blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
1d0b6383c33973c35589ec4404e85d7a6c72e8e8
8130c34d546c323d6d5d2ca6b4a67330af08828f
/.history/menu_app/models_20210105152309.py
ede59bfeb80ad64987ea4b2b9d2f75c6e48ba8a7
[]
no_license
lienusrob/final
ba2dad086fc97b21b537ef12df834dfadd222943
f2726e31f1d51450e4aed8c74021c33679957b28
refs/heads/master
2023-02-15T01:36:54.463034
2021-01-07T12:47:05
2021-01-07T12:47:05
327,279,792
0
0
null
null
null
null
UTF-8
Python
false
false
4,265
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse import random import string from datetime import date, datetime class ToppingsCategory(models.Model): name = models.CharField(max_length=100) type = models.CharField(max_length=100) description = models.TextField(max_length=100, blank=True, null=True, default='') def __str__(self): return self.name class Topping(models.Model): name = models.CharField(max_length=100) price = models.DecimalField(max_digits = 4, decimal_places=2, default=0) category = models.ForeignKey(ToppingsCategory, on_delete = models.PROTECT, default=None) def __str__(self): return self.name class ItemsCategory(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class MenuItem(models.Model): name = models.CharField(max_length=22) price = models.DecimalField(max_digits = 4, decimal_places=2) category = models.ForeignKey(ItemsCategory, on_delete = models.PROTECT) detail = models.TextField(max_length=1000, default = ' ') # toppings = models.ManyToManyField(Topping, blank=True) #image = models.ImageField(default=None, upload_to='', null=True, blank=True) def __str__(self): return self.name class Extras(models.Model): requests = models.TextField(max_length=400,) def __str__(self): return self.name class Cart (models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) current = models.BooleanField(default=True) date_ordered = models.DateTimeField(auto_now_add= True ) class CartItem (models.Model): add_item = models.ForeignKey(MenuItem, on_delete= models.CASCADE) quantity = models.IntegerField(default=0) cart = models.ForeignKey(Cart, on_delete= models.CASCADE) def __str__(self): return self.add_item.name #remove dont need class OrderItem(models.Model): item = models.ForeignKey(MenuItem, on_delete=models.SET_NULL, null=True) price = models.DecimalField(max_digits = 4, decimal_places=2, default=0) order_item_order = models.ForeignKey('menu_app.Order', on_delete=models.CASCADE, null=True) #toppings = models.ManyToManyField(Topping, blank=True) def __str__(self): return self.item.name def get_item_price(self): self.price = sum(topping.price for topping in self.toppings.all()) + self.item.price def get_all_topping_categories(self): categories = [] for topping in self.toppings.all(): if not topping.category in categories: categories.append(topping.category) return categories class Orders (models.Model): cart = models.ForeignKey(Cart, on_delete=models.CASCADE) placed = models.BooleanField(default=False) def __str__ (self): return self.cart.user.username #old need to remove class Order(models.Model): customer = models.ForeignKey(User, on_delete = models.CASCADE) date_ordered = models.DateTimeField(default=timezone.now) items = models.ManyToManyField(MenuItem) order_items = models.ManyToManyField(OrderItem) total = models.DecimalField(max_digits = 6, decimal_places=2, null=True) is_ordered = models.BooleanField(default=False) pickup_time = models.DateTimeField(default=timezone.now) special_instructions = models.TextField(max_length=256, blank=True) def __str__(self): return f'Order #{self.id} - {self.customer.username}' # # url to redirect to when submitting order form # def get_absolute_url(self): # return reverse('orders:order_detail', kwargs={'pk':self.pk}) # returns the sum of each item price in order and assigns it to self.total def get_order_total(self): self.total = sum(order_item.price for order_item in self.order_items.all()) def get_cart_items(self): return self.items.all() def generate_order_id(): date_str = date.today().strftime('%Y%m%d')[2:] + str(datetime.now().second) rand_str = "".join([random.choice(string.digits) for count in range(3)]) return date_str + rand_str # class Meta(): # ordering = ['-date_ordered']
31291fea928eb8e023f65781c71fa4432037efea
ba1eff6535027c16b9e1d399b96e7853bc1514dc
/tests/test_16_userinfo_endpoint.py
03ec0337b9ec1fd4207b1850726eb13b7fc2b0da
[ "Apache-2.0" ]
permissive
sklemer1/oidcendpoint
09d06e4cf21113f74a78734cdd06c964aaed3c7d
bc2cd9222bd05aec7b7ba5c7c7f593c2143357f3
refs/heads/master
2020-03-30T12:24:20.500373
2018-10-04T13:42:31
2018-10-04T13:42:31
151,222,819
0
0
null
null
null
null
UTF-8
Python
false
false
5,738
py
import json import os import pytest import time from oidcmsg.key_jar import build_keyjar from oidcmsg.oidc import AccessTokenRequest from oidcmsg.oidc import AuthorizationRequest from oidcendpoint.client_authn import verify_client from oidcendpoint.oidc import userinfo from oidcendpoint.oidc.authorization import Authorization from oidcendpoint.oidc.provider_config import ProviderConfiguration from oidcendpoint.oidc.registration import Registration from oidcendpoint.oidc.token import AccessToken from oidcendpoint.authn_event import AuthnEvent from oidcendpoint.endpoint_context import EndpointContext from oidcendpoint.user_authn.authn_context import INTERNETPROTOCOLPASSWORD from oidcendpoint.user_info import UserInfo KEYDEFS = [ {"type": "RSA", "key": '', "use": ["sig"]}, {"type": "EC", "crv": "P-256", "use": ["sig"]} ] KEYJAR = build_keyjar(KEYDEFS)[1] RESPONSE_TYPES_SUPPORTED = [ ["code"], ["token"], ["id_token"], ["code", "token"], ["code", "id_token"], ["id_token", "token"], ["code", "token", "id_token"], ['none']] CAPABILITIES = { "response_types_supported": [" ".join(x) for x in RESPONSE_TYPES_SUPPORTED], "token_endpoint_auth_methods_supported": [ "client_secret_post", "client_secret_basic", "client_secret_jwt", "private_key_jwt"], "response_modes_supported": ['query', 'fragment', 'form_post'], "subject_types_supported": ["public", "pairwise"], "grant_types_supported": [ "authorization_code", "implicit", "urn:ietf:params:oauth:grant-type:jwt-bearer", "refresh_token"], "claim_types_supported": ["normal", "aggregated", "distributed"], "claims_parameter_supported": True, "request_parameter_supported": True, "request_uri_parameter_supported": True, } AUTH_REQ = AuthorizationRequest(client_id='client_1', redirect_uri='https://example.com/cb', scope=['openid'], state='STATE', response_type='code') TOKEN_REQ = AccessTokenRequest(client_id='client_1', redirect_uri='https://example.com/cb', state='STATE', grant_type='authorization_code', client_secret='hemligt') TOKEN_REQ_DICT = TOKEN_REQ.to_dict() BASEDIR = os.path.abspath(os.path.dirname(__file__)) def full_path(local_file): return os.path.join(BASEDIR, local_file) USERINFO = UserInfo(json.loads(open(full_path('users.json')).read())) def setup_session(endpoint_context, areq): authn_event = AuthnEvent(uid="uid", salt='salt', authn_info=INTERNETPROTOCOLPASSWORD, time_stamp=time.time()) sid = endpoint_context.sdb.create_authz_session(authn_event, areq, client_id='client_id') endpoint_context.sdb.do_sub(sid, '') return sid class TestEndpoint(object): @pytest.fixture(autouse=True) def create_endpoint(self): self.endpoint = userinfo.UserInfo(KEYJAR) conf = { "issuer": "https://example.com/", "password": "mycket hemligt", "token_expires_in": 600, "grant_expires_in": 300, "refresh_token_expires_in": 86400, "verify_ssl": False, "capabilities": CAPABILITIES, "jwks": { 'url_path': '{}/jwks.json', 'local_path': 'static/jwks.json', 'private_path': 'own/jwks.json' }, 'endpoint': { 'provider_config': { 'path': '{}/.well-known/openid-configuration', 'class': ProviderConfiguration, 'kwargs': {} }, 'registration': { 'path': '{}/registration', 'class': Registration, 'kwargs': {} }, 'authorization': { 'path': '{}/authorization', 'class': Authorization, 'kwargs': {} }, 'token': { 'path': '{}/token', 'class': AccessToken, 'kwargs': {} }, 'userinfo': { 'path': '{}/userinfo', 'class': userinfo.UserInfo, 'kwargs': {'db_file': 'users.json'} } }, 'client_authn': verify_client, "authentication": [{ 'acr': INTERNETPROTOCOLPASSWORD, 'name': 'NoAuthn', 'kwargs': {'user': 'diana'} }], 'template_dir': 'template' } endpoint_context = EndpointContext(conf, keyjar=KEYJAR) endpoint_context.cdb['client_1'] = { "client_secret": 'hemligt', "redirect_uris": [("https://example.com/cb", None)], "client_salt": "salted", 'token_endpoint_auth_method': 'client_secret_post', 'response_types': ['code', 'token', 'code id_token', 'id_token'] } self.endpoint = userinfo.UserInfo(endpoint_context) def test_init(self): assert self.endpoint def test_parse(self): session_id = setup_session(self.endpoint.endpoint_context, AUTH_REQ) _dic = self.endpoint.endpoint_context.sdb.upgrade_to_token( key=session_id) _req = self.endpoint.parse_request( {}, auth="Bearer {}".format(_dic['access_token'])) assert set(_req.keys()) == {'client_id', 'access_token'}
48f6bf7eed3e7ed029e76a1561da9c2b9fd6b645
4488e3c26de4291da447d8251c491b43cb810f7c
/account_banking_payment_export/model/payment_mode.py
798c8ed20daab08128d6d0b68c1d1b223e11f9d5
[]
no_license
smart-solution/odoo-crm-80
b19592ce6e374c9c7b0a3198498930ffb1283018
85dfd0cc37f81bcba24d2a0091094708a262fe2c
refs/heads/master
2016-09-06T06:04:35.191924
2015-07-14T12:48:28
2015-07-14T12:48:28
33,174,511
1
0
null
null
null
null
UTF-8
Python
false
false
2,285
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2009 EduSense BV (<http://www.edusense.nl>). # (C) 2011 - 2013 Therp BV (<http://therp.nl>). # # All other contributions are (C) by their respective contributors # # All Rights Reserved # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import orm, fields class payment_mode(orm.Model): ''' Restoring the payment type from version 5, used to select the export wizard (if any) ''' _inherit = "payment.mode" def suitable_bank_types(self, cr, uid, payment_mode_id=None, context=None): """ Reinstates functional code for suitable bank type filtering. Current code in account_payment is disfunctional. """ res = [] payment_mode = self.browse( cr, uid, payment_mode_id, context) if (payment_mode and payment_mode.type and payment_mode.type.suitable_bank_types): res = [t.code for t in payment_mode.type.suitable_bank_types] return res _columns = { 'type': fields.many2one( 'payment.mode.type', 'Payment type', required=True, help='Select the Payment Type for the Payment Mode.' ), 'payment_order_type': fields.related( 'type', 'payment_order_type', readonly=True, type='selection', selection=[('payment', 'Payment'), ('debit', 'Direct debit')], string="Payment Order Type"), }
7c7405d5b792cd6f20e89b0b56489b366c8baecf
ba730380c8406b234202a6a19a9e5f01f6b66d25
/django/crud2/articles/views.py
4a9f35242edeef84e1211c795529a801b810b62b
[]
no_license
ssabum/note
3b0fd891ab7053997c7978298635e599b42a7659
47354aa55a87813dab66f2ff7a930f5313bffe7a
refs/heads/master
2023-06-19T03:03:02.398976
2021-07-09T15:09:42
2021-07-09T15:09:42
331,743,760
0
0
null
null
null
null
UTF-8
Python
false
false
2,151
py
from django.shortcuts import render, redirect from .models import Article # Create your views here. # READ def index(request): # 모든 게시글 조회 # articles = Article.objects.all()[::-1] # 파이썬 언어로 해결 articles = Article.objects.order_by('-updated_at') # DB 단에서 해결, 수정순으로 정렬 context = { 'articles': articles, } return render(request, 'articles/index.html', context) # CREATE def new(request): return render(request, 'articles/new.html') # CREATE def create(request): # POST 요청으로 들어온 사용자 데이터를 추출 title = request.POST.get('title') content = request.POST.get('content') # Article 모델 클래스를 기반으로 인스턴스를 생성 article = Article(title=title, content=content) # DB에 저장 article.save() # return render(request, 'articles/index.html') # return redirect('articles:index') return redirect('articles:detail', article.pk) # READ def detail(request, pk): article = Article.objects.get(pk=pk) context = { 'article': article, } return render(request, 'articles/detail.html', context) # DELETE # 발동조건: /articles/index/게시글번호/delete # 띠라서 POST만 삭제되게 만들어야 한다 def delete(request, pk): # 삭제할 데이터 불러오기 article = Article.objects.get(pk=pk) if request.method == 'POST': # 삭제 article.delete() # 메인페이지로 이동 return redirect('articles:index') else: return redirect('articles:detail', article.pk) # UPDATE def edit(request, pk): article = Article.objects.get(pk=pk) context = { 'article':article, } return render(request, 'articles/edit.html', context) def update(request, pk): # 수정할 게시글 불러오기 article = Article.objects.get(pk=pk) # 사용자가 건네준 데이터 추출 article.title = request.POST.get('title') article.content = request.POST.get('content') # DB에 저장 article.save() return redirect('articles:detail', article.pk)
1d626c9dbdb41c344f8870b691bab05f897edafa
5864e86954a221d52d4fa83a607c71bacf201c5a
/dogma/items/fittableDogmaItem.py
8e70cbc858bb571171c14d42eeafc1040058e7eb
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
3,769
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\packages\dogma\items\fittableDogmaItem.py from dogma.dogmaLogging import * from baseDogmaItem import BaseDogmaItem from ccpProfile import TimedFunction import weakref class FittableDogmaItem(BaseDogmaItem): def __init__(self, *args, **kwargs): self._location = None self.lastStopTime = None BaseDogmaItem.__init__(self, *args, **kwargs) @property def location(self): if self._location: return self._location() @location.setter def location(self, location): if location is None: self._location = None else: self._location = weakref.ref(location) @property def ownerID(self): if self.location: return self.location.ownerID @ownerID.setter def ownerID(self, ownerID): if self.location and self.location.ownerID != ownerID: self.dogmaLocation.LogError('Setting ownerID on a FittableDogmaItem to something that disagrees with its location!', self.location.ownerID, ownerID) @TimedFunction('FittableDogmaItem::Unload') def Unload(self): BaseDogmaItem.Unload(self) if self.location: try: locationFittedItems = self.location.fittedItems except AttributeError: return if self.itemID in locationFittedItems: del locationFittedItems[self.itemID] elif self.itemID in self.dogmaLocation.itemsMissingLocation: del self.dogmaLocation.itemsMissingLocation[self.itemID] def SetLastStopTime(self, lastStopTime): self.lastStopTime = lastStopTime def IsActive(self): for effectID in self.activeEffects: if effectID == const.effectOnline: continue effect = self.dogmaLocation.GetEffect(effectID) if effect.effectCategory in (const.dgmEffActivation, const.dgmEffTarget): return True return False @TimedFunction('FittableDogmaItem::SetLocation') def SetLocation(self, locationID, location, flagID): if location is None: self.dogmaLocation.LogError('FittableDogmaItem.SetLocation :: Location dogma item is None') return if not self.IsValidFittingLocation(location): self.dogmaLocation.LogError('FittableDogmaItem.SetLocation :: Invalid fitting location') return oldData = self.GetLocationInfo() self.location = location self.flagID = flagID location.RegisterFittedItem(self, flagID) return oldData def IsValidFittingLocation(self, location): return False def UnsetLocation(self, locationDogmaItem): locationDogmaItem.UnregisterFittedItem(self) def GetShipID(self): if self.location: return self.location.itemID def GetPilot(self): if self.location: return self.location.GetPilot() def GetOtherID(self): otherID = None if self.location: otherID = self.location.subLocations.get(self.flagID, None) if otherID is None: other = self.dogmaLocation.GetChargeNonDB(self.location.itemID, self.flagID) if other is not None: otherID = other.itemID return otherID def SerializeForPropagation(self): retVal = BaseDogmaItem.SerializeForPropagation(self) retVal.lastStopTime = self.lastStopTime return retVal def UnpackPropagationData(self, propData, charID, shipID): BaseDogmaItem.UnpackPropagationData(self, propData, charID, shipID) self.SetLastStopTime(propData.lastStopTime)
8d8ddb865c6a12401cc24112051255881181248e
f4f5d98101db7baf9703be077615383b831c35d8
/setup.py
f00a4b6116f81b93954694c531ecc2ff819e8e74
[ "MIT" ]
permissive
TrendingTechnology/PyYouTube-1
23099fd1b825f226cabf2e0f50112e1b3f53346b
774213412210ab03adf11eb8b38906b0f3de5ee6
refs/heads/main
2023-08-17T13:50:03.035784
2021-09-15T09:11:31
2021-09-15T09:11:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import pathlib import setuptools def read(file: str) -> list: with open(file, encoding="utf-8") as r: return [i.strip() for i in r] file = pathlib.Path(__file__).parent README = (file / "README.md").read_text() setuptools.setup( name='PyYouTube', version="1.0.7", author="mrlokaman", author_email="[email protected]", long_description = README, long_description_content_type = "text/markdown", description="Python library Get YouTube Video Data", license="MIT", url="https://github.com/lntechnical2/PyYouTube", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), install_requires = read("requirements.txt"), python_requires=">=3.6" )
faf4719b940c4e5811346205c59cd9ad7daa89ec
2813f969fc9833023f543fa14c1c22a87325ca8f
/logging_tree/tests/test_format.py
787b959fd92bbf2bdc6650b8ba7e639e870cd017
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
ralphbean/logging_tree
5761afc380719f4069fd00b1f21f5765927ce593
1db0ad6f485b5333fee637813faf827990924421
refs/heads/master
2021-01-16T22:05:05.459626
2012-12-04T02:16:14
2012-12-04T02:16:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,425
py
"""Tests for the `logging_tree.format` module.""" import logging import logging.handlers import unittest import sys from logging_tree.format import build_description, printout from logging_tree.tests.case import LoggingTestCase if sys.version_info >= (3,): from io import StringIO else: from StringIO import StringIO class FakeFile(StringIO): def __init__(self, filename, mode): self.filename = filename StringIO.__init__(self) def __repr__(self): return '<file %r>' % self.filename class FormatTests(LoggingTestCase): def setUp(self): # Prevent logging file handlers from trying to open real files. # (The keyword delay=1, which defers any actual attempt to open # a file, did not appear until Python 2.6.) logging.open = FakeFile super(FormatTests, self).setUp() def tearDown(self): del logging.open super(FormatTests, self).tearDown() def test_printout(self): stdout, sys.stdout = sys.stdout, StringIO() printout() self.assertEqual(sys.stdout.getvalue(), '<--""\n Level WARNING\n') sys.stdout = stdout def test_simple_tree(self): logging.getLogger('a') logging.getLogger('a.b').setLevel(logging.DEBUG) logging.getLogger('x.c') self.assertEqual(build_description(), '''\ <--"" Level WARNING | o<--"a" | | | o<--"a.b" | Level DEBUG | o<--[x] | o<--"x.c" ''') def test_fancy_tree(self): logging.getLogger('').setLevel(logging.DEBUG) log = logging.getLogger('db') log.setLevel(logging.INFO) log.propagate = False log.addFilter(MyFilter()) handler = logging.StreamHandler() log.addHandler(handler) handler.addFilter(logging.Filter('db.errors')) logging.getLogger('db.errors') logging.getLogger('db.stats') log = logging.getLogger('www.status') log.setLevel(logging.DEBUG) log.addHandler(logging.FileHandler('/foo/log.txt')) log.addHandler(MyHandler()) self.assertEqual(build_description(), '''\ <--"" Level DEBUG | o "db" | Level INFO | Propagate OFF | Filter <MyFilter> | Handler Stream %r | Filter name='db.errors' | | | o<--"db.errors" | | | o<--"db.stats" | o<--[www] | o<--"www.status" Level DEBUG Handler File '/foo/log.txt' Handler <MyHandler> ''' % (sys.stderr,)) def test_most_handlers(self): ah = logging.getLogger('').addHandler ah(logging.handlers.RotatingFileHandler( '/bar/one.txt', maxBytes=10000, backupCount=3)) ah(logging.handlers.SocketHandler('server.example.com', 514)) ah(logging.handlers.DatagramHandler('server.example.com', 1958)) ah(logging.handlers.SysLogHandler()) ah(logging.handlers.SMTPHandler( 'mail.example.com', 'Server', 'Sysadmin', 'Logs!')) # ah(logging.handlers.NTEventLogHandler()) ah(logging.handlers.HTTPHandler('api.example.com', '/logs', 'POST')) ah(logging.handlers.BufferingHandler(20000)) sh = logging.StreamHandler() ah(logging.handlers.MemoryHandler(30000, target=sh)) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler RotatingFile '/bar/one.txt' maxBytes=10000 backupCount=3 Handler Socket server.example.com 514 Handler Datagram server.example.com 1958 Handler SysLog ('localhost', 514) facility=1 Handler SMTP via mail.example.com to ['Sysadmin'] Handler HTTP POST to http://api.example.com//logs Handler Buffering capacity=20000 Handler Memory capacity=30000 dumping to: Handler Stream %r ''' % (sh.stream,)) logging.getLogger('').handlers[3].socket.close() # or Python 3 warning def test_2_dot_5_handlers(self): if sys.version_info < (2, 5): return ah = logging.getLogger('').addHandler ah(logging.handlers.TimedRotatingFileHandler('/bar/two.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler TimedRotatingFile '/bar/two.txt' when='H' interval=3600 backupCount=0 ''') def test_2_dot_6_handlers(self): if sys.version_info < (2, 6): return ah = logging.getLogger('').addHandler ah(logging.handlers.WatchedFileHandler('/bar/three.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler WatchedFile '/bar/three.txt' ''') def test_nested_handlers(self): h1 = logging.StreamHandler() h2 = logging.handlers.MemoryHandler(30000, target=h1) h2.addFilter(logging.Filter('worse')) h3 = logging.handlers.MemoryHandler(30000, target=h2) h3.addFilter(logging.Filter('bad')) logging.getLogger('').addHandler(h3) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler Memory capacity=30000 dumping to: Filter name='bad' Handler Memory capacity=30000 dumping to: Filter name='worse' Handler Stream %r ''' % (h1.stream,)) class MyFilter(object): def __repr__(self): return '<MyFilter>' class MyHandler(object): def __repr__(self): return '<MyHandler>' if __name__ == '__main__': # for Python <= 2.4 unittest.main()
83bee1c913ad98cd00f75327075dbef6727ae53a
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/torchx/legacy/nn/VolumetricReplicationPadding.py
16cc7a1c097d7c351bcc12cb145425dff9ac1bf3
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
1,969
py
import torch from .Module import Module class VolumetricReplicationPadding(Module): def __init__(self, pleft, pright=None, ptop=None, pbottom=None, pfront=None, pback=None): super(VolumetricReplicationPadding, self).__init__() self.pleft = pleft self.pright = pright or pleft self.ptop = ptop or pleft self.pbottom = pbottom or pleft self.pfront = pfront or pleft self.pback = pback or pleft def updateOutput(self, input): assert input.dim() == 5 self._backend.VolumetricReplicationPadding_updateOutput( self._backend.library_state, input, self.output, self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return self.output def updateGradInput(self, input, gradOutput): assert input.dim() == 5 and gradOutput.dim() == 5 assert input.size(0) == gradOutput.size(0) assert input.size(1) == gradOutput.size(1) assert input.size(2) + self.pfront + self.pback == gradOutput.size(2) assert input.size(3) + self.ptop + self.pbottom == gradOutput.size(3) assert input.size(4) + self.pleft + self.pright == gradOutput.size(4) self._backend.VolumetricReplicationPadding_updateGradInput( self._backend.library_state, input, gradOutput, self.gradInput, self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return self.gradInput def __repr__(self): s = super(VolumetricReplicationPadding, self).__repr__() s += '({}, {}, {}, {}, {}, {})'.format(self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return s
cb0b2c679a02d35a32e443a9412c0292555d4f6b
cff588a68be44913be884ba5c4ebf36a0a96cb75
/python/007study_namespace.py
3377539352b3e241261c717dfa8c5240c876539d
[]
no_license
KOOKDONGHUN/trading
e6a8d023f4bdbb0f1cf32e3e5b6b26b6265fc3a6
2d4337978a5849098ed890e9e2c3f059e4706536
refs/heads/master
2022-11-15T00:38:32.705125
2020-07-12T10:25:46
2020-07-12T10:25:46
275,761,616
0
0
null
null
null
null
UTF-8
Python
false
false
1,215
py
class Stock: market = 'kospi' print(dir())# // ['Stock', '__annotations__', '__builtins__', '__cached__', '__doc__', # // '__file__', '__loader__', '__name__', '__package__', '__spec__'] # Stock이 추가됐다 print(Stock) # <class '__main__.Stock'> # 클래스가 정의되면 하나의 독립적인 네임스페이스가 생기고 클래스내에 정의된 변수나 메서드는 해당 네임스페이스 안에 파이썬 딕셔너리 타입으로 저장된다 print(Stock.market) # 네임스페이스를 확인하는 방법 print(Stock.__dict__) # // {'__module__': '__main__', 'market': 'kospi', '__dict__': <attribute '__dict__' of 'Stock' objects>, #// '__weakref__': <attribute '__weakref__' of 'Stock' objects>, '__doc__': None} s1 = Stock() s2 = Stock() print(id(s1)) # 2120139199496 print(id(s2)) # 2120139199560 print(s1.__dict__) # 비어있음 print(s2.__dict__) # 비어있음 s1.market = 'kosdaq' print(s1.__dict__) # {'market': 'kosdaq'} print(s2.__dict__) # 비어있음 print(s1.market) # kosdaq # 인스턴스의 네임스페이스에 해당 이름이 없으면 클래스의 네임스페이스로 이동 print(s2.market) # kospi
e7b07e9da69275211369027ccc4b4e3df2428c9a
98d328e4e00ac7cf8930d2ff9bd68af1d9d9cc3b
/utils/lib_clustering.py
3e1b9079f84417c6585bb40e6d8bcf926bf03a2b
[]
no_license
jtpils/Lane-Detection-from-Point-Cloud
4d7e98cafada569097e16e7bcb5fdabc048e0644
238cb8cedc823a84c32b60ce13e7de8c81f19232
refs/heads/master
2020-06-05T08:42:46.397450
2019-06-17T15:41:58
2019-06-17T15:41:58
192,380,398
14
4
null
2019-06-17T16:16:58
2019-06-17T16:16:58
null
UTF-8
Python
false
false
3,810
py
''' Clustering by DBSCAN using sklearn library This code is copied and modified from: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ''' import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt class Clusterer(object): def __init__(self): self.fit_success = False def fit(self, X, eps=0.3, min_samples=10): # Compute DBSCAN db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # samples that is close to the center core_samples_mask[db.core_sample_indices_] = True self.X = X self.db = db self.core_samples_mask = core_samples_mask self.fit_success = True self.labels = db.labels_ # label of each sample self.unique_labels = set(self.labels) self.n_clusters = len(set(self.labels)) - \ (1 if -1 in self.labels else 0) def plot_clusters(self): if not self.fit_success: return assert self.X.shape[1] == 2, "To visualize result, X must be 2 dimenstions." # member vars used in this function labels, n_clusters, unique_labels = self.labels, self.n_clusters, self.unique_labels core_samples_mask = self.core_samples_mask X = self.X # Black removed and is used for noise instead. colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] # print(colors) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=6) # break plt.title('Clustering result: {} clusters'.format(n_clusters)) def print_clustering_result(self): if not self.fit_success: return labels, n_clusters = self.labels, self.n_clusters # Number of clusters in labels, ignoring noise if present. n_noise_ = list(labels).count(-1) print('Estimated number of clusters: %d' % n_clusters) print('Estimated number of noise points: %d' % n_noise_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels, average_method='arithmetic')) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) if __name__ == "__main__": # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) # Fit cluster = Clusterer() cluster.fit(X) # Plot cluster.plot_clusters() plt.show()
5e57e42cf81e3523dfaa874a315995fbc33cfcb9
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D11B/PAYDUCD11BUN.py
3dccdf3361385387dedef9f876212a5ce94c56a8
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,580
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD11BUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'PAI', MIN: 1, MAX: 1}, {ID: 'FII', MIN: 1, MAX: 2}, {ID: 'DTM', MIN: 1, MAX: 4}, {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'PYT', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 5}, {ID: 'RFF', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'NAD', MIN: 0, MAX: 6, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 5, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 1}, ]}, ]}, {ID: 'GEI', MIN: 1, MAX: 9, LEVEL: [ {ID: 'RFF', MIN: 1, MAX: 1}, {ID: 'MOA', MIN: 1, MAX: 9}, {ID: 'BUS', MIN: 0, MAX: 1}, {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 99, LEVEL: [ {ID: 'UGH', MIN: 0, MAX: 1, LEVEL: [ {ID: 'NAD', MIN: 0, MAX: 999999, LEVEL: [ {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'MOA', MIN: 1, MAX: 9}, {ID: 'AJT', MIN: 0, MAX: 9}, {ID: 'PYT', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 3}, {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'UGT', MIN: 1, MAX: 1}, ]}, ]}, ]}, {ID: 'UNS', MIN: 1, MAX: 1}, {ID: 'MOA', MIN: 1, MAX: 1}, {ID: 'CNT', MIN: 0, MAX: 9}, {ID: 'AUT', MIN: 0, MAX: 1}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
33707edb80b081ec1ed745507088f9c26ebd20fd
b182ff74d1107c00d77d3bb241dfca589ccc9404
/config.py
2bba1aadff966f60605fa7fdf900d990f46442d1
[]
no_license
aexleader/Tornado-OA-System
7846a13a90c6da512a7f7620b003bd77b331a63d
6ffc51d2f42fcbd5b0abe7082dae4505bf687894
refs/heads/master
2020-08-01T14:00:28.966198
2019-09-10T10:57:23
2019-09-10T10:57:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
#coding=utf-8 from libs.flash.flash_lib import get_flashed_messages # 引入一个变量 from libs.permission.permission_auth.permission_interface_libs import menu_permission settings = dict( template_path = 'templates', static_path = 'static', debug = True, cookie_secret = 'aaaa', login_url = '/auth/user_login', xsrf_cookies = True, # ui_mrthods 是可以作为全局模板变量,在所有的html文件中都可以获取这个参数 ui_methods= { "menu_permission": menu_permission, "get_flashed_messages": get_flashed_messages }, # pycket的配置信息 pycket = { 'engine': 'redis', # 设置存储器类型 'storage': { 'host': 'localhost', 'port': 6379, 'db_sessions': 5, 'db_notifications': 11, 'max_connections': 2 ** 31, }, 'cookies': { 'expires_days': 30, # 设置过期时间 #'max_age': 5000, }, }, )
5f96b2f9df61b2997848aed9767153a92a516338
762de1c66746267e05d53184d7854934616416ee
/tools/MolSurfGenService/MolSurfaceGen32/chimera/share/VolumeProcessing/apply.py
e3698c7a49fcc4c0b7f6619db155e7b141e47eb8
[]
no_license
project-renard-survey/semanticscience
6e74f5d475cf0ebcd9bb7be6bb9522cf15ed8677
024890dba56c3e82ea2cf8c773965117f8cda339
refs/heads/master
2021-07-07T21:47:17.767414
2017-10-04T12:13:50
2017-10-04T12:13:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,364
py
#!/usr/bin/env python # ----------------------------------------------------------------------------- # Apply a function to a grid pointwise. # The resulting volume is written in netcdf format. # # Syntax: apply.py sqrt|square|abs|exp|log <infile> <outfile> # # The file type must be one of the types handled by VolumeData. # import sys from VolumeData import Grid_Data # ----------------------------------------------------------------------------- # def apply_function(array_func, inpath, outpath): from VolumeData import fileformats try: grids = fileformats.open_file(inpath) except fileformats.Unknown_File_Type, e: sys.stderr.write(str(e)) sys.exit(1) fvalues = [Mapped_Grid(g, array_func) for g in grids] from VolumeData.netcdf import write_grid_as_netcdf write_grid_as_netcdf(fvalues, outpath) # ----------------------------------------------------------------------------- # class Mapped_Grid(Grid_Data): def __init__(self, grid_data, array_func): self.array_func = array_func Grid_Data.__init__(self, grid_data.size, grid_data.value_type, grid_data.origin, grid_data.step, name = grid_data.name, default_color = grid_data.rgba) # --------------------------------------------------------------------------- # def read_matrix(self, ijk_origin, ijk_size, ijk_step, progress): data = self.component.matrix(ijk_origin, ijk_size, ijk_step, progress) fvalues = self.array_func(data) return fvalues # ----------------------------------------------------------------------------- # def syntax(): msg = ('Apply a function to a grid pointwise.\n' + 'The resulting volume is written in netcdf format.\n' 'Syntax: apply.py sqrt|square|abs|exp|log <infile> <outfile>\n') sys.stderr.write(msg) sys.exit(1) # ----------------------------------------------------------------------------- # if len(sys.argv) != 4: syntax() fname = sys.argv[1] from numpy import sqrt, power, absolute, exp, log if fname == 'sqrt': array_func = sqrt elif fname == 'square': array_func = lambda a: power(a, 2) elif fname == 'abs': array_func = absolute elif fname == 'exp': array_func = exp elif fname == 'log': array_func = log else: syntax() inpath = sys.argv[2] outpath = sys.argv[3] apply_function(array_func, inpath, outpath)
[ "alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5" ]
alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5
aa8aabf65ecb49d7092f518affba7b4f4200745b
609582ee37a01ac6a67fb9c957825dcd3c9a5b3a
/LeetCode_Math/67_Add_Binaray.py
77bf2de64eddd1dca19c9a8f56aeabd0235107f3
[]
no_license
captainjack331089/captainjack33.LeetCode
a9ad7b3591675c76814eda22e683745068e0abed
4c03f28371e003e8e6a7c30b7b0c46beb5e2a8e7
refs/heads/master
2022-03-07T19:53:40.454945
2019-11-06T19:32:00
2019-11-06T19:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
""" 67. Add Binary Category: Math Difficulty: Easy """ """ Given two binary strings, return their sum (also a binary string). The input strings are both non-empty and contains only characters 1 or 0. Example 1: Input: a = "11", b = "1" Output: "100" Example 2: Input: a = "1010", b = "1011" Output: "10101" """ class Solution(): def addBinary(self,a,b): return (bin( int(a,2) + int(b,2) )[2:]) a = "100" b = "100" if __name__ == "__main__": print(Solution().addBinary(a,b))
db5478f9a0cb0cf030d084d4aa9c480907c197a7
0dc3e9b70da8ccd056e0a0fab2b1d8f850c3d470
/lantern/django/django_celery/src/apps/cars/serializers.py
3b2841adafff0d4d82de945686eeba93f6718cd8
[]
no_license
ArturYefriemov/green_lantern
28e7150af7b9d2281a107ad80026828ad77af62a
2841b647e1bfae4a7505e91e8a8695d03f35a3a2
refs/heads/master
2021-03-01T16:54:58.881835
2020-11-17T19:42:23
2020-11-17T19:42:23
245,799,969
0
0
null
2020-07-14T18:51:13
2020-03-08T11:13:32
Python
UTF-8
Python
false
false
190
py
from rest_framework import serializers from apps.cars.models import Car class CarSerializer(serializers.ModelSerializer): class Meta: model = Car fields = '__all__'
76b5e2452098e49235282783ad7eb1263db83e08
ae7ba9c83692cfcb39e95483d84610715930fe9e
/yubinbai/pcuva-problems/UVa 10539 - Almost Prime Numbers/main.py
30bb7c3cab4b9a2a5ac9a024702a2f2bdb6ddbf0
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
820
py
from bisect import * from bitstring import BitArray import sys MAXN = 1000005 def prime_sieve(top=MAXN): b = BitArray(top) # bitstring of ’0’ bits for i in range(2, top): if not b[i]: yield i # i is prime, so set all its multiples to ’1’. b.set(True, range(i * i, top, i)) if __name__ == '__main__': primes = list(prime_sieve()) almostPrimes = [] for p in primes: p1 = p ** 2 while p1 < MAXN: almostPrimes.append(p1) p1 *= p almostPrimes.sort() sys.stdin = open('input.txt') numTest = int(input()) for x in range(numTest): left, right = map(int, raw_input().split()) i1 = bisect_right(almostPrimes, left) i2 = bisect_right(almostPrimes, right) print(i2 - i1)
9d9a28c406e812fde853a9ab4577cc16b649995d
9b77f1e31d5901924431a2a3164312cc346bde4f
/ADI4/manage.py
e9ec1a96a7b096f6b2698c979c0b121ed89eb43f
[]
no_license
Adi19471/Djnago_Code-Daily
c2184bf21db5c8d4b3c4098fbd593e4949375ae8
03b1b70d3e187fe85eb24e88b7ef3391b14aa98c
refs/heads/master
2023-08-14T14:36:36.144243
2021-09-20T12:52:46
2021-09-20T12:52:46
375,690,484
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ADI4.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
8e1d635e43cf0d4a577b35facf856bf52864130c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04005/s700047032.py
6b014ba065ec8998d3dab92a228e7bca1810778d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
a,b,c=map(int,input().split()) print(0 if (a*b*c)%2==0 else min(a*b,b*c,c*a))
8a52bc396fcafcd7f2ed6b20d0b110a3e5a59648
1d60c5a7b8ce6277bff514e376f79848f706344c
/Data Scientist with Python - Career Track /22. Machine Learning with the Experts: School Budgets/02. Creating a simple first model/01. Setting up a train-test split in scikit-learn.py
09e603e05172de82530517858d1031747721ca01
[]
no_license
DidiMilikina/DataCamp
338c6e6d3b4f5b6c541c1aba155a36e9ee24949d
