, real r) { return circle(P, r); }
pair IP(path p, path q) { return intersectionpoints(p,q)[0]; }
pair OP(path p, path q) { return intersectionpoints(p,q)[1]; }
path Line(pair A, pair B, real a=0.6, real b=a) { return (a*(A-B)+A)--(b*(B-A)+B); }
size(%s);
""".strip()
ARITHMETIC_OPERATORS = {"plus": "+", "minus": "-", "mult": "*", "divide": "/"}
class Op:
exp: T_TOKEN
def _join_exp(self, exp: T_TOKEN, join_str: str) -> str:
return join_str.join(self._emit_exp(e) for e in exp)
def _emit_exp(self, exp: T_TOKEN) -> str:
if not isinstance(exp, list):
return exp
if "," in exp:
return f"({self._join_exp(exp, ' ')})"
head, *tail = exp
if not tail:
return self._emit_exp(head) if isinstance(head, list) else head
elif tail[0] in ["--", "..", "^^"]:
return self._join_exp(exp, ", ")
elif (binop := ARITHMETIC_OPERATORS.get(str(head))) is not None:
return "(" + self._join_exp(tail, binop) + ")"
else:
return f"{head}({self._join_exp(tail, ', ')})"
def emit_exp(self) -> str:
res = self._join_exp(self.exp, "*")
for j in ["--", "..", "^^"]:
res = res.replace(f", {j}, ", j)
return res
def emit(self):
raise Exception("Operation not recognized")
def post_emit(self):
return None
class Blank(Op):
def emit(self):
return ""
class DirectCommand(Op):
def __init__(self, exp: str):
self.exp = exp
def emit(self):
return self.exp
def post_emit(self):
return None
class Point(Op):
def __init__(
self,
name: str,
exp: T_TOKEN,
dot=True,
label="",
direction="",
):
self.name = name
self.exp = exp
self.dot = dot
self.label = name if label else None
if self.label:
self.label = self.label.replace("_prime", "'")
self.label = self.label.replace("_asterisk", r"^{\ast}")
self.direction = direction or f"dir({name})"
def emit(self) -> str:
return f"pair {self.name} = {self.emit_exp()};"
def post_emit(self):
args = [self.name]
if self.label:
args = [f'"${self.label}$"', *args, self.direction]
if self.dot:
return f"dot({', '.join(args)});"
if len(args) > 1:
return f"label({', '.join(args)});"
return ""
class Draw(Op):
def __init__(
self,
exp: T_TOKEN,
fill: str | None = None,
outline: str | None = None,
):
self.exp = exp
self.fill = fill
self.outline = outline
def emit(self):
exp = self.emit_exp()
if self.fill:
outline = self.outline or "defaultpen"
return f"filldraw({exp}, {self.fill}, {outline});"
elif self.outline:
return f"draw({exp}, {self.outline});"
else:
return f"draw({exp});"
class Parser:
def __init__(self, soft_label: str | None = None, **_: Any):
self.soft_label = soft_label
self.alias_map = {"": "dl", ":": "", ".": "d", ";": "l"}
if self.soft_label:
self.alias_map |= {"": "l", ";": "dl"}
self.aliases = self.alias_map.keys() | self.alias_map.values()
def tokenize(self, line: str) -> list[T_TOKEN]:
line = line.strip() + " "
for old, new in [
# ~ and = are separate tokens
("~", " ~ "),
("=", " = "),
# for tsqx syntax processing
("(", "( "),
(")", " ) "),
(",", " , "),
# spline joiners
("--", " -- "),
("..", " .. "),
("^^", " ^^ "),
# no spaces around asymptote arithmetic
(" +", "+"),
("+ ", "+"),
("- ", "-"),
(" *", "*"),
("* ", "*"),
# but slashes in draw ops should remain tokens
(" / ", " / "),
(" /", "/"),
("/ ", "/"),
# ' not allowed in variable names
("'", "_prime"),
("&", "_asterisk"),
]:
line = line.replace(old, new)
return list(filter(None, line.split()))
def parse_subexp(
self,
tokens: list[T_TOKEN],
idx: int,
func_mode=False,
) -> tuple[T_TOKEN, int]:
token = tokens[idx]
if token[-1] == "(":
is_func = len(token) > 1
res: list[T_TOKEN] = []
idx += 1
if is_func:
res.append(token[:-1])
while tokens[idx] != ")":
exp, idx = self.parse_subexp(tokens, idx, is_func)
res.append(exp)
return res, idx + 1
if token == "," and func_mode:
return "", idx + 1
return token, idx + 1
def parse_exp(self, tokens: list[T_TOKEN]):
if tokens[0][-1] != "(" or tokens[-1] != ")":
tokens = ["(", *tokens, ")"]
res: list[T_TOKEN] = []
idx = 0
while idx != len(tokens):
try:
exp, idx = self.parse_subexp(tokens, idx)
res.append(list(filter(None, exp)))
except IndexError:
raise SyntaxError(f"Unexpected end of line: {tokens}")
return res
def parse_special(
self,
tokens: list[T_TOKEN],
comment: str | None,
raw_line: str,
) -> Generator[T_OCR, None, None]:
if not tokens:
raise SyntaxError("Can't parse special command")
head, *tail = tokens
if comment is not None:
yield {"op": Blank(), "comment": comment, "raw": raw_line}
if head in ["triangle", "regular"]:
for name, exp in zip(tail, generate_points(head, len(tail))):
assert isinstance(name, str)
yield {"op": Point(name, [exp]), "comment": "", "raw": raw_line}
return
else:
raise SyntaxError("Special command not recognized")
def parse_name(self, tokens: list[T_TOKEN]) -> tuple[str, dict[str, Any]]:
if not tokens:
raise SyntaxError("Can't parse point name")
name, *rest = tokens
assert isinstance(name, str)
if rest and rest[-1] in self.aliases:
*rest, opts = rest
assert isinstance(opts, str)
else:
opts = ""
opts = self.alias_map.get(opts, opts)
options = {"dot": "d" in opts, "label": name if "l" in opts else None}
if rest:
dirs, *rest = rest
assert isinstance(dirs, str)
if m := re.fullmatch(r"([\d\.]+)R([\d\.]+)", dirs):
options["direction"] = f"{m.groups()[0]}*dir({m.groups()[1]})"
elif dir_pairs := re.findall(r"(\d+)([A-Z]+)", dirs):
options["direction"] = "+".join(f"{n}*plain.{w}" for n, w in dir_pairs)
elif dirs.isdigit():
options["direction"] = f"dir({dirs})"
elif re.fullmatch(r"N?S?E?W?", dirs):
options["direction"] = f"plain.{dirs}"
else:
rest.append(dirs)
if "direction" not in options:
options["direction"] = f"dir({name})"
if rest:
raise SyntaxError("Can't parse point name")
return name, options
def parse_draw(self, tokens: list[T_TOKEN]):
try:
idx = tokens.index("/")
except ValueError:
fill_: list[T_TOKEN] = []
outline_ = tokens
else:
fill_ = tokens[:idx]
outline_ = tokens[idx + 1 :]
assert all(isinstance(_, str) for _ in outline_)
outline: list[str] = [
str(_) for _ in outline_
] # this is idiotic, what did i miss?
fill: list[str] = []
for pen in fill_:
assert isinstance(pen, str)
if re.fullmatch(r"\d*\.?\d*", pen):
fill.append(f"opacity({pen})")
else:
fill.append(pen)
return {"fill": "+".join(fill), "outline": "+".join(outline)}
def parse(self, line: str) -> Generator[T_OCR, None, None]:
# escape sequence
raw_line = line
if raw_line.startswith("!"):
yield {
"op": DirectCommand(line[1:].strip()),
"comment": "",
"raw": raw_line,
}
return
if "#" in line:
line, comment = line.split("#", 1)
else:
comment = ""
tokens = self.tokenize(line)
if not tokens:
yield {"op": Blank(), "comment": comment, "raw": raw_line}
return
# special
if tokens[0] == "~":
yield from self.parse_special(tokens[1:], comment, raw_line)
return
# point
try:
idx = tokens.index("=")
name, options = self.parse_name(tokens[:idx])
exp = self.parse_exp(tokens[idx + 1 :])
yield {
"op": Point(name, exp, **options),
"comment": comment,
"raw": raw_line,
}
return
except ValueError:
pass
# draw with options
try:
idx = tokens.index("/")
exp = self.parse_exp(tokens[:idx])
options = self.parse_draw(tokens[idx + 1 :])
yield {"op": Draw(exp, **options), "comment": comment, "raw": raw_line}
return
except ValueError:
pass
# draw without options
exp = self.parse_exp(tokens)
yield {"op": Draw(exp), "comment": comment, "raw": raw_line}
return
class Emitter:
def __init__(
self,
lines: TextIOWrapper | TextIO,
print_=print,
**args: Any,
):
self.lines = lines
self.print = print_
self.preamble = args.get("preamble", False)
self.size = args.get("size", "8cm")
self.parser = Parser(**args)
self.terse = args.get("terse", False)
def emit(self):
if self.preamble:
self.print(GENERIC_PREAMBLE % self.size)
ocrs = [ocr for line in self.lines for ocr in self.parser.parse(line)]
for ocr in ocrs:
self.print(
ocr["op"].emit() + (f" //{c}" if (c := ocr["comment"].rstrip()) else "")
)
self.print()
for ocr in ocrs:
if out := ocr["op"].post_emit():
self.print(out)
if not self.terse:
self.print("")
self.print(
r"/* -----------------------------------------------------------------+"
)
self.print(
r"| TSQX: by CJ Quines and Evan Chen |"
)
self.print(
r"| https://github.com/vEnhance/dotfiles/blob/main/py-scripts/tsqx.py |"
)
self.print(
r"+-------------------------------------------------------------------+"
)
for ocr in ocrs:
if x := ocr["raw"].strip():
self.print(x)
self.print("*/")
def main():
from argparse import ArgumentParser
argparser = ArgumentParser(description="Generate Asymptote code.")
argparser.add_argument(
"-p",
"--pre",
help="Adds a preamble.",
action="store_true",
dest="preamble",
default=False,
)
argparser.add_argument(
"fname",
help="Read from file rather than stdin.",
metavar="filename",
nargs="?",
default="",
)
argparser.add_argument(
"-s",
"--size",
help="Set image size in preamble.",
action="store",
dest="size",
default="8cm",
)
argparser.add_argument(
"-b",
"--soft-label",
help="Don't draw dots on points by default.",
action="store_true",
dest="soft_label",
default=False,
)
argparser.add_argument(
"-t",
"--terse",
help="Hide the advertisement and orig source",
action="store_true",
dest="terse",
default=False,
)
args = argparser.parse_args()
stream = open(args.fname, "r") if args.fname else sys.stdin
emitter = Emitter(stream, print, **vars(args))
emitter.emit()
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
2b2a6d1bc2ac3e00c7327b4266870bcecb87ea3b
|
6d36b40aa5a2fdfd068731b7ee657ec25279bdec
|
/uncluster/cluster_distributions/gnedin.py
|
9821ec84c3c8a1c3e62379f581f647ecf90cdfd8
|
[
"MIT"
] |
permissive
|
adrn/uncluster
|
5efee493c4319e4e0d07615fb6da6dbdcb172301
|
0e487f7cc17426bbd03ff1f02000bc3437075ab3
|
refs/heads/master
| 2021-04-30T18:30:48.693052 | 2017-02-21T14:08:54 | 2017-02-21T14:08:54 | 63,977,520 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,605 |
py
|
from __future__ import division, print_function
__author__ = "adrn <[email protected]>"
# Third-party
import astropy.units as u
import numpy as np
from scipy.special import gammainc
from scipy.interpolate import InterpolatedUnivariateSpline
from scipy.misc import derivative
from ..config import M_min, M_max
__all__ = ['gc_prob_density', 'sample_masses', 'sample_radii']
def _sersic_frac_mass_enclosed(r, n_s=2.2, R_e=4.):
"""
This was adapted from Oleg's C code (uncluster/src/gc_evolution.c).
For the Milky Way, the parameters (r_s, n_s, etc.) don't evolve and z=0.
"""
a_n = 2 * n_s
b_n = 2. * n_s - 1./3. + 0.0098765/n_s + 0.0018/n_s**2 # approximation from Ciotti ...something
# rmax = r_max.to(u.kpc).value
# argc = b_n * (rmax/R_e) ** (1./n_s)
# gamnorm = gammainc(a_n, argc)
gamnorm = 1. # r_max = infinity
arg = b_n * (r/R_e)**(1./n_s)
return gammainc(a_n, arg) / gamnorm
# HACK: I need a function to evaluate the density profile, so I do this numerically...
# - this does a calculation on import (BAD) but it's very fast (~10s of ms)
n_grid = 4096 # MAGIC NUMBER
r_grid = np.logspace(-4, 2.5, n_grid) # kpc
m_grid = _sersic_frac_mass_enclosed(r_grid)
# if necessary, remove duplicate m's where it saturates
_idx, = np.where(m_grid >= 1.)
if len(_idx) > 1:
r_grid = r_grid[:_idx[0]+1]
m_grid = m_grid[:_idx[0]+1]
dm_dr = np.zeros(n_grid)
for i,r in enumerate(r_grid):
d = derivative(_sersic_frac_mass_enclosed, r, dx=1E-3*r)
dm_dr[i] = d
_idx = np.isfinite(dm_dr) & (dm_dr>0.)
_interp_ln_dens = InterpolatedUnivariateSpline(r_grid[_idx],
np.log(dm_dr[_idx]) - np.log(4*np.pi*r_grid[_idx]**2),
k=1)
def gc_prob_density(r):
r"""
Evaluate the **probability** density of the spatial distribtuon
of globular clusters following a Hernquist profile.
This is *not* the mass-density or number-density, but:
.. math::
\nu (r) = \int {\rm d}v \, f(r,v)
.. note::
This function computes the density numerically using linear interpolation.
Parameters
----------
r : float
Radius in kpc.
"""
return np.exp(_interp_ln_dens(r))
@u.quantity_input(M_min=u.Msun, M_max=u.Msun)
def sample_masses(M_min=M_min, M_max=M_max, size=1):
r"""
Use inverse transform sampling to generate samples from a power-law
initial mass distribution with :math:`\beta = -2`:
.. math::
p(M) = A M^{-2}
M \in [M_{\rm min}, M_{\rm max}]
Parameters
----------
M_min : `~astropy.units.Quantity` [mass]
The minimum mass or lower-bound for sampling.
M_max : `~astropy.units.Quantity` [mass]
The maximum mass or upper-bound for sampling.
size : int, tuple (optional)
The shape of the output array.
Returns
-------
masses : `~astropy.units.Quantity` [Msun]
Masses sampled from the mass function.
"""
A = 1 / (1/M_min - 1/M_max)
R = np.random.uniform(size=size)
return 1 / (1/M_min - R/A)
def sample_radii(size=1):
"""
Use inverse transform sampling to generate samples from a Sersic
mass profile (following Gnedin et al. 2014).
Parameters
----------
size : int, tuple (optional)
The shape of the output array.
Returns
-------
radii : `~astropy.units.Quantity` [kpc]
"""
interp_func = InterpolatedUnivariateSpline(m_grid, np.log(r_grid), k=1)
return np.exp(interp_func(np.random.uniform(0, 1, size=size))) * u.kpc
|
[
"[email protected]"
] | |
ea703a24032f314d7e01b11a64fa900fc1c2c605
|
b7683c108e68ee2d28573edf55923eb34cc2f5ee
|
/5_Video_Analysis/3_Background_substraction/3_GMG.py
|
e72711d3c0643816ef3b230ff18d92f712be427c
|
[] |
no_license
|
aCuissot/openVC_win_py_tutorial
|
cc42ab1a1fb6eaefe5a91c7e1bb1926a776b0e01
|
7186b629747cb16f2bf42a03d2339d3dc3ea77bd
|
refs/heads/master
| 2020-05-18T12:17:04.619047 | 2019-07-10T13:45:00 | 2019-07-10T13:45:00 | 184,403,715 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 454 |
py
|
import numpy as np
import cv2 as cv
cap = cv.VideoCapture('../../Data/in/vtest.avi')
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3))
fgbg = cv.bgsegm.createBackgroundSubtractorGMG()
while True:
ret, frame = cap.read()
fgmask = fgbg.apply(frame)
fgmask = cv.morphologyEx(fgmask, cv.MORPH_OPEN, kernel)
cv.imshow('frame', fgmask)
k = cv.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv.destroyAllWindows()
|
[
"[email protected]"
] | |
c74b74d06dfb216f30a2b9bb4f52d9be55005706
|
429211c01057abcd51e5120d566c7daa0a8e2f33
|
/1804/二/day4/class4.py
|
adce94b9a462cd19775068f56485909388f5f106
|
[] |
no_license
|
LDZ-RGZN/b1804
|
2788c922a6d1a6dc11267920a90336d1df93a453
|
c57f8b7cf14686036cae3c30a30f07514622b5ca
|
refs/heads/master
| 2021-07-19T12:54:07.031858 | 2018-10-12T02:48:39 | 2018-10-12T02:48:39 | 133,500,880 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,017 |
py
|
import time
class cat:
def __init__(self,lun_zi,color):
self.lunzi = lun_zi
self.color = color
def pao(self):
print ('一辆%d个轮子的%s色%s汽车正在公里上飞驰'%(self.lunzi,self.color,self.name))
def jiao(self):
print ('这辆%s汽车正在冲着前面的那辆%s汽车鸣笛'%(self.name,self.name2))
def zw(self):
print ('后面的%s汽车成功的追尾了前面的%s汽车,鼓掌'%(self.name,self.name2))
def __str__(self):
s = '车的品牌是:'+self.name+' 车的颜色是:'+self.color
return s
bm = cat(4,'红')
bm.name = '宝马'
bm.name2 = '奥迪'
bm.pao()
bm.jiao()
print ('请稍等.即将追尾')
time.sleep(1)
bm.zw()
print (bm)
print ('内存位置是%d'%(id(bm)))
print ('下一波操作即将进行')
time.sleep(1)
bm1 = cat(8,'蓝')
bm1.name = '奥迪'
bm1.name2 = '宝马'
bm1.pao()
bm1.jiao()
print ('请稍等.即将追尾')
time.sleep(1)
bm1.zw()
print (bm1)
print ('内存位置是%d'%(id(bm1)))
|
[
"[email protected]"
] | |
a06b0f3b510d0fcfa322e082ae0570ff938b9e68
|
e393cb9a1a67a5c944e7a5cf72a7f230caa4f1a7
|
/estimation_matlab.py
|
1f6702e2e95443588c03beaa937fc09db6982a91
|
[] |
no_license
|
AndreyGorbatov1/Jacobian-Estimation
|
5f6ec4251235af3bc05ea52aa8c3efd7d3947fb8
|
caec92965a7a9837ac777c9ca082468433c14cba
|
refs/heads/master
| 2023-03-10T18:19:27.478542 | 2018-08-30T13:02:00 | 2018-08-30T13:02:00 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,953 |
py
|
from keras.layers import Input, Dense, Dropout, BatchNormalization, PReLU, LeakyReLU
from keras.models import Model, Sequential
from keras import optimizers
from keras import regularizers
import numpy
from scipy.io import loadmat
import tensorflow as tf
from sklearn.preprocessing import normalize, scale
from sklearn.metrics import r2_score
from sklearn.preprocessing import minmax_scale
from datetime import datetime
import pandas as pd
import shutil
import keras
import json
import sys
import os
from sklearn.metrics import r2_score
#a=pd.read_csv('featureTrain.csv' ,dtype='double')
#print(a)
import tensorflow as tf
def huber_loss(y_true, y_pred):
return tf.losses.huber_loss(y_true,y_pred)
sys.path.append('/home/alexanderliao/data/GitHub/')
from kerasresnet import resnet
def nn_1(input_length):
model = Sequential()
model = Sequential()
model.add(Dense(32, input_dim=input_length, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.25))
model.add(Dense(64, input_dim=32, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.25))
model.add(Dense(128, input_dim=64, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.25))
model.add(Dense(256, input_dim=128, kernel_initializer='RandomUniform'))
#model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.25))
model.add(Dense(512, input_dim=256, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(1050, input_dim=512, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(2150, input_dim=1050, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(1050, input_dim=2150, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(512, input_dim=1050, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(512, input_dim=1024, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(512, input_dim=512, kernel_initializer='RandomUniform'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(256, input_dim=512, kernel_initializer='RandomUniform'))
#model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.5))
model.add(Dense(128, input_dim=256, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.5))
model.add(Dense(64, input_dim=128, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(LeakyReLU())
#model.add(Dropout(0.5))
model.add(Dense(32, input_dim=64, kernel_initializer='RandomUniform'))
##model.add(BatchNormalization())
model.add(Dense(25, activation="linear"))
#Dense(64, input_dim=24, kernel_initializer="RandomUniform")`
opt = optimizers.SGD(lr=0.001, momentum=0.9, decay=0.0001, nesterov=False)
model.compile(optimizer="adam", loss="mean_squared_error")
#model.compile(optimizer="adam", loss="softmax")
return model
def routine(Ytest,nn_predictor):
acc=r2_score(Ytest,nn_predictor.predict(Xtest))
print(acc)
string=str(datetime.now()).replace(".","").replace(" ","")+'-'+str(round(acc,2))
nn_predictor.save(string+'.model')
shutil.move(string+'.model','./models/'+string+'.model')
#print(r2_score(Ytest,nn_predictor.predict(Xtest)))
return string
def baseline(Ytest,nn_predictor):
acc=r2_score(Ytest,nn_predictor.predict(Xtest))
print(acc)
string="jacob_baseline"
nn_predictor.save(string+'.model')
#shutil.move(string+'.model','./models/'+string+'.model')
#print(r2_score(Ytest,nn_predictor.predict(Xtest)))
return string
if __name__ == "__main__":
"""
Xtrain=scale(pd.read_csv('featureTrain.csv' ,dtype='double').dropna(axis=1),axis=0)
Ytrain=pd.read_csv('labelTrain.csv' ,dtype='double').dropna(axis=1)
Xtest=scale(pd.read_csv('featureTest.csv' ,dtype='double').dropna(axis=1),axis=0)
Ytest=pd.read_csv('labelTest.csv' ,dtype='double').dropna(axis=1)
"""
print("Reading training data...")
Xtrain=pd.read_csv('data/jacob_feature_train.csv' ,dtype='double')
Xtrain=scale(Xtrain.dropna(axis=1).loc[:, ~(Xtrain == 0).any(0)])
#Xtrain=Xtrain[0:k,:]
#Xtrain=Xtrain.reshape((-1,1,len(Xtrain[0,:]),1))
#Xtrain=Xtrain.reshape((k,2,-1,1))
print(" ")
print("Sanity Check:")
print(Xtrain)
Ytrain=pd.read_csv('data/jacob_label_train.csv' ,dtype='double').dropna(axis=1)
Ytrain=minmax_scale(Ytrain.loc[:, ~(Ytrain == 0).any(0)],feature_range=(-1,1))
print("Done!")
#Ytrain=Ytrain.values.reshape((-1,1))
#Ytrain=Ytrain[0:k,:]
print("Reading test data...")
Xtest=pd.read_csv('data/jacob_feature_test.csv' ,dtype='double')
Xtest=scale(Xtest.dropna(axis=1).loc[:, ~(Xtest == 0).any(0)])
#Xtest=Xtest.reshape((-1,1,len(Xtest[0,:]),1))
#Xtest=Xtest.reshape((300,2,-1,1))
Ytest=pd.read_csv('data/jacob_label_test.csv' ,dtype='double').dropna(axis=1)
Ytest=minmax_scale(Ytest.loc[:, ~(Ytest == 0).any(0)],feature_range=(-1,1))
print("Done!")
#Ytest=Ytest.values.reshape((-1,1))
#Ytest=Ytest[0:k,:]
# fix random seed for reproducibility
numpy.random.seed(7)
#print("Seed: {}".format(numpy.random.seed(7)))
#Xtrain=numpy.nonzero(numpy.loadtxt('featureTrain.csv',dtype='float32',delimiter=','))
#Ytrain=numpy.loadtxt('labelTrain.csv',dtype='float32',delimiter=',')
#Xtrain=Xtrain[1:30000,:]
#Ytrain=Ytrain[1:30000,:]
#Ytrain=minmax_scale(Ytrain, feature_range=(0, 1), axis=0, copy=True)
#Xtrain=normalize(Xtrain,axis=1)
#Xtrain = scale( Xtrain, axis=0, with_mean=True, with_std=True, copy=True )
#Ytrain = scale( Ytrain, axis=0, with_mean=True, with_std=True, copy=True )
#print(type(Xtrain))
#print(Ytrain.shape)
#Xtest=numpy.nonzero(numpy.loadtxt('featureTest.csv',dtype='float32',delimiter=','))
#Ytest=numpy.loadtxt('labelTest.csv',dtype='float32',delimiter=',')
#Xtest=Xtest[1:30000,:]
#Ytest=Ytest[1:30000,:]
#Ytest=minmax_scale(Ytest, feature_range=(0, 1), axis=0, copy=True)
#Xtest=normalize(Xtest,axis=1)
#Xtest = scale( Xtest, axis=0, with_mean=True, with_std=True, copy=True )
#Ytest = scale( Ytest, axis=0, with_mean=True, with_std=True, copy=True )
#print(type(Xtrain))
#print(type(Ytrain))
#nn_predictor=resnet.ResnetBuilder().build_resnet_18([1,1,14],1)
#nn_predictor=resnet.ResnetBuilder().build([1,1,14],1,'basic_block',8)
#print(nn_predictor.input_shape)
#print(nn_predictor.output_shape)
opt = optimizers.RMSprop(lr=0.01)
#nn_predictor.compile(optimizer="adadelta", loss="binary_crossentropy")
nn_predictor = nn_1(len(Xtrain[0,:]))
print(len(Xtrain[0,:]))
print(nn_predictor.summary())
print("Cleaning directories...")
os.system("rm -r graph")
os.system("mkdir graph")
b_size = 4096
epoch = 750
val_split = 0.2
model_checkpoint = keras.callbacks.ModelCheckpoint("./est_matlab.hdf5", save_best_only=True, verbose=1)
reduce_lr = keras.callbacks.ReduceLROnPlateau(factor=0.1, patience=5, min_lr=0.00001, verbose=1)
tensorboard=keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=0, write_graph=True, write_images=True)
callbacks = [model_checkpoint,tensorboard]
with tf.device('/gpu:0'):
try:
print(Ytrain.shape)
print(Xtrain.shape)
print("Batch Size: {}".format(b_size) )
print("Epochs: {}".format(epoch) )
print("Validation Split: {}".format(val_split) )
history=nn_predictor.fit(Xtrain,Ytrain, batch_size=b_size, epochs=epoch, validation_split=val_split,verbose=1, callbacks=callbacks, shuffle=True)
nn_predictor.save("est_matlab.hdf5")
with open('./est_matlab_hist', 'wb') as file_pi:
pickle.dump(history.history, file_pi)
print(type(history))
#baseline(Ytest,nn_predictor)
string=routine(Ytest,nn_predictor)
json.dump(history.history, open( string+".json", "w" ))
shutil.move(string+'.json','./histories/'+string+'.pickle')
except (KeyboardInterrupt, SystemExit):
routine(Ytest,nn_predictor)
#baseline(Ytest,nn_predictor)
#print(nn_predictor.predict([0.15,0.4318,0.4318,0.0203,1.5708,-1.5708,1.5708,-1.5708,0,17.4,4.8,0.82,0.34,0.09,0.3638,0.006,0.2275,-0.0203,-0.0141,0.07,0,0.019,0,0,0,0,0,0,0.032]))
|
[
"[email protected]"
] | |
aa37b24dc0979c643a0174561ca08482a852901f
|
f8d2521a88e465eed01adc3981c7a173d5c2554b
|
/round/round0326-0350/round0335/c1.py
|
0851e5dcae97aadd46d36170be48457946510b85
|
[] |
no_license
|
clarinet758/codeforces
|
b2a8a349bba40e7761a8ce50dd5ff9a57477b60d
|
d79870c47bdb109547891a0d076dd173d6d647cf
|
refs/heads/main
| 2021-12-15T05:46:51.000160 | 2021-12-01T12:01:33 | 2021-12-01T12:01:33 | 41,968,658 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 873 |
py
|
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import time
import sys
import io
import re
import math
import itertools
import collections
import bisect
#sys.stdin=file('input.txt')
#sys.stdout=file('output.txt','w')
#10**9+7
mod=1000000007
#mod=1777777777
pi=3.141592653589
IS=float('inf')
xy=[(1,0),(-1,0),(0,1),(0,-1)]
bs=[(-1,-1),(-1,1),(1,1),(1,-1)]
def niten(a,b): return abs(a-b) if a>=0 and b>=0 else a+abs(b) if a>=0 else abs(a)+b if b>=0 else abs(abs(a)-abs(b))
def gcd(a,b): return a if b==0 else gcd(b,a%b)
def lcm(a,b): return a*b/gcd(a,b)
def euclid_dis(x1,y1,x2,y2): return ((x1-x2)**2+(y1-y2)**2)**0.5
def choco(xa,ya,xb,yb,xc,yc,xd,yd): return 1 if abs((yb-ya)*(yd-yc)+(xb-xa)*(xd-xc))<1.e-10 else 0
n=int(raw_input())
l=map(int,raw_input().split())
a=[0]*(n+1)
for i in l:
a[i]=a[i-1]+1
print n-max(a)
ans=chk=0
#end = time.clock()
#print end - start
|
[
"[email protected]"
] | |
28a3bfc7da27cf64ba42e18b5e5435e5e8ca427d
|
bd9d82f616f8658d8431bedaed524647f0f2d7a5
|
/commands/delete_empty_dirs_fm.py
|
d0a52082cf2bf783c1e5d20a8dccb62bdb85588d
|
[] |
no_license
|
alclass/PyMirrorFileSystemsByHash
|
d4331523e9948c119f98c248ca3daf3a71eb8f0b
|
d59d35dfef5107183309fde825ab082fbb4dc465
|
refs/heads/master
| 2023-02-20T15:38:24.432268 | 2023-02-17T20:58:39 | 2023-02-17T20:58:39 | 49,807,870 | 0 | 0 | null | 2021-12-12T21:31:28 | 2016-01-17T07:40:28 |
Python
|
UTF-8
|
Python
| false | false | 1,232 |
py
|
#!/usr/bin/env python3
"""
delete_empty_dirs_fm.py
Deletes / removes empty directory in the target dirtree.
Usage:
$delete_empty_dirs_fm.py <prunepath>
Example:
$delete_empty_dirs_fm.py "/Science/Physics/Einsteinian Relativity"
Explanation:
The above (hypothetical) example will remove all empty directories inside folder "Einsteinian Relativity".
"""
import os
import sys
import default_settings as defaults
import fs.dirfilefs.dir_n_file_fs_mod as df
def show_help_cli_msg_if_asked():
for arg in sys.argv:
if arg in ['-h', '--help']:
print(__doc__)
sys.exit(0)
def prune_dirtree_from_prunepath(prunepath):
if not os.path.isdir(prunepath):
error_msg = 'Error: prunepath (%s) is not a directory' % prunepath
raise OSError(error_msg)
n_visited, n_removed, n_failed = df.prune_dirtree_deleting_empty_folders(prunepath)
print('Report delete_empty_dirs_fm.py')
print('prune path', prunepath)
print('n_visited =', n_visited, 'n_removed =', n_removed, 'n_failed =', n_failed)
def process():
"""
"""
show_help_cli_msg_if_asked()
prunepath, _ = defaults.get_src_n_trg_mountpath_args_or_default()
prune_dirtree_from_prunepath(prunepath)
if __name__ == '__main__':
process()
|
[
"[email protected]"
] | |
5d77d8ac4fa0e33cef967a4ca48b0dde1c4f790f
|
b3729186993105603a77016d6a911932fec06630
|
/recruiters/admin.py
|
eaa3ca4b800202fd737efd8323b6ab526769977c
|
[] |
no_license
|
MichalDrosio/grades
|
05425498bbee3873ebe7128f96227491861b1395
|
a6fa146ef1ac06f23f423eaf2de43c23f0faf754
|
refs/heads/main
| 2022-12-30T06:31:04.100722 | 2020-10-16T13:22:10 | 2020-10-16T13:22:10 | 302,673,025 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 217 |
py
|
from django.contrib import admin
from recruiters.models import Recruiter
# Register your models here.
@admin.register(Recruiter)
class RecruiterAdmin(admin.ModelAdmin):
list_display = ['first_name', 'last_name']
|
[
"[email protected]"
] | |
ddeb531997001b9fb93293cd39b1753ce9651b68
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03829/s592787585.py
|
ebd0d0601946a683251cf998983ed53be8aa1d91
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 691 |
py
|
#!/usr/bin/env python3
import sys
INF = float("inf")
def solve(N: int, A: int, B: int, X: "List[int]"):
tot = 0
for i in range(N-1):
sub = X[i+1]-X[i]
if sub*A < B:
tot += sub*A
else:
tot += B
print(tot)
return
def main():
def iterate_tokens():
for line in sys.stdin:
for word in line.split():
yield word
tokens = iterate_tokens()
N = int(next(tokens)) # type: int
A = int(next(tokens)) # type: int
B = int(next(tokens)) # type: int
X = [int(next(tokens)) for _ in range(N)] # type: "List[int]"
solve(N, A, B, X)
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
f374c7cef3de091b5e831f7f98e75da674e18e19
|
003ffcf8144565404636f3d74590a8d6b10a90a4
|
/236-lowest-common-ancestor-of-a-binary-tree/236-lowest-common-ancestor-of-a-binary-tree.py
|
60b7ab8908ab9f3753694aa14207fbaaac761668
|
[] |
no_license
|
congve1/leetcode
|
fb31edf93049e21210d73f7b3e7b9b82057e1d7a
|
ce1e802b5052da2cdb919d6d7e39eed860e0b61b
|
refs/heads/master
| 2020-05-13T19:19:58.835432 | 2019-05-06T00:44:07 | 2019-05-06T00:44:07 | 181,652,371 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 411 |
py
|
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
|
[
"[email protected]"
] | |
54c8b17645a160598c0851c1e30eb074dbff22f8
|
1398346d986f4b3b79a557854ec9293690a20cc7
|
/Tools/BuildSlaveSupport/ews-app/ews/urls.py
|
2010c72b63e80288c93f9af2c823b33a8e6abc3d
|
[] |
no_license
|
feltnerm/webkit
|
49607fc29ccb2082654f6a5eb97e4f51c78527d5
|
f50e47081541dcf3f69bcfc36d55867441aa3325
|
refs/heads/master
| 2023-03-18T08:41:03.727396 | 2020-02-10T21:14:39 | 2020-02-10T21:14:39 | 239,619,580 | 1 | 0 | null | 2020-02-10T21:43:21 | 2020-02-10T21:43:20 | null |
UTF-8
|
Python
| false | false | 2,056 |
py
|
# Copyright (C) 2018-2019 Apple Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from django.conf.urls import url
from ews.views.index import Index
from ews.views.results import Results
from ews.views.statusbubble import StatusBubble
from ews.views.retrypatch import RetryPatch
from ews.views.submittoews import SubmitToEWS
app_name = 'ews'
urlpatterns = [
# ex: /
url(r'^$', Index.as_view(), name='index'),
# ex: /results/
url(r'^results/$', Results.as_view(), name='results'),
# ex: /retry/
url(r'^retry/$', RetryPatch.as_view(), name='retrypatch'),
# ex: /status-bubble/5
url(r'^status-bubble/(?P<patch_id>[0-9]+)/$', StatusBubble.as_view(), name='statusbubble'),
# ex: /submit-to-ews/
url(r'^submit-to-ews/$', SubmitToEWS.as_view(), name='submittoews'),
]
|
[
"[email protected]@268f45cc-cd09-0410-ab3c-d52691b4dbfc"
] |
[email protected]@268f45cc-cd09-0410-ab3c-d52691b4dbfc
|
3815b2c20d699b436ba4bc74ed8c267903c0ac7b
|
ddcf878cca43d49f73fd673279a97e82ced521e8
|
/examples/phylesystem/ott_status_report.py
|
0fd8436424d6ce7f141fc38e84a759947ba49e8f
|
[
"BSD-2-Clause",
"Python-2.0"
] |
permissive
|
OpenTreeOfLife/peyotl
|
ca5fcbc4f1754c3da7a25c93d89cfeaaad17057f
|
b50f7217966c18195c9b52be42454513ffa3e7f3
|
refs/heads/master
| 2023-08-03T14:35:46.793662 | 2023-07-26T20:30:08 | 2023-07-26T20:30:08 | 16,637,087 | 6 | 4 |
BSD-2-Clause
| 2023-07-24T20:02:30 | 2014-02-08T05:52:12 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 2,568 |
py
|
#!/usr/bin/env python
"""Trying to make a report that corresponds to
https://github.com/OpenTreeOfLife/germinator/wiki/Overview-of-repository-statistics
"""
import time
start_clock = time.time()
from peyotl.phylesystem.phylesystem_umbrella import Phylesystem
from peyotl.nexson_syntax import get_nexml_el
from peyotl import gen_otu_dict, iter_node
from peyotl.manip import iter_trees
import codecs
import json
import sys
out = codecs.getwriter('utf-8')(sys.stdout)
phy = Phylesystem()
# Start all of the properties for the report at 0
report_properties = ['reported_study_count',
'study_count',
'OTU_count',
'unmapped_OTU_count',
'unique_OTU_count',
'nominated_study_count',
'nominated_study_OTU_count',
'nominated_study_unique_OTU_count',
'nominated_study_unmapped_OTU_count',
'run_time']
reported_study_count = 0
study_count = 0
OTU_count = 0
unmapped_OTU_count = 0
unique_OTU_count = 0
nominated_study_count = 0
nominated_study_OTU_count = 0
nominated_study_unique_OTU_count = 0
nominated_study_unmapped_OTU_count = 0
run_time = 0
ott_id_set = set()
nominated_ott_id_set = set()
for study_id, n in phy.iter_study_objs():
reported_study_count += 1
otu_dict = gen_otu_dict(n)
if not bool(otu_dict):
continue
nex_obj = get_nexml_el(n)
study_count += 1
not_intended_for_synth = nex_obj.get('^ot:notIntendedForSynthesis')
intended_for_synth = (not_intended_for_synth is None) or (not_intended_for_synth is False)
if intended_for_synth:
nominated_study_count += 1
nominated_study_OTU_count += len(otu_dict)
OTU_count += len(otu_dict)
for oid, o in otu_dict.items():
ott_id = o.get('^ot:ottId')
if ott_id is None:
unmapped_OTU_count += 1
if intended_for_synth:
nominated_study_unmapped_OTU_count += 1
else:
ott_id_set.add(ott_id)
if intended_for_synth:
nominated_ott_id_set.add(ott_id)
unique_OTU_count = len(ott_id_set)
nominated_study_unique_OTU_count = len(nominated_ott_id_set)
end_clock = time.time()
run_time = end_clock - start_clock
#################################################
# write variables in local scope in a JSON blob
report = {}
for prop in report_properties:
report[prop] = locals()[prop]
json.dump(report, out, sort_keys=True, indent=2, separators=(',', ': '))
out.write('\n')
|
[
"[email protected]"
] | |
7849d81916ebfbd27f3cf13b5e2beedef0e36485
|
2c74bb301f1ed83b79254944183ac5a18a639fdf
|
/homeassistant/components/uptime/const.py
|
bbce80214747bdfbdf17642a0a22328308f9e3e1
|
[
"Apache-2.0"
] |
permissive
|
Adminiuga/home-assistant
|
5bec93007ddac1a268cc359bf7e48530c5f73b38
|
dcf68d768e4f628d038f1fdd6e40bad713fbc222
|
refs/heads/dev
| 2023-02-22T22:03:31.013931 | 2022-11-09T00:27:20 | 2022-11-09T00:27:20 | 123,929,062 | 5 | 4 |
Apache-2.0
| 2023-02-22T06:14:31 | 2018-03-05T14:11:09 |
Python
|
UTF-8
|
Python
| false | false | 206 |
py
|
"""Constants for the Uptime integration."""
