blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
6b09cc57289aebfadf3badeff4f9bef7c017e0dc
04cd6250630b3aad49219acbae0b7682f4263afb
/sbaas/analysis/analysis_stage02_isotopomer/stage02_isotopomer_dependencies.py
7813c8ad014ac51fbf424a16b962f14cfd089746
[ "Apache-2.0" ]
permissive
SBRG/sbaas
ec04bd3a82248600328c053bc798d7d302fbaf9d
9df76bbffdd620cf8566744a2b0503935998fbe0
refs/heads/master
2021-01-21T23:29:26.713889
2015-06-24T17:16:59
2015-06-24T17:16:59
28,518,590
1
2
null
null
null
null
UTF-8
Python
false
false
297,680
py
'''isotopomer metabolomics analysis class''' from sbaas.analysis.analysis_base import * from .stage02_isotopomer_query import * from .stage02_isotopomer_io import * # Dependencies import operator, json, csv from copy import copy # Dependencies from 3rd party import scipy.io from numpy import histogram, mean, std, loadtxt import matplotlib as mpl import matplotlib.pyplot as plt import h5py from sbaas.resources.molmass import Formula # Dependencies from cobra from cobra.io.sbml import create_cobra_model_from_sbml_file from cobra.io.sbml import write_cobra_model_to_sbml_file from cobra.io.mat import save_matlab_model from cobra.manipulation.modify import convert_to_irreversible, revert_to_reversible from cobra.flux_analysis.objective import update_objective from cobra.flux_analysis.variability import flux_variability_analysis from cobra.flux_analysis.parsimonious import optimize_minimal_flux from cobra.flux_analysis import flux_variability_analysis, single_deletion from cobra.core.Reaction import Reaction from cobra.core.Metabolite import Metabolite class stage02_isotopomer_dependencies(): def __init__(self): self.calculate = base_calculate(); #variables: self.isotopomer_rxns_net_irreversible = { 'ptrc_to_4abut_1':{'reactions':['PTRCTA','ABUTD'], 'stoichiometry':[1,1]}, 'ptrc_to_4abut_2':{'reactions':['GGPTRCS','GGPTRCO','GGGABADr','GGGABAH'], 'stoichiometry':[1,1,1,1]}, 'glu_DASH_L_to_acg5p':{'reactions':['ACGS','ACGK'], 'stoichiometry':[1,1]}, '2obut_and_pyr_to_3mop':{'reactions':['ACHBS','KARA2','DHAD2'], 'stoichiometry':[1,1,1]}, 'pyr_to_23dhmb':{'reactions':['ACLS','KARA1_reverse'], 'stoichiometry':[1,1]}, #'met_DASH_L_and_ptrc_to_spmd_and_5mta':{'reactions':['METAT','ADMDC','SPMS'], # 'stoichiometry':[1,1,1]}, #cannot be lumped 'chor_and_prpp_to_3ig3p':{'reactions':['ANS','ANPRT','PRAIi','IGPS'], 'stoichiometry':[1,1,1,1]}, 'hom_DASH_L_and_cyst_DASH_L_to_pyr_hcys_DASH_L':{'reactions':['HSST','SHSL1','CYSTL'], 'stoichiometry':[1,1,1]}, 'e4p_and_pep_to_3dhq':{'reactions':['DDPA','DHQS'], 'stoichiometry':[1,1]}, 'aspsa_to_sl2a6o':{'reactions':['DHDPS','DHDPRy','THDPS'], 'stoichiometry':[1,1,1]}, 'glu_DASH_L_to_glu5sa':{'reactions':['GLU5K','G5SD'], 'stoichiometry':[1,1]}, 'g1p_to_glycogen':{'reactions':['GLGC','GLCS1'], 'stoichiometry':[1,1]}, 'thr_DASH_L_to_gly':{'reactions':['THRD','GLYAT_reverse'], 'stoichiometry':[1,1]}, #need to remove deadend mets: athr-L: ATHRDHr, ATHRDHr_reverse; aact: AACTOOR, AOBUTDs 'dhap_to_lac_DASH_D':{'reactions':['MGSA','LGTHL','GLYOX'], 'stoichiometry':[1,1,1]}, 'hom_DASH_L_to_thr_DASH_L':{'reactions':['HSK','THRS'], 'stoichiometry':[1,1]}, '3pg_to_ser_DASH_L':{'reactions':['PGCD','PSERT','PSP_L'], 'stoichiometry':[1,1,1]}, 'prpp_to_his_DASH_L':{'reactions':['ATPPRT','PRATPP','PRAMPC','PRMICI','IG3PS','IGPDH','HSTPT','HISTP','HISTD'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'UMPSYN_aerobic':{'reactions':['ASPCT','DHORTS_reverse','DHORD2','ORPT_reverse','OMPDC'], 'stoichiometry':[1,1,1,1,1]}, #'UMPSYN_anaerobic':{'reactions':['ASPCT','DHORTS_reverse','DHORD5','ORPT_reverse','OMPDC'], # 'stoichiometry':[1,1,1,1,1]}, 'IMPSYN_1':{'reactions':['GLUPRT','PRAGSr','PRFGS','PRAIS'], 'stoichiometry':[1,1,1,1]}, 'IMPSYN_2':{'reactions':['AIRC2','AIRC3_reverse','PRASCSi','ADSL2r'], 'stoichiometry':[1,1,1,1]}, 'IMPSYN_3':{'reactions':['AICART','IMPC_reverse'], 'stoichiometry':[1,1]}, 'imp_to_gmp':{'reactions':['IMPD','GMPS2'], 'stoichiometry':[1,1]}, 'imp_to_amp':{'reactions':['ADSS','ADSL1r'], 'stoichiometry':[1,1]}, #'utp_to_dump_anaerobic':{'reactions':['RNTR4c2','DUTPDP'], # 'stoichiometry':[1,1]}, 'udp_to_dump_aerobic':{'reactions':['RNDR4','NDPK6','DUTPDP'], 'stoichiometry':[1,1,1]}, #'dtmp_to_dttp':{'reactions':['DTMPK','NDPK4'], # 'stoichiometry':[1,1]}, #cannot be lumped 'COASYN':{'reactions':['ASP1DC','MOHMT','DPR','PANTS','PNTK','PPNCL2','PPCDC','PTPATi','DPCOAK'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'FADSYN_1':{'reactions':['GTPCII2','DHPPDA2','APRAUR','PMDPHT','RBFSb'], 'stoichiometry':[1,1,1,1,1]}, 'FADSYN_2':{'reactions':['RBFSa','DB4PS'], 'stoichiometry':[1,1]}, 'FADSYN_3':{'reactions':['RBFK','FMNAT'], 'stoichiometry':[1,1]}, 'NADSYN_aerobic':{'reactions':['ASPO6','QULNS','NNDPR','NNATr','NADS1','NADK'], 'stoichiometry':[1,1,1,1,1,1]}, #'NADSYN_anaerobic':{'reactions':['ASPO5','QULNS','NNDPR','NNATr','NADS1','NADK'], # 'stoichiometry':[1,1,1,1,1,1]}, #'NADSALVAGE':{'reactions':['NADPPPS','NADN','NNAM','NAMNPP','NMNN','NMNDA','NMNAT','NADDP','ADPRDP'], # 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, #cannot be lumped 'THFSYN':{'reactions':['GTPCI','DNTPPA','DNMPPA','DHNPA2r','HPPK2','ADCS','ADCL','DHPS2','DHFS'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'GTHSYN':{'reactions':['GLUCYS','GTHS'], 'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_1':{'reactions':['DASYN181','AGPAT181','G3PAT181'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_2':{'reactions':['PSSA181','PSD181'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_3':{'reactions':['PGSA160','PGPP160'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_4':{'reactions':['DASYN161','AGPAT161','G3PAT161'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_5':{'reactions':['PGSA181','PGPP181'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_6':{'reactions':['PSD161','PSSA161'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_7':{'reactions':['PSSA160','PSD160'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_8':{'reactions':['DASYN160','AGPAT160','G3PAT160'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_9':{'reactions':['PGSA161','PGPP161'],'stoichiometry':[1,1]}, 'MOLYBDOPTERIN_1':{'reactions':['MPTAT','MPTS','CPMPS'],'stoichiometry':[1,1,1]}, 'MOLYBDOPTERIN_2':{'reactions':['MOCDS','MOGDS'],'stoichiometry':[1,1]}, 'MOLYBDOPTERIN_3':{'reactions':['MOADSUx','MPTSS'],'stoichiometry':[1,1]}, 'COFACTOR_1':{'reactions':['GLUTRR','G1SAT','GLUTRS'],'stoichiometry':[1,1,1]}, 'COFACTOR_2':{'reactions':['DHNAOT4','UPPDC1','DHNCOAT','DHNCOAS','SEPHCHCS','SUCBZS','SUCBZL','PPPGO3','FCLT','CPPPGO','SHCHCS3'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1]}, 'COFACTOR_3':{'reactions':['TYRL','AMMQLT8','HEMEOS','UPP3MT','SHCHD2','SHCHF','ENTCS','CBLAT'],'stoichiometry':[1,1,1,1,1,1,1,1]}, 'VITB6':{'reactions':['E4PD','PERD','OHPBAT','PDX5PS','PDX5PO2'],'stoichiometry':[1,1,1,1,1]}, #'THIAMIN':{'reactions':['AMPMS2','PMPK','THZPSN3','TMPPP','TMPK'],'stoichiometry':[1,1,1,1,1]}, # original pathway without correction 'THIAMIN':{'reactions':['AMPMS3','PMPK','THZPSN3','TMPPP','TMPK'],'stoichiometry':[1,1,1,1,1]}, 'COFACTOR_4':{'reactions':['I4FE4ST','I4FE4SR','I2FE2SS2'],'stoichiometry':[1,1,1]}, 'COFACTOR_5':{'reactions':['BMOGDS1','BMOGDS2','BMOCOS'],'stoichiometry':[1,1,1]}, 'COFACTOR_6':{'reactions':['DMPPS','GRTT','DMATT'],'stoichiometry':[1,1,1]}, 'COFACTOR_7':{'reactions':['MECDPS','DXPRIi','MEPCT','CDPMEK','MECDPDH5'],'stoichiometry':[1,1,1,1,1]}, 'COFACTOR_8':{'reactions':['LIPOS','LIPOCT'],'stoichiometry':[1,1]}, 'COFACTOR_9':{'reactions':['OMMBLHX','OMPHHX','OPHHX','HBZOPT','DMQMT','CHRPL','OMBZLM','OPHBDC','OHPHM'],'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'COFACTOR_10':{'reactions':['SERASr','DHBD','UPP3S','HMBS','ICHORT','DHBS'],'stoichiometry':[1,1,1,1,1,1]}, 'COFACTOR_11':{'reactions':['PMEACPE','EGMEACPR','DBTS','AOXSr2','I2FE2SR','OPMEACPD','MALCOAMT','AMAOTr','OPMEACPS','OPMEACPR','OGMEACPD','OGMEACPR','OGMEACPS','EPMEACPR','BTS5'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_1':{'reactions':['UAMAGS','UAPGR','UAGPT3','PAPPT3','GLUR_reverse','UAGCVT','UAMAS','UDCPDP','UGMDDS','UAAGDS'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_2':{'reactions':['3HAD181','3OAR181','3OAS181','EAR181x'],'stoichiometry':[1,1,1,1]}, 'CELLENV_3':{'reactions':['3HAD160','3OAR160','EAR160x','3OAS160'],'stoichiometry':[1,1,1,1]}, 'CELLENV_4':{'reactions':['EAR120x','3OAR120','3HAD120','3OAS120','EAR100x'],'stoichiometry':[1,1,1,1,1]}, 'CELLENV_5':{'reactions':['G1PACT','UAGDP','PGAMT_reverse','GF6PTA'],'stoichiometry':[1,1,1,1]}, 'CELLENV_6':{'reactions':['3OAR40','EAR40x','3OAS60','3OAR60','3HAD80','3OAS80','3OAR80','EAR60x','3HAD60','EAR80x','3HAD40'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_7':{'reactions':['3HAD161','EAR161x','3OAS161','3OAR161','3OAS141','3HAD141','3OAR121','EAR121x','3HAD121','EAR141x','T2DECAI','3OAR141','3OAS121'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_8':{'reactions':['TDPGDH','TDPDRR','TDPDRE','G1PTT'],'stoichiometry':[1,1,1,1]}, 'CELLENV_9':{'reactions':['3OAS140','3OAR140'],'stoichiometry':[1,1]}, 'CELLENV_10':{'reactions':['3HAD140','EAR140x'],'stoichiometry':[1,1]}, 'CELLENV_11':{'reactions':['3OAR100','3HAD100','3OAS100'],'stoichiometry':[1,1,1]}, 'LIPOPOLYSACCHARIDE_1':{'reactions':['COLIPAabcpp','COLIPAabctex','EDTXS1','EDTXS2','GALT1','GLCTR1','GLCTR2','GLCTR3','HEPK1','HEPK2','HEPT1','HEPT2','HEPT3','HEPT4','LPADSS','MOAT','MOAT2','MOAT3C','RHAT1','TDSK','USHD'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'LIPOPOLYSACCHARIDE_2':{'reactions':['AGMHE','GMHEPAT','GMHEPK','GMHEPPA','S7PI'],'stoichiometry':[1,1,1,1,1]}, 'LIPOPOLYSACCHARIDE_3':{'reactions':['U23GAAT','UHGADA','UAGAAT'],'stoichiometry':[1,1,1]}, 'LIPOPOLYSACCHARIDE_4':{'reactions':['KDOPP','KDOCT2','KDOPS'],'stoichiometry':[1,1,1]}, 'ASTPathway':{'reactions':['AST','SADH','SGDS','SGSAD','SOTA'],'stoichiometry':[1,1,1,1,1]} }; #model reduction functions def load_ALEWt(self,anoxic = False, oxic = True, update_ampms2 = True, convert2irreversible = False): '''load iJO1366 with the following changes: 1. update to AMPMS2 to account for carbon monoxide 2. changes to uptake bounds for glucose M9 media 3. constrain the model to use 'PFK' instead of 'F6PA', 'DHAPT' when grown on glucose 4. constrain the model to use the physiologically perferred glutamate synthesis enzymes 5. depending on oxygen availability, constrain the model to use the correct RNR enzymes 6. depending on oxygen availability, constrain the model to use the correct Dihydroorotate dehydrogenase (PyrD) enzymes 7. constrain fatty acid biosynthesis to use the physiologically preferred enzymes''' ijo1366_sbml = settings.workspace_data+"/models/iJO1366.xml" # Read in the sbml file and define the model conditions cobra_model = create_cobra_model_from_sbml_file(ijo1366_sbml, print_time=True) if update_ampms2: # Update AMPMS2 coc = Metabolite('co_c','CO','carbon monoxide','c'); cop = Metabolite('co_p','CO','carbon monoxide','p'); coe = Metabolite('co_e','CO','carbon monoxide','e'); cobra_model.add_metabolites([coc,cop,coe]) ampms2_mets = {}; ampms2_mets[cobra_model.metabolites.get_by_id('air_c')] = -1; ampms2_mets[cobra_model.metabolites.get_by_id('amet_c')] = -1; ampms2_mets[cobra_model.metabolites.get_by_id('dad_DASH_5_c')] = 1; ampms2_mets[cobra_model.metabolites.get_by_id('met_DASH_L_c')] = 1; ampms2_mets[cobra_model.metabolites.get_by_id('4ampm_c')] = 1; ampms2_mets[cobra_model.metabolites.get_by_id('h_c')] = 3; ampms2_mets[cobra_model.metabolites.get_by_id('for_c')] = 1; ampms2_mets[cobra_model.metabolites.get_by_id('co_c')] = 1; ampms2 = Reaction('AMPMS3'); ampms2.add_metabolites(ampms2_mets); copp_mets = {}; copp_mets[cobra_model.metabolites.get_by_id('co_c')] = -1; copp_mets[cobra_model.metabolites.get_by_id('co_p')] = 1; copp = Reaction('COtpp'); copp.add_metabolites(copp_mets); coex_mets = {}; coex_mets[cobra_model.metabolites.get_by_id('co_p')] = -1; coex_mets[cobra_model.metabolites.get_by_id('co_e')] = 1; coex = Reaction('COtex'); coex.add_metabolites(coex_mets); cotrans_mets = {}; cotrans_mets[cobra_model.metabolites.get_by_id('co_e')] = -1; cotrans = Reaction('EX_co_LPAREN_e_RPAREN_'); cotrans.add_metabolites(cotrans_mets); cobra_model.add_reactions([ampms2,copp,coex,cotrans]); cobra_model.remove_reactions(['AMPMS2']); # Define the model conditions: system_boundaries = [x.id for x in cobra_model.reactions if x.boundary == 'system_boundary']; for b in system_boundaries: cobra_model.reactions.get_by_id(b).lower_bound = 0.0; cobra_model.reactions.get_by_id(b).upper_bound = 0.0; # Reset demand reactions demand = ['DM_4CRSOL', 'DM_5DRIB', 'DM_AACALD', 'DM_AMOB', 'DM_MTHTHF', 'DM_OXAM']; for d in demand: cobra_model.reactions.get_by_id(d).lower_bound = 0.0; cobra_model.reactions.get_by_id(d).upper_bound = 1000.0; # Change the objective update_objective(cobra_model,{'Ec_biomass_iJO1366_WT_53p95M':1.0}) # Assign KOs # Specify media composition (M9 glucose): cobra_model.reactions.get_by_id('EX_glc_LPAREN_e_RPAREN_').lower_bound = -10.0; cobra_model.reactions.get_by_id('EX_o2_LPAREN_e_RPAREN_').lower_bound = -18.0; #uptake = ['EX_cl_LPAREN_e_RPAREN_', # 'EX_so4_LPAREN_e_RPAREN_', # 'EX_ca2_LPAREN_e_RPAREN_', # 'EX_pi_LPAREN_e_RPAREN_', # 'EX_fe2_LPAREN_e_RPAREN_', # 'EX_cu2_LPAREN_e_RPAREN_', # 'EX_zn2_LPAREN_e_RPAREN_', # 'EX_cbl1_LPAREN_e_RPAREN_', # 'EX_mobd_LPAREN_e_RPAREN_', # 'EX_ni2_LPAREN_e_RPAREN_', # 'EX_mn2_LPAREN_e_RPAREN_', # 'EX_k_LPAREN_e_RPAREN_', # 'EX_nh4_LPAREN_e_RPAREN_', # 'EX_cobalt2_LPAREN_e_RPAREN_', # 'EX_mg2_LPAREN_e_RPAREN_']; uptake = ['EX_ca2_LPAREN_e_RPAREN_', 'EX_cbl1_LPAREN_e_RPAREN_', 'EX_cl_LPAREN_e_RPAREN_', 'EX_co2_LPAREN_e_RPAREN_', 'EX_cobalt2_LPAREN_e_RPAREN_', 'EX_cu2_LPAREN_e_RPAREN_', 'EX_fe2_LPAREN_e_RPAREN_', 'EX_fe3_LPAREN_e_RPAREN_', 'EX_h_LPAREN_e_RPAREN_', 'EX_h2o_LPAREN_e_RPAREN_', 'EX_k_LPAREN_e_RPAREN_', 'EX_mg2_LPAREN_e_RPAREN_', 'EX_mn2_LPAREN_e_RPAREN_', 'EX_mobd_LPAREN_e_RPAREN_', 'EX_na1_LPAREN_e_RPAREN_', 'EX_nh4_LPAREN_e_RPAREN_', 'EX_ni2_LPAREN_e_RPAREN_', 'EX_pi_LPAREN_e_RPAREN_', 'EX_sel_LPAREN_e_RPAREN_', 'EX_slnt_LPAREN_e_RPAREN_', 'EX_so4_LPAREN_e_RPAREN_', 'EX_tungs_LPAREN_e_RPAREN_', 'EX_zn2_LPAREN_e_RPAREN_']; for u in uptake: cobra_model.reactions.get_by_id(u).lower_bound = -1000.0; # Specify allowed secretion products secrete = ['EX_meoh_LPAREN_e_RPAREN_', 'EX_5mtr_LPAREN_e_RPAREN_', 'EX_h_LPAREN_e_RPAREN_', 'EX_co2_LPAREN_e_RPAREN_', 'EX_co_LPAREN_e_RPAREN_', 'EX_h2o_LPAREN_e_RPAREN_', 'EX_ac_LPAREN_e_RPAREN_', 'EX_fum_LPAREN_e_RPAREN_', 'EX_for_LPAREN_e_RPAREN_', 'EX_etoh_LPAREN_e_RPAREN_', 'EX_lac_DASH_L_LPAREN_e_RPAREN_', 'EX_pyr_LPAREN_e_RPAREN_', 'EX_succ_LPAREN_e_RPAREN_']; for s in secrete: cobra_model.reactions.get_by_id(s).upper_bound = 1000.0; # Constrain specific reactions noFlux = ['F6PA', 'DHAPT']; ammoniaExcess = ['GLUDy']; # PMCID: 196288 # RNR control (DOI:10.1111/j.1365-2958.2006.05493.x) # Dihydroorotate dehydrogenase (PyrD) (DOI:10.1016/S0076-6879(78)51010-0, PMID: 199252, DOI:S0969212602008316 [pii]) aerobic = ['RNDR1', 'RNDR2', 'RNDR3', 'RNDR4', 'DHORD2', 'ASPO6','LCARR','PFL','FRD2','FRD3']; # see DOI:10.1111/j.1365-2958.2011.07593.x; see DOI:10.1089/ars.2006.8.773 for a review anaerobic = ['RNTR1c2', 'RNTR2c2', 'RNTR3c2', 'RNTR4c2', 'DHORD5', 'ASPO5','PDH','SUCDi']; # see DOI:10.1074/jbc.274.44.31291, DOI:10.1128/JB.00440-07 if anoxic: rxnList = noFlux + ammoniaExcess + anaerobic; for rxn in rxnList: cobra_model.reactions.get_by_id(rxn).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn).upper_bound = 0.0; elif oxic: rxnList = noFlux + ammoniaExcess + aerobic; for rxn in rxnList: cobra_model.reactions.get_by_id(rxn).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn).upper_bound = 0.0; else: rxnList = noFlux + ammoniaExcess; for rxn in rxnList: cobra_model.reactions.get_by_id(rxn).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn).upper_bound = 0.0; # Set the direction for specific reactions # Fatty acid biosynthesis: DOI: 10.1016/j.ymben.2010.10.007, PMCID: 372925 fattyAcidSynthesis = ['ACCOAC', 'ACOATA', 'HACD1', 'HACD2', 'HACD3', 'HACD4', 'HACD5', 'HACD6', 'HACD7', 'HACD8', 'KAS14', 'KAS15', 'MACPD', 'MCOATA', '3OAR100', '3OAR120', '3OAR121', '3OAR140', '3OAR141', '3OAR160', '3OAR161', '3OAR180', '3OAR181', '3OAR40', '3OAR60', '3OAR80'] fattyAcidOxidation = ['ACACT1r', 'ACACT2r', 'ACACT3r', 'ACACT4r', 'ACACT5r', 'ACACT6r', 'ACACT7r', 'ACACT8r', 'ACOAD1f', 'ACOAD2f', 'ACOAD3f', 'ACOAD4f', 'ACOAD5f', 'ACOAD6f', 'ACOAD7f', 'ACOAD8f', 'CTECOAI6', 'CTECOAI7', 'CTECOAI8', 'ECOAH1', 'ECOAH2', 'ECOAH3', 'ECOAH4', 'ECOAH5', 'ECOAH6', 'ECOAH7', 'ECOAH8'] ndpk = ['NDPK1','NDPK2','NDPK3','NDPK4','NDPK5','NDPK7','NDPK8']; rxnList = fattyAcidSynthesis + fattyAcidOxidation; for rxn in rxnList: cobra_model.reactions.get_by_id(rxn).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn).upper_bound = 1000.0; # convert to irreversible if convert2irreversible: convert_to_irreversible(cobra_model); return cobra_model; def reduce_model(self,cobra_model,cobra_model_outFileName=None): '''reduce model''' # Input: cobra_model # Output: cobra_model # the lower and upper bounds have been set to 0.0 # for all reactions that cannot carry a flux cobra_model.optimize() sol_f = cobra_model.solution.f fva_data = flux_variability_analysis(cobra_model, fraction_of_optimum=0.9, objective_sense='maximize', the_reactions=None, allow_loops=True, solver='gurobi', the_problem='return', tolerance_optimality=1e-6, tolerance_feasibility=1e-6, tolerance_barrier=1e-8, lp_method=1, lp_parallel=0, new_objective=None, relax_b=None, error_reporting=None, number_of_processes=1, copy_model=False); #with open("data/ijo1366_irrev_fva.json", 'w') as outfile: # json.dump(data, outfile, indent=4); #fva_data = json.load(open("data/ijo1366_irrev_fva.json")); # Reduce model rxns_noflux = []; for k,v in fva_data.items(): if v['minimum'] == 0.0 and v['maximum'] == 0.0: cobra_model.reactions.get_by_id(k).lower_bound = 0.0; cobra_model.reactions.get_by_id(k).upper_bound = 0.0; rxns_noflux.append(k); if cobra_model_outFileName: write_cobra_model_to_sbml_file(cobra_model,cobra_model_outFileName) cobra_model.optimize() sol_reduced_f = cobra_model.solution.f # Check that the reduced model is consistent with the original model if not sol_f == sol_reduced_f: print('reduced model is inconsistent with the original model') print('original model solution: ' + str(sol_f)) print('reduced model solution: ' + str(sol_reduced_f)) def reduce_model_pfba(self,cobra_model,cobra_model_outFileName=None,fba_outFileName=None,subs=[]): '''reduce model using pfba''' # Input: cobra_model # cobra_model_outFileName # subs = string of specific subsystems to reduce # Output: cobra_model # the lower and upper bounds have been set to 0.0 # for all reactions that cannot carry a flux cobra_model.optimize() sol_f = cobra_model.solution.f # Find minimal flux solution: pfba = optimize_minimal_flux(cobra_model,True,solver='gurobi'); # Reduce model rxns_noflux = []; # set lb and ub for all reactions with 0 flux to 0; for k,v in cobra_model.solution.x_dict.items(): if (v < 0.0 or v == 0.0) and cobra_model.reactions.get_by_id(k).subsystem in subs: cobra_model.reactions.get_by_id(k).lower_bound = 0.0; cobra_model.reactions.get_by_id(k).upper_bound = 0.0; rxns_noflux.append(k); if cobra_model_outFileName: write_cobra_model_to_sbml_file(cobra_model,cobra_model_outFileName) if pfba_outFileName: # Write pfba solution to file with open(pfba_outFileName,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Flux']) for k,v in cobra_model.solution.x_dict.items(): writer.writerow([k,v]); cobra_model.optimize() sol_reduced_f = cobra_model.solution.f # Check that the reduced model is consistent with the original model if not sol_f == sol_reduced_f: print('reduced model is inconsistent with the original model') print('original model solution: ' + str(sol_f)) print('reduced model solution: ' + str(sol_reduced_f)) def add_net_reaction(self,cobra_model_IO, rxn_dict_I,remove_reverse=False): '''add a net reaction to the model after removing the individual reactions''' # input: rxn_dict_I = dictionary of net reaction ids and # corresponding list of individual reaction ids # output: cobra_model_IO = individual reactions replaced with a # net reaction cobra_model_IO.optimize(); sol_orig = cobra_model_IO.solution.f; print("original model solution", sol_orig) try: cobra_model_tmp = cobra_model_IO.copy2(); except KeyError as e: print(e); # make net reactions: rxn_dict_net = {}; for k,v in rxn_dict_I.items(): rxn_net = make_net_reaction(cobra_model_tmp, k, v['reactions'],v['stoichiometry']); if rxn_net: rxn_net.lower_bound = 0.0; rxn_net.upper_bound = 1000.0; rxn_net.objective_coefficient = 0.0; else: print('an error occured in add_net_reaction') exit(-1) #rxn_net.reversibility = False; rxn_dict_net[k] = (v['reactions'],rxn_net); # add replace individual reactions with net reaction for k,v in rxn_dict_net.items(): cobra_model_IO.remove_reactions(v[0]); # remove the reverse reaction if it exists for irreversible models if remove_reverse: for rxn in v[0]: if '_reverse' in rxn: rxn_rev = rxn.replace('_reverse','') if cobra_model_IO.reactions.has_id(rxn_rev): cobra_model_IO.remove_reactions(rxn_rev); else: rxn_rev = rxn+'_reverse'; if cobra_model_IO.reactions.has_id(rxn_rev): cobra_model_IO.remove_reactions(rxn_rev); cobra_model_IO.add_reaction(v[1]); cobra_model_IO.optimize(); sol_new = cobra_model_IO.solution.f; print(k, sol_new) def make_net_reaction(self,cobra_model_I, rxn_id_I, rxn_list_I,stoich_list_I): '''generate a net reaction from a list of individual reactions''' # input: rxn_list_I = list of reaction IDs # output: rxn_net_O = net reaction (cobra Reaction object) from cobra.core.Reaction import Reaction #rxn_net_O = cobra_model_I.reactions.get_by_id(rxn_list_I[0]); #for r in rxn_list_I[1:]: # if cobra_model_I.reactions.get_by_id(r).reversibility: # print r + " is reversible!"; # print "continue?" # rxn_net_O += cobra_model_I.reactions.get_by_id(r); # check input: if not len(stoich_list_I) == len(rxn_list_I): print("error in " + rxn_id_I + ": there are " + str(len(rxn_list_I)) + " rxn ids and " + str(len(stoich_list_I)) + " coefficients"); exit(-1); rxn_net_O = Reaction(rxn_id_I); for i,r in enumerate(rxn_list_I): mets = {}; metlist = []; metlist = cobra_model_I.reactions.get_by_id(r).products + cobra_model_I.reactions.get_by_id(r).reactants; for met in metlist: mets[met] = cobra_model_I.reactions.get_by_id(r).get_coefficient(met)*stoich_list_I[i]; rxn_net_O.add_metabolites(mets); rxn_net_O.subsystem = cobra_model_I.reactions.get_by_id(r).subsystem; #copy over the subsystem # check net reaction #if not rxn_net_O.check_mass_balance(): #print "error: " + rxn_id_I + " is not elementally balanced"; #print rxn_net_O.id; #print rxn_net_O.build_reaction_string(); return rxn_net_O; def get_solBySub(self,cobra_model_I,sol_I,sub_I): sol_O = {}; for k,v in sol_I.items(): try: if cobra_model_I.reactions.get_by_id(k).subsystem == sub_I: sol_O[k] = v; except: print(k + ' reaction not found') return sol_O; def groupBySameFlux(self,cobra_model_I,sol_I): flux_list = []; for r,f in sol_I.items(): if not f in flux_list and float(f)>0.0: flux_list.append(f) sameFlux_O = {}; for f in flux_list: rxn_list = []; for r,v in sol_I.items(): if v==f: rxn_list.append(r); stoich = [1]*len(rxn_list) rxnName = ''; for rxn in rxn_list: rxnName = rxnName + rxn + '_'; rxnName = rxnName[:-1]; # check that the reaction name is less than 225 characters if len(rxnName)>224: rxnName = rxnName[:224]; sameFlux_O[rxnName] = {'reactions':rxn_list, 'stoichiometry':stoich, 'flux':f}; #netRxn = make_net_reaction(cobra_model_copy,rxnName,rxn_list,stoich) #sameFlux_O[rxnName] = {'reactions':rxn_list, # 'stoichiometry':stoich, # 'flux':f, # 'net':netRxn}; return sameFlux_O def add_net_reaction_subsystem(self,cobra_model_IO,sol_I,subs_I): '''make net reactions for specific subsystems grouped by reactions that have the same flux from pfba''' #input: cobra_model # sol_I = pfba solution # sub_I = list of model subsystems #output: cobra_model # convert model to irreversible # convert_to_irreversible(cobra_model_IO); # Make net reactions for pathways outside of the scope # of the isotopomer model for s in subs_I: sol = get_solBySub(cobra_model_IO,sol_I,s) sameFlux = groupBySameFlux(cobra_model_IO,sol) netRxns = {}; for k,v in sameFlux.items(): if len(v['reactions'])>1: netRxns[k] = v; add_net_reaction(cobra_model_IO,netRxns); # add subsystem information back in for k in sameFlux.keys(): cobra_model_IO.reactions.get_by_id(k).subsystem = s remove_noflux_reactions(cobra_model_IO,sol_I,subs_I) # convert model back to reversible # revert_to_reversible(cobra_model_IO); def remove_noflux_reactions(self,cobra_model,sol=None,subs=[]): '''remove noflux reactions''' # Input: cobra_model # sol = pfba solution # subs = string of specific subsystems to reduce # Output: cobra_model # if the lower and upper bounds are zero, the reactions # are removed cobra_model.optimize() sol_f = cobra_model.solution.f # Reduce model rxns_noflux = []; # set lb and ub for all reactions with 0 flux to 0; if sol: if subs: for k,v in sol.items(): try: if (float(v) < 0.0 or float(v) == 0.0) and cobra_model.reactions.get_by_id(k).subsystem in subs: cobra_model.reactions.get_by_id(k).lower_bound = 0.0; cobra_model.reactions.get_by_id(k).upper_bound = 0.0; cobra_model.remove_reactions(k) rxns_noflux.append(k); except: print('reaction is not in model: ' + k) else: for k,v in sol.items(): try: if (float(v) < 0.0 or float(v) == 0.0): cobra_model.reactions.get_by_id(k).lower_bound = 0.0; cobra_model.reactions.get_by_id(k).upper_bound = 0.0; cobra_model.remove_reactions(k) rxns_noflux.append(k); except: print('reaction is not in model: ' + k) else: if subs: for r in cobra_model.reactions: if r.lower_bound == 0.0 and r.upper_bound == 0.0 and cobra_model.reactions.get_by_id(r.id).subsystem in subs: cobra_model.remove_reactions(r.id) else: for r in cobra_model.reactions: if r.lower_bound == 0.0 and r.upper_bound == 0.0: cobra_model.remove_reactions(r.id) cobra_model.optimize() sol_reduced_f = cobra_model.solution.f # Check that the reduced model is consistent with the original model if not sol_f == sol_reduced_f: print('reduced model is inconsistent with the original model') print('original model solution: ' + str(sol_f)) print('reduced model solution: ' + str(sol_reduced_f)) def get_reactionsInfo(self,cobra_model): '''return the number of reactions and the number of reactions that cannot carry a flux (i.e. lb and ub of 0.0)''' nrxn_O = len(cobra_model.reactions); nrxn_noflux_O = 0; for r in cobra_model.reactions: if r.lower_bound == 0.0 and r.upper_bound == 0.0: nrxn_noflux_O += 1; return nrxn_O, nrxn_noflux_O #model reduction iteration functions def makeIsotopomerModel_iteration01(self,pfba_file,netrxn_irreversible_model_filename,fva_reduced_model_filename,reduced_lbub_filename): '''iteration 1: identification of reactions that can be lumped in pathways outside the model scope''' cobra_model = self.load_ALEWt(); # Make the model irreversible for downstream manipulations: convert_to_irreversible(cobra_model); # Add lumped isotopomer reactions self.add_net_reaction(cobra_model,isotopomer_rxns_net_irreversible); # Find minimal flux solution: pfba = optimize_minimal_flux(cobra_model,True,solver='gurobi'); # Write pfba solution to file with open(pfba_file,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Flux']) for k,v in cobra_model.solution.x_dict.items(): writer.writerow([k,v]); # Read in pfba solution pfba_sol = {}; with open(pfba_file,mode='r') as infile: dictreader = csv.DictReader(infile) for r in dictreader: pfba_sol[r['Reaction']] = r['Flux']; # Make net reactions for pathways outside of the scope # of the isotopomer model subs = ['Cell Envelope Biosynthesis', 'Glycerophospholipid Metabolism', 'Lipopolysaccharide Biosynthesis / Recycling', 'Membrane Lipid Metabolism', 'Murein Biosynthesis' 'Murein Recycling', 'Cofactor and Prosthetic Group Biosynthesis', #'Transport, Inner Membrane', #'Transport, Outer Membrane', #'Transport, Outer Membrane Porin', 'tRNA Charging', 'Unassigned', 'Exchange', 'Inorganic Ion Transport and Metabolism', 'Nitrogen Metabolism']; self.add_net_reaction_subsystem(cobra_model,pfba_sol,subs); self.remove_noflux_reactions(cobra_model,pfba_sol,['Transport, Outer Membrane Porin','Transport, Inner Membrane','Transport, Outer Membrane']) revert_to_reversible(cobra_model); # write model to sbml write_cobra_model_to_sbml_file(cobra_model,netrxn_irreversible_model_filename) # Reduce model using FVA: self.reduce_model(cobra_model,fva_reduced_model_filename) # Remove all reactions with 0 flux self.remove_noflux_reactions(cobra_model); with open(reduced_lbub_filename,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Formula','LB','UB','Subsystem']) for r in cobra_model.reactions: writer.writerow([r.id, r.build_reaction_string(), r.lower_bound, r.upper_bound, r.subsystem]); def makeIsotopomerModel_iteration02(self,pfba_filename,fva_reduced_model_filename,netrxn_irreversible_model_filename,reduced_lbub_filename): '''iteration 2: addition of finalized lumped reactions that are in pathways that are within the scope of the model and reduction by removing reactions with zero optimal minimal flux outside the scope of the model''' cobra_model = load_ALEWt(); # Make the model irreversible for downstream manipulations: convert_to_irreversible(cobra_model); cobra_model.optimize(); # Add lumped isotopomer reactions self.add_net_reaction(cobra_model,isotopomer_rxns_net_irreversible,True); cobra_model.optimize(); # Find minimal flux solution: pfba = optimize_minimal_flux(cobra_model,True,solver='gurobi'); # Write pfba solution to file with open(pfba_filename,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Flux','Subsystem']) for k,v in cobra_model.solution.x_dict.items(): writer.writerow([k,v,cobra_model.reactions.get_by_id(k).subsystem]); # Read in pfba solution pfba_sol = {}; with open(pfba_filename,mode='r') as infile: dictreader = csv.DictReader(infile) for r in dictreader: pfba_sol[r['Reaction']] = r['Flux']; # remove noflux reactions for pathways outside of the scope # of the isotopomer model subs = ['Cell Envelope Biosynthesis', 'Glycerophospholipid Metabolism', 'Lipopolysaccharide Biosynthesis / Recycling', 'Membrane Lipid Metabolism', 'Murein Biosynthesis' 'Murein Recycling', 'Cofactor and Prosthetic Group Biosynthesis', 'Transport, Inner Membrane', 'Transport, Outer Membrane', 'Transport, Outer Membrane Porin', 'tRNA Charging', 'Unassigned', #'Exchange', 'Inorganic Ion Transport and Metabolism', 'Nitrogen Metabolism', 'Alternate Carbon Metabolism']; self.remove_noflux_reactions(cobra_model,pfba_sol,subs) # Reduce model using FVA: self.reduce_model(cobra_model,fva_reduced_model_filename) # Reset secretion products that may have been turned off secrete = ['EX_meoh_LPAREN_e_RPAREN_', 'EX_5mtr_LPAREN_e_RPAREN_', 'EX_h_LPAREN_e_RPAREN_', 'EX_co2_LPAREN_e_RPAREN_', 'EX_co_LPAREN_e_RPAREN_', 'EX_h2o_LPAREN_e_RPAREN_', 'EX_ac_LPAREN_e_RPAREN_', 'EX_fum_LPAREN_e_RPAREN_', 'EX_for_LPAREN_e_RPAREN_', 'EX_etoh_LPAREN_e_RPAREN_', 'EX_lac_DASH_L_LPAREN_e_RPAREN_', 'EX_pyr_LPAREN_e_RPAREN_', 'EX_succ_LPAREN_e_RPAREN_']; for s in secrete: cobra_model.reactions.get_by_id(s).upper_bound = 1000.0; # Remove all reactions with 0 flux r1,r2 = self.get_reactionsInfo(cobra_model); while r2 !=0: self.remove_noflux_reactions(cobra_model); r1,r2 = self.get_reactionsInfo(cobra_model); print(r1,r2); # write model to sbml write_cobra_model_to_sbml_file(cobra_model,netrxn_irreversible_model_filename) with open(reduced_lbub_filename,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Formula','LB','UB','Subsystem']) for r in cobra_model.reactions: writer.writerow([r.id, r.build_reaction_string(), r.lower_bound, r.upper_bound, r.subsystem]); def makeIsotopomerModel_cobraMAT(self,model_filename,xml_filename,mat_filename,csv_filename,isotopomer_mapping_filename,ko_list=[],flux_dict={},description=None): '''iteration 3: Remove reactions that are thermodynamically unfavorable and add isotopomer data''' # Read in the sbml file and define the model conditions cobra_model = create_cobra_model_from_sbml_file(model_filename, print_time=True) # Modify glucose uptake: if cobra_model.reactions.has_id('EX_glc_LPAREN_e_RPAREN__reverse'): lb,ub = cobra_model.reactions.get_by_id('EX_glc_LPAREN_e_RPAREN__reverse').lower_bound,cobra_model.reactions.get_by_id('EX_glc_LPAREN_e_RPAREN__reverse').upper_bound; EX_glc_mets = {}; EX_glc_mets[cobra_model.metabolites.get_by_id('glc_DASH_D_e')] = -1; EX_glc = Reaction('EX_glc_LPAREN_e_RPAREN_'); EX_glc.add_metabolites(EX_glc_mets); cobra_model.add_reaction(EX_glc) cobra_model.reactions.get_by_id('EX_glc_LPAREN_e_RPAREN_').lower_bound = -ub; cobra_model.reactions.get_by_id('EX_glc_LPAREN_e_RPAREN_').upper_bound = lb; cobra_model.remove_reactions(['EX_glc_LPAREN_e_RPAREN__reverse']) ## Remove thermodynamically infeasible reactions: #infeasible = []; #loops = []; #cobra_model.remove_reactions(infeasible + loops); # Apply KOs, if any: for ko in ko_list: cobra_model.reactions.get_by_id(ko).lower_bound = 0.0; cobra_model.reactions.get_by_id(ko).upper_bound = 0.0; # Apply flux constraints, if any: for rxn,flux in flux_dict.items(): cobra_model.reactions.get_by_id(rxn).lower_bound = flux['lb']; cobra_model.reactions.get_by_id(rxn).upper_bound = flux['ub']; # Change description, if any: if description: cobra_model.description = description; # Read in isotopomer model isotopomer_mapping = self.read_isotopomer_mapping_csv(isotopomer_mapping_filename); #broken isotopomer_str = self.build_isotopomer_str(isotopomer_mapping); # write model to sbml write_cobra_model_to_sbml_file(cobra_model,xml_filename) # Add isotopomer field to model for r in cobra_model.reactions: if r.id in isotopomer_str: cobra_model.reactions.get_by_id(r.id).isotopomer = isotopomer_str[r.id]; else: cobra_model.reactions.get_by_id(r.id).isotopomer = ''; # Add null basis: cobra_model_array = cobra_model.to_array_based_model(); N = self.calculate.null(cobra_model_array.S.todense()) #convert S from sparse to full and compute the nullspace cobra_model.N = N; # solve and save pFBA for later use: optimize_minimal_flux(cobra_model,True,solver='gurobi'); # add match field: match = numpy.zeros(len(cobra_model.reactions)); cobra_model.match = match; # write model to mat save_matlab_model_isotopomer(cobra_model,mat_filename); with open(csv_filename,mode='wb') as outfile: writer = csv.writer(outfile) writer.writerow(['Reaction','Formula','LB','UB','Genes','Subsystem','Isotopomer']) for r in cobra_model.reactions: writer.writerow([r.id, r.build_reaction_string(), r.lower_bound, r.upper_bound, r.gene_reaction_rule, r.subsystem, r.isotopomer]); #ecoli_INCA modifications def expand_ecoliINCA01(self,model_id_I,mapping_id_I,date_I,model_id_O,mapping_id_O): '''expand the INCA Ecoli model to account for additional metabolites''' query = stage02_isotopomer_query() # get the xml model cobra_model_sbml = '' cobra_model_sbml = query.get_row_modelID_dataStage02IsotopomerModels(model_id_I); # load the model if cobra_model_sbml: if cobra_model_sbml['file_type'] == 'sbml': with open('data/cobra_model_tmp.xml','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = create_cobra_model_from_sbml_file('data/cobra_model_tmp.xml', print_time=True); elif cobra_model_sbml['file_type'] == 'json': with open('data/cobra_model_tmp.json','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = load_json_model('data/cobra_model_tmp.json'); else: print('file_type not supported') #get the atomMapping_reactions atomMappingReactions = query.get_rows_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id_I); #change the mapping_id for cnt,row in enumerate(atomMappingReactions): atomMappingReactions[cnt]['mapping_id']=mapping_id_O; #expand the model to include glyoxylate shunt: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','glx_c'); glx = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') glx.charge = met_row['charge'] #get metabolites in the model icit = cobra_model.metabolites.get_by_id('icit_c') succ = cobra_model.metabolites.get_by_id('succ_c') accoa = cobra_model.metabolites.get_by_id('accoa_c') mal = cobra_model.metabolites.get_by_id('mal_DASH_L_c') #make ICL rxn_mets = {}; rxn_mets[icit] = -1; rxn_mets[succ] = 1; rxn_mets[glx] = 1; rxn = Reaction('ICL'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='ICL'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1,1] row_tmp['reactants_ids_tracked']=['icit_c'] row_tmp['products_ids_tracked']=['glx_c','succ_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C"], ["C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1], [0, 1, 2, 3]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['ab','fcde'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make MALS rxn_mets = {}; rxn_mets[glx] = -1; rxn_mets[accoa] = -1; rxn_mets[mal] = 1; rxn = Reaction('MALS'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='MALS'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1,-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['accoa_c','glx_c'] row_tmp['products_ids_tracked']=['mal_DASH_L_c'] row_tmp['reactants_elements_tracked']=[["C", "C"], ["C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1], [0, 1]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3]] row_tmp['reactants_mapping']=['ab','cd'] row_tmp['products_mapping']=['cdba'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #add in glucose transporters and intracellular glc #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"glc_DASH_D_c"); glc_c = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') glc_c.charge = met_row['charge'] met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"glc_DASH_D_e"); glc_e = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'e') glc_e.charge = met_row['charge'] glcext = Metabolite('glc_DASH_D_e.ext',met_row['formula'],met_row['met_name'],'e') glcext.charge = met_row['charge'] glcpre = Metabolite('glc_DASH_D_e.pre',met_row['formula'],met_row['met_name'],'e') glcpre.charge = met_row['charge'] #get metabolites in the model pep = cobra_model.metabolites.get_by_id('pep_c') pyr = cobra_model.metabolites.get_by_id('pyr_c') g6p = cobra_model.metabolites.get_by_id('g6p_c') #make EX_glc_LPAREN_e_RPAREN_ rxn_mets = {}; rxn_mets[glcext] = -1; rxn_mets[glc_e] = 1; rxn = Reaction('EX_glc_LPAREN_e_RPAREN_'); cobra_model.remove_reactions(['EX_glc_LPAREN_e_RPAREN_']); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='EX_glc_LPAREN_e_RPAREN_'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e.ext'] row_tmp['products_ids_tracked']=['glc_DASH_D_e'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make EX_glc_LPAREN_e_RPAREN__pre rxn_mets = {}; rxn_mets[glcpre] = -1; rxn_mets[glc_e] = 1; rxn = Reaction('EX_glc_LPAREN_e_RPAREN__pre'); cobra_model.remove_reactions(['v60']); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='EX_glc_LPAREN_e_RPAREN__pre'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e.pre'] row_tmp['products_ids_tracked']=['glc_DASH_D_e'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make GLCptspp "glc_DASH_D_p + pep_c --> g6p_c + pyr_c" rxn_mets = {}; rxn_mets[glc_e] = -1; rxn_mets[pep] = -1; rxn_mets[g6p] = 1; rxn_mets[pyr] = 1; rxn = Reaction('GLCptspp'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='GLCptspp'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1,-1] row_tmp['products_stoichiometry_tracked']=[1,1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e','pep_c'] row_tmp['products_ids_tracked']=['g6p_c','pyr_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"],["C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"],["C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5],[0, 1, 2]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5],[0, 1, 2]] row_tmp['reactants_mapping']=['abcdef','ghi'] row_tmp['products_mapping']=['abcdef','ghi'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make GLCt2pp "glc_DASH_D_p + h_p --> glc_DASH_D_c + h_c" rxn_mets = {}; rxn_mets[glc_e] = -1; rxn_mets[glc_c] = 1; rxn = Reaction('GLCt2pp'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000.0; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='GLCt2pp'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e'] row_tmp['products_ids_tracked']=['glc_DASH_D_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make HEX1 "atp_c + glc_DASH_D_c --> g6p_c + h_c + adp_c" rxn_mets = {}; rxn_mets[glc_c] = -1; rxn_mets[g6p] = 1; rxn = Reaction('HEX1'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000.0; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='HEX1'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_c'] row_tmp['products_ids_tracked']=['g6p_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); ##expand the model #acon = Metabolite('acon_DASH_C_c','C6H3O6','cis-Aconitate','c'); #cit = cobra_model.metabolites.get_by_id('cit_c') #icit = cobra_model.metabolites.get_by_id('icit_c') #e4p = cobra_model.metabolites.get_by_id('e4p_c') #r5p = cobra_model.metabolites.get_by_id('r5p_c') #phe = cobra_model.metabolites.get_by_id('phe_DASH_L_c') #his = cobra_model.metabolites.get_by_id('his_DASH_L_c') #phpyr = Metabolite('phpyr_c','C9H7O3','Phenylpyruvate','c'); #prpp = Metabolite('prpp_c','C5H8O14P3','5-Phospho-alpha-D-ribose 1-diphosphate','c'); ## update selected reactions to account for new metabolites #for rxn,row in enumerate(atomMappingReactions): # if row['rxn_id'] == 'ACONTa_ACONTb': # #split ACONTa_ACONTb # aconta_mets = {}; # aconta_mets[cit] = -1; # aconta_mets[acon] = 1; # aconta = Reaction('ACONTa'); # aconta.add_metabolites(aconta_mets); # cobra_model.remove_reactions(['ACONTa_ACONTb']); # cobra_model.add_reactions([aconta]); # cobra_model.repair(); # # Update the mapping ids # atomMappingReactions[rxn]['products_ids_tracked']=['acon_DASH_C_c'] # atomMappingReactions[rxn]['comment_']='updated' # elif row['rxn_id'] == 'PheSYN': # #split PheSYN to add in phpyr # # Update the mapping_ids # atomMappingReactions[rxn]['mapping_id']=mapping_id_O; # atomMappingReactions[rxn]['rxn_id']=rxn_ids[rxn]; # atomMappingReactions[rxn]['rxn_description']=''; # atomMappingReactions[rxn]['rxn_equation']=''; # atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[] # atomMappingReactions[rxn]['products_stoichiometry_tracked']=[] # atomMappingReactions[rxn]['reactants_ids_tracked']=[] # atomMappingReactions[rxn]['products_ids_tracked']=[] # atomMappingReactions[rxn]['reactants_elements_tracked']=[] # atomMappingReactions[rxn]['products_elements_tracked']=[] # atomMappingReactions[rxn]['reactants_positions_tracked']=[] # atomMappingReactions[rxn]['products_positions_tracked']=[] # atomMappingReactions[rxn]['reactants_mapping']=[] # atomMappingReactions[rxn]['products_mapping']=[] # atomMappingReactions[rxn]['used_']=True # atomMappingReactions[rxn]['comment_']=None # elif row['rxn_id'] == 'HisSYN': # # split HisSYN to add in prpp # #cobra_model.reactions.get_by_id(rxn_ids[rxn]) # #cobra_model.reactions.get_by_id(rxn_ids[rxn]) # # Update the mapping_ids # atomMappingReactions[rxn]['reactants_ids_tracked']=[r.replace('r5p_c','prpp_c') for r in atomMappingReactions[rxn]['reactants_ids_tracked']] # # combine TKT1a and TKT1b # # combine TKT2a and TKT2b # # split PPC_PPCK # # split PTAr_ACKr_ACS ## add in ACONTb #acontb_mets = {}; #acontb_mets[acon] = -1; #acontb_mets[icit] = 1; #acontb = Reaction('ACONTb'); #acontb.add_metabolites(acontb_mets); #cobra_model.add_reactions([acontb]); #cobra_model.repair(); ## add in ACONTb mapping #row={}; #row['mapping_id']=mapping_id_O; #row['rxn_id']='ACONTb'; #row['rxn_description']=''; #row['rxn_equation']=''; #row['reactants_stoichiometry_tracked']=[-1] #row['products_stoichiometry_tracked']=[1] #row['reactants_ids_tracked']=['acon_DASH_C_c'] #row['products_ids_tracked']=['icit_c'] #row['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] #row['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] #row['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] #row['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] #row['reactants_mapping']=['abcdef'] #row['products_mapping']=['abcdef'] #row['used_']=True #row['comment_']='added' #atomMappingReactions.append(row) ## add in e4p_to_phpyr ## add in r5p_to_prp #r5p_to_prpp_mets = {}; #r5p_to_prpp_mets[e4p] = -1; #r5p_to_prpp_mets[prpp] = 1; #r5p_to_prpp = Reaction('r5p_to_prpp'); #r5p_to_prpp.add_metabolites(r5p_to_prpp_mets); #cobra_model.add_reactions([r5p_to_prpp]); #cobra_model.repair(); ## add in r5p_to_prpp mapping #row={}; #row['mapping_id']=mapping_id_O; #row['rxn_id']='r5p_to_prpp'; #row['rxn_description']=''; #row['rxn_equation']=''; #row['reactants_stoichiometry_tracked']=[-1] #row['products_stoichiometry_tracked']=[1] #row['reactants_ids_tracked']=['r5p_c'] #row['products_ids_tracked']=['prpp_c'] #row['reactants_elements_tracked']=[["C", "C", "C", "C", "C"]] #row['products_elements_tracked']=[["C", "C", "C", "C", "C"]] #row['reactants_positions_tracked']=[[0, 1, 2, 3, 4]] #row['products_positions_tracked']=[[0, 1, 2, 3, 4]] #row['reactants_mapping']=['abcde'] #row['products_mapping']=['abcde'] #row['used_']=True #row['comment_']='added' #atomMappingReactions.append(row) # write the model to a temporary file save_json_model(cobra_model,'data/cobra_model_tmp.json') # add the model information to the database io = stage02_isotopomer_io() dataStage02IsotopomerModelRxns_data = []; dataStage02IsotopomerModelMets_data = []; dataStage02IsotopomerModels_data,\ dataStage02IsotopomerModelRxns_data,\ dataStage02IsotopomerModelMets_data = io._parse_model_json(model_id_O, date_I, 'data/cobra_model_tmp.json') io.add_data_stage02_isotopomer_modelMetabolites(dataStage02IsotopomerModelMets_data); io.add_data_stage02_isotopomer_modelReactions(dataStage02IsotopomerModelRxns_data); io.add_data_stage02_isotopomer_models(dataStage02IsotopomerModels_data); #add atomMappingReactions to the database io.add_data_stage02_isotopomer_atomMappingReactions(atomMappingReactions); def expand_ecoliINCA02(self,experiment_id_I,model_id_I,mapping_id_I,date_I,model_id_O,mapping_id_O): '''expand the INCA Ecoli model to account for additional metabolites''' query = stage02_isotopomer_query() # get the xml model cobra_model_sbml = '' cobra_model_sbml = query.get_row_modelID_dataStage02IsotopomerModels(model_id_I); # load the model if cobra_model_sbml: if cobra_model_sbml['file_type'] == 'sbml': with open('data/cobra_model_tmp.xml','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = create_cobra_model_from_sbml_file('data/cobra_model_tmp.xml', print_time=True); elif cobra_model_sbml['file_type'] == 'json': with open('data/cobra_model_tmp.json','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = load_json_model('data/cobra_model_tmp.json'); else: print('file_type not supported') #get the atomMapping_reactions atomMappingReactions = query.get_rows_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id_I); #change the mapping_id for cnt,row in enumerate(atomMappingReactions): atomMappingReactions[cnt]['mapping_id']=mapping_id_O; accoa = cobra_model.metabolites.get_by_id('accoa_c') #expand the model to include ATPSYN: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','atp_c'); atp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') atp.charge = met_row['charge'] #get metabolites in the model r5p = cobra_model.metabolites.get_by_id('r5p_c') fthf = cobra_model.metabolites.get_by_id('10fthf_c') gly = cobra_model.metabolites.get_by_id('gly_c') co2 = cobra_model.metabolites.get_by_id('co2_c') glu = cobra_model.metabolites.get_by_id('glu_DASH_L_c') gln = cobra_model.metabolites.get_by_id('gln_DASH_L_c') asp = cobra_model.metabolites.get_by_id('asp_DASH_L_c') fum = cobra_model.metabolites.get_by_id('fum_c') #make ATPSYN (irreversible) rxn_mets = {}; rxn_mets[r5p] = -1; rxn_mets[fthf] = -1; rxn_mets[gly] = -1; rxn_mets[co2] = -1; rxn_mets[fthf] = -1; rxn_mets[gln] = -1; rxn_mets[asp] = -1; rxn_mets[asp] = -1; rxn_mets[atp] = 1; rxn_mets[glu] = 1; rxn_mets[fum] = 1; rxn_mets[fum] = 1; rxn = Reaction('ATPSYN'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include GTPSYN: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','gtp_c'); gtp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') gtp.charge = met_row['charge'] #get metabolites in the model r5p = cobra_model.metabolites.get_by_id('r5p_c') fthf = cobra_model.metabolites.get_by_id('10fthf_c') gly = cobra_model.metabolites.get_by_id('gly_c') co2 = cobra_model.metabolites.get_by_id('co2_c') glu = cobra_model.metabolites.get_by_id('glu_DASH_L_c') gln = cobra_model.metabolites.get_by_id('gln_DASH_L_c') asp = cobra_model.metabolites.get_by_id('asp_DASH_L_c') fum = cobra_model.metabolites.get_by_id('fum_c') #make GTPSYN (irreversible) rxn_mets = {}; rxn_mets[r5p] = -1; rxn_mets[fthf] = -1; rxn_mets[gly] = -1; rxn_mets[co2] = -1; rxn_mets[fthf] = -1; rxn_mets[gln] = -1; rxn_mets[gln] = -1; rxn_mets[asp] = -1; rxn_mets[gtp] = 1; rxn_mets[glu] = 1; rxn_mets[glu] = 1; rxn_mets[fum] = 1; rxn = Reaction('GTPSYN'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include VPMATr_reverse and VPMATr: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','3mob_c'); mob3 = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') mob3.charge = met_row['charge'] #get metabolites in the model val = cobra_model.metabolites.get_by_id('val_DASH_L_c') ala = cobra_model.metabolites.get_by_id('ala_DASH_L_c') pyr = cobra_model.metabolites.get_by_id('pyr_c') #make VPMATr_reverse (irreversible) rxn_mets = {}; rxn_mets[val] = -1; rxn_mets[pyr] = -1; rxn_mets[mob3] = 1; rxn_mets[ala] = 1; rxn = Reaction('VPMATr_reverse'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #make VPMATr (irreversible) rxn_mets = {}; rxn_mets[mob3] = -1; rxn_mets[ala] = -1; rxn_mets[val] = 1; rxn_mets[pyr] = 1; rxn = Reaction('VPMATr'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include COASYN: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','coa_c'); coa = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') coa.charge = met_row['charge'] #get metabolites in the model cys = cobra_model.metabolites.get_by_id('cys_DASH_L_c') mlthf = cobra_model.metabolites.get_by_id('mlthf_c') #make COASYN (irreversible) rxn_mets = {}; rxn_mets[atp] = -1; rxn_mets[mlthf] = -1; rxn_mets[mob3] = -1; rxn_mets[asp] = -1; rxn_mets[cys] = -1; rxn_mets[coa] = 1; rxn_mets[co2] = 1; rxn_mets[co2] = 1; rxn = Reaction('COASYN'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include FADSYN: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','fad_c'); fad = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') fad.charge = met_row['charge'] #get metabolites in the model ru5p = cobra_model.metabolites.get_by_id('ru5p_DASH_D_c') #make FADSYN (irreversible) rxn_mets = {}; rxn_mets[gtp] = -1; rxn_mets[ru5p] = -1; rxn_mets[ru5p] = -1; rxn_mets[atp] = -1; rxn_mets[fad] = 1; rxn_mets[co2] = 1; rxn_mets[co2] = 1; rxn_mets[co2] = 1; rxn = Reaction('FADSYN'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include CBMKr and CBMKr_reverse: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','cbp_c'); cbp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') cbp.charge = met_row['charge'] #make CBMKr (irreversible) rxn_mets = {}; rxn_mets[co2] = -1; rxn_mets[cbp] = 1; rxn = Reaction('CBMKr'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #make CBMKr_reverse (irreversible) rxn_mets = {}; rxn_mets[cbp] = -1; rxn_mets[co2] = 1; rxn = Reaction('CBMKr_reverse'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #expand the model to include UTPSYN: #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','utp_c'); utp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') utp.charge = met_row['charge'] #make UTPSYN (irreversible) rxn_mets = {}; rxn_mets[r5p] = -1; rxn_mets[cbp] = -1; rxn_mets[asp] = -1; rxn_mets[utp] = 1; rxn_mets[co2] = 1; rxn = Reaction('UTPSYN'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); # update selected reactions to account for coa_c cobra_model.reactions.get_by_id("ArgSYN").add_metabolites({coa:1}); cobra_model.reactions.get_by_id("CS").add_metabolites({coa:1}); cobra_model.reactions.get_by_id("LeuSYN").add_metabolites({coa:1}); cobra_model.reactions.get_by_id("PDH").add_metabolites({coa:-1}); cobra_model.reactions.get_by_id("PTAr_ACKr_ACS").add_metabolites({coa:1}); cobra_model.reactions.get_by_id("PTAr_ACKr_ACS_reverse").add_metabolites({coa:-1}); cobra_model.reactions.get_by_id("SERAT_CYSS").add_metabolites({coa:1}); cobra_model.reactions.get_by_id("THRD_GLYAT").add_metabolites({coa:-1}); cobra_model.reactions.get_by_id("MALS").add_metabolites({coa:1}); # update selected mappings to account for coa_c for rxn,row in enumerate(atomMappingReactions): if row['rxn_id'] == 'ArgSYN': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1,-1,-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1,1,1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['glu_DASH_L_c','co2_c','gln_DASH_L_c','asp_DASH_L_c','accoa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['arg_DASH_L_c','akg_c','fum_c','ac_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['abcde','f','ghijk','lmno','ABCDEFGHIJKLMNOPQRSTUpq'] atomMappingReactions[rxn]['products_mapping']=['abcdef','ghijk','lmno','pq','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'CS': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['oaa_c','accoa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['cit_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['abcd','ABCDEFGHIJKLMNOPQRSTUef'] atomMappingReactions[rxn]['products_mapping']=['dcbfea','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'LeuSYN': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1,-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1,1,1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['accoa_c','pyr_c','pyr_c','glu_DASH_L_c'] atomMappingReactions[rxn]['products_ids_tracked']=['leu_DASH_L_c','co2_c','co2_c','akg_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['ABCDEFGHIJKLMNOPQRSTUab','cde','fgh','ijklm'] atomMappingReactions[rxn]['products_mapping']=['abdghe','c','f','ijklm','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'PDH': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['pyr_c','coa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['accoa_c','co2_c'] atomMappingReactions[rxn]['reactants_mapping']=['abc','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['products_mapping']=['ABCDEFGHIJKLMNOPQRSTUbc','a'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'PTAr_ACKr_ACS': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['accoa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['ac_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['ABCDEFGHIJKLMNOPQRSTUab'] atomMappingReactions[rxn]['products_mapping']=['ab','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'PTAr_ACKr_ACS_reverse': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1] atomMappingReactions[rxn]['reactants_ids_tracked']=['ac_c','coa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['accoa_c'] atomMappingReactions[rxn]['reactants_mapping']=['ab','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['products_mapping']=['ABCDEFGHIJKLMNOPQRSTUab'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'SERAT_CYSS': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['ser_DASH_L_c','accoa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['cys_DASH_L_c','ac_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['abc','ABCDEFGHIJKLMNOPQRSTUde'] atomMappingReactions[rxn]['products_mapping']=['abc','de','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'THRD_GLYAT': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['thr_DASH_L_c','coa_c'] atomMappingReactions[rxn]['products_ids_tracked']=['gly_c','accoa_c'] atomMappingReactions[rxn]['reactants_mapping']=['abcd','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['products_mapping']=['ab','ABCDEFGHIJKLMNOPQRSTUcd'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) elif row['rxn_id'] == 'MALS': atomMappingReactions[rxn]['reactants_stoichiometry_tracked']=[-1,-1] atomMappingReactions[rxn]['products_stoichiometry_tracked']=[1,1] atomMappingReactions[rxn]['reactants_ids_tracked']=['accoa_c','glx_c'] atomMappingReactions[rxn]['products_ids_tracked']=['mal_DASH_L_c','coa_c'] atomMappingReactions[rxn]['reactants_mapping']=['ABCDEFGHIJKLMNOPQRSTUab','cd'] atomMappingReactions[rxn]['products_mapping']=['cdba','ABCDEFGHIJKLMNOPQRSTU'] atomMappingReactions[rxn]['reactants_elements_tracked']=[] atomMappingReactions[rxn]['products_elements_tracked']=[] atomMappingReactions[rxn]['reactants_positions_tracked']=[] atomMappingReactions[rxn]['products_positions_tracked']=[] for cnt,mapping in enumerate(atomMappingReactions[rxn]['reactants_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['reactants_elements_tracked'].append(elements) atomMappingReactions[rxn]['reactants_positions_tracked'].append(positions) for cnt,mapping in enumerate(atomMappingReactions[rxn]['products_mapping']): positions = [] elements = [] for pos,element in enumerate(mapping): positions.append(pos); elements.append('C'); atomMappingReactions[rxn]['products_elements_tracked'].append(elements) atomMappingReactions[rxn]['products_positions_tracked'].append(positions) # update BOF met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014','adp_c'); adp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') adp.charge = met_row['charge'] cobra_model.reactions.get_by_id("Ec_Biomass_INCA").add_metabolites({coa:2.51, atp:-53.95,gtp:-0.20912,fad:-0.000223,utp:-0.1401}); # write the model to a temporary file save_json_model(cobra_model,'data/cobra_model_tmp.json') # add the model information to the database io = stage02_isotopomer_io() dataStage02IsotopomerModelRxns_data = []; dataStage02IsotopomerModelMets_data = []; dataStage02IsotopomerModels_data,\ dataStage02IsotopomerModelRxns_data,\ dataStage02IsotopomerModelMets_data = io._parse_model_json(model_id_O, date_I, 'data/cobra_model_tmp.json') io.add_data_stage02_isotopomer_modelMetabolites(dataStage02IsotopomerModelMets_data); io.add_data_stage02_isotopomer_modelReactions(dataStage02IsotopomerModelRxns_data); io.add_data_stage02_isotopomer_models(dataStage02IsotopomerModels_data); #add atomMappingReactions to the database io.add_data_stage02_isotopomer_atomMappingReactions(atomMappingReactions); # expand atomMappingReactions imm = stage02_isotopomer_metaboliteMapping() irm = stage02_isotopomer_reactionMapping() mappingUtilities = stage02_isotopomer_mappingUtilities() # make atomMappingMetabolites mappingUtilities.make_missingMetaboliteMappings(experiment_id_I,model_id_I=[model_id_O], mapping_id_rxns_I=[mapping_id_O], mapping_id_mets_I=[],#mapping_id_mets_I=[mapping_id_I], mapping_id_new_I=mapping_id_O); # update symmetric metabolites