3bf2cf3c1430190a7f8e54efda7d50a5fd66f244
refs/heads/master
2020-12-15T13:16:54.178967
2020-05-06T17:30:54
2020-05-06T17:30:54
235,113,616
4
3
null
null
null
null
UTF-8
Python
false
false
2,016
py
''' Setting up a train-test split in scikit-learn Alright, you've been patient and awesome. It's finally time to start training models! The first step is to split the data into a training set and a test set. Some labels don't occur very often, but we want to make sure that they appear in both the training and the test sets. We provide a function that will make sure at least min_count examples of each label appear in each split: multilabel_train_test_split. Feel free to check out the full code for multilabel_train_test_split here. You'll start with a simple model that uses just the numeric columns of your DataFrame when calling multilabel_train_test_split. The data has been read into a DataFrame df and a list consisting of just the numeric columns is available as NUMERIC_COLUMNS. Instructions 100 XP Create a new DataFrame named numeric_data_only by applying the .fillna(-1000) method to the numeric columns (available in the list NUMERIC_COLUMNS) of df. Convert the labels (available in the list LABELS) to dummy variables. Save the result as label_dummies. In the call to multilabel_train_test_split(), set the size of your test set to be 0.2. Use a seed of 123. Fill in the .info() method calls for X_train, X_test, y_train, and y_test. ''' SOLUTION # Create the new DataFrame: numeric_data_only numeric_data_only = df[NUMERIC_COLUMNS].fillna(-1000) # Get labels and convert to dummy variables: label_dummies label_dummies = pd.get_dummies(df[LABELS]) # Create training and test sets X_train, X_test, y_train, y_test = multilabel_train_test_split(numeric_data_only, label_dummies, size=0.2, seed=123) # Print the info print("X_train info:") print(X_train.info()) print("\nX_test info:") print(X_test.info()) print("\ny_train info:") print(y_train.info()) print("\ny_test info:") print(y_test.info())
9b930250c80b39f856585160a5b1f150a3d9355a
6053cef7fc0b063a6105cd38659ba082ee706335
/tweettools/blockmute.py
945725ca153e6f977a12db922ae170e6fb90aabe
[ "MIT" ]
permissive
jdidion/blockmute
18dd24535d75d6c8998a432a1a5b657a3e91b93f
05984da637206d2bc5c69d2f68b10a1df4f9985f
refs/heads/main
2021-01-19T19:52:16.657531
2018-04-29T01:20:39
2018-04-29T01:20:39
101,212,612
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
#!/usr/bin/env python # Block everyone you've muted, and vice-versa. from argparse import ArgumentParser import time from tqdm import tqdm from tweettools import get_client def blockmute(api, sleep_secs=300): mutes = set(api.GetMutesIDs()) blocks = set(api.GetBlocksIDs()) new_blocks = mutes - blocks for user_id in tqdm(new_blocks): while True: try: api.CreateBlock(user_id) break except: print("Exceeded rate limit; sleeping for {} seconds".format(sleep_secs)) time.sleep(sleep_secs) new_mutes = blocks - mutes for user_id in tqdm(new_mutes): while True: try: api.CreateMute(user_id) break except: print("Exceeded rate limit; sleeping for {} seconds".format(sleep_secs)) time.sleep(sleep_secs) def main(): parser = ArgumentParser() parser.add_argument('-ck', '--consumer-key') parser.add_argument('-cs', '--consumer-secret') parser.add_argument('-tk', '--token-key', default=None) parser.add_argument('-ts', '--token-secret', default=None) parser.add_argument('-s', '--sleep-secs', type=int, default=15*60) args = parser.parse_args() api = get_client(args.token_key, args.token_secret, args.consumer_key, args.consumer_secret) blockmute(api, sleep_secs=args.sleep_secs) if __name__ == '__main__': main()
b5722af8ed32f8e2da48f5c2d6fcd13c8de9701f
52d324c6c0d0eb43ca4f3edc425a86cdc1e27d78
/scripts/asos/archive_quantity.py
9c22be17d7528b94acd44e3f1e30933859ee8315
[ "MIT" ]
permissive
deenacse/iem
992befd6d95accfdadc34fb7928d6b69d661d399
150512e857ca6dca1d47363a29cc67775b731760
refs/heads/master
2021-02-04T04:20:14.330527
2020-02-26T21:11:32
2020-02-26T21:11:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,342
py
""" Create a simple prinout of observation quanity in the database """ from __future__ import print_function import sys import datetime import numpy as np from pyiem.util import get_dbconn class bcolors: """Kind of hacky""" HEADER = "\033[95m" OKBLUE = "\033[94m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" def d(hits, total): """another hack""" if total == 0: return " N/A" val = hits / float(total) c1 = bcolors.ENDC if val > 0.5: c1 = bcolors.FAIL return "%s%.2f%s" % (c1, val, bcolors.ENDC) def main(argv): """Go Main Go""" now = datetime.datetime.utcnow() counts = np.zeros((120, 12)) mslp = np.zeros((120, 12)) metar = np.zeros((120, 12)) pgconn = get_dbconn("asos", user="nobody") acursor = pgconn.cursor() stid = argv[1] acursor.execute( """ SELECT extract(year from valid) as yr, extract(month from valid) as mo, count(*), sum(case when mslp is null or mslp < 1 then 1 else 0 end), sum(case when metar is null or metar = '' then 1 else 0 end) from alldata WHERE station = %s GROUP by yr, mo ORDER by yr ASC, mo ASC """, (stid,), ) for row in acursor: counts[int(row[0] - 1900), int(row[1] - 1)] = row[2] mslp[int(row[0] - 1900), int(row[1] - 1)] = row[3] metar[int(row[0] - 1900), int(row[1] - 1)] = row[4] print("Observation Count For %s" % (stid,)) print("YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC") output = False for i in range(120): year = 1900 + i if year > now.year: continue if not output and np.max(counts[i, :]) == 0: continue output = True if len(argv) < 3: print( ("%s %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i") % ( year, counts[i, 0], counts[i, 1], counts[i, 2], counts[i, 3], counts[i, 4], counts[i, 5], counts[i, 6], counts[i, 7], counts[i, 8], counts[i, 9], counts[i, 10], counts[i, 11], ) ) else: if argv[2] == "metar": data = metar else: data = mslp print( ("%s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s") % ( year, d(data[i, 0], counts[i, 0]), d(data[i, 1], counts[i, 1]), d(data[i, 2], counts[i, 2]), d(data[i, 3], counts[i, 3]), d(data[i, 4], counts[i, 4]), d(data[i, 5], counts[i, 5]), d(data[i, 6], counts[i, 6]), d(data[i, 7], counts[i, 7]), d(data[i, 8], counts[i, 8]), d(data[i, 9], counts[i, 9]), d(data[i, 10], counts[i, 10]), d(data[i, 11], counts[i, 11]), ) ) if __name__ == "__main__": main(sys.argv)
2d83f6345f4629fb349ea3e2aa1ecd09b77cec8b
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/services/services/account_budget_proposal_service/transports/base.py
86d3e463eb723e6cf5e1dcff665b4d0e784c1fce
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,334
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources import google.auth # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.ads.googleads.v8.resources.types import account_budget_proposal from google.ads.googleads.v8.services.types import account_budget_proposal_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-ads', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class AccountBudgetProposalServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for AccountBudgetProposalService.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/adwords', ) def __init__( self, *, host: str = 'googleads.googleapis.com', credentials: ga_credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_account_budget_proposal: gapic_v1.method.wrap_method( self.get_account_budget_proposal, default_timeout=None, client_info=client_info, ), self.mutate_account_budget_proposal: gapic_v1.method.wrap_method( self.mutate_account_budget_proposal, default_timeout=None, client_info=client_info, ), } @property def get_account_budget_proposal(self) -> typing.Callable[ [account_budget_proposal_service.GetAccountBudgetProposalRequest], account_budget_proposal.AccountBudgetProposal]: raise NotImplementedError @property def mutate_account_budget_proposal(self) -> typing.Callable[ [account_budget_proposal_service.MutateAccountBudgetProposalRequest], account_budget_proposal_service.MutateAccountBudgetProposalResponse]: raise NotImplementedError __all__ = ( 'AccountBudgetProposalServiceTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
cc472b1754e73618c88e880b49f00b891157f7e0
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/image_classification/DPN-68_ID1889_for_PyTorch/timm/data/dataset.py
4b32a3a0617ad45b963c62d5fc03f7d56de6b2f8
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license", "LGPL-2.0-or-later", "CC-BY-NC-4.0" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,548
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # """ Quick n Simple Image Folder, Tarfile based DataSet Hacked together by / Copyright 2020 Ross Wightman """ import torch.utils.data as data import os import torch import logging from PIL import Image from .parsers import create_parser import torch.npu import os NPU_CALCULATE_DEVICE = 0 if os.getenv('NPU_CALCULATE_DEVICE') and str.isdigit(os.getenv('NPU_CALCULATE_DEVICE')): NPU_CALCULATE_DEVICE = int(os.getenv('NPU_CALCULATE_DEVICE')) if torch.npu.current_device() != NPU_CALCULATE_DEVICE: torch.npu.set_device(f'npu:{NPU_CALCULATE_DEVICE}') _logger = logging.getLogger(__name__) _ERROR_RETRY = 50 class ImageDataset(data.Dataset): def __init__( self, root, parser=None, class_map='', load_bytes=False, transform=None, ): if parser is None or isinstance(parser, str): parser = create_parser(parser or '', root=root, class_map=class_map) self.parser = parser self.load_bytes = load_bytes self.transform = transform self._consecutive_errors = 0 def __getitem__(self, index): img, target = self.parser[index] try: img = img.read() if self.load_bytes else Image.open(img).convert('RGB') except Exception as e: _logger.warning(f'Skipped sample (index {index}, file {self.parser.filename(index)}). {str(e)}') self._consecutive_errors += 1 if self._consecutive_errors < _ERROR_RETRY: return self.__getitem__((index + 1) % len(self.parser)) else: raise e self._consecutive_errors = 0 if self.transform is not None: img = self.transform(img) if target is None: target = torch.tensor(-1, dtype=torch.long) return img, target def __len__(self): return len(self.parser) def filename(self, index, basename=False, absolute=False): return self.parser.filename(index, basename, absolute) def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class IterableImageDataset(data.IterableDataset): def __init__( self, root, parser=None, split='train', is_training=False, batch_size=None, class_map='', load_bytes=False, repeats=0, transform=None, ): assert parser is not None if isinstance(parser, str): self.parser = create_parser( parser, root=root, split=split, is_training=is_training, batch_size=batch_size, repeats=repeats) else: self.parser = parser self.transform = transform self._consecutive_errors = 0 def __iter__(self): for img, target in self.parser: if self.transform is not None: img = self.transform(img) if target is None: target = torch.tensor(-1, dtype=torch.long) yield img, target def __len__(self): if hasattr(self.parser, '__len__'): return len(self.parser) else: return 0 def filename(self, index, basename=False, absolute=False): assert False, 'Filename lookup by index not supported, use filenames().' def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class AugMixDataset(torch.utils.data.Dataset): """Dataset wrapper to perform AugMix or other clean/augmentation mixes""" def __init__(self, dataset, num_splits=2): self.augmentation = None self.normalize = None self.dataset = dataset if self.dataset.transform is not None: self._set_transforms(self.dataset.transform) self.num_splits = num_splits def _set_transforms(self, x): assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' self.dataset.transform = x[0] self.augmentation = x[1] self.normalize = x[2] @property def transform(self): return self.dataset.transform @transform.setter def transform(self, x): self._set_transforms(x) def _normalize(self, x): return x if self.normalize is None else self.normalize(x) def __getitem__(self, i): x, y = self.dataset[i] # all splits share the same dataset base transform x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) # run the full augmentation on the remaining splits for _ in range(self.num_splits - 1): x_list.append(self._normalize(self.augmentation(x))) return tuple(x_list), y def __len__(self): return len(self.dataset)
50c5dd1046b86e17916c7169ac1be8c2aa36dc0b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/49/usersdata/107/19461/submittedfiles/pico.py
d085c047956c05bb79cd9376fc75eadbc27af13d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
# -*- coding: utf-8 -*- from __future__ import division def pico(a): posicao=0 for i in range (0,len(a)-1,1): if a[i]> a[i+1]: posicao=i break cont=0 for i in range (posicao,len(a)-1,1): if a[i] <= a[i+1]: cont=cont+1 if cont==0 and posicao !=0: return True else: return False n = input('digite a quantidade de elemento') a=[] for i in range (0,n,1): a.append(input('a:')) if pico (a): print ('S') else: primt ('N') n = input('Digite a quantidade de elementos da lista: ') #CONTINUE...
4101fd7aac1737d98b2dfafe6118696400bd4e4a
844e0cd4ffbe1ead05b844508276f66cc20953d5
/test/testconfigurationmanager.py
e9fae9d325da652711c99ddbfa3770ec19e87574
[]
no_license
Archanciel/cryptopricer
a256fa793bb1f2d65b5c032dd81a266ee5be79cc
00c0911fe1c25c1da635dbc9b26d45be608f0cc5
refs/heads/master
2022-06-29T13:13:22.435670
2022-05-11T20:37:43
2022-05-11T20:37:43
100,196,449
2
1
null
null
null
null
UTF-8
Python
false
false
5,083
py
import unittest import os, sys, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from configurationmanager import ConfigurationManager class TestConfigurationManager(unittest.TestCase): def setUp(self): if os.name == 'posix': self.filePath = '/sdcard/cryptopricer_test.ini' else: self.filePath = 'c:\\temp\\cryptopricer_test.ini' def testConfigurationManagerInstanciation(self): self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationNoConfigFile(self): os.remove(self.filePath) self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationEmptyConfigFile(self): open(self.filePath, 'w').close() self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationOneMissingKey(self): #removing second line in config file with open(self.filePath, 'r') as configFile: lines = configFile.readlines() with open(self.filePath, 'w') as configFile: # first line contains [General] section name ! configFile.write(''.join(lines[0:1] + lines[2:])) self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') if __name__ == '__main__': #unittest.main() tst = TestConfigurationManager() tst.setUp() tst.testConfigurationManagerInstanciationEmptyConfigFile()
066554d6b1f8b0a91a6ca227d27ae0ea8cfbd211
9a1b033774e371bd6442048f43e862dfb71abed7
/Comprehensions/Lab/Flattening_Matrix.py
57887545e4a87d7ca53a75baebc41865c380cf13
[]
no_license
mialskywalker/PythonAdvanced
ea4fde32ba201f6999cd0d59d1a95f00fb5f674b
c74ad063154c94b247aaf73b7104df9c6033b1a5
refs/heads/master
2023-03-09T00:13:28.471328
2021-02-24T15:21:11
2021-02-24T15:21:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
n = int(input()) matrix = [[int(j) for j in input().split(', ')] for i in range(n)] flat = [x for row in matrix for x in row] print(flat)
a25b6496f12166e06a56177364a4c1ecfbc4a31f
ffd5e689f88c49ab7af3554c22dc0c36301084fa
/thinking_and_testing_uniq_or_not_uniq.py
d7b067767d0bea11d3b61a30da4b020ac1ca2f17
[]
no_license
ellismckenzielee/codewars-python
1710e6f0499047139479de386927c7dbd5f1cdf6
af3f4b4534798a58115d0565730aae28ce87437e
refs/heads/master
2023-08-09T13:38:40.964141
2023-08-01T14:45:22
2023-08-01T14:45:22
168,981,376
45
18
null
null
null
null
UTF-8
Python
false
false
199
py
#thinking and testing: uniq or not uniq kata #https://www.codewars.com/kata/56d949281b5fdc7666000004 def testit(a, b): a = list(set(a)) b = list(set(b)) a.extend(b) return sorted(a)
211c727e8d52656e27ff87503013df32b74cd429
bc54edd6c2aec23ccfe36011bae16eacc1598467
/simscale_sdk/models/flow_rate_mean_outlet_vbc.py
e896a0e17e908cfccdaca58f5a681e31f2fb9e87
[ "MIT" ]
permissive
SimScaleGmbH/simscale-python-sdk
4d9538d5efcadae718f12504fb2c7051bbe4b712
6fe410d676bf53df13c461cb0b3504278490a9bb
refs/heads/master
2023-08-17T03:30:50.891887
2023-08-14T08:09:36
2023-08-14T08:09:36
331,949,105
17
5
null
null
null
null
UTF-8
Python
false
false
4,305
py
# coding: utf-8 """ SimScale API The version of the OpenAPI document: 0.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from simscale_sdk.configuration import Configuration class FlowRateMeanOutletVBC(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'flow_rate': 'OneOfFlowRateMeanOutletVBCFlowRate' } attribute_map = { 'type': 'type', 'flow_rate': 'flowRate' } def __init__(self, type='FLOW_RATE_MEAN_OUTLET_VELOCITY', flow_rate=None, local_vars_configuration=None): # noqa: E501 """FlowRateMeanOutletVBC - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._flow_rate = None self.discriminator = None self.type = type if flow_rate is not None: self.flow_rate = flow_rate @property def type(self): """Gets the type of this FlowRateMeanOutletVBC. # noqa: E501 Schema name: FlowRateMeanOutletVBC # noqa: E501 :return: The type of this FlowRateMeanOutletVBC. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this FlowRateMeanOutletVBC. Schema name: FlowRateMeanOutletVBC # noqa: E501 :param type: The type of this FlowRateMeanOutletVBC. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and type is None: # noqa: E501 raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def flow_rate(self): """Gets the flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :return: The flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :rtype: OneOfFlowRateMeanOutletVBCFlowRate """ return self._flow_rate @flow_rate.setter def flow_rate(self, flow_rate): """Sets the flow_rate of this FlowRateMeanOutletVBC. :param flow_rate: The flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :type: OneOfFlowRateMeanOutletVBCFlowRate """ self._flow_rate = flow_rate def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FlowRateMeanOutletVBC): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FlowRateMeanOutletVBC): return True return self.to_dict() != other.to_dict()
[ "simscale" ]
simscale
e5bc633da5a7a8bc72a5896a2acd1b80d49ca5f1
91fb65972d69ca25ddd892b9d5373919ee518ee7
/python-training-courses/pfc-sample-programs/func_example_002_a_with_its_use.py
fa56a44bfd53a1e492b260df8427a8512dba5dd3
[]
no_license
zeppertrek/my-python-sandpit
c36b78e7b3118133c215468e0a387a987d2e62a9
c04177b276e6f784f94d4db0481fcd2ee0048265
refs/heads/master
2022-12-12T00:27:37.338001
2020-11-08T08:56:33
2020-11-08T08:56:33
141,911,099
0
0
null
2022-12-08T04:09:28
2018-07-22T16:12:55
Python
UTF-8
Python
false
false
867
py
# func_example_002_a_with_its_use.py # refer to func_example_002_without_its_use.py # # Passing variable number of arguments to the function def add_numbers (*myNumbers): sum = 0 for i in myNumbers: sum = sum + i return sum num01, num02, num03, num04, num05, num06, num07, num08, num09, num10 = 1,2,3,4,5,6,7,8,9,10 # Calculate and Print sum of the first 5 numbers sum1 = add_numbers (num01, num02, num03, num04, num05) print ("Sum of the first 5 numbers is - ", sum1 ) # Calculate and Print sum of the numbers from 6 to 10 sum2 = add_numbers (num06, num07, num08, num09, num10) print ("Sum of the numbers from 6 to 10 - ", sum2 ) # Calculate and Print sum of the numbers in odd positions sum3 = add_numbers (num01, num03, num05, num07, num09) print ("Sum of the numbers in odd positions - ", sum3)
453574190afbadf01fad742c24929e94bf313b5f
baed2c2da1f776c0968d3cacd2fa45bdbe5482d6
/S4cam/groupedCameras/TMP/legacy_designs/TMP_baseline_rev_multicam_test3_elliptical_stop_leaders_8_39/elliptical_aperture/3_mk_merit_func_align_prism_and_set_margin.py
e83b329923c4042e2689350f76cda65679e0d9ef
[]
no_license
patogallardo/zemax_tools
5ae2fe9a1e8b032684b8cf57457ee4f3239d9141
90d309c2f96c94469963eb905844d76fa2137bf9
refs/heads/master
2023-01-08T22:52:16.865852
2022-12-20T21:36:28
2022-12-20T21:36:28
234,634,525
7
3
null
null
null
null
UTF-8
Python
false
false
8,451
py
import zmx_api import zmx # noqa import numpy as np import matplotlib.pyplot as plt import pandas as pd from progressbar import progressbar import os XRADIUS = 2500 YRADIUS = 2747 TARGET_KEEPOUT_RADIUS_MM = 150.0 def eval_distance_to_rim(max_rs, MFE, surfnum): qsum_rownums = [] radius_rownums = [] MFE.AddOperand() for j_field in range(len(max_rs)): op_x = MFE.AddOperand() rownum_x = op_x.OperandNumber op_x.ChangeType(REAX) op_x.GetOperandCell(2).IntegerValue = surfnum op_x.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op_x.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op_x.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op_x.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op_x.Weight = 0.0 op_y = MFE.AddOperand() rownum_y = op_y.OperandNumber op_y.ChangeType(REAY) op_y.GetOperandCell(2).IntegerValue = surfnum op_y.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op_y.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op_y.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op_y.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op_y.Weight = 0.0 op_qsum = MFE.AddOperand() op_qsum.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.QSUM) op_qsum.GetOperandCell(2).IntegerValue = rownum_x op_qsum.GetOperandCell(3).IntegerValue = rownum_y op_qsum.Weight = 0.0 MFE.CalculateMeritFunction() y = op_y.Value x = op_x.Value angle = np.arctan2(y, x) r = np.sqrt((XRADIUS*np.cos(angle))**2 + (YRADIUS*np.sin(angle))**2) op_rim = MFE.AddOperand() op_rim.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.CONS) op_rim.Target = r radius_rownums.append(op_rim.OperandNumber) qsum_rownums.append(op_qsum.OperandNumber) for j in range(len(qsum_rownums)): op_diff = MFE.AddOperand() if j == 0: first_diff_rownum = op_diff.OperandNumber if j == len(qsum_rownums) - 1: last_diff_rownum = op_diff.OperandNumber op_diff.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.DIFF) op_diff.GetOperandCell(2).IntegerValue = radius_rownums[j] op_diff.GetOperandCell(3).IntegerValue = qsum_rownums[j] op_diff.Weight = 0.0 op_equa = MFE.AddOperand() op_equa.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.EQUA) op_equa.GetOperandCell(2).IntegerValue = first_diff_rownum op_equa.GetOperandCell(3).IntegerValue = last_diff_rownum op_equa.Weight = 1.0e-4 op_min = MFE.AddOperand() op_min.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.MINN) op_min.GetOperandCell(2).IntegerValue = first_diff_rownum op_min.GetOperandCell(3).IntegerValue = last_diff_rownum op_min.Weight = 1.0 op_min.Target = TARGET_KEEPOUT_RADIUS_MM op_opgt = MFE.AddOperand() op_opgt.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OPGT) op_opgt.Target = 140 op_opgt.Weight = 1e12 op_opgt.GetOperandCell(2).IntegerValue = op_min.OperandNumber op_oplt = MFE.AddOperand() op_oplt.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OPLT) op_oplt.Target = 1200. op_oplt.Weight = 1e12 op_oplt.GetOperandCell(2).IntegerValue = op_min.OperandNumber def find_max_radius_fields(df, x_mean, y_mean): max_rs = [] gs = df.groupby(['px', 'py']) for g in gs: r = np.sqrt((x_mean - g[1].x)**2 + (y_mean-g[1].y)**2) ind = r.idxmax() max_rs.append(g[1].loc[ind]) max_rs = pd.DataFrame(max_rs) return max_rs def plot_rim(active_conf, df, max_rs): fname_plotout = os.path.join(MF_DIROUT, "footprint_rim_conf%02i.png" % active_conf) # noqa plt.gca().set_aspect('equal') plt.scatter(df.x, df.y, marker='.') plt.scatter(max_rs.x, max_rs.y, marker='.') plt.title("configuration number: %i" % active_conf) plt.xlim([-3000, 3000]) plt.savefig(fname_plotout) plt.close() def eval_rim_centroid(max_rs, MFE, surfnum, REAXORY): for j_field in range(len(max_rs)): op = MFE.AddOperand() if j_field == 0: row_start = op.OperandNumber if j_field == len(max_rs) - 1: row_end = op.OperandNumber op.ChangeType(REAXORY) op.GetOperandCell(2).IntegerValue = surfnum op.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op.Weight = 0.0 op = MFE.AddOperand() op.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OSUM) op.GetOperandCell(2).IntegerValue = row_start op.GetOperandCell(3).IntegerValue = row_end op.Weight = 10.0 MKPLOT = True RUNOPTIMIZER = False MK_MERITFUNCTIONS = True mce_rows_to_optimize = [19, 20] TheSystem, ZOSAPI, ZOSAPI_NetHelper = zmx_api.connect_zmx_interactive() MFE = TheSystem.MFE MCE = TheSystem.MCE REAX = ZOSAPI.Editors.MFE.MeritOperandType.REAX REAY = ZOSAPI.Editors.MFE.MeritOperandType.REAY surfnum = 44 wavenum = 1 t = np.linspace(0, 2*np.pi, 32)[:-1] rs = np.linspace(0, 1, 4)[:-1] Pxs = np.cos(t) Pys = np.sin(t) Hxs = np.concatenate([np.cos(t) * r for r in rs]) Hys = np.concatenate([np.sin(t) * r for r in rs]) MF_DIROUT = './center_pri_footprint/' if not os.path.exists(MF_DIROUT): os.mkdir(MF_DIROUT) if MK_MERITFUNCTIONS: for active_conf in progressbar(range(1, 86)): # MFE.GetOperandAt(1).GetOperandCell(2).IntegerValue = 1 MCE.SetCurrentConfiguration(active_conf) px_out, py_out, hx_out, hy_out, x, y = [], [], [], [], [], [] for (Hx, Hy) in zip(Hxs, Hys): for (Px, Py) in zip(Pxs, Pys): valx = MFE.GetOperandValue(REAX, surfnum, wavenum, Hx, Hy, Px, Py, 0, 0) valy = MFE.GetOperandValue(REAY, surfnum, wavenum, Hx, Hy, Px, Py, 0, 0) px_out.append(Px) py_out.append(Py) hx_out.append(Hx) hy_out.append(Hy) x.append(valx) y.append(valy) stopval = MFE.GetOperandValue(REAX, 6, 1, 0, 0, 1, 0, 0, 0) df = pd.DataFrame({'hx': hx_out, 'hy': hy_out, 'px': px_out, 'py': py_out, 'x': x, 'y': y}) x_mean, y_mean = df.x.mean(), df.y.mean() max_rs = find_max_radius_fields(df, x_mean, y_mean) x_mean, y_mean = max_rs.x.mean(), max_rs.y.mean() max_rs = find_max_radius_fields(df, x_mean, y_mean) if MKPLOT: plot_rim(active_conf, df, max_rs) # now clear merit function and write up a new one MFE.RemoveOperandsAt(1, MFE.NumberOfOperands) MFE.AddOperand() MFE.GetOperandAt(1).GetOperandCell(2).IntegerValue = active_conf MFE.AddOperand() op_cvig = MFE.AddOperand() op_svig = MFE.AddOperand() op_cvig.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.CVIG) op_svig.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.SVIG) op_svig.GetOperandCell(2).IntegerValue = 2 eval_rim_centroid(max_rs, MFE, surfnum, REAX) eval_rim_centroid(max_rs, MFE, surfnum, REAY) eval_distance_to_rim(max_rs, MFE, surfnum) mf_fnameout = os.path.abspath(os.path.join(MF_DIROUT, "MF_conf%02i.MF" % active_conf)) # noqa MFE.SaveMeritFunction(mf_fnameout) if RUNOPTIMIZER: for active_conf in progressbar(range(1, 86)): mf_fnameout = os.path.abspath(os.path.join(MF_DIROUT, "MF_conf%02i.MF" % active_conf)) MFE.LoadMeritFunction(mf_fnameout) TheSystem.Tools.RemoveAllVariables() zmx.set_variables_or_const(mce_rows_to_optimize, active_conf, MCE, ZOSAPI, vars=True) zmx.zemax_optimize(TheSystem, ZOSAPI)
bf4ab1b554798c38423c6b25ffc2e3404c7b9980
eea1be5dbac7fa10167eae167eb6712e3937f53a
/siteuser/utils/models.py
607ac2c9399c5f052d881715a70bed9367b4b671
[]
no_license
chidimo/Voidcoin
40962e46661b2a7106bd8e60d0830c3b9629b8fa
227c160dfa671818522781aab013f2d1fcb098a9
refs/heads/develop
2022-12-09T17:40:26.294425
2019-07-04T08:32:20
2019-07-04T08:32:20
135,197,447
5
2
null
2022-12-08T02:08:45
2018-05-28T18:45:19
Python
UTF-8
Python
false
false
441
py
from django.db import models from django.utils.translation import ugettext_lazy as _ from .fields import AutoCreatedField, AutoLastModifiedField class TimeStampedModel(models.Model): """ An abstract base class model that provides self-updating ``created`` and ``modified`` fields. """ created = AutoCreatedField(_('created')) modified = AutoLastModifiedField(_('modified')) class Meta: abstract = True
c96baa39b9776108de52e68614ff8a956ef413f8
444a9480bce2035565332d4d4654244c0b5cd47b
/research/recommend/JEPOO/model/mel.py
3581eddba520c6e2403c416cad136096a7b09a35
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
3,514
py
# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.nn as nn import mindspore as ms from mindspore import ops from librosa.filters import mel from librosa.util import pad_center from scipy.signal import get_window class STFT(nn.Cell): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length, hop_length, win_length=None, window='hann'): super(STFT, self).__init__() if win_length is None: win_length = filter_length self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:self.cutoff, :]), np.imag(fourier_basis[:self.cutoff, :])]) self.forward_basis = ms.Tensor(fourier_basis[:, None, :], ms.float32) if window is not None: assert filter_length >= win_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = ms.Tensor(fft_window, ms.float32) self.forward_basis *= fft_window def construct(self, input_data): input_data = ops.expand_dims(input_data, 1) input_data = ops.Pad(((0, 0), (0, 0), (int(self.filter_length / 2), int(self.filter_length / 2))))(input_data) forward_transform = nn.Conv1d(1, self.cutoff * 2, self.win_length, stride=self.hop_length, pad_mode='valid', weight_init=self.forward_basis)(input_data) real_part = forward_transform[:, :self.cutoff, :] imag_part = forward_transform[:, self.cutoff:, :] magnitude = ops.sqrt(real_part**2 + imag_part**2) phase = ops.atan2(imag_part, real_part) return magnitude, phase class MelSpectrogram(nn.Cell): def __init__(self, n_mels, sample_rate, filter_length, hop_length, win_length=None, mel_fmin=0.0, mel_fmax=None): super(MelSpectrogram, self).__init__() self.stft = STFT(filter_length, hop_length, win_length) mel_basis = mel(sample_rate, filter_length, n_mels, mel_fmin, mel_fmax, htk=True) self.mel_basis = ms.Tensor(mel_basis, ms.float32) self.min_bound = ms.Tensor(1e-5, ms.float32) def construct(self, y): magnitudes, _ = self.stft(y) mel_output = ops.matmul(self.mel_basis, magnitudes) mel_output = ops.clip_by_value(mel_output, clip_value_min=self.min_bound) mel_output = ops.log(mel_output) return mel_output
408eefcd98a92dd07cb9fa4f21371235a339bf84
d032bc0c01a7cd598481644e22043de8df4c71c4
/consultant_app/versatilimagefield.py
90f5c5be364e762bcd094b0cd36c0169a6108c18
[]
no_license
amrit-kumar/project-for-engineering
eb5f410cd2f0a271633fb6c24132a36e6215f0e0
7e975866e540ab4625e735009fdba971df74e393
refs/heads/master
2020-12-03T01:49:02.429186
2017-06-30T09:09:46
2017-06-30T09:09:46
95,863,800
0
1
null
null
null
null
UTF-8
Python
false
false
1,467
py
import io from io import StringIO from PIL import Image # from StringIO import StringIO from .views import * from versatileimagefield.datastructures import SizedImage from django.utils.datastructures import * from versatileimagefield.fields import VersatileImageField from versatileimagefield.registry import versatileimagefield_registry # Unregistering the 'crop' Sizer # versatileimagefield_registry.unregister_sizer('crop') # Registering a custom 'crop' Sizer # versatileimagefield_registry.register_sizer('crop', SomeCustomSizedImageCls) class ThumbnailImage(SizedImage): """ Sizes an image down to fit within a bounding box See the `process_image()` method for more information """ filename_key = 'thumbnail' def process_image(self, image, image_format, save_kwargs, width=400, height=400): """ Returns a StringIO instance of `image` that will fit within a bounding box as specified by `width`x`height` """ imagefile = io.BytesIO() image.thumbnail( (width, height), Image.ANTIALIAS ) image.save( imagefile, **save_kwargs ) return imagefile # Registering the ThumbnailSizer to be available on VersatileImageField # via the `thumbnail` attribute versatileimagefield_registry.unregister_sizer('thumbnail') versatileimagefield_registry.register_sizer('thumbnail', ThumbnailImage)
0c8153f27fb67a668ee75237e7cd43c5388cfa62
92773cbdd70812f45e1b9b97bbc024aee4b4b18d
/Chapter7. Iteration/loop.py
8765dd5a07dd4c28348fbcf1c1cc68b803ce3fd9
[]
no_license
Abu-Kaisar/Python3Programming--Coursera
e46edc86294ac76109a89b2cb02e8b6af178dcce
e1b93899c4f507b9b32091283951e761e182b97a
refs/heads/master
2022-11-21T07:40:28.985698
2020-07-19T04:07:51
2020-07-19T04:07:51
280,787,750
0
0
null
2020-07-19T03:58:52
2020-07-19T03:58:52
null
UTF-8
Python
false
false
476
py
# mylist = ["yo","mujju","salman","thuss"] # for i in mylist: # print("Hi", i ,"Dawat hai kheenchny aao") # mylist = "dgsadafdua" # for char in mylist: # print("Hi", char ) s = "python rocks" for ch in s: print("HELLO") import turtle # set up alex wn = turtle.Screen() mujju = turtle.Turtle() for aColor in ["yellow", "red", "purple", "blue"]: alex.color(aColor) # repeat four times mujju.forward(50) mujju.left(90) wn.exitonclick()
a0053fe45551ebe58fb97b17632014d320aff29c
5ebbad9b3a6664a65d1ebb50056f83fe50435d3a
/Open Elective Python/Unit 3/7.py
215ba42a02c60afd4c2107dbe91ea45345e874e2
[]
no_license
jugal13/Python_Lab
5892c6f2c77d0222a6b31bc40774d24b46f86475
f8b96b3ecf1b913f4121e8e6d89b1a610f4ecba2
refs/heads/master
2023-03-01T03:53:30.889295
2021-02-10T14:42:09
2021-02-10T14:42:09
145,228,905
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
import time millis = int(round(time.time() * 1000)) print(millis)
d533929137010a828e0c1fe70530eb874680c0e9
ca5fc43049f94a794d90a561fd8126f02b603599
/i3py/core/features/options.py
cdcfff349c6f5457d6e1affa7b82a7ef3f760806
[ "BSD-3-Clause" ]
permissive
Exopy/i3py
32d9ee343d21d275680a2d030b660a80960e99ac
6f004d3e2ee2b788fb4693606cc4092147655ce1
refs/heads/master
2022-02-18T21:51:16.423188
2019-08-28T23:51:02
2019-08-28T23:51:02
63,874,745
1
0
BSD-3-Clause
2018-05-23T09:45:26
2016-07-21T14:07:58
Python
UTF-8
Python
false
false
1,960
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2016-2018 by I3py Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Feature for instrument options. """ from typing import Any, Union, Optional, Dict, Tuple from .feature import Feature from ..abstracts import AbstractOptions class Options(Feature): """Feature used to access the options of an instrument. Options in I3py are considered static (ie related to the hardware or firmware) and are hence read only. Because there is no generic pattern in the formatting of the options, the user is expected to implement manually the getter function. Parameters ---------- names : dict Names of the different options, as returned by this feature. Hint about the possible values can be provided as a type or a tuple of values. """ def __init__(self, getter: Any=True, setter: Any=None, names: Dict[str, Optional[Union[type, tuple]]]={}, extract: str='', retries: int=0, checks: Optional[str]=None, discard: Optional[Union[Tuple[str, ...], Dict[str, Tuple[str, ...]]]]=None, options: Optional[str]=None) -> None: if setter is not None: raise ValueError('Options is read-only can have a setter.') if not names: raise ValueError('No names were provided for Options') Feature.__init__(self, getter, None, extract, retries, checks, discard, options) self.creation_kwargs['names'] = names self.names = names AbstractOptions.register(Options)
674f90b04e7ff3a972ebfdec9636df1d6f7d64f7
77de0b8daf81dd83022015f1f2e52a2d2a81f3ee
/MeasureeMapQV.py
b027924c4517d5be8f15ab0efe1c74fbe9f3b320
[ "MIT" ]
permissive
JinfengChen/chm1_scripts
83a2f183f63d65e28fa402a01914aacb12894aa5
55d1783139f4ccc6e41c79812920785b1eaea65e
refs/heads/master
2020-12-25T22:47:13.831530
2014-09-26T18:59:20
2014-09-26T18:59:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
#!/usr/bin/env python import pysam
afce243a4d7ee76553735dace72d9cef5b52557d
28e8ab381a8c1b4321cd83acff6aa33468166d6b
/python3.4Smartforest/lib/python3.4/site-packages/django/contrib/contenttypes/fields.py
0e221dbc92678bea486b69b37beddeebeb62fc33
[ "MIT" ]
permissive
letouriste001/SmartForest_2.0
343e13bc085d753be2af43aecfb74a5fffaa5e3b
109b78bf1e8c8404800f377ab969395ccbb617be
refs/heads/master
2020-12-21T16:54:22.865824
2016-08-11T14:17:45
2016-08-11T14:17:45
59,734,259
0
0
null
null
null
null
UTF-8
Python
false
false
24,528
py
