blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
f67969324b7b88047980838503dae8b978c474ed
1a86413d97fdbb3228ea3f00444881f723d73652
/land_ingest/psv_processor/generate-new-files.py
12054ecdecbdb716b7e7c277b1060c16ebf83ce7
[ "BSD-3-Clause" ]
permissive
glamod/glamod-land-ingest
f7105f953660231fac434034a088c8118dcd9b63
a30c1030d39b5c5b1688d78db082c09167c2bd9c
refs/heads/master
2020-05-04T07:55:49.956203
2019-04-02T12:53:58
2019-04-02T12:53:58
179,037,431
0
0
null
null
null
null
UTF-8
Python
false
false
16,820
py
import pandas as pd import argparse import sys import os import re import datetime as dt from collections import OrderedDict from pandas.testing import assert_frame_equal BASE_PATH = '/gws/nopw/j04/c3s311a_lot2/data/glamod_land_delivery_2018_12_31_Beta/' FIXED_PATH = '/gws/nopw/j04/c3s311a_lot2/data/beta_fix7/' STATION_FILE = BASE_PATH + 'station_configuration/station_configuration_Beta.psv' TEST_MODE = False def parse_args(): parser = argparse.ArgumentParser(description='Fix land data') parser.add_argument('-index', dest='idx', type=int, required=True, help='Job index number') parser.add_argument('-header_file_count', dest='header_file_count', type=int, required=True, help='Header files to process') parser.add_argument('-n_parallel_jobs', dest='n_parallel_jobs', type = int, required=True, help='Number of parallel jobs to run on LOTUS') args = parser.parse_args() return args def check_path(path): if not os.path.isdir(path): os.makedirs(path) def get_station_configuration_table(): # Load station configuration file (all columns as object to avoid type promotion) # Read in station config file, this only needs to be done once station_configuration = pd.read_csv(STATION_FILE, sep='|', dtype=object) if 'source_id ' in station_configuration.columns: station_configuration = station_configuration.rename({'source_id ': 'source_id'}) station_configuration['source_id'] = station_configuration['source_id'].apply(lambda x: x.strip()) # rename record_number to station_record_number station_configuration = station_configuration.rename(columns={ 'record_number': 'station_record_number', 'primary_id':'primary_station_id'}) return station_configuration def main(): station_configuration = get_station_configuration_table() # TEST_MODE = True # Run in test mode if file_list is defined if TEST_MODE: test_file = 'header_table/monthly/header_table_BETA_USW00003867_1.psv' file_list = [test_file] file_idx = [0] else: args = parse_args() file_idx = range(args.idx - 1, args.header_file_count, args.n_parallel_jobs) with open('header_table_files.txt') as f: file_list = [i.strip() for i in f.readlines()] COUNTER = 0 for idx in file_idx: COUNTER += 1 # Uncomment next line to stop after one iteration if TEST_MODE and COUNTER > 1: return header_file = file_list[idx] # get ID from header file name filename = os.path.basename(header_file) station_id = re.match('^header_table_BETA_(.+)_\d+\.psv', filename).groups()[0] # Get observations file based on header file observation_file = header_file.replace('header_table', 'observations_table') observation_file = observation_file.replace('observations_table_BETA', 'observation_table_BETA') print('Processing: ' + header_file) # Load header table (all object) # E.g.: header_file = 'header_table/daily/T3_protect/header_table_BETA_SWE00139284_1.psv' header_path = BASE_PATH + header_file header_table = pd.read_csv(header_path, sep='|', dtype=object) if len(header_table) == 0: print('[WARNING] No records in header table so exiting: {}'.format(header_path)) continue print('Header file: {}'.format(header_path)) if 'source_id ' in header_table.columns: header_table = header_table.rename(columns = {'source_id ': 'source_id'}) # header table has extraneous space at end of source_id field, remove header_table['source_id'] = header_table['source_id'].apply(lambda x: x.strip()) if 'report_meaning_of_time_stamp' in header_table.columns: header_table = header_table.rename(columns={'report_meaning_of_time_stamp': 'report_meaning_of_timestamp'}) # load observations table (all object) # E.g.: observation_file = '/observations_table/daily/T3_protect/observation_table_BETA_SWE00139284_1.psv' observations_path = BASE_PATH + observation_file print('Observations file: {}'.format(observations_path)) observations_table = pd.read_csv(observations_path, sep='|', dtype=object) if len(observations_table) == 0: print('[WARNING] No records in observations table so exiting: {}'.format(observations_path)) continue if 'source_id ' in observations_table.columns: observations_table = observations_table.rename(columns={'source_id ': 'source_id'}) # observations table has extraneous space at end of source_id field, remove observations_table['source_id'] = observations_table['source_id'].apply(lambda x: x.strip()) # Select row(s) from Source Configuration that match station id and record number station_config_subset = station_configuration.loc[(station_configuration['primary_station_id'] == station_id)].copy() if len(station_config_subset) == 0: raise Exception('Cannot find station ID in Source Configuration: {}'.format(station_id, record_number)) ot = observations_table ht = header_table scs = station_config_subset # Check that 'source_id' is same in station_configuration, header_table and observations_table # if len(header_table['source_id'].unique()) > try: scs_ids = set([int(src) for src in station_config_subset['source_id']]) ht_ids = set([int(src) for src in header_table['source_id'].unique()]) ot_ids = set([int(src) for src in observations_table['source_id'].unique()]) if (not ht_ids.issubset(scs_ids)) or (not ot_ids.issubset(scs_ids)): assert(len(scs_ids) == 1) src_id = scs_ids[0] # Make an exception for monthly files - overwrite "source_id" using Station Config value if "/monthly/" in header_path: print('[INFO] Overwriting "source_id" using Station Configuration value in Header/Obs tables: {}'.format(src_id)) header_table['source_id'] = str(src_id) observations_table['source_id'] = str(src_id) else: assert(ht_ids.issubset(scs_ids) and ot_ids.issubset(scs_ids)) except Exception as err: print('[ERROR] Cannot match "source_id" in files:') print(' {} :: {}'.format(scs_ids, STATION_FILE)) print(' {} :: {}'.format(ht_ids, header_path)) print(' {} :: {}'.format(ot_ids, observations_path)) continue # Before merge of Header table and Station Configuration subset, check they will merge properly if not set(header_table['station_record_number']).intersection(set(station_config_subset['station_record_number'])): print('[WARNING] No valid merge between Header and Station Config tables on: "station_record_number". {}'.format(header_path)) continue # merge tables master_table = header_table.merge(station_config_subset, how='left', on=['primary_station_id', 'station_record_number'], suffixes=('_head','_station')) mt = master_table if pd.np.nan in list(mt['longitude'].unique()) or pd.np.nan in list(mt['latitude'].unique()): print('[WARNING] NANs in master table "longitude" or "latitude"! {}'.format(header_path)) continue # Rename to 'source_id' so we can join on that and 'report_id' master_table = master_table.rename(columns={'source_id_station': 'source_id'}) # merge observation and header table master_table = master_table.merge(observations_table, how='outer', on=['report_id'], suffixes=('', '_obs')) # check we have data if master_table.shape[0] == 0: print('[WARNING] Master table has no content: {}'.format(header_path)) continue # rename master columns master_table = master_table.rename(columns={ # 'source_id_station': 'source_id', 'data_policy_licence_station': 'data_policy_licence', 'station_crs': 'crs', 'operating_territory': 'sub_region' }) # Filter out any records without an observation_id - they will never work print('[WARNING] Filtering out any master table records without an Observation ID') master_table = master_table.loc[master_table['observation_id'].notnull()] if 'sub_daily' in header_file: report_type = 0 # SYNOP elif 'daily' in header_file: report_type = 3 # DAILY elif 'monthly' in header_file: report_type = 2 # CLIMAT else: raise ('Error, bad report_type') master_table['report_type'] = report_type # null columns to add master_table = master_table.assign(station_speed = '') master_table = master_table.assign(station_course = '') master_table = master_table.assign(station_heading = '') master_table = master_table.assign(source_record_id = '') master_table = master_table.assign(secondary_variable = '') master_table = master_table.assign(code_table = '') master_table = master_table.assign(z_coordinate_method = '') master_table = master_table.assign(sensor_id = '') master_table = master_table.assign(sensor_automation_status = '') master_table = master_table.assign(exposure_of_sensor = '') master_table = master_table.assign(original_code_table = '') master_table = master_table.assign(processing_code = '') master_table = master_table.assign(adjustment_id = '' ) master_table = master_table.assign(traceability = '') master_table = master_table.assign(advanced_qc = '') master_table = master_table.assign(advanced_uncertainty = '') master_table = master_table.assign(advanced_homogenisation = '') master_table = master_table.assign(z_coordinate = '') master_table = master_table.assign(z_coordinate_type = '') master_table = master_table.assign(spatial_representativeness = '') # add location column location = master_table.apply(lambda x: 'SRID=4326;POINT({0} {1})'.format(x['longitude'], x['latitude']), axis = 1) master_table = master_table.assign(location=location) # replace array fields with {} (all empty for beta release) master_table['application_area'] = '{}' master_table['observing_programme'] = '{}' master_table['events_at_station'] = '{}' master_table['duplicates'] = '{}' master_table['processing_codes'] = '{}' master_table = master_table.replace('', 'NULL') master_table = master_table.fillna('NULL') print('[INFO] Table sizes: Master = {}, Header = {}, Obs = {}'.format(len(master_table), len(ht), len(ot))) # add location to header table # write out new files header_columns = [ 'report_id','region', 'sub_region', 'application_area', 'observing_programme', 'report_type', 'station_name','station_type','platform_type','platform_sub_type','primary_station_id','station_record_number', 'primary_station_id_scheme','longitude','latitude','location_accuracy','location_method','location_quality', 'crs','station_speed','station_course','station_heading','height_of_station_above_local_ground', 'height_of_station_above_sea_level', 'height_of_station_above_sea_level_accuracy', 'sea_level_datum', 'report_meaning_of_timestamp','report_timestamp','report_duration','report_time_accuracy','report_time_quality', 'report_time_reference','profile_id','events_at_station','report_quality','duplicate_status','duplicates', 'record_timestamp','history','processing_level','processing_codes','source_id','source_record_id','location' ] # add report_type, station_type and location to observations table observation_columns = [ 'observation_id','report_id','data_policy_licence','date_time','date_time_meaning','observation_duration', 'longitude','latitude','crs','z_coordinate','z_coordinate_type','observation_height_above_station_surface', 'observed_variable','secondary_variable','observation_value','value_significance','secondary_value','units', 'code_table','conversion_flag','location_method','location_accuracy','z_coordinate_method','bbox_min_longitude', 'bbox_max_longitude','bbox_min_latitude','bbox_max_latitude','spatial_representativeness','quality_flag', 'numerical_precision','sensor_id','sensor_automation_status','exposure_of_sensor','original_precision', 'original_units','original_code_table','original_value','conversion_method','processing_code','processing_level', 'adjustment_id','traceability','advanced_qc','advanced_uncertainty','advanced_homogenisation','source_id', 'report_type','station_type','location' ] # Construct and write header file (by year) header_table_out = master_table[header_columns].copy() header_path_new = FIXED_PATH + header_file write_outputs_by_year(header_table_out, header_path_new, input_file=header_path) # Construct and write observations file (by year) observations_table_out = master_table[observation_columns].copy() observations_table_out = observations_table_out.rename(columns = {'location_accuracy': 'location_precision'}) observations_path_new = FIXED_PATH + observation_file write_outputs_by_year(observations_table_out, observations_path_new, input_file=observations_path) def write_outputs_by_year(df, output_file_base, input_file): fdir, fname = os.path.split(output_file_base) # Drop duplicates in table df.drop_duplicates(inplace=True) # Get year range and then split DataFrame into years and write each year # to file: "<base_name>.<year>.psv" # First: convert field to datetime if fname.startswith('header_table_'): time_field = 'report_timestamp' sort_fields = ['report_id', time_field] table_type = 'Header' else: time_field = 'date_time' sort_fields = ['observation_id', time_field] table_type = 'Observations' try: df[time_field] = pd.to_datetime(df[time_field], utc=True) except Exception as err: print('df[time_field] = pd.to_datetime(df[time_field], utc=True)') # import pdb; pdb.set_trace() raise Exception('Failed to find valid time field: {}\nReview file: {}'.format(time_field, input_file)) # Now work with time series from that field time_series = df[time_field] start_year = time_series.min().year end_year = time_series.max().year # Set up some temporary lists to check consistency dfs = OrderedDict() record_count = 0 for year in range(start_year, end_year + 1): # print('[INFO] Filter by year: {}'.format(year)) _df = df[df[time_field].dt.year == year] record_count += len(_df) dfs[year] = _df print('[INFO] Checking original Table matches those split by time...') if record_count != len(df): raise Exception('Split of records did not match original table size, for: {}'.format(output_file_base)) # Test that the original data matches the split data (when sorted by time field) remade_df = pd.concat(dfs.values()) remade_df.sort_values(sort_fields, inplace=True) df_sorted = df.sort_values(sort_fields) print('[WARNING] Frame sizes: remade_df: {}, df_sorted (orig): {}'.format(len(remade_df), len(df_sorted))) try: assert_frame_equal(df_sorted, remade_df) except Exception as err: raise Exception('Remade data frame does not match original, for: {}'.format(output_file_base)) # Make sure output directory exists output_dir = os.path.join(fdir, fname.replace('.psv', '')) check_path(output_dir) # Now loop through each and write out for year, _df in dfs.items(): # Ignore empty years if len(_df) == 0: continue fname_year = fname.replace('.psv', '.{}.psv'.format(year)) out_path = os.path.join(output_dir, fname_year) _df.to_csv(out_path, sep='|', index=False, date_format='%Y-%m-%d %H:%M:%S%z') print('[INFO] {} file saved to: {}'.format(table_type, out_path)) if __name__ == '__main__': main()
1653c4111074a8ee0622a4f24e3279ad845f4ce0
5bd624a1c1d4834b49fe5e2d2bf9446d08a36161
/pytype/pytd/pytd.py
a8d781d94d18c8d3df397214701e996872e9cfe9
[ "Apache-2.0", "MIT" ]
permissive
tharvik/pytype
ce3c7eca73082b047508df715ce7d179f28e15ba
df526720c96b08d328b2214d08eaa67ca342b01a
refs/heads/master
2020-12-01T09:32:24.823351
2016-07-12T00:29:39
2016-07-12T14:18:14
63,402,024
0
0
null
2016-07-15T07:41:27
2016-07-15T07:41:27
null
UTF-8
Python
false
false
14,304
py
# -*- coding:utf-8; python-indent:2; indent-tabs-mode:nil -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Our way of using namedtuple is confusing pylint. # pylint: disable=no-member """AST representation of a pytd file.""" import itertools from pytype.pytd.parse import node class TypeDeclUnit(node.Node('name', 'constants', 'classes', 'functions', 'aliases')): """Module node. Holds module contents (constants / classes / functions). Attributes: name: Name of this module, or None for the top-level module. constants: Iterable of module-level constants. functions: Iterable of functions defined in this type decl unit. classes: Iterable of classes defined in this type decl unit. aliases: Iterable of aliases (or imports) for types in other modules. """ __slots__ = () def Lookup(self, name): """Convenience function: Look up a given name in the global namespace. Tries to find a constant, function or class by this name. Args: name: Name to look up. Returns: A Constant, Function or Class. Raises: KeyError: if this identifier doesn't exist. """ # TODO(kramm): Put constants, functions, classes and aliases into a # combined dict. try: return self._name2item[name] except AttributeError: self._name2item = {} for x in self.constants + self.functions + self.classes + self.aliases: self._name2item[x.name] = x return self._name2item[name] # The hash/eq/ne values are used for caching and speed things up quite a bit. def __hash__(self): return id(self) def __eq__(self, other): return id(self) == id(other) def __ne__(self, other): return id(self) != id(other) def ASTeq(self, other): # Used in tests. return (self.constants == other.constants and self.classes == other.classes and self.functions == other.functions and self.aliases == other.aliases) class Constant(node.Node('name', 'type')): __slots__ = () class Alias(node.Node('name', 'type')): """An alias (symbolic link) for a class implemented in some other module. Unlike Constant, the Alias is the same type, as opposed to an instance of that type. It's generated, among others, from imports - e.g. "from x import y as z" will create a local alias "z" for "x.y". """ __slots__ = () class Class(node.Node('name', 'parents', 'methods', 'constants', 'template')): """Represents a class declaration. Used as dict/set key, so all components must be hashable. Attributes: name: Class name (string) parents: The super classes of this class (instances of pytd.TYPE). methods: Tuple of methods, classmethods, staticmethods (instances of pytd.Function). constants: Tuple of constant class attributes (instances of pytd.Constant). template: Tuple of pytd.TemplateItem instances. """ # TODO(kramm): Rename "parents" to "bases". "Parents" is confusing since we're # in a tree. __slots__ = () def Lookup(self, name): """Convenience function: Look up a given name in the class namespace. Tries to find a method or constant by this name in the class. Args: name: Name to look up. Returns: A Constant or Function instance. Raises: KeyError: if this identifier doesn't exist in this class. """ # TODO(kramm): Remove this. Make methods and constants dictionaries. try: return self._name2item[name] except AttributeError: self._name2item = {} for x in self.methods + self.constants: self._name2item[x.name] = x return self._name2item[name] STATICMETHOD, CLASSMETHOD, METHOD = 'staticmethod', 'classmethod', 'method' class Function(node.Node('name', 'signatures', 'kind')): """A function or a method, defined by one or more PyTD signatures. Attributes: name: The name of this function. signatures: Tuple of possible parameter type combinations for this function. kind: The type of this function. One of: STATICMETHOD, CLASSMETHOD, METHOD """ __slots__ = () class ExternalFunction(Function): """A function or a method, defined by PYTHONCODE (see parse/parser.py). Attributes: name: The name of this function. signatures: Empty tuple of signatures. """ __slots__ = () class Signature(node.Node('params', 'return_type', 'exceptions', 'template', 'has_optional')): """Represents an individual signature of a function. For overloaded functions, this is one specific combination of parameters. For non-overloaded functions, there is a 1:1 correspondence between function and signature. Attributes: name: The name of this function. params: The list of parameters for this function definition. return_type: The return type of this function. exceptions: List of exceptions for this function definition. template: names for bindings for bounded types in params/return_type has_optional: Do we have optional parameters ("...")? """ __slots__ = () class Parameter(node.Node('name', 'type')): """Represents a parameter of a function definition. Attributes: name: The name of the parameter. type: The type of the parameter. """ __slots__ = () class OptionalParameter(Parameter): """Represents an optional parameter of a function definition. Can never be mutable. Attributes: name: The name of the parameter. type: The type of the parameter. """ __slots__ = () # Conceptually, this is a subtype of Parameter: class MutableParameter(node.Node('name', 'type', 'new_type')): """Represents a parameter that's modified by the function. Can never be optional. Attributes: name: The name of the parameter. type: The type of the parameter. new_type: The type the parameter will have after the function is called. """ __slots__ = () class TypeParameter(node.Node('name')): """Represents a type parameter. A type parameter is a bound variable in the context of a function or class definition. It specifies an equivalence between types. For example, this defines a identity function: def f<T>(x: T) -> T """ __slots__ = () class TemplateItem(node.Node('type_param')): """Represents template name for generic types. This is used for classes and signatures. The 'template' field of both is a list of TemplateItems. Note that *using* the template happens through TypeParameters. E.g. in: class A<T>: def f(T x) -> T both the "T"s in the definition of f() are using pytd.TypeParameter to refer to the TemplateItem in class A's template. Attributes: type_param: the TypeParameter instance used. This is the actual instance that's used wherever this type parameter appears, e.g. within a class. """ __slots__ = () @property def name(self): return self.type_param.name # Types can be: # 1.) NamedType: # Specifies a type by name (i.e., a string) # 2.) NativeType # Points to a Python type. (int, float etc.) # 3.) ClassType # Points back to a Class in the AST. (This makes the AST circular) # 4.) GenericType # Contains a base type and parameters. # 5.) UnionType / IntersectionType # Can be multiple types at once. # 6.) NothingType / AnythingType # Special purpose types that represent nothing or everything. # 7.) TypeParameter # A placeholder for a type. # 8.) Scalar # A singleton type. Not currently used, but supported by the parser. # 9.) ExternalType: # A type in another module. We may only know the name. # For 1-3, the file visitors.py contains tools for converting between the # corresponding AST representations. class NamedType(node.Node('name')): """A type specified by name and, optionally, the module it is in.""" __slots__ = () def __str__(self): return self.name class NativeType(node.Node('python_type')): """A type specified by a native Python type. Used during runtime checking.""" __slots__ = () class ClassType(node.Node('name')): """A type specified through an existing class node.""" # This type is different from normal nodes: # (a) It's mutable, and there are functions # (parse/visitors.py:InPlaceFillInClasses) that modify a tree in place. # (b) Because it's mutable, it's not actually using the tuple/Node interface # to store things (in particular, the pointer to the existing class). # (c) Visitors will not process the "children" of this node. Since we point # to classes that are back at the top of the tree, that would generate # cycles. __slots__ = () def __new__(pycls, name, cls=None): # pylint: disable=bad-classmethod-argument self = super(ClassType, pycls).__new__(pycls, name) # self.cls potentially filled in later (by visitors.InPlaceFillInClasses) self.cls = cls return self # __eq__ is inherited (using tuple equality + requiring the two classes # be the same) def __str__(self): return str(self.cls.name) if self.cls else self.name def __repr__(self): return '{type}{cls}({name})'.format( type=type(self).__name__, name=self.name, cls='<unresolved>' if self.cls is None else '') class FunctionType(node.Node('name', 'function')): """The type of a function. E.g. the type of 'x' in 'x = lambda y: y'.""" __slots__ = () class ExternalType(node.Node('name')): """A type specified by name and the module it is in.""" def __new__(pycls, name, module): # pylint: disable=bad-classmethod-argument self = super(ExternalType, pycls).__new__(pycls, name) self.module = module return self def __str__(self): return self.module + '.' + self.name def __repr__(self): return 'ExternalType(%r, %r)' % (self.name, self.module) class AnythingType(node.Node()): """A type we know nothing about yet ('?' in pytd).""" __slots__ = () class NothingType(node.Node()): """An "impossible" type, with no instances ('nothing' in pytd). Also known as the "uninhabited" type, or, in type systems, the "bottom" type. For representing empty lists, and functions that never return. """ __slots__ = () class Scalar(node.Node('value')): __slots__ = () class UnionType(node.Node('type_list')): """A union type that contains all types in self.type_list.""" __slots__ = () # NOTE: type_list is kept as a tuple, to preserve the original order # even though in most respects it acts like a frozenset. # It also flattens the input, such that printing without # parentheses gives the same result. def __new__(cls, type_list): assert type_list # Disallow empty unions. Use NothingType for these. flattened = itertools.chain.from_iterable( t.type_list if isinstance(t, UnionType) else [t] for t in type_list) return super(UnionType, cls).__new__(cls, tuple(flattened)) def __hash__(self): # See __eq__ - order doesn't matter, so use frozenset return hash(frozenset(self.type_list)) def __eq__(self, other): if self is other: return True if isinstance(other, UnionType): # equality doesn't care about the ordering of the type_list return frozenset(self.type_list) == frozenset(other.type_list) return NotImplemented def __ne__(self, other): return not self == other # TODO(kramm): Do we still need this? class IntersectionType(node.Node('type_list')): """An intersection type that contains all types in self.type_list.""" __slots__ = () # NOTE: type_list is kept as a tuple, to preserve the original order # even though in most respects it acts like a frozenset. # It also flattens the input, such that printing without # parentheses gives the same result. def __new__(cls, type_list): flattened = itertools.chain.from_iterable( t.type_list if isinstance(t, IntersectionType) else [t] for t in type_list) return super(IntersectionType, cls).__new__(cls, tuple(flattened)) def __hash__(self): # See __eq__ - order doesn't matter, so use frozenset return hash(frozenset(self.type_list)) def __eq__(self, other): if self is other: return True if isinstance(other, IntersectionType): # equality doesn't care about the ordering of the type_list return frozenset(self.type_list) == frozenset(other.type_list) return NotImplemented def __ne__(self, other): return not self == other class GenericType(node.Node('base_type', 'parameters')): """Generic type. Takes a base type and type paramters. This corresponds to the syntax: type<type1,>, type<type1, type2> (etc.). Attributes: base_type: The base type. Instance of Type. parameters: Type parameters. Tuple of instances of Type. """ __slots__ = () class HomogeneousContainerType(GenericType): """Special generic type for homogeneous containers. Only has one type param. This differs from GenericType in that it assumes *all* items in a container will be the same type. The syntax is type<t>. (Vs type<t,> for GenericType.) """ __slots__ = () @property def element_type(self): return self.parameters[0] # So we can do "isinstance(node, pytd.TYPE)": TYPE = (NamedType, NativeType, ClassType, AnythingType, UnionType, NothingType, GenericType, TypeParameter, Scalar, IntersectionType, ExternalType) # Types that can be a base type of GenericType: GENERIC_BASE_TYPE = (NamedType, ClassType, ExternalType) def Print(n, print_format=None): """Convert a PYTD node to a string.""" # TODO(kramm): fix circular import from pytype.pytd import utils # pylint: disable=g-import-not-at-top return utils.Print(n, print_format)
feccd33264447c92abf14e4458ead9f06a2faa3f
d4f1bd5e52fe8d85d3d0263ede936928d5811bff
/Python/Problem Solving/ETC_algorithm_problem/5-11-2 max heap.py
d2ff607ea6054165b71bd00604e33c7b4fd62e91
[]
no_license
ambosing/PlayGround
37f7d071c4402599995a50cac1e7f1a85c6d10dd
0d5262dbb2fa2128ecb3fd969244fa647b104928
refs/heads/master
2023-04-08T04:53:31.747838
2023-03-23T06:32:47
2023-03-23T06:32:47
143,112,370
0
0
null
null
null
null
UTF-8
Python
false
false
181
py
import heapq h = [] while True: n = int(input()) if n == -1: break elif n == 0: print(heapq.heappop(h)[1]) else: heapq.heappush(h, (-n, n))
db2d73da906d6f138497d0b5d139584dad651cf8
fd9cc4cdf9daca76b048b1697ba2aa3a51c17c76
/FlaskWebAPI/application/entities/countries/interface_test.py
fb5bbe432aa43c3ea02a30d987efb08b4173ef08
[]
no_license
dangost/PythonWebService
cdb40ebce00060591c6ce00f4dafdd109427b8a8
37c1438b6c26df0c0a440dd3a637d2633e94f1b2
refs/heads/master
2022-12-12T20:45:52.817606
2020-08-31T14:27:46
2020-08-31T14:27:46
289,210,673
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
from application.entities.countries.interface import BaseCountriesRepository
d38db2fa69e1cec7a307c36300e70bf1c784d05c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04043/s722084447.py
63049b4fc35548c7e3243a14c504967fc3f86476
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
A, B, C = map(int, input().split()) num = [0]*11 num[A] += 1 num[B] += 1 num[C] += 1 ans = 'YES' if num[5] == 2 and num[7] == 1 else 'NO' print(ans)
9f0b2d91751a39fb0928cb1695e4ef33be1ad02d
d260f1492f1d3cffb72bd4e8c67da7b0724fa5d5
/kubeflow/fairing/preprocessors/full_notebook.py
84ff8f31a9bf417bb912c022cc61bddfa05ca6e0
[ "Apache-2.0" ]
permissive
wyw64962771/fairing
3be92ab22d596a360c6f8d70f678b3ada265e649
0cc639870ea3f773c5ae8a53c0ab16d4cda2ea6c
refs/heads/master
2020-08-19T13:28:24.778189
2019-10-17T12:08:39
2019-10-17T12:08:39
215,924,578
1
0
Apache-2.0
2019-10-18T02:23:58
2019-10-18T02:23:58
null
UTF-8
Python
false
false
2,380
py
import os from kubeflow.fairing.preprocessors.base import BasePreProcessor from kubeflow.fairing.constants import constants from kubeflow.fairing.notebook import notebook_util class FullNotebookPreProcessor(BasePreProcessor): """ The Full notebook preprocess for the context which comes from BasePreProcessor. :param BasePreProcessor: a context that gets sent to the builder for the docker build and sets the entrypoint """ # TODO: Allow configuration of errors / timeout options def __init__(self, notebook_file=None, output_file="fairing_output_notebook.ipynb", input_files=None, command=None, path_prefix=constants.DEFAULT_DEST_PREFIX, output_map=None): """ Init the full notebook preprocess. :param notebook_file: the jupyter notebook file. :param output_file: the output file, the defaut name is 'fairing_output_notebook.ipynb'. :param input_files: the source files to be processed. :param command: the command to pass to the builder. :param path_prefix: the defaut destion path prefix '/app/'. :param output_map: a dict of files to be added without preprocessing. """ if notebook_file is None and notebook_util.is_in_notebook(): notebook_file = notebook_util.get_notebook_name() if notebook_file is None: raise ValueError('A notebook_file must be provided.') relative_notebook_file = notebook_file # Convert absolute notebook path to relative path if os.path.isabs(notebook_file[0]): relative_notebook_file = os.path.relpath(notebook_file) if command is None: command = ["papermill", relative_notebook_file, output_file, "--log-output"] input_files = input_files or [] if relative_notebook_file not in input_files: input_files.append(relative_notebook_file) super().__init__( executable=None, input_files=input_files, command=command, output_map=output_map, path_prefix=path_prefix) def set_default_executable(self): """ Ingore the default executable setting for the full_notebook preprocessor. """ pass
50d1f8e859d7710b2a71797166f82bbf97dcfb1f
df1ed60ce7d95a31565c5963ccda404d16b780ba
/src/h02_learn/dataset/dep_label.py
2667a9d3378c4777ae28ec7222d485504c635aef
[ "MIT" ]
permissive
imperialite/info-theoretic-probing
471a3c726e8b4e433ae8acaa070fbd964c6640a1
70414d5466e8c372187730c018064dd9309dd09a
refs/heads/master
2022-04-23T00:53:23.283886
2020-04-27T16:19:07
2020-04-27T16:19:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
import numpy as np import pandas as pd from sklearn.decomposition import PCA import torch from torch.utils.data import Dataset from h01_data.process import get_data_file_base as get_file_names from util import constants from util import util from .pos_tag import PosTagDataset class DepLabelDataset(PosTagDataset): # pylint: disable=too-many-instance-attributes def load_data_index(self): data_ud = util.read_data(self.input_name_base % (self.mode, 'ud')) x_raw, y_raw = [], [] for sentence_ud, words in data_ud: for i, token in enumerate(sentence_ud): head = token['head'] rel = token['rel'] if rel == "_" or rel == "root": continue x_raw_tail = words[i] x_raw_head = words[head - 1] x_raw += [[x_raw_tail, x_raw_head]] y_raw += [rel] x_raw = np.array(x_raw) y_raw = np.array(y_raw) return x_raw, y_raw def load_index(self, x_raw, words=None): if words is None: words = [] new_words = sorted(list(set(np.unique(x_raw)) - set(words))) if new_words: words = np.concatenate([words, new_words]) words_dict = {word: i for i, word in enumerate(words)} x = np.array([[words_dict[token] for token in tokens] for tokens in x_raw]) self.x = torch.from_numpy(x) self.words = words self.n_words = len(words) def load_data(self): data_ud = util.read_data(self.input_name_base % (self.mode, 'ud')) data_embeddings = util.read_data(self.input_name_base % (self.mode, self.representation)) x_raw, y_raw = [], [] for (sentence_ud, words), (sentence_emb, _) in zip(data_ud, data_embeddings): for i, token in enumerate(sentence_ud): head = token['head'] rel = token['rel'] if rel == "_" or rel == "root": continue x_raw_tail = sentence_emb[i] x_raw_head = sentence_emb[head - 1] x_raw += [np.concatenate([x_raw_tail, x_raw_head])] y_raw += [rel] x_raw = np.array(x_raw) y_raw = np.array(y_raw) return x_raw, y_raw
e8f98be5b7ab2b73eb661006b68ed05132abcd26
1bfad01139237049eded6c42981ee9b4c09bb6de
/RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6evpnvpws.py
b056247e24115b64997226aec74465e157386f30
[ "MIT" ]
permissive
kakkotetsu/IxNetwork
3a395c2b4de1488994a0cfe51bca36d21e4368a5
f9fb614b51bb8988af035967991ad36702933274
refs/heads/master
2020-04-22T09:46:37.408010
2019-02-07T18:12:20
2019-02-07T18:12:20
170,284,084
0
0
MIT
2019-02-12T08:51:02
2019-02-12T08:51:01
null
UTF-8
Python
false
false
37,758
py
# Copyright 1997 - 2018 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class BgpIPv6EvpnVpws(Base): """The BgpIPv6EvpnVpws class encapsulates a user managed bgpIPv6EvpnVpws node in the ixnetwork hierarchy. An instance of the class can be obtained by accessing the BgpIPv6EvpnVpws property from a parent instance. The internal properties list will be empty when the property is accessed and is populated from the server using the find method. The internal properties list can be managed by the user by using the add and remove methods. """ _SDM_NAME = 'bgpIPv6EvpnVpws' def __init__(self, parent): super(BgpIPv6EvpnVpws, self).__init__(parent) @property def BgpAsPathSegmentList(self): """An instance of the BgpAsPathSegmentList class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpaspathsegmentlist.BgpAsPathSegmentList) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpaspathsegmentlist import BgpAsPathSegmentList return BgpAsPathSegmentList(self) @property def BgpClusterIdList(self): """An instance of the BgpClusterIdList class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpclusteridlist.BgpClusterIdList) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpclusteridlist import BgpClusterIdList return BgpClusterIdList(self) @property def BgpCommunitiesList(self): """An instance of the BgpCommunitiesList class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpcommunitieslist.BgpCommunitiesList) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpcommunitieslist import BgpCommunitiesList return BgpCommunitiesList(self) @property def BgpExtendedCommunitiesList(self): """An instance of the BgpExtendedCommunitiesList class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpextendedcommunitieslist.BgpExtendedCommunitiesList) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.bgpextendedcommunitieslist import BgpExtendedCommunitiesList return BgpExtendedCommunitiesList(self) @property def BroadcastDomainV6Vpws(self): """An instance of the BroadcastDomainV6Vpws class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.broadcastdomainv6vpws.BroadcastDomainV6Vpws) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.broadcastdomainv6vpws import BroadcastDomainV6Vpws return BroadcastDomainV6Vpws(self)._select() @property def Connector(self): """An instance of the Connector class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.connector.Connector) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.connector import Connector return Connector(self) @property def Tag(self): """An instance of the Tag class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.tag.Tag) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.topology.tag import Tag return Tag(self) @property def Active(self): """Activate/Deactivate Configuration Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('active') @property def AdRouteLabel(self): """AD Route Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('adRouteLabel') @property def AdvertiseL3vniSeparately(self): """Advertise L3 Route Separately Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('advertiseL3vniSeparately') @property def AggregatorAs(self): """Aggregator AS Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('aggregatorAs') @property def AggregatorId(self): """Aggregator ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('aggregatorId') @property def AsSetMode(self): """AS# Set Mode Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('asSetMode') @property def AutoConfigPMSITunnelId(self): """Auto Configure PMSI Tunnel ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('autoConfigPMSITunnelId') @property def AutoConfigureRdIpAddress(self): """Auto-Configure RD IP Addresses Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('autoConfigureRdIpAddress') @property def BMacFirstLabel(self): """B MAC First Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('bMacFirstLabel') @property def BMacSecondLabel(self): """B MAC Second Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('bMacSecondLabel') @property def ConnectedVia(self): """List of layers this layer used to connect to the wire Returns: list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*]) """ return self._get_attribute('connectedVia') @ConnectedVia.setter def ConnectedVia(self, value): self._set_attribute('connectedVia', value) @property def Count(self): """Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group Returns: number """ return self._get_attribute('count') @property def DescriptiveName(self): """Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but maybe offers more context Returns: str """ return self._get_attribute('descriptiveName') @property def EnableAggregatorId(self): """Enable Aggregator ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableAggregatorId') @property def EnableAsPathSegments(self): """Enable AS Path Segments Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableAsPathSegments') @property def EnableAtomicAggregate(self): """Enable Atomic Aggregate Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableAtomicAggregate') @property def EnableBMacSecondLabel(self): """Enable B MAC Second Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableBMacSecondLabel') @property def EnableCluster(self): """Enable Cluster Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableCluster') @property def EnableCommunity(self): """Enable Community Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableCommunity') @property def EnableExtendedCommunity(self): """Enable Extended Community Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableExtendedCommunity') @property def EnableL3TargetOnlyForRouteType5(self): """Enable L3 Target only for Route Type 5 Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableL3TargetOnlyForRouteType5') @property def EnableL3vniTargetList(self): """Enable L3 Target List Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableL3vniTargetList') @property def EnableLocalPreference(self): """Enable Local Preference Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableLocalPreference') @property def EnableMultiExitDiscriminator(self): """Enable Multi Exit Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableMultiExitDiscriminator') @property def EnableNextHop(self): """Enable Next Hop Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableNextHop') @property def EnableOrigin(self): """Enable Origin Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableOrigin') @property def EnableOriginatorId(self): """Enable Originator ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('enableOriginatorId') @property def Errors(self): """A list of errors that have occurred Returns: list(dict(arg1:str[None|/api/v1/sessions/1/ixnetwork/?deepchild=*],arg2:list[str])) """ return self._get_attribute('errors') @property def EsiType(self): """ESI Type Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('esiType') @property def EsiValue(self): """ESI Value Returns: list(str) """ return self._get_attribute('esiValue') @property def ImportRtListSameAsExportRtList(self): """Import RT List Same As Export RT List Returns: bool """ return self._get_attribute('importRtListSameAsExportRtList') @ImportRtListSameAsExportRtList.setter def ImportRtListSameAsExportRtList(self, value): self._set_attribute('importRtListSameAsExportRtList', value) @property def IncludePmsiTunnelAttribute(self): """Include PMSI Tunnel Attribute Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('includePmsiTunnelAttribute') @property def Ipv4NextHop(self): """IPv4 Next Hop Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('ipv4NextHop') @property def Ipv6NextHop(self): """IPv6 Next Hop Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('ipv6NextHop') @property def L3vniImportRtListSameAsL3vniExportRtList(self): """L3 Import RT List Same As L3 Export RT List Returns: bool """ return self._get_attribute('l3vniImportRtListSameAsL3vniExportRtList') @L3vniImportRtListSameAsL3vniExportRtList.setter def L3vniImportRtListSameAsL3vniExportRtList(self, value): self._set_attribute('l3vniImportRtListSameAsL3vniExportRtList', value) @property def LocalPreference(self): """Local Preference Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('localPreference') @property def MultiExitDiscriminator(self): """Multi Exit Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('multiExitDiscriminator') @property def MulticastTunnelType(self): """Multicast Tunnel Type Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('multicastTunnelType') @property def Multiplier(self): """Number of layer instances per parent instance (multiplier) Returns: number """ return self._get_attribute('multiplier') @Multiplier.setter def Multiplier(self, value): self._set_attribute('multiplier', value) @property def Name(self): """Name of NGPF element, guaranteed to be unique in Scenario Returns: str """ return self._get_attribute('name') @Name.setter def Name(self, value): self._set_attribute('name', value) @property def NoOfASPathSegmentsPerRouteRange(self): """Number Of AS Path Segments Per Route Range Returns: number """ return self._get_attribute('noOfASPathSegmentsPerRouteRange') @NoOfASPathSegmentsPerRouteRange.setter def NoOfASPathSegmentsPerRouteRange(self, value): self._set_attribute('noOfASPathSegmentsPerRouteRange', value) @property def NoOfClusters(self): """Number of Clusters Returns: number """ return self._get_attribute('noOfClusters') @NoOfClusters.setter def NoOfClusters(self, value): self._set_attribute('noOfClusters', value) @property def NoOfCommunities(self): """Number of Communities Returns: number """ return