from typing import Final
from homeassistant.const import Platform
DOMAIN: Final = "uptime"
PLATFORMS: Final = [Platform.SENSOR]
DEFAULT_NAME: Final = "Uptime"
|
[
"[email protected]"
] | |
65b07c011b7740295f45d257c0828bc529be2270
|
163bbb4e0920dedd5941e3edfb2d8706ba75627d
|
/Code/CodeRecords/2281/60722/273569.py
|
6d9e698fb32bc6a21a6cd03a7a25481fe3bf9c89
|
[] |
no_license
|
AdamZhouSE/pythonHomework
|
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
|
ffc5606817a666aa6241cfab27364326f5c066ff
|
refs/heads/master
| 2022-11-24T08:05:22.122011 | 2020-07-28T16:21:24 | 2020-07-28T16:21:24 | 259,576,640 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 385 |
py
|
T=int(input())
for m in range(T):
N=int(input())
string=input().split(" ")
result=[]
for i in range(N):
string[i]=int(string[i])
for i in range(N):
index=1
for j in range(i+1,N):
if string[j]>string[i]:
index=0
if index==1:
result.append(string[i])
print(" ".join(str(i) for i in result))
|
[
"[email protected]"
] | |
2d7e12cad2ba51810b0b9cfc38c0785b64b5c48d
|
bb33e6be8316f35decbb2b81badf2b6dcf7df515
|
/source/res/scripts/client/gui/battle_control/battle_session.py
|
3e27372a59b36128587e02e581e111189cb2d27d
|
[] |
no_license
|
StranikS-Scan/WorldOfTanks-Decompiled
|
999c9567de38c32c760ab72c21c00ea7bc20990c
|
d2fe9c195825ececc728e87a02983908b7ea9199
|
refs/heads/1.18
| 2023-08-25T17:39:27.718097 | 2022-09-22T06:49:44 | 2022-09-22T06:49:44 | 148,696,315 | 103 | 39 | null | 2022-09-14T17:50:03 | 2018-09-13T20:49:11 |
Python
|
UTF-8
|
Python
| false | false | 15,613 |
py
|
# Python bytecode 2.7 (decompiled from Python 2.7)
# Embedded file name: scripts/client/gui/battle_control/battle_session.py
import weakref
from collections import namedtuple
import BigWorld
import Event
import BattleReplay
from PlayerEvents import g_playerEvents
from adisp import async
from debug_utils import LOG_DEBUG
from gui import g_tankActiveCamouflage
from gui.battle_control import arena_visitor
from gui.battle_control import avatar_getter
from gui.battle_control import controllers
from gui.battle_control.arena_info import invitations
from gui.battle_control.arena_info.arena_dp import ArenaDataProvider
from gui.battle_control.arena_info.listeners import ListenersCollection
from gui.battle_control.battle_cache import BattleClientCache
from gui.battle_control.battle_constants import VEHICLE_VIEW_STATE
from gui.battle_control.battle_constants import VIEW_COMPONENT_RULE
from gui.battle_control.battle_ctx import BattleContext
from gui.battle_control.requests import AvatarRequestsController
from gui.battle_control.view_components import createComponentsBridge
from items.components.c11n_constants import SeasonType
from skeletons.gui.battle_session import IBattleSessionProvider
from cgf_components import wt_helpers
BattleExitResult = namedtuple('BattleExitResult', 'isDeserter playerInfo')
class BattleSessionProvider(IBattleSessionProvider):
__slots__ = ('__ctx', '__sharedRepo', '__dynamicRepo', '__requestsCtrl', '__arenaDP', '__arenaListeners', '__viewComponentsBridge', '__weakref__', '__arenaVisitor', '__invitations', '__isReplayPlaying', '__battleCache', 'onUpdateObservedVehicleData')
def __init__(self):
super(BattleSessionProvider, self).__init__()
self.__ctx = BattleContext()
self.__sharedRepo = controllers.SharedControllersLocator()
self.__dynamicRepo = controllers.DynamicControllersLocator()
self.__requestsCtrl = None
self.__arenaDP = None
self.__arenaVisitor = arena_visitor.createSkeleton()
self.__arenaListeners = None
self.__viewComponentsBridge = None
self.__invitations = None
self.__isReplayPlaying = False
self.__battleCache = BattleClientCache()
self.onBattleSessionStart = Event.Event()
self.onBattleSessionStop = Event.Event()
self.onUpdateObservedVehicleData = Event.Event()
return
@property
def shared(self):
return self.__sharedRepo
@property
def dynamic(self):
return self.__dynamicRepo
@property
def arenaVisitor(self):
return self.__arenaVisitor
@property
def invitations(self):
return self.__invitations
@property
def battleCache(self):
return self.__battleCache
@property
def isReplayPlaying(self):
return self.__isReplayPlaying
def getCtx(self):
return self.__ctx
@async
def sendRequest(self, ctx, callback, allowDelay=None):
self.__requestsCtrl.request(ctx, callback=callback, allowDelay=allowDelay)
def setPlayerVehicle(self, vID, vDesc):
ctrl = self.shared.prebattleSetups
isSetupsSelectionStarted = ctrl.isSelectionStarted() if ctrl is not None else False
ctrl = self.__sharedRepo.ammo
if ctrl is not None:
if not isSetupsSelectionStarted:
ctrl.clearAmmo()
ctrl.setGunSettings(vDesc.gun)
ctrl = self.__sharedRepo.equipments
if ctrl is not None:
ctrl.notifyPlayerVehicleSet(vID)
ctrl = self.__sharedRepo.vehicleState
if ctrl is not None:
ctrl.setPlayerVehicle(vID)
ctrl = self.shared.prebattleSetups
if ctrl is not None:
ctrl.setPlayerVehicle(vID, vDesc)
ctrl = self.__dynamicRepo.respawn
if ctrl is not None:
ctrl.spawnVehicle(vID)
mapKind = self.__arenaVisitor.type.getVehicleCamouflageKind()
g_tankActiveCamouflage[vDesc.type.compactDescr] = SeasonType.fromArenaKind(mapKind)
return
def switchVehicle(self, vehicleID):
repo = self.shared
if repo.vehicleState is not None and repo.vehicleState.getControllingVehicleID() != vehicleID:
for ctrl in (repo.ammo, repo.equipments, repo.optionalDevices):
if ctrl is not None:
ctrl.clear(False)
repo.vehicleState.switchToOther(vehicleID)
return
def updateObservedVehicleData(self, vehicle):
ammoCtrl = self.__sharedRepo.ammo
if ammoCtrl is not None:
ammoCtrl.clear(False)
ammoCtrl.setGunSettings(vehicle.typeDescriptor.gun)
ctrl = self.__sharedRepo.equipments
if ctrl is not None:
ctrl.clear(False)
ctrl.notifyPlayerVehicleSet(vehicle.id)
ctrl = self.__sharedRepo.optionalDevices
if ctrl is not None:
ctrl.clear(False)
vehicle.ownVehicle.initialUpdate(force=True)
self.updateVehicleEffects(vehicle)
self.onUpdateObservedVehicleData(vehicle.id, None)
return
def updateVehicleEffects(self, vehicle):
if vehicle is not None:
vehicle.onDebuffEffectApplied(vehicle.debuff > 0)
if vehicle.stunInfo > 0.0:
vehicle.updateStunInfo()
if vehicle.inspired:
vehicle.set_inspired()
if vehicle.healing:
vehicle.set_healing()
return
def getArenaDP(self):
return self.__arenaDP
def addArenaCtrl(self, controller):
return self.__arenaListeners.addController(controller) if self.__arenaListeners is not None else False
def removeArenaCtrl(self, controller):
if self.__arenaListeners is not None:
self.__arenaListeners.removeController(controller)
return
def registerViewComponentsCtrl(self, controller):
if self.__viewComponentsBridge is not None:
self.__viewComponentsBridge.registerController(controller)
return True
else:
return False
def registerViewComponents(self, *data):
if self.__viewComponentsBridge is not None:
self.__viewComponentsBridge.registerViewComponents(*data)
return True
else:
return False
def addViewComponent(self, componentID, component, rule=VIEW_COMPONENT_RULE.PROXY):
if self.__viewComponentsBridge is not None:
self.__viewComponentsBridge.addViewComponent(componentID, component, rule=rule)
return
def removeViewComponent(self, componentID):
if self.__viewComponentsBridge is not None:
self.__viewComponentsBridge.removeViewComponent(componentID)
return
def getExitResult(self):
if not self.__isReplayPlaying and not self.__arenaVisitor.gui.isTrainingBattle() and not self.__arenaVisitor.gui.isBattleRoyale() and not self.__arenaVisitor.gui.isMapsTraining():
vInfo = self.__arenaDP.getVehicleInfo()
vStats = self.__arenaDP.getVehicleStats()
if self.__arenaVisitor.hasRespawns():
isDeserter = not vStats.stopRespawn
elif self.__arenaVisitor.hasVSERespawns():
isDeserter = wt_helpers.getPlayerLives() > 0 or wt_helpers.isBoss() and avatar_getter.isVehicleAlive()
else:
isDeserter = avatar_getter.isVehicleAlive() and not avatar_getter.isVehicleOverturned()
return BattleExitResult(isDeserter, vInfo.player)
else:
return BattleExitResult(False, None)
return None
def exit(self):
if self.__arenaVisitor.gui.isMapsTraining():
self.__onMapsTrainingExit()
avatar_getter.leaveArena()
def start(self, setup):
self.__isReplayPlaying = setup.isReplayPlaying
self.__arenaVisitor = arena_visitor.createByAvatar(avatar=setup.avatar)
setup.sessionProvider = weakref.proxy(self)
self.__arenaDP = ArenaDataProvider(setup)
self.__ctx.start(self.__arenaDP)
self.__battleCache.load()
self.__arenaListeners = ListenersCollection()
self.__arenaListeners.start(setup)
self.__viewComponentsBridge = createComponentsBridge()
setup.sessionProvider = weakref.proxy(self)
self.__sharedRepo = controllers.createShared(setup)
self.__dynamicRepo = controllers.createDynamic(setup)
self.__requestsCtrl = AvatarRequestsController()
self.__invitations = invitations.createInvitationsHandler(setup)
setup.clear()
g_playerEvents.onBattleResultsReceived += self.__pe_onBattleResultsReceived
self.onBattleSessionStart()
def stop(self):
self.onBattleSessionStop()
g_playerEvents.onBattleResultsReceived -= self.__pe_onBattleResultsReceived
if self.__viewComponentsBridge is not None:
self.__viewComponentsBridge.clear()
self.__viewComponentsBridge = None
if self.__invitations is not None:
self.__invitations.clear()
self.__invitations = None
if self.__requestsCtrl is not None:
self.__requestsCtrl.fini()
self.__requestsCtrl = None
if self.__arenaListeners is not None:
self.__arenaListeners.stop()
self.__arenaListeners = None
if self.__arenaDP is not None:
self.__arenaDP.clear()
self.__arenaDP = None
self.__sharedRepo.destroy()
self.__dynamicRepo.destroy()
self.__arenaVisitor.clear()
self.__arenaVisitor = arena_visitor.createSkeleton()
self.__battleCache.clear()
self.__ctx.stop()
self.__isReplayPlaying = False
return
def switchToPostmortem(self, noRespawnPossible=True, respawnAvailable=False):
ctrl = self.__sharedRepo.ammo
if ctrl is not None:
ctrl.clear(False)
ctrl = self.__sharedRepo.equipments
if ctrl is not None:
ctrl.clear(False)
ctrl = self.__sharedRepo.optionalDevices
if ctrl is not None:
ctrl.clear(False)
ctrl = self.__sharedRepo.vehicleState
if ctrl is not None:
ctrl.switchToPostmortem(noRespawnPossible, respawnAvailable)
return
def updateVehicleQuickShellChanger(self, isActive):
ammoCtrl = self.__sharedRepo.ammo
if ammoCtrl is not None:
ammoCtrl.updateVehicleQuickShellChanger(isActive)
return
def movingToRespawnBase(self, vehicle):
ctrl = self.__sharedRepo.ammo
if ctrl is not None:
ctrl.clear(False)
if vehicle:
ctrl.setGunSettings(vehicle.typeDescriptor.gun)
ctrl = self.__sharedRepo.equipments
if ctrl is not None:
ctrl.clear(False)
if vehicle:
ctrl.notifyPlayerVehicleSet(vehicle.id)
ctrl = self.__sharedRepo.optionalDevices
if ctrl is not None:
ctrl.clear(False)
ctrl = self.__sharedRepo.vehicleState
if ctrl is not None:
ctrl.movingToRespawn()
ctrl = self.__dynamicRepo.respawn
if ctrl is not None:
ctrl.movingToRespawn()
return
def invalidateVehicleState(self, state, value, vehicleID=0):
ctrl = self.__sharedRepo.vehicleState
if ctrl is not None:
ctrl.invalidate(state, value, vehicleID)
if state == VEHICLE_VIEW_STATE.DESTROYED:
ctrl = self.__sharedRepo.ammo
if ctrl is not None:
ctrl.clear(leave=False)
ctrl = self.__sharedRepo.equipments
if ctrl is not None:
ctrl.clear(leave=False)
ctrl = self.__sharedRepo.optionalDevices
if ctrl is not None:
ctrl.clear(leave=False)
return
def setVehicleHealth(self, isPlayerVehicle, vehicleID, newHealth, attackerID, attackReasonID):
if not isPlayerVehicle:
ctrl = self.__sharedRepo.feedback
if ctrl is not None:
ctrl.setVehicleNewHealth(vehicleID, newHealth, attackerID, attackReasonID)
ctrl = self.__dynamicRepo.battleField
if ctrl is not None:
ctrl.setVehicleHealth(vehicleID, newHealth)
return
def repairPointAction(self, repairPointIndex, action, nextActionTime):
ctrl = self.__dynamicRepo.repair
if ctrl is not None:
ctrl.action(repairPointIndex, action, nextActionTime)
return
def updateAvatarPrivateStats(self, stats):
ctrl = self.__sharedRepo.privateStats
if ctrl is not None:
ctrl.update(stats)
return
def addHitDirection(self, hitDirYaw, attackerID, damage, isBlocked, critFlags, isHighExplosive, damagedID, attackReasonID):
hitDirectionCtrl = self.__sharedRepo.hitDirection
if hitDirectionCtrl is not None:
hitDirectionCtrl.addHit(hitDirYaw, attackerID, damage, isBlocked, critFlags, isHighExplosive, damagedID, attackReasonID)
return
def startVehicleVisual(self, vProxy, isImmediate=False):
vehicleID = vProxy.id
ctrl = self.__sharedRepo.optionalDevices
if ctrl is not None:
ctrl.startVehicleVisual(vProxy, isImmediate)
ctrl = self.__sharedRepo.feedback
if ctrl is not None:
ctrl.startVehicleVisual(vProxy, isImmediate)
ctrl = self.__dynamicRepo.battleField
if ctrl is not None:
ctrl.setVehicleVisible(vehicleID, vProxy.health)
ctrl = self.__sharedRepo.vehicleState
if ctrl is not None and BigWorld.player().observedVehicleID == vehicleID:
ctrl.refreshObserverVehicleVisual()
return
def stopVehicleVisual(self, vehicleID, isPlayerVehicle):
ctrl = self.__sharedRepo.feedback
if ctrl is not None:
ctrl.stopVehicleVisual(vehicleID, isPlayerVehicle)
ctrl = self.__dynamicRepo.battleField
if ctrl is not None:
ctrl.stopVehicleVisual(vehicleID)
return
def handleShortcutChatCommand(self, key):
ctrl = self.__sharedRepo.chatCommands
if ctrl is None:
return
else:
if self.__arenaVisitor.gui.isInEpicRange():
mapCtrl = self.dynamic.maps
if not mapCtrl or mapCtrl.overviewMapScreenVisible:
return
ctrl.handleShortcutChatCommand(key)
return
def handleContexChatCommand(self, key):
ctrl = self.__sharedRepo.chatCommands
if ctrl is None:
return
else:
ctrl.handleContexChatCommand(key)
return
def __pe_onBattleResultsReceived(self, isActiveVehicle, _):
if isActiveVehicle and not BattleReplay.g_replayCtrl.isPlaying:
arenaUniqueID = self.__arenaVisitor.getArenaUniqueID()
arenaBonusType = self.__arenaVisitor.getArenaBonusType()
LOG_DEBUG('Try to exit from arena', arenaUniqueID, arenaBonusType)
if arenaUniqueID:
self.__ctx.lastArenaUniqueID = arenaUniqueID
if arenaBonusType:
self.__ctx.lastArenaBonusType = arenaBonusType
self.exit()
def __onMapsTrainingExit(self):
if not BattleReplay.isPlaying() and self.__ctx.lastArenaUniqueID is None:
self.__ctx.lastArenaUniqueID = self.__arenaVisitor.getArenaUniqueID()
self.__ctx.lastArenaBonusType = self.__arenaVisitor.getArenaBonusType()
return
|
[
"[email protected]"
] | |
86f0dcff18cacb525ba4a9744c6204c57e8a82bf
|
caf192dbc1ca90fee18bb4ce170d37eb14870ec5
|
/Chapter-5/8. Caesar cipher improved.py
|
e8e8417f0af034fccd1069c3f4c9c7d4851dc931
|
[] |
no_license
|
Dfredude/PythonZelle
|
858b00f5eacce841173c64b3cecd978dedbeb145
|
1923fe84df604968eebc5269f23b7c0f167d55f0
|
refs/heads/main
| 2023-08-30T21:45:57.070344 | 2021-10-17T01:32:57 | 2021-10-17T01:32:57 | 359,041,963 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 626 |
py
|
def main():
#Get plaintext(p_text) and key(x) from the user
p_text = str(input("Enter the message you'd like encrypted:\n"))
key = int(input("What's the key?: "))
p_text = p_text.upper()
#Create string of letters
table = "abcdefghijklmnopqrstuvwxyz"
full_table = table * 6
#Check if there are spaces
#Convert plaintext to ciphertext(c_text) using cipher loop
result = ""
for ch in p_text:
if ch == ' ':
result += ' '
else:
new_n = ord(ch) + 13
result += full_table[new_n+key]
print("Your encoded message is {0}.".format(result))
main()
|
[
"[email protected]"
] | |
32fc774be7ccea0bc9dd9d2bc3b6d739fdf9d0e1
|
2ff83d7af0bcbc5822593d826b0c3276346d1276
|
/transformers_local_rep/src/transformers/models/xlm/configuration_xlm.py
|
3ef91c99803ead154f7a5b1ca700f4ae9e22099b
|
[] |
no_license
|
mauricerupp/PolitBERT
|
43af66f5562bb5c5cf965aa99bb065d1c22f4fae
|
a8c4eb517eb38cb51101fc87780ed1de182560c8
|
refs/heads/master
| 2023-06-17T03:13:43.070682 | 2021-07-15T15:15:30 | 2021-07-15T15:15:30 | 386,334,080 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 11,933 |
py
|
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class XLMConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers_local.XLMModel` or a
:class:`~transformers_local.TFXLMModel`. It is used to instantiate a XLM model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture.
Configuration objects inherit from :class:`~transformers_local.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers_local.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30145):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers_local.XLMModel` or :class:`~transformers_local.TFXLMModel`.
emb_dim (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use `gelu` for the activations instead of `relu`.
sinusoidal_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (:obj:`int`, `optional`, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (:obj:`bool`, `optional`, defaults to :obj:`True`)
Whether to use language embeddings. Some models use additional language embeddings, see `the multilingual
models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__ for
information on how to use them.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (:obj:`float`, `optional`, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (:obj:`int`, `optional`, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (:obj:`int`, `optional`, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (:obj:`int`, `optional`, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (:obj:`int`, `optional`, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (:obj:`int`, `optional`, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (:obj:`int`, `optional`, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (:obj:`string`, `optional`, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (:obj:`int`, `optional`, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (:obj:`int`, `optional`, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
Examples::
>>> from transformers_local import XLMConfig, XLMModel
>>> # Initializing a XLM configuration
>>> configuration = XLMConfig()
>>> # Initializing a model from the configuration
>>> model = XLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "xlm"
def __init__(
self,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=2048 ** -0.5,
layer_norm_eps=1e-12,
init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
summary_type="first",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs
):
"""Constructs XLMConfig."""
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.use_lang_emb = use_lang_emb
self.layer_norm_eps = layer_norm_eps
self.bos_index = bos_index
self.eos_index = eos_index
self.pad_index = pad_index
self.unk_index = unk_index
self.mask_index = mask_index
self.is_encoder = is_encoder
self.max_position_embeddings = max_position_embeddings
self.embed_init_std = embed_init_std
self.init_std = init_std
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_proj_to_labels = summary_proj_to_labels
self.summary_first_dropout = summary_first_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.mask_token_id = mask_token_id
self.lang_id = lang_id
if "n_words" in kwargs:
self.n_words = kwargs["n_words"]
@property
def n_words(self): # For backward compatibility
return self.vocab_size
@n_words.setter
def n_words(self, value): # For backward compatibility
self.vocab_size = value
@property
def hidden_size(self):
return self.emb_dim
@property
def num_attention_heads(self):
return self.n_heads
@property
def num_hidden_layers(self):
return self.n_layers
|
[
"[email protected]"
] | |
84db13e8ee0d75e7c968eabc624c915b95174b9a
|
ba054fa1ec409011444e9c6b963309745e150d6f
|
/ave_SR/prueba_carga/loadStateData.py
|
ea4caae0a5653c6b78ca817bb8466e5022a68528
|
[] |
no_license
|
berndhahnebach/XCmodels
|
a6500fdde253dea10ef2bb64b7ebc3dbfc2577c2
|
4acdd7747abd7cd71f5ef580f65e93359560e5a9
|
refs/heads/master
| 2020-04-02T23:36:36.385054 | 2018-10-20T16:49:21 | 2018-10-20T16:49:21 | 154,873,006 | 0 | 0 | null | 2018-10-26T17:52:36 | 2018-10-26T17:52:35 | null |
UTF-8
|
Python
| false | false | 7,436 |
py
|
# -*- coding: utf-8 -*-
'''In this script we define default data of load cases to be used (or changed)
while displaying loads or results associated to single load cases
'''
from postprocess.reports import graphical_reports
'''
Definition of record objects with these attributes:
loadCaseName: name of the load case to be depicted
loadCaseDescr: description text of the load case
loadCaseExpr: mathematical expression to define the load case (ex:
'1.0*GselfWeight+1.0*DeadLoad')
setsToDispLoads: ordered list of sets of elements to display loads
setsToDispBeamLoads: ordered list of sets of beam elements to display loads
(defaults to [])
compElLoad: component of load on beam elements to be represented
available components: 'axialComponent', 'transComponent',
'transYComponent','transZComponent'
unitsScaleLoads: factor to apply to loads if we want to change
the units (defaults to 1).
unitsLoads: text to especify the units in which loads are
represented (defaults to 'units:[m,kN]')
vectorScaleLoads: factor to apply to the vectors length in the
representation of loads (defaults to 1 -> auto-scale).
vectorScalePointLoads: factor to apply to the vectors length in the
representation of nodal loads (defaults to 1).
multByElemAreaLoads: boolean value that must be True if we want to
represent the total load on each element
(=load multiplied by element area) and False if we
are going to depict the value of the uniform load
per unit area (defaults to False)
listDspRot: ordered list of displacement or rotations to be displayed
available components: 'uX', 'uY', 'uZ', 'rotX', rotY', 'rotZ'
(defaults to ['uX', 'uY', 'uZ'])
setsToDispDspRot: ordered list of sets of elements to display displacements
or rotations
unitsScaleDispl: factor to apply to displacements if we want to change
the units (defaults to 1).
unitsDispl: text to especify the units in which displacements are
represented (defaults to '[m]'
listIntForc: ordered list of internal forces to be displayed as scalar field
over «shell» elements
available components: 'N1', 'N2', 'M1', 'M2', 'Q1', 'Q2'
(defaults to ['N1', 'N2', 'M1', 'M2', 'Q1', 'Q2'])
setsToDispIntForc: ordered list of sets of elements (of type «shell»)to
display internal forces
listBeamIntForc: ordered list of internal forces to be displayed
as diagrams on lines for «beam» elements
available components: 'N', 'My', 'Mz', 'Qy', 'Qz','T'
(defaults to ['N', 'My', 'Mz', 'Qy', 'Qz','T'])
setsToDispBeamIntForc: ordered list of sets of elements (of type «beam»)to
display internal forces (defaults to [])
scaleDispBeamIntForc: tuple (escN,escQ,escM) correponding to the scales to
apply to displays of, respectively, N Q and M beam internal
forces (defaults to (1.0,1.0,1.0))
unitsScaleForc: factor to apply to internal forces if we want to change
the units (defaults to 1).
unitsForc: text to especify the units in which forces are
represented (defaults to '[kN/m]')
unitsScaleMom: factor to apply to internal moments if we want to change
the units (defaults to 1).
unitsMom: text to especify the units in which bending moments are
represented (defaults to '[kN.m/m]')
viewName: name of the view that contains the renderer (available standard
views: "XYZPos", "XYZNeg", "XPos", "XNeg","YPos", "YNeg",
"ZPos", "ZNeg", "+X+Y+Z", "+X+Y-Z", "+X-Y+Z", "+X-Y-Z",
"-X+Y+Z", "-X+Y-Z",
"-X-Y+Z", "-X-Y-Z") (defaults to "XYZPos")
hCamFct: factor that applies to the height of the camera position
in order to change perspective of isometric views
(defaults to 1, usual values 0.1 to 10)
viewNameBeams: name of the view for beam elements displays (defaults to "XYZPos")
hCamFctBeams: factor that applies to the height of the camera position for
beam displays (defaults to 1)
'''
Q1=graphical_reports.RecordLoadCaseDisp(loadCaseName='Q1',loadCaseDescr='Q1: Prueba de carga estática',loadCaseExpr='1.0*Q1',setsToDispLoads=[overallSet],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
Q1.unitsScaleLoads=1e-3
Q1.unitsScaleDispl=1e3
Q1.unitsDispl='[mm]'
Q1.unitsScaleMom=1e-3
Q1.unitsMom='[m.kN]'
Q1.unitsScaleForc=1e-3
Q1.unitsForc='[kN]'
Q1.viewName="XYZPos"
Q1.hCamFct=1
Q1.listDspRot=[]
Q1.listIntForc=['M2']
Q2=graphical_reports.RecordLoadCaseDisp(loadCaseName='Q2',loadCaseDescr='Q2: tren de cargas ferroviario (2 vías)',loadCaseExpr='1.00*Q2',setsToDispLoads=[overallSet],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
Q2.unitsScaleLoads=1e-3
Q2.unitsScaleDispl=1e3
Q2.unitsDispl='[mm]'
Q2.unitsScaleMom=1e-3
Q2.unitsMom='[m.kN]'
Q2.unitsScaleForc=1e-3
Q2.unitsForc='[kN]'
Q2.viewName="XYZPos"
Q2.hCamFct=1
Q2.listDspRot=[]
Q2.listIntForc=['M2']
Q3=graphical_reports.RecordLoadCaseDisp(loadCaseName='Q3',loadCaseDescr='Q3: tren de cargas ferroviario (1 vía)',loadCaseExpr='1.00*Q3',setsToDispLoads=[dintel],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
Q3.unitsScaleLoads=1e-3
Q3.unitsScaleDispl=1e3
Q3.unitsDispl='[mm]'
Q3.unitsScaleMom=1e-3
Q3.unitsMom='[m.kN]'
Q3.unitsScaleForc=1e-3
Q3.unitsForc='[kN]'
Q3.viewName="XYZPos"
Q3.hCamFct=1
Q3.listDspRot=[]
Q3.listIntForc=['M2']
PrueCarga=graphical_reports.RecordLoadCaseDisp(loadCaseName='PC',loadCaseDescr='PrueCarga: Prueba de carga estática',loadCaseExpr='1.0*G1+1.00*G3+1.0*Q1',setsToDispLoads=[dintel],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
PrueCarga.unitsScaleLoads=1e-3
PrueCarga.unitsScaleDispl=1e3
PrueCarga.unitsDispl='[mm]'
PrueCarga.unitsScaleMom=1e-3
PrueCarga.unitsMom='[m.kN]'
PrueCarga.unitsScaleForc=1e-3
PrueCarga.unitsForc='[kN]'
PrueCarga.viewName="XYZPos"
PrueCarga.hCamFct=1
PrueCarga.listDspRot=[]
PrueCarga.listIntForc=['M2']
Qtren2vias=graphical_reports.RecordLoadCaseDisp(loadCaseName='TF2',loadCaseDescr='Qtren: tren de cargas ferroviario',loadCaseExpr='1.00*G1 + 1.00*G2 + 1.00*G3 + 1.00*Q2',setsToDispLoads=[dintel],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
Qtren2vias.unitsScaleLoads=1e-3
Qtren2vias.unitsScaleDispl=1e3
Qtren2vias.unitsDispl='[mm]'
Qtren2vias.unitsScaleMom=1e-3
Qtren2vias.unitsMom='[m.kN]'
Qtren2vias.unitsScaleForc=1e-3
Qtren2vias.unitsForc='[kN]'
Qtren2vias.viewName="XYZPos"
Qtren2vias.hCamFct=1
Qtren2vias.listDspRot=[]
Qtren2vias.listIntForc=['M2']
Qtren1via=graphical_reports.RecordLoadCaseDisp(loadCaseName='TF1',loadCaseDescr='Qtren: tren de cargas ferroviario',loadCaseExpr='1.00*G1 + 1.00*G2 + 1.00*G3 + 1.00*Q3',setsToDispLoads=[dintel],setsToDispDspRot=[dintel],setsToDispIntForc=[dintel])
Qtren1via.unitsScaleLoads=1e-3
Qtren1via.unitsScaleDispl=1e3
Qtren1via.unitsDispl='[mm]'
Qtren1via.unitsScaleMom=1e-3
Qtren1via.unitsMom='[m.kN]'
Qtren1via.unitsScaleForc=1e-3
Qtren1via.unitsForc='[kN]'
Qtren1via.viewName="XYZPos"
Qtren1via.hCamFct=1
Qtren1via.listDspRot=[]
Qtren1via.listIntForc=['M2']
|
[
"[email protected]"
] | |
bedc758c9a51a568cc9c7b658fc0ecc6f2e0d95f
|
9a257043e72660ba8ba64bafbd626c7cd2638fad
|
/demos/demo3.py
|
0445986140b7e45ee5705195ce62abfbcb846da7
|
[
"MIT"
] |
permissive
|
desecho/django-tqdm
|
1b38a4955b8205ca18a215eea9ea4ba969c0baaa
|
053d2a259a503a574fa29960d66568feba85d25e
|
refs/heads/master
| 2023-08-07T18:40:52.643836 | 2022-11-01T05:08:47 | 2022-11-03T04:12:35 | 88,812,309 | 15 | 0 |
MIT
| 2023-09-01T04:02:46 | 2017-04-20T02:33:56 |
Python
|
UTF-8
|
Python
| false | false | 294 |
py
|
"""Demo 3 - Vanilla tqdm with default settings for comparison."""
import sys
from time import sleep
from tqdm import tqdm
t = tqdm(total=50)
for x in range(50):
sleep(0.02)
t.update(1)
if x == 25:
t.write("info")
if x == 40:
t.write("error", file=sys.stderr)
|
[
"[email protected]"
] | |
975f5ad103c66ee683287f7f8c490cd1822a58f7
|
cb1fb3bf87b3f7006b564a0f2acd2d68e5d5ffaa
|
/pyram/gsf/run.py
|
aa7a2ce83652d1e311fa6636ac4285f33e5b39e0
|
[
"GPL-3.0-only",
"MIT"
] |
permissive
|
Hoseung/pyRamAn
|
2778f8b12ca966e7586ebf077a964aecd1654223
|
f9386fa5a9f045f98590039988d3cd50bc488dc2
|
refs/heads/master
| 2021-06-22T18:35:06.478492 | 2021-06-05T03:26:31 | 2021-06-05T03:26:31 | 227,741,934 | 1 | 1 |
MIT
| 2020-03-04T12:39:06 | 2019-12-13T02:49:30 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 1,146 |
py
|
import sys, os, numexpr
import gsf
print('This script calls gsf given a valid simulation output file, snaphot_file (required input)')
print('gsf.py is a collection of functions that cover the computation of the gravitational potential,')
print('a wrapper for the Gaussian Mixture Models of scikit-learn and various plotting options.')
print('To have an idea of the various arguments that can be set use verbose=True.')
print('If no optional argument is given, the code will look for 2 clusters in the kinematic stellar space of')
print('(jz/jc,jp/jc,binding_energy) of the most massive halo in snaphot_file.')
print('The runtime for the computation of the potential scales as ~N^2')
print('If you want to run this part of gsf in parallel, set the system variable OMP_NUM_THREADS first.')
snaphot_file = '/scratch/database/nihao/gasoline2.1/g8.26e11/g8.26e11.01024'
out_dir='./'
print('Running gsf for the sim in %s'%snaphot_file)
gsf.wgsf(snaphot_file, out_dir=out_dir, number_of_clusters=2, covariance_type='full', whiten_data=None,
halo_id=1, radius_align=0.1, align_with='baryon', n_init=1, plot=True, verbose=True)
|
[
"[email protected]"
] | |
9670b3eacf994b8b048b41b1e35eb381b467e6fe
|
15f321878face2af9317363c5f6de1e5ddd9b749
|
/solutions_python/Problem_200/194.py
|
52851c11321931979d7349e69ceeae6308d70d7a
|
[] |
no_license
|
dr-dos-ok/Code_Jam_Webscraper
|
c06fd59870842664cd79c41eb460a09553e1c80a
|
26a35bf114a3aa30fc4c677ef069d95f41665cc0
|
refs/heads/master
| 2020-04-06T08:17:40.938460 | 2018-10-14T10:12:47 | 2018-10-14T10:12:47 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 692 |
py
|
file_in = open('B-large.in', 'r')
file_out = open('b.out', 'w')
T = int(file_in.readline())
for t in range(1, T+1):
n = list(file_in.readline().strip())
n = [int(i) for i in n]
i = 1
k = None
while(i < len(n)):
if(n[i] < n[i-1]):
k = i
n[i-1] -= 1
break
i += 1
while(i < len(n)):
n[i] = 9
i += 1
if k is not None:
while(k > 1):
k -= 1
if(n[k] < n[k-1]):
n[k] = 9
n[k-1] -= 1
else:
break
while n[0] is 0:
n.pop(0)
n = [str(i) for i in n]
ans = ''.join(n)
file_out.write("Case #{}: ".format(t))
file_out.write(ans)
file_out.write('\n')
|
[
"[email protected]"
] | |
af84c590c0b37d96166d6afa222258397d069324
|
d9232bb31eb01eb97014bb5c769e0dd210512769
|
/python2/classes/person.py
|
49b723a7627db3a17556b313fcce5f1e07d523cc
|
[
"MIT"
] |
permissive
|
hygull/pyrandocs
|
c5d0defff6a9465678f713deed384a097bbe0e02
|
31cd2a4fc23b91c692e104f533ce3c4d21698ff5
|
refs/heads/master
| 2020-04-20T10:44:59.921958 | 2019-02-10T10:34:13 | 2019-02-10T10:34:13 | 168,797,735 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,163 |
py
|
from datetime import date
class Person(object):
"""
Person
======
- A class to represent a person class
"""
def __init__(self, fullname, username, dob, email, profession, address):
super(Person, self).__init__()
self.fullname = fullname
self.username = username
self.dob = self.__get_dob(dob)
self.age = self.__get_age()
self.email = email
self.profession = profession
self.address = address
def __get_dob(self, dob):
"""
>>> arr = [1, 3, 4]
>>> x, y, z = a
>>> x
1
>>> y
3
>>> z
4
>>>
>>> def func(a, b, c):
... print(a, b, c)
...