from __future__ import unicode_literals from collections import defaultdict from django.contrib.contenttypes.models import ContentType from django.core import checks from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist from django.db import DEFAULT_DB_ALIAS, models, router, transaction from django.db.models import DO_NOTHING, signals from django.db.models.base import ModelBase, make_foreign_order_accessors from django.db.models.fields.related import ( ForeignObject, ForeignObjectRel, ReverseManyToOneDescriptor, lazy_related_operation, ) from django.db.models.query_utils import PathInfo from django.utils.encoding import python_2_unicode_compatible, smart_text from django.utils.functional import cached_property @python_2_unicode_compatible class GenericForeignKey(object): """ Provide a generic many-to-one relation through the ``content_type`` and ``object_id`` fields. This class also doubles as an accessor to the related object (similar to ForwardManyToOneDescriptor) by adding itself as a model attribute. """ # Field flags auto_created = False concrete = False editable = False hidden = False is_relation = True many_to_many = False many_to_one = True one_to_many = False one_to_one = False related_model = None remote_field = None def __init__(self, ct_field='content_type', fk_field='object_id', for_concrete_model=True): self.ct_field = ct_field self.fk_field = fk_field self.for_concrete_model = for_concrete_model self.editable = False self.rel = None self.column = None def contribute_to_class(self, cls, name, **kwargs): self.name = name self.model = cls self.cache_attr = "_%s_cache" % name cls._meta.add_field(self, virtual=True) # Only run pre-initialization field assignment on non-abstract models if not cls._meta.abstract: signals.pre_init.connect(self.instance_pre_init, sender=cls) setattr(cls, name, self) def get_filter_kwargs_for_object(self, obj): """See corresponding method on Field""" return { self.fk_field: getattr(obj, self.fk_field), self.ct_field: getattr(obj, self.ct_field), } def get_forward_related_filter(self, obj): """See corresponding method on RelatedField""" return { self.fk_field: obj.pk, self.ct_field: ContentType.objects.get_for_model(obj).pk, } def __str__(self): model = self.model app = model._meta.app_label return '%s.%s.%s' % (app, model._meta.object_name, self.name) def check(self, **kwargs): errors = [] errors.extend(self._check_field_name()) errors.extend(self._check_object_id_field()) errors.extend(self._check_content_type_field()) return errors def _check_field_name(self): if self.name.endswith("_"): return [ checks.Error( 'Field names must not end with an underscore.', hint=None, obj=self, id='fields.E001', ) ] else: return [] def _check_object_id_field(self): try: self.model._meta.get_field(self.fk_field) except FieldDoesNotExist: return [ checks.Error( "The GenericForeignKey object ID references the non-existent field '%s'." % self.fk_field, hint=None, obj=self, id='contenttypes.E001', ) ] else: return [] def _check_content_type_field(self): """ Check if field named `field_name` in model `model` exists and is a valid content_type field (is a ForeignKey to ContentType). """ try: field = self.model._meta.get_field(self.ct_field) except FieldDoesNotExist: return [ checks.Error( "The GenericForeignKey content type references the non-existent field '%s.%s'." % ( self.model._meta.object_name, self.ct_field ), hint=None, obj=self, id='contenttypes.E002', ) ] else: if not isinstance(field, models.ForeignKey): return [ checks.Error( "'%s.%s' is not a ForeignKey." % ( self.model._meta.object_name, self.ct_field ), hint=( "GenericForeignKeys must use a ForeignKey to " "'contenttypes.ContentType' as the 'content_type' field." ), obj=self, id='contenttypes.E003', ) ] elif field.remote_field.model != ContentType: return [ checks.Error( "'%s.%s' is not a ForeignKey to 'contenttypes.ContentType'." % ( self.model._meta.object_name, self.ct_field ), hint=( "GenericForeignKeys must use a ForeignKey to " "'contenttypes.ContentType' as the 'content_type' field." ), obj=self, id='contenttypes.E004', ) ] else: return [] def instance_pre_init(self, signal, sender, args, kwargs, **_kwargs): """ Handle initializing an object with the generic FK instead of content_type and object_id fields. """ if self.name in kwargs: value = kwargs.pop(self.name) if value is not None: kwargs[self.ct_field] = self.get_content_type(obj=value) kwargs[self.fk_field] = value._get_pk_val() else: kwargs[self.ct_field] = None kwargs[self.fk_field] = None def get_content_type(self, obj=None, id=None, using=None): if obj is not None: return ContentType.objects.db_manager(obj._state.db).get_for_model( obj, for_concrete_model=self.for_concrete_model) elif id is not None: return ContentType.objects.db_manager(using).get_for_id(id) else: # This should never happen. I love comments like this, don't you? raise Exception("Impossible arguments to GFK.get_content_type!") def get_prefetch_queryset(self, instances, queryset=None): if queryset is not None: raise ValueError("Custom queryset can't be used for this lookup.") # For efficiency, group the instances by content type and then do one # query per model fk_dict = defaultdict(set) # We need one instance for each group in order to get the right db: instance_dict = {} ct_attname = self.model._meta.get_field(self.ct_field).get_attname() for instance in instances: # We avoid looking for values if either ct_id or fkey value is None ct_id = getattr(instance, ct_attname) if ct_id is not None: fk_val = getattr(instance, self.fk_field) if fk_val is not None: fk_dict[ct_id].add(fk_val) instance_dict[ct_id] = instance ret_val = [] for ct_id, fkeys in fk_dict.items(): instance = instance_dict[ct_id] ct = self.get_content_type(id=ct_id, using=instance._state.db) ret_val.extend(ct.get_all_objects_for_this_type(pk__in=fkeys)) # For doing the join in Python, we have to match both the FK val and the # content type, so we use a callable that returns a (fk, class) pair. def gfk_key(obj): ct_id = getattr(obj, ct_attname) if ct_id is None: return None else: model = self.get_content_type(id=ct_id, using=obj._state.db).model_class() return (model._meta.pk.get_prep_value(getattr(obj, self.fk_field)), model) return (ret_val, lambda obj: (obj._get_pk_val(), obj.__class__), gfk_key, True, self.cache_attr) def is_cached(self, instance): return hasattr(instance, self.cache_attr) def __get__(self, instance, instance_type=None): if instance is None: return self try: return getattr(instance, self.cache_attr) except AttributeError: rel_obj = None # Make sure to use ContentType.objects.get_for_id() to ensure that # lookups are cached (see ticket #5570). This takes more code than # the naive ``getattr(instance, self.ct_field)``, but has better # performance when dealing with GFKs in loops and such. f = self.model._meta.get_field(self.ct_field) ct_id = getattr(instance, f.get_attname(), None) if ct_id is not None: ct = self.get_content_type(id=ct_id, using=instance._state.db) try: rel_obj = ct.get_object_for_this_type(pk=getattr(instance, self.fk_field)) except ObjectDoesNotExist: pass setattr(instance, self.cache_attr, rel_obj) return rel_obj def __set__(self, instance, value): ct = None fk = None if value is not None: ct = self.get_content_type(obj=value) fk = value._get_pk_val() setattr(instance, self.ct_field, ct) setattr(instance, self.fk_field, fk) setattr(instance, self.cache_attr, value) class GenericRel(ForeignObjectRel): """ Used by GenericRelation to store information about the relation. """ def __init__(self, field, to, related_name=None, related_query_name=None, limit_choices_to=None): super(GenericRel, self).__init__( field, to, related_name=related_query_name or '+', related_query_name=related_query_name, limit_choices_to=limit_choices_to, on_delete=DO_NOTHING, ) class GenericRelation(ForeignObject): """ Provide a reverse to a relation created by a GenericForeignKey. """ # Field flags auto_created = False many_to_many = False many_to_one = False one_to_many = True one_to_one = False rel_class = GenericRel def __init__(self, to, object_id_field='object_id', content_type_field='content_type', for_concrete_model=True, related_query_name=None, limit_choices_to=None, **kwargs): kwargs['rel'] = self.rel_class( self, to, related_query_name=related_query_name, limit_choices_to=limit_choices_to, ) kwargs['blank'] = True kwargs['on_delete'] = models.CASCADE kwargs['editable'] = False kwargs['serialize'] = False # This construct is somewhat of an abuse of ForeignObject. This field # represents a relation from pk to object_id field. But, this relation # isn't direct, the join is generated reverse along foreign key. So, # the from_field is object_id field, to_field is pk because of the # reverse join. super(GenericRelation, self).__init__( to, from_fields=[object_id_field], to_fields=[], **kwargs) self.object_id_field_name = object_id_field self.content_type_field_name = content_type_field self.for_concrete_model = for_concrete_model def check(self, **kwargs): errors = super(GenericRelation, self).check(**kwargs) errors.extend(self._check_generic_foreign_key_existence()) return errors def _check_generic_foreign_key_existence(self): target = self.remote_field.model if isinstance(target, ModelBase): fields = target._meta.virtual_fields if any(isinstance(field, GenericForeignKey) and field.ct_field == self.content_type_field_name and field.fk_field == self.object_id_field_name for field in fields): return [] else: return [ checks.Error( ("The GenericRelation defines a relation with the model " "'%s.%s', but that model does not have a GenericForeignKey.") % ( target._meta.app_label, target._meta.object_name ), hint=None, obj=self, id='contenttypes.E004', ) ] else: return [] def resolve_related_fields(self): self.to_fields = [self.model._meta.pk.name] return [(self.remote_field.model._meta.get_field(self.object_id_field_name), self.model._meta.pk)] def get_path_info(self): opts = self.remote_field.model._meta target = opts.pk return [PathInfo(self.model._meta, opts, (target,), self.remote_field, True, False)] def get_reverse_path_info(self): opts = self.model._meta from_opts = self.remote_field.model._meta return [PathInfo(from_opts, opts, (opts.pk,), self, not self.unique, False)] def get_choices_default(self): return super(GenericRelation, self).get_choices(include_blank=False) def value_to_string(self, obj): qs = getattr(obj, self.name).all() return smart_text([instance._get_pk_val() for instance in qs]) def contribute_to_class(self, cls, name, **kwargs): kwargs['virtual_only'] = True super(GenericRelation, self).contribute_to_class(cls, name, **kwargs) self.model = cls setattr(cls, self.name, ReverseGenericManyToOneDescriptor(self.remote_field)) # Add get_RELATED_order() and set_RELATED_order() methods if the model # on the other end of this relation is ordered with respect to this. def matching_gfk(field): return ( isinstance(field, GenericForeignKey) and self.content_type_field_name == field.ct_field and self.object_id_field_name == field.fk_field ) def make_generic_foreign_order_accessors(related_model, model): if matching_gfk(model._meta.order_with_respect_to): make_foreign_order_accessors(model, related_model) lazy_related_operation(make_generic_foreign_order_accessors, self.model, self.remote_field.model) def set_attributes_from_rel(self): pass def get_internal_type(self): return "ManyToManyField" def get_content_type(self): """ Return the content type associated with this field's model. """ return ContentType.objects.get_for_model(self.model, for_concrete_model=self.for_concrete_model) def get_extra_restriction(self, where_class, alias, remote_alias): field = self.remote_field.model._meta.get_field(self.content_type_field_name) contenttype_pk = self.get_content_type().pk cond = where_class() lookup = field.get_lookup('exact')(field.get_col(remote_alias), contenttype_pk) cond.add(lookup, 'AND') return cond def bulk_related_objects(self, objs, using=DEFAULT_DB_ALIAS): """ Return all objects related to ``objs`` via this ``GenericRelation``. """ return self.remote_field.model._base_manager.db_manager(using).filter(**{ "%s__pk" % self.content_type_field_name: ContentType.objects.db_manager(using).get_for_model( self.model, for_concrete_model=self.for_concrete_model).pk, "%s__in" % self.object_id_field_name: [obj.pk for obj in objs] }) class ReverseGenericManyToOneDescriptor(ReverseManyToOneDescriptor): """ Accessor to the related objects manager on the one-to-many relation created by GenericRelation. In the example:: class Post(Model): comments = GenericRelation(Comment) ``post.comments`` is a ReverseGenericManyToOneDescriptor instance. """ @cached_property def related_manager_cls(self): return create_generic_related_manager( self.rel.model._default_manager.__class__, self.rel, ) def create_generic_related_manager(superclass, rel): """ Factory function to create a manager that subclasses another manager (generally the default manager of a given model) and adds behaviors specific to generic relations. """ class GenericRelatedObjectManager(superclass): def __init__(self, instance=None): super(GenericRelatedObjectManager, self).__init__() self.instance = instance self.model = rel.model content_type = ContentType.objects.db_manager(instance._state.db).get_for_model( instance, for_concrete_model=rel.field.for_concrete_model) self.content_type = content_type self.content_type_field_name = rel.field.content_type_field_name self.object_id_field_name = rel.field.object_id_field_name self.prefetch_cache_name = rel.field.attname self.pk_val = instance._get_pk_val() self.core_filters = { '%s__pk' % self.content_type_field_name: content_type.id, self.object_id_field_name: self.pk_val, } def __call__(self, **kwargs): # We use **kwargs rather than a kwarg argument to enforce the # `manager='manager_name'` syntax. manager = getattr(self.model, kwargs.pop('manager')) manager_class = create_generic_related_manager(manager.__class__, rel) return manager_class(instance=self.instance) do_not_call_in_templates = True def __str__(self): return repr(self) def get_queryset(self): try: return self.instance._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): db = self._db or router.db_for_read(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).get_queryset().using(db).filter(**self.core_filters) def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = super(GenericRelatedObjectManager, self).get_queryset() queryset._add_hints(instance=instances[0]) queryset = queryset.using(queryset._db or self._db) query = { '%s__pk' % self.content_type_field_name: self.content_type.id, '%s__in' % self.object_id_field_name: set(obj._get_pk_val() for obj in instances) } # We (possibly) need to convert object IDs to the type of the # instances' PK in order to match up instances: object_id_converter = instances[0]._meta.pk.to_python return (queryset.filter(**query), lambda relobj: object_id_converter(getattr(relobj, self.object_id_field_name)), lambda obj: obj._get_pk_val(), False, self.prefetch_cache_name) def add(self, *objs, **kwargs): bulk = kwargs.pop('bulk', True) db = router.db_for_write(self.model, instance=self.instance) def check_and_update_obj(obj): if not isinstance(obj, self.model): raise TypeError("'%s' instance expected, got %r" % ( self.model._meta.object_name, obj )) setattr(obj, self.content_type_field_name, self.content_type) setattr(obj, self.object_id_field_name, self.pk_val) if bulk: pks = [] for obj in objs: if obj._state.adding or obj._state.db != db: raise ValueError( "%r instance isn't saved. Use bulk=False or save " "the object first." % obj ) check_and_update_obj(obj) pks.append(obj.pk) self.model._base_manager.using(db).filter(pk__in=pks).update(**{ self.content_type_field_name: self.content_type, self.object_id_field_name: self.pk_val, }) else: with transaction.atomic(using=db, savepoint=False): for obj in objs: check_and_update_obj(obj) obj.save() add.alters_data = True def remove(self, *objs, **kwargs): if not objs: return bulk = kwargs.pop('bulk', True) self._clear(self.filter(pk__in=[o.pk for o in objs]), bulk) remove.alters_data = True def clear(self, **kwargs): bulk = kwargs.pop('bulk', True) self._clear(self, bulk) clear.alters_data = True def _clear(self, queryset, bulk): db = router.db_for_write(self.model, instance=self.instance) queryset = queryset.using(db) if bulk: # `QuerySet.delete()` creates its own atomic block which # contains the `pre_delete` and `post_delete` signal handlers. queryset.delete() else: with transaction.atomic(using=db, savepoint=False): for obj in queryset: obj.delete() _clear.alters_data = True def set(self, objs, **kwargs): # Force evaluation of `objs` in case it's a queryset whose value # could be affected by `manager.clear()`. Refs #19816. objs = tuple(objs) bulk = kwargs.pop('bulk', True) clear = kwargs.pop('clear', False) db = router.db_for_write(self.model, instance=self.instance) with transaction.atomic(using=db, savepoint=False): if clear: self.clear() self.add(*objs, bulk=bulk) else: old_objs = set(self.using(db).all()) new_objs = [] for obj in objs: if obj in old_objs: old_objs.remove(obj) else: new_objs.append(obj) self.remove(*old_objs) self.add(*new_objs, bulk=bulk) set.alters_data = True def create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).create(**kwargs) create.alters_data = True def get_or_create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).get_or_create(**kwargs) get_or_create.alters_data = True def update_or_create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).update_or_create(**kwargs) update_or_create.alters_data = True return GenericRelatedObjectManager
865a2ee42ce0b83535aff7031964ddbd3c0e5d36
2aace9bb170363e181eb7520e93def25f38dbe5c
/build/idea-sandbox/system/python_stubs/cache/d7b07d14c6c27a41803588e54091bf9fcf8a2c8736580b3083f089fcd6d4da3f/cython_runtime.py
ddb3e50bb33750fa1bc065bec7db3288f07423db
[]
no_license
qkpqkp/PlagCheck
13cb66fd2b2caa2451690bb72a2634bdaa07f1e6
d229904674a5a6e46738179c7494488ca930045e
refs/heads/master
2023-05-28T15:06:08.723143
2021-06-09T05:36:34
2021-06-09T05:36:34
375,235,940
1
0
null
null
null
null
UTF-8
Python
false
false
274
py
# encoding: utf-8 # module cython_runtime # from C:\Users\Doly\Anaconda3\lib\site-packages\scipy\_lib\_ccallback_c.cp37-win_amd64.pyd # by generator 1.147 # no doc # no imports # Variables with simple values __loader__ = None __spec__ = None # no functions # no classes
220d417e2a532c64b69fe77a6dbb261b6f5561fc
a360a22af5e0b385db438b1324564ef317ff2f38
/bancor_module/migrations/0007_bancor_tsymbol.py
3b1d42b27ed85223c4faa9f0e0b7bf186e2d5cc0
[]
no_license
ogglin/exchange_comparison
3eb2d849e731f94e67509e4ce9130e33bb37bbaf
f3feae64aff26b574f7ecd24e6f7aff7bb95ec65
refs/heads/master
2023-04-26T07:45:06.229584
2021-05-31T18:52:29
2021-05-31T18:52:29
287,036,194
0
1
null
null
null
null
UTF-8
Python
false
false
408
py
# Generated by Django 3.1 on 2021-02-20 09:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bancor_module', '0006_bancor_volume'), ] operations = [ migrations.AddField( model_name='bancor', name='tsymbol', field=models.CharField(blank=True, max_length=100, null=True), ), ]
a230e6aafa3e03bdd9995d307c925a4d98840639
81f8276be090ff9fa960d83db45bfe0b3c69ff39
/test.py
9d480a3922a04ae7c87c67955f1914d97189c9ae
[]
no_license
jon--lee/mlb-call-classifier
1860c15b2f889a2b37daaaaefaed23cb19e808e5
28e15a908127a2ca78de92aee39c5dff516f6bf2
refs/heads/master
2020-06-07T03:04:54.034548
2015-07-23T00:06:54
2015-07-23T00:06:54
38,954,788
1
0
null
null
null
null
UTF-8
Python
false
false
100
py
import classifier import neuralpy import grapher grapher.graph(filepath='results/bucknor-93-R.txt')
eb2e7d1b25fa6419ac1847667a5fe019af42f82f
19bc1dfbf8a8b4b1bfc9d6ead51479c72602b12e
/tests/test_resource_analysis.py
fea2cef5999b8d3a27c8c10067bde6f075b62ce6
[ "MIT" ]
permissive
procha2/caper
a5297d6cfe7cf649ac5ac3544558f513b427713d
e9ea0baa3517178ce7b850df8a59eba6479fbcb6
refs/heads/master
2023-08-10T17:37:40.840958
2021-07-01T22:57:45
2021-07-01T22:57:45
300,260,107
0
0
MIT
2020-10-01T11:48:13
2020-10-01T11:48:12
null
UTF-8
Python
false
false
3,119
py
"""Test is based on a metadata JSON file generated from running atac-seq-pipeline v1.8.0 with the following input JSON. gs://encode-pipeline-test-samples/encode-atac-seq-pipeline/ENCSR356KRQ_subsampled_caper.json """ import pytest from caper.resource_analysis import LinearResourceAnalysis, ResourceAnalysis def test_resource_analysis_abstract_class(gcp_res_analysis_metadata): with pytest.raises(TypeError): # abstract base-class ResourceAnalysis() def test_resource_analysis_analyze_task(gcp_res_analysis_metadata): analysis = LinearResourceAnalysis() analysis.collect_resource_data([gcp_res_analysis_metadata]) result_align1 = analysis.analyze_task( 'atac.align', in_file_vars=['fastqs_R1'], reduce_in_file_vars=None, target_resources=['stats.max.mem', 'stats.mean.cpu_pct'], ) assert result_align1['x'] == {'fastqs_R1': [15643136, 18963919]} assert 'stats.mean.cpu_pct' in result_align1['y'] assert 'stats.max.mem' in result_align1['y'] assert 'stats.max.disk' not in result_align1['y'] assert list(result_align1['y'].keys()) == list(result_align1['coeffs'].keys()) assert result_align1['coeffs']['stats.mean.cpu_pct'][0][0] == pytest.approx( 1.6844513715565233e-06 ) assert result_align1['coeffs']['stats.mean.cpu_pct'][1] == pytest.approx( 42.28561239506905 ) assert result_align1['coeffs']['stats.max.mem'][0][0] == pytest.approx( 48.91222341236991 ) assert result_align1['coeffs']['stats.max.mem'][1] == pytest.approx( 124314029.09791338 ) result_align2 = analysis.analyze_task( 'atac.align', in_file_vars=['fastqs_R2'], reduce_in_file_vars=sum ) assert result_align2['x'] == {'sum(fastqs_R2)': [16495088, 20184668]} assert 'stats.mean.cpu_pct' not in result_align2['y'] assert 'stats.max.mem' in result_align2['y'] assert 'stats.max.disk' in result_align2['y'] assert list(result_align2['y'].keys()) == list(result_align2['coeffs'].keys()) result_align_star = analysis.analyze_task('atac.align*', reduce_in_file_vars=max) assert result_align_star['x'] == { 'max(chrsz,fastqs_R1,fastqs_R2,idx_tar,tmp_fastqs)': [ 32138224, 39148587, 3749246230, 3749246230, ] } def test_resource_analysis_analyze(gcp_res_analysis_metadata): """Test method analyze() which analyze all tasks defined in in_file_vars. """ analysis = LinearResourceAnalysis() analysis.collect_resource_data([gcp_res_analysis_metadata]) result = analysis.analyze( in_file_vars={ 'atac.align*': ['fastqs_R1', 'fastqs_R2'], 'atac.filter*': ['bam'], } ) assert len(result) == 2 assert result['atac.align*']['x'] == { 'sum(fastqs_R1,fastqs_R2)': [32138224, 39148587, 32138224, 39148587] } assert result['atac.filter*']['x'] == { 'sum(bam)': [61315022, 76789196, 61315022, 76789196] } result_all = analysis.analyze() # 38 tasks in total assert len(result_all) == 38
497277a27e50f16bd4dac4167ba204b4b27a60da
80338a9379508bdf5d40e055e12f2621dee01daa
/usernameless/__init__.py
aadcfca92bdcc1431f589d7f88dbb0d88b56edf3
[ "MIT" ]
permissive
johnnncodes/django-usernameless
6ec75780edfec667ba653e50b0496e788832a36c
cf7b0904030e640ce51bf20c36521daf6abf447f
refs/heads/master
2021-05-26T22:30:08.415853
2013-10-26T02:36:45
2013-10-26T02:54:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
# -*- coding: utf-8 -*- __title__ = 'usernameless' __version__ = '0.1.0' __author__ = 'Marconi Moreto'
b0e9d034f38256d73cecf9f4255f71cbf66f2f94
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/classes/_eigensolver1.py
b6ce82292c594e6f6578a8c6eb7978f16397aebd
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
from xcp2k.inputsection import InputSection class _eigensolver1(InputSection): def __init__(self): InputSection.__init__(self) self.N = None self.N_loop = None self.Diag_method = None self.Eigenvalues = None self.Init_method = None self._name = "EIGENSOLVER" self._keywords = {'Diag_method': 'DIAG_METHOD', 'N_loop': 'N_LOOP', 'Init_method': 'INIT_METHOD', 'Eigenvalues': 'EIGENVALUES', 'N': 'N'}
97ce640d8f9e55d51546c4a93f3597a7132318cf
33a747246dab38960c25520d5232d5a37dfe2a01
/starbucks/address_to_gecoords.py
d842315ca462c234888776d81feaa308e92f2f34
[]
no_license
Yxiaokuan/spider
6a79a950d170ea20dae13001697b9c214872f345
e51a398c7fdee1b1814c50c5a3121ce9a193e302
refs/heads/master
2022-04-02T16:01:18.104056
2020-02-11T03:49:44
2020-02-11T03:49:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,951
py
''' @author:KongWeiKun @file: address_to_gecoords.py @time: 18-1-2 下午5:55 @contact: [email protected] ''' import csv import json import random import re import requests import time ''' 地址转经纬度 ''' from urllib.request import quote #URL编码 def getLngLat(url,timeOutRetry=5): try: response = requests.get(url) return response.text except Exception as e: if timeOutRetry>0: getLngLat(url,timeOutRetry=(timeOutRetry-1)) print("真的失败了") def write_to_file(content): with open('./resources/starbucks_result.txt', 'a', encoding='utf-8') as f: f.write(json.dumps(content, ensure_ascii=False) + '\n') # 写入文件,并且确定为汉字 f.close() def pack_url(address): ak='LVsGVvCzooeqcHGM1lnNzvTTSba7gtvU' aks = 'fV9ODCmTALCdTtlbkRsheFUacvA9sL7A' base_url = 'http://api.map.baidu.com/geocoder/v2/?address=' output = 'json' callback = 'showLocation' url = base_url+quote(address)+"&output="+output+"&ak="+ak+"&callback"+callback return url def readCsv(filename): reader = csv.reader(open(filename)) return reader def main(): starbucks = './resources/starbucks.csv' reader = readCsv(starbucks) for row in reader: address = row[0] url=pack_url(address) gecoord=getLngLat(url) print(gecoord) pattern = re.compile('"lng":(.*?),"lat":(.*?)}') lngLat=re.findall(pattern, gecoord) if lngLat: for ll in lngLat: print(ll[0]) print('写入文件%s%s'%ll) write_to_file(','.join(ll)) time.sleep(random.random()*5) if __name__ == '__main__': # main() #利用localtime() #函数将时间戳转化成localtime的格式 #利用strftime() #函数重新格式化时间 start = time.time() main() end = time.time() print("转换完成,共消耗%s"%(end-start))
6e1b0e5aa34daaa437c9eee45fc76dbcb0dc1c5a
2a5d93182aecc251462c9d3844e7c3e28013013e
/mysite/chat/tests.py
114198533bdb4a28861f61e98807da39f4a8fde4
[]
no_license
burbaljaka/websocket_chat
20acc9908cd7b0e122a3b96252208defdc7460d9
ca6883987befb6bfad5973156b01bfe876b1414f
refs/heads/master
2021-05-26T22:58:31.151913
2020-04-08T19:37:16
2020-04-08T19:37:16
254,182,479
0
0
null
null
null
null
UTF-8
Python
false
false
3,906
py
from channels.testing import ChannelsLiveServerTestCase from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.wait import WebDriverWait import dill class ChatTests(ChannelsLiveServerTestCase): serve_static = True #emulate StaticLiveServerTestCase @classmethod def setUpClass(cls): super().setUpClass() try: # NOTE: Requires "chromedriver" binary to be installed in $PATH cls.driver = webdriver.Chrome('C:\chromedriver.exe') except: super().tearDownClass() raise @classmethod def tearDownClass(cls): cls.driver.quit() super().tearDownClass() def test_chat_message_posted_then_seen_by_everyone_in_same_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_1') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 2 from window 1') finally: self._close_all_new_windows() def test_when_chat_message_posted_then_not_seen_by_anyone_in_different_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_2') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) self._post_message('world') WebDriverWait(self.driver, 2).until(lambda _: 'world' in self._chat_log_value, 'Message was not received by window 2 from window 2') self.assertTrue('hello' not in self._chat_log_value, 'Message was improperly received by window 2 from window 1') finally: self._close_all_new_windows() # === Utility === def _enter_chat_room(self, room_name): self.driver.get(self.live_server_url + '/chat/') ActionChains(self.driver).send_keys(room_name + '\n').perform() WebDriverWait(self.driver, 2).until(lambda _: room_name in self.driver.current_url) def _open_new_window(self): self.driver.execute_script('window.open("about:blank", "_blank");') self.driver.switch_to_.window(self.driver.window_handles[-1]) def _close_all_new_windows(self): while len(self.driver.window_handles) > 1: self.driver.switch_to.window(self.driver.window_handles[-1]) self.driver.execute_script('window.close();') if len(self.driver.window_handles) == 1: self.driver.switch_to.window(self.driver.window_handles[0]) def _switch_to_window(self, window_index): self.driver.switch_to.window(self.driver.window_handles[window_index]) def _post_message(self, message): ActionChains(self.driver).send_keys(message + '\n').perform() @property def _chat_log_value(self): return self.driver.find_element_by_css_selector('#chat-log').get_property('value')
c279e12030d6850291b50ede25ac75ba3db5c7fd
24f664aa2344d4f5d5e7b048ac4e85231715c4c8
/experimental/dsmith/scrapheap/clsmith_run_cl_launcher.py
a8c4780ae8872e6567505e8112cc3a515308e79e
[]
no_license
speycode/clfuzz
79320655e879d1e0a06a481e8ec2e293c7c10db7
f2a96cf84a7971f70cb982c07b84207db407b3eb
refs/heads/master
2020-12-05T13:44:55.486419
2020-01-03T14:14:03
2020-01-03T14:15:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,786
py
#!/usr/bin/env python3 import os import re from argparse import ArgumentParser from collections import deque from tempfile import NamedTemporaryFile from time import strftime from typing import Tuple import progressbar from dsmith import clsmith from dsmith import db from dsmith.db import * from dsmith.lib import * from labm8.py import crypto from third_party.py.pyopencl import pyopencl as cl def get_platform_name(platform_id): platform = cl.get_platforms()[platform_id] return platform.get_info(cl.platform_info.NAME) def get_device_name(platform_id, device_id): platform = cl.get_platforms()[platform_id] device = platform.get_devices()[device_id] return device.get_info(cl.device_info.NAME) def get_driver_version(platform_id, device_id): platform = cl.get_platforms()[platform_id] device = platform.get_devices()[device_id] return device.get_info(cl.device_info.DRIVER_VERSION) def cl_launcher( src: str, platform_id: int, device_id: int, *args ) -> Tuple[float, int, str, str]: """ Invoke cl launcher on source """ with NamedTemporaryFile(prefix="cl_launcher-", suffix=".cl") as tmp: tmp.write(src.encode("utf-8")) tmp.flush() return clsmith.cl_launcher( tmp.name, platform_id, device_id, *args, timeout=os.environ.get("TIMEOUT", 60), ) def verify_params( platform: str, device: str, optimizations: bool, global_size: tuple, local_size: tuple, stderr: str, ) -> None: """ verify that expected params match actual as reported by CLsmith """ optimizations = "on" if optimizations else "off" actual_platform = None actual_device = None actual_optimizations = None actual_global_size = None actual_local_size = None for line in stderr.split("\n"): if line.startswith("Platform: "): actual_platform_name = re.sub(r"^Platform: ", "", line).rstrip() elif line.startswith("Device: "): actual_device_name = re.sub(r"^Device: ", "", line).rstrip() elif line.startswith("OpenCL optimizations: "): actual_optimizations = re.sub( r"^OpenCL optimizations: ", "", line ).rstrip() # global size match = re.match("^3-D global size \d+ = \[(\d+), (\d+), (\d+)\]", line) if match: actual_global_size = ( int(match.group(1)), int(match.group(2)), int(match.group(3)), ) match = re.match("^2-D global size \d+ = \[(\d+), (\d+)\]", line) if match: actual_global_size = (int(match.group(1)), int(match.group(2)), 0) match = re.match("^1-D global size \d+ = \[(\d+)\]", line) if match: actual_global_size = (int(match.group(1)), 0, 0) # local size match = re.match("^3-D local size \d+ = \[(\d+), (\d+), (\d+)\]", line) if match: actual_local_size = ( int(match.group(1)), int(match.group(2)), int(match.group(3)), ) match = re.match("^2-D local size \d+ = \[(\d+), (\d+)\]", line) if match: actual_local_size = (int(match.group(1)), int(match.group(2)), 0) match = re.match("^1-D local size \d+ = \[(\d+)\]", line) if match: actual_local_size = (int(match.group(1)), 0, 0) # check if we've collected everything: if ( actual_platform and actual_device and actual_optimizations and actual_global_size and actual_local_size ): assert actual_platform == platform assert actual_device == device assert actual_optimizations == optimizations assert actual_global_size == global_size assert actual_local_size == local_size return def parse_ndrange(ndrange: str) -> Tuple[int, int, int]: components = ndrange.split(",") assert len(components) == 3 return (int(components[0]), int(components[1]), int(components[2])) def get_num_to_run( session: db.session_t, testbed: Testbed, optimizations: int = None ): num_ran = session.query(sql.sql.func.count(CLSmithResult.id)).filter( CLSmithResult.testbed_id == testbed.id ) total = session.query(sql.sql.func.count(CLSmithTestCase.id)) if optimizations is not None: num_ran = ( num_ran.join(CLSmithTestCase) .join(cl_launcherParams) .filter(cl_launcherParams.optimizations == optimizations) ) total = total.join(cl_launcherParams).filter( cl_launcherParams.optimizations == optimizations ) return num_ran.scalar(), total.scalar() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "-H", "--hostname", type=str, default="cc1", help="MySQL database hostname" ) parser.add_argument( "platform_id", metavar="<platform-id>", type=int, help="OpenCL platform ID" ) parser.add_argument( "device_id", metavar="<device-id>", type=int, help="OpenCL device ID" ) parser.add_argument( "--opt", action="store_true", help="Only test with optimizations on" ) parser.add_argument( "--no-opt", action="store_true", help="Only test with optimizations disabled", ) args = parser.parse_args() # Parse command line options platform_id = args.platform_id device_id = args.device_id # get testbed information platform_name = get_platform_name(platform_id) device_name = get_device_name(platform_id, device_id) driver_version = get_driver_version(platform_id, device_id) optimizations = None if args.opt and args.no_opt: pass # both flags elif args.opt: optimizations = 1 elif args.no_opt: optimizations = 0 db.init(args.hostname) # initialize db engine with Session() as session: testbed = get_testbed(session, platform_name, device_name) devname = util.device_str(testbed.device) # progress bar num_ran, num_to_run = get_num_to_run(session, testbed, optimizations) bar = progressbar.ProgressBar(init_value=num_ran, max_value=num_to_run) # programs to run, and results to push to database inbox = deque() def next_batch(): """ Fill the inbox with jobs to run. """ BATCH_SIZE = 100 print(f"\nnext CLSmith batch for {devname} at", strftime("%H:%M:%S")) # update the counters num_ran, num_to_run = get_num_to_run(session, testbed, optimizations) bar.max_value = num_to_run bar.update(min(num_ran, num_to_run)) # fill inbox done = session.query(CLSmithResult.testcase_id).filter( CLSmithResult.testbed == testbed ) if optimizations is not None: done = ( done.join(CLSmithTestCase) .join(cl_launcherParams) .filter(cl_launcherParams.optimizations == optimizations) ) todo = ( session.query(CLSmithTestCase) .filter(~CLSmithTestCase.id.in_(done)) .order_by(CLSmithTestCase.program_id, CLSmithTestCase.params_id) ) if optimizations is not None: todo = todo.join(cl_launcherParams).filter( cl_launcherParams.optimizations == optimizations ) todo = todo.limit(BATCH_SIZE) for testcase in todo: inbox.append(testcase) try: while True: # get the next batch of programs to run if not len(inbox): next_batch() # we have no programs to run if not len(inbox): break # get next program to run testcase = inbox.popleft() program = testcase.program params = testcase.params flags = params.to_flags() # drive the program runtime, status, stdout, stderr = cl_launcher( program.src, platform_id, device_id, *flags ) # assert that executed params match expected verify_params( platform=platform_name, device=device_name, optimizations=params.optimizations, global_size=params.gsize, local_size=params.lsize, stderr=stderr, ) # create new result stdout_ = util.escape_stdout(stdout) stdout = get_or_create( session, CLSmithStdout, hash=crypto.sha1_str(stdout_), stdout=stdout_ ) stderr_ = util.escape_stderr(stderr) stderr = get_or_create( session, CLSmithStderr, hash=crypto.sha1_str(stderr_), stderr=stderr_ ) session.flush() result = CLSmithResult( testbed_id=testbed.id, testcase_id=testcase.id, status=status, runtime=runtime, stdout_id=stdout.id, stderr_id=stderr.id, outcome=analyze.get_cl_launcher_outcome(status, runtime, stderr_), ) session.add(result) session.commit() # update progress bar num_ran += 1 bar.update(min(num_ran, num_to_run)) finally: # flush any remaining results next_batch() print("done.")