self._get_attribute('noOfCommunities') @NoOfCommunities.setter def NoOfCommunities(self, value): self._set_attribute('noOfCommunities', value) @property def NoOfExtendedCommunity(self): """Number of Extended Communities Returns: number """ return self._get_attribute('noOfExtendedCommunity') @NoOfExtendedCommunity.setter def NoOfExtendedCommunity(self, value): self._set_attribute('noOfExtendedCommunity', value) @property def NumBroadcastDomainV6(self): """The number of broadcast domain to be configured under EVI Returns: number """ return self._get_attribute('numBroadcastDomainV6') @NumBroadcastDomainV6.setter def NumBroadcastDomainV6(self, value): self._set_attribute('numBroadcastDomainV6', value) @property def NumRtInExportRouteTargetList(self): """Number of RTs in Export Route Target List(multiplier) Returns: number """ return self._get_attribute('numRtInExportRouteTargetList') @NumRtInExportRouteTargetList.setter def NumRtInExportRouteTargetList(self, value): self._set_attribute('numRtInExportRouteTargetList', value) @property def NumRtInImportRouteTargetList(self): """Number of RTs in Import Route Target List(multiplier) Returns: number """ return self._get_attribute('numRtInImportRouteTargetList') @NumRtInImportRouteTargetList.setter def NumRtInImportRouteTargetList(self, value): self._set_attribute('numRtInImportRouteTargetList', value) @property def NumRtInL3vniExportRouteTargetList(self): """Number of RTs in L3 Export Route Target List(multiplier) Returns: number """ return self._get_attribute('numRtInL3vniExportRouteTargetList') @NumRtInL3vniExportRouteTargetList.setter def NumRtInL3vniExportRouteTargetList(self, value): self._set_attribute('numRtInL3vniExportRouteTargetList', value) @property def NumRtInL3vniImportRouteTargetList(self): """Number of RTs in L3 Import Route Target List(multiplier) Returns: number """ return self._get_attribute('numRtInL3vniImportRouteTargetList') @NumRtInL3vniImportRouteTargetList.setter def NumRtInL3vniImportRouteTargetList(self, value): self._set_attribute('numRtInL3vniImportRouteTargetList', value) @property def Origin(self): """Origin Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('origin') @property def OriginatorId(self): """Originator ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('originatorId') @property def OverridePeerAsSetMode(self): """Override Peer AS# Set Mode Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('overridePeerAsSetMode') @property def PmsiTunnelIDv4(self): """PMSI Tunnel ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('pmsiTunnelIDv4') @property def PmsiTunnelIDv6(self): """PMSI Tunnel ID Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('pmsiTunnelIDv6') @property def RdEvi(self): """RD EVI Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('rdEvi') @property def RdIpAddress(self): """RD IP Addresses Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('rdIpAddress') @property def SessionStatus(self): """Current state of protocol session: Not Started - session negotiation not started, the session is not active yet. Down - actively trying to bring up a protocol session, but negotiation is didn't successfully complete (yet). Up - session came up successfully. Returns: list(str[down|notStarted|up]) """ return self._get_attribute('sessionStatus') @property def SetNextHop(self): """Set Next Hop Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('setNextHop') @property def SetNextHopIpType(self): """Set Next Hop IP Type Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('setNextHopIpType') @property def StackedLayers(self): """List of secondary (many to one) child layer protocols Returns: list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*]) """ return self._get_attribute('stackedLayers') @StackedLayers.setter def StackedLayers(self, value): self._set_attribute('stackedLayers', value) @property def StateCounts(self): """A list of values that indicates the total number of sessions, the number of sessions not started, the number of sessions down and the number of sessions that are up Returns: dict(total:number,notStarted:number,down:number,up:number) """ return self._get_attribute('stateCounts') @property def Status(self): """Running status of associated network element. Once in Started state, protocol sessions will begin to negotiate. Returns: str(configured|error|mixed|notStarted|started|starting|stopping) """ return self._get_attribute('status') @property def UpstreamDownstreamAssignedMplsLabel(self): """Upstream/Downstream Assigned MPLS Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('upstreamDownstreamAssignedMplsLabel') @property def UseIpv4MappedIpv6Address(self): """Use IPv4 Mapped IPv6 Address Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('useIpv4MappedIpv6Address') @property def UseUpstreamDownstreamAssignedMplsLabel(self): """Use Upstream/Downstream Assigned MPLS Label Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('useUpstreamDownstreamAssignedMplsLabel') def add(self, ConnectedVia=None, ImportRtListSameAsExportRtList=None, L3vniImportRtListSameAsL3vniExportRtList=None, Multiplier=None, Name=None, NoOfASPathSegmentsPerRouteRange=None, NoOfClusters=None, NoOfCommunities=None, NoOfExtendedCommunity=None, NumBroadcastDomainV6=None, NumRtInExportRouteTargetList=None, NumRtInImportRouteTargetList=None, NumRtInL3vniExportRouteTargetList=None, NumRtInL3vniImportRouteTargetList=None, StackedLayers=None): """Adds a new bgpIPv6EvpnVpws node on the server and retrieves it in this instance. Args: ConnectedVia (list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*])): List of layers this layer used to connect to the wire ImportRtListSameAsExportRtList (bool): Import RT List Same As Export RT List L3vniImportRtListSameAsL3vniExportRtList (bool): L3 Import RT List Same As L3 Export RT List Multiplier (number): Number of layer instances per parent instance (multiplier) Name (str): Name of NGPF element, guaranteed to be unique in Scenario NoOfASPathSegmentsPerRouteRange (number): Number Of AS Path Segments Per Route Range NoOfClusters (number): Number of Clusters NoOfCommunities (number): Number of Communities NoOfExtendedCommunity (number): Number of Extended Communities NumBroadcastDomainV6 (number): The number of broadcast domain to be configured under EVI NumRtInExportRouteTargetList (number): Number of RTs in Export Route Target List(multiplier) NumRtInImportRouteTargetList (number): Number of RTs in Import Route Target List(multiplier) NumRtInL3vniExportRouteTargetList (number): Number of RTs in L3 Export Route Target List(multiplier) NumRtInL3vniImportRouteTargetList (number): Number of RTs in L3 Import Route Target List(multiplier) StackedLayers (list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*])): List of secondary (many to one) child layer protocols Returns: self: This instance with all currently retrieved bgpIPv6EvpnVpws data using find and the newly added bgpIPv6EvpnVpws data available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._create(locals()) def remove(self): """Deletes all the bgpIPv6EvpnVpws data in this instance from server. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ConnectedVia=None, Count=None, DescriptiveName=None, Errors=None, EsiValue=None, ImportRtListSameAsExportRtList=None, L3vniImportRtListSameAsL3vniExportRtList=None, Multiplier=None, Name=None, NoOfASPathSegmentsPerRouteRange=None, NoOfClusters=None, NoOfCommunities=None, NoOfExtendedCommunity=None, NumBroadcastDomainV6=None, NumRtInExportRouteTargetList=None, NumRtInImportRouteTargetList=None, NumRtInL3vniExportRouteTargetList=None, NumRtInL3vniImportRouteTargetList=None, SessionStatus=None, StackedLayers=None, StateCounts=None, Status=None): """Finds and retrieves bgpIPv6EvpnVpws data from the server. All named parameters support regex and can be used to selectively retrieve bgpIPv6EvpnVpws data from the server. By default the find method takes no parameters and will retrieve all bgpIPv6EvpnVpws data from the server. Args: ConnectedVia (list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*])): List of layers this layer used to connect to the wire Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but maybe offers more context Errors (list(dict(arg1:str[None|/api/v1/sessions/1/ixnetwork/?deepchild=*],arg2:list[str]))): A list of errors that have occurred EsiValue (list(str)): ESI Value ImportRtListSameAsExportRtList (bool): Import RT List Same As Export RT List L3vniImportRtListSameAsL3vniExportRtList (bool): L3 Import RT List Same As L3 Export RT List Multiplier (number): Number of layer instances per parent instance (multiplier) Name (str): Name of NGPF element, guaranteed to be unique in Scenario NoOfASPathSegmentsPerRouteRange (number): Number Of AS Path Segments Per Route Range NoOfClusters (number): Number of Clusters NoOfCommunities (number): Number of Communities NoOfExtendedCommunity (number): Number of Extended Communities NumBroadcastDomainV6 (number): The number of broadcast domain to be configured under EVI NumRtInExportRouteTargetList (number): Number of RTs in Export Route Target List(multiplier) NumRtInImportRouteTargetList (number): Number of RTs in Import Route Target List(multiplier) NumRtInL3vniExportRouteTargetList (number): Number of RTs in L3 Export Route Target List(multiplier) NumRtInL3vniImportRouteTargetList (number): Number of RTs in L3 Import Route Target List(multiplier) SessionStatus (list(str[down|notStarted|up])): Current state of protocol session: Not Started - session negotiation not started, the session is not active yet. Down - actively trying to bring up a protocol session, but negotiation is didn't successfully complete (yet). Up - session came up successfully. StackedLayers (list(str[None|/api/v1/sessions/1/ixnetwork/topology?deepchild=*])): List of secondary (many to one) child layer protocols StateCounts (dict(total:number,notStarted:number,down:number,up:number)): A list of values that indicates the total number of sessions, the number of sessions not started, the number of sessions down and the number of sessions that are up Status (str(configured|error|mixed|notStarted|started|starting|stopping)): Running status of associated network element. Once in Started state, protocol sessions will begin to negotiate. Returns: self: This instance with matching bgpIPv6EvpnVpws data retrieved from the server available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._select(locals()) def read(self, href): """Retrieves a single instance of bgpIPv6EvpnVpws data from the server. Args: href (str): An href to the instance to be retrieved Returns: self: This instance with the bgpIPv6EvpnVpws data from the server available through an iterator or index Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def get_device_ids(self, PortNames=None, Active=None, AdRouteLabel=None, AdvertiseL3vniSeparately=None, AggregatorAs=None, AggregatorId=None, AsSetMode=None, AutoConfigPMSITunnelId=None, AutoConfigureRdIpAddress=None, BMacFirstLabel=None, BMacSecondLabel=None, EnableAggregatorId=None, EnableAsPathSegments=None, EnableAtomicAggregate=None, EnableBMacSecondLabel=None, EnableCluster=None, EnableCommunity=None, EnableExtendedCommunity=None, EnableL3TargetOnlyForRouteType5=None, EnableL3vniTargetList=None, EnableLocalPreference=None, EnableMultiExitDiscriminator=None, EnableNextHop=None, EnableOrigin=None, EnableOriginatorId=None, EsiType=None, IncludePmsiTunnelAttribute=None, Ipv4NextHop=None, Ipv6NextHop=None, LocalPreference=None, MultiExitDiscriminator=None, MulticastTunnelType=None, Origin=None, OriginatorId=None, OverridePeerAsSetMode=None, PmsiTunnelIDv4=None, PmsiTunnelIDv6=None, RdEvi=None, RdIpAddress=None, SetNextHop=None, SetNextHopIpType=None, UpstreamDownstreamAssignedMplsLabel=None, UseIpv4MappedIpv6Address=None, UseUpstreamDownstreamAssignedMplsLabel=None): """Base class infrastructure that gets a list of bgpIPv6EvpnVpws device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args: PortNames (str): optional regex of port names Active (str): optional regex of active AdRouteLabel (str): optional regex of adRouteLabel AdvertiseL3vniSeparately (str): optional regex of advertiseL3vniSeparately AggregatorAs (str): optional regex of aggregatorAs AggregatorId (str): optional regex of aggregatorId AsSetMode (str): optional regex of asSetMode AutoConfigPMSITunnelId (str): optional regex of autoConfigPMSITunnelId AutoConfigureRdIpAddress (str): optional regex of autoConfigureRdIpAddress BMacFirstLabel (str): optional regex of bMacFirstLabel BMacSecondLabel (str): optional regex of bMacSecondLabel EnableAggregatorId (str): optional regex of enableAggregatorId EnableAsPathSegments (str): optional regex of enableAsPathSegments EnableAtomicAggregate (str): optional regex of enableAtomicAggregate EnableBMacSecondLabel (str): optional regex of enableBMacSecondLabel EnableCluster (str): optional regex of enableCluster EnableCommunity (str): optional regex of enableCommunity EnableExtendedCommunity (str): optional regex of enableExtendedCommunity EnableL3TargetOnlyForRouteType5 (str): optional regex of enableL3TargetOnlyForRouteType5 EnableL3vniTargetList (str): optional regex of enableL3vniTargetList EnableLocalPreference (str): optional regex of enableLocalPreference EnableMultiExitDiscriminator (str): optional regex of enableMultiExitDiscriminator EnableNextHop (str): optional regex of enableNextHop EnableOrigin (str): optional regex of enableOrigin EnableOriginatorId (str): optional regex of enableOriginatorId EsiType (str): optional regex of esiType IncludePmsiTunnelAttribute (str): optional regex of includePmsiTunnelAttribute Ipv4NextHop (str): optional regex of ipv4NextHop Ipv6NextHop (str): optional regex of ipv6NextHop LocalPreference (str): optional regex of localPreference MultiExitDiscriminator (str): optional regex of multiExitDiscriminator MulticastTunnelType (str): optional regex of multicastTunnelType Origin (str): optional regex of origin OriginatorId (str): optional regex of originatorId OverridePeerAsSetMode (str): optional regex of overridePeerAsSetMode PmsiTunnelIDv4 (str): optional regex of pmsiTunnelIDv4 PmsiTunnelIDv6 (str): optional regex of pmsiTunnelIDv6 RdEvi (str): optional regex of rdEvi RdIpAddress (str): optional regex of rdIpAddress SetNextHop (str): optional regex of setNextHop SetNextHopIpType (str): optional regex of setNextHopIpType UpstreamDownstreamAssignedMplsLabel (str): optional regex of upstreamDownstreamAssignedMplsLabel UseIpv4MappedIpv6Address (str): optional regex of useIpv4MappedIpv6Address UseUpstreamDownstreamAssignedMplsLabel (str): optional regex of useUpstreamDownstreamAssignedMplsLabel Returns: list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises: ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals()) def FetchAndUpdateConfigFromCloud(self, Mode): """Executes the fetchAndUpdateConfigFromCloud operation on the server. Args: Arg1 (str(None|/api/v1/sessions/1/ixnetwork/globals?deepchild=*|/api/v1/sessions/1/ixnetwork/topology?deepchild=*)): The method internally sets Arg1 to the current href for this instance Mode (str): Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self.href return self._execute('FetchAndUpdateConfigFromCloud', payload=locals(), response_object=None) def RestartDown(self): """Executes the restartDown operation on the server. Stop and start interfaces and sessions that are in Down state. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('RestartDown', payload=locals(), response_object=None) def RestartDown(self, SessionIndices): """Executes the restartDown operation on the server. Stop and start interfaces and sessions that are in Down state. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (list(number)): This parameter requires an array of session numbers 0 1 2 3 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('RestartDown', payload=locals(), response_object=None) def RestartDown(self, SessionIndices): """Executes the restartDown operation on the server. Stop and start interfaces and sessions that are in Down state. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('RestartDown', payload=locals(), response_object=None) def Start(self): """Executes the start operation on the server. Start selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Start(self, SessionIndices): """Executes the start operation on the server. Start selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (list(number)): This parameter requires an array of session numbers 0 1 2 3 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Start(self, SessionIndices): """Executes the start operation on the server. Start selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Start', payload=locals(), response_object=None) def Stop(self): """Executes the stop operation on the server. Stop selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None) def Stop(self, SessionIndices): """Executes the stop operation on the server. Stop selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (list(number)): This parameter requires an array of session numbers 0 1 2 3 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None) def Stop(self, SessionIndices): """Executes the stop operation on the server. Stop selected protocols. Args: Arg1 (list(str[None|/api/v1/sessions/1/ixnetwork/topology])): The method internally sets Arg1 to the encapsulated list of hrefs for this instance SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ Arg1 = self return self._execute('Stop', payload=locals(), response_object=None)
806c4c878888711dca3ec79b8fe335bae9900008
430b9e03e36e355bba475df49505011f99fa0819
/web/第4课:页面交互操作/d5_鼠标操作.py
7d4eb25bce43899556d622d03e2e63d1e93a663c
[]
no_license
gaoyang1224/mysite
b43e5d5e378b810b94dd60ffcac1c992173cc11a
72150c67b9590b0498241a1eacb2669a836520ff
refs/heads/master
2023-05-01T21:42:40.096287
2021-05-20T14:40:30
2021-05-20T14:40:30
368,254,604
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
import time from selenium import webdriver from selenium.webdriver import ActionChains driver = webdriver.Firefox() driver.implicitly_wait(4) driver.get('file:///D:/classes/web_auto_testing/%E7%AC%AC4%E8%AF%BE%EF%BC%9A%E9%A1%B5%E9%9D%A2%E4%BA%A4%E4%BA%92%E6%93%8D%E4%BD%9C/alert_demo.html') # 复杂版: # 初始化 ActionChains: 动作链条, action = ActionChains(driver) # 定位一个元素 h2 = driver.find_element('xpath', '//h2') # click 操作 action.click(h2).perform() time.sleep(5) # 简单 # h2 = driver.find_element('xpath', '//h2') # h2.click()
a4da331d66a9bc9ab226ec4306a45994e44a8df7
3e59c64c78aa3ffc4ca6ee358ee1a3ba61e2d4af
/energy/activation.py
596fbb09332eba316b94d644fc50b0773c482779
[ "MIT" ]
permissive
pminervini/DeepKGC
de35f75fac9c64ca6e09e4ab244552792669678d
ed55d0a28d7607324def7c48ebde98786c11d5e1
refs/heads/master
2016-09-06T02:36:47.748324
2015-07-06T12:35:07
2015-07-06T12:35:07
38,617,255
5
5
null
null
null
null
UTF-8
Python
false
false
366
py
# -*- coding: utf-8 -*- import theano.tensor as T # Activation functions def htanh(x): return -1. * (x < -1.) + x * (x < 1.) * (x >= -1.) + 1. * (x >= 1) def hsigm(x): return x * (x < 1) * (x > 0) + 1. * (x >= 1) def rect(x): return x * (x > 0) def sigm(x): return T.nnet.sigmoid(x) def tanh(x): return T.tanh(x) def lin(x): return x
d42e178adedceb3d83a4176e7940c42721a0994f
a2b23a8ab40a01903438b22cf964704ad90ea414
/0x0A-python-inheritance/10-square.py
945e59b894388c2c68e3a4beff404c0670f4ff3b
[]
no_license
Katorea132/higher_level_programming
b78809d5d2a052c1e9680d24cc547d12ac69c41e
746f094c10fed8c2497b65c7a18c782e1b7cd3a9
refs/heads/master
2022-12-17T04:39:57.794263
2020-09-24T19:30:57
2020-09-24T19:30:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
#!/usr/bin/python3 """THis module is for squares """ Rekt = __import__("9-rectangle").Rectangle class Square(Rekt): """The square class from the super class rectangle from the super class geometry Args: Rekt (class): super class """ def __init__(self, size): """Initializer Args: size (integer): The size of a side of the square """ self.integer_validator("size", size) self.__size = size super().__init__(size, size) def area(self): """Returns the area Returns: int: The area """ return self.__size * self.__size
3fcee134c03e33b7dcf94b71921e4a066cf3c566
105ef2d5f8bba13c15deb8c4a2a9af307b4e547a
/Baekjoon/python/11053.py
212a1537f73cd5c4d20725f1cd212c45c8474320
[]
no_license
caniro/algo-note
1ec4c0e08adcb542d3356daf7b6e943af722394f
d237a5b58a67ca453dc7a1a335f99428af2c5df5
refs/heads/master
2023-08-29T22:39:35.189711
2021-11-04T11:18:07
2021-11-04T11:18:07
260,473,565
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
# 가장 긴 증가하는 부분 수열 : https://www.acmicpc.net/problem/11053 from sys import stdin input = stdin.readline INF = 1e9 def lis(arr): if not arr: return 0 c = [-INF] + [INF] * len(arr) c[1] = arr[0] max_length = 1 def search(low, high, value): if low == high: return low elif low + 1 == high: return high if value > c[low] else low mid = (low + high) // 2 if c[mid] == value: return mid elif c[mid] < value: return search(mid + 1, high, value) else: return search(low, mid, value) for num in arr[1:]: if num > c[max_length]: max_length += 1 c[max_length] = num else: next_idx = search(1, max_length, num) c[next_idx] = num return max_length N = int(input().rstrip()) A = [int(n) for n in input().rstrip().split()] print(lis(A))
6af8e050da68bfdedfdc86850a2cfb29c077ba0a
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/Projects/twilio/twilio/rest/preview/trusted_comms/business/__init__.py
f8c935fdadfa88c9e90f8212fc00caf550491736
[ "LicenseRef-scancode-other-permissive" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:4568e5a8fab302e3c70ed11607b218146e4027e860e186373a1901bf7e49b1cc size 8394
375a99607fd2f2f1a217329571e15ee926971bc9
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/1332.py
14d48f941dcb48478886f954b0ba13b7112a23ce
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
610
py
def line(f): return f.readline().strip() f = open("A-small-attempt0.in", "r") o = open("1.out", "w") T = int(line(f)) for t in xrange(T): ans1 = int(line(f)) arr1 = [] for i in xrange(4): arr1.append(map(int, line(f).split())) ans2 = int(line(f)) arr2 = [] for i in xrange(4): arr2.append(map(int, line(f).split())) overlap = set(arr1[ans1-1]).intersection(set(arr2[ans2-1])) if len(overlap) == 0: s = "Case #%d: Volunteer cheated!" % (t+1) elif len(overlap) == 1: s = "Case #%d: %d" % (t+1, overlap.pop()) else: s = "Case #%d: Bad magician!" % (t+1) print>>o, s
45792ef3fd3e901732b4fa5547b889acb1f5ba55
baf8ccd12b27d0882c75a9c3845a0679e831f618
/22_numerai/rl/sarsa.py
b42dcf00bd73335c856a2ee0f4ee839362e9fd06
[ "MIT" ]
permissive
Tjorriemorrie/trading
c55d545a0a09e3fb92673696e95dd66b02858ab6
aafa15a6c564bfa86948ab30e33d554172b38a3e
refs/heads/master
2022-12-13T20:57:23.591343
2021-07-07T20:28:34
2021-07-07T20:28:34
28,739,306
2
2
MIT
2022-07-06T20:01:28
2015-01-03T08:55:17
q
UTF-8
Python
false
false
2,238
py
import gzip import logging import operator import os import pickle from world import World logging.getLogger(__name__) class Sarsa(): def __init__(self, filename): self.filename = filename self.world = World() self.alpha = 0. self.epsilon = self.alpha / 2. self.delta = None def __enter__(self): try: with gzip.open(self.filename) as fz: q = pickle.load(fz) except (IOError, EOFError) as e: logging.warn('Could not load Q at {}'.format(self.filename)) q = {} self.q = q logging.debug('Q loaded') def __exit__(self, exc_type, exc_value, traceback): # filename_tmp = '{0}/models/tmp.pklz'.format(os.path.realpath(os.path.dirname(__file__))) # filename = '{0}/models/{1}_{2}.pklz'.format(os.path.realpath(os.path.dirname(__file__)), currency, interval) with gzip.open(self.filename, 'wb') as fz: pickle.dump(self.q, fz) # os.rename(filename_tmp, filename) logging.debug('Q saved') def train(self): logging.info('training...') # reset delta self.delta = None # initial state s = getState(df, periods) # initial action a = getAction(q, s, epsilon, actions) # get reward r, ticks = getReward(df, a, pip_mul, std) # get delta d = getDelta(q, s, a, r) # update Q q = updateQ(q, s, a, d, r, alpha) return q, r, d, ticks def summarizeActions(q): summary_total = {} summary_count = {} for key, value in q.iteritems(): state, action = key.split('|') # total action_total = summary_total.get(action, 0) action_total += value action_total /= 2 summary_total[action] = action_total action_count = summary_count.get(action, 0) action_count += 1 summary_count[action] = action_count summary_sorted = sorted(summary_total.items(), key=operator.itemgetter(1)) for action, info in summary_sorted: logging.error('{0:10s} after {2} states with {1:.4f} avg'.format(action, info, summary_count[action]))
c09732f66b28e55cad678be37b13b597723a0410
d12b59b33df5c467abf081d48e043dac70cc5a9c
/ixnetwork_restpy/testplatform/sessions/ixnetwork/quicktest/l2tpcapacity_1fb03b1eecddd532c02195eaf76667b2.py
1845fd0d4f5769a607323c17e090b428a5725628
[ "MIT" ]
permissive
ajbalogh/ixnetwork_restpy
59ce20b88c1f99f95a980ff01106bda8f4ad5a0f
60a107e84fd8c1a32e24500259738e11740069fd
refs/heads/master
2023-04-02T22:01:51.088515
2021-04-09T18:39:28
2021-04-09T18:39:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,059
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class L2tpCapacity(Base): """This object measures the L2TP capacity of the LAC DUT. The L2tpCapacity class encapsulates a list of l2tpCapacity resources that are managed by the user. A list of resources can be retrieved from the server using the L2tpCapacity.find() method. The list can be managed by using the L2tpCapacity.add() and L2tpCapacity.remove() methods. """ __slots__ = () _SDM_NAME = 'l2tpCapacity' _SDM_ATT_MAP = { 'InputParameters': 'inputParameters', 'Mode': 'mode', 'Name': 'name', } def __init__(self, parent): super(L2tpCapacity, self).__init__(parent) @property def Results(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.results_23583c0cce1dabf7b75fe7d2ae18cfc4.Results): An instance of the Results class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.results_23583c0cce1dabf7b75fe7d2ae18cfc4 import Results return Results(self)._select() @property def TestConfig(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.testconfig_69c95a290760a4febaa65cc7629e1166.TestConfig): An instance of the TestConfig class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.quicktest.testconfig_69c95a290760a4febaa65cc7629e1166 import TestConfig return TestConfig(self) @property def InputParameters(self): """ Returns ------- - str: Input Parameters """ return self._get_attribute(self._SDM_ATT_MAP['InputParameters']) @InputParameters.setter def InputParameters(self, value): self._set_attribute(self._SDM_ATT_MAP['InputParameters'], value) @property def Mode(self): """ Returns ------- - str(existingMode | newMode): Test mode """ return self._get_attribute(self._SDM_ATT_MAP['Mode']) @Mode.setter def Mode(self, value): self._set_attribute(self._SDM_ATT_MAP['Mode'], value) @property def Name(self): """ Returns ------- - str: Test name """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): self._set_attribute(self._SDM_ATT_MAP['Name'], value) def update(self, InputParameters=None, Mode=None, Name=None): """Updates l2tpCapacity resource on the server. Args ---- - InputParameters (str): Input Parameters - Mode (str(existingMode | newMode)): Test mode - Name (str): Test name Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, InputParameters=None, Mode=None, Name=None): """Adds a new l2tpCapacity resource on the server and adds it to the container. Args ---- - InputParameters (str): Input Parameters - Mode (str(existingMode | newMode)): Test mode - Name (str): Test name Returns ------- - self: This instance with all currently retrieved l2tpCapacity resources using find and the newly added l2tpCapacity resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained l2tpCapacity resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, InputParameters=None, Mode=None, Name=None): """Finds and retrieves l2tpCapacity resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve l2tpCapacity resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all l2tpCapacity resources from the server. Args ---- - InputParameters (str): Input Parameters - Mode (str(existingMode | newMode)): Test mode - Name (str): Test name Returns ------- - self: This instance with matching l2tpCapacity resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of l2tpCapacity data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the l2tpCapacity resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href) def Apply(self): """Executes the apply operation on the server. Applies the specified Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('apply', payload=payload, response_object=None) def ApplyAsync(self): """Executes the applyAsync operation on the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsync', payload=payload, response_object=None) def ApplyAsyncResult(self): """Executes the applyAsyncResult operation on the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsyncResult', payload=payload, response_object=None) def ApplyITWizardConfiguration(self): """Executes the applyITWizardConfiguration operation on the server. Applies the specified Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyITWizardConfiguration', payload=payload, response_object=None) def GenerateReport(self): """Executes the generateReport operation on the server. Generate a PDF report for the last succesfull test run. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('generateReport', payload=payload, response_object=None) def Run(self, *args, **kwargs): """Executes the run operation on the server. Starts the specified Quick Test and waits for its execution to finish. The IxNetwork model allows for multiple method Signatures with the same name while python does not. run(InputParameters=string)list ------------------------------- - InputParameters (str): The input arguments of the test. - Returns list(str): This method is synchronous and returns the result of the test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('run', payload=payload, response_object=None) def Start(self, *args, **kwargs): """Executes the start operation on the server. Starts the specified Quick Test. The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(InputParameters=string) ----------------------------- - InputParameters (str): The input arguments of the test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self): """Executes the stop operation on the server. Stops the currently running Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('stop', payload=payload, response_object=None) def WaitForTest(self): """Executes the waitForTest operation on the server. Waits for the execution of the specified Quick Test to be completed. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('waitForTest', payload=payload, response_object=None)
c0b2dc52c6067fe4d6acf3ac56599bffd2491b3e
e3b9aa9b17ebb55e53dbc4fa9d1f49c3a56c6488
/minfraud/komand_minfraud/actions/email_lookup/action.py
9925063bfcaa673b4be293d6606ed91c7b12b331
[ "MIT" ]
permissive
OSSSP/insightconnect-plugins
ab7c77f91c46bd66b10db9da1cd7571dfc048ab7
846758dab745170cf1a8c146211a8bea9592e8ff
refs/heads/master
2023-04-06T23:57:28.449617
2020-03-18T01:24:28
2020-03-18T01:24:28
248,185,529
1
0
MIT
2023-04-04T00:12:18
2020-03-18T09:14:53
null
UTF-8
Python
false
false
2,803
py
import komand from .schema import EmailLookupInput, EmailLookupOutput # Custom imports below import minfraud class EmailLookup(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='email_lookup', description='Query email info', input=EmailLookupInput(), output=EmailLookupOutput()) def run(self, params={}): address = params.get('address') domain = params.get('domain') email = params.get('email') user = self.connection.user license = self.connection.license # Set client client = minfraud.Client(user, license) # Define request request = {'device': {'ip_address': address}} email_dic = {} if domain: email_dic['domain'] = domain if email: email_dic['address'] = email # Add email_dic to request if email_dic: request['email'] = email_dic else: self.logger.info('No email info provided') try: # Generate request insights = client.insights(request) except minfraud.AuthenticationError: self.logger.error('Authentication failed') raise except minfraud.InsufficientFundsError: self.logger.error('Insufficient funds') raise except minfraud.InvalidRequestError: self.logger.error('Invalid request') raise except minfraud.HttpError: self.logger.error('Unexpected HTTP error occurred') raise except minfraud.MinFraudError: self.logger.error('Unexpected content received from server') raise # Overall risk score risk_score = str(insights.risk_score) #TO-DO - rename email to email_result # Email info is_free = insights.email.is_free is_high_risk = insights.email.is_high_risk email_result = {'is_free': is_free, 'is_high_risk': is_high_risk } # Clean email dict email_result = komand.helper.clean_dict(email_result) return {'risk_score': risk_score, 'email_result': email_result} def test(self): user = self.connection.user license = self.connection.license # Set client client = minfraud.Client(user, license) # Define request request = {'device': {'ip_address': '8.8.8.8'}} try: # Generate request insights = client.insights(request) except minfraud.AuthenticationError: self.logger.error('Authentication failed') raise except minfraud.InsufficientFundsError: self.logger.error('Insufficient funds') raise return {}
8dae3ca824e26c97a94c7051f539dda7571c8482
26d6c34df00a229dc85ad7326de6cb5672be7acc
/msgraph-cli-extensions/v1_0/calendar_v1_0/azext_calendar_v1_0/vendored_sdks/calendar/aio/operations/_users_events_calendar_operations.py
7667aac8777412b86e848c9b3827e2c95d9a37a4
[ "MIT" ]
permissive
BrianTJackett/msgraph-cli
87f92471f68f85e44872939d876b9ff5f0ae6b2c
78a4b1c73a23b85c070fed2fbca93758733f620e
refs/heads/main
2023-06-23T21:31:53.306655
2021-07-09T07:58:56
2021-07-09T07:58:56
386,993,555
0
0
NOASSERTION
2021-07-17T16:56:05
2021-07-17T16:56:05
null
UTF-8
Python
false
false
90,659
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UsersEventsCalendarOperations: """UsersEventsCalendarOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~calendar.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_calendar_permissions( self, user_id: str, event_id: str, orderby: Optional[List[Union[str, "models.Enum384"]]] = None, select: Optional[List[Union[str, "models.Enum385"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> AsyncIterable["models.CollectionOfCalendarPermission6"]: """Get calendarPermissions from users. Get calendarPermissions from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param orderby: Order items by property values. :type orderby: list[str or ~calendar.models.Enum384] :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum385] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfCalendarPermission6 or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~calendar.models.CollectionOfCalendarPermission6] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfCalendarPermission6"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_calendar_permissions.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfCalendarPermission6', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_calendar_permissions.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarPermissions'} # type: ignore async def create_calendar_permissions( self, user_id: str, event_id: str, body: "models.MicrosoftGraphCalendarPermission", **kwargs ) -> "models.MicrosoftGraphCalendarPermission": """Create new navigation property to calendarPermissions for users. Create new navigation property to calendarPermissions for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param body: New navigation property. :type body: ~calendar.models.MicrosoftGraphCalendarPermission :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphCalendarPermission, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphCalendarPermission :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphCalendarPermission"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_calendar_permissions.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphCalendarPermission') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphCalendarPermission', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_calendar_permissions.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarPermissions'} # type: ignore async def get_calendar_permissions( self, user_id: str, event_id: str, calendar_permission_id: str, select: Optional[List[Union[str, "models.Enum386"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> "models.MicrosoftGraphCalendarPermission": """Get calendarPermissions from users. Get calendarPermissions from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param calendar_permission_id: key: id of calendarPermission. :type calendar_permission_id: str :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum386] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphCalendarPermission, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphCalendarPermission :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphCalendarPermission"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_calendar_permissions.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'calendarPermission-id': self._serialize.url("calendar_permission_id", calendar_permission_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphCalendarPermission', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_calendar_permissions.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarPermissions/{calendarPermission-id}'} # type: ignore async def update_calendar_permissions( self, user_id: str, event_id: str, calendar_permission_id: str, body: "models.MicrosoftGraphCalendarPermission", **kwargs ) -> None: """Update the navigation property calendarPermissions in users. Update the navigation property calendarPermissions in users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param calendar_permission_id: key: id of calendarPermission. :type calendar_permission_id: str :param body: New navigation property values. :type body: ~calendar.models.MicrosoftGraphCalendarPermission :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_calendar_permissions.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'calendarPermission-id': self._serialize.url("calendar_permission_id", calendar_permission_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphCalendarPermission') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_calendar_permissions.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarPermissions/{calendarPermission-id}'} # type: ignore async def delete_calendar_permissions( self, user_id: str, event_id: str, calendar_permission_id: str, if_match: Optional[str] = None, **kwargs ) -> None: """Delete navigation property calendarPermissions for users. Delete navigation property calendarPermissions for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param calendar_permission_id: key: id of calendarPermission. :type calendar_permission_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_calendar_permissions.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'calendarPermission-id': self._serialize.url("calendar_permission_id", calendar_permission_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_calendar_permissions.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarPermissions/{calendarPermission-id}'} # type: ignore def list_calendar_view( self, user_id: str, event_id: str, orderby: Optional[List[Union[str, "models.Enum387"]]] = None, select: Optional[List[Union[str, "models.Enum388"]]] = None, expand: Optional[List[Union[str, "models.Enum389"]]] = None, **kwargs ) -> AsyncIterable["models.CollectionOfEvent28"]: """Get calendarView from users. Get calendarView from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param orderby: Order items by property values. :type orderby: list[str or ~calendar.models.Enum387] :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum388] :param expand: Expand related entities. :type expand: list[str or ~calendar.models.Enum389] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfEvent28 or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~calendar.models.CollectionOfEvent28] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfEvent28"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_calendar_view.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfEvent28', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_calendar_view.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarView'} # type: ignore async def create_calendar_view( self, user_id: str, event_id: str, body: "models.MicrosoftGraphEvent", **kwargs ) -> "models.MicrosoftGraphEvent": """Create new navigation property to calendarView for users. Create new navigation property to calendarView for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param body: New navigation property. :type body: ~calendar.models.MicrosoftGraphEvent :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphEvent, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphEvent :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphEvent"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_calendar_view.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphEvent') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphEvent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_calendar_view.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarView'} # type: ignore async def get_calendar_view( self, user_id: str, event_id: str, event_id1: str, select: Optional[List[Union[str, "models.Enum390"]]] = None, expand: Optional[List[Union[str, "models.Enum391"]]] = None, **kwargs ) -> "models.MicrosoftGraphEvent": """Get calendarView from users. Get calendarView from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum390] :param expand: Expand related entities. :type expand: list[str or ~calendar.models.Enum391] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphEvent, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphEvent :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphEvent"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_calendar_view.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphEvent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_calendar_view.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarView/{event-id1}'} # type: ignore async def update_calendar_view( self, user_id: str, event_id: str, event_id1: str, body: "models.MicrosoftGraphEvent", **kwargs ) -> None: """Update the navigation property calendarView in users. Update the navigation property calendarView in users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param body: New navigation property values. :type body: ~calendar.models.MicrosoftGraphEvent :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_calendar_view.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphEvent') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_calendar_view.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarView/{event-id1}'} # type: ignore async def delete_calendar_view( self, user_id: str, event_id: str, event_id1: str, if_match: Optional[str] = None, **kwargs ) -> None: """Delete navigation property calendarView for users. Delete navigation property calendarView for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_calendar_view.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_calendar_view.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/calendarView/{event-id1}'} # type: ignore def list_events( self, user_id: str, event_id: str, orderby: Optional[List[Union[str, "models.Enum392"]]] = None, select: Optional[List[Union[str, "models.Enum393"]]] = None, expand: Optional[List[Union[str, "models.Enum394"]]] = None, **kwargs ) -> AsyncIterable["models.CollectionOfEvent29"]: """Get events from users. Get events from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param orderby: Order items by property values. :type orderby: list[str or ~calendar.models.Enum392] :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum393] :param expand: Expand related entities. :type expand: list[str or ~calendar.models.Enum394] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfEvent29 or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~calendar.models.CollectionOfEvent29] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfEvent29"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_events.