>>> func(*[55, 67, 88])
(55, 67, 88)
>>>
>>> func(*[55, 67, 88][::-1])
(88, 67, 55)
>>>
"""
dob = date(*[int(data) for data in dob.split('-')][::-1])
return dob
def __get_age(self):
today = date.today()
delta = today - self.dob
years = delta.days / 365.25
days = delta.days % 365.25
message = ''
if years or days:
message = '{0:d} years {1:d} days (approx.)'.format(int(years), int(days))
else:
message = 'Unborn baby'
return message
def details(self):
for atrribute_name, atrribute_value in self.__dict__.items():
print('{0:15s} - {1}'.format(atrribute_name, atrribute_value))
if __name__ == "__main__":
person = Person(
'Rishikesh Agrawani', 'hygull',
'14-05-1992', '[email protected]',
'Python/Node developer', 'Banaglore, India'
)
person.details()
"""
username - hygull
dob - 1992-05-14
age - 26 years 263 days (approx.)
profession - Python/Node developer
address - Banaglore, India
fullname - Rishikesh Agrawani
email - [email protected]
"""
|
[
"[email protected]"
] | |
a80ac9bcd6682244b0f36d5f03d259cfe6d63e1c
|
3e06c2e64c14c3e3486cd3604268f12510fdeb56
|
/chatbot/actions/actions.py
|
a89ec89ba87288f0c31ed895a8ea90df9b8a36f2
|
[
"Apache-2.0"
] |
permissive
|
exactpro/nostradamus
|
42296e9d4762ac6d7364a665dd5cd74117caacc8
|
80df847a012374ad2b702cc9f9c9cb46c1153ee7
|
refs/heads/master
| 2022-09-29T08:49:14.505795 | 2021-12-21T12:43:01 | 2021-12-21T12:43:01 | 162,601,150 | 32 | 8 |
Apache-2.0
| 2022-09-13T23:04:20 | 2018-12-20T15:58:05 |
TypeScript
|
UTF-8
|
Python
| false | false | 5,976 |
py
|
from typing import Dict, Text, Any, List, Union, Optional
from json import loads, JSONDecodeError
from rasa_sdk.events import EventType, SlotSet
from rasa_sdk.forms import FormAction, REQUESTED_SLOT, Form
from rasa_sdk.executor import CollectingDispatcher
from rasa_sdk.events import AllSlotsReset
from .responses import RESPONSES, WORKFLOW
from rasa_sdk import Tracker, Action
from .api.report_generator import (
generate_report,
request_values,
generate_report_payload,
check_issues,
)
def get_action_with_help_intent(latest_intent: str) -> list:
""" Get action name for intent name.
Parameters
----------
latest_intent:
Bot intent.
Returns
----------
Actions name list.
"""
actions = []
for action, intents in WORKFLOW.items():
for intent in intents:
if intent == latest_intent:
actions.append(action)
return actions
class ReportForm(FormAction):
"""Collects data for report."""
def name(self) -> Text:
return "report_form"
def validate_period(
self,
value: Text,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any],
) -> Dict[Text, Any]:
"""Validate period value."""
try:
if isinstance(loads(value), list):
return {"period": value}
else:
dispatcher.utter_message("Incorrect date. Please try again")
return {"period": None}
except (JSONDecodeError, TypeError):
dispatcher.utter_message("Incorrect date. Please try again")
return {"period": None}
@staticmethod
def required_slots(tracker):
required_slots = ["project", "period"]
if tracker.get_slot("project") == "Pick a project":
required_slots.insert(1, "project_selection")
return required_slots
def slot_mappings(self) -> Dict[Text, Union[Dict, List[Dict]]]:
return {
"project": self.from_entity(entity="project"),
"project_selection": self.from_text(),
"period": self.from_text(),
}
def request_next_slot(
self,
dispatcher: "CollectingDispatcher",
tracker: "Tracker",
domain: Dict[Text, Any],
) -> Optional[List[EventType]]:
for slot in self.required_slots(tracker):
if self._should_request_slot(tracker, slot):
if not check_issues():
dispatcher.utter_message(
text="Oops! Bugs haven't been uploaded yet. Please try again later"
)
return [Form(None), AllSlotsReset()]
if slot == "project_selection":
response = request_values("Project")
response["operation"] = "filtration"
dispatcher.utter_message(
json_message=response, timeout=100,
)
elif slot == "period":
response = {
"operation": "calendar",
"title": "Please choose a date",
}
dispatcher.utter_message(json_message=response)
else:
dispatcher.utter_message(
template=f"utter_ask_{slot}", **tracker.slots
)
return [SlotSet(REQUESTED_SLOT, slot)]
# no more required slots to fill
return
def submit(
self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any],
) -> List[Dict]:
payload = generate_report_payload(tracker)
message = generate_report(payload)
if not message.get("filename"):
message = "Oops! There is no data you’re looking for 😔"
dispatcher.utter_message(text=message, timeout=100)
else:
message["operation"] = "report"
message["filters"] = payload
dispatcher.utter_message(json_message=message, timeout=100)
return [AllSlotsReset()]
class ActionFAQSelector(Action):
"""Basic FAQ response selector."""
def name(self) -> Text:
return "action_faq_selector"
def run(
self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any],
) -> List[Dict]:
intent = tracker.latest_message["intent"].get("name")
messages = RESPONSES.get("faq").get(intent)
for message in messages:
dispatcher.utter_message(text=message)
return []
class ActionCustomFallback(Action):
"""Action custom fallback."""
def name(self) -> Text:
return "action_custom_fallback"
def run(
self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any],
) -> List[Dict]:
latest_intent = tracker.latest_message["intent"].get("name")
actions = get_action_with_help_intent(latest_intent)
if actions:
for action in actions:
if action != tracker.latest_action_name:
if action == "action_faq_selector":
ActionFAQSelector().run(
dispatcher=dispatcher,
tracker=tracker,
domain=domain,
)
else:
dispatcher.utter_message(template=action)
elif (
latest_intent == "affirm"
and tracker.events[-4].get("text") == "Do you want to learn more?"
):
dispatcher.utter_message(
template="utter_more_details_analysis_and_training"
)
else:
dispatcher.utter_message(template="utter_cannot_help")
return [Form(None), AllSlotsReset()]
|
[
"[email protected]"
] | |
cca0f267aec18ee02e6b05d3dabf877f009d2934
|
a5dee3e5dd839bf24c04e34f1774ff9d7b1fff43
|
/venvs/tensorflow/lib/python3.6/fnmatch.py
|
1bfc742e482849966c5f34e74b2dfcbac5ffc174
|
[
"MIT"
] |
permissive
|
hsnodgrass/Chatbot
|
17876e7e176355a1d4793b7817e0a5e527233531
|
7b8336a3365c50c3e156cb51d762578633d4dac2
|
refs/heads/master
| 2022-10-19T03:57:10.273171 | 2017-07-16T17:37:14 | 2017-07-16T17:37:14 | 95,172,310 | 0 | 1 |
MIT
| 2022-10-09T04:59:02 | 2017-06-23T01:45:05 |
Python
|
UTF-8
|
Python
| false | false | 31 |
py
|
/usr/lib64/python3.6/fnmatch.py
|
[
"[email protected]"
] | |
761a7acc9b2a233cc75164049125415fb69cae73
|
4c5608f20fa2580774d734d94198dd10648e4339
|
/test/vpp_ipip_tun_interface.py
|
6e5ade6eb3df3d311f1a783d8d2216bccaf237fb
|
[
"Apache-2.0"
] |
permissive
|
mojtaba-eshghie/VPP-In-Situ-IOAM
|
3d1c3d01752a7934d2f060326674280e0bd93413
|
efebd91195eb1b0d98a4a1f5efd962ae79c77be6
|
refs/heads/master
| 2022-12-10T13:37:04.644952 | 2020-05-29T11:42:36 | 2020-05-29T11:42:36 | 194,249,816 | 2 | 0 |
Apache-2.0
| 2022-12-08T05:17:31 | 2019-06-28T09:50:05 |
C
|
UTF-8
|
Python
| false | false | 1,159 |
py
|
from vpp_tunnel_interface import VppTunnelInterface
from ipaddress import ip_address
class VppIpIpTunInterface(VppTunnelInterface):
"""
VPP IP-IP Tunnel interface
"""
def __init__(self, test, parent_if, src, dst):
super(VppIpIpTunInterface, self).__init__(test, parent_if)
self.src = src
self.dst = dst
def add_vpp_config(self):
r = self.test.vapi.ipip_add_tunnel(
tunnel={
'src': self.src,
'dst': self.dst,
'table_id': 0,
'instance': 0xffffffff,
})
self.set_sw_if_index(r.sw_if_index)
self.test.registry.register(self, self.test.logger)
def remove_vpp_config(self):
self.test.vapi.ipip_del_tunnel(sw_if_index=self._sw_if_index)
def query_vpp_config(self):
ts = self.test.vapi.ipip_tunnel_dump(sw_if_index=0xffffffff)
for t in ts:
if t.tunnel.sw_if_index == self._sw_if_index:
return True
return False
def __str__(self):
return self.object_id()
def object_id(self):
return "ipip-%d" % self._sw_if_index
|
[
"[email protected]"
] | |
44346aeefb47e47c8a5bb430be1212dd468b75c0
|
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
|
/WLKF79mxKnhjtrFRB_15.py
|
ec801d798caa324b8d8c58381efa49d628ae96e0
|
[] |
no_license
|
daniel-reich/ubiquitous-fiesta
|
26e80f0082f8589e51d359ce7953117a3da7d38c
|
9af2700dbe59284f5697e612491499841a6c126f
|
refs/heads/master
| 2023-04-05T06:40:37.328213 | 2021-04-06T20:17:44 | 2021-04-06T20:17:44 | 355,318,759 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 192 |
py
|
def is_good_match(lst):
if len(lst) % 2 == 1:
return "bad match"
else:
arr = []
i = 0
while i < len(lst):
arr.append(lst[i] + lst[i+1])
i += 2
return arr
|
[
"[email protected]"
] | |
4f3cbcad439bda75a73b98cde610a99c85c288c2
|
833b43575815ce6c5fa8cbac2628cb774331eda7
|
/chap11_p208_code3.py
|
058f6b30f32ce9b2502ec1382e81358e712a6821
|
[] |
no_license
|
ai-times/infinitybook_python
|
d9529dfe7d486bf5c713d52b530915a23cbf1812
|
1c011c31994d07fe959bba9b519c4365f5f40e7f
|
refs/heads/main
| 2023-03-01T12:18:20.695888 | 2021-02-14T04:22:40 | 2021-02-14T04:22:40 | 338,578,047 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 97 |
py
|
n = 100
while n<= 150 :
print("Count ", n)
n += 5
print("종료합니다.")
|
[
"[email protected]"
] | |
b7df96df10ecc11c9aba8c67da97b71ad4c027a4
|
bb150497a05203a718fb3630941231be9e3b6a32
|
/models/PaddleHub/hub_all_func/all_module/all_spinalnet_res50_gemstone.py
|
067d964d381f6ca7b6630d4f597a3c9537170d28
|
[] |
no_license
|
PaddlePaddle/PaddleTest
|
4fb3dec677f0f13f7f1003fd30df748bf0b5940d
|
bd3790ce72a2a26611b5eda3901651b5a809348f
|
refs/heads/develop
| 2023-09-06T04:23:39.181903 | 2023-09-04T11:17:50 | 2023-09-04T11:17:50 | 383,138,186 | 42 | 312 | null | 2023-09-13T11:13:35 | 2021-07-05T12:44:59 |
Python
|
UTF-8
|
Python
| false | false | 559 |
py
|
"""spinalnet_res50_gemstone"""
import os
import paddle
import paddlehub as hub
import cv2
if paddle.is_compiled_with_cuda():
paddle.set_device("gpu")
use_gpu = True
else:
paddle.set_device("cpu")
use_gpu = False
def test_spinalnet_res50_gemstone_predict():
"""spinalnet_res50_gemstone predict"""
os.system("hub install spinalnet_res50_gemstone")
classifier = hub.Module(name="spinalnet_res50_gemstone")
result = classifier.predict(["doc_img.jpeg"])
print(result)
os.system("hub uninstall spinalnet_res50_gemstone")
|
[
"[email protected]"
] | |
6971b11f655b673532cf1a066881ac27f4e2a1b9
|
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
|
/python/eliben_deep-learning-samples/deep-learning-samples-master/ud730/assign5_cbow.py
|
d84f68e0e772e796b8949a82b3fde5dd5521b697
|
[] |
no_license
|
LiuFang816/SALSTM_py_data
|
6db258e51858aeff14af38898fef715b46980ac1
|
d494b3041069d377d6a7a9c296a14334f2fa5acc
|
refs/heads/master
| 2022-12-25T06:39:52.222097 | 2019-12-12T08:49:07 | 2019-12-12T08:49:07 | 227,546,525 | 10 | 7 | null | 2022-12-19T02:53:01 | 2019-12-12T07:29:39 |
Python
|
UTF-8
|
Python
| false | false | 7,497 |
py
|
from __future__ import print_function
import itertools
import math
import numpy as np
import os
import random
import tensorflow as tf
from six.moves import cPickle as pickle
from timer import Timer
from word_utils import read_data, build_dataset, report_words_distance
def generate_batch_cbow(data, batch_size, context_size):
"""
Args:
data: List of IDs - the input sequence.
batch_size: Number of samples to generate.
context_size:
How many words to consider around the target word, left and right.
With context_size=2, in the sentence above for "consider" as the
target word, the context will be [words, to, around, the].
Yields:
Pairs of (context, label) where context is an array with shape
(batch_size, context_size * 2) and label is an array with shape
(batch_size,). For each context vector, a single label is matched
(target ID).
"""
data_index = 0
window_size = 2 * context_size + 1
while True:
context = np.zeros((batch_size, context_size * 2), dtype=np.int32)
label = np.zeros((batch_size, 1), dtype=np.int32)
for b in range(batch_size):
window_end = (data_index + window_size) % len(data)
window = data[data_index:window_end]
context[b, 0:context_size] = window[:context_size]
context[b, context_size:] = window[context_size + 1:]
label[b, 0] = window[context_size]
data_index = (data_index + 1) % len(data)
yield (context, label)
pickle_filename = 'textdata.pickle'
# Only the vocabulary_size most common words are retained in the dictionary.
# All others are mapped to UNK.
vocabulary_size = 50000
try:
with Timer('Loading pickle...'):
with open(pickle_filename, 'rb') as pickle_file:
save = pickle.load(pickle_file)
data = save['data']
count = save['count']
dictionary = save['dictionary']
reverse_dictionary = save['reverse_dictionary']
except:
print('No pickle... recomputing data.')
filename = 'text8.zip'
with Timer('read_data'):
words = read_data(filename)
with Timer('build_dataset'):
data, count, dictionary, reverse_dictionary = build_dataset(words)
save = {
'data': data,
'count': count,
'dictionary': dictionary,
'reverse_dictionary': reverse_dictionary,
}
with open(pickle_filename, 'wb') as pickle_file:
pickle.dump(save, pickle_file, pickle.HIGHEST_PROTOCOL)
print('First words in data:')
print(data[:50])
gen = generate_batch_cbow(data, 10, 2)
for i in range(5):
print(gen.next())
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
context_size = 2 # How many words to take for context, left and right
# Number of input words to the network
context_full_size = context_size * 2
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(range(valid_window), valid_size))
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default(), tf.device('/cpu:0'):
# Input data.
train_dataset = tf.placeholder(tf.int32,
shape=[batch_size, context_full_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Variables.
# The embeddings is a VxN matrix, where V is the vocabulary size and N
# is the embedding dimensionality.
embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size
], -1.0, 1.0))
softmax_weights = tf.Variable(tf.truncated_normal(
[vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Model.
# Look up embeddings for inputs, for each input...
# The shape should be (batch_size, context_full_size, embedding_size).
# We want to average all the context vectors within each batch, so we
# reduce-mean along dimension 1.
embed = tf.nn.embedding_lookup(embeddings, train_dataset)
embed_mean = tf.reduce_mean(embed, reduction_indices=[1])
# Compute the softmax loss, using a sample of the negative labels each time.
loss = tf.reduce_mean(
tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed_mean,
train_labels, num_sampled, vocabulary_size))
# Optimizer.
# Note: The optimizer will optimize the softmax_weights AND the embeddings.
# This is because the embeddings are defined as a variable quantity and the
# optimizer's `minimize` method will by default modify all variable
# quantities that contribute to the tensor it is passed. See docs on
# `tf.train.Optimizer.minimize()` for more details.
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
# Compute the similarity between minibatch examples and all embeddings.
# We use the cosine distance:
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,
valid_dataset)
similarity = tf.matmul(valid_embeddings,
tf.transpose(normalized_embeddings))
num_steps = 23001
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
print('embed shape:', embed.get_shape())
print('embed_mean shape:', embed_mean.get_shape())
initial_embeddings = embeddings.eval()
#do_report_distances(initial_embeddings)
average_loss = 0
batch_gen = generate_batch_cbow(data, batch_size, context_size)
for step, batch in itertools.izip(range(num_steps), batch_gen):
batch_data, batch_labels = batch
feed_dict = {train_dataset: batch_data, train_labels: batch_labels}
_, l = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += l
if step % 2000 == 0:
if step > 0:
average_loss = average_loss / 2000
# The average loss is an estimate of the loss over the last 2000
# batches.
print('Average loss at step %d: %f' % (step, average_loss))
average_loss = 0
# note that this is expensive (~20% slowdown if computed every 500
# steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()
print('final_embeddings shape:', final_embeddings.shape)
|
[
"[email protected]"
] | |
357382c47b4901fd489af666983de3e30ee3f162
|
f00e077c1acbed3a99d73fcc0880f9eb40b396fb
|
/examples/menus.py
|
d83b87b31b75032ef36cf99a4d07d28fd9cf35d3
|
[] |
no_license
|
rasql/cocos2d-tutorial
|
089f6ddc1d2c26f2786fb78a97e1690c4ead57ff
|
92bad88d51c37b30a74b32d35dac07b24a8073d6
|
refs/heads/master
| 2020-04-28T13:10:27.444561 | 2019-04-17T07:11:36 | 2019-04-17T07:11:36 | 175,299,934 | 1 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,215 |
py
|
"""
Raphael Holzer
16. 02. 2019
Displaying a main menu and an options menu.
"""
import cocos
import sys
from cocos.layer import *
from cocos.menu import *
from cocos.scene import *
import pyglet
pyglet.resource.path = ['../animals']
pyglet.resource.reindex()
class OptionsMenu(Menu):
def __init__(self):
super(OptionsMenu, self).__init__('Menus')
items = []
self.values = ['Mute','10','20','30','40','50','60','70','80','90','100']
self.colors = [(255, 255, 255), (255, 0, 50), (0, 255, 50), (0, 50, 255)]
items.append(MenuItem('Menu', self.cb0))
items.append(MultipleMenuItem('Multiple:', self.cb, self.values, 5))
items.append(ToggleMenuItem('Toggle:', self.cb))
items.append(EntryMenuItem('Entry:', self.cb, 'abc', 10))
items.append(ColorMenuItem('Color:', self.cb, self.colors))
items.append(ImageMenuItem('bird-icon.png', self.cb0))
self.create_menu( items, zoom_in(), zoom_out() )
def cb0(self):
"""Callback function without callback value."""
print('cb')
def cb(self, val):
"""Callback function with callback value."""
print('cb value =', val)
class MainMenu(Menu):
def __init__(self):
super(MainMenu, self).__init__('Main')
items = []
items.append(MenuItem('New', self.on_new_game))
items.append(MenuItem('Options', self.on_options))
items.append(MenuItem('Scores', self.on_scores))
items.append(MenuItem('Quit', self.on_quit))
self.create_menu(items, shake(), shake_back())
def on_new_game(self):
print('new game')
def on_options(self):
self.parent.switch_to(1)
def on_scores(self):
print('scores')
def on_quit(self):
print('quit')
cocos.director.pyglet.app.exit()
sys.exit()
def main():
director.init(resizable=True)
bg = cocos.layer.ColorLayer(0, 127, 127, 255)
scene = Scene()
scene.add(MultiplexLayer(MainMenu(), OptionsMenu()), z=1)
scene.add(bg, z=0 )
director.run(scene)
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
3134ee871bcf3dc40961cafeb278a697a4097357
|
9da79ead6d0dda0b4959c3e7f59c603c085b1f8d
|
/tests/conftest.py
|
8e5d0ee28807793d1d9ea9ad37dc0a42e256095f
|
[
"MIT"
] |
permissive
|
fariddarabi/fastapi-chameleon
|
34e99385e0b66b72e30af5c2ba16d4d65e0fb3f4
|
8012037480b402d5881760c4c9f01b6c7969c086
|
refs/heads/main
| 2023-08-26T08:56:00.294057 | 2021-11-14T06:27:25 | 2021-11-14T06:27:25 | 427,679,374 | 0 | 0 |
MIT
| 2021-11-14T06:43:05 | 2021-11-13T13:56:17 | null |
UTF-8
|
Python
| false | false | 380 |
py
|
import pytest
from pathlib import Path
import fastapi_chameleon as fc
@pytest.fixture
def test_templates_path(pytestconfig):
return Path(pytestconfig.rootdir, "tests", "templates")
@pytest.fixture
def setup_global_template(test_templates_path):
fc.global_init(str(test_templates_path))
yield
# Clear paths so as to no affect future tests
fc.engine.clear()
|
[
"[email protected]"
] | |
2080b5395f84f98f67296c859811a86d994f1c2c
|
dac7095e7b5ad4dae993871c1ae45cbb7a5ce5f7
|
/Character/23.Mayuri/Mayuri_SSS_Re.py
|
2c73df441ab8236d477c19d7b2c0c843f3fb5a24
|
[] |
no_license
|
Lastation/RenewalAniChaos
|
d12a8423f4b83cb019495c59ed059451e67e0483
|
c3edb29af58925de55c11110ccaf927d2b5d1b39
|
refs/heads/master
| 2023-08-24T11:28:35.614844 | 2023-08-22T21:23:14 | 2023-08-22T21:23:14 | 246,617,812 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,999 |
py
|
import Function as f;
const s = StringBuffer();
function main(cp)
{
if (f.delay[cp] == 0)
{
if (f.count[cp] == 0)
{
if (f.loop[cp] == 0)
{
f.SquareShape(cp, 1, "Target", 50, 50);
f.SquareShape(cp, 1, " Creep. Dunkelheit", 50, 50);
MoveLocation(f.location[cp], f.heroID[cp], cp, "Anywhere");
MoveUnit(All, " Creep. Dunkelheit", cp, "[Skill]Unit_Wait_ALL", f.location[cp]);
Order(" Creep. Dunkelheit", cp, "Anywhere", Attack, f.location[cp]);
KillUnitAt(All, "Target", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 1)
{
RemoveUnitAt(All, " Creep. Dunkelheit", "Anywhere", cp);
f.SquareShape(cp, 1, "Target", 50, 50);
f.SquareShape(cp, 1, " Creep. Dunkelheit", 50, 50);
MoveLocation(f.location[cp], f.heroID[cp], cp, "Anywhere");
MoveUnit(All, " Creep. Dunkelheit", cp, "[Skill]Unit_Wait_ALL", f.location[cp]);
Order(" Creep. Dunkelheit", cp, "Anywhere", Attack, f.location[cp]);
KillUnitAt(All, "Target", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 2)
{
RemoveUnitAt(All, " Creep. Dunkelheit", "Anywhere", cp);
f.SquareShape(cp, 1, "Target", 50, 0);
f.SquareShape(cp, 1, "Target", 100, 0);
KillUnitAt(All, "Target", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 3)
{
f.EdgeShape(cp, 1, "Protoss Dark Templar", 45, 5, 100);
KillUnitAt(All, "Protoss Dark Templar", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 4)
{
f.EdgeShape(cp, 1, "40 + 1n Mutalisk", 0, 5, 100);
KillUnitAt(All, "40 + 1n Mutalisk", "Anywhere", cp);
f.EdgeShape(cp, 1, "40 + 1n Ghost", 0, 3, 100);
MoveLocation(f.location[cp], f.heroID[cp], cp, "Anywhere");
MoveUnit(All, "40 + 1n Ghost", cp, "[Skill]Unit_Wait_ALL", f.location[cp]);
Order("40 + 1n Ghost", cp, "Anywhere", Attack, f.location[cp]);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 5)
{
f.EdgeShape(cp, 1, "60 + 1n Danimoth", 0, 7, 150);
KillUnitAt(All, "60 + 1n Danimoth", "Anywhere", cp);
f.EdgeShape(cp, 1, "60 + 1n Archon", 0, 7, 150);
KillUnitAt(All, "60 + 1n Archon", "Anywhere", cp);
f.EdgeShape(cp, 1, "Kakaru (Twilight)", 0, 5, 100);
KillUnitAt(All, "Kakaru (Twilight)", "Anywhere", cp);
f.SkillWait(cp, 80);
f.count[cp] += 1;
f.loop[cp] = 0;
}
}
else if (f.count[cp] == 1)
{
if (f.loop[cp] < 4)
{
f.DotShape(cp, 1, "Protoss Dark Templar", 100 - 25 * f.loop[cp], 25 * f.loop[cp]);
f.DotShape(cp, 1, "Protoss Dark Templar", -100 + 25 * f.loop[cp], -25 * f.loop[cp]);
f.DotShape(cp, 1, "40 + 1n Zealot", -25 * f.loop[cp], 100 - 25 * f.loop[cp]);
f.DotShape(cp, 1, "40 + 1n Zealot", 25 * f.loop[cp], -100 + 25 * f.loop[cp]);
KillUnitAt(All, "40 + 1n Zealot", "Anywhere", cp);
KillUnitAt(All, "Protoss Dark Templar", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 4)
{
KillUnitAt(All, "40 + 1n Ghost", "Anywhere", cp);
f.SkillWait(cp, 320);
f.count[cp] += 1;
f.loop[cp] = 0;
}
}
else if (f.count[cp] == 2)
{
if (f.loop[cp] == 0)
{
f.Voice_Routine(cp, 2);
f.SquareShape(cp, 1, "50 + 1n Battlecruiser", 75, 150);
f.SquareShape(cp, 1, "60 + 1n Archon", 50, 100);
f.SquareShape(cp, 1, "50 + 1n Battlecruiser", 150, 75);
f.SquareShape(cp, 1, "60 + 1n Archon", 100, 50);
KillUnitAt(All, "50 + 1n Battlecruiser", "Anywhere", cp);
KillUnitAt(All, "60 + 1n Archon", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 1)
{
f.SquareShape(cp, 1, "Kakaru (Twilight)", 75, 150);
f.SquareShape(cp, 1, "40 + 1n Mojo", 50, 100);
f.SquareShape(cp, 1, "Kakaru (Twilight)", 150, 75);
f.SquareShape(cp, 1, "40 + 1n Mojo", 100, 50);
KillUnitAt(All, "Kakaru (Twilight)", "Anywhere", cp);
KillUnitAt(All, "40 + 1n Mojo", "Anywhere", cp);
f.SquareShape(cp, 1, "40 + 1n Ghost", 50, 100);
f.SquareShape(cp, 1, "40 + 1n Ghost", 100, 50);
MoveLocation(f.location[cp], f.heroID[cp], cp, "Anywhere");
MoveUnit(All, "40 + 1n Ghost", cp, "[Skill]Unit_Wait_ALL", f.location[cp]);
Order("40 + 1n Ghost", cp, "Anywhere", Attack, f.location[cp]);
f.SkillWait(cp, 160);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 2)
{
f.SquareShape(cp, 1, "40 + 1n Mutalisk", 50, 0);
f.SquareShape(cp, 1, "40 + 1n Mutalisk", 100, 0);
KillUnitAt(All, "40 + 1n Mutalisk", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 3)
{
f.SquareShape(cp, 1, "40 + 1n Guardian", 50, 100);
f.SquareShape(cp, 1, "40 + 1n Guardian", 100, 50);
KillUnitAt(All, "40 + 1n Guardian", "Anywhere", cp);
f.SkillWait(cp, 80);
f.loop[cp] += 1;
}
else if (f.loop[cp] == 4)
{
KillUnitAt(All, "40 + 1n Ghost", "Anywhere", cp);
f.SquareShape(cp, 1, "50 + 1n Battlecruiser", 75, 150);
f.SquareShape(cp, 1, "40 + 1n Ghost", 75, 150);
f.SquareShape(cp, 1, "50 + 1n Battlecruiser", 150, 75);
f.SquareShape(cp, 1, "40 + 1n Ghost", 150, 75);
KillUnitAt(All, "50 + 1n Battlecruiser", "Anywhere", cp);
MoveLocation(f.location[cp], f.heroID[cp], cp, "Anywhere");
MoveUnit(All, "40 + 1n Ghost", cp, "[Skill]Unit_Wait_ALL", f.location[cp]);
Order("40 + 1n Ghost", cp, "Anywhere", Attack, f.location[cp]);
f.SkillWait(cp, 320);
f.count[cp] += 1;
f.loop[cp] = 0;
}
}
else if (f.count[cp] == 3)
{
KillUnitAt(All, "40 + 1n Ghost", "Anywhere", cp);
f.SkillEnd(cp);
}
}
}
|
[
"[email protected]"
] | |
0885548cdf5bbe0cf59c4dd0eec8952cdf0b8ec4
|
0ec8af8988245d864c63d923e5524403090cd7e0
|
/mitm/gifshow/addons.py
|
16b3430b8b46d322369d126b417009aed7b866dc
|
[] |
no_license
|
radtek/Spider
|
d26b685cb5e41c67c6a7ce0d632072f3cac5f061
|
5a419e8ec77915804d3e659631f09b19aa90a088
|
refs/heads/master
| 2022-10-30T13:13:29.736256 | 2020-06-11T03:34:58 | 2020-06-11T03:34:58 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 561 |
py
|
import json
import mitmproxy.http
from mitmproxy import ctx
class Download:
def response(self, flow: mitmproxy.http.HTTPFlow):
if flow.request.host != 'api.gifshow.com' or flow.request.method != 'POST':
return
url = flow.request.url
data = flow.response.content.decode()
if 'hot' in url and 'feeds' in json.loads(data):
ctx.log.info('get a url:{}'.format(url))
with open('GifShow.json', 'a', encoding='utf8')as f:
f.write(json.dumps(data) + '\n')
addons = [Download()]
|
[
"[email protected]"
] | |
88419024324527e193a5c6b09a90736869273d4a
|
db8f0b2db2fe8c9b5d2cc2e33f669028da7830a8
|
/multidimensional_lists/snake_moves.py
|
dea7167f02c1d7548342216f18fc2746f3691145
|
[] |
no_license
|
yordan-marinov/advanced_python
|
9694184eed31a9769fa1b552b087fb7b7736af84
|
63ad860f356978c13f208f18502a39a8f23cd18b
|
refs/heads/master
| 2023-03-29T18:04:08.252558 | 2021-03-26T13:39:39 | 2021-03-26T13:39:39 | 309,930,564 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 447 |
py
|
def snake_moves() -> str:
matrix = []
rows, cols = [int(i) for i in input().split()]
string = list(input())
for row_index in range(rows):
row = ""
for col_index in range(cols):
letter = string.pop(0)
row += letter
string.append(letter)
if row_index % 2 != 0:
row = row[::-1]
matrix.append(row)
return "\n".join(matrix)
print(snake_moves())
|
[
"[email protected]"
] | |
9bf8cc9f91390481c2e2641bfc85865a946ef9be
|
bd4535b2ff5fc80234eed709f46da53b9ab260cf
|
/Packs/CheckPointSandBlast/Integrations/CheckPointSandBlast/CheckPointSandBlast.py
|
e7f58fa7c428c9ae9e08839e114ec6ed0070aa67
|
[
"MIT"
] |
permissive
|
vibhuabharadwaj/content
|
0641284c862668b577e82e32e2daecdb9fabb39a
|
518da763814fefce538379560282ff8c2ce661b9
|
refs/heads/master
| 2023-03-07T21:36:31.768989 | 2022-09-28T15:50:46 | 2022-09-28T15:50:46 | 202,795,410 | 1 | 0 |
MIT
| 2023-03-06T17:25:01 | 2019-08-16T20:30:23 |
Python
|
UTF-8
|
Python
| false | false | 34,925 |
py
|
"""
Check Point Threat Emulation (SandBlast) API Integration for Cortex XSOAR (aka Demisto).
"""
from typing import Dict, Any, List
import demistomock as demisto
from CommonServerPython import *
from CommonServerUserPython import *
''' GLOBAL/PARAMS '''
DEFAULT_INTERVAL = 60
DEFAULT_TIMEOUT = 600
MD5_SIZE = 32
SHA1_SIZE = 40
SHA256_SIZE = 64
DIGEST_BY_LENGTH = {
MD5_SIZE: 'md5',
SHA1_SIZE: 'sha1',
SHA256_SIZE: 'sha256',
}
EXTRACTED_PARTS_CODE_BY_DESCRIPTION = {
'Linked Objects': 1025,
'Macros and Code': 1026,
'Sensitive Hyperlinks': 1034,
'PDF GoToR Actions': 1137,
'PDF Launch Actions': 1139,
'PDF URI Actions': 1141,
'PDF Sound Actions': 1142,
'PDF Movie Actions': 1143,
'PDF JavaScript Actions': 1150,
'PDF Submit Form Actions': 1151,
'Database Queries': 1018,
'Embedded Objects': 1019,
'Fast Save Data': 1021,
'Custom Properties': 1017,
'Statistic Properties': 1036,
'Summary Properties': 1037,
}
FEATURE_BY_NAME = {
'Threat Emulation': 'te',
'Anti-Virus': 'av',
'Threat Extraction': 'extraction',
'All': 'all'
}
QUOTA_HEADERS = [
'RemainQuotaHour',
'RemainQuotaMonth',
'AssignedQuotaHour',
'AssignedQuotaMonth',
'HourlyQuotaNextReset',
'MonthlyQuotaNextReset',
'QuotaId',
'CloudMonthlyQuotaPeriodStart',
'CloudMonthlyQuotaUsageForThisGw',
'CloudHourlyQuotaUsageForThisGw',
'CloudMonthlyQuotaUsageForQuotaId',
'CloudHourlyQuotaUsageForQuotaId',
'MonthlyExceededQuota',
'HourlyExceededQuota',
'CloudQuotaMaxAllowToExceedPercentage',
'PodTimeGmt',
'QuotaExpiration',
'Action',
]
''' CLIENT CLASS '''
class Client(BaseClient):
"""
API Client to communicate with Check Point Threat Prevention API.
"""
VERSION = 'v1'
def __init__(self, host: str, api_key: str, verify: bool = False, proxy: bool = False):
"""
Client constructor, set headers and call super class BaseClient.
Args:
host (str): Check Point Threat Emulation (SandBlast) API URL.
api_key (str): API key to connect to the server.
verify (bool): SSL verification handled by BaseClient. Defaults to False.
proxy (bool): System proxy is handled by BaseClient. Defaults to False.
"""
super().__init__(
base_url=f'{host}/tecloud/api/{Client.VERSION}/file',
verify=verify,
proxy=proxy,
headers={
'Authorization': api_key
}
)
def query_request(
self,
features: List[str],
reports: List[str],
method: str,
file_name: str = None,
extracted_parts_codes: List[int] = None,
**kwargs
) -> Dict[str, Any]:
"""
Return an analysis report or status of a file that was uploaded according to a file hash.
Args:
features (List[str]): Features to include in the query, options: te, av, extraction.
reports (List[str]): Report format for the query, options: pdf, xml, tar, summary.
method (str): Threat extraction method, options: clean, pdf.
file_name (str): Name of the file to query. Defaults to None.
extracted_parts_codes (List[int]): Cleans file according to inserted codes.
Defaults to None.
**kwargs: can hold -
md5 (str): md5 digest of the file to query. Defaults to None.
sha1 (str): sha1 digest of the file to query. Defaults to None.
sha256 (str): sha256 digest of the file to query. Defaults to None.
Returns:
Dict[str, Any]: Analysis report or status of the queried file.
"""
json_data = remove_empty_elements({
'request': {
'features': features,
'md5': kwargs.get('md5'),
'sha1': kwargs.get('sha1'),
'sha256': kwargs.get('sha256'),
'file_name': file_name,
'te': {
'reports': reports,
},
'extraction': {
'extracted_parts_codes': extracted_parts_codes,
'method': method
}
}
})
return self._http_request(
method='POST',
url_suffix='/query',
json_data=json_data
)
def upload_request(
self,
file_path: str,
file_name: str,
file_type: str,
features: List[str],
image_ids: List[str],
image_revisions: List[Optional[int]],
reports: List[str],
method: str,
extracted_parts_codes: List[int] = None,
) -> Dict[str, Any]:
"""
Once the file has been uploaded return an analysis report or status of a file
that was uploaded.
Args:
file_path (str): Path to the file to upload.
file_name (str): Name of the file to upload.
file_type (str): Type (extension) of the file to upload.
features (List[str]): Features to include when uploading, options: te, av, extraction.
image_ids (List[str]): ID of available OS images.
An image is an operating system configuration.
image_revisions (List[int]): Revision of available OS images.
An image is an operating system configuration.
reports (List[str]): Report format to upload, options: pdf, xml, tar, summary.
method (str): Threat extraction method, options: clean, pdf.
extracted_parts_codes (List[int]): Cleans file according to inserted codes.
Defaults to None.
Returns:
Dict[str, Any]: Analysis report or status of the uploaded file.
"""
request = json.dumps(remove_empty_elements({
'request': {
'file_name': file_name,
'file_type': file_type,
'features': features,
'te': {
'reports': reports,
'images': [
{'id': image_id, 'image_revision': revision}
for image_id, revision in zip(image_ids, image_revisions)
]
},
'extraction': {
'extracted_parts_codes': extracted_parts_codes,
'method': method
}
}
}))
with open(file_path, 'rb') as file_handler:
file = (file_name, file_handler.read())
return self._http_request(
method='POST',
url_suffix='/upload',
files={
'request': request,
'file': file
}
)
def download_request(self, file_id: str) -> requests.Response:
"""
Return the file saved in the server.
Args:
file_id (str): ID of the file in the database.
Returns:
bytes: File in database.
"""
return self._http_request(
method='GET',
url_suffix='/download',
params={
'id': file_id
},
resp_type='response'
)
def quota_request(self) -> Dict[str, Any]:
"""
Return the quota information about current API key.
Returns:
Dict[str, Any]: Quota information.
"""
return self._http_request(
method='POST',
url_suffix='/quota',
)
''' COMMAND FUNCTIONS '''
def test_module(client: Client) -> str:
"""
Tests API connectivity and authentication
Returning 'ok' indicates that the integration works like it is supposed to.
Connection to the service is successful.
Raises exceptions if something goes wrong.
Args:
client (Client): Connection to the client class from which we can run the desired request.
Returns:
str: 'ok' if test passed, anything else will fail the test.
"""
try:
client.query_request(
file_name='test.pdf',
features=['te', 'av', 'extraction'],
reports=['xml', 'summary'],
method='pdf',
**{'md5': '80f284ccdf2afae0f5347f4532584a61'} # type:ignore
)
except DemistoException as e:
e_string = str(e)
if '403' in e_string:
return 'Authorization Error: make sure API Key is correctly set'
if '404' in e_string:
return 'URL Error: make sure URL is correctly set'
return e_string
return 'ok'
def file_command(client: Client, args: Dict[str, Any]) -> List[CommandResults]:
"""
Get file_hash list from user input and check if they are in the correct format.