56d6d53b07810d51b36c4842c6af1666223e5ee3
d82ac08e029a340da546e6cfaf795519aca37177
/chapter_05_dimensionality_reduction/05_kernel_principal_component.py
609ded2a21b83c00d4f66aca64610875be219164
[]
no_license
CSwithJC/PythonMachineLearning
4409303c3f4d4177dc509c83e240d7a589b144a0
0c4508861e182a8eeacd4645fb93b51b698ece0f
refs/heads/master
2021-09-04T04:28:14.608662
2018-01-15T20:25:36
2018-01-15T20:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,810
py
import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh from sklearn.datasets import make_moons from sklearn.datasets import make_circles from sklearn.decomposition import PCA from matplotlib.ticker import FormatStrFormatter """ Kernel PCA Using Kernel PCA, we perform a nonlinear mapping that transforms the data onto a higher-dimensional space and use standard PCA in this higher-dimensional space to project the data back onto a lower-dimensional space where the samples can be separated by a linear classifier. """ def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation Parameters ---------- X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: Number of principal components to return Returns ------- X_pc: {NumPy ndarray}, shape = [n_samples, n_features] Projected dataset """ # Calculate the pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc # Examples to apply kernel pca to some datasets: # # 1. Half-moon shapes: # X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.show() # Now, project the dataset via standard PCA: scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Now, try again using our rbf_kernel_pca function X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.show() # In this new plot, we see that the two classes (cirles and traingles) # are lineraly well separated so that it becomes a suitable training # dataset for linear classifiers. # # 2. Concentric circles: # X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.show() # PCA Approach: scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Again, standard PCA does not produce a good result. # Now, again using our RBF Kernel PCA Implementation: X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Again, RBF Kernel PCA projected the data onto a new # subspace where the two classes become linearly separable . # This is seen in the new plot.
20b0ea9579d0886baeaed4bfa6287cb7360d5595
d7bc476f610d8b7d4abbeaf1545af4d2d827a7ef
/projeto/estoque/admin.py
62fe30997551edf3ee208581329a1eb027dab2eb
[]
no_license
CleitonSilvaT/ControleEstoque
0bcaa7168f93de124b10117aefeb636c492ac776
dd2c573fb53edb0904393c0897917b55f3afac13
refs/heads/master
2023-01-19T09:34:49.213727
2020-11-26T09:27:07
2020-11-26T09:27:07
260,329,018
0
0
null
null
null
null
UTF-8
Python
false
false
836
py
from django.contrib import admin from .models import EstoqueEntrada from .models import EstoqueSaida from .models import EstoqueItens # Register your models here. # admin.site.register(Estoque) # admin.site.register(EstoqueItens) class EstoqueItensInLine(admin.TabularInline): model = EstoqueItens extra = 0 @admin.register(EstoqueEntrada) class EstoqueEntradaAdmin(admin.ModelAdmin): inlines = (EstoqueItensInLine,) list_display = ('__str__', 'nf', 'funcionario',) search_fields = ('nf',) list_filter = ('funcionario',) date_hierarchy = 'created' @admin.register(EstoqueSaida) class EstoqueSaidaAdmin(admin.ModelAdmin): inlines = (EstoqueItensInLine,) list_display = ('__str__', 'nf', 'funcionario',) search_fields = ('nf',) list_filter = ('funcionario',) date_hierarchy = 'created'
b3391ed1ddf7e3ff1d1e526f45e1f80873ff81b5
8e24e8bba2dd476f9fe612226d24891ef81429b7
/geeksforgeeks/python/python_all/39_11.py
2ab73f925b4bb8f6b56c6ea625257db987241936
[]
no_license
qmnguyenw/python_py4e
fb56c6dc91c49149031a11ca52c9037dc80d5dcf
84f37412bd43a3b357a17df9ff8811eba16bba6e
refs/heads/master
2023-06-01T07:58:13.996965
2021-06-15T08:39:26
2021-06-15T08:39:26
349,059,725
1
1
null
null
null
null
UTF-8
Python
false
false
2,960
py
Python – Replace words from Dictionary Given String, replace it’s words from lookup dictionary. > **Input** : test_str = ‘geekforgeeks best for geeks’, repl_dict = {“geeks” > : “all CS aspirants”} > **Output** : geekforgeeks best for all CS aspirants > **Explanation** : “geeks” word is replaced by lookup value. > > **Input** : test_str = ‘geekforgeeks best for geeks’, repl_dict = {“good” : > “all CS aspirants”} > **Output** : geekforgeeks best for geeks > **Explanation** : No lookup value, unchanged result. **Method #1 : Using split() + get() + join()** In this, we initially split the list using split(), then look for lookups using get(), and if found, replaced and joined back to string using join(). ## Python3 __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Replace words from Dictionary # Using split() + join() + get() # initializing string test_str = 'geekforgeeks best for geeks' # printing original string print("The original string is : " + str(test_str)) # lookup Dictionary lookp_dict = {"best" : "good and better", "geeks" : "all CS aspirants"} # performing split() temp = test_str.split() res = [] for wrd in temp: # searching from lookp_dict res.append(lookp_dict.get(wrd, wrd)) res = ' '.join(res) # printing result print("Replaced Strings : " + str(res)) --- __ __ **Output** The original string is : geekforgeeks best for geeks Replaced Strings : geekforgeeks good and better for all CS aspirants **Method #2 : Using list comprehension + join()** Similar to above method, difference just being 1 liner rather than 3-4 steps in separate lines. ## Python3 __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Replace words from Dictionary # Using list comprehension + join() # initializing string test_str = 'geekforgeeks best for geeks' # printing original string print("The original string is : " + str(test_str)) # lookup Dictionary lookp_dict = {"best" : "good and better", "geeks" : "all CS aspirants"} # one-liner to solve problem res = " ".join(lookp_dict.get(ele, ele) for ele in test_str.split()) # printing result print("Replaced Strings : " + str(res)) --- __ __ **Output** The original string is : geekforgeeks best for geeks Replaced Strings : geekforgeeks good and better for all CS aspirants Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
6c6e12fa925c57be0fddd4074aa52393dca4eb69
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02787/s069996134.py
5242a0c98d9fb0fe819f9bb08a60a75b923ddb4e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
import sys read = sys.stdin.read readline = sys.stdin.readline readlines = sys.stdin.readlines sys.setrecursionlimit(10 ** 9) INF = 1 << 60 MOD = 1000000007 def main(): H, N, *AB = map(int, read().split()) magic = [0] * N for i, (a, b) in enumerate(zip(*[iter(AB)] * 2)): magic[i] = (a, b) dp = [[INF] * (H + 1) for _ in range(N + 1)] for i in range(N + 1): dp[i][0] = 0 for i in range(N): a, b = magic[i] for j in range(H + 1): dp[i + 1][j] = min(dp[i][j], dp[i + 1][max(j - a, 0)] + b) print(dp[N][H]) return if __name__ == '__main__': main()
64bacc9506ee8073571d4e6a9868841577b71d60
1f528631683f9d96c09dd4a4af243dd7213a4bd7
/thumbnail.py
6dffb24265b8649c5dce6c5d5183c7387998cc12
[]
no_license
wd5/artcontactmeru
4f8ede2a3f072c11ac0c8c8a74e0960382824537
2057f1b00db8eb808e0b4fb91a95fbe0a3e4f223
refs/heads/master
2020-12-30T14:55:54.067776
2009-11-12T07:30:00
2009-11-12T07:30:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,255
py
# -*- coding: utf-8 -*- import os, Image THUMBNAILS = 'thumbnails' SCALE_WIDTH = 'w' SCALE_HEIGHT = 'h' SCALE_BOTH = 'x' def scale(max_x, pair): x, y = pair new_y = (float(max_x) / x) * y return (int(max_x), int(new_y)) # Thumbnail filter based on code from # http://batiste.dosimple.ch/blog/2007-05-13-1/ def thumbnail(media_url, original_image_path, arg): if not original_image_path: return '' if arg.find(','): size, upload_path = [a.strip() for a in arg.split(',')] else: size = arg upload_path = '' if (size.lower().endswith('h')): mode = SCALE_HEIGHT elif (size.lower().endswith('w')): mode = SCALE_WIDTH else: mode = SCALE_BOTH # defining the size size = size[:-1] max_size = int(size.strip()) # defining the filename and the miniature filename basename, format = original_image_path.rsplit('.', 1) basename, name = basename.rsplit(os.path.sep, 1) upload_path = '/'.join(basename.rsplit(os.path.sep, 2)[1:]) miniature = name + '_' + str(max_size) + mode + '.' + format thumbnail_path = os.path.join(basename, THUMBNAILS) if not os.path.exists(thumbnail_path): os.mkdir(thumbnail_path) miniature_filename = os.path.join(thumbnail_path, miniature) miniature_url = '/'.join((media_url, upload_path, THUMBNAILS, miniature)) # if the image wasn't already resized, resize it if not os.path.exists(miniature_filename) \ or os.path.getmtime(original_image_path) > os.path.getmtime(miniature_filename): image = Image.open(original_image_path) image_x, image_y = image.size if mode == SCALE_BOTH: if image_x > image_y: mode = SCALE_WIDTH else: mode = SCALE_HEIGHT if mode == SCALE_HEIGHT: image_y, image_x = scale(max_size, (image_y, image_x)) else: image_x, image_y = scale(max_size, (image_x, image_y)) image = image.resize((image_x, image_y), Image.ANTIALIAS) image.save(miniature_filename, image.format) return miniature_url
7e57694591ccea12ade2aaeb5ac1524ce38461db
03dea3c0db7c8fafda71d23c3c2595f563ffb335
/SignalMC/python/AMSB_chargino900GeV_ctau1000cm_NoFilter_13TeV.py
d9b642184847712cc96ebbd952b587fe419eaacd
[]
no_license
Andersen98/DisappTrks
3952e9bf8ba270e2d88aa2e8d9ef805cf25dfc46
140a5efdc4c51a30e5fced6d34b7813876c2f2ee
refs/heads/master
2020-06-27T03:41:59.136790
2017-07-12T15:19:18
2017-07-12T15:19:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,706
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.PythiaUEZ2starSettings_cfi import * generator = cms.EDFilter("Pythia6GeneratorFilter", pythiaHepMCVerbosity = cms.untracked.bool(False), maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(3), filterEfficiency = cms.untracked.double(1.0), # comEnergy = cms.double(8000.0), comEnergy = cms.double(13000.0), PythiaParameters = cms.PSet( pythiaUESettingsBlock, processParameters = cms.vstring( 'IMSS(1) = 11 ! Spectrum from external SLHA file', 'IMSS(21) = 33 ! LUN number for SLHA File (must be 33) ', 'IMSS(22) = 33 ! Read-in SLHA decay table ', 'MSEL = 0 ! General SUSY', 'MSUB(226) = 1 ! to double chargino', 'MSUB(229) = 1 ! to neutralino + chargino', 'MDCY(312,1) = 0 ! set the chargino stable.', ), parameterSets = cms.vstring('pythiaUESettings', 'processParameters', 'SLHAParameters'), SLHAParameters = cms.vstring('SLHAFILE = DisappTrks/SignalMC/data/AMSB_chargino_900GeV_Isajet780.slha'), ), slhaFile = cms.untracked.string('DisappTrks/SignalMC/data/AMSB_chargino_900GeV_Isajet780.slha'), # The following parameters are required by Exotica_HSCP_SIM_cfi: processFile = cms.untracked.string('SimG4Core/CustomPhysics/data/RhadronProcessList.txt'), useregge = cms.bool(False), hscpFlavor = cms.untracked.string('stau'), massPoint = cms.untracked.int32(900), particleFile = cms.untracked.string('DisappTrks/SignalMC/data/geant4_AMSB_chargino_900GeV_ctau1000cm.slha') )
b818191531994619e2f64e216edd315786e81044
24927eac464cdb1bec665f1cb4bfee85728ec5e1
/entry_parser/balenciaga.py
ca5ea1f4cb43c5aaeece995f78a8da7d00683e75
[]
no_license
yingl/fashion-spider
d72ea8dfd4a49270fd3e64e7a507d6fcbaaf492c
0698768cd21d509ec335d7202a753be4f6ad378b
refs/heads/master
2021-01-01T18:14:17.848732
2017-09-27T08:44:47
2017-09-27T08:44:47
98,282,505
1
0
null
null
null
null
UTF-8
Python
false
false
541
py
""" Balenciaga """ # coding:utf-8 import sys sys.path.append('../') import util PREFIXES = ['www.balenciaga.cn'] def parse(driver, url): products = [] driver.get(url) elements = util.find_elements_by_css_selector(driver, 'a.item-display-image-container') for element in elements: products.append(element.get_attribute('href').strip()) return ';'.join(products) def main(): driver = util.create_chrome_driver() print(parse(driver, sys.argv[1])) driver.quit() if __name__ == '__main__': main()
60b22d53fbf1e5893ab6925972c16edebae8fa71
c6ae5d4c9b2a3acef09ee8254e1c1b67bc255b56
/okex/v5/billtype.py
1432ed9ee5152a20f37741012015561760391395
[ "MIT" ]
permissive
PattonChen/okex-py
ce36a4ded7cb051a7167e3ba9aeb88bc4e0417f3
cced7f1419da0940a2200ce66d62b4f9539949f2
refs/heads/main
2023-05-04T06:00:38.540463
2021-05-16T08:30:42
2021-05-16T08:30:42
367,833,565
1
0
MIT
2021-05-16T09:14:59
2021-05-16T09:14:59
null
UTF-8
Python
false
false
302
py
from enum import Enum class BillType(Enum): # 划转 TRANSFER = 1 # 交易 TRADE = 2 # 交割 DELIVERY = 3 # 强制换币 FORCE_SWAP = 4 # 强平 FORCED_LIQUIDATION = 5 # ... class BillSubType(Enum): LINEAR = "linear" INVERSE = "inverse" # ...
9ee6d085738441c5e04afe2534663c554139d8e8
fed0e4edf4df4b7a4abd52cbd1a0115243bdfcd0
/hello.py
11eec872b636492245036a4b82f4fe6982e46ba3
[]
no_license
TitanVA/hh_parser
62c5c9a87ab38a454c36d6ceba3dec1cd52f0ee3
0b51dc84ba5714de15629c8ec1d9da0dd9b2ecb1
refs/heads/master
2022-02-08T00:55:23.492072
2022-01-19T10:43:54
2022-01-19T10:43:54
236,823,784
0
1
null
null
null
null
UTF-8
Python
false
false
41
py
print("Hello World!") print("MR please")
1d80fe96db1c270109eea36af33536d1f681f4e0
0fa96aa3b1ee5cf752e20bad98ef02785c369225
/quaducom/quaducom/assess/assess_shell/mn_resistance/ecb_law_mn_diagram.py
971d0cc7a521f908aee65bce5fdb5716551192e2
[]
no_license
simvisage/simvisage
7a56ce0d13211513a86e3631db1b55dc62e85986
acb2a8eb8b6caa57c1e9e15f724a2b43843c7b10
refs/heads/master
2020-04-04T07:32:47.598636
2018-12-10T15:10:43
2018-12-10T15:10:43
3,583,342
0
3
null
null
null
null
UTF-8
Python
false
false
7,966
py
''' Created on Sep 4, 2012 @author: rch ''' from etsproxy.traits.api import \ HasTraits, Int, Instance, Property, cached_property, DelegatesTo, \ Event, Button from util.traits.editors.mpl_figure_editor import \ MPLFigureEditor from matplotlib.figure import \ Figure from etsproxy.traits.ui.api import \ View, Item, Group, HSplit, VGroup, HGroup, RangeEditor, InstanceEditor from ecb_law_calib import \ ECBLCalib import numpy as np class ECBLMNDiagram(HasTraits): # calibrator supplying the effective material law calib = Instance(ECBLCalib) def _calib_default(self): return ECBLCalib(notify_change=self.set_modified) def _calib_changed(self): self.calib.notify_change = self.set_modified modified = Event def set_modified(self): print 'MN:set_modifeid' self.modified = True # cross section cs = DelegatesTo('calib') calibrated_ecb_law = Property(depends_on='modified') @cached_property def _get_calibrated_ecb_law(self): print 'NEW CALIBRATION' return self.calib.calibrated_ecb_law eps_cu = Property() def _get_eps_cu(self): return -self.cs.cc_law.eps_c_u eps_tu = Property() def _get_eps_tu(self): return self.calibrated_ecb_law.eps_tex_u n_eps = Int(5, auto_set=False, enter_set=True) eps_range = Property(depends_on='n_eps') @cached_property def _get_eps_range(self): eps_c_space = np.linspace(self.eps_cu, 0, self.n_eps) eps_t_space = np.linspace(0, self.eps_tu, self.n_eps) eps_ccu = 0.8 * self.eps_cu #eps_cc = self.eps_cu * np.ones_like(eps_c_space) eps_cc = np.linspace(eps_ccu, self.eps_cu, self.n_eps) eps_ct = self.eps_cu * np.ones_like(eps_t_space) eps_tc = self.eps_tu * np.ones_like(eps_c_space) eps_tt = self.eps_tu * np.ones_like(eps_t_space) eps1 = np.vstack([eps_c_space, eps_cc]) eps2 = np.vstack([eps_t_space, eps_ct]) eps3 = np.vstack([eps_tc, eps_c_space]) eps4 = np.vstack([eps_tt, eps_t_space]) return np.hstack([eps1, eps2, eps3, eps4]) n_eps_range = Property(depends_on='n_eps') @cached_property def _get_n_eps_range(self): return self.eps_range.shape[1] #=========================================================================== # MN Diagram #=========================================================================== def _get_MN_fn(self, eps_lo, eps_up): self.cs.set(eps_lo=eps_lo, eps_up=eps_up) return (self.cs.M, self.cs.N) MN_vct = Property(depends_on='modified') def _get_MN_vct(self): return np.vectorize(self._get_MN_fn) MN_arr = Property(depends_on='modified') @cached_property def _get_MN_arr(self): return self.MN_vct(self.eps_range[0, :], self.eps_range[1, :]) #=========================================================================== # f_eps Diagram #=========================================================================== current_eps_idx = Int(0) # , auto_set = False, enter_set = True) def _current_eps_idx_changed(self): self._clear_fired() self._replot_fired() current_eps = Property(depends_on='current_eps_idx') @cached_property def _get_current_eps(self): return self.eps_range[(0, 1), self.current_eps_idx] current_MN = Property(depends_on='current_eps_idx') @cached_property def _get_current_MN(self): return self._get_MN_fn(*self.current_eps) #=========================================================================== # Plotting #=========================================================================== figure = Instance(Figure) def _figure_default(self): figure = Figure(facecolor='white') figure.add_axes([0.08, 0.13, 0.85, 0.74]) return figure data_changed = Event clear = Button def _clear_fired(self): self.figure.clear() self.data_changed = True replot = Button def _replot_fired(self): ax = self.figure.add_subplot(2, 2, 1) ax.plot(-self.eps_range, [0, 0.06], color='black') ax.plot(-self.current_eps, [0, 0.06], lw=3, color='red') ax.spines['left'].set_position('zero') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax = self.figure.add_subplot(2, 2, 2) ax.plot(self.MN_arr[0], -self.MN_arr[1], lw=2, color='blue') ax.plot(self.current_MN[0], -self.current_MN[1], 'g.', markersize=20.0, color='red') ax.spines['left'].set_position('zero') ax.spines['bottom'].set_position('zero') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.grid(b=None, which='major') self.cs.set(eps_lo=self.current_eps[0], eps_up=self.current_eps[1]) ax = self.figure.add_subplot(2, 2, 3) self.cs.plot_eps(ax) ax = self.figure.add_subplot(2, 2, 4) self.cs.plot_sig(ax) self.data_changed = True view = View(HSplit(Group( HGroup( Group(Item('n_eps', springy=True), label='Discretization', springy=True ), springy=True, ), HGroup( Group(VGroup( Item('cs', label='Cross section', show_label=False, springy=True, editor=InstanceEditor(kind='live'), ), Item('calib', label='Calibration', show_label=False, springy=True, editor=InstanceEditor(kind='live'), ), springy=True, ), label='Cross sectoin', springy=True ), springy=True, ), scrollable=True, ), Group(HGroup( Item('replot', show_label=False), Item('clear', show_label=False), ), Item('current_eps_idx', editor=RangeEditor(low=0, high_name='n_eps_range', format='(%s)', mode='slider', auto_set=False, enter_set=False, ), show_label=False, ), Item('figure', editor=MPLFigureEditor(), resizable=True, show_label=False), id='simexdb.plot_sheet', label='plot sheet', dock='tab', ), ), width=1.0, height=0.8, resizable=True, buttons=['OK', 'Cancel']) if __name__ == '__main__': c = ECBLCalib( Mu=3.49, width=0.20, n_rovings=23, ecb_law_type='fbm', cc_law_type='quadratic' #eps_tu 0.0137279096658 ) mn = ECBLMNDiagram(calib=c, n_eps=30, ) mn.configure_traits()
34d8513c172a58e7d635c1cc20add3c5cfc710df
ffb4db36bf3959ed4a994f693c62d68092a91e63
/image_space/utils.py
405488ce25781aa69623a15abb722ef060c3b29d
[]
no_license
quasiben/image_solr
8bc25db1e47f19d83d5b51b89e250f8da2cd285b
cc2baafa170bdbfecc1a0450ffd041de485f19fa
refs/heads/master
2021-01-10T02:10:19.064770
2015-03-05T23:37:24
2015-03-05T23:37:24
31,621,600
2
1
null
2015-03-05T23:25:21
2015-03-03T21:12:28
JavaScript
UTF-8
Python
false
false
1,319
py
from image_space import app from image_space.models import Image, IMAGE_TABLE_NAME from image_space import db # Upload Handling def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in app.config['ALLOWED_EXTENSIONS'] # EXIF Processing def process_exif(exif_data, img_path): # Get the EXIF data from the image LSVN = getattr(exif_data.get('EXIF LensSerialNumber'), 'values', None) MSNF = getattr(exif_data.get('MakerNote SerialNumberFormat'), 'values', None) BSN = getattr(exif_data.get('EXIF BodySerialNumber'), 'values', None) MISN = getattr(exif_data.get('MakerNote InternalSerialNumber'), 'values', None) MSN = getattr(exif_data.get('MakerNote SerialNumber'), 'values', None) IBSN = getattr(exif_data.get('Image BodySerialNumber'), 'values', None) image = Image(img_file = img_path, EXIF_LensSerialNumber = LSVN, MakerNote_SerialNumberFormat = MSNF, EXIF_BodySerialNumber = BSN, MakerNote_InternalSerialNumber = MISN, MakerNote_SerialNumber = MSN, Image_BodySerialNumber = IBSN, Uploaded = 1, ) # Add uploaded image to the database db.session.add(image) db.session.commit()
0c3eb34ca123217876148bd6cbe34e978632e747
6657a43ee360177e578f67cf966e6aef5debda3c
/test/test_warning_api.py
7b7edb07cebe3c9a13d48a3b983ac64425eaa37f
[ "MIT" ]
permissive
NVE/python-varsom-avalanche-client
3cc8b9c366f566a99c6f309ccdfb477f73256659
c7787bf070d8ea91efd3a2a9e7782eedd4961528
refs/heads/master
2022-04-20T09:32:24.499284
2020-04-16T20:12:01
2020-04-16T20:12:01
256,318,660
0
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
# coding: utf-8 """ Snøskredvarsel API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v5.0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import varsom_avalanche_client from api.warning_api import WarningApi # noqa: E501 from varsom_avalanche_client.rest import ApiException class TestWarningApi(unittest.TestCase): """WarningApi unit test stubs""" def setUp(self): self.api = api.warning_api.WarningApi() # noqa: E501 def tearDown(self): pass def test_warning_all(self): """Test case for warning_all """ pass def test_warning_id(self): """Test case for warning_id """ pass def test_warning_region(self): """Test case for warning_region """ pass if __name__ == '__main__': unittest.main()
65ee34428a001611cc81d153a87842166b3b521d
9fbbfb3dd1990be27acfada1a91af980f474c8f1
/Chapter 07/rangesumBST.py
603891b6170f47a25ae103aebce7585ed63a2d86
[ "MIT" ]
permissive
bpbpublications/Python-Quick-Interview-Guide
61a48446f910144a050a5bb1515ad48567dc9481
ab4ff3e670b116a4db6b9e1f0ccba8424640704d
refs/heads/main
2023-04-08T12:18:14.605193
2021-04-13T09:18:30
2021-04-13T09:18:30
350,315,060
1
0
null
null
null
null
UTF-8
Python
false
false
1,665
py
from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class BinTree: def printTree(self,root:TreeNode)->None: LevelList = [root] self.printLevel(LevelList) def printLevel(self,LevelList:List[TreeNode])-> List[TreeNode]: LevelStr = "" outList = [] ListEmpty = True for node in LevelList: if node is None: LevelStr += "None " outList.append(None) outList.append(None) else: LevelStr += (str(node.val) + " ") outList.append(node.left) outList.append(node.right) ListEmpty = False if not ListEmpty: print(LevelStr) self.printLevel(outList) class Solution: def rangeSumBST(self, root: TreeNode, L: int, R: int) -> int: self.sum=0 def printInorder(root): if root: printInorder(root.left) #Recursively call left child if root.val: if L <= root.val <= R:self.sum += root.val printInorder(root.right) #Recursively call right child printInorder(root) return self.sum #Driver code root = TreeNode(5) root.left = TreeNode(3) root.right = TreeNode(6) root.left.left = TreeNode(2) root.left.right = TreeNode(4) root.right.left = TreeNode(None) root.right.right = TreeNode(7) bst = BinTree() bst.printTree(root) sol = Solution() print("Range sum =",sol.rangeSumBST(root,2,6))
795f936423965063c44b347705c53fd1c306692f
bf2aa4eab14a6a5347fe4af65cc4a37f512a465d
/people/migrations/0111_auto_20200530_0632.py
7320c7e9f7c6db4746b6c85c51fb4fef42dfea53
[]
no_license
drdavidknott/betterstart
0cda889f5cd6bb779f6d1fa75cb4f2ef08eb626c
59e2f8282b34b7c75e1e19e1cfa276b787118adf
refs/heads/master
2023-05-04T07:32:24.796488
2023-04-16T15:26:30
2023-04-16T15:26:30
173,626,906
0
0
null
2023-02-18T07:27:55
2019-03-03T20:37:01
Python
UTF-8
Python
false
false
623
py
# Generated by Django 3.0.3 on 2020-05-30 05:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('people', '0110_auto_20200530_0631'), ] operations = [ migrations.AlterField( model_name='site', name='password_reset_email_from', field=models.CharField(blank=True, default='', max_length=100), ), migrations.AlterField( model_name='site', name='password_reset_email_title', field=models.CharField(blank=True, default='', max_length=100), ), ]
c07f5f20db0ddcca9d3b07ecdb404f2a7e817bcb
1caf4418f3549567637f5e9893a445f52a38c6a0
/CmsAdmin/user_content/app/dtos/change_account_password_dto.py
29b05af87dbeee572f150ac6b43bf6236ec0b7b5
[]
no_license
Final-Game/social_network_backend
c601563e08c0fd7de72a614944f354ef8d2d31d8
8111787d1d20eb87733ae360d8baa745a65e2743
refs/heads/master
2023-03-04T21:12:43.147084
2021-02-23T03:45:22
2021-02-23T03:45:22
290,542,389
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
from core.common import BaseApiException class ChangeAccountPasswordDto(object): old_password: str new_password: str def __init__(self, old_password: str, new_password: str) -> None: self.old_password = old_password self.new_password = new_password self.validate() def validate(self): if not (self.old_password or self.new_password): raise BaseApiException("Password not found") if len(self.new_password) < 6: raise BaseApiException("Password must be large 6 characters.")