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfEvent29', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_events.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/events'} # type: ignore async def create_events( self, user_id: str, event_id: str, body: "models.MicrosoftGraphEvent", **kwargs ) -> "models.MicrosoftGraphEvent": """Create new navigation property to events for users. Create new navigation property to events for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param body: New navigation property. :type body: ~calendar.models.MicrosoftGraphEvent :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphEvent, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphEvent :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphEvent"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_events.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphEvent') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphEvent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_events.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/events'} # type: ignore async def get_events( self, user_id: str, event_id: str, event_id1: str, select: Optional[List[Union[str, "models.Enum395"]]] = None, expand: Optional[List[Union[str, "models.Enum396"]]] = None, **kwargs ) -> "models.MicrosoftGraphEvent": """Get events from users. Get events from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum395] :param expand: Expand related entities. :type expand: list[str or ~calendar.models.Enum396] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphEvent, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphEvent :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphEvent"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_events.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphEvent', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_events.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/events/{event-id1}'} # type: ignore async def update_events( self, user_id: str, event_id: str, event_id1: str, body: "models.MicrosoftGraphEvent", **kwargs ) -> None: """Update the navigation property events in users. Update the navigation property events in users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param body: New navigation property values. :type body: ~calendar.models.MicrosoftGraphEvent :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_events.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphEvent') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_events.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/events/{event-id1}'} # type: ignore async def delete_events( self, user_id: str, event_id: str, event_id1: str, if_match: Optional[str] = None, **kwargs ) -> None: """Delete navigation property events for users. Delete navigation property events for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param event_id1: key: id of event. :type event_id1: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_events.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'event-id1': self._serialize.url("event_id1", event_id1, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_events.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/events/{event-id1}'} # type: ignore def list_multi_value_extended_properties( self, user_id: str, event_id: str, orderby: Optional[List[Union[str, "models.Enum397"]]] = None, select: Optional[List[Union[str, "models.Enum398"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> AsyncIterable["models.CollectionOfMultiValueLegacyExtendedProperty17"]: """Get multiValueExtendedProperties from users. Get multiValueExtendedProperties from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param orderby: Order items by property values. :type orderby: list[str or ~calendar.models.Enum397] :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum398] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfMultiValueLegacyExtendedProperty17 or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~calendar.models.CollectionOfMultiValueLegacyExtendedProperty17] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfMultiValueLegacyExtendedProperty17"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_multi_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfMultiValueLegacyExtendedProperty17', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_multi_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/multiValueExtendedProperties'} # type: ignore async def create_multi_value_extended_properties( self, user_id: str, event_id: str, body: "models.MicrosoftGraphMultiValueLegacyExtendedProperty", **kwargs ) -> "models.MicrosoftGraphMultiValueLegacyExtendedProperty": """Create new navigation property to multiValueExtendedProperties for users. Create new navigation property to multiValueExtendedProperties for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param body: New navigation property. :type body: ~calendar.models.MicrosoftGraphMultiValueLegacyExtendedProperty :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphMultiValueLegacyExtendedProperty, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphMultiValueLegacyExtendedProperty :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphMultiValueLegacyExtendedProperty"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_multi_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphMultiValueLegacyExtendedProperty') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphMultiValueLegacyExtendedProperty', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_multi_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/multiValueExtendedProperties'} # type: ignore async def get_multi_value_extended_properties( self, user_id: str, event_id: str, multi_value_legacy_extended_property_id: str, select: Optional[List[Union[str, "models.Enum399"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> "models.MicrosoftGraphMultiValueLegacyExtendedProperty": """Get multiValueExtendedProperties from users. Get multiValueExtendedProperties from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param multi_value_legacy_extended_property_id: key: id of multiValueLegacyExtendedProperty. :type multi_value_legacy_extended_property_id: str :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum399] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphMultiValueLegacyExtendedProperty, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphMultiValueLegacyExtendedProperty :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphMultiValueLegacyExtendedProperty"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_multi_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'multiValueLegacyExtendedProperty-id': self._serialize.url("multi_value_legacy_extended_property_id", multi_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphMultiValueLegacyExtendedProperty', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_multi_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/multiValueExtendedProperties/{multiValueLegacyExtendedProperty-id}'} # type: ignore async def update_multi_value_extended_properties( self, user_id: str, event_id: str, multi_value_legacy_extended_property_id: str, body: "models.MicrosoftGraphMultiValueLegacyExtendedProperty", **kwargs ) -> None: """Update the navigation property multiValueExtendedProperties in users. Update the navigation property multiValueExtendedProperties in users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param multi_value_legacy_extended_property_id: key: id of multiValueLegacyExtendedProperty. :type multi_value_legacy_extended_property_id: str :param body: New navigation property values. :type body: ~calendar.models.MicrosoftGraphMultiValueLegacyExtendedProperty :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_multi_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'multiValueLegacyExtendedProperty-id': self._serialize.url("multi_value_legacy_extended_property_id", multi_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphMultiValueLegacyExtendedProperty') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_multi_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/multiValueExtendedProperties/{multiValueLegacyExtendedProperty-id}'} # type: ignore async def delete_multi_value_extended_properties( self, user_id: str, event_id: str, multi_value_legacy_extended_property_id: str, if_match: Optional[str] = None, **kwargs ) -> None: """Delete navigation property multiValueExtendedProperties for users. Delete navigation property multiValueExtendedProperties for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param multi_value_legacy_extended_property_id: key: id of multiValueLegacyExtendedProperty. :type multi_value_legacy_extended_property_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_multi_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'multiValueLegacyExtendedProperty-id': self._serialize.url("multi_value_legacy_extended_property_id", multi_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_multi_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/multiValueExtendedProperties/{multiValueLegacyExtendedProperty-id}'} # type: ignore def list_single_value_extended_properties( self, user_id: str, event_id: str, orderby: Optional[List[Union[str, "models.Enum400"]]] = None, select: Optional[List[Union[str, "models.Enum401"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> AsyncIterable["models.CollectionOfSingleValueLegacyExtendedProperty17"]: """Get singleValueExtendedProperties from users. Get singleValueExtendedProperties from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param orderby: Order items by property values. :type orderby: list[str or ~calendar.models.Enum400] :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum401] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CollectionOfSingleValueLegacyExtendedProperty17 or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~calendar.models.CollectionOfSingleValueLegacyExtendedProperty17] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CollectionOfSingleValueLegacyExtendedProperty17"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_single_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if self._config.top is not None: query_parameters['$top'] = self._serialize.query("self._config.top", self._config.top, 'int', minimum=0) if self._config.skip is not None: query_parameters['$skip'] = self._serialize.query("self._config.skip", self._config.skip, 'int', minimum=0) if self._config.search is not None: query_parameters['$search'] = self._serialize.query("self._config.search", self._config.search, 'str') if self._config.filter is not None: query_parameters['$filter'] = self._serialize.query("self._config.filter", self._config.filter, 'str') if self._config.count is not None: query_parameters['$count'] = self._serialize.query("self._config.count", self._config.count, 'bool') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, '[str]', div=',') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CollectionOfSingleValueLegacyExtendedProperty17', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.odata_next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.OdataError, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_single_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/singleValueExtendedProperties'} # type: ignore async def create_single_value_extended_properties( self, user_id: str, event_id: str, body: "models.MicrosoftGraphSingleValueLegacyExtendedProperty", **kwargs ) -> "models.MicrosoftGraphSingleValueLegacyExtendedProperty": """Create new navigation property to singleValueExtendedProperties for users. Create new navigation property to singleValueExtendedProperties for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param body: New navigation property. :type body: ~calendar.models.MicrosoftGraphSingleValueLegacyExtendedProperty :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphSingleValueLegacyExtendedProperty, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphSingleValueLegacyExtendedProperty :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphSingleValueLegacyExtendedProperty"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_single_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphSingleValueLegacyExtendedProperty') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphSingleValueLegacyExtendedProperty', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_single_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/singleValueExtendedProperties'} # type: ignore async def get_single_value_extended_properties( self, user_id: str, event_id: str, single_value_legacy_extended_property_id: str, select: Optional[List[Union[str, "models.Enum402"]]] = None, expand: Optional[List[str]] = None, **kwargs ) -> "models.MicrosoftGraphSingleValueLegacyExtendedProperty": """Get singleValueExtendedProperties from users. Get singleValueExtendedProperties from users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param single_value_legacy_extended_property_id: key: id of singleValueLegacyExtendedProperty. :type single_value_legacy_extended_property_id: str :param select: Select properties to be returned. :type select: list[str or ~calendar.models.Enum402] :param expand: Expand related entities. :type expand: list[str] :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphSingleValueLegacyExtendedProperty, or the result of cls(response) :rtype: ~calendar.models.MicrosoftGraphSingleValueLegacyExtendedProperty :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphSingleValueLegacyExtendedProperty"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.get_single_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'singleValueLegacyExtendedProperty-id': self._serialize.url("single_value_legacy_extended_property_id", single_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if select is not None: query_parameters['$select'] = self._serialize.query("select", select, '[str]', div=',') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, '[str]', div=',') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphSingleValueLegacyExtendedProperty', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_single_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/singleValueExtendedProperties/{singleValueLegacyExtendedProperty-id}'} # type: ignore async def update_single_value_extended_properties( self, user_id: str, event_id: str, single_value_legacy_extended_property_id: str, body: "models.MicrosoftGraphSingleValueLegacyExtendedProperty", **kwargs ) -> None: """Update the navigation property singleValueExtendedProperties in users. Update the navigation property singleValueExtendedProperties in users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param single_value_legacy_extended_property_id: key: id of singleValueLegacyExtendedProperty. :type single_value_legacy_extended_property_id: str :param body: New navigation property values. :type body: ~calendar.models.MicrosoftGraphSingleValueLegacyExtendedProperty :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_single_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'singleValueLegacyExtendedProperty-id': self._serialize.url("single_value_legacy_extended_property_id", single_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'MicrosoftGraphSingleValueLegacyExtendedProperty') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) update_single_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/singleValueExtendedProperties/{singleValueLegacyExtendedProperty-id}'} # type: ignore async def delete_single_value_extended_properties( self, user_id: str, event_id: str, single_value_legacy_extended_property_id: str, if_match: Optional[str] = None, **kwargs ) -> None: """Delete navigation property singleValueExtendedProperties for users. Delete navigation property singleValueExtendedProperties for users. :param user_id: key: id of user. :type user_id: str :param event_id: key: id of event. :type event_id: str :param single_value_legacy_extended_property_id: key: id of singleValueLegacyExtendedProperty. :type single_value_legacy_extended_property_id: str :param if_match: ETag. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delete_single_value_extended_properties.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'event-id': self._serialize.url("event_id", event_id, 'str'), 'singleValueLegacyExtendedProperty-id': self._serialize.url("single_value_legacy_extended_property_id", single_value_legacy_extended_property_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete_single_value_extended_properties.metadata = {'url': '/users/{user-id}/events/{event-id}/calendar/singleValueExtendedProperties/{singleValueLegacyExtendedProperty-id}'} # type: ignore
2e0cec4b5e1bec814164ba1d46fcb45d8a657b93
42d3d37a3dd22402154da4f4bd020afd7b7bad58
/examples/adspygoogle/adwords/v201109/basic_operations/add_ad_groups.py
af1d61fdd7c560ea8a6a05c35e2fac85f4c8c218
[ "Apache-2.0" ]
permissive
nearlyfreeapps/python-googleadwords
1388316ec4f8d9d6074688ec4742872b34b67636
b30d90f74248cfd5ca52967e9ee77fc4cd1b9abc
refs/heads/master
2020-06-03T23:05:08.865535
2012-08-02T21:46:16
2012-08-02T21:46:16
5,278,295
2
0
null
null
null
null
UTF-8
Python
false
false
2,856
py
#!/usr/bin/python # # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds ad groups to a given campaign. To get ad groups, run get_ad_groups.py. Tags: AdGroupService.mutate """ __author__ = '[email protected] (Kevin Winter)' import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import AdWordsClient from adspygoogle.common import Utils campaign_id = 'INSERT_CAMPAIGN_ID_HERE' def main(client, campaign_id): # Initialize appropriate service. ad_group_service = client.GetAdGroupService( 'https://adwords-sandbox.google.com', 'v201109') # Construct operations and add ad groups. operations = [{ 'operator': 'ADD', 'operand': { 'campaignId': campaign_id, 'name': 'Earth to Mars Cruises #%s' % Utils.GetUniqueName(), 'status': 'ENABLED', 'bids': { 'xsi_type': 'ManualCPCAdGroupBids', 'keywordMaxCpc': { 'amount': { 'microAmount': '1000000' } }, # Optional field. 'keywordContentMaxCpc': { 'amount': { 'microAmount': '2000000' } } } } }, { 'operator': 'ADD', 'operand': { 'campaignId': campaign_id, 'name': 'Earth to Venus Cruises #%s' % Utils.GetUniqueName(), 'status': 'ENABLED', 'bids': { 'xsi_type': 'ManualCPCAdGroupBids', 'keywordMaxCpc': { 'amount': { 'microAmount': '2000000' } }, } } }] ad_groups = ad_group_service.Mutate(operations)[0] # Display results. for ad_group in ad_groups['value']: print ('Ad group with name \'%s\' and id \'%s\' was added.' % (ad_group['name'], ad_group['id'])) print print ('Usage: %s units, %s operations' % (client.GetUnits(), client.GetOperations())) if __name__ == '__main__': # Initialize client object. client = AdWordsClient(path=os.path.join('..', '..', '..', '..', '..')) main(client, campaign_id)
57999ae9ce2381856766849022c89cd3e153c7e4
9b4fe9c2693abc6ecc614088665cbf855971deaf
/744.find-smallest-letter-greater-than-target.py
49625d5f3841c1e6060e6f275b7326d894db8a48
[ "MIT" ]
permissive
windard/leeeeee
e795be2b9dcabfc9f32fe25794878e591a6fb2c8
0dd67edca4e0b0323cb5a7239f02ea46383cd15a
refs/heads/master
2022-08-12T19:51:26.748317
2022-08-07T16:01:30
2022-08-07T16:01:30
222,122,359
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
# coding=utf-8 # # @lc app=leetcode id=744 lang=python # # [744] Find Smallest Letter Greater Than Target # # https://leetcode.com/problems/find-smallest-letter-greater-than-target/description/ # # algorithms # Easy (43.56%) # Likes: 245 # Dislikes: 376 # Total Accepted: 46.6K # Total Submissions: 104.9K # Testcase Example: '["c","f","j"]\n"a"' # # # Given a list of sorted characters letters containing only lowercase letters, # and given a target letter target, find the smallest element in the list that # is larger than the given target. # # Letters also wrap around. For example, if the target is target = 'z' and # letters = ['a', 'b'], the answer is 'a'. # # # Examples: # # Input: # letters = ["c", "f", "j"] # target = "a" # Output: "c" # # Input: # letters = ["c", "f", "j"] # target = "c" # Output: "f" # # Input: # letters = ["c", "f", "j"] # target = "d" # Output: "f" # # Input: # letters = ["c", "f", "j"] # target = "g" # Output: "j" # # Input: # letters = ["c", "f", "j"] # target = "j" # Output: "c" # # Input: # letters = ["c", "f", "j"] # target = "k" # Output: "c" # # # # Note: # # letters has a length in range [2, 10000]. # letters consists of lowercase letters, and contains at least 2 unique # letters. # target is a lowercase letter. # # # class Solution(object): def nextGreatestLetter(self, letters, target): """ :type letters: List[str] :type target: str :rtype: str """ min_length = float("inf") min_char = None for letter in letters: if (ord(letter) - ord(target)) % 26 < min_length: if not ord(letter) - ord(target): continue min_length = (ord(letter) - ord(target)) % 26 min_char = letter return min_char
52c105db51a9729ca761c5db76853562fb4dd51a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03044/s052008101.py
8dc7ecea338f828c998221cffb71731fd4019ce9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
768
py
import sys from collections import deque read = sys.stdin.read readline = sys.stdin.readline readlines = sys.stdin.readlines sys.setrecursionlimit(10 ** 9) INF = 1 << 60 def main(): N = int(readline()) G = [[] for _ in range(N)] for _ in range(N - 1): u, v, w = map(int, readline().split()) G[u - 1].append((v - 1, w)) G[v - 1].append((u - 1, w)) dist = [-1] * N color = [0] * N dist[0] = 0 queue = deque([0]) while queue: v = queue.popleft() for nv, cost in G[v]: if dist[nv] == -1: dist[nv] = dist[v] + cost color[nv] = dist[nv] % 2 queue.append(nv) print(*color, sep='\n') return if __name__ == '__main__': main()
069e8afc3bae88fc490dc7db80adf1c3c2ff5992
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2375/60595/257705.py
dfc1e79a8269cf592621f58eb91b8d16b18a863c
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,701
py
class Graph(object): def __init__(self, maps): self.maps = maps self.nodenum = self.get_nodenum() self.edgenum = self.get_edgenum() def get_nodenum(self): return len(self.maps) def get_edgenum(self): count = 0 for i in range(self.nodenum): for j in range(i): if self.maps[i][j] > 0: count += 1 return count def prim(self): list = [] if self.nodenum <= 0 or self.edgenum < self.nodenum - 1: return list selected_node = [0] candidate_node = [i for i in range(1, self.nodenum)] while len(candidate_node) > 0: begin, end, minweight = 0, 0, 9999 for i in selected_node: for j in candidate_node: if self.maps[i][j] < minweight: minweight = self.maps[i][j] begin = i end = j list.append([begin, end, minweight]) selected_node.append(end) candidate_node.remove(end) return list def Test(): n,m=map(int,input().split()) mat=[] for i in range(0,n): line=[] for j in range(0,n): line.append(99999) mat.append(line) for i in range(0,m): s=input().split() try: mat[int(s[0])-1][int(s[1])-1]=int(s[2]) mat[int(s[1]) - 1][int(s[0]) - 1] = int(s[2]) except: print(n,m) graph=Graph(mat) message=graph.prim() res=0 for i in range(0,len(message)): res=max(res,message[i][2]) print(res,end="") if __name__ == "__main__": Test()
615e70e685775ea91236d4f9d8bf8ffa6acd6d50
9e28200b71d43de1e122a964e88f1b547bfde465
/question_leetcode/159_3.py
ac9e41c85595c93128f7e311a207156c3c39e650
[]
no_license
paul0920/leetcode
6f8a7086eefd3e9bccae83752ef41cbfee1acaea
474886c5c43a6192db2708e664663542c2e39548
refs/heads/master
2023-08-19T14:10:10.494355
2021-09-16T20:26:50
2021-09-16T20:26:50
290,560,326
1
0
null
null
null
null
UTF-8
Python
false
false
406
py
import collections s = "ecebaa" s = "bacc" start = 0 count = collections.defaultdict(int) res = 0 res_string = [] for idx, c in enumerate(s): count[c] += 1 if len(count) > 2: count[s[start]] -= 1 if not count[s[start]]: count.pop(s[start]) start += 1 res = max(res, idx - start + 1) res_string.append(s[start:idx+1]) print res print res_string
853bd821d4c8c5ac1a86b930a9840d78d132224a
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02873/s837577213.py
b7d5cafe31946f81d03165a317e1a59b8ade8854
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
s=input() l=[] i=0 while i<len(s): k=0 while s[i]=='<' if i<len(s) else False: k+=1 i+=1 if k>0: l.append(k) k=0 while s[i]=='>' if i<len(s) else False: k+=1 i+=1 if k>0: l.append(k) sm=0 for i in l: sm+=(i*(i+1))//2 for i in range(0 if s[0]=='<' else 1,len(l)-1,2): sm-=min(l[i],l[i+1]) print(sm)
d6d1beb28158c44d313682bf5c100994d4d897db
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/225/users/4005/codes/1791_1621.py
88314ecf676c1eade669782dcfbe3233714d8418
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
79
py
from numpy import* a=array(input(":").upper()) q=array(int(input(":"))) soma=0
0986e209f3f4491736d25bff9acd114e0c92e812
4c9eb8584b16bb103a1401a8f297f62589941c01
/flo/cli/Rdr2Geo.py
37d70f06ef8cebd48f5ae3fad9407d2f1276678c
[]
no_license
pyre/flo
d62e0bba61926fd395df1c2767198c5743ade531
7b61a7a4cf12d4448b99f1b841866fe31a27bb61
refs/heads/master
2023-03-08T11:21:55.874526
2021-09-28T06:47:10
2021-09-28T06:47:10
156,036,991
5
0
null
2023-02-28T17:42:13
2018-11-04T00:51:52
JavaScript
UTF-8
Python
false
false
509
py
#-*- coding: utf-8 -*- # support import flo # superclass from .Workflow import Workflow # declaration class Rdr2Geo(Workflow, family="flo.cli.rdr2geo"): """ Invoke the {rdr2geo} workflow to compute the transformation from radar coordinates to geodetic coordinates for a given SLC """ # public state flow = flo.model.flows.flow() flow.default = flo.isce3.workflows.rdr2geo # by default, make the one named after me... flow.doc = "the workflow to execute" # end of file
cd1eb7e40c810db20c3ae7b49d3798be2f3e58b5
34597ad1d89ee507473c5d91f03a5819143ec48f
/EBOs/UserV1/model.py
ab856ee1f233ace7266afeb7b415be1894a6ca4b
[]
no_license
rmetcalf9/dockPondSampleEBOs
082c3a18961665e02402f0f14e3180019fc75bde
abd8d973feee03bcbf52938d6364c93d38aa2d5c
refs/heads/master
2020-03-12T16:26:11.636502
2018-06-29T10:58:17
2018-06-29T10:58:17
130,716,032
0
0
null
null
null
null
UTF-8
Python
false
false
1,328
py
from flask_restplus import fields def getModel(flaskRestPlusAPI): #Function must be declared inside getModel function as this is the only part that is imported by dockPond def getTypeModel(flaskRestPlusAPI, typeName): if typeName=='http://ic.ac.uk/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/Core/IC_EBO/User/V1/UserEBO:UserEBOTypeV1': return flaskRestPlusAPI.model('UserEBOTypeV1', { 'Identification': fields.Nested(getTypeModel(flaskRestPlusAPI, 'http://ic.ac.uk/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/Core/IC_EBO/User/V1/UserEBO:IdentificationTypeV1')), 'CID': fields.String(default='',description='College CID'), 'Status': fields.String(default='',description='Status of the User'), }) if typeName=='http://ic.ac.uk/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/Core/IC_EBO/User/V1/UserEBO:IdentificationTypeV1': return flaskRestPlusAPI.model('IdentificationTypeV1', { 'UserName': fields.String(default='',description='Cannonical User identifier'), }) raise Exception('Searching for unknown type') return flaskRestPlusAPI.model('UserEBOV1', { 'UserEBO': fields.Nested(getTypeModel(flaskRestPlusAPI, 'http://ic.ac.uk/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/Core/IC_EBO/User/V1/UserEBO:UserEBOTypeV1')), })
02cca8d92f564c91c6c3d266eaef9202830aaabd
2fdc719bea50f10e2a4fc507d25b83ff4e612071
/projects/buck/bucklets/tools/download_all.py
a70cbda5baa067b219192369df1ce9371cbd8098
[ "Apache-2.0" ]
permissive
aslamz/appium
5610b61598b5d74a41c43b2d6729f21f6978b7c8
778fe9c92041c99f06d9d074caed2f9c61c8bbb0
refs/heads/master
2022-06-01T18:46:07.210870
2021-01-04T12:56:25
2021-01-04T12:56:25
40,705,347
0
0
Apache-2.0
2022-05-20T20:52:31
2015-08-14T08:53:27
Ruby
UTF-8
Python
false
false
1,306
py
#!/usr/bin/python # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from optparse import OptionParser import re from subprocess import check_call, CalledProcessError, Popen, PIPE MAIN = ['//:classpath'] PAT = re.compile(r'"(//.*?)" -> "//bucklets/tools:download_file"') opts = OptionParser() opts.add_option('--src', action='store_true') args, _ = opts.parse_args() targets = set() p = Popen(['buck', 'audit', 'classpath', '--dot'] + MAIN, stdout = PIPE) for line in p.stdout: m = PAT.search(line) if m: n = m.group(1) if args.src and n.endswith('__download_bin'): n = n[:-4] + '_src' targets.add(n) r = p.wait() if r != 0: exit(r) try: check_call(['buck', 'build'] + sorted(targets)) except CalledProcessError as err: exit(1)
5d60063af802f6cb1f0a9b6e580171f272016318
9ce3080999a69f1d330356645fe3e655052cf954
/aiida_registry/make_pages.py
0c4911cf752d6d8c8ef644290e6d20c49269cc15
[]
no_license
chrisjsewell/aiida-registry
b0969b8298e8e5108653ec56ac54a8807e3cc1e6
a2cc2cf6c61e835e535d6af6125efcdf7dcae33b
refs/heads/master
2021-06-16T10:17:19.887994
2019-10-30T18:00:55
2019-10-30T18:00:55
148,847,505
0
0
null
null
null
null
UTF-8
Python
false
false
6,634
py
# -*- coding: utf-8 -*- """Generate HTML pages for plugin registry. Reads plugin-metadata.json produced by fetch_metadata. """ from __future__ import absolute_import from __future__ import print_function import codecs import json import os import shutil from collections import defaultdict from jinja2 import Environment, PackageLoader, select_autoescape from . import othercolorclass, entrypoint_metainfo, main_entrypoints, PLUGINS_METADATA, entrypointtypes, state_dict # Subfolders OUT_FOLDER = 'out' STATIC_FOLDER = 'static' HTML_FOLDER = 'plugins' # Name for subfolder where HTMLs for plugins are going to be sitting TEMPLATES_FOLDER = 'templates' # Absolute paths pwd = os.path.split(os.path.abspath(__file__))[0] STATIC_FOLDER_ABS = os.path.join(pwd, STATIC_FOLDER) entrypoints_count = defaultdict(list) other_entrypoint_names = set() def get_html_plugin_fname(plugin_name): import string valid_characters = set(string.ascii_letters + string.digits + '_-') simple_string = "".join(c for c in plugin_name if c in valid_characters) return "{}.html".format(simple_string) def get_summary_info(entry_points): """Get info for plugin detail page. """ global entrypoints_count, other_entrypoint_names summary_info = [] ep = entry_points.copy() for entrypoint_name in main_entrypoints: try: num = len(ep.pop(entrypoint_name)) if num > 0: summary_info.append({ "colorclass": entrypoint_metainfo[entrypoint_name]['colorclass'], "text": entrypoint_metainfo[entrypoint_name]['shortname'], "count": num }) entrypoints_count[entrypoint_name].append(num) except KeyError: #No specific entrypoints, pass pass # Check remaining non-empty entrypoints remaining = [ep_name for ep_name in ep if ep[ep_name]] remaining_count = [len(ep[ep_name]) for ep_name in ep if ep[ep_name]] total_count = sum(remaining_count) if total_count: other_elements = [] for ep_name in remaining: try: other_elements.append( entrypoint_metainfo[ep_name]['shortname']) except KeyError: for strip_prefix in ['aiida.']: if ep_name.startswith(strip_prefix): ep_name = ep_name[len(strip_prefix):] break other_elements.append( ep_name.replace('_', ' ').replace('.', ' ').capitalize()) summary_info.append({ "colorclass": othercolorclass, "text": 'Other ({})'.format(format_entry_points_list(other_elements)), "count": total_count }) entrypoints_count['other'].append(total_count) other_entrypoint_names.update(other_elements) return summary_info def format_entry_points_list(ep_list): """Return string of entry points, respecting some limit.""" import copy max_len = 5 tmp = sorted(copy.copy(ep_list)) if len(tmp) > max_len: tmp = tmp[:max_len] + ['...'] return ", ".join(tmp) def validate_plugin_entry_points(plugin_data): """Validate that all registered entry points start with the registered entry point root.""" try: entry_point_root = plugin_data['entry_point'] except KeyError: # plugin should not specify entry points entry_point_root = 'MISSING' for ep_list in plugin_data['entry_points'].values(): for ep in ep_list: ep_string, _path = ep.split('=') ep_string = ep_string.strip() if not ep_string.startswith(entry_point_root): print( " >> WARNING: Entry point '{}' does not start with '{}'". format(ep_string, entry_point_root)) def global_summary(): """Compute summary of plugin registry.""" global entrypoints_count, other_entrypoint_names global_summary = [] for entrypoint_name in main_entrypoints: global_summary.append({ 'name': entrypoint_metainfo[entrypoint_name]['shortname'], 'colorclass': entrypoint_metainfo[entrypoint_name]['colorclass'], 'num_entries': len(entrypoints_count[entrypoint_name]), 'total_num': sum(entrypoints_count[entrypoint_name]), }) global_summary.append({ 'name': "Other", 'tooltip': format_entry_points_list(other_entrypoint_names), 'colorclass': othercolorclass, 'num_entries': len(entrypoints_count['other']), 'total_num': sum(entrypoints_count['other']) }) return global_summary def make_pages(): # Create output folder, copy static files if os.path.exists(OUT_FOLDER): shutil.rmtree(OUT_FOLDER) os.mkdir(OUT_FOLDER) os.mkdir(os.path.join(OUT_FOLDER, HTML_FOLDER)) shutil.copytree(STATIC_FOLDER_ABS, os.path.join(OUT_FOLDER, STATIC_FOLDER)) env = Environment( loader=PackageLoader('aiida_registry.mod'), autoescape=select_autoescape(['html', 'xml']), ) with open(PLUGINS_METADATA) as f: plugins_metadata = json.load(f) # Create HTML view for each plugin for plugin_name, plugin_data in plugins_metadata.items(): print(" - {}".format(plugin_name)) subpage = os.path.join(HTML_FOLDER, get_html_plugin_fname(plugin_name)) subpage_abspath = os.path.join(OUT_FOLDER, subpage) plugin_data['subpage'] = subpage plugin_data[ 'entrypointtypes'] = entrypointtypes # add a static entrypointtypes dictionary plugin_data["summaryinfo"] = get_summary_info( plugin_data["entry_points"]) plugin_data['state_dict'] = state_dict # Write plugin html plugin_html = env.get_template("singlepage.html").render(**plugin_data) with codecs.open(subpage_abspath, 'w', 'utf-8') as f: f.write(plugin_html) print(" - Page {} generated.".format(subpage)) all_data = {} all_data['plugins'] = plugins_metadata all_data['globalsummary'] = global_summary() print("[main index]") rendered = env.get_template("main_index.html").render(**all_data) outfile = os.path.join(OUT_FOLDER, 'index.html') with codecs.open(outfile, 'w', 'utf-8') as f: f.write(rendered) print(" - index.html generated")
54af66ff4d6027355a3710a71ff0203770426322
c81d7dfef424b088bf2509a1baf406a80384ea5a
/venv/Lib/site-packages/whitenoise/httpstatus_backport.py
fcb1c22f1d45ec7f7fc3b25ffc361c1df72b45bc
[]
no_license
Goutham2591/OMK_PART2
111210d78fc4845481ed55c852b8f2f938918f4a
cb54fb21ebf472bffc6ee4f634bf1e68303e113d
refs/heads/master
2022-12-10T01:43:08.213010
2018-04-05T02:09:41
2018-04-05T02:09:41
124,828,094
0
1
null
2022-12-07T23:43:03
2018-03-12T03:20:14
Python
UTF-8
Python
false
false
558
py
""" Very partial backport of the `http.HTTPStatus` enum from Python 3.5 This implements just enough of the interface for our purposes, it does not attempt to be a full implementation. """ class HTTPStatus(int): phrase = None def __new__(cls, code, phrase): instance = int.__new__(cls, code) instance.phrase = phrase return instance HTTPStatus.OK = HTTPStatus(200, 'OK') HTTPStatus.NOT_MODIFIED = HTTPStatus(304, 'Not Modified') HTTPStatus.METHOD_NOT_ALLOWED = HTTPStatus(405, 'Method Not Allowed')
39cd46f95479b5459cef6c53ce8edc1945642153
79bb7105223895235263fd391906144f9f9645fd
/python/kernel_tests/identity_op_py_test.py
7cde987900cb2e034c0d925eba85540adc313147
[]
no_license
ml-lab/imcl-tensorflow
f863a81bfebe91af7919fb45036aa05304fd7cda
54ab3ec2e32087ce70ecae2f36b56a8a92f2ba89
refs/heads/master
2021-01-22T06:37:18.129405
2016-06-08T15:53:28
2016-06-08T15:53:28
63,518,098
1
2
null
2016-07-17T06:29:14
2016-07-17T06:29:13
null
UTF-8
Python
false
false
2,365
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for IdentityOp.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.ops import gen_array_ops class IdentityOpTest(tf.test.TestCase): def testInt32_6(self): with self.test_session(): value = tf.identity([1, 2, 3, 4, 5, 6]).eval() self.assertAllEqual(np.array([1, 2, 3, 4, 5, 6]), value) def testInt32_2_3(self): with self.test_session(): inp = tf.constant([10, 20, 30, 40, 50, 60], shape=[2, 3]) value = tf.identity(inp).eval() self.assertAllEqual(np.array([[10, 20, 30], [40, 50, 60]]), value) def testString(self): source = [b"A", b"b", b"C", b"d", b"E", b"f"] with self.test_session(): value = tf.identity(source).eval() self.assertAllEqual(source, value) def testIdentityShape(self): with self.test_session(): shape = [2, 3] array_2x3 = [[1, 2, 3], [6, 5, 4]] tensor = tf.constant(array_2x3) self.assertEquals(shape, tensor.get_shape()) self.assertEquals(shape, tf.identity(tensor).get_shape()) self.assertEquals(shape, tf.identity(array_2x3).get_shape()) self.assertEquals(shape, tf.identity(np.array(array_2x3)).get_shape()) def testRefIdentityShape(self): with self.test_session(): shape = [2, 3] tensor = tf.Variable(tf.constant([[1, 2, 3], [6, 5, 4]], dtype=tf.int32)) self.assertEquals(shape, tensor.get_shape()) self.assertEquals(shape, gen_array_ops._ref_identity(tensor).get_shape()) if __name__ == "__main__": tf.test.main()
00c674bec719f04e064532c7307ee71bc50f8bbc
8b6cd902deb20812fba07f1bd51a4460d22adc03
/back-end/.history/djreact/users/serializers_20191221131418.py
4a84b43397e2a944a5fd21996d7d0d6712fd600d
[]
no_license
vishaldenzil/Django-react-
f3a49d141e0b6882685b7eaa4dc43c84857f335a
35b6d41f6dacb3bddcf7858aa4dc0d2fe039ff98
refs/heads/master
2022-11-08T09:27:02.938053
2020-05-29T04:53:52
2020-05-29T04:53:52
267,768,028
0
1
null
2022-10-15T14:08:30
2020-05-29T04:52:20
Python
UTF-8
Python
false
false
190
py
from rest_framework import serializers from .models import User class UserRegistrationSerializer(serializers.ModelSerializer): class Meta: model = User fields = __all__
f89422d908d4ded0742b533ea5c45917262a21e9
e47b6d86c2309c857c9af4e84ff2e30455030681
/Bridge.py
0c456d90f8e0be7e8fb10b816da313a991482ee8
[]
no_license
bigeyesung/DesignPattern
39aec1d9c549ec7fce5bfe5a67a65267692786d8
4d2e48f6f053b5a9b6a87e73cdb79c5978592ab6
refs/heads/master
2020-08-17T11:05:42.104343
2020-07-07T20:02:42
2020-07-07T20:02:42
215,656,773
0
0
null
null
null
null
UTF-8
Python
false
false
1,109
py
from abc import ABC, abstractmethod class Abstraction: def __init__(self, implementation: Implementation): self.implementation = implementation def operation(self): return self.implementation.operation_implementation() class ExtendedAbstraction(Abstraction): def operation(self): return self.implementation.operation_implementation() class Implementation(ABC): @abstractmethod def operation_implementation(self): pass class ConcreteImplementationA(Implementation): def operation_implementation(self): return "platform A." class ConcreteImplementationB(Implementation): def operation_implementation(self): return "platform B." def client_code(abstraction: Abstraction): print(abstraction.operation(), end="") if __name__ == "__main__": implementation = ConcreteImplementationA() abstraction = Abstraction(implementation) client_code(abstraction) print("\n") implementation = ConcreteImplementationB() abstraction = ExtendedAbstraction(implementation) client_code(abstraction)
ee92648ad5b8a4be878dc87469075f80bd3a442d
cdd79cef15bdf6a0b9098e27028bbe38607bc288
/蟻本/2-3_最長共通部分文字列問題_配るDP.py
d9e557cf8591cc2a57a19eb9d8c300f6120fd617
[]
no_license
nord2sudjp/atcoder
ee35a3eb35717485dc62627172de24c9dac102fb
6b1cc5102a615492cc7ff8a33813bbb954641782
refs/heads/master
2023-08-25T11:27:14.205593
2021-09-27T05:43:04
2021-09-27T05:43:04
302,855,505
0
0
null
null
null
null
SHIFT_JIS
Python
false
false
620
py
N,M=map(int,input().split()) S=input() T=input() MAX_N=N+2 MAX_M=M+2 DP=[[0]*(MAX_N) for _ in range(MAX_M)] #DP[i+1][j+1] : S[i]T[j]に対するLCSの長さ for i in range(N): for j in range(M): # i,jは文字列としては現在を見ている # DPとしては過去のDPを見ている # DP[i][j]は文字列S[i]T[j]までの共通文字列の長さを表す DP[i][j+1]=max(DP[i][j+1],DP[i][j]) DP[i+1][j]=max(DP[i+1][j],DP[i][j]) if S[i]==T[j]: DP[i+1][j+1]=max(DP[i+1][j+1],DP[i][j]+1) #dp[i][j]までの長さに1を足した物 print(DP[N][M])
8055239902f815052d3b4a078afeb5a0d13730b7
459929ce79538ec69a6f8c32e608f4e484594d68
/venv/Lib/site-packages/kubernetes/client/models/extensions_v1beta1_ingress_backend.py
efa600d193b4a86f19a2dcc154c8bf3990938050
[]
no_license
yychai97/Kubernetes
ec2ef2a98a4588b7588a56b9d661d63222278d29
2955227ce81bc21f329729737b5c528b02492780
refs/heads/master
2023-07-02T18:36:41.382362
2021-08-13T04:20:27
2021-08-13T04:20:27
307,412,544
0
0
null
null
null
null
UTF-8
Python
false
false
4,474
py
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: release-1.15 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ExtensionsV1beta1IngressBackend(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'service_name': 'str', 'service_port': 'object' } attribute_map = { 'service_name': 'serviceName', 'service_port': 'servicePort' } def __init__(self, service_name=None, service_port=None): # noqa: E501 """ExtensionsV1beta1IngressBackend - a model defined in OpenAPI""" # noqa: E501 self._service_name = None self._service_port = None self.discriminator = None self.service_name = service_name self.service_port = service_port @property def service_name(self): """Gets the service_name of this ExtensionsV1beta1IngressBackend. # noqa: E501 Specifies the name of the referenced service. # noqa: E501 :return: The service_name of this ExtensionsV1beta1IngressBackend. # noqa: E501 :rtype: str """ return self._service_name @service_name.setter def service_name(self, service_name): """Sets the service_name of this ExtensionsV1beta1IngressBackend. Specifies the name of the referenced service. # noqa: E501 :param service_name: The service_name of this ExtensionsV1beta1IngressBackend. # noqa: E501 :type: str """ if service_name is None: raise ValueError("Invalid value for `service_name`, must not be `None`") # noqa: E501 self._service_name = service_name @property def service_port(self): """Gets the service_port of this ExtensionsV1beta1IngressBackend. # noqa: E501 Specifies the port of the referenced service. # noqa: E501 :return: The service_port of this ExtensionsV1beta1IngressBackend. # noqa: E501 :rtype: object """ return self._service_port @service_port.setter def service_port(self, service_port): """Sets the service_port of this ExtensionsV1beta1IngressBackend. Specifies the port of the referenced service. # noqa: E501 :param service_port: The service_port of this ExtensionsV1beta1IngressBackend. # noqa: E501 :type: object """ if service_port is None: raise ValueError("Invalid value for `service_port`, must not be `None`") # noqa: E501 self._service_port = service_port def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExtensionsV1beta1IngressBackend): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
bbb90548f8bac0d1b4062e9b26e835791376a92c
a94c446a0d9ce77df965674f63be54d54b2be577
/raspy/components/potentiometers/microchip/register_memory_address.py
2c00349ad860e9bab97439a83e7dadd9917a5182
[ "MIT" ]
permissive
cyrusbuilt/RasPy
3434e02c2bff09ef9f3ff4995bda14edc781c14b
1e34840cc90ea7f19317e881162209d3d819eb09
refs/heads/master
2020-03-18T20:19:27.426002
2018-08-03T17:07:25
2018-08-03T17:07:25
135,207,376
0
0
MIT
2018-08-03T17:07:26
2018-05-28T20:42:17
Python
UTF-8
Python
false
false
480
py
"""Register memory addresses.""" WIPER0 = 0x00 """Wiper 0.""" WIPER1 = 0x01 """Wiper 1.""" WIPER0_NV = 0x02 """Wiper 0 non-volatile.""" WIPER1_NV = 0x03 """Wiper 1 non-volatile.""" TCON01 = 0x04 """Terminal control for wipers 0 and 1.""" WIPER2 = 0x06 """Wiper 2.""" WIPER3 = 0x07 """Wiper 3.""" WIPER2_NV = 0x08 """Wiper 2 non-volatile.""" WIPER3_NV = 0x09 """Wiper 3 non-volatile.""" TCON23 = 0x04 """Terminal control for wipers 2 and 3.""" NONE = 0 """Null bit."""