Client will make a Query request with every file_hash,
if the file_hash exists in the server a dbot_score will be calculated.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Raises:
ValueError: In case the file_hash isn't
Returns:
List[CommandResults]: Indicator for every file_hash
"""
files = argToList(args['file'])
command_results: List[CommandResults] = []
for file_hash in files:
try:
hash_type = get_hash_type(file_hash)
if hash_type not in ('md5', 'sha1', 'sha256'):
raise ValueError(f'Hash "{file_hash}" is not of type SHA-256, SHA-1 or MD5')
raw_response = client.query_request(
features=['te', 'av', 'extraction'],
reports=['xml', 'summary'],
method='pdf',
**{hash_type: file_hash}
)
label = dict_safe_get(raw_response, ['response', 'status', 'label'])
if label not in ('FOUND', 'PARTIALLY_FOUND'):
message = dict_safe_get(raw_response, ['response', 'status', 'message'])
command_results.append(CommandResults(readable_output=f'File not found: "{file_hash}"\n{message}'))
continue
outputs = remove_empty_elements({
'MD5': dict_safe_get(raw_response, ['response', 'md5']),
'SHA1': dict_safe_get(raw_response, ['response', 'sha1']),
'SHA256': dict_safe_get(raw_response, ['response', 'sha256']),
'Malicious': {
'Vendor': 'CheckPointSandBlast',
'Description': dict_safe_get(raw_response, ['response', 'av', 'malware_info']),
}
})
readable_output = tableToMarkdown(
f'Results of file hash: "{file_hash}"',
outputs,
headers=[
'MD5',
'SHA1',
'SHA256',
'Malicious',
]
)
file_indicator = get_file_indicator(file_hash, hash_type, raw_response)
command_results.append(CommandResults(
readable_output=readable_output,
outputs_prefix=outputPaths.get('file'),
indicator=file_indicator,
outputs=outputs,
raw_response=raw_response,
))
except Exception as e:
command_results.append(CommandResults(readable_output=f'Could not process file: "{file_hash}"\n{str(e)}'))
return command_results
def query_command(client: Client, args: Dict[str, Any]) -> CommandResults:
"""
Query information of a file.
The command will be a bridge between the client request and the presented value to the user.
Get arguments inputted by the user and send them to the client.
Once a response has been received, process and return it so it can be sent to the user.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Raises:
ValueError: reports input was invalid.
ValueError: file_hash input was invalid.
Returns:
CommandResults: Information about the queried file.
"""
file_name = args.get('file_name', '')
file_hash = args['file_hash']
features = argToList(args.get('features', ''))
reports = argToList(args.get('reports'))
method = args.get('method', '')
extracted_parts = argToList(args.get('extracted_parts'))
features = [FEATURE_BY_NAME[feature] for feature in features]
if 'all' in features:
features = ['te', 'av', 'extraction']
if 'te' in features and {'pdf', 'summary'}.issubset(reports):
raise ValueError(
'Requesting for PDF and summary reports simultaneously is not supported!'
)
if method != 'clean':
extracted_parts_codes = None
else:
extracted_parts_codes = [
EXTRACTED_PARTS_CODE_BY_DESCRIPTION[extracted_part]
for extracted_part in extracted_parts
]
file_hash_size = len(file_hash)
digest = DIGEST_BY_LENGTH.get(file_hash_size)
if digest is None:
raise ValueError('file_hash is not recognized!')
raw_output = client.query_request(
file_name=file_name,
features=features,
reports=reports,
method=method,
extracted_parts_codes=extracted_parts_codes,
**{digest: file_hash}
)
output = raw_output.get('response', {'': ''})
readable_output = get_analysis_readable_output(features, output, 'Query')
output = get_analysis_context_output(output)
return CommandResults(
readable_output=readable_output,
outputs_prefix='SandBlast.Query',
outputs_key_field=['MD5', 'SHA1', 'SHA256'],
outputs=output,
raw_response=raw_output,
)
def upload_command(client: Client, args: Dict[str, Any]) -> CommandResults:
"""
Upload a file to the server.
The command will be a bridge between the client request and the presented value to the user.
Get arguments inputted by the user and send them to the client.
Once a response has been received, process and return it so it can be sent to the user.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Raises:
ValueError: The new file's name extension is different from the original.
ValueError: The length of image_id and image_revision isn't equal.
ValueError: Reports input was invalid.
Returns:
CommandResults: Information about the uploaded file.
"""
file_id = args['file_id']
file_name = args.get('file_name')
features = argToList(args.get('features'))
image_ids = argToList(args.get('image_ids'))
image_revisions = [arg_to_number(image_revision)
for image_revision in argToList(args.get('image_revisions'))]
reports = argToList(args.get('reports'))
method = args.get('method', '')
extracted_parts = argToList(args.get('extracted_parts'))
file_entry = demisto.getFilePath(file_id)
if not file_name:
file_name = file_entry['name']
file_type = os.path.splitext(file_name)[1]
if file_type != os.path.splitext(file_entry['name'])[1]:
raise ValueError('New file name must have the same extension as the original file!')
features = [FEATURE_BY_NAME[feature] for feature in features]
if 'all' in features:
features = ['te', 'av', 'extraction']
if len(image_ids) != len(image_revisions):
raise ValueError('Image IDs and image revisions must be of same length!')
if 'te' in features and {'pdf', 'summary'}.issubset(reports):
raise ValueError(
'Requesting for PDF and summary reports simultaneously is not supported!'
)
if method != 'clean':
extracted_parts_codes = None
else:
extracted_parts_codes = [
EXTRACTED_PARTS_CODE_BY_DESCRIPTION[extracted_part]
for extracted_part in extracted_parts
]
raw_output = client.upload_request(
file_path=file_entry['path'],
file_name=file_name,
file_type=file_type,
features=features,
image_ids=image_ids,
image_revisions=image_revisions,
reports=reports,
method=method,
extracted_parts_codes=extracted_parts_codes,
)
output = raw_output.get('response', {'': ''})
readable_output = get_analysis_readable_output(features, output, 'Upload')
output = get_analysis_context_output(output)
return CommandResults(
readable_output=readable_output,
outputs_prefix='SandBlast.Upload',
outputs_key_field=['MD5', 'SHA1', 'SHA256'],
outputs=output,
raw_response=raw_output,
)
def download_command(client: Client, args: Dict[str, Any]) -> Any:
"""
Download a file from the server.
The command will be a bridge between the client request and the presented value to the user.
Get arguments inputted by the user and send them to the client.
Once a response has been received, process and return it so it can be sent to the user.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Returns:
Any: File from the server.
"""
file_id = args['file_id']
output = client.download_request(file_id)
content_disposition = output.headers.get("Content-Disposition")
split_content_disposition = content_disposition.split('"') if content_disposition is not None else []
if len(split_content_disposition) < 2:
file_name = 'file.pdf'
else:
file_name = split_content_disposition[1]
return fileResult(filename=file_name, data=output.content)
def quota_command(client: Client, args: Dict[str, Any]) -> CommandResults:
"""
Get quota information about an API key.
The command will be a bridge between the client request and the presented value to the user.
Once a response has been received, process and return it so it can be sent to the user.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Returns:
CommandResults: Quota information about the API key.
"""
raw_outputs = client.quota_request()
outputs = raw_outputs.get('response')[0] # type:ignore
output = get_quota_context_output(outputs)
readable_output = tableToMarkdown(
'Quota Information',
output,
headers=QUOTA_HEADERS,
headerTransform=string_to_table_header,
removeNull=True,
)
return CommandResults(
readable_output=readable_output,
outputs_prefix='SandBlast.Quota',
outputs_key_field='QuotaId',
outputs=output,
raw_response=raw_outputs,
)
''' POLLING COMMANDS '''
def setup_upload_polling_command(client: Client, args: Dict[str, Any]) -> CommandResults:
"""
Initiate polling command for upload command.
Args:
client (Client): Connection to the client class from which we can run the desired request.
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request.
Returns:
CommandResults: A result to return to the user which will be presented in a markdown value.
The result itself will depend on the stage of polling.
"""
return upload_polling_command(args, client=client)
@polling_function(
name='sandblast-upload',
interval=arg_to_number(demisto.args().get('interval_in_seconds', DEFAULT_INTERVAL)),
timeout=arg_to_number(demisto.args().get('timeout_in_seconds', DEFAULT_TIMEOUT)),
requires_polling_arg=False,
)
def upload_polling_command(args: Dict[str, Any], **kwargs) -> PollResult:
"""
Polling command to display the progress of the upload command.
After the first run, progress will be shown through the query command.
Once a new file is uploaded to the server, upload command will provide the status
'UPLOAD_SUCCESS' and pass arguments to the with query command.
Query command will run till its status is 'FOUND' or 'PARTIALLY_FOUND',
which is the ending term for the polling command.
Args:
args (Dict[str, Any]): Arguments passed down by the CLI to provide in the HTTP request and a Client.
Returns:
PollResult: A result to return to the user which will be set as a CommandResults.
The result itself will depend on the stage of polling.
"""
if 'file_hash' not in args:
command_results = upload_command(kwargs['client'], args)
else:
command_results = query_command(kwargs['client'], args)
raw_response = command_results.raw_response
file_name = dict_safe_get(raw_response, ['response', 'file_name'])
file_hash = dict_safe_get(raw_response, ['response', 'md5'])
label = dict_safe_get(raw_response, ['response', 'status', 'label'])
if label in ('FOUND', 'PARTIALLY_FOUND'):
return PollResult(
response=command_results,
continue_to_poll=False,
)
polling_args = {
'file_name': file_name,
'file_hash': file_hash,
**args
}
return PollResult(
response=command_results,
continue_to_poll=True,
args_for_next_run=polling_args,
partial_result=command_results
)
''' HELPER FUNCTIONS '''
def get_analysis_context_output(output: Dict[str, Any]) -> Dict[str, Any]:
av = dict_safe_get(output, ['av'])
malware_info = dict_safe_get(av, ['malware_info'])
extraction = dict_safe_get(output, ['extraction'])
extraction_data = dict_safe_get(extraction, ['extraction_data'])
te = dict_safe_get(output, ['te'])
return remove_empty_elements({
'Status': dict_safe_get(output, ['status']),
'MD5': dict_safe_get(output, ['md5']),
'SHA1': dict_safe_get(output, ['sha1']),
'SHA256': dict_safe_get(output, ['sha256']),
'FileType': dict_safe_get(output, ['file_type']),
'FileName': dict_safe_get(output, ['file_name']),
'Features': dict_safe_get(output, ['features']),
'AntiVirus': {
'SignatureName': dict_safe_get(malware_info, ['signature_name']),
'MalwareFamily': dict_safe_get(malware_info, ['malware_family']),
'MalwareType': dict_safe_get(malware_info, ['malware_type']),
'Severity': dict_safe_get(malware_info, ['severity']),
'Confidence': dict_safe_get(malware_info, ['confidence']),
'Status': dict_safe_get(av, ['status']),
},
'ThreatExtraction': {
'Method': dict_safe_get(extraction, ['method']),
'ExtractResult': dict_safe_get(extraction, ['extract_result']),
'ExtractedFileDownloadId': dict_safe_get(extraction, ['extracted_file_download_id']),
'OutputFileName': dict_safe_get(extraction, ['output_file_name']),
'Time': dict_safe_get(extraction, ['time']),
'ExtractContent': dict_safe_get(extraction, ['extract_content']),
'TexProduct': dict_safe_get(extraction, ['tex_product']),
'Status': dict_safe_get(extraction, ['status']),
'ExtractionData': {
'InputExtension': dict_safe_get(extraction_data, ['input_extension']),
'InputRealExtension': dict_safe_get(extraction_data, ['input_real_extension']),
'Message': dict_safe_get(extraction_data, ['message']),
'ProtectionName': dict_safe_get(extraction_data, ['protection_name']),
'ProtectionType': dict_safe_get(extraction_data, ['protection_type']),
'ProtocolVersion': dict_safe_get(extraction_data, ['protocol_version']),
'RealExtension': dict_safe_get(extraction_data, ['real_extension']),
'Risk': dict_safe_get(extraction_data, ['risk']),
'ScrubActivity': dict_safe_get(extraction_data, ['scrub_activity']),
'ScrubMethod': dict_safe_get(extraction_data, ['scrub_method']),
'ScrubResult': dict_safe_get(extraction_data, ['scrub_result']),
'ScrubTime': dict_safe_get(extraction_data, ['scrub_time']),
'ScrubbedContent': dict_safe_get(extraction_data, ['scrubbed_content']),
},
},
'ThreatEmulation': {
'Trust': dict_safe_get(te, ['trust']),
'Score': dict_safe_get(te, ['score']),
'CombinedVerdict': dict_safe_get(te, ['combined_verdict']),
'Images': dict_safe_get(te, ['images']),
'Status': dict_safe_get(te, ['status']),
}
})
def get_analysis_readable_output(
features: List[str],
output: Dict[str, Any],
command: str
) -> Any:
"""
Get a response outputs and set them to be readable outputs with tableToMarkdown.
Args:
features (Dict[str, Any]): Features in the HTTP response.
output (Dict[str, Any]): HTTP response outputs which will be processed.
command (str): Name of the calling command.
Returns:
Any: Readable outputs which have been set to Markdown
"""
readable_output = f'{command} Results\n'
status_label = dict_safe_get(output, ['status', 'label'])
output_file_info = {
'FileName': dict_safe_get(output, ['file_name']),
'FileType': dict_safe_get(output, ['file_type']),
'Label': status_label,
'Message': dict_safe_get(output, ['status', 'message']),
'MD5': dict_safe_get(output, ['md5']),
'SHA1': dict_safe_get(output, ['sha1']),
'SHA256': dict_safe_get(output, ['sha256']),
}
headers_file_info = [
'FileName',
'FileType',
'Label',
'Message',
'MD5',
'SHA1',
'SHA256',
]
readable_output += tableToMarkdown(
'File Info',
output_file_info,
headers=headers_file_info,
headerTransform=string_to_table_header,
removeNull=True,
)
if status_label not in ('FOUND', 'PARTIALLY_FOUND'):
return readable_output
if 'te' in features:
output_te = {
'CombinedVerdict': dict_safe_get(output, ['te', 'combined_verdict']),
'Severity': dict_safe_get(output, ['te', 'severity']),
'Confidence': dict_safe_get(output, ['te', 'confidence']),
'Verdict': dict_safe_get(output, ['te', 'verdict']),
}
headers_te = [
'CombinedVerdict',
'Severity',
'Confidence',
'Verdict',
]
readable_output += tableToMarkdown(
'Threat Emulation',
output_te,
headers=headers_te,
headerTransform=string_to_table_header,
removeNull=True,
)
if 'av' in features:
output_av = {
'SignatureName': dict_safe_get(output, ['av', 'malware_info', 'signature_name']),
'MalwareFamily': dict_safe_get(output, ['av', 'malware_info', 'malware_family']),
'MalwareType': dict_safe_get(output, ['av', 'malware_info', 'malware_type']),
'Confidence': dict_safe_get(output, ['av', 'malware_info', 'confidence']),
'Severity': dict_safe_get(output, ['av', 'malware_info', 'severity']),
}
headers_av = [
'SignatureName',
'MalwareFamily',
'MalwareType',
'Confidence',
'Severity',
]
readable_output += tableToMarkdown(
'Anti-Virus',
output_av,
headers=headers_av,
headerTransform=string_to_table_header,
removeNull=True,
)
if 'extraction' in features:
output_extraction = {
'ExtractResult': dict_safe_get(output, ['extraction', 'extract_result']),
'ExtractedFileDownloadId':
dict_safe_get(output, ['extraction', 'extracted_file_download_id']),
'Risk': dict_safe_get(output, ['extraction', 'extraction_data', 'risk']),
}
headers_extraction = [
'ExtractResult',
'ExtractedFileDownloadId',
'Risk',
]
readable_output += tableToMarkdown(
'Threat Extraction',
output_extraction,
headers=headers_extraction,
headerTransform=string_to_table_header,
removeNull=True,
)
return readable_output
def get_dbotscore(response: Dict[str, Any]) -> int:
"""
Response received from the API request which holds fields that will help indicate the DBotScore.
Args:
response (Dict[str, Any]): Response received from the API request.
Returns:
int: A score to represent the reputation of an indicator.
"""
av_confidence = dict_safe_get(response, ['response', 'av', 'malware_info', 'confidence'])
av_severity = dict_safe_get(response, ['response', 'av', 'malware_info', 'severity'])
te_confidence = dict_safe_get(response, ['response', 'te', 'confidence'])
te_severity = dict_safe_get(response, ['response', 'te', 'severity'])
te_combined_verdict = dict_safe_get(response, ['response', 'te', 'combined_verdict'])
if av_confidence == 0 and av_severity == 0 and \
te_combined_verdict == 'benign' and te_severity is None and (te_confidence == 1 or te_confidence is None):
score = Common.DBotScore.GOOD
elif te_severity == 1:
score = Common.DBotScore.SUSPICIOUS
else:
score = Common.DBotScore.BAD
return score
def get_file_indicator(file_hash: str, hash_type: str, response: Dict[str, Any]) -> Common.File:
"""
Returns a file indicator that could potentially be malicious and will be checked for reputation.
Args:
file_hash (str): File hash value
hash_type (str): File hash type.
response (Dict[str, Any]): Response received from the API request.
Returns:
Common.File: File indicator.
"""
dbot_score = Common.DBotScore(
indicator=file_hash,
indicator_type=DBotScoreType.FILE,
integration_name='CheckPointSandBlast',
reliability=DBotScoreReliability.C,
score=get_dbotscore(response),
)
file_name = dict_safe_get(response, ['response', 'file_name'])
if not file_name:
file_type = None
else:
file_type = os.path.splitext(file_name)[1]
file_indicator = Common.File(
dbot_score=dbot_score,
name=file_name,
file_type=file_type,
**{hash_type: file_hash}
)
return file_indicator
def get_date_string(timestamp_string: str = '0') -> str:
"""
Cast timestamp to int and convert it to a datetime string.
Args:
timestamp_string (str, optional): Holds a timestamp to be converted.
Defaults to '0'.
Returns:
str: A string with the timestamp in datetime format.
"""
timestamp = int(timestamp_string) * 1000
return timestamp_to_datestring(timestamp)
def get_quota_context_output(outputs: Dict[str, Any]) -> Dict[str, Any]:
"""
Convert outputs keys to PascalCase and convert any timestamp to date format.
Args:
outputs (Dict[str, Any]): API key quota information.
Returns:
Dict[str, Any]: outputs in a more readable form.
"""
response_by_context = {
'RemainQuotaHour': 'remain_quota_hour',
'RemainQuotaMonth': 'remain_quota_month',
'AssignedQuotaHour': 'assigned_quota_hour',
'AssignedQuotaMonth': 'assigned_quota_month',
'HourlyQuotaNextReset': 'hourly_quota_next_reset',
'MonthlyQuotaNextReset': 'monthly_quota_next_reset',
'QuotaId': 'quota_id',
'CloudMonthlyQuotaPeriodStart': 'cloud_monthly_quota_period_start',
'CloudMonthlyQuotaUsageForThisGw': 'cloud_monthly_quota_usage_for_this_gw',
'CloudHourlyQuotaUsageForThisGw': 'cloud_hourly_quota_usage_for_this_gw',
'CloudMonthlyQuotaUsageForQuotaId': 'cloud_monthly_quota_usage_for_quota_id',
'CloudHourlyQuotaUsageForQuotaId': 'cloud_hourly_quota_usage_for_quota_id',
'MonthlyExceededQuota': 'monthly_exceeded_quota',
'HourlyExceededQuota': 'hourly_exceeded_quota',
'CloudQuotaMaxAllowToExceedPercentage': 'cloud_quota_max_allow_to_exceed_percentage',
'PodTimeGmt': 'pod_time_gmt',
'QuotaExpiration': 'quota_expiration',
'Action': 'action',
}
context_outputs_with_date = [
'HourlyQuotaNextReset',
'MonthlyQuotaNextReset',
'CloudMonthlyQuotaPeriodStart',
'PodTimeGmt',
'QuotaExpiration',
]
output: Dict[str, Any] = {}
for context_output, response in response_by_context.items():
output[context_output] = outputs.get(response)
for key in context_outputs_with_date:
output[key] = get_date_string(output[key])
return output
''' MAIN FUNCTION '''
def main() -> None:
"""
Getting data from instance setting and setting up the class Client with an API key.
Checking user input command with if statements and a dictionary.
"""
params: Dict[str, Any] = demisto.params()
args: Dict[str, Any] = demisto.args()
command = demisto.command()
api_key = params['credentials']['password']
host = params['url']
verify_certificate = not params.get('insecure', False)
proxy = params.get('proxy', False)
commands = {
'sandblast-query': query_command,
'sandblast-upload': setup_upload_polling_command,
'sandblast-download': download_command,
'sandblast-quota': quota_command,
}
demisto.debug(f'Command being called is {command}')
try:
client = Client(
host=host,
api_key=api_key,
verify=verify_certificate,
proxy=proxy,
)
if command == 'test-module':
return_results(test_module(client))
elif command in commands:
return_results(commands[command](client, args))
else:
raise NotImplementedError(f'Command doesn\'t exist - {command}')
except Exception as e:
demisto.error(traceback.format_exc())
return_error(f'Failed to execute {command} command.\nError:\n{str(e)}')
if __name__ in ('__main__', '__builtin__', 'builtins'):
main()
|
[
"[email protected]"
] | |
c01708c178cb7f4fb3e079d15cf5fe767d065105
|
a4653fb6c5a7a9e6db0457480e9e860c5304b2b8
|
/list/add_data.py
|
cd7bcc9d527b542225e807d86bed20426b453b10
|
[] |
no_license
|
pratik-iiitkalyani/Python
|
c315ca1f3a2446ccb871b74026edae97daec3773
|
082ae6d833f151054567d737de543898ebfe1d87
|
refs/heads/master
| 2020-08-07T05:59:21.930089 | 2020-01-04T17:05:27 | 2020-01-04T17:05:27 | 213,324,642 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 378 |
py
|
# insert method(pos, element) - add data at any position in the list
fruits = ["mango","grapes"]
fruits.insert(1,"orange")
print(fruits)
# join two list
fruits1 =[1,3]
c = fruits1+fruits # fruits1 element come first
print(c)
#extend method
fruits.extend(fruits1) # data of fruits1 added in fruits
print(fruits)
fruits.append(fruits1) # list inside list
print(fruits)
|
[
"[email protected]"
] | |
49f9e83cf5c3c542e747db4cd758556b228b23d9
|
4f9952b7c587c7facb0903d52f6ea4b98786e16d
|
/Proyecto.py
|
3e3a92c082cf6f9c0f6d928080961e76734a2c99
|
[] |
no_license
|
sugar-activities/4786-activity
|
39a8bed48a81c727d7e3e58cec6fed12ee5d5936
|
602ca2794da4575df63b124a56534c26dd01d7c7
|
refs/heads/master
| 2021-01-19T23:15:30.980502 | 2017-04-21T05:11:53 | 2017-04-21T05:11:53 | 88,939,797 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 80,580 |
py
|
#!/usr/bin/python
import pygame
import sys, gtk
import pygame.locals
from pygame.constants import *
from pygame.mixer import music
from Cursor import CURSOR
#pygame.init()
x=1200
y=900
ocultar = 1
class interfaz():
def __init__(self):
self.Portada = pygame.image.load("img/Portada.png")
self.menu = pygame.image.load("img/Menu.jpg")
self.bienvenida = pygame.image.load("img/Bienvenida.png")
self.ayuda = pygame.image.load("img/interfaz_Ayuda.png")
self.ayuda_actividad = pygame.image.load("img/AYUDA_1.png")
self.cir = pygame.image.load("img/Circulo.png")
self.circ = pygame.image.load("img/circulo_centro.png")
self.cirr = pygame.image.load("img/circulo_radio.png")
self.triang = pygame.image.load("img/Triangulo.png")
self.triangv = pygame.image.load("img/triangulo_vertice.png")
self.triangl = pygame.image.load("img/triangulo_lado.png")
self.trianga = pygame.image.load("img/triangulo_altura.png")
self.triangb = pygame.image.load("img/triangulo_base.png")
self.triangcla = pygame.image.load("img/triangulo_clasificacion.png")
self.bienvecir = pygame.image.load("img/portada_actividad_cir.png")
self.preg1_cir = pygame.image.load("img/actividad1_circulo/Actividad_Circulo.png")
self.preg1_cirbien = pygame.image.load("img/actividad1_circulo/Actividad_Circulo_bien.png")
self.preg1_cirmalo1 = pygame.image.load("img/actividad1_circulo/Actividad_Circulo_malo_1.png")
self.preg1_cirmalo2 = pygame.image.load("img/actividad1_circulo/Actividad_Circulo_malo_2.png")
self.preg2_cir = pygame.image.load("img/actividad2_circulo/Actividad_Circulo_2.png")
self.preg2_cirbien = pygame.image.load("img/actividad2_circulo/Actividad_Circulo_2_bien.png")
self.preg2_cirmalo1 = pygame.image.load("img/actividad2_circulo/Actividad_Circulo_2_malo_1.png")
self.preg2_cirmalo2 = pygame.image.load("img/actividad2_circulo/Actividad_Circulo_2_malo_2.png")
self.preg3_cir = pygame.image.load("img/actividad3_circulo/ACTV_3.png")
self.preg3_cirbien = pygame.image.load("img/actividad3_circulo/ACTV_3_bien.png")
self.preg3_cirmalo1 = pygame.image.load("img/actividad3_circulo/ACTV_3_malo_1.png")
self.preg3_cirmalo2 = pygame.image.load("img/actividad3_circulo/ACTV_3_malo_2.png")
self.preg4_cir = pygame.image.load("img/actividad4_circulo/ACTV_3_circunferencia.png")
self.preg4_cirbien = pygame.image.load("img/actividad4_circulo/ACTV_3_circunferencia_bien.png")
self.preg4_cirmalo1 = pygame.image.load("img/actividad4_circulo/ACTV_3_circunferencia_malo_1.png")
self.preg4_cirmalo2 = pygame.image.load("img/actividad4_circulo/ACTV_3_circunferencia_malo_2.png")
self.preg5_cir = pygame.image.load("img/actividad5_circulo/ACTV_3_radio.png")
self.preg5_cirbien = pygame.image.load("img/actividad5_circulo/ACTV_3_radio_Bien.png")
self.preg5_cirmalo1 = pygame.image.load("img/actividad5_circulo/ACTV_3_radio_malo_1.png")
self.preg5_cirmalo2 = pygame.image.load("img/actividad5_circulo/ACTV_3_radio_malo_2.png")
self.preg6_cir = pygame.image.load("img/actividad6_circulo/Actividad_circulo_4.png")
self.preg6_cirbien = pygame.image.load("img/actividad6_circulo/Actividad_circulo_4_bien.png")
self.preg6_cirmalo1 = pygame.image.load("img/actividad6_circulo/Actividad_circulo_4_malo.png")
self.preg6_cirmalo2 = pygame.image.load("img/actividad6_circulo/Actividad_circulo_4_malo_2.png")
self.pregfin_cir = pygame.image.load("img/final_actividades_cir.png")
self.triangequi =pygame.image.load("img/triangulo_Equilatero.png")
self.triangiso =pygame.image.load("img/triangulo_Isosceles.png")
self.triangesca =pygame.image.load("img/triangulo_escaleno.png")
self.triangbien = pygame.image.load("img/portada_actividad_triangulo.png")
self.preg1_triang = pygame.image.load("img/actividad1_triangulo/actividad_1_Triangulo.png")
self.preg1_triangbien = pygame.image.load("img/actividad1_triangulo/actividad_1_Triangulo_bien.png")
self.preg1_triangmalo1 = pygame.image.load("img/actividad1_triangulo/actividad_1_Triangulo_malo_1.png")
self.preg1_triangmalo2 = pygame.image.load("img/actividad1_triangulo/actividad_1_Triangulo_malo_2.png")
self.preg2_triang = pygame.image.load("img/actividad2_triangulo/actividad_1_Triangulo.png")
self.preg2_triangbien = pygame.image.load("img/actividad2_triangulo/actividad_1_Triangulo_bien.png")
self.preg2_triangmalo1 = pygame.image.load("img/actividad2_triangulo/actividad_1_Triangulo_malo_1.png")
self.preg2_triangmalo2 = pygame.image.load("img/actividad2_triangulo/actividad_1_Triangulo_malo_2.png")
self.preg3_triang = pygame.image.load("img/actividad3_triangulo/actividad_1_Triangulo.png")
self.preg3_triangbien = pygame.image.load("img/actividad3_triangulo/actividad_1_Triangulo_bien.png")
self.preg3_triangmalo1 = pygame.image.load("img/actividad3_triangulo/actividad_1_Triangulo_malo_1.png")
self.preg3_triangmalo2 = pygame.image.load("img/actividad3_triangulo/actividad_1_Triangulo_malo_2.png")
self.preg4_triang = pygame.image.load("img/actividad4_triangulo/actividad_1_Triangulo.png")
self.preg4_triangbien = pygame.image.load("img/actividad4_triangulo/actividad_1_Triangulo_bien.png")
self.preg4_triangmalo1 = pygame.image.load("img/actividad4_triangulo/actividad_1_Triangulo_malo_1.png")
self.preg4_triangmalo2 = pygame.image.load("img/actividad4_triangulo/actividad_1_Triangulo_malo_2.png")
self.preg5_triang = pygame.image.load("img/actividad5_triangulo/actividad_1_Triangulo.png")
self.preg5_triangbien = pygame.image.load("img/actividad5_triangulo/actividad_1_Triangulo_bien.png")
self.preg5_triangmalo1 = pygame.image.load("img/actividad5_triangulo/actividad_1_Triangulo_mal.png")
self.preg5_triangmalo2 = pygame.image.load("img/actividad5_triangulo/actividad_1_Triangulo_ma_2l.png")
self.preg6_triang = pygame.image.load("img/actividad6_triangulo/actividad_1_Triangulo.png")
self.preg6_triangbien = pygame.image.load("img/actividad6_triangulo/actividad_1_Triangulo_bien.png")
self.preg6_triangmalo1 = pygame.image.load("img/actividad6_triangulo/actividad_1_Triangulo_malo_1.png")
self.preg6_triangmalo2 = pygame.image.load("img/actividad6_triangulo/actividad_1_Triangulo_malo_2.png")
self.preg7_triang = pygame.image.load("img/actividad7_triangulo/actividad_1_Triangulo.png")
self.preg7_triangbien = pygame.image.load("img/actividad7_triangulo/actividad_1_Triangulo.png_bien.png")
self.preg7_triangmalo1 = pygame.image.load("img/actividad7_triangulo/actividad_1_Triangulo.png_malo_1.png")
self.preg7_triangmalo2 = pygame.image.load("img/actividad7_triangulo/actividad_1_Triangulo.png_malo_2.png")
self.pregfin_triang = pygame.image.load("img/portada_actividad_triangulo_final.png")
self.cuadra =pygame.image.load("img/Cuadrado.png")
self.cuadral =pygame.image.load("img/cuadrado_lado.png")
self.cuadrav =pygame.image.load("img/cuadrado_vertice.png")
self.rect =pygame.image.load("img/rectangulo.png")
self.rectv =pygame.image.load("img/Regtangulo_vertice.png")
self.rombo =pygame.image.load("img/Rombo_lado.png")
self.rombov =pygame.image.load("img/Rombo_vertice.png")
self.trapecio =pygame.image.load("img/Trapecio_lado.png")
self.trapeciov =pygame.image.load("img/Trapecio_vertice.png")
self.preg1_rect = pygame.image.load("img/actividad1_rectangulo/actividad_cuadrado_1.png")
self.preg1_rectgbien = pygame.image.load("img/actividad1_rectangulo/actividad_cuadrado_Bien.png")
self.preg1_rectmalo1 = pygame.image.load("img/actividad1_rectangulo/actividad_cuadrado_malo_1.png")
self.preg1_rectmalo2 = pygame.image.load("img/actividad1_rectangulo/actividad_cuadrado_malo_2.png")
self.preg2_rect = pygame.image.load("img/actividad2_rectangulo/actividad_cuadrado_1.png")
self.preg2_rectgbien = pygame.image.load("img/actividad2_rectangulo/actividad_cuadrado_bien.png")
self.preg2_rectmalo1 = pygame.image.load("img/actividad2_rectangulo/actividad_cuadrado_mal.png")
self.preg2_rectmalo2 = pygame.image.load("img/actividad2_rectangulo/actividad_cuadrado_mal_2.png")
self.preg3_rect = pygame.image.load("img/actividad3_rectangulo/actividad_cuadrado_3.png")
self.preg3_rectgbien = pygame.image.load("img/actividad3_rectangulo/actividad_cuadrado_Bien.png")
self.preg3_rectmalo1 = pygame.image.load("img/actividad3_rectangulo/actividad_cuadrado_mal.png")
self.preg3_rectmalo2 = pygame.image.load("img/actividad3_rectangulo/actividad_cuadrado_mal_2.png")
self.preg4_rect = pygame.image.load("img/actividad4_rectangulo/actividad_cuadrado_4.png")
self.preg4_rectgbien = pygame.image.load("img/actividad4_rectangulo/actividad_cuadrado_bien.png")
self.preg4_rectmalo1 = pygame.image.load("img/actividad4_rectangulo/actividad_cuadrado_malo.png")
self.preg5_rect = pygame.image.load("img/actividad5_rectangulo/actividad_cuadrado_5.png")
self.preg5_rectgbien = pygame.image.load("img/actividad5_rectangulo/actividad_cuadrado_bien.png")
self.preg5_rectmalo1 = pygame.image.load("img/actividad5_rectangulo/actividad_cuadrado_malo_1.png")
self.preg5_rectmalo2 = pygame.image.load("img/actividad5_rectangulo/actividad_cuadrado_malo_2.png")
self.preg6_rect = pygame.image.load("img/actividad6_rectangulo/actividad_cuadrado_6.png")
self.preg6_rectgbien = pygame.image.load("img/actividad6_rectangulo/actividad_cuadrado_bien.png")
self.preg6_rectmalo1 = pygame.image.load("img/actividad6_rectangulo/actividad_cuadrado_malo_1.png")
self.preg6_rectmalo2 = pygame.image.load("img/actividad6_rectangulo/actividad_cuadrado_malo_2.png")
self.ladrar = pygame.mixer.Sound("sonido/ladrar.ogg")
def inter_principal(self, superficie):
superficie.blit(self.Portada, (0,0))
def poscision_elementos_1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if (x_mouse > 459 and x_mouse <= 712) and (y_mouse > 580 and y_mouse < 634) :
ocultar= 39
elif (x_mouse > 459 and x_mouse <= 712) and (y_mouse > 681 and y_mouse < 738):
ocultar =13
elif (x_mouse > 462 and x_mouse <= 712) and (y_mouse > 711 and y_mouse < 799):
sys.exit(0)
def interfaz_ayuda(self, superficie):
superficie.blit(self.ayuda, (0,0))
def poscision_elementos_ayuda(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =1
def interfaz_menu(self, superficie):
superficie.blit(self.menu, (0,0))
def poscision_elementos_menu(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if (x_mouse > 94 and x_mouse <= 320) and (y_mouse > 809 and y_mouse < 860):
ocultar = 1
elif (x_mouse > 125 and x_mouse <= 298) and (y_mouse > 232 and y_mouse < 420):
ocultar=3
elif (x_mouse > 421 and x_mouse <= 865) and (y_mouse > 529 and y_mouse < 720):
ocultar=6
elif (x_mouse > 616 and x_mouse <=1149) and (y_mouse > 322 and y_mouse < 400):
ocultar=73
def interfaz_circulo(self, superficie):
superficie.blit(self.cir, (0,0))
def poscision_elementos_circulo(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =2
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =4
def interfaz_circuloc(self, superficie):
superficie.blit(self.circ, (0,0))
def poscision_elementos_circuloc(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =3
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =5
def interfaz_circulor(self, superficie):
superficie.blit(self.cirr, (0,0))
def poscision_elementos_circulor(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =4
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =12
def interfaz_triangulo(self, superficie):
superficie.blit(self.triang, (0,0))
def poscision_elementos_triangulo(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =2
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =7
def interfaz_triangulol(self, superficie):
superficie.blit(self.triangl, (0,0))
def poscision_elementos_triangulol(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =6
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =8
def interfaz_triangulov(self, superficie):
superficie.blit(self.triangv, (0,0))
def poscision_elementos_triangulov(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =7
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =9
def interfaz_trianguloa(self, superficie):
superficie.blit(self.trianga, (0,0))
def poscision_elementos_trianguloa(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =8
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =10
def interfaz_triangulob(self, superficie):
superficie.blit(self.triangb, (0,0))
def poscision_elementos_triangulob(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =9
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =11
def interfaz_triangulocla(self, superficie):
superficie.blit(self.triangcla, (0,0))
def poscision_elementos_triangulocla(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =10
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =40
def interfaz_circulobienvenida(self, superficie):
superficie.blit(self.bienvecir, (0,0))
def poscision_elementos_circulobienvenida(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =5
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =14
def interfaz_preg1_cir(self, superficie):
superficie.blit(self.preg1_cir, (0,0))
def poscision_elementos_preg1_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =15
self.ladrar.play()
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =16
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =17
def interfaz_preg1_cir_bien(self, superficie):
superficie.blit(self.preg1_cirbien, (0,0))
def poscision_elementos_preg1_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =18
def interfaz_preg1_cir_malo1(self, superficie):
superficie.blit(self.preg1_cirmalo1, (0,0))
def poscision_elementos_preg1_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =14
def interfaz_preg1_cir_malo2(self, superficie):
superficie.blit(self.preg1_cirmalo2, (0,0))
def poscision_elementos_preg1_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =14
def interfaz_preg2_cir(self, superficie):
superficie.blit(self.preg2_cir, (0,0))
def poscision_elementos_preg2_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =21