ee71398911054d72c2440fe57f222ff41fe9d50c
ebf997ac5814bd20a44646b6690de6913669f2e1
/plugins/btsync/resources/btsyncUI/freenas/urls.py
2b3a85c40b8dfa13a5dc5e20d84814d6cc7c5f00
[]
no_license
MadMarty/freenas-plugins-1
4add49728e07fb75191352902969a1ecea67b248
4940cd7cc39a26882ea7f4a61799bcea1cea6b34
refs/heads/master
2021-01-22T04:23:36.608602
2016-05-06T18:02:47
2016-05-06T18:02:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
from django.conf.urls import patterns, include, url urlpatterns = patterns('btsyncUI.freenas.views', url(r'^edit$', 'edit', name="btsync_edit"), url(r'^treemenu-icon$', 'treemenu_icon', name="treemenu_icon"), url(r'^_s/treemenu$', 'treemenu', name="treemenu"), url(r'^_s/start$', 'start', name="start"), url(r'^_s/stop$', 'stop', name="stop"), url(r'^_s/status$', 'status', name="status"), )
94525c4e1278e1b638d45df4e32589b8ea6e5133
3a891a79be468621aae43defd9a5516f9763f36e
/desktop/core/ext-py/pyasn1-0.1.8/test/codec/der/test_decoder.py
5f0bc0b8be193a1564d66e29a71c3e468855d6a1
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause", "Apache-2.0" ]
permissive
oyorooms/hue
b53eb87f805063a90f957fd2e1733f21406269aa
4082346ef8d5e6a8365b05752be41186840dc868
refs/heads/master
2020-04-15T20:31:56.931218
2019-01-09T19:02:21
2019-01-09T19:05:36
164,998,117
4
2
Apache-2.0
2019-01-10T05:47:36
2019-01-10T05:47:36
null
UTF-8
Python
false
false
963
py
from pyasn1.type import univ from pyasn1.codec.der import decoder from pyasn1.compat.octets import ints2octs from pyasn1.error import PyAsn1Error from sys import version_info if version_info[0:2] < (2, 7) or \ version_info[0:2] in ( (3, 0), (3, 1) ): try: import unittest2 as unittest except ImportError: import unittest else: import unittest class OctetStringDecoderTestCase(unittest.TestCase): def testShortMode(self): assert decoder.decode( '\004\017Quick brown fox'.encode() ) == ('Quick brown fox'.encode(), ''.encode()) def testIndefMode(self): try: decoder.decode( ints2octs((36, 128, 4, 15, 81, 117, 105, 99, 107, 32, 98, 114, 111, 119, 110, 32, 102, 111, 120, 0, 0)) ) except PyAsn1Error: pass else: assert 0, 'indefinite length encoding tolerated' if __name__ == '__main__': unittest.main()
7042119118b6a349f705cc5540e5f3d55888e2fd
74eeeaeabf73f2909794eb767b5126460ce69d92
/object_detection2/modeling/onestage_heads/centernet_outputs.py
39e6afac159d44ec42cf2a8e27e537f1ab279705
[ "MIT" ]
permissive
seantangtao/wml
1bb9f699467e8c03143d8b92becb121db3717747
8fbf060088816cd1a366d7cbd5dfe1a0e00f8d79
refs/heads/master
2023-07-15T10:35:11.713990
2021-09-03T07:50:47
2021-09-03T07:50:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,294
py
# coding=utf-8 import tensorflow as tf import wml_tfutils as wmlt import wnn from basic_tftools import channel import functools import tfop import object_detection2.bboxes as odbox from object_detection2.standard_names import * import wmodule from .onestage_tools import * from object_detection2.datadef import * from object_detection2.config.config import global_cfg from object_detection2.modeling.build import HEAD_OUTPUTS import object_detection2.wlayers as odl import numpy as np from object_detection2.data.dataloader import DataLoader import wsummary import wnn @HEAD_OUTPUTS.register() class CenterNetOutputs(wmodule.WChildModule): def __init__( self, cfg, parent, box2box_transform, head_outputs, gt_boxes=None, gt_labels=None, gt_length=None, max_detections_per_image=100, **kwargs, ): """ Args: cfg: Only the child part box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations. gt_boxes: [B,N,4] (ymin,xmin,ymax,xmax) gt_labels: [B,N] gt_length: [B] """ super().__init__(cfg, parent=parent, **kwargs) self.num_classes = cfg.NUM_CLASSES self.topk_candidates = cfg.TOPK_CANDIDATES_TEST self.score_threshold = cfg.SCORE_THRESH_TEST self.nms_threshold = cfg.NMS_THRESH_TEST self.max_detections_per_image = max_detections_per_image self.box2box_transform = box2box_transform self.head_outputs = head_outputs self.k = self.cfg.K self.size_threshold = self.cfg.SIZE_THRESHOLD self.dis_threshold = self.cfg.DIS_THRESHOLD self.gt_boxes = gt_boxes self.gt_labels = gt_labels self.gt_length = gt_length self.mid_results = {} def _get_ground_truth(self): """ Returns: """ res = [] for i,outputs in enumerate(self.head_outputs): shape = wmlt.combined_static_and_dynamic_shape(outputs['heatmaps_tl'])[1:3] t_res = self.box2box_transform.get_deltas(self.gt_boxes, self.gt_labels, self.gt_length, output_size=shape) res.append(t_res) return res @wmlt.add_name_scope def losses(self): """ Args: Returns: """ all_encoded_datas = self._get_ground_truth() all_loss0 = [] all_loss1 = [] all_loss2 = [] all_offset_loss = [] all_embeading_loss = [] for i,outputs in enumerate(self.head_outputs): encoded_datas = all_encoded_datas[i] head_outputs = self.head_outputs[i] loss0 = tf.reduce_mean(wnn.focal_loss_for_heat_map(labels=encoded_datas["g_heatmaps_tl"], logits=head_outputs["heatmaps_tl"],scope="tl_loss")) loss1 = tf.reduce_mean(wnn.focal_loss_for_heat_map(labels=encoded_datas["g_heatmaps_br"], logits=head_outputs["heatmaps_br"],scope="br_loss")) loss2 = tf.reduce_mean(wnn.focal_loss_for_heat_map(labels=encoded_datas["g_heatmaps_ct"], logits=head_outputs["heatmaps_ct"],scope="ct_loss")) offset0 = wmlt.batch_gather(head_outputs['offset_tl'],encoded_datas['g_index'][:,:,0]) offset1 = wmlt.batch_gather(head_outputs['offset_br'],encoded_datas['g_index'][:,:,1]) offset2 = wmlt.batch_gather(head_outputs['offset_ct'],encoded_datas['g_index'][:,:,2]) offset = tf.concat([offset0,offset1,offset2],axis=2) offset_loss = tf.losses.huber_loss(labels=encoded_datas['g_offset'], predictions=offset, loss_collection=None, weights=tf.cast(tf.expand_dims(encoded_datas['g_index_mask'],-1),tf.float32)) embeading_loss = self.ae_loss(head_outputs['tag_tl'],head_outputs['tag_br'], encoded_datas['g_index'], encoded_datas['g_index_mask']) all_loss0.append(loss0) all_loss1.append(loss1) all_loss2.append(loss2) all_offset_loss.append(offset_loss) all_embeading_loss.append(embeading_loss) loss0 = tf.add_n(all_loss0) loss1 = tf.add_n(all_loss1) loss2 = tf.add_n(all_loss2) offset_loss = tf.add_n(all_offset_loss) embeading_loss= tf.add_n(all_embeading_loss) #loss0 = tf.Print(loss0,["loss",loss0,loss1,loss2,offset_loss,embeading_loss],summarize=100) return {"heatmaps_tl_loss": loss0, "heatmaps_br_loss": loss1, "heatmaps_ct_loss":loss2, "offset_loss":offset_loss, 'embeading_loss':embeading_loss} @staticmethod @wmlt.add_name_scope def ae_loss(tag0,tag1,index,mask): ''' :param tag0: [B,N,C],top left tag :param tag1: [B,N,C], bottom right tag :param index: [B,M] :parma mask: [B,M] :return: ''' with tf.name_scope("pull_loss"): num = tf.reduce_sum(tf.cast(mask,tf.float32))+1e-4 #num = tf.Print(num,["X",num,tf.shape(tag0),tf.shape(tag1),tf.shape(index),tf.shape(mask)],summarize=100) tag0 = wmlt.batch_gather(tag0,index[:,:,0]) tag1 = wmlt.batch_gather(tag1,index[:,:,1]) tag_mean = (tag0+tag1)/2 tag0 = tf.pow(tag0-tag_mean,2)/num tag0 = tf.reduce_sum(tf.boolean_mask(tag0,mask)) tag1 = tf.pow(tag1-tag_mean,2)/num tag1 = tf.reduce_sum(tf.boolean_mask(tag1,mask)) #tag0 = tf.Print(tag0,["tag01",tag0,tag1],summarize=100) pull = tag0+tag1 with tf.name_scope("push_loss"): neg_index = tfop.make_neg_pair_index(mask) push_mask = tf.greater(neg_index,-1) neg_index = tf.nn.relu(neg_index) num = tf.reduce_sum(tf.cast(push_mask,tf.float32))+1e-4 tag0 = wmlt.batch_gather(tag_mean,neg_index[:,:,0]) tag1 = wmlt.batch_gather(tag_mean,neg_index[:,:,1]) #tag0 = tf.Print(tag0,["X2",num,tf.shape(tag0),tf.shape(tag1),tf.shape(neg_index),tf.shape(push_mask)],summarize=100) tag0 = tf.boolean_mask(tag0,push_mask[...,0]) tag1 = tf.boolean_mask(tag1,push_mask[...,1]) #num = tf.Print(num,["X3",num,tf.shape(tag0),tf.shape(tag1),tf.shape(neg_index),tf.shape(push_mask)],summarize=100) push = tf.reduce_sum(tf.nn.relu(1-tf.abs(tag0-tag1)))/num #push = tf.Print(push,["push",push],summarize=100) return pull+push @wmlt.add_name_scope def inference(self,inputs,head_outputs): """ Arguments: inputs: same as CenterNet.forward's batched_inputs Returns: results: RD_BOXES: [B,N,4] RD_LABELS: [B,N] RD_PROBABILITY:[ B,N] RD_LENGTH:[B] """ self.inputs = inputs all_bboxes = [] all_scores = [] all_clses = [] all_length = [] img_size = tf.shape(inputs[IMAGE])[1:3] for i,datas in enumerate(head_outputs): num_dets = max(self.topk_candidates//(4**i),4) K = max(self.k//(4**i),4) bboxes, scores, clses, length = self.get_box_in_a_single_layer(datas,num_dets,img_size,K) all_bboxes.append(bboxes) all_scores.append(scores) all_clses.append(clses) all_length.append(length) with tf.name_scope(f"merge_all_boxes"): bboxes,_ = wmlt.batch_concat_with_length(all_bboxes,all_length) scores,_ = wmlt.batch_concat_with_length(all_scores,all_length) clses,length = wmlt.batch_concat_with_length(all_clses,all_length) nms = functools.partial(tfop.boxes_nms, threshold=self.nms_threshold, classes_wise=True, k=self.max_detections_per_image) #预测时没有背景, 这里加上1使背景=0 clses = clses + 1 #bboxes = tf.Print(bboxes,["shape",tf.shape(bboxes),tf.shape(clses),length],summarize=100) bboxes, labels, nms_indexs, lens = odl.batch_nms_wrapper(bboxes, clses, length, confidence=None, nms=nms, k=self.max_detections_per_image, sort=True) scores = wmlt.batch_gather(scores,nms_indexs) #labels = clses+1 #lens = length outdata = {RD_BOXES:bboxes,RD_LABELS:labels,RD_PROBABILITY:scores,RD_LENGTH:lens} if global_cfg.GLOBAL.SUMMARY_LEVEL<=SummaryLevel.DEBUG: wsummary.detection_image_summary(images=inputs[IMAGE], boxes=outdata[RD_BOXES], classes=outdata[RD_LABELS], lengths=outdata[RD_LENGTH], scores=outdata[RD_PROBABILITY], name="CenterNetOutput", category_index=DataLoader.category_index) return outdata @staticmethod def pixel_nms(heat,kernel=[3,3],epsilon=1e-8): hmax=tf.nn.max_pool(heat,ksize=[1]+kernel+[1],strides=[1,1,1,1],padding='SAME') mask=tf.less_equal(tf.abs(hmax-heat),epsilon) mask = tf.cast(mask,tf.float32) return mask*heat @staticmethod @wmlt.add_name_scope def _topk(scores,K=100): B,H,W,C = wmlt.combined_static_and_dynamic_shape(scores) scores = tf.reshape(scores,[B,-1]) topk_scores,topk_inds = tf.nn.top_k(scores,k=K) topk_classes = topk_inds%C topk_inds = topk_inds//C topk_ys = tf.cast(topk_inds//W,tf.float32) topk_xs = tf.cast(topk_inds%W,tf.float32) return topk_scores,topk_inds,topk_classes,topk_ys,topk_xs @wmlt.add_name_scope def get_box_in_a_single_layer(self,datas,num_dets,img_size,K): ''' ''' #wsummary.variable_summaries_v2(datas['heatmaps_tl'],"hm_tl") h_tl = tf.nn.sigmoid(datas['heatmaps_tl']) h_br = tf.nn.sigmoid(datas['heatmaps_br']) h_ct = tf.nn.sigmoid(datas['heatmaps_ct']) #wsummary.variable_summaries_v2(h_tl,"hm_a_tl") B,H,W,C = wmlt.combined_static_and_dynamic_shape(h_tl) h_tl = self.pixel_nms(h_tl) h_br = self.pixel_nms(h_br) h_ct = self.pixel_nms(h_ct) tl_scores, tl_inds, tl_clses, tl_ys, tl_xs = self._topk(h_tl, K=K) br_scores, br_inds, br_clses, br_ys, br_xs = self._topk(h_br, K=K) ct_scores, ct_inds, ct_clses, ct_ys, ct_xs = self._topk(h_ct, K=K) tl_ys = tf.tile(tf.reshape(tl_ys,[B,K,1]),[1,1,K]) tl_xs = tf.tile(tf.reshape(tl_xs,[B,K,1]),[1,1,K]) br_ys = tf.tile(tf.reshape(br_ys,[B,1,K]),[1,K,1]) br_xs = tf.tile(tf.reshape(br_xs,[B,1,K]),[1,K,1]) ct_ys = tf.reshape(ct_ys,[B,K]) ct_xs = tf.reshape(ct_xs,[B,K]) ct_scores = tf.reshape(ct_scores,[B,K]) if 'offset_tl' in datas: tl_regr = wmlt.batch_gather(datas['offset_tl'],tl_inds) br_regr = wmlt.batch_gather(datas['offset_br'],br_inds) ct_regr = wmlt.batch_gather(datas['offset_ct'],br_inds) tl_regr = tf.reshape(tl_regr,[B,K,1,2]) br_regr = tf.reshape(br_regr,[B,1,K,2]) ct_regr = tf.reshape(ct_regr,[B,K,2]) tl_xs = tl_xs + tl_regr[...,0] tl_ys = tl_ys + tl_regr[...,1] br_xs = br_xs + br_regr[...,0] br_ys = br_ys + br_regr[...,1] ct_xs = ct_xs + ct_regr[...,0] ct_ys = ct_ys + ct_regr[...,1] bboxes = tf.stack([tl_ys,tl_xs,br_ys,br_xs],axis=-1) #bboxes = tf.Print(bboxes,["box0",tf.reduce_max(bboxes),tf.reduce_min(bboxes),W,H],summarize=100) #wsummary.detection_image_summary(self.inputs[IMAGE], #boxes=odbox.tfabsolutely_boxes_to_relative_boxes(tf.reshape(bboxes,[B,-1,4]),width=W,height=H), #name="box0") tl_tag = wmlt.batch_gather(datas['tag_tl'],tl_inds) br_tag = wmlt.batch_gather(datas['tag_br'],br_inds) tl_tag = tf.expand_dims(tl_tag,axis=2) br_tag = tf.expand_dims(br_tag,axis=1) tl_tag = tf.tile(tl_tag,[1,1,K,1]) br_tag = tf.tile(br_tag,[1,K,1,1]) dists = tf.abs(tl_tag-br_tag) dists = tf.squeeze(dists,axis=-1) dis_inds = (dists>self.dis_threshold) tl_scores = tf.tile(tf.reshape(tl_scores,[B,K,1]),[1,1,K]) br_scores = tf.tile(tf.reshape(br_scores,[B,1,K]),[1,K,1]) scores = (tl_scores+br_scores)/2 tl_clses = tf.tile(tf.reshape(tl_clses,[B,K,1]),[1,1,K]) br_clses = tf.tile(tf.reshape(br_clses,[B,1,K]),[1,K,1]) cls_inds = tf.not_equal(tl_clses,br_clses) width_inds = (br_xs<tl_xs) height_inds = (br_ys<tl_ys) all_inds = tf.logical_or(cls_inds,dis_inds) all_inds = tf.logical_or(all_inds,width_inds) all_inds = tf.logical_or(all_inds,height_inds) #all_inds = cls_inds scores = tf.where(all_inds,tf.zeros_like(scores),scores) scores,inds = tf.nn.top_k(tf.reshape(scores,[B,-1]),num_dets) wsummary.variable_summaries_v2(scores,"scores") wsummary.variable_summaries_v2(tl_scores,"tl_scores") wsummary.variable_summaries_v2(br_scores,"br_scores") bboxes = tf.reshape(bboxes,[B,-1,4]) bboxes = wmlt.batch_gather(bboxes,inds) #bboxes = tf.Print(bboxes,["box1",tf.reduce_max(bboxes),tf.reduce_min(bboxes),W,H],summarize=100) #wsummary.detection_image_summary(self.inputs[IMAGE], # boxes=odbox.tfabsolutely_boxes_to_relative_boxes(tf.reshape(bboxes,[B,-1,4]),width=W,height=H), # name="box1") clses = tf.reshape(tl_clses,[B,-1]) clses = wmlt.batch_gather(clses,inds) '''tl_scores = tf.reshape(tl_scores,[B,-1,1]) tl_scores = wmlt.batch_gather(tl_scores,inds) br_scores = tf.reshape(br_scores,[B,-1,1]) br_scores = wmlt.batch_gather(br_scores,inds)''' ct = tf.stack([ct_ys/tf.to_float(H), ct_xs/tf.to_float(W)], axis=-1) bboxes = odbox.tfabsolutely_boxes_to_relative_boxes(bboxes,width=W,height=H) sizes = tf.convert_to_tensor(self.size_threshold,dtype=tf.float32) relative_size = sizes*tf.rsqrt(tf.cast(img_size[0]*img_size[1],tf.float32)) _,box_nr,_ = wmlt.combined_static_and_dynamic_shape(bboxes) length = tf.ones([B],tf.int32)*box_nr #bboxes = tf.Print(bboxes,["bboxes",tf.reduce_min(bboxes),tf.reduce_max(bboxes),tf.reduce_min(ct),tf.reduce_max(ct)],summarize=100) center_index = tfop.center_boxes_filter(bboxes=bboxes, bboxes_clses=clses, center_points=ct, center_clses=ct_clses, size_threshold=relative_size, bboxes_length=length, nrs=[3,5]) def fn(bboxes,scores,clses,ct_score,c_index): ct_score = tf.gather(ct_score,tf.nn.relu(c_index)) scores = (scores*2+ct_score)/3 #变成三个点的平均 mask = tf.logical_and(tf.greater_equal(c_index,0),tf.greater(scores,self.score_threshold)) mask = tf.logical_and(tf.greater_equal(ct_score,0.001),mask) bboxes = tf.boolean_mask(bboxes,mask) scores = tf.boolean_mask(scores,mask) clses = tf.boolean_mask(clses,mask) len = tf.reduce_sum(tf.cast(mask,tf.int32)) bboxes = tf.pad(bboxes,[[0,box_nr-len],[0,0]]) scores = tf.pad(scores,[[0,box_nr-len]]) clses = tf.pad(clses,[[0,box_nr-len]]) return bboxes,scores,clses,len bboxes,scores,clses,length = tf.map_fn(lambda x:fn(x[0],x[1],x[2],x[3],x[4]), elems=(bboxes,scores,clses,ct_scores,center_index), dtype=(tf.float32,tf.float32,tf.int32,tf.int32)) #bboxes = tf.Print(bboxes,["box2",tf.reduce_max(bboxes),tf.reduce_min(bboxes),W,H],summarize=100) #wsummary.detection_image_summary(self.inputs[IMAGE], # boxes=tf.reshape(bboxes,[B,-1,4]),lengths=length, # name="box2") return bboxes,scores,clses,length
3612b5e072cd20efa4dddf1146c44558b40b97d6
0258e0c9595406ceb3de32067aff776bc2a58fa8
/test1.py
8d7172f2fc5867f453187b5d1e84acd26e2737c4
[]
no_license
akromibn37/python_code
72c016c361b3ba2e04c83e1d1a703171b0bd8819
41d1a09f8ec8696e37ad83c1a0cb6506c7f0f4f6
refs/heads/master
2020-03-21T22:57:25.111642
2018-06-29T14:14:33
2018-06-29T14:14:33
139,157,588
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
s = "PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP-PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP-PPPP" c = s.rfind("-") print(c)
312b1e2bce53e43eed3cdd5faca54bc8a98d4c90
ce9d90ac5dfd61cc1d3ec57378186a4895323abb
/tests/filters/helpers.py
0bd99d08eb31da8ac72380689341d36b801acad4
[ "Apache-2.0" ]
permissive
min-a-youn/plaso
61ee7f280c471a2e9fcc3407445ddd4f3c5eb125
082ff564872f7dd1d0d5d68cca23b3f7b8cdedcb
refs/heads/master
2020-09-20T22:07:34.631095
2019-08-28T06:06:48
2019-08-28T06:06:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,455
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the event filter helper functions and classes.""" from __future__ import unicode_literals import unittest from plaso.filters import helpers from tests import test_lib as shared_test_lib class CopyValueToDateTimeTest(shared_test_lib.BaseTestCase): """Tests the CopyValueToDateTime helper function.""" def testCopyValueToDateTime(self): """Tests the CopyValueToDateTime function.""" date_time = helpers.CopyValueToDateTime('2009-07-13T23:29:02.849131') self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247527742849131) date_time = helpers.CopyValueToDateTime('2009-07-13') self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247443200000000) date_time = helpers.CopyValueToDateTime('2009-07-13 23:29:02') self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247527742000000) date_time = helpers.CopyValueToDateTime('2009-07-13 23:29:02.849131') self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247527742849131) date_time = helpers.CopyValueToDateTime('1247527742849131') self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247527742849131) date_time = helpers.CopyValueToDateTime(1247527742849131) self.assertIsNotNone(date_time) self.assertEqual(date_time.timestamp, 1247527742849131) with self.assertRaises(ValueError): helpers.CopyValueToDateTime(None) class GetUnicodeStringTest(shared_test_lib.BaseTestCase): """Tests the GetUnicodeString helper function.""" def testGetUnicodeString(self): """Tests the GetUnicodeString function.""" string = helpers.GetUnicodeString(['1', '2', '3']) self.assertEqual(string, '123') string = helpers.GetUnicodeString([1, 2, 3]) self.assertEqual(string, '123') string = helpers.GetUnicodeString(123) self.assertEqual(string, '123') string = helpers.GetUnicodeString(b'123') self.assertEqual(string, '123') string = helpers.GetUnicodeString('123') self.assertEqual(string, '123') class TimeRangeCacheTest(shared_test_lib.BaseTestCase): """Tests the TimeRangeCache helper.""" # pylint: disable=protected-access def testGetTimeRange(self): """Tests the GetTimeRange function.""" if hasattr(helpers.TimeRangeCache, '_lower'): del helpers.TimeRangeCache._lower if hasattr(helpers.TimeRangeCache, '_upper'): del helpers.TimeRangeCache._upper first, last = helpers.TimeRangeCache.GetTimeRange() self.assertEqual(first, helpers.TimeRangeCache._INT64_MIN) self.assertEqual(last, helpers.TimeRangeCache._INT64_MAX) def testSetLowerTimestamp(self): """Tests the SetLowerTimestamp function.""" helpers.TimeRangeCache.SetLowerTimestamp(1247527742849131) first, last = helpers.TimeRangeCache.GetTimeRange() self.assertEqual(first, 1247527742849131) self.assertEqual(last, helpers.TimeRangeCache._INT64_MAX) del helpers.TimeRangeCache._lower def testSetUpperTimestamp(self): """Tests the SetUpperTimestamp function.""" helpers.TimeRangeCache.SetUpperTimestamp(1247527742849131) first, last = helpers.TimeRangeCache.GetTimeRange() self.assertEqual(first, helpers.TimeRangeCache._INT64_MIN) self.assertEqual(last, 1247527742849131) del helpers.TimeRangeCache._upper if __name__ == "__main__": unittest.main()
d15fd0a6853b2f38a462ef37d462539753a53184
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_089/ch12_2020_03_09_12_58_17_378201.py
a48a67c58fe14187f66e923fd33e0299ab4d37f9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
def resolve_equacao_1o_grau(x): f= a*x+b a*x+b=0 return f
7bb4179aa4bbbb1f06631d13ab17c3564a767a29
3e7b2ebb64e9e324ce47d19def21ae62cc1e56a6
/My Thought/reverse a string.py
296417613cb9272f294f6413f7eee55df1ccb0ce
[]
no_license
shuvo14051/python-data-algo
9b6622d9260e95ca9ffabd39b02996f13bdf20d1
8f66ff6f2bd88a0ae48dac72e4ea6c5382a836ec
refs/heads/master
2023-02-03T03:04:01.183093
2020-12-13T10:13:15
2020-12-13T10:13:15
274,106,480
0
0
null
2020-07-05T06:33:28
2020-06-22T10:24:05
Python
UTF-8
Python
false
false
188
py
# this is a complete pythonnic way # print(a[::-1]) a = "Shuvo" li = [] for i in a: li.append(i) reverse = '' for i in range(len(li)-1,-1,-1): reverse += li[i] print(reverse)
4097dc4928226ce67c6d923fff671e5ca2b9b7d3
e20ed90b9be7a0bcdc1603929d65b2375a224bf6
/generated-libraries/python/netapp/job/job_private_delete_iter_key_td.py
7dde8422f159e87e74cc57255dc0b70f0ea0cce6
[ "MIT" ]
permissive
radekg/netapp-ontap-lib-gen
530ec3248cff5ead37dc2aa47ced300b7585361b
6445ebb071ec147ea82a486fbe9f094c56c5c40d
refs/heads/master
2016-09-06T17:41:23.263133
2015-01-14T17:40:46
2015-01-14T17:40:46
29,256,898
2
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
from netapp.netapp_object import NetAppObject class JobPrivateDeleteIterKeyTd(NetAppObject): """ Key typedef for table jm_local_jobs_table_remove """ _key_2 = None @property def key_2(self): """ Field vserver """ return self._key_2 @key_2.setter def key_2(self, val): if val != None: self.validate('key_2', val) self._key_2 = val _key_1 = None @property def key_1(self): """ Field id """ return self._key_1 @key_1.setter def key_1(self, val): if val != None: self.validate('key_1', val) self._key_1 = val _key_0 = None @property def key_0(self): """ Field node """ return self._key_0 @key_0.setter def key_0(self, val): if val != None: self.validate('key_0', val) self._key_0 = val @staticmethod def get_api_name(): return "job-private-delete-iter-key-td" @staticmethod def get_desired_attrs(): return [ 'key-2', 'key-1', 'key-0', ] def describe_properties(self): return { 'key_2': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'key_1': { 'class': basestring, 'is_list': False, 'required': 'optional' }, 'key_0': { 'class': basestring, 'is_list': False, 'required': 'optional' }, }
b374191a7cf732d53d219ab1e5838ac5a74b3ab2
8fcc27160f8700be46296568260fa0017a0b3004
/client/cherrypy/test/test_virtualhost.py
e9b88bd297cb6047933124c32d619fd6c0d22cc0
[]
no_license
connoryang/dec-eve-serenity
5d867f4eedfa896a4ef60f92556356cafd632c96
b670aec7c8b4514fc47cd52e186d7ccf3aabb69e
refs/heads/master
2021-01-22T06:33:16.303760
2016-03-16T15:15:32
2016-03-16T15:15:32
56,389,750
1
0
null
2016-04-16T15:05:24
2016-04-16T15:05:24
null
UTF-8
Python
false
false
3,718
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\carbon\common\lib\cherrypy\test\test_virtualhost.py import os curdir = os.path.join(os.getcwd(), os.path.dirname(__file__)) import cherrypy from cherrypy.test import helper class VirtualHostTest(helper.CPWebCase): def setup_server(): class Root: def index(self): return 'Hello, world' index.exposed = True def dom4(self): return 'Under construction' dom4.exposed = True def method(self, value): return 'You sent %s' % repr(value) method.exposed = True class VHost: def __init__(self, sitename): self.sitename = sitename def index(self): return 'Welcome to %s' % self.sitename index.exposed = True def vmethod(self, value): return 'You sent %s' % repr(value) vmethod.exposed = True def url(self): return cherrypy.url('nextpage') url.exposed = True static = cherrypy.tools.staticdir.handler(section='/static', dir=curdir) root = Root() root.mydom2 = VHost('Domain 2') root.mydom3 = VHost('Domain 3') hostmap = {'www.mydom2.com': '/mydom2', 'www.mydom3.com': '/mydom3', 'www.mydom4.com': '/dom4'} cherrypy.tree.mount(root, config={'/': {'request.dispatch': cherrypy.dispatch.VirtualHost(**hostmap)}, '/mydom2/static2': {'tools.staticdir.on': True, 'tools.staticdir.root': curdir, 'tools.staticdir.dir': 'static', 'tools.staticdir.index': 'index.html'}}) setup_server = staticmethod(setup_server) def testVirtualHost(self): self.getPage('/', [('Host', 'www.mydom1.com')]) self.assertBody('Hello, world') self.getPage('/mydom2/', [('Host', 'www.mydom1.com')]) self.assertBody('Welcome to Domain 2') self.getPage('/', [('Host', 'www.mydom2.com')]) self.assertBody('Welcome to Domain 2') self.getPage('/', [('Host', 'www.mydom3.com')]) self.assertBody('Welcome to Domain 3') self.getPage('/', [('Host', 'www.mydom4.com')]) self.assertBody('Under construction') self.getPage('/method?value=root') self.assertBody("You sent u'root'") self.getPage('/vmethod?value=dom2+GET', [('Host', 'www.mydom2.com')]) self.assertBody("You sent u'dom2 GET'") self.getPage('/vmethod', [('Host', 'www.mydom3.com')], method='POST', body='value=dom3+POST') self.assertBody("You sent u'dom3 POST'") self.getPage('/vmethod/pos', [('Host', 'www.mydom3.com')]) self.assertBody("You sent 'pos'") self.getPage('/url', [('Host', 'www.mydom2.com')]) self.assertBody('%s://www.mydom2.com/nextpage' % self.scheme) def test_VHost_plus_Static(self): self.getPage('/static/style.css', [('Host', 'www.mydom2.com')]) self.assertStatus('200 OK') self.assertHeader('Content-Type', 'text/css;charset=utf-8') self.getPage('/static2/dirback.jpg', [('Host', 'www.mydom2.com')]) self.assertStatus('200 OK') self.assertHeader('Content-Type', 'image/jpeg') self.getPage('/static2/', [('Host', 'www.mydom2.com')]) self.assertStatus('200 OK') self.assertBody('Hello, world\r\n') self.getPage('/static2', [('Host', 'www.mydom2.com')]) self.assertStatus(301)
152c01b7254082a6295aa8c64ce3f0600ca33d97
be134c181703b95aca1e48b6a31bcfdb7bcfcc76
/site/mezzanine_old/galleries/migrations/0001_initial.py
11f1937e16fbf9cff1135c9e2c992c658bbfd803
[]
permissive
aldenjenkins/ThiccGaming
0245955a797394bcfeedb2cfb385f633653ba55d
4790d2568b019438d1569d0fe4e9f9aba008b737
refs/heads/master
2022-12-16T02:43:36.532981
2021-11-17T04:15:21
2021-11-17T04:15:21
154,858,818
0
0
BSD-3-Clause
2022-12-08T02:58:44
2018-10-26T15:52:39
Python
UTF-8
Python
false
false
1,837
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import mezzanine.core.fields class Migration(migrations.Migration): dependencies = [ ('pages', '__first__'), ] operations = [ migrations.CreateModel( name='Gallery', fields=[ ('page_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='pages.Page')), ('content', mezzanine.core.fields.RichTextField(verbose_name='Content')), ('zip_import', models.FileField(help_text="Upload a zip file containing images, and they'll be imported into this gallery.", upload_to='galleries', verbose_name='Zip import', blank=True)), ], options={ 'ordering': ('_order',), 'verbose_name': 'Gallery', 'verbose_name_plural': 'Galleries', }, bases=('pages.page', models.Model), ), migrations.CreateModel( name='GalleryImage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('_order', models.IntegerField(null=True, verbose_name='Order')), ('file', mezzanine.core.fields.FileField(max_length=200, verbose_name='File')), ('description', models.CharField(max_length=1000, verbose_name='Description', blank=True)), ('gallery', models.ForeignKey(related_name='images', to='galleries.Gallery')), ], options={ 'ordering': ('_order',), 'verbose_name': 'Image', 'verbose_name_plural': 'Images', }, bases=(models.Model,), ), ]
b08be16b6f55bbb29dd93651676a710322f99cdd
2fcb5da42f0aff62c88189bd36fc5f61a40eb604
/vardautomation/timeconv.py
3b84b24deda8187b48a85d3ae7948559d45a7404
[ "MIT" ]
permissive
tomato39/vardautomation
d45ec446a1cd06c2e7b7ec5378772953fa7b4caa
efa24d9420d6a6f732e8b0a846874a289a7cb095
refs/heads/master
2023-08-23T01:44:00.014196
2021-10-21T23:05:52
2021-10-21T23:09:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,647
py
"""Conversion time module""" from fractions import Fraction from .status import Status class Convert: """Collection of methods to perform time conversion""" @classmethod def ts2f(cls, ts: str, fps: Fraction, /) -> int: """ Convert a timestamp hh:mm:ss.xxxx in number of frames :param ts: Timestamp :param fps: Framerate Per Second :return: Frames """ s = cls.ts2seconds(ts) f = cls.seconds2f(s, fps) return f @classmethod def f2ts(cls, f: int, fps: Fraction, /, *, precision: int = 3) -> str: """ Convert frames in timestamp hh:mm:ss.xxxx :param f: Frames :param fps: Framerate Per Second :param precision: Precision number, defaults to 3 :return: Timestamp """ s = cls.f2seconds(f, fps) ts = cls.seconds2ts(s, precision=precision) return ts @classmethod def seconds2ts(cls, s: float, /, *, precision: int = 3) -> str: """ Convert seconds in timestamp hh:mm:ss.xxx :param s: Seconds :param precision: Precision number, defaults to 3 :return: Timestamp """ m = s // 60 s %= 60 h = m // 60 m %= 60 return cls.composets(h, m, s, precision=precision) @classmethod def f2assts(cls, f: int, fps: Fraction, /) -> str: """ Convert frames to .ass timestamp hh:mm:ss.xx properly by removing half of one frame per second of the specified framerate :param f: Frames :param fps: Framerate Per Second :return: ASS timestamp """ s = cls.f2seconds(f, fps) s -= fps ** -1 * 0.5 ts = cls.seconds2ts(max(0, s), precision=3) return ts[:-1] @classmethod def assts2f(cls, assts: str, fps: Fraction, /) -> int: """ Convert .ass timestamp hh:mm:ss.xx to frames properly by adding half of one frame per second of the specified framerate :param assts: ASS timestamp :param fps: Framerate Per Second :return: Frames """ s = cls.ts2seconds(assts) if s > 0: s += fps ** -1 * 0.5 return cls.seconds2f(s, fps) @staticmethod def f2seconds(f: int, fps: Fraction, /) -> float: """ Convert frames to seconds :param f: Frames :param fps: Framerate Per Second :return: Seconds """ if f == 0: return 0.0 t = round(float(10 ** 9 * f * fps ** -1)) s = t / 10 ** 9 return s @staticmethod def ts2seconds(ts: str, /) -> float: """ Convert timestamp hh:mm:ss.xxxx to seconds :param ts: Timestamp :return: Seconds """ h, m, s = map(float, ts.split(':')) return h * 3600 + m * 60 + s @staticmethod def seconds2f(s: float, fps: Fraction, /) -> int: """ Convert seconds to frames :param s: Seconds :param fps: Framerate Per Second :return: Frames """ return round(s * fps) @staticmethod def samples2seconds(num_samples: int, sample_rate: int, /) -> float: """ Convert samples to seconds :param num_samples: Samples :param sample_rate: Playback sample rate :return: Seconds """ return num_samples / sample_rate @staticmethod def seconds2samples(s: float, sample_rate: int, /) -> int: """ Convert seconds to samples :param s: Seconds :param sample_rate: Playback sample rate :return: Samples """ return round(s * sample_rate) @classmethod def f2samples(cls, f: int, fps: Fraction, sample_rate: int) -> int: """ Convert frames to samples :param f: Frames :param fps: Framerate Per Second :param sample_rate: Playback sample rate :return: Samples """ s = cls.f2seconds(f, fps) return cls.seconds2samples(s, sample_rate) @classmethod def samples2f(cls, num_samples: int, sample_rate: int, fps: Fraction) -> int: """ Convert sample to frames :param num_samples: Samples :param sample_rate: Playback sample rate :param fps: Framerate Per Second :return: Frame """ s = cls.samples2seconds(num_samples, sample_rate) return cls.seconds2f(s, fps) @staticmethod def composets(h: float, m: float, s: float, /, *, precision: int = 3) -> str: """ Make a timestamp based on given hours, minutes and seconds :param h: Hours :param m: Minutes :param s: Seconds :param precision: Precision number, defaults to 3 :return: Timestamp """ if precision == 0: out = f"{h:02.0f}:{m:02.0f}:{round(s):02}" elif precision == 3: out = f"{h:02.0f}:{m:02.0f}:{s:06.3f}" elif precision == 6: out = f"{h:02.0f}:{m:02.0f}:{s:09.6f}" elif precision == 9: out = f"{h:02.0f}:{m:02.0f}:{s:012.9f}" else: Status.fail(f'composets: the precision {precision} must be a multiple of 3 (including 0)') return out
c4cc3eae8ce8dc40427cfc6263c0d8d9207e33ce
e2590e0a78046a22131b69c76ebde21bf042cdd1
/ABC201_300/ABC275/A.py