e7b7bc0fa2a5b32fb56f559e5bdd1a625c0572ed
8f439e50c741483ffefd5bad16f11d4b60da8fe9
/examples/infomax_transductive.py
785c7864d2eb6dd43726820bbc8b4e4abf238b6c
[ "MIT" ]
permissive
sumanthratna/pytorch_geometric
19d66b6cc874fbce9207efc204a0ed1f9bb04d88
9c6a069c995cac38e4f3a2f1e9cfc7cebac889c6
refs/heads/master
2023-08-29T09:58:33.807755
2021-09-08T16:00:09
2021-09-08T16:00:09
404,423,682
2
0
MIT
2021-09-08T20:58:23
2021-09-08T16:44:15
null
UTF-8
Python
false
false
1,720
py
import os.path as osp import torch import torch.nn as nn from torch_geometric.datasets import Planetoid from torch_geometric.nn import GCNConv, DeepGraphInfomax dataset = 'Cora' path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset) dataset = Planetoid(path, dataset) class Encoder(nn.Module): def __init__(self, in_channels, hidden_channels): super(Encoder, self).__init__() self.conv = GCNConv(in_channels, hidden_channels, cached=True) self.prelu = nn.PReLU(hidden_channels) def forward(self, x, edge_index): x = self.conv(x, edge_index) x = self.prelu(x) return x def corruption(x, edge_index): return x[torch.randperm(x.size(0))], edge_index device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = DeepGraphInfomax( hidden_channels=512, encoder=Encoder(dataset.num_features, 512), summary=lambda z, *args, **kwargs: torch.sigmoid(z.mean(dim=0)), corruption=corruption).to(device) data = dataset[0].to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) def train(): model.train() optimizer.zero_grad() pos_z, neg_z, summary = model(data.x, data.edge_index) loss = model.loss(pos_z, neg_z, summary) loss.backward() optimizer.step() return loss.item() def test(): model.eval() z, _, _ = model(data.x, data.edge_index) acc = model.test(z[data.train_mask], data.y[data.train_mask], z[data.test_mask], data.y[data.test_mask], max_iter=150) return acc for epoch in range(1, 301): loss = train() print('Epoch: {:03d}, Loss: {:.4f}'.format(epoch, loss)) acc = test() print('Accuracy: {:.4f}'.format(acc))
24696d3d7d1ec6758135a501519de7bf80fc9c3f
1208ac3718420c4a118ab6b777d99980b85f952a
/123.py
5f73d229ebcbe9954cec2122d838cef49c4cf56b
[]
no_license
deimelperez/150_Py_challenges
6ab9aea77c9c117b682790bfe36fb5e280cb8afc
b58f55312e7abf30cb7cb6d68b249bb5dcd3c862
refs/heads/master
2023-03-13T02:30:15.095467
2021-03-04T19:02:11
2021-03-04T19:02:11
344,579,979
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
import os import csv clear = lambda: os.system('cls') def prompt(): ch = 0 while ch != 1 and ch != 2 and ch != 3 and ch != 4: clear() print('1- Add to file') print('2- View all records') print('3- Delete record') print('4- Exit') ch = int(input('Select an option: ')) clear() return ch def add_to_file(): file = open('122 Salaries.csv', 'a') name = input('Enter name: ') salary = input('Enter salary: ') record = name + ',' + salary + '\n' file.write(str(record)) file.close() return def view_records(): file = open('122 Salaries.csv', 'r') for row in file: print(row) file.close() input("\nPress enter to continue") return def delete_record(): file = list(csv.reader(open('122 Salaries.csv'))) tem = [] x = 0 for row in file: tem.append(row) print(x, row) x = x + 1 row = int(input('Select which row you want to delete: ')) del tem[row] file = open('122 Salaries.csv', 'w') x = 0 for row in tem: newRec = tem[x][0] + ',' + tem[x][1] + '\n' file.write(str(newRec)) x = x + 1 file.close() return def main(): ch = 0 while ch != 4: ch = prompt() if ch == 1: add_to_file() elif ch == 2: view_records() elif ch == 3: delete_record() input("\nPress enter to continue") return main()
cff764949b2ed11e5a93eb1010ee840f4c990c13
f7d3c8483521ec45bf0bb0927c0c57a275e03996
/ch04-linear/linear_ml.py
fe394af134bee53da6a57b9be7d233d6d95f245d
[]
no_license
buzzzzx/DataScienceLearning
2fe7fef6fb8538e2acd46d19643ff4fc50dc249a
af38157f01ba3682141b11788276daf6d6002b37
refs/heads/master
2020-03-23T16:40:21.517239
2018-07-24T15:10:17
2018-07-24T15:10:17
141,699,329
0
0
null
null
null
null
UTF-8
Python
false
false
3,808
py
# -*- coding: utf-8 -*- __author__ = 'buzz' __date__ = '2018/7/16 下午2:42' """ 1. spit the data: trainData, testData 2. train the model 3. evaluate the model, get the MSE and COD 4. visualization """ import os import sys from sklearn import linear_model import numpy as np import matplotlib.pyplot as plt import pandas as pd def linearModel(data): features = ["x"] labels = ["y"] trainData = data[:15] testData = data[15:] model = trainModel(trainData, features, labels) error, score = evaluateModel(model, testData, features, labels) visualizeModel(model, data, features, labels, error, score) def trainModel(trainData, features, labels): model = linear_model.LinearRegression() model.fit(trainData[features], trainData[labels]) return model def evaluateModel(model, testData, features, labels): error = np.mean((model.predict(testData[features]) - testData[labels]) ** 2) score = model.score(testData[features], testData[labels]) return error, score def visualizeModel(model, data, features, labels, error, score): plt.rcParams['font.sans-serif'] = ['SimHei'] fig = plt.figure(figsize=(6, 6), dpi=80) ax = fig.add_subplot(111) ax.set_title("线性回归示例") ax.set_xlabel('$x$') ax.set_ylabel('$y$') ax.scatter(data[features], data[labels], color='b', label=u'%s: $y = x + \epsilon$' % "真实值") if model.intercept_ > 0: # 画线图,用红色线条表示模型结果 # 在Python3中,str不需要decode if sys.version_info[0] == 3: ax.plot(data[features], model.predict(data[features]), color='r', label=u'%s: $y = %.3fx$ + %.3f' \ % ("预测值", model.coef_, model.intercept_)) else: ax.plot(data[features], model.predict(data[features]), color='r', label=u'%s: $y = %.3fx$ + %.3f' \ % ("预测值".decode("utf-8"), model.coef_, model.intercept_)) ## coef: 系数,intercept: 截距 else: # 在Python3中,str不需要decode if sys.version_info[0] == 3: ax.plot(data[features], model.predict(data[features]), color='r', label=u'%s: $y = %.3fx$ - %.3f' \ % ("预测值", model.coef_, abs(model.intercept_))) else: ax.plot(data[features], model.predict(data[features]), color='r', label=u'%s: $y = %.3fx$ - %.3f' \ % ("预测值".decode("utf-8"), model.coef_, abs(model.intercept_))) legend = plt.legend(shadow=True) legend.get_frame().set_facecolor('#6F93AE') # 显示均方差和决定系数 # 在Python3中,str不需要decode if sys.version_info[0] == 3: ax.text(0.99, 0.01, u'%s%.3f\n%s%.3f' \ % ("均方差:", error, "决定系数:", score), style='italic', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='m', fontsize=13) else: ax.text(0.99, 0.01, u'%s%.3f\n%s%.3f' \ % ("均方差:".decode("utf-8"), error, "决定系数:".decode("utf-8"), score), style='italic', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='m', fontsize=13) # 展示上面所画的图片。图片将阻断程序的运行,直至所有的图片被关闭 # 在Python shell里面,可以设置参数"block=False",使阻断失效。 plt.show() if __name__ == '__main__': filepath = 'data/simple_example.csv' data = pd.read_csv(filepath) linearModel(data) # 选择列 # data["x"] data[["x", "y"]] # 选择行 # data[:10]
ccb6cff749499176fa4d9de1366c42f43483fafb
0add7953d3e3ce2df9e8265102be39b758579753
/built-in/TensorFlow/Official/cv/image_segmentation/UNet_Industrial_for_TensorFlow/model/layers/__init__.py
a7816ce0045ac92926203a79ec08c91e0727c967
[ "Apache-2.0" ]
permissive
Huawei-Ascend/modelzoo
ae161c0b4e581f8b62c77251e9204d958c4cf6c4
df51ed9c1d6dbde1deef63f2a037a369f8554406
refs/heads/master
2023-04-08T08:17:40.058206
2020-12-07T08:04:57
2020-12-07T08:04:57
319,219,518
1
1
Apache-2.0
2023-03-24T22:22:00
2020-12-07T06:01:32
Python
UTF-8
Python
false
false
2,506
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================== # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== from model.layers.utils import _log_hparams from model.layers.activation import crelu from model.layers.activation import elu from model.layers.activation import leaky_relu from model.layers.activation import prelu from model.layers.activation import relu from model.layers.activation import relu6 from model.layers.activation import selu from model.layers.activation import sigmoid from model.layers.activation import softmax from model.layers.activation import tanh from model.layers.conv2d import conv2d from model.layers.deconv2d import deconv2d from model.layers.dense import dense from model.layers.drop_layers import dropout from model.layers.math_ops import reduce_mean from model.layers.normalization import batch_norm from model.layers.padding import pad from model.layers.pooling import average_pooling2d from model.layers.pooling import max_pooling2d from model.layers.array_ops import concat from model.layers.array_ops import flatten from model.layers.array_ops import reshape from model.layers.array_ops import squeeze from model.layers.array_ops import upscale_2d __all__ = [ # activation layers 'crelu', 'elu', 'leaky_relu', 'prelu', 'relu', 'relu6', 'selu', 'sigmoid', 'softmax', 'tanh', # array ops 'concat', 'flatten', 'reshape', 'squeeze', 'upscale_2d', # conv layers 'conv2d', # deconv layers 'deconv2d', # dense layers 'dense', # drop layers 'dropout', # math_ops layers 'reduce_mean', # normalization layers 'batch_norm', # padding layers 'pad', # pooling layers 'average_pooling2d', 'max_pooling2d', ]
96f85c38df153deb1653e341c876ccc4fc255a21
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02879/s387457862.py
04f057243e2adabe89adf048f7b2c93b05844897
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
a, b = map(int, input().split()) if a <= 9 and b <= 9: print(a * b) else: print("-1")
6d66d2cdb6781a847e3e9c871a7d560d72c7b3c5
b87f66b13293782321e20c39aebc05defd8d4b48
/maps/build/Traits/integrationtests/ui/instance_drag_test.py
74dcc024c6f16f6dde1583cd5dc3b07f36b3a95c
[]
no_license
m-elhussieny/code
5eae020932d935e4d724c2f3d16126a0d42ebf04
5466f5858dbd2f1f082fa0d7417b57c8fb068fad
refs/heads/master
2021-06-13T18:47:08.700053
2016-11-01T05:51:06
2016-11-01T05:51:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,611
py
#------------------------------------------------------------------------------ # Copyright (c) 2005, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in /LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # Thanks for using Enthought open source! # # Author: David C. Morrill # Date: 12/04/2004 # Description: Test case for the traits tree editor. #------------------------------------------------------------------------------ #------------------------------------------------------------------------------- # Imports: #------------------------------------------------------------------------------- from enthought.traits.api \ import HasTraits, Str, Regex, List, Instance from enthought.traits.ui.api \ import TreeEditor, TreeNode, View, Group, Item, Handler, InstanceEditor from enthought.traits.ui.instance_choice \ import InstanceDropChoice from enthought.traits.ui.menu \ import Menu, Action, Separator from enthought.traits.ui.wx.tree_editor \ import NewAction, CopyAction, CutAction, PasteAction, DeleteAction, \ RenameAction #------------------------------------------------------------------------------- # 'Employee' class: #------------------------------------------------------------------------------- class Employee ( HasTraits ): name = Str( '<unknown>' ) title = Str phone = Regex( regex = r'\d\d\d-\d\d\d\d' ) view = View( 'title', 'phone' ) def default_title ( self ): self.title = 'Senior Engineer' #------------------------------------------------------------------------------- # 'Department' class: #------------------------------------------------------------------------------- class Department ( HasTraits ): name = Str( '<unknown>' ) employees = List( Employee ) view = View( [ 'employees', '|<>' ] ) #------------------------------------------------------------------------------- # 'Company' class: #------------------------------------------------------------------------------- class Company ( HasTraits ): name = Str( '<unknown>' ) departments = List( Department ) employees = List( Employee ) #------------------------------------------------------------------------------- # 'Partner' class: #------------------------------------------------------------------------------- class Partner ( HasTraits ): name = Str( '<unknown>' ) company = Instance( Company ) eom = Instance( Employee ) dom = Instance( Department ) #------------------------------------------------------------------------------- # Create a hierarchy: #------------------------------------------------------------------------------- jason = Employee( name = 'Jason', title = 'Sr. Engineer', phone = '536-1057' ) mike = Employee( name = 'Mike', title = 'Sr. Engineer', phone = '536-1057' ) dave = Employee( name = 'Dave', title = 'Sr. Engineer', phone = '536-1057' ) martin = Employee( name = 'Martin', title = 'Sr. Engineer', phone = '536-1057' ) duncan = Employee( name = 'Duncan', title = 'Sr. Engineer' ) partner = Partner( name = 'eric', company = Company( name = 'Enthought, Inc.', departments = [ Department( name = 'Business', employees = [ jason, mike ] ), Department( name = 'Scientific', employees = [ dave, martin, duncan ] ) ], employees = [ dave, martin, mike, duncan, jason ] ) ) #------------------------------------------------------------------------------- # Define the tree trait editor: #------------------------------------------------------------------------------- no_view = View() tree_editor = TreeEditor( editable = False, nodes = [ TreeNode( node_for = [ Company ], auto_open = True, children = '', label = 'name', view = View( [ 'name', '|<' ] ) ), TreeNode( node_for = [ Company ], auto_open = True, children = 'departments', label = '=Departments', view = no_view, add = [ Department ] ), TreeNode( node_for = [ Company ], auto_open = True, children = 'employees', label = '=Employees', view = no_view, add = [ Employee ] ), TreeNode( node_for = [ Department ], auto_open = True, children = 'employees', label = 'name', menu = Menu( NewAction, Separator(), DeleteAction, Separator(), RenameAction, Separator(), CopyAction, CutAction, PasteAction ), view = View( [ 'name', '|<' ] ), add = [ Employee ] ), TreeNode( node_for = [ Employee ], auto_open = True, label = 'name', menu = Menu( NewAction, Separator(), Action( name = 'Default title', action = 'object.default_title' ), Action( name = 'Department', action = 'handler.employee_department(editor,object)' ), Separator(), CopyAction, CutAction, PasteAction, Separator(), DeleteAction, Separator(), RenameAction ), view = View( [ 'name', 'title', 'phone', '|<' ] ) ) ] ) #------------------------------------------------------------------------------- # 'TreeHandler' class: #------------------------------------------------------------------------------- class TreeHandler ( Handler ): def employee_department ( self, editor, object ): dept = editor.get_parent( object ) print '%s works in the %s department.' % ( object.name, dept.name ) #------------------------------------------------------------------------------- # Define the View to use: #------------------------------------------------------------------------------- view = View( Group( [ Item( 'company', editor = tree_editor, resizable = True ), '|<>' ], Group( [ '{Employee of the Month}@', Item( 'eom@', editor = InstanceEditor( values = [ InstanceDropChoice( klass = Employee, selectable = True ) ] ), resizable = True ), '|<>' ], [ '{Department of the Month}@', Item( 'dom@', editor = InstanceEditor( values = [ InstanceDropChoice( klass = Department ) ] ), resizable = True ), '|<>' ], show_labels = False, layout = 'split' ), orientation = 'horizontal', show_labels = False, layout = 'split' ), title = 'Company Structure', handler = TreeHandler(), buttons = [ 'OK', 'Cancel' ], resizable = True, width = .5, height = .5 ) #------------------------------------------------------------------------------- # Edit it: #------------------------------------------------------------------------------- if __name__ == '__main__': partner.configure_traits( view = view )
db27d9c00b53a47982cfeea67dd63ecb1da8129b
b9cda298b1e8da3a657aea29080a467055bae421
/scandium/tpl/project_template/setup.pyt
cc777de4496e074ae1f3fefcdbd641970330004f
[]
no_license
vasfili/scandium
9fa98c18100b18f8dac60955e5602ca038e681db
843757d13a70a407626a0a7d5f6407a21d74e5f9
refs/heads/master
2020-12-13T22:34:50.661608
2015-10-14T13:14:27
2015-10-14T13:14:27
44,236,746
0
0
null
2015-10-14T09:11:37
2015-10-14T09:11:36
Python
UTF-8
Python
false
false
5,219
pyt
from setuptools import setup, find_packages from py2exe.build_exe import py2exe as build_exe from distutils.sysconfig import get_python_lib import fnmatch import py2exe import sys import os # If run without args, build executables, in quiet mode. if len(sys.argv) == 1: sys.argv.append("py2exe") sys.argv.append("-q") ################################################################ # Customize these variables NAME = "{{project_name}}" VERSION = "{{version}}" DESCRIPTION = "{{description}}" COMPANY_NAME = "{{company_name}}" LICENSE = "{{license}}" # Fiddle with these variables if you use Python modules that # py2exe can't find, or you change the location of static # and template data. INCLUDES = ['jinja2.ext', 'PySide.QtNetwork'] EXCLUDES = ["Tkconstants", "Tkinter", "tcl"] PACKAGES = find_packages(exclude=("tests",)) PACKAGE_DATA_DIRS = ('static', 'templates') ################################################################ # A program using PySide # The manifest will be inserted as resource into {{project_name}}.exe. This # gives the controls the Windows XP appearance (if run on XP ;-) and # ensures the Visual C++ Redistributable Package DLLs get found. # # Another option would be to store it in a file named # {{project_name}}.exe.manifest, and copy it with the data_files option into # the dist-dir. # manifest_template = ''' <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <assemblyIdentity version="5.0.0.0" processorArchitecture="x86" name="{{project_name}}" type="win32" /> <description>{{project_name}} Program</description> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="X86" publicKeyToken="6595b64144ccf1df" language="*" /> </dependentAssembly> </dependency> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.VC90.CRT" version="9.0.21022.8" processorArchitecture="X86" publicKeyToken="1fc8b3b9a1e18e3b" language="*" /> </dependentAssembly> </dependency> </assembly> ''' RT_MANIFEST = 24 # Extention to embed package_data in py2exe's distributable # See: http://crazedmonkey.com/blog/python/pkg_resources-with-py2exe.html class MediaCollector(build_exe): def copy_extensions(self, extensions): build_exe.copy_extensions(self, extensions) def collect_media(path): for root, _, filenames in os.walk(path): for fname in fnmatch.filter(filenames, '*'): parent = os.path.join(self.collect_dir, root) if not os.path.exists(parent): self.mkpath(parent) self.copy_file(os.path.join(root, fname), \ os.path.join(parent, fname)) self.compiled_files.append(os.path.join(root, fname)) for dname in PACKAGE_DATA_DIRS: collect_media(os.path.join(NAME, dname)) collect_media(os.path.join(NAME, dname)) # Create Windows Application target # class Target: def __init__(self, **kw): self.__dict__.update(kw) # for the versioninfo resources self.version = VERSION self.company_name = COMPANY_NAME self.description = DESCRIPTION self.copyright = LICENSE self.name = NAME app = Target( # what to build script = "runapp.py", other_resources = [(RT_MANIFEST, 1, manifest_template % dict(prog=NAME))], icon_resources = [(1, "%s/static/icons/icon.ico" % NAME)], dest_base = NAME ) # Qt4 uses plugins for image processing. These cannot be bundled into the # executable, so we copy them into the application directory, along with # the Qt DLL files, which we then exclude from the bundle. path = os.path.join(get_python_lib(), 'PySide', 'plugins', 'imageformats') imageformats = [] for dll in os.listdir(path): imageformats.append(os.path.join(path, dll)) path = os.path.join(get_python_lib(), 'PySide') qt = [] for dll in ("QtCore4.dll", "QtGui4.dll", "QtNetwork4.dll"): qt.append(os.path.join(path, dll)) DATA_FILES = [('imageformats', imageformats), ('', qt)] ################################################################ setup( cmdclass = {'py2exe': MediaCollector}, data_files = DATA_FILES, include_package_data=True, options = {"py2exe": {"compressed": 1, "optimize": 1, "ascii": 0, "bundle_files": 1, "packages": PACKAGES, "includes": INCLUDES, "excludes": EXCLUDES, # exclude the Qt4 DLLs to ensure the data_files version gets used, otherwise image processing will fail "dll_excludes": ['msvcp90.dll', 'w9xpopen.exe', "QtCore4.dll", "QtGui4.dll", "QtNetwork4.dll"]}}, zipfile = None, windows = [app], )
8449cd14afa4652b75eadf140e87adf6909ad3d1
1539f86f91ce0ee6150fba7363976d32cd37ece2
/codes_auto/99.recover-binary-search-tree.py
71f632672d901d70aa7038b3688b89a5cf53aea0
[]
no_license
zhpbo/LeetCode_By_Python
fdee0a8b7ea7ed1f61a99f0041e1c748e50f138c
0017b9db891d36789116f7299d32510a373e68da
refs/heads/master
2023-07-09T15:38:45.003002
2020-08-18T07:04:51
2020-08-18T07:04:51
281,598,190
0
0
null
2021-08-18T04:58:39
2020-07-22T06:47:05
null
UTF-8
Python
false
false
995
py
# # @lc app=leetcode.cn id=99 lang=python3 # # [99] recover-binary-search-tree # # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def recoverTree(self, root: TreeNode) -> None: """ Do not return anything, modify root in-place instead. """ tree = [] def helper(root,flag): if not root: return helper(root.left,flag) if flag=="traverse": tree.append(root.val) elif flag == "modify": # print("更改前:",root.val) root.val = tree[0] del tree[0] # print("更改后:",root.val) helper(root.right, flag) helper(root, flag="traverse") # print(tree) tree.sort() # print(tree) helper(root, flag="modify") # @lc code=end
6ece9e8b26aba619307519cdbbc359223e72c41a
57d5ebeece91f5759d54e898154f11e97c6e5609
/tests/add_trailing_comma_test.py
ee7bed3b6df646ee1055c45a784166a530c78b5b
[ "MIT" ]
permissive
chriskuehl/add-trailing-comma
0c50e16fd6d25057d025f75a23ddde0aafec4dbd
d26f8ca449eb12cfaec3d3cd1f8ced789bd73e9a
refs/heads/master
2020-12-02T07:46:50.317774
2017-07-10T01:29:14
2017-07-10T01:29:14
96,725,169
0
0
null
2017-07-10T01:53:11
2017-07-10T01:53:11
null
UTF-8
Python
false
false
3,624
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import unicode_literals import ast import sys import pytest from add_trailing_comma import _fix_calls from add_trailing_comma import main @pytest.mark.parametrize( 'src', ( # No relevant multiline calls 'x = 5', 'x(1)', # Don't rewrite functions that have a single generator argument as # this breaks lib2to3 based tools. 'tuple(\n' ' a for a in b\n' ')', # Don't rewrite *args or **kwargs unless --py35-plus 'x(\n' ' *args\n' ')', 'x(\n' ' **kwargs\n' ')', # The ast tells us that the inner call starts on line 2, but the first # paren (and last paren) are actually both on line 3. 'x(\n' ' "foo"\n' ' "bar".format(1),\n' ')', # Don't add a comma when it's not at the end of a line 'x((\n' ' 1,\n' '))', ), ) def test_fix_calls_noops(src): ret = _fix_calls(src, py35_plus=False) assert ret == src def _has_16806_bug(): # See https://bugs.python.org/issue16806 return ast.parse('"""\n"""').body[0].value.col_offset == -1 @pytest.mark.xfail(not _has_16806_bug(), reason='multiline string parse bug') def test_ignores_invalid_ast_node(): src = ( 'x(\n' ' """\n' ' """\n' ')' ) assert _fix_calls(src, py35_plus=False) == src def test_py35_plus_rewrite(): src = ( 'x(\n' ' *args\n' ')' ) ret = _fix_calls(src, py35_plus=True) assert ret == ( 'x(\n' ' *args,\n' ')' ) @pytest.mark.xfail(sys.version_info < (3, 5), reason='py35+ only feature') @pytest.mark.parametrize( 'syntax', ( 'y(*args1, *args2)\n', 'y(**kwargs1, **kwargs2)\n', ), ) def test_auto_detected_py35_plus_rewrite(syntax): src = syntax + 'x(\n *args\n)' expected = syntax + 'x(\n *args,\n)' assert _fix_calls(src, py35_plus=False) == expected def test_main_trivial(): assert main(()) == 0 def test_main_noop(tmpdir): f = tmpdir.join('f.py') f.write('x = 5\n') assert main((f.strpath,)) == 0 assert f.read() == 'x = 5\n' def test_main_changes_a_file(tmpdir, capsys): f = tmpdir.join('f.py') f.write('x(\n 1\n)\n') assert main((f.strpath,)) == 1 out, _ = capsys.readouterr() assert out == 'Rewriting {}\n'.format(f.strpath) assert f.read() == 'x(\n 1,\n)\n' def test_main_syntax_error(tmpdir): f = tmpdir.join('f.py') f.write('from __future__ import print_function\nprint 1\n') assert main((f.strpath,)) == 0 def test_main_non_utf8_bytes(tmpdir, capsys): f = tmpdir.join('f.py') f.write_binary('# -*- coding: cp1252 -*-\nx = €\n'.encode('cp1252')) assert main((f.strpath,)) == 1 out, _ = capsys.readouterr() assert out == '{} is non-utf-8 (not supported)\n'.format(f.strpath) def test_main_py35_plus_argument_star_args(tmpdir): f = tmpdir.join('f.py') f.write('x(\n *args\n)\n') assert main((f.strpath,)) == 0 assert f.read() == 'x(\n *args\n)\n' assert main((f.strpath, '--py35-plus')) == 1 assert f.read() == 'x(\n *args,\n)\n' def test_main_py35_plus_argument_star_star_kwargs(tmpdir): f = tmpdir.join('f.py') f.write('x(\n **args\n)\n') assert main((f.strpath,)) == 0 assert f.read() == 'x(\n **args\n)\n' assert main((f.strpath, '--py35-plus')) == 1 assert f.read() == 'x(\n **args,\n)\n'
607b14e2c65395162c1e43a9e0046c08f05de656
7465148de5d656ebfe68b588a2f271a11384ed6a
/examples/multiple_actions_docker/second.py
e1f78138fe14078b2864bf7a2b3a58b404a44222
[]
no_license
fiefdx/LitePipeline
1462dacdd1a0f2c67972b6014b428c2c45d46949
09608f8c5f248d2ba10e5840bf00d69e76ed6291
refs/heads/master
2023-04-14T11:45:18.929249
2023-04-02T06:48:30
2023-04-02T06:48:30
226,355,739
2
0
null
2023-04-01T17:49:14
2019-12-06T15:17:33
Python
UTF-8
Python
false
false
1,206
py
# -*- coding: utf-8 -*- import os import sys import time import json import logging import datetime from pathlib import Path import tornado from litepipeline_helper.models.action import Action import logger LOG = logging.getLogger(__name__) home = str(Path.home()) if __name__ == "__main__": workspace, input_data = Action.get_input() logs_directory = os.path.join(workspace, "logs") logger.config_logging(file_name = "second.log", log_level = "DEBUG", dir_name = logs_directory, day_rotate = False, when = "D", interval = 1, max_size = 20, backup_count = 5, console = False) LOG.debug("test start") LOG.debug("input_data: %s", input_data) data = {"messages": []} for i in range(10, 20): now = datetime.datetime.now() message = "%s: hello world, tornado(%03d): %s" % (now, i, tornado.version) data["messages"].append(message) LOG.debug(message) time.sleep(1) Action.set_output(data = data) LOG.debug("test end")
51a5adfbaade61004be3dca483ae4850f82444ba
a2b20597759990445081057d35d113434cfcf970
/stubs/integration_test/fixture_stubs/django/db/__init__.pyi
5319b5a66ff2a2a4b828e875de269690e72683c4
[ "MIT" ]
permissive
facebook/pyre-check
34059599c02b65605c574f13555229f3b931fd4e
fe8ccedc572cc1faa1fd01e9138f65e982875002
refs/heads/main
2023-09-03T19:10:11.587028
2023-09-02T07:40:35
2023-09-02T07:40:35
110,274,488
6,703
575
MIT
2023-09-13T17:02:32
2017-11-10T17:31:36
OCaml
UTF-8
Python
false
false
843
pyi
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe from typing import Any from django.db.backends.base.base import BaseDatabaseWrapper from django.db.utils import ( ConnectionHandler, DatabaseError as DatabaseError, DataError as DataError, Error as Error, IntegrityError as IntegrityError, InterfaceError as InterfaceError, InternalError as InternalError, NotSupportedError as NotSupportedError, OperationalError as OperationalError, ProgrammingError as ProgrammingError, ) def close_old_connections(**kwargs: Any) -> None: ... def reset_queries(**kwargs: Any) -> None: ... transaction: Any connections: ConnectionHandler connection: BaseDatabaseWrapper
3e0591086d651f921210267a7a24e4842272772c
62fc811f203f041c07d4bc782ce5f7f5cb8dd7c6
/test.py
01b7128de9357da4fab8a70928f00beee19546bf
[]
no_license
riaz/Recee
71dba563383059bac474bf361f216adfdebab8ae
a68c356a5c77ef0365f45c557d945d50fadcb430
refs/heads/master
2021-01-10T05:07:40.018566
2015-11-16T04:46:31
2015-11-16T04:46:31
46,204,411
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
from openalpr import Alpr import sys alpr = Alpr("eu", "nplate_train/openalpr.conf.in", "nplate_train/runtime_data") if not alpr.is_loaded(): print("Error loading OpenALPR") sys.exit(1) #alpr.set_top_n(20) alpr.set_default_region("eu") results = alpr.recognize_file("/home/riaz/Desktop/hack/2009_09_08_drive_0010/I1_000388.png") for plate in results['results']: if len(plate['candidates']) > 0: print "Found: %12s %12f" % ( plate['candidates'][0]['plate'],plate['candidates'][0]['confidence']) # Call when completely done to release memory alpr.unload()
9dd7a920b8c9aaa780d588326e861519a2da8ca1
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_383/ch18_2019_03_21_00_26_29_879325.py
f8de6535586f5e1582515556af18efa461925a5e
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
def encontra_cateto(hipotenusa,cateto): cateto2=((hipotenusa**2)-(cateto**2))**(1/2) return cateto2
a2c55b36e5abd15a11aed5da04519c8e52823407
17be0e9275082c3239fedc11bc617ecd5856136c
/letor/offline/train_one_state.py
ee6031ab06d7a984a088428fc91a8abe491fd882
[]
no_license
mdkmongo/semantichealth.github.io
8bb814bfd3b0b3a71828625a2acebfd8013e2eef
6462ba2cc406967b0371b09822e4c26860e96c91
refs/heads/master
2021-01-21T08:24:07.128484
2016-08-19T05:35:04
2016-08-19T05:35:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,589
py
from s3_helpers import * from get_rank_for_state_plan import * from query_characterizer import * import pickle def train_one_state(click_data, state, log, s3_fea): ''' ''' # set folder name of S3 s3clnt = s3_helper() log.trace('characterize queries for state %s' %state) s_rows = click_data[click_data['state']==state] q_cluster, vocab, centroids = query_characterizer(s_rows['query'], log) log.trace('run letor training for state %s' %state) letor_rank, plans = get_rank_for_state_plan(q_cluster, np.array([[r['ranks'],r['clicks']] for r in s_rows]), log, s3_fea) if not plans: # or (not letor_rank): log.warning('no feature file found for state %s, skip training.' %state) return # exclude missing plan IDs in ES with open('missing.pickle') as f: missing = pickle.load(f) picker = np.array([p not in missing for p in plans]) # upload the stuff to S3 save_training = 'training/%s_%d.pickle' %(state, len(letor_rank)) with open(save_training, 'w') as f: pickle.dump([list(np.array(plans)[picker]), letor_rank[:, picker]], f) s3clnt.delete_by_state('training/%s' %(state)) s3clnt.upload(save_training) save_online = 'online/%s_runtime.pickle' %(state) cen = [list(c) for c in centroids] voc = [None]*len(vocab) for k,v in vocab.items(): voc[v] = k with open(save_online, 'w') as f: pickle.dump([voc, cen], f) s3clnt.delete_by_state('online/%s' %(state)) s3clnt.upload(save_online) log.trace('ranking & online file are saved on s3')
8df1690d1f23f89363ab4c98e63ee1b3d812a469
505dc9404c89e56aea70f2db9fc1b3fb311fc5d9
/usr/lib/enigma2/python/Components/Renderer/speedyflipclockfortuna_metall1.py
ec87abf72fe3c8bbce8261dc3e619d1ce0ca2573
[]
no_license
e2plugins/4ATV_speedy_blue
ae8181ed4017beb4b48e58fe7cbbcbe2a1696057
c84da50a0d872a2e74812214eed5532ed0893534
refs/heads/master
2022-11-14T17:09:41.134795
2020-07-12T06:24:24
2020-07-12T06:24:24
277,350,143
1
0
null
null
null
null
UTF-8
Python
false
false
2,136
py
# FlipClock # Copyright (c) .:TBX:. 2016 # Mod by Maggy # Th4ATV_2_2_speedy_black_mod program 4ATV_2_2_speedy_black_mod free software: you can red4ATV_2_2_speedy_black_modtribute it and/or modify # it under the terms of the GNU General Public License as publ4ATV_2_2_speedy_black_modhed by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Th4ATV_2_2_speedy_black_mod program 4ATV_2_2_speedy_black_mod d4ATV_2_2_speedy_black_modtributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with th4ATV_2_2_speedy_black_mod program. If not, see <http://www.gnu.org/licenses/>. # from Components.Renderer.Renderer import Renderer from enigma import ePixmap, eTimer, eDVBVolumecontrol from Components.config import config class speedyflipclock_metall1(Renderer): def __init__(self): Renderer.__init__(self) self.timer = eTimer() self.timer.callback.append(self.pollme) GUI_WIDGET = ePixmap def changed(self, what): if not self.suspended: value = self.source.text if 'H1' in value: value = value[3:4] elif 'H2' in value: value = value[4:5] elif 'M1' in value: value = value[3:4] elif 'M2' in value: value = value[4:5] elif 'S1' in value: value = value[3:4] elif 'S2' in value: value = value[4:5] else: value = 0 self.instance.setPixmapFromFile('/usr/share/enigma2/4ATV_2_2_speedy_black_fortuna/flipclock/flipclock_metall1/' + str(value) + '.png') def pollme(self): self.changed(None) return def onShow(self): self.suspended = False self.timer.start(200) def onHide(self): self.suspended = True self.timer.stop()
77028e65d46a2e748e17451d5f7ea8d70505ece8
afdda41e01518db1a2685e9eb7fad524d7b5c69b
/ABC161/D/test.py
a064933ef448b042dd8bc488c08b80b5cdfacac1
[]
no_license
kame3niku9/atcoder
4bea5598b6529b7dd5d84a4b342b7ef650b81141
b5042f31d43425e4ca1e02cc4bbfecbd5a738b49
refs/heads/master
2022-07-10T11:37:47.560392
2020-11-22T13:47:08
2020-11-22T13:47:08
233,927,925
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
from main import resolve import sys from io import StringIO import unittest class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_入力例_1(self): input = """15""" output = """23""" self.assertIO(input, output) def test_入力例_2(self): input = """1""" output = """1""" self.assertIO(input, output) def test_入力例_3(self): input = """13""" output = """21""" self.assertIO(input, output) def test_入力例_4(self): input = """100000""" output = """3234566667""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
fb3292faa83df637e9541d37e4a20e7c4c8eaabc
3562a01673bc62df91fdff621e48b82b15cb330c
/Part 1 - Data Preprocessing/Section 2 -------------------- Part 1 - Data Preprocessing --------------------/data_preprocess.py
4a7456da3e023a18c6b161a2a1cd77ee4e089c56
[]
no_license
laksh10-stan/Machine-Learning-A-Z
16bf070a6ddbde812b053b84d9f09186cf9a0257
ba2ac016879dc5ea4be4d670e7a8de5e24abbae2
refs/heads/master
2021-02-08T20:46:36.892343
2020-03-01T17:54:16
2020-03-01T17:54:16
244,195,310
1
0
null
null
null
null
UTF-8
Python
false
false
1,303
py
# -*- coding: utf-8 -*- """ Created on Wed Oct 23 00:25:37 2019 @author: laksh """ #importing libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd #import dataset dataset = pd.read_csv('Data.csv') X = dataset.iloc[:,:-1].values y = dataset.iloc[:,3].values #taking care of the missing data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN',strategy = 'mean', axis = 0) imputer = imputer.fit(X[:,1:3]) X[:,1:3] = imputer.transform(X[:,1:3]) print(X) print(y) #Encoding categorical Data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 0] = labelencoder_X.fit_transform(X[:, 0]) # Dummy Encoding onehotencoder = OneHotEncoder(categorical_features = [0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y) #Splitting dataset into training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) #Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) #Data Preprocessing Template
6fcb98bf130d6fe7794dcbb0f39cba96ea071f2b
316eada5e13da6207801831b115cb8bc0a8ed970
/politician/urls.py
60abfdbfc4ac76261894f1a93d0a5ba1e3722102
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
edward-ly/WeVoteServer
d942ecba975e2b5a2082a078c9bd2b35ad58d3d3
24b9f0d0cd065f933707dd08391f3883bab9fb37
refs/heads/develop
2021-01-23T21:21:39.227475
2019-05-09T16:04:36
2019-05-09T16:04:36
102,893,733
0
0
null
2017-09-08T18:51:44
2017-09-08T18:44:40
Python
UTF-8
Python
false
false
1,260
py
# politician/urls.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from . import views_admin from django.conf.urls import url urlpatterns = [ url(r'^$', views_admin.politician_list_view, name='politician_list',), url(r'^edit_process/$', views_admin.politician_edit_process_view, name='politician_edit_process'), url(r'^delete/', views_admin.politician_delete_process_view, name='politician_delete_process'), url(r'^import/$', views_admin.politicians_import_from_master_server_view, name='politicians_import_from_master_server'), url(r'^new/$', views_admin.politician_new_view, name='politician_new'), url(r'^(?P<politician_id>[0-9]+)/edit/$', views_admin.politician_edit_view, name='politician_edit'), url(r'^(?P<politician_id>[0-9]+)/retrieve_photos/$', views_admin.politician_retrieve_photos_view, name='politician_retrieve_photos'), # url(r'^(?P<politician_id>[0-9]+)/tag_new/$', views.politician_tag_new_view, name='politician_tag_new'), # url(r'^(?P<politician_id>[0-9]+)/tag_new_process/$', # views.politician_tag_new_process_view, name='politician_tag_new_process'), # url(r'^(?P<pk>[0-9]+)/add_tag/$', views.PoliticianAddTagView.as_view(), name='politician_add_tag'), ]
a1407bef754ce906c79d678043c844ba8180c32a
47243c719bc929eef1475f0f70752667b9455675
/bungeni.main/branches/pre-mr-merge/bungeni/models/orm.py
97a2bcb2469cadc27c2c77f64d2192a5b1e961cd
[]
no_license
malangalanga/bungeni-portal
bbf72ce6d69415b11287a8796b81d4eb6520f03a
5cf0ba31dfbff8d2c1b4aa8ab6f69c7a0ae9870d
refs/heads/master
2021-01-19T15:31:42.943315
2014-11-18T09:03:00
2014-11-18T09:03:00
32,453,405
0
0
null
null
null
null
UTF-8
Python
false
false
37,055
py
import sqlalchemy as rdb from sqlalchemy.orm import mapper, relation, column_property, backref import schema import domain # Users # general representation of a person mapper(domain.User, schema.users, properties={"user_addresses": relation(domain.UserAddress)} ) # Groups mapper(domain.Group, schema.groups, primary_key=[schema.groups.c.group_id], properties={ "members": relation(domain.GroupMembership), "group_principal_id": column_property( # # !+ ATTENTION: the following sqlalchemy str concat (on c.type) # gives some VERY strange behaviour : # # print "group." + schema.groups.c.type + "." # >>> :type_1 || groups.type || :param_1 # # print group.groups.type. # >>> "group.%s." % (schema.groups.c.type) # ("group." + schema.groups.c.type + "." + rdb.cast(schema.groups.c.group_id, rdb.String) ).label("group_principal_id") ), "contained_groups": relation(domain.Group, backref=backref("parent_group", remote_side=schema.groups.c.group_id) ), # "keywords": relation(domain.Keyword, secondary=schema.groups_keywords) }, polymorphic_on=schema.groups.c.type, polymorphic_identity="group" ) # Keywords for groups #mapper(domain.Keyword, schema.keywords, # properties = { # "groups": relation(domain.Group, # secondary=schema.groups_keywords, backref="keywords" # ), # } #) # delegate rights to act on behalf of a user mapper(domain.UserDelegation, schema.user_delegations, properties={ "user": relation(domain.User, primaryjoin=rdb.and_( schema.user_delegations.c.user_id == schema.users.c.user_id ), uselist=False, lazy=True ), "delegation": relation(domain.User, primaryjoin=rdb.and_( (schema.user_delegations.c.delegation_id == schema.users.c.user_id), schema.users.c.active_p == "A" ), uselist=False, lazy=True ), } ) # group subclasses s_government = rdb.select([ schema.groups.c.group_id, schema.groups.c.start_date, schema.groups.c.end_date, schema.groups.c.parent_group_id, schema.groups.c.status, schema.groups.c.short_name, schema.groups.c.full_name ], whereclause=schema.groups.c.type=="government", from_obj=[schema.groups] ).alias("list_government") mapper(domain.ListGovernment, s_government) mapper(domain.Government, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="government" ) s_parliament = rdb.select([ schema.groups.c.group_id, schema.groups.c.start_date, schema.groups.c.end_date, schema.groups.c.parent_group_id, schema.groups.c.short_name, schema.groups.c.status, schema.parliaments.c.election_date, schema.groups.c.full_name ], whereclause=schema.groups.c.type=="parliament", from_obj=[schema.groups.join(schema.parliaments)] ).alias("list_parliament") mapper(domain.ListParliament, s_parliament) mapper(domain.Parliament, schema.parliaments, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="parliament" ) mapper(domain.PoliticalEntity, schema.political_parties, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="political-entity" ) mapper(domain.PoliticalParty, inherits=domain.PoliticalEntity, polymorphic_on=schema.groups.c.type, polymorphic_identity="political-party" ) mapper(domain.PoliticalGroup, inherits=domain.PoliticalEntity, polymorphic_on=schema.groups.c.type, polymorphic_identity="political-group" ) mapper(domain.Ministry, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="ministry" ) s_committee = rdb.select([ schema.groups.c.group_id, schema.groups.c.start_date, schema.groups.c.end_date, schema.groups.c.parent_group_id, schema.groups.c.short_name, schema.groups.c.status, schema.committee_type.c.committee_type_id.label("_fk_committee_type_id"), schema.committee_type.c.committee_type.label("committee_type_id"), schema.committee_type.c.committee_type, schema.groups.c.full_name], whereclause=schema.groups.c.type=="committee", from_obj=[schema.groups.join( schema.committees.join(schema.committee_type), schema.groups.c.group_id==schema.committees.c.committee_id )] ).alias("list_committee") mapper(domain.ListCommittee, s_committee) mapper(domain.Committee, schema.committees, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="committee", properties={ "committee_type": relation(domain.CommitteeType, uselist=False, lazy=False ), }, ) mapper(domain.Office, schema.offices, inherits=domain.Group, polymorphic_on=schema.groups.c.type, polymorphic_identity="office" ) # Ministers and Committee members are defined by their group membership in a # ministry or committee (group) # we need to specify join clause for user explicitly because we have multiple fk # to the user table. mapper(domain.GroupMembership, schema.user_group_memberships, properties={ "user":relation(domain.User, primaryjoin=rdb.and_(schema.user_group_memberships.c.user_id == schema.users.c.user_id), uselist=False, lazy=False), "group":relation(domain.Group, primaryjoin=(schema.user_group_memberships.c.group_id == schema.groups.c.group_id), uselist=False, lazy=True), "replaced":relation(domain.GroupMembership, primaryjoin=(schema.user_group_memberships.c.replaced_id == schema.user_group_memberships.c.membership_id), uselist=False, lazy=True), "member_titles":relation(domain.MemberRoleTitle) }, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="member", ) mapper(domain.MemberOfParliament, schema.parliament_memberships, inherits=domain.GroupMembership, primary_key=[schema.user_group_memberships.c.membership_id], properties={ "constituency": relation(domain.Constituency, primaryjoin=(schema.parliament_memberships.c.constituency_id == schema.constituencies.c.constituency_id), uselist=False, lazy=False), "constituency_id": [schema.parliament_memberships.c.constituency_id], "province": relation(domain.Province, primaryjoin=(schema.parliament_memberships.c.province_id == schema.provinces.c.province_id), uselist=False, lazy=False), "province_id": [schema.parliament_memberships.c.province_id], "region": relation(domain.Region, primaryjoin=(schema.parliament_memberships.c.region_id == schema.regions.c.region_id), uselist=False, lazy=False), "region_id": [schema.parliament_memberships.c.region_id], "party": relation(domain.PoliticalParty, primaryjoin=(schema.parliament_memberships.c.party_id == schema.political_parties.c.party_id), uselist=False, lazy=False), "party_id": [schema.parliament_memberships.c.party_id], "start_date": column_property( schema.user_group_memberships.c.start_date.label("start_date")), "end_date": column_property( schema.user_group_memberships.c.end_date.label("end_date")), }, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="parliamentmember", ) s_member_of_parliament = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.parliament_memberships.c.elected_nominated, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name+" "+schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), schema.constituencies.c.name.label("constituency_id"), schema.parliament_memberships.c.constituency_id.label( "_fk_constituency_id"), schema.constituencies.c.name.label("name"), # !