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =20
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =19
self.ladrar.play()
def interfaz_preg2_cir_bien(self, superficie):
superficie.blit(self.preg2_cirbien, (0,0))
def poscision_elementos_preg2_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =22
def interfaz_preg2_cir_malo1(self, superficie):
superficie.blit(self.preg2_cirmalo1, (0,0))
def poscision_elementos_preg2_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =18
def interfaz_preg2_cir_malo2(self, superficie):
superficie.blit(self.preg2_cirmalo2, (0,0))
def poscision_elementos_preg2_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =18
def interfaz_preg3_cir(self, superficie):
superficie.blit(self.preg3_cir, (0,0))
def poscision_elementos_preg3_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 495 and x_mouse<= 744) and (y_mouse >218 and y_mouse < 251):
ocultar = 23
self.ladrar.play()
elif(x_mouse > 107 and x_mouse<= 390) and (y_mouse >390 and y_mouse < 434):
ocultar =24
elif(x_mouse > 793 and x_mouse<= 1100) and (y_mouse >591 and y_mouse < 635):
ocultar =25
def interfaz_preg3_cir_bien(self, superficie):
superficie.blit(self.preg3_cirbien, (0,0))
def poscision_elementos_preg3_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =26
def interfaz_preg3_cir_malo1(self, superficie):
superficie.blit(self.preg3_cirmalo1, (0,0))
def poscision_elementos_preg3_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =22
def interfaz_preg3_cir_malo2(self, superficie):
superficie.blit(self.preg3_cirmalo2, (0,0))
def poscision_elementos_preg3_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =22
def interfaz_preg4_cir(self, superficie):
superficie.blit(self.preg4_cir, (0,0))
def poscision_elementos_preg4_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 107 and x_mouse<= 390) and (y_mouse >390 and y_mouse < 434):
ocultar = 27
self.ladrar.play()
elif(x_mouse > 495 and x_mouse<= 744) and (y_mouse >218 and y_mouse < 251):
ocultar =28
elif(x_mouse > 793 and x_mouse<= 1100) and (y_mouse >591 and y_mouse < 635):
ocultar =29
def interfaz_preg4_cir_bien(self, superficie):
superficie.blit(self.preg4_cirbien, (0,0))
def poscision_elementos_preg4_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =30
def interfaz_preg4_cir_malo1(self, superficie):
superficie.blit(self.preg4_cirmalo1, (0,0))
def poscision_elementos_preg4_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =26
def interfaz_preg4_cir_malo2(self, superficie):
superficie.blit(self.preg4_cirmalo2, (0,0))
def poscision_elementos_preg4_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =26
def interfaz_preg5_cir(self, superficie):
superficie.blit(self.preg5_cir, (0,0))
def poscision_elementos_preg5_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 793 and x_mouse<= 1100) and (y_mouse >591 and y_mouse < 635):
ocultar = 31
self.ladrar.play()
elif(x_mouse > 107 and x_mouse<= 390) and (y_mouse >390 and y_mouse < 434):
ocultar =32
elif(x_mouse > 495 and x_mouse<= 744) and (y_mouse >218 and y_mouse < 251):
ocultar =33
def interfaz_preg5_cir_bien(self, superficie):
superficie.blit(self.preg5_cirbien, (0,0))
def poscision_elementos_preg5_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =34
def interfaz_preg5_cir_malo1(self, superficie):
superficie.blit(self.preg5_cirmalo1, (0,0))
def poscision_elementos_preg5_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =30
def interfaz_preg5_cir_malo2(self, superficie):
superficie.blit(self.preg5_cirmalo2, (0,0))
def poscision_elementos_preg5_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =30
def interfaz_preg6_cir(self, superficie):
superficie.blit(self.preg6_cir, (0,0))
def poscision_elementos_preg6_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 200 and x_mouse<= 375) and (y_mouse >305 and y_mouse < 490):
ocultar = 35
self.ladrar.play()
elif(x_mouse > 530 and x_mouse<= 680) and (y_mouse >296 and y_mouse < 497):
ocultar =36
elif(x_mouse > 767 and x_mouse<= 1100) and (y_mouse >323 and y_mouse < 455):
ocultar =37
def interfaz_preg6_cir_bien(self, superficie):
superficie.blit(self.preg6_cirbien, (0,0))
def poscision_elementos_preg6_cir_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =38
def interfaz_preg6_cir_malo1(self, superficie):
superficie.blit(self.preg6_cirmalo1, (0,0))
def poscision_elementos_preg6_cir_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =34
def interfaz_preg6_cir_malo2(self, superficie):
superficie.blit(self.preg6_cirmalo2, (0,0))
def poscision_elementos_preg6_cir_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =34
def interfaz_pregfin_cir(self, superficie):
superficie.blit(self.pregfin_cir, (0,0))
def poscision_elementos_pregfin_cir(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 222 and x_mouse<= 525) and (y_mouse >837and y_mouse < 893):
ocultar =2
def interfaz_Bienvenida(self, superficie):
superficie.blit(self.bienvenida, (0,0))
def poscision_elementos_Bienvenida(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse >36 and x_mouse<= 335) and (y_mouse >816and y_mouse < 880):
ocultar =2
def interfaz_trianguloequi(self, superficie):
superficie.blit(self.triangequi, (0,0))
def poscision_elementos_trianguloequi(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =11
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =41
def interfaz_trianguloiso(self, superficie):
superficie.blit(self.triangiso, (0,0))
def poscision_elementos_trianguloiso(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =40
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =42
def interfaz_trianguloesca(self, superficie):
superficie.blit(self.triangesca, (0,0))
def poscision_elementos_trianguloesca(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =41
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =43
def interfaz_triangulobienve(self, superficie):
superficie.blit(self.triangbien, (0,0))
def poscision_elementos_triangulobienve(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =42
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =44
def interfaz_preg1_triang(self, superficie):
superficie.blit(self.preg1_triang, (0,0))
def poscision_elementos_preg1_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 600) and (y_mouse >314 and y_mouse < 383):
ocultar =45
self.ladrar.play()
elif(x_mouse > 647 and x_mouse<= 1115) and (y_mouse >315 and y_mouse < 378):
ocultar =46
elif(x_mouse > 385 and x_mouse<= 825) and (y_mouse >420 and y_mouse < 483):
ocultar =47
def interfaz_preg1_triang_bien(self, superficie):
superficie.blit(self.preg1_triangbien, (0,0))
def poscision_elementos_preg1_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =48
def interfaz_preg1_triang_malo1(self, superficie):
superficie.blit(self.preg1_triangmalo1, (0,0))
def poscision_elementos_preg1_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =44
def interfaz_preg1_triang_malo2(self, superficie):
superficie.blit(self.preg1_triangmalo2, (0,0))
def poscision_elementos_preg1_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =44
def interfaz_preg2_triang(self, superficie):
superficie.blit(self.preg2_triang, (0,0))
def poscision_elementos_preg2_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 600) and (y_mouse >314 and y_mouse < 383):
ocultar =49
self.ladrar.play()
elif(x_mouse > 647 and x_mouse<= 1115) and (y_mouse >315 and y_mouse < 378):
ocultar =50
elif(x_mouse > 385 and x_mouse<= 825) and (y_mouse >420 and y_mouse < 483):
ocultar =51
def interfaz_preg2_triang_bien(self, superficie):
superficie.blit(self.preg2_triangbien, (0,0))
def poscision_elementos_preg2_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =52
def interfaz_preg2_triang_malo1(self, superficie):
superficie.blit(self.preg2_triangmalo1, (0,0))
def poscision_elementos_preg2_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =48
def interfaz_preg2_triang_malo2(self, superficie):
superficie.blit(self.preg2_triangmalo2, (0,0))
def poscision_elementos_preg2_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =48
def interfaz_preg3_triang(self, superficie):
superficie.blit(self.preg3_triang, (0,0))
def poscision_elementos_preg3_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 600) and (y_mouse >314 and y_mouse < 383):
ocultar =54
elif(x_mouse > 647 and x_mouse<= 1115) and (y_mouse >315 and y_mouse < 378):
ocultar =55
elif(x_mouse > 385 and x_mouse<= 825) and (y_mouse >420 and y_mouse < 483):
ocultar =53
self.ladrar.play()
def interfaz_preg3_triang_bien(self, superficie):
superficie.blit(self.preg3_triangbien, (0,0))
def poscision_elementos_preg3_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =56
def interfaz_preg3_triang_malo1(self, superficie):
superficie.blit(self.preg3_triangmalo1, (0,0))
def poscision_elementos_preg3_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =52
def interfaz_preg3_triang_malo2(self, superficie):
superficie.blit(self.preg3_triangmalo2, (0,0))
def poscision_elementos_preg3_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =52
def interfaz_preg4_triang(self, superficie):
superficie.blit(self.preg4_triang, (0,0))
def poscision_elementos_preg4_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 600) and (y_mouse >314 and y_mouse < 383):
ocultar =58
elif(x_mouse > 647 and x_mouse<= 1115) and (y_mouse >315 and y_mouse < 378):
ocultar =57
self.ladrar.play()
elif(x_mouse > 385 and x_mouse<= 825) and (y_mouse >420 and y_mouse < 483):
ocultar =59
def interfaz_preg4_triang_bien(self, superficie):
superficie.blit(self.preg4_triangbien, (0,0))
def poscision_elementos_preg4_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =60
def interfaz_preg4_triang_malo1(self, superficie):
superficie.blit(self.preg4_triangmalo1, (0,0))
def poscision_elementos_preg4_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =56
def interfaz_preg4_triang_malo2(self, superficie):
superficie.blit(self.preg4_triangmalo2, (0,0))
def poscision_elementos_preg4_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =56
def interfaz_preg5_triang(self, superficie):
superficie.blit(self.preg5_triang, (0,0))
def poscision_elementos_preg5_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 183 and x_mouse<= 455) and (y_mouse >318 and y_mouse < 503):
ocultar =61
self.ladrar.play()
elif(x_mouse > 614 and x_mouse<= 723) and (y_mouse >254 and y_mouse < 514):
ocultar =62
elif(x_mouse > 855 and x_mouse<= 1095) and (y_mouse >262 and y_mouse < 503):
ocultar =63
def interfaz_preg5_triang_bien(self, superficie):
superficie.blit(self.preg5_triangbien, (0,0))
def poscision_elementos_preg5_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =64
def interfaz_preg5_triang_malo1(self, superficie):
superficie.blit(self.preg5_triangmalo1, (0,0))
def poscision_elementos_preg5_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =60
def interfaz_preg5_triang_malo2(self, superficie):
superficie.blit(self.preg5_triangmalo2, (0,0))
def poscision_elementos_preg5_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =60
def interfaz_preg6_triang(self, superficie):
superficie.blit(self.preg6_triang, (0,0))
def poscision_elementos_preg6_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 183 and x_mouse<= 455) and (y_mouse >318 and y_mouse < 503):
ocultar =66
elif(x_mouse > 548 and x_mouse<= 790) and (y_mouse >257 and y_mouse < 497):
ocultar =65
elif(x_mouse > 960 and x_mouse<= 1058) and (y_mouse >265 and y_mouse < 505):
ocultar =67
def interfaz_preg6_triang_bien(self, superficie):
superficie.blit(self.preg6_triangbien, (0,0))
def poscision_elementos_preg6_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =68
def interfaz_preg6_triang_malo1(self, superficie):
superficie.blit(self.preg6_triangmalo1, (0,0))
def poscision_elementos_preg6_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =64
def interfaz_preg6_triang_malo2(self, superficie):
superficie.blit(self.preg6_triangmalo2, (0,0))
def poscision_elementos_preg6_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =64
def interfaz_preg7_triang(self, superficie):
superficie.blit(self.preg7_triang, (0,0))
def poscision_elementos_preg7_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 270 and x_mouse<= 364) and (y_mouse >258 and y_mouse < 503):
ocultar =69
elif(x_mouse > 474 and x_mouse<= 777) and (y_mouse >290 and y_mouse < 497):
ocultar =70
elif(x_mouse > 850 and x_mouse<= 1080) and (y_mouse >258 and y_mouse < 500):
ocultar =71
def interfaz_preg7_triang_bien(self, superficie):
superficie.blit(self.preg7_triangbien, (0,0))
def poscision_elementos_preg7_triang_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =72
def interfaz_preg7_triang_malo1(self, superficie):
superficie.blit(self.preg7_triangmalo1, (0,0))
def poscision_elementos_preg7_triang_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =68
def interfaz_preg7_triang_malo2(self, superficie):
superficie.blit(self.preg7_triangmalo2, (0,0))
def poscision_elementos_preg7_triang_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =68
def interfaz_pregfin_triang(self, superficie):
superficie.blit(self.pregfin_triang, (0,0))
def poscision_elementos_pregfin_triang(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 32 and x_mouse<= 330) and (y_mouse > 822 and y_mouse < 878):
ocultar =2
def interfaz_cuadra(self, superficie):
superficie.blit(self.cuadra, (0,0))
def poscision_elementos_cuadra(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =2
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =74
def interfaz_cuadral(self, superficie):
superficie.blit(self.cuadral, (0,0))
def poscision_elementos_cuadral(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =73
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =75
def interfaz_cuadrav(self, superficie):
superficie.blit(self.cuadrav, (0,0))
def poscision_elementos_cuadrav(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =74
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =76
def interfaz_rect(self, superficie):
superficie.blit(self.rect, (0,0))
def poscision_elementos_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =75
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =77
def interfaz_rectv(self, superficie):
superficie.blit(self.rectv, (0,0))
def poscision_elementos_rectv(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =76
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =78
def interfaz_rombo(self, superficie):
superficie.blit(self.rombo, (0,0))
def poscision_elementos_rombo(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =77
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =79
def interfaz_rombov(self, superficie):
superficie.blit(self.rombov, (0,0))
def poscision_elementos_rombov(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =78
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =80
def interfaz_trapecio(self, superficie):
superficie.blit(self.trapecio, (0,0))
def poscision_elementos_trapecio(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =79
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =81
def interfaz_trapeciov(self, superficie):
superficie.blit(self.trapeciov, (0,0))
def poscision_elementos_trapeciov(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =80
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =82
def interfaz_reclobienve(self, superficie):
superficie.blit(self.triangbien, (0,0))
def poscision_elementos_recbienve(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 49 and x_mouse<= 341) and (y_mouse >26 and y_mouse < 79):
ocultar =81
elif(x_mouse > 79 and x_mouse<= 379) and (y_mouse >815 and y_mouse < 870):
ocultar =83
def interfaz_preg1_rect(self, superficie):
superficie.blit(self.preg1_rect, (0,0))
def poscision_elementos_preg1_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =85
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =84
self.ladrar.play()
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =86
def interfaz_preg1_rect_bien(self, superficie):
superficie.blit(self.preg1_rectgbien, (0,0))
def poscision_elementos_preg1_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =87
def interfaz_preg1_rect_malo1(self, superficie):
superficie.blit(self.preg1_rectmalo1, (0,0))
def poscision_elementos_preg1_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =83
def interfaz_preg1_rect_malo2(self, superficie):
superficie.blit(self.preg1_rectmalo2, (0,0))
def poscision_elementos_preg1_rect_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =83
def interfaz_preg2_rect(self, superficie):
superficie.blit(self.preg2_rect, (0,0))
def poscision_elementos_preg2_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =88
self.ladrar.play()
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =89
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =90
def interfaz_preg2_rect_bien(self, superficie):
superficie.blit(self.preg2_rectgbien, (0,0))
def poscision_elementos_preg2_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =91
def interfaz_preg2_rect_malo1(self, superficie):
superficie.blit(self.preg2_rectmalo1, (0,0))
def poscision_elementos_preg2_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =87
def interfaz_preg2_rect_malo2(self, superficie):
superficie.blit(self.preg2_rectmalo2, (0,0))
def poscision_elementos_preg2_rect_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =87
def interfaz_preg3_rect(self, superficie):
superficie.blit(self.preg3_rect, (0,0))
def poscision_elementos_preg3_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =92
self.ladrar.play()
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =93
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =94
def interfaz_preg3_rect_bien(self, superficie):
superficie.blit(self.preg3_rectgbien, (0,0))
def poscision_elementos_preg3_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =95
def interfaz_preg3_rect_malo1(self, superficie):
superficie.blit(self.preg3_rectmalo1, (0,0))
def poscision_elementos_preg3_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =91
def interfaz_preg3_rect_malo2(self, superficie):
superficie.blit(self.preg3_rectmalo2, (0,0))
def poscision_elementos_preg3_rect_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =91
def interfaz_preg4_rect(self, superficie):
superficie.blit(self.preg4_rect, (0,0))
def poscision_elementos_preg4_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 129 and x_mouse<= 603) and (y_mouse >300 and y_mouse < 490):
ocultar =96
self.ladrar.play()
elif(x_mouse > 647 and x_mouse<= 1128) and (y_mouse >303 and y_mouse < 488):
ocultar =97
def interfaz_preg4_rect_bien(self, superficie):
superficie.blit(self.preg4_rectgbien, (0,0))
def poscision_elementos_preg4_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =98
def interfaz_preg4_rect_malo1(self, superficie):
superficie.blit(self.preg4_rectmalo1, (0,0))
def poscision_elementos_preg4_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =95
def interfaz_preg5_rect(self, superficie):
superficie.blit(self.preg5_rect, (0,0))
def poscision_elementos_preg5_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar =99
self.ladrar.play()
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =100
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =101
def interfaz_preg5_rect_bien(self, superficie):
superficie.blit(self.preg5_rectgbien, (0,0))
def poscision_elementos_preg5_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =102
def interfaz_preg5_rect_malo1(self, superficie):
superficie.blit(self.preg5_rectmalo2, (0,0))
def poscision_elementos_preg5_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =98
def interfaz_preg5_rect_malo2(self, superficie):
superficie.blit(self.preg5_rectmalo1, (0,0))
def poscision_elementos_preg5_rect_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =98
def interfaz_preg6_rect(self, superficie):
superficie.blit(self.preg6_rect, (0,0))
def poscision_elementos_preg6_rect(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 136 and x_mouse<= 603) and (y_mouse >316 and y_mouse < 383):
ocultar = 104
elif(x_mouse > 410 and x_mouse<= 871) and (y_mouse >431 and y_mouse < 501):
ocultar =103
self.ladrar.play()
elif(x_mouse > 646 and x_mouse<= 1113) and (y_mouse >319 and y_mouse < 384):
ocultar =105
def interfaz_preg6_rect_bien(self, superficie):
superficie.blit(self.preg6_rectgbien, (0,0))
def poscision_elementos_preg6_rect_bien(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 467 and x_mouse<= 762) and (y_mouse >800 and y_mouse < 859):
ocultar =72
def interfaz_preg6_rect_malo1(self, superficie):
superficie.blit(self.preg6_rectmalo1, (0,0))
def poscision_elementos_preg6_rect_malo1(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =102
def interfaz_preg6_rect_malo2(self, superficie):
superficie.blit(self.preg6_rectmalo2, (0,0))
def poscision_elementos_preg6_rect_malo2(self, superficie):
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
if(x_mouse > 551 and x_mouse<= 650) and (y_mouse >800 and y_mouse < 888):
ocultar =102
def main():
global ocultar
x_mouse, y_mouse = pygame.mouse.get_pos()
ventana = pygame.display.set_mode((x,y))
cursor = pygame.cursors.compile(CURSOR)
pygame.mouse.set_cursor((32,32), (1,1), *cursor)
pygame.mixer.music.load("sonido/intro.ogg")
pygame.mixer.music.play(10)
prin=interfaz()
while True:
while gtk.events_pending():
gtk.main_iteration()
x_mouse, y_mouse = pygame.mouse.get_pos()
for eventos in pygame.event.get():
if eventos.type == QUIT:
sys.exit(0)
elif eventos.type == MOUSEBUTTONDOWN:
if(ocultar==1):
prin.poscision_elementos_1(ventana)
if (x_mouse > 1043 and x_mouse<= 1099) and (y_mouse >17 and y_mouse < 76):
pygame.mixer.music.unpause()
elif (x_mouse > 1136 and x_mouse<= 1178) and (y_mouse >19 and y_mouse < 73):
pygame.mixer.music.pause()
elif(ocultar==2):
prin.poscision_elementos_menu(ventana)
elif(ocultar==3):
prin.poscision_elementos_circulo(ventana)
elif(ocultar==4):
prin.poscision_elementos_circuloc(ventana)
elif(ocultar==5):
prin.poscision_elementos_circulor(ventana)
elif(ocultar==6):
prin.poscision_elementos_triangulo(ventana)
elif(ocultar==7):
prin.poscision_elementos_triangulol(ventana)
elif(ocultar==8):
prin.poscision_elementos_triangulov(ventana)
elif(ocultar==9):
prin.poscision_elementos_trianguloa(ventana)
elif(ocultar==10):
prin.poscision_elementos_triangulob(ventana)
elif(ocultar==11):
prin.poscision_elementos_triangulocla(ventana)
elif(ocultar==12):
prin.poscision_elementos_circulobienvenida(ventana)
elif(ocultar==13):
prin.poscision_elementos_ayuda(ventana)
elif(ocultar==14):
prin.poscision_elementos_preg1_cir(ventana)
elif(ocultar==15):
prin.poscision_elementos_preg1_cir_bien(ventana)
elif(ocultar==16):
prin.poscision_elementos_preg1_cir_malo1(ventana)
elif(ocultar==17):
prin.poscision_elementos_preg1_cir_malo2(ventana)
elif(ocultar==18):
prin.poscision_elementos_preg2_cir(ventana)
elif(ocultar==19):
prin.poscision_elementos_preg2_cir_bien(ventana)
elif(ocultar==20):
prin.poscision_elementos_preg2_cir_malo1(ventana)
elif(ocultar==21):
prin.poscision_elementos_preg2_cir_malo2(ventana)
elif(ocultar==22):
prin.poscision_elementos_preg3_cir(ventana)
elif(ocultar==23):
prin.poscision_elementos_preg3_cir_bien(ventana)
elif(ocultar==24):
prin.poscision_elementos_preg3_cir_malo1(ventana)
elif(ocultar==25):
prin.poscision_elementos_preg3_cir_malo2(ventana)
elif(ocultar==26):
prin.poscision_elementos_preg4_cir(ventana)
elif(ocultar==27):
prin.poscision_elementos_preg4_cir_bien(ventana)
elif(ocultar==28):
prin.poscision_elementos_preg4_cir_malo1(ventana)
elif(ocultar==29):
prin.poscision_elementos_preg4_cir_malo2(ventana)
elif(ocultar==30):
prin.poscision_elementos_preg5_cir(ventana)
elif(ocultar==31):
prin.poscision_elementos_preg5_cir_bien(ventana)
elif(ocultar==32):
prin.poscision_elementos_preg5_cir_malo1(ventana)
elif(ocultar==33):
prin.poscision_elementos_preg5_cir_malo2(ventana)
elif(ocultar==34):
prin.poscision_elementos_preg6_cir(ventana)
elif(ocultar==35):
prin.poscision_elementos_preg6_cir_bien(ventana)
elif(ocultar==36):
prin.poscision_elementos_preg6_cir_malo1(ventana)
elif(ocultar==37):
prin.poscision_elementos_preg6_cir_malo2(ventana)
elif(ocultar==38):
prin.poscision_elementos_pregfin_cir(ventana)
elif(ocultar==39):
prin.poscision_elementos_Bienvenida(ventana)
elif(ocultar==40):
prin.poscision_elementos_trianguloequi(ventana)
elif(ocultar==41):
prin.poscision_elementos_trianguloiso(ventana)
elif(ocultar==42):
prin.poscision_elementos_trianguloesca(ventana)
elif(ocultar==43):
prin.poscision_elementos_triangulobienve(ventana)
elif(ocultar==44):
prin.poscision_elementos_preg1_triang(ventana)
elif(ocultar==45):
prin.poscision_elementos_preg1_triang_bien(ventana)
elif(ocultar==46):
prin.poscision_elementos_preg1_triang_malo1(ventana)
elif(ocultar==47):
prin.poscision_elementos_preg1_triang_malo2(ventana)
elif(ocultar==48):
prin.poscision_elementos_preg2_triang(ventana)
elif(ocultar==49):
prin.poscision_elementos_preg2_triang_bien(ventana)
elif(ocultar==50):
prin.poscision_elementos_preg2_triang_malo1(ventana)
elif(ocultar==51):
prin.poscision_elementos_preg2_triang_malo2(ventana)
elif(ocultar==52):
prin.poscision_elementos_preg3_triang(ventana)
elif(ocultar==53):
prin.poscision_elementos_preg3_triang_bien(ventana)
elif(ocultar==54):
prin.poscision_elementos_preg3_triang_malo1(ventana)
elif(ocultar==55):
prin.poscision_elementos_preg3_triang_malo2(ventana)
elif(ocultar==56):
prin.poscision_elementos_preg4_triang(ventana)
elif(ocultar==57):
prin.poscision_elementos_preg4_triang_bien(ventana)
elif(ocultar==58):
prin.poscision_elementos_preg4_triang_malo1(ventana)
elif(ocultar==59):
prin.poscision_elementos_preg4_triang_malo2(ventana)
elif(ocultar==60):
prin.poscision_elementos_preg5_triang(ventana)
elif(ocultar==61):
prin.poscision_elementos_preg5_triang_bien(ventana)
elif(ocultar==62):
prin.poscision_elementos_preg5_triang_malo1(ventana)
elif(ocultar==63):
prin.poscision_elementos_preg5_triang_malo2(ventana)
elif(ocultar==64):
prin.poscision_elementos_preg6_triang(ventana)
elif(ocultar==65):
prin.poscision_elementos_preg6_triang_bien(ventana)
elif(ocultar==66):
prin.poscision_elementos_preg6_triang_malo1(ventana)
elif(ocultar==67):
prin.poscision_elementos_preg6_triang_malo2(ventana)
elif(ocultar==68):
prin.poscision_elementos_preg7_triang(ventana)
elif(ocultar==69):
prin.poscision_elementos_preg7_triang_bien(ventana)
elif(ocultar==70):
prin.poscision_elementos_preg7_triang_malo1(ventana)
elif(ocultar==71):
prin.poscision_elementos_preg7_triang_malo2(ventana)
elif(ocultar==72):
prin.poscision_elementos_pregfin_triang(ventana)
elif(ocultar==73):
prin.poscision_elementos_cuadra(ventana)
elif(ocultar==74):
prin.poscision_elementos_cuadral(ventana)
elif(ocultar==75):
prin.poscision_elementos_cuadrav(ventana)
elif(ocultar==76):
prin.poscision_elementos_rect(ventana)
elif(ocultar==77):
prin.poscision_elementos_rectv(ventana)
elif(ocultar==78):
prin.poscision_elementos_rombo(ventana)
elif(ocultar==79):
prin.poscision_elementos_rombov(ventana)
elif(ocultar==80):
prin.poscision_elementos_trapecio(ventana)
elif(ocultar==81):
prin.poscision_elementos_trapeciov(ventana)
elif(ocultar==82):
prin.poscision_elementos_recbienve(ventana)
elif(ocultar==83):
prin.poscision_elementos_preg1_rect(ventana)
elif(ocultar==84):
prin.poscision_elementos_preg1_rect_bien(ventana)
elif(ocultar==85):
prin.poscision_elementos_preg1_rect_malo1(ventana)
elif(ocultar==86):
prin.poscision_elementos_preg1_rect_malo2(ventana)
elif(ocultar==87):
prin.poscision_elementos_preg2_rect(ventana)
elif(ocultar==88):
prin.poscision_elementos_preg2_rect_bien(ventana)
elif(ocultar==89):
prin.poscision_elementos_preg2_rect_malo1(ventana)
elif(ocultar==90):
prin.poscision_elementos_preg2_rect_malo2(ventana)
elif(ocultar==91):
prin.poscision_elementos_preg3_rect(ventana)
elif(ocultar==92):
prin.poscision_elementos_preg3_rect_bien(ventana)
elif(ocultar==93):
prin.poscision_elementos_preg3_rect_malo1(ventana)
elif(ocultar==94):
prin.poscision_elementos_preg3_rect_malo2(ventana)
elif(ocultar==95):
prin.poscision_elementos_preg4_rect(ventana)
elif(ocultar==96):
prin.poscision_elementos_preg4_rect_bien(ventana)
elif(ocultar==97):
prin.poscision_elementos_preg4_rect_malo1(ventana)
elif(ocultar==98):
prin.poscision_elementos_preg5_rect(ventana)
elif(ocultar==99):
prin.poscision_elementos_preg5_rect_bien(ventana)
elif(ocultar==100):
prin.poscision_elementos_preg5_rect_malo1(ventana)
elif(ocultar==101):
prin.poscision_elementos_preg5_rect_malo2(ventana)
elif(ocultar==102):
prin.poscision_elementos_preg6_rect(ventana)
elif(ocultar==103):
prin.poscision_elementos_preg6_rect_bien(ventana)
elif(ocultar==104):
prin.poscision_elementos_preg6_rect_malo1(ventana)
elif(ocultar==105):
prin.poscision_elementos_preg6_rect_malo2(ventana)
elif eventos.type == KEYDOWN:
if eventos.key == K_ESCAPE:
sys.exit(0)
if(ocultar==1):
prin.inter_principal(ventana)
elif (ocultar==2):
prin.interfaz_menu(ventana)
elif (ocultar==3):
prin.interfaz_circulo(ventana)
elif (ocultar==4):
prin.interfaz_circuloc(ventana)
elif (ocultar==5):
prin.interfaz_circulor(ventana)
elif (ocultar==6):
prin.interfaz_triangulo(ventana)
elif (ocultar==7):
prin.interfaz_triangulol(ventana)
elif (ocultar==8):
prin.interfaz_triangulov(ventana)
elif (ocultar==9):
prin.interfaz_trianguloa(ventana)
elif (ocultar==10):
prin.interfaz_triangulob(ventana)
elif (ocultar==11):
prin.interfaz_triangulocla(ventana)
elif (ocultar==12):
prin.interfaz_circulobienvenida(ventana)
elif (ocultar==13):
prin.interfaz_ayuda(ventana)
elif (ocultar==14):
prin.interfaz_preg1_cir(ventana)
elif (ocultar==15):
prin.interfaz_preg1_cir_bien(ventana)
elif (ocultar==16):
prin.interfaz_preg1_cir_malo1(ventana)
elif (ocultar==17):
prin.interfaz_preg1_cir_malo2(ventana)
elif (ocultar==18):
prin.interfaz_preg2_cir(ventana)
elif (ocultar==19):
prin.interfaz_preg2_cir_bien(ventana)
elif (ocultar==20):
prin.interfaz_preg2_cir_malo1(ventana)
elif (ocultar==21):
prin.interfaz_preg2_cir_malo2(ventana)
elif (ocultar==22):
prin.interfaz_preg3_cir(ventana)
elif (ocultar==23):
prin.interfaz_preg3_cir_bien(ventana)
elif (ocultar==24):
prin.interfaz_preg3_cir_malo1(ventana)
elif (ocultar==25):
prin.interfaz_preg3_cir_malo2(ventana)
elif (ocultar==26):
prin.interfaz_preg4_cir(ventana)
elif (ocultar==27):
prin.interfaz_preg4_cir_bien(ventana)
elif (ocultar==28):
prin.interfaz_preg4_cir_malo1(ventana)
elif (ocultar==29):
prin.interfaz_preg4_cir_malo2(ventana)
elif (ocultar==30):
prin.interfaz_preg5_cir(ventana)
elif (ocultar==31):
prin.interfaz_preg5_cir_bien(ventana)
elif (ocultar==32):
prin.interfaz_preg5_cir_malo1(ventana)
elif (ocultar==33):
prin.interfaz_preg5_cir_malo2(ventana)
elif (ocultar==34):
prin.interfaz_preg6_cir(ventana)
elif (ocultar==35):
prin.interfaz_preg6_cir_bien(ventana)
elif (ocultar==36):
prin.interfaz_preg6_cir_malo1(ventana)
elif (ocultar==37):
prin.interfaz_preg6_cir_malo2(ventana)
elif (ocultar==38):
prin.interfaz_pregfin_cir(ventana)
elif (ocultar==39):
prin.interfaz_Bienvenida(ventana)
elif (ocultar==40):
prin.interfaz_trianguloequi(ventana)
elif (ocultar==41):
prin.interfaz_trianguloiso(ventana)
elif (ocultar==42):
prin.interfaz_trianguloesca(ventana)
elif (ocultar==43):
prin.interfaz_triangulobienve(ventana)
elif (ocultar==44):
prin.interfaz_preg1_triang(ventana)
elif (ocultar==45):
prin.interfaz_preg1_triang_bien(ventana)
elif (ocultar==46):
prin.interfaz_preg1_triang_malo1(ventana)
elif (ocultar==47):
prin.interfaz_preg1_triang_malo2(ventana)
elif (ocultar==48):
prin.interfaz_preg2_triang(ventana)
elif (ocultar==49):
prin.interfaz_preg2_triang_bien(ventana)
elif (ocultar==50):
prin.interfaz_preg2_triang_malo1(ventana)
elif (ocultar==51):
prin.interfaz_preg2_triang_malo2(ventana)
elif (ocultar==52):
prin.interfaz_preg3_triang(ventana)
elif (ocultar==53):
prin.interfaz_preg3_triang_bien(ventana)
elif (ocultar==54):
prin.interfaz_preg3_triang_malo1(ventana)
elif (ocultar==55):
prin.interfaz_preg3_triang_malo2(ventana)
elif (ocultar==56):
prin.interfaz_preg4_triang(ventana)
elif (ocultar==57):
prin.interfaz_preg4_triang_bien(ventana)
elif (ocultar==58):
prin.interfaz_preg4_triang_malo1(ventana)
elif (ocultar==59):
prin.interfaz_preg4_triang_malo2(ventana)
elif (ocultar==60):
prin.interfaz_preg5_triang(ventana)
elif (ocultar==61):
prin.interfaz_preg5_triang_bien(ventana)
elif (ocultar==62):
prin.interfaz_preg5_triang_malo1(ventana)
elif (ocultar==63):
prin.interfaz_preg5_triang_malo2(ventana)
elif (ocultar==64):
prin.interfaz_preg6_triang(ventana)
elif (ocultar==65):
prin.interfaz_preg6_triang_bien(ventana)
elif (ocultar==66):
prin.interfaz_preg6_triang_malo1(ventana)
elif (ocultar==67):
prin.interfaz_preg6_triang_malo2(ventana)
elif (ocultar==68):
prin.interfaz_preg7_triang(ventana)
elif (ocultar==69):
prin.interfaz_preg7_triang_bien(ventana)
elif (ocultar==70):
prin.interfaz_preg7_triang_malo1(ventana)
elif (ocultar==71):
prin.interfaz_preg7_triang_malo2(ventana)
elif (ocultar==72):
prin.interfaz_pregfin_triang(ventana)
elif (ocultar==73):
prin.interfaz_cuadra(ventana)
elif (ocultar==74):
prin.interfaz_cuadral(ventana)
elif (ocultar==75):
prin.interfaz_cuadrav(ventana)
elif (ocultar==76):
prin.interfaz_rect(ventana)
elif (ocultar==77):
prin.interfaz_rectv(ventana)
elif (ocultar==78):
prin.interfaz_rombo(ventana)
elif (ocultar==79):
prin.interfaz_rombov(ventana)
elif (ocultar==80):
prin.interfaz_trapecio(ventana)
elif (ocultar==81):
prin.interfaz_trapeciov(ventana)
elif (ocultar==82):
prin.interfaz_reclobienve(ventana)
elif (ocultar==83):
prin.interfaz_preg1_rect(ventana)
elif (ocultar==84):
prin.interfaz_preg1_rect_bien(ventana)
elif (ocultar==85):
prin.interfaz_preg1_rect_malo1(ventana)
elif (ocultar==86):
prin.interfaz_preg1_rect_malo2(ventana)
elif (ocultar==87):
prin.interfaz_preg2_rect(ventana)
elif (ocultar==88):
prin.interfaz_preg2_rect_bien(ventana)
elif (ocultar==89):
prin.interfaz_preg2_rect_malo1(ventana)
elif (ocultar==90):
prin.interfaz_preg2_rect_malo2(ventana)
elif (ocultar==91):
prin.interfaz_preg3_rect(ventana)
elif (ocultar==92):
prin.interfaz_preg3_rect_bien(ventana)
elif (ocultar==93):
prin.interfaz_preg3_rect_malo1(ventana)
elif (ocultar==94):
prin.interfaz_preg3_rect_malo2(ventana)
elif (ocultar==95):
prin.interfaz_preg4_rect(ventana)
elif (ocultar==96):
prin.interfaz_preg4_rect_bien(ventana)
elif (ocultar==97):
prin.interfaz_preg4_rect_malo1(ventana)
elif (ocultar==98):
prin.interfaz_preg5_rect(ventana)
elif (ocultar==99):
prin.interfaz_preg5_rect_bien(ventana)
elif (ocultar==100):
prin.interfaz_preg5_rect_malo1(ventana)
elif (ocultar==101):
prin.interfaz_preg5_rect_malo2(ventana)
elif (ocultar==102):
prin.interfaz_preg6_rect(ventana)
elif (ocultar==103):
prin.interfaz_preg6_rect_bien(ventana)
elif (ocultar==104):
prin.interfaz_preg6_rect_malo1(ventana)
elif (ocultar==105):
prin.interfaz_preg6_rect_malo2(ventana)
print (x_mouse, y_mouse)
pygame.display.update()
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
3047f01521ecf352af10c869568fa355aa6ab390
|
693d93174f43a81d8a65041553282a8872e3a6ff
|
/contrib/devtools/test-security-check.py
|
269ffb5b075cedd5e4fa6e25ff81602fa3c44195
|
[
"MIT"
] |
permissive
|
eleccoin/eleccoin
|
c075719d5ee676fc2bb9a21f3711d75d673655bd
|
963f6d4a069e40ab2e46217e5d49bc94adda2c5c
|
refs/heads/master
| 2022-11-13T02:38:36.662655 | 2022-10-30T08:56:57 | 2022-10-30T08:56:57 | 238,475,897 | 3 | 7 |
MIT
| 2022-01-10T07:29:19 | 2020-02-05T14:56:34 |
C++
|
UTF-8
|
Python
| false | false | 10,020 |
py
|
#!/usr/bin/env python3
# Copyright (c) 2020-2022 The Eleccoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
'''
Test script for security-check.py
'''
import lief #type:ignore
import os
import subprocess
from typing import List
import unittest
from utils import determine_wellknown_cmd
def write_testcode(filename):
with open(filename, 'w', encoding="utf8") as f:
f.write('''
#include <stdio.h>
int main()
{
printf("the quick brown fox jumps over the lazy god\\n");
return 0;
}
''')
def clean_files(source, executable):
os.remove(source)
os.remove(executable)
def call_security_check(cc, source, executable, options):