imm.get_metaboliteMapping(mapping_id_O,'succ_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'fum_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'26dap_DASH_M_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() ## update _elements and _positions-_tracked #irm.get_reactionMapping(mapping_id_O,'ArgSYN') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'CS') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'LeuSYN') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'PDH') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'PTAr_ACKr_ACS') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'PTAr_ACKr_ACS_reverse') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'SERAT_CYSS') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'THRD_GLYAT') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #irm.get_reactionMapping(mapping_id_O,'MALS') #irm.checkAndCorrect_elementsAndPositions(); #irm.update_reactionMapping() #irm.clear_reactionMapping() #make default base metabolites imm.get_metaboliteMapping(mapping_id_O,'asp_DASH_L_c') imm.make_defaultBaseMetabolites() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'cys_DASH_L_c') imm.make_defaultBaseMetabolites() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'ru5p_DASH_D_c') imm.make_defaultBaseMetabolites() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() #add in PRS to the network? #if not, substitute r5p_c for prpp_c #substitute co2_c for for_c #substitute phe_DASH_L_c for phpyr_c #ATPSYN irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'ATPSYN', [{'r5p_c':'C'},{'10fthf_c':'C'},{'gly_c':'C'},{'co2_c':'C'},{'10fthf_c':'C'}], [], [], 'atp_c', [], []) irm.add_productMapping(['atp_c']) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'ATPSYN', [{'gln_DASH_L_c':'C'}], [], [], 'glu_DASH_L_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'ATPSYN', [{'asp_DASH_L_c':'C'}], [], [], 'fum_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'ATPSYN', [{'asp_DASH_L_c':'C'}], [], [], 'fum_c', [], []) irm.add_reactionMapping() irm.clear_reactionMapping() #GTPSYN irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'GTPSYN', [{'r5p_c':'C'},{'10fthf_c':'C'},{'gly_c':'C'},{'co2_c':'C'},{'10fthf_c':'C'}], [], [], 'gtp_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'GTPSYN', [{'gln_DASH_L_c':'C'}], [], [], 'glu_DASH_L_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'GTPSYN', [{'gln_DASH_L_c':'C'}], [], [], 'glu_DASH_L_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'GTPSYN', [{'asp_DASH_L_c':'C'}], [], [], 'fum_c', [], []) irm.add_productMapping(['gtp_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #VPAMTr_reverse irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'VPAMTr_reverse', [{'val_DASH_L_c':'C'}], [], [], '3mob_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'VPAMTr_reverse', [{'pyr_c':'C'}], [], [], 'ala_DASH_L_c', [], []) irm.add_productMapping(['3mob_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #VPAMTr irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'VPAMTr', [{'3mob_c':'C'}], [], [], 'val_DASH_L_c', [], []) irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'VPAMTr', [{'ala_DASH_L_c':'C'}], [], [], 'pyr_c', [], []) irm.add_reactionMapping() irm.clear_reactionMapping() #COASYN irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'COASYN', [{'atp_c':'C'},{'mlthf_c':'C'},{'3mob_c':'C'},{'asp_DASH_L_c':'C'},{'cys_DASH_L_c':'C'}], [{'asp_DASH_L_c':3},{'cys_DASH_L_c':4}], [{'co2_c':0},{'co2_c':0}], 'coa_c', [{'co2_c':'C'},{'co2_c':'C'}], ['co2_c','co2_c']) #reverse product mapping for 3mob_c in database! irm.update_productMapping(['coa_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #ACCOA_psuedo irm.make_trackedBinaryReaction('full04','140407_iDM2014','accoa_c_base_met_ids', [{'coa_c':'C'},{'ac_c':'C'}], 'accoa_c') irm.update_productMapping(['accoa_c']) irm.clear_reactionMapping() #FADSYN irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'FADSYN', [{'gtp_c':'C'},{'ru5p_DASH_D_c':'C'},{'ru5p_DASH_D_c':'C'},{'atp_c':'C'}], [{'gtp_c':0},{'ru5p_DASH_D_c':1},{'ru5p_DASH_D_c':2}], [{'10fthf_c':0},{'co2_c':0},{'co2_c':0}], 'fad_c', [{'10fthf_c':'C'},{'co2_c':'C'},{'co2_c':'C'}], ['co2_c','co2_c','co2_c']) irm.add_productMapping(['fad_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #CBMKr irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'CBMKr', [{'co2_c':'C'}], [], [], 'cbp_c', [], []) irm.add_productMapping(['cbp_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #CBMKr_reverse irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'CBMKr_reverse', [{'cbp_c':'C'}], [], [], 'co2_c', [], []) irm.add_reactionMapping() irm.clear_reactionMapping() #UTPSYN irm.make_trackedCompoundReaction(mapping_id_O,model_id_O,'UTPSYN', [{'r5p_c':'C'},{'cbp_c':'C'},{'asp_DASH_L_c':'C'}], [{'asp_DASH_L_c':2}], [{'co2_c':0}], 'utp_c', [{'co2_c':'C'}], ['co2_c']) irm.add_productMapping(['utp_c']) irm.add_reactionMapping() irm.clear_reactionMapping() #ecoli_RL2013 modifications (TODO) def expand_ecoliRL2013_01(self,experiment_id_I,model_id_I,mapping_id_I,date_I,model_id_O,mapping_id_O): '''expand the INCA Ecoli model to account for additional metabolites''' query = stage02_isotopomer_query() # get the xml model cobra_model_sbml = '' cobra_model_sbml = query.get_row_modelID_dataStage02IsotopomerModels(model_id_I); # load the model if cobra_model_sbml: if cobra_model_sbml['file_type'] == 'sbml': with open('data/cobra_model_tmp.xml','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = create_cobra_model_from_sbml_file('data/cobra_model_tmp.xml', print_time=True); elif cobra_model_sbml['file_type'] == 'json': with open('data/cobra_model_tmp.json','wb') as file: file.write(cobra_model_sbml['model_file']); file.close() cobra_model = None; cobra_model = load_json_model('data/cobra_model_tmp.json'); else: print('file_type not supported') #get the atomMapping_reactions atomMappingReactions = query.get_rows_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id_I); #change the mapping_id for cnt,row in enumerate(atomMappingReactions): atomMappingReactions[cnt]['mapping_id']=mapping_id_O; #add in glucose transporters and intracellular glc #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"atp_c"); atp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') atp.charge = met_row['charge'] met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"glc_DASH_D_c"); glc_c = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') glc_c.charge = met_row['charge'] met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"glc_DASH_D_e"); glc_e = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'e') glc_e.charge = met_row['charge'] glcext = Metabolite('glc_DASH_D_e.ext',met_row['formula'],met_row['met_name'],'e') glcext.charge = met_row['charge'] glcpre = Metabolite('glc_DASH_D_e.pre',met_row['formula'],met_row['met_name'],'e') glcpre.charge = met_row['charge'] #get metabolites in the model pep = cobra_model.metabolites.get_by_id('pep_c') pyr = cobra_model.metabolites.get_by_id('pyr_c') g6p = cobra_model.metabolites.get_by_id('g6p_c') #make EX_glc_LPAREN_e_RPAREN_ rxn_mets = {}; rxn_mets[glcext] = -1; rxn_mets[glc_e] = 1; rxn = Reaction('EX_glc_LPAREN_e_RPAREN_'); cobra_model.remove_reactions(['EX_glc_LPAREN_e_RPAREN_']); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='EX_glc_LPAREN_e_RPAREN_'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e.ext'] row_tmp['products_ids_tracked']=['glc_DASH_D_e'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); ##make EX_glc_LPAREN_e_RPAREN__pre #rxn_mets = {}; #rxn_mets[glcpre] = -1; #rxn_mets[glc_e] = 1; #rxn = Reaction('EX_glc_LPAREN_e_RPAREN__pre'); #cobra_model.remove_reactions(['v60']); #rxn.add_metabolites(rxn_mets); #cobra_model.add_reactions([rxn]); #cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; #cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; #cobra_model.repair(); ##append the new atom mappings #row_tmp = {}; #row_tmp['mapping_id']=mapping_id_O; #row_tmp['rxn_id']='EX_glc_LPAREN_e_RPAREN__pre'; #row_tmp['rxn_description']=''; #row_tmp['rxn_equation']=''; #row_tmp['reactants_stoichiometry_tracked']=[-1] #row_tmp['products_stoichiometry_tracked']=[1] #row_tmp['reactants_ids_tracked']=['glc_DASH_D_e.pre'] #row_tmp['products_ids_tracked']=['glc_DASH_D_e'] #row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] #row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] #row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] #row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] #row_tmp['reactants_mapping']=['abcdef'] #row_tmp['products_mapping']=['abcdef'] #row_tmp['used_']=True #row_tmp['comment_']='added' #atomMappingReactions.append(row_tmp); #make GLCptspp "glc_DASH_D_p + pep_c --> g6p_c + pyr_c" rxn_mets = {}; rxn_mets[glc_e] = -1; rxn_mets[pep] = -1; rxn_mets[g6p] = 1; rxn_mets[pyr] = 1; rxn = Reaction('GLCptspp'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='GLCptspp'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1,-1] row_tmp['products_stoichiometry_tracked']=[1,1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e','pep_c'] row_tmp['products_ids_tracked']=['g6p_c','pyr_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"],["C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"],["C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5],[0, 1, 2]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5],[0, 1, 2]] row_tmp['reactants_mapping']=['abcdef','ghi'] row_tmp['products_mapping']=['abcdef','ghi'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make GLCt2pp "glc_DASH_D_p + h_p --> glc_DASH_D_c + h_c" rxn_mets = {}; rxn_mets[glc_e] = -1; rxn_mets[glc_c] = 1; rxn = Reaction('GLCt2pp'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000.0; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='GLCt2pp'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_e'] row_tmp['products_ids_tracked']=['glc_DASH_D_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); #make HEX1 "atp_c + glc_DASH_D_c --> g6p_c + h_c + adp_c" rxn_mets = {}; rxn_mets[glc_c] = -1; rxn_mets[atp] = -1; rxn_mets[g6p] = 1; rxn = Reaction('HEX1'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.reactions.get_by_id(rxn.id).lower_bound = 0.0; cobra_model.reactions.get_by_id(rxn.id).upper_bound = 1000.0; cobra_model.repair(); #append the new atom mappings row_tmp = {}; row_tmp['mapping_id']=mapping_id_O; row_tmp['rxn_id']='HEX1'; row_tmp['rxn_description']=''; row_tmp['rxn_equation']=''; row_tmp['reactants_stoichiometry_tracked']=[-1] row_tmp['products_stoichiometry_tracked']=[1] row_tmp['reactants_ids_tracked']=['glc_DASH_D_c'] row_tmp['products_ids_tracked']=['g6p_c'] row_tmp['reactants_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['products_elements_tracked']=[["C", "C", "C", "C", "C", "C"]] row_tmp['reactants_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['products_positions_tracked']=[[0, 1, 2, 3, 4, 5]] row_tmp['reactants_mapping']=['abcdef'] row_tmp['products_mapping']=['abcdef'] row_tmp['used_']=True row_tmp['comment_']='added' atomMappingReactions.append(row_tmp); # add in PRPPS phosphoribosylpyrophosphate synthetase atp[c] + r5p[c] <=> amp[c] + h[c] + prpp[c] #get metabolites not in the model met_row = {} met_row = query.get_row_modelIDAndMetID_dataStage02IsotopomerModelMetabolites('140407_iDM2014',"prpp_c"); prpp = Metabolite(met_row['met_id'],met_row['formula'],met_row['met_name'],'c') prpp.charge = met_row['charge'] r5p = cobra_model.metabolites.get_by_id('r5p_c') # expand the model rxn_mets = {}; rxn_mets[r5p] = -1; rxn_mets[atp] = -1; rxn_mets[prpp] = 1; rxn = Reaction('PRPPS'); rxn.add_metabolites(rxn_mets); cobra_model.add_reactions([rxn]); cobra_model.repair(); # add in rxn mapping row={}; row['mapping_id']=mapping_id_O; row['rxn_id']='PRPPS'; row['rxn_description']=''; row['rxn_equation']=''; row['reactants_stoichiometry_tracked']=[-1] row['products_stoichiometry_tracked']=[1] row['reactants_ids_tracked']=['r5p_c'] row['products_ids_tracked']=['prpp_c'] row['reactants_elements_tracked']=[["C", "C", "C", "C", "C"]] row['products_elements_tracked']=[["C", "C", "C", "C", "C"]] row['reactants_positions_tracked']=[[0, 1, 2, 3, 4]] row['products_positions_tracked']=[[0, 1, 2, 3, 4]] row['reactants_mapping']=['abcde'] row['products_mapping']=['abcde'] row['used_']=True row['comment_']='added' atomMappingReactions.append(row) ##expand the model #acon = Metabolite('acon_DASH_C_c','C6H3O6','cis-Aconitate','c'); #cit = cobra_model.metabolites.get_by_id('cit_c') #icit = cobra_model.metabolites.get_by_id('icit_c') #e4p = cobra_model.metabolites.get_by_id('e4p_c') #phe = cobra_model.metabolites.get_by_id('phe_DASH_L_c') his = cobra_model.metabolites.get_by_id('his_DASH_L_c') #phpyr = Metabolite('phpyr_c','C9H7O3','Phenylpyruvate','c'); # update selected reactions to account for new metabolites for rxn,row in enumerate(atomMappingReactions): if row['rxn_id'] == 'HisSYN': # split HisSYN to add in prpp cobra_model.reactions.get_by_id(row['rxn_id']).subtract_metabolites({atp:-1,r5p:-1}) cobra_model.reactions.get_by_id(row['rxn_id']).add_metabolites({prpp:-1}) # Update the mapping_ids atomMappingReactions[rxn]['reactants_ids_tracked']=[r.replace('r5p_c','prpp_c') for r in atomMappingReactions[rxn]['reactants_ids_tracked']] # write the model to a temporary file save_json_model(cobra_model,'data/cobra_model_tmp.json') # add the model information to the database io = stage02_isotopomer_io() dataStage02IsotopomerModelRxns_data = []; dataStage02IsotopomerModelMets_data = []; dataStage02IsotopomerModels_data,\ dataStage02IsotopomerModelRxns_data,\ dataStage02IsotopomerModelMets_data = io._parse_model_json(model_id_O, date_I, 'data/cobra_model_tmp.json') io.add_data_stage02_isotopomer_modelMetabolites(dataStage02IsotopomerModelMets_data); io.add_data_stage02_isotopomer_modelReactions(dataStage02IsotopomerModelRxns_data); io.add_data_stage02_isotopomer_models(dataStage02IsotopomerModels_data); #add atomMappingReactions to the database io.add_data_stage02_isotopomer_atomMappingReactions(atomMappingReactions); # expand atomMappingReactions imm = stage02_isotopomer_metaboliteMapping() irm = stage02_isotopomer_reactionMapping() mappingUtilities = stage02_isotopomer_mappingUtilities() # make atomMappingMetabolites mappingUtilities.make_missingMetaboliteMappings(experiment_id_I,model_id_I=[model_id_O], mapping_id_rxns_I=[mapping_id_O], mapping_id_mets_I=[], mapping_id_new_I=mapping_id_O); # update symmetric metabolites imm.get_metaboliteMapping(mapping_id_O,'succ_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'fum_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() imm.get_metaboliteMapping(mapping_id_O,'26dap_DASH_M_c') imm.make_symmetric() imm.update_metaboliteMapping() imm.clear_metaboliteMapping() #analysis functions def load_isotopomer_matlab(self,matlab_data,isotopomer_data=None): '''Load 13CFlux isotopomer simulation data from matlab file''' # load measured isotopomers from MATLAB file into numpy array # load names and calculated isotopomers from MATLAB file into numpy array names = scipy.io.loadmat(matlab_data)['output']['names'][0][0]; calculated_ave = scipy.io.loadmat(matlab_data)['output']['ave'][0][0]; calculated_stdev = scipy.io.loadmat(matlab_data)['output']['stdev'][0][0]; # load residuals from MATLAB file into numpy array residuals = scipy.io.loadmat(matlab_data)['residuals']; if isotopomer_data: measured_dict = json.load(open(isotopomer_data,'r')); measured_names = []; measured_ave = []; measured_stdev = []; # extract data to lists for frag,data in measured_dict['fragments'].items(): for name in data['data_names']: measured_names.append(name); for ave in data['data_ave']: measured_ave.append(ave); for stdev in data['data_stdev']: measured_stdev.append(stdev); # convert lists to dict measured_dict = {}; for i,name in enumerate(measured_names): measured_dict[name]={'measured_ave':measured_ave[i], 'measured_stdev':measured_stdev[i]}; # match measured names to calculated names measured_ave = []; measured_stdev = []; residuals = []; for i,name in enumerate(names): if name[0][0] in measured_dict: measured_ave.append(measured_dict[name[0][0]]['measured_ave']); measured_stdev.append(measured_dict[name[0][0]]['measured_stdev']); residuals.append(measured_dict[name[0][0]]['measured_ave']-calculated_ave[i][0]); else: measured_ave.append(None); measured_stdev.append(None); residuals.append(None); else: measured_ave_tmp = scipy.io.loadmat(matlab_data)['toCompare']; measured_ave = []; for d in measured_ave_tmp: measured_ave.append(d[0]); measured_stdev = numpy.zeros(len(measured_ave)); # combine into a dictionary isotopomer = {}; for i in range(len(names)): isotopomer[names[i][0][0]] = {'measured_ave':measured_ave[i], #TODO: extract out by fragment names 'measured_stdev':measured_stdev[i], 'calculated_ave':calculated_ave[i][0], 'calculated_stdev':calculated_stdev[i][0], 'residuals':residuals[i]}; return isotopomer; def load_confidenceIntervals_matlab(self,matlab_data,cobra_model_matlab,cobra_model_name): '''Load confidence intervals from matlab file''' # load confidence intervals from MATLAB file into numpy array cimin_h5py = h5py.File(matlab_data)['ci']['minv'][0]; cimax_h5py = h5py.File(matlab_data)['ci']['maxv'][0]; cimin = numpy.array(cimin_h5py); cimax = numpy.array(cimax_h5py); # load cobramodel rxns = scipy.io.loadmat(cobra_model_matlab)[cobra_model_name]['rxns'][0][0] # combine cimin, cimax, and rxns into dictionary ci = {}; for i in range(len(cimin)): ci[rxns[i][0][0]] = {'minv':cimin[i],'maxv':cimax[i]}; return ci; def compare_isotopomers_calculated(self,isotopomer_1, isotopomer_2): '''compare two calculated isotopomer distributions''' # extract into lists absDif_list = []; ssr_1_list = []; ssr_2_list = []; bestFit_list = []; frag_list = []; ssr_1 = 0.0; # sum of squared residuals (threshold of 10e1, Antoniewicz poster, co-culture, Met Eng X) ssr_2 = 0.0; measured_1_list = []; measured_2_list = []; calculatedAve_1_list = []; calculatedAve_2_list = []; measuredStdev_1_list = []; measuredStdev_2_list = []; for frag,data in isotopomer_1.items(): absDif = 0.0; sr_1 = 0.0; sr_2 = 0.0; bestFit = None; absDif = fabs(isotopomer_1[frag]['calculated_ave'] - isotopomer_2[frag]['calculated_ave']); sr_1 = pow(isotopomer_1[frag]['calculated_ave']-isotopomer_1[frag]['measured_ave'],2); sr_2 = pow(isotopomer_2[frag]['calculated_ave']-isotopomer_2[frag]['measured_ave'],2); if sr_1>sr_2: bestFit = '2'; elif sr_1<sr_2: bestFit = '1'; elif sr_1==sr_2: bestFit = None; absDif_list.append(absDif); ssr_1_list.append(sr_1); ssr_2_list.append(sr_2); bestFit_list.append(bestFit); frag_list.append(frag); ssr_1 += sr_1; ssr_2 += sr_2; measured_1_list.append(isotopomer_1[frag]['measured_ave']) measured_2_list.append(isotopomer_2[frag]['measured_ave']) calculatedAve_1_list.append(isotopomer_1[frag]['calculated_ave']); calculatedAve_2_list.append(isotopomer_2[frag]['calculated_ave']); measuredStdev_1_list.append(isotopomer_1[frag]['measured_stdev']); measuredStdev_2_list.append(isotopomer_2[frag]['measured_stdev']); # calculate the correlation coefficient # 1. between measured vs. calculated (1 and 2) # 2. between calculated 1 vs. calculated 2 r_measuredVsCalculated_1 = None; r_measuredVsCalculated_2 = None; r_measured1VsMeasured2 = None; p_measuredVsCalculated_1 = None; p_measuredVsCalculated_2 = None; p_measured1VsMeasured2 = None; r_measuredVsCalculated_1, p_measuredVsCalculated_1 = scipy.stats.pearsonr(measured_1_list,calculatedAve_1_list); r_measuredVsCalculated_2, p_measuredVsCalculated_2 = scipy.stats.pearsonr(measured_2_list,calculatedAve_2_list); r_measured1VsMeasured2, p_measured1VsMeasured2 = scipy.stats.pearsonr(calculatedAve_1_list,calculatedAve_2_list); # wrap stats into a dictionary isotopomer_comparison_stats = {}; isotopomer_comparison_stats = dict(list(zip(('r_measuredVsCalculated_1', 'p_measuredVsCalculated_1', 'r_measuredVsCalculated_2', 'p_measuredVsCalculated_2', 'r_measured1VsMeasured2', 'p_measured1VsMeasured2', 'ssr_1,ssr_2'), (r_measuredVsCalculated_1, p_measuredVsCalculated_1, r_measuredVsCalculated_2, p_measuredVsCalculated_2, r_measured1VsMeasured2, p_measured1VsMeasured2, ssr_1,ssr_2)))); ## zip, sort, unzip # does not appear to sort correctly! #zipped = zip(absDif_list,ssr_1_list,ssr_2_list,bestFit_list,frag_list, # measured_1_list,measured_2_list,calculatedAve_1_list,calculatedAve_2_list, # measuredStdev_1_list,measuredStdev_2_list); #zipped.sort(); #zipped.reverse(); #absDif_list,ssr_1_list,sst_2_list,bestFit_list,frag_list,\ # measured_1_list,measured_2_list,calculatedAve_1_list,calculatedAve_2_list,\ # measuredStdev_1_list,measuredStdev_2_list = zip(*zipped); # restructure into a list of dictionaries for easy parsing or data base viewing isotopomer_comparison = []; for i in range(len(absDif_list)): isotopomer_comparison.append({'isotopomer_absDif':absDif_list[i], 'isotopomer_1_sr':ssr_1_list[i], 'isotopomer_2_sr':ssr_2_list[i], 'bestFit':bestFit_list[i], 'frag':frag_list[i], 'measured_1_ave':measured_1_list[i], 'measured_2_ave':measured_2_list[i], 'measured_1_stdev':measuredStdev_1_list[i], 'measured_2_stdev':measuredStdev_2_list[i], 'calculated_1_ave':calculatedAve_1_list[i], 'calculated_2_ave':calculatedAve_2_list[i]}); return isotopomer_comparison,isotopomer_comparison_stats; def compare_ci_calculated(self,ci_1,ci_2): '''compare 2 calculated confidence intervals''' # extract into lists rxns_1_list = []; rxns_2_list = []; ciminv_1_list = []; ciminv_2_list = []; cimaxv_1_list = []; cimaxv_2_list = []; cirange_1_list = []; cirange_2_list = []; cirange_1_sum = 0.0; cirange_2_sum = 0.0; # ci_1: for k,v in ci_1.items(): rxns_1_list.append(k); ciminv_1_list.append(v['minv']); cimaxv_1_list.append(v['maxv']); cirange_1_list.append(v['maxv']-v['minv']); cirange_1_sum += v['maxv']-v['minv']; ## zip, sort, unzip #zipped1 = zip(rxns_1_list,ciminv_1_list,cimaxv_1_list,cirange_1_list); #zipped1.sort(); #rxns_1_list,ciminv_1_list,cimaxv_1_list,cirange_1_list = zip(*zipped1); # ci_2: for k,v in ci_2.items(): rxns_2_list.append(k); ciminv_2_list.append(v['minv']); cimaxv_2_list.append(v['maxv']); cirange_2_list.append(v['maxv']-v['minv']); cirange_2_sum += v['maxv']-v['minv']; ## zip, sort, unzip #zipped2 = zip(rxns_2_list,ciminv_2_list,cimaxv_2_list,cirange_2_list); #zipped2.sort(); #rxns_2_list,ciminv_2_list,cimaxv_2_list,cirange_2_list = zip(*zipped2); # compare by rxn_id cirange_absDev_list = []; rxns_combined_list = []; ciminv_1_combined_list = []; ciminv_2_combined_list = []; cimaxv_1_combined_list = []; cimaxv_2_combined_list = []; cirange_1_combined_list = []; cirange_2_combined_list = []; cirange_1_combined_sum = 0.0; cirange_2_combined_sum = 0.0; for i in range(len(rxns_1_list)): for j in range(len(rxns_2_list)): if rxns_1_list[i] == rxns_2_list[j]: rxns_combined_list.append(rxns_1_list[i]); cirange_absDev_list.append(fabs(cirange_1_list[i]-cirange_2_list[j])); ciminv_1_combined_list.append(ciminv_1_list[i]); ciminv_2_combined_list.append(ciminv_2_list[j]); cimaxv_1_combined_list.append(cimaxv_1_list[i]); cimaxv_2_combined_list.append(cimaxv_2_list[j]); cirange_1_combined_list.append(cirange_1_list[i]); cirange_2_combined_list.append(cirange_2_list[j]); cirange_1_combined_sum += cirange_1_list[i] cirange_2_combined_sum += cirange_2_list[j] ## zip, sort, unzip #zippedCombined = zip(cirange_absDev_list,rxns_combined_list,ciminv_1_combined_list,ciminv_2_combined_list,cimaxv_1_combined_list,cimaxv_2_combined_list,cirange_1_combined_list,cirange_2_combined_list); #zippedCombined.sort(); #zippedCombined.reverse(); #cirange_absDev_list,rxns_combined_list,ciminv_1_combined_list,ciminv_2_combined_list,cimaxv_1_combined_list,cimaxv_2_combined_list,cirange_1_combined_list,cirange_2_combined_list = zip(*zippedCombined); # restructure into a list of dictionaries for easy parsing or data base viewing ci_comparison = []; for i in range(len(cirange_absDev_list)): ci_comparison.append({'cirange_absDev_list':cirange_absDev_list[i], 'rxns_combined_list':rxns_combined_list[i], 'ciminv_1_combined_list':ciminv_1_combined_list[i], 'ciminv_2_combined_list':ciminv_2_combined_list[i], 'cimaxv_1_combined_list':cimaxv_1_combined_list[i], 'cimaxv_2_combined_list':cimaxv_2_combined_list[i], 'cirange_1_combined_list':cirange_1_combined_list[i], 'cirange_2_combined_list':cirange_2_combined_list[i]}); return ci_comparison,cirange_1_sum,cirange_2_sum,cirange_1_combined_sum,cirange_2_combined_sum; def plot_compare_isotopomers_calculated(self,isotopomer_comparison,isotopomer_comparison_stats): '''Plot 1: isotopomer fitting comparison Plot 2: isotopomer residual comparison''' io = base_exportData(isotopomer_comparison); # Plot 1 and Plot 2: io.write_dict2tsv('data//data.tsv'); def plot_ci_calculated(self,ci): '''plot confidence intervals from fluxomics experiment using escher''' data = []; flux1 = {}; flux2 = {}; for k,v in ci.items(): flux1[k] = v['minv']; flux2[k] = v['maxv']; data.append(flux1); data.append(flux2); io = base_exportData(data); io.write_dict2json('visualization/escher/ci.json'); def export_modelWithFlux(self,cobra_model_xml_I,ci_list_I,cobra_model_xml_O): '''update model lower_bound/upper_bound with calculated flux confidence intervals''' cobra_model = create_cobra_model_from_sbml_file(cobra_model_xml_I); rxns_add = []; rxns_omitted = []; rxns_break = []; system_boundaries = [x.id for x in cobra_model.reactions if x.boundary == 'system_boundary']; objectives = [x.id for x in cobra_model.reactions if x.objective_coefficient == 1]; for i,ci_I in enumerate(ci_list_I): print('add flux from ci ' + str(i)); for rxn in cobra_model.reactions: if rxn.id in list(ci_I.keys()) and not(rxn.id in system_boundaries)\ and not(rxn.id in objectives): cobra_model_copy = cobra_model.copy(); # check for reactions that break the model: if ci_I[rxn.id]['minv'] > 0: cobra_model_copy.reactions.get_by_id(rxn.id).lower_bound = ci_I[rxn.id]['minv']; if ci_I[rxn.id]['maxv'] > 0 and ci_I[rxn.id]['maxv'] > ci_I[rxn.id]['minv']: cobra_model_copy.reactions.get_by_id(rxn.id).upper_bound = ci_I[rxn.id]['maxv']; cobra_model_copy.optimize(solver='gurobi'); if not cobra_model_copy.solution.f: print(rxn.id + ' broke the model!') rxns_break.append(rxn.id); else: if ci_I[rxn.id]['minv'] > 0: cobra_model.reactions.get_by_id(rxn.id).lower_bound = ci_I[rxn.id]['minv']; if ci_I[rxn.id]['maxv'] > 0 and ci_I[rxn.id]['maxv'] > ci_I[rxn.id]['minv']: cobra_model.reactions.get_by_id(rxn.id).upper_bound = ci_I[rxn.id]['maxv']; rxns_add.append(rxn.id); else: rxns_omitted.append(rxn.id); write_cobra_model_to_sbml_file(cobra_model,cobra_model_xml_O) class stage02_isotopomer_metaboliteMapping(): """Class to standardize metabolite mapping: A mapped metabolite takes the following form: 'met_id' + 'nMet_id' + '_' + 'element' + nElement Input: met_ids_elements_I = [{met_id:element},...] [{'f6p_c':'C'},{'f6p_c':'C'},{'f6p_c':'H'},{'f6p_c':'H'},{'ac_c':'C'},{'utp_c':'C'}] NOTE: The order matters if using multiple elements! will need to further test in future versions Base metabolites: default base metabolite is co2 for carbon and oh for hydrogen Base reaction: co2 + oh- + h+ = ch2o + o2""" def __init__(self, mapping_id_I=None, #met_name_I=None, met_id_I=None, #formula_I=None, met_elements_I=[], met_atompositions_I=[], met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=[], base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]): #self.session = Session(); self.stage02_isotopomer_query = stage02_isotopomer_query(); self.calculate = base_calculate(); self.metaboliteMapping={}; self.metaboliteMapping['mapping_id']=mapping_id_I; #self.metaboliteMapping['met_name']=met_name_I; self.metaboliteMapping['met_id']=met_id_I; #self.metaboliteMapping['formula']=formula_I; self.metaboliteMapping['met_elements']=met_elements_I; self.metaboliteMapping['met_atompositions']=met_atompositions_I; self.metaboliteMapping['met_symmetry_elements']=met_symmetry_elements_I; self.metaboliteMapping['met_symmetry_atompositions']=met_symmetry_atompositions_I; self.metaboliteMapping['used_']=used__I; self.metaboliteMapping['comment_']=comment__I; self.metaboliteMapping['met_mapping']=met_mapping_I; self.metaboliteMapping['base_met_ids']=base_met_ids_I; self.metaboliteMapping['base_met_elements']=base_met_elements_I; self.metaboliteMapping['base_met_atompositions']=base_met_atompositions_I; self.metaboliteMapping['base_met_symmetry_elements']=base_met_symmetry_elements_I; self.metaboliteMapping['base_met_symmetry_atompositions']=base_met_symmetry_atompositions_I; self.metaboliteMapping['base_met_indices']=base_met_indices_I; def make_elementsAndPositionsTracked(self,met_id_I,element_I,n_elements_I): #Input: met_id_I,element_I,n_elements_I #Output: mapping_O,positions_O,elements_O #E.g: make_elementsTracked('fdp','C',6) mapping_O = []; positions_O = []; elements_O = []; for elements_cnt in range(n_elements_I): mapping = '[' + met_id_I.replace('.','_') + '_' + element_I + str(elements_cnt) + ']'; mapping_O.append(mapping); positions_O.append(elements_cnt); elements_O.append(element_I); return mapping_O,positions_O,elements_O; def make_trackedMetabolite(self,mapping_id_I,model_id_I,met_id_element_I,met_index_I=None): '''Make an unique atom mapping for the given metabolite and element''' currentElementPos = 0; mapping_O = []; positions_O = []; elements_O = []; base_met_ids_O = []; base_met_elements_O = []; base_met_atompositions_O = []; base_met_symmetry_elements_O = []; base_met_symmetry_atompositions_O = []; base_met_indices_O = []; for k,v in met_id_element_I.items(): # check if the metabolite is already in the database met_data = {} met_data = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_I,k) #NOTE: need to add in a constraint to make sure that the elements in the database and the elments in the input match! if met_data and 'met_elements' in met_data and v==met_data['met_elements'][0]: nElements = len(met_data['met_elements']); else: # get the formula for the met_id formula_I = self.stage02_isotopomer_query.get_formula_modelIDAndMetID_dataStage02IsotopomerModelMetabolites(model_id_I,k); # get the number of elements if v not in Formula(formula_I)._elements: break; #check if the element is even contained in the formula if 0 in Formula(formula_I)._elements[v]: nElements = Formula(formula_I)._elements[v][0]; #get the # of the elements # make the tracking nMet = 0; if met_index_I: nMet = met_index_I mapping,positions,elements = self.make_elementsAndPositionsTracked(k+str(nMet),v,nElements); positions_corrected = [currentElementPos+pos for pos in positions]; currentElementPos += max(positions)+1; mapping_O.append(mapping); positions_O.extend(positions_corrected); elements_O.extend(elements); base_met_ids_O.append(k) base_met_elements_O.append(elements) base_met_atompositions_O.append(positions) base_met_indices_O.append(nMet) self.metaboliteMapping['mapping_id']=mapping_id_I self.metaboliteMapping['met_id']=k self.metaboliteMapping['met_elements']=elements_O self.metaboliteMapping['met_atompositions']=positions_O self.metaboliteMapping['met_mapping']=mapping_O self.metaboliteMapping['base_met_ids']=base_met_ids_O self.metaboliteMapping['base_met_elements']=base_met_elements_O self.metaboliteMapping['base_met_atompositions']=base_met_atompositions_O self.metaboliteMapping['base_met_indices']=base_met_indices_O def make_compoundTrackedMetabolite(self,mapping_id_I,model_id_I,met_ids_elements_I,met_id_O,met_ids_indices_I = []): '''Make an unique atom mapping for the given metabolite based on base metabolites and elements''' #Input: # metIDs_elements_I = [{met_id:element},..] # met_ids_elements_I = [{'f6p_c':'C'},{'ac_c':'C'},{'utp_c':'C'}}] # metIDs_elements_I = [met_id:{elements=[string,...],stoichiometry:float}},..] # met_ids_elements_I = [{'f6p_c':{'elements':['C'],'stoichiometry':1}},{'ac_c':{'elements':['C'],'stoichiometry':1}},{'utp_c':{'elements':['C'],'stoichiometry':1}}] # make_compoundTrackedMetabolite('full04','140407_iDM2014',met_ids_elements_I,'uacgam_c') currentElementPos = 0; mapping_O = []; positions_O = []; elements_O = []; base_met_ids_O = []; base_met_elements_O = []; base_met_atompositions_O = []; base_met_symmetry_elements_O = []; base_met_symmetry_atompositions_O = []; base_met_indices_O = []; # get unique met_ids met_ids_all = []; for row in met_ids_elements_I: for k,v in row.items(): met_ids_all.append(k); met_ids_unique = list(set(met_ids_all)) met_ids_cnt = {}; met_ids_elements = {}; for met_id in met_ids_unique: met_ids_cnt[met_id] = 0; met_ids_elements[met_id] = []; # make the compound mapping for row_cnt,row in enumerate(met_ids_elements_I): for k,v in row.items(): # check if the metabolite is already in the database met_data = {} met_data = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_I,k) #NOTE: need to add in a constraint to make sure that the elements in the database and the elments in the input match! if met_data and 'met_elements' in met_data and v==met_data['met_elements'][0]: nElements = len(met_data['met_elements']); else: # get the formula for the met_id formula_I = self.stage02_isotopomer_query.get_formula_modelIDAndMetID_dataStage02IsotopomerModelMetabolites(model_id_I,k); # get the number of elements if v not in Formula(formula_I)._elements: break; #check if the element is even contained in the formula if 0 in Formula(formula_I)._elements[v]: nElements = Formula(formula_I)._elements[v][0]; #get the # of the elements # determine the metabolite index nMets = met_ids_cnt[k]; if met_ids_indices_I: nMets = met_ids_indices_I[row_cnt] # make the tracking mapping,positions,elements = self.make_elementsAndPositionsTracked(k+str(nMets),v,nElements); positions_corrected = [currentElementPos+pos for pos in positions]; currentElementPos += max(positions)+1; # add to the compound tracking mapping_O.append(mapping); positions_O.extend(positions_corrected); elements_O.extend(elements); base_met_ids_O.append(k) base_met_elements_O.append(elements) base_met_atompositions_O.append(positions) base_met_indices_O.append(nMets) met_ids_cnt[k] += 1; # needed to ensure a unique metabolite mapping if the same met_id is used multiple times self.metaboliteMapping['mapping_id']=mapping_id_I self.metaboliteMapping['met_id']=met_id_O self.metaboliteMapping['met_elements']=elements_O self.metaboliteMapping['met_atompositions']=positions_O self.metaboliteMapping['met_mapping']=mapping_O self.metaboliteMapping['base_met_ids']=base_met_ids_O self.metaboliteMapping['base_met_elements']=base_met_elements_O self.metaboliteMapping['base_met_atompositions']=base_met_atompositions_O self.metaboliteMapping['base_met_indices']=base_met_indices_O def append_baseMetabolites_toMetabolite(self,model_id_I,met_ids_elements_I,met_id_O=None): '''Append a base metabolite to the current metabolite''' #get the currentElementPos currentElementPos = max(self.metaboliteMapping['met_atompositions'])+1; # get unique met_ids met_ids_unique = list(set(self.metaboliteMapping['base_met_ids'])) met_ids_cnt = {}; met_ids_elements = {}; for met_id in met_ids_unique: met_ids_cnt[met_id] = 0; met_ids_elements[met_id] = []; for met_id_cnt,met_id in enumerate(self.metaboliteMapping['base_met_ids']): # determine the number of met_ids met_ids_cnt[met_id]+=1 # determine the unique elements if not self.metaboliteMapping['met_elements'][0] in met_ids_elements[met_id]: met_ids_elements[met_id].append(self.metaboliteMapping['met_elements'][met_id_cnt][0]); # add the mapping for the new metabolites for row in met_ids_elements_I: for k,v in row.items(): # check if the metabolite is already in the database met_data = {} met_data = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(self.metaboliteMapping['mapping_id'],k) #NOTE: need to add in a constraint to make sure that the elements in the database and the elments in the input match! if met_data and 'met_elements' in met_data and v==met_data['met_elements'][0]: nElements = len(met_data['met_elements']); else: # get the formula for the met_id formula_I = self.stage02_isotopomer_query.get_formula_modelIDAndMetID_dataStage02IsotopomerModelMetabolites(model_id_I,k); # get the number of elements if v not in Formula(formula_I)._elements: break; #check if the element is even contained in the formula if 0 in Formula(formula_I)._elements[v]: nElements = Formula(formula_I)._elements[v][0]; #get the # of the elements # adjust the metabolite number if the same metabolite already exists nMets = met_ids_cnt[k]; met_id_mapping = k+nMets; # make the tracking mapping,positions,elements = self.make_elementsAndPositionsTracked(met_id_mapping,v,nElements); positions_corrected = [currentElementPos+pos for pos in positions]; currentElementPos += max(positions)+1; # add to the compound tracking self.metaboliteMapping['met_mapping'].append(mapping); self.metaboliteMapping['met_atompositions'].extend(positions_corrected); self.metaboliteMapping['met_elements'].extend(elements); self.metaboliteMapping['base_met_ids'].append(k) self.metaboliteMapping['base_met_elements'].append(elements) self.metaboliteMapping['base_met_atompositions'].append(positions) self.metaboliteMapping['base_met_indices'].append(met_ids_cnt[k]); met_ids_cnt[met_id]+=1; if met_id_O: self.metaboliteMapping['met_id']=met_id_O def pop_baseMetabolite_fromMetabolite(self,model_id_I,met_id_element_I,met_id_O=None): '''Remove a base metabolite from the current metabolite: metabolites are removed FILO; NOTE: this can lead to problems downstream when the mapping is reconstructed from the base metabolites if multiple elements are used''' #Input: # met_id_element_I = {met_id:element} '''Unit Test: ''' met_mapping = self.metaboliteMapping['met_mapping']; base_met_ids = self.metaboliteMapping['base_met_ids']; base_met_elements = self.metaboliteMapping['base_met_elements']; base_met_atompositions = self.metaboliteMapping['base_met_atompositions']; base_met_indices = self.metaboliteMapping['base_met_indices']; #base_met_symmetry_elements=self.metaboliteMapping['base_met_symmetry_elements']; #base_met_symmetry_atompositions=self.metaboliteMapping['base_met_symmetry_atompositions']; met_mapping.reverse(); base_met_ids.reverse(); base_met_elements.reverse(); base_met_atompositions.reverse(); base_met_indices.reverse(); #base_met_symmetry_elements.reverse(); #base_met_symmetry_atompositions.reverse(); self.metaboliteMapping['met_mapping']=[] self.metaboliteMapping['base_met_ids']=[] self.metaboliteMapping['base_met_elements']=[] self.metaboliteMapping['base_met_atompositions']=[] self.metaboliteMapping['base_met_indices']=[] #self.metaboliteMapping['base_met_symmetry_elements']=[] #self.metaboliteMapping['base_met_symmetry_atompositions']=[] for met_id_remove,v in met_id_element_I.items(): removed = False for met_cnt,met_id in enumerate(base_met_ids): if met_id_remove == met_id and v==base_met_elements[met_cnt][0] and not removed: removed = True; else: self.metaboliteMapping['met_mapping'].insert(0,met_mapping[met_cnt]); self.metaboliteMapping['base_met_ids'].insert(0,base_met_ids[met_cnt]); self.metaboliteMapping['base_met_elements'].insert(0,base_met_elements[met_cnt]); self.metaboliteMapping['base_met_atompositions'].insert(0,base_met_atompositions[met_cnt]); self.metaboliteMapping['base_met_indices'].insert(0,base_met_indices[met_cnt]) #self.metaboliteMapping['base_met_symmetry_elements'].insert(0,base_met_symmetry_elements[met_cnt]); #self.metaboliteMapping['base_met_symmetry_atompositions'].insert(0,base_met_symmetry_atompositions[met_cnt]); '''v1: removes ALL base metabolites that match the met_id''' #for met_id_remove in met_ids_I: # for met_cnt,met_id in enumerate(base_met_ids): # if met_id_remove != met_id: # self.metaboliteMapping['met_mapping'].append(met_mapping[met_cnt]); # self.metaboliteMapping['base_met_ids'].append(base_met_ids[met_cnt]); # self.metaboliteMapping['base_met_elements'].append(base_met_elements[met_cnt]); # self.metaboliteMapping['base_met_atompositions'].append(base_met_atompositions[met_cnt]); # #self.metaboliteMapping['base_met_symmetry_elements'].append(base_met_symmetry_elements[met_cnt]); # #self.metaboliteMapping['base_met_symmetry_atompositions'].append(base_met_symmetry_atompositions[met_cnt]); if met_id_O: self.metaboliteMapping['met_id']=met_id_O self.update_trackedMetabolite_fromBaseMetabolites(model_id_I); def remove_baseMetabolite_fromMetabolite(self,model_id_I,met_id_element_I,met_id_O=None,met_index_I=None): '''Remove a base metabolite from the current metabolite: metabolites are removed FIFO if the index is not specified;''' #Input: # met_id_element = {met_id:element} '''Unit Test:''' met_mapping = self.metaboliteMapping['met_mapping']; base_met_ids = self.metaboliteMapping['base_met_ids']; base_met_elements = self.metaboliteMapping['base_met_elements']; base_met_atompositions = self.metaboliteMapping['base_met_atompositions']; base_met_indices = self.metaboliteMapping['base_met_indices']; #base_met_symmetry_elements=self.metaboliteMapping['base_met_symmetry_elements']; #base_met_symmetry_atompositions=self.metaboliteMapping['base_met_symmetry_atompositions']; self.metaboliteMapping['met_mapping']=[] self.metaboliteMapping['base_met_ids']=[] self.metaboliteMapping['base_met_elements']=[] self.metaboliteMapping['base_met_atompositions']=[] self.metaboliteMapping['base_met_indices']=[] #self.metaboliteMapping['base_met_symmetry_elements']=[] #self.metaboliteMapping['base_met_symmetry_atompositions']=[] for met_id_remove,v in met_id_element_I.items(): removed = False for met_cnt,met_id in enumerate(base_met_ids): if met_index_I: if met_index_I == base_met_indices[met_cnt] and met_id_remove == met_id and v==base_met_elements[met_cnt][0] and not removed: removed = True else: self.metaboliteMapping['met_mapping'].append(met_mapping[met_cnt]); self.metaboliteMapping['base_met_ids'].append(base_met_ids[met_cnt]); self.metaboliteMapping['base_met_elements'].append(base_met_elements[met_cnt]); self.metaboliteMapping['base_met_atompositions'].append(base_met_atompositions[met_cnt]); self.metaboliteMapping['base_met_indices'].append(base_met_indices[met_cnt]); #self.metaboliteMapping['base_met_symmetry_elements'].append(base_met_symmetry_elements[met_cnt]); #self.metaboliteMapping['base_met_symmetry_atompositions'].append(base_met_symmetry_atompositions[met_cnt]); else: if met_id_remove == met_id and v==base_met_elements[met_cnt][0] and not removed: removed = True else: self.metaboliteMapping['met_mapping'].append(met_mapping[met_cnt]); self.metaboliteMapping['base_met_ids'].append(base_met_ids[met_cnt]); self.metaboliteMapping['base_met_elements'].append(base_met_elements[met_cnt]); self.metaboliteMapping['base_met_atompositions'].append(base_met_atompositions[met_cnt]); self.metaboliteMapping['base_met_indices'].append(base_met_indices[met_cnt]); #self.metaboliteMapping['base_met_symmetry_elements'].append(base_met_symmetry_elements[met_cnt]); #self.metaboliteMapping['base_met_symmetry_atompositions'].append(base_met_symmetry_atompositions[met_cnt]); '''v1: removes ALL base metabolites that match the met_id''' #for met_id_remove in met_ids_I: # for met_cnt,met_id in enumerate(base_met_ids): # if met_id_remove != met_id: # self.metaboliteMapping['met_mapping'].append(met_mapping[met_cnt]); # self.metaboliteMapping['base_met_ids'].append(base_met_ids[met_cnt]); # self.metaboliteMapping['base_met_elements'].append(base_met_elements[met_cnt]); # self.metaboliteMapping['base_met_atompositions'].append(base_met_atompositions[met_cnt]); # #self.metaboliteMapping['base_met_symmetry_elements'].append(base_met_symmetry_elements[met_cnt]); # #self.metaboliteMapping['base_met_symmetry_atompositions'].append(base_met_symmetry_atompositions[met_cnt]); if met_id_O: self.metaboliteMapping['met_id']=met_id_O self.update_trackedMetabolite_fromBaseMetabolites(model_id_I); def extract_baseMetabolite_fromMetabolite(self,model_id_I,met_id_element_I,met_index_I=None): '''Returns a base metabolites from the current metabolite: returns metabolites in FIFO''' base_metaboliteMapping = stage02_isotopomer_metaboliteMapping(); base_met_ids = self.metaboliteMapping['base_met_ids']; met_id_remove = {}; met_index = None for k,v in met_id_element_I.items(): for met_cnt,met_id in enumerate(base_met_ids): if met_index_I: if met_index_I == self.metaboliteMapping['base_met_indices'][met_cnt] and k == met_id and v==self.metaboliteMapping['base_met_elements'][met_cnt][0]: met_id_remove = {k:self.metaboliteMapping['base_met_elements'][met_cnt][0]}; met_index = met_index_I; break; else: if k == met_id and v==self.metaboliteMapping['base_met_elements'][met_cnt][0]: met_id_remove = {k:self.metaboliteMapping['base_met_elements'][met_cnt][0]}; met_index = self.metaboliteMapping['base_met_indices'][met_cnt] break; base_metaboliteMapping.make_trackedMetabolite(self.metaboliteMapping['mapping_id'],model_id_I,met_id_remove,met_index); return base_metaboliteMapping def update_trackedMetabolite_fromBaseMetabolites(self,model_id_I): '''update mapping, elements, and atompositions from base metabolites; NOTE: issues may arise in the number assigned to each metabolite if multiple elements are used''' # get unique met_ids met_ids_unique = list(set(self.metaboliteMapping['base_met_ids'])) met_ids_cnt = {}; met_ids_elements = {}; for met_id in met_ids_unique: met_ids_cnt[met_id] = 0; met_ids_elements[met_id] = []; # make the input structure met_ids_elements_I = []; for met_id_cnt,met_id in enumerate(self.metaboliteMapping['base_met_ids']): met_ids_elements_I.append({met_id:self.metaboliteMapping['base_met_elements'][met_id_cnt][0]}) self.make_compoundTrackedMetabolite(self.metaboliteMapping['mapping_id'],model_id_I,met_ids_elements_I,self.metaboliteMapping['met_id'],self.metaboliteMapping['base_met_indices']) def make_newMetaboliteMapping(self): '''Make a new mapping for the metabolite that switches out the names of the base metabolites for the current metabolite''' mapping_O= []; elements = list(set(self.metaboliteMapping['met_elements'])) element_cnt = {}; for element in elements: element_cnt[element] = 0; for met_element in self.metaboliteMapping['met_elements']: mapping = '[' + self.metaboliteMapping['met_id'].replace('.','_') + '_' + met_element + str(element_cnt[met_element]) + ']'; mapping_O.append(mapping); element_cnt[met_element]+=1 return mapping_O def make_defaultBaseMetabolites(self): '''Add default base metabolite to the metabolite''' self.metaboliteMapping['base_met_ids']=[]; self.metaboliteMapping['base_met_elements']=[]; self.metaboliteMapping['base_met_atompositions']=[]; self.metaboliteMapping['base_met_symmetry_elements']=[]; self.metaboliteMapping['base_met_symmetry_atompositions']=[]; self.metaboliteMapping['base_met_indices']=[]; compartment = self.metaboliteMapping['met_id'].split('_')[-1] for cnt,element in enumerate(self.metaboliteMapping['met_elements']): if element == 'C': self.metaboliteMapping['base_met_ids'].append('co2'+'_'+compartment); self.metaboliteMapping['base_met_elements'].append([element]); self.metaboliteMapping['base_met_atompositions'].append([0]); self.metaboliteMapping['base_met_indices'].append(cnt); elif element == 'H': self.metaboliteMapping['base_met_ids'].append('h'+'_'+element); self.metaboliteMapping['base_met_elements'].append([element]); self.metaboliteMapping['base_met_atompositions'].append([0]); self.metaboliteMapping['base_met_indices'].append(cnt); else: print("element not yet supported") def convert_arrayMapping2StringMapping(self): '''Convert an array representation of a mapping to a string representation''' arrayMapping = self.metaboliteMapping['met_mapping'] stringMapping = '' for mapping in self.metaboliteMapping['met_mapping']: stringMapping+=''.join(mapping) return stringMapping; def convert_stringMapping2ArrayMapping(self): '''Convert a string representation of a mapping to an array representation''' stringMapping = self.metaboliteMapping['met_mapping'] if '[' in self.metaboliteMapping['met_mapping']: stringMapping = self.metaboliteMapping['met_mapping'].split(']['); stringMapping = [m.replace('[','') for m in stringMapping]; stringMapping = [m.replace(']','') for m in stringMapping]; else: stringMapping = [m for m in stringMapping]; # add in '[]' arrayMapping = []; for m in stringMapping: arrayMapping.append('['+m+']') return arrayMapping; def add_metaboliteMapping(self, mapping_id_I=None, met_id_I=None, met_elements_I=None, met_atompositions_I=None, met_symmetry_elements_I=None, met_symmetry_atompositions_I=None, used__I=True, comment__I=None): '''Add tracked metabolite to the database''' if mapping_id_I: self.metaboliteMapping['mapping_id']=mapping_id_I; if met_id_I: self.metaboliteMapping['met_id']=met_id_I; if met_elements_I: self.metaboliteMapping['met_elements']=met_elements_I; if met_atompositions_I: self.metaboliteMapping['met_atompositions']=met_atompositions_I; if met_symmetry_elements_I: self.metaboliteMapping['met_symmetry_elements']=met_symmetry_elements_I; if met_symmetry_atompositions_I: self.metaboliteMapping['met_symmetry_atompositions']=met_symmetry_atompositions_I; if used__I: self.metaboliteMapping['used_']=used__I; if comment__I: self.metaboliteMapping['comment_']=comment__I; #add data to the database #row = None; #row = data_stage02_isotopomer_atomMappingMetabolites(self.metaboliteMapping['mapping_id'], # self.metaboliteMapping['met_id'], # self.metaboliteMapping['met_elements'], # self.metaboliteMapping['met_atompositions'], # self.metaboliteMapping['met_symmetry_elements'], # self.metaboliteMapping['met_symmetry_atompositions'], # self.metaboliteMapping['used_'], # self.metaboliteMapping['comment_'], # self.make_newMetaboliteMapping(), # self.metaboliteMapping['base_met_ids'], # self.metaboliteMapping['base_met_elements'], # self.metaboliteMapping['base_met_atompositions'], # self.metaboliteMapping['base_met_symmetry_elements'], # self.metaboliteMapping['base_met_symmetry_atompositions'], # self.metaboliteMapping['base_met_indices']); #self.session.add(row); #self.session.commit(); data = self.metaboliteMapping; data['met_mapping'] = self.make_newMetaboliteMapping(); self.stage02_isotopomer_query.add_data_dataStage02IsotopomerAtomMappingMetabolites([data]); def update_metaboliteMapping(self, mapping_id_I=None, met_id_I=None, met_elements_I=None, met_atompositions_I=None, met_symmetry_elements_I=None, met_symmetry_atompositions_I=None, used__I=True, comment__I=None): '''Add tracked metabolite to the database''' if mapping_id_I: self.metaboliteMapping['mapping_id']=mapping_id_I; if met_id_I: self.metaboliteMapping['met_id']=met_id_I; if met_elements_I: self.metaboliteMapping['met_elements']=met_elements_I; if met_atompositions_I: self.metaboliteMapping['met_atompositions']=met_atompositions_I; if met_symmetry_elements_I: self.metaboliteMapping['met_symmetry_elements']=met_symmetry_elements_I; if met_symmetry_atompositions_I: self.metaboliteMapping['met_symmetry_atompositions']=met_symmetry_atompositions_I; if used__I: self.metaboliteMapping['used_']=used__I; if comment__I: self.metaboliteMapping['comment_']=comment__I; self.metaboliteMapping['met_mapping']=self.make_newMetaboliteMapping() #add update data in the database self.stage02_isotopomer_query.update_rows_dataStage02IsotopomerAtomMappingMetabolites([self.metaboliteMapping]); def get_metaboliteMapping(self,mapping_id_I,met_id_I): '''Get tracked metabolite from the database''' row = {} row = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_I,met_id_I); self.metaboliteMapping=row; def get_baseMetabolites(self): '''Get base metabolite from the database for the current metabolite''' row = {} row = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(self.metaboliteMapping['mapping_id'],self.metaboliteMapping['met_id']); self.metaboliteMapping['base_met_ids']=row['base_met_ids']; self.metaboliteMapping['base_met_elements']=row['base_met_elements'] self.metaboliteMapping['base_met_atompositions']=row['base_met_atompositions'] self.metaboliteMapping['base_met_symmetry_elements']=row['base_met_symmetry_elements'] self.metaboliteMapping['base_met_symmetry_atompositions']=row['base_met_symmetry_atompositions'] ## if the current base_met_indices are already set, add to them ## NOTE: works only if the base metabolite is also the current metabolite #if len(self.metaboliteMapping['base_met_indices'])==1: # currentIndex = self.metaboliteMapping['base_met_indices'][0] # self.metaboliteMapping['base_met_indices'] = [currentIndex + i for i in row['base_met_indices']]; ## else ensure that all met_id/base_met_index pairs are unique #else: # self.metaboliteMapping['base_met_indices']=row['base_met_indices'] self.metaboliteMapping['base_met_indices']=row['base_met_indices'] def clear_metaboliteMapping(self): self.metaboliteMapping={}; self.metaboliteMapping['mapping_id']=None; #self.metaboliteMapping['met_name']=None; self.metaboliteMapping['met_id']=None; #self.metaboliteMapping['formula']=None; self.metaboliteMapping['met_elements']=None; self.metaboliteMapping['met_atompositions']=None; self.metaboliteMapping['met_symmetry_elements']=None; self.metaboliteMapping['met_symmetry_atompositions']=None; self.metaboliteMapping['used_']=True; self.metaboliteMapping['comment_']=None; self.metaboliteMapping['met_mapping']=None; self.metaboliteMapping['base_met_ids']=None; self.metaboliteMapping['base_met_elements']=None; self.metaboliteMapping['base_met_atompositions']=None; self.metaboliteMapping['base_met_symmetry_elements']=None; self.metaboliteMapping['base_met_symmetry_atompositions']=None; self.metaboliteMapping['base_met_indices']=None; def make_symmetric(self,met_symmetry_elements_I=[],met_symmetry_atompositions_I=[]): '''Make the current metabolite symmetric default = 180 symmetry''' if met_symmetry_elements_I and met_symmetry_atompositions_I: self.metaboliteMapping['met_symmetry_elements']=met_symmetry_elements_I; self.metaboliteMapping['met_symmetry_atompositions']=met_symmetry_atompositions_I; else: self.metaboliteMapping['met_symmetry_elements']=[m for m in reversed(self.metaboliteMapping['met_elements'])]; self.metaboliteMapping['met_symmetry_atompositions']=[m for m in reversed(self.metaboliteMapping['met_atompositions'])]; def copy_metaboliteMappingDict(self): '''Copy the current metabolite mapping''' copy_metaboliteMapping = {}; copy_metaboliteMapping['mapping_id']=self.metaboliteMapping['mapping_id'] #copy_metaboliteMapping['met_name']=self.metaboliteMapping['met_name'] copy_metaboliteMapping['met_id']=self.metaboliteMapping['met_id'] #copy_metaboliteMapping['formula']=self.metaboliteMapping['formula'] copy_metaboliteMapping['met_elements']=self.metaboliteMapping['met_elements'] copy_metaboliteMapping['met_atompositions']=self.metaboliteMapping['met_atompositions'] copy_metaboliteMapping['met_symmetry_elements']=self.metaboliteMapping['met_symmetry_elements'] copy_metaboliteMapping['met_symmetry_atompositions']=self.metaboliteMapping['met_symmetry_atompositions'] copy_metaboliteMapping['used_']=self.metaboliteMapping['used_'] copy_metaboliteMapping['comment_']=self.metaboliteMapping['comment_'] copy_metaboliteMapping['met_mapping']=self.metaboliteMapping['met_mapping'] copy_metaboliteMapping['base_met_ids']=self.metaboliteMapping['base_met_ids'] copy_metaboliteMapping['base_met_elements']=self.metaboliteMapping['base_met_elements'] copy_metaboliteMapping['base_met_atompositions']=self.metaboliteMapping['base_met_atompositions'] copy_metaboliteMapping['base_met_symmetry_elements']=self.metaboliteMapping['base_met_symmetry_elements'] copy_metaboliteMapping['base_met_symmetry_atompositions']=self.metaboliteMapping['base_met_symmetry_atompositions'] copy_metaboliteMapping['base_met_indices']=self.metaboliteMapping['base_met_indices']; return copy_metaboliteMapping def copy_metaboliteMapping(self): '''Copy the current metabolite mapping''' return self; class stage02_isotopomer_reactionMapping(): def __init__(self, mapping_id_I=None, rxn_id_I=None, rxn_description_I=None, reactants_stoichiometry_tracked_I=[], products_stoichiometry_tracked_I=[], reactants_ids_tracked_I=[], products_ids_tracked_I=[], reactants_elements_tracked_I=[], products_elements_tracked_I=[], reactants_positions_tracked_I=[], products_positions_tracked_I=[], reactants_mapping_I=[], products_mapping_I=[], rxn_equation_I=None, used__I=None, comment__I=None, reactants_metaboliteMappings_I=[], products_metaboliteMappings_I=[]): #self.session = Session(); self.stage02_isotopomer_query = stage02_isotopomer_query(); self.calculate = base_calculate(); self.reactionMapping={} self.reactionMapping['mapping_id']=mapping_id_I self.reactionMapping['rxn_id']=rxn_id_I self.reactionMapping['rxn_description']=rxn_description_I self.reactionMapping['reactants_stoichiometry_tracked']=reactants_stoichiometry_tracked_I self.reactionMapping['products_stoichiometry_tracked']=products_stoichiometry_tracked_I self.reactionMapping['reactants_ids_tracked']=reactants_ids_tracked_I self.reactionMapping['products_ids_tracked']=products_ids_tracked_I self.reactionMapping['reactants_elements_tracked']=reactants_elements_tracked_I self.reactionMapping['products_elements_tracked']=products_elements_tracked_I self.reactionMapping['reactants_positions_tracked']=reactants_positions_tracked_I self.reactionMapping['products_positions_tracked']=products_positions_tracked_I self.reactionMapping['reactants_mapping']=reactants_mapping_I self.reactionMapping['products_mapping']=products_mapping_I self.reactionMapping['rxn_equation']=rxn_equation_I self.reactionMapping['used_']=used__I self.reactionMapping['comment_']=comment__I self.reactionMapping['reactants_metaboliteMappings']=reactants_metaboliteMappings_I self.reactionMapping['products_metaboliteMappings']=products_metaboliteMappings_I self.reactants_base_met_ids=[]; self.reactants_base_met_elements=[]; self.reactants_base_met_atompositions=[]; self.reactants_base_met_symmetry_elements=[]; self.reactants_base_met_symmetry_atompositions=[]; self.reactants_base_met_indices=[]; self.products_base_met_ids=[]; self.products_base_met_elements=[]; self.products_base_met_atompositions=[]; self.products_base_met_symmetry_elements=[]; self.products_base_met_symmetry_atompositions=[]; self.products_base_met_indices=[]; def make_trackedCompoundReaction_fromRow(self,mapping_id_I,model_id_I,rxn_id_I, rxn_description_I=None, reactants_stoichiometry_tracked_I=[], products_stoichiometry_tracked_I=[], reactants_ids_tracked_I=[], products_ids_tracked_I=[], reactants_mapping_I=[], products_mapping_I=[], rxn_equation_I=None, used__I=True, comment__I=None): irm = stage02_isotopomer_reactionMapping( mapping_id_I=mapping_id_I, rxn_id_I=rxn_id_I, rxn_description_I=rxn_id_I, reactants_stoichiometry_tracked_I=reactants_stoichiometry_tracked_I, products_stoichiometry_tracked_I=products_stoichiometry_tracked_I, reactants_ids_tracked_I=reactants_ids_tracked_I, products_ids_tracked_I=products_ids_tracked_I, reactants_mapping_I=reactants_mapping_I, products_mapping_I=products_mapping_I, rxn_equation_I=rxn_equation_I, used__I=used__I, comment__I=comment__I); irm.reactionMapping['reactants_elements_tracked']=None; irm.reactionMapping['reactants_positions_tracked']=None; irm.reactionMapping['products_elements_tracked']=None; irm.reactionMapping['products_positions_tracked']=None; irm.checkAndCorrect_elementsAndPositions(); self.reactionMapping['mapping_id']=irm.reactionMapping['mapping_id'] self.reactionMapping['rxn_id']=irm.reactionMapping['rxn_id'] self.reactionMapping['rxn_description']=irm.reactionMapping['rxn_description'] self.reactionMapping['rxn_equation']=irm.reactionMapping['rxn_equation'] self.reactionMapping['used_']=irm.reactionMapping['used_'] self.reactionMapping['comment_']=irm.reactionMapping['comment_'] for reactant_id_cnt,reactant_id in enumerate(irm.reactionMapping['reactants_ids_tracked']): self.reactionMapping['reactants_stoichiometry_tracked'].append(irm.reactionMapping['reactants_stoichiometry_tracked'][reactant_id_cnt]) self.reactionMapping['reactants_ids_tracked'].append(irm.reactionMapping['reactants_ids_tracked'][reactant_id_cnt]) self.reactionMapping['reactants_elements_tracked'].append(irm.reactionMapping['reactants_elements_tracked'][reactant_id_cnt]) self.reactionMapping['reactants_positions_tracked'].append(irm.reactionMapping['reactants_positions_tracked'][reactant_id_cnt]) self.reactionMapping['reactants_mapping'].append(irm.reactionMapping['reactants_mapping'][reactant_id_cnt]) for product_id_cnt,product_id in enumerate(irm.reactionMapping['products_ids_tracked']): self.reactionMapping['products_stoichiometry_tracked'].append(irm.reactionMapping['products_stoichiometry_tracked'][product_id_cnt]) self.reactionMapping['products_ids_tracked'].append(irm.reactionMapping['products_ids_tracked'][product_id_cnt]) self.reactionMapping['products_elements_tracked'].append(irm.reactionMapping['products_elements_tracked'][product_id_cnt]) self.reactionMapping['products_positions_tracked'].append(irm.reactionMapping['products_positions_tracked'][product_id_cnt]) self.reactionMapping['products_mapping'].append(irm.reactionMapping['products_mapping'][product_id_cnt]) self.make_reactantsAndProductsMetaboliteMappings(reactionMapping_I=irm.reactionMapping); def make_trackedBinaryReaction(self,mapping_id_I,model_id_I,rxn_id_I,reactant_ids_elements_I,product_id_I): '''Make a binary reaction of the form A + B + ... = C''' #Input # reactant_ids_elements_I = [met_id:{elements=[string,...],stoichiometry:float}},..] # product_ids_elements_I = {met_id:{elements=[string,...],stoichiometry:float}}} # e.g. met_ids_elements_I = [{'f6p_c':'C'},{'ac_c':'C'},{'utp_c','C'}] # e.g. irm.make_trackedBinaryReaction('full04','140407_iDM2014','rxn01',met_ids_elements_I,'uacgam_c') imm = stage02_isotopomer_metaboliteMapping(); # get unique met_ids reactant_ids_all = []; for row in reactant_ids_elements_I: for k,v in row.items(): reactant_ids_all.append(k); reactant_ids_unique = list(set(reactant_ids_all)) reactant_ids_cnt = {}; for reactant_id in reactant_ids_unique: reactant_ids_cnt[reactant_id] = 0; # make the reactants mapping reactants_stoichiometry_tracked_O = []; reactants_ids_tracked_O = []; reactants_elements_tracked_O = []; reactants_positions_tracked_O = []; reactants_mapping_O = []; reactants_metaboliteMappings_O = []; for row in reactant_ids_elements_I: for k,v in row.items(): imm.make_trackedMetabolite(mapping_id_I,model_id_I,{k:v},reactant_ids_cnt[k]); reactants_elements_tracked_O.append(imm.metaboliteMapping['met_elements']); reactants_positions_tracked_O.append(imm.metaboliteMapping['met_atompositions']); reactants_mapping_O.append(imm.convert_arrayMapping2StringMapping()); reactants_stoichiometry_tracked_O.append(-1.0); reactants_ids_tracked_O.append(k); reactants_metaboliteMappings_O.append(copy(imm.copy_metaboliteMapping())); imm.clear_metaboliteMapping() reactant_ids_cnt[k]+=1 # make the products mapping products_stoichiometry_tracked_O = []; products_ids_tracked_O = []; products_elements_tracked_O = []; products_positions_tracked_O = []; products_mapping_O = []; products_metaboliteMappings_O = []; if product_id_I: imm.make_compoundTrackedMetabolite(mapping_id_I,model_id_I,reactant_ids_elements_I,product_id_I); products_elements_tracked_O.append(imm.metaboliteMapping['met_elements']); products_positions_tracked_O.append(imm.metaboliteMapping['met_atompositions']); products_mapping_O.append(imm.convert_arrayMapping2StringMapping()); products_stoichiometry_tracked_O.append(1.0); products_ids_tracked_O.append(product_id_I); products_metaboliteMappings_O.append(copy(imm.copy_metaboliteMapping())); # save the reaction self.reactionMapping['mapping_id']=mapping_id_I self.reactionMapping['rxn_id']=rxn_id_I self.reactionMapping['rxn_description']=None self.reactionMapping['reactants_stoichiometry_tracked']=reactants_stoichiometry_tracked_O self.reactionMapping['products_stoichiometry_tracked']=products_stoichiometry_tracked_O self.reactionMapping['reactants_ids_tracked']=reactants_ids_tracked_O self.reactionMapping['products_ids_tracked']=products_ids_tracked_O self.reactionMapping['reactants_elements_tracked']=reactants_elements_tracked_O self.reactionMapping['products_elements_tracked']=products_elements_tracked_O self.reactionMapping['reactants_positions_tracked']=reactants_positions_tracked_O self.reactionMapping['products_positions_tracked']=products_positions_tracked_O self.reactionMapping['reactants_mapping']=reactants_mapping_O self.reactionMapping['products_mapping']=products_mapping_O self.reactionMapping['rxn_equation']=None self.reactionMapping['used_']=True self.reactionMapping['comment_']=None self.reactionMapping['reactants_metaboliteMappings']=reactants_metaboliteMappings_O self.reactionMapping['products_metaboliteMappings']=products_metaboliteMappings_O def make_trackedCompoundReaction(self,mapping_id_I,model_id_I,rxn_id_I,reactant_ids_elements_I,base_reactant_positions_I,base_reactant_indices_I,compound_product_id_I,base_product_ids_elements_I,base_product_ids_O): '''Make a compound tracked reaction 1. make compound product 2. remove specified base products from compound product 3. update the compound product 4. rename the base products 5. append base products to products list''' #Input # reactant_ids_elements_I = [{met_id:elements},...] # base_reactant_positions_I = [{met_id_reactant:position},...] #Note: must be listed in order (positions of the reactant to be partitioned) # base_reactant_indices_I = [{met_id_product:position in base_reactants_ids},...] #Note: must be listed in order (positions of the reactant to be partitioned) # index referes to the position of the base met_id in the reactant to be partitioned # compound_product_id_I = met_id # base_product_ids_elements_I = [{met_id:elements},...] #Note: must be listed in order # base_product_ids_O = [met_id_new,...] #Note: must be listed in order imm = stage02_isotopomer_metaboliteMapping(); imm_product = stage02_isotopomer_metaboliteMapping(); # initialize the structure to track the base_met_ids reactant_ids_all = []; for k in self.reactionMapping['reactants_ids_tracked']: reactant_ids_all.append(k); reactant_ids_unique = list(set(reactant_ids_all)) reactant_ids_cnt = {}; for reactant_id in reactant_ids_unique: reactant_ids_cnt[reactant_id] = 0; for reactant_id in reactant_ids_all: reactant_ids_cnt[reactant_id]+=1; # initialize the count for unique base_met_ids reactants_base_met_ids = []; reactants_base_indices = []; for cnt,mm in enumerate(self.reactionMapping['reactants_metaboliteMappings']): reactants_base_met_ids.extend(mm.metaboliteMapping['base_met_ids']) reactants_base_indices.extend(self.reactionMapping['reactants_metaboliteMappings'][cnt].metaboliteMapping['base_met_indices']) reactants_base_met_ids_I = []; # get unique reactants_base_met_ids reactants_base_met_ids_unique = list(set(reactants_base_met_ids)); reactants_base_met_ids_cnt = {}; for base_met_id in reactants_base_met_ids_unique: reactants_base_met_ids_cnt[base_met_id]=0; for cnt,base_met_id in enumerate(reactants_base_met_ids): reactants_base_met_ids_cnt[base_met_id]=reactants_base_indices[cnt]+1 # make the reactants mapping imm_product.metaboliteMapping['mapping_id'] = mapping_id_I imm_product.metaboliteMapping['base_met_ids']=[]; imm_product.metaboliteMapping['base_met_elements']=[]; imm_product.metaboliteMapping['base_met_atompositions']=[]; imm_product.metaboliteMapping['base_met_symmetry_elements']=[]; imm_product.metaboliteMapping['base_met_symmetry_atompositions']=[]; imm_product.metaboliteMapping['base_met_indices']=[]; # initialize the counter the input matched_cnt = 0; for row_cnt,row in enumerate(reactant_ids_elements_I): for k,v in row.items(): # initialize new metabolites if not k in list(reactant_ids_cnt.keys()): reactant_ids_cnt[k]=0 # make the metabolite mapping imm.make_trackedMetabolite(mapping_id_I,model_id_I,{k:v},reactant_ids_cnt[k]); #update the counter for unique met_ids reactant_ids_cnt[k]+=1 # update base_metabolites from the database for reactant that will be partitioned base_found = False; if matched_cnt < len(base_reactant_positions_I): for k1,v1 in base_reactant_positions_I[matched_cnt].items(): #there will be only 1 key-value pair if k1 == k and row_cnt == v1: imm.get_baseMetabolites(); imm.update_trackedMetabolite_fromBaseMetabolites(model_id_I); base_found = True; break; # assign new indices for each base metabolite based on the current indices in the reactants base_met_indices_tmp = copy(imm.metaboliteMapping['base_met_indices']); for cnt1,met_id1 in enumerate(imm.metaboliteMapping['base_met_ids']): # initialize new base metabolites if not met_id1 in list(reactants_base_met_ids_cnt.keys()): reactants_base_met_ids_cnt[met_id1]=0; # assign the next current base_metabolite_index imm.metaboliteMapping['base_met_indices'][cnt1]=reactants_base_met_ids_cnt[met_id1] # update the base_reactant_indices_I if the corresponding base_met_index was changed if matched_cnt < len(base_reactant_positions_I): for k1,v1 in base_reactant_positions_I[matched_cnt].items(): #there will be only 1 key-value pair if k1 == k and row_cnt == v1: # does the met_id and position in the reactant list match? for k2,v2 in base_reactant_indices_I[matched_cnt].items(): if k2==met_id1 and v2==base_met_indices_tmp[cnt1]: # does the base_met_id and previous index match? base_reactant_indices_I[matched_cnt][k2]=imm.metaboliteMapping['base_met_indices'][cnt1]; reactants_base_met_ids_cnt[met_id1]+=1; # update counter for matched input if base_found: matched_cnt+=1; # update met_mapping imm.update_trackedMetabolite_fromBaseMetabolites(model_id_I); # add in the new metaboliteMapping information self.reactionMapping['reactants_elements_tracked'].append(imm.metaboliteMapping['met_elements']); self.reactionMapping['reactants_positions_tracked'].append(imm.metaboliteMapping['met_atompositions']); self.reactionMapping['reactants_mapping'].append(imm.convert_arrayMapping2StringMapping()); self.reactionMapping['reactants_stoichiometry_tracked'].append(-1.0); self.reactionMapping['reactants_ids_tracked'].append(k); self.reactionMapping['reactants_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); self.reactants_base_met_ids.extend(imm.metaboliteMapping['base_met_ids']); self.reactants_base_met_elements.extend(imm.metaboliteMapping['base_met_elements']); self.reactants_base_met_atompositions.extend(imm.metaboliteMapping['base_met_atompositions']); #self.reactants_base_met_symmetry_elements.extend(imm.metaboliteMapping['base_met_symmetry_elements']); #self.reactants_base_met_symmetry_atompositions.extend(imm.metaboliteMapping['base_met_symmetry_atompositions']); self.reactants_base_met_indices.extend(imm.metaboliteMapping['base_met_indices']); # copy out all of the base information for the product imm_product.metaboliteMapping['base_met_ids'].extend(imm.metaboliteMapping['base_met_ids']); imm_product.metaboliteMapping['base_met_elements'].extend(imm.metaboliteMapping['base_met_elements']); imm_product.metaboliteMapping['base_met_atompositions'].extend(imm.metaboliteMapping['base_met_atompositions']); #imm_product.metaboliteMapping['base_met_symmetry_elements'].extend(imm.metaboliteMapping['base_met_symmetry_elements']); #imm_product.metaboliteMapping['base_met_symmetry_atompositions'].extend(imm.metaboliteMapping['base_met_symmetry_atompositions']); imm_product.metaboliteMapping['base_met_indices'].extend(imm.metaboliteMapping['base_met_indices']); # imm.clear_metaboliteMapping() # make the initial compound product mapping imm_product.update_trackedMetabolite_fromBaseMetabolites(model_id_I) imm_product.metaboliteMapping['met_id']=compound_product_id_I; # extract out the products from the compound product base_products = []; for cnt,row in enumerate(base_product_ids_elements_I): for k,v in row.items(): base_products.append(imm_product.extract_baseMetabolite_fromMetabolite(model_id_I,{k:v},base_reactant_indices_I[cnt][k])); # remove the base_products from the compound product for cnt,row in enumerate(base_product_ids_elements_I): for k,v in row.items(): imm_product.remove_baseMetabolite_fromMetabolite(model_id_I,{k:v},met_id_O=compound_product_id_I,met_index_I=base_reactant_indices_I[cnt][k]); # make the final products if compound_product_id_I: imm_final_products = [imm_product]; else: imm_final_products = []; for d in base_products: imm_final_products.append(d); if compound_product_id_I: imm_final_products_ids = [compound_product_id_I]; else: imm_final_products_ids = []; for id in base_product_ids_O: imm_final_products_ids.append(id); for cnt,d in enumerate(imm_final_products): self.reactionMapping['products_elements_tracked'].append(d.metaboliteMapping['met_elements']); self.reactionMapping['products_positions_tracked'].append(d.metaboliteMapping['met_atompositions']); self.reactionMapping['products_mapping'].append(d.convert_arrayMapping2StringMapping()); self.reactionMapping['products_stoichiometry_tracked'].append(1.0); self.reactionMapping['products_ids_tracked'].append(imm_final_products_ids[cnt]); self.reactionMapping['products_metaboliteMappings'].append(copy(d.copy_metaboliteMapping())); # save the reaction self.reactionMapping['mapping_id']=mapping_id_I self.reactionMapping['rxn_id']=rxn_id_I self.reactionMapping['rxn_description']=None self.reactionMapping['rxn_equation']=None self.reactionMapping['used_']=True self.reactionMapping['comment_']=None def make_trackedCompoundReaction_fromMetaboliteMappings(self,mapping_id_I,model_id_I,rxn_id_I,reactant_metaboliteMappings_I,base_reactant_positions_I,base_reactant_indices_I,compound_product_id_I,base_product_ids_elements_I,base_product_ids_O): '''Make a compound tracked reaction 1. make compound product 2. remove specified base products from compound product 3. update the compound product 4. rename the base products 5. append base products to products list''' #Input # reactant_metaboliteMappings_I = [mm_1,mm_2,...] # base_reactant_positions_I = [{met_id_reactant:position},...] #Note: must be listed in order (positions of the reactant to be partitioned) # base_reactant_indices_I = [{met_id_product:position in base_reactants_ids},...] #Note: must be listed in order (positions of the reactant to be partitioned) # index referes to the position of the base met_id in the reactant to be partitioned # compound_product_id_I = met_id # base_product_ids_elements_I = [{met_id:elements},...] #Note: must be listed in order # base_product_ids_O = [met_id_new,...] #Note: must be listed in order imm_product = stage02_isotopomer_metaboliteMapping(); # initialize the structure to track the base_met_ids reactant_ids_all = []; for k in self.reactionMapping['reactants_ids_tracked']: reactant_ids_all.append(k); reactant_ids_unique = list(set(reactant_ids_all)) reactant_ids_cnt = {}; for reactant_id in reactant_ids_unique: reactant_ids_cnt[reactant_id] = 0; for reactant_id in reactant_ids_all: reactant_ids_cnt[reactant_id]+=1; # initialize the count for unique base_met_ids reactants_base_met_ids = []; reactants_base_indices = []; for cnt,mm in enumerate(self.reactionMapping['reactants_metaboliteMappings']): reactants_base_met_ids.extend(mm.metaboliteMapping['base_met_ids']) reactants_base_indices.extend(self.reactionMapping['reactants_metaboliteMappings'][cnt].metaboliteMapping['base_met_indices']) reactants_base_met_ids_I = []; # get unique reactants_base_met_ids reactants_base_met_ids_unique = list(set(reactants_base_met_ids)); reactants_base_met_ids_cnt = {}; for base_met_id in reactants_base_met_ids_unique: reactants_base_met_ids_cnt[base_met_id]=0; for cnt,base_met_id in enumerate(reactants_base_met_ids): reactants_base_met_ids_cnt[base_met_id]=reactants_base_indices[cnt]+1 # make the reactants mapping imm_product.metaboliteMapping['mapping_id'] = mapping_id_I imm_product.metaboliteMapping['base_met_ids']=[]; imm_product.metaboliteMapping['base_met_elements']=[]; imm_product.metaboliteMapping['base_met_atompositions']=[]; imm_product.metaboliteMapping['base_met_symmetry_elements']=[]; imm_product.metaboliteMapping['base_met_symmetry_atompositions']=[]; imm_product.metaboliteMapping['base_met_indices']=[]; # initialize the counter the input matched_cnt = 0; for row_cnt,imm in enumerate(reactant_metaboliteMappings_I): # initialize new metabolites if not imm.metaboliteMapping['met_id'] in list(reactant_ids_cnt.keys()): reactant_ids_cnt[imm.metaboliteMapping['met_id']]=0 # make the metabolite mapping #update the counter for unique met_ids reactant_ids_cnt[imm.metaboliteMapping['met_id']]+=1 # update base_metabolites from the database for reactant that will be partitioned base_found = False; if matched_cnt < len(base_reactant_positions_I): for k1,v1 in base_reactant_positions_I[matched_cnt].items(): #there will be only 1 key-value pair if k1 == imm.metaboliteMapping['met_id'] and row_cnt == v1: base_found = True; break; # assign new indices for each base metabolite based on the current indices in the reactants base_met_indices_tmp = copy(imm.metaboliteMapping['base_met_indices']); for cnt1,met_id1 in enumerate(imm.metaboliteMapping['base_met_ids']): # initialize new base metabolites if not met_id1 in list(reactants_base_met_ids_cnt.keys()): reactants_base_met_ids_cnt[met_id1]=0; # assign the next current base_metabolite_index imm.metaboliteMapping['base_met_indices'][cnt1]=reactants_base_met_ids_cnt[met_id1] # update the base_reactant_indices_I if the corresponding base_met_index was changed if matched_cnt < len(base_reactant_positions_I): for k1,v1 in base_reactant_positions_I[matched_cnt].items(): #there will be only 1 key-value pair if k1 == imm.metaboliteMapping['met_id'] and row_cnt == v1: # does the met_id and position in the reactant list match? for k2,v2 in base_reactant_indices_I[matched_cnt].items(): if k2==met_id1 and v2==base_met_indices_tmp[cnt1]: # does the base_met_id and previous index match? base_reactant_indices_I[matched_cnt][k2]=imm.metaboliteMapping['base_met_indices'][cnt1]; reactants_base_met_ids_cnt[met_id1]+=1; # update counter for matched input if base_found: matched_cnt+=1; # update met_mapping imm.update_trackedMetabolite_fromBaseMetabolites(model_id_I); # add in the new metaboliteMapping information self.reactionMapping['reactants_elements_tracked'].append(imm.metaboliteMapping['met_elements']); self.reactionMapping['reactants_positions_tracked'].append(imm.metaboliteMapping['met_atompositions']); self.reactionMapping['reactants_mapping'].append(imm.convert_arrayMapping2StringMapping()); self.reactionMapping['reactants_stoichiometry_tracked'].append(-1.0); self.reactionMapping['reactants_ids_tracked'].append(imm.metaboliteMapping['met_id']); self.reactionMapping['reactants_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); self.reactants_base_met_ids.extend(imm.metaboliteMapping['base_met_ids']); self.reactants_base_met_elements.extend(imm.metaboliteMapping['base_met_elements']); self.reactants_base_met_atompositions.extend(imm.metaboliteMapping['base_met_atompositions']); #self.reactants_base_met_symmetry_elements.extend(imm.metaboliteMapping['base_met_symmetry_elements']); #self.reactants_base_met_symmetry_atompositions.extend(imm.metaboliteMapping['base_met_symmetry_atompositions']); self.reactants_base_met_indices.extend(imm.metaboliteMapping['base_met_indices']); # copy out all of the base information for the product imm_product.metaboliteMapping['base_met_ids'].extend(imm.metaboliteMapping['base_met_ids']); imm_product.metaboliteMapping['base_met_elements'].extend(imm.metaboliteMapping['base_met_elements']); imm_product.metaboliteMapping['base_met_atompositions'].extend(imm.metaboliteMapping['base_met_atompositions']); #imm_product.metaboliteMapping['base_met_symmetry_elements'].extend(imm.metaboliteMapping['base_met_symmetry_elements']); #imm_product.metaboliteMapping['base_met_symmetry_atompositions'].extend(imm.metaboliteMapping['base_met_symmetry_atompositions']); imm_product.metaboliteMapping['base_met_indices'].extend(imm.metaboliteMapping['base_met_indices']); # make the initial compound product mapping imm_product.update_trackedMetabolite_fromBaseMetabolites(model_id_I) imm_product.metaboliteMapping['met_id']=compound_product_id_I; # extract out the products from the compound product base_products = []; for cnt,row in enumerate(base_product_ids_elements_I): for k,v in row.items(): base_products.append(imm_product.extract_baseMetabolite_fromMetabolite(model_id_I,{k:v},base_reactant_indices_I[cnt][k])); # remove the base_products from the compound product for cnt,row in enumerate(base_product_ids_elements_I): for k,v in row.items(): imm_product.remove_baseMetabolite_fromMetabolite(model_id_I,{k:v},met_id_O=compound_product_id_I,met_index_I=base_reactant_indices_I[cnt][k]); # make the final products if compound_product_id_I: imm_final_products = [imm_product]; else: imm_final_products = []; for d in base_products: imm_final_products.append(d); if compound_product_id_I: imm_final_products_ids = [compound_product_id_I]; else: imm_final_products_ids = []; for id in base_product_ids_O: imm_final_products_ids.append(id); for cnt,d in enumerate(imm_final_products): self.reactionMapping['products_elements_tracked'].append(d.metaboliteMapping['met_elements']); self.reactionMapping['products_positions_tracked'].append(d.metaboliteMapping['met_atompositions']); self.reactionMapping['products_mapping'].append(d.convert_arrayMapping2StringMapping()); self.reactionMapping['products_stoichiometry_tracked'].append(1.0); self.reactionMapping['products_ids_tracked'].append(imm_final_products_ids[cnt]); self.reactionMapping['products_metaboliteMappings'].append(copy(d.copy_metaboliteMapping())); # save the reaction self.reactionMapping['mapping_id']=mapping_id_I self.reactionMapping['rxn_id']=rxn_id_I self.reactionMapping['rxn_description']=None self.reactionMapping['rxn_equation']=None self.reactionMapping['used_']=True self.reactionMapping['comment_']=None def make_trackedUnitaryReactions(self,mapping_id_I,model_id_I,rxn_id_I,reactant_ids_elements_I,product_ids_I): '''Make a unitary reaction of the form aA = bB where the coefficient a = b''' #Input # reactant_ids_elements_I = [{met_id:elements},] # product_ids_elements_I = [met_id,...] # check input if len(reactant_ids_elements_I)!=len(product_ids_I): print("length of reactants_ids does not match the length of products_ids"); return; imm = stage02_isotopomer_metaboliteMapping(); # get unique met_ids reactant_ids_all = []; for row in reactant_ids_elements_I: for k,v in row.items(): reactant_ids_all.append(k); reactant_ids_unique = list(set(reactant_ids_all)) reactant_ids_cnt = {}; for reactant_id in reactant_ids_unique: reactant_ids_cnt[reactant_id] = 0; # make the reactants mapping reactants_stoichiometry_tracked_O = []; reactants_ids_tracked_O = []; reactants_elements_tracked_O = []; reactants_positions_tracked_O = []; reactants_mapping_O = []; reactants_metaboliteMappings_O = []; for row in reactant_ids_elements_I: for k,v in row.items(): imm.make_trackedMetabolite(mapping_id_I,model_id_I,{k:v},reactant_ids_cnt[k]); reactants_elements_tracked_O.append(imm.metaboliteMapping['met_elements']); reactants_positions_tracked_O.append(imm.metaboliteMapping['met_atompositions']); reactants_mapping_O.append(imm.convert_arrayMapping2StringMapping()); reactants_stoichiometry_tracked_O.append(-abs(1)); reactants_ids_tracked_O.append(k); reactants_metaboliteMappings_O.append(copy(imm.copy_metaboliteMapping())); imm.clear_metaboliteMapping() reactant_ids_cnt[k]+=1 # make the products mapping products_stoichiometry_tracked_O = []; products_ids_tracked_O = []; products_elements_tracked_O = []; products_positions_tracked_O = []; products_mapping_O = []; products_metaboliteMappings_O = []; for product_cnt,product in enumerate(product_ids_I): products_elements_tracked_O.append(reactants_elements_tracked_O[product_cnt]); products_positions_tracked_O.append(reactants_positions_tracked_O[product_cnt]); products_mapping_O.append(reactants_mapping_O[product_cnt]); products_stoichiometry_tracked_O.append(abs(reactants_stoichiometry_tracked_O[product_cnt])); products_ids_tracked_O.append(product); imm_tmp = copy(reactants_metaboliteMappings_O[product_cnt].copy_metaboliteMapping()); imm_tmp.metaboliteMapping['met_id']=product; # change the name products_metaboliteMappings_O.append(imm_tmp); # save the reaction self.reactionMapping['mapping_id']=mapping_id_I self.reactionMapping['rxn_id']=rxn_id_I self.reactionMapping['rxn_description']=None self.reactionMapping['reactants_stoichiometry_tracked']=reactants_stoichiometry_tracked_O self.reactionMapping['products_stoichiometry_tracked']=products_stoichiometry_tracked_O self.reactionMapping['reactants_ids_tracked']=reactants_ids_tracked_O self.reactionMapping['products_ids_tracked']=products_ids_tracked_O self.reactionMapping['reactants_elements_tracked']=reactants_elements_tracked_O self.reactionMapping['products_elements_tracked']=products_elements_tracked_O self.reactionMapping['reactants_positions_tracked']=reactants_positions_tracked_O self.reactionMapping['products_positions_tracked']=products_positions_tracked_O self.reactionMapping['reactants_mapping']=reactants_mapping_O self.reactionMapping['products_mapping']=products_mapping_O self.reactionMapping['rxn_equation']=None self.reactionMapping['used_']=True self.reactionMapping['comment_']=None self.reactionMapping['reactants_metaboliteMappings']=reactants_metaboliteMappings_O self.reactionMapping['products_metaboliteMappings']=products_metaboliteMappings_O def make_reverseReaction(self,rxn_id_I=None): '''Make the reverse of the current reaction''' forward_reactionMapping = {} forward_reactionMapping['mapping_id']=self.reactionMapping['mapping_id'] forward_reactionMapping['rxn_id']=self.reactionMapping['rxn_id'] forward_reactionMapping['rxn_description']=self.reactionMapping['rxn_description'] forward_reactionMapping['reactants_stoichiometry_tracked']=self.reactionMapping['reactants_stoichiometry_tracked'] forward_reactionMapping['products_stoichiometry_tracked']=self.reactionMapping['products_stoichiometry_tracked'] forward_reactionMapping['reactants_ids_tracked']=self.reactionMapping['reactants_ids_tracked'] forward_reactionMapping['products_ids_tracked']=self.reactionMapping['products_ids_tracked'] forward_reactionMapping['reactants_elements_tracked']=self.reactionMapping['reactants_elements_tracked'] forward_reactionMapping['products_elements_tracked']=self.reactionMapping['products_elements_tracked'] forward_reactionMapping['reactants_positions_tracked']=self.reactionMapping['reactants_positions_tracked'] forward_reactionMapping['products_positions_tracked']=self.reactionMapping['products_positions_tracked'] forward_reactionMapping['reactants_mapping']=self.reactionMapping['reactants_mapping'] forward_reactionMapping['products_mapping']=self.reactionMapping['products_mapping'] forward_reactionMapping['rxn_equation']=self.reactionMapping['rxn_equation'] forward_reactionMapping['used_']=self.reactionMapping['used_'] forward_reactionMapping['comment_']=self.reactionMapping['comment_'] forward_reactionMapping['reactants_metaboliteMappings']=self.reactionMapping['reactants_metaboliteMappings'] forward_reactionMapping['products_metaboliteMappings']=self.reactionMapping['products_metaboliteMappings'] reverse_reactionMapping = {} reverse_reactionMapping['mapping_id']=self.reactionMapping['mapping_id'] if rxn_id_I: reverse_reactionMapping['rxn_id']=rxn_id_I else: reverse_reactionMapping['rxn_id']=self.reactionMapping['rxn_id'] reverse_reactionMapping['rxn_description']=self.reactionMapping['rxn_description'] reverse_reactionMapping['reactants_stoichiometry_tracked']=[-s for s in self.reactionMapping['products_stoichiometry_tracked']] reverse_reactionMapping['products_stoichiometry_tracked']=[-s for s in self.reactionMapping['reactants_stoichiometry_tracked']] reverse_reactionMapping['reactants_ids_tracked']=self.reactionMapping['products_ids_tracked'] reverse_reactionMapping['products_ids_tracked']=self.reactionMapping['reactants_ids_tracked'] reverse_reactionMapping['reactants_elements_tracked']=self.reactionMapping['products_elements_tracked'] reverse_reactionMapping['products_elements_tracked']=self.reactionMapping['reactants_elements_tracked'] reverse_reactionMapping['reactants_positions_tracked']=self.reactionMapping['products_positions_tracked'] reverse_reactionMapping['products_positions_tracked']=self.reactionMapping['reactants_positions_tracked'] reverse_reactionMapping['reactants_mapping']=self.reactionMapping['products_mapping'] reverse_reactionMapping['products_mapping']=self.reactionMapping['reactants_mapping'] reverse_reactionMapping['rxn_equation']=self.reactionMapping['rxn_equation'] reverse_reactionMapping['used_']=self.reactionMapping['used_'] reverse_reactionMapping['comment_']=self.reactionMapping['comment_'] reverse_reactionMapping['reactants_metaboliteMappings']=self.reactionMapping['products_metaboliteMappings'] reverse_reactionMapping['products_metaboliteMappings']=self.reactionMapping['reactants_metaboliteMappings'] self.reactionMapping = reverse_reactionMapping; def add_reactionMapping(self, mapping_id_I=None, rxn_id_I=None, rxn_description_I=None, reactants_stoichiometry_tracked_I=[], products_stoichiometry_tracked_I=[], reactants_ids_tracked_I=[], products_ids_tracked_I=[], reactants_elements_tracked_I=[], products_elements_tracked_I=[], reactants_positions_tracked_I=[], products_positions_tracked_I=[], reactants_mapping_I=[], products_mapping_I=[], rxn_equation_I=None, used__I=None, comment__I=None): if mapping_id_I: self.reactionMapping['mapping_id']=mapping_id_I if rxn_id_I: self.reactionMapping['rxn_id']=rxn_id_I if rxn_description_I: self.reactionMapping['rxn_description']=rxn_description_I if reactants_stoichiometry_tracked_I: self.reactionMapping['reactants_stoichiometry_tracked']=reactants_stoichiometry_tracked_I if products_stoichiometry_tracked_I: self.reactionMapping['products_stoichiometry_tracked']=products_stoichiometry_tracked_I if reactants_ids_tracked_I: self.reactionMapping['reactants_ids_tracked']=reactants_ids_tracked_I if products_ids_tracked_I: self.reactionMapping['products_ids_tracked']=products_ids_tracked_I if reactants_elements_tracked_I: self.reactionMapping['reactants_elements_tracked']=reactants_elements_tracked_I if products_elements_tracked_I: self.reactionMapping['products_elements_tracked']=products_elements_tracked_I if reactants_positions_tracked_I: self.reactionMapping['reactants_positions_tracked']=reactants_positions_tracked_I if products_positions_tracked_I: self.reactionMapping['products_positions_tracked']=products_positions_tracked_I if reactants_mapping_I: self.reactionMapping['reactants_mapping']=reactants_mapping_I if products_mapping_I: self.reactionMapping['products_mapping']=products_mapping_I if rxn_equation_I: self.reactionMapping['rxn_equation']=rxn_equation_I if used__I: self.reactionMapping['used_']=used__I if comment__I: self.reactionMapping['comment_']=comment__I # add data to the database self.stage02_isotopomer_query.add_data_dataStage02IsotopomerAtomMappingReactions([self.reactionMapping]) def add_productMapping(self,product_ids_I): '''Add newly made products to the atomMappingMetabolite table for future use''' for product in self.reactionMapping['products_metaboliteMappings']: if product.metaboliteMapping['met_id'] in product_ids_I: product.add_metaboliteMapping(); def update_productMapping(self,product_ids_I): '''Update newly made products to the atomMappingMetabolite table for future use''' for product in self.reactionMapping['products_metaboliteMappings']: if product.metaboliteMapping['met_id'] in product_ids_I: product.update_metaboliteMapping(); def update_reactionMapping(self, mapping_id_I=None, rxn_id_I=None, rxn_description_I=None, reactants_stoichiometry_tracked_I=[], products_stoichiometry_tracked_I=[], reactants_ids_tracked_I=[], products_ids_tracked_I=[], reactants_elements_tracked_I=[], products_elements_tracked_I=[], reactants_positions_tracked_I=[], products_positions_tracked_I=[], reactants_mapping_I=[], products_mapping_I=[], rxn_equation_I=None, used__I=None, comment__I=None): if mapping_id_I: self.reactionMapping['mapping_id']=mapping_id_I if rxn_id_I: self.reactionMapping['rxn_id']=rxn_id_I if rxn_description_I: self.reactionMapping['rxn_description']=rxn_description_I if reactants_stoichiometry_tracked_I: self.reactionMapping['reactants_stoichiometry_tracked']=reactants_stoichiometry_tracked_I if products_stoichiometry_tracked_I: self.reactionMapping['products_stoichiometry_tracked']=products_stoichiometry_tracked_I if reactants_ids_tracked_I: self.reactionMapping['reactants_ids_tracked']=reactants_ids_tracked_I if products_ids_tracked_I: self.reactionMapping['products_ids_tracked']=products_ids_tracked_I if reactants_elements_tracked_I: self.reactionMapping['reactants_elements_tracked']=reactants_elements_tracked_I if products_elements_tracked_I: self.reactionMapping['products_elements_tracked']=products_elements_tracked_I if reactants_positions_tracked_I: self.reactionMapping['reactants_positions_tracked']=reactants_positions_tracked_I if products_positions_tracked_I: self.reactionMapping['products_positions_tracked']=products_positions_tracked_I if reactants_mapping_I: self.reactionMapping['reactants_mapping']=reactants_mapping_I if products_mapping_I: self.reactionMapping['products_mapping']=products_mapping_I if rxn_equation_I: self.reactionMapping['rxn_equation']=rxn_equation_I if used__I: self.reactionMapping['used_']=used__I if comment__I: self.reactionMapping['comment_']=comment__I self.stage02_isotopomer_query.update_rows_dataStage02IsotopomerAtomMappingReactions([self.reactionMapping]); def get_reactionMapping(self,mapping_id_I,rxn_id_I): row = {}; row = self.stage02_isotopomer_query.get_row_mappingIDAndRxnID_dataStage02IsotopomerAtomMappingReactions(mapping_id_I,rxn_id_I); self.reactionMapping = row; self.reactionMapping['reactants_metaboliteMappings']=[] self.reactionMapping['products_metaboliteMappings']=[] self.make_reactantsAndProductsMetaboliteMappings(); def make_reactantsAndProductsMetaboliteMappings(self,reactionMapping_I=None): '''Make reactants and products metabolite mapping from atomMappingReaction information''' #Input: # reactionMapping_I = row of atomMappingReactions # default: None, user current self if reactionMapping_I: reactionMapping_tmp = reactionMapping_I; else: reactionMapping_tmp = self.reactionMapping; for cnt,met in enumerate(reactionMapping_tmp['reactants_ids_tracked']): imm = stage02_isotopomer_metaboliteMapping(mapping_id_I=reactionMapping_tmp['mapping_id'], met_id_I=met, met_elements_I=reactionMapping_tmp['reactants_elements_tracked'][cnt], met_atompositions_I=reactionMapping_tmp['reactants_positions_tracked'][cnt], met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=reactionMapping_tmp['reactants_mapping'][cnt], base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]); self.reactionMapping['reactants_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); for cnt,met in enumerate(reactionMapping_tmp['products_ids_tracked']): imm = stage02_isotopomer_metaboliteMapping(mapping_id_I=reactionMapping_tmp['mapping_id'], met_id_I=met, met_elements_I=reactionMapping_tmp['products_elements_tracked'][cnt], met_atompositions_I=reactionMapping_tmp['products_positions_tracked'][cnt], met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=reactionMapping_tmp['products_mapping'][cnt], base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]); self.reactionMapping['products_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); def clear_reactionMapping(self): self.reactionMapping={} self.reactionMapping['mapping_id']=None self.reactionMapping['rxn_id']=None self.reactionMapping['rxn_description']=None self.reactionMapping['reactants_stoichiometry_tracked']=[] self.reactionMapping['products_stoichiometry_tracked']=[] self.reactionMapping['reactants_ids_tracked']=[] self.reactionMapping['products_ids_tracked']=[] self.reactionMapping['reactants_elements_tracked']=[] self.reactionMapping['products_elements_tracked']=[] self.reactionMapping['reactants_positions_tracked']=[] self.reactionMapping['products_positions_tracked']=[] self.reactionMapping['reactants_mapping']=[] self.reactionMapping['products_mapping']=[] self.reactionMapping['rxn_equation']=None self.reactionMapping['used_']=True self.reactionMapping['comment_']=None self.reactionMapping['reactants_metaboliteMappings']=[] self.reactionMapping['products_metaboliteMappings']=[] self.reactants_base_met_ids=[]; self.reactants_base_met_elements=[]; self.reactants_base_met_atompositions=[]; self.reactants_base_met_symmetry_elements=[]; self.reactants_base_met_symmetry_atompositions=[]; self.reactants_base_met_indices=[]; self.products_base_met_ids=[]; self.products_base_met_elements=[]; self.products_base_met_atompositions=[]; self.products_base_met_symmetry_elements=[]; self.products_base_met_symmetry_atompositions=[]; self.products_base_met_indices=[]; def checkAndCorrect_elementsAndPositions(self): '''Check that the reactant/product elements/positions are consistent with the reactants/products ids_tracked; if they are not, correct them''' # check that elements/positions are initialized if not self.reactionMapping['reactants_elements_tracked']: self.reactionMapping['reactants_elements_tracked']=[]; for cnt,reactant_id in enumerate(self.reactionMapping['reactants_ids_tracked']): self.reactionMapping['reactants_elements_tracked'].append([]); if not self.reactionMapping['reactants_positions_tracked']: self.reactionMapping['reactants_positions_tracked']=[]; for cnt,reactant_id in enumerate(self.reactionMapping['reactants_ids_tracked']): self.reactionMapping['reactants_positions_tracked'].append([]); # check that the length of the elements/positions match the length of the ids_tracked #TODO... # check each elements/positions for cnt,reactant_id in enumerate(self.reactionMapping['reactants_ids_tracked']): # get the metabolite data from the database met_data = {} met_data = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(self.reactionMapping['mapping_id'],reactant_id); if len(met_data['met_elements'])!=len(self.reactionMapping['reactants_elements_tracked'][cnt]): self.reactionMapping['reactants_elements_tracked'][cnt]=met_data['met_elements']; if len(met_data['met_atompositions'])!=len(self.reactionMapping['reactants_positions_tracked'][cnt]): self.reactionMapping['reactants_positions_tracked'][cnt]=met_data['met_atompositions']; # check that elements/positions are initialized if not self.reactionMapping['products_elements_tracked']: self.reactionMapping['products_elements_tracked']=[]; for cnt,product_id in enumerate(self.reactionMapping['products_ids_tracked']): self.reactionMapping['products_elements_tracked'].append([]); if not self.reactionMapping['products_positions_tracked']: self.reactionMapping['products_positions_tracked']=[]; for cnt,product_id in enumerate(self.reactionMapping['products_ids_tracked']): self.reactionMapping['products_positions_tracked'].append([]); # check that the length of the elements/positions match the length of the ids_tracked #TODO... # check each elements/positions for cnt,product_id in enumerate(self.reactionMapping['products_ids_tracked']): # get the metabolite data from the database met_data = {} met_data = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(self.reactionMapping['mapping_id'],product_id); if len(met_data['met_elements'])!=len(self.reactionMapping['products_elements_tracked'][cnt]): self.reactionMapping['products_elements_tracked'][cnt]=met_data['met_elements']; if len(met_data['met_atompositions'])!=len(self.reactionMapping['products_positions_tracked'][cnt]): self.reactionMapping['products_positions_tracked'][cnt]=met_data['met_atompositions']; def add_balanceProducts(self,unbalanced_met_I=None,unbalanced_met_position_I=None,unbalanced_met_positions_tracked_I=[],make_lumped_unbalanced_met_I=False,make_unique_unbalanced_mets_I=True): '''Add psuedo metabolites to the product in order to elementally balance the tracked reaction''' #Input: # unbalanced_met_I = reactant_id that is not elementally balanced # unbalanced_met_position_I = position of the reactant_id in the reactants_list # unbalanced_met_positions_tracked_I = positions of the elements that are not elementally balanced # make_lumped_unbalanced_met_I = boolean, # automatically detect mappings that are not elementally balanced and make an unbalanced product metabolite to balance all elementally unbalanced reactants # NOTE: does not work if the stoichiometry of all unbalanced reactants are not 1 # make_unique_unbalanced_mets_I = boolean, # automatically detect mappings/metabolites that are not elementally balanced and makes unbalanced product mappings/metabolites to balance each elementally unbalanced reactant mapping/metabolite if make_lumped_unbalanced_met_I: #TODO: check that all unbalanced reactants have a stoichiometry of 1 balance_met = self.reactionMapping['rxn_id'] + '_' + 'balance_c' + '.balance'; reactants_mappings = []; #list of a list products_mappings = []; #list # extract out reactants and products mappings for imm in self.reactionMapping['reactants_metaboliteMappings']: reactant_mapping=[]; reactant_mapping = imm.convert_stringMapping2ArrayMapping(); reactants_mappings.append(reactant_mapping); for imm in self.reactionMapping['products_metaboliteMappings']: product_mapping=[]; product_mapping = imm.convert_stringMapping2ArrayMapping(); products_mappings.extend(product_mapping); # find unbalanced reactant_mappings and # make the product mapping, positions, and elements product_mapping = []; product_positions_tracked = []; product_elements_tracked = []; product_cnt = 0; for reactant_cnt,reactants_mapping in enumerate(reactants_mappings): for element_cnt,reactant_mapping in enumerate(reactants_mapping): if not reactant_mapping in products_mappings: product_mapping.append(reactant_mapping); product_elements_tracked.append(self.reactionMapping['reactants_elements_tracked'][reactant_cnt][element_cnt]); product_positions_tracked.append(product_cnt); product_cnt += 1; imm = stage02_isotopomer_metaboliteMapping(mapping_id_I=self.reactionMapping['mapping_id'], met_id_I=balance_met, met_elements_I=product_elements_tracked, met_atompositions_I=product_positions_tracked, met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=product_mapping, base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]); # add balance metabolite to the products self.reactionMapping['products_ids_tracked'].append(balance_met); self.reactionMapping['products_mapping'].append(imm.convert_arrayMapping2StringMapping()); self.reactionMapping['products_positions_tracked'].append(product_positions_tracked); self.reactionMapping['products_stoichiometry_tracked'].append(1); self.reactionMapping['products_elements_tracked'].append(product_elements_tracked); self.reactionMapping['products_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); elif make_unique_unbalanced_mets_I: products_mappings = []; #list # extract out products mappings for imm in self.reactionMapping['products_metaboliteMappings']: product_mapping=[]; product_mapping = imm.convert_stringMapping2ArrayMapping(); products_mappings.extend(product_mapping); # check each reactant mapping/metabolite for reactant_pos,imm in enumerate(self.reactionMapping['reactants_metaboliteMappings']): reactant_mapping=[]; reactant_mapping = imm.convert_stringMapping2ArrayMapping(); # find missing mappings product_mapping = []; product_positions_tracked = []; product_elements_tracked = []; balance_met = None; product_cnt = 0; for mapping_pos,mapping in enumerate(reactant_mapping): if mapping not in products_mappings: balance_met = self.reactionMapping['rxn_id'] + '_' + self.reactionMapping['reactants_ids_tracked'][reactant_pos] + '_' + str(reactant_pos) + '.balance'; product_mapping.append(mapping); #product_positions_tracked.append(self.reactionMapping['reactants_positions_tracked'][reactant_pos][mapping_pos]); product_positions_tracked.append(product_cnt); product_elements_tracked.append(self.reactionMapping['reactants_elements_tracked'][reactant_pos][mapping_pos]); product_cnt += 1; if balance_met: imm = stage02_isotopomer_metaboliteMapping(mapping_id_I=self.reactionMapping['mapping_id'], met_id_I=balance_met, met_elements_I=product_elements_tracked, met_atompositions_I=product_positions_tracked, met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=product_mapping, base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]); # add balance metabolite to the products self.reactionMapping['products_ids_tracked'].append(balance_met); self.reactionMapping['products_mapping'].append(imm.convert_arrayMapping2StringMapping()); self.reactionMapping['products_positions_tracked'].append(product_positions_tracked); self.reactionMapping['products_elements_tracked'].append(product_elements_tracked); self.reactionMapping['products_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); self.reactionMapping['products_stoichiometry_tracked'].append(abs(self.reactionMapping['reactants_stoichiometry_tracked'][reactant_pos])); # use user specifications else: # find the position of the tracked metabolite if self.reactionMapping['reactants_ids_tracked'].index(unbalanced_met_I): if unbalanced_met_position_I: unbalanced_met_pos = unbalanced_met_position_I; else: unbalanced_met_pos = self.reactionMapping['reactants_ids_tracked'].index(unbalanced_met_I); balance_met = self.reactionMapping['rxn_id'] + '_' + unbalanced_met_I + '_' + str(unbalanced_met_pos) + '.balance'; # extract out mapping, positions, and elements reactant_mapping = self.reactionMapping['reactants_metaboliteMappings'][unbalanced_met_pos].convert_stringMapping2ArrayMapping(); reactant_positions_tracked = self.reactionMapping['reactants_positions_tracked'][unbalanced_met_pos]; reactant_elements_tracked = self.reactionMapping['reactants_elements_tracked'][unbalanced_met_pos]; # make the product mapping, positions, and elements product_mapping = []; product_positions_tracked = []; product_elements_tracked = []; if unbalanced_met_positions_tracked_I: for pos_cnt,pos in enumerate(unbalanced_met_positions_tracked_I): product_mapping.append(reactant_mapping[pos]); product_positions_tracked.append(pos_cnt); product_elements_tracked.append(reactant_elements_tracked[pos]); else: product_mapping=reactant_mapping product_positions_tracked=reactant_positions_tracked product_elements_tracked=reactant_elements_tracked imm = stage02_isotopomer_metaboliteMapping(mapping_id_I=self.reactionMapping['mapping_id'], met_id_I=balance_met, met_elements_I=product_elements_tracked, met_atompositions_I=product_positions_tracked, met_symmetry_elements_I=[], met_symmetry_atompositions_I=[], used__I=True, comment__I=None, met_mapping_I=product_mapping, base_met_ids_I=[], base_met_elements_I=[], base_met_atompositions_I=[], base_met_symmetry_elements_I=[], base_met_symmetry_atompositions_I=[], base_met_indices_I=[]); # add balance metabolite to the products self.reactionMapping['products_ids_tracked'].append(balance_met); self.reactionMapping['products_mapping'].append(imm.convert_arrayMapping2StringMapping()); self.reactionMapping['products_positions_tracked'].append(product_positions_tracked); self.reactionMapping['products_elements_tracked'].append(product_elements_tracked); self.reactionMapping['products_metaboliteMappings'].append(copy(imm.copy_metaboliteMapping())); self.reactionMapping['products_stoichiometry_tracked'].append(1); else: print('unbalanced metabolite not found!') def check_elementalBalance(self): ''' 1. Check that the number of elements tracked in the reactant matches the number of elements tracked in the products 2. Check that the reactant positions tracked match the reactant elements tracked''' #Output: # reactants_positions_tracked_cnt # products_positions_tracked_cnt element_balance = True; #check reactants reactants_positions_tracked_cnt = 0; for reactant_cnt,reactant in enumerate(self.reactionMapping['reactants_ids_tracked']): print('checking reactant ' + reactant); # check that the reactant positions == reactant elements if len(self.reactionMapping['reactants_positions_tracked'][reactant_cnt])!=len(self.reactionMapping['reactants_elements_tracked'][reactant_cnt]): print('inconsistent reactants_positions and reactants_elements'); continue; reactants_positions_tracked_cnt += len(self.reactionMapping['reactants_positions_tracked'][reactant_cnt]); #check products products_positions_tracked_cnt = 0; for product_cnt,product in enumerate(self.reactionMapping['products_ids_tracked']): print('checking product ' + product); # check that the product positions == product elements if len(self.reactionMapping['products_positions_tracked'][product_cnt])!=len(self.reactionMapping['products_elements_tracked'][product_cnt]): print('inconsistent products_positions and products_elements'); continue; products_positions_tracked_cnt += len(self.reactionMapping['products_positions_tracked'][product_cnt]); #record if reactants_positions_tracked_cnt!=products_positions_tracked_cnt: return reactants_positions_tracked_cnt,products_positions_tracked_cnt; else: return reactants_positions_tracked_cnt,products_positions_tracked_cnt; def check_reactionMapping(self): ''' 1. Check that the number of elements tracked in the reactant matches the number of elements tracked in the products 2. Check that the reactant positions tracked match the reactant elements tracked 3. Check that the mappings are 1-to-1 4. Check that the elements/positions/mappings are of the same length 5. Check that the stoichiometry and ids tracked are of the same length''' #Output: # reactants_positions_tracked_cnt # products_positions_tracked_cnt #checks: reactants_ids_stoichiometry_check = True; reactants_elements_positions_check = True; reactants_elements_mapping_check = True; reactants_positions_mapping_check = True; products_ids_stoichiometry_check = True; products_elements_positions_check = True; products_elements_mapping_check = True; products_positions_mapping_check = True; element_balance_check = True; mapping_check = True; #check reactants reactants_positions_tracked_cnt = 0; reactants_elements_tracked_cnt = 0; reactants_mappings_cnt = 0; reactants_stoichiometry_cnt = 0; reactants_ids_cnt = 0; reactants_mappings = []; # check that the reactant stoichiometry == reactant ids if len(self.reactionMapping['reactants_ids_tracked'])!=len(self.reactionMapping['reactants_stoichiometry_tracked']): print('inconsistent reactants_stoichiometry_tracked and reactants_ids_tracked'); reactants_ids_stoichiometry_check = False; reactants_ids_cnt += len(self.reactionMapping['reactants_ids_tracked']); reactants_stoichiometry_cnt += len(self.reactionMapping['reactants_stoichiometry_tracked']); # check elemental balance for reactant_cnt,reactant in enumerate(self.reactionMapping['reactants_ids_tracked']): print('checking reactant elemental balance ' + reactant); reactant_mapping=[]; reactant_mapping = self.reactionMapping['reactants_metaboliteMappings'][reactant_cnt].convert_stringMapping2ArrayMapping(); # check that the reactant positions == reactant elements if len(self.reactionMapping['reactants_positions_tracked'][reactant_cnt])!=len(self.reactionMapping['reactants_elements_tracked'][reactant_cnt]): print('inconsistent reactants_positions and reactants_elements'); reactants_elements_positions_check = False; # check that the reactant positions == reactant mapping if len(self.reactionMapping['reactants_positions_tracked'][reactant_cnt])!=len(reactant_mapping): print('inconsistent reactants_positions and reactants_mapping'); reactants_elements_mapping_check = False; # check that the reactant elements == reactant mapping if len(self.reactionMapping['reactants_elements_tracked'][reactant_cnt])!=len(reactant_mapping): print('inconsistent reactants_elements and reactants_mapping'); reactants_positions_mapping_check = False; reactants_positions_tracked_cnt += len(self.reactionMapping['reactants_positions_tracked'][reactant_cnt]); reactants_elements_tracked_cnt += len(self.reactionMapping['reactants_elements_tracked'][reactant_cnt]); reactants_mappings_cnt += len(reactant_mapping); reactants_mappings.append(reactant_mapping); #check products products_positions_tracked_cnt = 0; products_elements_tracked_cnt = 0; products_mappings_cnt = 0; products_stoichiometry_cnt = 0; products_ids_cnt = 0; products_mappings = []; # check that the product stoichiometry == product ids if len(self.reactionMapping['products_ids_tracked'])!=len(self.reactionMapping['products_stoichiometry_tracked']): print('inconsistent products_stoichiometry_tracked and products_ids_tracked'); products_ids_stoichiometry_check = False; products_ids_cnt += len(self.reactionMapping['products_ids_tracked']); products_stoichiometry_cnt += len(self.reactionMapping['products_stoichiometry_tracked']); # check elemental balance for product_cnt,product in enumerate(self.reactionMapping['products_ids_tracked']): print('checking product elemental balance ' + product); product_mapping=[]; product_mapping = self.reactionMapping['products_metaboliteMappings'][product_cnt].convert_stringMapping2ArrayMapping(); # check that the product positions == product elements if len(self.reactionMapping['products_positions_tracked'][product_cnt])!=len(self.reactionMapping['products_elements_tracked'][product_cnt]): print('inconsistent products_positions and products_elements'); products_elements_positions_check = False; # check that the product positions == product mapping if len(self.reactionMapping['products_positions_tracked'][product_cnt])!=len(product_mapping): print('inconsistent products_positions and products_mapping'); products_elements_mapping_check = False; # check that the product elements == product mapping if len(self.reactionMapping['products_elements_tracked'][product_cnt])!=len(product_mapping): print('inconsistent products_elements and products_mapping'); products_positions_mapping_check = False; products_positions_tracked_cnt += len(self.reactionMapping['products_positions_tracked'][product_cnt]); products_elements_tracked_cnt += len(self.reactionMapping['products_elements_tracked'][product_cnt]); products_mappings_cnt += len(product_mapping); products_mappings.append(product_mapping); #check elemental balance if reactants_positions_tracked_cnt != products_positions_tracked_cnt: print('the length of reactants_positions_tracked does not match the length of products_positions_tracked'); element_balance_check = False; if reactants_elements_tracked_cnt != products_elements_tracked_cnt: print('reactants_elements_tracked does not match the length of products_elements_tracked'); element_balance_check = False; if reactants_mappings_cnt != products_mappings_cnt: print('the length of reactants_mapping does not match the length of products_mapping'); element_balance_check = False; #check 1-to-1 mapping reactants_mappings_list = []; for reactants_mapping in reactants_mappings: reactants_mappings_list.extend(reactants_mapping); # check for duplicate reactant mappings reactants_mappings_unique = list(set(reactants_mappings_list)); if len(reactants_mappings_list)!=len(reactants_mappings_unique): print('duplicate reactants_mappings found'); mapping_check = False; products_mappings_list = []; for products_mapping in products_mappings: products_mappings_list.extend(products_mapping); # check for duplicate product mappings products_mappings_unique = list(set(products_mappings_list)); if len(products_mappings_list)!