6bc5a95d16891d1502a3adf5fbd2ff8aa0b3a6a3
[]
no_license
masato-sso/AtCoderProblems
b8e23941d11881860dcf2942a5002a2b19b1f0c8
fbc02e6b7f8c6583e5a4e5187463e0001fc5f4d8
refs/heads/main
2023-01-22T23:57:58.509585
2023-01-21T14:07:47
2023-01-21T14:07:47
170,867,816
0
0
null
null
null
null
UTF-8
Python
false
false
179
py
N = int(input()) H = list(map(int, input().split())) maxValue = max(H) ans = 0 for idx,h in enumerate(H): if(h == maxValue): ans = idx + 1 break print(ans)
a0d3caee1fbf6c2afadd6139c75f0fb247dbe328
b24e45267a8d01b7d3584d062ac9441b01fd7b35
/Usuario/.history/views_20191102195546.py
879e6589a3c510e2404c8ff9b59bed87520c898f
[]
no_license
slalbertojesus/merixo-rest
1707b198f31293ced38930a31ab524c0f9a6696c
5c12790fd5bc7ec457baad07260ca26a8641785d
refs/heads/master
2022-12-10T18:56:36.346159
2020-05-02T00:42:39
2020-05-02T00:42:39
212,175,889
0
0
null
2022-12-08T07:00:07
2019-10-01T18:56:45
Python
UTF-8
Python
false
false
3,630
py
from django.shortcuts import render from rest_framework import status from rest_framework.response import Response from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import AllowAny from rest_framework_simplejwt.tokens import RefreshToken from .models import Usuario from .serializers import UsuarioSerializer SUCCESS = 'exito' ERROR = 'error' DELETE_SUCCESS = 'eliminado' UPDATE_SUCCESS = 'actualizado' CREATE_SUCCESS = 'creado' @api_view(['GET', ]) def api_detail_usuario_view(request, identificador): try: usuario = Usuario.objects.get(identificador = identificador) except usuario.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = UsuarioSerializer(usuario) return Response(serializer.data) @api_view(['PUT',]) def api_update_usuario_view(request, identificador): try: usuario = Usuario.objects.get(identificador = identificador) except usuario.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'PUT': serializer = UsuarioSerializer(usuario, data=request.data) data = {} if serializer.is_valid(): serializer.save() data[SUCCESS] = UPDATE_SUCCESS return Response(data=data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['DELETE',]) def api_delete_usuario_view(request, identificador): try: usuario = Usuario.objects.get(identificador=identificador) except usuario.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'DELETE': operation = usuario.delete() data = {} if operation: data[SUCCESS] = DELETE_SUCCESS return Response(data=data) @api_view(['POST',]) @permission_classes([AllowAny,]) def api_create_usuario_view(request): if request.method == 'POST': serializer = UsuarioSerializer(data=request.data) data = {} if serializer.is_valid(): usuario = serializer.save() data['response'] = "se registró de forma exitosa" data['nombre'] = usuario.nombre data['usuario'] = usuario.usuario return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(["POST"]) @permission_classes([AllowAny,]) def api_login(request): usuario = request.data.get("usuario") contraseña = request.data.get("contraseña") if usuario is None or contraseña is None: return Response({'error': 'No existen contraseña ni usuario'}, status=HTTP_400_BAD_REQUEST) usuario = authenticate(usuario=usuario, contraseña=contraseña) get_tokens_for_user(usuario) return { 'refresh': str(token), 'access': str(token.access_token), } def for_user(cls, user): """ Returns an authorization token for the given user that will be provided after authenticating the user's credentials. """ user_id = getattr(user, api_settings.USER_ID_FIELD) if not isinstance(user_id, int): user_id = str(user_id) token = cls() token[api_settings.USER_ID_CLAIM] = user_id return token refresh = RefreshToken.for_user(user) def authenticate(usuario, contraseña): usuario = Usuario.objects.get(usuario= usuario, contraseña=contraseña) if not usuario: raise serializers.ValidationError({'error': 'Usuario no existe'}, status=HTTP_404_NOT_FOUND) return usuario
561487ce846747b6d7fb0034befaeceaa9bf589e
4ae6e54a01e25d370929b49bbaa91c51b003d41a
/wwwroot/app/cgi-bin/AutograderBackEnd.py
a5ec7da5cc2a9cd932b912fdd77e998cb02ccbfb
[]
no_license
rdasxy/programming-autograder
8197a827236dc5384f6f3ceeaf2fbadefdd5506c
f885c1cd37721e1cd0b3bf3b49cc44b9adb64d92
refs/heads/master
2021-01-22T05:33:28.971055
2012-12-27T21:53:24
2012-12-27T21:53:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,367
py
# 4th major iteration - refactoring to deal with changed authentication procedures # and to deal with each problem in parallel. import os, sys import subprocess import random import string import winprocess import win32pipe import win32file import pickle import autograde_utilities import thread import Queue import time import datetime import smtplib import collections import zipfile import autograder def ArchiveResults(JobTriple): ''' Record this attempt in archive. Gets 3-tuple: Job (itself a named tuple), result (string), error (string, possibly empty) ''' D = dict() D['UserID'] = JobTriple[0].UserID D['CourseNum'] = JobTriple[0].CourseNum D['ProblemNum'] = JobTriple[0].ProblemNum D['ProblemID']= JobTriple[0].ProblemID D['Timestamp'] = JobTriple[0].Timestamp D['Files']= JobTriple[0].Files D['Result'] = JobTriple[1] Path = 'c:/users/public/archive' Fname = JobTriple[0].UserID + JobTriple[0].CourseNum + "%04d"%JobTriple[0].ProblemID + str(JobTriple[0].Timestamp).replace(' ', '').replace(':','') Fname = Fname +'.pkl' Fullname = os.path.join(Path, Fname) Zipname = os.path.join(Path, 'archive.zip') F = open(Fullname, 'wb') pickle.dump(D, F) F.close() Z = zipfile.ZipFile(Zipname, 'a', zipfile.ZIP_DEFLATED) Z.write(Fullname, os.path.basename(Fullname)) Z.close() os.remove(Fullname) def EmailResults(AJob, Result, Error): # includes code from: http://www.mkyong.com/python/how-do-send-email-in-python-via-smtplib/ # setup login information #print "Emailing results." prefix = AJob.UserID if prefix in ('hareb', 'spatzs'): suffix = '@umkc.edu' else: suffix = '@mail.umkc.edu' Addy = prefix + suffix gmail_acct = '[email protected]' gmail_pwd = 'SaulAndBrian' # build message Body = "\nThis is an automatically generated email from the autograder. Do not reply to this address. " Body += "Contact the course instructor if you have questions." Body += "\nHere are the results from your submission for problem %s, %s:\n" % (AJob.ProblemNum, AJob.CourseNum) Body += Result + '\n' + Error + '\n' header = 'To:' + Addy + '\n' + 'From: ' + gmail_acct + '\n' + 'Subject:Autograder results \n' msg = header + Body # Now deal with the smtp server smtpserver = smtplib.SMTP("smtp.gmail.com",587) smtpserver.ehlo() smtpserver.starttls() smtpserver.ehlo smtpserver.login(gmail_acct, gmail_pwd) #print header smtpserver.sendmail(gmail_acct, Addy, msg) #print 'done!' smtpserver.close() def PostResults(ResultQueue): ''' pull results from queue, deal w/ logging etc. This function is called as a separate thread. It blocks waiting for things to be added to the queue; if nothing is added, it blocks until the main process dies after a 30-sec or so timeout, taking this thread with it. Queue contains 3-tuples: Job (namedtuple), Result (str), ErrMsg (str, may be empty)''' # collections.namedtuple(JobType, ['UserID', 'CourseNum', 'ProblemNum', 'ProblemID', 'Timestamp', 'Files']) while not ResultQueue.empty(): #print "Posting results, line 90" # TODO: Add code to save student's submission in archive. NextJob = ResultQueue.get() # this blocks as long as necessary. ArchiveResults(NextJob) # NextJob[0].Files = None autograder.ReportGradeStatus(NextJob[0], NextJob[1]) EmailResults(NextJob[0], NextJob[1], NextJob[2]) def Grade(JobList): ''' called by chron job--gets a named tuple representing the list of pending jobs. Spins off new threads for dealing with each job. Snoozes a bit, then dies.''' ResultsQueue = Queue.Queue() SandboxList = list() while JobList: Settings = dict() ProblemDict = dict() Job = JobList.pop(0) if not Job.Files: # Student didn't turn anything in ResultsQueue.put( (Job, 'SubmissionError', 'No files submitted')) Settings, ProblemDict = SetUpSubmission(Job) SandboxList.append(ProblemDict['SandboxDir']) if not Settings: # Can't set up the problem ResultsQueue.put( (Job, 'SystemError', "Can't set up problem; see administrator")) return # and we're out of here. # Otherwise paths are set up & sandbox is ready. Settings['cs101'] = HandleSubmission Settings['cs282'] = HandleMARSSubmission try: #IOFiles = ProblemDict['IOPairs'] ProblemDict['FileToRun']=os.path.join(ProblemDict['SandboxDir'], ProblemDict['Run']) if 'ExtraFiles' in ProblemDict: Extras = ProblemDict['ExtraFiles'] else: Extras = [] except KeyError: os.rmdir(ProblemDict['SandboxDir']) ResultsQueue.put( (Job, 'SystemError', 'Misread configuration data; see administrator')) return #NextJob = JobList.pop(0) ## ReportGradeStatus(NextJob.UserID, NextJob.CourseNum, NextJob.ProblemNum, ## NextJob.Timestamp, 'Submitted') try: FuncToRun = Settings[Job.CourseNum] except KeyError: print "Course number not found, don't know which language to run." print "Grade, line 138" FuncToRun(Job, Settings, ProblemDict, ResultsQueue) #thread.start_new_thread(HandleSubmission, (Job, Settings, ProblemDict, ResultQueue)) # HandleSubmission will post results to queue. Start 1 thread to handle # results by pulling them off queue & dealing with them. PostResults(ResultsQueue) #thread.start_new_thread(PostResults, (ResultQueue,)) #time.sleep(15) # which should be more than enough for everything to finish. # When this function ends, all threads and the queue they're operating on # go away. In the vast majority of cases, they're long since done anyway; # the producer threads (HandleSubmission) are done and the consumer # (PostResults) is waiting for results that will never come. But just in case # something was left over & blocked, the end of function will clean them up. for Dir in SandboxList: try: autograde_utilities.Cleanup(Dir) os.rmdir(Dir) except Exception, e: # if anything goes wrong, ignore it; utility script will fix later. #print e os.chdir('..') try: os.rmdir(Dir) except Exception, e: pass #print "Still didn't work.", e def ReadSystemConfig(): try: F = open('c:/autograder.ini') Stuff = dict() for line in F: Setting = line.split('=') if Setting[0]: Key = Setting[0].strip() Val=Setting[1].strip() Stuff[Key] = Val F.close() except IOError: pass except KeyError: return None return Stuff def ReadProblemINI(ProblemPath): try: F=open(os.path.join(ProblemPath, 'template.txt')) except IOError: return False ProblemDict=dict() for line in F: if len(line) > 2: thingy = line.split(':') if thingy[0]: Key = thingy[0].strip() Val=thingy[1].strip() ProblemDict[Key]=Val F.close() # Note: Some things might be lists. Convert them. try: SubmitList=[F.lower().strip() for F in ProblemDict['SubmissionFiles'].split()] ProblemDict['SubmissionFiles']=SubmitList except KeyError: pass try: ExtraList=[F.lower().strip() for F in ProblemDict['ExtraFiles'].split()] ExtraPath=os.path.join(ProblemPath, 'ExtraFiles') Extras = [os.path.join(ExtraPath, F) for F in ExtraList] ProblemDict['ExtraFiles']=Extras except KeyError: pass try: SubmitList=[F.lower().strip() for F in ProblemDict['IOPairs'].split()] TupList = list() while SubmitList: try: (i, o) = SubmitList[0], SubmitList[1] SubmitList.pop(0) SubmitList.pop(0) except IndexError: pass else: TupList.append((i, o)) ProblemDict['IOPairs']=TupList except KeyError: pass try: IOPath=ProblemDict['IOPath'] except KeyError: IOPath='' ProblemDict['IOPath'] = os.path.join(ProblemPath, IOPath) return ProblemDict def SetUpSubmission(Job): Settings = ReadSystemConfig() if not Settings: return False, "Can't read system configuration" ProblemPath=os.path.join(Settings['ProblemPath'], Job.CourseNum, '%04d' % Job.ProblemID) if not os.path.isdir(ProblemPath): return False, "Can't find problem directory" else: Settings['ProblemPath'] = ProblemPath ProblemDict=ReadProblemINI(ProblemPath) if not ProblemDict: return False, "Can't read problem configuration" TimeStr = str(Job.Timestamp) # Sandbox dir looks something like: # Sandbox\abcxyz02072012-01-17120102030000\stuff goes here # for problem 0207 submitted by student 'abcxyz' on 2012-01-17 at 12:01:02.030000 PM # Timestamp is a datetime object, and the string version of it has characters # that can't be part of a directory path. So fix it. TempDir = Job.UserID + ('%04d' % Job.ProblemNum) + TimeStr for ch in ' :.,': TempDir = TempDir.replace(ch, '') ProblemDict['SandboxDir'] = os.path.join(Settings['SandboxDir'], TempDir) try: os.mkdir(ProblemDict['SandboxDir']) except WindowsError: ProblemDict['SandboxDir'] = None return False, "Can't configure problem." return Settings, ProblemDict def HandleSubmission(Job, Settings, ProblemDict, ResultsQueue): ''' handle the traffic-cop aspects of a submission. Parameters: Job : The job that we're about to process. a named tuple ResultsQueue: The queue that we should post results to for later processing. Actions: For this problem, retrieve the list of system supplied files (if any) and list of (input,output) tuples. Feed the HandleFile function the problem, submission, and single (i, o) pairs until either: All input cases have been handled successfully; or Any submission has returned anything other than 'Correct.' If any case returned anything other than 'Correct': Post this job, Status, ErrMsg to results queue. Example: job, 'SyntaxError', traceback or: job, 'OutputError', 'Excessive output detected.' otherwise: Post this job, 'Correct', '' to results queue Returns: Nothing ''' #InputDir = ProblemDict['IOPath'] # Now process each set of I/O files; continue until all done, or an error is hit. for IOTuple in ProblemDict['IOPairs']: if 'Extras' not in ProblemDict: ProblemDict['Extras'] = None Res, Err = HandleFile(Job, os.path.join(ProblemDict['IOPath'], IOTuple[0]), os.path.join(ProblemDict['IOPath'], IOTuple[1]), ProblemDict) if Res != 'Correct': ResultsQueue.put((Job, Res, Err)) # Post results & exit early #os.rmdir(ProblemDict['SandboxDir']) return # If we're here, then all files were processed correctly. #autograde_utilities.ReportGradeStatus(StudentID, ProblemID, Res) ResultsQueue.put( (Job, 'Correct', '')) #os.rmdir(ProblemDict['SandboxDir']) return def HandleMARSSubmission(Job, Settings, ProblemDict, ResultsQueue): ''' Process one student's submission on one set of input data using MARS. Parameters: Job: The named tuple containing, among other things, the files submitted by the student and their contents. InputFileName: The name (including path if needed) of the ONE file with sample input for this test. CorrectOutputFileName: The name (including path if needed) of the ONE file with correct output for the specified input. FileNameToRun: The name (excluding path) of the ONE file that is to run to test the student's code. This must be present in Job or SystemSuppliedFileList. SystemSuppliedFileList: The (possibly empty or missing) list of other files (including paths) which are needed to run this problem's code (class files, driver programs, etc) Returns: tuple of strings (Res, Err). Res is a brief description ('Correct', 'Runtime exceeded', etc), and Err is an error message (possibly empty string). ''' # set up some labels for later (exit codes) ExitMsg = {1:'Translation Error', 2:'Time Limit Exceeded', 3:'Windows Error', \ 4:'Excessive Output', 5:'Submission Error', 6:'Assembly Error',\ 7:'Runtime Error'} # Make sure we've got everything we're expecting; if we don't, skip all this. ExpectedFiles = [Filename for (Filename, contents) in Job.Files] try: ExpectedFiles += ProblemDict['Extras'] # SystemSuppliedFileList except (TypeError, KeyError): # if there was no list of other needed files. pass Expected = [os.path.basename(name).lower().strip() for name in ExpectedFiles] if os.path.basename(ProblemDict['Run']).lower().strip() not in Expected: Res = "File " + ProblemDict['Run'] + " was expected, but not found." Err = ExitMsg[5] return Err, Res # even if we're going ahead, we can free up some memory del(ExpectedFiles) del(Expected) # Create working (temporary) directory, copy files into it ProblemDict['WritePath'] = os.path.dirname(ProblemDict['FileToRun']) #FileNameToRun) try: for f in Job.Files: Fname = f[0] Code = f[1] open(ProblemDict['WritePath']+'/'+os.path.basename(Fname),'w').write(Code) try: if ProblemDict['Extras']: # SystemSuppliedFileList: for f in ProblemDict['Extras']: Code = open(f).read() open(ProblemDict['WritePath']+'/'+os.path.basename(f),'w').write(Code) except KeyError: pass except IOError: return ('SystemError', 'Contact Administrator or Instructor') # Setup I/O for program we're testing. Input = open(InputFileName).read() os.chdir(ProblemDict['WritePath']) open(os.path.join(ProblemDict['WritePath'], 'input.txt'),'w').write(Input) In = open('input.txt') Out = open('output.txt', 'w') #Err = open('error.txt', 'w') # Run that sucker! try: ExitCode = winprocess.run('java -jar c:\\Mars.jar nc p sm ae6 se7 %s' % ProblemDict['Run'], stdin=In, \ stdout=Out, mSec=5000, desktop='') except WindowsError, msg: if 'timeout exceeded' in str(msg): ExitCode = 2 # time out elif ExitCode not in (0, 6, 7): ExitCode = 3 # some other Windows error # Exit code of 0 indicates no error, as usual. # Exit code 6 indicates assembly error # Exit code 7 indicates runtime error #Done with files. In.close() Out.close() #Err.close() # Grab output if os.path.getsize('output.txt') < 5.0e6: Out = open('output.txt').read() else: # more than 5 megabytes output, something's wrong ExitCode = 4 # so set error flag Out = '' # & set Out to a safe value, but don't touch file. # grab error message if any. #Err = open('error.txt').read() # Cleanup temporary directory autograde_utilities.Cleanup(ProblemDict['WritePath']) #os.chdir(StartPath) # os.rmdir(WritePath) # Check output for validity. Correct = str(open(CorrectOutputFileName).read()) Out = Out.replace('\r', '') Correct = Correct.replace('\r', '') try: Result = ExitMsg[ExitCode] except KeyError: Result = autograde_utilities.CompareWithFormatting(Correct, Out) return Result, '' def HandleFile(Job, InputFileName, CorrectOutputFileName, ProblemDict): #FileNameToRun, SystemSuppliedFileList=None): ''' Process one student's submission on one set of input data. Parameters: Job: The named tuple containing, among other things, the files submitted by the student and their contents. InputFileName: The name (including path if needed) of the ONE file with sample input for this test. CorrectOutputFileName: The name (including path if needed) of the ONE file with correct output for the specified input. FileNameToRun: The name (excluding path) of the ONE file that is to run to test the student's code. This must be present in Job or SystemSuppliedFileList. SystemSuppliedFileList: The (possibly empty or missing) list of other files (including paths) which are needed to run this problem's code (class files, driver programs, etc) Returns: tuple of strings (Res, Err). Res is a brief description ('Correct', 'Runtime exceeded', etc), and Err is an error message (possibly empty string). ''' # set up some labels for later (exit codes) ExitMsg = {1:'Translation Error', 2:'Time Limit Exceeded', 3:'Windows Error', \ 4:'Excessive Output', 5:'Submission Error'} # Make sure we've got everything we're expecting; if we don't, skip all this. ExpectedFiles = [Filename for (Filename, contents) in Job.Files] try: ExpectedFiles += ProblemDict['Extras'] # SystemSuppliedFileList except (TypeError, KeyError): # if there was no list of other needed files. pass Expected = [os.path.basename(name).lower().strip() for name in ExpectedFiles] if os.path.basename(ProblemDict['Run']).lower().strip() not in Expected: Res = "File " + ProblemDict['Run'] + " was expected, but not found." Err = ExitMsg[5] return Err, Res # even if we're going ahead, we can free up some memory del(ExpectedFiles) del(Expected) # Create working (temporary) directory, copy files into it ProblemDict['WritePath'] = os.path.dirname(ProblemDict['FileToRun']) #FileNameToRun) try: for f in Job.Files: Fname = f[0] Code = f[1] open(ProblemDict['WritePath']+'/'+os.path.basename(Fname),'w').write(Code) if ProblemDict['Extras']: # SystemSuppliedFileList: for f in ProblemDict['Extras']: Code = open(f).read() open(ProblemDict['WritePath']+'/'+os.path.basename(f),'w').write(Code) except IOError: return ('SystemError', 'Contact Administrator or Instructor') # Setup I/O for program we're testing. Input = open(InputFileName).read() os.chdir(ProblemDict['WritePath']) open(os.path.join(ProblemDict['WritePath'], 'input.txt'),'w').write(Input) In = open('input.txt') Out = open('output.txt', 'w') Err = open('error.txt', 'w') # Run that sucker! try: ExitCode = winprocess.run('python %s' % ProblemDict['Run'], stdin=In, \ stdout=Out, stderr=Err, mSec=5000, desktop='') except WindowsError, msg: if 'timeout exceeded' in str(msg): ExitCode = 2 # time out else: ExitCode = 3 # some other Windows error # Exit code of 0 indicates no error, as usual. #Done with files. In.close() Out.close() Err.close() # Grab output if os.path.getsize('output.txt') < 5.0e6: Out = open('output.txt').read() else: # more than 5 megabytes output, something's wrong ExitCode = 4 # so set error flag Out = '' # & set Out to a safe value, but don't touch file. # grab error message if any. Err = open('error.txt').read() # Cleanup temporary directory autograde_utilities.Cleanup(ProblemDict['WritePath']) #os.chdir(StartPath) # os.rmdir(WritePath) # Check output for validity. Correct = str(open(CorrectOutputFileName).read()) Out = Out.replace('\r', '') Correct = Correct.replace('\r', '') try: Result = ExitMsg[ExitCode] except KeyError: Result = autograde_utilities.CompareWithFormatting(Correct, Out) return Result, Err def RunTest(): JobType = collections.namedtuple('JobType', ['UserID', 'CourseNum', 'ProblemNum', 'ProblemID', 'Timestamp', 'Files']) JobList = list() UserID = 'hareb' CourseNum="CS101" ProblemNum='1' ProblemID='0102' Timestamp=str(time.localtime()) f = open('c:/users/public/problems/cs101/0102/example0102.py').read() Files = list() Files.append( ('solution.py', f)) Job = JobType(UserID, CourseNum, ProblemNum, ProblemID, Timestamp, Files) JobList.append(Job) f = open('c:/users/public/problems/cs101/0103/example0103.py').read() Files = list() Files.append( ('example0103.py', f) ) Timestamp = str(time.localtime()) Job = JobType(UserID, CourseNum, '002', '0103', Timestamp, Files) JobList.append(Job) Grade( JobList ) # print "Done." if __name__ == '__main__': connection = autograder.getConnection() Cursor = connection.cursor() cmd = """UPDATE Jobs SET Status = 'pending' WHERE SequenceNumber = 21""" Cursor.execute(cmd) connection.commit() connection.close() Jobs = autograder.getJobs() Grade(Jobs) #RunTest() ## ## OK, Res, Err = HandleSubmission(1, '0102', ['example0102.py']) ## print "Your result:", Res ## if Err: ## print "Error message:\n", Err ## ## if OK: ## print '\tNeed to update database if this is first success on this problem.' ## else: ## print '\tNeed to update database if this is first attempt on this problem.' ##
ae8caa3e5755b5b934074980647e9b8a044a2e9a
2d930aadf19b2ad6ea49725099d2f37475cd57f8
/test/functional/wallet-dump.py
c3f723a19bbd46584fb33bce6dba37487abcdcbe
[ "MIT" ]
permissive
stratton-oakcoin/oakcoin
ea83774c9f6ea64adb8832770e6219ffb31edef6
fe53193a50bd3674211448f1dcc39c6f9f042bb2
refs/heads/master
2021-01-20T13:22:05.877005
2017-05-07T10:09:57
2017-05-07T10:09:57
90,477,972
1
2
null
2017-05-07T10:09:57
2017-05-06T16:58:05
C++
UTF-8
Python
false
false
4,770
py
#!/usr/bin/env python3 # Copyright (c) 2016 The Oakcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the dumpwallet RPC.""" from test_framework.test_framework import OakcoinTestFramework from test_framework.util import (start_nodes, start_node, assert_equal, oakcoind_processes) def read_dump(file_name, addrs, hd_master_addr_old): """ Read the given dump, count the addrs that match, count change and reserve. Also check that the old hd_master is inactive """ with open(file_name, encoding='utf8') as inputfile: found_addr = 0 found_addr_chg = 0 found_addr_rsv = 0 hd_master_addr_ret = None for line in inputfile: # only read non comment lines if line[0] != "#" and len(line) > 10: # split out some data key_label, comment = line.split("#") # key = key_label.split(" ")[0] keytype = key_label.split(" ")[2] if len(comment) > 1: addr_keypath = comment.split(" addr=")[1] addr = addr_keypath.split(" ")[0] keypath = None if keytype == "inactivehdmaster=1": # ensure the old master is still available assert(hd_master_addr_old == addr) elif keytype == "hdmaster=1": # ensure we have generated a new hd master key assert(hd_master_addr_old != addr) hd_master_addr_ret = addr else: keypath = addr_keypath.rstrip().split("hdkeypath=")[1] # count key types for addrObj in addrs: if addrObj['address'] == addr and addrObj['hdkeypath'] == keypath and keytype == "label=": found_addr += 1 break elif keytype == "change=1": found_addr_chg += 1 break elif keytype == "reserve=1": found_addr_rsv += 1 break return found_addr, found_addr_chg, found_addr_rsv, hd_master_addr_ret class WalletDumpTest(OakcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = False self.num_nodes = 1 self.extra_args = [["-keypool=90"]] def setup_network(self, split=False): # Use 1 minute timeout because the initial getnewaddress RPC can take # longer than the default 30 seconds due to an expensive # CWallet::TopUpKeyPool call, and the encryptwallet RPC made later in # the test often takes even longer. self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, self.extra_args, timewait=60) def run_test (self): tmpdir = self.options.tmpdir # generate 20 addresses to compare against the dump test_addr_count = 20 addrs = [] for i in range(0,test_addr_count): addr = self.nodes[0].getnewaddress() vaddr= self.nodes[0].validateaddress(addr) #required to get hd keypath addrs.append(vaddr) # Should be a no-op: self.nodes[0].keypoolrefill() # dump unencrypted wallet self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.unencrypted.dump") found_addr, found_addr_chg, found_addr_rsv, hd_master_addr_unenc = \ read_dump(tmpdir + "/node0/wallet.unencrypted.dump", addrs, None) assert_equal(found_addr, test_addr_count) # all keys must be in the dump assert_equal(found_addr_chg, 50) # 50 blocks where mined assert_equal(found_addr_rsv, 90*2) # 90 keys plus 100% internal keys #encrypt wallet, restart, unlock and dump self.nodes[0].encryptwallet('test') oakcoind_processes[0].wait() self.nodes[0] = start_node(0, self.options.tmpdir, self.extra_args[0]) self.nodes[0].walletpassphrase('test', 10) # Should be a no-op: self.nodes[0].keypoolrefill() self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.encrypted.dump") found_addr, found_addr_chg, found_addr_rsv, hd_master_addr_enc = \ read_dump(tmpdir + "/node0/wallet.encrypted.dump", addrs, hd_master_addr_unenc) assert_equal(found_addr, test_addr_count) assert_equal(found_addr_chg, 90*2 + 50) # old reserve keys are marked as change now assert_equal(found_addr_rsv, 90*2) if __name__ == '__main__': WalletDumpTest().main ()
4cf799ae31dfe4802a0d9299a2f9c9087c10afe6
0add969034a82912bc6e19abc427abe883ee65bb
/theta_en_time_polar.py
a9683111bde6bafb250a54492723f599975e5624
[]
no_license
Michael-Gong/New_LPI_python_script
eefd162fdbbc3c614c66e2b157ea5296e3bc8492
9de109c6f19aa60bdeaf102e9a1ec0baff5669ad
refs/heads/master
2020-03-28T16:06:09.631550
2020-02-01T08:21:17
2020-02-01T08:21:17
148,659,608
2
0
null
null
null
null
UTF-8
Python
false
false
7,511
py
#%matplotlib inline #import sdf import matplotlib import matplotlib as mpl #mpl.style.use('https://raw.githubusercontent.com/Michael-Gong/DLA_project/master/style') matplotlib.use('agg') import matplotlib.pyplot as plt import numpy as np from numpy import ma from matplotlib import colors, ticker, cm from matplotlib.mlab import bivariate_normal from optparse import OptionParser import os from mpl_toolkits.mplot3d import Axes3D import random from mpl_toolkits import mplot3d from matplotlib import rc import matplotlib.transforms as mtransforms import sys #rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) #rc('text', usetex=True) font = {'family' : 'monospace', 'color' : 'black', 'weight' : 'normal', 'size' : 28, } font2 = {'family' : 'monospace', 'color' : 'black', 'weight' : 'normal', 'size' : 15, } font_size = 28 font_size_2 = 15 #plt.rc('text', usetex=True) #plt.rc('font', family='serif') upper = matplotlib.cm.jet(np.arange(256)) lower = np.ones((int(256/4),4)) for i in range(3): lower[:,i] = np.linspace(1, upper[0,i], lower.shape[0]) cmap = np.vstack(( lower, upper )) mycolor_jet = matplotlib.colors.ListedColormap(cmap, name='myColorMap', N=cmap.shape[0]) upper = matplotlib.cm.viridis(np.arange(256)) lower = np.ones((int(256/4),4)) for i in range(3): lower[:,i] = np.linspace(1, upper[0,i], lower.shape[0]) cmap = np.vstack(( lower, upper )) mycolor_viridis = matplotlib.colors.ListedColormap(cmap, name='myColorMap', N=cmap.shape[0]) upper = matplotlib.cm.rainbow(np.arange(256)) lower = np.ones((int(256/4),4)) for i in range(3): lower[:,i] = np.linspace(1, upper[0,i], lower.shape[0]) cmap = np.vstack(( lower, upper )) mycolor_rainbow = matplotlib.colors.ListedColormap(cmap, name='myColorMap', N=cmap.shape[0]) def pxpy_to_energy(gamma, weight): binsize = 200 en_grid = np.linspace(50,19950,200) en_bin = np.linspace(0,20000.0,201) en_value = np.zeros_like(en_grid) for i in range(binsize): # if i == binsize-1: # en_value[i] = sum(weight[en_bin[i]<=gamma]) # else: en_value[i] = sum(weight[ (en_bin[i]<=gamma) & (gamma<en_bin[i+1]) ]) return (en_grid, en_value) def theta_to_grid(theta, weight): binsize = 240 theta_grid = np.linspace(-119.5,119.5,240) theta_bin = np.linspace(-120,120,241) theta_value = np.zeros_like(theta_grid) for i in range(binsize): # if i == binsize-1: # en_value[i] = sum(weight[en_bin[i]<=gamma]) # else: theta_value[i] = sum(weight[ (theta_bin[i]<=theta) & (theta<theta_bin[i+1]) ]) return (theta_grid, theta_value) if __name__ == "__main__": part_number = 50000 from_path = './p50000_no_T150/' nsteps = int(sum(1 for line in open(from_path+'t_tot_s.txt'))/part_number) ntheta = 270 ngg = 120 from_path_list = ['./p50000_no_T150/','./p50000_rr_T150/','./p50000_qe_T150/'] #from_path_list = ['./Data_qe_T500_p50000_try/'] for i in range(np.size(from_path_list)): from_path = from_path_list[i] #'./Data_qe_T050_p50000/' to_path = from_path t0 = np.loadtxt(from_path+'t_tot_s.txt')/2/np.pi px0 = np.loadtxt(from_path+'px_tot_s.txt') py0 = np.loadtxt(from_path+'py_tot_s.txt') t0 = np.reshape(t0,(part_number,nsteps)) px0 = np.reshape(px0,(part_number,nsteps)) py0 = np.reshape(py0,(part_number,nsteps)) gg0 = (px0**2+py0**2+1)**0.5*0.51e-3 ww0 = np.zeros_like(gg0)+1 ww0 = np.zeros_like(gg0)+gg0 theta0 = np.arctan2(py0,px0) theta_edges = np.linspace(-np.pi,np.pi, ntheta +1) gg_edges = np.linspace(0.1, 6, ngg +1) theta_edges_1 = np.linspace(-np.pi,np.pi,ntheta) gg_edges_1 = np.linspace(0.1, 6, ngg) for n in range(np.size(t0[0,:])): H, _, _ = np.histogram2d(gg0[:,n], theta0[:,n], [gg_edges, theta_edges], weights=gg0[:,n]) print('Max H:',np.max(H)) Theta, R = np.meshgrid(theta_edges_1,gg_edges_1) H_temp = np.sum(H[:,:]*R,0) print('averaged |theta|=',np.sum(H_temp*abs(theta_edges_1))/np.sum(H_temp)/np.pi*180) fig, ax = plt.subplots(1, 1, subplot_kw=dict(projection='polar')) ax.set_facecolor('whitesmoke') levels = np.logspace(1,5, 101) H[H<0.01] = np.nan img=ax.pcolormesh(Theta, R, H, norm=colors.LogNorm(vmin=0.01, vmax=1e3), cmap='viridis') # cax = fig.add_axes([0.68,0.97,0.25,0.02]) # cbar=fig.colorbar(img,cax=cax, ticks=[1e3,1e5],orientation='horizontal') # cbar.ax.set_xticklabels(cbar.ax.get_xticklabels(), fontsize=font_size_2) # cbar.set_label(r'dI/d$\theta$dE [A.U.]',fontdict=font2) # ax.tick_params(axis="y", pad=25) ax.tick_params(axis="x", pad=10) # ax.set_xticks([]) if (i%3 != 2): ax.set_xticklabels([]) #ax.set_xlim(10,50) #ax.set_ylim(0.,1.) ax.set_xlabel(r'$\theta\ [^o]$',fontdict=font) # ax.set_rlim(1e-1,1e3) # ax.set_rmax(1e3) l_r = np.array([0,1,2,3]) ax.set_rticks(l_r+1) ax.set_yticklabels([]) # ax.set_yticklabels(['$10^%d$' % x for x in (l_r+1)]) ax.set_rlim(0, 6) ax.set_rlabel_position(90) # ax.set_rscale('log') # ax.set_rscale('log') # ax.set_thetamin(-90) # ax.set_thetamax(90) # ax.set_yticklabels([0.1,1,10,100,1000]) ax.set_xticklabels([0,90,180,270]) #ax.set_theta_zero_location('N') # ax.set_ylabel(r'$\theta\ [^o]$',fontdict=font) ax.tick_params(axis='x',labelsize=font_size) ax.tick_params(axis='y',labelsize=font_size_2) #ax.set_title('proton_angular_time='+str(time1), va='bottom', y=1., fontsize=20) # plt.text(-100,650,' t = '++' fs',fontdict=font) ax.grid(True,linestyle='--',linewidth=1.5,color='grey') #plt.pcolormesh(x, y, ex.T, norm=mpl.colors.Normalize(vmin=0,vmax=100,clip=True), cmap=cm.cubehelix_r) # plt.axis([x.min(), x.max(), y.min(), y.max()]) #### manifesting colorbar, changing label and axis properties #### # cbar=plt.colorbar(pad=0.01)#ticks=[np.min(ex), -eee/2, 0, eee/2, np.min()]) # cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=font_size) # cbar.set_label('dN/dE [A.U.]',fontdict=font) # a0=200.0 # alpha=np.linspace(-3.5,0.5,501) # plt.xlabel(r'$\theta$'+' [degree]',fontdict=font) # plt.ylabel('time [fs]',fontdict=font) # plt.xticks([-135,-90,-45,0,45,90,135],fontsize=font_size); #plt.yticks([0,500,1000,1500],fontsize=font_size); # plt.title(r'$dN/d\theta$'+' for no RR', fontsize=font_size) # plt.xlim(-120,120) # plt.ylim(0,1650) #plt.title('electron at y='+str(round(y[n,0]/2/np.pi,4)),fontdict=font) plt.subplots_adjust(top=0.90, bottom=0.11, left=0.1, right=0.93, hspace=0.10, wspace=0.05) fig = plt.gcf() fig.set_size_inches(6., 6.) #fig.set_size_inches(5, 4.5) fig.savefig(to_path+'theta_en_dist_'+to_path[7:-1]+'_'+str(n).zfill(4)+'.png',format='png',dpi=160) plt.close("all")