# This should behave the same as AC_TRY_LINK, so arrange well-known flags
# in the same order as autoconf would.
#
# See the definitions for ac_link in autoconf's lib/autoconf/c.m4 file for
# reference.
env_flags: List[str] = []
for var in ['CFLAGS', 'CPPFLAGS', 'LDFLAGS']:
env_flags += filter(None, os.environ.get(var, '').split(' '))
subprocess.run([*cc,source,'-o',executable] + env_flags + options, check=True)
p = subprocess.run(['./contrib/devtools/security-check.py',executable], stdout=subprocess.PIPE, universal_newlines=True)
return (p.returncode, p.stdout.rstrip())
def get_arch(cc, source, executable):
subprocess.run([*cc, source, '-o', executable], check=True)
binary = lief.parse(executable)
arch = binary.abstract.header.architecture
os.remove(executable)
return arch
class TestSecurityChecks(unittest.TestCase):
def test_ELF(self):
source = 'test1.c'
executable = 'test1'
cc = determine_wellknown_cmd('CC', 'gcc')
write_testcode(source)
arch = get_arch(cc, source, executable)
if arch == lief.ARCHITECTURES.X86:
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-zexecstack','-fno-stack-protector','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE NX RELRO Canary CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fno-stack-protector','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE RELRO Canary CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE RELRO CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro','-pie','-fPIE', '-Wl,-z,separate-code']),
(1, executable+': failed RELRO CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE', '-Wl,-z,noseparate-code']),
(1, executable+': failed separate_code CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE', '-Wl,-z,separate-code']),
(1, executable+': failed CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE', '-Wl,-z,separate-code', '-fcf-protection=full']),
(0, ''))
else:
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-zexecstack','-fno-stack-protector','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE NX RELRO Canary'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fno-stack-protector','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE RELRO Canary'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro','-no-pie','-fno-PIE', '-Wl,-z,separate-code']),
(1, executable+': failed PIE RELRO'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-znorelro','-pie','-fPIE', '-Wl,-z,separate-code']),
(1, executable+': failed RELRO'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE', '-Wl,-z,noseparate-code']),
(1, executable+': failed separate_code'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-znoexecstack','-fstack-protector-all','-Wl,-zrelro','-Wl,-z,now','-pie','-fPIE', '-Wl,-z,separate-code']),
(0, ''))
clean_files(source, executable)
def test_PE(self):
source = 'test1.c'
executable = 'test1.exe'
cc = determine_wellknown_cmd('CC', 'x86_64-w64-mingw32-gcc')
write_testcode(source)
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--disable-nxcompat','-Wl,--disable-reloc-section','-Wl,--disable-dynamicbase','-Wl,--disable-high-entropy-va','-no-pie','-fno-PIE']),
(1, executable+': failed PIE DYNAMIC_BASE HIGH_ENTROPY_VA NX RELOC_SECTION CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--disable-reloc-section','-Wl,--disable-dynamicbase','-Wl,--disable-high-entropy-va','-no-pie','-fno-PIE']),
(1, executable+': failed PIE DYNAMIC_BASE HIGH_ENTROPY_VA RELOC_SECTION CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--enable-reloc-section','-Wl,--disable-dynamicbase','-Wl,--disable-high-entropy-va','-no-pie','-fno-PIE']),
(1, executable+': failed PIE DYNAMIC_BASE HIGH_ENTROPY_VA CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--enable-reloc-section','-Wl,--disable-dynamicbase','-Wl,--disable-high-entropy-va','-pie','-fPIE']),
(1, executable+': failed PIE DYNAMIC_BASE HIGH_ENTROPY_VA CONTROL_FLOW')) # -pie -fPIE does nothing unless --dynamicbase is also supplied
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--enable-reloc-section','-Wl,--dynamicbase','-Wl,--disable-high-entropy-va','-pie','-fPIE']),
(1, executable+': failed HIGH_ENTROPY_VA CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--enable-reloc-section','-Wl,--dynamicbase','-Wl,--high-entropy-va','-pie','-fPIE']),
(1, executable+': failed CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,--nxcompat','-Wl,--enable-reloc-section','-Wl,--dynamicbase','-Wl,--high-entropy-va','-pie','-fPIE', '-fcf-protection=full']),
(0, ''))
clean_files(source, executable)
def test_MACHO(self):
source = 'test1.c'
executable = 'test1'
cc = determine_wellknown_cmd('CC', 'clang')
write_testcode(source)
arch = get_arch(cc, source, executable)
if arch == lief.ARCHITECTURES.X86:
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-Wl,-flat_namespace','-Wl,-allow_stack_execute','-fno-stack-protector']),
(1, executable+': failed NOUNDEFS LAZY_BINDINGS Canary PIE NX CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-Wl,-flat_namespace','-Wl,-allow_stack_execute','-fstack-protector-all']),
(1, executable+': failed NOUNDEFS LAZY_BINDINGS PIE NX CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-Wl,-flat_namespace','-fstack-protector-all']),
(1, executable+': failed NOUNDEFS LAZY_BINDINGS PIE CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-fstack-protector-all']),
(1, executable+': failed LAZY_BINDINGS PIE CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-Wl,-bind_at_load','-fstack-protector-all']),
(1, executable+': failed PIE CONTROL_FLOW'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-no_pie','-Wl,-bind_at_load','-fstack-protector-all', '-fcf-protection=full']),
(1, executable+': failed PIE'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-pie','-Wl,-bind_at_load','-fstack-protector-all', '-fcf-protection=full']),
(0, ''))
else:
# arm64 darwin doesn't support non-PIE binaries, control flow or executable stacks
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-flat_namespace','-fno-stack-protector']),
(1, executable+': failed NOUNDEFS LAZY_BINDINGS Canary'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-flat_namespace','-fstack-protector-all']),
(1, executable+': failed NOUNDEFS LAZY_BINDINGS'))
self.assertEqual(call_security_check(cc, source, executable, ['-fstack-protector-all']),
(1, executable+': failed LAZY_BINDINGS'))
self.assertEqual(call_security_check(cc, source, executable, ['-Wl,-bind_at_load','-fstack-protector-all']),
(0, ''))
clean_files(source, executable)
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
76b439eb64e7052b75da1d1be31c934fb3855f54
|
71d608a5e6cc30bef2004a4008d62143de07f50c
|
/plots/Techinical_indicators_for_Goldman_Sachs_last_400_days.py
|
dd9cb186948e5a5eedbad60bf8c3673ba5bb96d3
|
[] |
no_license
|
webclinic017/quant-3
|
f4fc462b3964717e2435e09dd0be35548066a967
|
98b31d92b89da10a409947b4bea653ceb4319af6
|
refs/heads/master
| 2022-01-27T21:06:39.345394 | 2019-07-21T10:35:12 | 2019-07-21T10:35:12 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,705 |
py
|
import matplotlib.pyplot as plt
from Data import Data, get_technical_indicators
def plot_technical_indicators(dataset,
last_days):
ticker = dataset.columns.values[1]
plt.figure(figsize=(16, 10), dpi=100)
shape_0 = dataset.shape[0]
xmacd_ = shape_0 - last_days
dataset = dataset.iloc[-last_days:, :]
x_ = range(3, dataset.shape[0])
x_ = list(dataset.index)
# Plot first subplot
plt.subplot(2, 1, 1)
plt.plot(dataset['ma7'], label='MA 7', color='g', linestyle='--')
plt.plot(dataset[ticker], label='Closing Price', color='b')
plt.plot(dataset['ma21'], label='MA 21', color='r', linestyle='--')
plt.plot(dataset['upper_band'], label='Upper Band', color='c')
plt.plot(dataset['lower_band'], label='Lower Band', color='c')
plt.fill_between(x_, dataset['lower_band'], dataset['upper_band'],
alpha=0.35)
plt.title('Technical indicators for Goldman Sachs - last {} days.'.format(
last_days))
plt.ylabel('USD')
plt.legend()
# Plot second subplot
plt.subplot(2, 1, 2)
plt.title('MACD')
plt.plot(dataset['MACD'], label='MACD', linestyle='-.')
plt.hlines(15, xmacd_, shape_0, colors='g', linestyles='--')
plt.hlines(-15, xmacd_, shape_0, colors='g', linestyles='--')
plt.plot(dataset['log_momentum'], label='Momentum', color='b',
linestyle='-')
plt.savefig(
'../assets/Techinical_indicators_for_Goldman_Sachs_last_400_days.png')
plt.legend()
plt.show()
if __name__ == "__main__":
data = Data('GS')
df = data.get_close_data()
df_ti = get_technical_indicators(df)
plot_technical_indicators(df_ti, 400)
|
[
"[email protected]"
] | |
6ee1904358d0968c67a404a23c8686c263e0b35c
|
4007632edd395d243bca022418848a2ff54409c8
|
/学习/atest6.py
|
54471b4561bb9f98d4319de5c82e87a0702bb3bf
|
[] |
no_license
|
549982170/python_learning
|
d80a9403cbe2eb8304aba50ff373b2b67df095e2
|
2c3f73718e0a6d9d4923a2e0f22ff2d4230357e9
|
refs/heads/master
| 2021-06-22T04:32:06.286691 | 2020-12-10T03:29:56 | 2020-12-10T03:29:56 | 101,596,379 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 430 |
py
|
# coding:utf-8
# !/user/bin/python
import requests
import json
headers = {'Authorization': "Token 03f7409574a55e98cd33b7cc44bcbe968fd0988f"}
host = "http://127.0.0.1:8000/"
url = "v5/discovery/search/service/"
# url = "v1/generator/test/mytest/"
url = host + url
data = {"keyword": "ss"}
re = requests.post(url)
re = requests.post(url, data=data, headers=headers)
print re.text
#
# a = "ssddda"
# print a[-1:]
|
[
"[email protected]"
] | |
d5526e5e11970b9cf7389f8167209a965ef78e49
|
7bc54bae28eec4b735c05ac7bc40b1a8711bb381
|
/src/misc/show_checkpoint_vars.py
|
d869d35e1eb9f214c813932df22cedf891373257
|
[] |
no_license
|
clover3/Chair
|
755efd4abbd5f3f2fb59e9b1bc6e7bc070b8d05e
|
a2102ebf826a58efbc479181f1ebb5de21d1e49f
|
refs/heads/master
| 2023-07-20T17:29:42.414170 | 2023-07-18T21:12:46 | 2023-07-18T21:12:46 | 157,024,916 | 0 | 0 | null | 2023-02-16T05:20:37 | 2018-11-10T21:55:29 |
Python
|
UTF-8
|
Python
| false | false | 642 |
py
|
from collections import OrderedDict
import tensorflow as tf
def load_checkpoint_vars(checkpoint_path):
ckpt_reader = tf.train.load_checkpoint(checkpoint_path)
d = OrderedDict()
for x in tf.train.list_variables(checkpoint_path):
(name, var) = (x[0], x[1])
d[name] = ckpt_reader.get_tensor(name)
return d
def load_checkpoint_vars_v2(checkpoint_path):
ckpt_reader = tf.compat.v1.train.load_checkpoint(checkpoint_path)
d = OrderedDict()
for x in tf.compat.v1.train.list_variables(checkpoint_path):
(name, var) = (x[0], x[1])
d[name] = ckpt_reader.get_tensor(name)
return d
|
[
"[email protected]"
] | |
e9a860e399fac3764ecab8ebb8b31901390468c7
|
491c7a6b2eeaccf9e8421c0b1ec5a2d9d77407e2
|
/ceres/consensus/all_coins_default_constants/chaingreen_default_constants.py
|
7fde41f6c0352db6f6c46ba63b01b94d2a6a068e
|
[
"Apache-2.0"
] |
permissive
|
zhenglcc/ceres-combineharvester
|
25609627a4a16b3e3067c2e4296de82a65f3b2bd
|
47b685a63fb5f38ac9e2eceb9724a562feb06ee9
|
refs/heads/main
| 2023-08-25T04:49:31.531840 | 2021-10-30T09:06:08 | 2021-10-30T09:06:08 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,781 |
py
|
from ceres.util.ints import uint64
from ceres.consensus.constants import ConsensusConstants
testnet_kwargs = {
"SLOT_BLOCKS_TARGET": 32,
"MIN_BLOCKS_PER_CHALLENGE_BLOCK": 16, # Must be less than half of SLOT_BLOCKS_TARGET
"MAX_SUB_SLOT_BLOCKS": 128, # Must be less than half of SUB_EPOCH_BLOCKS
"NUM_SPS_SUB_SLOT": 64, # Must be a power of 2
"SUB_SLOT_ITERS_STARTING": 2 ** 16,
# DIFFICULTY_STARTING is the starting difficulty for the first epoch, which is then further
# multiplied by another factor of DIFFICULTY_CONSTANT_FACTOR, to be used in the VDF iter calculation formula.
"DIFFICULTY_CONSTANT_FACTOR": 2 ** 20,
"DIFFICULTY_STARTING": 1,
"DIFFICULTY_CHANGE_MAX_FACTOR": 81, # The next difficulty is truncated to range [prev / FACTOR, prev * FACTOR]
# "DIFFICULTY_CHANGE_MAX_FACTOR_v1_2_0": 81, # This difficulty change to be applied with v1.2.0
# "v1_2_0_ACTIVATION_BLOCK": 170496, # activation of v1.2.0 rules height
# These 3 constants must be changed at the same time
"SUB_EPOCH_BLOCKS": 384, # The number of blocks per sub-epoch, mainnet 384
"EPOCH_BLOCKS": 4608, # The number of blocks per epoch, mainnet 4608. Must be multiple of SUB_EPOCH_BLOCKS
"SIGNIFICANT_BITS": 8, # The number of bits to look at in difficulty and min iters. The rest are zeroed
"DISCRIMINANT_SIZE_BITS": 1024, # Max is 1024 (based on ClassGroupElement int size)
"NUMBER_ZERO_BITS_PLOT_FILTER": 9, # H(plot signature of the challenge) must start with these many zeroes
"MIN_PLOT_SIZE": 32, # 32 for mainnet
"MAX_PLOT_SIZE": 50,
"SUB_SLOT_TIME_TARGET": 600, # The target number of seconds per slot, mainnet 600
"NUM_SP_INTERVALS_EXTRA": 3, # The number of sp intervals to add to the signage point
"MAX_FUTURE_TIME": 5 * 60, # The next block can have a timestamp of at most these many seconds in the future
"NUMBER_OF_TIMESTAMPS": 11, # Than the average of the last NUMBER_OF_TIMESTAMPS blocks
# Used as the initial cc rc challenges, as well as first block back pointers, and first SES back pointer
# We override this value based on the chain being run (testnet0, testnet1, mainnet, etc)
# Default used for tests is std_hash(b'')
"GENESIS_CHALLENGE": bytes.fromhex("2cef93a2ebf7c0546609311684e484f08555d3c0e4336a30a044e1ba7f26f691"),
# Forks of chia should change this value to provide replay attack protection. This is set to mainnet genesis chall
"AGG_SIG_ME_ADDITIONAL_DATA": bytes.fromhex("0235e47be80dbba72e8e105f87776fe16690838dde7f71e8a77086c0374bcaf3"),
"GENESIS_PRE_FARM_POOL_PUZZLE_HASH": bytes.fromhex(
"42e52e6fac97b0f409c372865989bc9443755887ab24cab3b00bcd1fdacad7f5"
),
"GENESIS_PRE_FARM_FARMER_PUZZLE_HASH": bytes.fromhex(
"427930199ca2f1d7669de76057fc215abed4cf28e33ffdf662873f6d6622e3e6"
),
"MAX_VDF_WITNESS_SIZE": 64,
# Size of mempool = 50x the size of block
"MEMPOOL_BLOCK_BUFFER": 50,
# Max coin amount, fits into 64 bits
"MAX_COIN_AMOUNT": uint64((1 << 64) - 1),
# Max block cost in clvm cost units
"MAX_BLOCK_COST_CLVM": 11000000000,
# The cost per byte of generator program
"COST_PER_BYTE": 12000,
"WEIGHT_PROOF_THRESHOLD": 2,
"BLOCKS_CACHE_SIZE": 4608 + (128 * 4),
"WEIGHT_PROOF_RECENT_BLOCKS": 1000,
"MAX_BLOCK_COUNT_PER_REQUESTS": 32, # Allow up to 32 blocks per request
# "INITIAL_FREEZE_END_TIMESTAMP": 1621630800, # 2021-05-21T21:00:00Z
"NETWORK_TYPE": 0,
"MAX_GENERATOR_SIZE": 1000000,
"MAX_GENERATOR_REF_LIST_SIZE": 512, # Number of references allowed in the block generator ref list
"POOL_SUB_SLOT_ITERS": 37600000000, # iters limit * NUM_SPS
}
DEFAULT_CONSTANTS = ConsensusConstants(**testnet_kwargs) # type: ignore
|
[
"[email protected]"
] | |
ec35ca8c45e83ee2346b6490fe0798b8a2c19343
|
177464b6a6199b72d5f9342423fd507630e7ef8c
|
/setup.py
|
857b0b44d0307a6e4622d21dbb085cd8f1d2f053
|
[
"BSD-2-Clause"
] |
permissive
|
yyr93520/sne
|
19f58f40840d18665fbdaff552396c0ce9ccd180
|
caaa2cce9b623f5ffc411ece4c9176872a672793
|
refs/heads/master
| 2021-08-23T14:48:42.730451 | 2017-12-05T08:52:05 | 2017-12-05T08:52:05 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,358 |
py
|
from os import path
from setuptools import setup, find_packages
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, 'README.md')) as f:
long_description = f.read()
setup(
name='learning sparse network embedding for identity user retrieval',
version='1.0.0.dev',
url='https://github.com/Allen517/sne',
description='',
long_description=long_description,
keywords='',
author='',
maintainer='King Wang',
maintainer_email='[email protected]',
license='BSD',
packages=find_packages(exclude=('tests', 'tests.*')),
package_data={
},
entry_points={
},
classifiers=[
'Framework :: SNE',
'Development Status :: 2 - Pre-Alpha',
'Environment :: Web Environment',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Natural Language :: Chinese (Simplified)',
'Operating System :: OS Independent',
'Programming Language :: Python :: 2.7',
'Topic :: Internet :: WWW/HTTP',
'Topic :: Softwamax_shinglere Development :: Libraries :: Application Frameworks',
'Topic :: Software Development :: Libraries :: Python Modules',
],
install_requires=[
'tensorflow==1.3.0',
'numpy',
],
)
|
[
"[email protected]"
] | |
1418f12136d730e578a93b5499f6ad816057a019
|
5ce1c0ab1b6147428fc30bcd1698e4d0e53b688e
|
/829.py
|
4fe73b828e6983e64730ae6da4385af8d2cf971f
|
[] |
no_license
|
junyang10734/leetcode-python
|
035b12df3f7d9fc33553140d1eb0692750b44f0a
|
eff322f04d22ffbc4f9b10e77f97c28aac5c7004
|
refs/heads/master
| 2023-07-22T11:16:38.740863 | 2023-07-14T00:22:00 | 2023-07-14T00:22:00 | 189,197,380 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 392 |
py
|
# 829. Consecutive Numbers Sum
# Math
# https://leetcode.com/problems/consecutive-numbers-sum/solution/
# runtime: O(N**0.5)
class Solution:
def consecutiveNumbersSum(self, N: int) -> int:
count = 0
upper = ceil((2 * N + 0.25) ** 0.5 - 0.5) + 1
for k in range(1, upper):
if (N - (k+1)*k // 2) % k == 0:
count += 1
return count
|
[
"[email protected]"
] | |
1ddcfa2db57a2e28a25671ce5333c37ca126c22a
|
e6c65e2e354336a4bea5b6a4ccbccd3682915fe2
|
/out-bin/py/google/fhir/models/model_test.runfiles/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/sparsemax/python/ops/__init__.py
|
393d43d4cfa0fb8d855ebba91c4effe94a98abaa
|
[
"Apache-2.0"
] |
permissive
|
rasalt/fhir-datalab
|
c30ab773d84983dd04a37e9d0ddec8bf2824b8a4
|
3e329fc8b4226d3e3a4a7c23c306a86e7a9ea0de
|
refs/heads/master
| 2021-10-09T05:51:04.593416 | 2018-12-21T18:11:03 | 2018-12-22T05:38:32 | 162,744,237 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 192 |
py
|
/home/rkharwar/.cache/bazel/_bazel_rkharwar/0ddaa3627472ad9d1367a008236ce2f5/external/pypi__tensorflow_1_12_0/tensorflow-1.12.0.data/purelib/tensorflow/contrib/sparsemax/python/ops/__init__.py
|
[
"[email protected]"
] | |
c14a556a8fc7a81e031a648406e986ae7db52409
|
9e5bf5e7d0bdfa4ff2aca65ac306ed801d146608
|
/python-06-stdlib-review/chapter-03-Algorithms/3.2-itertools/py_01_itertools.py
|
ed3063a35bb616b55116f551571022cacd42e8f5
|
[] |
no_license
|
AuroraBoreas/python_advanced_tricks
|
90b07967789960beec381de676459c1e84b95860
|
ba0940e25eda52345a27cf9ddffed9d18fa2a031
|
refs/heads/master
| 2022-11-27T19:09:45.666017 | 2020-08-11T17:33:11 | 2020-08-11T17:33:11 | 275,083,831 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 357 |
py
|
"""
P163-P176, itertools: iterator functions
! What?
! Why?
! How?
itertools
|-- merging and splitting iterators "分合"
|-- converting inputs "转"
|-- producing new valeus "生"
|-- filtering "滤"
|-- grouping data "群"
|-- combining inputs "主"
"""
|
[
"[email protected]"
] | |
4c50d3114769805bd5144afdece91f515c6f551f
|
b83ac23819fd7ba998563f2ad870405bdd07cc2b
|
/gym_idsgame/__init__.py
|
31ebf59e36a8fcf1596d6ed9c09c6d07bb97e533
|
[
"MIT"
] |
permissive
|
Limmen/gym-idsgame
|
699abd2894bce15108f1606f5fb71f612dd7ba03
|
d10830fef55308d383c98b41b34688a7fceae357
|
refs/heads/master
| 2023-09-01T17:32:16.768138 | 2023-08-22T12:00:53 | 2023-08-22T12:00:53 | 247,794,752 | 49 | 12 |
MIT
| 2021-04-21T07:50:06 | 2020-03-16T19:00:27 |
Python
|
UTF-8
|
Python
| false | false | 66,874 |
py
|
"""
Register OpenAI Envs
"""
from gymnasium.envs.registration import register
# -------- Version 0 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 0
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v0',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV0Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 0
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v0',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV0Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 0
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v0',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV0Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 0
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v0',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV0Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 0
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v0',
entry_point='gym_idsgame.envs:IdsGameV0Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 1 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 1
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v1',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV1Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 1
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v1',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV1Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 1
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v1',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV1Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 1
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v1',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV1Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 1
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v1',
entry_point='gym_idsgame.envs:IdsGameV1Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 2 ------------
# [AttackerEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 2
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v2',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV2Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 2
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v2',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV2Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 2
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v2',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV2Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 2
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v2',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV2Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 2
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v2',
entry_point='gym_idsgame.envs:IdsGameV2Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 3 ------------
# [AttackerEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 3
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v3',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV3Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 2 layer, 3 servers per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 3
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v3',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV3Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 3
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v3',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV3Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 3
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v3',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV3Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 3
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v3',
entry_point='gym_idsgame.envs:IdsGameV3Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 4 ------------
# [AttackerEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 4
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v4',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV4Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 4 layer, 5 servers per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 4
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v4',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV4Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 4
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v4',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV4Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 4
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v4',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV4Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 4
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v4',
entry_point='gym_idsgame.envs:IdsGameV4Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 5 ------------
# [AttackerEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random defender, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v5',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV5Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 4 layers, 5 servers per layer, 10 attack-defense-values,
# defender following the "defend minimal strategy", connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v5',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV5Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random attacker, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v5',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV5Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values,
# attacker following the "attack maximal strategy", connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v5',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV5Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Sparse
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v5',
entry_point='gym_idsgame.envs:IdsGameV5Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 6 ------------
# [AttackerEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random defender, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 6
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v6',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV6Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 4 layer, 5 servers per layer, 10 attack-defense-values,
# defender following the "defend minimal strategy", connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 6
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v6',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV6Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, random attacker, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 6
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v6',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV6Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values,
# attacker following the "attack maximal strategy", connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 6
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v6',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV6Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 4 layers, 5 servers per layer, 10 attack-defense-values, connected layers
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 5
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v6',
entry_point='gym_idsgame.envs:IdsGameV6Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 7 ------------
# [AttackerEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 7
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v7',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV7Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 2 layer, 3 servers per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 7
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v7',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV7Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 7
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v7',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV7Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 7
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v7',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV7Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 2 layers, 3 servers per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 7
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v7',
entry_point='gym_idsgame.envs:IdsGameV7Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 8 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 8
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v8',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV8Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 8
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v8',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV8Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 8
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v8',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV8Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 8
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v8',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV8Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 8
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v8',
entry_point='gym_idsgame.envs:IdsGameV8Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 9 ------------
# [AttackerEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 9
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v9',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV9Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 9
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v9',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV9Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 9
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v9',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV9Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 9
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v9',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV9Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 2 servers per layer, 10 attack-defense-values
# [Initial State] Defense: 4, Attack:0, Num vulnerabilities: 4, Det: 3, Vulnerability value: 0
# [Rewards] Dense
# [Version] 9
# [Observations] partially observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v9',
entry_point='gym_idsgame.envs:IdsGameV9Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 10 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 10
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v10',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV10Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 10 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 10
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v10',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV10Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 10
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v10',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV10Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 10
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v10',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV10Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 10 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 2, Vulnerability value: 0
# [Rewards] Dense
# [Version] 10
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v10',
entry_point='gym_idsgame.envs:IdsGameV10Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 11 ------------
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 11
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v11',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV11Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 11
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v11',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV11Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 11
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v11',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV11Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 11
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v11',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV11Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 11
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v11',
entry_point='gym_idsgame.envs:IdsGameV11Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 12 ------------
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: (0-1) (random), Attack: (0-1) (random), Num vulnerabilities: 0, Det: (0-1) (random),
# Vulnerability value: 0
# [Rewards] Dense
# [Version] 12
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v12',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV12Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: (0-1) (random), Attack: (0-1) (random), Num vulnerabilities: 0, Det: (0-1) (random),
# Vulnerability value: 0
# [Rewards] Dense
# [Version] 12
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v12',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV12Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: (0-1) (random), Attack: (0-1) (random), Num vulnerabilities: 0, Det: (0-1) (random),
# Vulnerability value: 0
# [Rewards] Dense
# [Version] 12
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v12',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV12Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: (0-1) (random), Attack: (0-1) (random), Num vulnerabilities: 0, Det: (0-1) (random),
# Vulnerability value: 0
# [Rewards] Dense
# [Version] 12
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v12',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV12Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: (0-1) (random), Attack: (0-1) (random), Num vulnerabilities: 0, Det: (0-1) (random),
# Vulnerability value: 0
# [Rewards] Dense
# [Version] 12
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v12',
entry_point='gym_idsgame.envs:IdsGameV12Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 13 ------------
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 10, Vulnerability value: 0
# [Rewards] Dense
# [Version] 13
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v13',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV13Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 10, Vulnerability value: 0
# [Rewards] Dense
# [Version] 13
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v13',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV13Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 10, Vulnerability value: 0
# [Rewards] Dense
# [Version] 13
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v13',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV13Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 10, Vulnerability value: 0
# [Rewards] Dense
# [Version] 13
# [Observations] fully observed
# [Environment] Deterministic
# [Attacker Starting Position] Start node
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v13',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV13Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 0 layers, 1 server per layer, 2 attack-defense-values
# [Initial State] Defense: 0, Attack:0, Num vulnerabilities: 0, Det: 10, Vulnerability value: 0
# [Rewards] Dense
# [Version] 13
# [Observations] fully observed
# [Attacker Starting Position] Start node
# [Environment] Deterministic
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v13',
entry_point='gym_idsgame.envs:IdsGameV13Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 14 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 14
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v14',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV14Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 14
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v14',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV14Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 14
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v14',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV14Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 14
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v14',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV14Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 14
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v14',
entry_point='gym_idsgame.envs:IdsGameV14Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 15 ------------
# [AttackEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 15
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v15',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV15Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 15
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v15',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV15Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 15
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v15',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV15Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 15
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v15',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV15Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 15
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Start node
# [Local View] Yes
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v15',
entry_point='gym_idsgame.envs:IdsGameV15Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 16 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 16
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v16',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV16Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 16
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v16',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV16Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 16
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v16',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV16Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 16
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v16',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV16Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 16
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v16',
entry_point='gym_idsgame.envs:IdsGameV16Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 17 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random defender
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 17
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_defense-v17',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV17Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 4 attack-defense-values, defender following the "defend minimal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 17
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-minimal_defense-v17',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV17Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, random attacker
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 17
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-random_attack-v17',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV17Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values, attacker following the "attack maximal strategy"
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 17
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-maximal_attack-v17',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV17Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 4 attack-defense-values
# [Initial State] Defense: 2, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 0
# [Rewards] Dense
# [Version] 17
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] No
# [Reconnaissance activities] disabled
# [Reconnaissance bool features] No
register(
id='idsgame-v17',
entry_point='gym_idsgame.envs:IdsGameV17Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 18 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 18
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_defense-v18',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV18Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, defender following the "defend minimal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 18
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-minimal_defense-v18',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV18Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random attacker
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 18
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_attack-v18',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV18Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, attacker following the "attack maximal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 18
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-maximal_attack-v18',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV18Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 18
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-v18',
entry_point='gym_idsgame.envs:IdsGameV18Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 19 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 19
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_defense-v19',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV19Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, defender following the "defend minimal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 19
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-minimal_defense-v19',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV19Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random attacker
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 19
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_attack-v19',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV19Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, attacker following the "attack maximal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 19
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-maximal_attack-v19',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV19Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 19
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-v19',
entry_point='gym_idsgame.envs:IdsGameV19Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 20 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 20
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_defense-v20',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV20Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, defender following the "defend minimal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 20
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-minimal_defense-v20',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV20Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random attacker
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 20
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_attack-v20',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV20Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, attacker following the "attack maximal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 20
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-maximal_attack-v20',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV20Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 20
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-v20',
entry_point='gym_idsgame.envs:IdsGameV20Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# -------- Version 21 ------------
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 21
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_defense-v21',
entry_point='gym_idsgame.envs:IdsGameRandomDefenseV21Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackerEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, defender following the "defend minimal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 21
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-minimal_defense-v21',
entry_point='gym_idsgame.envs:IdsGameMinimalDefenseV21Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, random attacker
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 21
# [Observations] fully observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-random_attack-v21',
entry_point='gym_idsgame.envs:IdsGameRandomAttackV21Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [DefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender, attacker following the "attack maximal strategy"
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 21
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-maximal_attack-v21',
entry_point='gym_idsgame.envs:IdsGameMaximalAttackV21Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
# [AttackDefenseEnv] 1 layer, 1 server per layer, 7 attack-defense-values, random defender
# [Initial State] Defense: 7, Attack:0, Num vulnerabilities: 1, Det: 1, Vulnerability value: 1
# [Rewards] Dense
# [Version] 21
# [Observations] partially observed
# [Environment] Random
# [Attacker Starting Position] Random
# [Local View] Yes
# [Reconnaissance activities] enabled
# [Reconnaissance bool features] Yes
register(
id='idsgame-v21',
entry_point='gym_idsgame.envs:IdsGameV21Env',
kwargs={'idsgame_config': None, 'save_dir': None, 'initial_state_path': None}
)
|
[
"[email protected]"
] | |
402f8b11f4f79126a7238680b4d8b3c9291b6525
|
2d930aadf19b2ad6ea49725099d2f37475cd57f8
|
/test/functional/signrawtransactions.py
|
01b71fc8133e8036171530c690526d90558605d1
|
[
"MIT"
] |
permissive
|
stratton-oakcoin/oakcoin
|
ea83774c9f6ea64adb8832770e6219ffb31edef6
|
fe53193a50bd3674211448f1dcc39c6f9f042bb2
|
refs/heads/master
| 2021-01-20T13:22:05.877005 | 2017-05-07T10:09:57 | 2017-05-07T10:09:57 | 90,477,972 | 1 | 2 | null | 2017-05-07T10:09:57 | 2017-05-06T16:58:05 |
C++
|
UTF-8
|
Python
| false | false | 5,919 |
py
|
#!/usr/bin/env python3
# Copyright (c) 2015-2016 The Oakcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test transaction signing using the signrawtransaction RPC."""
from test_framework.test_framework import OakcoinTestFramework
from test_framework.util import *
class SignRawTransactionsTest(OakcoinTestFramework):
def __init__(self):
super().__init__()
self.setup_clean_chain = True
self.num_nodes = 1
def successful_signing_test(self):
"""Create and sign a valid raw transaction with one input.
Expected results:
1) The transaction has a complete set of signatures
2) No script verification error occurred"""
privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N', 'cVKpPfVKSJxKqVpE9awvXNWuLHCa5j5tiE7K6zbUSptFpTEtiFrA']
inputs = [
# Valid pay-to-pubkey scripts
{'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0,
'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'},
{'txid': '83a4f6a6b73660e13ee6cb3c6063fa3759c50c9b7521d0536022961898f4fb02', 'vout': 0,
'scriptPubKey': '76a914669b857c03a5ed269d5d85a1ffac9ed5d663072788ac'},
]
outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1}
rawTx = self.nodes[0].createrawtransaction(inputs, outputs)
rawTxSigned = self.nodes[0].signrawtransaction(rawTx, inputs, privKeys)
# 1) The transaction has a complete set of signatures
assert 'complete' in rawTxSigned
assert_equal(rawTxSigned['complete'], True)
# 2) No script verification error occurred
assert 'errors' not in rawTxSigned
# Check that signrawtransaction doesn't blow up on garbage merge attempts
dummyTxInconsistent = self.nodes[0].createrawtransaction([inputs[0]], outputs)
rawTxUnsigned = self.nodes[0].signrawtransaction(rawTx + dummyTxInconsistent, inputs)
assert 'complete' in rawTxUnsigned
assert_equal(rawTxUnsigned['complete'], False)
# Check that signrawtransaction properly merges unsigned and signed txn, even with garbage in the middle
rawTxSigned2 = self.nodes[0].signrawtransaction(rawTxUnsigned["hex"] + dummyTxInconsistent + rawTxSigned["hex"], inputs)
assert 'complete' in rawTxSigned2
assert_equal(rawTxSigned2['complete'], True)
assert 'errors' not in rawTxSigned2
def script_verification_error_test(self):
"""Create and sign a raw transaction with valid (vin 0), invalid (vin 1) and one missing (vin 2) input script.
Expected results:
3) The transaction has no complete set of signatures
4) Two script verification errors occurred
5) Script verification errors have certain properties ("txid", "vout", "scriptSig", "sequence", "error")
6) The verification errors refer to the invalid (vin 1) and missing input (vin 2)"""
privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N']
inputs = [
# Valid pay-to-pubkey script
{'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0},
# Invalid script
{'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7},
# Missing scriptPubKey
{'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 1},
]
scripts = [
# Valid pay-to-pubkey script
{'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0,
'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'},
# Invalid script
{'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7,
'scriptPubKey': 'badbadbadbad'}
]
outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1}
rawTx = self.nodes[0].createrawtransaction(inputs, outputs)
# Make sure decoderawtransaction is at least marginally sane
decodedRawTx = self.nodes[0].decoderawtransaction(rawTx)
for i, inp in enumerate(inputs):
assert_equal(decodedRawTx["vin"][i]["txid"], inp["txid"])
assert_equal(decodedRawTx["vin"][i]["vout"], inp["vout"])
# Make sure decoderawtransaction throws if there is extra data
assert_raises(JSONRPCException, self.nodes[0].decoderawtransaction, rawTx + "00")
rawTxSigned = self.nodes[0].signrawtransaction(rawTx, scripts, privKeys)
# 3) The transaction has no complete set of signatures
assert 'complete' in rawTxSigned
assert_equal(rawTxSigned['complete'], False)
# 4) Two script verification errors occurred
assert 'errors' in rawTxSigned
assert_equal(len(rawTxSigned['errors']), 2)
# 5) Script verification errors have certain properties
assert 'txid' in rawTxSigned['errors'][0]
assert 'vout' in rawTxSigned['errors'][0]
assert 'scriptSig' in rawTxSigned['errors'][0]
assert 'sequence' in rawTxSigned['errors'][0]
assert 'error' in rawTxSigned['errors'][0]
# 6) The verification errors refer to the invalid (vin 1) and missing input (vin 2)
assert_equal(rawTxSigned['errors'][0]['txid'], inputs[1]['txid'])
assert_equal(rawTxSigned['errors'][0]['vout'], inputs[1]['vout'])
assert_equal(rawTxSigned['errors'][1]['txid'], inputs[2]['txid'])
assert_equal(rawTxSigned['errors'][1]['vout'], inputs[2]['vout'])
def run_test(self):
self.successful_signing_test()
self.script_verification_error_test()
if __name__ == '__main__':
SignRawTransactionsTest().main()
|
[
"[email protected]"
] | |
678efd8416616f304423b9610caa21b3b0aa6bb3
|
b70f99aee135ea27a03951e75524ede3be18d316
|
/test/tob_pyner/fill_fields/bin/fill/customer_bin.py
|
f3be56157b686a98e42d5ab2d0c2ff980456bc57
|
[] |
no_license
|
zlbl/AutoTestPytestN
|
968e11b205d824eca0fcb73a166f21208ce405d5
|
a86f71a4ad50796f5031cdb40c4d5a808f421383
|
refs/heads/master
| 2020-11-28T19:27:21.056844 | 2019-12-24T08:25:45 | 2019-12-24T08:25:45 | 229,902,483 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,096 |
py
|
from datetime import datetime
from test.tob_pyner.fill_fields.bin.fill.update_cust_info_sql import *
from test.tob_pyner.fill_fields.util.MySqlHelper import select_insert, update
def generate_customer():
"""生成客户id"""
# ALTER TABLE pyner_customer AUTO_INCREMENT = 1000000001;
select_insert(generateSQL)
"""生成平台客户ID"""
update(updatePlatformCredInfoUSCCSQL)
update(updatePlatformCredInfoBLCSQL)
select_insert(generatePlatformSQL)
print('generate_customer Finish', datetime.now())
def update_user_customer_id():
"""更新用户表客户Id"""
update(updateUserCustomerIdSQL)
print('update_user_customer_id Finish', datetime.now())
def update_person_customer_id():
update(updatePersonCustomerIdSQL)
print('update_person_customer_id Finish', datetime.now())
def update_enterprise_customer_id():
update(updateEnterpriseCustomerIdSQL)
print('update_enterprise_customer_id Finish', datetime.now())
def update_platform_customer_id():
update(updatePlatformCustomerIdSQL)
print('update_platform_customer_id Finish', datetime.now())
def update_account_customer_id():
# 更新用户账户表
update(updateAccountCustomerIdSQL1)
# 更新平台账户表
update(updateAccountCustomerIdSQL2)
print('update_account_customer_id Finish', datetime.now())
def update_bid_customer_id():
update(updateBidCustomerIdSQL)
print('update_bid_customer_id Finish', datetime.now())
def update_obligatory_customer_id():
update(updateObligatoryCustomerIdSQL)
print('update_obligatory_customer_id Finish', datetime.now())
def update_trade_pay_customer_id():
update(updateTradePayCustomerIdSQL)
print('update_trade_pay_customer_id Finish', datetime.now())
def update_trade_receive_customer_id():
update(updateTradeReceiveCustomerIdSQL)
print('update_trade_receive_customer_id Finish', datetime.now())
if __name__ == '__main__':
print('开始时间:', datetime.now())
# generate_customer()
update_user_customer_id()
update_person_customer_id()
update_enterprise_customer_id()
update_platform_customer_id()
update_account_customer_id()
update_bid_customer_id()
update_obligatory_customer_id()
update_trade_pay_customer_id()
update_trade_receive_customer_id()
print('结束时间:', datetime.now())
def generate_customer_id():
# 生成customerId
generate_customer()
# 更新customerId到User表
update_user_customer_id()
# 更新customerId到Person表
update_person_customer_id()
# 更新customerId到Enterprise表
update_enterprise_customer_id()
# 更新customerId到Platform表
update_platform_customer_id()
# 更新customerId到Account表
update_account_customer_id()
# 更新customerId到Bid表
update_bid_customer_id()
# 更新customerId到Obligatory表
update_obligatory_customer_id()
# 更新付款方customerId到Trade表
update_trade_pay_customer_id()
# 更新收款方customerId到Trade表
update_trade_receive_customer_id()
|
[
"[email protected]"
] | |
78f5536e736c9e86de6b0ca888abfd4a50ce2276
|
22a243d9535602e2f56b4e8d78f743b6240afc94
|
/image_captioning/coco_caption/pycocoevalcap/bleu/bleu.py
|
1c3a2c5a4780bbba09e046123fced9affa79d062
|
[
"MIT",
"BSD-2-Clause-Views"
] |
permissive
|
RitaRamo/memory-augmented-nn
|
05bc969fa28225e95b38d6f1d5f0fa09a94b30db
|
0553df245a6976ad1c15075a65df93591e2c2632
|
refs/heads/main
| 2023-03-08T13:59:52.530224 | 2021-02-22T19:03:25 | 2021-02-22T19:03:25 | 309,144,074 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,311 |
py
|
#!/usr/bin/env python
#
# File Name : bleu.py
#
# Description : Wrapper for BLEU scorer.
#
# Creation Date : 06-01-2015
# Last Modified : Thu 19 Mar 2015 09:13:28 PM PDT
# Authors : Hao Fang <[email protected]> and Tsung-Yi Lin <[email protected]>
from bleu_scorer import BleuScorer
class Bleu:
def __init__(self, n=4):
# default compute Blue score up to 4
self._n = n
self._hypo_for_image = {}
self.ref_for_image = {}
def compute_score(self, gts, res):
assert(gts.keys() == res.keys())
imgIds = gts.keys()
bleu_scorer = BleuScorer(n=self._n)
for id in imgIds:
hypo = res[id]
ref = gts[id]
print("image id", id)
print("hypo", hypo)
# Sanity check.
assert(type(hypo) is list)
assert(len(hypo) == 1)
assert(type(ref) is list)
assert(len(ref) >= 1)
bleu_scorer += (hypo[0], ref)
#score, scores = bleu_scorer.compute_score(option='shortest')
score, scores = bleu_scorer.compute_score(option='closest', verbose=1)
#score, scores = bleu_scorer.compute_score(option='average', verbose=1)
# return (bleu, bleu_info)
return score, scores
def method(self):
return "Bleu"
|
[
"[email protected]"
] | |
67b81c79caf9d6e7e0ca40ffe64b68a22a98c497
|
529694a395c88a1c0c097f80456a0eb01144131f
|
/tensorpac/spectral.py
|
994abb93382c017eed859bd9f28e43ec0298d8f4
|
[
"BSD-3-Clause"
] |
permissive
|
cjayb/tensorpac
|
0d83c4dcec2b40c75c119f243070faacb3b220bf
|
e4ee18ca3faa8ad9f3cdd4f5233be224f12523af
|
refs/heads/master
| 2023-01-27T12:49:32.841580 | 2020-12-08T14:44:35 | 2020-12-08T14:44:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,860 |
py
|
"""Extract spectral informations from data."""
import numpy as np
from joblib import Parallel, delayed
from scipy.signal import hilbert, filtfilt
from scipy import fftpack
from tensorpac.config import CONFIG
def hilbertm(x):
"""Faster Hilbert fix.
x must have a shape of (..., n_pts)
"""
n_pts = x.shape[-1]
fc = fftpack.helper.next_fast_len(n_pts)
return hilbert(x, fc, axis=-1)[..., 0:n_pts]
def spectral(x, sf, f, stype, dcomplex, cycle, width, n_jobs):
"""Extract spectral informations from data.