=len(products_mappings_unique): print('duplicate products_mappings found'); mapping_check = False; # check that each product mapping has a matching reactant mapping, and vice versa for reactant_cnt,reactant in enumerate(reactants_mappings): print('checking reactant mapping ' + self.reactionMapping['reactants_ids_tracked'][reactant_cnt]); for mapping_cnt,mapping in enumerate(reactant): if not mapping in products_mappings_list: print('no mapping found for reactant mapping ' + mapping + ' and position ' + str(mapping_cnt)); mapping_check = False; for product_cnt,product in enumerate(products_mappings): print('checking product mapping ' + self.reactionMapping['products_ids_tracked'][product_cnt]); for mapping_cnt,mapping in enumerate(product): if not mapping in reactants_mappings_list: print('no mapping found for product mapping ' + mapping + ' and position ' + str(mapping_cnt)); mapping_check = False; if not element_balance_check or not mapping_check: print('check reaction mapping'); return reactants_ids_stoichiometry_check,reactants_elements_positions_check,reactants_elements_mapping_check,reactants_positions_mapping_check,\ products_ids_stoichiometry_check,products_elements_positions_check,products_elements_mapping_check,products_positions_mapping_check,\ element_balance_check,mapping_check; def clear_elementsAndPositions(self): '''Clear the reactants/products elements/positions''' self.reactionMapping['reactants_elements_tracked']=None; self.reactionMapping['reactants_positions_tracked']=None; self.reactionMapping['products_elements_tracked']=None; self.reactionMapping['products_positions_tracked']=None; class stage02_isotopomer_mappingUtilities(): def __init__(self): self.stage02_isotopomer_query = stage02_isotopomer_query(); def make_missingMetaboliteMappings(self,experiment_id_I,model_id_I=[],mapping_id_rxns_I=[],mapping_id_mets_I=[],mapping_id_new_I=None): '''Make atom mapping metabolites from atom mapping reactions, QC atom mapping reactions; and create a new set of metabolite mappings that correspond to the current reaction mappings that need to be QC/QA'd''' #Input: # experiment_id_I = experiment_id # model_id_I = model_id # mapping_id_rxns_I = reaction mapping id (#default atomMappingMetabolite mapping id to add new metabolites to) # mapping_id_mets_I = existing metabolite mappings to use when making the new metabolite mappings # mapping_id_new_I = name of mapping id for the new metabolite mappings #Output: # default: new metabolite mappings will be added for the mapping id of the reactions # existing metabolite mappings will not be added # mapping_id_new_I != None: new metabolite mappings will be added for the mapping id specified #get model ids: if model_id_I: model_ids = model_id_I; else: model_ids = []; model_ids = self.stage02_isotopomer_query.get_modelID_experimentID_dataStage02IsotopomerSimulation(experiment_id_I); for model_id in model_ids: #get mapping ids if mapping_id_rxns_I and mapping_id_mets_I: mapping_ids_rxns=mapping_id_rxns_I; mapping_ids_mets=mapping_id_mets_I; elif mapping_id_rxns_I: mapping_ids_rxns=mapping_id_rxns_I; else: mapping_ids_rxns=[]; mapping_ids_rxns=self.stage02_isotopomer_query.get_mappingID_experimentIDAndModelID_dataStage02IsotopomerSimulation(experiment_id_I,model_id); for mapping_cnt,mapping_id_rxns in enumerate(mapping_ids_rxns): # get the metabolite mappings if mapping_id_rxns_I and mapping_id_mets_I: mappings=self.stage02_isotopomer_query.get_atomMappingMetabolites_mappingID_dataStage02IsotopomerAtomMappingReactionsAndAtomMappingMetabolites(mapping_id_rxns,mapping_ids_mets[mapping_cnt]); else: mappings = self.stage02_isotopomer_query.get_atomMappingMetabolites_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id_rxns); # remove duplicates duplicate_ind = []; for d1_cnt,d1 in enumerate(mappings): for d2_cnt in range(d1_cnt+1,len(mappings)): if d1['mapping_id'] == mappings[d2_cnt]['mapping_id'] and \ d1['met_id'] == mappings[d2_cnt]['met_id'] and \ d1['met_elements'] == mappings[d2_cnt]['met_elements'] and \ d1['met_atompositions'] == mappings[d2_cnt]['met_atompositions'] and \ d1['met_symmetry_elements'] == mappings[d2_cnt]['met_symmetry_elements'] and \ d1['met_symmetry_atompositions'] == mappings[d2_cnt]['met_symmetry_atompositions']: duplicate_ind.append(d2_cnt); duplicate_ind_unique=list(set(duplicate_ind)); # copy out unique metabolites data_O = []; for d1_cnt,d1 in enumerate(mappings): if d1_cnt in duplicate_ind_unique: continue; else: if mapping_id_new_I: d1['mapping_id']=mapping_id_new_I; # change to the new mapping data_O.append(d1); met_ids = [x['met_id'] for x in data_O]; met_ids_unique = list(set(met_ids)); data_mets_cnt = {}; for met in met_ids_unique: data_mets_cnt[met] = 0; for d in data_O: data_mets_cnt[d['met_id']] += 1; # add data to the database if mapping_id_new_I: self.stage02_isotopomer_query.add_data_dataStage02IsotopomerAtomMappingMetabolites(data_O); else: data_add_O = []; for d in data_O: # check to see if the metabolite is already in the database mapping_row = {}; mapping_row = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_rxns,d['met_id']); if not mapping_row: data_add_O.append(d); self.stage02_isotopomer_query.add_data_dataStage02IsotopomerAtomMappingMetabolites(data_add_O); def make_missingReactionMappings(self,experiment_id_I,model_id_I=[],mapping_id_rxns_I=[],mapping_id_mets_I=[],mapping_id_new_I=None): '''Update missing or incomplete reaction mappings for the current mapping from the matching metabolite mappings, and optionally, from the previous reaction mappings''' #Note: prior to running, remove all reaction mappings that are not used. imm = stage02_isotopomer_metaboliteMapping(); data_O = []; #get model ids: if model_id_I: model_ids = model_id_I; else: model_ids = []; model_ids = self.stage02_isotopomer_query.get_modelID_experimentID_dataStage02IsotopomerSimulation(experiment_id_I); for model_id in model_ids: #get all reactions in the model: reactions = []; reactions = self.stage02_isotopomer_query.get_rows_modelID_dataStage02IsotopomerModelReactions(model_id); #get mapping ids if mapping_id_rxns_I and mapping_id_mets_I: mapping_ids_rxns=mapping_id_rxns_I; mapping_ids_mets=mapping_id_mets_I; elif mapping_id_rxns_I: mapping_ids_rxns=mapping_id_rxns_I; else: mapping_rxns=[]; mapping_rxns=self.stage02_isotopomer_query.get_mappingID_experimentIDAndModelID_dataStage02IsotopomerSimulation(experiment_id_I,model_id); for mapping_cnt,mapping_id_rxns in enumerate(mapping_ids_rxns): missing_reactions_O = []; missing_metabolites_O = []; for reaction_cnt,reaction in enumerate(reactions): #get the current reaction mappings mapping_rxns = []; mapping_rxns = self.stage02_isotopomer_query.get_row_mappingIDAndRxnID_dataStage02IsotopomerAtomMappingReactions(mapping_id_rxns,reaction['rxn_id']); #if mapping_rxns: # atom mapping for the reaction already exists and is used # continue; if mapping_id_new_I: mapping_id_current = mapping_id_new_I; else: mapping_id_current = mapping_id_rxns; data_tmp={'mapping_id':mapping_id_current, 'rxn_id':reaction['rxn_id'], 'rxn_description':None, 'reactants_stoichiometry_tracked':[], 'products_stoichiometry_tracked':[], 'reactants_ids_tracked':[], 'products_ids_tracked':[], 'reactants_mapping':[], 'products_mapping':[], 'rxn_equation':reaction['equation'], 'products_elements_tracked':[], 'products_positions_tracked':[], 'reactants_elements_tracked':[], 'reactants_positions_tracked':[], 'used_':True, 'comment_':''}; #check if the reactants or products are tracked tracked_reactants = []; for reactant in reaction['reactants_ids']: tracked_reactant = {}; if mapping_id_mets_I: tracked_reactant = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_ids_mets[mapping_cnt],reactant); else: tracked_reactant = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_rxns,reactant); if tracked_reactant: tracked_reactants.append(tracked_reactant); tracked_products = []; for product in reaction['products_ids']: tracked_product = {}; if mapping_id_mets_I: tracked_product = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_ids_mets[mapping_cnt],product); else: tracked_product = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id_rxns,product); if tracked_product: tracked_products.append(tracked_product); if tracked_reactants or tracked_products: #check if the reaction is missing or is missing a tracked metabolite tracked_reaction = {}; tracked_reaction = self.stage02_isotopomer_query.get_row_mappingIDAndRxnID_dataStage02IsotopomerAtomMappingReactions(mapping_id_rxns,reaction['rxn_id']); if tracked_reaction: missing_reactants = []; # get the stoichiometry for each reactant tracked_reaction_reactant_ids_stoich = {}; for tracked_reactant_id_cnt,tracked_reactant_id in enumerate(tracked_reaction['reactants_ids_tracked']): tracked_reaction_reactant_ids_stoich[tracked_reactant_id] = 0; for tracked_reactant_id_cnt,tracked_reactant_id in enumerate(tracked_reaction['reactants_ids_tracked']): tracked_reaction_reactant_ids_stoich[tracked_reactant_id] += abs(tracked_reaction['reactants_stoichiometry_tracked'][tracked_reactant_id_cnt]); #copy existing data data_tmp['reactants_ids_tracked'].extend(tracked_reaction['reactants_ids_tracked']); data_tmp['reactants_stoichiometry_tracked'].extend(tracked_reaction['reactants_stoichiometry_tracked']); data_tmp['reactants_mapping'].extend(tracked_reaction['reactants_mapping']); data_tmp['reactants_elements_tracked'].extend(tracked_reaction['reactants_elements_tracked']); data_tmp['reactants_positions_tracked'].extend(tracked_reaction['reactants_positions_tracked']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; for tracked_reactant in tracked_reactants: if tracked_reactant['met_id'] in tracked_reaction['reactants_ids_tracked']: # check for matching stoichiometry reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['reactants_ids']): if met_id == tracked_reactant['met_id']: reaction_stoich = abs(reaction['reactants_stoichiometry'][met_id_cnt]); break; unbalanced_stoich = reaction_stoich - tracked_reaction_reactant_ids_stoich[tracked_reactant['met_id']]; if tracked_reaction_reactant_ids_stoich[tracked_reactant['met_id']] != reaction_stoich: for stoich_cnt in range(int(unbalanced_stoich)): missing_reactants.append(tracked_reactant); #add missing data data_tmp['reactants_ids_tracked'].append(tracked_reactant['met_id']); data_tmp['reactants_stoichiometry_tracked'].append(0); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_reactant['met_id']:tracked_reactant['met_elements'][0]},stoich_cnt) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['reactants_mapping'].append(new_mapping); #data_tmp['reactants_mapping'].append(''); data_tmp['reactants_elements_tracked'].append(tracked_reactant['met_elements']); data_tmp['reactants_positions_tracked'].append(tracked_reactant['met_atompositions']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; data_tmp['used_']=False; data_tmp['comment_']+=tracked_reactant['met_id']+','; else: missing_reactants.append(tracked_reactant); reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['reactants_ids']): if met_id == tracked_reactant['met_id']: reaction_stoich = reaction['reactants_stoichiometry'][met_id_cnt]; break; #add missing data data_tmp['reactants_ids_tracked'].append(tracked_reactant['met_id']); data_tmp['reactants_stoichiometry_tracked'].append(reaction_stoich); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_reactant['met_id']:tracked_reactant['met_elements'][0]},0) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['reactants_mapping'].append(new_mapping); #data_tmp['reactants_mapping'].append(''); data_tmp['reactants_elements_tracked'].append(tracked_reactant['met_elements']); data_tmp['reactants_positions_tracked'].append(tracked_reactant['met_atompositions']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; data_tmp['used_']=False; data_tmp['comment_']+=tracked_reactant['met_id']+','; missing_products = []; # get the stoichiometry for each product tracked_reaction_product_ids_stoich = {}; for tracked_product_id_cnt,tracked_product_id in enumerate(tracked_reaction['products_ids_tracked']): tracked_reaction_product_ids_stoich[tracked_product_id] = 0; for tracked_product_id_cnt,tracked_product_id in enumerate(tracked_reaction['products_ids_tracked']): tracked_reaction_product_ids_stoich[tracked_product_id] += abs(tracked_reaction['products_stoichiometry_tracked'][tracked_product_id_cnt]); #copy existing data data_tmp['products_ids_tracked'].extend(tracked_reaction['products_ids_tracked']); data_tmp['products_stoichiometry_tracked'].extend(tracked_reaction['products_stoichiometry_tracked']); data_tmp['products_mapping'].extend(tracked_reaction['products_mapping']); data_tmp['products_elements_tracked'].extend(tracked_reaction['products_elements_tracked']); data_tmp['products_positions_tracked'].extend(tracked_reaction['products_positions_tracked']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; for tracked_product in tracked_products: if tracked_product['met_id'] in tracked_reaction['products_ids_tracked']: # check for matching stoichiometry reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['products_ids']): if met_id == tracked_product['met_id']: reaction_stoich = abs(reaction['products_stoichiometry'][met_id_cnt]); break; unbalanced_stoich = reaction_stoich - tracked_reaction_product_ids_stoich[tracked_product['met_id']]; if tracked_reaction_product_ids_stoich[tracked_product['met_id']] != reaction_stoich: for stoich_cnt in range(int(unbalanced_stoich)): missing_products.append(tracked_product); #add missing data data_tmp['products_ids_tracked'].append(tracked_product['met_id']); data_tmp['products_stoichiometry_tracked'].append(0); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_product['met_id']:tracked_product['met_elements'][0]},stoich_cnt) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['products_mapping'].append(new_mapping); #data_tmp['products_mapping'].append(''); data_tmp['products_elements_tracked'].append(tracked_product['met_elements']); data_tmp['products_positions_tracked'].append(tracked_product['met_atompositions']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; data_tmp['used_']=False; data_tmp['comment_']+=tracked_product['met_id']+','; else: missing_products.append(tracked_product); reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['products_ids']): if met_id == tracked_product['met_id']: reaction_stoich = abs(reaction['products_stoichiometry'][met_id_cnt]); break; #add missing data data_tmp['products_ids_tracked'].append(tracked_product['met_id']); data_tmp['products_stoichiometry_tracked'].append(reaction_stoich); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_product['met_id']:tracked_product['met_elements'][0]},0) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['products_mapping'].append(new_mapping); #data_tmp['products_mapping'].append(''); data_tmp['products_elements_tracked'].append(tracked_product['met_elements']); data_tmp['products_positions_tracked'].append(tracked_product['met_atompositions']); data_tmp['rxn_description']=tracked_reaction['rxn_description']; data_tmp['used_']=False; data_tmp['comment_']+=tracked_product['met_id']+','; if missing_reactants or missing_products: tmp = {}; tmp = tracked_reaction; tmp.update({'missing_reactants':missing_reactants}); tmp.update({'missing_products':missing_products}); tmp.update({'equation':reaction['equation']}) missing_metabolites_O.append(tmp); else: tmp = {}; tmp = reaction; tmp.update({'tracked_reactants':tracked_reactants}); tmp.update({'tracked_products':tracked_products}); missing_reactions_O.append(reaction); for tracked_reactant in tracked_reactants: reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['reactants_ids']): if met_id == tracked_reactant['met_id']: reaction_stoich = reaction['reactants_stoichiometry'][met_id_cnt]; break; #add missing data data_tmp['reactants_ids_tracked'].append(tracked_reactant['met_id']); data_tmp['reactants_stoichiometry_tracked'].append(reaction_stoich); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_reactant['met_id']:tracked_reactant['met_elements'][0]},0) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['reactants_mapping'].append(new_mapping); #data_tmp['reactants_mapping'].append(''); data_tmp['reactants_elements_tracked'].append(tracked_reactant['met_elements']); data_tmp['reactants_positions_tracked'].append(tracked_reactant['met_atompositions']); data_tmp['rxn_description']=None; data_tmp['used_']=False; data_tmp['comment_']=reaction['rxn_id']; for tracked_product in tracked_products: reaction_stoich = 0; for met_id_cnt,met_id in enumerate(reaction['products_ids']): if met_id == tracked_product['met_id']: reaction_stoich = abs(reaction['products_stoichiometry'][met_id_cnt]); break; #add missing data data_tmp['products_ids_tracked'].append(tracked_product['met_id']); data_tmp['products_stoichiometry_tracked'].append(reaction_stoich); imm.make_trackedMetabolite(mapping_id_rxns,model_id,{tracked_product['met_id']:tracked_product['met_elements'][0]},0) new_mapping = imm.convert_arrayMapping2StringMapping(); imm.clear_metaboliteMapping(); data_tmp['products_mapping'].append(new_mapping); #data_tmp['products_mapping'].append(''); data_tmp['products_elements_tracked'].append(tracked_product['met_elements']); data_tmp['products_positions_tracked'].append(tracked_product['met_atompositions']); data_tmp['rxn_description']=None; data_tmp['used_']=False; data_tmp['comment_']=reaction['rxn_id']; data_O.append(data_tmp); #self.print_missingReactionMappings(missing_reactions_O,missing_metabolites_O); return missing_reactions_O,missing_metabolites_O; #add data to the database: self.stage02_isotopomer_query.add_data_dataStage02IsotopomerAtomMappingReactions(data_O); def print_missingReactionMappings(self,missing_reactions_I,missing_metabolites_I): '''print missing reaction mappings to the screen''' #missing reactions script = ''; for missing_reaction in missing_reactions_I: script+= missing_reaction['rxn_id']+'\t'+missing_reaction['equation']+'\t'+str(missing_reaction['reactants_ids'])+'\t'+str(missing_reaction['products_ids'])+'\t'; for tracked_reactant in missing_reaction['tracked_reactants']: script+= tracked_reactant['met_id']+','; script+= '\t' for tracked_product in missing_reaction['tracked_products']: script+= tracked_product['met_id']+','; script+='\n' print(script) #missing metabolites script = ''; for missing_metabolite in missing_metabolites_I: script+= missing_metabolite['rxn_id']+'\t'+missing_metabolite['equation']+'\t'+str(missing_metabolite['reactants_ids_tracked'])+'\t'+str(missing_metabolite['products_ids_tracked'])+'\t'; for tracked_reactant in missing_metabolite['missing_reactants']: script+= tracked_reactant['met_id']+','; script+= '\t' for tracked_product in missing_metabolite['missing_products']: script+= tracked_product['met_id']+','; script+='\n' print(script) def find_inconsistentMetaboliteMappings(self,experiment_id_I,model_id_I=[],mapping_id_I=[]): '''Find inconsistencies in the atom mapping by comparing the metabolite information in atomMappingMetabolites table to the atom mapping in the atomMappingReactions table''' #Output: # data_O = row of atomMappingReactions filled only with the inconsistent metabolite mapping information # missing_mets_O = metabolites that are tracked in atomMappingReactions, but are not present in atomMappingMetabolites data_O = []; missing_mets_O = []; #get model ids: if model_id_I: model_ids = model_id_I; else: model_ids = []; model_ids = self.stage02_isotopomer_query.get_modelID_experimentID_dataStage02IsotopomerSimulation(experiment_id_I); for model_id in model_ids: print('checking model_id ' + model_id); #get mapping ids if mapping_id_I: mapping_ids=mapping_id_I; else: mapping_ids=[]; mapping_ids=self.stage02_isotopomer_query.get_mappingID_experimentIDAndModelID_dataStage02IsotopomerSimulation(experiment_id_I,model_id); for mapping_cnt,mapping_id in enumerate(mapping_ids): print('checking mapping_id ' + mapping_id); # get the reaction mapping reaction_mappings = []; reaction_mappings = self.stage02_isotopomer_query.get_rows_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id); for reaction_cnt,reaction_mapping in enumerate(reaction_mappings): print('checking reaction ' + reaction_mapping['rxn_id']); #debug: if reaction_mapping['rxn_id'] == 'COFACTOR_3': print('check'); #check reactants rxn_tmp = {}; rxn_tmp['mapping_id']=mapping_id rxn_tmp['rxn_id']=reaction_mapping['rxn_id'] rxn_tmp['rxn_description']=reaction_mapping['rxn_description'] rxn_tmp['reactants_stoichiometry_tracked']=[] rxn_tmp['products_stoichiometry_tracked']=[] rxn_tmp['reactants_ids_tracked']=[] rxn_tmp['products_ids_tracked']=[] rxn_tmp['reactants_elements_tracked']=[] rxn_tmp['products_elements_tracked']=[] rxn_tmp['reactants_positions_tracked']=[] rxn_tmp['products_positions_tracked']=[] rxn_tmp['reactants_mapping']=[] rxn_tmp['products_mapping']=[] rxn_tmp['rxn_equation']=None rxn_tmp['used_']=True rxn_tmp['comment_']='Inconsistent metabolites found'; rxn_tmp['reactants_metaboliteMappings']=[] rxn_tmp['products_metaboliteMappings']=[] bad_reactant = False; for reactant_cnt,reactant in enumerate(reaction_mapping['reactants_ids_tracked']): print('checking reactant ' + reactant); # get the metabolite mapping metabolite_mapping = {}; metabolite_mapping = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id,reactant); if not metabolite_mapping: print('metabolite mapping not found') missing_mets_O.append(reactant); continue; # check the reaction mapping reactants_mapping = reaction_mapping['reactants_mapping'][reactant_cnt]; if '[' in reaction_mapping['reactants_mapping'][reactant_cnt]: reactants_mapping = reaction_mapping['reactants_mapping'][reactant_cnt].split(']['); reactants_mapping = [m.replace('[','') for m in reactants_mapping]; reactants_mapping = [m.replace(']','') for m in reactants_mapping]; if len(metabolite_mapping['met_atompositions']) != len(reactants_mapping): rxn_tmp['reactants_metaboliteMappings'].append(reaction_mapping['reactants_mapping'][reactant_cnt]); print('bad reactants_metaboliteMappings'); bad_reactant = True; # check the reaction elements tracked if metabolite_mapping['met_atompositions'] != reaction_mapping['reactants_positions_tracked'][reactant_cnt]: rxn_tmp['reactants_positions_tracked'].append(reaction_mapping['reactants_positions_tracked'][reactant_cnt]); print('bad reactants_positions_tracked'); bad_reactant = True; # check the reaction positions tracked if metabolite_mapping['met_elements'] != reaction_mapping['reactants_elements_tracked'][reactant_cnt]: rxn_tmp['reactants_elements_tracked'].append(reaction_mapping['reactants_elements_tracked'][reactant_cnt]); print('bad reactants_elements_tracked'); bad_reactant = True; if bad_reactant: rxn_tmp['reactants_ids_tracked'].append(reactant); rxn_tmp['reactants_stoichiometry_tracked'].append(reaction_mapping['reactants_stoichiometry_tracked'][reactant_cnt]); #check products bad_product = False; for product_cnt,product in enumerate(reaction_mapping['products_ids_tracked']): print('checking product ' + product); # get the metabolite mapping metabolite_mapping = {}; metabolite_mapping = self.stage02_isotopomer_query.get_rows_mappingIDAndMetID_dataStage02IsotopomerAtomMappingMetabolites(mapping_id,product); if not metabolite_mapping: print('metabolite mapping not found') missing_mets_O.append(product); continue; # check the reaction mapping products_mapping = reaction_mapping['products_mapping'][product_cnt]; if '[' in reaction_mapping['products_mapping'][product_cnt]: products_mapping = reaction_mapping['products_mapping'][product_cnt].split(']['); products_mapping = [m.replace('[','') for m in products_mapping]; products_mapping = [m.replace(']','') for m in products_mapping]; if len(metabolite_mapping['met_atompositions']) != len(products_mapping): rxn_tmp['products_metaboliteMappings'].append(reaction_mapping['products_mapping'][product_cnt]); print('bad products_metaboliteMappings'); bad_product = True; # check the reaction elements tracked if metabolite_mapping['met_atompositions'] != reaction_mapping['products_positions_tracked'][product_cnt]: rxn_tmp['products_positions_tracked'].append(reaction_mapping['products_positions_tracked'][product_cnt]); print('bad products_positions_tracked'); bad_product = True; # check the reaction positions tracked if metabolite_mapping['met_elements'] != reaction_mapping['products_elements_tracked'][product_cnt]: rxn_tmp['products_elements_tracked'].append(reaction_mapping['products_elements_tracked'][product_cnt]); print('bad products_elements_tracked'); bad_product = True; if bad_product: rxn_tmp['products_ids_tracked'].append(product); rxn_tmp['products_stoichiometry_tracked'].append(reaction_mapping['products_stoichiometry_tracked'][product_cnt]); #record if bad_reactant or bad_product: data_O.append(rxn_tmp); return data_O,missing_mets_O; def find_unbalancedReactionMappings(self,experiment_id_I,model_id_I=[],mapping_id_I=[]): '''Find reactions mappings that are not elementally balanced''' #Output: # unbalanced_rxns_O = {rxn_id:{'n_products_elements_tracked':products_positions_tracked_cnt, # 'n_reactants_elements_tracked':reactants_positions_tracked_cnt},...} unbalanced_rxns_O = {}; #get model ids: if model_id_I: model_ids = model_id_I; else: model_ids = []; model_ids = self.stage02_isotopomer_query.get_modelID_experimentID_dataStage02IsotopomerSimulation(experiment_id_I); for model_id in model_ids: print('checking model_id ' + model_id); #get mapping ids if mapping_id_I: mapping_ids=mapping_id_I; else: mapping_ids=[]; mapping_ids=self.stage02_isotopomer_query.get_mappingID_experimentIDAndModelID_dataStage02IsotopomerSimulation(experiment_id_I,model_id); for mapping_cnt,mapping_id in enumerate(mapping_ids): print('checking mapping_id ' + mapping_id); # get the reaction mapping reaction_mappings = []; reaction_mappings = self.stage02_isotopomer_query.get_rows_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id); for reaction_cnt,reaction_mapping in enumerate(reaction_mappings): print('checking reaction ' + reaction_mapping['rxn_id']); #check reactants reactants_positions_tracked_cnt = 0; for reactant_cnt,reactant in enumerate(reaction_mapping['reactants_ids_tracked']): print('checking reactant ' + reactant); # check that the reactant positions == reactant elements if len(reaction_mapping['reactants_positions_tracked'][reactant_cnt])!=len(reaction_mapping['reactants_elements_tracked'][reactant_cnt]): print('inconsistent reactants_positions and reactants_elements'); continue; reactants_positions_tracked_cnt += len(reaction_mapping['reactants_positions_tracked'][reactant_cnt]); #check products products_positions_tracked_cnt = 0; for product_cnt,product in enumerate(reaction_mapping['products_ids_tracked']): print('checking product ' + product); # check that the product positions == product elements if len(reaction_mapping['products_positions_tracked'][product_cnt])!=len(reaction_mapping['products_elements_tracked'][product_cnt]): print('inconsistent products_positions and products_elements'); continue; products_positions_tracked_cnt += len(reaction_mapping['products_positions_tracked'][product_cnt]); #record if reactants_positions_tracked_cnt!=products_positions_tracked_cnt: unbalanced_rxns_O[reaction_mapping['rxn_id']] = {'n_products_elements_tracked':products_positions_tracked_cnt, 'n_reactants_elements_tracked':reactants_positions_tracked_cnt}; #unbalanced_rxns_O.append(reaction_mapping); return unbalanced_rxns_O; def find_inconsistentReactionMappings(self,experiment_id_I,model_id_I=[],mapping_id_I=[]): '''Find inconsistencies in the reaction mapping''' #Output: # unbalanced_rxns_O = {rxn_id:{'n_products_elements_tracked':products_positions_tracked_cnt, # 'n_reactants_elements_tracked':reactants_positions_tracked_cnt},...} irm = stage02_isotopomer_reactionMapping(); #get model ids: if model_id_I: model_ids = model_id_I; else: model_ids = []; model_ids = self.stage02_isotopomer_query.get_modelID_experimentID_dataStage02IsotopomerSimulation(experiment_id_I); for model_id in model_ids: print('checking model_id ' + model_id); #get mapping ids if mapping_id_I: mapping_ids=mapping_id_I; else: mapping_ids=[]; mapping_ids=self.stage02_isotopomer_query.get_mappingID_experimentIDAndModelID_dataStage02IsotopomerSimulation(experiment_id_I,model_id); for mapping_cnt,mapping_id in enumerate(mapping_ids): print('checking mapping_id ' + mapping_id); # get the reaction ids reaction_ids = []; reaction_ids = self.stage02_isotopomer_query.get_rxnIDs_mappingID_dataStage02IsotopomerAtomMappingReactions(mapping_id); for reaction_cnt,reaction_id in enumerate(reaction_ids): print('checking reaction ' + reaction_id); #check each reaction irm.get_reactionMapping(mapping_id,reaction_id); reactants_ids_stoichiometry_check,reactants_elements_positions_check,reactants_elements_mapping_check,reactants_positions_mapping_check,\ products_ids_stoichiometry_check,products_elements_positions_check,products_elements_mapping_check,products_positions_mapping_check,\ element_balance_check,mapping_check = irm.check_reactionMapping(); #clear reaction irm.clear_reactionMapping(); class isotopomer_netRxns(): def __init__(self): self.isotopomer_rxns_net = {}; self.isotopomer_rxns_net = self.define_netRxns(); def define_netRxns(self): isotopomer_rxns_net = {}; isotopomer_rxns_net.update(self.define_netRxns_iDM2014_reversible()); isotopomer_rxns_net.update(self.define_netRxns_RL2013_reversible()); return isotopomer_rxns_net def define_netRxns_iDM2014_reversible(self): isotopomer_rxns_net = { 'ptrc_to_4abut_1':{'reactions':['PTRCTA','ABUTD'], 'stoichiometry':[1,1]}, 'ptrc_to_4abut_2':{'reactions':['GGPTRCS','GGPTRCO','GGGABADr','GGGABAH'], 'stoichiometry':[1,1,1,1]}, 'glu_DASH_L_to_acg5p':{'reactions':['ACGS','ACGK'], 'stoichiometry':[1,1]}, '2obut_and_pyr_to_3mop':{'reactions':['ACHBS','KARA2','DHAD2'], 'stoichiometry':[1,1,1]}, 'pyr_to_23dhmb':{'reactions':['ACLS','KARA1'], 'stoichiometry':[1,-1]}, #'met_DASH_L_and_ptrc_to_spmd_and_5mta':{'reactions':['METAT','ADMDC','SPMS'], # 'stoichiometry':[1,1,1]}, #cannot be lumped 'chor_and_prpp_to_3ig3p':{'reactions':['ANS','ANPRT','PRAIi','IGPS'], 'stoichiometry':[1,1,1,1]}, 'hom_DASH_L_and_cyst_DASH_L_to_pyr_hcys_DASH_L':{'reactions':['HSST','SHSL1','CYSTL'], 'stoichiometry':[1,1,1]}, 'e4p_and_pep_to_3dhq':{'reactions':['DDPA','DHQS'], 'stoichiometry':[1,1]}, 'aspsa_to_sl2a6o':{'reactions':['DHDPS','DHDPRy','THDPS'], 'stoichiometry':[1,1,1]}, 'glu_DASH_L_to_glu5sa':{'reactions':['GLU5K','G5SD'], 'stoichiometry':[1,1]}, 'g1p_to_glycogen':{'reactions':['GLGC','GLCS1'], 'stoichiometry':[1,1]}, 'thr_DASH_L_to_gly':{'reactions':['THRD','GLYAT'], 'stoichiometry':[1,-1]}, #need to remove deadend mets: athr-L: ATHRDHr, ATHRDHr_reverse; aact: AACTOOR, AOBUTDs 'dhap_to_lac_DASH_D':{'reactions':['MGSA','LGTHL','GLYOX'], 'stoichiometry':[1,1,1]}, 'hom_DASH_L_to_thr_DASH_L':{'reactions':['HSK','THRS'], 'stoichiometry':[1,1]}, '3pg_to_ser_DASH_L':{'reactions':['PGCD','PSERT','PSP_L'], 'stoichiometry':[1,1,1]}, 'prpp_to_his_DASH_L':{'reactions':['ATPPRT','PRATPP','PRAMPC','PRMICI','IG3PS','IGPDH','HSTPT','HISTP','HISTD'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'UMPSYN_aerobic':{'reactions':['ASPCT','DHORTS','DHORD2','ORPT','OMPDC'], 'stoichiometry':[1,-1,1,-1,1]}, #'UMPSYN_anaerobic':{'reactions':['ASPCT','DHORTS','DHORD5','ORPT','OMPDC'], # 'stoichiometry':[1,-1,1,-1,1]}, 'IMPSYN_1':{'reactions':['GLUPRT','PRAGSr','PRFGS','PRAIS'], 'stoichiometry':[1,1,1,1]}, 'IMPSYN_2':{'reactions':['AIRC2','AIRC3','PRASCSi','ADSL2r'], 'stoichiometry':[1,-1,1,1]}, 'IMPSYN_3':{'reactions':['AICART','IMPC'], 'stoichiometry':[1,-1]}, 'imp_to_gmp':{'reactions':['IMPD','GMPS2'], 'stoichiometry':[1,1]}, 'imp_to_amp':{'reactions':['ADSS','ADSL1r'], 'stoichiometry':[1,1]}, #'utp_to_dump_anaerobic':{'reactions':['RNTR4c2','DUTPDP'], # 'stoichiometry':[1,1]}, 'udp_to_dump_aerobic':{'reactions':['RNDR4','NDPK6','DUTPDP'], 'stoichiometry':[1,1,1]}, #'dtmp_to_dttp':{'reactions':['DTMPK','NDPK4'], # 'stoichiometry':[1,1]}, #cannot be lumped 'COASYN':{'reactions':['ASP1DC','MOHMT','DPR','PANTS','PNTK','PPNCL2','PPCDC','PTPATi','DPCOAK'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'FADSYN_1':{'reactions':['GTPCII2','DHPPDA2','APRAUR','PMDPHT','RBFSb'], 'stoichiometry':[1,1,1,1,1]}, 'FADSYN_2':{'reactions':['RBFSa','DB4PS'], 'stoichiometry':[1,1]}, 'FADSYN_3':{'reactions':['RBFK','FMNAT'], 'stoichiometry':[1,1]}, 'NADSYN_aerobic':{'reactions':['ASPO6','QULNS','NNDPR','NNATr','NADS1','NADK'], 'stoichiometry':[1,1,1,1,1,1]}, 'NADSYN_anaerobic':{'reactions':['ASPO5','QULNS','NNDPR','NNATr','NADS1','NADK'], 'stoichiometry':[1,1,1,1,1,1]}, #'NADSALVAGE':{'reactions':['NADPPPS','NADN','NNAM','NAMNPP','NMNN','NMNDA','NMNAT','NADDP','ADPRDP'], # 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, #cannot be lumped 'THFSYN':{'reactions':['GTPCI','DNTPPA','DNMPPA','DHNPA2r','HPPK2','ADCS','ADCL','DHPS2','DHFS'], 'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'GTHSYN':{'reactions':['GLUCYS','GTHS'], 'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_1':{'reactions':['DASYN181','AGPAT181','G3PAT181'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_2':{'reactions':['PSSA181','PSD181'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_3':{'reactions':['PGSA160','PGPP160'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_4':{'reactions':['DASYN161','AGPAT161','G3PAT161'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_5':{'reactions':['PGSA181','PGPP181'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_6':{'reactions':['PSD161','PSSA161'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_7':{'reactions':['PSSA160','PSD160'],'stoichiometry':[1,1]}, 'GLYCPHOSPHOLIPID_8':{'reactions':['DASYN160','AGPAT160','G3PAT160'],'stoichiometry':[1,1,1]}, 'GLYCPHOSPHOLIPID_9':{'reactions':['PGSA161','PGPP161'],'stoichiometry':[1,1]}, 'MOLYBDOPTERIN_1':{'reactions':['MPTAT','MPTS','CPMPS'],'stoichiometry':[1,1,1]}, 'MOLYBDOPTERIN_2':{'reactions':['MOCDS','MOGDS'],'stoichiometry':[1,1]}, 'MOLYBDOPTERIN_3':{'reactions':['MOADSUx','MPTSS'],'stoichiometry':[1,1]}, 'COFACTOR_1':{'reactions':['GLUTRR','G1SAT','GLUTRS'],'stoichiometry':[1,1,1]}, 'COFACTOR_2':{'reactions':['DHNAOT4','UPPDC1','DHNCOAT','DHNCOAS','SEPHCHCS','SUCBZS','SUCBZL','PPPGO3','FCLT','CPPPGO','SHCHCS3'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1]}, 'COFACTOR_3':{'reactions':['TYRL','AMMQLT8','HEMEOS','UPP3MT','SHCHD2','SHCHF','ENTCS','CBLAT'],'stoichiometry':[1,1,1,1,1,1,1,1]}, 'VITB6':{'reactions':['E4PD','PERD','OHPBAT','PDX5PS','PDX5PO2'],'stoichiometry':[1,1,1,1,1]}, #'THIAMIN':{'reactions':['AMPMS2','PMPK','THZPSN3','TMPPP','TMPK'],'stoichiometry':[1,1,1,1,1]}, # original pathway without correction 'THIAMIN':{'reactions':['AMPMS3','PMPK','THZPSN3','TMPPP','TMPK'],'stoichiometry':[1,1,1,1,1]}, 'COFACTOR_4':{'reactions':['I4FE4ST','I4FE4SR','I2FE2SS2'],'stoichiometry':[1,1,1]}, 'COFACTOR_5':{'reactions':['BMOGDS1','BMOGDS2','BMOCOS'],'stoichiometry':[1,1,1]}, 'COFACTOR_6':{'reactions':['DMPPS','GRTT','DMATT'],'stoichiometry':[1,1,1]}, 'COFACTOR_7':{'reactions':['MECDPS','DXPRIi','MEPCT','CDPMEK','MECDPDH5'],'stoichiometry':[1,1,1,1,1]}, 'COFACTOR_8':{'reactions':['LIPOS','LIPOCT'],'stoichiometry':[1,1]}, 'COFACTOR_9':{'reactions':['OMMBLHX','OMPHHX','OPHHX','HBZOPT','DMQMT','CHRPL','OMBZLM','OPHBDC','OHPHM'],'stoichiometry':[1,1,1,1,1,1,1,1,1]}, 'COFACTOR_10':{'reactions':['SERASr','DHBD','UPP3S','HMBS','ICHORT','DHBS'],'stoichiometry':[1,1,1,1,1,1]}, 'COFACTOR_11':{'reactions':['PMEACPE','EGMEACPR','DBTS','AOXSr2','I2FE2SR','OPMEACPD','MALCOAMT','AMAOTr','OPMEACPS','OPMEACPR','OGMEACPD','OGMEACPR','OGMEACPS','EPMEACPR','BTS5'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_1':{'reactions':['UAMAGS','UAPGR','UAGPT3','PAPPT3','GLUR','UAGCVT','UAMAS','UDCPDP','UGMDDS','UAAGDS'],'stoichiometry':[1,1,1,1,-1,1,1,1,1,1]}, 'CELLENV_2':{'reactions':['3HAD181','3OAR181','3OAS181','EAR181x'],'stoichiometry':[1,1,1,1]}, 'CELLENV_3':{'reactions':['3HAD160','3OAR160','EAR160x','3OAS160'],'stoichiometry':[1,1,1,1]}, 'CELLENV_4':{'reactions':['EAR120x','3OAR120','3HAD120','3OAS120','EAR100x'],'stoichiometry':[1,1,1,1,1]}, 'CELLENV_5':{'reactions':['G1PACT','UAGDP','PGAMT','GF6PTA'],'stoichiometry':[1,1,-1,1]}, 'CELLENV_6':{'reactions':['3OAR40','EAR40x','3OAS60','3OAR60','3HAD80','3OAS80','3OAR80','EAR60x','3HAD60','EAR80x','3HAD40'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_7':{'reactions':['3HAD161','EAR161x','3OAS161','3OAR161','3OAS141','3HAD141','3OAR121','EAR121x','3HAD121','EAR141x','T2DECAI','3OAR141','3OAS121'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'CELLENV_8':{'reactions':['TDPGDH','TDPDRR','TDPDRE','G1PTT'],'stoichiometry':[1,1,1,1]}, 'CELLENV_9':{'reactions':['3OAS140','3OAR140'],'stoichiometry':[1,1]}, 'CELLENV_10':{'reactions':['3HAD140','EAR140x'],'stoichiometry':[1,1]}, 'CELLENV_11':{'reactions':['3OAR100','3HAD100','3OAS100'],'stoichiometry':[1,1,1]}, 'LIPOPOLYSACCHARIDE_1':{'reactions':['COLIPAabcpp','COLIPAabctex','EDTXS1','EDTXS2','GALT1','GLCTR1','GLCTR2','GLCTR3','HEPK1','HEPK2','HEPT1','HEPT2','HEPT3','HEPT4','LPADSS','MOAT','MOAT2','MOAT3C','RHAT1','TDSK','USHD'],'stoichiometry':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]}, 'LIPOPOLYSACCHARIDE_2':{'reactions':['AGMHE','GMHEPAT','GMHEPK','GMHEPPA','S7PI'],'stoichiometry':[1,1,1,1,1]}, 'LIPOPOLYSACCHARIDE_3':{'reactions':['U23GAAT','UHGADA','UAGAAT'],'stoichiometry':[1,1,1]}, 'LIPOPOLYSACCHARIDE_4':{'reactions':['KDOPP','KDOCT2','KDOPS'],'stoichiometry':[1,1,1]}, 'ASTPathway':{'reactions':['AST','SADH','SGDS','SGSAD','SOTA'],'stoichiometry':[1,1,1,1,1]} }; return isotopomer_rxns_net def define_netRxns_RL2013_reversible(self): isotopomer_rxns_net = { 'PTAr_ACKr_ACS':{'reactions':['PTAr','ACKr','ACS'], 'stoichiometry':[1,-1,-1]}, #acetate secretion 'ACONTa_ACONTb':{'reactions':['ACONTa','ACONTb'], 'stoichiometry':[1,1]}, 'G6PDH2r_PGL':{'reactions':['G6PDH2r','PGL'], 'stoichiometry':[1,1]}, 'GAPD_PGK':{'reactions':['GAPD','PGK'], #glycolysis 'stoichiometry':[1,-1]}, 'PGM':{'reactions':['PGM','ENO'], #glycolysis 'stoichiometry':[-1,1]}, 'SUCCOAS':{'reactions':['SUCOAS'], #mispelling 'stoichiometry':[1]} #TODO: amino acid synthesis reactions }; return isotopomer_rxns_net; class isotopomer_fluxSplits(): def __init__(self): self.isotopomer_splits = {}; self.isotopomer_splits = self.define_fluxSplits(); def define_fluxSplits(self): isotopomer_splits = {}; isotopomer_splits['g6p_2_f6p_or_6pgc']=['PGI','G6PDH2r']; isotopomer_splits['6pgc_2_2ddg6p_or_ru5p-D']=['EDD','GND']; isotopomer_splits['pep_2_oaa_or_pyr']=['PPC','PYK','GLCptspp']; isotopomer_splits['accoa_2_ac_or_cit']=['PTAr','CS']; isotopomer_splits['icit_2_akg_or_glx']=['ICDHyr','ICL']; isotopomer_splits['glc-D_2_g6p']=['HEX1','GLCptspp']; isotopomer_splits['mal-L_2_oaa_or_pyr']=['ME1','ME2','MDH']; return isotopomer_splits
b14adaf5a89b66b23c4ea53b5a93cd242caca777
0f16edb46a48f9b5a125abb56fc0545ede1d65aa
/test_utilities/src/d1_test/mock_api/tests/test_get.py
d1eaef95d18355fd89576cc41c693343b6516ba0
[ "Apache-2.0" ]
permissive
DataONEorg/d1_python
5e685f1af0c356190f2d6df45d1ac849e2f56972
d72a9461894d9be7d71178fb7310101b8ef9066a
refs/heads/master
2023-08-29T03:16:38.131760
2023-06-27T21:59:37
2023-06-27T21:59:37
60,103,877
15
12
Apache-2.0
2023-09-06T18:27:53
2016-05-31T16:01:00
Python
UTF-8
Python
false
false
2,721
py
# This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests import responses import d1_test.d1_test_case import d1_test.mock_api.get class TestMockGet(d1_test.d1_test_case.D1TestCase): @responses.activate def test_1000(self, mn_client_v1_v2): """mock_api.get() returns a Requests Response object.""" d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) assert isinstance(mn_client_v1_v2.get("test_pid_1"), requests.Response) @responses.activate def test_1010(self, mn_client_v1_v2): """mock_api.get() returns the same content each time for a given PID.""" d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) obj_1a_str = mn_client_v1_v2.get("test_pid_1").content obj_2a_str = mn_client_v1_v2.get("test_pid_2").content obj_1b_str = mn_client_v1_v2.get("test_pid_1").content obj_2b_str = mn_client_v1_v2.get("test_pid_2").content assert obj_1a_str == obj_1b_str assert obj_2a_str == obj_2b_str @responses.activate def test_1020(self, mn_client_v1_v2): """mock_api.get(): Redirects.""" d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) direct_sciobj_bytes = mn_client_v1_v2.get("test_pid_1").content redirect_sciobj_bytes = mn_client_v1_v2.get( "<REDIRECT:303:3>test_pid_1" ).content assert direct_sciobj_bytes == redirect_sciobj_bytes # @responses.activate # def test_0012(self): # """mock_api.get() returns 1024 bytes""" # obj_str = self.client.get('test_pid_1').content # self.assertEqual(len(obj_str), 1024) # @responses.activate # def test_0013(self): # """mock_api.get(): Passing a trigger header triggers a DataONEException""" # self.assertRaises( # d1_common.types.exceptions.NotAuthorized, self.client.get, 'test_pid', # vendorSpecific={'trigger': '401'} # )
3e43c121fa98f0c8fd7478f5ac8cd4cfe08fcd43
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/sql/azure-mgmt-sql/generated_samples/transparent_data_encryption_list.py
3e2275f884eabc284c7627538174b4de0a236e32
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,661
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.sql import SqlManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-sql # USAGE python transparent_data_encryption_list.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = SqlManagementClient( credential=DefaultAzureCredential(), subscription_id="00000000-1111-2222-3333-444444444444", ) response = client.transparent_data_encryptions.list_by_database( resource_group_name="security-tde-resourcegroup", server_name="securitytde", database_name="testdb", ) for item in response: print(item) # x-ms-original-file: specification/sql/resource-manager/Microsoft.Sql/preview/2022-08-01-preview/examples/TransparentDataEncryptionList.json if __name__ == "__main__": main()
fe69d824ce277807f6d3e0d5eaaff8a66490ae4b
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
/otp/src/level/ModelEntity.py
5850215d12244dd9e104ca4eebaf6cf5fd012828
[]
no_license
satire6/Anesidora
da3a44e2a49b85252b87b612b435fb4970469583
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
refs/heads/master
2022-12-16T20:05:13.167119
2020-09-11T16:58:04
2020-09-11T17:02:06
294,751,966
89
32
null
null
null
null
UTF-8
Python
false
false
4,052
py
from toontown.toonbase.ToontownGlobals import * from direct.directnotify import DirectNotifyGlobal import BasicEntities class ModelEntity(BasicEntities.NodePathEntity): LoadFuncs = { 'loadModelCopy': loader.loadModelCopy, 'loadModel': loader.loadModel, 'loadModelOnce': loader.loadModelOnce, } def __init__(self, level, entId): # TODO: fill in default values automatically for missing attribs self.collisionsOnly = False self.loadType = 'loadModelCopy' self.flattenType = 'light' self.goonHatType = 'none' self.entInitialized = False BasicEntities.NodePathEntity.__init__(self, level, entId) self.entInitialized = True self.model = None self.loadModel() def destroy(self): if self.model: self.model.removeNode() del self.model BasicEntities.NodePathEntity.destroy(self) def loadModel(self): if self.model: self.model.removeNode() self.model = None if self.modelPath is None: return self.model = ModelEntity.LoadFuncs[self.loadType](self.modelPath) if self.model: self.model.reparentTo(self) # hide/show as appropriate if self.collisionsOnly: if __dev__: self.model.setTransparency(1) self.model.setColorScale(1,1,1,.1) else: self.model.hide() else: self.model.show() # HACK SDN: special code for moving crate wall collisions down if self.modelPath in ("phase_9/models/cogHQ/woodCrateB.bam", "phase_9/models/cogHQ/metal_crateB.bam", "phase_10/models/cashbotHQ/CBMetalCrate.bam", "phase_10/models/cogHQ/CBMetalCrate2.bam", "phase_10/models/cashbotHQ/CBWoodCrate.bam", "phase_11/models/lawbotHQ/LB_metal_crate.bam", "phase_11/models/lawbotHQ/LB_metal_crate2.bam", ): # get rid of any scales #self.model.flattenLight() # move walls down cNode = self.find("**/wall") cNode.setZ(cNode, -.75) # duplicate the floor and move it down to crate a # catch effect for low-hopped toons colNode = self.find("**/collision") floor = colNode.find("**/floor") floor2 = floor.copyTo(colNode) floor2.setZ(floor2, -.75) """ # incorporate the entity's overall scale self.model.setScale(self.getScale()) self.setScale(1) self.model.flattenLight() """ if self.goonHatType is not 'none': self.goonType = {'hardhat':'pg','security':'sg'}[self.goonHatType] self.hat = self.model ### this was copied from Goon.createHead if self.goonType == "pg": self.hat.find("**/security_hat").hide() elif self.goonType == "sg": self.hat.find("**/hard_hat").hide() ### del self.hat del self.goonType if self.flattenType == 'light': self.model.flattenLight() elif self.flattenType == 'medium': self.model.flattenMedium() elif self.flattenType == 'strong': self.model.flattenStrong() def setModelPath(self, path): self.modelPath = path self.loadModel() def setCollisionsOnly(self, collisionsOnly): self.collisionsOnly = collisionsOnly self.loadModel() def setGoonHatType(self, goonHatType): self.goonHatType = goonHatType self.loadModel()
22e5a66e84c47b3691015f299972b4f9e43427f4
71c331e4b1e00fa3be03b7f711fcb05a793cf2af
/QA-System-master/SpeechToText_test/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/firestore/v1/firestore_v1_client.py
ac370070865d488484aa602c2024b65bf41079fa
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
iofh/QA-System
568228bb0c0adf9ec23b45cd144d61049e720002
af4a8f1b5f442ddf4905740ae49ed23d69afb0f6
refs/heads/master
2022-11-27T23:04:16.385021
2020-08-12T10:11:44
2020-08-12T10:11:44
286,980,492
0
0
null
null
null
null
UTF-8
Python
false
false
39,606
py
"""Generated client library for firestore version v1.""" # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.py import base_api from googlecloudsdk.third_party.apis.firestore.v1 import firestore_v1_messages as messages class FirestoreV1(base_api.BaseApiClient): """Generated client library for service firestore version v1.""" MESSAGES_MODULE = messages BASE_URL = 'https://firestore.googleapis.com/' MTLS_BASE_URL = 'https://firestore.mtls.googleapis.com/' _PACKAGE = 'firestore' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/datastore'] _VERSION = 'v1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'FirestoreV1' _URL_VERSION = 'v1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new firestore handle.""" url = url or self.BASE_URL super(FirestoreV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_databases_collectionGroups_fields = self.ProjectsDatabasesCollectionGroupsFieldsService(self) self.projects_databases_collectionGroups_indexes = self.ProjectsDatabasesCollectionGroupsIndexesService(self) self.projects_databases_collectionGroups = self.ProjectsDatabasesCollectionGroupsService(self) self.projects_databases_documents = self.ProjectsDatabasesDocumentsService(self) self.projects_databases_operations = self.ProjectsDatabasesOperationsService(self) self.projects_databases = self.ProjectsDatabasesService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class ProjectsDatabasesCollectionGroupsFieldsService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups_fields resource.""" _NAME = 'projects_databases_collectionGroups_fields' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsFieldsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the metadata and configuration for a Field. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1Field) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields/{fieldsId}', http_method='GET', method_id='firestore.projects.databases.collectionGroups.fields.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsGetRequest', response_type_name='GoogleFirestoreAdminV1Field', supports_download=False, ) def List(self, request, global_params=None): r"""Lists the field configuration and metadata for this database. Currently, FirestoreAdmin.ListFields only supports listing fields that have been explicitly overridden. To issue this query, call FirestoreAdmin.ListFields with the filter set to `indexConfig.usesAncestorConfig:false`. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1ListFieldsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields', http_method='GET', method_id='firestore.projects.databases.collectionGroups.fields.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/fields', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsListRequest', response_type_name='GoogleFirestoreAdminV1ListFieldsResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates a field configuration. Currently, field updates apply only to. single field index configuration. However, calls to FirestoreAdmin.UpdateField should provide a field mask to avoid changing any configuration that the caller isn't aware of. The field mask should be specified as: `{ paths: "index_config" }`. This call returns a google.longrunning.Operation which may be used to track the status of the field update. The metadata for the operation will be the type FieldOperationMetadata. To configure the default field settings for the database, use the special `Field` with resource name: `projects/{project_id}/databases/{database_id}/collectionGroups/__default__/fields/*`. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields/{fieldsId}', http_method='PATCH', method_id='firestore.projects.databases.collectionGroups.fields.patch', ordered_params=['name'], path_params=['name'], query_params=['updateMask'], relative_path='v1/{+name}', request_field='googleFirestoreAdminV1Field', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsPatchRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) class ProjectsDatabasesCollectionGroupsIndexesService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups_indexes resource.""" _NAME = 'projects_databases_collectionGroups_indexes' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsIndexesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a composite index. This returns a google.longrunning.Operation. which may be used to track the status of the creation. The metadata for the operation will be the type IndexOperationMetadata. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes', http_method='POST', method_id='firestore.projects.databases.collectionGroups.indexes.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/indexes', request_field='googleFirestoreAdminV1Index', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesCreateRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a composite index. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes/{indexesId}', http_method='DELETE', method_id='firestore.projects.databases.collectionGroups.indexes.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets a composite index. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1Index) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes/{indexesId}', http_method='GET', method_id='firestore.projects.databases.collectionGroups.indexes.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesGetRequest', response_type_name='GoogleFirestoreAdminV1Index', supports_download=False, ) def List(self, request, global_params=None): r"""Lists composite indexes. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1ListIndexesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes', http_method='GET', method_id='firestore.projects.databases.collectionGroups.indexes.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/indexes', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesListRequest', response_type_name='GoogleFirestoreAdminV1ListIndexesResponse', supports_download=False, ) class ProjectsDatabasesCollectionGroupsService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups resource.""" _NAME = 'projects_databases_collectionGroups' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsService, self).__init__(client) self._upload_configs = { } class ProjectsDatabasesDocumentsService(base_api.BaseApiService): """Service class for the projects_databases_documents resource.""" _NAME = 'projects_databases_documents' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesDocumentsService, self).__init__(client) self._upload_configs = { } def BatchGet(self, request, global_params=None): r"""Gets multiple documents. Documents returned by this method are not guaranteed to be returned in the same order that they were requested. Args: request: (FirestoreProjectsDatabasesDocumentsBatchGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BatchGetDocumentsResponse) The response message. """ config = self.GetMethodConfig('BatchGet') return self._RunMethod( config, request, global_params=global_params) BatchGet.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:batchGet', http_method='POST', method_id='firestore.projects.databases.documents.batchGet', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:batchGet', request_field='batchGetDocumentsRequest', request_type_name='FirestoreProjectsDatabasesDocumentsBatchGetRequest', response_type_name='BatchGetDocumentsResponse', supports_download=False, ) def BeginTransaction(self, request, global_params=None): r"""Starts a new transaction. Args: request: (FirestoreProjectsDatabasesDocumentsBeginTransactionRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BeginTransactionResponse) The response message. """ config = self.GetMethodConfig('BeginTransaction') return self._RunMethod( config, request, global_params=global_params) BeginTransaction.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:beginTransaction', http_method='POST', method_id='firestore.projects.databases.documents.beginTransaction', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:beginTransaction', request_field='beginTransactionRequest', request_type_name='FirestoreProjectsDatabasesDocumentsBeginTransactionRequest', response_type_name='BeginTransactionResponse', supports_download=False, ) def Commit(self, request, global_params=None): r"""Commits a transaction, while optionally updating documents. Args: request: (FirestoreProjectsDatabasesDocumentsCommitRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (CommitResponse) The response message. """ config = self.GetMethodConfig('Commit') return self._RunMethod( config, request, global_params=global_params) Commit.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:commit', http_method='POST', method_id='firestore.projects.databases.documents.commit', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:commit', request_field='commitRequest', request_type_name='FirestoreProjectsDatabasesDocumentsCommitRequest', response_type_name='CommitResponse', supports_download=False, ) def CreateDocument(self, request, global_params=None): r"""Creates a new document. Args: request: (FirestoreProjectsDatabasesDocumentsCreateDocumentRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('CreateDocument') return self._RunMethod( config, request, global_params=global_params) CreateDocument.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{collectionId}', http_method='POST', method_id='firestore.projects.databases.documents.createDocument', ordered_params=['parent', 'collectionId'], path_params=['collectionId', 'parent'], query_params=['documentId', 'mask_fieldPaths'], relative_path='v1/{+parent}/{collectionId}', request_field='document', request_type_name='FirestoreProjectsDatabasesDocumentsCreateDocumentRequest', response_type_name='Document', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a document. Args: request: (FirestoreProjectsDatabasesDocumentsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='DELETE', method_id='firestore.projects.databases.documents.delete', ordered_params=['name'], path_params=['name'], query_params=['currentDocument_exists', 'currentDocument_updateTime'], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets a single document. Args: request: (FirestoreProjectsDatabasesDocumentsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='GET', method_id='firestore.projects.databases.documents.get', ordered_params=['name'], path_params=['name'], query_params=['mask_fieldPaths', 'readTime', 'transaction'], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsGetRequest', response_type_name='Document', supports_download=False, ) def List(self, request, global_params=None): r"""Lists documents. Args: request: (FirestoreProjectsDatabasesDocumentsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListDocumentsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}/{collectionId}', http_method='GET', method_id='firestore.projects.databases.documents.list', ordered_params=['parent', 'collectionId'], path_params=['collectionId', 'parent'], query_params=['mask_fieldPaths', 'orderBy', 'pageSize', 'pageToken', 'readTime', 'showMissing', 'transaction'], relative_path='v1/{+parent}/{collectionId}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsListRequest', response_type_name='ListDocumentsResponse', supports_download=False, ) def ListCollectionIds(self, request, global_params=None): r"""Lists all the collection IDs underneath a document. Args: request: (FirestoreProjectsDatabasesDocumentsListCollectionIdsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListCollectionIdsResponse) The response message. """ config = self.GetMethodConfig('ListCollectionIds') return self._RunMethod( config, request, global_params=global_params) ListCollectionIds.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}:listCollectionIds', http_method='POST', method_id='firestore.projects.databases.documents.listCollectionIds', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}:listCollectionIds', request_field='listCollectionIdsRequest', request_type_name='FirestoreProjectsDatabasesDocumentsListCollectionIdsRequest', response_type_name='ListCollectionIdsResponse', supports_download=False, ) def Listen(self, request, global_params=None): r"""Listens to changes. Args: request: (FirestoreProjectsDatabasesDocumentsListenRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListenResponse) The response message. """ config = self.GetMethodConfig('Listen') return self._RunMethod( config, request, global_params=global_params) Listen.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:listen', http_method='POST', method_id='firestore.projects.databases.documents.listen', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:listen', request_field='listenRequest', request_type_name='FirestoreProjectsDatabasesDocumentsListenRequest', response_type_name='ListenResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates or inserts a document. Args: request: (FirestoreProjectsDatabasesDocumentsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='PATCH', method_id='firestore.projects.databases.documents.patch', ordered_params=['name'], path_params=['name'], query_params=['currentDocument_exists', 'currentDocument_updateTime', 'mask_fieldPaths', 'updateMask_fieldPaths'], relative_path='v1/{+name}', request_field='document', request_type_name='FirestoreProjectsDatabasesDocumentsPatchRequest', response_type_name='Document', supports_download=False, ) def Rollback(self, request, global_params=None): r"""Rolls back a transaction. Args: request: (FirestoreProjectsDatabasesDocumentsRollbackRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Rollback') return self._RunMethod( config, request, global_params=global_params) Rollback.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:rollback', http_method='POST', method_id='firestore.projects.databases.documents.rollback', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:rollback', request_field='rollbackRequest', request_type_name='FirestoreProjectsDatabasesDocumentsRollbackRequest', response_type_name='Empty', supports_download=False, ) def RunQuery(self, request, global_params=None): r"""Runs a query. Args: request: (FirestoreProjectsDatabasesDocumentsRunQueryRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (RunQueryResponse) The response message. """ config = self.GetMethodConfig('RunQuery') return self._RunMethod( config, request, global_params=global_params) RunQuery.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}:runQuery', http_method='POST', method_id='firestore.projects.databases.documents.runQuery', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}:runQuery', request_field='runQueryRequest', request_type_name='FirestoreProjectsDatabasesDocumentsRunQueryRequest', response_type_name='RunQueryResponse', supports_download=False, ) def Write(self, request, global_params=None): r"""Streams batches of document updates and deletes, in order. Args: request: (FirestoreProjectsDatabasesDocumentsWriteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WriteResponse) The response message. """ config = self.GetMethodConfig('Write') return self._RunMethod( config, request, global_params=global_params) Write.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:write', http_method='POST', method_id='firestore.projects.databases.documents.write', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:write', request_field='writeRequest', request_type_name='FirestoreProjectsDatabasesDocumentsWriteRequest', response_type_name='WriteResponse', supports_download=False, ) class ProjectsDatabasesOperationsService(base_api.BaseApiService): """Service class for the projects_databases_operations resource.""" _NAME = 'projects_databases_operations' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesOperationsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts asynchronous cancellation on a long-running operation. The server. makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`. Args: request: (FirestoreProjectsDatabasesOperationsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}:cancel', http_method='POST', method_id='firestore.projects.databases.operations.cancel', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:cancel', request_field='googleLongrunningCancelOperationRequest', request_type_name='FirestoreProjectsDatabasesOperationsCancelRequest', response_type_name='Empty', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a long-running operation. This method indicates that the client is. no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request: (FirestoreProjectsDatabasesOperationsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}', http_method='DELETE', method_id='firestore.projects.databases.operations.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this. method to poll the operation result at intervals as recommended by the API service. Args: request: (FirestoreProjectsDatabasesOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}', http_method='GET', method_id='firestore.projects.databases.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsGetRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists operations that match the specified filter in the request. If the. server doesn't support this method, it returns `UNIMPLEMENTED`. NOTE: the `name` binding allows API services to override the binding to use different resource name schemes, such as `users/*/operations`. To override the binding, API services can add a binding such as `"/v1/{name=users/*}/operations"` to their service configuration. For backwards compatibility, the default name includes the operations collection id, however overriding users must ensure the name binding is the parent resource, without the operations collection id. Args: request: (FirestoreProjectsDatabasesOperationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningListOperationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations', http_method='GET', method_id='firestore.projects.databases.operations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+name}/operations', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsListRequest', response_type_name='GoogleLongrunningListOperationsResponse', supports_download=False, ) class ProjectsDatabasesService(base_api.BaseApiService): """Service class for the projects_databases resource.""" _NAME = 'projects_databases' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesService, self).__init__(client) self._upload_configs = { } def ExportDocuments(self, request, global_params=None): r"""Exports a copy of all or a subset of documents from Google Cloud Firestore. to another storage system, such as Google Cloud Storage. Recent updates to documents may not be reflected in the export. The export occurs in the background and its progress can be monitored and managed via the Operation resource that is created. The output of an export may only be used once the associated operation is done. If an export operation is cancelled before completion it may leave partial data behind in Google Cloud Storage. Args: request: (FirestoreProjectsDatabasesExportDocumentsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('ExportDocuments') return self._RunMethod( config, request, global_params=global_params) ExportDocuments.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}:exportDocuments', http_method='POST', method_id='firestore.projects.databases.exportDocuments', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:exportDocuments', request_field='googleFirestoreAdminV1ExportDocumentsRequest', request_type_name='FirestoreProjectsDatabasesExportDocumentsRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def ImportDocuments(self, request, global_params=None): r"""Imports documents into Google Cloud Firestore. Existing documents with the. same name are overwritten. The import occurs in the background and its progress can be monitored and managed via the Operation resource that is created. If an ImportDocuments operation is cancelled, it is possible that a subset of the data has already been imported to Cloud Firestore. Args: request: (FirestoreProjectsDatabasesImportDocumentsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('ImportDocuments') return self._RunMethod( config, request, global_params=global_params) ImportDocuments.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}:importDocuments', http_method='POST', method_id='firestore.projects.databases.importDocuments', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:importDocuments', request_field='googleFirestoreAdminV1ImportDocumentsRequest', request_type_name='FirestoreProjectsDatabasesImportDocumentsRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(FirestoreV1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets information about a location. Args: request: (FirestoreProjectsLocationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Location) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}', http_method='GET', method_id='firestore.projects.locations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsLocationsGetRequest', response_type_name='Location', supports_download=False, ) def List(self, request, global_params=None): r"""Lists information about the supported locations for this service. Args: request: (FirestoreProjectsLocationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListLocationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations', http_method='GET', method_id='firestore.projects.locations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+name}/locations', request_field='', request_type_name='FirestoreProjectsLocationsListRequest', response_type_name='ListLocationsResponse', supports_download=False, ) class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(FirestoreV1.ProjectsService, self).__init__(client) self._upload_configs = { }