373f9f9cd537df8df9fb85fee9220607f78f2be6
de5adea6b67660bfc45150ee56b6cf4957c8c4e7
/main_app/migrations/0001_initial.py
f522eb7c2263895a61cc3153af186e867e0d5fdf
[]
no_license
arthuroe/treasure_gram
70049a25009318d947488dea28505f65816d9d84
5ce93ed21284fee17640b15546011848de3115ac
refs/heads/develop
2020-03-18T02:16:19.413381
2018-05-23T17:18:58
2018-05-23T17:24:16
134,182,468
0
0
null
2018-05-28T18:52:48
2018-05-20T20:02:49
Python
UTF-8
Python
false
false
824
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-05-20 21:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Treasure', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('value', models.DecimalField(decimal_places=2, max_digits=10)), ('materials', models.CharField(max_length=100)), ('location', models.CharField(max_length=100)), ('img_url', models.CharField(max_length=100)), ], ), ]
3b1a469d9c82b2869b62462652c2a0c924e3bb31
470e0a9dc07edfe13ca68f2a1b6d60d0e395e095
/3-2.py
b67172d7abbc097ec46a4caa894c73eba80c02c4
[]
no_license
mj08021/ThisIsCodingTestforGetaJob
77ce8edab2bd855db9b96597982f58251d0bd31e
ad98b368956937065c6c396b2806351a4eaf12a2
refs/heads/main
2023-04-28T10:51:02.012344
2021-05-16T05:51:58
2021-05-16T05:51:58
316,853,768
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
# N, M, K를 공백으로 구분하여 입력받기 n, m, k = map(int, input().split()) # N개의 수를 공백으로 구분하여 입력받기 data = list(map(int, input().split())) data.sort() # 입력받은 수 정렬 first = data[n - 1] # 가장 큰 수 second = data[n - 2] # 두 번째로 큰 수 # 가장 큰 수가 더해지는 횟수 계산 count = int(m / (k + 1)) * k count += m % (k + 1) result = 0 result += (count) * first # 가장 큰 수 더하기 result += (m - count) * second # 두 번째로 큰 수 더하기 print(result) # 최종 답안 출력 # ex) input # 5 8 3 # 2 4 5 4 6
f2a7ee60c707d01abd0cb97f85cf647ce9ebf4e3
a6df74bc7c139734bd9ce9f48d51e08fdc7d7efb
/article/migrations/0006_auto_20210311_1721.py
116d4f2900f9f0f393ad9eb58894d557a6c11b5c
[]
no_license
Erlan1998/python_group_7_homework_68_Erlan_Kurbanaliev
5a7f210e51f1998e5d52cdeb42538f2786af3f9f
fdc92be2c5187c78fecdc713f58e0e3e9fc62cb1
refs/heads/master
2023-05-03T17:01:59.066596
2021-05-26T13:28:41
2021-05-26T13:28:41
368,165,221
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
# Generated by Django 3.1.6 on 2021-03-11 17:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('article', '0005_auto_20210311_1319'), ] operations = [ migrations.RenameField( model_name='article', old_name='tags', new_name='tags_old', ), ]
6fe7640c64822df4cca889a856f9099d33231595
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02860/s554783475.py
ba781c1a512917a311a200fc59b2e495d4dab5c5
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
n = int(input()) s = input() if (n%2 == 1): print("No") else: c = 0 for i in range(int(n/2)): if (s[i] != s[i + int(n/2)]): c = 1 if (c == 0): print("Yes") else: print("No")
866fcd777ed57198ecc587fa85d3a71e6974ea99
9d1491368c5e87760131ba27d252ee2d10620433
/gammapy/spectrum/powerlaw.py
39edaeca1329962422682f6d153c6cf79d653ff1
[ "BSD-3-Clause" ]
permissive
cnachi/gammapy
f9295306a8e81d0b7f4d2111b3fa3679a78da3f7
3d3fc38c111d2f490d984082750f8003580fe06c
refs/heads/master
2021-01-20T23:37:59.409914
2016-06-09T08:36:33
2016-06-09T08:36:33
60,764,807
0
0
null
2016-06-09T09:55:54
2016-06-09T09:55:54
null
UTF-8
Python
false
false
6,540
py
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Power law spectrum helper functions. Convert differential and integral fluxes with error propagation. """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np __all__ = [ 'power_law_evaluate', 'power_law_pivot_energy', 'df_over_f', 'power_law_flux', 'power_law_integral_flux', 'g_from_f', 'g_from_points', 'I_from_points', 'f_from_points', 'f_with_err', 'I_with_err', 'compatibility', ] E_INF = 1e10 # practically infinitely high flux g_DEFAULT = 2 def power_law_evaluate(energy, norm, gamma, energy_ref): r"""Differential flux at a given energy. .. math:: f(energy) = N (E / E_0) ^ - \Gamma with norm ``N``, energy ``E``, reference energy ``E0`` and spectral index :math:`\Gamma`. Parameters ---------- energy : array_like Energy at which to compute the differential flux gamma : array_like Power law spectral index """ return norm * (energy / energy_ref) ** (-gamma) def power_law_pivot_energy(energy_ref, f0, d_gamma, cov): """Compute pivot (a.k.a. decorrelation) energy. Defined as smallest df / f. Reference: http://arxiv.org/pdf/0910.4881 """ pivot_energy = energy_ref * np.exp(cov / (f0 * d_gamma ** 2)) return pivot_energy def df_over_f(e, e0, f0, df0, dg, cov): """Compute relative flux error at any given energy. Used to draw butterflies. Reference: http://arxiv.org/pdf/0910.4881 Equation (1) """ term1 = (df0 / f0) ** 2 term2 = 2 * cov / f0 * np.log(e / e0) term3 = (dg * np.log(e / e0)) ** 2 return np.sqrt(term1 - term2 + term3) def _conversion_factor(g, e, e1, e2): """Conversion factor between differential and integral flux.""" # In gamma-ray astronomy only falling power-laws are used. # Here we force this, i.e. give "correct" input even if the # user gives a spectral index with an incorrect sign. g = np.abs(g) term1 = e / (-g + 1) term2 = (e2 / e) ** (-g + 1) - (e1 / e) ** (-g + 1) return term1 * term2 def power_law_flux(I=1, g=g_DEFAULT, e=1, e1=1, e2=E_INF): """Compute differential flux for a given integral flux. Parameters ---------- I : array_like Integral flux in ``energy_min``, ``energy_max`` band g : array_like Power law spectral index e : array_like Energy at which to compute the differential flux e1 : array_like Energy band minimum e2 : array_like Energy band maximum Returns ------- flux : `numpy.array` Differential flux at ``energy``. """ return I / _conversion_factor(g, e, e1, e2) def power_law_integral_flux(f=1, g=g_DEFAULT, e=1, e1=1, e2=E_INF): """Compute integral flux for a given differential flux. Parameters ---------- f : array_like Differential flux at ``energy`` g : array_like Power law spectral index e : array_like Energy at which the differential flux is given e1 : array_like Energy band minimum e2 : array_like Energy band maximum Returns ------- flux : `numpy.array` Integral flux in ``energy_min``, ``energy_max`` band """ return f * _conversion_factor(g, e, e1, e2) def g_from_f(e, f, de=1): """Spectral index at a given energy e for a given function f(e)""" e1, e2 = e, e + de f1, f2 = f(e1), f(e2) return g_from_points(e1, e2, f1, f2) def g_from_points(e1, e2, f1, f2): """Spectral index for two given differential flux points""" return -np.log(f2 / f1) / np.log(e2 / e1) def I_from_points(e1, e2, f1, f2): """Integral flux in energy bin for power law""" g = g_from_points(e1, e2, f1, f2) pl_int_flux = (f1 * e1 / (-g + 1) * ((e2 / e1) ** (-g + 1) - 1)) return pl_int_flux def f_from_points(e1, e2, f1, f2, e): """Linear interpolation""" e1 = np.asarray(e1, float) e2 = np.asarray(e2, float) f1 = np.asarray(f1, float) f2 = np.asarray(f2, float) e = np.asarray(e, float) logdy = np.log(f2 / f1) logdx = np.log(e2 / e1) logy = np.log(f1) + np.log(e / e1) * (logdy / logdx) return np.exp(logy) def f_with_err(I_val=1, I_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF): """Wrapper for f so the user doesn't have to know about the uncertainties module""" from uncertainties import unumpy I = unumpy.uarray(I_val, I_err) g = unumpy.uarray(g_val, g_err) _f = power_law_flux(I, g, e, e1, e2) f_val = unumpy.nominal_values(_f) f_err = unumpy.std_devs(_f) return f_val, f_err def I_with_err(f_val=1, f_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF): """Wrapper for f so the user doesn't have to know about the uncertainties module""" from uncertainties import unumpy f = unumpy.uarray(f_val, f_err) g = unumpy.uarray(g_val, g_err) _I = power_law_integral_flux(f, g, e, e1, e2) I_val = unumpy.nominal_values(_I) I_err = unumpy.std_devs(_I) return I_val, I_err def compatibility(par_low, par_high): """Quantify spectral compatibility of power-law measurements in two energy bands. Reference: 2008ApJ...679.1299F Equation (2) Compute spectral compatibility parameters for the situation where two power laws were measured in a low and a high spectral energy band. par_low and par_high are the measured parameters, which must be lists in the following order: e, f, f_err, g, g_err where e is the pivot energy, f is the flux density and g the spectral index """ # Unpack power-law paramters e_high, f_high, f_err_high, g_high, g_err_high = par_high e_low, f_low, f_err_low, g_low, g_err_low = par_low log_delta_e = np.log10(e_high) - np.log10(e_low) log_delta_f = np.log10(f_high) - np.log10(f_low) # g_match is the index obtained by connecting the two points # with a power law, i.e. a straight line in the log_e, log_f plot g_match = -log_delta_f / log_delta_e # sigma is the number of standar deviations the match index # is different from the measured index in one band. # (see Funk et al. (2008ApJ...679.1299F) eqn. 2) sigma_low = (g_match - g_low) / g_err_low sigma_high = (g_match - g_high) / g_err_high sigma_comb = np.sqrt(sigma_low ** 2 + sigma_high ** 2) return g_match, sigma_low, sigma_high, sigma_comb
ddcaf6e28b533963df17ac8f9f13f4ce3c77631f
1581f1d66d6835b2c271295e3251c2dde239fec8
/payment_gateway/pg_utils.py
6036c701e7036016bef878326b20e168433fab8a
[]
no_license
abinash-kumar/pythod
527659e3bdd161f9abcaaa9182dfe58044b3ff66
1469dc0cd9d6d72b2fe2e69f99542e470bea807b
refs/heads/master
2023-01-30T02:54:10.729606
2020-02-24T07:18:51
2020-02-24T07:18:51
242,670,715
0
0
null
2023-01-25T13:57:52
2020-02-24T07:16:02
Python
UTF-8
Python
false
false
2,318
py
from motor_product import prod_utils as mpu from health_product import prod_utils as hpu HEALTH_INSURER_SLUG = { 'the-oriental-insurance-company-ltd': 'oriental' } def resolve_utils(transaction): if transaction.product_type == 'motor': return mpu elif transaction.product_type == 'health': return hpu else: return None def process_payment_response(request, response, transaction): if transaction.product_type == 'motor': return mpu.process_payment_response( request, mpu.VEHICLE_TYPE_SLUG[transaction.vehicle_type], get_insurer_slug(transaction), response, transaction.transaction_id ) elif transaction.product_type == 'health': return hpu.process_payment_response( transaction.slab.health_product.insurer.id, response, transaction ) else: return None def get_insurer_slug(transaction): if transaction.product_type == 'motor': return transaction.insurer.slug elif transaction.product_type == 'health': return HEALTH_INSURER_SLUG[transaction.slab.health_product.insurer.slug] else: return None def get_error_url(transaction): if transaction.product_type == 'motor': vehicle_type = mpu.VEHICLE_TYPE_SLUG[transaction.vehicle_type] return '/motor/' + vehicle_type + '/product/failure/' elif transaction.product_type == 'health': return '/health-plan/payment/transaction/%s/failure/' % transaction.transaction_id else: return None def todict(obj, classkey=None): if isinstance(obj, dict): data = {} for (k, v) in obj.items(): data[k] = todict(v, classkey) return data elif hasattr(obj, "_ast"): return todict(obj._ast()) elif hasattr(obj, "__iter__"): return [todict(v, classkey) for v in obj] elif hasattr(obj, "__dict__"): data = dict([(key, todict(value, classkey)) for key, value in obj.__dict__.iteritems() if not callable(value) and not key.startswith('_')]) if classkey is not None and hasattr(obj, "__class__"): data[classkey] = obj.__class__.__name__ return data else: return obj
0e188befbac224d8224dc6e6649007c2d0ccc5b5
8b1dcac39acfcee0f573dc71d608671dea2062a2
/tools/hikyuu/interactive/draw/__init__.py
fcdb11396c845625805c5eebb3c406cd9deb7ab1
[ "MIT" ]
permissive
eightwind/hikyuu
4c876170b1e298105e7eaf9675b310ad378dd9a4
4dab98a93e2a9847f77d615d6900067fbf90b73d
refs/heads/master
2021-08-26T05:32:39.813080
2017-11-21T18:59:16
2017-11-21T18:59:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
33
py
__version__ = "Only for pip dist"
1d6007a5ebcba5fca71c8d3808860c34ac1f9ede
0f0f8b3b027f412930ca1890b0666538358a2807
/dotop/addons/base/ir/ir_filters.py
7e792068539ec5262791dfa23e1034b0a6500c7e
[]
no_license
konsoar/dotop_pos_v11
741bd5ca944dfd52eb886cab6f4b17b6d646e131
576c860917edd25661a72726d0729c769977f39a
refs/heads/master
2021-09-06T13:25:34.783729
2018-02-07T02:11:12
2018-02-07T02:11:12
111,168,355
0
0
null
null
null
null
UTF-8
Python
false
false
7,584
py
# -*- coding: utf-8 -*- # Part of dotop. See LICENSE file for full copyright and licensing details. import ast from dotop import api, fields, models, _ from dotop.exceptions import UserError class IrFilters(models.Model): _name = 'ir.filters' _description = 'Filters' _order = 'model_id, name, id desc' name = fields.Char(string='Filter Name', translate=True, required=True) user_id = fields.Many2one('res.users', string='User', ondelete='cascade', default=lambda self: self._uid, help="The user this filter is private to. When left empty the filter is public " "and available to all users.") domain = fields.Text(default='[]', required=True) context = fields.Text(default='{}', required=True) sort = fields.Text(default='[]', required=True) model_id = fields.Selection(selection='_list_all_models', string='Model', required=True) is_default = fields.Boolean(string='Default filter') action_id = fields.Many2one('ir.actions.actions', string='Action', ondelete='cascade', help="The menu action this filter applies to. " "When left empty the filter applies to all menus " "for this model.") active = fields.Boolean(default=True) @api.model def _list_all_models(self): self._cr.execute("SELECT model, name FROM ir_model ORDER BY name") return self._cr.fetchall() @api.multi def copy(self, default=None): self.ensure_one() default = dict(default or {}, name=_('%s (copy)') % self.name) return super(IrFilters, self).copy(default) @api.multi def _get_eval_domain(self): self.ensure_one() return ast.literal_eval(self.domain) @api.model def _get_action_domain(self, action_id=None): """Return a domain component for matching filters that are visible in the same context (menu/view) as the given action.""" if action_id: # filters specific to this menu + global ones return [('action_id', 'in', [action_id, False])] # only global ones return [('action_id', '=', False)] @api.model def get_filters(self, model, action_id=None): """Obtain the list of filters available for the user on the given model. :param action_id: optional ID of action to restrict filters to this action plus global filters. If missing only global filters are returned. The action does not have to correspond to the model, it may only be a contextual action. :return: list of :meth:`~osv.read`-like dicts containing the ``name``, ``is_default``, ``domain``, ``user_id`` (m2o tuple), ``action_id`` (m2o tuple) and ``context`` of the matching ``ir.filters``. """ # available filters: private filters (user_id=uid) and public filters (uid=NULL), # and filters for the action (action_id=action_id) or global (action_id=NULL) action_domain = self._get_action_domain(action_id) filters = self.search(action_domain + [('model_id', '=', model), ('user_id', 'in', [self._uid, False])]) user_context = self.env.user.context_get() return filters.with_context(user_context).read(['name', 'is_default', 'domain', 'context', 'user_id', 'sort']) @api.model def _check_global_default(self, vals, matching_filters): """ _check_global_default(dict, list(dict), dict) -> None Checks if there is a global default for the model_id requested. If there is, and the default is different than the record being written (-> we're not updating the current global default), raise an error to avoid users unknowingly overwriting existing global defaults (they have to explicitly remove the current default before setting a new one) This method should only be called if ``vals`` is trying to set ``is_default`` :raises dotop.exceptions.UserError: if there is an existing default and we're not updating it """ domain = self._get_action_domain(vals.get('action_id')) defaults = self.search(domain + [ ('model_id', '=', vals['model_id']), ('user_id', '=', False), ('is_default', '=', True), ]) if not defaults: return if matching_filters and (matching_filters[0]['id'] == defaults.id): return raise UserError(_("There is already a shared filter set as default for %(model)s, delete or change it before setting a new default") % {'model': vals.get('model_id')}) @api.model @api.returns('self', lambda value: value.id) def create_or_replace(self, vals): action_id = vals.get('action_id') current_filters = self.get_filters(vals['model_id'], action_id) matching_filters = [f for f in current_filters if f['name'].lower() == vals['name'].lower() # next line looks for matching user_ids (specific or global), i.e. # f.user_id is False and vals.user_id is False or missing, # or f.user_id.id == vals.user_id if (f['user_id'] and f['user_id'][0]) == vals.get('user_id')] if vals.get('is_default'): if vals.get('user_id'): # Setting new default: any other default that belongs to the user # should be turned off domain = self._get_action_domain(action_id) defaults = self.search(domain + [ ('model_id', '=', vals['model_id']), ('user_id', '=', vals['user_id']), ('is_default', '=', True), ]) if defaults: defaults.write({'is_default': False}) else: self._check_global_default(vals, matching_filters) # When a filter exists for the same (name, model, user) triple, we simply # replace its definition (considering action_id irrelevant here) if matching_filters: matching_filter = self.browse(matching_filters[0]['id']) matching_filter.write(vals) return matching_filter return self.create(vals) _sql_constraints = [ # Partial constraint, complemented by unique index (see below). Still # useful to keep because it provides a proper error message when a # violation occurs, as it shares the same prefix as the unique index. ('name_model_uid_unique', 'unique (name, model_id, user_id, action_id)', 'Filter names must be unique'), ] @api.model_cr_context def _auto_init(self): result = super(IrFilters, self)._auto_init() # Use unique index to implement unique constraint on the lowercase name (not possible using a constraint) self._cr.execute("DROP INDEX IF EXISTS ir_filters_name_model_uid_unique_index") # drop old index w/o action self._cr.execute("SELECT indexname FROM pg_indexes WHERE indexname = 'ir_filters_name_model_uid_unique_action_index'") if not self._cr.fetchone(): self._cr.execute("""CREATE UNIQUE INDEX "ir_filters_name_model_uid_unique_action_index" ON ir_filters (lower(name), model_id, COALESCE(user_id,-1), COALESCE(action_id,-1))""") return result
[ "Administrator@20nuo003-PC" ]
Administrator@20nuo003-PC
e5131ff29aa41698036707a61a86466d77e7d3b9
6c50bced6fb4474e4eb2e4f3c27a5ce38b0e6048
/manage.py
e1fbda688388d8db4449c6abeb1423356d40d79b
[]
no_license
NMShihab/WebChatApp
0d5651fe38baccfee186e59e32c2c79de2bb39a4
2dda4e750c370e74bbfbc42dce02432268194d46
refs/heads/master
2023-02-01T22:57:53.738222
2020-12-15T17:09:14
2020-12-15T17:09:14
319,082,634
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ChatApi.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
f0558330618b47efd52ea7dae4624354fe0c32ac
89b45e528f3d495f1dd6f5bcdd1a38ff96870e25
/pyneng/exercises/09_functions/task_9_2.py
e2a25f74f4ea48dd6a5f51879221d1048f8a5c94
[]
no_license
imatyukin/python
2ec6e712d4d988335fc815c7f8da049968cc1161
58e72e43c835fa96fb2e8e800fe1a370c7328a39
refs/heads/master
2023-07-21T13:00:31.433336
2022-08-24T13:34:32
2022-08-24T13:34:32
98,356,174
2
0
null
2023-07-16T02:31:48
2017-07-25T22:45:29
Python
UTF-8
Python
false
false
2,935
py
# -*- coding: utf-8 -*- """ Задание 9.2 Создать функцию generate_trunk_config, которая генерирует конфигурацию для trunk-портов. У функции должны быть такие параметры: - intf_vlan_mapping: ожидает как аргумент словарь с соответствием интерфейс-VLANы такого вида: {'FastEthernet0/1': [10, 20], 'FastEthernet0/2': [11, 30], 'FastEthernet0/4': [17]} - trunk_template: ожидает как аргумент шаблон конфигурации trunk-портов в виде списка команд (список trunk_mode_template) Функция должна возвращать список команд с конфигурацией на основе указанных портов и шаблона trunk_mode_template. В конце строк в списке не должно быть символа перевода строки. Проверить работу функции на примере словаря trunk_config и списка команд trunk_mode_template. Если предыдущая проверка прошла успешно, проверить работу функции еще раз на словаре trunk_config_2 и убедится, что в итоговом списке правильные номера интерфейсов и вланов. Пример итогового списка (перевод строки после каждого элемента сделан для удобства чтения): [ 'interface FastEthernet0/1', 'switchport mode trunk', 'switchport trunk native vlan 999', 'switchport trunk allowed vlan 10,20,30', 'interface FastEthernet0/2', 'switchport mode trunk', 'switchport trunk native vlan 999', 'switchport trunk allowed vlan 11,30', ...] Ограничение: Все задания надо выполнять используя только пройденные темы. """ from pprint import pprint trunk_mode_template = [ "switchport mode trunk", "switchport trunk native vlan 999", "switchport trunk allowed vlan", ] trunk_config = { "FastEthernet0/1": [10, 20, 30], "FastEthernet0/2": [11, 30], "FastEthernet0/4": [17], } trunk_config_2 = { "FastEthernet0/11": [120, 131], "FastEthernet0/15": [111, 130], "FastEthernet0/14": [117], } def generate_trunk_config(intf_vlan_mapping, trunk_template): cfg = [] for intf, vlans in intf_vlan_mapping.items(): cfg.append("interface " + intf) for s in trunk_template: if s.endswith('allowed vlan'): s = s + ' ' + str(vlans)[1:-1].replace(" ", "") cfg.append(s) return cfg pprint(generate_trunk_config(trunk_config, trunk_mode_template)) pprint(generate_trunk_config(trunk_config_2, trunk_mode_template))
0a7ff4211eaca98470e2742585ac72c1dbe492de
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02415/s303347384.py
f7612caa107b4023d41f174a9952151845dbb81a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
41
py
word = input() print(str.swapcase(word))
ac9c7f15ea1547bd32a8c41e2f64470813bf0d52
70054615f56be28373b00c9df96544ec822be683
/res/scripts/client/gui/scaleform/daapi/view/meta/questswindowmeta.py
66a92293420cda94a63d878facfa96ffceb268d2
[]
no_license
wanyancan/WOTDecompiled
c646ad700f5ec3fb81fb4e87862639ce0bdf0000
9ffb09007a61d723cdb28549e15db39c34c0ea1e
refs/heads/master
2020-04-17T23:13:15.649069
2013-11-15T16:37:10
2013-11-15T16:37:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
from gui.Scaleform.framework.entities.DAAPIModule import DAAPIModule class QuestsWindowMeta(DAAPIModule): pass
17fa82a9093701e46b8648bd51b5684c11c5f8c9
5d6365f4cc81272f8c481ee31f1111e8eca6dca5
/alipay/aop/api/domain/BizActionLogDTO.py
bdaee8dcf4791f2ea8f5f6ac64c0cb3184f154de
[ "Apache-2.0" ]
permissive
barrybbb/alipay-sdk-python-all
9e99b56138e6ca9c0b236707c79899d396ac6f88
1b63620431d982d30d39ee0adc4b92463cbcee3c
refs/heads/master
2023-08-22T20:16:17.242701
2021-10-11T08:22:44
2021-10-11T08:22:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,378
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class BizActionLogDTO(object): def __init__(self): self._amount = None self._biz_budget_apply_code = None self._biz_budget_id = None self._biz_name = None self._biz_type = None self._biz_uk_id = None self._gmt_create = None self._gmt_modified = None self._id = None self._modify_type = None @property def amount(self): return self._amount @amount.setter def amount(self, value): self._amount = value @property def biz_budget_apply_code(self): return self._biz_budget_apply_code @biz_budget_apply_code.setter def biz_budget_apply_code(self, value): self._biz_budget_apply_code = value @property def biz_budget_id(self): return self._biz_budget_id @biz_budget_id.setter def biz_budget_id(self, value): self._biz_budget_id = value @property def biz_name(self): return self._biz_name @biz_name.setter def biz_name(self, value): self._biz_name = value @property def biz_type(self): return self._biz_type @biz_type.setter def biz_type(self, value): self._biz_type = value @property def biz_uk_id(self): return self._biz_uk_id @biz_uk_id.setter def biz_uk_id(self, value): self._biz_uk_id = value @property def gmt_create(self): return self._gmt_create @gmt_create.setter def gmt_create(self, value): self._gmt_create = value @property def gmt_modified(self): return self._gmt_modified @gmt_modified.setter def gmt_modified(self, value): self._gmt_modified = value @property def id(self): return self._id @id.setter def id(self, value): self._id = value @property def modify_type(self): return self._modify_type @modify_type.setter def modify_type(self, value): self._modify_type = value def to_alipay_dict(self): params = dict() if self.amount: if hasattr(self.amount, 'to_alipay_dict'): params['amount'] = self.amount.to_alipay_dict() else: params['amount'] = self.amount if self.biz_budget_apply_code: if hasattr(self.biz_budget_apply_code, 'to_alipay_dict'): params['biz_budget_apply_code'] = self.biz_budget_apply_code.to_alipay_dict() else: params['biz_budget_apply_code'] = self.biz_budget_apply_code if self.biz_budget_id: if hasattr(self.biz_budget_id, 'to_alipay_dict'): params['biz_budget_id'] = self.biz_budget_id.to_alipay_dict() else: params['biz_budget_id'] = self.biz_budget_id if self.biz_name: if hasattr(self.biz_name, 'to_alipay_dict'): params['biz_name'] = self.biz_name.to_alipay_dict() else: params['biz_name'] = self.biz_name if self.biz_type: if hasattr(self.biz_type, 'to_alipay_dict'): params['biz_type'] = self.biz_type.to_alipay_dict() else: params['biz_type'] = self.biz_type if self.biz_uk_id: if hasattr(self.biz_uk_id, 'to_alipay_dict'): params['biz_uk_id'] = self.biz_uk_id.to_alipay_dict() else: params['biz_uk_id'] = self.biz_uk_id if self.gmt_create: if hasattr(self.gmt_create, 'to_alipay_dict'): params['gmt_create'] = self.gmt_create.to_alipay_dict() else: params['gmt_create'] = self.gmt_create if self.gmt_modified: if hasattr(self.gmt_modified, 'to_alipay_dict'): params['gmt_modified'] = self.gmt_modified.to_alipay_dict() else: params['gmt_modified'] = self.gmt_modified if self.id: if hasattr(self.id, 'to_alipay_dict'): params['id'] = self.id.to_alipay_dict() else: params['id'] = self.id if self.modify_type: if hasattr(self.modify_type, 'to_alipay_dict'): params['modify_type'] = self.modify_type.to_alipay_dict() else: params['modify_type'] = self.modify_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = BizActionLogDTO() if 'amount' in d: o.amount = d['amount'] if 'biz_budget_apply_code' in d: o.biz_budget_apply_code = d['biz_budget_apply_code'] if 'biz_budget_id' in d: o.biz_budget_id = d['biz_budget_id'] if 'biz_name' in d: o.biz_name = d['biz_name'] if 'biz_type' in d: o.biz_type = d['biz_type'] if 'biz_uk_id' in d: o.biz_uk_id = d['biz_uk_id'] if 'gmt_create' in d: o.gmt_create = d['gmt_create'] if 'gmt_modified' in d: o.gmt_modified = d['gmt_modified'] if 'id' in d: o.id = d['id'] if 'modify_type' in d: o.modify_type = d['modify_type'] return o
93a759dd1d4ce068810fd67a473fd7f242615fd5
f2fcf807b441aabca1ad220b66770bb6a018b4ae
/coderbyte/StringMerge.py
aee27511c52f7fc9c13b05cde0262bec9a847235
[]
no_license
gokou00/python_programming_challenges
22d1c53ccccf1f438754edad07b1d7ed77574c2c
0214d60074a3b57ff2c6c71a780ce5f9a480e78c
refs/heads/master
2020-05-17T15:41:07.759580
2019-04-27T16:36:56
2019-04-27T16:36:56
183,797,459
0
0
null
null
null
null
UTF-8
Python
false
false
290
py
def StringMerge(string): stringArr = string.split("*") arr1 = stringArr[0] arr2 = stringArr[1] strBuild = "" for i in range(len(arr1)): strBuild+= arr1[i] strBuild+= arr2[i] return strBuild print(StringMerge("123hg*aaabb"))
b69ca6b786925c7020c263729f5d7bd1e74e3d05
35cf6fc79b8d6c335add8e55e0f4dca6f2816d1d
/Python_Study/第七模块学习/Day04/EdmureBlog/web/forms/base.py
ab198421829eb1b2c3ebc96a9c1743d571cc884e
[]
no_license
KongChan1988/51CTO-Treasure
08b4ca412ad8a09d67c1ea79c7149f8573309ca4
edb2e4bd11d39ac24cd240f3e815a88361867621
refs/heads/master
2021-07-04T15:57:56.164446
2019-07-24T15:28:36
2019-07-24T15:28:36
97,453,749
5
8
null
2019-10-30T22:05:12
2017-07-17T08:34:59
Python
UTF-8
Python
false
false
208
py
#!/usr/bin/env python # -*- coding:utf-8 -*- class BaseForm(object): def __init__(self, request, *args, **kwargs): self.request = request super(BaseForm, self).__init__(*args, **kwargs)
8d16a7b317c421b41cb6db551f09e5d6d244cff9
3d8d874ebba15fd065c0a9e74c05e8cd2a24dbe8
/Week 6 - Joining Data with pandas/19-Concatenate and merge to find common songs.py
9ad795f5e20ab5a06eff3519aec9c340843f3813
[]
no_license
RomuloMileris/UCD_Professional_Certificate_in_Data_Analytics
db3e583a6e607e74f3d26b65ba0de59cff64e5a3
a4a77df69a2440132cfa3e89c4a1674e3e02d086
refs/heads/master
2023-02-22T12:48:50.039440
2021-01-15T17:06:07
2021-01-15T17:06:07
319,717,851
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Concatenate the classic tables vertically classic_18_19 = pd.concat([classic_18, classic_19], ignore_index=True) # Concatenate the pop tables vertically pop_18_19 = pd.concat([pop_18, pop_19], ignore_index=True) # Concatenate the classic tables vertically classic_18_19 = pd.concat([classic_18, classic_19], ignore_index=True) # Concatenate the pop tables vertically pop_18_19 = pd.concat([pop_18, pop_19], ignore_index=True) # Merge classic_18_19 with pop_18_19 classic_pop = classic_18_19.merge(pop_18_19, on='tid') # Using .isin(), filter classic_18_19 rows where tid is in classic_pop popular_classic = classic_18_19[classic_18_19['tid'].isin(classic_pop['tid'])] # Print popular chart print(popular_classic)
fc56269afc1a9b27972e6ba65f1634e38ca3c907
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/volatil.py
da3fffbd742a2e39d77bda58f2168f2a493c7200
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
586
py
ii = [('EmerRN.py', 1), ('RogePAV2.py', 2), ('GodwWSL2.py', 1), ('FerrSDO3.py', 1), ('WilbRLW.py', 1), ('ProuWCM.py', 5), ('PettTHE.py', 3), ('PeckJNG.py', 1), ('WilbRLW2.py', 7), ('CarlTFR.py', 2), ('CrokTPS.py', 1), ('ClarGE.py', 1), ('BuckWGM.py', 1), ('GilmCRS.py', 1), ('WestJIT2.py', 1), ('SoutRD2.py', 1), ('MedwTAI2.py', 1), ('BuckWGM2.py', 1), ('WestJIT.py', 2), ('FitzRNS4.py', 2), ('EdgeMHT.py', 1), ('LyttELD3.py', 1), ('BellCHM.py', 1), ('WilbRLW3.py', 1), ('AinsWRR2.py', 1), ('BrewDTO.py', 4), ('FitzRNS2.py', 1), ('LyelCPG3.py', 1), ('BeckWRE.py', 1), ('WordWYR.py', 1)]