Parameters
----------
x : array_like
Array of data
sf : float
Sampling frequency
f : array_like
Frequency vector of shape (N, 2)
stype : string
Spectral informations to extract (use either 'pha' or 'amp')
dcomplex : string
Complex decomposition type. Use either 'hilbert' or 'wavelet'
cycle : int
Number of cycles to use for fir1 filtering.
width : int
Width of the wavelet.
n_jobs : int
Number of jobs to use. If jobs is -1, all of them are going to be
used.
"""
n_freqs = f.shape[0]
# Filtering + complex decomposition :
if dcomplex is 'hilbert':
# get filtering coefficients
b = []
a = np.zeros((n_freqs,), dtype=float)
forder = np.zeros((n_freqs,), dtype=int)
for k in range(n_freqs):
forder[k] = fir_order(sf, x.shape[-1], f[k, 0], cycle=cycle)
_b, a[k] = fir1(forder[k], f[k, :] / (sf / 2.))
b += [_b]
# Filt each time series :
xf = Parallel(n_jobs=n_jobs, **CONFIG['JOBLIB_CFG'])(delayed(filtfilt)(
b[k], a[k], x, padlen=forder[k], axis=-1) for k in range(n_freqs))
# Use hilbert for the complex decomposition :
xd = np.asarray(xf)
if stype is not None:
xd = hilbertm(xd)
elif dcomplex is 'wavelet':
f = f.mean(1) # centered frequencies
xd = Parallel(n_jobs=n_jobs, **CONFIG['JOBLIB_CFG'])(delayed(morlet)(
x, sf, k, width) for k in f)
# Extract phase / amplitude :
if stype is 'pha':
return np.angle(xd).astype(np.float64)
elif stype is 'amp':
return np.abs(xd).astype(np.float64)
elif stype is None:
return xd.astype(np.float64)
###############################################################################
###############################################################################
# FILTERING
###############################################################################
###############################################################################
def fir_order(fs, sizevec, flow, cycle=3):
filtorder = cycle * (fs // flow)
if (sizevec < 3 * filtorder):
filtorder = (sizevec - 1) // 3
return int(filtorder)
def n_odd_fcn(f, o, w, l):
"""Odd case."""
# Variables :
b0 = 0
m = np.array(range(int(l + 1)))
k = m[1:len(m)]
b = np.zeros(k.shape)
# Run Loop :
for s in range(0, len(f), 2):
m = (o[s + 1] - o[s]) / (f[s + 1] - f[s])
b1 = o[s] - m * f[s]
b0 = b0 + (b1 * (f[s + 1] - f[s]) + m / 2 * (
f[s + 1] * f[s + 1] - f[s] * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
b = b + (m / (4 * np.pi * np.pi) * (
np.cos(2 * np.pi * k * f[s + 1]) - np.cos(2 * np.pi * k * f[s])
) / (k * k)) * abs(np.square(w[round((s + 1) / 2)]))
b = b + (f[s + 1] * (m * f[s + 1] + b1) * np.sinc(2 * k * f[
s + 1]) - f[s] * (m * f[s] + b1) * np.sinc(2 * k * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
b = np.insert(b, 0, b0)
a = (np.square(w[0])) * 4 * b
a[0] = a[0] / 2
aud = np.flipud(a[1:len(a)]) / 2
a2 = np.insert(aud, len(aud), a[0])
h = np.concatenate((a2, a[1:] / 2))
return h
def n_even_fcn(f, o, w, l):
"""Even case."""
# Variables :
k = np.array(range(0, int(l) + 1, 1)) + 0.5
b = np.zeros(k.shape)
# # Run Loop :
for s in range(0, len(f), 2):
m = (o[s + 1] - o[s]) / (f[s + 1] - f[s])
b1 = o[s] - m * f[s]
b = b + (m / (4 * np.pi * np.pi) * (np.cos(2 * np.pi * k * f[
s + 1]) - np.cos(2 * np.pi * k * f[s])) / (
k * k)) * abs(np.square(w[round((s + 1) / 2)]))
b = b + (f[s + 1] * (m * f[s + 1] + b1) * np.sinc(2 * k * f[
s + 1]) - f[s] * (m * f[s] + b1) * np.sinc(2 * k * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
a = (np.square(w[0])) * 4 * b
h = 0.5 * np.concatenate((np.flipud(a), a))
return h
def firls(n, f, o):
# Variables definition :
w = np.ones(round(len(f) / 2))
n += 1
f /= 2
lo = (n - 1) / 2
nodd = bool(n % 2)
if nodd: # Odd case
h = n_odd_fcn(f, o, w, lo)
else: # Even case
h = n_even_fcn(f, o, w, lo)
return h
def fir1(n, wn):
# Variables definition :
nbands = len(wn) + 1
ff = np.array((0, wn[0], wn[0], wn[1], wn[1], 1))
f0 = np.mean(ff[2:4])
lo = n + 1
mags = np.array(range(nbands)).reshape(1, -1) % 2
aa = np.ravel(np.tile(mags, (2, 1)), order='F')
# Get filter coefficients :
h = firls(lo - 1, ff, aa)
# Apply a window to coefficients :
wind = np.hamming(lo)
b = h * wind
c = np.exp(-1j * 2 * np.pi * (f0 / 2) * np.array(range(lo)))
b /= abs(c @ b)
return b, 1
###############################################################################
###############################################################################
# FILTERING
###############################################################################
###############################################################################
def morlet(x, sf, f, width=7.):
"""Complex decomposition of a signal x using the morlet wavelet.
Parameters
----------
x : array_like, shape (N,)
The signal to use for the complex decomposition. Must be
a vector of length N.
sf : float
Sampling frequency
f : array_like, shape (2,)
Frequency vector
width : float | 7.
Width of the wavelet
Returns
-------
xout: array_like, shape (N,)
The complex decomposition of the signal x.
"""
dt = 1 / sf
sf = f / width
st = 1 / (2 * np.pi * sf)
# Build morlet's wavelet :
t = np.arange(-width * st / 2, width * st / 2, dt)
a = 1 / np.sqrt((st * np.sqrt(np.pi)))
m = a * np.exp(-np.square(t) / (2 * np.square(st))) * np.exp(
1j * 2 * np.pi * f * t)
def ndmorlet(xt):
# Compute morlet :
y = np.convolve(xt, m)
return y[int(np.ceil(len(m) / 2)) - 1:int(len(y) - np.floor(
len(m) / 2))]
return np.apply_along_axis(ndmorlet, -1, x)
|
[
"[email protected]"
] | |
f79f65f0b11e74e90409fdb59e7626a53d9164e7
|
a0643c775515499dd9492464384b05e82da608a8
|
/test_interface/CEM/marketingManagement/marketingManagement/nodeDefineRecord_test.py
|
64d559fe436d1d8ca8fff826bd8e7489a6ea7554
|
[] |
no_license
|
EmmySmith/autoInterfaceTest
|
e4935e5fbe85324502f1c8b9ba33ede51cfee81b
|
56d31476994bfc276cc53ab32c9b27b8d2447e0b
|
refs/heads/master
| 2023-05-28T05:27:22.615719 | 2020-05-09T03:40:04 | 2020-05-09T03:40:04 | 262,480,416 | 0 | 0 | null | 2023-05-22T22:44:16 | 2020-05-09T03:26:26 |
HTML
|
UTF-8
|
Python
| false | false | 1,120 |
py
|
#!/usr/bin/python
# coding=utf-8
import requests
import unittest
import json,time,random
from common.public import *
from mysqlHandle.common_mysql import *
class ICEM_Interface(unittest.TestCase):
@classmethod
def setUpClass(self):
self.headers = headers
self.host = host
self.path = "/api/icem-activity/workflow/nodeDefineRecord"
self.random = random.randint(1000,99999)
self.sql = "SELECT id FROM t_activity ORDER BY id DESC LIMIT 1;"
self.dbname = "geek_icem_activity"
print("----------开始测试----------")
#节点列表接口
def test_nodeDefineRecord(self):
'''节点列表接口'''
self.url = self.host + self.path
self.activityId = DB_ICEM_proc(self.dbname).get_vslues(self.sql)
data = {"activityId":self.activityId}
print(self.url)
response = requests.post(url=self.url,data= json.dumps(data), headers=self.headers)
print (response.text)
assert response.json()['error'] == 0
def tearDown(self):
pass
if __name__ == "__main__":
sms = ICEM_Interface()
|
[
"[email protected]"
] | |
d93b2b2d13b8c15e3517aaffa07d6e531fbcc33b
|
39689ee725bc7183d5d59fb34f7d2ffe5fd6ad36
|
/ABC_B/ABC152B.py
|
35c5db735fa5cc883c21d5980d6836368cc1fc04
|
[] |
no_license
|
yu5shi8/AtCoder
|
b6eb920a9046bdfa98012dd3fc65f75f16214ffe
|
f9ca69001ece8379e3a70c993c44b540f8be2217
|
refs/heads/master
| 2021-06-15T17:58:07.027699 | 2021-03-20T14:04:03 | 2021-03-20T14:04:03 | 177,757,053 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 221 |
py
|
# -*- coding: utf-8 -*-
# B - Comparing Strings
# https://atcoder.jp/contests/abc152/tasks/abc152_b
a, b = map(int, input().split())
if a <= b:
print(str(a) * b)
else:
print(str(b) * a)
# 23:32 - 23:36(AC)
|
[
"[email protected]"
] | |
b654a1eafce5e94c9b993cdbd1877fa3a05eafcb
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03805/s743667282.py
|
877dfca86e7d05d94725d8483f03ad1b21f93854
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 614 |
py
|
from collections import deque
def dfs(G, visited, s, n, ans):
# すべての頂点を訪れた場合の処理
if all(visited) :
ans += 1
return ans
# 次の頂点の探索
for i in G[s] :
if visited[i] == False :
visited[i] = True
ans = dfs(G, visited, i, n, ans)
visited[i] = False
return ans
# グラフGの入力
n,m = map(int,input().split())
G = [[] for j in range(n)]
for i in range(m) :
a,b = map(int,input().split())
G[a-1].append(b-1)
G[b-1].append(a-1)
visited = [False for i in range(n)]
visited[0] = True
ans = 0
print(dfs(G, visited, 0, n, ans))
|
[
"[email protected]"
] | |
66c9edb88fbf7c5955f202577b420c7e013304bd
|
8d3adc6867d80a75ac12984f52c78938221404a4
|
/Bio/_utils.py
|
77144e9015a72b4147ce67e6833712d851ccd8c7
|
[
"LicenseRef-scancode-biopython"
] |
permissive
|
chapmanb/biopython
|
407b17f44f599d71818c5e16bd86a44cf323e062
|
cade0aec7ecff7d052c42040f5cae8036e297941
|
refs/heads/master
| 2020-12-29T03:07:42.778627 | 2013-07-09T09:36:26 | 2013-07-09T09:36:26 | 412,030 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,568 |
py
|
# Copyright 2010 by Eric Talevich. All rights reserved.
# Copyright 2012 by Wibowo Arindrarto. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Common utility functions for various Bio submodules."""
import os
def iterlen(items):
"""Count the number of items in an iterable.
If the argument supports len(items), and some iterators do, then
this returns len(items). Otherwise it will scan over the entries
in order to count them.
Exhausts a generator, but doesn't require creating a full list.
>>> iterlen("abcde")
5
>>> iterlen(iter("abcde"))
5
>>> iterlen(xrange(5))
5
"""
try:
#e.g. Under Python 2, the xrange iterator defines __len__
return len(items)
except TypeError:
for i, x in enumerate(items):
count = i
return count + 1
def read_forward(handle):
"""Reads through whitespaces, returns the first non-whitespace line."""
while True:
line = handle.readline()
# if line has characters and stripping does not remove them,
# return the line
if line and line.strip():
return line
# if line ends, return None
elif not line:
return line
def trim_str(string, max_len, concat_char):
"""Truncates the given string for display."""
if len(string) > max_len:
return string[:max_len - len(concat_char)] + concat_char
return string
def getattr_str(obj, attr, fmt=None, fallback='?'):
"""Returns a string of the given object's attribute, defaulting to the
fallback value if attribute is not present."""
if hasattr(obj, attr):
if fmt is not None:
return fmt % getattr(obj, attr)
return str(getattr(obj, attr))
return fallback
def find_test_dir(start_dir=None):
"""Finds the absolute path of Biopython's Tests directory.
Arguments:
start_dir -- Initial directory to begin lookup (default to current dir)
If the directory is not found up the filesystem's root directory, an
exception will be raised.
"""
if not start_dir:
# no callbacks in function signatures!
# defaults to the current directory
# (using __file__ would give the installed Biopython)
start_dir = "."
target = os.path.abspath(start_dir)
while True:
if os.path.isdir(os.path.join(target, "Bio")) \
and os.path.isdir(os.path.join(target, "Tests")):
#Good, we're in the Biopython root now
return os.path.abspath(os.path.join(target, "Tests"))
#Recurse up the tree
#TODO - Test this on Windows
new, tmp = os.path.split(target)
if target == new:
#Reached root
break
target = new
raise ValueError("Not within Biopython source tree: %r" % os.path.abspath(start_dir))
def run_doctest(target_dir=None, *args, **kwargs):
"""Runs doctest for the importing module."""
import doctest
# default doctest options
default_kwargs = {
'optionflags': doctest.ELLIPSIS,
}
kwargs.update(default_kwargs)
cur_dir = os.path.abspath(os.curdir)
print "Runing doctests..."
try:
os.chdir(find_test_dir(target_dir))
doctest.testmod(*args, **kwargs)
finally:
# and revert back to initial directory
os.chdir(cur_dir)
print "Done"
if __name__ == "__main__":
run_doctest()
|
[
"[email protected]"
] | |
ccd23976c670e92724953d4e4f62a84424828fb2
|
0bce7412d58675d6cc410fa7a81c294ede72154e
|
/Python3/0287. Find the Duplicate Number.py
|
6fdd5f3ec43b8bdf3b456532302c0ad8a9ed6823
|
[] |
no_license
|
yang4978/LeetCode
|
9ddf010b0f1dda32cddc7e94c3f987509dea3214
|
6387d05b619d403414bad273fc3a7a2c58668db7
|
refs/heads/master
| 2022-01-15T04:21:54.739812 | 2021-12-28T12:28:28 | 2021-12-28T12:28:28 | 182,653,666 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 386 |
py
|
class Solution:
def findDuplicate(self, nums: List[int]) -> int:
left = 1
right = len(nums)-1
while left<right:
mid = left + (right-left)//2
temp = 0
for i in nums:
temp += (i<=mid)
if temp<=mid:
left = mid + 1
else:
right = mid
return left
|
[
"[email protected]"
] | |
b3621c42eac9b9c4eb104fc6c10c7e9dd8bc2186
|
bf99b1b14e9ca1ad40645a7423f23ef32f4a62e6
|
/AtCoder/abc/142d_2.py
|
aaf992c2ab19b95ac0e17785ef21ba969269e9b6
|
[] |
no_license
|
y-oksaku/Competitive-Programming
|
3f9c1953956d1d1dfbf46d5a87b56550ff3ab3db
|
a3ff52f538329bed034d3008e051f30442aaadae
|
refs/heads/master
| 2021-06-11T16:14:12.635947 | 2021-05-04T08:18:35 | 2021-05-04T08:18:35 | 188,639,647 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 564 |
py
|
A, B = map(int, input().split())
def primeCount(N):
R = int(N**(0.5)) + 1 # 素数の範囲
primes = {} # 素数のリスト
n = N
for num in range(2, R):
primes[num] = 0
while n % num == 0:
n //= num
primes[num] += 1
if n > 1 :
primes[n] = 1
return { key : val for key, val in primes.items() if val > 0} # フィルターをかける
primeA = primeCount(A)
ans = 1
prd = 1
for p in sorted(primeA.keys()):
if B % p == 0 and prd % p != 0:
prd *= p
ans += 1
print(ans)
|
[
"[email protected]"
] | |
d1702a2e70f5ca443f6715b7cd628f3999e8f553
|
db4cbb94ac337e670bc6d66c93244d37a6ca3aae
|
/configuration/mm45_rc28_wpz_M_mm41_cityscapes_aug_cluster_yang.py
|
5c5f57d4fc672882c565ac33875d4f1757c4fe21
|
[] |
no_license
|
gy20073/CIL_modular
|
1d14dbde21690c42162a6686926cb23a0148a929
|
da35bfec7d40708e4f76d08f54e04587bef1dd8b
|
refs/heads/master
| 2021-06-12T05:26:35.212861 | 2019-10-12T05:34:50 | 2019-10-12T05:34:50 | 137,950,075 | 2 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 9,149 |
py
|
import glob
import os
from imgaug import augmenters as iaa
#
# This is a config file, with three parts: Input, Training, Output, which are then joined in Main
#
class configMain:
def __init__(self):
# this is used for data balancing. Labels are balanced first, and then for each label group
# the [-1,1] interval is split into so many equal intervals
# when we need to sample a mini-batch, we sample bins and then sample inside the bins
self.steering_bins_perc = [0.05, 0.05, 0.1, 0.3, 0.3, 0.1, 0.05, 0.05]
self.number_steering_bins = len(self.steering_bins_perc)
self.batch_size = self.number_steering_bins * 15
self.batch_size_val = self.number_steering_bins * 15
self.number_images_val = self.batch_size_val # Number of images used in a validation Section - Default: 20*
# self.input_size = (227,227,3)
# self.manager_name = 'control_speed'
# y , x
self.image_size = (88, 200, 3)
self.network_input_size = (88, 200, 3)
self.variable_names = ['Steer', 'Gas', 'Brake', 'Hand_B', 'Reverse', 'Steer_N', 'Gas_N', 'Brake_N', 'Pos_X',
'Pos_Y', 'Speed', \
'C_Gen', 'C_Ped', 'C_Car', 'Road_I', 'Side_I', 'Acc_x', 'Acc_y', 'Acc_z', 'Plat_Ts',
'Game_Ts', 'Ori_X', 'Ori_Y', \
'Ori_Z', 'Control', 'Camera', 'Angle', 'wp1_x', 'wp1_y', 'wp2_x', 'wp2_y', 'wp1_angle',
'wp1_mag', 'wp2_angle', 'wp2_mag']
# _N is noise, Yaw_S is angular speed
self.sensor_names = ['rgb']
self.sensors_size = [(88, 200, 3)]
self.sensors_normalize = [True]
# CHANGE THIS FOR A DICTIONARY FOR GOD SAKE
self.targets_names = ['wp1_angle', 'wp2_angle', 'Steer', 'Gas', 'Brake', 'Speed']
self.targets_sizes = [1, 1, 1, 1, 1, 1]
self.inputs_names = ['Control', 'Speed']
self.inputs_sizes = [4, 1]
# if there is branching, this is used to build the network. Names should be same as targets
# currently the ["Steer"]x4 should not be changed
self.branch_config = [['wp1_angle', 'wp2_angle', "Steer", "Gas", "Brake"],
['wp1_angle', 'wp2_angle', "Steer", "Gas", "Brake"], \
['wp1_angle', 'wp2_angle', "Steer", "Gas", "Brake"],
['wp1_angle', 'wp2_angle', "Steer", "Gas", "Brake"], ["Speed"]]
# a list of keep_prob corresponding to the list of layers:
# 8 conv layers, 2 img FC layer, 2 speed FC layers, 1 joint FC layer, 5 branches X 2 FC layers each
# This is error prone..... GOES TO THE NETWORK FILE DIRECTLY
self.dropout = [0.8] * 8 + [0.5] * 2 + [0.5] * 2 + [0.5] * 1 + [0.5, 1.] * len(self.branch_config)
self.restore = True # This is if you want to restore a saved model
self.models_path = os.path.join('models', os.path.basename(__file__).split('.')[0])
self.train_path_write = os.path.join(self.models_path, 'train')
self.val_path_write = os.path.join(self.models_path, 'val')
self.test_path_write = os.path.join(self.models_path, 'test')
self.number_iterations = 501000 # 500k
# Not used anywhere
self.pre_train_experiment = None
# Control the execution of simulation testing during training
self.perform_simulation_test = False
self.output_is_on = True
# self.extra_augment_factor = 6.0
# Yang: reproduce the segmentation model
self.segmentation_model = '/data/yang/code/aws/scratch/CIL_modular_data/matthias_data/erfnet_small_cityscapes_aug'
self.segmentation_model_name = "ErfNet_Small"
class configInput(configMain):
def __init__(self, path='/'):
configMain.__init__(self)
st = lambda aug: iaa.Sometimes(0.2, aug)
oc = lambda aug: iaa.Sometimes(0.1, aug)
rl = lambda aug: iaa.Sometimes(0.05, aug)
# Yang: actually there is only one sensor modalities, thus, the second augmenter is not used.
self.augment = [iaa.Sequential([
rl(iaa.GaussianBlur((0, 1.3))), # blur images with a sigma between 0 and 1.5
rl(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05), per_channel=0.5)), # add gaussian noise to images
rl(iaa.Dropout((0.0, 0.10), per_channel=0.5)), # randomly remove up to X% of the pixels
oc(iaa.Add((-20, 20), per_channel=0.5)), # change brightness of images (by -X to Y of original value)
st(iaa.Multiply((0.25, 2.5), per_channel=0.2)), # change brightness of images (X-Y% of original value)
rl(iaa.ContrastNormalization((0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast
rl(iaa.Grayscale((0.0, 1))), # put grayscale
],
random_order=True # do all of the above in random order
), iaa.Sequential([ # AUGMENTATION Labels
rl(iaa.Dropout((0.0, 0.03))), # randomly remove up to X% of the pixels
rl(iaa.CoarseDropout((0.0, 0.03), size_percent=(0.2, 0.3))), # randomly remove up to X% of the pixels
],
random_order=True # do all of the above in random order
)
]
# self.augment = [None]
# there are files with data, 200 images each, and here we select which ones to use
self.dataset_name = 'Carla'
train_path = "/data/yang/code/aws/scratch/CIL_modular_data/matthias_data/RC025Val/fake_train"
val_path = "/data/yang/code/aws/scratch/CIL_modular_data/matthias_data/RC025Val/fake_val"
print(train_path)
self.train_db_path = [os.path.join(train_path, f) for f in glob.glob1(train_path, "data_*.h5")]
self.val_db_path = [os.path.join(val_path, f) for f in glob.glob1(val_path, "data_*.h5")]
# Speed Divide Factor
# TODO: FOr now is hardcooded, but eventually we should be able to calculate this from data at the loading time.
self.speed_factor = 40.0 # In KM/H FOR GTA it should be maximun 30.0
# The division is made by three diferent data kinds
# in every mini-batch there will be equal number of samples with labels from each group
# e.g. for [[0,1],[2]] there will be 50% samples with labels 0 and 1, and 50% samples with label 2
self.labels_per_division = [[0, 2, 5], [3], [4]]
self.dataset_names = ['targets']
self.queue_capacity = 20 * self.batch_size
# TODO NOT IMPLEMENTED Felipe: True/False switches to turn data balancing on or off
class configTrain(configMain):
def __init__(self):
configMain.__init__(self)
self.loss_function = 'mse_branched' # Chose between: mse_branched, mse_branched_ladd
self.control_mode = 'single_branch_wp' # TODO: study the loss_function and control_mode
self.learning_rate = 0.0002 # First
# use the default segmentation network
self.seg_network_erfnet_one_hot = True
self.train_segmentation = True # TODO: why train segmentation == True? will it be not transferrable?
# self.finetune_segmentation = True
self.number_of_labels = 2
self.restore_seg_test = False
self.training_schedule = [[50000, 0.5], [100000, 0.5 * 0.5], [150000, 0.5 * 0.5 * 0.5],
[200000, 0.5 * 0.5 * 0.5 * 0.5],
[250000, 0.5 * 0.5 * 0.5 * 0.5 * 0.5]] # Number of iterations, multiplying factor
self.lambda_l2 = 1e-3 # Not used
self.branch_loss_weight = [0.95, 0.95, 0.95, 0.95, 0.05]
self.variable_weight = {'wp1_angle': 0.3, 'wp2_angle': 0.3, 'Steer': 0.1, 'Gas': 0.2, 'Brake': 0.1,
'Speed': 1.0}
self.network_name = 'chauffeurNet_deeper'
self.lambda_tolerance = 5
self.is_training = True
self.selected_gpu = "0"
self.state_output_size = (0)
class configOutput(configMain):
def __init__(self):
configMain.__init__(self)
self.print_interval = 100
self.summary_writing_period = 100
self.validation_period = 1000 # I consider validation as an output thing since it does not directly affects the training in general
self.feature_save_interval = 100
self.use_curses = False # If we want to use curses library for a cutter print
self.targets_to_print = ['wp1_angle', 'wp2_angle', 'Steer', 'Gas',
'Brake'] # Also prints the error. Maybe Energy
self.selected_branch = 0 # for the branches that have steering we also select the branch
self.inputs_to_print = ['Speed']
""" Feature Visualization Part """
# TODO : self.histograms_list=[] self.features_to_draw= self.weights_to_draw=
class configTest(configMain):
def __init__(self):
configMain.__init__(self)
self.interface_name = 'Carla'
self.driver_config = "9cam_agent_carla_test_rc" # "3cam_carla_drive_config"
# This is the carla configuration related stuff
|
[
"[email protected]"
] | |
731ff8381159eac4f3c4c5622d279515b577b095
|
74565d83bccccfae0d57d0e947f12db2bcae2999
|
/phi/tests/test_nodsl.py
|
a9258eb9895c9db82cb8352393e4fd3274fe940a
|
[
"MIT"
] |
permissive
|
iCodeIN/phi
|
2fe9eaaf21615381e1b1815853adeb76a79fb696
|
87fd7100a76f823232f4fd8360498b4b80675265
|
refs/heads/master
| 2023-03-21T07:50:28.218564 | 2018-08-13T14:14:07 | 2018-08-13T14:14:07 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 480 |
py
|
from phi.dsl import Expression
P = Expression()
class TestNoDSL(object):
def test_seq(self):
f = P.Seq(
P + 2,
P * 2
)
assert 10 == f(3)
def test_branch(self):
f = P.List(
P + 2,
P * 2
)
assert [5, 6] == f(3)
f = P.List(
P + 2,
P.Seq(
P + 1,
P * 2
)
)
assert [5, 8] == f(3)
|
[
"[email protected]"
] | |
df097ee6147b01ee82e411a12f00ca1fdff8c780
|
773e6eefd35d3fe8f86faed6f8de0470e9da722f
|
/tests/wire/test_msg_mempool.py
|
d8d4a0ef565bc4c7b0fc63cfe915eb85e3ed4c35
|
[] |
no_license
|
imnisen/pybtcd
|
5a9e13b0461e41958e3d1c948100e20c92459d43
|
b89ec2063348805755d9f2c474a1494f0fb6ef46
|
refs/heads/master
| 2020-03-28T03:11:01.877408 | 2019-11-05T07:07:26 | 2019-11-05T07:07:26 | 147,625,874 | 2 | 2 | null | 2019-11-05T07:07:27 | 2018-09-06T06:09:40 |
Python
|
UTF-8
|
Python
| false | false | 2,180 |
py
|
import unittest
import io
from wire.msg_mempool import *
class TestMsgMemPool(unittest.TestCase):
def setUp(self):
pver = ProtocolVersion
oldPver = BIP0035Version - 1
msgMemPool = MsgMemPool()
msgMemPoolEncoded = bytes([])
self.tests = [
# Latest protocol version.
{
"in": msgMemPool,
"out": msgMemPool,
"buf": msgMemPoolEncoded,
"pver": pver,
"enc": BaseEncoding,
"err": None
},
# Protocol version BIP0035Version -1 .
{
"in": msgMemPool,
"out": msgMemPool,
"buf": msgMemPoolEncoded,
"pver": oldPver,
"enc": BaseEncoding,
"err": MemPoolVerionBelowBIP35MsgErr
},
]
def test_command(self):
msg = MsgMemPool()
self.assertEqual(str(msg.command()), "mempool")
def test_max_payload_length(self):
msg = MsgMemPool()
want_payload = 0
self.assertEqual(msg.max_payload_length(ProtocolVersion), want_payload)
def test_btc_encode(self):
for c in self.tests:
if c["err"]:
try:
s = io.BytesIO()
c['in'].btc_encode(s, c['pver'], c['enc'])
except Exception as e:
self.assertEqual(type(e), c['err'])
else:
s = io.BytesIO()
c['in'].btc_encode(s, c['pver'], c['enc'])
self.assertEqual(s.getvalue(), c['buf'])
def test_btc_decode(self):
for c in self.tests:
if c['err']:
try:
s = io.BytesIO(c['buf'])
msg = MsgMemPool()
msg.btc_decode(s, c['pver'], c['enc'])
except Exception as e:
self.assertEqual(type(e), c['err'])
else:
s = io.BytesIO(c['buf'])
msg = MsgMemPool()
msg.btc_decode(s, c['pver'], c['enc'])
self.assertEqual(msg, c['out'])
|
[
"[email protected]"
] | |
71ce5358015438612bd7c9b6178dddfd3a3af130
|
5dfb9ca5e0c8cb4cb7a7a92d6f6a34b34a841869
|
/LeetCodeSolutions/python/211_Add_and_Search_Word_Data_structure_design.py
|
6fdd8ce15c0c90bf5632e2ebbd8b40ec1c9fee03
|
[
"MIT"
] |
permissive
|
ChuanleiGuo/AlgorithmsPlayground
|
2f71d29e697a656562e3d2a2de783d964dc6a325
|
90b6287b742c8bfd3797540c408d679be2821a40
|
refs/heads/master
| 2021-01-11T18:30:43.218959 | 2018-11-19T02:20:31 | 2018-11-19T02:20:31 | 79,550,052 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,004 |
py
|
class WordDictionary(object):
def __init__(self):
"""
initialize your data structure here.
"""
self.root = {}
def addWord(self, word):
"""
Adds a word into the data structure.
:type word: str
:rtype: void
"""
node = self.root
for c in word:
if c not in node:
node[c] = {}
node = node[c]
node['#'] = '#'
def search(self, word):
"""
Returns if the word is in the data structure. A word could
contain the dot character '.' to represent any one letter.
:type word: str
:rtype: bool
"""
def find(word, node):
if not word:
return '#' in node
c, word = word[0], word[1:]
if c != '.':
return c in node and find(word, node[c])
return any(find(word, d) for d in node.values() if d != '#')
return find(word, self.root)
|
[
"[email protected]"
] | |
0de233d96169369c052b67111582e5676b2b3aed
|
8adec48dfaee1cdfd6c7f4d2fb3038aa1c17bda6
|
/WProf/src/tools/valgrind/.svn/text-base/chrome_tests.py.svn-base
|
21a6793f8cee1ff440b310d5a38a4c56461367de
|
[
"BSD-3-Clause",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
kusoof/wprof
|
ef507cfa92b3fd0f664d0eefef7fc7d6cd69481e
|
8511e9d4339d3d6fad5e14ad7fff73dfbd96beb8
|
refs/heads/master
| 2021-01-11T00:52:51.152225 | 2016-12-10T23:51:14 | 2016-12-10T23:51:14 | 70,486,057 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 23,261 |
#!/usr/bin/env python
# Copyright (c) 2012 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
''' Runs various chrome tests through valgrind_test.py.'''
import glob
import logging
import optparse
import os
import stat
import sys
import logging_utils
import path_utils
import common
import valgrind_test
class TestNotFound(Exception): pass
class MultipleGTestFiltersSpecified(Exception): pass
class BuildDirNotFound(Exception): pass
class BuildDirAmbiguous(Exception): pass
class ChromeTests:
SLOW_TOOLS = ["memcheck", "tsan", "tsan_rv", "drmemory"]
LAYOUT_TESTS_DEFAULT_CHUNK_SIZE = 1500
def __init__(self, options, args, test):
if ':' in test:
(self._test, self._gtest_filter) = test.split(':', 1)
else:
self._test = test
self._gtest_filter = options.gtest_filter
if self._test not in self._test_list:
raise TestNotFound("Unknown test: %s" % test)
if options.gtest_filter and options.gtest_filter != self._gtest_filter:
raise MultipleGTestFiltersSpecified("Can not specify both --gtest_filter "
"and --test %s" % test)
self._options = options
self._args = args
script_dir = path_utils.ScriptDir()
# Compute the top of the tree (the "source dir") from the script dir (where
# this script lives). We assume that the script dir is in tools/valgrind/
# relative to the top of the tree.
self._source_dir = os.path.dirname(os.path.dirname(script_dir))
# since this path is used for string matching, make sure it's always
# an absolute Unix-style path
self._source_dir = os.path.abspath(self._source_dir).replace('\\', '/')
valgrind_test_script = os.path.join(script_dir, "valgrind_test.py")
self._command_preamble = ["--source_dir=%s" % (self._source_dir)]
if not self._options.build_dir:
dirs = [
os.path.join(self._source_dir, "xcodebuild", "Debug"),
os.path.join(self._source_dir, "out", "Debug"),
os.path.join(self._source_dir, "build", "Debug"),
]
build_dir = [d for d in dirs if os.path.isdir(d)]
if len(build_dir) > 1:
raise BuildDirAmbiguous("Found more than one suitable build dir:\n"
"%s\nPlease specify just one "
"using --build_dir" % ", ".join(build_dir))
elif build_dir:
self._options.build_dir = build_dir[0]
else:
self._options.build_dir = None
if self._options.build_dir:
build_dir = os.path.abspath(self._options.build_dir)
self._command_preamble += ["--build_dir=%s" % (self._options.build_dir)]
def _EnsureBuildDirFound(self):
if not self._options.build_dir:
raise BuildDirNotFound("Oops, couldn't find a build dir, please "
"specify it manually using --build_dir")
def _DefaultCommand(self, tool, exe=None, valgrind_test_args=None):
'''Generates the default command array that most tests will use.'''
if exe and common.IsWindows():
exe += '.exe'
cmd = list(self._command_preamble)
# Find all suppressions matching the following pattern:
# tools/valgrind/TOOL/suppressions[_PLATFORM].txt
# and list them with --suppressions= prefix.
script_dir = path_utils.ScriptDir()
tool_name = tool.ToolName();
suppression_file = os.path.join(script_dir, tool_name, "suppressions.txt")
if os.path.exists(suppression_file):
cmd.append("--suppressions=%s" % suppression_file)
# Platform-specific suppression
for platform in common.PlatformNames():
platform_suppression_file = \
os.path.join(script_dir, tool_name, 'suppressions_%s.txt' % platform)
if os.path.exists(platform_suppression_file):
cmd.append("--suppressions=%s" % platform_suppression_file)
if self._options.valgrind_tool_flags:
cmd += self._options.valgrind_tool_flags.split(" ")
if self._options.keep_logs:
cmd += ["--keep_logs"]
if valgrind_test_args != None:
for arg in valgrind_test_args:
cmd.append(arg)
if exe:
self._EnsureBuildDirFound()
cmd.append(os.path.join(self._options.build_dir, exe))
# Valgrind runs tests slowly, so slow tests hurt more; show elapased time
# so we can find the slowpokes.
cmd.append("--gtest_print_time")
if self._options.gtest_repeat:
cmd.append("--gtest_repeat=%s" % self._options.gtest_repeat)
return cmd
def Run(self):
''' Runs the test specified by command-line argument --test '''
logging.info("running test %s" % (self._test))
return self._test_list[self._test](self)
def _AppendGtestFilter(self, tool, name, cmd):
'''Append an appropriate --gtest_filter flag to the googletest binary
invocation.