+PROVINCE_REGION(mr, aug-2010) is this needed? schema.provinces.c.province_id.label("province_id"), schema.parliament_memberships.c.province_id.label("_fk_province_id"), schema.provinces.c.province_id.label("province"), schema.regions.c.region_id.label("region_id"), schema.parliament_memberships.c.region_id.label("_fk_region_id"), schema.regions.c.region_id.label("region"), ], from_obj=[ schema.parliament_memberships.join(schema.constituencies ).join(schema.provinces # !+PROVINCE(mr, aug-2010) needed? ).join(schema.regions # !+REGION(mr, aug-2010) needed? ).join(schema.user_group_memberships ).join(schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id) ] ).alias("list_member_of_parliament") mapper(domain.ListMemberOfParliament, s_member_of_parliament) s_minister = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), ], whereclause=schema.user_group_memberships.c.membership_type=="minister", from_obj=[schema.user_group_memberships.join( schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id )], ).alias("list_minister") mapper(domain.ListMinister, s_minister) mapper(domain.Minister, inherits=domain.GroupMembership, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="minister", ) s_committeemember = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), ], whereclause=schema.user_group_memberships.c.membership_type=="committeemember", from_obj=[schema.user_group_memberships.join( schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id )], ).alias("list_committeemember") mapper(domain.ListCommitteeMember, s_committeemember) mapper(domain.CommitteeMember, inherits=domain.GroupMembership, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="committeemember", ) s_partymember = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), ], whereclause=schema.user_group_memberships.c.membership_type=="partymember", from_obj=[schema.user_group_memberships.join( schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id )], ).alias("list_partymember") mapper(domain.ListPartyMember, s_partymember) mapper(domain.PartyMember, inherits=domain.GroupMembership, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="partymember", ) s_officemember = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), ], whereclause=schema.user_group_memberships.c.membership_type=="officemember", from_obj=[schema.user_group_memberships.join( schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id )], ).alias("list_officemember") mapper(domain.ListOfficeMember, s_officemember) mapper(domain.OfficeMember, inherits=domain.GroupMembership, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="officemember", ) # staff assigned to a group (committee, ...) s_committeestaff = rdb.select([ schema.user_group_memberships.c.membership_id, schema.user_group_memberships.c.start_date, schema.user_group_memberships.c.end_date, schema.user_group_memberships.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.user_id.label("_fk_user_id"), ], whereclause=schema.user_group_memberships.c.membership_type=="committeestaff", from_obj=[schema.user_group_memberships.join( schema.users, schema.user_group_memberships.c.user_id==schema.users.c.user_id )], ).alias("list_committeestaff") mapper(domain.ListCommitteeStaff, s_committeestaff) mapper(domain.CommitteeStaff, inherits=domain.GroupMembership, polymorphic_on=schema.user_group_memberships.c.membership_type, polymorphic_identity="committeestaff", ) mapper(domain.ParliamentSession, schema.parliament_sessions) mapper(domain.GroupSitting, schema.sittings, properties={ "sitting_type": relation(domain.SittingType, uselist=False), "group": relation(domain.Group, primaryjoin=schema.sittings.c.group_id == schema.groups.c.group_id, uselist=False, lazy=True ), "start_date": column_property( schema.sittings.c.start_date.label("start_date") ), "end_date": column_property( schema.sittings.c.end_date.label("end_date") ), "item_schedule": relation(domain.ItemSchedule, order_by=schema.items_schedule.c.planned_order ), "venue": relation(domain.Venue) } ) mapper(domain.ResourceType, schema.resource_types) mapper(domain.Resource, schema.resources) mapper(domain.ResourceBooking, schema.resourcebookings) mapper(domain.Venue, schema.venues) ############################## # Parliamentary Items mapper(domain.ParliamentaryItem, schema.parliamentary_items, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="item", properties={ "owner": relation(domain.User, primaryjoin=rdb.and_(schema.parliamentary_items.c.owner_id == schema.users.c.user_id), uselist=False, lazy=False), "consignatories": relation(domain.User, secondary=schema.consignatories), "attached_files": relation(domain.AttachedFile) } ) s_heading = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date.label("submission_date"), schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id") ], whereclause=schema.parliamentary_items.c.type == "heading", from_obj=[schema.parliamentary_items.join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id )], ).alias("list_heading") mapper(domain.ListHeading, s_heading) mapper(domain.Heading, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="heading" ) s_question = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date.label("submission_date"), schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.questions.c.approval_date, schema.questions.c.ministry_submit_date, schema.questions.c.question_number, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.groups.c.full_name.label("ministry_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), schema.questions.c.ministry_id.label("_fk_ministry_id"), ], whereclause=schema.parliamentary_items.c.type == "question", from_obj=[schema.parliamentary_items.join( schema.questions.join( schema.groups, schema.questions.c.ministry_id == schema.groups.c.group_id), schema.parliamentary_items.c.parliamentary_item_id == schema.questions.c.question_id ).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id) ], ).alias("list_questions") mapper(domain.ListQuestion, s_question) mapper(domain.Question, schema.questions, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="question", properties={ "changes":relation(domain.QuestionChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ), "ministry": relation(domain.Ministry), } ) mapper(domain.QuestionChange, schema.question_changes) mapper(domain.QuestionVersion, schema.question_versions, properties={ "change": relation(domain.QuestionChange, uselist=False), "head": relation(domain.Question, uselist=False), "attached_files": relation(domain.AttachedFileVersion, primaryjoin=rdb.and_( schema.question_versions.c.content_id == schema.attached_file_versions.c.item_id, schema.question_versions.c.version_id == schema.attached_file_versions.c.file_version_id ), foreign_keys=[schema.attached_file_versions.c.item_id, schema.attached_file_versions.c.file_version_id ] ), } ) s_motion = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date, schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.motions.c.approval_date, schema.motions.c.motion_number, schema.motions.c.notice_date, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), ], whereclause=schema.parliamentary_items.c.type == "motion", from_obj=[schema.parliamentary_items.join( schema.motions).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id ) ], ).alias("list_motion") mapper(domain.ListMotion, s_motion) mapper(domain.Motion, schema.motions, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="motion", properties={ "changes": relation(domain.MotionChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ), } ) mapper(domain.MotionChange, schema.motion_changes) mapper(domain.MotionVersion, schema.motion_versions, properties={ "change":relation(domain.MotionChange, uselist=False), "head": relation(domain.Motion, uselist=False), "attached_files": relation(domain.AttachedFileVersion, primaryjoin=rdb.and_( schema.motion_versions.c.content_id == schema.attached_file_versions.c.item_id, schema.motion_versions.c.version_id == schema.attached_file_versions.c.file_version_id ), foreign_keys=[ schema.attached_file_versions.c.item_id, schema.attached_file_versions.c.file_version_id ] ), } ) s_bill = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date, schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.bills.c.publication_date, schema.bills.c.ministry_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), ], whereclause=schema.parliamentary_items.c.type == "bill", from_obj=[schema.parliamentary_items.join( schema.bills).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id ) ], ).alias("list_bill") mapper(domain.ListBill, s_bill) mapper(domain.Bill, schema.bills, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="bill", properties={ "changes": relation(domain.BillChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ) } ) mapper(domain.BillChange, schema.bill_changes) mapper(domain.BillVersion, schema.bill_versions, properties={ "change": relation(domain.BillChange, uselist=False), "head": relation(domain.Bill, uselist=False), "attached_files": relation(domain.AttachedFileVersion, primaryjoin=rdb.and_( schema.bill_versions.c.content_id == schema.attached_file_versions.c.item_id, schema.bill_versions.c.version_id == schema.attached_file_versions.c.file_version_id ), foreign_keys=[ schema.attached_file_versions.c.item_id, schema.attached_file_versions.c.file_version_id ] ), } ) s_event = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date, schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.event_items.c.event_date, schema.event_items.c.item_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), ], whereclause=schema.parliamentary_items.c.type == "event", from_obj=[schema.parliamentary_items.join( schema.agenda_items).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id )], ).alias("list_event") mapper(domain.ListEventItem, s_event) mapper(domain.EventItem, schema.event_items, inherits=domain.ParliamentaryItem, inherit_condition=( schema.event_items.c.event_item_id == schema.parliamentary_items.c.parliamentary_item_id ), polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="event" ) s_agendaitem = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date, schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.agenda_items.c.approval_date, schema.agenda_items.c.group_id, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), ], whereclause=schema.parliamentary_items.c.type == "agendaitem", from_obj=[schema.parliamentary_items.join( schema.agenda_items).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id )], ).alias("list_agendaitem") mapper(domain.ListAgendaItem, s_agendaitem) mapper(domain.AgendaItem, schema.agenda_items, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="agendaitem", properties={ "changes": relation(domain.AgendaItemChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ), "group": relation(domain.Group, primaryjoin=( schema.agenda_items.c.group_id == schema.groups.c.group_id), backref="agenda_items", lazy=False, uselist=False ) } ) mapper(domain.AgendaItemChange, schema.agenda_item_changes) mapper(domain.AgendaItemVersion, schema.agenda_item_versions, properties={ "change": relation(domain.AgendaItemChange, uselist=False), "head": relation(domain.AgendaItem, uselist=False), "attached_files": relation(domain.AttachedFileVersion, primaryjoin=rdb.and_( schema.agenda_item_versions.c.content_id == schema.attached_file_versions.c.item_id, schema.agenda_item_versions.c.version_id == schema.attached_file_versions.c.file_version_id ), foreign_keys=[ schema.attached_file_versions.c.item_id, schema.attached_file_versions.c.file_version_id ] ), } ) s_tableddocument = rdb.select([ schema.parliamentary_items.c.parliamentary_item_id, schema.parliamentary_items.c.short_name, schema.parliamentary_items.c.submission_date, schema.parliamentary_items.c.status, schema.parliamentary_items.c.status_date, schema.parliamentary_items.c.parliament_id, schema.tabled_documents.c.approval_date, schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, (schema.users.c.first_name + " " + schema.users.c.last_name ).label("owner_id"), schema.parliamentary_items.c.owner_id.label("_fk_owner_id"), ], whereclause=schema.parliamentary_items.c.type == "tableddocument", from_obj=[schema.parliamentary_items.join( schema.tabled_documents).join( schema.users, schema.parliamentary_items.c.owner_id == schema.users.c.user_id )], ).alias("list_tableddocument") mapper(domain.ListTabledDocument, s_tableddocument) mapper(domain.TabledDocument, schema.tabled_documents, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="tableddocument", properties={ "changes": relation(domain.TabledDocumentChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ), } ) mapper(domain.TabledDocumentChange, schema.tabled_document_changes) mapper(domain.TabledDocumentVersion, schema.tabled_document_versions, properties={ "change": relation(domain.TabledDocumentChange, uselist=False), "head": relation(domain.TabledDocument, uselist=False), "attached_files": relation(domain.AttachedFileVersion, primaryjoin=rdb.and_( schema.tabled_document_versions.c.content_id == schema.attached_file_versions.c.item_id, schema.tabled_document_versions.c.version_id == schema.attached_file_versions.c.file_version_id ), foreign_keys=[ schema.attached_file_versions.c.item_id, schema.attached_file_versions.c.file_version_id ] ), } ) mapper(domain.AttachedFile, schema.attached_files, properties={ "changes": relation(domain.AttachedFileChange, backref="origin", cascade="all, delete-orphan", passive_deletes=False ), } ) mapper(domain.AttachedFileChange, schema.attached_file_changes) mapper(domain.AttachedFileVersion, schema.attached_file_versions, properties={ "change": relation(domain.AttachedFileChange, uselist=False), "head": relation(domain.AttachedFile, uselist=False) } ) #Items scheduled for a sitting expressed as a relation # to their item schedule mapper(domain.ItemSchedule, schema.items_schedule, properties={ "item": relation( domain.ParliamentaryItem, uselist=False ), "discussion": relation( domain.ScheduledItemDiscussion, uselist=False, cascade="all, delete-orphan" ), "sitting": relation(domain.GroupSitting, uselist=False), } ) mapper(domain.ScheduledItemDiscussion, schema.item_discussion) # items scheduled for a sitting # expressed as a join between item and schedule s_consignatories = rdb.select([ schema.consignatories.c.item_id, schema.consignatories.c.user_id.label("consignatory"), (schema.users.c.first_name + " " + schema.users.c.last_name ).label("user_id"), schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, ], from_obj=[schema.consignatories.join(schema.users)], ).alias("list_consignatories") mapper(domain.ListConsignatory, s_consignatories) mapper(domain.Consignatory, schema.consignatories, properties={ "item": relation(domain.ParliamentaryItem, uselist=False), "user": relation(domain.User, uselist=False) } ) mapper(domain.BillType, schema.bill_types) #mapper(domain.DocumentSource, schema.document_sources) mapper(domain.HoliDay, schema.holidays) ###################### # s_constituency = rdb.select([ schema.constituencies.c.constituency_id, schema.constituencies.c.name, schema.constituencies.c.start_date, schema.constituencies.c.end_date ], from_obj=[schema.constituencies] ).alias("list_constituency") mapper(domain.ListConstituency, s_constituency) mapper(domain.Constituency, schema.constituencies) mapper(domain.Province, schema.provinces) mapper(domain.Region, schema.regions) mapper(domain.Country, schema.countries) mapper(domain.ConstituencyDetail, schema.constituency_details, properties={ "constituency": relation(domain.Constituency, uselist=False, lazy=True, backref="details" ), } ) mapper(domain.CommitteeType, schema.committee_type) mapper(domain.SittingType, schema.sitting_type) s_sittingattendance = rdb.select([ schema.sitting_attendance.c.sitting_id, schema.sitting_attendance.c.attendance_id.label("_fk_attendance_id"), schema.sitting_attendance.c.member_id.label("_fk_member_id"), schema.attendance_type.c.attendance_type.label("attendance_id"), (schema.users.c.first_name + " " + schema.users.c.last_name ).label("member_id"), schema.users.c.first_name, schema.users.c.middle_name, schema.users.c.last_name, ], from_obj=[schema.sitting_attendance.join( schema.attendance_type).join(schema.users) ], ).alias("list_sittingattendance") mapper(domain.ListGroupSittingAttendance, s_sittingattendance) mapper(domain.GroupSittingAttendance, schema.sitting_attendance, properties={ "user": relation(domain.User, uselist=False, lazy=False), "attendance_type": relation(domain.AttendanceType, uselist=False, lazy=False ), "sitting": relation(domain.GroupSitting, uselist=False, lazy=False), } ) mapper(domain.AttendanceType, schema.attendance_type) mapper(domain.MemberTitle, schema.user_role_types) mapper(domain.MemberRoleTitle, schema.role_titles.join(schema.addresses), properties={ "title_name": relation(domain.MemberTitle, uselist=False, lazy=False), } ) mapper(domain.AddressType, schema.address_types) mapper(domain.UserAddress, schema.addresses) s_group_item_assignments = rdb.select([ schema.group_item_assignments.c.assignment_id, schema.group_item_assignments.c.group_id.label("_fk_group_id"), schema.group_item_assignments.c.item_id.label("_fk_item_id"), schema.groups.c.short_name.label("item_id"), (schema.groups.c.short_name + " - " + schema.groups.c.full_name ).label("group_id"), schema.group_item_assignments.c.start_date, schema.group_item_assignments.c.end_date, schema.group_item_assignments.c.due_date, ], from_obj=[schema.groups.join( schema.group_item_assignments).join(schema.parliamentary_items) ], ).alias("list_group_item_assignments") mapper(domain.ListGroupItemAssignment, s_group_item_assignments); mapper(domain.GroupItemAssignment, schema.group_item_assignments, properties={ "group": relation(domain.Group, primaryjoin=(schema.group_item_assignments.c.group_id == schema.groups.c.group_id), backref="group_assignments", lazy=True, uselist=False ), "item": relation(domain.ParliamentaryItem, backref="item_assignments", uselist=False ), } ) mapper(domain.ItemGroupItemAssignment, schema.group_item_assignments, inherits=domain.GroupItemAssignment ) mapper(domain.GroupGroupItemAssignment, schema.group_item_assignments, inherits=domain.GroupItemAssignment ) mapper(domain.Report, schema.reports, inherits=domain.ParliamentaryItem, polymorphic_on=schema.parliamentary_items.c.type, polymorphic_identity="report" ) mapper(domain.SittingReport, schema.sitting_reports, properties={ "sitting": relation(domain.GroupSitting, backref="reports", lazy=True, uselist=False ), "report": relation(domain.Report, backref="sittings", lazy=True, uselist=False ), } ) mapper(domain.Report4Sitting, schema.sitting_reports, inherits=domain.Report ) mapper(domain.ObjectTranslation, schema.translations)
[ "ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc" ]
ashok.hariharan@fc5d704a-7d24-0410-8c4a-57ddeba10ffc
2971a3b1ec52cbc72aa4073ad4c8172d91dccafd
4b265adfae6d91d614a628705571805a2c3d241e
/migrations/versions/3e4b752d4b66_.py
4be97e84029f717fc303084c944902289e0ab040
[]
no_license
1010784344/mybbs
02d85a661f42b648cd0939c0550959d758f0717d
0787c77c32f78de6e6cf16db55c3502bf43307d2
refs/heads/master
2022-12-22T17:45:55.908981
2020-03-02T06:44:10
2020-03-02T06:44:10
244,299,839
0
0
null
2022-09-16T18:18:56
2020-03-02T06:45:01
Python
UTF-8
Python
false
false
1,042
py
"""empty message Revision ID: 3e4b752d4b66 Revises: 907d0dec1971 Create Date: 2018-06-10 22:55:59.028570 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '3e4b752d4b66' down_revision = '907d0dec1971' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('comment', sa.Column('id', sa.Integer(), nullable=False), sa.Column('content', sa.Text(), nullable=False), sa.Column('create_time', sa.DateTime(), nullable=True), sa.Column('post_id', sa.Integer(), nullable=True), sa.Column('author_id', sa.String(length=50), nullable=False), sa.ForeignKeyConstraint(['author_id'], ['front_user.id'], ), sa.ForeignKeyConstraint(['post_id'], ['post.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('comment') # ### end Alembic commands ###
b441d0ca2ecfaf7defd1eaf369f3be18a2441a4e
2a1f4c4900693c093b2fcf4f84efa60650ef1424
/py/cli/factory_env_unittest.py
d04bc714f33ffe86931dfcac330040122dbf74b8
[ "BSD-3-Clause" ]
permissive
bridder/factory
b925f494303728fa95017d1ba3ff40ac5cf6a2fd
a1b0fccd68987d8cd9c89710adc3c04b868347ec
refs/heads/master
2023-08-10T18:51:08.988858
2021-09-21T03:25:28
2021-09-21T03:25:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,655
py
#!/usr/bin/env python3 # Copyright 2020 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import glob import os import unittest from cros.factory.cli import factory_env from cros.factory.utils import process_utils FACTORY_ROOT = os.path.dirname(os.path.dirname(os.path.dirname( os.path.abspath(__file__)))) FACTORY_ENV_TOOL = os.path.join(FACTORY_ROOT, "bin/factory_env") FACTORY_ENV_SCRIPT = os.path.join(FACTORY_ROOT, "py/cli/factory_env.py") DUMMY_SCRIPT = os.path.join( FACTORY_ROOT, "py/cli/testdata/scripts/dummy_script.py") DUMMY_EXCUTABLE = os.path.join( FACTORY_ROOT, "py/cli/testdata/bin/dummy_script") class FactoryEnvUnittest(unittest.TestCase): def testSymbolicLinkToFactoryEnv(self): self.assertEqual(0, process_utils.LogAndCheckCall(DUMMY_EXCUTABLE).returncode) def testFactoryEnvWithSymbolicLinkToFactoryEnv(self): self.assertEqual(0, process_utils.LogAndCheckCall( [FACTORY_ENV_TOOL, DUMMY_EXCUTABLE]).returncode) def testMultipleFactoryEnv(self): self.assertEqual(0, process_utils.LogAndCheckCall( [FACTORY_ENV_TOOL, FACTORY_ENV_TOOL, DUMMY_EXCUTABLE]).returncode) def testFactoryEnvWithScript(self): self.assertEqual(0, process_utils.LogAndCheckCall( [FACTORY_ENV_TOOL, DUMMY_SCRIPT]).returncode) def testHelpMessage(self): process = process_utils.Spawn( [FACTORY_ENV_TOOL, '--help'], read_stdout=True) self.assertEqual(factory_env.HELP_MSG, process.stdout_data) self.assertEqual(1, process.returncode) def testScriptNotFound(self): process = process_utils.Spawn( [FACTORY_ENV_TOOL, 'script/not/found'], read_stdout=True) self.assertEqual(factory_env.HELP_MSG, process.stdout_data) self.assertEqual(1, process.returncode) def testPythonInterpreter(self): output = process_utils.CheckOutput( [FACTORY_ENV_TOOL, 'python', '-c', 'import sys; print(sys.path)']) self.assertIn('factory/py_pkg', output) class SymlinkUnittest(unittest.TestCase): def testLegalityForSymlinkInBin(self): for path in glob.glob(os.path.join(FACTORY_ROOT, "bin/**")): if not os.path.islink(path): continue real_path = os.path.realpath(path) if not real_path.endswith('.py'): continue # Make sure bin/tool_name links to FACTORY_ENV_SCRIPT self.assertEqual(real_path, FACTORY_ENV_SCRIPT) # Make sure py/cli/tool_name.py exist self.assertTrue(os.path.exists(factory_env.GetRealScriptPath(path))) if __name__ == '__main__': unittest.main()
6f3d59a5ac32817a6c36952aa29e3cdf020c6b25
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02687/s942211700.py
9fe247fc4e86e7d6a02581a8de06497d47b904f9
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
60
py
s = {input()} test = {'ABC', 'ARC'} print(list(test - s)[0])
bfe2741feb16a2c462c0fd4040ed8d43e1017389
c5c56d7c14b4518e53bcde2527b9cc6e53a7e1b9
/doctests/yatzy.py
6dc991e1845f9366663dfba8bb5396adf434c97b
[]
no_license
lancelote/pluralsight-unit-testing-python
0402a39e3800eec49f2be529e684d028689d3b47
fd5ce8264bc95ed66109c4fa575a177248c3d49a
refs/heads/master
2021-01-10T08:06:39.605195
2016-03-23T08:15:25
2016-03-23T08:15:25
51,952,064
4
6
null
null
null
null
UTF-8
Python
false
false
3,470
py
# coding=utf-8 """" Yatzy Game """ from operator import itemgetter def dice_counts(dice): """Make a dictionary of how many of each value are in the dice Args: dice (lst): A sorted list of 5 integers indicating the dice rolled Returns: dict: How many of each value are in the dice Examples: >>> sorted(dice_counts([1, 2, 2, 3, 3]).items()) [(1, 1), (2, 2), (3, 2), (4, 0), (5, 0), (6, 0)] >>> dice_counts('12345') Traceback (most recent call last): ... TypeError: Can't convert 'int' object to str implicitly """ return {x: dice.count(x) for x in range(1, 7)} def small_straight(dice): """Score the given roll in the 'Small Straight' Yatzy category Args: dice (lst): A sorted list of 5 integers indicating the dice rolled Returns: int: Score Examples: >>> small_straight([1, 2, 3, 4, 5]) 15 >>> small_straight([1, 2, 3, 4, 4]) 0 This function works with lists or sets or other collection types: >>> small_straight({1, 2, 3, 4, 5}) 15 >>> small_straight([5, 4, 3, 2, 1]) 15 """ return sum(dice) if sorted(dice) == [1, 2, 3, 4, 5] else 0 def yatzy(dice): """Score the given roll in the 'Yatzy' category Args: dice (list): A sorted list of 5 integers indicating the dice rolled Returns: int: Score Examples: >>> yatzy([1, 1, 1, 1, 1]) 50 >>> yatzy([4, 4, 4, 4, 4]) 50 >>> yatzy([4, 4, 4, 4, 1]) 0 """ counts = dice_counts(dice) if 5 in counts.values(): return 50 return 0 def full_house(dice): """Score the given roll in the 'Full House' category Args: dice (list): A sorted list of 5 integers indicating the dice rolled Returns: int: Score Examples: >>> full_house([1, 1, 2, 2, 2]) 8 >>> full_house([6, 6, 6, 2, 2]) 22 >>> full_house([1, 2, 3, 4, 5]) 0 >>> full_house([1, 2, 2, 1, 3]) 0 """ counts = dice_counts(dice) if 2 in counts.values() and 3 in counts.values(): return sum(dice) return 0 def ones(dice): """Scores the given roll in the 'Ones' category Args: dice (list): A sorted list of 5 integers indicating the dice rolled Returns: int: Score """ return dice_counts(dice)[1] def twos(dice): """Scores the given roll in the 'Twos' category Args: dice (list): A sorted list of 5 integers indicating the dice rolled Returns: int: Score """ return dice_counts(dice)[2]*2 ALL_CATEGORIES = [full_house, yatzy, small_straight, ones, twos] def scores_in_categories(dice, categories=ALL_CATEGORIES): """Score the dice in each category and return those with a non-zero score Args: dice (list): A sorted list of 5 integers indicating the dice rolled categories (list): A list of category functions Returns: list: Category scores Examples: >>> scores = scores_in_categories([1, 1, 2, 2, 2]) >>> [(score, category.__name__) for (score, category) in scores] [(8, 'full_house'), (6, 'twos'), (2, 'ones')] """ scores = [(category(dice), category) for category in categories if category(dice) > 0] return sorted(scores, reverse=True, key=itemgetter(0))
c37d59611b5baee508727e5a3157ac82893f1bf2
54053da876c54cebf241ff74360a71bef44e030c
/django/agecalculator/manage.py
ed85fc9969a825aba7eb861b88569fd28ebe7ac5
[]
no_license
neeteliz/luminarpython1
15cd4e169d9209a1ceea425000c7621e0dcfb9f5
9187a3c6a1cde5a57aa62a7b56f53e37361e72aa
refs/heads/master
2020-12-08T11:40:32.573020
2020-02-12T06:02:50
2020-02-12T06:02:50
232,972,757
0
0
null
null
null
null
UTF-8
Python
false
false
545
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "agecalculator.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
22f25d5fd6e16c9f624041b28bb63a5c58cbb490
8015f1c62a2cb4efd21aa8938336913bf8117868
/bamap/ba0892.pngMap.py
d050ebdbdb8e5564a858cf28c735506b3aed9f60
[]
no_license
GamerNoTitle/Beepers-and-OLED
675b5e3c179df0f0e27b42bf594c43860d03b9af
afe1340e5394ae96bda5f9022a8a66824368091e
refs/heads/master
2020-04-20T00:09:47.122471
2019-04-29T04:59:35
2019-04-29T04:59:35
168,515,579
4
2
null
null
null
null
UTF-8
Python
false
false
8,468
py
ba0892.pngMap = [ '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111001011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111100000011111111111111111111111111000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000001111111111111111111100110000011111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111110000000000001011111111111100000000000000111111111111111110011111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000011111000000000000000000111111111111110000000111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000010001101000000000000001111111111111111111111111111111111', '11111111111111111111111111111111110000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111', '11111111111111111111111111111111111100010100100000000000000000000000000000000000000000000000001111111111111111111111111111111111', '11111111111111111111111111111111111111000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110000000000000000000000000000000000000000001011111111111111111111111111111111111', '11111111111111111111111111111111111111111111111110000000000000000000000000001111111111111101111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111000000000000000000000000001011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000000011111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000001111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111100000000000000000000000000111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111000000000000000000000100111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111110000000000000000000000111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111110000000101111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111110000001111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', '11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111', ]
91b0db98ecd89c19b85d3d89b875b8fb59e63615
d110546d747d7e3865ce5742d5fca09f404623c0
/tests/pytests/unit/modules/test_devmap.py
f7fc9f09ea1f41f68a666b5c0b0b0a4431769644
[ "Apache-2.0", "MIT", "BSD-2-Clause" ]
permissive
saltstack/salt
354fc86a7be1f69514b3dd3b2edb9e6f66844c1d
1ef90cbdc7203f97775edb7666db86a41eb9fc15
refs/heads/master
2023-07-19T20:56:20.210556
2023-06-29T23:12:28
2023-07-19T11:47:47
1,390,248
11,026
6,296
Apache-2.0
2023-09-14T20:45:37
2011-02-20T20:16:56
Python
UTF-8
Python
false
false
991
py
""" :codeauthor: Rupesh Tare <[email protected]> """ import os.path import pytest import salt.modules.devmap as devmap from tests.support.mock import MagicMock, patch @pytest.fixture def configure_loader_modules(): return {devmap: {}} def test_multipath_list(): """ Test for Device-Mapper Multipath list """ mock = MagicMock(return_value="A") with patch.dict(devmap.__salt__, {"cmd.run": mock}): assert devmap.multipath_list() == ["A"] def test_multipath_flush(): """ Test for Device-Mapper Multipath flush """ mock = MagicMock(return_value=False) with patch.object(os.path, "exists", mock): assert devmap.multipath_flush("device") == "device does not exist" mock = MagicMock(return_value=True) with patch.object(os.path, "exists", mock): mock = MagicMock(return_value="A") with patch.dict(devmap.__salt__, {"cmd.run": mock}): assert devmap.multipath_flush("device") == ["A"]
db3caed3bea7b8e75f04ec4721bc0ebd0e3624b1
ede96590eee4880ff83d1f1d8db5229e92c6e919
/leasing/metadata.py
0639d907861c764c94129916cc3f6a2315f07bc7
[ "MIT" ]
permissive
igordavydsson/mvj
a4c5b39e7be9f95e15a2e906ad61b98611998063
b467c6229f9d458d56b66f628b0841adb67a2970
refs/heads/master
2020-04-22T20:42:06.650182
2019-02-12T13:50:57
2019-02-12T13:50:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,833
py
from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from enumfields.drf import EnumField from rest_framework.fields import ChoiceField, DecimalField from rest_framework.metadata import SimpleMetadata from rest_framework.relations import PrimaryKeyRelatedField from field_permissions.metadata import FieldPermissionsMetadataMixin from leasing.models import Contact, Decision, Invoice, Lease from leasing.models.invoice import InvoiceSet from leasing.permissions import PerMethodPermission from users.models import User ALL_METHODS = { 'GET': False, 'OPTIONS': False, 'HEAD': False, 'POST': False, 'PUT': False, 'PATCH': False, 'DELETE': False, } class FieldsMetadata(FieldPermissionsMetadataMixin, SimpleMetadata): """Returns metadata for all the fields and the possible choices in the serializer even when the fields are read only. Additionally adds decimal_places and max_digits info for DecimalFields.""" def determine_metadata(self, request, view, serializer=None): metadata = super().determine_metadata(request, view) if not serializer and hasattr(view, 'get_serializer'): serializer = view.get_serializer() if serializer: metadata["fields"] = self.get_serializer_info(serializer) # Determine allowed methods for model views if hasattr(serializer, 'Meta') and serializer.Meta.model: method_permissions = ALL_METHODS.copy() for permission in view.get_permissions(): if not hasattr(permission, 'get_required_permissions'): continue for method in method_permissions.keys(): perms = permission.get_required_permissions(method, serializer.Meta.model) method_permissions[method] = request.user.has_perms(perms) metadata['methods'] = method_permissions # Determine methods the user has permission to for custom views # and viewsets that are using PerMethodPermission. if PerMethodPermission in view.permission_classes: permission = PerMethodPermission() method_permissions = {} for method in view.allowed_methods: required_perms = permission.get_required_permissions(method, view) method_permissions[method.upper()] = request.user.has_perms(required_perms) metadata['methods'] = method_permissions return metadata def get_field_info(self, field): field_info = super().get_field_info(field) if isinstance(field, DecimalField): field_info['decimal_places'] = field.decimal_places field_info['max_digits'] = field.max_digits # Kludge for translating language names if isinstance(field, ChoiceField) and field.field_name == 'language': field_info['choices'] = [{ 'value': choice_value, 'display_name': _(choice_name).capitalize(), } for choice_value, choice_name in field.choices.items()] field_info['choices'].sort(key=lambda x: x['display_name']) if isinstance(field, PrimaryKeyRelatedField) or isinstance(field, EnumField): # TODO: Make configurable if hasattr(field, 'queryset') and field.queryset.model in (User, Lease, Contact, Decision, Invoice, InvoiceSet): return field_info field_info['choices'] = [{ 'value': choice_value, 'display_name': force_text(choice_name, strings_only=True) } for choice_value, choice_name in field.choices.items()] return field_info
471b5a634eac53812dbe5e6260c757c693f8a688
4f00c6a08db5755b294bd519b9377866f5ff6c19
/src/tests/google/net/proto2/python/internal/python_message.py
557dfc1d9d0b1bac8d18ec77d1eb4182d51becdc
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
cooljeanius/cauliflowervest
02035a8455b1dde469ebfd0b202c02456820a679
a9bc209b610a927083bf16274d8451c6c45227bf
refs/heads/main
2022-12-24T15:28:30.616604
2020-09-25T23:55:15
2020-09-25T23:55:15
303,812,548
1
0
Apache-2.0
2023-09-04T16:48:46
2020-10-13T19:46:58
Python
UTF-8
Python
false
false
32,904
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Contains a metaclass and helper functions used to create protocol message classes from Descriptor objects at runtime. Recall that a metaclass is the "type" of a class. (A class is to a metaclass what an instance is to a class.) In this case, we use the GeneratedProtocolMessageType metaclass to inject all the useful functionality into the classes output by the protocol compiler at compile-time. The upshot of all this is that the real implementation details for ALL pure-Python protocol buffers are *here in this file*. """ try: from cStringIO import StringIO except ImportError: from StringIO import StringIO import struct import weakref from google.net.proto2.python.internal import containers from google.net.proto2.python.internal import decoder from google.net.proto2.python.internal import encoder from google.net.proto2.python.internal import enum_type_wrapper from google.net.proto2.python.internal import message_listener as message_listener_mod from google.net.proto2.python.internal import type_checkers from google.net.proto2.python.internal import wire_format from google.net.proto2.python.public import descriptor as descriptor_mod from google.net.proto2.python.public import message as message_mod from google.net.proto2.python.public import text_format _FieldDescriptor = descriptor_mod.FieldDescriptor def NewMessage(descriptor, dictionary): _AddClassAttributesForNestedExtensions(descriptor, dictionary) _AddSlots(descriptor, dictionary) def InitMessage(descriptor, cls): cls._decoders_by_tag = {} cls._extensions_by_name = {} cls._extensions_by_number = {} if (descriptor.has_options and descriptor.GetOptions().message_set_wire_format): cls._decoders_by_tag[decoder.MESSAGE_SET_ITEM_TAG] = ( decoder.MessageSetItemDecoder(cls._extensions_by_number)) for field in descriptor.fields: _AttachFieldHelpers(cls, field) _AddEnumValues(descriptor, cls) _AddInitMethod(descriptor, cls) _AddPropertiesForFields(descriptor, cls) _AddPropertiesForExtensions(descriptor, cls) _AddStaticMethods(cls) _AddMessageMethods(descriptor, cls) _AddPrivateHelperMethods(cls) def _PropertyName(proto_field_name): """Returns the name of the public property attribute which clients can use to get and (in some cases) set the value of a protocol message field. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ return proto_field_name def _VerifyExtensionHandle(message, extension_handle): """Verify that the given extension handle is valid.""" if not isinstance(extension_handle, _FieldDescriptor): raise KeyError('HasExtension() expects an extension handle, got: %s' % extension_handle) if not extension_handle.is_extension: raise KeyError('"%s" is not an extension.' % extension_handle.full_name) if extension_handle.containing_type is not message.DESCRIPTOR: raise KeyError('Extension "%s" extends message type "%s", but this ' 'message is of type "%s".' % (extension_handle.full_name, extension_handle.containing_type.full_name, message.DESCRIPTOR.full_name)) def _AddSlots(message_descriptor, dictionary): """Adds a __slots__ entry to dictionary, containing the names of all valid attributes for this message type. Args: message_descriptor: A Descriptor instance describing this message type. dictionary: Class dictionary to which we'll add a '__slots__' entry. """ dictionary['__slots__'] = ['_cached_byte_size', '_cached_byte_size_dirty', '_fields', '_is_present_in_parent', '_listener', '_listener_for_children', '__weakref__'] def _IsMessageSetExtension(field): return (field.is_extension and field.containing_type.has_options and field.containing_type.GetOptions().message_set_wire_format and field.type == _FieldDescriptor.TYPE_MESSAGE and field.message_type == field.extension_scope and field.label == _FieldDescriptor.LABEL_OPTIONAL) def _AttachFieldHelpers(cls, field_descriptor): is_repeated = (field_descriptor.label == _FieldDescriptor.LABEL_REPEATED) is_packed = (field_descriptor.has_options and field_descriptor.GetOptions().packed) if _IsMessageSetExtension(field_descriptor): field_encoder = encoder.MessageSetItemEncoder(field_descriptor.number) sizer = encoder.MessageSetItemSizer(field_descriptor.number) else: field_encoder = type_checkers.TYPE_TO_ENCODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) sizer = type_checkers.TYPE_TO_SIZER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) field_descriptor._encoder = field_encoder field_descriptor._sizer = sizer field_descriptor._default_constructor = _DefaultValueConstructorForField( field_descriptor) def AddDecoder(wiretype, is_packed): tag_bytes = encoder.TagBytes(field_descriptor.number, wiretype) cls._decoders_by_tag[tag_bytes] = ( type_checkers.TYPE_TO_DECODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed, field_descriptor, field_descriptor._default_constructor)) AddDecoder(type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_descriptor.type], False) if is_repeated and wire_format.IsTypePackable(field_descriptor.type): AddDecoder(wire_format.WIRETYPE_LENGTH_DELIMITED, True) def _AddClassAttributesForNestedExtensions(descriptor, dictionary): extension_dict = descriptor.extensions_by_name for extension_name, extension_field in extension_dict.iteritems(): assert extension_name not in dictionary dictionary[extension_name] = extension_field def _AddEnumValues(descriptor, cls): """Sets class-level attributes for all enum fields defined in this message. Also exporting a class-level object that can name enum values. Args: descriptor: Descriptor object for this message type. cls: Class we're constructing for this message type. """ for enum_type in descriptor.enum_types: setattr(cls, enum_type.name, enum_type_wrapper.EnumTypeWrapper(enum_type)) for enum_value in enum_type.values: setattr(cls, enum_value.name, enum_value.number) def _DefaultValueConstructorForField(field): """Returns a function which returns a default value for a field. Args: field: FieldDescriptor object for this field. The returned function has one argument: message: Message instance containing this field, or a weakref proxy of same. That function in turn returns a default value for this field. The default value may refer back to |message| via a weak reference. """ if field.label == _FieldDescriptor.LABEL_REPEATED: if field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeRepeatedMessageDefault(message): return containers.RepeatedCompositeFieldContainer( message._listener_for_children, field.message_type) return MakeRepeatedMessageDefault else: type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type) def MakeRepeatedScalarDefault(message): return containers.RepeatedScalarFieldContainer( message._listener_for_children, type_checker) return MakeRepeatedScalarDefault if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeSubMessageDefault(message): result = message_type._concrete_class() result._SetListener(message._listener_for_children) return result return MakeSubMessageDefault def MakeScalarDefault(message): return field.default_value return MakeScalarDefault def _AddInitMethod(message_descriptor, cls): """Adds an __init__ method to cls.""" fields = message_descriptor.fields def init(self, **kwargs): self._cached_byte_size = 0 self._cached_byte_size_dirty = len(kwargs) > 0 self._fields = {} self._is_present_in_parent = False self._listener = message_listener_mod.NullMessageListener() self._listener_for_children = _Listener(self) for field_name, field_value in kwargs.iteritems(): field = _GetFieldByName(message_descriptor, field_name) if field is None: raise TypeError("%s() got an unexpected keyword argument '%s'" % (message_descriptor.name, field_name)) if field.label == _FieldDescriptor.LABEL_REPEATED: copy = field._default_constructor(self) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: for val in field_value: copy.add().MergeFrom(val) else: copy.extend(field_value) self._fields[field] = copy elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: copy = field._default_constructor(self) copy.MergeFrom(field_value) self._fields[field] = copy else: setattr(self, field_name, field_value) init.__module__ = None init.__doc__ = None cls.__init__ = init def _GetFieldByName(message_descriptor, field_name): """Returns a field descriptor by field name. Args: message_descriptor: A Descriptor describing all fields in message. field_name: The name of the field to retrieve. Returns: The field descriptor associated with the field name. """ try: return message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) def _AddPropertiesForFields(descriptor, cls): """Adds properties for all fields in this protocol message type.""" for field in descriptor.fields: _AddPropertiesForField(field, cls) if descriptor.is_extendable: cls.Extensions = property(lambda self: _ExtensionDict(self)) def _AddPropertiesForField(field, cls): """Adds a public property for a protocol message field. Clients can use this property to get and (in the case of non-repeated scalar fields) directly set the value of a protocol message field. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ assert _FieldDescriptor.MAX_CPPTYPE == 10 constant_name = field.name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, field.number) if field.label == _FieldDescriptor.LABEL_REPEATED: _AddPropertiesForRepeatedField(field, cls) elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: _AddPropertiesForNonRepeatedCompositeField(field, cls) else: _AddPropertiesForNonRepeatedScalarField(field, cls) def _AddPropertiesForRepeatedField(field, cls): """Adds a public property for a "repeated" protocol message field. Clients can use this property to get the value of the field, which will be either a _RepeatedScalarFieldContainer or _RepeatedCompositeFieldContainer (see below). Note that when clients add values to these containers, we perform type-checking in the case of repeated scalar fields, and we also set any necessary "has" bits as a side-effect. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = field._default_constructor(self) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to repeated field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedScalarField(field, cls): """Adds a public property for a nonrepeated, scalar protocol message field. Clients can use this property to get and directly set the value of the field. Note that when the client sets the value of a field by using this property, all necessary "has" bits are set as a side-effect, and we also perform type-checking. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) type_checker = type_checkers.GetTypeChecker(field.cpp_type, field.type) default_value = field.default_value valid_values = set() def getter(self): return self._fields.get(field, default_value) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): type_checker.CheckValue(new_value) self._fields[field] = new_value if not self._cached_byte_size_dirty: self._Modified() setter.__module__ = None setter.__doc__ = 'Setter for %s.' % proto_field_name doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedCompositeField(field, cls): """Adds a public property for a nonrepeated, composite protocol message field. A composite field is a "group" or "message" field. Clients can use this property to get the value of the field, but cannot assign to the property directly. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) message_type = field.message_type def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = message_type._concrete_class() field_value._SetListener(self._listener_for_children) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to composite field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForExtensions(descriptor, cls): """Adds properties for all fields in this protocol message type.""" extension_dict = descriptor.extensions_by_name for extension_name, extension_field in extension_dict.iteritems(): constant_name = extension_name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, extension_field.number) def _AddStaticMethods(cls): def RegisterExtension(extension_handle): extension_handle.containing_type = cls.DESCRIPTOR _AttachFieldHelpers(cls, extension_handle) actual_handle = cls._extensions_by_number.setdefault( extension_handle.number, extension_handle) if actual_handle is not extension_handle: raise AssertionError( 'Extensions "%s" and "%s" both try to extend message type "%s" with ' 'field number %d.' % (extension_handle.full_name, actual_handle.full_name, cls.DESCRIPTOR.full_name, extension_handle.number)) cls._extensions_by_name[extension_handle.full_name] = extension_handle handle = extension_handle if _IsMessageSetExtension(handle): cls._extensions_by_name[ extension_handle.message_type.full_name] = extension_handle cls.RegisterExtension = staticmethod(RegisterExtension) def FromString(s): message = cls() message.MergeFromString(s) return message cls.FromString = staticmethod(FromString) def _IsPresent(item): """Given a (FieldDescriptor, value) tuple from _fields, return true if the value should be included in the list returned by ListFields().""" if item[0].label == _FieldDescriptor.LABEL_REPEATED: return bool(item[1]) elif item[0].cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: return item[1]._is_present_in_parent else: return True def _AddListFieldsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ListFields(self): all_fields = [item for item in self._fields.iteritems() if _IsPresent(item)] all_fields.sort(key = lambda item: item[0].number) return all_fields cls.ListFields = ListFields def _AddHasFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" singular_fields = {} for field in message_descriptor.fields: if field.label != _FieldDescriptor.LABEL_REPEATED: singular_fields[field.name] = field def HasField(self, field_name): try: field = singular_fields[field_name] except KeyError: raise ValueError( 'Protocol message has no singular "%s" field.' % field_name) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(field) return value is not None and value._is_present_in_parent else: return field in self._fields cls.HasField = HasField def _AddClearFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ClearField(self, field_name): try: field = message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) if field in self._fields: del self._fields[field] self._Modified() cls.ClearField = ClearField def _AddClearExtensionMethod(cls): """Helper for _AddMessageMethods().""" def ClearExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle in self._fields: del self._fields[extension_handle] self._Modified() cls.ClearExtension = ClearExtension def _AddClearMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def Clear(self): self._fields = {} self._Modified() cls.Clear = Clear def _AddHasExtensionMethod(cls): """Helper for _AddMessageMethods().""" def HasExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: raise KeyError('"%s" is repeated.' % extension_handle.full_name) if extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(extension_handle) return value is not None and value._is_present_in_parent else: return extension_handle in self._fields cls.HasExtension = HasExtension def _AddEqualsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __eq__(self, other): if (not isinstance(other, message_mod.Message) or other.DESCRIPTOR != self.DESCRIPTOR): return False if self is other: return True return self.ListFields() == other.ListFields() cls.__eq__ = __eq__ def _AddStrMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __str__(self): return text_format.MessageToString(self) cls.__str__ = __str__ def _AddUnicodeMethod(unused_message_descriptor, cls): """Helper for _AddMessageMethods().""" def __unicode__(self): return text_format.MessageToString(self, as_utf8=True).decode('utf-8') cls.__unicode__ = __unicode__ def _AddSetListenerMethod(cls): """Helper for _AddMessageMethods().""" def SetListener(self, listener): if listener is None: self._listener = message_listener_mod.NullMessageListener() else: self._listener = listener cls._SetListener = SetListener def _BytesForNonRepeatedElement(value, field_number, field_type): """Returns the number of bytes needed to serialize a non-repeated element. The returned byte count includes space for tag information and any other additional space associated with serializing value. Args: value: Value we're serializing. field_number: Field number of this value. (Since the field number is stored as part of a varint-encoded tag, this has an impact on the total bytes required to serialize the value). field_type: The type of the field. One of the TYPE_* constants within FieldDescriptor. """ try: fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type] return fn(field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_type) def _AddByteSizeMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ByteSize(self): if not self._cached_byte_size_dirty: return self._cached_byte_size size = 0 for field_descriptor, field_value in self.ListFields(): size += field_descriptor._sizer(field_value) self._cached_byte_size = size self._cached_byte_size_dirty = False self._listener_for_children.dirty = False return size cls.ByteSize = ByteSize def _AddSerializeToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializeToString(self): errors = [] if not self.IsInitialized(): raise message_mod.EncodeError( 'Message is missing required fields: ' + ','.join(self.FindInitializationErrors())) return self.SerializePartialToString() cls.SerializeToString = SerializeToString def _AddSerializePartialToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializePartialToString(self): out = StringIO() self._InternalSerialize(out.write) return out.getvalue() cls.SerializePartialToString = SerializePartialToString def InternalSerialize(self, write_bytes): for field_descriptor, field_value in self.ListFields(): field_descriptor._encoder(write_bytes, field_value) cls._InternalSerialize = InternalSerialize def _AddMergeFromStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def MergeFromString(self, serialized): length = len(serialized) try: if self._InternalParse(serialized, 0, length) != length: raise message_mod.DecodeError('Unexpected end-group tag.') except IndexError: raise message_mod.DecodeError('Truncated message.') except struct.error, e: raise message_mod.DecodeError(e) return length cls.MergeFromString = MergeFromString local_ReadTag = decoder.ReadTag local_SkipField = decoder.SkipField decoders_by_tag = cls._decoders_by_tag def InternalParse(self, buffer, pos, end): self._Modified() field_dict = self._fields while pos != end: (tag_bytes, new_pos) = local_ReadTag(buffer, pos) field_decoder = decoders_by_tag.get(tag_bytes) if field_decoder is None: new_pos = local_SkipField(buffer, new_pos, end, tag_bytes) if new_pos == -1: return pos pos = new_pos else: pos = field_decoder(buffer, new_pos, end, self, field_dict) return pos cls._InternalParse = InternalParse def _AddIsInitializedMethod(message_descriptor, cls): """Adds the IsInitialized and FindInitializationError methods to the protocol message class.""" required_fields = [field for field in message_descriptor.fields if field.label == _FieldDescriptor.LABEL_REQUIRED] def IsInitialized(self, errors=None): """Checks if all required fields of a message are set. Args: errors: A list which, if provided, will be populated with the field paths of all missing required fields. Returns: True iff the specified message has all required fields set. """ for field in required_fields: if (field not in self._fields or (field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and not self._fields[field]._is_present_in_parent)): if errors is not None: errors.extend(self.FindInitializationErrors()) return False for field, value in self._fields.iteritems(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.label == _FieldDescriptor.LABEL_REPEATED: for element in value: if not element.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False elif value._is_present_in_parent and not value.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False return True cls.IsInitialized = IsInitialized def FindInitializationErrors(self): """Finds required fields which are not initialized. Returns: A list of strings. Each string is a path to an uninitialized field from the top-level message, e.g. "foo.bar[5].baz". """ errors = [] for field in required_fields: if not self.HasField(field.name): errors.append(field.name) for field, value in self.ListFields(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.is_extension: name = "(%s)" % field.full_name else: name = field.name if field.label == _FieldDescriptor.LABEL_REPEATED: for i in xrange(len(value)): element = value[i] prefix = "%s[%d]." % (name, i) sub_errors = element.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] else: prefix = name + "." sub_errors = value.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] return errors cls.FindInitializationErrors = FindInitializationErrors def _AddMergeFromMethod(cls): LABEL_REPEATED = _FieldDescriptor.LABEL_REPEATED CPPTYPE_MESSAGE = _FieldDescriptor.CPPTYPE_MESSAGE def MergeFrom(self, msg): if not isinstance(msg, cls): raise TypeError( "Parameter to MergeFrom() must be instance of same class.") assert msg is not self self._Modified() fields = self._fields for field, value in msg._fields.iteritems(): if field.label == LABEL_REPEATED: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) elif field.cpp_type == CPPTYPE_MESSAGE: if value._is_present_in_parent: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) else: self._fields[field] = value cls.MergeFrom = MergeFrom def _AddMessageMethods(message_descriptor, cls): """Adds implementations of all Message methods to cls.""" _AddListFieldsMethod(message_descriptor, cls) _AddHasFieldMethod(message_descriptor, cls) _AddClearFieldMethod(message_descriptor, cls) if message_descriptor.is_extendable: _AddClearExtensionMethod(cls) _AddHasExtensionMethod(cls) _AddClearMethod(message_descriptor, cls) _AddEqualsMethod(message_descriptor, cls) _AddStrMethod(message_descriptor, cls) _AddUnicodeMethod(message_descriptor, cls) _AddSetListenerMethod(cls) _AddByteSizeMethod(message_descriptor, cls) _AddSerializeToStringMethod(message_descriptor, cls) _AddSerializePartialToStringMethod(message_descriptor, cls) _AddMergeFromStringMethod(message_descriptor, cls) _AddIsInitializedMethod(message_descriptor, cls) _AddMergeFromMethod(cls) def _AddPrivateHelperMethods(cls): """Adds implementation of private helper methods to cls.""" def Modified(self): """Sets the _cached_byte_size_dirty bit to true, and propagates this to our listener iff this was a state change. """ if not self._cached_byte_size_dirty: self._cached_byte_size_dirty = True self._listener_for_children.dirty = True self._is_present_in_parent = True self._listener.Modified() cls._Modified = Modified cls.SetInParent = Modified class _Listener(object): """MessageListener implementation that a parent message registers with its child message. In order to support semantics like: foo.bar.baz.qux = 23 assert foo.HasField('bar') ...child objects must have back references to their parents. This helper class is at the heart of this support. """ def __init__(self, parent_message): """Args: parent_message: The message whose _Modified() method we should call when we receive Modified() messages. """ if isinstance(parent_message, weakref.ProxyType): self._parent_message_weakref = parent_message else: self._parent_message_weakref = weakref.proxy(parent_message) self.dirty = False def Modified(self): if self.dirty: return try: self._parent_message_weakref._Modified() except ReferenceError: pass class _ExtensionDict(object): """Dict-like container for supporting an indexable "Extensions" field on proto instances. Note that in all cases we expect extension handles to be FieldDescriptors. """ def __init__(self, extended_message): """extended_message: Message instance for which we are the Extensions dict. """ self._extended_message = extended_message def __getitem__(self, extension_handle): """Returns the current value of the given extension handle.""" _VerifyExtensionHandle(self._extended_message, extension_handle) result = self._extended_message._fields.get(extension_handle) if result is not None: return result if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: result = extension_handle._default_constructor(self._extended_message) elif extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: result = extension_handle.message_type._concrete_class() try: result._SetListener(self._extended_message._listener_for_children) except ReferenceError: pass else: return extension_handle.default_value result = self._extended_message._fields.setdefault( extension_handle, result) return result def __eq__(self, other): if not isinstance(other, self.__class__): return False my_fields = self._extended_message.ListFields() other_fields = other._extended_message.ListFields() my_fields = [ field for field in my_fields if field.is_extension ] other_fields = [ field for field in other_fields if field.is_extension ] return my_fields == other_fields def __ne__(self, other): return not self == other def __hash__(self): raise TypeError('unhashable object') def __setitem__(self, extension_handle, value): """If extension_handle specifies a non-repeated, scalar extension field, sets the value of that field. """ _VerifyExtensionHandle(self._extended_message, extension_handle) if (extension_handle.label == _FieldDescriptor.LABEL_REPEATED or extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE): raise TypeError( 'Cannot assign to extension "%s" because it is a repeated or ' 'composite type.' % extension_handle.full_name) type_checker = type_checkers.GetTypeChecker( extension_handle.cpp_type, extension_handle.type) type_checker.CheckValue(value) self._extended_message._fields[extension_handle] = value self._extended_message._Modified() def _FindExtensionByName(self, name): """Tries to find a known extension with the specified name. Args: name: Extension full name. Returns: Extension field descriptor. """ return self._extended_message._extensions_by_name.get(name, None)
66228a98b7aef124fd015c3823c8dd4f0b4d939d
a34a6861adabdffba0dec1bf9ba2d6b48c4564cb
/model.py
db2d48ca5676c1d6378ff82589047949cbfd1179
[]
no_license
AotY/gumbel_softx_vae
d4095212117cdbdd71434fd47f51ae0aef42869f
f345efe797fb9adc00f5d4e288da80102f23850e
refs/heads/master
2020-04-02T03:31:28.336284
2018-10-21T05:11:36
2018-10-21T05:11:36
153,970,643
0
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright © 2018 LeonTao # # Distributed under terms of the MIT license. """ """ import torch import torch.nn as nn import torch.funtional as F from gumbel_softmax import GumbelSoftmax class GumbelVAE(nn.Module): def __init__(self, input_size=784, latent_size, category_size, device): super(GumbelVAE, self).__init__() self.input_size = input_size self.latent_size = latent_size self.category_size = category_size self.fc1 = nn.Linear(input_size, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, latent_size * category_size) sefl.fc4 = nn.Linear(latent_size * category_size, 256) self.fc5 = nn.Linear(256, 512) self.fc6 = nn.Linear(512, input_sizse) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid(dim=2) self.gumbel_softmax = GumbelSoftmax(dim=2, device=device) def encode(self, input): h1 = self.relu(self.fc1(input)) h2 = self.relu(self.fc2(h1)) h3 = self.relu(self.fc3(h2)) return h3 def decode(self, encode_output): h4 = self.relu(self.fc4(encode_output)) h5 = self.relu(self.fc5(h4)) output = self.sigmoid(self.fc6(h5)) return output def forward(self, input, temperature): encode_output = self.encode(input) tmp = encode_output.view(encode_output.size(0), self.latent_size, self.category_size) tmp = self.gumbel_softmax(tmp, temperature) tmp = tmp.view(-1, slef.latent_size * self.category_size) decode_output = self.decode(tmp_softmax) return decode_output, F.softmax(encode_output)
4370fadd7890d92918d28af2040293ff1d87db32
0c0a6a41b5bb15e74f2e938218a971d6036dfd0d
/drf26/manage.py
15cab87dfcd5367687a68ba0fa354a330b9f5615
[]
no_license
kamal0072/API-s-based-on-drf-and-python
54067cd1b364a50ace2c3f4b35cccaafc977d39f
b31299ff2bc32f836c85f402dbe2cfa34f34dd69
refs/heads/master
2023-03-25T16:51:36.511505
2021-03-24T16:27:46
2021-03-24T16:27:46
351,147,386
1
0
null
null
null
null
UTF-8
Python
false
false
661
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'drf26.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
393e6e059bafb801328b3a9ff0a87ac4bfd2eba2
e92a3d0fb77120be99de6040cb6cd34eda0a95f4
/Работа с фнукциями, система модулей/code/all_function_6.py
1640864694684c8fd29dc41e4038b8f29151ff46
[]
no_license
Python18Academy/python_first_level
495f85631f5afc737aa156ef8ca0ea307340c322
9ce490da3108474b135a17086f4d11f2a3bbbe55
refs/heads/master
2023-09-04T17:00:36.920987
2021-03-31T18:44:37
2021-03-31T18:44:37
331,934,029
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from pirog import * make_pirog('большой', 7) make_pirog('маленький', 3)
c4bc04bf5d469f3e5315f2941b33cfd2a704a7ed
35ab93904c03c1494b470fe60ff17a6e3b8858e4
/tests/mocks/committees.py
56d14dbb8a5c2c603ea525703c8a13ac295bf0d4
[ "MIT" ]
permissive
alefbt/knesset-data-pipelines
cb6220fc96c95f50925e4b99d8682760729cf067
ed743fb4c84ce9e9ae0b935d686d05673d868416
refs/heads/master
2021-06-22T20:06:17.254073
2017-08-13T17:08:40
2017-08-13T17:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,195
py
from datapackage_pipelines_knesset.committees.processors.download_committee_meeting_protocols import DownloadCommitteeMeetingProtocolsProcessor from datapackage_pipelines_knesset.committees.processors.parse_committee_meeting_protocols import ParseCommitteeMeetingProtocolsProcessor from datapackage_pipelines_knesset.committees.processors.committee_meeting_protocols_update_db import CommitteeMeetingProtocolsUpdateDbProcessor import os from datapackage_pipelines_knesset.common.db import get_session class MockDownloadCommitteeMeetingProtocols(DownloadCommitteeMeetingProtocolsProcessor): def _get_session(self): return get_session(connection_string="sqlite://") def _reuqests_get(self, url): if url == "http://fs.knesset.gov.il//20/Committees/20_ptv_389210.doc": filename = "20_ptv_389210.doc" elif url == "http://knesset.gov.il/protocols/data/rtf/knesset/2007-12-27.rtf": filename = "2007-12-27.rtf" elif url == "http://fs.knesset.gov.il//20/Committees/20_ptv_387483.doc": filename = "20_ptv_387483.doc" else: raise Exception("unknown url: {}".format(url)) filename = os.path.join(os.path.dirname(__file__), filename) if not os.path.exists(filename): res = super(MockDownloadCommitteeMeetingProtocols, self)._reuqests_get(url) if res.status_code != 200: with open(filename+".status_code", 'w') as f: f.write(str(res.status_code)) with open(filename, 'wb') as f: f.write(res.content) with open(filename, "rb") as f: content = f.read() if os.path.exists(filename+".status_code"): with open(filename+".status_code") as f: status_code = int(f.read()) else: status_code = 200 return type("MockResponse", (object,), {"status_code": status_code, "content": content})() class MockParseCommitteeMeetingProtocols(ParseCommitteeMeetingProtocolsProcessor): pass class MockCommitteeMeetingProtocolsUpdateDb(CommitteeMeetingProtocolsUpdateDbProcessor): pass
5b8612f3e472db95cd9fdaa093ba14d6411ec101
dd89a85bbefa12a6c8e8b66ffc84c08767f0e841
/backend/task_profile/migrations/0001_initial.py
c7740497962e5be06a671658b9c15cad0b155cb6
[]
no_license
crowdbotics-apps/sample-27023
ac5f358cba9432b02080d3f3177efd23d35a08ed
e2e1f0d918e6cc47a87bfd7f318f1b6797f19d2d
refs/heads/master
2023-04-30T14:24:59.449141
2021-05-21T03:01:21
2021-05-21T03:01:21
369,397,318
0
0
null
null
null
null
UTF-8
Python
false
false
3,239
py
# Generated by Django 2.2.20 on 2021-05-21 03:01 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='TaskerProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mobile_number', models.CharField(max_length=20)), ('photo', models.URLField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('last_updated', models.DateTimeField(auto_now=True)), ('last_login', models.DateTimeField(blank=True, null=True)), ('description', models.TextField(blank=True, null=True)), ('city', models.CharField(blank=True, max_length=50, null=True)), ('vehicle', models.CharField(blank=True, max_length=50, null=True)), ('closing_message', models.TextField(blank=True, null=True)), ('work_area_radius', models.FloatField(blank=True, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='taskerprofile_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Notification', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(max_length=20)), ('message', models.TextField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('user', models.ManyToManyField(related_name='notification_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='InviteCode', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=20)), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='invitecode_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='CustomerProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mobile_number', models.CharField(max_length=20)), ('photo', models.URLField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('last_updated', models.DateTimeField(auto_now=True)), ('last_login', models.DateTimeField(blank=True, null=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='customerprofile_user', to=settings.AUTH_USER_MODEL)), ], ), ]
29c050fb32b9bd65213c7fe6ed14f05bcdb546d8
4914e1e18cabd3db104386b13a48e3371f6c4d25
/tov/NM_expansion.py
3baaa5e68ef7945ac5e87b48e503e2f26043444a
[]
no_license
sotzee/ns
592b21c013657ca202ab1138d92c32960d7e2170
70faa8e97560ec4072e5f0f697e3f2471f1303f7
refs/heads/master
2021-06-19T15:51:03.271980
2019-06-10T14:16:21
2019-06-10T14:16:21
115,557,527
2
0
null
null
null
null
UTF-8
Python
false
false
14,016
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 4 17:36:17 2018 @author: sotzee """ from scipy.misc import derivative from scipy.constants import c,G,e from scipy.interpolate import interp1d from unitconvert import toMev4#,toMevfm import numpy as np import scipy.optimize as opt #import matplotlib.pyplot as plt dlnx_cs2=1e-6 def energy_per_baryon_sym(n,n_s,m,T,abcd_sym): u=n/n_s a_sym,b_sym,c_sym,d_sym=abcd_sym return m+T*(u**(2./3)+a_sym*u+b_sym*u**(4./3)+c_sym*u**(5./3)+d_sym*u**2) def energy_per_baryon_sym_jac(n,n_s,T,abcd_sym): u=n/n_s a_sym,b_sym,c_sym,d_sym=abcd_sym return T*(2.*u**(-1./3)+3*a_sym+4.*b_sym*u**(1./3)+5.*c_sym*u**(2./3)+6.*d_sym*u)/3 def energy_per_baryon_pnm(n,n_s,m,T,abcd_pnm): u=n/n_s a_pnm,b_pnm,c_pnm,d_pnm=abcd_pnm return m+T*((2*u)**(2./3)+a_pnm*u+b_pnm*u**(4./3)+c_pnm*u**(5./3)+d_pnm*u**2) def energy_per_baryon_pnm_jac(n,n_s,T,abcd_pnm): u=n/n_s a_pnm,b_pnm,c_pnm,d_pnm=abcd_pnm return T*(4.*(2*u)**(-1./3)+3*a_pnm+4.*b_pnm*u**(1./3)+5.*c_pnm*u**(2./3)+6.*d_pnm*u)/3 def get_parameters_tmp(parameter_array,T,ELKQ_array): #where E0,L0,K0,Q0 is for symmetric nuclear matter, and S,L,K,Q are for symmtry energy matrix=np.array([[120,-38,6,-1],[-270,90,-15,3],[216,-72,12,-3],[-60,20,-3,1]]) #print(matrix,ELKQ_array,np.dot(matrix,ELKQ_array)) return parameter_array+np.dot(matrix,ELKQ_array)/(6*T) def get_parameters_sym(T,ELKQ_array): #S,L,K,Q are for PNM(pure neutron matter). parameter_array=np.array([-4,6,-4,1]) return get_parameters_tmp(parameter_array,T,ELKQ_array) def get_parameters_pnm(T,ELKQ_array): #S,L,K,Q are for PNM(pure neutron matter). parameter_array=np.array([-4,6,-4,1])*2**(2./3) return get_parameters_tmp(parameter_array,T,ELKQ_array) def get_baryon_density_u_max(abcd,defaut_u_max): coeff=[54*abcd[3],40*abcd[2],28*abcd[1],18*abcd[0],10*2**(2./3)] roots=np.roots(coeff) roots_real=roots.real[np.isreal(roots)] if(len(roots_real[roots_real>0])==0): return defaut_u_max else: return np.min([roots_real[roots_real>0].min()**3,defaut_u_max]) def get_baryon_density_u_max_margueron(abcd,defaut_u_max): coeff=[54*abcd[3],40*abcd[2],28*abcd[1],18*abcd[0],10*2**(2./3)] roots=np.roots(coeff) roots_real=roots.real[np.isreal(roots)] if(len(roots_real[roots_real>0])==0): return defaut_u_max else: return np.min([roots_real[roots_real>0].min()**3,defaut_u_max]) def get_eos_array(u_min,u_max,baryon_density_sat,m,T,abcd): baryon_density=baryon_density_sat*10**np.linspace(np.log10(u_min),np.log10(u_max),501) energy_dnnsity=np.concatenate(([0],baryon_density*energy_per_baryon_pnm(baryon_density,baryon_density_sat,m,T,abcd),[10000])) pressure=np.concatenate(([0],baryon_density**2/baryon_density_sat*energy_per_baryon_pnm_jac(baryon_density,baryon_density_sat,T,abcd),[10000])) baryon_density=np.concatenate(([0],baryon_density,[1000*baryon_density_sat])) result=np.array([baryon_density,energy_dnnsity,pressure]) #plt.plot(result[0],energy_per_baryon_pnm(baryon_density,baryon_density_sat,m,T,abcd)) #plt.plot(result[0],result[1]) #plt.plot(result[0][:-1],result[2][:-1]) return result,result[:,int(len(baryon_density)/2)] def matching_eos(trial_pressure,eos_density1,eos_density2): return eos_density1(trial_pressure)-eos_density2(trial_pressure) def calculate_matching_pressure(trial_pressure,Preset_tol,eos_density1,eos_density2): p_matching=opt.newton(matching_eos,trial_pressure,tol=Preset_tol,args=(eos_density1,eos_density2)) return p_matching class EOS_EXPANSION_PNM(object): def __init__(self,args,defaut_u_min=1e-8,defaut_u_max=12): self.baryon_density_s,self.m,self.E_n,self.L_n,\ self.K_n,self.Q_n=args self.args=args self.ELKQ_array=np.array(args[2:]) self.T=.3*(1.5*np.pi**2*toMev4(self.baryon_density_s,'mevfm3'))**(2./3)/self.m self.abcd_array=get_parameters_pnm(self.T,self.ELKQ_array) self.u_max=get_baryon_density_u_max(self.abcd_array,defaut_u_max) self.u_min=defaut_u_min self.eos_array,self.sol_saturation=get_eos_array(self.u_min,self.u_max,self.baryon_density_s,self.m,self.T,self.abcd_array) self.pressure_s=self.sol_saturation[2] self.density_s=self.sol_saturation[1] self.unit_mass=c**4/(G**3*self.density_s*1e51*e)**0.5 self.unit_radius=c**2/(G*self.density_s*1e51*e)**0.5 self.unit_N=self.unit_radius**3*self.baryon_density_s*1e45 self.eosPressure_frombaryon = interp1d(self.eos_array[0],self.eos_array[2], kind='linear') self.eosPressure = interp1d(self.eos_array[1],self.eos_array[2], kind='linear') self.eosDensity = interp1d(self.eos_array[2],self.eos_array[1], kind='linear') self.eosBaryonDensity = interp1d(self.eos_array[2],self.eos_array[0], kind='linear') def __getstate__(self): state = self.__dict__.copy() for dict_intepolation in ['eosPressure_frombaryon','eosPressure','eosDensity','eosBaryonDensity']: del state[dict_intepolation] return state def __setstate__(self, state): self.__dict__.update(state) self.eosPressure_frombaryon = interp1d(self.eos_array[0],self.eos_array[2], kind='linear') self.eosPressure = interp1d(self.eos_array[1],self.eos_array[2], kind='linear') self.eosDensity = interp1d(self.eos_array[2],self.eos_array[1], kind='linear') self.eosBaryonDensity = interp1d(self.eos_array[2],self.eos_array[0], kind='linear') def eosCs2(self,pressure): return 1.0/derivative(self.eosDensity,pressure,dx=pressure*dlnx_cs2) def eosChempo(self,pressure): return (pressure+self.eosDensity(pressure))/self.eosBaryonDensity(pressure) class EOS_CSS(object): def __init__(self,args): self.density0,self.pressure0,self.baryondensity_trans,self.cs2 = args self.B=(self.density0-self.pressure0/self.cs2)/(1.0+1.0/self.cs2) def eosDensity(self,pressure): density = (pressure-self.pressure0)/self.cs2+self.density0 return np.where(density>0,density,0) def eosBaryonDensity(self,pressure): baryondensity_trans = self.baryondensity_trans*((pressure+self.B)/(self.pressure0+self.B))**(1.0/(1.0+self.cs2)) return np.where(baryondensity_trans>0,baryondensity_trans,0) def eosCs2(self,pressure): return self.cs2 def eosChempo(self,pressure): return (pressure+self.eosDensity(pressure))/self.eosBaryonDensity(pressure) class EOS_PnmCSS(object): def __init__(self,args,cs2=1): self.eosPNM=EOS_EXPANSION_PNM(args) self.baryon_density_s=self.eosPNM.baryon_density_s self.pressure_s=self.eosPNM.pressure_s self.density_s=self.eosPNM.density_s self.unit_mass=self.eosPNM.unit_mass self.unit_radius=self.eosPNM.unit_radius self.unit_N=self.eosPNM.unit_N self.baryondensity_trans=self.eosPNM.u_max*self.eosPNM.baryon_density_s*0.9999999 self.pressure_trans=self.eosPNM.eosPressure_frombaryon(self.baryondensity_trans) self.density_trans=self.eosPNM.eosDensity(self.pressure_trans) self.cs2=cs2 args_eosCSS=[self.density_trans,self.pressure_trans\ ,self.baryondensity_trans,self.cs2] self.eosCSS=EOS_CSS(args_eosCSS) def __getstate__(self): state_PNM=self.eosPNM.__getstate__() state = self.__dict__.copy() return (state,state_PNM) def __setstate__(self, state_): state,state_PNM=state_ self.__dict__.update(state) self.eosPNM.__setstate__(state_PNM) def setMaxmass(self,result_maxmaxmass): self.pc_max,self.mass_max,self.cs2_max=result_maxmaxmass def eosDensity(self,pressure): return np.where(pressure<self.pressure_trans,self.eosPNM.eosDensity(pressure),self.eosCSS.eosDensity(pressure)) def eosBaryonDensity(self,pressure): return np.where(pressure<self.pressure_trans,self.eosPNM.eosBaryonDensity(pressure),self.eosCSS.eosBaryonDensity(pressure)) def eosCs2(self,pressure): return np.where(pressure<self.pressure_trans,self.eosPNM.eosCs2(pressure),self.cs2) def eosChempo(self,pressure): return (pressure+self.eosDensity(pressure))/self.eosBaryonDensity(pressure) Preset_tol_matching=1e-4 class EOS_Sly4_match_PnmCSS(object): def __init__(self,eos_low,eos_high): self.eos_low=eos_low self.eos_high=eos_high flag=True for trial_pressure in [0.5,0.6,0.4,0.7,0.3,0.8,0.2,0.9,0.1,0.01,0.001]: if(flag==True): flag=False try: self.p_match=calculate_matching_pressure(trial_pressure,Preset_tol_matching,eos_low.eosDensity,eos_high.eosDensity) except: flag=True else: break if(flag): if(eos_high.eosPNM.u_max<1): self.p_match=0 else: #print('Matching of low density EoS %s and hight density %s failed'%(self.eos_low,self.eos_high)) print self.eos_high.eosPNM.args if(self.p_match>100): print('matching at exceptional high pressure, p_match=%f'%(self.p_match)) self.baryon_density_s=self.eos_high.baryon_density_s self.pressure_s=self.eos_high.pressure_s self.density_s=self.eos_high.density_s self.unit_mass=self.eos_high.unit_mass self.unit_radius=self.eos_high.unit_radius self.unit_N=self.eos_high.unit_N def __getstate__(self): state_high=self.eos_high.__getstate__() state = self.__dict__.copy() return (state,state_high) def __setstate__(self, state_): state,state_high=state_ self.__dict__.update(state) self.eos_high.__setstate__(state_high) def setMaxmass(self,result_maxmaxmass): self.pc_max,self.mass_max,self.cs2_max=result_maxmaxmass def eosDensity(self,pressure): return np.where(pressure<self.p_match,self.eos_low.eosDensity(pressure),self.eos_high.eosDensity(pressure)) def eosBaryonDensity(self,pressure): return np.where(pressure<self.p_match,self.eos_low.eosBaryonDensity(pressure),self.eos_high.eosBaryonDensity(pressure)) def eosCs2(self,pressure): return np.where(pressure<self.p_match,self.eos_low.eosCs2(pressure),self.eos_high.eosCs2(pressure)) def eosChempo(self,pressure): return (pressure+self.eosDensity(pressure))/self.eosBaryonDensity(pressure) import cPickle import os path = "./" dir_name='Lambda_PNM_calculation_parallel' error_log=path+dir_name+'/error.log' if __name__ == '__main__': try: os.stat(path+dir_name) except: os.mkdir(path+dir_name) N1=6 N2=15 N3=21 n_s=0.16 m=939 E_pnm = 32-16 L_pnm = np.linspace(30,70,N1) K_pnm = np.linspace(50,400,N2) Q_pnm = np.linspace(-400,600,N3) Preset_Pressure_final=1e-8 Preset_rtol=1e-4 args=[] from eos_class import EOS_BPS eos_low=EOS_BPS() eos_high=[] eos =[] for i in range(len(L_pnm)): for j in range(len(K_pnm)): for k in range(len(Q_pnm)): args.append([n_s,m,E_pnm,L_pnm[i],K_pnm[j],Q_pnm[k]]) eos_high.append(EOS_PnmCSS(args[-1])) #print args[-1] eos.append(EOS_Sly4_match_PnmCSS(eos_low,eos_high[-1])) args=np.reshape(np.array(args),(N1,N2,N3,6)) args_flat=np.reshape(np.array(args),(N1*N2*N3,6)) eos =np.reshape(np.array(eos),(N1,N2,N3)) eos_flat=np.array(eos).flatten() f_file=open(path+dir_name+'/Lambda_PNM_calculation_args.dat','wb') cPickle.dump(args,f_file) f_file.close() f_file=open(path+dir_name+'/Lambda_PNM_calculation_eos.dat','wb') cPickle.dump(eos,f_file) f_file.close() print('%d EoS built with shape (L_n,K_n,Q_n)%s.'%(len(args_flat),np.shape(eos))) from Lambda_hadronic_calculation import Calculation_maxmass,Calculation_mass_beta_Lambda,Calculation_onepointfour,Calculation_chirpmass_Lambdabeta6 from Parallel_process import main_parallel f_maxmass_result=path+dir_name+'/Lambda_PNM_calculation_maxmass.dat' maxmass_result=main_parallel(Calculation_maxmass,eos_flat,f_maxmass_result,error_log) print('Maximum mass configuration of %d EoS calculated.' %(len(eos_flat))) logic_maxmass=maxmass_result[:,1]>=2 print('Maximum mass constrain of %d EoS calculated, %d EoS satisfied.' %(len(eos_flat),len(eos_flat[logic_maxmass]))) logic_causality=maxmass_result[:,2]<1 print('Causality constrain of %d EoS calculated, %d EoS satisfied.' %(len(eos_flat),len(eos_flat[logic_causality]))) logic=np.logical_and(logic_maxmass,logic_causality) print('Maximum mass and causality constrain of %d EoS calculated, %d EoS satisfied.' %(len(eos_flat),len(eos_flat[logic]))) for i in range(len(eos_flat)): eos_flat[i].setMaxmass(maxmass_result[i]) f_onepointfour_result=path+dir_name+'/Lambda_PNM_calculation_onepointfour.dat' Properity_onepointfour=main_parallel(Calculation_onepointfour,eos_flat[logic],f_onepointfour_result,error_log) print('properities of 1.4 M_sun star of %d EoS calculated.' %(len(eos_flat[logic]))) f_mass_beta_Lambda_result=path+dir_name+'/Lambda_PNM_calculation_mass_beta_Lambda.dat' mass_beta_Lambda_result=main_parallel(Calculation_mass_beta_Lambda,eos_flat[logic],f_mass_beta_Lambda_result,error_log) print('mass, compactness and tidal Lambda of %d EoS calculated.' %(len(eos_flat[logic]))) f_chirpmass_Lambdabeta6_result=path+dir_name+'/Lambda_hadronic_calculation_chirpmass_Lambdabeta6.dat' chirp_q_Lambdabeta6_Lambda1Lambda2=main_parallel(Calculation_chirpmass_Lambdabeta6,np.concatenate((mass_beta_Lambda_result,np.tile(Properity_onepointfour[:,3],(40,1,1)).transpose()),axis=1),f_chirpmass_Lambdabeta6_result,error_log)
6299b8252a37bfdcec01408fc9c1f999e384a38e
27fc04a95b0d268adef4d4497c27ea9ae295d8a4
/ch09/6.sub.py
5129aa1ce0d9395a17421f1d77d219755a2a58f0
[]
no_license
s-kyum/Python
2b35b333557db0698a3fd305d550baaa5304f206
e5b31036acd2bfb79f98ff02d59096a2429eb41f
refs/heads/master
2023-07-09T18:45:26.179057
2021-08-23T03:07:57
2021-08-23T03:07:57
378,803,615
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
import re p = re.compile('blue|red') s= p.sub('A', 'blue socks and red shoes') #sub() - B를 A로 변경 print(s)
aae4b4bc0babf621630c5ce16a27e2c6b8abf57a
e8a48749014f372633de65d79bfa26a3ad743d89
/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py
ba65525ae00b125084e843d2eec2fea2a3ed915e
[ "Apache-2.0" ]
permissive
pvcastro/pytorch-pretrained-BERT
183b7291972c8d8c66c995647df66c1fe439a763
49cd736a288a315d741e5c337790effa4c9fa689
refs/heads/master
2022-08-19T08:55:16.332585
2022-06-30T16:11:08
2022-06-30T16:11:08
168,367,637
1
0
Apache-2.0
2019-01-30T15:39:42
2019-01-30T15:39:41
null
UTF-8
Python
false
false
37,964
py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Vision-Encoder-Text-Decoder architectures""" import tempfile import warnings from typing import Optional import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs from ...tf_utils import shape_list from ...utils import ( DUMMY_INPUTS, ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision's model's feature extractor. For example, using [`ViTFeatureExtractor`]. See [`ViTFeatureExtractor.__call__`] for details. decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) if tf.executing_eagerly(): # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base vision model classes of the library as encoder and another one of the base model classes as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" load_weight_prefix = "tf_vision_encoder_decoder_model" main_input_name = "pixel_values" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = tf.keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ decoder_input_ids = tf.constant(DUMMY_INPUTS) batch_size, seq_len = decoder_input_ids.shape VISION_DUMMY_INPUTS = tf.random.uniform( shape=( batch_size, self.config.encoder.num_channels, self.config.encoder.image_size, self.config.encoder.image_size, ), dtype=tf.float32, ) pixel_values = tf.constant(VISION_DUMMY_INPUTS) # Add `decoder_input_ids` because `self.decoder` requires it. dummy = {"pixel_values": pixel_values, "decoder_input_ids": decoder_input_ids} return dummy def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Initializing `TFVisionEncoderDecoderModel` from a pytorch checkpoint is not supported currently. If there are only pytorch checkpoints for a particular encoder-decoder model, a workaround is: ```python >>> # a workaround to load from pytorch checkpoint >>> _model = VisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en") >>> _model.encoder.save_pretrained("./encoder") >>> _model.decoder.save_pretrained("./decoder") >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True ... ) >>> # This is only for copying some specific attributes of this particular model. >>> model.config = _model.config ``` Example: ```python >>> from transformers import TFVisionEncoderDecoderModel, ViTFeatureExtractor, GPT2Tokenizer >>> from PIL import Image >>> import requests >>> feature_extractor = ViTFeatureExtractor.from_pretrained("ydshieh/vit-gpt2-coco-en") >>> decoder_tokenizer = GPT2Tokenizer.from_pretrained("ydshieh/vit-gpt2-coco-en") >>> model = TFVisionEncoderDecoderModel.from_pretrained("ydshieh/vit-gpt2-coco-en") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> img = Image.open(requests.get(url, stream=True).raw) >>> pixel_values = feature_extractor(images=img, return_tensors="tf").pixel_values # Batch size 1 >>> output_ids = model.generate( ... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True ... ).sequences >>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) >>> preds = [pred.strip() for pred in preds] >>> assert preds == ["a cat laying on top of a couch next to another cat"] ```""" from_pt = kwargs.pop("from_pt", False) if from_pt: raise ValueError( "Initializing `TFVisionEncoderDecoderModel` from a pytorch checkpoint is not supported currently. Use" " a tensorflow checkpoint instead. If only the pytorch checkpoints are available, create the encoder" " and decoder models separately, and use them to initialize `TFVisionEncoderDecoderModel`. Check" " `TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained()` for more details." ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An example is `google/vit-base-patch16-224-in21k`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFVisionEncoderDecoderModel >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-bert") >>> # load fine-tuned model >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) # This is necessary to make `from_pretrained` following `save_pretrained` work correctly if kwargs_encoder.get("from_pt", None): del kwargs_encoder["from_pt"] with tempfile.TemporaryDirectory() as tmp_dirname: encoder.save_pretrained(tmp_dirname) del encoder encoder = TFAutoModel.from_pretrained(tmp_dirname, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # This is necessary to make `from_pretrained` following `save_pretrained` work correctly if kwargs_decoder.get("from_pt", None): del kwargs_decoder["from_pt"] with tempfile.TemporaryDirectory() as tmp_dirname: decoder.save_pretrained(tmp_dirname) del decoder decoder = TFAutoModelForCausalLM.from_pretrained(tmp_dirname, **kwargs_decoder) # Make sure these 2 `tf.keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward( VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Returns: Examples: ```python >>> from transformers import AutoFeatureExtractor, AutoTokenizer, TFVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") >>> decoder_tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "gpt2" ... ) >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> img = Image.open(requests.get(url, stream=True).raw) >>> # forward >>> pixel_values = feature_extractor(images=img, return_tensors="tf").pixel_values # Batch size 1 >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) >>> # training >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("vit-gpt2") >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2") >>> # generation >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": pixel_values, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) if "input_ids" in encoder_inputs: encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") if encoder_inputs["pixel_values"] is None: raise ValueError("You have to specify pixel_values") # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) past_key_values = None if decoder_inputs["use_cache"]: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not decoder_inputs["return_dict"]: if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None cross_attns = ( tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions and output.cross_attentions is not None else None ) return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, cross_attentions=cross_attns, ) def prepare_inputs_for_generation( self, input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past=past) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") if past_key_values is None: past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 input_dict = { "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported." "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx)
f8b2e6eb000e9bb4ab907381ef8afbef0d9ae96e