bb35ccd3ccfc92a049807e3711182d740eb677b8
eab2dc435028b2548554d97b24eb7b7e3576b953
/iblrig/check_sync_pulses.py
b53097729443914a5879f7b454f1900b4316e049
[ "MIT" ]
permissive
k1o0/iblrig
35edd8570215ca591b1f1e26e47439e633aa587a
9177b852b344a9bbc26e4a4aeb5f0182bd8a9b25
refs/heads/master
2021-05-24T12:58:47.552912
2020-02-25T20:19:59
2020-02-25T20:19:59
253,573,669
0
0
MIT
2020-04-06T17:48:28
2020-04-06T17:48:28
null
UTF-8
Python
false
false
2,875
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Author: Niccolò Bonacchi # @Date: Monday, February 25th 2019, 2:10:38 pm import logging import sys from pathlib import Path import ibllib.io.raw_data_loaders as raw import matplotlib.pyplot as plt import numpy as np from iblrig.misc import get_port_events log = logging.getLogger("iblrig") def sync_check(tph): events = tph.behavior_data["Events timestamps"] ev_bnc1 = get_port_events(events, name="BNC1") ev_bnc2 = get_port_events(events, name="BNC2") ev_port1 = get_port_events(events, name="Port1") NOT_FOUND = "COULD NOT FIND DATA ON {}" bnc1_msg = NOT_FOUND.format("BNC1") if not ev_bnc1 else "OK" bnc2_msg = NOT_FOUND.format("BNC2") if not ev_bnc2 else "OK" port1_msg = NOT_FOUND.format("Port1") if not ev_port1 else "OK" warn_msg = f""" ########################################## NOT FOUND: SYNC PULSES ########################################## VISUAL STIMULUS SYNC: {bnc1_msg} SOUND SYNC: {bnc2_msg} CAMERA SYNC: {port1_msg} ##########################################""" if not ev_bnc1 or not ev_bnc2 or not ev_port1: log.warning(warn_msg) if __name__ == "__main__": if len(sys.argv) == 1: print("I need a file name...") session_data_file = Path(sys.argv[1]) if not session_data_file.exists(): raise FileNotFoundError(f"{session_data_file}") if session_data_file.name.endswith(".jsonable"): data = raw.load_data(session_data_file.parent.parent) else: try: data = raw.load_data(session_data_file) except Exception: print("Not a file or a valid session folder") unsynced_trial_count = 0 frame2ttl = [] sound = [] camera = [] trial_end = [] for trial_data in data: tevents = trial_data["behavior_data"]["Events timestamps"] ev_bnc1 = get_port_events(tevents, name="BNC1") ev_bnc2 = get_port_events(tevents, name="BNC2") ev_port1 = get_port_events(tevents, name="Port1") if not ev_bnc1 or not ev_bnc2 or not ev_port1: unsynced_trial_count += 1 frame2ttl.extend(ev_bnc1) sound.extend(ev_bnc2) camera.extend(ev_port1) trial_end.append(trial_data["behavior_data"]["Trial end timestamp"]) print(f"Found {unsynced_trial_count} trials with bad sync data") f = plt.figure() # figsize=(19.2, 10.8), dpi=100) ax = plt.subplot2grid((1, 1), (0, 0), rowspan=1, colspan=1) ax.plot(camera, np.ones(len(camera)) * 1, "|") ax.plot(sound, np.ones(len(sound)) * 2, "|") ax.plot(frame2ttl, np.ones(len(frame2ttl)) * 3, "|") [ax.axvline(t, alpha=0.5) for t in trial_end] ax.set_ylim([0, 4]) ax.set_yticks(range(4)) ax.set_yticklabels(["", "camera", "sound", "frame2ttl"]) plt.show()
c43dee062a7499d04b64507171d861b11b09912e
df3c8c521a51f2b412118bd9d0e477da06a3b7cc
/build/view_environments/post_create_/create_post/create_post.py
2a6a13f8a1551a30e01dd4e643e8f14b345f9bfd
[]
no_license
bharatmudragada/fb_post
c30b900731db5844df6b438e5d38a0dfb607412a
c5e7bb185a561bdcfcd7b2e30264554b07106044
refs/heads/master
2020-06-21T04:05:22.296755
2019-07-17T07:48:22
2019-07-17T07:48:22
197,339,717
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
from django_swagger_utils.drf_server.decorators.request_response import request_response from django_swagger_utils.drf_server.default.parser_mapping import PARSER_MAPPING from django_swagger_utils.drf_server.default.renderer_mapping import RENDERER_MAPPING from fb_post.build.serializers.definitions.PostContent.PostContentSerializer import PostContentSerializer from fb_post.build.serializers.definitions.PostId.PostIdSerializer import PostIdSerializer options = { 'METHOD': 'POST', 'REQUEST_WRAPPING_REQUIRED': True, 'REQUEST_ENCRYPTION_REQUIRED': False, 'REQUEST_IS_PARTIAL': False, 'PARSER_CLASSES': [ PARSER_MAPPING["application/json"] ], 'RENDERER_CLASSES': [ RENDERER_MAPPING["application/json"] ], 'REQUEST_QUERY_PARAMS_SERIALIZER': None, 'REQUEST_HEADERS_SERIALIZER': None, 'REQUEST_SERIALIZER': PostContentSerializer, 'REQUEST_SERIALIZER_MANY_ITEMS': False, 'RESPONSE': { '201' : { 'RESPONSE_SERIALIZER': PostIdSerializer, 'RESPONSE_SERIALIZER_MANY_ITEMS': False, 'HEADERS_SERIALIZER': None, } , '400' : { 'RESPONSE_SERIALIZER': None, 'RESPONSE_SERIALIZER_MANY_ITEMS': False, 'HEADERS_SERIALIZER': None, } }, "SECURITY":{ "oauth" : [ "write" ] } } app_name = "fb_post" operation_id = "create_post" group_name = "" @request_response(options=options, app_name=app_name, operation_id=operation_id, group_name=group_name) def create_post(request, *args, **kwargs): args = (request,) + args from django_swagger_utils.drf_server.wrappers.view_env_wrapper import view_env_wrapper return view_env_wrapper(app_name, "create_post", group_name, *args, **kwargs)
8608678850cf6031586f8b1bce7e8531244232c5
7869035b72807394154285d307e0597ee16f11d8
/src/data_loader.py
2a23407ac8c03daa931088d7b07b81b5ff04a48b
[]
no_license
tiffany70072/TokenPositioning
cb74edae92e19c16f8ca763935e56b0f2e698b85
a2ab63640a2aff1abfccaa1c1486d8a97026ef0b
refs/heads/master
2022-07-19T11:21:04.716882
2020-04-17T06:02:18
2020-04-17T06:02:18
254,995,440
0
0
null
null
null
null
UTF-8
Python
false
false
2,225
py
import numpy as np import os from sklearn.model_selection import train_test_split def load_data(task, data_name, data_type): if task == "autoenc-last" or task == 'token-posi': assert data_type == "train" or data_type == "valid", "no this data type." data_path = os.path.join("../data", data_name) encoder_data = np.load(os.path.join(data_path, "encoder_%s.npy" % data_type)) decoder_data = np.load(os.path.join(data_path, "decoder_%s.npy" % data_type)) assert encoder_data.shape[0] == decoder_data.shape[0], "data size not match." decoder_output = set_decoder_output_data(decoder_data) return encoder_data, decoder_data, decoder_output else: raise "No this task for load_data." def set_decoder_output_data(decoder_input): # Reshape 2d array into 3d array for Keras training. # Shift one time step because decoder_input and decoder_output are different with one time step. decoder_output = decoder_input.copy() for i in range(len(decoder_output)): decoder_output[i, :-1] = decoder_input[i, 1:] # Remove the first token in decoder output. decoder_output[i, -1] *= 0 decoder_output = np.reshape(decoder_output, [decoder_output.shape[0], decoder_output.shape[1], 1]) return decoder_output """ def cut_validation(self): # TODO: cut training, validation and testing split_result = data_reader.data_split(self.encoder_in, self.decoder_in, self.decoder_out) self.encoder_in = split_result[0] self.decoder_in = split_result[1] self.decoder_out = split_result[2] self.encoder_in_valid = split_result[3][:50000] # TODO: Deal with too many data. self.decoder_in_valid = split_result[4][:50000] self.decoder_out_valid = split_result[5][:50000] self.encoder_in_test = split_result[6] self.decoder_in_test = split_result[7] self.decoder_out_test = split_result[8] self.encoder_in = split_result[0]#[:3000] self.decoder_in = split_result[1]#[:3000] self.decoder_out = split_result[2]#[:3000] print("(Cut validation) training size:", self.encoder_in.shape) print("(Cut validation) validation size:", self.encoder_in_valid.shape) print("(Cut validation) testing size:", self.encoder_in_test.shape) """
84fdc9040b3bcc55c94270233da3cce4c9b669d5
babc56e88a3b5f5038be70ad676d5bd8f1bbf0d2
/wind_direction_byo.py
94bc6600dd5986d16cb2cf6d96ba20ac2a7f7738
[]
no_license
VicenteYago/CustomWeatherStation
873405ca16aa0b6f4f291cbc0068a6ea10aef745
c655f947cca2cd0f8827c18f6f7a7c4c11ef4d43
refs/heads/master
2022-11-13T06:48:05.736830
2020-06-30T00:43:07
2020-06-30T00:43:07
269,812,727
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
from gpiozero import MCP3008 import time import math adc = MCP3008(channel=0) count = 0 values = [] volts = [0.4, 1.4, 1.2, 2.8, 2.9, 2.2, 2.5, 1.8, 2.0, 0.7, 0.8, 0.1, 0.3, 0.2, 0.6, 2.7] volts_dic = { 0.4: 0.0, 1.4: 22.5, 1.2: 45.0, 2.8: 67.5, 2.7: 90.5, 2.9: 112.5, 2.2: 135.0, 2.5: 157.5, 1.8: 180.0, 2.0: 202.5, 0.7: 225.0, 0.8: 247.5, 0.1: 270.0, 0.3: 292.5, 0.2: 315.0, 0.6: 337.5 } def get_average(angles): sin_sum = 0.0 cos_sum = 0.0 for angle in angles: r = math.radians(angle) sin_sum += math.sin(r) cos_sum += math.cos(r) flen = float(len(angles)) s = sin_sum / flen c = cos_sum / flen arc = math.degrees(math.atan(s / c)) average = 0.0 if s > 0 and c > 0: average = arc elif c < 0: average = arc + 180 elif s < 0 and c > 0: average = arc + 360 return 0.0 if average == 360 else average def get_value(length = 5): data = [] print("Measuring wind direction for %d seconds..." % length) start_time = time.time() while time.time() - start_time <= length: wind = round(adc.value*3.3,1) if not wind in volts_dic: print("Unknown value :", str(wind)) else: data.append(volts_dic[wind]) return get_average(data) while True: print(get_value())
[ "=" ]
=
b676c5cba48c2e1efd64286543f5f6aadfef51fd
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/common/wotdecorators.py
1554469a75cbd2eab8d57565f8457da484b5051a
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
2,832
py
# 2017.08.29 21:52:48 Střední Evropa (letní čas) # Embedded file name: scripts/common/wotdecorators.py import inspect from functools import update_wrapper from debug_utils import LOG_WRAPPED_CURRENT_EXCEPTION, CRITICAL_ERROR from time_tracking import LOG_TIME_WARNING import time import time_tracking def noexcept(func): def wrapper(*args, **kwArgs): try: return func(*args, **kwArgs) except: LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1) return wrapper def nofail(func): def wrapper(*args, **kwArgs): try: return func(*args, **kwArgs) except: LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1) CRITICAL_ERROR('Exception in no-fail code') return wrapper def exposedtoclient(func): def wrapper(*args, **kwArgs): try: lastTick = time.time() result = func(*args, **kwArgs) timeSinceLastTick = time.time() - lastTick if timeSinceLastTick > time_tracking.DEFAULT_TIME_LIMIT: LOG_TIME_WARNING(timeSinceLastTick, context=(getattr(args[0], 'id', 0), func.__name__, args, kwArgs)) return result except: LOG_WRAPPED_CURRENT_EXCEPTION(wrapper.__name__, func.__name__, func.func_code.co_filename, func.func_code.co_firstlineno + 1) return wrapper def singleton(cls): return cls() def decorate(func, dec): argspec = inspect.getargspec(func) name = func.__name__ signature = inspect.formatargspec(*argspec) params = inspect.formatargspec(formatvalue=(lambda value: ''), *argspec) source = 'def %s%s: return __dec%s\n' % (name, signature, params) code = compile(source, '<decorator-gen>', 'single') env = {'__dec': dec} eval(code, env) return update_wrapper(env[name], func) def decorator(dec): def wrapper(func): return decorate(func, dec(func)) return wrapper def condition(attributeName, logFunc = None, logStack = True): def decorator(func): def wrapper(*args, **kwargs): attribute = getattr(args[0], attributeName) if not bool(attribute): if logFunc: logFunc('Method condition failed', args, kwargs, stack=logStack) return return func(*args, **kwargs) return decorate(func, wrapper) return decorator # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\common\wotdecorators.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:52:48 Střední Evropa (letní čas)
c177f0da14bb7731c15a9e25ad35b2bb78f5ca63
3d2192385e65889d20b74742755f5369d0d09161
/stock_colis/models/__init__.py
da8dece232489928427446f10dfd1d1af8ea259d
[]
no_license
FIDINGSARL/audoune
9ba746a9d7424a41f8775a6e30f42f2a97224edf
39cecd44497d5fa227cc594a6bf5807eb14976d3
refs/heads/main
2023-06-18T09:49:13.778878
2021-06-30T15:06:51
2021-06-30T15:06:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
# -*- coding: utf-8 -*- from . import stock_colis, stock_colis_request
218046a18f59c8cc6a566f6a16807e74d5250298
a4e502e9487cf17c53f9f931ec0dbc12168fea52
/packages/pyre/platforms/PackageManager.py
0877270914d7a2f1326787f57abfbb1ac0125b31
[ "BSD-3-Clause" ]
permissive
bryanvriel/pyre
bdc5dd59c46d53ff81f2ece532b9073ac3b65be1
179359634a7091979cced427b6133dd0ec4726ea
refs/heads/master
2021-09-28T00:10:26.454282
2018-11-11T16:42:07
2018-11-11T16:42:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,373
py
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2018 all rights reserved # # the framework import pyre # declaration class PackageManager(pyre.protocol, family='pyre.platforms.packagers'): """ Encapsulation of host specific information """ # requirements @pyre.provides def prefix(self): """ The package manager install location """ @pyre.provides def installed(self): """ Retrieve available information for all installed packages """ @pyre.provides def packages(self, category): """ Provide a sequence of package names that provide compatible installations for the given package {category}. If the package manager provides a way for the user to select a specific installation as the default, care should be taken to rank the sequence appropriately. """ @pyre.provides def info(self, package): """ Return information about the given {package} The type of information returned is determined by the package manager. This method should return success if and only if {package} is actually fully installed. """ @pyre.provides def contents(self, package): """ Generate a sequence of the contents of {package} The type of information returned is determined by the package manager. Typically, it contains the list of files that are installed by this package, but it may contain other filesystem entities as well. This method should return a non-empty sequence if and only if {pakage} is actually fully installed """ @pyre.provides def configure(self, packageInstance): """ Dispatch to the {packageInstance} configuration procedure that is specific to the particular implementation of this protocol """ # framework obligations @classmethod def pyre_default(cls, **kwds): """ Build the preferred host implementation """ # the host should specify a sensible default; if there is nothing there, this is an # unmanaged system that relies on environment variables and standard locations from .Bare import Bare # return the support for unmanaged systems return Bare # end of file
68caed12611a8b789a1964a22fb49575eca70c7f
76d388b5d2e74ff0eda748c7868fadf0704cf700
/tensorpack/utils/develop.py
496de1dd245db766c3e4ba256ddb638d5e621b48
[ "Apache-2.0" ]
permissive
jooyounghun/tensorpack
eebf0867e5a82ffd52660dccfbd34879b8d0f5af
90cdae380c40a1e91f627520c4a739bd6ee3f18b
refs/heads/master
2020-03-23T23:24:41.651089
2018-07-27T02:57:19
2018-07-27T02:57:19
142,232,523
1
0
Apache-2.0
2018-07-25T01:45:06
2018-07-25T01:45:05
null
UTF-8
Python
false
false
4,773
py
# -*- coding: utf-8 -*- # File: develop.py # Author: tensorpack contributors """ Utilities for developers only. These are not visible to users (not automatically imported). And should not appeared in docs.""" import os import functools from datetime import datetime import importlib import types import six from . import logger def create_dummy_class(klass, dependency): """ When a dependency of a class is not available, create a dummy class which throws ImportError when used. Args: klass (str): name of the class. dependency (str): name of the dependency. Returns: class: a class object """ class _DummyMetaClass(type): # throw error on class attribute access def __getattr__(_, __): raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, klass)) @six.add_metaclass(_DummyMetaClass) class _Dummy(object): # throw error on constructor def __init__(self, *args, **kwargs): raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, klass)) return _Dummy def create_dummy_func(func, dependency): """ When a dependency of a function is not available, create a dummy function which throws ImportError when used. Args: func (str): name of the function. dependency (str or list[str]): name(s) of the dependency. Returns: function: a function object """ if isinstance(dependency, (list, tuple)): dependency = ','.join(dependency) def _dummy(*args, **kwargs): raise ImportError("Cannot import '{}', therefore '{}' is not available".format(dependency, func)) return _dummy def building_rtfd(): """ Returns: bool: if tensorpack is being imported to generate docs now. """ return os.environ.get('READTHEDOCS') == 'True' \ or os.environ.get('DOC_BUILDING') def log_deprecated(name="", text="", eos=""): """ Log deprecation warning. Args: name (str): name of the deprecated item. text (str, optional): information about the deprecation. eos (str, optional): end of service date such as "YYYY-MM-DD". """ assert name or text if eos: eos = "after " + datetime(*map(int, eos.split("-"))).strftime("%d %b") if name: if eos: warn_msg = "%s will be deprecated %s. %s" % (name, eos, text) else: warn_msg = "%s was deprecated. %s" % (name, text) else: warn_msg = text if eos: warn_msg += " Legacy period ends %s" % eos logger.warn("[Deprecated] " + warn_msg) def deprecated(text="", eos=""): """ Args: text, eos: same as :func:`log_deprecated`. Returns: a decorator which deprecates the function. Example: .. code-block:: python @deprecated("Explanation of what to do instead.", "2017-11-4") def foo(...): pass """ def get_location(): import inspect frame = inspect.currentframe() if frame: callstack = inspect.getouterframes(frame)[-1] return '%s:%i' % (callstack[1], callstack[2]) else: stack = inspect.stack(0) entry = stack[2] return '%s:%i' % (entry[1], entry[2]) def deprecated_inner(func): @functools.wraps(func) def new_func(*args, **kwargs): name = "{} [{}]".format(func.__name__, get_location()) log_deprecated(name, text, eos) return func(*args, **kwargs) return new_func return deprecated_inner def HIDE_DOC(func): func.__HIDE_SPHINX_DOC__ = True return func # Copied from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/util/lazy_loader.py class LazyLoader(types.ModuleType): def __init__(self, local_name, parent_module_globals, name): self._local_name = local_name self._parent_module_globals = parent_module_globals super(LazyLoader, self).__init__(name) def _load(self): # Import the target module and insert it into the parent's namespace module = importlib.import_module(self.__name__) self._parent_module_globals[self._local_name] = module # Update this object's dict so that if someone keeps a reference to the # LazyLoader, lookups are efficient (__getattr__ is only called on lookups # that fail). self.__dict__.update(module.__dict__) return module def __getattr__(self, item): module = self._load() return getattr(module, item) def __dir__(self): module = self._load() return dir(module)
820708161506216faa57b389f2f0890d60afef5d
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible/modules/cron.py
2424f5c065543ddd96be359b69a92e58495389fd
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
26,537
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2012, Dane Summers <[email protected]> # Copyright: (c) 2013, Mike Grozak <[email protected]> # Copyright: (c) 2013, Patrick Callahan <[email protected]> # Copyright: (c) 2015, Evan Kaufman <[email protected]> # Copyright: (c) 2015, Luca Berruti <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: cron short_description: Manage cron.d and crontab entries description: - Use this module to manage crontab and environment variables entries. This module allows you to create environment variables and named crontab entries, update, or delete them. - 'When crontab jobs are managed: the module includes one line with the description of the crontab entry C("#Ansible: <name>") corresponding to the "name" passed to the module, which is used by future ansible/module calls to find/check the state. The "name" parameter should be unique, and changing the "name" value will result in a new cron task being created (or a different one being removed).' - When environment variables are managed, no comment line is added, but, when the module needs to find/check the state, it uses the "name" parameter to find the environment variable definition line. - When using symbols such as %, they must be properly escaped. version_added: "0.9" options: name: description: - Description of a crontab entry or, if env is set, the name of environment variable. - Required if I(state=absent). - Note that if name is not set and I(state=present), then a new crontab entry will always be created, regardless of existing ones. - This parameter will always be required in future releases. type: str user: description: - The specific user whose crontab should be modified. - When unset, this parameter defaults to the current user. type: str job: description: - The command to execute or, if env is set, the value of environment variable. - The command should not contain line breaks. - Required if I(state=present). type: str aliases: [ value ] state: description: - Whether to ensure the job or environment variable is present or absent. type: str choices: [ absent, present ] default: present cron_file: description: - If specified, uses this file instead of an individual user's crontab. - If this is a relative path, it is interpreted with respect to I(/etc/cron.d). - If it is absolute, it will typically be C(/etc/crontab). - Many linux distros expect (and some require) the filename portion to consist solely of upper- and lower-case letters, digits, underscores, and hyphens. - To use the I(cron_file) parameter you must specify the I(user) as well. type: str backup: description: - If set, create a backup of the crontab before it is modified. The location of the backup is returned in the C(backup_file) variable by this module. type: bool default: no minute: description: - Minute when the job should run (C(0-59), C(*), C(*/2), and so on). type: str default: "*" hour: description: - Hour when the job should run (C(0-23), C(*), C(*/2), and so on). type: str default: "*" day: description: - Day of the month the job should run (C(1-31), C(*), C(*/2), and so on). type: str default: "*" aliases: [ dom ] month: description: - Month of the year the job should run (C(1-12), C(*), C(*/2), and so on). type: str default: "*" weekday: description: - Day of the week that the job should run (C(0-6) for Sunday-Saturday, C(*), and so on). type: str default: "*" aliases: [ dow ] reboot: description: - If the job should be run at reboot. This option is deprecated. Users should use I(special_time). version_added: "1.0" type: bool default: no special_time: description: - Special time specification nickname. type: str choices: [ annually, daily, hourly, monthly, reboot, weekly, yearly ] version_added: "1.3" disabled: description: - If the job should be disabled (commented out) in the crontab. - Only has effect if I(state=present). type: bool default: no version_added: "2.0" env: description: - If set, manages a crontab's environment variable. - New variables are added on top of crontab. - I(name) and I(value) parameters are the name and the value of environment variable. type: bool default: false version_added: "2.1" insertafter: description: - Used with I(state=present) and I(env). - If specified, the environment variable will be inserted after the declaration of specified environment variable. type: str version_added: "2.1" insertbefore: description: - Used with I(state=present) and I(env). - If specified, the environment variable will be inserted before the declaration of specified environment variable. type: str version_added: "2.1" requirements: - cron (or cronie on CentOS) author: - Dane Summers (@dsummersl) - Mike Grozak (@rhaido) - Patrick Callahan (@dirtyharrycallahan) - Evan Kaufman (@EvanK) - Luca Berruti (@lberruti) notes: - Supports C(check_mode). ''' EXAMPLES = r''' - name: Ensure a job that runs at 2 and 5 exists. Creates an entry like "0 5,2 * * ls -alh > /dev/null" ansible.builtin.cron: name: "check dirs" minute: "0" hour: "5,2" job: "ls -alh > /dev/null" - name: 'Ensure an old job is no longer present. Removes any job that is prefixed by "#Ansible: an old job" from the crontab' ansible.builtin.cron: name: "an old job" state: absent - name: Creates an entry like "@reboot /some/job.sh" ansible.builtin.cron: name: "a job for reboot" special_time: reboot job: "/some/job.sh" - name: Creates an entry like "PATH=/opt/bin" on top of crontab ansible.builtin.cron: name: PATH env: yes job: /opt/bin - name: Creates an entry like "APP_HOME=/srv/app" and insert it after PATH declaration ansible.builtin.cron: name: APP_HOME env: yes job: /srv/app insertafter: PATH - name: Creates a cron file under /etc/cron.d ansible.builtin.cron: name: yum autoupdate weekday: "2" minute: "0" hour: "12" user: root job: "YUMINTERACTIVE=0 /usr/sbin/yum-autoupdate" cron_file: ansible_yum-autoupdate - name: Removes a cron file from under /etc/cron.d ansible.builtin.cron: name: "yum autoupdate" cron_file: ansible_yum-autoupdate state: absent - name: Removes "APP_HOME" environment variable from crontab ansible.builtin.cron: name: APP_HOME env: yes state: absent ''' RETURN = r'''#''' import os import platform import pwd import re import sys import tempfile from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.common.text.converters import to_bytes, to_native from ansible.module_utils.six.moves import shlex_quote class CronTabError(Exception): pass class CronTab(object): """ CronTab object to write time based crontab file user - the user of the crontab (defaults to current user) cron_file - a cron file under /etc/cron.d, or an absolute path """ def __init__(self, module, user=None, cron_file=None): self.module = module self.user = user self.root = (os.getuid() == 0) self.lines = None self.ansible = "#Ansible: " self.n_existing = '' self.cron_cmd = self.module.get_bin_path('crontab', required=True) if cron_file: if os.path.isabs(cron_file): self.cron_file = cron_file self.b_cron_file = to_bytes(cron_file, errors='surrogate_or_strict') else: self.cron_file = os.path.join('/etc/cron.d', cron_file) self.b_cron_file = os.path.join(b'/etc/cron.d', to_bytes(cron_file, errors='surrogate_or_strict')) else: self.cron_file = None self.read() def read(self): # Read in the crontab from the system self.lines = [] if self.cron_file: # read the cronfile try: f = open(self.b_cron_file, 'rb') self.n_existing = to_native(f.read(), errors='surrogate_or_strict') self.lines = self.n_existing.splitlines() f.close() except IOError: # cron file does not exist return except Exception: raise CronTabError("Unexpected error:", sys.exc_info()[0]) else: # using safely quoted shell for now, but this really should be two non-shell calls instead. FIXME (rc, out, err) = self.module.run_command(self._read_user_execute(), use_unsafe_shell=True) if rc != 0 and rc != 1: # 1 can mean that there are no jobs. raise CronTabError("Unable to read crontab") self.n_existing = out lines = out.splitlines() count = 0 for l in lines: if count > 2 or (not re.match(r'# DO NOT EDIT THIS FILE - edit the master and reinstall.', l) and not re.match(r'# \(/tmp/.*installed on.*\)', l) and not re.match(r'# \(.*version.*\)', l)): self.lines.append(l) else: pattern = re.escape(l) + '[\r\n]?' self.n_existing = re.sub(pattern, '', self.n_existing, 1) count += 1 def is_empty(self): if len(self.lines) == 0: return True else: return False def write(self, backup_file=None): """ Write the crontab to the system. Saves all information. """ if backup_file: fileh = open(backup_file, 'wb') elif self.cron_file: fileh = open(self.b_cron_file, 'wb') else: filed, path = tempfile.mkstemp(prefix='crontab') os.chmod(path, int('0644', 8)) fileh = os.fdopen(filed, 'wb') fileh.write(to_bytes(self.render())) fileh.close() # return if making a backup if backup_file: return # Add the entire crontab back to the user crontab if not self.cron_file: # quoting shell args for now but really this should be two non-shell calls. FIXME (rc, out, err) = self.module.run_command(self._write_execute(path), use_unsafe_shell=True) os.unlink(path) if rc != 0: self.module.fail_json(msg=err) # set SELinux permissions if self.module.selinux_enabled() and self.cron_file: self.module.set_default_selinux_context(self.cron_file, False) def do_comment(self, name): return "%s%s" % (self.ansible, name) def add_job(self, name, job): # Add the comment self.lines.append(self.do_comment(name)) # Add the job self.lines.append("%s" % (job)) def update_job(self, name, job): return self._update_job(name, job, self.do_add_job) def do_add_job(self, lines, comment, job): lines.append(comment) lines.append("%s" % (job)) def remove_job(self, name): return self._update_job(name, "", self.do_remove_job) def do_remove_job(self, lines, comment, job): return None def add_env(self, decl, insertafter=None, insertbefore=None): if not (insertafter or insertbefore): self.lines.insert(0, decl) return if insertafter: other_name = insertafter elif insertbefore: other_name = insertbefore other_decl = self.find_env(other_name) if len(other_decl) > 0: if insertafter: index = other_decl[0] + 1 elif insertbefore: index = other_decl[0] self.lines.insert(index, decl) return self.module.fail_json(msg="Variable named '%s' not found." % other_name) def update_env(self, name, decl): return self._update_env(name, decl, self.do_add_env) def do_add_env(self, lines, decl): lines.append(decl) def remove_env(self, name): return self._update_env(name, '', self.do_remove_env) def do_remove_env(self, lines, decl): return None def remove_job_file(self): try: os.unlink(self.cron_file) return True except OSError: # cron file does not exist return False except Exception: raise CronTabError("Unexpected error:", sys.exc_info()[0]) def find_job(self, name, job=None): # attempt to find job by 'Ansible:' header comment comment = None for l in self.lines: if comment is not None: if comment == name: return [comment, l] else: comment = None elif re.match(r'%s' % self.ansible, l): comment = re.sub(r'%s' % self.ansible, '', l) # failing that, attempt to find job by exact match if job: for i, l in enumerate(self.lines): if l == job: # if no leading ansible header, insert one if not re.match(r'%s' % self.ansible, self.lines[i - 1]): self.lines.insert(i, self.do_comment(name)) return [self.lines[i], l, True] # if a leading blank ansible header AND job has a name, update header elif name and self.lines[i - 1] == self.do_comment(None): self.lines[i - 1] = self.do_comment(name) return [self.lines[i - 1], l, True] return [] def find_env(self, name): for index, l in enumerate(self.lines): if re.match(r'^%s=' % name, l): return [index, l] return [] def get_cron_job(self, minute, hour, day, month, weekday, job, special, disabled): # normalize any leading/trailing newlines (ansible/ansible-modules-core#3791) job = job.strip('\r\n') if disabled: disable_prefix = '#' else: disable_prefix = '' if special: if self.cron_file: return "%s@%s %s %s" % (disable_prefix, special, self.user, job) else: return "%s@%s %s" % (disable_prefix, special, job) else: if self.cron_file: return "%s%s %s %s %s %s %s %s" % (disable_prefix, minute, hour, day, month, weekday, self.user, job) else: return "%s%s %s %s %s %s %s" % (disable_prefix, minute, hour, day, month, weekday, job) def get_jobnames(self): jobnames = [] for l in self.lines: if re.match(r'%s' % self.ansible, l): jobnames.append(re.sub(r'%s' % self.ansible, '', l)) return jobnames def get_envnames(self): envnames = [] for l in self.lines: if re.match(r'^\S+=', l): envnames.append(l.split('=')[0]) return envnames def _update_job(self, name, job, addlinesfunction): ansiblename = self.do_comment(name) newlines = [] comment = None for l in self.lines: if comment is not None: addlinesfunction(newlines, comment, job) comment = None elif l == ansiblename: comment = l else: newlines.append(l) self.lines = newlines if len(newlines) == 0: return True else: return False # TODO add some more error testing def _update_env(self, name, decl, addenvfunction): newlines = [] for l in self.lines: if re.match(r'^%s=' % name, l): addenvfunction(newlines, decl) else: newlines.append(l) self.lines = newlines def render(self): """ Render this crontab as it would be in the crontab. """ crons = [] for cron in self.lines: crons.append(cron) result = '\n'.join(crons) if result: result = result.rstrip('\r\n') + '\n' return result def _read_user_execute(self): """ Returns the command line for reading a crontab """ user = '' if self.user: if platform.system() == 'SunOS': return "su %s -c '%s -l'" % (shlex_quote(self.user), shlex_quote(self.cron_cmd)) elif platform.system() == 'AIX': return "%s -l %s" % (shlex_quote(self.cron_cmd), shlex_quote(self.user)) elif platform.system() == 'HP-UX': return "%s %s %s" % (self.cron_cmd, '-l', shlex_quote(self.user)) elif pwd.getpwuid(os.getuid())[0] != self.user: user = '-u %s' % shlex_quote(self.user) return "%s %s %s" % (self.cron_cmd, user, '-l') def _write_execute(self, path): """ Return the command line for writing a crontab """ user = '' if self.user: if platform.system() in ['SunOS', 'HP-UX', 'AIX']: return "chown %s %s ; su '%s' -c '%s %s'" % ( shlex_quote(self.user), shlex_quote(path), shlex_quote(self.user), self.cron_cmd, shlex_quote(path)) elif pwd.getpwuid(os.getuid())[0] != self.user: user = '-u %s' % shlex_quote(self.user) return "%s %s %s" % (self.cron_cmd, user, shlex_quote(path)) def main(): # The following example playbooks: # # - cron: name="check dirs" hour="5,2" job="ls -alh > /dev/null" # # - name: do the job # cron: name="do the job" hour="5,2" job="/some/dir/job.sh" # # - name: no job # cron: name="an old job" state=absent # # - name: sets env # cron: name="PATH" env=yes value="/bin:/usr/bin" # # Would produce: # PATH=/bin:/usr/bin # # Ansible: check dirs # * * 5,2 * * ls -alh > /dev/null # # Ansible: do the job # * * 5,2 * * /some/dir/job.sh module = AnsibleModule( argument_spec=dict( name=dict(type='str'), user=dict(type='str'), job=dict(type='str', aliases=['value']), cron_file=dict(type='str'), state=dict(type='str', default='present', choices=['present', 'absent']), backup=dict(type='bool', default=False), minute=dict(type='str', default='*'), hour=dict(type='str', default='*'), day=dict(type='str', default='*', aliases=['dom']), month=dict(type='str', default='*'), weekday=dict(type='str', default='*', aliases=['dow']), reboot=dict(type='bool', default=False), special_time=dict(type='str', choices=["reboot", "yearly", "annually", "monthly", "weekly", "daily", "hourly"]), disabled=dict(type='bool', default=False), env=dict(type='bool', default=False), insertafter=dict(type='str'), insertbefore=dict(type='str'), ), supports_check_mode=True, mutually_exclusive=[ ['reboot', 'special_time'], ['insertafter', 'insertbefore'], ], ) name = module.params['name'] user = module.params['user'] job = module.params['job'] cron_file = module.params['cron_file'] state = module.params['state'] backup = module.params['backup'] minute = module.params['minute'] hour = module.params['hour'] day = module.params['day'] month = module.params['month'] weekday = module.params['weekday'] reboot = module.params['reboot'] special_time = module.params['special_time'] disabled = module.params['disabled'] env = module.params['env'] insertafter = module.params['insertafter'] insertbefore = module.params['insertbefore'] do_install = state == 'present' changed = False res_args = dict() warnings = list() if cron_file: cron_file_basename = os.path.basename(cron_file) if not re.search(r'^[A-Z0-9_-]+$', cron_file_basename, re.I): warnings.append('Filename portion of cron_file ("%s") should consist' % cron_file_basename + ' solely of upper- and lower-case letters, digits, underscores, and hyphens') # Ensure all files generated are only writable by the owning user. Primarily relevant for the cron_file option. os.umask(int('022', 8)) crontab = CronTab(module, user, cron_file) module.debug('cron instantiated - name: "%s"' % name) if not name: module.deprecate( msg="The 'name' parameter will be required in future releases.", version='2.12', collection_name='ansible.builtin' ) if reboot: module.deprecate( msg="The 'reboot' parameter will be removed in future releases. Use 'special_time' option instead.", version='2.12', collection_name='ansible.builtin' ) if module._diff: diff = dict() diff['before'] = crontab.n_existing if crontab.cron_file: diff['before_header'] = crontab.cron_file else: if crontab.user: diff['before_header'] = 'crontab for user "%s"' % crontab.user else: diff['before_header'] = 'crontab' # --- user input validation --- if env and not name: module.fail_json(msg="You must specify 'name' while working with environment variables (env=yes)") if (special_time or reboot) and \ (True in [(x != '*') for x in [minute, hour, day, month, weekday]]): module.fail_json(msg="You must specify time and date fields or special time.") # cannot support special_time on solaris if (special_time or reboot) and platform.system() == 'SunOS': module.fail_json(msg="Solaris does not support special_time=... or @reboot") if cron_file and do_install: if not user: module.fail_json(msg="To use cron_file=... parameter you must specify user=... as well") if job is None and do_install: module.fail_json(msg="You must specify 'job' to install a new cron job or variable") if (insertafter or insertbefore) and not env and do_install: module.fail_json(msg="Insertafter and insertbefore parameters are valid only with env=yes") if reboot: special_time = "reboot" # if requested make a backup before making a change if backup and not module.check_mode: (backuph, backup_file) = tempfile.mkstemp(prefix='crontab') crontab.write(backup_file) if crontab.cron_file and not do_install: if module._diff: diff['after'] = '' diff['after_header'] = '/dev/null' else: diff = dict() if module.check_mode: changed = os.path.isfile(crontab.cron_file) else: changed = crontab.remove_job_file() module.exit_json(changed=changed, cron_file=cron_file, state=state, diff=diff) if env: if ' ' in name: module.fail_json(msg="Invalid name for environment variable") decl = '%s="%s"' % (name, job) old_decl = crontab.find_env(name) if do_install: if len(old_decl) == 0: crontab.add_env(decl, insertafter, insertbefore) changed = True if len(old_decl) > 0 and old_decl[1] != decl: crontab.update_env(name, decl) changed = True else: if len(old_decl) > 0: crontab.remove_env(name) changed = True else: if do_install: for char in ['\r', '\n']: if char in job.strip('\r\n'): warnings.append('Job should not contain line breaks') break job = crontab.get_cron_job(minute, hour, day, month, weekday, job, special_time, disabled) old_job = crontab.find_job(name, job) if len(old_job) == 0: crontab.add_job(name, job) changed = True if len(old_job) > 0 and old_job[1] != job: crontab.update_job(name, job) changed = True if len(old_job) > 2: crontab.update_job(name, job) changed = True else: old_job = crontab.find_job(name) if len(old_job) > 0: crontab.remove_job(name) changed = True # no changes to env/job, but existing crontab needs a terminating newline if not changed and crontab.n_existing != '': if not (crontab.n_existing.endswith('\r') or crontab.n_existing.endswith('\n')): changed = True res_args = dict( jobs=crontab.get_jobnames(), envs=crontab.get_envnames(), warnings=warnings, changed=changed ) if changed: if not module.check_mode: crontab.write() if module._diff: diff['after'] = crontab.render() if crontab.cron_file: diff['after_header'] = crontab.cron_file else: if crontab.user: diff['after_header'] = 'crontab for user "%s"' % crontab.user else: diff['after_header'] = 'crontab' res_args['diff'] = diff # retain the backup only if crontab or cron file have changed if backup and not module.check_mode: if changed: res_args['backup_file'] = backup_file else: os.unlink(backup_file) if cron_file: res_args['cron_file'] = cron_file module.exit_json(**res_args) # --- should never get here module.exit_json(msg="Unable to execute cron task.") if __name__ == '__main__': main()
bcded7ca3347b631cb06ccb49aa49c5ef2291909
6cb18c62758bfbf783d3fabe851d1c4d9f323483
/setup.py
9319f44e05f51de89cc40224949e07be98a9e018
[ "MIT" ]
permissive
bruinxiong/performer-pytorch
68e505ff5e59d35e339b23661feef377795fd2df
c368b5e4efd46f72e2abaa655dc813021f911014
refs/heads/main
2023-01-04T02:25:42.898296
2020-10-26T22:41:09
2020-10-26T22:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
from setuptools import setup, find_packages setup( name = 'performer-pytorch', packages = find_packages(exclude=['examples']), version = '0.1.4', license='MIT', description = 'Performer - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/performer-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'efficient attention', 'transformers' ], install_requires=[ 'pytorch-fast-transformers>=0.3.0', 'torch>=1.6', 'einops>=0.3' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
a4c71809c35378bb39dbbce97d55d2a122ab4dcd
f51c6d0cebb27c377ce9830deec4b727b9b2ee90
/AI/05_tictactoe/02grid_plot.py
b2fb6cbc7f65ddac4fc048c6664f6bdd82dfb227
[]
no_license
dbbudd/Python-Experiments
1c3c1322583aaaf2016a2f2f3061e6d034c5d1c8
b6d294bf11a5c92b8578d16aa2f63cc27fc47b07
refs/heads/master
2020-04-17T02:21:36.693593
2019-01-17T00:18:34
2019-01-17T00:18:34
166,130,283
1
0
null
null
null
null
UTF-8
Python
false
false
1,098
py
#!/usr/bin/env python import numpy as np import itertools import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as mpatches class gameboard(object): def __init__(self): #player 1 puts a "X", player 2 puts a "O" self.g = [[1,0,1],[0,0,2],[0,2,0]] self.grid = np.array(self.g) print(self.grid) def drawGrid(self): fig = plt.figure() ax = fig.add_subplot(111, xlim=(0,3), ylim = (0,3)) self.myCells = [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)] for i in self.myCells: if self.grid[i] == 1: cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="red") ax.add_patch(cell) elif self.grid[i] == 2: cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="blue") ax.add_patch(cell) else: cell = mpatches.Rectangle((i), 1, 1, alpha=1, facecolor="none") ax.add_patch(cell) plt.show() board = gameboard() board.drawGrid()
1697ff12097d074fe9a08b7e8cfbf1ecd1348016
cca89a7bbe2da907a38eb00e9a083f57597273f0
/162. 寻找峰值/pythonCode.py
ecfc5d414241c3d0b4d2b4aac3531e9ced628696
[]
no_license
xerprobe/LeetCodeAnswer
cc87941ef2a25c6aa1366e7a64480dbd72750670
ea1822870f15bdb1a828a63569368b7cd10c6ab8
refs/heads/master
2022-09-23T09:15:42.628793
2020-06-06T16:29:59
2020-06-06T16:29:59
270,215,362
0
0
null
null
null
null
UTF-8
Python
false
false
1,154
py
from typing import List class Solution: def findPeakElement(self, nums: List[int]) -> int: def binarySearch(l:int,r:int) -> int: if(l == r): return l mid = (l + r) // 2 if(nums[mid] > nums[mid + 1]): return binarySearch(l,mid) else: return binarySearch(mid+1,r) return binarySearch(0,len(nums)-1) # 峰值元素是指其值大于左右相邻值的元素。 # 给定一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引。 # 数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。 # 你可以假设 nums[-1] = nums[n] = -∞。 # 示例 1: # 输入: nums = [1,2,3,1] # 输出: 2 # 解释: 3 是峰值元素,你的函数应该返回其索引 2。 # 示例 2: # 输入: nums = [1,2,1,3,5,6,4] # 输出: 1 或 5 # 解释: 你的函数可以返回索引 1,其峰值元素为 2; # 或者返回索引 5, 其峰值元素为 6。 # 说明: # 你的解法应该是 O(logN) 时间复杂度的。 # 链接:https://leetcode-cn.com/problems/find-peak-element/
96eb58da2807780f7f78eb49453cd03e2e4a57bb
33f30925224a7db3e3bf6948c6c569ad850e9c76
/Server/bin/rst2xml.py
6a7fab179644d60c2959331900cdea30a7350337
[]
no_license
duelle/CTT
2bc64fffaf4b2eb3976fedd7aea231a51da8fbe9
e2da2ab9c599833cc8409728b456a9e37825986b
refs/heads/master
2022-04-06T15:25:06.747919
2020-02-19T14:04:37
2020-02-19T14:04:37
237,939,126
0
0
null
null
null
null
UTF-8
Python
false
false
642
py
#!/home/duelle/Repositories/git/RadonCTT/Server/bin/python # $Id: rst2xml.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <[email protected]> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing Docutils XML. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates Docutils-native XML from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='xml', description=description)
55c5e4126f52501d3ab1f9cd4f9c49c47dc30d18
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/ZXR10-MACPING-MIB.py
805cbd59b0fb3a90dcafa3b37ef03e6abdf405d0
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
12,798
py
# # PySNMP MIB module ZXR10-MACPING-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ZXR10-MACPING-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:42:08 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") iso, Bits, ModuleIdentity, Gauge32, Unsigned32, enterprises, IpAddress, Counter32, experimental, ObjectIdentity, MibIdentifier, NotificationType, TimeTicks, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, mgmt, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "Bits", "ModuleIdentity", "Gauge32", "Unsigned32", "enterprises", "IpAddress", "Counter32", "experimental", "ObjectIdentity", "MibIdentifier", "NotificationType", "TimeTicks", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "mgmt", "Counter64") TruthValue, DisplayString, RowStatus, MacAddress, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "DisplayString", "RowStatus", "MacAddress", "TextualConvention") zxr10L2vpn, = mibBuilder.importSymbols("ZXR10-SMI", "zxr10L2vpn") zxr10MacPingMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4)) class DisplayString(OctetString): pass class OptionType(Integer32): subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1)) namedValues = NamedValues(("ce", 0), ("pe", 1)) zxr10MacPingTable = MibTable((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1), ) if mibBuilder.loadTexts: zxr10MacPingTable.setStatus('current') zxr10MacPingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1), ).setIndexNames((0, "ZXR10-MACPING-MIB", "zxr10PingMacSerial")) if mibBuilder.loadTexts: zxr10MacPingEntry.setStatus('current') zxr10PingMacSerial = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacSerial.setStatus('current') zxr10PingMacDestMac = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 2), MacAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacDestMac.setStatus('current') zxr10PingMacControlOutEtherIf = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacControlOutEtherIf.setStatus('current') zxr10PingMacIfOption = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("none", 0), ("option", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacIfOption.setStatus('current') zxr10PingMacPacketCount = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 5), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacPacketCount.setStatus('current') zxr10PingMacTimeOut = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 60))).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacTimeOut.setStatus('current') zxr10PingMacHops = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 10))).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacHops.setStatus('current') zxr10PingMacControlResultType = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("summary", 0), ("detail", 1)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacControlResultType.setStatus('current') zxr10PingMacTrapOncompletion = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 9), TruthValue().clone('true')).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacTrapOncompletion.setStatus('current') zxr10PingMacRosStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("not-active", 1), ("start-ping", 2), ("ping-processing", 3), ("ping-completed", 4))).clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacRosStatus.setStatus('current') zxr10PingMacEntryOwner = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 11), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacEntryOwner.setStatus('current') zxr10PingMacIfPeOption = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 12), OptionType()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacIfPeOption.setStatus('current') zxr10PingMacVfiName = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 13), DisplayString()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacVfiName.setStatus('current') zxr10PingMacPeerAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 1, 1, 14), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: zxr10PingMacPeerAddress.setStatus('current') zxr10PingMacResultTable = MibTable((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2), ) if mibBuilder.loadTexts: zxr10PingMacResultTable.setStatus('current') zxr10pingMacResultEntry = MibTableRow((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1), ).setIndexNames((0, "ZXR10-MACPING-MIB", "zxr10PingMacResultSerial")) if mibBuilder.loadTexts: zxr10pingMacResultEntry.setStatus('current') zxr10PingMacResultSerial = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultSerial.setStatus('current') zxr10PingMacResultSentPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultSentPkts.setStatus('current') zxr10PingMacResultRcvPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRcvPkts.setStatus('current') zxr10PingMacResultRoundTripMinTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundTripMinTime.setStatus('current') zxr10PingMacResultRoundTripMaxTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundTripMaxTime.setStatus('current') zxr10PingMacResultRoundTripAvgTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundTripAvgTime.setStatus('current') zxr10PingMacResultType = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("summary", 0), ("detail", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultType.setStatus('current') zxr10PingMacExtResultDestIfName = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultDestIfName.setStatus('current') zxr10PingMacExtResultDestHostName = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultDestHostName.setStatus('current') zxr10PingMacExtResultSourceIfName = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 10), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultSourceIfName.setStatus('current') zxr10PingMacExtResultSourceHostName = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 11), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 17))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultSourceHostName.setStatus('current') zxr10PingMacExtResultOutVlanId = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 12), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultOutVlanId.setStatus('current') zxr10PingMacExtResultInVlanId = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 13), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacExtResultInVlanId.setStatus('current') zxr10PingMacResultEntryOwner = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 14), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultEntryOwner.setStatus('current') zxr10PingMacResultRoundWobbleMinTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 15), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundWobbleMinTime.setStatus('current') zxr10PingMacResultRoundWobbleMaxTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 16), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundWobbleMaxTime.setStatus('current') zxr10PingMacResultRoundWobbleAvgTime = MibTableColumn((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 2, 1, 17), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: zxr10PingMacResultRoundWobbleAvgTime.setStatus('current') macpingNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 3)) macpingTrapResult = NotificationType((1, 3, 6, 1, 4, 1, 3902, 3, 104, 4, 3, 1)).setObjects(("ZXR10-MACPING-MIB", "zxr10PingMacResultSerial"), ("ZXR10-MACPING-MIB", "zxr10PingMacResultSentPkts"), ("ZXR10-MACPING-MIB", "zxr10PingMacResultRcvPkts"), ("ZXR10-MACPING-MIB", "zxr10PingMacResultRoundTripMinTime"), ("ZXR10-MACPING-MIB", "zxr10PingMacResultRoundTripMaxTime"), ("ZXR10-MACPING-MIB", "zxr10PingMacResultRoundTripAvgTime")) if mibBuilder.loadTexts: macpingTrapResult.setStatus('current') mibBuilder.exportSymbols("ZXR10-MACPING-MIB", zxr10PingMacResultRoundTripAvgTime=zxr10PingMacResultRoundTripAvgTime, zxr10MacPingMIB=zxr10MacPingMIB, zxr10PingMacPeerAddress=zxr10PingMacPeerAddress, zxr10PingMacTimeOut=zxr10PingMacTimeOut, macpingNotifications=macpingNotifications, zxr10PingMacEntryOwner=zxr10PingMacEntryOwner, zxr10PingMacRosStatus=zxr10PingMacRosStatus, zxr10PingMacIfOption=zxr10PingMacIfOption, zxr10PingMacResultRoundWobbleAvgTime=zxr10PingMacResultRoundWobbleAvgTime, zxr10PingMacResultTable=zxr10PingMacResultTable, OptionType=OptionType, zxr10MacPingTable=zxr10MacPingTable, zxr10PingMacPacketCount=zxr10PingMacPacketCount, zxr10PingMacResultRcvPkts=zxr10PingMacResultRcvPkts, zxr10PingMacSerial=zxr10PingMacSerial, zxr10pingMacResultEntry=zxr10pingMacResultEntry, zxr10PingMacResultRoundWobbleMinTime=zxr10PingMacResultRoundWobbleMinTime, zxr10PingMacResultRoundTripMinTime=zxr10PingMacResultRoundTripMinTime, zxr10MacPingEntry=zxr10MacPingEntry, zxr10PingMacHops=zxr10PingMacHops, zxr10PingMacIfPeOption=zxr10PingMacIfPeOption, zxr10PingMacResultSerial=zxr10PingMacResultSerial, DisplayString=DisplayString, zxr10PingMacExtResultSourceHostName=zxr10PingMacExtResultSourceHostName, zxr10PingMacResultEntryOwner=zxr10PingMacResultEntryOwner, zxr10PingMacControlOutEtherIf=zxr10PingMacControlOutEtherIf, zxr10PingMacResultSentPkts=zxr10PingMacResultSentPkts, zxr10PingMacResultType=zxr10PingMacResultType, zxr10PingMacResultRoundWobbleMaxTime=zxr10PingMacResultRoundWobbleMaxTime, zxr10PingMacResultRoundTripMaxTime=zxr10PingMacResultRoundTripMaxTime, zxr10PingMacExtResultDestIfName=zxr10PingMacExtResultDestIfName, zxr10PingMacExtResultDestHostName=zxr10PingMacExtResultDestHostName, macpingTrapResult=macpingTrapResult, zxr10PingMacVfiName=zxr10PingMacVfiName, zxr10PingMacExtResultOutVlanId=zxr10PingMacExtResultOutVlanId, zxr10PingMacExtResultSourceIfName=zxr10PingMacExtResultSourceIfName, zxr10PingMacControlResultType=zxr10PingMacControlResultType, zxr10PingMacExtResultInVlanId=zxr10PingMacExtResultInVlanId, zxr10PingMacDestMac=zxr10PingMacDestMac, zxr10PingMacTrapOncompletion=zxr10PingMacTrapOncompletion)
eba5e24cb7ae539f05831d88b27d99b2346a8f0a