ba8d9485f114b77345b5bdc786cacf2516b8dba0
b29dcbf879166592b59e34f0e2bc4918c3ac94a0
/cart/views.py
4dfc522e62c9c9e4cc9b815d50b1184bbe3d6954
[]
no_license
samdasoxide/myshop
ce6d4553af04f1ddf5de1cbfa38ef2ff33ac6b11
21115de7748862c8a44ef4dc5a61511ad67746dd
refs/heads/master
2022-12-14T07:39:13.803686
2017-06-20T11:42:30
2017-06-20T11:42:30
92,954,076
0
0
null
2022-12-07T23:58:40
2017-05-31T14:23:18
JavaScript
UTF-8
Python
false
false
1,067
py
from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.http import require_POST from shop.models import Product from .cart import Cart from .forms import CartAddProductFrom @require_POST def cart_add(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) form = CartAddProductFrom(request.POST) if form.is_valid(): cd = form.cleaned_data cart.add(product=product, quantity=cd['quantity'], update_quantity=cd['update']) return redirect('cart:cart_detail') def cart_remove(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) cart.remove(product) return redirect('cart:cart_detail') def cart_detail(request): cart = Cart(request) for item in cart: item['update_quantity_form'] = CartAddProductFrom( initial={'quantity': item['quantity'], 'update': True} ) return render(request, 'cart/detail.html', {'cart': cart})
b3743862fc7b8de3b6dca5344e37f61f50a634eb
b97a608517f024b81db0bdc4094d143ba87c8af4
/src/oceandata/export_production/mouw.py
5922a9fe193338af1b8d507473dce963eb6aaa90
[ "MIT" ]
permissive
brorfred/oceandata
ff008042cc993a07d9db1de3fa72e70f70d44219
831e0691223da1aa6a6e97175e8c2d7874bf60cd
refs/heads/master
2022-02-14T11:48:13.401206
2022-01-27T17:01:56
2022-01-27T17:01:56
175,451,337
1
1
null
null
null
null
UTF-8
Python
false
false
4,519
py
""" Global ocean particulate organic carbon flux. Ref: https://doi.org/10.1594/PANGAEA.855594, """ import os, pathlib import warnings import pandas as pd import numpy as np import requests DATADIR = pathlib.PurePath(pathlib.Path.home(), ".oceandata") pathlib.Path(DATADIR).mkdir(parents=True, exist_ok=True) DATAURL = "https://doi.pangaea.de/10.1594/PANGAEA.855594" """ def load(): df = pd.read_hdf("h5files/ep_mouw_with_sat.h5") df["Zeu"] = 4.6/df.kd490 df["ep_obs"] = df.POC_flux df["chl"] = df["chl"] * df["Zeu"] #lh = ecoregions.Longhurst() #longh = lh.match("regions", lonvec=dfm.lon, latvec=dfm.lat, jdvec=dfm.lat*0) #dfm["longhurst"] = longh return df """ def load(datadir=DATADIR, filename="GO_flux.tab", with_std=False): """Load tab file and fix some columns""" fn = os.path.join(datadir, filename) if not os.path.isfile(fn): download(datadir=datadir, filename=filename) with open(fn ,"r") as fH: while 1: line = fH.readline() if "*/" in line: break df = pd.read_csv(fH, sep="\t", parse_dates=[1,]) if not with_std: df.drop(columns=['Flux std dev [±]', 'C flux [mg/m**2/day]', 'C flux std dev [±]', 'POC flux std dev [±]', 'PIC flux std dev [±]', 'PON flux std dev [±]', 'POP flux std dev [±]', 'PSi flux std dev [±]', 'PAl std dev [±]', 'CaCO3 flux std dev [±]', 'Reference'], inplace=True) df.rename(columns={'ID (Reference identifier)':"ref_ID", 'ID (Unique location identifier)':"UUID", 'Type (Data type)':"sampling_type", 'Latitude':"lat", 'Longitude':"lon", 'Flux tot [mg/m**2/day]':"tot_flux", 'POC flux [mg/m**2/day]':"POC_flux", 'PIC flux [mg/m**2/day]':"PIC_flux", 'PON flux [mg/m**2/day]':"PON_flux", 'POP flux [mg/m**2/day]':"POP_flux", 'PSi flux [mg/m**2/day]':"PSi_flux", 'PSiO2 flux [mg/m**2/day]':"PSiO2_flux", 'PSi(OH)4 flux [mg/m**2/day]':"PSiOH4_flux", 'PAl [mg/m**2/day]':"PAl_flux", 'Chl flux [mg/m**2/day]':"Chl_flux", 'Pheop flux [µg/m**2/day]':"Pheop_flux", 'CaCO3 flux [mg/m**2/day]':"CaCO3_flux", 'Fe flux [mg/m**2/day]':"Fe_flux", 'Mn flux [µg/m**2/day]':"Mn_flux", 'Ba flux [µg/m**2/day]':"Ba_flux", 'Detrital flux [mg/m**2/day]':"Detr_flux", 'Ti flux [µg/m**2/day]':"Ti_flux", 'Bathy depth [m] (ETOPO1 bathymetry)':"bathy", 'Depth water [m] (Sediment trap deployment depth)':"depth", 'Area [m**2]':"area", 'Duration [days]':"duration", 'Date/Time (Deployed)':"start_time", 'Date/time end (Retrieved)':"end_time", 'Area [m**2] (Surface area of trap)':"trap_area", }, inplace=True) df.drop(columns=['Type (Sediment trap type)', 'Elevation [m a.s.l.] (Total water depth)'], inplace=True) df["start_time"] = pd.DatetimeIndex(df["start_time"]) df["end_time"] = pd.DatetimeIndex(df["end_time"]) df.set_index("end_time", inplace=True) return df def download(datadir=DATADIR, filename="GO_flux.tab"): """Download txt file from BATS server Refs ---- """ local_filename = os.path.join(datadir, filename) try: os.unlink(local_filename) except FileNotFoundError: pass try: r = requests.get(DATAURL, stream=True, timeout=6, params={"format":"textfile"}) except requests.ReadTimeout: warnings.warn("Connection to server timed out.") return False if r.ok: if local_filename is None: return r.text else: with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) f.flush() else: raise IOError(f"Could not download file from server, Error {r.status_code}")
11e303d4c69ca7bcedd509112ad6562b91d12bdc
6a562077f79213f6b2bb89e92d6a16d931268089
/frappe/core/doctype/data_import/importer_new.py
6fccbc89ef1f32fc83abe5d05da1ba572513dd91
[ "MIT" ]
permissive
libracore/frappe
74fe917b75aa1cfad38c71519914180d5d5f1366
92d94a73a3445a252a2828de0053dcce86a18f17
refs/heads/v12
2023-07-17T04:58:08.622228
2023-06-28T17:27:33
2023-06-28T17:27:33
89,392,790
6
8
MIT
2023-08-29T16:29:03
2017-04-25T18:19:40
Python
UTF-8
Python
false
false
27,077
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt import io import os import json import timeit import frappe from datetime import datetime from frappe import _ from frappe.utils import cint, flt, update_progress_bar from frappe.utils.csvutils import read_csv_content from frappe.utils.xlsxutils import ( read_xlsx_file_from_attached_file, read_xls_file_from_attached_file, ) from frappe.model import no_value_fields, table_fields INVALID_VALUES = ["", None] MAX_ROWS_IN_PREVIEW = 10 # pylint: disable=R0201 class Importer: def __init__( self, doctype, data_import=None, file_path=None, content=None, console=False ): self.doctype = doctype self.template_options = frappe._dict({"remap_column": {}}) self.console = console if data_import: self.data_import = data_import if self.data_import.template_options: template_options = frappe.parse_json(self.data_import.template_options) self.template_options.update(template_options) else: self.data_import = None self.header_row = None self.data = None # used to store date formats guessed from data rows per column self._guessed_date_formats = {} # used to store eta during import self.last_eta = 0 # used to collect warnings during template parsing # and show them to user self.warnings = [] self.meta = frappe.get_meta(doctype) self.prepare_content(file_path, content) self.parse_data_from_template() def prepare_content(self, file_path, content): extension = None if self.data_import and self.data_import.import_file: file_doc = frappe.get_doc("File", {"file_url": self.data_import.import_file}) content = file_doc.get_content() extension = file_doc.file_name.split(".")[1] if file_path: content, extension = self.read_file(file_path) if not extension: extension = "csv" if content: self.read_content(content, extension) self.validate_template_content() self.remove_empty_rows_and_columns() def read_file(self, file_path): extn = file_path.split(".")[1] file_content = None with io.open(file_path, mode="rb") as f: file_content = f.read() return file_content, extn def read_content(self, content, extension): if extension == "csv": data = read_csv_content(content) elif extension == "xlsx": data = read_xlsx_file_from_attached_file(fcontent=content) elif extension == "xls": data = read_xls_file_from_attached_file(content) self.header_row = data[0] self.data = data[1:] def validate_template_content(self): column_count = len(self.header_row) if any([len(row) != column_count and len(row) != 0 for row in self.data]): frappe.throw( _("Number of columns does not match with data"), title=_("Invalid Template") ) def remove_empty_rows_and_columns(self): self.row_index_map = [] removed_rows = [] removed_columns = [] # remove empty rows data = [] for i, row in enumerate(self.data): if all(v in INVALID_VALUES for v in row): # empty row removed_rows.append(i) else: data.append(row) self.row_index_map.append(i) # remove empty columns # a column with a header and no data is a valid column # a column with no header and no data will be removed header_row = [] for i, column in enumerate(self.header_row): column_values = [row[i] for row in data] values = [column] + column_values if all(v in INVALID_VALUES for v in values): # empty column removed_columns.append(i) else: header_row.append(column) data_without_empty_columns = [] # remove empty columns from data for i, row in enumerate(data): new_row = [v for j, v in enumerate(row) if j not in removed_columns] data_without_empty_columns.append(new_row) self.data = data_without_empty_columns self.header_row = header_row def get_data_for_import_preview(self): out = frappe._dict() out.data = list(self.rows) out.columns = self.columns out.warnings = self.warnings if len(out.data) > MAX_ROWS_IN_PREVIEW: out.data = out.data[:MAX_ROWS_IN_PREVIEW] out.max_rows_exceeded = True out.max_rows_in_preview = MAX_ROWS_IN_PREVIEW return out def parse_data_from_template(self): columns = self.parse_columns_from_header_row() columns, data = self.add_serial_no_column(columns, self.data) self.columns = columns self.rows = data def parse_columns_from_header_row(self): remap_column = self.template_options.remap_column columns = [] df_by_labels_and_fieldnames = self.build_fields_dict_for_column_matching() for i, header_title in enumerate(self.header_row): header_row_index = str(i) column_number = str(i + 1) skip_import = False fieldname = remap_column.get(header_row_index) if fieldname and fieldname != "Don't Import": df = df_by_labels_and_fieldnames.get(fieldname) self.warnings.append( { "col": column_number, "message": _("Mapping column {0} to field {1}").format( frappe.bold(header_title or "<i>Untitled Column</i>"), frappe.bold(df.label) ), "type": "info", } ) else: df = df_by_labels_and_fieldnames.get(header_title) if not df: skip_import = True else: skip_import = False if fieldname == "Don't Import": skip_import = True self.warnings.append( { "col": column_number, "message": _("Skipping column {0}").format(frappe.bold(header_title)), "type": "info", } ) elif header_title and not df: self.warnings.append( { "col": column_number, "message": _("Cannot match column {0} with any field").format( frappe.bold(header_title) ), "type": "info", } ) elif not header_title and not df: self.warnings.append( {"col": column_number, "message": _("Skipping Untitled Column"), "type": "info"} ) columns.append( frappe._dict( df=df, skip_import=skip_import, header_title=header_title, column_number=column_number, index=i, ) ) return columns def build_fields_dict_for_column_matching(self): """ Build a dict with various keys to match with column headers and value as docfield The keys can be label or fieldname { 'Customer': df1, 'customer': df1, 'Due Date': df2, 'due_date': df2, 'Item Code (Sales Invoice Item)': df3, 'Sales Invoice Item:item_code': df3, } """ out = {} table_doctypes = [df.options for df in self.meta.get_table_fields()] doctypes = table_doctypes + [self.doctype] for doctype in doctypes: # name field name_key = "ID" if self.doctype == doctype else "ID ({})".format(doctype) name_df = frappe._dict( { "fieldtype": "Data", "fieldname": "name", "label": "ID", "reqd": self.data_import.import_type == "Update Existing Records", "parent": doctype, } ) out[name_key] = name_df out["name"] = name_df # other fields meta = frappe.get_meta(doctype) fields = self.get_standard_fields(doctype) + meta.fields for df in fields: fieldtype = df.fieldtype or "Data" parent = df.parent or self.doctype if fieldtype not in no_value_fields: # label as key label = ( df.label if self.doctype == doctype else "{0} ({1})".format(df.label, parent) ) out[label] = df # fieldname as key if self.doctype == doctype: out[df.fieldname] = df else: key = "{0}:{1}".format(doctype, df.fieldname) out[key] = df # if autoname is based on field # add an entry for "ID (Autoname Field)" autoname_field = self.get_autoname_field(self.doctype) if autoname_field: out["ID ({})".format(autoname_field.label)] = autoname_field # ID field should also map to the autoname field out["ID"] = autoname_field out["name"] = autoname_field return out def get_standard_fields(self, doctype): meta = frappe.get_meta(doctype) if meta.istable: standard_fields = [ {"label": "Parent", "fieldname": "parent"}, {"label": "Parent Type", "fieldname": "parenttype"}, {"label": "Parent Field", "fieldname": "parentfield"}, {"label": "Row Index", "fieldname": "idx"}, ] else: standard_fields = [ {"label": "Owner", "fieldname": "owner"}, {"label": "Document Status", "fieldname": "docstatus", "fieldtype": "Int"}, ] out = [] for df in standard_fields: df = frappe._dict(df) df.parent = doctype out.append(df) return out def add_serial_no_column(self, columns, data): columns_with_serial_no = [ frappe._dict({"header_title": "Sr. No", "skip_import": True}) ] + columns # update index for each column for i, col in enumerate(columns_with_serial_no): col.index = i data_with_serial_no = [] for i, row in enumerate(data): data_with_serial_no.append([self.row_index_map[i] + 1] + row) return columns_with_serial_no, data_with_serial_no def parse_value(self, value, df): # convert boolean values to 0 or 1 if df.fieldtype == "Check" and value.lower().strip() in ["t", "f", "true", "false"]: value = value.lower().strip() value = 1 if value in ["t", "true"] else 0 if df.fieldtype in ["Int", "Check"]: value = cint(value) elif df.fieldtype in ["Float", "Percent", "Currency"]: value = flt(value) elif df.fieldtype in ["Date", "Datetime"]: value = self.parse_date_format(value, df) return value def parse_date_format(self, value, df): date_format = self.guess_date_format_for_column(df.fieldname) if date_format: return datetime.strptime(value, date_format) return value def guess_date_format_for_column(self, fieldname): """ Guesses date format for a column by parsing the first 10 values in the column, getting the date format and then returning the one which has the maximum frequency """ PARSE_ROW_COUNT = 10 if not self._guessed_date_formats.get(fieldname): column_index = -1 for i, field in enumerate(self.header_row): if self.meta.has_field(field) and field == fieldname: column_index = i break if column_index == -1: self._guessed_date_formats[fieldname] = None date_values = [ row[column_index] for row in self.data[:PARSE_ROW_COUNT] if row[column_index] ] date_formats = [guess_date_format(d) for d in date_values] if not date_formats: return max_occurred_date_format = max(set(date_formats), key=date_formats.count) self._guessed_date_formats[fieldname] = max_occurred_date_format return self._guessed_date_formats[fieldname] def import_data(self): # set user lang for translations frappe.cache().hdel("lang", frappe.session.user) frappe.set_user_lang(frappe.session.user) if not self.console: self.data_import.db_set("template_warnings", "") # set flags frappe.flags.in_import = True frappe.flags.mute_emails = self.data_import.mute_emails # prepare a map for missing link field values self.prepare_missing_link_field_values() # parse docs from rows payloads = self.get_payloads_for_import() # dont import if there are non-ignorable warnings warnings = [w for w in self.warnings if w.get("type") != "info"] if warnings: if self.console: self.print_grouped_warnings(warnings) else: self.data_import.db_set("template_warnings", json.dumps(warnings)) frappe.publish_realtime( "data_import_refresh", {"data_import": self.data_import.name} ) return # setup import log if self.data_import.import_log: import_log = frappe.parse_json(self.data_import.import_log) else: import_log = [] # remove previous failures from import log import_log = [l for l in import_log if l.get("success") == True] # get successfully imported rows imported_rows = [] for log in import_log: log = frappe._dict(log) if log.success: imported_rows += log.row_indexes # start import total_payload_count = len(payloads) batch_size = frappe.conf.data_import_batch_size or 1000 for batch_index, batched_payloads in enumerate( frappe.utils.create_batch(payloads, batch_size) ): for i, payload in enumerate(batched_payloads): doc = payload.doc row_indexes = [row[0] for row in payload.rows] current_index = (i + 1) + (batch_index * batch_size) if set(row_indexes).intersection(set(imported_rows)): print("Skipping imported rows", row_indexes) if total_payload_count > 5: frappe.publish_realtime( "data_import_progress", { "current": current_index, "total": total_payload_count, "skipping": True, "data_import": self.data_import.name, }, ) continue try: start = timeit.default_timer() doc = self.process_doc(doc) processing_time = timeit.default_timer() - start eta = self.get_eta(current_index, total_payload_count, processing_time) if total_payload_count > 5: frappe.publish_realtime( "data_import_progress", { "current": current_index, "total": total_payload_count, "docname": doc.name, "data_import": self.data_import.name, "success": True, "row_indexes": row_indexes, "eta": eta, }, ) if self.console: update_progress_bar( "Importing {0} records".format(total_payload_count), current_index, total_payload_count, ) import_log.append( frappe._dict(success=True, docname=doc.name, row_indexes=row_indexes) ) # commit after every successful import frappe.db.commit() except Exception: import_log.append( frappe._dict( success=False, exception=frappe.get_traceback(), messages=frappe.local.message_log, row_indexes=row_indexes, ) ) frappe.clear_messages() # rollback if exception frappe.db.rollback() # set status failures = [l for l in import_log if l.get("success") == False] if len(failures) == total_payload_count: status = "Pending" elif len(failures) > 0: status = "Partial Success" else: status = "Success" if self.console: self.print_import_log(import_log) else: self.data_import.db_set("status", status) self.data_import.db_set("import_log", json.dumps(import_log)) frappe.flags.in_import = False frappe.flags.mute_emails = False frappe.publish_realtime("data_import_refresh", {"data_import": self.data_import.name}) return import_log def get_payloads_for_import(self): payloads = [] # make a copy data = list(self.rows) while data: doc, rows, data = self.parse_next_row_for_import(data) payloads.append(frappe._dict(doc=doc, rows=rows)) return payloads def parse_next_row_for_import(self, data): """ Parses rows that make up a doc. A doc maybe built from a single row or multiple rows. Returns the doc, rows, and data without the rows. """ doctypes = set([col.df.parent for col in self.columns if col.df and col.df.parent]) # first row is included by default first_row = data[0] rows = [first_row] # if there are child doctypes, find the subsequent rows if len(doctypes) > 1: # subsequent rows either dont have any parent value set # or have the same value as the parent row # we include a row if either of conditions match parent_column_indexes = [ col.index for col in self.columns if not col.skip_import and col.df and col.df.parent == self.doctype ] parent_row_values = [first_row[i] for i in parent_column_indexes] data_without_first_row = data[1:] for row in data_without_first_row: row_values = [row[i] for i in parent_column_indexes] # if the row is blank, it's a child row doc if all([v in INVALID_VALUES for v in row_values]): rows.append(row) continue # if the row has same values as parent row, it's a child row doc if row_values == parent_row_values: rows.append(row) continue # if any of those conditions dont match, it's the next doc break def get_column_indexes(doctype): return [ col.index for col in self.columns if not col.skip_import and col.df and col.df.parent == doctype ] def validate_value(value, df): if df.fieldtype == "Select": select_options = df.get_select_options() if select_options and value not in select_options: options_string = ", ".join([frappe.bold(d) for d in select_options]) msg = _("Value must be one of {0}").format(options_string) self.warnings.append( { "row": row_number, "field": df.as_dict(convert_dates_to_str=True), "message": msg, } ) return False elif df.fieldtype == "Link": d = self.get_missing_link_field_values(df.options) if value in d.missing_values and not d.one_mandatory: msg = _("Value {0} missing for {1}").format( frappe.bold(value), frappe.bold(df.options) ) self.warnings.append( { "row": row_number, "field": df.as_dict(convert_dates_to_str=True), "message": msg, } ) return value return value def parse_doc(doctype, docfields, values, row_number): # new_doc returns a dict with default values set doc = frappe.new_doc(doctype, as_dict=True) # remove standard fields and __islocal for key in frappe.model.default_fields + ("__islocal",): doc.pop(key, None) for df, value in zip(docfields, values): if value in INVALID_VALUES: value = None value = validate_value(value, df) if value: doc[df.fieldname] = self.parse_value(value, df) check_mandatory_fields(doctype, doc, row_number) return doc def check_mandatory_fields(doctype, doc, row_number): # check if mandatory fields are set (except table fields) meta = frappe.get_meta(doctype) fields = [ df for df in meta.fields if df.fieldtype not in table_fields and df.reqd and doc.get(df.fieldname) in INVALID_VALUES ] if not fields: return if len(fields) == 1: self.warnings.append( { "row": row_number, "message": _("{0} is a mandatory field").format(fields[0].label), } ) else: fields_string = ", ".join([df.label for df in fields]) self.warnings.append( {"row": row_number, "message": _("{0} are mandatory fields").format(fields_string)} ) parsed_docs = {} for row in rows: for doctype in doctypes: if doctype == self.doctype and parsed_docs.get(doctype): # if parent doc is already parsed from the first row # then skip continue row_number = row[0] column_indexes = get_column_indexes(doctype) values = [row[i] for i in column_indexes] if all(v in INVALID_VALUES for v in values): # skip values if all of them are empty continue columns = [self.columns[i] for i in column_indexes] docfields = [col.df for col in columns] doc = parse_doc(doctype, docfields, values, row_number) parsed_docs[doctype] = parsed_docs.get(doctype, []) parsed_docs[doctype].append(doc) # build the doc with children doc = {} for doctype, docs in parsed_docs.items(): if doctype == self.doctype: doc.update(docs[0]) else: table_dfs = self.meta.get( "fields", {"options": doctype, "fieldtype": ["in", table_fields]} ) if table_dfs: table_field = table_dfs[0] doc[table_field.fieldname] = docs # check if there is atleast one row for mandatory table fields mandatory_table_fields = [ df for df in self.meta.fields if df.fieldtype in table_fields and df.reqd and len(doc.get(df.fieldname, [])) == 0 ] if len(mandatory_table_fields) == 1: self.warnings.append( { "row": first_row[0], "message": _("There should be atleast one row for {0} table").format( mandatory_table_fields[0].label ), } ) elif mandatory_table_fields: fields_string = ", ".join([df.label for df in mandatory_table_fields]) self.warnings.append( { "row": first_row[0], "message": _("There should be atleast one row for the following tables: {0}").format(fields_string), } ) return doc, rows, data[len(rows) :] def process_doc(self, doc): import_type = self.data_import.import_type if import_type == "Insert New Records": return self.insert_record(doc) elif import_type == "Update Existing Records": return self.update_record(doc) def insert_record(self, doc): self.create_missing_linked_records(doc) new_doc = frappe.new_doc(self.doctype) new_doc.update(doc) # name shouldn't be set when inserting a new record new_doc.set("name", None) new_doc.insert() if self.meta.is_submittable and self.data_import.submit_after_import: new_doc.submit() return new_doc def create_missing_linked_records(self, doc): """ Finds fields that are of type Link, and creates the corresponding document automatically if it has only one mandatory field """ link_values = [] def get_link_fields(doc, doctype): for fieldname, value in doc.items(): meta = frappe.get_meta(doctype) df = meta.get_field(fieldname) if not df: continue if df.fieldtype == "Link" and value not in INVALID_VALUES: link_values.append([df.options, value]) elif df.fieldtype in table_fields: for row in value: get_link_fields(row, df.options) get_link_fields(doc, self.doctype) for link_doctype, link_value in link_values: d = self.missing_link_values.get(link_doctype) if d and d.one_mandatory and link_value in d.missing_values: # find the autoname field autoname_field = self.get_autoname_field(link_doctype) name_field = autoname_field.fieldname if autoname_field else "name" new_doc = frappe.new_doc(link_doctype) new_doc.set(name_field, link_value) new_doc.insert() d.missing_values.remove(link_value) def update_record(self, doc): id_fieldname = self.get_id_fieldname() id_value = doc[id_fieldname] existing_doc = frappe.get_doc(self.doctype, id_value) existing_doc.flags.via_data_import = self.data_import.name existing_doc.update(doc) existing_doc.save() return existing_doc def export_errored_rows(self): from frappe.utils.csvutils import build_csv_response if not self.data_import: return import_log = frappe.parse_json(self.data_import.import_log or "[]") failures = [l for l in import_log if l.get("success") == False] row_indexes = [] for f in failures: row_indexes.extend(f.get("row_indexes", [])) # de duplicate row_indexes = list(set(row_indexes)) row_indexes.sort() header_row = [col.header_title for col in self.columns[1:]] rows = [header_row] rows += [row[1:] for row in self.rows if row[0] in row_indexes] build_csv_response(rows, self.doctype) def get_missing_link_field_values(self, doctype): return self.missing_link_values.get(doctype, {}) def prepare_missing_link_field_values(self): columns = self.columns rows = self.rows link_column_indexes = [ col.index for col in columns if col.df and col.df.fieldtype == "Link" ] self.missing_link_values = {} for index in link_column_indexes: col = columns[index] column_values = [row[index] for row in rows] values = set([v for v in column_values if v not in INVALID_VALUES]) doctype = col.df.options missing_values = [value for value in values if not frappe.db.exists(doctype, value)] if self.missing_link_values.get(doctype): self.missing_link_values[doctype].missing_values += missing_values else: self.missing_link_values[doctype] = frappe._dict( missing_values=missing_values, one_mandatory=self.has_one_mandatory_field(doctype), df=col.df, ) def get_id_fieldname(self): autoname_field = self.get_autoname_field(self.doctype) if autoname_field: return autoname_field.fieldname return "name" def get_eta(self, current, total, processing_time): remaining = total - current eta = processing_time * remaining if not self.last_eta or eta < self.last_eta: self.last_eta = eta return self.last_eta def has_one_mandatory_field(self, doctype): meta = frappe.get_meta(doctype) # get mandatory fields with default not set mandatory_fields = [df for df in meta.fields if df.reqd and not df.default] mandatory_fields_count = len(mandatory_fields) if meta.autoname and meta.autoname.lower() == "prompt": mandatory_fields_count += 1 return mandatory_fields_count == 1 def get_autoname_field(self, doctype): meta = frappe.get_meta(doctype) if meta.autoname and meta.autoname.startswith("field:"): fieldname = meta.autoname[len("field:") :] return meta.get_field(fieldname) def print_grouped_warnings(self, warnings): warnings_by_row = {} other_warnings = [] for w in warnings: if w.get("row"): warnings_by_row.setdefault(w.get("row"), []).append(w) else: other_warnings.append(w) for row_number, warnings in warnings_by_row.items(): print("Row {0}".format(row_number)) for w in warnings: print(w.get("message")) for w in other_warnings: print(w.get("message")) def print_import_log(self, import_log): failed_records = [l for l in import_log if not l.success] successful_records = [l for l in import_log if l.success] if successful_records: print( "Successfully imported {0} records out of {1}".format( len(successful_records), len(import_log) ) ) if failed_records: print("Failed to import {0} records".format(len(failed_records))) file_name = '{0}_import_on_{1}.txt'.format(self.doctype, frappe.utils.now()) print('Check {0} for errors'.format(os.path.join('sites', file_name))) text = "" for w in failed_records: text += "Row Indexes: {0}\n".format(str(w.get('row_indexes', []))) text += "Messages:\n{0}\n".format('\n'.join(w.get('messages', []))) text += "Traceback:\n{0}\n\n".format(w.get('exception')) with open(file_name, 'w') as f: f.write(text) DATE_FORMATS = [ r"%d-%m-%Y", r"%m-%d-%Y", r"%Y-%m-%d", r"%d-%m-%y", r"%m-%d-%y", r"%y-%m-%d", r"%d/%m/%Y", r"%m/%d/%Y", r"%Y/%m/%d", r"%d/%m/%y", r"%m/%d/%y", r"%y/%m/%d", r"%d.%m.%Y", r"%m.%d.%Y", r"%Y.%m.%d", r"%d.%m.%y", r"%m.%d.%y", r"%y.%m.%d", ] TIME_FORMATS = [ r"%H:%M:%S.%f", r"%H:%M:%S", r"%H:%M", r"%I:%M:%S.%f %p", r"%I:%M:%S %p", r"%I:%M %p", ] def guess_date_format(date_string): date_string = date_string.strip() _date = None _time = None if " " in date_string: _date, _time = date_string.split(" ", 1) else: _date = date_string date_format = None time_format = None for f in DATE_FORMATS: try: # if date is parsed without any exception # capture the date format datetime.strptime(_date, f) date_format = f break except ValueError: pass if _time: for f in TIME_FORMATS: try: # if time is parsed without any exception # capture the time format datetime.strptime(_time, f) time_format = f break except ValueError: pass full_format = date_format if time_format: full_format += " " + time_format return full_format def import_data(doctype, file_path): i = Importer(doctype, file_path) i.import_data()
07e30b5ca44e0780d580e0e6e6bb3d6b3d5b027e
031b1c5b0c404f23ccd61a08845695bd4c3827f2
/python/pyfiles/算术运算符.py
39efec4aa582072f142c44bd1bc23d687686d1e0
[]
no_license
AndyFlower/zixin
c8d957fd8b1e6ca0e1ae63389bc8151ab93dbb55
647705e5f14fae96f82d334ba1eb8a534735bfd9
refs/heads/master
2022-12-23T21:10:44.872371
2021-02-10T07:15:21
2021-02-10T07:15:21
232,578,547
1
0
null
2022-12-16T15:41:14
2020-01-08T14:13:25
Java
UTF-8
Python
false
false
795
py
# -*- coding: utf-8 -*- """ Created on Tue Dec 1 22:57:02 2020 @author: sanglp """ # +运算符 print(3+5) print(3.4+4.5) print((3+4j)+(4+5j)) print('abc'+'def') print([1,2]+[3,4]) print((1,2)+(3,)) # -运算符 print(7.9 -4.5) # 浮点数有误差 print(5-3) num = 3 print(-num) print(--num) print({1,2,3}-{3,4,5}) #计算差集 # *运算符 print(3333*5555) print((3+4j)*(5+6j)) print('重要的事情说3遍'*3) print([0]*5) print((0,)*3) # /和//运算符 print(17 / 4) print(17 // 4) #4 print((-17) / 4) print((-17) // 4) #-5 # %运算符 print(365 %7) print(365 %2) print('%c,%c,%c' %(65,97,48)) # 数字格式化为字符 A,a,0 # **运算符 print(2 ** 4) print(3 ** 3 ** 3) print(3 ** (3**3)) print((3**3)**3) print(9**0.5) print((-1)**0.5) # 对负数计算平方根得到负数
0ef417ef2ea2ab51e1240c4fc86e2f26be2e0302
509d717f18caad77e00c3261dcf1934f7e5bd95d
/venv/css_selectors/sports_bet_page_locators.py
65e85e02577a73a8730a604977beb681bc7cbdcc
[]
no_license
Swingyboy/pronet_design_testing
8aee2f42e2452ca178fbe34e7a51ce7377156e08
ad3dc5a58983ed6d6c9cef91a40ea8160f699dd0
refs/heads/master
2023-05-06T05:34:47.438023
2020-09-15T09:17:36
2020-09-15T09:17:36
281,055,876
1
1
null
2021-06-02T02:56:51
2020-07-20T08:12:21
Python
UTF-8
Python
false
false
403
py
from selenium.webdriver.common.by import By class SportsBetPageLocators(): UPCOMING_EVENTS_BAR =(By.CSS_SELECTOR, 'upcoming-events > div > div.modul-header') LIVE_BET_BAR = (By.CSS_SELECTOR, 'live-at-now > div > div.modul-header') ESPORTS_BAR = (By.CSS_SELECTOR, 'app-esports > div > div.modul-header') TODAY_EVENT_BAR = (By.CSS_SELECTOR, 'todays-sport-types > div > div.modul-header')