453df013de5dc74291db65436011b661d969e4b6
/soccer/gameplay2/plays/restarts/kick_penalty.py
3476f67818ae84d74caf1477ebca2fda655fab5d
[]
no_license
david2194/robocup-software
3f04eb7de4b84cafdab1a956df7cc48c3d3d4604
6f98c38ddb129ca49be357fc230990c16eadf9d4
refs/heads/master
2021-01-17T21:39:47.832797
2014-07-15T01:31:51
2014-07-15T01:31:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
import play import behavior import robocup import main import tactics.line_up import tactics.penalty # one robot kicks the ball, the others just line up and wait class KickPenalty(play.Play): def __init__(self): super().__init__(continuous=True) self.add_transition(behavior.Behavior.State.start, behavior.Behavior.State.running, lambda: True, 'immediately') kicker = tactics.penalty.Penalty() self.add_subbehavior(kicker, 'kicker', required=True, priority=10) line = robocup.Segment(robocup.Point(1.5, 1), robocup.Point(1.5, 2.5)) line_up = tactics.line_up.LineUp(line) @classmethod def score(cls): gs = main.game_state() return 0.0 if gs.is_setup_state() and gs.is_our_penalty() else float("inf")
0d6c12a20b87eb1a3983e038e756badb1c55e1c1
55c24645dd63a1c41037dcfb9fb45bc7bcdea4be
/venv/lib/python3.7/site-packages/sqlalchemy/__init__.py
a8209abb0731906a86b9be969f0404a04d25f2f6
[]
no_license
abdullah-nawaz/flask-boilerplate
7c42801a21ee3e6a647cc8a7d92e0285f8e86cad
01bc7fe1140e8ec613de4a38546a07ddfbdbd254
refs/heads/master
2022-12-02T05:06:08.297759
2020-06-24T21:36:32
2020-06-24T21:36:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,659
py
# sqlalchemy/__init__.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from . import util as _util # noqa from .inspection import inspect # noqa from .schema import BLANK_SCHEMA # noqa from .schema import CheckConstraint # noqa from .schema import Column # noqa from .schema import ColumnDefault # noqa from .schema import Computed # noqa from .schema import Constraint # noqa from .schema import DDL # noqa from .schema import DefaultClause # noqa from .schema import FetchedValue # noqa from .schema import ForeignKey # noqa from .schema import ForeignKeyConstraint # noqa from .schema import Index # noqa from .schema import MetaData # noqa from .schema import PassiveDefault # noqa from .schema import PrimaryKeyConstraint # noqa from .schema import Sequence # noqa from .schema import Table # noqa from .schema import ThreadLocalMetaData # noqa from .schema import UniqueConstraint # noqa from .sql import alias # noqa from .sql import all_ # noqa from .sql import and_ # noqa from .sql import any_ # noqa from .sql import asc # noqa from .sql import between # noqa from .sql import bindparam # noqa from .sql import case # noqa from .sql import cast # noqa from .sql import collate # noqa from .sql import column # noqa from .sql import delete # noqa from .sql import desc # noqa from .sql import distinct # noqa from .sql import except_ # noqa from .sql import except_all # noqa from .sql import exists # noqa from .sql import extract # noqa from .sql import false # noqa from .sql import func # noqa from .sql import funcfilter # noqa from .sql import insert # noqa from .sql import intersect # noqa from .sql import intersect_all # noqa from .sql import join # noqa from .sql import lateral # noqa from .sql import literal # noqa from .sql import literal_column # noqa from .sql import modifier # noqa from .sql import not_ # noqa from .sql import null # noqa from .sql import nullsfirst # noqa from .sql import nullslast # noqa from .sql import or_ # noqa from .sql import outerjoin # noqa from .sql import outparam # noqa from .sql import over # noqa from .sql import select # noqa from .sql import subquery # noqa from .sql import table # noqa from .sql import tablesample # noqa from .sql import text # noqa from .sql import true # noqa from .sql import tuple_ # noqa from .sql import type_coerce # noqa from .sql import union # noqa from .sql import union_all # noqa from .sql import update # noqa from .sql import within_group # noqa from .types import ARRAY # noqa from .types import BIGINT # noqa from .types import BigInteger # noqa from .types import BINARY # noqa from .types import Binary # noqa from .types import BLOB # noqa from .types import BOOLEAN # noqa from .types import Boolean # noqa from .types import CHAR # noqa from .types import CLOB # noqa from .types import DATE # noqa from .types import Date # noqa from .types import DATETIME # noqa from .types import DateTime # noqa from .types import DECIMAL # noqa from .types import Enum # noqa from .types import FLOAT # noqa from .types import Float # noqa from .types import INT # noqa from .types import INTEGER # noqa from .types import Integer # noqa from .types import Interval # noqa from .types import JSON # noqa from .types import LargeBinary # noqa from .types import NCHAR # noqa from .types import NUMERIC # noqa from .types import Numeric # noqa from .types import NVARCHAR # noqa from .types import PickleType # noqa from .types import REAL # noqa from .types import SMALLINT # noqa from .types import SmallInteger # noqa from .types import String # noqa from .types import TEXT # noqa from .types import Text # noqa from .types import TIME # noqa from .types import Time # noqa from .types import TIMESTAMP # noqa from .types import TypeDecorator # noqa from .types import Unicode # noqa from .types import UnicodeText # noqa from .types import VARBINARY # noqa from .types import VARCHAR # noqa from .engine import create_engine # noqa nosort from .engine import engine_from_config # noqa nosort __version__ = "1.3.17" def __go(lcls): global __all__ from . import events # noqa from . import util as _sa_util import inspect as _inspect __all__ = sorted( name for name, obj in lcls.items() if not (name.startswith("_") or _inspect.ismodule(obj)) ) _sa_util.dependencies.resolve_all("sqlalchemy") __go(locals())
6822f81d9f94b272ee76b01d65f926ac917a2f80
dfaf6f7ac83185c361c81e2e1efc09081bd9c891
/k8sdeployment/k8sstat/python/kubernetes/test/test_runtime_raw_extension.py
ee67e7a373c69490627d5edc9482fa2e486fd0ae
[ "Apache-2.0", "MIT" ]
permissive
JeffYFHuang/gpuaccounting
d754efac2dffe108b591ea8722c831d979b68cda
2c63a63c571240561725847daf1a7f23f67e2088
refs/heads/master
2022-08-09T03:10:28.185083
2022-07-20T00:50:06
2022-07-20T00:50:06
245,053,008
0
0
MIT
2021-03-25T23:44:50
2020-03-05T02:44:15
JavaScript
UTF-8
Python
false
false
968
py
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.15.6 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.runtime_raw_extension import RuntimeRawExtension # noqa: E501 from kubernetes.client.rest import ApiException class TestRuntimeRawExtension(unittest.TestCase): """RuntimeRawExtension unit test stubs""" def setUp(self): pass def tearDown(self): pass def testRuntimeRawExtension(self): """Test RuntimeRawExtension""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.runtime_raw_extension.RuntimeRawExtension() # noqa: E501 pass if __name__ == '__main__': unittest.main()
50c91ad80d12b49cb8dd5fa2e3e23d87d64c3ce0
46667df8344db58698838d677bdae377b3c3c53c
/Data Manipulation with Pandas/Part 2/25.upsampling-data.py
18d91a2eac217beb607b6e8648ee86d48cbb6b62
[]
no_license
bennysetiawan/DQLab-Career-2021
278577cdddb3852c57f799cd1207b4ff45962960
0822d15e3b24cf0146c23456d4b65b0fb00a53fc
refs/heads/master
2023-06-06T13:24:21.289929
2021-06-23T17:09:14
2021-06-23T17:09:14
379,657,598
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
import pandas as pd # Load dataset https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/LO4/global_air_quality_4000rows.csv gaq = pd.read_csv('https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/LO4/global_air_quality_4000rows.csv') gaq['timestamp'] = pd.to_datetime(gaq['timestamp']) gaq = gaq.set_index('timestamp') print('Dataset sebelum di-upsampling (5 teratas):\n', gaq.head()) # Upsampling dari daily to hourly dan kita hitung reratanya gaq_hourly = gaq.resample('H').mean() print('Upsampling daily to hourly - mean (5 teratas):\n', gaq_hourly.head())
f04775a90eb47f46df8bc83f530d0483eb919a60
b08d42933ac06045905d7c005ca9c114ed3aecc0
/src/coefSubset/evaluate/ranks/tenth/rank_1ay7_O.py
0e06f6a99063b4335484694384ed33130ec83f0a
[]
no_license
TanemuraKiyoto/PPI-native-detection-via-LR
d148d53f5eb60a4dda5318b371a3048e3f662725
897e7188b0da94e87126a4acc0c9a6ff44a64574
refs/heads/master
2022-12-05T11:59:01.014309
2020-08-10T00:41:17
2020-08-10T00:41:17
225,272,083
1
0
null
null
null
null
UTF-8
Python
false
false
3,204
py
# 9 July 2019 # Kiyoto Aramis Tanemura # Several metrics are used to assess the performance of the trained RF model, notably native ranking. This script returns a ranking of the native protein-protein complex among a decoy set. For convenience, I will define as a function and will call in a general performance assessment script. # Modified 11 July 2019 by Kiyoto Aramis Tanemura. To parallelize the process, I will replace the for loop for the testFileList to a multiprocessing pool. # Modified 9 September 2019 by Kiyoto Aramis Tanemura. I will use the function to perform the calculation on one CSV file only. Thus instead of a function to import in other scripts, they will be individual jobs parallelized as individual jobs in the queue. import os import pandas as pd import numpy as np import pickle os.chdir('/mnt/scratch/tanemur1/') # Read the model and trainFile testFile = '1ay7.csv' identifier = 'O' thresholdCoef = 0.1 testFilePath = '/mnt/scratch/tanemur1/CASF-PPI/nonb_descriptors/complete/' modelPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/tenth/' outputPath = '/mnt/home/tanemur1/6May2019/2019-11-11/results/coefSubset/evaluate/tenth/ranks/' pdbID = testFile[:4] with open(modelPath + 'model' + identifier + '.pkl', 'rb') as f: clf = pickle.load(f) result = pd.DataFrame() scoreList = [] df1 = pd.read_csv(testFilePath + testFile) dropList = ['Unnamed: 0', 'Unnamed: 0.1', 'ref'] df1 = df1.drop(dropList, axis = 1) df1 = df1.set_index('Pair_name') df1 = pd.DataFrame(df1.values.T, columns = df1.index, index = df1.columns) df1.fillna(0.0, inplace = True) df1 = df1.reindex(sorted(df1.columns), axis = 1) # Drop features with coefficients below threshold coefs = pd.read_csv('/mnt/home/tanemur1/6May2019/2019-11-11/results/medianCoefs.csv', index_col = 0, header = None, names = ['coefficients']) coefs = coefs[np.abs(coefs['coefficients']) < thresholdCoef] dropList = list(coefs.index) del coefs df1.drop(dropList, axis = 1, inplace = True) with open(modelPath + 'standardScaler' + identifier + '.pkl', 'rb') as g: scaler = pickle.load(g) for i in range(len(df1)): # subtract from one row each row of the dataframe, then remove the trivial row[[i]] - row[[i]]. Also some input files have 'class' column. This is erroneous and is removed. df2 = pd.DataFrame(df1.iloc[[i]].values - df1.values, index = df1.index, columns = df1.columns) df2 = df2.drop(df1.iloc[[i]].index[0], axis = 0) # Standardize inut DF using the standard scaler used for training data. df2 = scaler.transform(df2) # Predict class of each comparison descriptor and sum the classes to obtain score. Higher score corresponds to more native-like complex predictions = clf.predict(df2) score = sum(predictions) scoreList.append(score) # Make a new DataFrame to store the score and corresponding descriptorID. Add rank as column. Note: lower rank corresponds to more native-like complex result = pd.DataFrame(data = {'score': scoreList}, index = df1.index.tolist()).sort_values(by = 'score', ascending = False) result['rank'] = range(1, len(result) + 1) with open(outputPath + pdbID + identifier + '.csv', 'w') as h: result.to_csv(h)
556405e629f0f2151963bc39b08f1197eac1b386
78b160d8131f3c4b7aef0d051b040825a9c50e0d
/algoexpert/easy/palindromeCheck.py
67e4ca78dd3bd4d9c8bce9e602b51280a4a5ece4
[ "MIT" ]
permissive
ardakkk/Algorithms-and-Data-Structures
744f8c9ffb233b95040e5bdcbddb9f5d2ff7a5ba
c428bb0bd7eeb6c34448630f88f13e1329b54636
refs/heads/master
2021-07-08T22:40:40.361282
2020-07-20T10:39:58
2020-07-20T10:39:58
156,005,721
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
# Time: O(n^2) | Space: O(n) # def isPalindrome(string): # reversedString = "" # # for i in reversed(range(len(string))): # reversedString += string[i] # return string == reversedString # Time: O(n) | Space: O(n) # def isPlaindrome(string): # reversedChars = [] # # for i in reversed(range(len(string))): # reversedChars.append(string[i]) # return string == "".join(reversedChars) # Time: O(n) | Space: O(n) # def isPlaindrome(string, i = 0): # j = len(string) - 1 - i # return True if i >= j else string[i] == string[j] and isPlaindrome(string, i + 1) # Time: O(n) | Space: O(n) # def isPalindrome(string, i = 0): # j = len(string) - 1 - i # # if i >= j: # return True # if string[i] != string[j]: # return False # # return isPalindrome(string, i + 1) # Time: O(n) | Space: O(1) def isPalindrome(string): leftIdx = 0 rightIdx = len(string) - 1 while leftIdx < rightIdx: if string[leftIdx] != string[rightIdx]: return False leftIdx += 1 rightIdx -= 1 return True print(isPalindrome('abcdcba'))
85848666ff2722fdc295c2a9d73fb1963e6f41d4
15b12d69ac3123d1562986970ce01d7a47d171de
/typings/nltk/translate/meteor_score.pyi
1cde9aead19696ebb82604513df27febecc0a9d7
[ "Apache-2.0" ]
permissive
simplymanas/python-learning
9b67b5a7acfb3a7c2455a7d1fc66203a2b419c37
75bc99c0dce211fd1bce5f6ce1155e0f4c71d7d0
refs/heads/master
2021-07-11T06:40:24.803589
2021-06-20T12:06:02
2021-06-20T12:06:02
241,769,614
5
1
null
null
null
null
UTF-8
Python
false
false
11,369
pyi
""" This type stub file was generated by pyright. """ def _generate_enums(hypothesis, reference, preprocess=...): """ Takes in string inputs for hypothesis and reference and returns enumerated word lists for each of them :param hypothesis: hypothesis string :type hypothesis: str :param reference: reference string :type reference: str :preprocess: preprocessing method (default str.lower) :type preprocess: method :return: enumerated words list :rtype: list of 2D tuples, list of 2D tuples """ ... def exact_match(hypothesis, reference): """ matches exact words in hypothesis and reference and returns a word mapping based on the enumerated word id between hypothesis and reference :param hypothesis: hypothesis string :type hypothesis: str :param reference: reference string :type reference: str :return: enumerated matched tuples, enumerated unmatched hypothesis tuples, enumerated unmatched reference tuples :rtype: list of 2D tuples, list of 2D tuples, list of 2D tuples """ ... def _match_enums(enum_hypothesis_list, enum_reference_list): """ matches exact words in hypothesis and reference and returns a word mapping between enum_hypothesis_list and enum_reference_list based on the enumerated word id. :param enum_hypothesis_list: enumerated hypothesis list :type enum_hypothesis_list: list of tuples :param enum_reference_list: enumerated reference list :type enum_reference_list: list of 2D tuples :return: enumerated matched tuples, enumerated unmatched hypothesis tuples, enumerated unmatched reference tuples :rtype: list of 2D tuples, list of 2D tuples, list of 2D tuples """ ... def _enum_stem_match(enum_hypothesis_list, enum_reference_list, stemmer=...): """ Stems each word and matches them in hypothesis and reference and returns a word mapping between enum_hypothesis_list and enum_reference_list based on the enumerated word id. The function also returns a enumerated list of unmatched words for hypothesis and reference. :param enum_hypothesis_list: :type enum_hypothesis_list: :param enum_reference_list: :type enum_reference_list: :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :return: enumerated matched tuples, enumerated unmatched hypothesis tuples, enumerated unmatched reference tuples :rtype: list of 2D tuples, list of 2D tuples, list of 2D tuples """ ... def stem_match(hypothesis, reference, stemmer=...): """ Stems each word and matches them in hypothesis and reference and returns a word mapping between hypothesis and reference :param hypothesis: :type hypothesis: :param reference: :type reference: :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :return: enumerated matched tuples, enumerated unmatched hypothesis tuples, enumerated unmatched reference tuples :rtype: list of 2D tuples, list of 2D tuples, list of 2D tuples """ ... def _enum_wordnetsyn_match(enum_hypothesis_list, enum_reference_list, wordnet=...): """ Matches each word in reference to a word in hypothesis if any synonym of a hypothesis word is the exact match to the reference word. :param enum_hypothesis_list: enumerated hypothesis list :param enum_reference_list: enumerated reference list :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :return: list of matched tuples, unmatched hypothesis list, unmatched reference list :rtype: list of tuples, list of tuples, list of tuples """ ... def wordnetsyn_match(hypothesis, reference, wordnet=...): """ Matches each word in reference to a word in hypothesis if any synonym of a hypothesis word is the exact match to the reference word. :param hypothesis: hypothesis string :param reference: reference string :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :return: list of mapped tuples :rtype: list of tuples """ ... def _enum_allign_words(enum_hypothesis_list, enum_reference_list, stemmer=..., wordnet=...): """ Aligns/matches words in the hypothesis to reference by sequentially applying exact match, stemmed match and wordnet based synonym match. in case there are multiple matches the match which has the least number of crossing is chosen. Takes enumerated list as input instead of string input :param enum_hypothesis_list: enumerated hypothesis list :param enum_reference_list: enumerated reference list :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :return: sorted list of matched tuples, unmatched hypothesis list, unmatched reference list :rtype: list of tuples, list of tuples, list of tuples """ ... def allign_words(hypothesis, reference, stemmer=..., wordnet=...): """ Aligns/matches words in the hypothesis to reference by sequentially applying exact match, stemmed match and wordnet based synonym match. In case there are multiple matches the match which has the least number of crossing is chosen. :param hypothesis: hypothesis string :param reference: reference string :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :return: sorted list of matched tuples, unmatched hypothesis list, unmatched reference list :rtype: list of tuples, list of tuples, list of tuples """ ... def _count_chunks(matches): """ Counts the fewest possible number of chunks such that matched unigrams of each chunk are adjacent to each other. This is used to caluclate the fragmentation part of the metric. :param matches: list containing a mapping of matched words (output of allign_words) :return: Number of chunks a sentence is divided into post allignment :rtype: int """ ... def single_meteor_score(reference, hypothesis, preprocess=..., stemmer=..., wordnet=..., alpha=..., beta=..., gamma=...): """ Calculates METEOR score for single hypothesis and reference as per "Meteor: An Automatic Metric for MT Evaluation with HighLevels of Correlation with Human Judgments" by Alon Lavie and Abhaya Agarwal, in Proceedings of ACL. http://www.cs.cmu.edu/~alavie/METEOR/pdf/Lavie-Agarwal-2007-METEOR.pdf >>> hypothesis1 = 'It is a guide to action which ensures that the military always obeys the commands of the party' >>> reference1 = 'It is a guide to action that ensures that the military will forever heed Party commands' >>> round(single_meteor_score(reference1, hypothesis1),4) 0.7398 If there is no words match during the alignment the method returns the score as 0. We can safely return a zero instead of raising a division by zero error as no match usually implies a bad translation. >>> round(meteor_score('this is a cat', 'non matching hypothesis'),4) 0.0 :param references: reference sentences :type references: list(str) :param hypothesis: a hypothesis sentence :type hypothesis: str :param preprocess: preprocessing function (default str.lower) :type preprocess: method :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :param alpha: parameter for controlling relative weights of precision and recall. :type alpha: float :param beta: parameter for controlling shape of penalty as a function of as a function of fragmentation. :type beta: float :param gamma: relative weight assigned to fragmentation penality. :type gamma: float :return: The sentence-level METEOR score. :rtype: float """ ... def meteor_score(references, hypothesis, preprocess=..., stemmer=..., wordnet=..., alpha=..., beta=..., gamma=...): """ Calculates METEOR score for hypothesis with multiple references as described in "Meteor: An Automatic Metric for MT Evaluation with HighLevels of Correlation with Human Judgments" by Alon Lavie and Abhaya Agarwal, in Proceedings of ACL. http://www.cs.cmu.edu/~alavie/METEOR/pdf/Lavie-Agarwal-2007-METEOR.pdf In case of multiple references the best score is chosen. This method iterates over single_meteor_score and picks the best pair among all the references for a given hypothesis >>> hypothesis1 = 'It is a guide to action which ensures that the military always obeys the commands of the party' >>> hypothesis2 = 'It is to insure the troops forever hearing the activity guidebook that party direct' >>> reference1 = 'It is a guide to action that ensures that the military will forever heed Party commands' >>> reference2 = 'It is the guiding principle which guarantees the military forces always being under the command of the Party' >>> reference3 = 'It is the practical guide for the army always to heed the directions of the party' >>> round(meteor_score([reference1, reference2, reference3], hypothesis1),4) 0.7398 If there is no words match during the alignment the method returns the score as 0. We can safely return a zero instead of raising a division by zero error as no match usually implies a bad translation. >>> round(meteor_score(['this is a cat'], 'non matching hypothesis'),4) 0.0 :param references: reference sentences :type references: list(str) :param hypothesis: a hypothesis sentence :type hypothesis: str :param preprocess: preprocessing function (default str.lower) :type preprocess: method :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer()) :type stemmer: nltk.stem.api.StemmerI or any class that implements a stem method :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet) :type wordnet: WordNetCorpusReader :param alpha: parameter for controlling relative weights of precision and recall. :type alpha: float :param beta: parameter for controlling shape of penalty as a function of as a function of fragmentation. :type beta: float :param gamma: relative weight assigned to fragmentation penality. :type gamma: float :return: The sentence-level METEOR score. :rtype: float """ ...
e73bc712fb8c9aaa9b6e279837ea9cba1a4624f9
09dd58f46b1e914278067a69142230c7af0165c2
/blackmamba/lib/flake8/options/aggregator.py
5b8ab9c33b475d3ad576e839636fd2baf3f73f86
[ "MIT" ]
permissive
zrzka/blackmamba
4e70262fbe3702553bf5d285a81b33eb6b3025ea
b298bc5d59e5aea9d494282910faf522c08ebba9
refs/heads/master
2021-01-01T18:43:19.490953
2020-01-20T08:26:33
2020-01-20T08:26:33
98,410,391
72
12
MIT
2020-01-20T08:26:35
2017-07-26T10:21:15
Python
UTF-8
Python
false
false
3,255
py
"""Aggregation function for CLI specified options and config file options. This holds the logic that uses the collected and merged config files and applies the user-specified command-line configuration on top of it. """ import logging from flake8.options import config LOG = logging.getLogger(__name__) def aggregate_options(manager, config_finder, arglist=None, values=None): """Aggregate and merge CLI and config file options. :param flake8.options.manager.OptionManager manager: The instance of the OptionManager that we're presently using. :param flake8.options.config.ConfigFileFinder config_finder: The config file finder to use. :param list arglist: The list of arguments to pass to ``manager.parse_args``. In most cases this will be None so ``parse_args`` uses ``sys.argv``. This is mostly available to make testing easier. :param optparse.Values values: Previously parsed set of parsed options. :returns: Tuple of the parsed options and extra arguments returned by ``manager.parse_args``. :rtype: tuple(optparse.Values, list) """ # Get defaults from the option parser default_values, _ = manager.parse_args([], values=values) # Get original CLI values so we can find additional config file paths and # see if --config was specified. original_values, _ = manager.parse_args(arglist) # Make our new configuration file mergerator config_parser = config.MergedConfigParser( option_manager=manager, config_finder=config_finder, ) # Get the parsed config parsed_config = config_parser.parse(original_values.config, original_values.isolated) # Extend the default ignore value with the extended default ignore list, # registered by plugins. extended_default_ignore = manager.extended_default_ignore.copy() LOG.debug('Extended default ignore list: %s', list(extended_default_ignore)) extended_default_ignore.update(default_values.ignore) default_values.ignore = list(extended_default_ignore) LOG.debug('Merged default ignore list: %s', default_values.ignore) extended_default_select = manager.extended_default_select.copy() LOG.debug('Extended default select list: %s', list(extended_default_select)) default_values.extended_default_select = extended_default_select # Merge values parsed from config onto the default values returned for config_name, value in parsed_config.items(): dest_name = config_name # If the config name is somehow different from the destination name, # fetch the destination name from our Option if not hasattr(default_values, config_name): dest_name = config_parser.config_options[config_name].dest LOG.debug('Overriding default value of (%s) for "%s" with (%s)', getattr(default_values, dest_name, None), dest_name, value) # Override the default values with the config values setattr(default_values, dest_name, value) # Finally parse the command-line options return manager.parse_args(arglist, default_values)
6d41bc6c5b7e28373bc88fa9ad52239f056dbc2c
36821b9fcdbefe88a60f584e7d39695ca5fe6177
/codeforces/1453/A.py
a93ebbcf9a29319282fbae77a215b4aaceb35e41
[]
no_license
shubham409/CodeSubmits
231fc40a64ad97323e558ba2fa252c62f34c7809
5da4d9cc87d4ac8f54175723c2acf77fc5784f21
refs/heads/master
2023-06-26T06:17:30.255973
2021-06-03T18:24:00
2021-07-29T20:35:01
329,399,083
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
def fun(ls, lt): st = set(ls) count = 0 for i in lt: if(i in st): count += 1 print(count) T = int(input()) for i in range(T): n, k = list(map(int, input().split())) ls = list(map(int, input().split())) lt = list(map(int, input().split())) fun(ls, lt)
58789926c4ec41d87ecb91c85728560a035ea6c8
2c3e2d7da1e62bd75229fad0c8e18431a420b8a1
/tidy_headers/_parse_array.py
ac1f4780b57b533b14d09b060e35fe2b661aa445
[ "MIT" ]
permissive
ksunden/tidy_headers
9526c3b522257f9dec4729fcdbcc09e7db68b6b3
060942204b5bb87a8b209e81e1b64fd3cbb0691f
refs/heads/master
2020-03-13T02:55:24.394455
2017-11-13T03:08:06
2017-11-13T03:08:06
130,934,077
0
0
null
2018-04-25T01:34:24
2018-04-25T01:34:24
null
UTF-8
Python
false
false
2,092
py
"""Parse array.""" # --- import ------------------------------------------------------------------------------------- import re import numpy as np from ._utilities import flatten_list # --- parse -------------------------------------------------------------------------------------- def array2string(array, sep='\t'): """Generate a string from an array with useful formatting. Great for writing arrays into single lines in files. See Also -------- string2array """ np.set_printoptions(threshold=array.size) string = np.array2string(array, separator=sep) string = string.replace('\n', sep) string = re.sub(r'({})(?=\1)'.format(sep), '', string) return string def string2array(string, sep='\t'): """Generate an array from a string created using array2string. See Also -------- array2string """ # discover size size = string.count('\t') + 1 # discover dimensionality dimensionality = 0 while string[dimensionality] == '[': dimensionality += 1 # discover shape shape = [] for i in range(1, dimensionality + 1)[::-1]: to_match = '[' * (i - 1) count_positive = string.count(to_match + ' ') count_negative = string.count(to_match + '-') shape.append(count_positive + count_negative) shape[-1] = size / shape[-2] for i in range(1, dimensionality - 1)[::-1]: shape[i] = shape[i] / shape[i - 1] shape = tuple([int(s) for s in shape]) # import list of floats lis = string.split(' ') # annoyingly series of negative values get past previous filters lis = flatten_list([i.split('-') for i in lis]) for i, item in enumerate(lis): bad_chars = ['[', ']', '\t', '\n'] for bad_char in bad_chars: item = item.replace(bad_char, '') lis[i] = item for i in range(len(lis))[::-1]: try: lis[i] = float(lis[i]) except ValueError: lis.pop(i) # create and reshape array arr = np.array(lis) arr.shape = shape # finish return arr
d8bb8e646968f06a0614abc39cd6ba7e62e1df63
ddd35c693194aefb9c009fe6b88c52de7fa7c444
/Live 10.1.18/VCM600/VCM600.py
d7805481023c57c96160c4fb4feb1534cdf912e5
[]
no_license
notelba/midi-remote-scripts
819372d9c22573877c7912091bd8359fdd42585d
e3ec6846470eed7da8a4d4f78562ed49dc00727b
refs/heads/main
2022-07-30T00:18:33.296376
2020-10-04T00:00:12
2020-10-04T00:00:12
301,003,961
0
0
null
null
null
null
UTF-8
Python
false
false
6,780
py
# uncompyle6 version 3.7.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.8.5 (default, Aug 12 2020, 00:00:00) # [GCC 10.2.1 20200723 (Red Hat 10.2.1-1)] # Embedded file name: c:\Jenkins\live\output\Live\win_64_static\Release\python-bundle\MIDI Remote Scripts\VCM600\VCM600.py # Compiled at: 2020-07-14 15:33:46 from __future__ import absolute_import, print_function, unicode_literals import Live from _Framework.ControlSurface import ControlSurface from _Framework.InputControlElement import * from _Framework.SliderElement import SliderElement from _Framework.ButtonElement import ButtonElement from _Framework.EncoderElement import EncoderElement from _Framework.ChannelStripComponent import ChannelStripComponent from _Framework.DeviceComponent import DeviceComponent from _Framework.ClipSlotComponent import ClipSlotComponent from _Framework.SceneComponent import SceneComponent from _Framework.SessionComponent import SessionComponent from _Framework.ChannelTranslationSelector import ChannelTranslationSelector from .ViewTogglerComponent import ViewTogglerComponent from .MixerComponent import MixerComponent from .TransportComponent import TransportComponent NUM_TRACKS = 12 class VCM600(ControlSurface): """ Script for Vestax's VCM600 Controller """ def __init__(self, c_instance): ControlSurface.__init__(self, c_instance) with self.component_guard(): self._setup_session_control() self._setup_mixer_control() self._setup_device_control() self._setup_transport_control() self._setup_view_control() def _setup_session_control(self): is_momentary = True down_button = ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 89) up_button = ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 90) session = SessionComponent(NUM_TRACKS, 0) session.set_select_buttons(down_button, up_button) session.selected_scene().set_launch_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 87)) track_stop_buttons = [ ButtonElement(is_momentary, MIDI_NOTE_TYPE, index, 68) for index in range(NUM_TRACKS) ] session.set_stop_track_clip_buttons(tuple(track_stop_buttons)) for index in range(NUM_TRACKS): session.selected_scene().clip_slot(index).set_launch_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, index, 69)) def _setup_mixer_control(self): is_momentary = True mixer = MixerComponent(NUM_TRACKS, 2) for track in range(NUM_TRACKS): strip = mixer.channel_strip(track) strip.set_volume_control(SliderElement(MIDI_CC_TYPE, track, 23)) strip.set_pan_control(EncoderElement(MIDI_CC_TYPE, track, 10, Live.MidiMap.MapMode.absolute)) strip.set_send_controls(( EncoderElement(MIDI_CC_TYPE, track, 19, Live.MidiMap.MapMode.absolute), EncoderElement(MIDI_CC_TYPE, track, 20, Live.MidiMap.MapMode.absolute))) strip.set_solo_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 64)) strip.set_mute_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 63)) strip.set_crossfade_toggle(ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 65)) eq = mixer.track_eq(track) eq.set_gain_controls(tuple([ EncoderElement(MIDI_CC_TYPE, track, 18 - index, Live.MidiMap.MapMode.absolute) for index in range(3) ])) eq.set_cut_buttons(tuple([ ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 62 - index) for index in range(3) ])) filter = mixer.track_filter(track) filter.set_filter_controls(EncoderElement(MIDI_CC_TYPE, track, 22, Live.MidiMap.MapMode.absolute), EncoderElement(MIDI_CC_TYPE, track, 21, Live.MidiMap.MapMode.absolute)) for ret_track in range(2): strip = mixer.return_strip(ret_track) strip.set_volume_control(SliderElement(MIDI_CC_TYPE, 12, 22 + ret_track)) strip.set_pan_control(EncoderElement(MIDI_CC_TYPE, 12, 20 + ret_track, Live.MidiMap.MapMode.absolute)) strip.set_mute_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 78 + ret_track)) mixer.set_crossfader_control(SliderElement(MIDI_CC_TYPE, 12, 8)) mixer.set_prehear_volume_control(EncoderElement(MIDI_CC_TYPE, 12, 24, Live.MidiMap.MapMode.absolute)) mixer.master_strip().set_volume_control(SliderElement(MIDI_CC_TYPE, 12, 7)) mixer.master_strip().set_pan_control(EncoderElement(MIDI_CC_TYPE, 12, 10, Live.MidiMap.MapMode.absolute)) return mixer def _setup_device_control(self): is_momentary = True device_bank_buttons = [] device_param_controls = [] for index in range(8): device_bank_buttons.append(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 70 + index)) device_param_controls.append(EncoderElement(MIDI_CC_TYPE, 12, 12 + index, Live.MidiMap.MapMode.absolute)) device = DeviceComponent() device.set_bank_buttons(tuple(device_bank_buttons)) device.set_parameter_controls(tuple(device_param_controls)) device_translation_selector = ChannelTranslationSelector() device_translation_selector.set_controls_to_translate(tuple(device_param_controls)) device_translation_selector.set_mode_buttons(tuple(device_bank_buttons)) self.set_device_component(device) def _setup_transport_control(self): is_momentary = True transport = TransportComponent() transport.set_play_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 80)) transport.set_record_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 81)) transport.set_nudge_buttons(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 86), ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 85)) transport.set_loop_button(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 84)) transport.set_punch_buttons(ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 82), ButtonElement(is_momentary, MIDI_NOTE_TYPE, 12, 83)) transport.set_tempo_control(SliderElement(MIDI_CC_TYPE, 12, 26), SliderElement(MIDI_CC_TYPE, 12, 25)) def _setup_view_control(self): is_momentary = True view = ViewTogglerComponent(NUM_TRACKS) view.set_buttons(tuple([ ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 67) for track in range(NUM_TRACKS) ]), tuple([ ButtonElement(is_momentary, MIDI_NOTE_TYPE, track, 66) for track in range(NUM_TRACKS) ])) # okay decompiling /home/deniz/data/projects/midiremote/Live 10.1.18/VCM600/VCM600.pyc
c63fca29896bfff9b615895fc46e9674f2c87b44
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_292/ch79_2020_04_07_15_56_18_513329.py
d012de9b08ecbc09c2525d1628c5a9a84c203598
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
def monta_dicionario(l1,l2): dicionario = {} for i in range(len(l1)): dicionario[l1[i]]=l2[i] return dicionario
08959099af5bd095a8dc537ede88a16da5dbe231
797e83cd492c22c8b7e456b76ae9efb45e102e30
/chapter1_A_Sneak_Preview/Step2/dump_db_pickle.py
2efbafd3db26064e7f0fb1eacb1af56595a51304
[]
no_license
skyaiolos/ProgrammingPython4th
013e2c831a6e7836826369d55aa9435fe91c2026
a6a98077440f5818fb0bd430a8f9a5d8bf0ce6d7
refs/heads/master
2021-01-23T11:20:38.292728
2017-07-20T03:22:59
2017-07-20T03:22:59
93,130,254
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
import pickle # dbfile = open('people-pickle', 'rb') # use binary mode files in 3.X with open('people-pickle', 'rb') as f: db = pickle.load(f) for key in db: print(key, '=>\n ', db[key]) print(db['sue']['name']) # bob => # {'name': 'Bob Smith', 'age': 42, 'pay': 30000, 'job': 'dev'} # sue => # {'name': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'hdw'} # tom => # {'name': 'Tom', 'age': 50, 'pay': 0, 'job': None} # Sue Jones
00c0734af882609c9d0bb4bb27ff77f501034d52
cdbaec17aa8411a1455b42520154cc9f30da3550
/Leetcode 5/Pacific Atlantic Water Flow 2.py
5ad9ed017d084ffd7100e845cc4497821387d475
[]
no_license
PiyushChaturvedii/My-Leetcode-Solutions-Python-
bad986978a7e72a3fda59b652cda79802377ab2f
86138195f6f343f0acc97da286f4f4811a0d0e48
refs/heads/master
2021-10-09T20:19:11.186191
2019-01-03T05:15:33
2019-01-03T05:15:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,307
py
class Solution(object): def pacificAtlantic(self, matrix): """ :type matrix: List[List[int]] :rtype: List[List[int]] """ m = len(matrix) n = len(matrix[0]) if m else 0 if m * n == 0: return [] topEdge = [(0, y) for y in range(n)] leftEdge = [(x, 0) for x in range(m)] pacific = set(topEdge + leftEdge) bottomEdge = [(m - 1, y) for y in range(n)] rightEdge = [(x, n - 1) for x in range(m)] atlantic = set(bottomEdge + rightEdge) def bfs(vset): dz = zip((1, 0, -1, 0), (0, 1, 0, -1)) queue = list(vset) while queue: hx, hy = queue.pop(0) for dx, dy in dz: nx, ny = hx + dx, hy + dy if 0 <= nx < m and 0 <= ny < n: if matrix[nx][ny] >= matrix[hx][hy]: if (nx, ny) not in vset: queue.append((nx, ny)) vset.add((nx, ny)) bfs(pacific) bfs(atlantic) result = pacific & atlantic return map(list, result) matrix=[[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]] c=Solution().pacificAtlantic(matrix)
1fbe035cdeff7017e360ea5dbf43f22876d2e3a9
af7df9d77a2545b54d8cd03e7f4633dce6125f4a
/ch08/viewer-pil.py
a954ddc59ca3ec169dfbc48de4909a0fb22381eb
[]
no_license
socrates77-sh/PP4E
71e6522ea2e7cfd0c68c1e06ceb4d0716cc0f0bd
c92e69aea50262bfd63e95467ae4baf7cdc2f22f
refs/heads/master
2020-05-29T08:46:47.380002
2018-11-16T10:38:44
2018-11-16T10:38:44
69,466,298
0
0
null
null
null
null
UTF-8
Python
false
false
725
py
""" show one image with PIL photo replacement object handles many more image types; install PIL first: placed in Lib\site-packages """ import os import sys from tkinter import * from PIL.ImageTk import PhotoImage # <== use PIL replacement class # rest of code unchanged imgdir = 'E:\\workspace\\PP4E-Examples-1.2\\Examples\\PP4E\\Gui\\PIL\\images' imgfile = 'florida-2009-1.jpg' # does gif, jpg, png, tiff, etc. if len(sys.argv) > 1: imgfile = sys.argv[1] imgpath = os.path.join(imgdir, imgfile) win = Tk() win.title(imgfile) imgobj = PhotoImage(file=imgpath) # now JPEGs work! Label(win, image=imgobj).pack() win.mainloop() print(imgobj.width(), imgobj.height()) # show size in pixels on exit
4b1f81a7f96f17aceb49489dc87ce9196f26aebb
8f24e443e42315a81028b648e753c50967c51c78
/rllib/models/jax/jax_action_dist.py
864cd065cee6c7efd858dbb23cc9e1fbc01c5e88
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
simon-mo/ray
d07efdada8d05c6e10417f96e8dfc35f9ad33397
1e42e6cd15e2fb96c217cba8484e59ed0ef4b0c8
refs/heads/master
2023-03-06T00:09:35.758834
2022-12-23T18:46:48
2022-12-23T18:46:48
122,156,396
4
2
Apache-2.0
2023-03-04T08:56:56
2018-02-20T04:47:06
Python
UTF-8
Python
false
false
2,423
py
import time from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_jax, try_import_tfp from ray.rllib.utils.typing import TensorType, List jax, flax = try_import_jax() tfp = try_import_tfp() class JAXDistribution(ActionDistribution): """Wrapper class for JAX distributions.""" @override(ActionDistribution) def __init__(self, inputs: List[TensorType], model: ModelV2): super().__init__(inputs, model) # Store the last sample here. self.last_sample = None # Use current time as pseudo-random number generator's seed. self.prng_key = jax.random.PRNGKey(seed=int(time.time())) @override(ActionDistribution) def logp(self, actions: TensorType) -> TensorType: return self.dist.log_prob(actions) @override(ActionDistribution) def entropy(self) -> TensorType: return self.dist.entropy() @override(ActionDistribution) def kl(self, other: ActionDistribution) -> TensorType: return self.dist.kl_divergence(other.dist) @override(ActionDistribution) def sample(self) -> TensorType: # Update the state of our PRNG. _, self.prng_key = jax.random.split(self.prng_key) self.last_sample = jax.random.categorical(self.prng_key, self.inputs) return self.last_sample @override(ActionDistribution) def sampled_action_logp(self) -> TensorType: assert self.last_sample is not None return self.logp(self.last_sample) class JAXCategorical(JAXDistribution): """Wrapper class for a JAX Categorical distribution.""" @override(ActionDistribution) def __init__(self, inputs, model=None, temperature=1.0): if temperature != 1.0: assert temperature > 0.0, "Categorical `temperature` must be > 0.0!" inputs /= temperature super().__init__(inputs, model) self.dist = tfp.experimental.substrates.jax.distributions.Categorical( logits=self.inputs ) @override(ActionDistribution) def deterministic_sample(self): self.last_sample = self.inputs.argmax(axis=1) return self.last_sample @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return action_space.n
1578d7b129691847b352ad44b707bf582bf35fbd
673e829dda9583c8dd2ac8d958ba1dc304bffeaf
/data/multilingual/Latn.TOP/Sun-ExtA_12/pdf_to_json_test_Latn.TOP_Sun-ExtA_12.py
e426ed44c203532496b95fe8493f518f68f56d58
[ "BSD-3-Clause" ]
permissive
antoinecarme/pdf_to_json_tests
58bab9f6ba263531e69f793233ddc4d33b783b7e
d57a024fde862e698d916a1178f285883d7a3b2f
refs/heads/master
2021-01-26T08:41:47.327804
2020-02-27T15:54:48
2020-02-27T15:54:48
243,359,934
2
1
null
null
null
null
UTF-8
Python
false
false
311
py
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.TOP/Sun-ExtA_12/udhr_Latn.TOP_Sun-ExtA_12.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
4745b8d827dfe75a35c8fa2d314cc3b102d77917
8edd8241d25612081ec6ae0b83064c25e372f09a
/backend/test_r1_dev_9459/settings.py
540afcd60e77936a6747c534bc24915f4302c98d
[]
no_license
crowdbotics-apps/test-r1-dev-9459
89e7c07601c3b99b22bb3af69b05adeee5fd7eb1
d68ea32a223823a1f7822ad65b63490e09c13bac
refs/heads/master
2022-12-14T20:55:42.958720
2020-08-27T13:35:57
2020-08-27T13:35:57
290,593,518
0
0
null
null
null
null
UTF-8
Python
false
false
5,836
py
""" Django settings for test_r1_dev_9459 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.sites", ] LOCAL_APPS = [ "home", "users.apps.UsersConfig", ] THIRD_PARTY_APPS = [ "rest_framework", "rest_framework.authtoken", "rest_auth", "rest_auth.registration", "bootstrap4", "allauth", "allauth.account", "allauth.socialaccount", "allauth.socialaccount.providers.google", "django_extensions", "drf_yasg", # start fcm_django push notifications "fcm_django", # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "test_r1_dev_9459.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "test_r1_dev_9459.wsgi.application" # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } if env.str("DATABASE_URL", default=None): DATABASES = {"default": env.db()} # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",}, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = "/static/" MIDDLEWARE += ["whitenoise.middleware.WhiteNoiseMiddleware"] AUTHENTICATION_BACKENDS = ( "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")] STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = "email" ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = {"FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "")} # end fcm_django push notifications # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
9e8c98d739ff55d5f3cdf1c3ed99ca911570979e
7b750c5c9df2fb05e92b16a43767c444404de7ae
/src/leetcode/python3/leetcode5.py
857e394520e476e114ce1ce401e547ae69f40be6
[]
no_license
renaissance-codes/leetcode