ec9129d3eb1880df9f0b54c76510352a7e004b0c
/tools/make_vps_tarball.py
b03537feaa59ec1a6a93c522cfd621963bf12eba
[]
no_license
eugen-don/vps
4057e6ddb1db274dbd8d78fa926376cfc3a40aa7
6a16569868241b35d8137b7f2b2f8db0cf67ff55
refs/heads/master
2021-01-11T16:29:53.109075
2014-05-14T09:20:33
2014-05-14T09:20:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
771
py
#!/usr/bin/env python import sys import os import _env import ops.os_init as os_init import conf assert conf.OS_IMAGE_DIR and os.path.isdir(conf.OS_IMAGE_DIR) def usage(): print """usage: \n%s [image_path/partion_path] [tarball_dir] """ % (sys.argv[0]) def main(): if len(sys.argv) < 3: usage() os._exit(0) img_path = sys.argv[1] tarball_dir = sys.argv[2] if not os.path.exists(img_path): print "%s not exists" % (img_path) os._exit(1) if not os.path.isdir(tarball_dir): print '%s is not a directory' % (tarball_dir) os._exit(1) tarball_path = os_init.pack_vps_fs_tarball(img_path, tarball_dir) print "%s packed in %s" % (img_path, tarball_path) if "__main__" == __name__: main()
f716de44a80a10f01bfaa8b3a8d58b4ec092c945
dbe1f4110921a08cb13e22ea325d503bd5627195
/chuhuo_2.71/bluedon/monitor/sbin/checkproc.py
cd3521785adb14ce48baf65ec961b05655ab0e50
[]
no_license
Hehouhua/waf_branches
92dc1b1cbecba20f24ef6c7372dde7caa43f9158
ca76f3a1ed8150b423474c9e37aee37841a5ee35
refs/heads/main
2023-01-07T11:33:31.667688
2020-11-03T06:58:33
2020-11-03T06:58:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,048
py
import os, re, sys rexplogstart = re.compile(r'grep logstart.pl') rexpwebvisit = re.compile(r'grep webvisit.pl') def checklogstart(): if not os.path.exists("/usr/local/bdwaf/logs_bridge/data"): os.popen("mkdir -p /usr/local/bdwaf/logs_bridge/data") if not os.path.exists("/usr/local/bdwaf/logs_proxy/data"): os.popen("mkdir -p /usr/local/bdwaf/logs_proxy/data") flag = 0 pfp = os.popen('ps ax | grep logstart.pl') lines = pfp.readlines() for line in lines: match = rexplogstart.search(line) if match: flag += 1 if flag >= len(lines): os.system('/usr/local/bluedon/monitor/sbin/logstart.pl') def checkwebvisit(): flag = 0 pfp = os.popen('ps ax | grep webvisit.pl') lines = pfp.readlines() for line in lines: match = rexplogstart.search(line) if match: flag += 1 if flag >= len(lines): os.system('/usr/local/bluedon/monitor/sbin/webvisit.pl') if __name__ == '__main__': checklogstart() checkwebvisit()
dc95cfc1d53773ef74245ed5c8a5b6bbbf3ce933
65e076e4fcc00a67faa0932b3f3a3d3a3a11e2aa
/sdk/python/pulumi_google_native/datastore/v1/_enums.py
15df09472641b2ebbeb23bd87aeab08fb357fbf9
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
TheJaySmith-Google/pulumi-google-native
816babe5c7316724e02d5b8b9d789df00262bb8e
566c295a39fe8c3dd16e4a7894ff6de72423e5da
refs/heads/master
2023-06-05T06:45:19.979837
2021-06-23T11:42:27
2021-06-23T11:42:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'GoogleDatastoreAdminV1IndexedPropertyDirection', 'IndexAncestor', ] class GoogleDatastoreAdminV1IndexedPropertyDirection(str, Enum): """ Required. The indexed property's direction. Must not be DIRECTION_UNSPECIFIED. """ DIRECTION_UNSPECIFIED = "DIRECTION_UNSPECIFIED" ASCENDING = "ASCENDING" DESCENDING = "DESCENDING" class IndexAncestor(str, Enum): """ Required. The index's ancestor mode. Must not be ANCESTOR_MODE_UNSPECIFIED. """ ANCESTOR_MODE_UNSPECIFIED = "ANCESTOR_MODE_UNSPECIFIED" NONE = "NONE" ALL_ANCESTORS = "ALL_ANCESTORS"
cef9a68afdddd61d9d2c7d5510d7a38174bc8f1c
4b68243d9db908945ee500174a8a12be27d150f9
/pogoprotos/networking/requests/messages/update_fitness_metrics_message_pb2.py
522382d168f4fe3adab53afbb40fe730c7070bd9
[]
no_license
ykram/pogoprotos-py
7285c86498f57dcbbec8e6c947597e82b2518d80
a045b0140740625d9a19ded53ece385a16c4ad4a
refs/heads/master
2020-04-20T10:19:51.628964
2019-02-02T02:58:03
2019-02-02T02:58:03
168,787,721
0
0
null
null
null
null
UTF-8
Python
false
true
2,937
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: pogoprotos/networking/requests/messages/update_fitness_metrics_message.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pogoprotos.data.fitness import fitness_sample_pb2 as pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pogoprotos/networking/requests/messages/update_fitness_metrics_message.proto', package='pogoprotos.networking.requests.messages', syntax='proto3', serialized_pb=_b('\nLpogoprotos/networking/requests/messages/update_fitness_metrics_message.proto\x12\'pogoprotos.networking.requests.messages\x1a,pogoprotos/data/fitness/fitness_sample.proto\"^\n\x1bUpdateFitnessMetricsMessage\x12?\n\x0f\x66itness_samples\x18\x01 \x03(\x0b\x32&.pogoprotos.data.fitness.FitnessSampleb\x06proto3') , dependencies=[pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2.DESCRIPTOR,]) _UPDATEFITNESSMETRICSMESSAGE = _descriptor.Descriptor( name='UpdateFitnessMetricsMessage', full_name='pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fitness_samples', full_name='pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage.fitness_samples', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=167, serialized_end=261, ) _UPDATEFITNESSMETRICSMESSAGE.fields_by_name['fitness_samples'].message_type = pogoprotos_dot_data_dot_fitness_dot_fitness__sample__pb2._FITNESSSAMPLE DESCRIPTOR.message_types_by_name['UpdateFitnessMetricsMessage'] = _UPDATEFITNESSMETRICSMESSAGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) UpdateFitnessMetricsMessage = _reflection.GeneratedProtocolMessageType('UpdateFitnessMetricsMessage', (_message.Message,), dict( DESCRIPTOR = _UPDATEFITNESSMETRICSMESSAGE, __module__ = 'pogoprotos.networking.requests.messages.update_fitness_metrics_message_pb2' # @@protoc_insertion_point(class_scope:pogoprotos.networking.requests.messages.UpdateFitnessMetricsMessage) )) _sym_db.RegisterMessage(UpdateFitnessMetricsMessage) # @@protoc_insertion_point(module_scope)
22ffc7c4ae1f6b16b2ece3c70722f0a2d0ec48c5
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2480/59018/262642.py
80da0919c460c290863470859367203af1d15933
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
281
py
def even_odd(N,a): b=[] for j in a: if j%2==0: b.append(j) a.pop(j) c=b+a return c T=int(input()) for i in range(T): N=int(input()) info=input().split(' ') a=[int(y) for y in info] print(even_odd(N,a))
66e5e2cd1dd250b00922b3b3211b1c0c1c510d35
53565e19de1d345552f5f469f4e4ea311a421bb8
/app/artist/models/artist.py
de30a6078bcfde1cf589a711184a2c568c8bfd52
[]
no_license
standbyme227/fc-melon
18e17aa8b85906a62e1631e54a70ff85d72ea435
8f0f4d40021f75a025e91fa6aebea143bccb6ce3
refs/heads/master
2021-05-03T18:59:13.495171
2018-03-20T02:32:02
2018-03-20T02:32:02
120,418,135
0
0
null
null
null
null
UTF-8
Python
false
false
4,632
py
from django.conf import settings from django.db import models from django.forms import model_to_dict from django.http import JsonResponse, HttpResponse from .artist_youtube import ArtistYouTube from .managers import ArtistManager __all__ = ( 'Artist', ) class Artist(models.Model): BLOOD_TYPE_A = 'a' BLOOD_TYPE_B = 'b' BLOOD_TYPE_O = 'o' BLOOD_TYPE_AB = 'c' BLOOD_TYPE_OTHER = 'x' CHOICES_BLOOD_TYPE = ( (BLOOD_TYPE_A, 'A형'), (BLOOD_TYPE_B, 'B형'), (BLOOD_TYPE_O, 'O형'), (BLOOD_TYPE_AB, 'AB형'), (BLOOD_TYPE_OTHER, '기타'), ) melon_id = models.CharField('멜론 Artist ID', max_length=20, blank=True, null=True, unique=True) image = models.ImageField('프로필 이미지', upload_to='artist', blank=True) # upload_to는 media폴더를 기준으로 그안의 경로를 지정 name = models.CharField('이름', max_length=50, ) real_name = models.CharField('본명', max_length=30, blank=True, default='') nationality = models.CharField('국적', max_length=50, blank=True, ) birth_date = models.DateField(max_length=50, blank=True, null=True, ) constellation = models.CharField('별자리', max_length=30, blank=True, null=True) blood_type = models.CharField('혈액형', max_length=50, blank=True, choices=CHOICES_BLOOD_TYPE) # choices를 넣어야지만 위의 선택을 이용할 수 있다. intro = models.TextField('소개', blank=True) # likes = models.IntegerField(default=0) like_users = models.ManyToManyField( settings.AUTH_USER_MODEL, through='ArtistLike', related_name='like_artists', blank=True, ) youtube_videos = models.ManyToManyField( ArtistYouTube, related_name='artists', blank=True, ) objects = ArtistManager() def __str__(self): return self.name def toggle_like_user(self, user): # 자신이 'artist이며 user가 주어진 user인 ArtistLike를 가져오거나 없으면 생성 like, like_created = self.like_user_info_list.get_or_create(user=user) # 만약 이미 잇엇을 경우 (새로 생성 X) if not like_created: # Like를 지워줌 like.delete() # 생성여부를 반환 return like_created # if self.like_users.filter(user=user).exists(): # self.like_users.filter(user).delete() # else: # self.like_users.create(user=user) # # 자신이 artist이며, 주어진 user와의 ArtistLike의 QuerySet # query = ArtistLike.objects.filter(artist=self, user=user) # # QuerySet이 존재할 졍우 # if query.exists(): # query.delete() # return False # # QuerySet이 존재하지 않을 경우 # else: # ArtistLike.objects.create(artist=self, user=user) # return True def to_json(self): from django.db.models.fields.files import FieldFile from django.contrib.auth import get_user_model user_class = get_user_model() ret = model_to_dict(self) # model_to_dict의 결과가 dict # 해당 dict의 item을 순회하며 # JSON Serialize할때 에러나는 타입의 value를 # 적절히 변환해서 value에 다시 대입 def convert_value(value): if isinstance(value, FieldFile): return value.url if value else None elif isinstance(value, user_class): return value.pk elif isinstance(value, ArtistYouTube): return value.pk return value def convert_obj(obj): """ 객체 또는 컨테이너 객체에 포함된 객체들 중 직렬화가 불가능한 객체를 가능하도록 형태를 변환해주는 함수 :param obj: :return: convert_value()를 거친 객체 """ if isinstance(obj, list): # list타입일 경우 각 항목을 순회하며 index에 해당하는 값을 변환 for index, item in enumerate(obj): obj[index] = convert_obj(item) elif isinstance(obj, dict): # dict타입일 경우 각 항목을 순회하며 key에 해당하는 값을 변환 for key, value in obj.items(): obj[key] = convert_obj(value) # list나 dict가 아닐 경우, 객체 자체를 변환한 값을 리턴 return convert_value(obj) convert_obj(ret) return ret
ac071ec7c195c0c7838f31cdd9f41fe37a46ad9c
a44a9279258ace54be0ea6d410e6ddb5a2d72bcb
/project-addons/custom_reports/models/product.py
719faf154fd24aa8c981b08a03877ad3b5b456aa
[]
no_license
athlontado/PXGO_00064_2014_PHA
346f33185a07c2e1766a7cc79cd300252d9b2480
3086baba490e47a5dcc7942c7c5fee9fc047ddcd
refs/heads/master
2020-04-06T03:56:15.828784
2016-04-18T12:24:53
2016-04-18T12:24:53
59,216,028
0
0
null
2016-05-19T14:50:54
2016-05-19T14:50:54
null
UTF-8
Python
false
false
1,240
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2016 Pharmadus. All Rights Reserved # $Óscar Salvador <[email protected]>$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import fields, models class ProductCategory(models.Model): _inherit = 'product.category' commissions_parent_category = fields.Boolean('Commissions parent category', default=False)
0e029895d75465efd99006fba963cce56d4204ed
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/pandas-dev_pandas/pandas-master/pandas/tests/test_nanops.py
937c20d009b6bfb2143c62b9aa96a110e0d6c71f
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
43,023
py
# -*- coding: utf-8 -*- from __future__ import division, print_function from functools import partial import warnings import numpy as np from pandas import Series, isnull from pandas.types.common import is_integer_dtype import pandas.core.nanops as nanops import pandas.util.testing as tm use_bn = nanops._USE_BOTTLENECK class TestnanopsDataFrame(tm.TestCase): def setUp(self): np.random.seed(11235) nanops._USE_BOTTLENECK = False self.arr_shape = (11, 7, 5) self.arr_float = np.random.randn(*self.arr_shape) self.arr_float1 = np.random.randn(*self.arr_shape) self.arr_complex = self.arr_float + self.arr_float1 * 1j self.arr_int = np.random.randint(-10, 10, self.arr_shape) self.arr_bool = np.random.randint(0, 2, self.arr_shape) == 0 self.arr_str = np.abs(self.arr_float).astype('S') self.arr_utf = np.abs(self.arr_float).astype('U') self.arr_date = np.random.randint(0, 20000, self.arr_shape).astype('M8[ns]') self.arr_tdelta = np.random.randint(0, 20000, self.arr_shape).astype('m8[ns]') self.arr_nan = np.tile(np.nan, self.arr_shape) self.arr_float_nan = np.vstack([self.arr_float, self.arr_nan]) self.arr_float1_nan = np.vstack([self.arr_float1, self.arr_nan]) self.arr_nan_float1 = np.vstack([self.arr_nan, self.arr_float1]) self.arr_nan_nan = np.vstack([self.arr_nan, self.arr_nan]) self.arr_inf = self.arr_float * np.inf self.arr_float_inf = np.vstack([self.arr_float, self.arr_inf]) self.arr_float1_inf = np.vstack([self.arr_float1, self.arr_inf]) self.arr_inf_float1 = np.vstack([self.arr_inf, self.arr_float1]) self.arr_inf_inf = np.vstack([self.arr_inf, self.arr_inf]) self.arr_nan_inf = np.vstack([self.arr_nan, self.arr_inf]) self.arr_float_nan_inf = np.vstack([self.arr_float, self.arr_nan, self.arr_inf]) self.arr_nan_float1_inf = np.vstack([self.arr_float, self.arr_inf, self.arr_nan]) self.arr_nan_nan_inf = np.vstack([self.arr_nan, self.arr_nan, self.arr_inf]) self.arr_obj = np.vstack([self.arr_float.astype( 'O'), self.arr_int.astype('O'), self.arr_bool.astype( 'O'), self.arr_complex.astype('O'), self.arr_str.astype( 'O'), self.arr_utf.astype('O'), self.arr_date.astype('O'), self.arr_tdelta.astype('O')]) with np.errstate(invalid='ignore'): self.arr_nan_nanj = self.arr_nan + self.arr_nan * 1j self.arr_complex_nan = np.vstack([self.arr_complex, self.arr_nan_nanj]) self.arr_nan_infj = self.arr_inf * 1j self.arr_complex_nan_infj = np.vstack([self.arr_complex, self.arr_nan_infj]) self.arr_float_2d = self.arr_float[:, :, 0] self.arr_float1_2d = self.arr_float1[:, :, 0] self.arr_complex_2d = self.arr_complex[:, :, 0] self.arr_int_2d = self.arr_int[:, :, 0] self.arr_bool_2d = self.arr_bool[:, :, 0] self.arr_str_2d = self.arr_str[:, :, 0] self.arr_utf_2d = self.arr_utf[:, :, 0] self.arr_date_2d = self.arr_date[:, :, 0] self.arr_tdelta_2d = self.arr_tdelta[:, :, 0] self.arr_nan_2d = self.arr_nan[:, :, 0] self.arr_float_nan_2d = self.arr_float_nan[:, :, 0] self.arr_float1_nan_2d = self.arr_float1_nan[:, :, 0] self.arr_nan_float1_2d = self.arr_nan_float1[:, :, 0] self.arr_nan_nan_2d = self.arr_nan_nan[:, :, 0] self.arr_nan_nanj_2d = self.arr_nan_nanj[:, :, 0] self.arr_complex_nan_2d = self.arr_complex_nan[:, :, 0] self.arr_inf_2d = self.arr_inf[:, :, 0] self.arr_float_inf_2d = self.arr_float_inf[:, :, 0] self.arr_nan_inf_2d = self.arr_nan_inf[:, :, 0] self.arr_float_nan_inf_2d = self.arr_float_nan_inf[:, :, 0] self.arr_nan_nan_inf_2d = self.arr_nan_nan_inf[:, :, 0] self.arr_float_1d = self.arr_float[:, 0, 0] self.arr_float1_1d = self.arr_float1[:, 0, 0] self.arr_complex_1d = self.arr_complex[:, 0, 0] self.arr_int_1d = self.arr_int[:, 0, 0] self.arr_bool_1d = self.arr_bool[:, 0, 0] self.arr_str_1d = self.arr_str[:, 0, 0] self.arr_utf_1d = self.arr_utf[:, 0, 0] self.arr_date_1d = self.arr_date[:, 0, 0] self.arr_tdelta_1d = self.arr_tdelta[:, 0, 0] self.arr_nan_1d = self.arr_nan[:, 0, 0] self.arr_float_nan_1d = self.arr_float_nan[:, 0, 0] self.arr_float1_nan_1d = self.arr_float1_nan[:, 0, 0] self.arr_nan_float1_1d = self.arr_nan_float1[:, 0, 0] self.arr_nan_nan_1d = self.arr_nan_nan[:, 0, 0] self.arr_nan_nanj_1d = self.arr_nan_nanj[:, 0, 0] self.arr_complex_nan_1d = self.arr_complex_nan[:, 0, 0] self.arr_inf_1d = self.arr_inf.ravel() self.arr_float_inf_1d = self.arr_float_inf[:, 0, 0] self.arr_nan_inf_1d = self.arr_nan_inf[:, 0, 0] self.arr_float_nan_inf_1d = self.arr_float_nan_inf[:, 0, 0] self.arr_nan_nan_inf_1d = self.arr_nan_nan_inf[:, 0, 0] def tearDown(self): nanops._USE_BOTTLENECK = use_bn def check_results(self, targ, res, axis, check_dtype=True): res = getattr(res, 'asm8', res) res = getattr(res, 'values', res) # timedeltas are a beast here def _coerce_tds(targ, res): if hasattr(targ, 'dtype') and targ.dtype == 'm8[ns]': if len(targ) == 1: targ = targ[0].item() res = res.item() else: targ = targ.view('i8') return targ, res try: if axis != 0 and hasattr( targ, 'shape') and targ.ndim and targ.shape != res.shape: res = np.split(res, [targ.shape[0]], axis=0)[0] except: targ, res = _coerce_tds(targ, res) try: tm.assert_almost_equal(targ, res, check_dtype=check_dtype) except: # handle timedelta dtypes if hasattr(targ, 'dtype') and targ.dtype == 'm8[ns]': targ, res = _coerce_tds(targ, res) tm.assert_almost_equal(targ, res, check_dtype=check_dtype) return # There are sometimes rounding errors with # complex and object dtypes. # If it isn't one of those, re-raise the error. if not hasattr(res, 'dtype') or res.dtype.kind not in ['c', 'O']: raise # convert object dtypes to something that can be split into # real and imaginary parts if res.dtype.kind == 'O': if targ.dtype.kind != 'O': res = res.astype(targ.dtype) else: try: res = res.astype('c16') except: res = res.astype('f8') try: targ = targ.astype('c16') except: targ = targ.astype('f8') # there should never be a case where numpy returns an object # but nanops doesn't, so make that an exception elif targ.dtype.kind == 'O': raise tm.assert_almost_equal(targ.real, res.real, check_dtype=check_dtype) tm.assert_almost_equal(targ.imag, res.imag, check_dtype=check_dtype) def check_fun_data(self, testfunc, targfunc, testarval, targarval, targarnanval, check_dtype=True, **kwargs): for axis in list(range(targarval.ndim)) + [None]: for skipna in [False, True]: targartempval = targarval if skipna else targarnanval try: targ = targfunc(targartempval, axis=axis, **kwargs) res = testfunc(testarval, axis=axis, skipna=skipna, **kwargs) self.check_results(targ, res, axis, check_dtype=check_dtype) if skipna: res = testfunc(testarval, axis=axis, **kwargs) self.check_results(targ, res, axis, check_dtype=check_dtype) if axis is None: res = testfunc(testarval, skipna=skipna, **kwargs) self.check_results(targ, res, axis, check_dtype=check_dtype) if skipna and axis is None: res = testfunc(testarval, **kwargs) self.check_results(targ, res, axis, check_dtype=check_dtype) except BaseException as exc: exc.args += ('axis: %s of %s' % (axis, testarval.ndim - 1), 'skipna: %s' % skipna, 'kwargs: %s' % kwargs) raise if testarval.ndim <= 1: return try: testarval2 = np.take(testarval, 0, axis=-1) targarval2 = np.take(targarval, 0, axis=-1) targarnanval2 = np.take(targarnanval, 0, axis=-1) except ValueError: return self.check_fun_data(testfunc, targfunc, testarval2, targarval2, targarnanval2, check_dtype=check_dtype, **kwargs) def check_fun(self, testfunc, targfunc, testar, targar=None, targarnan=None, **kwargs): if targar is None: targar = testar if targarnan is None: targarnan = testar testarval = getattr(self, testar) targarval = getattr(self, targar) targarnanval = getattr(self, targarnan) try: self.check_fun_data(testfunc, targfunc, testarval, targarval, targarnanval, **kwargs) except BaseException as exc: exc.args += ('testar: %s' % testar, 'targar: %s' % targar, 'targarnan: %s' % targarnan) raise def check_funs(self, testfunc, targfunc, allow_complex=True, allow_all_nan=True, allow_str=True, allow_date=True, allow_tdelta=True, allow_obj=True, **kwargs): self.check_fun(testfunc, targfunc, 'arr_float', **kwargs) self.check_fun(testfunc, targfunc, 'arr_float_nan', 'arr_float', **kwargs) self.check_fun(testfunc, targfunc, 'arr_int', **kwargs) self.check_fun(testfunc, targfunc, 'arr_bool', **kwargs) objs = [self.arr_float.astype('O'), self.arr_int.astype('O'), self.arr_bool.astype('O')] if allow_all_nan: self.check_fun(testfunc, targfunc, 'arr_nan', **kwargs) if allow_complex: self.check_fun(testfunc, targfunc, 'arr_complex', **kwargs) self.check_fun(testfunc, targfunc, 'arr_complex_nan', 'arr_complex', **kwargs) if allow_all_nan: self.check_fun(testfunc, targfunc, 'arr_nan_nanj', **kwargs) objs += [self.arr_complex.astype('O')] if allow_str: self.check_fun(testfunc, targfunc, 'arr_str', **kwargs) self.check_fun(testfunc, targfunc, 'arr_utf', **kwargs) objs += [self.arr_str.astype('O'), self.arr_utf.astype('O')] if allow_date: try: targfunc(self.arr_date) except TypeError: pass else: self.check_fun(testfunc, targfunc, 'arr_date', **kwargs) objs += [self.arr_date.astype('O')] if allow_tdelta: try: targfunc(self.arr_tdelta) except TypeError: pass else: self.check_fun(testfunc, targfunc, 'arr_tdelta', **kwargs) objs += [self.arr_tdelta.astype('O')] if allow_obj: self.arr_obj = np.vstack(objs) # some nanops handle object dtypes better than their numpy # counterparts, so the numpy functions need to be given something # else if allow_obj == 'convert': targfunc = partial(self._badobj_wrap, func=targfunc, allow_complex=allow_complex) self.check_fun(testfunc, targfunc, 'arr_obj', **kwargs) def check_funs_ddof(self, testfunc, targfunc, allow_complex=True, allow_all_nan=True, allow_str=True, allow_date=False, allow_tdelta=False, allow_obj=True, ): for ddof in range(3): try: self.check_funs(testfunc, targfunc, allow_complex, allow_all_nan, allow_str, allow_date, allow_tdelta, allow_obj, ddof=ddof) except BaseException as exc: exc.args += ('ddof %s' % ddof, ) raise def _badobj_wrap(self, value, func, allow_complex=True, **kwargs): if value.dtype.kind == 'O': if allow_complex: value = value.astype('c16') else: value = value.astype('f8') return func(value, **kwargs) def test_nanany(self): self.check_funs(nanops.nanany, np.any, allow_all_nan=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nanall(self): self.check_funs(nanops.nanall, np.all, allow_all_nan=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nansum(self): self.check_funs(nanops.nansum, np.sum, allow_str=False, allow_date=False, allow_tdelta=True, check_dtype=False) def test_nanmean(self): self.check_funs(nanops.nanmean, np.mean, allow_complex=False, allow_obj=False, allow_str=False, allow_date=False, allow_tdelta=True) def test_nanmean_overflow(self): # GH 10155 # In the previous implementation mean can overflow for int dtypes, it # is now consistent with numpy # numpy < 1.9.0 is not computing this correctly from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.9.0': for a in [2 ** 55, -2 ** 55, 20150515061816532]: s = Series(a, index=range(500), dtype=np.int64) result = s.mean() np_result = s.values.mean() self.assertEqual(result, a) self.assertEqual(result, np_result) self.assertTrue(result.dtype == np.float64) def test_returned_dtype(self): dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64] if hasattr(np, 'float128'): dtypes.append(np.float128) for dtype in dtypes: s = Series(range(10), dtype=dtype) group_a = ['mean', 'std', 'var', 'skew', 'kurt'] group_b = ['min', 'max'] for method in group_a + group_b: result = getattr(s, method)() if is_integer_dtype(dtype) and method in group_a: self.assertTrue( result.dtype == np.float64, "return dtype expected from %s is np.float64, " "got %s instead" % (method, result.dtype)) else: self.assertTrue( result.dtype == dtype, "return dtype expected from %s is %s, " "got %s instead" % (method, dtype, result.dtype)) def test_nanmedian(self): with warnings.catch_warnings(record=True): self.check_funs(nanops.nanmedian, np.median, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nanvar(self): self.check_funs_ddof(nanops.nanvar, np.var, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nanstd(self): self.check_funs_ddof(nanops.nanstd, np.std, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def test_nansem(self): tm.skip_if_no_package('scipy.stats') tm._skip_if_scipy_0_17() from scipy.stats import sem self.check_funs_ddof(nanops.nansem, sem, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=True, allow_obj='convert') def _minmax_wrap(self, value, axis=None, func=None): res = func(value, axis) if res.dtype.kind == 'm': res = np.atleast_1d(res) return res def test_nanmin(self): func = partial(self._minmax_wrap, func=np.min) self.check_funs(nanops.nanmin, func, allow_str=False, allow_obj=False) def test_nanmax(self): func = partial(self._minmax_wrap, func=np.max) self.check_funs(nanops.nanmax, func, allow_str=False, allow_obj=False) def _argminmax_wrap(self, value, axis=None, func=None): res = func(value, axis) nans = np.min(value, axis) nullnan = isnull(nans) if res.ndim: res[nullnan] = -1 elif (hasattr(nullnan, 'all') and nullnan.all() or not hasattr(nullnan, 'all') and nullnan): res = -1 return res def test_nanargmax(self): func = partial(self._argminmax_wrap, func=np.argmax) self.check_funs(nanops.nanargmax, func, allow_str=False, allow_obj=False, allow_date=True, allow_tdelta=True) def test_nanargmin(self): func = partial(self._argminmax_wrap, func=np.argmin) if tm.sys.version_info[0:2] == (2, 6): self.check_funs(nanops.nanargmin, func, allow_date=True, allow_tdelta=True, allow_str=False, allow_obj=False) else: self.check_funs(nanops.nanargmin, func, allow_str=False, allow_obj=False) def _skew_kurt_wrap(self, values, axis=None, func=None): if not isinstance(values.dtype.type, np.floating): values = values.astype('f8') result = func(values, axis=axis, bias=False) # fix for handling cases where all elements in an axis are the same if isinstance(result, np.ndarray): result[np.max(values, axis=axis) == np.min(values, axis=axis)] = 0 return result elif np.max(values) == np.min(values): return 0. return result def test_nanskew(self): tm.skip_if_no_package('scipy.stats') tm._skip_if_scipy_0_17() from scipy.stats import skew func = partial(self._skew_kurt_wrap, func=skew) self.check_funs(nanops.nanskew, func, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nankurt(self): tm.skip_if_no_package('scipy.stats') tm._skip_if_scipy_0_17() from scipy.stats import kurtosis func1 = partial(kurtosis, fisher=True) func = partial(self._skew_kurt_wrap, func=func1) self.check_funs(nanops.nankurt, func, allow_complex=False, allow_str=False, allow_date=False, allow_tdelta=False) def test_nanprod(self): self.check_funs(nanops.nanprod, np.prod, allow_str=False, allow_date=False, allow_tdelta=False) def check_nancorr_nancov_2d(self, checkfun, targ0, targ1, **kwargs): res00 = checkfun(self.arr_float_2d, self.arr_float1_2d, **kwargs) res01 = checkfun(self.arr_float_2d, self.arr_float1_2d, min_periods=len(self.arr_float_2d) - 1, **kwargs) tm.assert_almost_equal(targ0, res00) tm.assert_almost_equal(targ0, res01) res10 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, **kwargs) res11 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, min_periods=len(self.arr_float_2d) - 1, **kwargs) tm.assert_almost_equal(targ1, res10) tm.assert_almost_equal(targ1, res11) targ2 = np.nan res20 = checkfun(self.arr_nan_2d, self.arr_float1_2d, **kwargs) res21 = checkfun(self.arr_float_2d, self.arr_nan_2d, **kwargs) res22 = checkfun(self.arr_nan_2d, self.arr_nan_2d, **kwargs) res23 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, **kwargs) res24 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, min_periods=len(self.arr_float_2d) - 1, **kwargs) res25 = checkfun(self.arr_float_2d, self.arr_float1_2d, min_periods=len(self.arr_float_2d) + 1, **kwargs) tm.assert_almost_equal(targ2, res20) tm.assert_almost_equal(targ2, res21) tm.assert_almost_equal(targ2, res22) tm.assert_almost_equal(targ2, res23) tm.assert_almost_equal(targ2, res24) tm.assert_almost_equal(targ2, res25) def check_nancorr_nancov_1d(self, checkfun, targ0, targ1, **kwargs): res00 = checkfun(self.arr_float_1d, self.arr_float1_1d, **kwargs) res01 = checkfun(self.arr_float_1d, self.arr_float1_1d, min_periods=len(self.arr_float_1d) - 1, **kwargs) tm.assert_almost_equal(targ0, res00) tm.assert_almost_equal(targ0, res01) res10 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, **kwargs) res11 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, min_periods=len(self.arr_float_1d) - 1, **kwargs) tm.assert_almost_equal(targ1, res10) tm.assert_almost_equal(targ1, res11) targ2 = np.nan res20 = checkfun(self.arr_nan_1d, self.arr_float1_1d, **kwargs) res21 = checkfun(self.arr_float_1d, self.arr_nan_1d, **kwargs) res22 = checkfun(self.arr_nan_1d, self.arr_nan_1d, **kwargs) res23 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, **kwargs) res24 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, min_periods=len(self.arr_float_1d) - 1, **kwargs) res25 = checkfun(self.arr_float_1d, self.arr_float1_1d, min_periods=len(self.arr_float_1d) + 1, **kwargs) tm.assert_almost_equal(targ2, res20) tm.assert_almost_equal(targ2, res21) tm.assert_almost_equal(targ2, res22) tm.assert_almost_equal(targ2, res23) tm.assert_almost_equal(targ2, res24) tm.assert_almost_equal(targ2, res25) def test_nancorr(self): targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1) targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='pearson') def test_nancorr_pearson(self): targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='pearson') targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='pearson') def test_nancorr_kendall(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import kendalltau targ0 = kendalltau(self.arr_float_2d, self.arr_float1_2d)[0] targ1 = kendalltau(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='kendall') targ0 = kendalltau(self.arr_float_1d, self.arr_float1_1d)[0] targ1 = kendalltau(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='kendall') def test_nancorr_spearman(self): tm.skip_if_no_package('scipy.stats') from scipy.stats import spearmanr targ0 = spearmanr(self.arr_float_2d, self.arr_float1_2d)[0] targ1 = spearmanr(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method='spearman') targ0 = spearmanr(self.arr_float_1d, self.arr_float1_1d)[0] targ1 = spearmanr(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method='spearman') def test_nancov(self): targ0 = np.cov(self.arr_float_2d, self.arr_float1_2d)[0, 1] targ1 = np.cov(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] self.check_nancorr_nancov_2d(nanops.nancov, targ0, targ1) targ0 = np.cov(self.arr_float_1d, self.arr_float1_1d)[0, 1] targ1 = np.cov(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] self.check_nancorr_nancov_1d(nanops.nancov, targ0, targ1) def check_nancomp(self, checkfun, targ0): arr_float = self.arr_float arr_float1 = self.arr_float1 arr_nan = self.arr_nan arr_nan_nan = self.arr_nan_nan arr_float_nan = self.arr_float_nan arr_float1_nan = self.arr_float1_nan arr_nan_float1 = self.arr_nan_float1 while targ0.ndim: try: res0 = checkfun(arr_float, arr_float1) tm.assert_almost_equal(targ0, res0) if targ0.ndim > 1: targ1 = np.vstack([targ0, arr_nan]) else: targ1 = np.hstack([targ0, arr_nan]) res1 = checkfun(arr_float_nan, arr_float1_nan) tm.assert_numpy_array_equal(targ1, res1, check_dtype=False) targ2 = arr_nan_nan res2 = checkfun(arr_float_nan, arr_nan_float1) tm.assert_numpy_array_equal(targ2, res2, check_dtype=False) except Exception as exc: exc.args += ('ndim: %s' % arr_float.ndim, ) raise try: arr_float = np.take(arr_float, 0, axis=-1) arr_float1 = np.take(arr_float1, 0, axis=-1) arr_nan = np.take(arr_nan, 0, axis=-1) arr_nan_nan = np.take(arr_nan_nan, 0, axis=-1) arr_float_nan = np.take(arr_float_nan, 0, axis=-1) arr_float1_nan = np.take(arr_float1_nan, 0, axis=-1) arr_nan_float1 = np.take(arr_nan_float1, 0, axis=-1) targ0 = np.take(targ0, 0, axis=-1) except ValueError: break def test_nangt(self): targ0 = self.arr_float > self.arr_float1 self.check_nancomp(nanops.nangt, targ0) def test_nange(self): targ0 = self.arr_float >= self.arr_float1 self.check_nancomp(nanops.nange, targ0) def test_nanlt(self): targ0 = self.arr_float < self.arr_float1 self.check_nancomp(nanops.nanlt, targ0) def test_nanle(self): targ0 = self.arr_float <= self.arr_float1 self.check_nancomp(nanops.nanle, targ0) def test_naneq(self): targ0 = self.arr_float == self.arr_float1 self.check_nancomp(nanops.naneq, targ0) def test_nanne(self): targ0 = self.arr_float != self.arr_float1 self.check_nancomp(nanops.nanne, targ0) def check_bool(self, func, value, correct, *args, **kwargs): while getattr(value, 'ndim', True): try: res0 = func(value, *args, **kwargs) if correct: self.assertTrue(res0) else: self.assertFalse(res0) except BaseException as exc: exc.args += ('dim: %s' % getattr(value, 'ndim', value), ) raise if not hasattr(value, 'ndim'): break try: value = np.take(value, 0, axis=-1) except ValueError: break def test__has_infs(self): pairs = [('arr_complex', False), ('arr_int', False), ('arr_bool', False), ('arr_str', False), ('arr_utf', False), ('arr_complex', False), ('arr_complex_nan', False), ('arr_nan_nanj', False), ('arr_nan_infj', True), ('arr_complex_nan_infj', True)] pairs_float = [('arr_float', False), ('arr_nan', False), ('arr_float_nan', False), ('arr_nan_nan', False), ('arr_float_inf', True), ('arr_inf', True), ('arr_nan_inf', True), ('arr_float_nan_inf', True), ('arr_nan_nan_inf', True)] for arr, correct in pairs: val = getattr(self, arr) try: self.check_bool(nanops._has_infs, val, correct) except BaseException as exc: exc.args += (arr, ) raise for arr, correct in pairs_float: val = getattr(self, arr) try: self.check_bool(nanops._has_infs, val, correct) self.check_bool(nanops._has_infs, val.astype('f4'), correct) self.check_bool(nanops._has_infs, val.astype('f2'), correct) except BaseException as exc: exc.args += (arr, ) raise def test__isfinite(self): pairs = [('arr_complex', False), ('arr_int', False), ('arr_bool', False), ('arr_str', False), ('arr_utf', False), ('arr_complex', False), ('arr_complex_nan', True), ('arr_nan_nanj', True), ('arr_nan_infj', True), ('arr_complex_nan_infj', True)] pairs_float = [('arr_float', False), ('arr_nan', True), ('arr_float_nan', True), ('arr_nan_nan', True), ('arr_float_inf', True), ('arr_inf', True), ('arr_nan_inf', True), ('arr_float_nan_inf', True), ('arr_nan_nan_inf', True)] func1 = lambda x: np.any(nanops._isfinite(x).ravel()) # TODO: unused? # func2 = lambda x: np.any(nanops._isfinite(x).values.ravel()) for arr, correct in pairs: val = getattr(self, arr) try: self.check_bool(func1, val, correct) except BaseException as exc: exc.args += (arr, ) raise for arr, correct in pairs_float: val = getattr(self, arr) try: self.check_bool(func1, val, correct) self.check_bool(func1, val.astype('f4'), correct) self.check_bool(func1, val.astype('f2'), correct) except BaseException as exc: exc.args += (arr, ) raise def test__bn_ok_dtype(self): self.assertTrue(nanops._bn_ok_dtype(self.arr_float.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_complex.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_int.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_bool.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_str.dtype, 'test')) self.assertTrue(nanops._bn_ok_dtype(self.arr_utf.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_date.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_tdelta.dtype, 'test')) self.assertFalse(nanops._bn_ok_dtype(self.arr_obj.dtype, 'test')) class TestEnsureNumeric(tm.TestCase): def test_numeric_values(self): # Test integer self.assertEqual(nanops._ensure_numeric(1), 1, 'Failed for int') # Test float self.assertEqual(nanops._ensure_numeric(1.1), 1.1, 'Failed for float') # Test complex self.assertEqual(nanops._ensure_numeric(1 + 2j), 1 + 2j, 'Failed for complex') def test_ndarray(self): # Test numeric ndarray values = np.array([1, 2, 3]) self.assertTrue(np.allclose(nanops._ensure_numeric(values), values), 'Failed for numeric ndarray') # Test object ndarray o_values = values.astype(object) self.assertTrue(np.allclose(nanops._ensure_numeric(o_values), values), 'Failed for object ndarray') # Test convertible string ndarray s_values = np.array(['1', '2', '3'], dtype=object) self.assertTrue(np.allclose(nanops._ensure_numeric(s_values), values), 'Failed for convertible string ndarray') # Test non-convertible string ndarray s_values = np.array(['foo', 'bar', 'baz'], dtype=object) self.assertRaises(ValueError, lambda: nanops._ensure_numeric(s_values)) def test_convertable_values(self): self.assertTrue(np.allclose(nanops._ensure_numeric('1'), 1.0), 'Failed for convertible integer string') self.assertTrue(np.allclose(nanops._ensure_numeric('1.1'), 1.1), 'Failed for convertible float string') self.assertTrue(np.allclose(nanops._ensure_numeric('1+1j'), 1 + 1j), 'Failed for convertible complex string') def test_non_convertable_values(self): self.assertRaises(TypeError, lambda: nanops._ensure_numeric('foo')) self.assertRaises(TypeError, lambda: nanops._ensure_numeric({})) self.assertRaises(TypeError, lambda: nanops._ensure_numeric([])) class TestNanvarFixedValues(tm.TestCase): # xref GH10242 def setUp(self): # Samples from a normal distribution. self.variance = variance = 3.0 self.samples = self.prng.normal(scale=variance ** 0.5, size=100000) def test_nanvar_all_finite(self): samples = self.samples actual_variance = nanops.nanvar(samples) tm.assert_almost_equal(actual_variance, self.variance, check_less_precise=2) def test_nanvar_nans(self): samples = np.nan * np.ones(2 * self.samples.shape[0]) samples[::2] = self.samples actual_variance = nanops.nanvar(samples, skipna=True) tm.assert_almost_equal(actual_variance, self.variance, check_less_precise=2) actual_variance = nanops.nanvar(samples, skipna=False) tm.assert_almost_equal(actual_variance, np.nan, check_less_precise=2) def test_nanstd_nans(self): samples = np.nan * np.ones(2 * self.samples.shape[0]) samples[::2] = self.samples actual_std = nanops.nanstd(samples, skipna=True) tm.assert_almost_equal(actual_std, self.variance ** 0.5, check_less_precise=2) actual_std = nanops.nanvar(samples, skipna=False) tm.assert_almost_equal(actual_std, np.nan, check_less_precise=2) def test_nanvar_axis(self): # Generate some sample data. samples_norm = self.samples samples_unif = self.prng.uniform(size=samples_norm.shape[0]) samples = np.vstack([samples_norm, samples_unif]) actual_variance = nanops.nanvar(samples, axis=1) tm.assert_almost_equal(actual_variance, np.array( [self.variance, 1.0 / 12]), check_less_precise=2) def test_nanvar_ddof(self): n = 5 samples = self.prng.uniform(size=(10000, n + 1)) samples[:, -1] = np.nan # Force use of our own algorithm. variance_0 = nanops.nanvar(samples, axis=1, skipna=True, ddof=0).mean() variance_1 = nanops.nanvar(samples, axis=1, skipna=True, ddof=1).mean() variance_2 = nanops.nanvar(samples, axis=1, skipna=True, ddof=2).mean() # The unbiased estimate. var = 1.0 / 12 tm.assert_almost_equal(variance_1, var, check_less_precise=2) # The underestimated variance. tm.assert_almost_equal(variance_0, (n - 1.0) / n * var, check_less_precise=2) # The overestimated variance. tm.assert_almost_equal(variance_2, (n - 1.0) / (n - 2.0) * var, check_less_precise=2) def test_ground_truth(self): # Test against values that were precomputed with Numpy. samples = np.empty((4, 4)) samples[:3, :3] = np.array([[0.97303362, 0.21869576, 0.55560287 ], [0.72980153, 0.03109364, 0.99155171], [0.09317602, 0.60078248, 0.15871292]]) samples[3] = samples[:, 3] = np.nan # Actual variances along axis=0, 1 for ddof=0, 1, 2 variance = np.array([[[0.13762259, 0.05619224, 0.11568816 ], [0.20643388, 0.08428837, 0.17353224], [0.41286776, 0.16857673, 0.34706449]], [[0.09519783, 0.16435395, 0.05082054 ], [0.14279674, 0.24653093, 0.07623082], [0.28559348, 0.49306186, 0.15246163]]]) # Test nanvar. for axis in range(2): for ddof in range(3): var = nanops.nanvar(samples, skipna=True, axis=axis, ddof=ddof) tm.assert_almost_equal(var[:3], variance[axis, ddof]) self.assertTrue(np.isnan(var[3])) # Test nanstd. for axis in range(2): for ddof in range(3): std = nanops.nanstd(samples, skipna=True, axis=axis, ddof=ddof) tm.assert_almost_equal(std[:3], variance[axis, ddof] ** 0.5) self.assertTrue(np.isnan(std[3])) def test_nanstd_roundoff(self): # Regression test for GH 10242 (test data taken from GH 10489). Ensure # that variance is stable. data = Series(766897346 * np.ones(10)) for ddof in range(3): result = data.std(ddof=ddof) self.assertEqual(result, 0.0) @property def prng(self): return np.random.RandomState(1234) class TestNanskewFixedValues(tm.TestCase): # xref GH 11974 def setUp(self): # Test data + skewness value (computed with scipy.stats.skew) self.samples = np.sin(np.linspace(0, 1, 200)) self.actual_skew = -0.1875895205961754 def test_constant_series(self): # xref GH 11974 for val in [3075.2, 3075.3, 3075.5]: data = val * np.ones(300) skew = nanops.nanskew(data) self.assertEqual(skew, 0.0) def test_all_finite(self): alpha, beta = 0.3, 0.1 left_tailed = self.prng.beta(alpha, beta, size=100) self.assertLess(nanops.nanskew(left_tailed), 0) alpha, beta = 0.1, 0.3 right_tailed = self.prng.beta(alpha, beta, size=100) self.assertGreater(nanops.nanskew(right_tailed), 0) def test_ground_truth(self): skew = nanops.nanskew(self.samples) self.assertAlmostEqual(skew, self.actual_skew) def test_axis(self): samples = np.vstack([self.samples, np.nan * np.ones(len(self.samples))]) skew = nanops.nanskew(samples, axis=1) tm.assert_almost_equal(skew, np.array([self.actual_skew, np.nan])) def test_nans(self): samples = np.hstack([self.samples, np.nan]) skew = nanops.nanskew(samples, skipna=False) self.assertTrue(np.isnan(skew)) def test_nans_skipna(self): samples = np.hstack([self.samples, np.nan]) skew = nanops.nanskew(samples, skipna=True) tm.assert_almost_equal(skew, self.actual_skew) @property def prng(self): return np.random.RandomState(1234) class TestNankurtFixedValues(tm.TestCase): # xref GH 11974 def setUp(self): # Test data + kurtosis value (computed with scipy.stats.kurtosis) self.samples = np.sin(np.linspace(0, 1, 200)) self.actual_kurt = -1.2058303433799713 def test_constant_series(self): # xref GH 11974 for val in [3075.2, 3075.3, 3075.5]: data = val * np.ones(300) kurt = nanops.nankurt(data) self.assertEqual(kurt, 0.0) def test_all_finite(self): alpha, beta = 0.3, 0.1 left_tailed = self.prng.beta(alpha, beta, size=100) self.assertLess(nanops.nankurt(left_tailed), 0) alpha, beta = 0.1, 0.3 right_tailed = self.prng.beta(alpha, beta, size=100) self.assertGreater(nanops.nankurt(right_tailed), 0) def test_ground_truth(self): kurt = nanops.nankurt(self.samples) self.assertAlmostEqual(kurt, self.actual_kurt) def test_axis(self): samples = np.vstack([self.samples, np.nan * np.ones(len(self.samples))]) kurt = nanops.nankurt(samples, axis=1) tm.assert_almost_equal(kurt, np.array([self.actual_kurt, np.nan])) def test_nans(self): samples = np.hstack([self.samples, np.nan]) kurt = nanops.nankurt(samples, skipna=False) self.assertTrue(np.isnan(kurt)) def test_nans_skipna(self): samples = np.hstack([self.samples, np.nan]) kurt = nanops.nankurt(samples, skipna=True) tm.assert_almost_equal(kurt, self.actual_kurt) @property def prng(self): return np.random.RandomState(1234)
2b2a54641d5f56d801a5a0f1798713935087ef28
09e5cfe06e437989a2ccf2aeecb9c73eb998a36c
/modules/cctbx_project/simtbx/run_tests.py
5c3244e65192c78f2e1b57410133b5e40024a0a5
[ "BSD-3-Clause", "BSD-3-Clause-LBNL" ]
permissive
jorgediazjr/dials-dev20191018
b81b19653624cee39207b7cefb8dfcb2e99b79eb
77d66c719b5746f37af51ad593e2941ed6fbba17
refs/heads/master
2020-08-21T02:48:54.719532
2020-01-25T01:41:37
2020-01-25T01:41:37
216,089,955
0
1
BSD-3-Clause
2020-01-25T01:41:39
2019-10-18T19:03:17
Python
UTF-8
Python
false
false
468
py
from __future__ import absolute_import, division, print_function from libtbx import test_utils import libtbx.load_env tst_list = ( "$D/nanoBragg/tst_nanoBragg_minimal.py", "$D/nanoBragg/tst_nanoBragg_mosaic.py", "$D/nanoBragg/tst_gaussian_mosaicity.py", ) def run(): build_dir = libtbx.env.under_build("simtbx") dist_dir = libtbx.env.dist_path("simtbx") test_utils.run_tests(build_dir, dist_dir, tst_list) if (__name__ == "__main__"): run()
80d457fe0e0df539d494873fa3d8e41ce774ae0b
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_1/palemale/a.py
f78d73ef5adea50522114802f390513ce3e2cfff
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
810
py
import os, sys with open(sys.argv[1], 'r') as infile: N = int(infile.readline().strip()) for x in xrange(1, N+1): T = infile.readline().strip() cases = set(list(T)) intT = int(T) current = intT count = 2 stablecount = 0 while len(cases) < 10: current = count*intT count += 1 cur_num = len(cases) cases.update(list(str(current))) if cur_num == len(cases): stablecount += 1 else: stablecount = 0 if stablecount > 100: current = 'INSOMNIA' break if isinstance(current, int): current = str(current) print "Case #%s: %s" % (x, current)
0bf9f14a7d8f3b313cb14ebe38a4ae36709d9164
92237641f61e9b35ff6af6294153a75074757bec
/Algorithm/programmers/lv2/lv2_짝지어 제거하기.py
dc49c17ce25e718214f85eb4831fb672b343a239
[]
no_license
taepd/study
8ded115765c4f804813e255d9272b727bf41ec80
846d3f2a5a4100225b750f00f992a640e9287d9c
refs/heads/master
2023-03-08T13:56:57.366577
2022-05-08T15:24:35
2022-05-08T15:24:35
245,838,600
0
1
null
2023-03-05T23:54:41
2020-03-08T15:25:15
JavaScript
UTF-8
Python
false
false
278
py
def solution(s): stack = [] for e in s: if not stack: stack.append(e) else: if stack[-1] == e: stack.pop() else: stack.append(e) if stack: return 0 else: return 1
69b384952afa18b41fb769869d637c21f4a61bbb
2075052d028ed31a30bdb9acb0a2022c2634f52b
/chat/consumers.py
761dd8369a35c0e33e7d8ef65e1ce163904ade18
[]
no_license
igoo-Y/live_chat_app
b67704caa2e5944b131a4299716e501b555985b5
d65c87a35d3f3a120da35290addb798e412dad72
refs/heads/main
2023-06-30T13:21:49.860265
2021-08-03T09:11:29
2021-08-03T09:11:29
392,256,262
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
import json from channels.generic.websocket import AsyncWebsocketConsumer class ChatConsumer(AsyncWebsocketConsumer): async def connect(self): self.room_name = self.scope["url_route"]["kwargs"]["room_name"] self.room_group_name = "chat_%s" % self.room_name # Join room group await self.channel_layer.group_add(self.room_group_name, self.channel_name) await self.accept() async def disconnect(self, close_code): # Leave room group await self.channel_layer.group_discard(self.room_group_name, self.channel_name) # Receive message from WebSocket async def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json["message"] # Send message to room group await self.channel_layer.group_send( self.room_group_name, {"type": "chat_message", "message": message} ) # Receive message from room group async def chat_message(self, event): message = event["message"] # Send message to WebSocket await self.send(text_data=json.dumps({"message": message}))
aa41fbd83ac1923d6fda08de4cc8f3ebd55904e0
90390ddcc21d2f2c0dd5ee3c0e7a3d8d61be9638
/wsgi/app/forms.py
4141cbb7183fc430344eb1bf806ca44a244d8598
[ "MIT" ]
permissive
pjamesjoyce/lcoptview_legacy
b27926e31c16f1fca07c6294e66d706fcb600682
e0ebeb155d6f62d8619d33cf48db98bab8b7a4cd
refs/heads/master
2021-07-16T11:38:58.451239
2017-09-26T10:43:50
2017-09-26T10:43:50
107,691,179
0
0
null
null
null
null
UTF-8
Python
false
false
615
py
from flask_wtf import FlaskForm from wtforms import TextField, PasswordField from wtforms.validators import DataRequired class LoginForm(FlaskForm): login_data = TextField('username or email', validators=[DataRequired()]) password = PasswordField('password', validators=[DataRequired()]) class RegistrationForm(FlaskForm): username = TextField('username', validators=[DataRequired()]) email = TextField('email', validators=[DataRequired()]) password = PasswordField('password', validators=[DataRequired()]) password_repeat = PasswordField('repeat password', validators=[DataRequired()])
3823340ea644b2feec0858721dad3a7c2d67d330
1b597dd7630f9a3023faf557e383b0fae703e72b
/test_autogalaxy/unit/aggregator/test_aggregator.py
40b7acd97191da8084e06012b80ef34395849c57
[ "MIT" ]
permissive
knut0815/PyAutoGalaxy
96e9dfc558182169c41e19d3297cdf46b42d5f77
cc2bc0db5080a278ba7519f94d2a8b2468141e2d
refs/heads/master
2023-03-05T00:59:51.594715
2021-02-09T18:21:30
2021-02-09T18:21:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,428
py
from os import path import pytest import autofit as af import autogalaxy as ag from autogalaxy.mock import mock directory = path.dirname(path.realpath(__file__)) @pytest.fixture(name="path") def make_path(): return path.join("{}".format(path.dirname(path.realpath(__file__))), "files") @pytest.fixture(name="samples") def make_samples(): galaxy_0 = ag.Galaxy(redshift=0.5, light=ag.lp.EllipticalSersic(centre=(0.0, 1.0))) galaxy_1 = ag.Galaxy(redshift=1.0, light=ag.lp.EllipticalSersic()) plane = ag.Plane(galaxies=[galaxy_0, galaxy_1]) return mock.MockSamples(max_log_likelihood_instance=plane) def test__dataset_generator_from_aggregator(imaging_7x7, mask_7x7, samples): phase_imaging_7x7 = ag.PhaseImaging( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), ) imaging_7x7.positions = ag.Grid2DIrregular([[1.0, 1.0], [2.0, 2.0]]) phase_imaging_7x7.run( dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples) ) agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path) dataset = list(agg.values("dataset")) print(dataset) def test__plane_generator_from_aggregator(imaging_7x7, mask_7x7, samples): phase_imaging_7x7 = ag.PhaseImaging( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), ) phase_imaging_7x7.run( dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples) ) agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path) plane_gen = ag.agg.Plane(aggregator=agg) for plane in plane_gen: assert plane.galaxies[0].redshift == 0.5 assert plane.galaxies[0].light.centre == (0.0, 1.0) assert plane.galaxies[1].redshift == 1.0 def test__masked_imaging_generator_from_aggregator(imaging_7x7, mask_7x7, samples): phase_imaging_7x7 = ag.PhaseImaging( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), settings=ag.SettingsPhaseImaging( settings_masked_imaging=ag.SettingsMaskedImaging( grid_class=ag.Grid2DIterate, grid_inversion_class=ag.Grid2DIterate, fractional_accuracy=0.5, sub_steps=[2], ) ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), ) phase_imaging_7x7.run( dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples) ) agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path) masked_imaging_gen = ag.agg.MaskedImaging(aggregator=agg) for masked_imaging in masked_imaging_gen: assert (masked_imaging.imaging.image == imaging_7x7.image).all() assert isinstance(masked_imaging.grid, ag.Grid2DIterate) assert isinstance(masked_imaging.grid_inversion, ag.Grid2DIterate) assert masked_imaging.grid.sub_steps == [2] assert masked_imaging.grid.fractional_accuracy == 0.5 def test__fit_imaging_generator_from_aggregator(imaging_7x7, mask_7x7, samples): phase_imaging_7x7 = ag.PhaseImaging( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), ) phase_imaging_7x7.run( dataset=imaging_7x7, mask=mask_7x7, results=mock.MockResults(samples=samples) ) agg = af.Aggregator(directory=phase_imaging_7x7.paths.output_path) fit_imaging_gen = ag.agg.FitImaging(aggregator=agg) for fit_imaging in fit_imaging_gen: assert (fit_imaging.masked_imaging.imaging.image == imaging_7x7.image).all() def test__masked_interferometer_generator_from_aggregator( interferometer_7, visibilities_mask_7, mask_7x7, samples ): phase_interferometer_7x7 = ag.PhaseInterferometer( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), settings=ag.SettingsPhaseInterferometer( settings_masked_interferometer=ag.SettingsMaskedInterferometer( grid_class=ag.Grid2DIterate, grid_inversion_class=ag.Grid2DIterate, fractional_accuracy=0.5, sub_steps=[2], transformer_class=ag.TransformerDFT, ) ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), real_space_mask=mask_7x7, ) phase_interferometer_7x7.run( dataset=interferometer_7, mask=visibilities_mask_7, results=mock.MockResults(samples=samples), ) agg = af.Aggregator(directory=phase_interferometer_7x7.paths.output_path) masked_interferometer_gen = ag.agg.MaskedInterferometer(aggregator=agg) for masked_interferometer in masked_interferometer_gen: assert ( masked_interferometer.interferometer.visibilities == interferometer_7.visibilities ).all() assert (masked_interferometer.real_space_mask == mask_7x7).all() assert isinstance(masked_interferometer.grid, ag.Grid2DIterate) assert isinstance(masked_interferometer.grid_inversion, ag.Grid2DIterate) assert masked_interferometer.grid.sub_steps == [2] assert masked_interferometer.grid.fractional_accuracy == 0.5 assert isinstance(masked_interferometer.transformer, ag.TransformerDFT) def test__fit_interferometer_generator_from_aggregator( interferometer_7, visibilities_mask_7, mask_7x7, samples ): phase_interferometer_7x7 = ag.PhaseInterferometer( galaxies=dict( galaxy=ag.GalaxyModel(redshift=0.5, light=ag.lp.EllipticalSersic), source=ag.GalaxyModel(redshift=1.0, light=ag.lp.EllipticalSersic), ), search=mock.MockSearch(samples=samples, name="test_phase_aggregator"), real_space_mask=mask_7x7, ) phase_interferometer_7x7.run( dataset=interferometer_7, mask=visibilities_mask_7, results=mock.MockResults(samples=samples), ) agg = af.Aggregator(directory=phase_interferometer_7x7.paths.output_path) fit_interferometer_gen = ag.agg.FitInterferometer(aggregator=agg) for fit_interferometer in fit_interferometer_gen: assert ( fit_interferometer.masked_interferometer.interferometer.visibilities == interferometer_7.visibilities ).all() assert ( fit_interferometer.masked_interferometer.real_space_mask == mask_7x7 ).all()
b708ef0ba29cc97092ba45507823ff4dd82a5350
97062249c6eb04069c6fb01e71d06bc334c828e1
/desktop/core/ext-py/Django-1.6.10/tests/decorators/tests.py
05016be231c1703dbabc6a7a8f688f91e33ceaf2
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
Albertsss/hue
1c8b31c64cc420a029f5b5b80712fb3d0c6cbd6e
454d320dd09b6f7946f3cc05bc97c3e2ca6cd485
refs/heads/master
2021-07-08T17:21:13.237871
2018-05-30T06:03:21
2018-05-30T06:03:21
135,386,450
0
1
Apache-2.0
2020-07-25T13:36:58
2018-05-30T04:06:18
Python
UTF-8
Python
false
false
8,243
py
from functools import wraps from django.contrib.admin.views.decorators import staff_member_required from django.contrib.auth.decorators import login_required, permission_required, user_passes_test from django.http import HttpResponse, HttpRequest, HttpResponseNotAllowed from django.middleware.clickjacking import XFrameOptionsMiddleware from django.utils.decorators import method_decorator from django.utils.functional import allow_lazy, lazy, memoize from django.utils.unittest import TestCase from django.views.decorators.cache import cache_page, never_cache, cache_control from django.views.decorators.clickjacking import xframe_options_deny, xframe_options_sameorigin, xframe_options_exempt from django.views.decorators.http import require_http_methods, require_GET, require_POST, require_safe, condition from django.views.decorators.vary import vary_on_headers, vary_on_cookie def fully_decorated(request): """Expected __doc__""" return HttpResponse('<html><body>dummy</body></html>') fully_decorated.anything = "Expected __dict__" def compose(*functions): # compose(f, g)(*args, **kwargs) == f(g(*args, **kwargs)) functions = list(reversed(functions)) def _inner(*args, **kwargs): result = functions[0](*args, **kwargs) for f in functions[1:]: result = f(result) return result return _inner full_decorator = compose( # django.views.decorators.http require_http_methods(["GET"]), require_GET, require_POST, require_safe, condition(lambda r: None, lambda r: None), # django.views.decorators.vary vary_on_headers('Accept-language'), vary_on_cookie, # django.views.decorators.cache cache_page(60*15), cache_control(private=True), never_cache, # django.contrib.auth.decorators # Apply user_passes_test twice to check #9474 user_passes_test(lambda u:True), login_required, permission_required('change_world'), # django.contrib.admin.views.decorators staff_member_required, # django.utils.functional lambda f: memoize(f, {}, 1), allow_lazy, lazy, ) fully_decorated = full_decorator(fully_decorated) class DecoratorsTest(TestCase): def test_attributes(self): """ Tests that django decorators set certain attributes of the wrapped function. """ self.assertEqual(fully_decorated.__name__, 'fully_decorated') self.assertEqual(fully_decorated.__doc__, 'Expected __doc__') self.assertEqual(fully_decorated.__dict__['anything'], 'Expected __dict__') def test_user_passes_test_composition(self): """ Test that the user_passes_test decorator can be applied multiple times (#9474). """ def test1(user): user.decorators_applied.append('test1') return True def test2(user): user.decorators_applied.append('test2') return True def callback(request): return request.user.decorators_applied callback = user_passes_test(test1)(callback) callback = user_passes_test(test2)(callback) class DummyUser(object): pass class DummyRequest(object): pass request = DummyRequest() request.user = DummyUser() request.user.decorators_applied = [] response = callback(request) self.assertEqual(response, ['test2', 'test1']) def test_cache_page_new_style(self): """ Test that we can call cache_page the new way """ def my_view(request): return "response" my_view_cached = cache_page(123)(my_view) self.assertEqual(my_view_cached(HttpRequest()), "response") my_view_cached2 = cache_page(123, key_prefix="test")(my_view) self.assertEqual(my_view_cached2(HttpRequest()), "response") def test_require_safe_accepts_only_safe_methods(self): """ Test for the require_safe decorator. A view returns either a response or an exception. Refs #15637. """ def my_view(request): return HttpResponse("OK") my_safe_view = require_safe(my_view) request = HttpRequest() request.method = 'GET' self.assertIsInstance(my_safe_view(request), HttpResponse) request.method = 'HEAD' self.assertIsInstance(my_safe_view(request), HttpResponse) request.method = 'POST' self.assertIsInstance(my_safe_view(request), HttpResponseNotAllowed) request.method = 'PUT' self.assertIsInstance(my_safe_view(request), HttpResponseNotAllowed) request.method = 'DELETE' self.assertIsInstance(my_safe_view(request), HttpResponseNotAllowed) # For testing method_decorator, a decorator that assumes a single argument. # We will get type arguments if there is a mismatch in the number of arguments. def simple_dec(func): def wrapper(arg): return func("test:" + arg) return wraps(func)(wrapper) simple_dec_m = method_decorator(simple_dec) # For testing method_decorator, two decorators that add an attribute to the function def myattr_dec(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) wrapper.myattr = True return wraps(func)(wrapper) myattr_dec_m = method_decorator(myattr_dec) def myattr2_dec(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) wrapper.myattr2 = True return wraps(func)(wrapper) myattr2_dec_m = method_decorator(myattr2_dec) class MethodDecoratorTests(TestCase): """ Tests for method_decorator """ def test_preserve_signature(self): class Test(object): @simple_dec_m def say(self, arg): return arg self.assertEqual("test:hello", Test().say("hello")) def test_preserve_attributes(self): # Sanity check myattr_dec and myattr2_dec @myattr_dec @myattr2_dec def func(): pass self.assertEqual(getattr(func, 'myattr', False), True) self.assertEqual(getattr(func, 'myattr2', False), True) # Now check method_decorator class Test(object): @myattr_dec_m @myattr2_dec_m def method(self): "A method" pass self.assertEqual(getattr(Test().method, 'myattr', False), True) self.assertEqual(getattr(Test().method, 'myattr2', False), True) self.assertEqual(getattr(Test.method, 'myattr', False), True) self.assertEqual(getattr(Test.method, 'myattr2', False), True) self.assertEqual(Test.method.__doc__, 'A method') self.assertEqual(Test.method.__name__, 'method') class XFrameOptionsDecoratorsTests(TestCase): """ Tests for the X-Frame-Options decorators. """ def test_deny_decorator(self): """ Ensures @xframe_options_deny properly sets the X-Frame-Options header. """ @xframe_options_deny def a_view(request): return HttpResponse() r = a_view(HttpRequest()) self.assertEqual(r['X-Frame-Options'], 'DENY') def test_sameorigin_decorator(self): """ Ensures @xframe_options_sameorigin properly sets the X-Frame-Options header. """ @xframe_options_sameorigin def a_view(request): return HttpResponse() r = a_view(HttpRequest()) self.assertEqual(r['X-Frame-Options'], 'SAMEORIGIN') def test_exempt_decorator(self): """ Ensures @xframe_options_exempt properly instructs the XFrameOptionsMiddleware to NOT set the header. """ @xframe_options_exempt def a_view(request): return HttpResponse() req = HttpRequest() resp = a_view(req) self.assertEqual(resp.get('X-Frame-Options', None), None) self.assertTrue(resp.xframe_options_exempt) # Since the real purpose of the exempt decorator is to suppress # the middleware's functionality, let's make sure it actually works... r = XFrameOptionsMiddleware().process_response(req, resp) self.assertEqual(r.get('X-Frame-Options', None), None)