If the user passed his own filter mentioning only one test, just use it.
Othewise, filter out tests listed in the appropriate gtest_exclude files.
'''
if (self._gtest_filter and
":" not in self._gtest_filter and
"?" not in self._gtest_filter and
"*" not in self._gtest_filter):
cmd.append("--gtest_filter=%s" % self._gtest_filter)
return
filters = []
gtest_files_dir = os.path.join(path_utils.ScriptDir(), "gtest_exclude")
gtest_filter_files = [
os.path.join(gtest_files_dir, name + ".gtest-%s.txt" % tool.ToolName())]
# Use ".gtest.txt" files only for slow tools, as they now contain
# Valgrind- and Dr.Memory-specific filters.
# TODO(glider): rename the files to ".gtest_slow.txt"
if tool.ToolName() in ChromeTests.SLOW_TOOLS:
gtest_filter_files += [os.path.join(gtest_files_dir, name + ".gtest.txt")]
for platform_suffix in common.PlatformNames():
gtest_filter_files += [
os.path.join(gtest_files_dir, name + ".gtest_%s.txt" % platform_suffix),
os.path.join(gtest_files_dir, name + ".gtest-%s_%s.txt" % \
(tool.ToolName(), platform_suffix))]
logging.info("Reading gtest exclude filter files:")
for filename in gtest_filter_files:
# strip the leading absolute path (may be very long on the bot)
# and the following / or \.
readable_filename = filename.replace("\\", "/") # '\' on Windows
readable_filename = readable_filename.replace(self._source_dir, "")[1:]
if not os.path.exists(filename):
logging.info(" \"%s\" - not found" % readable_filename)
continue
logging.info(" \"%s\" - OK" % readable_filename)
f = open(filename, 'r')
for line in f.readlines():
if line.startswith("#") or line.startswith("//") or line.isspace():
continue
line = line.rstrip()
test_prefixes = ["FLAKY", "FAILS"]
for p in test_prefixes:
# Strip prefixes from the test names.
line = line.replace(".%s_" % p, ".")
# Exclude the original test name.
filters.append(line)
if line[-2:] != ".*":
# List all possible prefixes if line doesn't end with ".*".
for p in test_prefixes:
filters.append(line.replace(".", ".%s_" % p))
# Get rid of duplicates.
filters = set(filters)
gtest_filter = self._gtest_filter
if len(filters):
if gtest_filter:
gtest_filter += ":"
if gtest_filter.find("-") < 0:
gtest_filter += "-"
else:
gtest_filter = "-"
gtest_filter += ":".join(filters)
if gtest_filter:
cmd.append("--gtest_filter=%s" % gtest_filter)
def SetupLdPath(self, requires_build_dir):
if requires_build_dir:
self._EnsureBuildDirFound()
elif not self._options.build_dir:
return
# Append build_dir to LD_LIBRARY_PATH so external libraries can be loaded.
if (os.getenv("LD_LIBRARY_PATH")):
os.putenv("LD_LIBRARY_PATH", "%s:%s" % (os.getenv("LD_LIBRARY_PATH"),
self._options.build_dir))
else:
os.putenv("LD_LIBRARY_PATH", self._options.build_dir)
def SimpleTest(self, module, name, valgrind_test_args=None, cmd_args=None):
tool = valgrind_test.CreateTool(self._options.valgrind_tool)
cmd = self._DefaultCommand(tool, name, valgrind_test_args)
self._AppendGtestFilter(tool, name, cmd)
cmd.extend(['--test-tiny-timeout=1000'])
if cmd_args:
cmd.extend(cmd_args)
self.SetupLdPath(True)
return tool.Run(cmd, module)
def RunCmdLine(self):
tool = valgrind_test.CreateTool(self._options.valgrind_tool)
cmd = self._DefaultCommand(tool, None, self._args)
self.SetupLdPath(False)
return tool.Run(cmd, None)
def TestAsh(self):
return self.SimpleTest("ash", "aura_shell_unittests")
def TestAura(self):
return self.SimpleTest("aura", "aura_unittests")
def TestBase(self):
return self.SimpleTest("base", "base_unittests")
def TestContent(self):
return self.SimpleTest("content", "content_unittests")
def TestCourgette(self):
return self.SimpleTest("courgette", "courgette_unittests")
def TestCrypto(self):
return self.SimpleTest("crypto", "crypto_unittests")
def TestFFmpeg(self):
return self.SimpleTest("chrome", "ffmpeg_unittests")
def TestFFmpegRegressions(self):
return self.SimpleTest("chrome", "ffmpeg_regression_tests")
def TestGfx(self):
return self.SimpleTest("chrome", "gfx_unittests")
def TestGPU(self):
return self.SimpleTest("gpu", "gpu_unittests")
def TestGURL(self):
return self.SimpleTest("chrome", "googleurl_unittests")
def TestIpc(self):
return self.SimpleTest("ipc", "ipc_tests",
valgrind_test_args=["--trace_children"])
def TestJingle(self):
return self.SimpleTest("chrome", "jingle_unittests")
def TestMedia(self):
return self.SimpleTest("chrome", "media_unittests")
def TestNet(self):
return self.SimpleTest("net", "net_unittests")
def TestPPAPI(self):
return self.SimpleTest("chrome", "ppapi_unittests")
def TestPrinting(self):
return self.SimpleTest("chrome", "printing_unittests")
def TestRemoting(self):
return self.SimpleTest("chrome", "remoting_unittests",
cmd_args=[
"--ui-test-action-timeout=60000",
"--ui-test-action-max-timeout=150000"])
def TestSql(self):
return self.SimpleTest("chrome", "sql_unittests")
def TestSync(self):
return self.SimpleTest("chrome", "sync_unit_tests")
def TestTestShell(self):
return self.SimpleTest("webkit", "test_shell_tests")
def TestUnit(self):
# http://crbug.com/51716
# Disabling all unit tests
# Problems reappeared after r119922
if common.IsMac() and (self._options.valgrind_tool == "memcheck"):
logging.warning("unit_tests are disabled for memcheck on MacOS.")
return 0;
return self.SimpleTest("chrome", "unit_tests")
def TestUIUnit(self):
return self.SimpleTest("chrome", "ui_unittests")
def TestViews(self):
return self.SimpleTest("views", "views_unittests")
# Valgrind timeouts are in seconds.
UI_VALGRIND_ARGS = ["--timeout=14400", "--trace_children", "--indirect"]
# UI test timeouts are in milliseconds.
UI_TEST_ARGS = ["--ui-test-action-timeout=60000",
"--ui-test-action-max-timeout=150000"]
# TODO(thestig) fine-tune these values.
# Valgrind timeouts are in seconds.
BROWSER_VALGRIND_ARGS = ["--timeout=50000", "--trace_children", "--indirect"]
# Browser test timeouts are in milliseconds.
BROWSER_TEST_ARGS = ["--ui-test-action-timeout=200000",
"--ui-test-action-max-timeout=400000"]
def TestAutomatedUI(self):
return self.SimpleTest("chrome", "automated_ui_tests",
valgrind_test_args=self.UI_VALGRIND_ARGS,
cmd_args=self.UI_TEST_ARGS)
def TestBrowser(self):
return self.SimpleTest("chrome", "browser_tests",
valgrind_test_args=self.BROWSER_VALGRIND_ARGS,
cmd_args=self.BROWSER_TEST_ARGS)
def TestInteractiveUI(self):
return self.SimpleTest("chrome", "interactive_ui_tests",
valgrind_test_args=self.UI_VALGRIND_ARGS,
cmd_args=self.UI_TEST_ARGS)
def TestReliability(self):
script_dir = path_utils.ScriptDir()
url_list_file = os.path.join(script_dir, "reliability", "url_list.txt")
return self.SimpleTest("chrome", "reliability_tests",
valgrind_test_args=self.UI_VALGRIND_ARGS,
cmd_args=(self.UI_TEST_ARGS +
["--list=%s" % url_list_file]))
def TestSafeBrowsing(self):
return self.SimpleTest("chrome", "safe_browsing_tests",
valgrind_test_args=self.UI_VALGRIND_ARGS,
cmd_args=(["--ui-test-action-max-timeout=450000"]))
def TestSyncIntegration(self):
return self.SimpleTest("chrome", "sync_integration_tests",
valgrind_test_args=self.UI_VALGRIND_ARGS,
cmd_args=(["--ui-test-action-max-timeout=450000"]))
def TestLayoutChunk(self, chunk_num, chunk_size):
# Run tests [chunk_num*chunk_size .. (chunk_num+1)*chunk_size) from the
# list of tests. Wrap around to beginning of list at end.
# If chunk_size is zero, run all tests in the list once.
# If a text file is given as argument, it is used as the list of tests.
#
# Build the ginormous commandline in 'cmd'.
# It's going to be roughly
# python valgrind_test.py ... python run_webkit_tests.py ...
# but we'll use the --indirect flag to valgrind_test.py
# to avoid valgrinding python.
# Start by building the valgrind_test.py commandline.
tool = valgrind_test.CreateTool(self._options.valgrind_tool)
cmd = self._DefaultCommand(tool)
cmd.append("--trace_children")
cmd.append("--indirect_webkit_layout")
cmd.append("--ignore_exit_code")
# Now build script_cmd, the run_webkits_tests.py commandline
# Store each chunk in its own directory so that we can find the data later
chunk_dir = os.path.join("layout", "chunk_%05d" % chunk_num)
test_shell = os.path.join(self._options.build_dir, "test_shell")
out_dir = os.path.join(path_utils.ScriptDir(), "latest")
out_dir = os.path.join(out_dir, chunk_dir)
if os.path.exists(out_dir):
old_files = glob.glob(os.path.join(out_dir, "*.txt"))
for f in old_files:
os.remove(f)
else:
os.makedirs(out_dir)
script = os.path.join(self._source_dir, "webkit", "tools", "layout_tests",
"run_webkit_tests.py")
script_cmd = ["python", script, "-v",
"--run-singly", # run a separate DumpRenderTree for each test
"--fully-parallel",
"--time-out-ms=200000",
"--noshow-results",
"--no-retry-failures", # retrying takes too much time
"--nocheck-sys-deps"]
# Pass build mode to run_webkit_tests.py. We aren't passed it directly,
# so parse it out of build_dir. run_webkit_tests.py can only handle
# the two values "Release" and "Debug".
# TODO(Hercules): unify how all our scripts pass around build mode
# (--mode / --target / --build_dir / --debug)
if self._options.build_dir.endswith("Debug"):
script_cmd.append("--debug");
if (chunk_size > 0):
script_cmd.append("--run-chunk=%d:%d" % (chunk_num, chunk_size))
if len(self._args):
# if the arg is a txt file, then treat it as a list of tests
if os.path.isfile(self._args[0]) and self._args[0][-4:] == ".txt":
script_cmd.append("--test-list=%s" % self._args[0])
else:
script_cmd.extend(self._args)
self._AppendGtestFilter(tool, "layout", script_cmd)
# Now run script_cmd with the wrapper in cmd
cmd.extend(["--"])
cmd.extend(script_cmd)
# Layout tests often times fail quickly, but the buildbot remains green.
# Detect this situation when running with the default chunk size.
if chunk_size == self.LAYOUT_TESTS_DEFAULT_CHUNK_SIZE:
min_runtime_in_seconds=120
else:
min_runtime_in_seconds=0
ret = tool.Run(cmd, "layout", min_runtime_in_seconds=min_runtime_in_seconds)
return ret
def TestLayout(self):
# A "chunk file" is maintained in the local directory so that each test
# runs a slice of the layout tests of size chunk_size that increments with
# each run. Since tests can be added and removed from the layout tests at
# any time, this is not going to give exact coverage, but it will allow us
# to continuously run small slices of the layout tests under valgrind rather
# than having to run all of them in one shot.
chunk_size = self._options.num_tests
if (chunk_size == 0):
return self.TestLayoutChunk(0, 0)
chunk_num = 0
chunk_file = os.path.join("valgrind_layout_chunk.txt")
logging.info("Reading state from " + chunk_file)
try:
f = open(chunk_file)
if f:
str = f.read()
if len(str):
chunk_num = int(str)
# This should be enough so that we have a couple of complete runs
# of test data stored in the archive (although note that when we loop
# that we almost guaranteed won't be at the end of the test list)
if chunk_num > 10000:
chunk_num = 0
f.close()
except IOError, (errno, strerror):
logging.error("error reading from file %s (%d, %s)" % (chunk_file,
errno, strerror))
ret = self.TestLayoutChunk(chunk_num, chunk_size)
# Wait until after the test runs to completion to write out the new chunk
# number. This way, if the bot is killed, we'll start running again from
# the current chunk rather than skipping it.
logging.info("Saving state to " + chunk_file)
try:
f = open(chunk_file, "w")
chunk_num += 1
f.write("%d" % chunk_num)
f.close()
except IOError, (errno, strerror):
logging.error("error writing to file %s (%d, %s)" % (chunk_file, errno,
strerror))
# Since we're running small chunks of the layout tests, it's important to
# mark the ones that have errors in them. These won't be visible in the
# summary list for long, but will be useful for someone reviewing this bot.
return ret
# The known list of tests.
# Recognise the original abbreviations as well as full executable names.
_test_list = {
"cmdline" : RunCmdLine,
"ash": TestAsh, "aura_shell_unittests": TestAsh,
"aura": TestAura, "aura_unittests": TestAura,
"automated_ui" : TestAutomatedUI,
"base": TestBase, "base_unittests": TestBase,
"browser": TestBrowser, "browser_tests": TestBrowser,
"crypto": TestCrypto, "crypto_unittests": TestCrypto,
"ffmpeg": TestFFmpeg, "ffmpeg_unittests": TestFFmpeg,
"ffmpeg_regression_tests": TestFFmpegRegressions,
"googleurl": TestGURL, "googleurl_unittests": TestGURL,
"content": TestContent, "content_unittests": TestContent,
"courgette": TestCourgette, "courgette_unittests": TestCourgette,
"ipc": TestIpc, "ipc_tests": TestIpc,
"interactive_ui": TestInteractiveUI,
"layout": TestLayout, "layout_tests": TestLayout,
"webkit": TestLayout,
"media": TestMedia, "media_unittests": TestMedia,
"net": TestNet, "net_unittests": TestNet,
"jingle": TestJingle, "jingle_unittests": TestJingle,
"ppapi": TestPPAPI, "ppapi_unittests": TestPPAPI,
"printing": TestPrinting, "printing_unittests": TestPrinting,
"reliability": TestReliability, "reliability_tests": TestReliability,
"remoting": TestRemoting, "remoting_unittests": TestRemoting,
"safe_browsing": TestSafeBrowsing, "safe_browsing_tests": TestSafeBrowsing,
"sync": TestSync, "sync_unit_tests": TestSync,
"sync_integration_tests": TestSyncIntegration,
"sync_integration": TestSyncIntegration,
"test_shell": TestTestShell, "test_shell_tests": TestTestShell,
"unit": TestUnit, "unit_tests": TestUnit,
"sql": TestSql, "sql_unittests": TestSql,
"ui_unit": TestUIUnit, "ui_unittests": TestUIUnit,
"gfx": TestGfx, "gfx_unittests": TestGfx,
"gpu": TestGPU, "gpu_unittests": TestGPU,
"views": TestViews, "views_unittests": TestViews,
}
def _main():
parser = optparse.OptionParser("usage: %prog -b <dir> -t <test> "
"[-t <test> ...]")
parser.disable_interspersed_args()
parser.add_option("-b", "--build_dir",
help="the location of the compiler output")
parser.add_option("-t", "--test", action="append", default=[],
help="which test to run, supports test:gtest_filter format "
"as well.")
parser.add_option("", "--baseline", action="store_true", default=False,
help="generate baseline data instead of validating")
parser.add_option("", "--gtest_filter",
help="additional arguments to --gtest_filter")
parser.add_option("", "--gtest_repeat",
help="argument for --gtest_repeat")
parser.add_option("-v", "--verbose", action="store_true", default=False,
help="verbose output - enable debug log messages")
parser.add_option("", "--tool", dest="valgrind_tool", default="memcheck",
help="specify a valgrind tool to run the tests under")
parser.add_option("", "--tool_flags", dest="valgrind_tool_flags", default="",
help="specify custom flags for the selected valgrind tool")
parser.add_option("", "--keep_logs", action="store_true", default=False,
help="store memory tool logs in the <tool>.logs directory "
"instead of /tmp.\nThis can be useful for tool "
"developers/maintainers.\nPlease note that the <tool>"
".logs directory will be clobbered on tool startup.")
parser.add_option("-n", "--num_tests", type="int",
default=ChromeTests.LAYOUT_TESTS_DEFAULT_CHUNK_SIZE,
help="for layout tests: # of subtests per run. 0 for all.")
# TODO(thestig) Remove this if we can.
parser.add_option("", "--gtest_color", dest="gtest_color", default="no",
help="dummy compatibility flag for sharding_supervisor.")
options, args = parser.parse_args()
if options.verbose:
logging_utils.config_root(logging.DEBUG)
else:
logging_utils.config_root()
if not options.test:
parser.error("--test not specified")
if len(options.test) != 1 and options.gtest_filter:
parser.error("--gtest_filter and multiple tests don't make sense together")
for t in options.test:
tests = ChromeTests(options, args, t)
ret = tests.Run()
if ret: return ret
return 0
if __name__ == "__main__":
sys.exit(_main())
|
[
"kusoof@kookaburra.(none)"
] |
kusoof@kookaburra.(none)
|
|
a714dbeb5f32820c71f3d0aa1e6daf2db3de0648
|
8ceade7e485606cd2d2ea09a996f1e71c1b76f76
|
/ejerciciosMejorados/p5.py
|
92e2b94263a31a9ef3c24c00365f32c3cff6ed6a
|
[] |
no_license
|
jesustr20/test
|
bdc9a0ffd313e5aad9e63b5df5e87abc2a7d9419
|
7439f1466995356a709066208fa1a9de21b2266b
|
refs/heads/master
| 2023-01-05T17:58:48.601151 | 2020-11-01T19:24:35 | 2020-11-01T19:24:35 | 306,782,231 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,548 |
py
|
#Pregunta 5:
# Escribir una funcion sum() y una función multip() que sumen y multipliquen respectivamente
# todos los números de una lista.
# Por ejemplo: sum([1,2,3,4]) debería devolver 10 y multip([1,2,3,4]) debería devolver 24.
#Funcion que genera una lista de un rango
def listas(rango):
#Genera la lista a partir del parametro "rango"
ls = [i for i in range(1,rango+1)]
#retorna el rango generado en una lista "ls"
return ls
#Funcion suma, suma la lista generada y las suma
def suma(rango):
#Lista generada a partir de la funcion "listas" donde lleva por paramerto rango para realizar la suma
ran = listas(rango)
#suma toda la lista
sumas = sum(ran)
#muestra la suma
return sumas
#Funcion de multiplicacion
def multiplicacion(rango):
#acumula y multiplica los numeros de la lista
n=1
#Lista generada a partir de la funcion "listas" donde lleva por paramerto rango para realizar la suma
ran = listas(rango)
#Bucle recorre la variable ran que contiene la lista generada a partir del parametro "rango"
for i in list(ran):
#Acumulador multiplicara el bucle para obtener el resultado final
n=n*i
t=n
#retorna la lista t
return t
#ingresar un numero que es el rango la cual sera la lista presentada
numero = int(input('Calcular la suma de numeros consecutivos de 1 hasta: '))
#Mostrara la lista
print(f'lista: {listas(numero)}')
#suma la lista
print(f'Suma: {suma(numero)}')
#multiplica la lista
print(f'Producto: {multiplicacion(numero)}')
|
[
"[email protected]"
] | |
82ac29168e8c9346fdf4b324d9848eba099f32d1
|
53fab060fa262e5d5026e0807d93c75fb81e67b9
|
/backup/user_306/ch1_2020_03_04_11_09_36_448958.py
|
f4249a12eb77b3373a476a9acfe0e6261e82074b
|
[] |
no_license
|
gabriellaec/desoft-analise-exercicios
|
b77c6999424c5ce7e44086a12589a0ad43d6adca
|
01940ab0897aa6005764fc220b900e4d6161d36b
|
refs/heads/main
| 2023-01-31T17:19:42.050628 | 2020-12-16T05:21:31 | 2020-12-16T05:21:31 | 306,735,108 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 72 |
py
|
def calcula_valor_devido(vI, nT, j):
vF = vI*(1+j)**nT
return vF
|
[
"[email protected]"
] | |
9b29f05b1777653afa4489a9428e2fa3ad119fb4
|
8447b5f83be675c5de085d8824783ec0739690b0
|
/mmdet/ops/roi_align/roi_align.py
|
875e63d5b6432b257a7ea81289220762413d2c1b
|
[] |
no_license
|
jie311/mmdetection_lite
|
bca7070ad88a04e4f6650292642f98f24f7ebeba
|
1c151a7c44759d022fea1d85fb036a5b39409449
|
refs/heads/master
| 2022-04-19T06:18:42.282754 | 2020-04-13T07:41:10 | 2020-04-13T07:41:10 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,068 |
py
|
from torch import nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from . import roi_align_cuda
class RoIAlignFunction(Function):
@staticmethod
def forward(ctx,
features,
rois,
out_size,
spatial_scale,
sample_num=0,
aligned=True):
out_h, out_w = _pair(out_size)
assert isinstance(out_h, int) and isinstance(out_w, int)
ctx.spatial_scale = spatial_scale
ctx.sample_num = sample_num
ctx.save_for_backward(rois)
ctx.feature_size = features.size()
ctx.aligned = aligned
if features.is_cuda:
if not aligned:
(batch_size, num_channels, data_height,
data_width) = features.size()
num_rois = rois.size(0)
output = features.new_zeros(num_rois, num_channels, out_h,
out_w)
roi_align_cuda.forward_v1(features, rois, out_h, out_w,
spatial_scale, sample_num, output)
else:
output = roi_align_cuda.forward_v2(features, rois,
spatial_scale, out_h, out_w,
sample_num, aligned)
else:
raise NotImplementedError
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
feature_size = ctx.feature_size
spatial_scale = ctx.spatial_scale
sample_num = ctx.sample_num
rois = ctx.saved_tensors[0]
aligned = ctx.aligned
assert (feature_size is not None and grad_output.is_cuda)
batch_size, num_channels, data_height, data_width = feature_size
out_w = grad_output.size(3)
out_h = grad_output.size(2)
grad_input = grad_rois = None
if not aligned:
if ctx.needs_input_grad[0]:
grad_input = rois.new_zeros(batch_size, num_channels,
data_height, data_width)
roi_align_cuda.backward_v1(grad_output.contiguous(), rois,
out_h, out_w, spatial_scale,
sample_num, grad_input)
else:
grad_input = roi_align_cuda.backward_v2(
grad_output, rois, spatial_scale, out_h, out_w, batch_size,
num_channels, data_height, data_width, sample_num, aligned)
return grad_input, grad_rois, None, None, None, None
roi_align = RoIAlignFunction.apply
class RoIAlign(nn.Module):
def __init__(self,
out_size,
spatial_scale,
sample_num=0,
use_torchvision=False,
aligned=False):
"""
Args:
out_size (tuple): h, w
spatial_scale (float): scale the input boxes by this number
sample_num (int): number of inputs samples to take for each
output sample. 2 to take samples densely for current models.
use_torchvision (bool): whether to use roi_align from torchvision
aligned (bool): if False, use the legacy implementation in
MMDetection. If True, align the results more perfectly.
Note:
The implementation of RoIAlign when aligned=True is modified from
https://github.com/facebookresearch/detectron2/
The meaning of aligned=True:
Given a continuous coordinate c, its two neighboring pixel
indices (in our pixel model) are computed by floor(c - 0.5) and
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
indices [0] and [1] (which are sampled from the underlying signal
at continuous coordinates 0.5 and 1.5). But the original roi_align
(aligned=False) does not subtract the 0.5 when computing
neighboring pixel indices and therefore it uses pixels with a
slightly incorrect alignment (relative to our pixel model) when
performing bilinear interpolation.
With `aligned=True`,
we first appropriately scale the ROI and then shift it by -0.5
prior to calling roi_align. This produces the correct neighbors;
The difference does not make a difference to the model's
performance if ROIAlign is used together with conv layers.
"""
super(RoIAlign, self).__init__()
self.out_size = _pair(out_size)
self.spatial_scale = float(spatial_scale)
self.aligned = aligned
self.sample_num = int(sample_num)
self.use_torchvision = use_torchvision
assert not (use_torchvision and
aligned), 'Torchvision does not support aligned RoIAlgin'
def forward(self, features, rois):
"""
Args:
features: NCHW images
rois: Bx5 boxes. First column is the index into N. The other 4
columns are xyxy.
"""
assert rois.dim() == 2 and rois.size(1) == 5
# print(features.shape)
if self.use_torchvision:
from torchvision.ops import roi_align as tv_roi_align
return tv_roi_align(features, rois, self.out_size,
self.spatial_scale, self.sample_num)
else:
return roi_align(features, rois, self.out_size, self.spatial_scale,
self.sample_num, self.aligned)
def __repr__(self):
format_str = self.__class__.__name__
format_str += '(out_size={}, spatial_scale={}, sample_num={}'.format(
self.out_size, self.spatial_scale, self.sample_num)
format_str += ', use_torchvision={}, aligned={})'.format(
self.use_torchvision, self.aligned)
return format_str
|
[
"[email protected]"
] | |
e6d28bb201f92f5cbd6c7cc8c1a7695415e2e239
|
8c162bcf0576316d1ce070e4a70f257a01c7ce4c
|
/piwheels/logger/__init__.py
|
4f9f281a79e3aaa815449c41cebba5d020ffb514
|
[
"BSD-3-Clause"
] |
permissive
|
Lauszus/piwheels
|
8e4a73b0a76715b45ab3586998c78fa3beb26b9f
|
e51b979f11c1d7a199c9f461312f959f23b5b979
|
refs/heads/master
| 2020-03-23T16:14:27.888940 | 2018-05-13T17:08:45 | 2018-05-13T17:08:45 | 141,799,946 | 0 | 0 | null | 2018-07-21T09:44:31 | 2018-07-21T09:44:31 | null |
UTF-8
|
Python
| false | false | 7,857 |
py
|
#!/usr/bin/env python
# The piwheels project
# Copyright (c) 2017 Ben Nuttall <https://github.com/bennuttall>
# Copyright (c) 2017 Dave Jones <[email protected]>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""
Contains the functions that implement the :program:`piw-log` script.
.. autofunction:: main
"""
import io
import sys
import gzip
import json
import logging
import datetime as dt
import ipaddress
from pathlib import PosixPath
import zmq
from lars.apache import ApacheSource, COMMON, COMMON_VHOST, COMBINED
from .. import __version__, terminal, const
# Workaround: lars bug; User-Agent instead of User-agent
COMBINED = '%h %l %u %t "%r" %>s %b "%{Referer}i" "%{User-Agent}i"'
def main(args=None):
"""
This is the main function for the :program:`piw-logger` script. It is
designed to be run as a `piped log script`_ under Apache, piping access
logs to the :class:`~.lumberjack.Lumberjack` task which stores them in the
database. However it can also be used to load pre-existing logs in to.
.. _piped log script: https://httpd.apache.org/docs/2.4/logs.html#piped
"""
logging.getLogger().name = 'logger'
parser = terminal.configure_parser("""\
The piw-logger script is intended for use as an Apache "piped log script"
but can also be used to feed pre-existing Apache logs to the master by
feeding logs to the script's stdin. This script must be run on the same node
as the piw-master script.
""")
parser.add_argument(
'--format', default='combined',
help="The Apache log format that log lines will be expected to be in "
"(default: %(default)s); the short-cuts common, combined and "
"common_vhost can be used in addition to Apache LogFormat strings")
parser.add_argument(
'files', nargs='*', default=['-'],
help="The log file(s) to load into the master; if omitted or - then "
"stdin will be read which is the default for piped log usage")
parser.add_argument(
'--logger-queue', metavar='ADDR', default=const.LOGGER_QUEUE,
help="The address of the queue used by piw-logger (default: "
"(%(default)s); this should always be an ipc address")
parser.add_argument(
'--drop', action='store_true',
help="Drop log records if unable to send them to the master after a "
"short timeout; this should generally be specified when piw-logger "
"is used as a piped log script")
try:
config = parser.parse_args(args)
terminal.configure_logging(config.log_level, config.log_file)
logging.info("PiWheels Logger version %s", __version__)
config.format = {
'common': COMMON,
'common_vhost': COMMON_VHOST,
'combined': COMBINED,
}.get(config.format, config.format)
ctx = zmq.Context.instance()
queue = ctx.socket(zmq.PUSH)
queue.connect(config.logger_queue)
try:
for filename in config.files:
log_file = log_open(filename)
try:
with ApacheSource(log_file, config.format) as src:
for row in src:
if log_filter(row):
if not config.drop or queue.poll(1000, zmq.POLLOUT):
queue.send_pyobj(['LOG'] + log_transform(row))
else:
logging.warning('dropping log entry')
finally:
log_file.close()
finally:
queue.close()
ctx.destroy(linger=1000)
ctx.term()
except RuntimeError as err:
logging.error(err)
return 1
except: # pylint: disable=bare-except
return terminal.error_handler(*sys.exc_info())
else:
return 0
def log_open(filename):
"""
Open the log-file specified by *filename*. If this is ``"-"`` then stdin
will be returned. If the filename ends with ``".gz"`` the file will be
extracted automatically. Otherwise, the file is opened regularly.
:param str filename:
The filename to open as a read-only file.
:returns:
The file-like object to read.
"""
if filename == '-':
logging.info('Processing log entries from stdin')
return sys.stdin
elif filename.endswith('.gz'):
logging.info('Processing gzipped log %s', filename)
return io.TextIOWrapper(gzip.open(filename, 'rb'), encoding='ascii')
else:
logging.info('Processing log %s', filename)
return io.open(filename, 'r', encoding='ascii')
def log_filter(row):
"""
Filters which log entries to include. Current criteria are: successful
downloads (status 200) only, user-agent must begin with ``"pip/"`` and
the accessed path must have an extension of ``".whl"``.
:param row:
A tuple containing the fields of the log entry, as returned by
:class:`lars.apache.ApacheSource`.
"""
return (
row.status == 200
and row.req_User_Agent is not None
and row.req_User_Agent.startswith('pip/')
and row.request.url.path_str.endswith('.whl')
)
def log_transform(row, decoder=json.JSONDecoder()):
"""
Extracts the relevant information from the specified *row*.
:param row:
A tuple containing the fields of the log entry, as returned by
:class:`lars.apache.ApacheSource`.
"""
path = PosixPath(row.request.url.path_str)
try:
json_start = row.req_User_Agent.index('{')
except ValueError:
user_data = {}
else:
try:
user_data = decoder.decode(row.req_User_Agent[json_start:])
except ValueError:
user_data = {}
return [
# Convert lars types into standard types (avoids some issues with
# some database backends)
path.name,
str(row.remote_host),
row.time.replace(),
user_data.get('cpu'),
user_data.get('distro', {}).get('name'),
user_data.get('distro', {}).get('version'),
user_data.get('system', {}).get('name'),
user_data.get('system', {}).get('version'),
user_data.get('implementation', {'name': 'CPython'}).get('name'),
user_data.get('implementation', {'version': user_data.get('python')}).get('version'),
]
|
[
"[email protected]"
] | |
d15144bfccfa3fec3d6c39d294d7d9f9379b012b
|
3481023b43028c5ee9520a8be0978e914bdcb548
|
/manga_py/base_classes/params.py
|
5d90a0761f6bf49a2ebe1be019ec60ff77f0738c
|
[
"MIT"
] |
permissive
|
manga-py/manga-py
|
18f6818d8efc96c3e69efee7dff3f3d6c773e32a
|
0db97123acab1f2fb99e808b0ba54db08977e5c8
|
refs/heads/stable_1.x
| 2023-08-20T03:04:06.373108 | 2023-04-16T08:28:15 | 2023-04-16T08:28:15 | 98,638,892 | 444 | 56 |
MIT
| 2023-07-27T13:21:40 | 2017-07-28T10:27:43 |
Python
|
UTF-8
|
Python
| false | false | 1,394 |
py
|
from logging import error
from urllib.parse import urlparse
class ProviderParams:
@property
def content(self):
content = self._storage.get('main_content', None)
if content is None:
content = self.get_content()
return content
@property
def manga_name(self) -> str:
name = self._storage.get('manga_name', None)
if name is None:
name = self.get_manga_name()
return name
@property
def name(self) -> str:
name = self._params.get('name', '')
if not len(name):
name = self.manga_name
return name
@property
def domain(self) -> str:
_url = self._params['url']
try:
if not self._storage.get('domain_uri', None):
parsed = urlparse(_url, 'https')
self._storage['domain_uri'] = '{}://{}'.format(
parsed.scheme,
parsed.netloc
)
return self._storage.get('domain_uri', '')
except Exception:
error('url "%s" is broken!' % _url)
exit()
@property
def chapter(self):
return self.chapters[self.chapter_id]
@property
def chapters(self):
return self._storage['chapters']
@chapters.setter
def chapters(self, chapters: list):
self._storage['chapters'] = chapters
|
[
"[email protected]"
] | |
c0729505d6bf9a498b456982548aa120de9d51a6
|
4cef47ddd432f2ab814a03fd89112b1dc8b5ab27
|
/flow/message.py
|
4c6579ea3c4a1e94e634e4ac2e1ed647ac980500
|
[
"MIT"
] |
permissive
|
h00shi/flow
|
279d621cda72a8d2392c2dbe7735ce2ab6b39380
|
ef45bdd4181d385b1b01042e9ce0b48e4cdc2318
|
refs/heads/master
| 2020-09-24T06:50:01.605337 | 2017-07-05T17:53:50 | 2017-07-05T17:53:50 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 433 |
py
|
# -*- coding: utf-8 -*-
#
'''
Allows using DOLFIN's indented block messages with 'with', i.e.,
with Message('hello world'):
# do something
'''
from dolfin import begin, end
class Message(object):
def __init__(self, string):
self.string = string
return
def __enter__(self):
begin(self.string)
return
def __exit__(self, tpe, value, traceback):
end()
return
|
[
"[email protected]"
] | |
d127705f9dd239922fbb76363c5cc3ca519736c3
|
85c82274a3888fa61795bb0600ab96eaf7665b6a
|
/meet1/F_max3Angka.py
|
fa0a3546b66bbd03e24bf5cd643fb372eb6d9263
|
[] |
no_license
|
refeed/StrukturDataA
|
8e5a214569f41b19c05842d003ede5941800482a
|
4d3b77bbd28158f1f1e64a49b8e90da731859407
|
refs/heads/master
| 2023-06-03T08:22:12.442536 | 2021-07-01T03:24:29 | 2021-07-01T03:24:29 | 360,478,966 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 549 |
py
|
'''
Max 3 angka
Batas Run-time: 1 detik / test-case
Batas Memori: 32 MB
DESKRIPSI SOAL
Buatlah program yang menerima 3 buah input nilai, outputkan nilai paling besar
diantara ketiga input tersebut.
PETUNJUK MASUKAN
Input terdiri atas 3 angka dalam 1 baris
PETUNJUK KELUARAN
Outputkan angka terbesar dari 3 angka yang dimasukkan
CONTOH MASUKAN
10 9 11
CONTOH KELUARAN
11
'''
input_int_list = list(map(int, input().split()))
biggest = input_int_list[0]
for num in input_int_list:
if num > biggest:
biggest = num
print(biggest)
|
[
"[email protected]"
] | |
1611a857f00cc4e23f65789639b9f6eef36aefe9
|
304f6ea579c2bda6f2a0a0d93c0ffcf332082450
|
/since_JungleWeek06/정확한 순위.py
|
0d5fb00f7b7be52e32e728b87a77981421fde412
|
[] |
no_license
|
Jeongseo21/algorithm
|
941ae18bb17f6d9a0f3190d40f5f0ae212ffe0f6
|
0fbda0e320ca6616dfe21680601521549ed019e4
|
refs/heads/master
| 2023-04-17T21:37:25.607255 | 2021-04-25T13:51:02 | 2021-04-25T13:51:02 | 276,335,142 | 1 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 907 |
py
|
import sys
# import numpy
# sys.stdin = open("input.txt", "r")
input = sys.stdin.readline
INF = int(1e9)
N, M = map(int, input().split())
graph = [[INF for _ in range(N+1)] for _ in range(N+1)]
#graph = numpy.array(graph)
for i in range(1, N+1):
for j in range(1, N+1):
if i == j:
graph[i][j] = 0
for i in range(M):
A, B = map(int, input().split())
graph[A][B] = 1
for k in range(1, N+1):
for i in range(1, N+1):
for j in range(1, N+1):
graph[i][j] = min(graph[i][k]+graph[k][j], graph[i][j])
for i in range(N+1):
for j in range(N+1):
if graph[i][j] == INF:
graph[i][j] = 0
result = [0 for _ in range(N+1)]
for i in range(1, N+1):
for j in range(1, N+1):
if graph[i][j] != 0:
result[i] += 1
result[j] += 1
answer = 0
for i in result:
if i == N-1:
answer += 1
print(answer)
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.