a68c0203fe4f006fa250122614079adfe6582d78
de6db120a1e709809d26e3e317c66612e681fb70
refs/heads/master
2022-08-18T15:05:19.622014
2022-08-05T03:34:01
2022-08-05T03:34:01
200,180,049
0
0
null
null
null
null
UTF-8
Python
false
false
1,032
py
#!/usr/bin/env python # -*- coding:utf-8 -*- """ 寻找最长回文字符串 """ # 比较朴素的思路,使用额外空间存储短字符串是否是回文字符串,时间5968ms, 效率不够高 class Solution: def longestPalindrome(self, s: str) -> str: if len(s) < 2: return s s_metric = [[1 if i == j else 0 for j in range(len(s))] for i in range(len(s))] longest_s = s[0] longest_len = 1 while len(s) - longest_len: for i in range(len(s) - longest_len): if longest_len == 1: if s[i] == s[i + longest_len]: s_metric[i][i + longest_len] = 1 longest_s = s[i:i + longest_len + 1] else: if s_metric[i + 1][i + longest_len - 1] and s[i] == s[i + longest_len]: s_metric[i][i + longest_len] = 1 longest_s = s[i:i + longest_len + 1] longest_len += 1 return longest_s
99925636614be0b001f3dc702e26454b535d8fdd
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/nWtgKSNGQ3sB52rQ8_14.py
20a0ee77246aa2d2795342055f6e8c705f8ad112
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
def evenly_divisible(a, b, c): sum = 0 for i in range(a,b+1): if i % c == 0: sum = sum + i return sum
b7b2f98d94eecd10c62d5ce1a1476589118c05b1
c36679186f669c6e3bd1c106c96d4a17be1f5ab1
/Practice_Anisul/290.py
c2e4ee4e68883a91ecbbd0a0b95aa42bad8a765f
[]
no_license
touhiduzzaman-tuhin/python-code-university-life
60a3d671b200a6f5222c6d176c13c5f20f013509
6d2e3d90d430faa5c83fe79e7fb1ebe516994762
refs/heads/master
2023-03-22T15:18:10.636203
2021-03-06T18:52:04
2021-03-06T18:52:04
332,467,190
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
import re p = r"a{1,3}$" if re.match(p, "aaa"): print("Match") else: print("Not Match")
5f518d5a2d3485884b423ab1d9f6a7b2e6acd87b
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03200/s568843924.py
40d7ef36da7f147dcae37fe4fd5f54e43d59e969
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
261
py
s = list(input()) len_s = len(s) len_b = s.count('B') b_index_list = [] for i in range(len_s): if s[i] == 'B': b_index_list.append(i) b_index_list.reverse() l0 = len_s - 1 cnt = 0 for b in b_index_list: cnt += l0 - b l0 -= 1 print(cnt)
7dd7415ee5474dea20b15224b3b981dc2bb0b6cc
33f32d78087491e989289c46e5d2df5400e23946
/leetcode/Unsorted_Algorthm_Problems/Split_a_String_in_Balanced_Strings.py
f69cac1b2923e15b2c29e2164c5e53af3d96043f
[]
no_license
xulleon/algorithm
1b421989423640a44339e6edb21c054b6eb47a30
b1f93854006a9b1e1afa4aadf80006551d492f8a
refs/heads/master
2022-10-08T19:54:18.123628
2022-09-29T05:05:23
2022-09-29T05:05:23
146,042,161
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
# https://leetcode.com/problems/split-a-string-in-balanced-strings/ class Solution: def balancedStringSplit(self, s: str) -> int: # variable labled assume start with R. RLLLLRRRLR count, l, r, = 0, 0, 0 for char in s: if char == 'R': r += 1 else: l += 1 if r == l: count += 1 return count
e17020abef3c21e15e8849965d0e461d1633248a
ffcd795f30483a19d2717f08b1aaf59a7fd4fd7e
/Math Quiz.py
6f82a81c20f6e0ab747e6c4a7bd8755010a2179d
[]
no_license
Botany-Downs-Secondary-College/mathsquiz-simonbargh
5791b4810790128878e7cd28678c3d4af3beb07d
d5aba85e9d522248827301130976fe5d5a45e11a
refs/heads/main
2023-03-13T18:05:25.291569
2021-02-22T21:28:58
2021-02-22T21:28:58
337,539,960
0
0
null
null
null
null
UTF-8
Python
false
false
4,402
py
from tkinter import * from tkinter import ttk import random import time class Welcome: def __init__(self, parent): def Questions(): # Checking whether the user's entry details meet the requirements '''def show_questions(): try: if self.NameEntry.get() == "": self.EntryErrorLabel.configure(text = "Enter your name.") self.NameEntry.focus() except ValueError: self.EntryErrorLabel.configure(text = "Enter your age as a number.") self.AgeEntry.delete(0, END) self.AgeEntry.focus()''' if len(self.NameEntry.get()) >= 1: if len(self.AgeEntry.get()) >= 1: # and self.AgeEntry.get() is not int: if clicked.get() == "Easy" or clicked.get() == "Medium" or clicked.get() == "Hard": frames = Quiz(root) self.Welcome.grid_forget() else: self.EntryErrorLabel.configure(text = "Choose a difficulty level.") else: self.EntryErrorLabel.configure(text = "Enter your age.") else: self.EntryErrorLabel.configure(text = "Enter your name.") # Welcome Frame self.Welcome = Frame(parent) self.Welcome.grid(row = 0, column = 0) self.TitleLabel = Label(self.Welcome, text = "Welcome to Maths Quiz!", bg = "lightblue", fg = "blue", width = 24, padx = 30, pady = 10, font = ("Time", "12", "italic", "bold")) self.TitleLabel.grid(columnspan = 2) self.NextButton = ttk.Button(self.Welcome, text = "Next", command = Questions) self.NextButton.grid(row = 5, column = 1, pady = 10) # Name Label self.NameLabel = Label(self.Welcome, text = "Name", anchor = W, fg = "black", width = 10, padx = 30, pady = 10, font = ("Time", "12", "bold")) self.NameLabel.grid(row = 2, column = 0) # Age Label self.AgeLabel = Label(self.Welcome, text = "Age", anchor = W, fg = "black", width = 10, padx = 30, pady = 10, font = ("Time", "12", "bold")) self.AgeLabel.grid(row = 3, column = 0) # Name Entry self.NameEntry = ttk.Entry(self.Welcome, width = 20) self.NameEntry.grid(row = 2, column = 1, columnspan = 2) # Age Entry self.AgeEntry = ttk.Entry(self.Welcome, width = 20) self.AgeEntry.grid(row = 3, column = 1, columnspan = 2) # Difficulty Level self.DifficultyLabel = Label(self.Welcome, text = "Difficulty Level", anchor = W, fg = "black", width = 10, padx = 30, pady = 10, font = ("Time", "12", "bold")) self.DifficultyLabel.grid(row = 4, column = 0) # Difficulty Options options = ["Easy", "Medium", "Hard"] clicked = StringVar() clicked.set("Select an Option") diff_level = OptionMenu(self.Welcome, clicked, *options) diff_level.grid(row = 4, column = 1) # Warning Error Label self.EntryErrorLabel = Label(self.Welcome, text = "", fg = "red", width = 10, padx = 50, pady = 10) self.EntryErrorLabel.grid(row = 6, column = 0, columnspan = 2) class Quiz: def __init__(self, parent): def Welcome_Page(): frames = Welcome(root) self.Quiz.grid_forget() # Quiz Frame self.Quiz = Frame(parent) self.Quiz.grid(row = 0, column = 0) self.TitleLabel = Label(self.Quiz, text = "Questions", bg = "lightblue", fg = "black", width = 20, padx = 30, pady = 10) self.TitleLabel.grid(columnspan = 2) self.BackButton = ttk.Button(self.Quiz, text = "Back", command = Welcome_Page) self.BackButton.grid(row = 8, column = 1, pady = 10) if __name__ == "__main__": root = Tk() frames = Welcome(root) root.title("Quiz") root.mainloop()
f81c28130549573707b4356a568985697bca6482
98df3e98230d74d036cb86b6a7fa7c1b83444f67
/vertical_cell_decomposition.py
697678b64e95a091e3ae3b7bc5d5cd21cb10961a
[]
no_license
lilyhoanghg/path-planning
c4e63182a108a817ef88ca257e62eb1431b1f464
191634124cde8f2f44db9bcbd0b73257562255dc
refs/heads/master
2021-08-18T21:53:28.421037
2017-11-24T01:53:54
2017-11-24T01:53:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,833
py
# Find a path avoiding obstacles using Vertical Cell Decomposition # Author -- Shikhar Dev Gupta import sys from helpers.graph import * from helpers.geometry import *; import matplotlib.pyplot as plt # Check for empty lines file_handler = open("input_file","r"); raw_data = file_handler.read(); raw_data = raw_data.split("\n"); if(len(raw_data) <2): print("Incorrect format of the input file"); exit; def parse_input_line(line): temp2 = []; line = [i.strip() for i in line.split(",")]; vertex = []; for index,i in enumerate(line): if(i[0] == "("): i = i[1:]; if(i[len(i)-1] == ")"): i= i[:-1]; vertex.append(int(i)); if(index%2 != 0): temp2.append(vertex); vertex = []; return temp2; # Draw the obstacles and point the source and the destination---------------------------------------------- def draw_problem(): bnd_x = [i.x for i in boundary]; bnd_x.append(boundary[0].x); bnd_y = [i.y for i in boundary]; bnd_y.append(boundary[0].y); poly_x = []; poly_y = [] # Draw the boundary plt.plot(bnd_x, bnd_y); for index, i in enumerate(obstacles): poly_x.append([p[0] for p in i]); poly_y.append([p[1] for p in i]); plt.fill( poly_x[index], poly_y[index], color="#512DA8"); plt.plot(source.x, source.y, marker="o"); plt.plot(dest.x, dest.y, marker="o"); plt.annotate('Source', xy=(source.x, source.y), xytext=(source.x+5, source.y-6) ); plt.annotate('Destination', xy=(dest.x, dest.y), xytext=(dest.x-4, dest.y-10) ); # Extract vertices---------------------------------------------- temp = parse_input_line(raw_data[0]); boundary = [point(i[0], i[1]) for i in temp]; # Extract source and dest temp = parse_input_line(raw_data[len(raw_data)-1]); source = point(temp[0][0], temp[0][1]); dest = point(temp[1][0], temp[1][1]); # Extract obstacles obstacles = []; for i in raw_data[1:len(raw_data)-1]: obstacles.append(parse_input_line(i) ); #sort by x-values sorted_vertices = []; for index,i in enumerate(obstacles): for j in i: j.append(index); sorted_vertices.append(j); sorted_vertices.sort(key=lambda x: x[0]); # Draw the problem draw_problem(); new_sorted_vertices = []; for i in sorted_vertices: temp = point(i[0], i[1], i[2]); new_sorted_vertices.append(temp); new_obstacles = []; for index, i in enumerate(obstacles): temp_obs = []; for j in i: temp = point(j[0], j[1], index); temp_obs.append(temp); new_obstacles.append(temp_obs); #----------------------------------------------------------- # Find vertical lines open_line_segments = []; y_limit_lower = boundary[0].y; y_limit_upper = boundary[2].y; for pt in new_sorted_vertices: curr_line_segment = [ point(pt.x, y_limit_lower), point(pt.x, y_limit_upper) ]; lower_obs_pt = curr_line_segment[0]; upper_obs_pt = curr_line_segment[1]; upper_gone = False; lower_gone = False; break_now = False; # Find intersection points with the vertical proposed lines. the intersection function returns false if segments are same, so no need to worry about same segment checking for index,obs in enumerate(new_obstacles): # Add the first point again for the last line segment of a polygon. obs.append( obs[0] ); for vertex_index in range(len(obs)-1 ): res = segment_intersection( curr_line_segment[0], curr_line_segment[1], obs[vertex_index], obs[vertex_index+1]); if (res!=-1): if ( index == pt.obstacle ): if pt.equals( res ) == False: if ( res.y > pt.y ): upper_gone = True; elif ( res.y < pt.y ): lower_gone = True; else: if pt.equals( res ) == False: if ( upper_gone is False ): if ( (res.y > pt.y) and res.y < (upper_obs_pt.y) ): upper_obs_pt = res; if ( lower_gone is False ): if ( (res.y < pt.y) and (res.y > lower_obs_pt.y) ): lower_obs_pt = res; if( upper_gone is True and lower_gone is True ): break_now = True; #No need to check for current point anymore...completely blocked if(break_now is True): break; # Draw the vertical cell lines if(lower_gone is False): plt.plot( [lower_obs_pt.x, pt.x], [lower_obs_pt.y, pt.y] ); if(upper_gone is False): plt.plot( [pt.x, upper_obs_pt.x], [pt.y, upper_obs_pt.y] ); # Add to the global segment list if (lower_gone and upper_gone): open_line_segments.append([None, None]); elif (lower_gone): open_line_segments.append([None, upper_obs_pt]); elif (upper_gone): open_line_segments.append([lower_obs_pt, None]); else: open_line_segments.append([lower_obs_pt, upper_obs_pt]); #------------------------------------------------------ # Find Polygon cells naiively. Will improve next. cells = []; for index1 in range(len(open_line_segments) ): curr_segment = open_line_segments[index1]; curr_vertex = new_sorted_vertices[index1]; break_now = False; done = [False, False, True]; if( curr_segment[0] is None ): done[0] = True; if( curr_segment[1] is None ): done[1] = True; if( curr_segment[1] is None and open_line_segments[index1][0] is None): done[2] = False; for index2 in range(index1+1, len(open_line_segments) ): next_segment = open_line_segments[index2]; next_vertex = new_sorted_vertices[index2]; double_index1 = -2; double_index2 = -2; lines_to_check = []; trapezoids = []; double_check = False; if ( next_segment[0] is not None and next_segment[1] is not None ): double_check = True; if( done[0] is False ): if( double_check ): double_index1 = len(lines_to_check); lines_to_check.append( [centroid([curr_segment[0], curr_vertex]), centroid([next_segment[0], next_vertex]), 0]); lines_to_check.append( [centroid([curr_segment[0], curr_vertex]), centroid([next_segment[1], next_vertex]), 0]); trapezoids.append([ curr_segment[0], next_segment[0], next_vertex, curr_vertex ]); trapezoids.append([ curr_segment[0], next_vertex, next_segment[1], curr_vertex ]); elif ( next_segment[0] is not None ): lines_to_check.append( [centroid([curr_segment[0], curr_vertex]), centroid([next_segment[0], next_vertex]), 0]); trapezoids.append([ curr_segment[0], next_segment[0], next_vertex, curr_vertex ]); elif( next_segment[1] is not None ): lines_to_check.append( [centroid([curr_segment[0], curr_vertex]), centroid([next_segment[1], next_vertex]), 0]); trapezoids.append([ curr_segment[0], next_vertex, next_segment[1], curr_vertex ]); else: lines_to_check.append( [centroid([curr_segment[0], curr_vertex]), next_vertex, 0]); trapezoids.append([ curr_segment[0], next_vertex, curr_vertex ]); if( done[1] is False ): if( double_check ): double_index2 = len(lines_to_check); lines_to_check.append( [centroid([curr_segment[1], curr_vertex]), centroid([next_segment[0], next_vertex]), 1]); lines_to_check.append( [centroid([curr_segment[1], curr_vertex]), centroid([next_segment[1], next_vertex]), 1]); trapezoids.append([ curr_vertex, next_segment[0], next_vertex , point(curr_segment[1].x, curr_segment[1].y,curr_segment[1].obstacle, 34)]); trapezoids.append([ curr_vertex, next_vertex, next_segment[1], curr_segment[1] ]); elif ( next_segment[1] is not None ): lines_to_check.append( [centroid([curr_segment[1], curr_vertex]), centroid([next_segment[1], next_vertex]), 1]); trapezoids.append([ curr_vertex, next_vertex, next_segment[1], curr_segment[1] ]); elif( next_segment[0] is not None ): lines_to_check.append( [centroid([curr_segment[1], curr_vertex]), centroid([next_segment[0], next_vertex]), 1]); trapezoids.append([ curr_vertex, next_segment[0], next_vertex , curr_segment[1] ]); else: lines_to_check.append( [centroid([curr_segment[1], curr_vertex]), next_vertex, 1]); trapezoids.append([ curr_vertex, next_vertex, curr_segment[1] ]); if( done[2] is False ): if(double_check): double_index = len(lines_to_check); lines_to_check.append( [curr_vertex, centroid([next_segment[0], next_vertex]), 2]); trapezoids.append([ curr_vertex,next_segment[0], next_vertex ]); lines_to_check.append( [curr_vertex, centroid([next_segment[1], next_vertex]), 2]); trapezoids.append([ curr_vertex, next_vertex, next_segment[1] ]); elif ( next_segment[0] is not None ): lines_to_check.append( [curr_vertex, centroid([next_segment[0], next_vertex]), 2]); trapezoids.append([ curr_vertex,next_segment[0], next_vertex ]); elif( next_segment[1] is not None ): lines_to_check.append( [curr_vertex, centroid([next_segment[1], next_vertex]), 2]); trapezoids.append([ curr_vertex, next_vertex, next_segment[1] ]); # Will this ever occur though?? else: lines_to_check.append( [curr_vertex, next_vertex, 2]); trapezoids.append([curr_vertex, next_vertex]); temp_to_remove = []; for index5,q in enumerate(lines_to_check): ok = [True, True, True]; for index3,obs in enumerate(new_obstacles): # Add the last line to make closed polygon obs.append( obs[0] ); for index4 in range(len(obs)-1): if (segment_intersection( q[0], q[1], obs[index4], obs[index4+1]) != -1): ok[q[2]] = False; if(index5 not in temp_to_remove): temp_to_remove.append(index5); if ( ok[q[2]] is True ): done[q[2]] = True; for i in range(len(lines_to_check)): if i not in temp_to_remove: cells.append(trapezoids[i]); if( done[0] == True and done[1] == True and done[2] == True ): break; to_draw =[]; for i in cells: i.append(i[0]); to_draw.append(i); #------------------------------------------------------- # Merge overlapping Polygons quad_cells = [i for i in cells if len(i)>3]; tri_cells = [i for i in cells if len(i)==3]; others = [i for i in cells if len(i)<3]; quads_to_remove = []; quads_to_add = []; quads_to_remove = []; quads_to_add = []; for index_cell in range(len(quad_cells)): for index_cell2,cell in enumerate(quad_cells): if(index_cell != index_cell2): if(quad_cells[index_cell][0].x == cell[0].x and quad_cells[index_cell][1].x == cell[1].x): temp1 = list(quad_cells[index_cell]); temp1.append(temp1[0]); temp2 = list(cell); temp2.append(temp2[0]); area1 = polygon_area(temp1,4); area2 = polygon_area(temp2,4); new_quad=[]; new_quad.append( point(temp1[0].x, min(temp1[0].y, temp2[0].y)) ); new_quad.append( point(temp1[1].x, min(temp1[1].y, temp2[1].y)) ); new_quad.append( point(temp1[1].x, max(temp1[2].y, temp2[2].y)) ); new_quad.append( point(temp1[0].x, max(temp1[3].y, temp2[3].y)) ); new_quad.append( point(temp1[0].x, min(temp1[0].y, temp2[0].y)) ); area3 = polygon_area(new_quad, 4); if( area1 + area2 >= area3): #merge quads_to_remove.append(index_cell); quads_to_remove.append(index_cell2); quads_to_add.append(new_quad); quads_to_remove = list(set(quads_to_remove)); for index in sorted(quads_to_remove, reverse=True): del quad_cells[index]; for i in quads_to_add: quad_cells.append(i); # Remove duplicates to_remove = []; for index1 in range(len(quad_cells)): for index2 in range(index1+1, len(quad_cells)): duplicate = True; for k,m in zip(quad_cells[index1], quad_cells[index2]): if k.equals(m) is False: duplicate = False; break; if(duplicate is True): if index2 not in to_remove: to_remove.append(index2); for index in sorted(to_remove, reverse=True): del quad_cells[index]; # One more pass to remove extra quads generated because of cross - segments quads_to_remove = []; for index1 in range(len(quad_cells)): for index2 in range(len(quad_cells)): if(index1 != index2 and quad_cells[index1][0].x == quad_cells[index2][0].x and quad_cells[index1][1].x == quad_cells[index2][1].x): if( (quad_cells[index1][0].y<= quad_cells[index2][0].y) and (quad_cells[index1][1].y<= quad_cells[index2][1].y) and (quad_cells[index1][2].y>= quad_cells[index2][2].y) and (quad_cells[index1][3].y >= quad_cells[index2][3].y)): quads_to_remove.append(index2); quads_to_remove = list(set(quads_to_remove) ); for index in sorted(quads_to_remove, reverse=True): del quad_cells[index]; #------------------------------------------------------ # Add boundary lines if( boundary[0].x != new_sorted_vertices[0].x): quad_cells.append([boundary[0], point(new_sorted_vertices[0].x, y_limit_lower), point(new_sorted_vertices[0].x, y_limit_upper), boundary[3]]); if( boundary[1].x != new_sorted_vertices[len(new_sorted_vertices)-1].x): quad_cells.append([point(new_sorted_vertices[len(new_sorted_vertices)-1].x ,y_limit_lower), boundary[1], boundary[2], point(new_sorted_vertices[len(new_sorted_vertices)-1].x, y_limit_upper) ]); #------------------------------------------------------- # Plot final cells to_draw = quad_cells+tri_cells+others; for i in to_draw: x = [j.x for j in i]; y = [j.y for j in i]; plt.plot(x, y); #---------------------------------------------------------------------- # Get the graph graph_vertices = []; graph_edges = []; for index1 in range(len(quad_cells)): same_boundary = []; for index2 in range(len(quad_cells)): if(index1 != index2): if( (quad_cells[index1][1].x == quad_cells[index2][0].x ) and ((quad_cells[index1][2].y in [quad_cells[index2][0].y, quad_cells[index2][3].y]) or (quad_cells[index1][1].y in [quad_cells[index2][0].y, quad_cells[index2][3].y]) ) ): same_boundary.append(index2); temp = quad_cells[index1][0:4]; centroid_vertex = centroid(temp); place = centroid_vertex.find_point(graph_vertices) if( place == -1): graph_vertices.append(centroid_vertex); if(len(same_boundary)==1): temp_edge_middle = centroid([quad_cells[index1][1], quad_cells[index1][2]]); graph_vertices.append(temp_edge_middle); n = len(graph_vertices)-1; if(place != -1): graph_edges.append([place, n]); else: graph_edges.append([n-1, n]); temp = quad_cells[same_boundary[0]][0:4]; curr_centroid_vertex = centroid(temp); place2 = curr_centroid_vertex.find_point(graph_vertices); if( place2 == -1 ): graph_vertices.append(curr_centroid_vertex); graph_edges.append([n, n+1]); else: graph_edges.append([n, place2]); elif(len(same_boundary)>1): n = len(graph_vertices)-1; if(place != -1): use = place; else: use = n; for index, i in enumerate(same_boundary): temp = quad_cells[i][0:4]; curr_centroid_vertex = centroid(temp); temp_edge_middle = centroid([quad_cells[i][0], quad_cells[i][3]]); graph_vertices.append(temp_edge_middle); pl1 =len(graph_vertices)-1; hmmm= curr_centroid_vertex.find_point(graph_vertices); if (hmmm == -1): graph_vertices.append(curr_centroid_vertex); pl2 =len(graph_vertices)-1; else: pl2 = hmmm; graph_edges.append([use, pl1]); graph_edges.append([pl1, pl2]); # Add source and dest to graph # Find the smallest distance vertex on graph and see if its clear to traverse # Source------------------------------ min_ind = -1; min = 9999999; for index, i in enumerate(graph_vertices): if( check_obstruction(new_obstacles, [source, i]) is True ): dist = find_dist(i, source); if( dist < min): min = dist; min_ind = index; graph_vertices.append(source); m = len(graph_vertices)-1; graph_edges.append([min_ind, m]); # Destination------------------------------------ min_ind = -1; min = 9999999; for index, i in enumerate(graph_vertices): if( check_obstruction(new_obstacles, [dest, i]) is True ): dist = find_dist(i, dest); if( dist < min): min = dist; min_ind = index; graph_vertices.append(dest); m = len(graph_vertices)-1; graph_edges.append([min_ind, m]); # Convert graph in adjacency list format graph = []; for j in range(len(graph_vertices)): graph.append([]); for i in graph_edges: if(i[0]==j): graph[j].append(i[1]); elif(i[1]==j): graph[j].append(i[0]); path = bfs(graph, len(graph_vertices)-2, len(graph_vertices)-1); if(path is None): print "No path found. Sorry"; sys.exit(); else: print "Path found." ; # Draw everything-------------- for index,i in enumerate(graph_vertices): plt.annotate(str(index), xy=(i.x, i.y), xytext=(i.x+2, i.y-2) ); # plt.plot(i.x,i.y, marker="x"); for i in graph_edges: temp_x = [graph_vertices[i[0]].x, graph_vertices[i[1]].x]; temp_y = [graph_vertices[i[0]].y, graph_vertices[i[1]].y]; plt.plot(temp_x,temp_y); # draw path temp_x = [graph_vertices[i].x for i in path]; temp_y = [graph_vertices[i].y for i in path]; plt.plot(temp_x,temp_y, color="#0F0F0F", linewidth=2); #---------------------------------------------------- # output into a file file_output = open("vertical_cell_output", "w" ); str_to_write = ""; for index in range(len(graph_vertices)): str_to_write = str_to_write + ", "+str(index)+":"+"("+ str(int(graph_vertices[index].x) )+ ", "+ str(int(graph_vertices[index].y) ) + ")"; str_to_write = str_to_write[1:]; total_write = str_to_write+"\n"; str_to_write=""; for i in graph: if (i == []): continue; str_to_write = str_to_write + ",("; for j in i: str_to_write = str_to_write + str(j) + ","; str_to_write = str_to_write[:-1]; str_to_write = str_to_write + ")"; str_to_write = str_to_write[1:]; total_write = total_write+ str_to_write + "\n"; str_to_write = ""; str_to_write =','.join(str(x) for x in path); total_write = total_write + str_to_write; file_output.write(total_write); print "Output written to file.. Drawing the result"; plt.show();
[ "=" ]
=
8221804a8b71f27558952a6fff2ea180d901387e
0e1a0329e1b96405d3ba8426fd4f935aa4d8b04b
/scraper/merge.py
15c94f3e038d5c181e3f5898d9c5efcb34e92473
[]
no_license
ugik/Blitz
6e3623a4a03309e33dcc0b312800e8cadc26d28c
740f65ecaab86567df31d6a0055867be193afc3d
refs/heads/master
2021-05-03T20:15:20.516014
2015-03-11T12:33:34
2015-03-11T12:33:34
25,015,963
0
0
null
null
null
null
UTF-8
Python
false
false
2,418
py
import xlrd, xlwt import glob, os.path def merge_xls (in_dir="./", out_file="merged_output.xls"): xls_files = glob.glob(in_dir + "*.xls") sheet_names = [os.path.basename(v)[:-4] for v in xls_files] sheet_excl = [os.path.basename(v)[:-4] for v in xls_files if len(os.path.basename(v)[:-4]) > 29] merged_book = xlwt.Workbook() if in_dir[-1:] != "/": in_dir = in_dir + "/" xls_files.sort() if xls_files: for k, xls_file in enumerate(xls_files): print "---> Processing file %s" % (xls_file) if len (sheet_names[k]) <= 29: book = xlrd.open_workbook(xls_file) if book.nsheets == 1: ws = merged_book.add_sheet(sheet_names[k]) sheet = book.sheet_by_index(0) for rx in range(sheet.nrows): for cx in range(sheet.ncols): ws.write(rx, cx, sheet.cell_value(rx, cx)) elif book.nsheets in range(2, 100): for sheetx in range(book.nsheets): sheet0n = sheet_names[k]+str(sheetx+1).zfill(2) ws = merged_book.add_sheet(sheet0n) sheet = book.sheet_by_index(sheetx) for rx in range(sheet.nrows): for cx in range(sheet.ncols): ws.write(rx, cx, sheet.cell_value(rx, cx)) else: print "ERROR *** File %s has %s sheets (maximum is 99)" % (xls_file, book.nsheets) raise else: print "WARNING *** File name too long: <%s.xls> (maximum is 29 chars) " % (sheet_names[k]) print "WARNING *** File <%s.xls> was skipped." % (sheet_names[k]) merged_book.save(out_file) print print "---> Merged xls file written to %s using the following source files: " % (out_file) for k, v in enumerate(sheet_names): if len(v) <= 29: print "\t", str(k+1).zfill(3), "%s.xls" % (v) print if sheet_excl: print "--> The following files were skipped because the file name exceeds 29 characters: " for k, v in enumerate(sheet_excl): print "\t", str(k+1).zfill(3), v else: print "NOTE *** No xls files in %s. Nothing to do." % (in_dir)
65c4b8431162da40aeb8bb0e06f47b86611eb1cd
4855b0f5ccab56ca0bd6bd47c1b4147403263c5d
/musicautobot/multitask_transformer/learner.py
c17347153ad3f95764d05e6ae6dff7aca1e0eca3
[]
no_license
David-D-Chen/musicautobot
6c88ff6d52ea7b0d777b71a59dff88fc8a21bfa7
fd8145a20a070ec3aa20f8cc74fc38c0b6896a53
refs/heads/master
2020-07-13T01:58:50.092878
2019-08-28T17:29:59
2019-08-28T17:29:59
204,963,031
0
0
null
2019-08-28T16:22:11
2019-08-28T15:22:11
null
UTF-8
Python
false
false
13,689
py
from fastai.basics import * from ..vocab import * from ..utils.top_k_top_p import top_k_top_p from ..utils.midifile import is_empty_midi from ..music_transformer.transform import * from ..music_transformer.learner import filter_invalid_indexes from .model import get_multitask_model from .dataloader import * def multitask_model_learner(data:DataBunch, config:dict=None, drop_mult:float=1., pretrained_path:PathOrStr=None, **learn_kwargs) -> 'LanguageLearner': "Create a `Learner` with a language model from `data` and `arch`." vocab = data.vocab vocab_size = len(vocab) model = get_multitask_model(vocab_size, config=config, drop_mult=drop_mult, pad_idx=vocab.pad_idx) metrics = [AverageMultiMetric(partial(m, pad_idx=vocab.pad_idx)) for m in [mask_acc, lm_acc, c2m_acc, m2c_acc]] loss_func = MultiLoss(ignore_index=data.vocab.pad_idx) learn = MultitaskLearner(data, model, loss_func=loss_func, metrics=metrics, **learn_kwargs) if pretrained_path: state = torch.load(pretrained_path, map_location='cpu') get_model(model).load_state_dict(state['model'], strict=False) return learn class MultitaskLearner(Learner): def predict_nw(self, item:MusicItem, n_words:int=128, temperatures:float=(1.0,1.0), min_bars=4, top_k=30, top_p=0.6): "Return the `n_words` that come after `text`." self.model.reset() new_idx = [] vocab = self.data.vocab x, pos = item.to_tensor(), item.get_pos_tensor() last_pos = pos[-1] if len(pos) else 0 y = torch.tensor([0]) start_pos = last_pos sep_count = 0 bar_len = SAMPLE_FREQ * 4 # assuming 4/4 time vocab = self.data.vocab repeat_count = 0 for i in progress_bar(range(n_words), leave=True): batch = { 'lm': { 'x': x[None], 'pos': pos[None] } }, y logits = self.pred_batch(batch=batch)['lm'][-1][-1] prev_idx = new_idx[-1] if len(new_idx) else vocab.pad_idx # Temperature # Use first temperatures value if last prediction was duration temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1] repeat_penalty = max(0, np.log(repeat_count/4)/5) * temperature temperature += repeat_penalty if temperature != 1.: logits = logits / temperature # Filter # bar = 16 beats filter_value = -float('Inf') if ((last_pos - start_pos) // 16) <= min_bars: logits[vocab.bos_idx] = filter_value logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value) logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value) # Sample probs = F.softmax(logits, dim=-1) idx = torch.multinomial(probs, 1).item() # Update repeat count num_choices = len(probs.nonzero().view(-1)) if num_choices <= 2: repeat_count += 1 else: repeat_count = 0 if prev_idx==vocab.sep_idx: duration = idx - vocab.dur_range[0] last_pos = last_pos + duration bars_pred = (last_pos - start_pos) // 16 abs_bar = last_pos // 16 # if (bars % 8 == 0) and (bars_pred > min_bars): break if (i / n_words > 0.80) and (abs_bar % 4 == 0): break if idx==vocab.bos_idx: print('Predicted BOS token. Returning prediction...') break new_idx.append(idx) x = x.new_tensor([idx]) pos = pos.new_tensor([last_pos]) pred = vocab.to_music_item(np.array(new_idx)) full = item.append(pred) return pred, full def predict_mask(self, masked_item:MusicItem, temperatures:float=(1.0,1.0), top_k=20, top_p=0.8): x = masked_item.to_tensor() pos = masked_item.get_pos_tensor() y = torch.tensor([0]) vocab = self.data.vocab self.model.reset() mask_idxs = (x == vocab.mask_idx).nonzero().view(-1) repeat_count = 0 for midx in progress_bar(mask_idxs, leave=True): prev_idx = x[midx-1] # Using original positions, otherwise model gets too off track # pos = torch.tensor(-position_enc(xb[0].cpu().numpy()), device=xb.device)[None] # Next Word logits = self.pred_batch(batch=({ 'msk': { 'x': x[None], 'pos': pos[None] } }, y) )['msk'][0][midx] # Temperature # Use first temperatures value if last prediction was duration temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1] repeat_penalty = max(0, np.log(repeat_count/4)/5) * temperature temperature += repeat_penalty if temperature != 1.: logits = logits / temperature # Filter filter_value = -float('Inf') special_idxs = [vocab.bos_idx, vocab.sep_idx, vocab.stoi[EOS]] logits[special_idxs] = filter_value # Don't allow any special tokens (as we are only removing notes and durations) logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value) logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value) # Sampling probs = F.softmax(logits, dim=-1) idx = torch.multinomial(probs, 1).item() # Update repeat count num_choices = len(probs.nonzero().view(-1)) if num_choices <= 2: repeat_count += 1 else: repeat_count = 0 x[midx] = idx return vocab.to_music_item(x.cpu().numpy()) def predict_s2s(self, input_item:MusicItem, target_item:MusicItem, n_words:int=256, temperatures:float=(1.0,1.0), top_k=30, top_p=0.8, use_memory=True): vocab = self.data.vocab # Input doesn't change. We can reuse the encoder output on each prediction with torch.no_grad(): inp, inp_pos = input_item.to_tensor(), input_item.get_pos_tensor() x_enc = self.model.encoder(inp[None], inp_pos[None]) # target targ = target_item.data.tolist() targ_pos = target_item.position.tolist() last_pos = targ_pos[-1] self.model.reset() repeat_count = 0 max_pos = input_item.position[-1] + SAMPLE_FREQ * 4 # Only predict until both tracks/parts have the same length x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos) for i in progress_bar(range(n_words), leave=True): # Predict with torch.no_grad(): dec = self.model.decoder(x[None], pos[None], x_enc) logits = self.model.head(dec)[-1, -1] # Temperature # Use first temperatures value if last prediction was duration prev_idx = targ[-1] if len(targ) else vocab.pad_idx temperature = temperatures[0] if vocab.is_duration_or_pad(prev_idx) else temperatures[1] repeat_penalty = max(0, np.log(repeat_count/4)/5) * temperature temperature += repeat_penalty if temperature != 1.: logits = logits / temperature # Filter filter_value = -float('Inf') logits = filter_invalid_indexes(logits, prev_idx, vocab, filter_value=filter_value) logits = top_k_top_p(logits, top_k=top_k, top_p=top_p, filter_value=filter_value) # Sample probs = F.softmax(logits, dim=-1) idx = torch.multinomial(probs, 1).item() # Update repeat count num_choices = len(probs.nonzero().view(-1)) if num_choices <= 2: repeat_count += 1 else: repeat_count = 0 if idx == vocab.bos_idx | idx == vocab.stoi[EOS]: print('Predicting BOS/EOS') break if prev_idx == vocab.sep_idx: duration = idx - vocab.dur_range[0] last_pos = last_pos + duration if last_pos > max_pos: print('Predicted past counter-part length. Returning early') break targ_pos.append(last_pos) targ.append(idx) if use_memory: # Relying on memory for kv. Only need last prediction index x, pos = inp.new_tensor([targ[-1]]), inp_pos.new_tensor([targ_pos[-1]]) else: # Reset memory after each prediction, since we feeding the whole sequence every time self.model.reset() x, pos = inp.new_tensor(targ), inp_pos.new_tensor(targ_pos) return vocab.to_music_item(np.array(targ)) # High level prediction functions from midi file def nw_predict_from_midi(learn, midi=None, n_words=400, temperatures=(1.0,1.0), top_k=30, top_p=0.6, seed_len=None, **kwargs): vocab = learn.data.vocab seed = MusicItem.from_file(midi, vocab) if not is_empty_midi(midi) else MusicItem.empty(vocab) if seed_len is not None: seed = seed.trim_to_beat(seed_len) pred, full = learn.predict_nw(seed, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs) return full def s2s_predict_from_midi(learn, midi=None, n_words=200, temperatures=(1.0,1.0), top_k=24, top_p=0.7, seed_len=None, pred_melody=True, **kwargs): multitrack_item = MultitrackItem.from_file(midi, learn.data.vocab) melody, chords = multitrack_item.melody, multitrack_item.chords inp, targ = (chords, melody) if pred_melody else (melody, chords) # if seed_len is passed, cutoff sequence so we can predict the rest if seed_len is not None: targ = targ.trim_to_beat(seed_len) pred = learn.predict_s2s(inp, targ, n_words=n_words, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs) part_order = (pred, inp) if pred_melody else (inp, pred) return MultitrackItem(*part_order) def mask_predict_from_midi(learn, midi=None, predict_notes=True, temperatures=(1.0,1.0), top_k=30, top_p=0.7, section=None, **kwargs): item = MusicItem.from_file(midi, learn.data.vocab) masked_item = item.mask_pitch(section) if predict_notes else item.mask_duration(section) pred = learn.predict_mask(masked_item, temperatures=temperatures, top_k=top_k, top_p=top_p, **kwargs) return pred # LOSS AND METRICS class MultiLoss(): def __init__(self, ignore_index=None): "Loss mult - Mask, NextWord, Seq2Seq" self.loss = CrossEntropyFlat(ignore_index=ignore_index) def __call__(self, inputs:Dict[str,Tensor], targets:Dict[str,Tensor])->Rank0Tensor: losses = [self.loss(inputs[key], target) for key,target in targets.items()] return sum(losses) def acc_ignore_pad(input:Tensor, targ:Tensor, pad_idx)->Rank0Tensor: if input is None or targ is None: return None n = targ.shape[0] input = input.argmax(dim=-1).view(n,-1) targ = targ.view(n,-1) mask = targ != pad_idx return (input[mask]==targ[mask]).float().mean() def acc_index(inputs, targets, key, pad_idx): return acc_ignore_pad(inputs.get(key), targets.get(key), pad_idx) def mask_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'msk', pad_idx) def lm_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'lm', pad_idx) def c2m_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'c2m', pad_idx) def m2c_acc(inputs, targets, pad_idx): return acc_index(inputs, targets, 'm2c', pad_idx) class AverageMultiMetric(AverageMetric): "Updated fastai.AverageMetric to support multi task metrics." def on_batch_end(self, last_output, last_target, **kwargs): "Update metric computation with `last_output` and `last_target`." if not is_listy(last_target): last_target=[last_target] val = self.func(last_output, *last_target) if val is None: return self.count += first_el(last_target).size(0) if self.world: val = val.clone() dist.all_reduce(val, op=dist.ReduceOp.SUM) val /= self.world self.val += first_el(last_target).size(0) * val.detach().cpu() def on_epoch_end(self, last_metrics, **kwargs): "Set the final result in `last_metrics`." if self.count == 0: return add_metrics(last_metrics, 0) return add_metrics(last_metrics, self.val/self.count) # MODEL LOADING class MTTrainer(LearnerCallback): "`Callback` that regroups lr adjustment to seq_len, AR and TAR." def __init__(self, learn:Learner, dataloaders=None, starting_mask_window=1): super().__init__(learn) self.count = 1 self.mw_start = starting_mask_window self.dataloaders = dataloaders def on_epoch_begin(self, **kwargs): "Reset the hidden state of the model." model = get_model(self.learn.model) model.reset() model.encoder.mask_size = max(self.count+self.mw_start, 100) def on_epoch_end(self, last_metrics, **kwargs): "Finish the computation and sends the result to the Recorder." if self.dataloaders is not None: self.learn.data = self.dataloaders[self.count % len(self.dataloaders)] self.count += 1
518c06d15803865852c043709aede6d2df28e37c
b5a9d42f7ea5e26cd82b3be2b26c324d5da79ba1
/tensorflow/contrib/image/python/ops/sparse_image_warp.py
c4801ca68f029d70be33f3ba6af51d4429f5fdd9
[ "Apache-2.0" ]
permissive
uve/tensorflow
e48cb29f39ed24ee27e81afd1687960682e1fbef
e08079463bf43e5963acc41da1f57e95603f8080
refs/heads/master
2020-11-29T11:30:40.391232
2020-01-11T13:43:10
2020-01-11T13:43:10
230,088,347
0
0
Apache-2.0
2019-12-25T10:49:15
2019-12-25T10:49:14
null
UTF-8
Python
false
false
8,719
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Image warping using sparse flow defined at control points.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.image.python.ops import dense_image_warp from tensorflow.contrib.image.python.ops import interpolate_spline from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops def _get_grid_locations(image_height, image_width): """Wrapper for np.meshgrid.""" y_range = np.linspace(0, image_height - 1, image_height) x_range = np.linspace(0, image_width - 1, image_width) y_grid, x_grid = np.meshgrid(y_range, x_range, indexing='ij') return np.stack((y_grid, x_grid), -1) def _expand_to_minibatch(np_array, batch_size): """Tile arbitrarily-sized np_array to include new batch dimension.""" tiles = [batch_size] + [1] * np_array.ndim return np.tile(np.expand_dims(np_array, 0), tiles) def _get_boundary_locations(image_height, image_width, num_points_per_edge): """Compute evenly-spaced indices along edge of image.""" y_range = np.linspace(0, image_height - 1, num_points_per_edge + 2) x_range = np.linspace(0, image_width - 1, num_points_per_edge + 2) ys, xs = np.meshgrid(y_range, x_range, indexing='ij') is_boundary = np.logical_or( np.logical_or(xs == 0, xs == image_width - 1), np.logical_or(ys == 0, ys == image_height - 1)) return np.stack([ys[is_boundary], xs[is_boundary]], axis=-1) def _add_zero_flow_controls_at_boundary(control_point_locations, control_point_flows, image_height, image_width, boundary_points_per_edge): """Add control points for zero-flow boundary conditions. Augment the set of control points with extra points on the boundary of the image that have zero flow. Args: control_point_locations: input control points control_point_flows: their flows image_height: image height image_width: image width boundary_points_per_edge: number of points to add in the middle of each edge (not including the corners). The total number of points added is 4 + 4*(boundary_points_per_edge). Returns: merged_control_point_locations: augmented set of control point locations merged_control_point_flows: augmented set of control point flows """ batch_size = tensor_shape.dimension_value(control_point_locations.shape[0]) boundary_point_locations = _get_boundary_locations(image_height, image_width, boundary_points_per_edge) boundary_point_flows = np.zeros([boundary_point_locations.shape[0], 2]) type_to_use = control_point_locations.dtype boundary_point_locations = constant_op.constant( _expand_to_minibatch(boundary_point_locations, batch_size), dtype=type_to_use) boundary_point_flows = constant_op.constant( _expand_to_minibatch(boundary_point_flows, batch_size), dtype=type_to_use) merged_control_point_locations = array_ops.concat( [control_point_locations, boundary_point_locations], 1) merged_control_point_flows = array_ops.concat( [control_point_flows, boundary_point_flows], 1) return merged_control_point_locations, merged_control_point_flows def sparse_image_warp(image, source_control_point_locations, dest_control_point_locations, interpolation_order=2, regularization_weight=0.0, num_boundary_points=0, name='sparse_image_warp'): """Image warping using correspondences between sparse control points. Apply a non-linear warp to the image, where the warp is specified by the source and destination locations of a (potentially small) number of control points. First, we use a polyharmonic spline (`tf.contrib.image.interpolate_spline`) to interpolate the displacements between the corresponding control points to a dense flow field. Then, we warp the image using this dense flow field (`tf.contrib.image.dense_image_warp`). Let t index our control points. For regularization_weight=0, we have: warped_image[b, dest_control_point_locations[b, t, 0], dest_control_point_locations[b, t, 1], :] = image[b, source_control_point_locations[b, t, 0], source_control_point_locations[b, t, 1], :]. For regularization_weight > 0, this condition is met approximately, since regularized interpolation trades off smoothness of the interpolant vs. reconstruction of the interpolant at the control points. See `tf.contrib.image.interpolate_spline` for further documentation of the interpolation_order and regularization_weight arguments. Args: image: `[batch, height, width, channels]` float `Tensor` source_control_point_locations: `[batch, num_control_points, 2]` float `Tensor` dest_control_point_locations: `[batch, num_control_points, 2]` float `Tensor` interpolation_order: polynomial order used by the spline interpolation regularization_weight: weight on smoothness regularizer in interpolation num_boundary_points: How many zero-flow boundary points to include at each image edge.Usage: num_boundary_points=0: don't add zero-flow points num_boundary_points=1: 4 corners of the image num_boundary_points=2: 4 corners and one in the middle of each edge (8 points total) num_boundary_points=n: 4 corners and n-1 along each edge name: A name for the operation (optional). Note that image and offsets can be of type tf.half, tf.float32, or tf.float64, and do not necessarily have to be the same type. Returns: warped_image: `[batch, height, width, channels]` float `Tensor` with same type as input image. flow_field: `[batch, height, width, 2]` float `Tensor` containing the dense flow field produced by the interpolation. """ image = ops.convert_to_tensor(image) source_control_point_locations = ops.convert_to_tensor( source_control_point_locations) dest_control_point_locations = ops.convert_to_tensor( dest_control_point_locations) control_point_flows = ( dest_control_point_locations - source_control_point_locations) clamp_boundaries = num_boundary_points > 0 boundary_points_per_edge = num_boundary_points - 1 with ops.name_scope(name): batch_size, image_height, image_width, _ = image.get_shape().as_list() # This generates the dense locations where the interpolant # will be evaluated. grid_locations = _get_grid_locations(image_height, image_width) flattened_grid_locations = np.reshape(grid_locations, [image_height * image_width, 2]) flattened_grid_locations = constant_op.constant( _expand_to_minibatch(flattened_grid_locations, batch_size), image.dtype) if clamp_boundaries: (dest_control_point_locations, control_point_flows) = _add_zero_flow_controls_at_boundary( dest_control_point_locations, control_point_flows, image_height, image_width, boundary_points_per_edge) flattened_flows = interpolate_spline.interpolate_spline( dest_control_point_locations, control_point_flows, flattened_grid_locations, interpolation_order, regularization_weight) dense_flows = array_ops.reshape(flattened_flows, [batch_size, image_height, image_width, 2]) warped_image = dense_image_warp.dense_image_warp(image, dense_flows) return warped_image, dense_flows