12148e25092c6f6329984c046651dba85edfb209
3c2e75d3563053dd186dcff324fd84eba561f2a7
/python/onos/rsm/__init__.py
b94966701cbd5b870c5f829c3de02c8bd040a16c
[ "Apache-2.0" ]
permissive
stjordanis/onos-api
00c2434090b9f51d7eacf00f082abd7f2146c1fc
13fca9dc160a23bc9d89e4ef33ee2da9b2a8ee48
refs/heads/master
2023-09-02T11:07:58.824154
2021-11-01T17:40:27
2021-11-01T17:40:27
null
0
0
null
null
null
null
UTF-8
Python
false
true
10,002
py
# Generated by the protocol buffer compiler. DO NOT EDIT! # sources: onos/rsm/rsm.proto # plugin: python-betterproto from dataclasses import dataclass from typing import Dict, List, Optional import betterproto from betterproto.grpc.grpclib_server import ServiceBase import grpclib class SliceType(betterproto.Enum): SLICE_TYPE_DL_SLICE = 0 SLICE_TYPE_UL_SLICE = 1 class SchedulerType(betterproto.Enum): SCHEDULER_TYPE_ROUND_ROBIN = 0 SCHEDULER_TYPE_PROPORTIONALLY_FAIR = 1 SCHEDULER_TYPE_QOS_BASED = 2 class UeIdType(betterproto.Enum): UE_ID_TYPE_CU_UE_F1_AP_ID = 0 UE_ID_TYPE_DU_UE_F1_AP_ID = 1 UE_ID_TYPE_RAN_UE_NGAP_ID = 2 UE_ID_TYPE_AMF_UE_NGAP_ID = 3 UE_ID_TYPE_ENB_UE_S1_AP_ID = 4 @dataclass(eq=False, repr=False) class SliceItem(betterproto.Message): e2_node_id: str = betterproto.string_field(1) slice_ids: List[str] = betterproto.string_field(2) @dataclass(eq=False, repr=False) class Ack(betterproto.Message): success: bool = betterproto.bool_field(1) cause: str = betterproto.string_field(2) @dataclass(eq=False, repr=False) class CreateSliceRequest(betterproto.Message): e2_node_id: str = betterproto.string_field(1) slice_id: str = betterproto.string_field(2) scheduler_type: "SchedulerType" = betterproto.enum_field(3) weight: str = betterproto.string_field(4) slice_type: "SliceType" = betterproto.enum_field(5) @dataclass(eq=False, repr=False) class CreateSliceResponse(betterproto.Message): ack: "Ack" = betterproto.message_field(1) @dataclass(eq=False, repr=False) class UpdateSliceRequest(betterproto.Message): e2_node_id: str = betterproto.string_field(1) slice_id: str = betterproto.string_field(2) scheduler_type: "SchedulerType" = betterproto.enum_field(3) weight: str = betterproto.string_field(4) slice_type: "SliceType" = betterproto.enum_field(5) @dataclass(eq=False, repr=False) class UpdateSliceResponse(betterproto.Message): ack: "Ack" = betterproto.message_field(1) @dataclass(eq=False, repr=False) class DeleteSliceRequest(betterproto.Message): e2_node_id: str = betterproto.string_field(1) slice_id: str = betterproto.string_field(2) slice_type: "SliceType" = betterproto.enum_field(3) @dataclass(eq=False, repr=False) class DeleteSliceResponse(betterproto.Message): ack: "Ack" = betterproto.message_field(1) @dataclass(eq=False, repr=False) class SliceAssocItem(betterproto.Message): ue_slice_assoc_id: str = betterproto.string_field(1) e2_node_id: str = betterproto.string_field(2) ue_id: List["UeIdType"] = betterproto.enum_field(3) slice_id: str = betterproto.string_field(4) @dataclass(eq=False, repr=False) class UeId(betterproto.Message): ue_id: str = betterproto.string_field(1) type: "UeIdType" = betterproto.enum_field(2) @dataclass(eq=False, repr=False) class SetUeSliceAssociationRequest(betterproto.Message): e2_node_id: str = betterproto.string_field(1) ue_id: List["UeId"] = betterproto.message_field(2) dl_slice_id: str = betterproto.string_field(3) ul_slice_id: str = betterproto.string_field(4) drb_id: str = betterproto.string_field(5) @dataclass(eq=False, repr=False) class SetUeSliceAssociationResponse(betterproto.Message): ack: "Ack" = betterproto.message_field(1) assigned_ue_slice_assoc_id: str = betterproto.string_field(2) class RsmStub(betterproto.ServiceStub): async def create_slice( self, *, e2_node_id: str = "", slice_id: str = "", scheduler_type: "SchedulerType" = None, weight: str = "", slice_type: "SliceType" = None, ) -> "CreateSliceResponse": request = CreateSliceRequest() request.e2_node_id = e2_node_id request.slice_id = slice_id request.scheduler_type = scheduler_type request.weight = weight request.slice_type = slice_type return await self._unary_unary( "/onos.rsm.Rsm/CreateSlice", request, CreateSliceResponse ) async def update_slice( self, *, e2_node_id: str = "", slice_id: str = "", scheduler_type: "SchedulerType" = None, weight: str = "", slice_type: "SliceType" = None, ) -> "UpdateSliceResponse": request = UpdateSliceRequest() request.e2_node_id = e2_node_id request.slice_id = slice_id request.scheduler_type = scheduler_type request.weight = weight request.slice_type = slice_type return await self._unary_unary( "/onos.rsm.Rsm/UpdateSlice", request, UpdateSliceResponse ) async def delete_slice( self, *, e2_node_id: str = "", slice_id: str = "", slice_type: "SliceType" = None, ) -> "DeleteSliceResponse": request = DeleteSliceRequest() request.e2_node_id = e2_node_id request.slice_id = slice_id request.slice_type = slice_type return await self._unary_unary( "/onos.rsm.Rsm/DeleteSlice", request, DeleteSliceResponse ) async def set_ue_slice_association( self, *, e2_node_id: str = "", ue_id: Optional[List["UeId"]] = None, dl_slice_id: str = "", ul_slice_id: str = "", drb_id: str = "", ) -> "SetUeSliceAssociationResponse": ue_id = ue_id or [] request = SetUeSliceAssociationRequest() request.e2_node_id = e2_node_id if ue_id is not None: request.ue_id = ue_id request.dl_slice_id = dl_slice_id request.ul_slice_id = ul_slice_id request.drb_id = drb_id return await self._unary_unary( "/onos.rsm.Rsm/SetUeSliceAssociation", request, SetUeSliceAssociationResponse, ) class RsmBase(ServiceBase): async def create_slice( self, e2_node_id: str, slice_id: str, scheduler_type: "SchedulerType", weight: str, slice_type: "SliceType", ) -> "CreateSliceResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def update_slice( self, e2_node_id: str, slice_id: str, scheduler_type: "SchedulerType", weight: str, slice_type: "SliceType", ) -> "UpdateSliceResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def delete_slice( self, e2_node_id: str, slice_id: str, slice_type: "SliceType" ) -> "DeleteSliceResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def set_ue_slice_association( self, e2_node_id: str, ue_id: Optional[List["UeId"]], dl_slice_id: str, ul_slice_id: str, drb_id: str, ) -> "SetUeSliceAssociationResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def __rpc_create_slice(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "e2_node_id": request.e2_node_id, "slice_id": request.slice_id, "scheduler_type": request.scheduler_type, "weight": request.weight, "slice_type": request.slice_type, } response = await self.create_slice(**request_kwargs) await stream.send_message(response) async def __rpc_update_slice(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "e2_node_id": request.e2_node_id, "slice_id": request.slice_id, "scheduler_type": request.scheduler_type, "weight": request.weight, "slice_type": request.slice_type, } response = await self.update_slice(**request_kwargs) await stream.send_message(response) async def __rpc_delete_slice(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "e2_node_id": request.e2_node_id, "slice_id": request.slice_id, "slice_type": request.slice_type, } response = await self.delete_slice(**request_kwargs) await stream.send_message(response) async def __rpc_set_ue_slice_association( self, stream: grpclib.server.Stream ) -> None: request = await stream.recv_message() request_kwargs = { "e2_node_id": request.e2_node_id, "ue_id": request.ue_id, "dl_slice_id": request.dl_slice_id, "ul_slice_id": request.ul_slice_id, "drb_id": request.drb_id, } response = await self.set_ue_slice_association(**request_kwargs) await stream.send_message(response) def __mapping__(self) -> Dict[str, grpclib.const.Handler]: return { "/onos.rsm.Rsm/CreateSlice": grpclib.const.Handler( self.__rpc_create_slice, grpclib.const.Cardinality.UNARY_UNARY, CreateSliceRequest, CreateSliceResponse, ), "/onos.rsm.Rsm/UpdateSlice": grpclib.const.Handler( self.__rpc_update_slice, grpclib.const.Cardinality.UNARY_UNARY, UpdateSliceRequest, UpdateSliceResponse, ), "/onos.rsm.Rsm/DeleteSlice": grpclib.const.Handler( self.__rpc_delete_slice, grpclib.const.Cardinality.UNARY_UNARY, DeleteSliceRequest, DeleteSliceResponse, ), "/onos.rsm.Rsm/SetUeSliceAssociation": grpclib.const.Handler( self.__rpc_set_ue_slice_association, grpclib.const.Cardinality.UNARY_UNARY, SetUeSliceAssociationRequest, SetUeSliceAssociationResponse, ), }
a11962ae95b28d1923e23d0a5c514d53c454524e
7889f7f0532db6a7f81e6f8630e399c90438b2b9
/3.7.1/_downloads/a54f19823bde998a456571636498aa98/auto_subplots_adjust.py
bd6326b8291f4b1a16db182e1f642d2279a8f0b0
[]
no_license
matplotlib/matplotlib.github.com
ef5d23a5bf77cb5af675f1a8273d641e410b2560
2a60d39490941a524e5385670d488c86083a032c
refs/heads/main
2023-08-16T18:46:58.934777
2023-08-10T05:07:57
2023-08-10T05:08:30
1,385,150
25
59
null
2023-08-30T15:59:50
2011-02-19T03:27:35
null
UTF-8
Python
false
false
3,366
py
""" =============================================== Programmatically controlling subplot adjustment =============================================== .. note:: This example is primarily intended to show some advanced concepts in Matplotlib. If you are only looking for having enough space for your labels, it is almost always simpler and good enough to either set the subplot parameters manually using `.Figure.subplots_adjust`, or use one of the automatic layout mechanisms (:doc:`/tutorials/intermediate/constrainedlayout_guide` or :doc:`/tutorials/intermediate/tight_layout_guide`). This example describes a user-defined way to read out Artist sizes and set the subplot parameters accordingly. Its main purpose is to illustrate some advanced concepts like reading out text positions, working with bounding boxes and transforms and using :ref:`events <event-handling-tutorial>`. But it can also serve as a starting point if you want to automate the layouting and need more flexibility than tight layout and constrained layout. Below, we collect the bounding boxes of all y-labels and move the left border of the subplot to the right so that it leaves enough room for the union of all the bounding boxes. There's one catch with calculating text bounding boxes: Querying the text bounding boxes (`.Text.get_window_extent`) needs a renderer (`.RendererBase` instance), to calculate the text size. This renderer is only available after the figure has been drawn (`.Figure.draw`). A solution to this is putting the adjustment logic in a draw callback. This function is executed after the figure has been drawn. It can now check if the subplot leaves enough room for the text. If not, the subplot parameters are updated and second draw is triggered. .. redirect-from:: /gallery/pyplots/auto_subplots_adjust """ import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms fig, ax = plt.subplots() ax.plot(range(10)) ax.set_yticks([2, 5, 7], labels=['really, really, really', 'long', 'labels']) def on_draw(event): bboxes = [] for label in ax.get_yticklabels(): # Bounding box in pixels bbox_px = label.get_window_extent() # Transform to relative figure coordinates. This is the inverse of # transFigure. bbox_fig = bbox_px.transformed(fig.transFigure.inverted()) bboxes.append(bbox_fig) # the bbox that bounds all the bboxes, again in relative figure coords bbox = mtransforms.Bbox.union(bboxes) if fig.subplotpars.left < bbox.width: # Move the subplot left edge more to the right fig.subplots_adjust(left=1.1*bbox.width) # pad a little fig.canvas.draw() fig.canvas.mpl_connect('draw_event', on_draw) plt.show() ############################################################################# # # .. admonition:: References # # The use of the following functions, methods, classes and modules is shown # in this example: # # - `matplotlib.artist.Artist.get_window_extent` # - `matplotlib.transforms.Bbox` # - `matplotlib.transforms.BboxBase.transformed` # - `matplotlib.transforms.BboxBase.union` # - `matplotlib.transforms.Transform.inverted` # - `matplotlib.figure.Figure.subplots_adjust` # - `matplotlib.figure.SubplotParams` # - `matplotlib.backend_bases.FigureCanvasBase.mpl_connect`
b28bbc203b60e128307f6f9d8d309793f3dc1e1a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/yXZhG7zq6dWhWhirt_24.py
1b4a59876a63f5dfdb4b9e7de1d41c308c735314
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
def is_prime(n): if (n==1): return False for i in range(2,round(n**(0.5))+1): if i!=n and (n%i)==0: return False return True def filter_primes(num): return [n for n in num if is_prime(n)]
bbda84923f2c455dc60051aa1e126bf4dd187233
4a88ec266b64521fcaef88d92cb2b57776d3192b
/powerUsageNotification/powerUsageNotification.py
132c11551e75d59adb52856ce265d156f20d6af7
[ "MIT" ]
permissive
johntdyer/appdaemon-scripts
4e5ea345d27d54d8133be212e5f7af57b8dfd57f
ce7e32a919be5a835d0bdf95e6650ff34b699220
refs/heads/master
2020-03-31T18:01:49.517418
2018-10-07T14:06:38
2018-10-07T14:06:38
152,443,705
1
0
null
2018-10-10T15:10:00
2018-10-10T15:09:59
null
UTF-8
Python
false
false
4,100
py
import appdaemon.plugins.hass.hassapi as hass import globals # # App which notifies you when a power usage sensor indicated a device is on/off # # # Args: # # app_switch: on/off switch for this app. example: input_boolean.turn_fan_on_when_hot # sensor: power sensor. example: sensor.dishwasher_power_usage # notify_name: Who to notify. example: group_notifications # delay: seconds to wait until a the device is considered "off". example: 60 # threshold: amount of "usage" which indicated the device is on. example: 2 # alternative_name: Name to use in notification. example: Waschmaschine # # Release Notes # # Version 1.3: # use Notify App # # Version 1.2: # message now directly in own yaml instead of message module # # Version 1.1: # Added app_switch # # Version 1.0: # Initial Version class PowerUsageNotification(hass.Hass): def initialize(self): self.timer_handle_list = [] self.listen_event_handle_list = [] self.listen_state_handle_list = [] self.app_switch = globals.get_arg(self.args,"app_switch") self.sensor = globals.get_arg(self.args,"sensor") self.alternative_name = globals.get_arg(self.args,"alternative_name") self.notify_name = globals.get_arg(self.args,"notify_name") self.delay = globals.get_arg(self.args,"delay") self.threshold = globals.get_arg(self.args,"threshold") self.message = globals.get_arg(self.args,"message_DE") self.message_off = globals.get_arg(self.args,"message_off_DE") self.triggered = False self.isWaitingHandle = None self.notifier = self.get_app('Notifier') # Subscribe to sensors self.listen_state_handle_list.append(self.listen_state(self.state_change, self.sensor)) def state_change(self, entity, attribute, old, new, kwargs): if self.get_state(self.app_switch) == "on": # Initial: power usage goes up if ( new != None and new != "" and not self.triggered and float(new) > self.threshold ): self.triggered = True self.log("Power Usage is: {}".format(float(new))) self.log("Setting triggered to: {}".format(self.triggered)) self.notifier.notify(self.notify_name, self.message.format(self.alternative_name)) # Power usage goes down below threshold elif ( new != None and new != "" and self.triggered and self.isWaitingHandle == None and float(new) <= self.threshold): self.log("Waiting: {} seconds to notify.".format(self.delay)) self.isWaitingHandle = self.run_in(self.notify_device_off,self.delay) self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle)) self.timer_handle_list.append(self.isWaitingHandle) # Power usage goes up before delay elif( new != None and new != "" and self.triggered and self.isWaitingHandle != None and float(new) > self.threshold): self.log("Cancelling timer") self.cancel_timer(self.isWaitingHandle) self.isWaitingHandle = None self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle)) def notify_device_off(self, kwargs): """Notify User that device is off. This may get cancelled if it turns on again in the meantime""" self.triggered = False self.log("Setting triggered to: {}".format(self.triggered)) self.isWaitingHandle = None self.log("Setting isWaitingHandle to: {}".format(self.isWaitingHandle)) self.log("Notifying user") self.notifier.notify(self.notify_name, self.message_off.format(self.alternative_name)) def terminate(self): for timer_handle in self.timer_handle_list: self.cancel_timer(timer_handle) for listen_event_handle in self.listen_event_handle_list: self.cancel_listen_event(listen_event_handle) for listen_state_handle in self.listen_state_handle_list: self.cancel_listen_state(listen_state_handle)
c4281a41c161ba65c8915083ae81b981745630ca
9775ab319e5c1f2270a132b0244f0847db42589b
/nilai/migrations/0008_auto_20210117_1010.py
d2abe2075f8f24b61525b7b5c136dcc1bf54b97d
[]
no_license
nabaman/SPK-SAW
9aa8dfaf1bf5162bae1dc5c97e2b3e033a08294b
5c0b8d491f23939615aa968cd52f081072fe2230
refs/heads/master
2023-02-18T17:38:21.028901
2021-01-22T15:37:06
2021-01-22T15:37:06
331,987,703
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
# Generated by Django 3.1.5 on 2021-01-17 10:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nilai', '0007_auto_20210117_1004'), ] operations = [ migrations.RemoveField( model_name='data_krips', name='kriteria', ), migrations.AddField( model_name='data_kriteria', name='krips', field=models.ManyToManyField(to='nilai.Data_Krips'), ), ]
5db6fa1f99c5b7ac65079c7fd585ce8c7915f235
817085c4009e48db05e4a30815fdd92ee27513f9
/venv/Scripts/pip-script.py
87639661c7805bc7bbf60fa04e4b53e33d5922f8
[]
no_license
bluesnie/novel
7e3a2f403def8fe3e1d9c8c1ba4e2a80344c39e0
c11076ca61c619a2b7c1423d742d3f4c63dc1fed
refs/heads/master
2020-04-24T02:07:07.516575
2019-02-20T07:44:19
2019-02-20T07:44:19
171,486,867
1
0
null
null
null
null
UTF-8
Python
false
false
410
py
#!C:\Users\lenovo\PycharmProjects\novel\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
[ "l" ]
l
a643d38e90646191463eca1bc229387c66c1a11f
65e0c11d690b32c832b943fb43a4206739ddf733
/bsdradius/trunk/bsdradius/configDefaults.py
244f2e4ef1d3488677ee5ad1c6d9c71ef18e43ac
[ "BSD-3-Clause" ]
permissive
Cloudxtreme/bsdradius
b5100062ed75c3201d179e190fd89770d8934aee
69dba67e27215dce49875e94a7eedbbdf77bc784
refs/heads/master
2021-05-28T16:50:14.711056
2015-04-30T11:54:17
2015-04-30T11:54:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,442
py
## BSDRadius is released under BSD license. ## Copyright (c) 2006, DATA TECH LABS ## All rights reserved. ## ## Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## * Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright notice, ## this list of conditions and the following disclaimer in the documentation ## and/or other materials provided with the distribution. ## * Neither the name of the DATA TECH LABS nor the names of its contributors ## may be used to endorse or promote products derived from this software without ## specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ## ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ## WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE ## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ## ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ## (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ## LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ## ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ## SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Define configuration defaults here """ # HeadURL $HeadURL: file:///Z:/backup/svn/bsdradius/trunk/bsdradius/configDefaults.py $ # Author: $Author: valts $ # File version: $Revision: 278 $ # Last changes: $Date: 2006-11-26 15:45:52 +0200 (Sv, 26 Nov 2006) $ prefix = '/usr/local' # define default values # format: {'section' : {'option' : value}} defaultOptions = { 'PATHS' : { 'prefix' : prefix, 'conf_dir' : '%(prefix)s/etc/bsdradius', 'run_dir' : '%(prefix)s/var/run', 'log_dir' : '%(prefix)s/var/log/bsdradius', 'user_module_dir' : '%(conf_dir)s/user_modules', 'dictionary_dir' : '%(prefix)s/share/bsdradius/dictionaries', 'dictionary_file' : '%(dictionary_dir)s/dictionary', 'server_log_file' : '%(log_dir)s/bsdradiusd.log', 'pid_file' : '%(run_dir)s/bsdradiusd.pid', 'clients_file' : '%(conf_dir)s/clients.conf', 'modules_file' : '%(conf_dir)s/modules.conf', 'user_modules_file' : '%(conf_dir)s/user_modules.conf', 'config_file' : '%(conf_dir)s/bsdradiusd.conf' }, 'SERVER' : { 'home' : '', 'user' : '', 'group' : '', 'auth_port' : '1812', 'acct_port' : '1813', 'number_of_threads' : '10', 'foreground' : 'no', 'no_threads' : 'no', 'log_to_screen': 'no', 'log_to_file' : 'no', 'debug_mode' : 'no', 'log_client' : '', 'fast_accounting': 'no', }, 'DATABASE' : { 'enable' : 'no', 'type' : 'postgresql', 'host' : 'localhost', 'user' : 'bsdradius', 'pass' : '', 'name' : 'bsdradius', 'refresh_rate' : '60', 'clients_query' : 'select address, name, secret from radiusClients', }, 'AUTHORIZATION' : { 'packet_timeout' : '5', 'auth_queue_maxlength' : '300', 'modules' : '', }, 'ACCOUNTING' : { 'acct_queue_maxlength' : '300', 'modules' : '', }, } # Define option types. # It is really neccessary to define only other types # than string because Config parser converts everything # to string by default. # Format: {'section' : {'option' : 'type'}} defaultTypes = { 'SERVER' : { 'auth_port' : 'int', 'acct_port' : 'int', 'number_of_threads' : 'int', 'foreground' : 'bool', 'no_threads' : 'bool', 'log_to_screen': 'bool', 'log_to_file': 'bool', 'debug_mode' : 'bool', 'fast_accounting': 'bool', }, 'DATABASE' : { 'enable' : 'bool', 'refresh_rate' : 'int', }, 'AUTHORIZATION' : { 'packet_timeout' : 'int', 'auth_queue_maxlength' : 'int', }, 'ACCOUNTING' : { 'acct_queue_maxlength' : 'int', }, } # configuration defaults for one BSD Radius module moduleConfigDefaults = { 'enable': 'yes', 'configfile': '', 'startup_module': '', 'startup_function': '', 'authorization_module': '', 'authorization_function': '', 'authentication_module': '', 'authentication_function': '', 'accounting_module': '', 'accounting_function': '', 'shutdown_module': '', 'shutdown_function': '', 'pythonpath' : '', }
[ "valdiic@72071c86-a5be-11dd-a5cd-697bfd0a0cef" ]
valdiic@72071c86-a5be-11dd-a5cd-697bfd0a0cef
02247885ad972b4756997bffe5c07f2ebd394d4a
908b6ee862375003eac9af6c8ea5b32533be4709
/collective/phantasy/atphantasy/content/phantasyschema.py
1842cf48d3c9871472abac28e8375078dccb4886
[]
no_license
collective/collective.phantasy
c7199995d98be183eb163f5b73c3e89147f2e8a6
86cb66b0905f6bb284cfc03201dd5bbfa8f9010e
refs/heads/master
2023-08-19T13:18:13.507960
2015-01-19T15:32:07
2015-01-19T15:32:07
29,517,296
0
0
null
2015-01-20T07:24:00
2015-01-20T07:24:00
null
UTF-8
Python
false
false
37,998
py
from Products.Archetypes.public import * from collective.phantasy.config import I18N_DOMAIN from Products.SmartColorWidget.Widget import SmartColorWidget from Products.ATContentTypes.configuration import zconf from Products.Archetypes.atapi import AnnotationStorage from Products.validation.config import validation from Products.validation.validators.SupplValidators import MaxSizeValidator from Products.validation import V_REQUIRED validation.register(MaxSizeValidator('checkImageMaxSize', maxsize=zconf.ATImage.max_file_size)) from collective.phantasy import phantasyMessageFactory as _ try: from iw.fss.FileSystemStorage import FileSystemStorage HAS_FSS = True except : HAS_FSS = False try: from Products.FCKeditor.FckWidget import FckWidget HAS_FCKWIDGET = True except: HAS_FCKWIDGET = False PRESERVED_SCHEMATAS = ['default', 'images', 'dimensions', 'colors', 'fonts', 'borders', 'plone-overloads', 'viewlets', 'dynamic-viewlets'] CUSTOM_TOOL_BAR = """[ ['Source','Preview','-','Templates'], ['Cut','Copy','Paste','PasteText','RemoveFormat'], ['Bold','Italic','Underline','StrikeThrough','-','Subscript','Superscript'], ['OrderedList','UnorderedList','-','Outdent','Indent'], ['Link','Unlink','Anchor','Image','imgmapPopup','Flash'], ['Style','FontFormat'], ['FitWindow'] ]""" def finalizePhantasySchema(schema): """Finalizes schema to alter some fields """ # Id must be valid and make description invisible schema['id'].validators = ('isValidId',) schema['description'].widget.visible = {'view':'invisible', 'edit':'invisible'} # FSS Storage for skin screenshot if iw.fss is available if HAS_FSS : schema['screenshot'].storage = FileSystemStorage() for fieldName in schema.keys() : if schema[fieldName].schemata not in PRESERVED_SCHEMATAS : # hide ATCTFolder metadata fields unuseful for skins schema[fieldName].widget.visible = {'view':'invisible', 'edit':'invisible'} # FCKWidget for viewlet fields if FCK is available if HAS_FCKWIDGET and schema[fieldName].schemata == 'viewlets' : schema[fieldName].widget = FckWidget ( description = schema[fieldName].widget.description, label = schema[fieldName].widget.label, rows=12, width = '100%', height ='150px', fck_toolbar = 'Custom', fck_custom_toolbar = CUSTOM_TOOL_BAR, file_portal_type = 'PhantasySkinFile', image_portal_type = 'PhantasySkinImage', browse_images_portal_types = ['PhantasySkinImage', 'Image'], fck_force_other_path_method = 'get_phantasy_relative_path', fck_force_other_root_method = 'get_phantasy_relative_path', # force no paragraphs in viewlets keyboard_entermode = 'div', allow_link_byuid = False, start_expanded = True, allow_file_upload = False) if fieldName == 'logoViewlet' : css_id = 'portal-logo' elif fieldName == 'footerViewlet' : css_id = 'portal-footer' elif fieldName == 'colophonViewlet' : css_id = 'portal-colophon' schema[fieldName].widget.fck_area_css_id = css_id schema[fieldName].widget.fck_area_css_class = '' # Make a copy to reinitialize all layers new_schema = schema.copy() return new_schema # in skin schema fields with same name as standard plone base_properties must always be required PhantasyFieldsSchema = Schema(( StringField( 'cssfile', schemata ='default', widget=StringWidget( description = _(u'description_css_file', u"""Enter a stylesheet file name, don't forget to upload the file in this skin. This css will be applied at the end (after all properties). Use './myimage.jpg' in this css to reference an image called 'myimage.jpg' from this skin."""), label = _(u'label_css_file', u'Css File Name'), ), ), ImageField( 'screenshot', required=False, primary=False, languageIndependent=True, storage = AnnotationStorage(migrate=True), swallowResizeExceptions = zconf.swallowImageResizeExceptions.enable, pil_quality = zconf.pil_config.quality, pil_resize_algo = zconf.pil_config.resize_algo, max_size = zconf.ATImage.max_image_dimension, sizes= {'large' : (768, 768), 'preview' : (400, 400), 'mini' : (200, 200), 'thumb' : (128, 128), 'tile' : (64, 64), 'icon' : (32, 32), 'listing' : (16, 16), }, validators = (('checkImageMaxSize', V_REQUIRED)), widget = ImageWidget( description = _(u'description_phantasy_screenshot', default=u'Upload a screen Shot for this skin, used to help users to select a skin'), label= _(u'label_phantasy_screenshot', default=u'Screen Shot'), show_content_type = False, preview_scale = 'mini', ), ), # fields for viewlets overrides TextField('logoViewlet', schemata ='viewlets', required=False, searchable=False, validators = ('isTidyHtmlWithCleanup',), allowable_content_types = ('text/html',), default_content_type = 'text/html', default_output_type = 'text/x-html-safe', widget = RichWidget( description = _(u'description_logo_viewlet', u"""Override the logo viewlet, you can add images or links with rich editor"""), label = _(u'label_logo_viewlet', u'Logo Viewlet'), rows = 25, allow_file_upload = False), ), TextField('footerViewlet', schemata ='viewlets', required=False, searchable=False, validators = ('isTidyHtmlWithCleanup',), allowable_content_types = ('text/html',), default_content_type = 'text/html', default_output_type = 'text/x-html-safe', widget = RichWidget( description = _(u'description_footer_viewlet', u"""Override the footer viewlet, you can add images or links with rich editor"""), label = _(u'label_footer_viewlet', u'Footer Viewlet'), rows = 25, allow_file_upload = False), ), TextField('colophonViewlet', schemata ='viewlets', required=False, searchable=False, validators = ('isTidyHtmlWithCleanup',), allowable_content_types = ('text/html',), default_content_type = 'text/html', default_output_type = 'text/x-html-safe', widget = RichWidget( description = _(u'description_colophon_viewlet', u"""Override the colophon viewlet, you can add images or links with rich editor"""), label = _(u'label_colophon_viewlet', u'Colophon Viewlet'), i18n_domain = I18N_DOMAIN, rows = 25, allow_file_upload = False), ), BooleanField( 'displaySearchBoxViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_searchbox_viewlet', u"""Do you want to display the searchbox viewlet with live search in header ?"""), label = _(u'label_display_searchbox_viewlet', u'Display Searchbox ?'), ), ), BooleanField( 'displayBreadCrumbsViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_breadcrumbs_viewlet', u"""Do you want to display the breadcrumbs viewlet in top of content ?"""), label = _(u'label_display_breadcrumbs_viewlet', u'Display Bread Crumbs ?'), ), ), BooleanField( 'displayGlobalSectionsViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_globalsections_viewlet', u"""Do you want to display the global sections viewlet (horizontal navigation at top) ?"""), label = _(u'label_display_globalsections_viewlet', u'Display Global Sections ?'), ), ), BooleanField( 'displayPersonalBarViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_personalbar_viewlet', u"""Do you want to display the personal bar viewlet (links : login, preferences ...) ?"""), label = _(u'label_display_personalbar_viewlet', u'Display Personal Bar ?'), ), ), BooleanField( 'displaySiteActionsViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_siteactions_viewlet', u"""Do you want to display the site actions viewlet (links : site map, contact ...) ?"""), label = _(u'label_display_siteactions_viewlet', u'Display Site Actions ?'), ), ), BooleanField( 'displayDocumentActionsViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_documentactions_viewlet', u"""Do you want to display the document actions viewlet (link: print, send this page ...) ?"""), label = _(u'label_display_documentactions_viewlet', u'Display Document Actions ?'), ), ), BooleanField( 'displayDocumentBylineViewlet', schemata ='dynamic-viewlets', default = True, widget=BooleanWidget( description = _(u'description_display_documentbyline_viewlet', u"""Do you want to display the document by line viewlet for each content (author, date and keywords) ?"""), label = _(u'label_display_documentbyline_viewlet', u'Display Document By Line ?'), ), ), # fields for images # logoName property is no more used in standard plone css # so we make it invisible StringField( 'logoName', schemata ='images', required=1, widget=StringWidget( label='Logo Name', visible = {'view':'invisible', 'edit':'invisible'}, description = "Choose the logo file name, upload the image in the skin to overload it", i18n_domain = I18N_DOMAIN, ), ), StringField( 'backgroundImageName', schemata ='images', widget=StringWidget( description = _(u'description_background_image_name', u"""Enter the background image name for the page, upload the image in this skin"""), label = _(u'label_background_image_name', u'Background Image Name'), ), ), StringField( 'backgroundImagePosition', schemata ='images', default="top left", vocabulary = [("top left", _(u"Top Left")), ("top right", _(u"Top Right")), ("top center", _(u"Top Center")), ("center left", _(u"Center Left")), ("center right", _(u"Center Right")), ("center center", _(u"Center Center")), ("bottom left", _(u"Bottom Left")), ("bottom right", _(u"Bottom Right")), ("bottom center", _(u"Bottom Center"))], widget=SelectionWidget( description = _(u'description_background_image_position', u"""Choose the background image position for the page"""), label = _(u'label_background_image_position', u'Background Image Position'), format='select', ), ), StringField( 'backgroundImageRepeat', schemata ='images', default="no-repeat", vocabulary = [("no-repeat", "No repeat"), ("repeat-x", "Horizontal Repeat"), ("repeat-y", "Vertical Repeat"), ("repeat", "mosaic repeat")], widget=SelectionWidget( description = _(u'description_background_image_repeat', u"""Choose the background image repeat for the page"""), label = _(u'label_background_image_repeat', u'Background Image Repeat'), format='select', ), ), StringField( 'portalBackgroundImageName', schemata ='images', widget=StringWidget( description = _(u'description_portal_background_image_name', u"""Enter the background image name for the portal, upload the image in this skin"""), label = _(u'label_portal_background_image_name', u'Portal Background Image Name'), ), ), StringField( 'contentBackgroundImageName', schemata ='images', widget=StringWidget( description = _(u'description_content_background_image_name', u"""Choose the background image name for the content, upload the image in this skin"""), label = _(u'label_contentl_background_image_name', u'Content Background Image Name'), ), ), StringField( 'headerBackgroundImageName', schemata ='images', widget=StringWidget( description = _(u'description_header_background_image_name', u"""Choose the background image name for the header, upload the image in this skin"""), label = _(u'label_header_background_image_name', u'Header Background Image Name'), ), ), # this property is never used is standard plone css # so we make it invisible StringField( 'portalMinWidth', schemata ='dimensions', widget=StringWidget( label='Portal min width', visible = {'view':'invisible', 'edit':'invisible'}, description = "Choose the portal min width in px em or %", ), ), StringField( 'portalWidth', schemata ='dimensions', default = '100%', widget=StringWidget( description = _(u'description_portal_width', u"""Choose the portal min width in px em or %"""), label = _(u'label_portal_width', u'Portal width'), ), ), StringField( 'portalHorizontalPosition', schemata ='dimensions', default="", vocabulary = [("0", _(u"undefined")), ("0 auto 0 auto", _(u"centered")), ("0 auto 0 0", _(u"on left")), ("0 0 0 auto", _(u"on right"))], widget=SelectionWidget( description = _(u'description_portal_horizontal_position', u"""Choose the position for portal"""), label = _(u'label_portal_horizontal_position', u'Portal Horizontal Position'), format='select', ), ), StringField( 'columnOneWidth', schemata ='dimensions', required=1, widget=StringWidget( description = _(u'description_column_one_width', u"""Choose the column one width in px em or %"""), label = _(u'label_column_one_width', u'Column One width'), ), ), StringField( 'columnTwoWidth', schemata ='dimensions', required=1, widget=StringWidget( description = _(u'description_column_two_width', u"""Choose the column two width in px em or %"""), label = _(u'label_column_two_width', u'Column Two width'), ), ), StringField( 'fontFamily', schemata ='fonts', required=1, widget=StringWidget( description = _(u'description_font_family', u"""Choose the font family"""), label = _(u'label_font_family', u'Font Family'), ), ), StringField( 'fontMainSize', schemata ='fonts', required=0, widget=StringWidget( description = _(u'description_font_main_size', u"Choose the main font size in % (better) em px pt " u"or using a keyword (xx-small, small, ...)"), label = _(u'label_font_main_size', u'Font Main Size'), ), ), StringField( 'fontSmallSize', schemata ='fonts', required=1, widget=StringWidget( description = _(u'description_font_small_size', u"Choose the small font size in % (better) em px pt " u"or using a keyword (xx-small, small, ...)"""), label = _(u'label_font_small_size', u'Font Small Size'), ), ), StringField( 'headingFontFamily', schemata ='fonts', required=1, widget=StringWidget( description = _(u'description_heading_font_family', u"""Choose the font family for titles"""), label = _(u'label_heading_font_family', u'Heading Font Family'), ), ), StringField( 'textTransform', schemata ='fonts', required=1, vocabulary = [("none", _(u"none")), ("uppercase", _(u"uppercase")), ("lowercase", _(u"lowercase")), ("capitalize", _(u"capitalize"))], widget=SelectionWidget( description = _(u'description_text_transform', u"""Choose the text transformation for tabs and some headings"""), label = _(u'label_text_transform', u'Text Transform'), format='select', ), ), StringField( 'fontColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_font_color', u"""Choose the font color"""), label = _(u'label_font_color', u'Font Color'), ), ), StringField( 'backgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_background_color', u"""Choose the background color of the page"""), label = _(u'label_background_color', u'Background Color'), ), ), StringField( 'discreetColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_discreet_color', u"""Choose the discreet color (can be used in content) """), label = _(u'label_discreet_color', u'Discreet Color'), ), ), StringField( 'portalBackgroundColor', schemata ='colors', default="transparent", widget=SmartColorWidget( description = _(u'description_portal_background_color', u"""Choose the portal background color"""), label = _(u'label_portal_background_color', u'Portal Background Color'), ), ), StringField( 'contentBackgroundColor', schemata ='colors', default="transparent", widget=SmartColorWidget( description = _(u'description_content_background_color', u"""Choose background color for content part of the page"""), label = _(u'label_content_background_color', u'Content Background Color'), ), ), StringField( 'personaltoolsBackgroundColor', schemata ='colors', default="#E3E3E3", widget=SmartColorWidget( description = _(u'description_personaltools_background_color', u"""Choose background color for personal tools - language choice and user menu"""), label = _(u'label_personaltools_background_color', u"Personal tools Background Color"), ), ), StringField( 'personaltoolsFontColor', schemata ='colors', default="#205C90", widget=SmartColorWidget( description = _(u'description_personaltools_font_color', u"""Choose font color for personal tools - language choice and user menu"""), label = _(u'label_personaltools_font_color', u"Personal tools Font Color"), ), ), StringField( 'headerBackgroundColor', schemata ='colors', default="transparent", widget=SmartColorWidget( description = _(u'description_header_background_color', u"""Choose background color for the header"""), label = _(u'label_header_background_color', u"Header Background Color"), ), ), StringField( 'globalNavBackgroundColor', schemata ='colors', default="#dee7ec", widget=SmartColorWidget( description = _(u'description_global_nav_background_color', u"""Choose the background color of global navigation"""), label = _(u'label_global_nav_background_color', u'Global navigation Background Color'), ), ), StringField( 'globalNavLinkColor', schemata ='colors', default="#205c90", widget=SmartColorWidget( description = _(u'description_global_nav_font_color', u"""Choose the color of font and selected element background in global navigation"""), label = _(u'label_global_nav_font_color', u'Global navigation Font Color'), ), ), StringField( 'inputFontColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_input_font_color', u"""Choose the input fields font color"""), label = _(u'label_input_font_color', u'Input Font Color'), ), ), StringField( 'linkColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_link_color', u"""Choose the color for links"""), label = _(u'label_link_color', u'Link Color'), ), ), StringField( 'linkVisitedColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_link_visited_color', u"""Choose the color for visited links"""), label = _(u'label_link_visited_color', u'Link Visited Color'), ), ), StringField( 'linkActiveColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_link_active_color', u"""Choose the color for active links"""), label = _(u'label_link_active_color', u'Link Active/Hover Color'), ), ), StringField( 'notifyBackgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_notify_background_color', u"""Choose the notify background color (for portal messages)"""), label = _(u'label_notify_background_color', u'Notify Background Color'), ), ), StringField( 'notifyBorderColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_notify_border_color', u"""Choose the notify border color"""), label = _(u'label_notify_border_color', u'Notify Border Color'), ), ), StringField( 'helpBackgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_help_background_color', u"""Choose the bg color for help in forms"""), label = _(u'label_help_background_color', u'Help Background Color'), ), ), StringField( 'oddRowBackgroundColor', schemata ='colors', required=1, default="#EEEEEE", widget=SmartColorWidget( description = _(u'description_odd_row_background_color', u"""Choose the bg color for odd rows (tables, portlets)"""), label = _(u'label__odd_row_background_color', u'Odd Row Background Color'), ), ), StringField( 'evenRowBackgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_even_row_background_color', u"""Choose the bg color for even rows (tables, portlets)"""), label = _(u'label__even_row_background_color', u'Even Row Background Color'), ), ), StringField( 'globalBackgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_global_background_color', u"""Choose the global background color (used in tabs and portlets headers)"""), label = _(u'label_global_background_color', u'Global Background Color'), ), ), StringField( 'globalFontColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_global_font_color', u"""Choose the global font color"""), label = _(u'label_global_font_color', u'Global Font Color'), ), ), StringField( 'globalBorderColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_global_border_color', u"""Choose the color for global borders"""), label = _(u'label_global_border_color', u'Global Border Color'), ), ), StringField( 'contentViewBackgroundColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_content_views_background_color', u"""Choose the background color for content views tabs"""), label = _(u'label_content_views_background_color', u'Content View Background Color'), ), ), StringField( 'contentViewBorderColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_content_views_border_color', u"""Choose the border color for content views tabs"""), label = _(u'label_content_views_border_color', u'Content View Border Color'), ), ), StringField( 'contentViewFontColor', schemata ='colors', required=1, widget=SmartColorWidget( description = _(u'description_content_views_font_color', u"""Choose the font color for content views tabs"""), label = _(u'label_content_views_font_color', u'Content View Font Color'), ), ), StringField( 'listingHeadersFontColor', schemata ='colors', required=1, default="#666666", widget=SmartColorWidget( description = _(u'description_listing_headers_font_color', u"""Choose the font color for the text of listing headers"""), label = _(u'label_listing_headers_font_color', u'Listing Headers Font Color'), ), ), StringField( 'portletHeadersFontColor', schemata ='colors', required=1, default="#000000", widget=SmartColorWidget( description = _(u'description_portlet_headers_font_color', u"""Choose the font color for the text of portlet headers"""), label = _(u'label_portlet_headers_font_color', u'Portlet Headers Font Color'), ), ), StringField( 'borderStyle', schemata ='borders', required=1, vocabulary = [("none", "no border"), ("hidden", "hidden when none is impossible (tables)"), ("solid", "solid"), ("dotted", "dotted"), ("dashed", "dashed"), ("groove","3D groove"), ("double", "double borders"), ("inset", "3D inset"), ("outset","3D outset"), ("ridge","3D ridge")], widget=SelectionWidget( description = _(u'description_border_style', u"""Choose the global border style"""), label = _(u'label_border_style', u'Border Style'), format='select', ), ), StringField( 'borderStyleAnnotations', schemata ='borders', required=1, vocabulary = [("none", "no border"), ("hidden", "hidden when none is impossible (tables)"), ("solid", "solid"), ("dotted", "dotted"), ("dashed", "dashed"), ("groove","3D groove"), ("double", "double borders"), ("inset", "3D inset"), ("outset","3D outset"), ("ridge","3D ridge")], widget=SelectionWidget( description = _(u'description_border_style_annotations', u"""Choose the border style for annotations """), label = _(u'label_border_style_annotations', u'Border Style for Annotations'), format='select', ), ), StringField( 'borderWidth', schemata ='borders', required=1, widget=StringWidget( description = _(u'description_border_width', u"""Choose the border width in px"""), label = _(u'label_border_width', u'Border Width'), ), ), BooleanField( 'overloadBody', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_body', u"""Do you want to overload the body style ?"""), label = _(u'label_overload_body', u'Overload Body Style'), ), ), BooleanField( 'overloadHTMLTags', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_html_tags', u"""Do you want to overload content styles (classic html tags) ?"""), label = _(u'label_overload_html_tags', u'Overload HTML Tags Styles'), ), ), BooleanField( 'overloadContent', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_content', u"""Do you want to overload standard plone styles used for content ?"""), label = _(u'label_overload_content', u'Overload Various Content Styles'), ), ), BooleanField( 'overloadSiteActions', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_site_actions', u"""Do you want to overload site actions styles ?"""), label = _(u'label_overload_site_actions', u'Overload Site Actions Styles'), ), ), BooleanField( 'overloadSearchBox', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_search_box', u"""Do you want to overload search box styles ?"""), label = _(u'label_overload_search_box', u'Overload Search Box Styles'), ), ), BooleanField( 'overloadGlobalSections', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_global_sections', u"""Do you want to overload global sections buttons styles ?"""), label = _(u'label_overload_global_sections', u'Overload Global Sections Styles'), ), ), BooleanField( 'overloadPersonalTools', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_personal_tools', u"""Do you want to overload personal tools buttons styles (login, preferences ...) ?"""), label = _(u'label_overload_personal_tools', u'Overload Personals Tools Styles'), ), ), BooleanField( 'overloadBreadcrumbs', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_breadcrumbs', u"""Do you want to overload breadcrumbs styles ?"""), label = _(u'label_overload_breadcrumbs', u'Overload Breadcrumbs Styles'), ), ), BooleanField( 'overloadFooter', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_footer', u"""Do you want to overload footer styles ?"""), label = _(u'label_overload_footer', u'Overload Footer Styles'), ), ), BooleanField( 'overloadSiteMap', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_site_map', u"""Do you want to overload site map styles ?"""), label = _(u'label_overload_site_map', u'Overload Site Map Styles'), ), ), BooleanField( 'overloadColumns', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_columns', u"""Do you want to overload columns styles ?"""), label = _(u'label_overload_columns', u'Overload Columns Styles'), ), ), BooleanField( 'overloadForms', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_forms', u"""Do you want to overload forms styles ?"""), label = _(u'label_overload_forms', u'Overload Forms Styles'), ), ), BooleanField( 'overloadPortlets', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_portlets', u"""Do you want to overload portlets styles ?"""), label = _(u'label_overload_portlets', u'Overload Portlets Styles'), ), ), BooleanField( 'overloadCalendar', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_calendar', u"""Do you want to overload calendar styles ?"""), label = _(u'label_overload_calendar', u'Overload Calendar Styles'), ), ), BooleanField( 'overloadNavtree', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_navtree', u"""Do you want to overload navigation tree styles (impact sitemap + navtree portlet) ?"""), label = _(u'label_overload_navtree', u'Overload Navigation Tree Styles'), ), ), BooleanField( 'overloadAuthoring', schemata ='plone-overloads', default = True, widget=BooleanWidget( description = _(u'description_overload_authoring', u"""Do you want to overload authoring styles (content views, actions etc ...) ?"""), label = _(u'label_overload_authoring', u'Overload Authoring Styles'), ), ), ), marshall=RFC822Marshaller())
a842ae5ed2fa9404270a2b872f3c9f04a42ac434
2652fd6261631794535589427a384693365a585e
/trunk/workspace/Squish/src/TestScript/UI/suite_UI_51/tst_UI_51_Pref_BufferAutoView/test.py
e1a9d9fe2212331ae4697f3a3269cdded8842a9c
[]
no_license
ptqatester1/ptqa
88c652380167f64a953bfd7a65041e7d8ac48c90
5b5997ea459e9aac17db8da2041e2af331927104
refs/heads/master
2021-01-21T19:06:49.275364
2017-06-19T03:15:00
2017-06-19T03:15:00
92,115,462
0
0
null
null
null
null
UTF-8
Python
false
false
1,735
py
from API.Utility.Util import Util from API.Utility import UtilConst from API.MenuBar.Options.Options import Options from API.MenuBar.Options.OptionsConst import OptionsConst from API.MenuBar.Options.Preferences.Miscellaneous.MiscellaneousConst import MiscellaneousConst from API.SimulationPanel.EventList.EventListConst import EventListConst from API.SimulationPanel.EventListFilters.EventListFilters import EventListFilters from API.SimulationPanel.PlayControls.PlayControlsConst import PlayControlsConst from API.MenuBar.Options.Preferences.PreferencesConst import PreferencesConst util = Util() options = Options() eventListFilters = EventListFilters() def main(): util.init() util.open("UI13.pkt", UtilConst.UI_TEST ) util.speedUpConvergence() editOptionsSetting() checkpoint1() resetOptionsSetting() def editOptionsSetting(): options.selectOptionsItem(OptionsConst.PREFERENCES) util.clickTab(PreferencesConst.TAB_BAR, PreferencesConst.MISCELLANEOUS) util.clickButton(MiscellaneousConst.AUTO_VIEW_PREVIOUS_EVENTS) util.close(OptionsConst.OPTIONS_DIALOG) def checkpoint1(): util.clickOnSimulation() util.clickButton(EventListConst.RESET_SIMULATION) for i in range(0, 8): util.clickButton(PlayControlsConst.CAPTURE_FORWARD) snooze(10) if (object.exists(PlayControlsConst.BUFFER_FULL_DIALOG_LABEL)): test.fail("Buffer window found") else: test.passes("Buffer window not found") def resetOptionsSetting(): options.selectOptionsItem(OptionsConst.PREFERENCES) util.clickTab(PreferencesConst.TAB_BAR, PreferencesConst.MISCELLANEOUS) util.clickButton(MiscellaneousConst.PROMPT) util.close(OptionsConst.OPTIONS_DIALOG)
509c23e3bf72658ffd093ae405cf9de4958fb78f
102d09ef1d6effe166ad703ba4472c45dfb03263
/py/Maximum_Depth_of_Binary_Tree.py
199982277744c0985b39cfc2326fc115a739fec4
[]
no_license
bitcsdby/Codes-for-leetcode
5693100d4b66de65d7f135bbdd81b32650aed7d0
9e24e621cfb9e7fd46f9f02dfc40a18a702d4990
refs/heads/master
2016-09-05T08:43:31.656437
2014-08-02T15:14:53
2014-08-02T15:14:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param root, a tree node # @return an integer def maxDepth(self, root): if root == None: return 0; l = self.maxDepth(root.left) + 1; r = self.maxDepth(root.right) + 1; return l if l > r else r;
d0089bd15b2c1ffac1e167de02e3ee215da07c7b
74698be74d244ebbabcb0b3cf17ebed26adfa37c
/orbit/utils/epoch_helper.py
6eb110768887e95055c34f7fc3857f08a6b9c276
[ "Apache-2.0" ]
permissive
lfads/models
aa75616fee2476641aa98ca1cbdce7e5d27a9aff
fd700f0cb2e104544c445d9fbf3991d8388ff18a
refs/heads/master
2021-01-25T13:50:55.423010
2021-01-05T18:27:01
2021-01-05T18:27:01
123,619,512
16
9
Apache-2.0
2021-01-05T18:27:02
2018-03-02T19:07:50
Python
UTF-8
Python
false
false
2,136
py
# Copyright 2020 The Orbit Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a utility class for training in epochs.""" import tensorflow as tf class EpochHelper: """A helper class handle bookkeeping of epochs in custom training loops.""" def __init__(self, epoch_steps: int, global_step: tf.Variable): """Initializes the `EpochHelper` instance. Args: epoch_steps: An integer indicating how many steps are in an epoch. global_step: A `tf.Variable` providing the current global step. """ self._epoch_steps = epoch_steps self._global_step = global_step self._current_epoch = None self._epoch_start_step = None self._in_epoch = False def epoch_begin(self): """Returns whether a new epoch should begin.""" if self._in_epoch: return False current_step = self._global_step.numpy() self._epoch_start_step = current_step self._current_epoch = current_step // self._epoch_steps self._in_epoch = True return True def epoch_end(self): """Returns whether the current epoch should end.""" if not self._in_epoch: raise ValueError("`epoch_end` can only be called inside an epoch.") current_step = self._global_step.numpy() epoch = current_step // self._epoch_steps if epoch > self._current_epoch: self._in_epoch = False return True return False @property def batch_index(self): """Index of the next batch within the current epoch.""" return self._global_step.numpy() - self._epoch_start_step @property def current_epoch(self): return self._current_epoch
7df058d88c766a9b978227fca727c0f1587d9861
2e1322f72f730fdb019c25eb533424bfb411c7dc
/backend/garpix_page/contexts/default.py
635931bdc671efeb46a46e470ae8ab5dc4d06058
[ "MIT" ]
permissive
tempuku/garpix_page
750d3ef78e1698d93564ae510a9514dfb815853f
d24fa3d8c7b0b4134e66795965596f3cdb61c8db
refs/heads/master
2023-03-17T03:33:07.528207
2021-03-11T15:15:13
2021-03-11T15:15:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
def context(request, *args, **kwargs): return {}
ad9a3b50ae05c454484d9697933ee5e00f730b4a
5dd7c4ec44b76180040badc67849ad44f81690f9
/unittests/test_stockitem.py
751eb41a7c209613f1a6e803ac526f15a85a3c77
[]
no_license
myluco/Phoenix
68f9abe15a673fe56da6ef4375849ba6a642622d
2de746beda35b8b5db547658cae1c65cfe164039
refs/heads/master
2021-01-18T15:59:05.001240
2016-12-04T00:08:36
2016-12-04T00:08:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
import unittest from unittests import wtc import wx #--------------------------------------------------------------------------- class stockitem_Tests(wtc.WidgetTestCase): # TODO: Remove this test and add real ones. def test_stockitem1(self): self.fail("Unit tests for stockitem not implemented yet.") #--------------------------------------------------------------------------- if __name__ == '__main__': unittest.main()
6c10278bce7d441831f59503418233abcba5dee8
17c14b758959cdceec0dce8f783346fdeee8e111
/chap05_nlp/automl/train.py
bca8b1fd41ce03b243523430bdc8d09621f7daa4
[]
no_license
yurimkoo/tensormsa_jupyter
b0a340119339936d347d12fbd88fb017599a0029
0e75784114ec6dc8ee7eff8094aef9cf37131a5c
refs/heads/master
2021-07-18T12:22:31.396433
2017-10-25T01:42:24
2017-10-25T01:42:24
109,469,220
1
0
null
2017-11-04T05:20:15
2017-11-04T05:20:15
null
UTF-8
Python
false
false
3,650
py
""" Utility used by the Network class to actually train. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py """ from keras.datasets import mnist, cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping # Helper: Early stopping. early_stopper = EarlyStopping(patience=5) def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def compile_model(network, nb_classes, input_shape): """Compile a sequential model. Args: network (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = network['nb_layers'] nb_neurons = network['nb_neurons'] activation = network['activation'] optimizer = network['optimizer'] model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: model.add(Dense(nb_neurons, activation=activation, input_shape=input_shape)) else: model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.2)) # hard-coded dropout # Output layer. model.add(Dense(nb_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def train_and_score(network, dataset): """Train the model, return test loss. Args: network (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ if dataset == 'cifar10': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_cifar10() elif dataset == 'mnist': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_mnist() model = compile_model(network, nb_classes, input_shape) model.fit(x_train, y_train, batch_size=batch_size, epochs=10000, # using early stopping, so no real limit verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) return score[1] # 1 is accuracy. 0 is loss.
95e2a602cdea202da5cba6e81d040adac387cb68
ea3048858939a8162f82a1d0b0ec43171530ea8d
/apps/search/models.py
62ec89db3a73a35a853d885c234a3453ffbb6a68
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
kknet/NewsBlur
d229b12c39f7ca3eab1e28922171f87ea37b8df1
fa78b434f980d2814dd05fedb70d9e87259ee998
refs/heads/master
2021-01-17T22:36:29.651729
2016-09-20T20:05:25
2016-09-20T20:05:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,270
py
import re import time import datetime import pymongo import pyes import redis import celery import mongoengine as mongo from django.conf import settings from django.contrib.auth.models import User from apps.search.tasks import IndexSubscriptionsForSearch from apps.search.tasks import IndexSubscriptionsChunkForSearch from apps.search.tasks import IndexFeedsForSearch from utils import log as logging from utils.feed_functions import chunks class MUserSearch(mongo.Document): '''Search index state of a user's subscriptions.''' user_id = mongo.IntField(unique=True) last_search_date = mongo.DateTimeField() subscriptions_indexed = mongo.BooleanField() subscriptions_indexing = mongo.BooleanField() meta = { 'collection': 'user_search', 'indexes': ['user_id'], 'index_drop_dups': True, 'allow_inheritance': False, } @classmethod def get_user(cls, user_id, create=True): try: user_search = cls.objects.read_preference(pymongo.ReadPreference.PRIMARY)\ .get(user_id=user_id) except cls.DoesNotExist: if create: user_search = cls.objects.create(user_id=user_id) else: user_search = None return user_search def touch_search_date(self): if not self.subscriptions_indexed and not self.subscriptions_indexing: self.schedule_index_subscriptions_for_search() self.subscriptions_indexing = True self.last_search_date = datetime.datetime.now() self.save() def schedule_index_subscriptions_for_search(self): IndexSubscriptionsForSearch.apply_async(kwargs=dict(user_id=self.user_id), queue='search_indexer_tasker') # Should be run as a background task def index_subscriptions_for_search(self): from apps.rss_feeds.models import Feed from apps.reader.models import UserSubscription SearchStory.create_elasticsearch_mapping() start = time.time() user = User.objects.get(pk=self.user_id) r = redis.Redis(connection_pool=settings.REDIS_PUBSUB_POOL) r.publish(user.username, 'search_index_complete:start') subscriptions = UserSubscription.objects.filter(user=user).only('feed') total = subscriptions.count() feed_ids = [] for sub in subscriptions: try: feed_ids.append(sub.feed.pk) except Feed.DoesNotExist: continue feed_id_chunks = [c for c in chunks(feed_ids, 6)] logging.user(user, "~FCIndexing ~SB%s feeds~SN in %s chunks..." % (total, len(feed_id_chunks))) tasks = [IndexSubscriptionsChunkForSearch().s(feed_ids=feed_id_chunk, user_id=self.user_id ).set(queue='search_indexer') for feed_id_chunk in feed_id_chunks] group = celery.group(*tasks) res = group.apply_async(queue='search_indexer') res.join_native() duration = time.time() - start logging.user(user, "~FCIndexed ~SB%s feeds~SN in ~FM~SB%s~FC~SN sec." % (total, round(duration, 2))) r.publish(user.username, 'search_index_complete:done') self.subscriptions_indexed = True self.subscriptions_indexing = False self.save() def index_subscriptions_chunk_for_search(self, feed_ids): from apps.rss_feeds.models import Feed r = redis.Redis(connection_pool=settings.REDIS_PUBSUB_POOL) user = User.objects.get(pk=self.user_id) logging.user(user, "~FCIndexing %s feeds..." % len(feed_ids)) for feed_id in feed_ids: feed = Feed.get_by_id(feed_id) if not feed: continue feed.index_stories_for_search() r.publish(user.username, 'search_index_complete:feeds:%s' % ','.join([str(f) for f in feed_ids])) @classmethod def schedule_index_feeds_for_search(cls, feed_ids, user_id): user_search = cls.get_user(user_id, create=False) if (not user_search or not user_search.subscriptions_indexed or user_search.subscriptions_indexing): # User hasn't searched before. return if not isinstance(feed_ids, list): feed_ids = [feed_ids] IndexFeedsForSearch.apply_async(kwargs=dict(feed_ids=feed_ids, user_id=user_id), queue='search_indexer') @classmethod def index_feeds_for_search(cls, feed_ids, user_id): from apps.rss_feeds.models import Feed user = User.objects.get(pk=user_id) logging.user(user, "~SB~FCIndexing %s~FC by request..." % feed_ids) for feed_id in feed_ids: feed = Feed.get_by_id(feed_id) if not feed: continue feed.index_stories_for_search() @classmethod def remove_all(cls, drop_index=False): # You only need to drop the index if there is data you want to clear. # A new search server won't need this, as there isn't anything to drop. if drop_index: logging.info(" ---> ~FRRemoving stories search index...") SearchStory.drop() user_searches = cls.objects.all() logging.info(" ---> ~SN~FRRemoving ~SB%s~SN user searches..." % user_searches.count()) for user_search in user_searches: try: user_search.remove() except Exception, e: print " ****> Error on search removal: %s" % e def remove(self): from apps.rss_feeds.models import Feed from apps.reader.models import UserSubscription user = User.objects.get(pk=self.user_id) subscriptions = UserSubscription.objects.filter(user=self.user_id) total = subscriptions.count() removed = 0 for sub in subscriptions: try: feed = sub.feed except Feed.DoesNotExist: continue if not feed.search_indexed: continue feed.search_indexed = False feed.save() removed += 1 logging.user(user, "~FCRemoved ~SB%s/%s feed's search indexes~SN for ~SB~FB%s~FC~SN." % (removed, total, user.username)) self.delete() class SearchStory: ES = pyes.ES(settings.ELASTICSEARCH_STORY_HOSTS) name = "stories" @classmethod def index_name(cls): return "%s-index" % cls.name @classmethod def type_name(cls): return "%s-type" % cls.name @classmethod def create_elasticsearch_mapping(cls, delete=False): if delete: cls.ES.indices.delete_index_if_exists("%s-index" % cls.name) cls.ES.indices.create_index_if_missing("%s-index" % cls.name) mapping = { 'title': { 'boost': 3.0, 'index': 'analyzed', 'store': 'no', 'type': 'string', 'analyzer': 'standard', }, 'content': { 'boost': 1.0, 'index': 'analyzed', 'store': 'no', 'type': 'string', 'analyzer': 'simple', }, 'tags': { 'boost': 2.0, 'index': 'analyzed', 'store': 'no', 'type': 'string', 'analyzer': 'standard', }, 'author': { 'boost': 1.0, 'index': 'analyzed', 'store': 'no', 'type': 'string', 'analyzer': 'simple', }, 'feed_id': { 'store': 'no', 'type': 'integer' }, 'date': { 'store': 'no', 'type': 'date', } } cls.ES.indices.put_mapping("%s-type" % cls.name, { 'properties': mapping, '_source': {'enabled': False}, }, ["%s-index" % cls.name]) @classmethod def index(cls, story_hash, story_title, story_content, story_tags, story_author, story_feed_id, story_date): doc = { "content" : story_content, "title" : story_title, "tags" : ', '.join(story_tags), "author" : story_author, "feed_id" : story_feed_id, "date" : story_date, } try: cls.ES.index(doc, "%s-index" % cls.name, "%s-type" % cls.name, story_hash) except pyes.exceptions.NoServerAvailable: logging.debug(" ***> ~FRNo search server available.") @classmethod def remove(cls, story_hash): try: cls.ES.delete("%s-index" % cls.name, "%s-type" % cls.name, story_hash) except pyes.exceptions.NoServerAvailable: logging.debug(" ***> ~FRNo search server available.") @classmethod def drop(cls): cls.ES.indices.delete_index_if_exists("%s-index" % cls.name) @classmethod def query(cls, feed_ids, query, order, offset, limit): cls.create_elasticsearch_mapping() cls.ES.indices.refresh() query = re.sub(r'([^\s\w_\-])+', ' ', query) # Strip non-alphanumeric sort = "date:desc" if order == "newest" else "date:asc" string_q = pyes.query.QueryStringQuery(query, default_operator="AND") feed_q = pyes.query.TermsQuery('feed_id', feed_ids[:1000]) q = pyes.query.BoolQuery(must=[string_q, feed_q]) try: results = cls.ES.search(q, indices=cls.index_name(), doc_types=[cls.type_name()], partial_fields={}, sort=sort, start=offset, size=limit) except pyes.exceptions.NoServerAvailable: logging.debug(" ***> ~FRNo search server available.") return [] logging.info(" ---> ~FG~SNSearch ~FCstories~FG for: ~SB%s~SN (across %s feed%s)" % (query, len(feed_ids), 's' if len(feed_ids) != 1 else '')) try: result_ids = [r.get_id() for r in results] except pyes.InvalidQuery(), e: logging.info(" ---> ~FRInvalid search query \"%s\": %s" % (query, e)) return [] return result_ids class SearchFeed: _es_client = None name = "feeds" @classmethod def ES(cls): if cls._es_client is None: cls._es_client = pyes.ES(settings.ELASTICSEARCH_FEED_HOSTS) if not cls._es_client.indices.exists_index(cls.index_name()): cls.create_elasticsearch_mapping() return cls._es_client @classmethod def index_name(cls): return "%s-index" % cls.name @classmethod def type_name(cls): return "%s-type" % cls.name @classmethod def create_elasticsearch_mapping(cls, delete=False): if delete: cls.ES().indices.delete_index_if_exists(cls.index_name()) settings = { "index" : { "analysis": { "analyzer": { "edgengram_analyzer": { "filter": ["edgengram"], "tokenizer": "lowercase", "type": "custom" }, }, "filter": { "edgengram": { "max_gram": "15", "min_gram": "1", "type": "edgeNGram" }, } } } } cls.ES().indices.create_index_if_missing(cls.index_name(), settings) mapping = { "address": { "analyzer": "edgengram_analyzer", "store": False, "term_vector": "with_positions_offsets", "type": "string" }, "feed_id": { "store": True, "type": "string" }, "num_subscribers": { "index": "analyzed", "store": True, "type": "long" }, "title": { "analyzer": "edgengram_analyzer", "store": False, "term_vector": "with_positions_offsets", "type": "string" }, "link": { "analyzer": "edgengram_analyzer", "store": False, "term_vector": "with_positions_offsets", "type": "string" } } cls.ES().indices.put_mapping(cls.type_name(), { 'properties': mapping, }, [cls.index_name()]) cls.ES().indices.flush() @classmethod def index(cls, feed_id, title, address, link, num_subscribers): doc = { "feed_id" : feed_id, "title" : title, "address" : address, "link" : link, "num_subscribers" : num_subscribers, } try: cls.ES().index(doc, cls.index_name(), cls.type_name(), feed_id) except pyes.exceptions.NoServerAvailable: logging.debug(" ***> ~FRNo search server available.") @classmethod def query(cls, text, max_subscribers=5): try: cls.ES().default_indices = cls.index_name() cls.ES().indices.refresh() except pyes.exceptions.NoServerAvailable: logging.debug(" ***> ~FRNo search server available.") return [] if settings.DEBUG: max_subscribers = 1 logging.info("~FGSearch ~FCfeeds~FG: ~SB%s" % text) q = pyes.query.BoolQuery() q.add_should(pyes.query.MatchQuery('address', text, analyzer="simple", cutoff_frequency=0.0005, minimum_should_match="75%")) q.add_should(pyes.query.MatchQuery('link', text, analyzer="simple", cutoff_frequency=0.0005, minimum_should_match="75%")) q.add_should(pyes.query.MatchQuery('title', text, analyzer="simple", cutoff_frequency=0.0005, minimum_should_match="75%")) q = pyes.Search(q, min_score=1) results = cls.ES().search(query=q, size=max_subscribers, doc_types=[cls.type_name()], sort="num_subscribers:desc") return results @classmethod def export_csv(cls): import djqscsv qs = Feed.objects.filter(num_subscribers__gte=20).values('id', 'feed_title', 'feed_address', 'feed_link', 'num_subscribers') csv = djqscsv.render_to_csv_response(qs).content f = open('feeds.csv', 'w+') f.write(csv) f.close()
00c9949db590246f66d2bb3310ffbfe39a1fee79
9b24eb3a15e9acd4aaf7af00d88488f5a056438f
/backend/home/api/v1/viewsets.py
c7c28c17f806e899fca335a7c524c6cb75b776a2
[]
no_license
crowdbotics-apps/dashboard-app-18025
b8fb28008d42371c7d74102b78ae380725b3221a
202f33b00e14f65adfc9dbf84f748ad5cc051652
refs/heads/master
2022-11-15T12:16:12.733390
2020-06-15T17:24:52
2020-06-15T17:24:52
271,619,959
0
0
null
null
null
null
UTF-8
Python
false
false
2,485
py
from rest_framework import viewsets from rest_framework import authentication from .serializers import ( AddressSerializer, CustomTextSerializer, HomePageSerializer, XYSerializer, ) from rest_framework.authentication import SessionAuthentication, TokenAuthentication from rest_framework.authtoken.serializers import AuthTokenSerializer from rest_framework.permissions import IsAdminUser from rest_framework.viewsets import ModelViewSet, ViewSet from rest_framework.authtoken.models import Token from rest_framework.response import Response from home.api.v1.serializers import ( SignupSerializer, CustomTextSerializer, HomePageSerializer, UserSerializer, ) from home.models import Address, CustomText, HomePage, XY class SignupViewSet(ModelViewSet): serializer_class = SignupSerializer http_method_names = ["post"] class LoginViewSet(ViewSet): """Based on rest_framework.authtoken.views.ObtainAuthToken""" serializer_class = AuthTokenSerializer def create(self, request): serializer = self.serializer_class( data=request.data, context={"request": request} ) serializer.is_valid(raise_exception=True) user = serializer.validated_data["user"] token, created = Token.objects.get_or_create(user=user) user_serializer = UserSerializer(user) return Response({"token": token.key, "user": user_serializer.data}) class CustomTextViewSet(ModelViewSet): serializer_class = CustomTextSerializer queryset = CustomText.objects.all() authentication_classes = (SessionAuthentication, TokenAuthentication) permission_classes = [IsAdminUser] http_method_names = ["get", "put", "patch"] class HomePageViewSet(ModelViewSet): serializer_class = HomePageSerializer queryset = HomePage.objects.all() authentication_classes = (SessionAuthentication, TokenAuthentication) permission_classes = [IsAdminUser] http_method_names = ["get", "put", "patch"] class XYViewSet(viewsets.ModelViewSet): serializer_class = XYSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = XY.objects.all() class AddressViewSet(viewsets.ModelViewSet): serializer_class = AddressSerializer authentication_classes = ( authentication.SessionAuthentication, authentication.TokenAuthentication, ) queryset = Address.objects.all()
005b11fedd1241560633f3f19ce4ab82b6cf9068
43dabf77afd5c44d55b465c1b88bf9a5e7c4c9be
/resize.py
306400848b45f96d2ec9be96bbc1dbae1a9871f7
[]
no_license
geegatomar/OpenCV-Computer-Vision-Adrian-Rosebrock
cc81a990a481b5e4347dd97369b38479b46e55bc
daa579309010e6e7fefb004b878ffb26374401d0
refs/heads/master
2022-11-18T13:07:08.040483
2020-07-20T01:55:39
2020-07-20T01:55:39
280,987,262
0
0
null
null
null
null
UTF-8
Python
false
false
506
py
import cv2 import argparse import numpy as np ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="Path of image") ap.add_argument("-w", "--width", default=100, help="Width of resized img") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) width = int(args["width"]) ratio = width / image.shape[1] dim = (int(ratio * image.shape[0]), width) resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) cv2.imshow("Resized img", resized) cv2.waitKey(0)
2534efd7cf1a472d4c24db7e37fb628ef53a3a0f
9adda6cef38c05c0d6bc4f5d0be25e75500f3406
/ques 2 sol.py
00f2329450eb86ff204e44c7f8653fbee1abdcff
[]
no_license
GLAU-TND/python-programming-assignment4-upadhyay8844
09255dd1ef340f7af3ee57e4eee3c671c010d5c4
bc5c31d40f03cceebb2c842bdd933e0e73a998a1
refs/heads/master
2021-05-19T05:26:14.857261
2020-04-01T11:43:27
2020-04-01T11:43:27
251,547,215
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
def is_dict(var): return str(type(var)) == "<class 'dict'>" def flatten_helper(d, flat_d, path): if not is_dict(d): flat_d[path] = d return for key in d: new_keypath = "{}.{}".format(path, key) if path else key flatten_helper(d[key], flat_d, new_keypath) def flatten(d): flat_d = dict() flatten_helper(d, flat_d, "") return flat_d
4c61a7aae73fa64897e0df01720f5f1eed93b6dd
16de2efcba33961633c1e63e493986bad54c99bd
/test.py
73b7e8d90f6b8b0378a1486d70f70ac2af704483
[]
no_license
thakur-nishant/Algorithms
a0cc45de5393d4cbb428cccdbf81b6937cdf97d7
1a0306ca9a9fc68f59e28ea26c24822c15350294
refs/heads/master
2022-01-07T22:22:09.764193
2019-05-17T20:10:24
2019-05-17T20:10:24
109,093,687
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
from math import log from random import random import matplotlib.pyplot as plt import numpy as np l = 2 T = 24 curr = -1/l * log(random()) arrival = [curr] while curr < T: curr = curr -1/l * log(random()) arrival.append(curr) arrival = arrival[1:] t = np.arange(0.0, T, 0.01) N = len(t) X = np.zeros(N) for i in range(N): X[i] = np.sum(arrival <= t[i]) plt.plot(t, X) plt.xlabel('time(hrs)') plt.show()
a3dc231f3dbd0e2e1ef4dbdd546e09d37e950ff2
f224fad50dbc182cda86291c83954607bbb60901
/inference.py
ce98cbf4d15f6bc1e05363be1db9afeb1e519de5
[]
no_license
Hongpeng1992/pytorch-commands
7fd26202b7cf7d46a0ac8e1241336e8ca5dad30e
5853625d9852e948c1ac337547f8078d048699a0
refs/heads/master
2020-05-04T15:38:26.704013
2019-02-07T07:04:01
2019-02-07T07:04:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,644
py
import argparse import io import os import csv import time import numpy as np import pandas as pd from collections import OrderedDict from datetime import datetime from dataset import CommandsDataset, get_labels from models import model_factory from utils import AverageMeter, get_outdir import torch import torch.autograd as autograd import torch.nn import torch.nn.functional as F import torch.utils.data as data import torchvision.utils parser = argparse.ArgumentParser(description='Inference') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL', help='Name of model to train (default: "countception"') parser.add_argument('--gp', default='avg', type=str, metavar='POOL', help='Type of global pool, "avg", "max", "avgmax", "avgmaxc" (default: "avg")') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('-b', '--batch-size', type=int, default=512, metavar='N', help='input batch size for training (default: 512)') parser.add_argument('-j', '--workers', type=int, default=2, metavar='N', help='how many training processes to use (default: 1)') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to restore checkpoint (default: none)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--save-batches', action='store_true', default=False, help='save images of batch inputs and targets every log interval for debugging/verification') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') def main(): args = parser.parse_args() num_classes = len(get_labels()) test_time_pool = 0 #5 if 'dpn' in args.model else 0 model = model_factory.create_model( args.model, in_chs=1, num_classes=num_classes, global_pool=args.gp, test_time_pool=test_time_pool) #model.reset_classifier(num_classes=num_classes) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda() else: model.cuda() if not os.path.exists(args.checkpoint): print("=> no checkpoint found at '{}'".format(args.checkpoint)) exit(1) print("=> loading checkpoint '{}'".format(args.checkpoint)) checkpoint = torch.load(args.checkpoint) if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format(args.checkpoint, checkpoint['epoch'])) else: model.load_state_dict(checkpoint) csplit = os.path.normpath(args.checkpoint).split(sep=os.path.sep) if len(csplit) > 1: exp_name = csplit[-2] + '-' + csplit[-1].split('.')[0] else: exp_name = '' if args.output: output_base = args.output else: output_base = './output' output_dir = get_outdir(output_base, 'predictions', exp_name) dataset = CommandsDataset( root=args.data, mode='test', format='spectrogram' ) loader = data.DataLoader( dataset, batch_size=args.batch_size, pin_memory=True, shuffle=False, num_workers=args.workers ) model.eval() batch_time_m = AverageMeter() data_time_m = AverageMeter() try: # open CSV for writing predictions cf = open(os.path.join(output_dir, 'results.csv'), mode='w') res_writer = csv.writer(cf) res_writer.writerow(['fname'] + dataset.id_to_label) # open CSV for writing submission cf = open(os.path.join(output_dir, 'submission.csv'), mode='w') sub_writer = csv.writer(cf) sub_writer.writerow(['fname', 'label', 'prob']) end = time.time() batch_sample_idx = 0 for batch_idx, (input, target) in enumerate(loader): data_time_m.update(time.time() - end) input = input.cuda() output = model(input) # augmentation reduction #reduce_factor = loader.dataset.get_aug_factor() #if reduce_factor > 1: # output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2).squeeze(dim=2) # index = index[0:index.size(0):reduce_factor] # move data to CPU and collect) output_logprob = F.log_softmax(output, dim=1).cpu().numpy() output = F.softmax(output, dim=1) output_prob, output_idx = output.max(1) output_prob = output_prob.cpu().numpy() output_idx = output_idx.cpu().numpy() for i in range(output_logprob.shape[0]): index = batch_sample_idx + i pred_label = dataset.id_to_label[output_idx[i]] pred_prob = output_prob[i] filename = dataset.filename(index) res_writer.writerow([filename] + list(output_logprob[i])) sub_writer.writerow([filename] + [pred_label, pred_prob]) batch_sample_idx += input.size(0) batch_time_m.update(time.time() - end) if batch_idx % args.print_freq == 0: print('Inference: [{}/{} ({:.0f}%)] ' 'Time: {batch_time.val:.3f}s, {rate:.3f}/s ' '({batch_time.avg:.3f}s, {rate_avg:.3f}/s) ' 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( batch_sample_idx, len(loader.sampler), 100. * batch_idx / len(loader), batch_time=batch_time_m, rate=input.size(0) / batch_time_m.val, rate_avg=input.size(0) / batch_time_m.avg, data_time=data_time_m)) end = time.time() # end iterating through dataset except KeyboardInterrupt: pass except Exception as e: print(str(e)) if __name__ == '__main__': main()
14117448fe850d69ae5fcf1bd41049c19247b557
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/appmesh_write_2/virtual-router_delete.py
db6df7702ffc69ca7d3bbf5c3eda2b1680913ce2
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,343
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_two_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/delete-virtual-router.html if __name__ == '__main__': """ create-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/create-virtual-router.html describe-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/describe-virtual-router.html list-virtual-routers : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/list-virtual-routers.html update-virtual-router : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/appmesh/update-virtual-router.html """ parameter_display_string = """ # mesh-name : The name of the service mesh to delete the virtual router in. # virtual-router-name : The name of the virtual router to delete. """ add_option_dict = {} add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_two_parameter("appmesh", "delete-virtual-router", "mesh-name", "virtual-router-name", add_option_dict)
53fa6c563e9983afb729af1af3be08c9c03dd4a1
8792e3449fbc6c8dec99f6af1d9f1b4caddad1f7
/51player.py
470f81860462904d56f98294142a2c26cd476828
[]
no_license
aarthisandhiya/aarthisandhiya1
c19c1951c9ba01cd97eeddd44614953088718357
e6f10247b6a84d6eaf371a23f2f9c3bebbc73e5b
refs/heads/master
2020-04-15T17:17:07.151242
2019-05-20T05:24:19
2019-05-20T05:24:19
164,868,494
0
1
null
null
null
null
UTF-8
Python
false
false
202
py
a=int(input()) s=[int(a) for a in input().split()] s=list(s) z=[] for i in range(0,len(s)): val=s[i] i=i-1 while i>=0: if val<s[i]: s[i+1]=s[i] s[i]=val i=i-1 else: break print(s[1])
98244b23e0ce113db9acb33b85781abda3504fab
82115f52db1783a2ce963e2621bf185c61ceb419
/Teoría/03 Widgets para formularios/3-1 Etiquetas/programa.py
f824e536fbaa1c1de04e3356c2ce610ec1b992ff
[]
no_license
lesclaz/curso-qt-pyside-udemy
ce227df451a7cff40d90543ee6c892ea1a6b131c
8b9bbf5d45e916f1d7db9411728b2759b30d2fd9
refs/heads/master
2023-07-01T18:11:47.959668
2021-08-03T09:38:12
2021-08-03T09:38:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,020
py
from PySide6.QtWidgets import QApplication, QMainWindow, QLabel from PySide6.QtCore import QSize, Qt from PySide6.QtGui import QFont, QPixmap from pathlib import Path import sys def absPath(file): # Devuelve la ruta absoluta a un fichero desde el propio script return str(Path(__file__).parent.absolute() / file) class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setMinimumSize(QSize(480, 320)) etiqueta = QLabel("Soy una etiqueta") self.setCentralWidget(etiqueta) # Creamos la imagen imagen = QPixmap(absPath("naturaleza.jpg")) # la asginamos a la etiqueta etiqueta.setPixmap(imagen) # hacemos que se escale con la ventana etiqueta.setScaledContents(True) # establecemos unas flags de alineamiento etiqueta.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter) if __name__ == "__main__": app = QApplication() window = MainWindow() window.show() sys.exit(app.exec_())
6576a596822baf4eb435a1fe47e11d479398497b
fd878bcdaa9489883894c942aae5e316a15c2085
/tests/dataset_readers/sst_test.py
477e1a51ec7a5efbd55ddd0006bc58ee474d6ddc
[]
no_license
Shuailong/SPM
a12d18baa39a72a9243ad9cd4238168ab42b96d1
0105dae90a4acdebfc875001efab7439b3eb8259
refs/heads/master
2020-04-26T04:51:14.279859
2019-06-24T03:55:11
2019-06-24T03:55:11
173,315,858
0
0
null
null
null
null
UTF-8
Python
false
false
2,551
py
# pylint: disable=no-self-use,invalid-name import pytest import pathlib import random import os from allennlp.common import Params from allennlp.common.util import ensure_list from allennlp.common.testing import ModelTestCase from allennlp.data.dataset import Batch from allennlp.data.fields import TextField from allennlp.data.instance import Instance from allennlp.data.token_indexers.wordpiece_indexer import PretrainedBertIndexer from allennlp.data.tokenizers import WordTokenizer, Token from allennlp.data.tokenizers.word_splitter import BertBasicWordSplitter from allennlp.data.vocabulary import Vocabulary from allennlp.modules.token_embedders.bert_token_embedder import PretrainedBertEmbedder from spm.data.dataset_readers import GLUESST2DatasetReader from spm import DATA_DIR as DATA_ROOT class TestSSTReader: FIXTURES_ROOT = (pathlib.Path(__file__).parent / ".." / ".." / "tests" / "fixtures").resolve() BERT_VOCAB_PATH = os.path.join( DATA_ROOT, 'bert/bert-base-uncased-vocab.txt') @pytest.mark.parametrize("lazy", (True, False)) def test_read(self, lazy): reader = GLUESST2DatasetReader( tokenizer=WordTokenizer(word_splitter=BertBasicWordSplitter()), token_indexers={'bert': PretrainedBertIndexer( pretrained_model=self.BERT_VOCAB_PATH)}, skip_label_indexing=False ) instances = reader.read( str(self.FIXTURES_ROOT / 'dev.tsv')) instances = ensure_list(instances) example = instances[0] tokens = [t.text for t in example.fields['tokens']] label = example.fields['label'].label print(label) print(tokens) batch = Batch(instances) vocab = Vocabulary.from_instances(instances) batch.index_instances(vocab) padding_lengths = batch.get_padding_lengths() tensor_dict = batch.as_tensor_dict(padding_lengths) tokens = tensor_dict["tokens"] print(tokens['mask'].tolist()[0]) print(tokens["bert"].tolist()[0]) print([vocab.get_token_from_index(i, "bert") for i in tokens["bert"].tolist()[0]]) print(len(tokens['bert'][0])) print(tokens["bert-offsets"].tolist()[0]) print(tokens['bert-type-ids'].tolist()[0]) def test_can_build_from_params(self): reader = GLUESST2DatasetReader.from_params(Params({})) # pylint: disable=protected-access assert reader._token_indexers['tokens'].__class__.__name__ == 'SingleIdTokenIndexer'
25eaf0a29411821417765885863acfd5166a02e3
7298d1692c6948f0880e550d6100c63a64ce3ea1
/deriva-annotations/catalog99/catalog-configs/Vocab/ihm_residues_not_modeled_reason.py
9a62ee7fbe832a6a342ee44c46b17d4607a9f500
[]
no_license
informatics-isi-edu/protein-database
b7684b3d08dbf22c1e7c4a4b8460248c6f0d2c6d
ce4be1bf13e6b1c22f3fccbb513824782609991f
refs/heads/master
2023-08-16T10:24:10.206574
2023-07-25T23:10:42
2023-07-25T23:10:42
174,095,941
2
0
null
2023-06-16T19:44:43
2019-03-06T07:39:14
Python
UTF-8
Python
false
false
5,585
py
import argparse from deriva.core import ErmrestCatalog, AttrDict, get_credential import deriva.core.ermrest_model as em from deriva.core.ermrest_config import tag as chaise_tags from deriva.utils.catalog.manage.update_catalog import CatalogUpdater, parse_args groups = { 'pdb-reader': 'https://auth.globus.org/8875a770-3c40-11e9-a8c8-0ee7d80087ee', 'pdb-writer': 'https://auth.globus.org/c94a1e5c-3c40-11e9-a5d1-0aacc65bfe9a', 'pdb-admin': 'https://auth.globus.org/0b98092c-3c41-11e9-a8c8-0ee7d80087ee', 'pdb-curator': 'https://auth.globus.org/eef3e02a-3c40-11e9-9276-0edc9bdd56a6', 'isrd-staff': 'https://auth.globus.org/176baec4-ed26-11e5-8e88-22000ab4b42b', 'pdb-submitter': 'https://auth.globus.org/99da042e-64a6-11ea-ad5f-0ef992ed7ca1' } table_name = 'ihm_residues_not_modeled_reason' schema_name = 'Vocab' column_annotations = { 'ID': {}, 'URI': {}, 'Name': {}, 'Description': {}, 'Synonyms': {}, 'Owner': {} } column_comment = { 'ID': 'The preferred Compact URI (CURIE) for this term.', 'URI': 'The preferred URI for this term.', 'Name': 'None', 'Description': 'None', 'Synonyms': 'Alternate human-readable names for this term.', 'Owner': 'Group that can update the record.' } column_acls = {} column_acl_bindings = {} column_defs = [ em.Column.define( 'ID', em.builtin_types['ermrest_curie'], nullok=False, default='PDB:{RID}', comment=column_comment['ID'], ), em.Column.define( 'URI', em.builtin_types['ermrest_uri'], nullok=False, default='/id/{RID}', comment=column_comment['URI'], ), em.Column.define( 'Name', em.builtin_types['text'], nullok=False, comment=column_comment['Name'], ), em.Column.define( 'Description', em.builtin_types['markdown'], nullok=False, comment=column_comment['Description'], ), em.Column.define('Synonyms', em.builtin_types['text[]'], comment=column_comment['Synonyms'], ), em.Column.define('Owner', em.builtin_types['text'], comment=column_comment['Owner'], ), ] visible_columns = { '*': [ 'RID', 'Name', 'Description', 'ID', 'URI', ['Vocab', 'ihm_residues_not_modeled_reason_term_RCB_fkey'], ['Vocab', 'ihm_residues_not_modeled_reason_term_RMB_fkey'], 'RCT', 'RMT', ['Vocab', 'ihm_residues_not_modeled_reason_term_Owner_fkey'] ] } table_display = {'row_name': {'row_markdown_pattern': '{{{Name}}}'}} table_annotations = { chaise_tags.table_display: table_display, chaise_tags.visible_columns: visible_columns, } table_comment = 'A set of controlled vocabular terms.' table_acls = {} table_acl_bindings = { 'released_reader': { 'types': ['select'], 'scope_acl': [groups['pdb-submitter']], 'projection': ['RID'], 'projection_type': 'nonnull' }, 'self_service_group': { 'types': ['update', 'delete'], 'scope_acl': ['*'], 'projection': ['Owner'], 'projection_type': 'acl' }, 'self_service_creator': { 'types': ['update', 'delete'], 'scope_acl': ['*'], 'projection': ['RCB'], 'projection_type': 'acl' } } key_defs = [ em.Key.define( ['Name'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_Namekey1']], ), em.Key.define( ['RID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RIDkey1']], ), em.Key.define( ['ID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_IDkey1']], ), em.Key.define( ['URI'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_URIkey1']], ), ] fkey_defs = [ em.ForeignKey.define( ['RCB'], 'public', 'ERMrest_Client', ['ID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RCB_fkey']], ), em.ForeignKey.define( ['RMB'], 'public', 'ERMrest_Client', ['ID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_RMB_fkey']], ), em.ForeignKey.define( ['Owner'], 'public', 'Catalog_Group', ['ID'], constraint_names=[['Vocab', 'ihm_residues_not_modeled_reason_term_Owner_fkey']], acls={ 'insert': [groups['pdb-curator']], 'update': [groups['pdb-curator']] }, acl_bindings={ 'set_owner': { 'types': ['update', 'insert'], 'scope_acl': ['*'], 'projection': ['ID'], 'projection_type': 'acl' } }, ), ] table_def = em.Table.define( table_name, column_defs=column_defs, key_defs=key_defs, fkey_defs=fkey_defs, annotations=table_annotations, acls=table_acls, acl_bindings=table_acl_bindings, comment=table_comment, provide_system=True ) def main(catalog, mode, replace=False, really=False): updater = CatalogUpdater(catalog) table_def['column_annotations'] = column_annotations table_def['column_comment'] = column_comment updater.update_table(mode, schema_name, table_def, replace=replace, really=really) if __name__ == "__main__": host = 'pdb.isrd.isi.edu' catalog_id = 99 mode, replace, host, catalog_id = parse_args(host, catalog_id, is_table=True) catalog = ErmrestCatalog('https', host, catalog_id=catalog_id, credentials=get_credential(host)) main(catalog, mode, replace)
26604b1e653b586dcc138356474bf5459ea54e2e
604fdb2c4fa24237d206e7c8835bb2c21b0a2fb7
/ari/v1/client.py
0f438dfd979c9fed793cc6fef8f04f0b37e2bc6d
[ "Apache-2.0" ]
permissive
SibghatullahSheikh/python-ari
d8d87d213c1a52b0ed46a8ea50362b93c772325b
f4a6f870513bc74bf96606168e0d2173ed2f2ebb
refs/heads/master
2021-01-22T00:13:37.707863
2014-01-29T21:06:52
2014-01-29T21:06:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
# -*- coding: utf-8 -*- # Copyright 2012 OpenStack LLC. # Copyright (c) 2013 PolyBeacon, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ari.common import http from ari.v1 import application from ari.v1 import bridge from ari.v1 import channel from ari.v1 import devicestate from ari.v1 import endpoint from ari.v1 import sound class Client(http.HTTPClient): """Client for the ARI v1 API. """ def __init__(self, *args, **kwargs): super(Client, self).__init__(*args, **kwargs) self.applications = application.ApplicationManager(self) self.bridges = bridge.BridgeManager(self) self.channels = channel.ChannelManager(self) self.devicestates = devicestate.DeviceStateManager(self) self.endpoints = endpoint.EndpointManager(self) self.sounds = sound.SoundManager(self)
a74af5013611c1d1945d2e4250a4c532a725e0bd
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_6404600001200128_0/Python/kawasaki/solve.py
13028d9808e7f822dbd94054186f11d1384f2212
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
371
py
T = int(raw_input()) for test_index in xrange(T): N = int(raw_input()) m = map(int, raw_input().split()) y = 0 for i in xrange(N - 1): y += max(m[i] - m[i + 1], 0) d = max(max(m[i] - m[i + 1], 0) for i in xrange(N - 1)) z = 0 for i in xrange(N - 1): z += min(d, m[i]) print 'Case #{}: {} {}'.format(test_index + 1, y, z)
5d64b3ec43f8f8706fbb5bc2f4c1dea3573739ee
d6d87140d929262b5228659f89a69571c8669ec1
/airbyte-connector-builder-server/connector_builder/generated/models/stream_slicer.py
56c37db2c82d4d65076de8f3b5e19e85d772378d
[ "MIT", "Elastic-2.0" ]
permissive
gasparakos/airbyte
b2bb2246ec6a10e1f86293da9d86c61fc4a4ac65
17c77fc819ef3732fb1b20fa4c1932be258f0ee9
refs/heads/master
2023-02-22T20:42:45.400851
2023-02-09T07:43:24
2023-02-09T07:43:24
303,604,219
0
0
MIT
2020-10-13T06:18:04
2020-10-13T06:06:17
null
UTF-8
Python
false
false
527
py
# coding: utf-8 from __future__ import annotations from datetime import date, datetime # noqa: F401 import re # noqa: F401 from typing import Any, Dict, List, Optional # noqa: F401 from pydantic import AnyUrl, BaseModel, EmailStr, Field, validator # noqa: F401 class StreamSlicer(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. StreamSlicer - a model defined in OpenAPI """ StreamSlicer.update_forward_refs()
e5d021f764bf2a500658c2a962784f56ffc0f864
2b167e29ba07e9f577c20c54cb943861d0ccfa69
/numerical_analysis_backup/small-scale-multiobj/pod100_sa/pareto_arch2/pareto_ff/pareto8.py
c934f4633c223ab3a0093473ad66da38262a6453
[]
no_license
LiYan1988/kthOld_OFC
17aeeed21e195d1a9a3262ec2e67d6b1d3f9ff0f
b1237577ea68ad735a65981bf29584ebd889132b
refs/heads/master
2021-01-11T17:27:25.574431
2017-01-23T05:32:35
2017-01-23T05:32:35
79,773,237
0
0
null
null
null
null
UTF-8
Python
false
false
2,048
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 4 15:15:10 2016 @author: li optimize both throughput and connections """ #import sys #sys.path.insert(0, '/home/li/Dropbox/KTH/numerical_analysis/ILPs') import csv from gurobipy import * import numpy as np from arch2_decomposition_new import Arch2_decompose np.random.seed(2010) num_cores=3 num_slots=80 i = 8 time_limit_routing = 1200 # 1000 time_limit_sa = 108 # 10800 filename = 'traffic_matrix__matrix_'+str(i)+'.csv' # print filename tm = [] with open(filename) as f: reader = csv.reader(f) for idx, row in enumerate(reader): if idx>11: row.pop() row = [int(u) for u in row] tm.append(row) tm = np.array(tm)*25 #%% arch2 betav1 = np.arange(0,0.105,0.005) betav2 = np.arange(0.15,1.05,0.05) betav3 = np.arange(10, 110, 10) betav = np.concatenate((betav1, betav2, betav3)) connection_ub = [] throughput_ub = [] connection_lb = [] throughput_lb = [] obj_ub = [] obj_lb = [] for beta in betav: m = Arch2_decompose(tm, num_slots=num_slots, num_cores=num_cores,alpha=1,beta=beta) m.create_model_routing(mipfocus=1,timelimit=time_limit_routing,mipgap=0.01, method=2) m.sa_heuristic(ascending1=False,ascending2=False) connection_ub.append(m.connections_ub) throughput_ub.append(m.throughput_ub) obj_ub.append(m.alpha*m.connections_ub+m.beta*m.throughput_ub) connection_lb.append(m.obj_sah_connection_) throughput_lb.append(m.obj_sah_throughput_) obj_lb.append(m.alpha*m.obj_sah_connection_+m.beta*m.obj_sah_throughput_) # print m.obj_sah_/float(m.alpha*m.connections_ub+m.beta*m.throughput_ub) result = np.array([betav,connection_ub,throughput_ub,obj_ub, connection_lb,throughput_lb,obj_lb]).T file_name = "result_pareto{}.csv".format(i) with open(file_name, 'w') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['beta', 'connection_ub', 'throughput_ub', 'obj_ub', 'connection_lb', 'throughput_lb', 'obj_lb']) writer.writerows(result)
94f78ff7515cedf224519e07f552630acac3127a
a857d1911a118b8aa62ffeaa8f154c8325cdc939
/toontown/estate/DistributedFireworksCannon.py
d5691917f5a2a6d4d53e4cdd97782a58257a8ec5
[ "MIT" ]
permissive
DioExtreme/TT-CL-Edition
761d3463c829ec51f6bd2818a28b667c670c44b6
6b85ca8352a57e11f89337e1c381754d45af02ea
refs/heads/main
2023-06-01T16:37:49.924935
2021-06-24T02:25:22
2021-06-24T02:25:22
379,310,849
0
0
MIT
2021-06-22T15:07:31
2021-06-22T15:07:30
null
UTF-8
Python
false
false
4,308
py
from toontown.toonbase.ToontownGlobals import * from direct.interval.IntervalGlobal import * from direct.distributed.ClockDelta import * from HouseGlobals import * from toontown.effects import DistributedFireworkShow from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer from panda3d.core import CollisionSphere, CollisionNode import FireworksGui class DistributedFireworksCannon(DistributedFireworkShow.DistributedFireworkShow): notify = directNotify.newCategory('DistributedFireworksCannon') def __init__(self, cr): DistributedFireworkShow.DistributedFireworkShow.__init__(self, cr) self.fireworksGui = None self.load() return def generateInit(self): DistributedFireworkShow.DistributedFireworkShow.generateInit(self) self.fireworksSphereEvent = self.uniqueName('fireworksSphere') self.fireworksSphereEnterEvent = 'enter' + self.fireworksSphereEvent self.fireworksGuiDoneEvent = 'fireworksGuiDone' self.shootEvent = 'fireworkShootEvent' self.collSphere = CollisionSphere(0, 0, 0, 2.5) self.collSphere.setTangible(1) self.collNode = CollisionNode(self.fireworksSphereEvent) self.collNode.setIntoCollideMask(ToontownGlobals.WallBitmask) self.collNode.addSolid(self.collSphere) self.collNodePath = self.geom.attachNewNode(self.collNode) def generate(self): DistributedFireworkShow.DistributedFireworkShow.generate(self) def announceGenerate(self): self.notify.debug('announceGenerate') self.accept(self.fireworksSphereEnterEvent, self.__handleEnterSphere) def disable(self): self.notify.debug('disable') self.ignore(self.fireworksSphereEnterEvent) self.ignore(self.shootEvent) self.ignore(self.fireworksGuiDoneEvent) if self.fireworksGui: self.fireworksGui.destroy() self.fireworksGui = None DistributedFireworkShow.DistributedFireworkShow.disable(self) return def delete(self): self.notify.debug('delete') self.geom.removeNode() DistributedFireworkShow.DistributedFireworkShow.delete(self) def load(self): self.geom = loader.loadModel('phase_5/models/props/trashcan_TT.bam') self.geom.reparentTo(base.cr.playGame.hood.loader.geom) self.geom.setScale(0.5) def __handleEnterSphere(self, collEntry): self.notify.debug('handleEnterSphere()') self.ignore(self.fireworksSphereEnterEvent) self.sendUpdate('avatarEnter', []) def __handleFireworksDone(self): self.ignore(self.fireworksGuiDoneEvent) self.ignore(self.shootEvent) self.sendUpdate('avatarExit') self.fireworksGui.destroy() self.fireworksGui = None return def freeAvatar(self): base.localAvatar.posCamera(0, 0) base.cr.playGame.getPlace().setState('walk') self.accept(self.fireworksSphereEnterEvent, self.__handleEnterSphere) def setMovie(self, mode, avId, timestamp): timeStamp = globalClockDelta.localElapsedTime(timestamp) isLocalToon = avId == base.localAvatar.doId if mode == FIREWORKS_MOVIE_CLEAR: self.notify.debug('setMovie: clear') return elif mode == FIREWORKS_MOVIE_GUI: self.notify.debug('setMovie: gui') if isLocalToon: self.fireworksGui = FireworksGui.FireworksGui(self.fireworksGuiDoneEvent, self.shootEvent) self.accept(self.fireworksGuiDoneEvent, self.__handleFireworksDone) self.accept(self.shootEvent, self.localShootFirework) return else: self.notify.warning('unknown mode in setMovie: %s' % mode) def setPosition(self, x, y, z): self.pos = [x, y, z] self.geom.setPos(x, y, z) def localShootFirework(self, index): style = index col1, col2 = self.fireworksGui.getCurColor() amp = 30 dummy = base.localAvatar.attachNewNode('dummy') dummy.setPos(0, 100, 60) pos = dummy.getPos(render) dummy.removeNode() print 'lauFirework: %s, col=%s' % (index, col1) self.d_requestFirework(pos[0], pos[1], pos[2], style, col1, col2)
6b97a43edfe028b659923528eaadd406c208290f
71501709864eff17c873abbb97ffabbeba4cb5e3
/llvm13.0.0/lldb/test/API/functionalities/completion/TestCompletion.py
11f0e387245e0fc659032f8b1323c5e4f7f230db
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
LEA0317/LLVM-VideoCore4
d08ba6e6f26f7893709d3285bdbd67442b3e1651
7ae2304339760685e8b5556aacc7e9eee91de05c
refs/heads/master
2022-06-22T15:15:52.112867
2022-06-09T08:45:24
2022-06-09T08:45:24
189,765,789
1
0
NOASSERTION
2019-06-01T18:31:29
2019-06-01T18:31:29
null
UTF-8
Python
false
false
33,655
py
""" Test the lldb command line completion mechanism. """ import os from multiprocessing import Process import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbplatform from lldbsuite.test import lldbutil class CommandLineCompletionTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) NO_DEBUG_INFO_TESTCASE = True @classmethod def classCleanup(cls): """Cleanup the test byproducts.""" try: os.remove("child_send.txt") os.remove("child_read.txt") except: pass def test_at(self): """Test that 'at' completes to 'attach '.""" self.complete_from_to('at', 'attach ') def test_de(self): """Test that 'de' completes to 'detach '.""" self.complete_from_to('de', 'detach ') def test_frame_variable(self): self.build() self.main_source = "main.cpp" self.main_source_spec = lldb.SBFileSpec(self.main_source) (target, process, thread, bkpt) = lldbutil.run_to_source_breakpoint(self, '// Break here', self.main_source_spec) self.assertEquals(process.GetState(), lldb.eStateStopped) # Since CommandInterpreter has been corrected to update the current execution # context at the beginning of HandleCompletion, we're here explicitly testing # the scenario where "frame var" is completed without any preceding commands. self.complete_from_to('frame variable fo', 'frame variable fooo') self.complete_from_to('frame variable fooo.', 'frame variable fooo.') self.complete_from_to('frame variable fooo.dd', 'frame variable fooo.dd') self.complete_from_to('frame variable ptr_fooo->', 'frame variable ptr_fooo->') self.complete_from_to('frame variable ptr_fooo->dd', 'frame variable ptr_fooo->dd') self.complete_from_to('frame variable cont', 'frame variable container') self.complete_from_to('frame variable container.', 'frame variable container.MemberVar') self.complete_from_to('frame variable container.Mem', 'frame variable container.MemberVar') self.complete_from_to('frame variable ptr_cont', 'frame variable ptr_container') self.complete_from_to('frame variable ptr_container->', 'frame variable ptr_container->MemberVar') self.complete_from_to('frame variable ptr_container->Mem', 'frame variable ptr_container->MemberVar') def test_process_attach_dash_dash_con(self): """Test that 'process attach --con' completes to 'process attach --continue '.""" self.complete_from_to( 'process attach --con', 'process attach --continue ') def test_process_launch_arch(self): self.complete_from_to('process launch --arch ', ['mips', 'arm64']) def test_process_load(self): self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) self.complete_from_to('process load Makef', 'process load Makefile') @skipUnlessPlatform(["linux"]) def test_process_unload(self): """Test the completion for "process unload <index>" """ # This tab completion should not work without a running process. self.complete_from_to('process unload ', 'process unload ') self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) err = lldb.SBError() self.process().LoadImage(lldb.SBFileSpec(self.getBuildArtifact("libshared.so")), err) self.assertSuccess(err) self.complete_from_to('process unload ', 'process unload 0') self.process().UnloadImage(0) self.complete_from_to('process unload ', 'process unload ') def test_process_plugin_completion(self): subcommands = ['attach -P', 'connect -p', 'launch -p'] for subcommand in subcommands: self.complete_from_to('process ' + subcommand + ' mac', 'process ' + subcommand + ' mach-o-core') def completions_contain_str(self, input, needle): interp = self.dbg.GetCommandInterpreter() match_strings = lldb.SBStringList() num_matches = interp.HandleCompletion(input, len(input), 0, -1, match_strings) found_needle = False for match in match_strings: if needle in match: found_needle = True break self.assertTrue(found_needle, "Returned completions: " + "\n".join(match_strings)) @skipIfRemote @skipIfReproducer def test_common_completion_process_pid_and_name(self): # The LLDB process itself and the process already attached to are both # ignored by the process discovery mechanism, thus we need a process known # to us here. self.build() server = self.spawnSubprocess( self.getBuildArtifact("a.out"), ["-x"], # Arg "-x" makes the subprocess wait for input thus it won't be terminated too early install_remote=False) self.assertIsNotNone(server) pid = server.pid self.completions_contain('process attach -p ', [str(pid)]) self.completions_contain('platform process attach -p ', [str(pid)]) self.completions_contain('platform process info ', [str(pid)]) self.completions_contain_str('process attach -n ', "a.out") self.completions_contain_str('platform process attach -n ', "a.out") def test_process_signal(self): # The tab completion for "process signal" won't work without a running process. self.complete_from_to('process signal ', 'process signal ') # Test with a running process. self.build() self.main_source = "main.cpp" self.main_source_spec = lldb.SBFileSpec(self.main_source) lldbutil.run_to_source_breakpoint(self, '// Break here', self.main_source_spec) self.complete_from_to('process signal ', 'process signal SIG') self.complete_from_to('process signal SIGPIP', 'process signal SIGPIPE') self.complete_from_to('process signal SIGA', ['SIGABRT', 'SIGALRM']) def test_ambiguous_long_opt(self): self.completions_match('breakpoint modify --th', ['--thread-id', '--thread-index', '--thread-name']) def test_disassemble_dash_f(self): self.completions_match('disassemble -F ', ['default', 'intel', 'att']) def test_plugin_load(self): self.complete_from_to('plugin load ', []) def test_log_enable(self): self.complete_from_to('log enable ll', ['lldb']) self.complete_from_to('log enable dw', ['dwarf']) self.complete_from_to('log enable lldb al', ['all']) self.complete_from_to('log enable lldb sym', ['symbol']) def test_log_enable(self): self.complete_from_to('log disable ll', ['lldb']) self.complete_from_to('log disable dw', ['dwarf']) self.complete_from_to('log disable lldb al', ['all']) self.complete_from_to('log disable lldb sym', ['symbol']) def test_log_list(self): self.complete_from_to('log list ll', ['lldb']) self.complete_from_to('log list dw', ['dwarf']) self.complete_from_to('log list ll', ['lldb']) self.complete_from_to('log list lldb dwa', ['dwarf']) def test_quoted_command(self): self.complete_from_to('"set', ['"settings" ']) def test_quoted_arg_with_quoted_command(self): self.complete_from_to('"settings" "repl', ['"replace" ']) def test_quoted_arg_without_quoted_command(self): self.complete_from_to('settings "repl', ['"replace" ']) def test_single_quote_command(self): self.complete_from_to("'set", ["'settings' "]) def test_terminated_quote_command(self): # This should not crash, but we don't get any # reasonable completions from this. self.complete_from_to("'settings'", []) def test_process_launch_arch_arm(self): self.complete_from_to('process launch --arch arm', ['arm64']) def test_target_symbols_add_shlib(self): # Doesn't seem to work, but at least it shouldn't crash. self.complete_from_to('target symbols add --shlib ', []) def test_log_file(self): # Complete in our source directory which contains a 'main.cpp' file. src_dir = os.path.dirname(os.path.realpath(__file__)) + '/' self.complete_from_to('log enable lldb expr -f ' + src_dir, ['main.cpp']) def test_log_dir(self): # Complete our source directory. src_dir = os.path.dirname(os.path.realpath(__file__)) self.complete_from_to('log enable lldb expr -f ' + src_dir, [src_dir + os.sep], turn_off_re_match=True) # <rdar://problem/11052829> def test_infinite_loop_while_completing(self): """Test that 'process print hello\' completes to itself and does not infinite loop.""" self.complete_from_to('process print hello\\', 'process print hello\\', turn_off_re_match=True) def test_watchpoint_co(self): """Test that 'watchpoint co' completes to 'watchpoint command '.""" self.complete_from_to('watchpoint co', 'watchpoint command ') def test_watchpoint_command_space(self): """Test that 'watchpoint command ' completes to ['add', 'delete', 'list'].""" self.complete_from_to( 'watchpoint command ', [ 'add', 'delete', 'list']) def test_watchpoint_command_a(self): """Test that 'watchpoint command a' completes to 'watchpoint command add '.""" self.complete_from_to( 'watchpoint command a', 'watchpoint command add ') def test_watchpoint_set_ex(self): """Test that 'watchpoint set ex' completes to 'watchpoint set expression '.""" self.complete_from_to( 'watchpoint set ex', 'watchpoint set expression ') def test_watchpoint_set_var(self): """Test that 'watchpoint set var' completes to 'watchpoint set variable '.""" self.complete_from_to('watchpoint set var', 'watchpoint set variable ') def test_watchpoint_set_variable_foo(self): self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) self.complete_from_to('watchpoint set variable fo', 'watchpoint set variable fooo') # Only complete the first argument. self.complete_from_to('watchpoint set variable fooo ', 'watchpoint set variable fooo ') def test_help_fi(self): """Test that 'help fi' completes to ['file', 'finish'].""" self.complete_from_to( 'help fi', [ 'file', 'finish']) def test_help_watchpoint_s(self): """Test that 'help watchpoint s' completes to 'help watchpoint set '.""" self.complete_from_to('help watchpoint s', 'help watchpoint set ') @expectedFailureNetBSD def test_common_complete_watchpoint_ids(self): subcommands = ['enable', 'disable', 'delete', 'modify', 'ignore'] # Completion should not work without a target. for subcommand in subcommands: self.complete_from_to('watchpoint ' + subcommand + ' ', 'watchpoint ' + subcommand + ' ') # Create a process to provide a target and enable watchpoint setting. self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) self.runCmd('watchpoint set variable ptr_fooo') for subcommand in subcommands: self.complete_from_to('watchpoint ' + subcommand + ' ', ['1']) def test_settings_append_target_er(self): """Test that 'settings append target.er' completes to 'settings append target.error-path'.""" self.complete_from_to( 'settings append target.er', 'settings append target.error-path') def test_settings_insert_after_target_en(self): """Test that 'settings insert-after target.env' completes to 'settings insert-after target.env-vars'.""" self.complete_from_to( 'settings insert-after target.env', 'settings insert-after target.env-vars') def test_settings_insert_before_target_en(self): """Test that 'settings insert-before target.env' completes to 'settings insert-before target.env-vars'.""" self.complete_from_to( 'settings insert-before target.env', 'settings insert-before target.env-vars') def test_settings_replace_target_ru(self): """Test that 'settings replace target.ru' completes to 'settings replace target.run-args'.""" self.complete_from_to( 'settings replace target.ru', 'settings replace target.run-args') def test_settings_show_term(self): self.complete_from_to( 'settings show term-', 'settings show term-width') def test_settings_list_term(self): self.complete_from_to( 'settings list term-', 'settings list term-width') def test_settings_remove_term(self): self.complete_from_to( 'settings remove term-', 'settings remove term-width') def test_settings_s(self): """Test that 'settings s' completes to ['set', 'show'].""" self.complete_from_to( 'settings s', [ 'set', 'show']) def test_settings_set_th(self): """Test that 'settings set thread-f' completes to 'settings set thread-format'.""" self.complete_from_to('settings set thread-f', 'settings set thread-format') def test_settings_s_dash(self): """Test that 'settings set --g' completes to 'settings set --global'.""" self.complete_from_to('settings set --g', 'settings set --global') def test_settings_clear_th(self): """Test that 'settings clear thread-f' completes to 'settings clear thread-format'.""" self.complete_from_to( 'settings clear thread-f', 'settings clear thread-format') def test_settings_set_ta(self): """Test that 'settings set ta' completes to 'settings set target.'.""" self.complete_from_to( 'settings set target.ma', 'settings set target.max-') def test_settings_set_target_exec(self): """Test that 'settings set target.exec' completes to 'settings set target.exec-search-paths '.""" self.complete_from_to( 'settings set target.exec', 'settings set target.exec-search-paths') def test_settings_set_target_pr(self): """Test that 'settings set target.pr' completes to [ 'target.prefer-dynamic-value', 'target.process.'].""" self.complete_from_to('settings set target.pr', ['target.prefer-dynamic-value', 'target.process.']) def test_settings_set_target_process(self): """Test that 'settings set target.process' completes to 'settings set target.process.'.""" self.complete_from_to( 'settings set target.process', 'settings set target.process.') def test_settings_set_target_process_dot(self): """Test that 'settings set target.process.t' completes to 'settings set target.process.thread.'.""" self.complete_from_to( 'settings set target.process.t', 'settings set target.process.thread.') def test_settings_set_target_process_thread_dot(self): """Test that 'settings set target.process.thread.' completes to [ 'target.process.thread.step-avoid-regexp', 'target.process.thread.trace-thread'].""" self.complete_from_to('settings set target.process.thread.', ['target.process.thread.step-avoid-regexp', 'target.process.thread.trace-thread']) def test_thread_plan_discard(self): self.build() (_, _, thread, _) = lldbutil.run_to_source_breakpoint(self, 'ptr_foo', lldb.SBFileSpec("main.cpp")) self.assertTrue(thread) self.complete_from_to('thread plan discard ', 'thread plan discard ') source_path = os.path.join(self.getSourceDir(), "thread_plan_script.py") self.runCmd("command script import '%s'"%(source_path)) self.runCmd("thread step-scripted -C thread_plan_script.PushPlanStack") self.complete_from_to('thread plan discard ', 'thread plan discard 1') self.runCmd('thread plan discard 1') def test_target_space(self): """Test that 'target ' completes to ['create', 'delete', 'list', 'modules', 'select', 'stop-hook', 'variable'].""" self.complete_from_to('target ', ['create', 'delete', 'list', 'modules', 'select', 'stop-hook', 'variable']) def test_target_modules_dump_line_table(self): """Tests source file completion by completing the line-table argument.""" self.build() self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.complete_from_to('target modules dump line-table main.cp', ['main.cpp']) def test_target_modules_load_aout(self): """Tests modules completion by completing the target modules load argument.""" self.build() self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.complete_from_to('target modules load a.ou', ['a.out']) def test_target_modules_search_paths_insert(self): # Completion won't work without a valid target. self.complete_from_to("target modules search-paths insert ", "target modules search-paths insert ") self.build() target = self.dbg.CreateTarget(self.getBuildArtifact('a.out')) self.assertTrue(target, VALID_TARGET) self.complete_from_to("target modules search-paths insert ", "target modules search-paths insert ") self.runCmd("target modules search-paths add a b") self.complete_from_to("target modules search-paths insert ", "target modules search-paths insert 0") # Completion only works for the first arg. self.complete_from_to("target modules search-paths insert 0 ", "target modules search-paths insert 0 ") def test_target_create_dash_co(self): """Test that 'target create --co' completes to 'target variable --core '.""" self.complete_from_to('target create --co', 'target create --core ') def test_target_va(self): """Test that 'target va' completes to 'target variable '.""" self.complete_from_to('target va', 'target variable ') def test_common_completion_thread_index(self): subcommands = ['continue', 'info', 'exception', 'select', 'step-in', 'step-inst', 'step-inst-over', 'step-out', 'step-over', 'step-script'] # Completion should do nothing without threads. for subcommand in subcommands: self.complete_from_to('thread ' + subcommand + ' ', 'thread ' + subcommand + ' ') self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) # At least we have the thread at the index of 1 now. for subcommand in subcommands: self.complete_from_to('thread ' + subcommand + ' ', ['1']) def test_common_completion_type_category_name(self): subcommands = ['delete', 'list', 'enable', 'disable', 'define'] for subcommand in subcommands: self.complete_from_to('type category ' + subcommand + ' ', ['default']) self.complete_from_to('type filter add -w ', ['default']) def test_command_argument_completion(self): """Test completion of command arguments""" self.complete_from_to("watchpoint set variable -", ["-w", "-s"]) self.complete_from_to('watchpoint set variable -w', 'watchpoint set variable -w ') self.complete_from_to("watchpoint set variable --", ["--watch", "--size"]) self.complete_from_to("watchpoint set variable --w", "watchpoint set variable --watch") self.complete_from_to('watchpoint set variable -w ', ['read', 'write', 'read_write']) self.complete_from_to("watchpoint set variable --watch ", ["read", "write", "read_write"]) self.complete_from_to("watchpoint set variable --watch w", "watchpoint set variable --watch write") self.complete_from_to('watchpoint set variable -w read_', 'watchpoint set variable -w read_write') # Now try the same thing with a variable name (non-option argument) to # test that getopts arg reshuffling doesn't confuse us. self.complete_from_to("watchpoint set variable foo -", ["-w", "-s"]) self.complete_from_to('watchpoint set variable foo -w', 'watchpoint set variable foo -w ') self.complete_from_to("watchpoint set variable foo --", ["--watch", "--size"]) self.complete_from_to("watchpoint set variable foo --w", "watchpoint set variable foo --watch") self.complete_from_to('watchpoint set variable foo -w ', ['read', 'write', 'read_write']) self.complete_from_to("watchpoint set variable foo --watch ", ["read", "write", "read_write"]) self.complete_from_to("watchpoint set variable foo --watch w", "watchpoint set variable foo --watch write") self.complete_from_to('watchpoint set variable foo -w read_', 'watchpoint set variable foo -w read_write') def test_command_script_delete(self): self.runCmd("command script add -h test_desc -f none -s current usercmd1") self.check_completion_with_desc('command script delete ', [['usercmd1', 'test_desc']]) def test_command_delete(self): self.runCmd(r"command regex test_command s/^$/finish/ 's/([0-9]+)/frame select %1/'") self.complete_from_to('command delete test_c', 'command delete test_command') def test_command_unalias(self): self.complete_from_to('command unalias ima', 'command unalias image') def test_completion_description_commands(self): """Test descriptions of top-level command completions""" self.check_completion_with_desc("", [ ["command", "Commands for managing custom LLDB commands."], ["breakpoint", "Commands for operating on breakpoints (see 'help b' for shorthand.)"] ]) self.check_completion_with_desc("pl", [ ["platform", "Commands to manage and create platforms."], ["plugin", "Commands for managing LLDB plugins."] ]) # Just check that this doesn't crash. self.check_completion_with_desc("comman", []) self.check_completion_with_desc("non-existent-command", []) def test_completion_description_command_options(self): """Test descriptions of command options""" # Short options self.check_completion_with_desc("breakpoint set -", [ ["-h", "Set the breakpoint on exception catcH."], ["-w", "Set the breakpoint on exception throW."] ]) # Long options. self.check_completion_with_desc("breakpoint set --", [ ["--on-catch", "Set the breakpoint on exception catcH."], ["--on-throw", "Set the breakpoint on exception throW."] ]) # Ambiguous long options. self.check_completion_with_desc("breakpoint set --on-", [ ["--on-catch", "Set the breakpoint on exception catcH."], ["--on-throw", "Set the breakpoint on exception throW."] ]) # Unknown long option. self.check_completion_with_desc("breakpoint set --Z", [ ]) def test_common_completion_frame_index(self): self.build() lldbutil.run_to_source_breakpoint(self, '// Break here', lldb.SBFileSpec("main.cpp")) self.complete_from_to('frame select ', ['0']) self.complete_from_to('thread backtrace -s ', ['0']) def test_frame_recognizer_delete(self): self.runCmd("frame recognizer add -l py_class -s module_name -n recognizer_name") self.check_completion_with_desc('frame recognizer delete ', [['0', 'py_class, module module_name, symbol recognizer_name']]) def test_platform_install_local_file(self): self.complete_from_to('platform target-install main.cp', 'platform target-install main.cpp') @expectedFailureAll(oslist=["windows"], bugnumber="llvm.org/pr24489") def test_symbol_name(self): self.build() self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.complete_from_to('breakpoint set -n Fo', 'breakpoint set -n Foo::Bar(int,\\ int)', turn_off_re_match=True) # No completion for Qu because the candidate is # (anonymous namespace)::Quux(). self.complete_from_to('breakpoint set -n Qu', '') def test_completion_type_formatter_delete(self): self.runCmd('type filter add --child a Aoo') self.complete_from_to('type filter delete ', ['Aoo']) self.runCmd('type filter add --child b -x Boo') self.complete_from_to('type filter delete ', ['Boo']) self.runCmd('type format add -f hex Coo') self.complete_from_to('type format delete ', ['Coo']) self.runCmd('type format add -f hex -x Doo') self.complete_from_to('type format delete ', ['Doo']) self.runCmd('type summary add -c Eoo') self.complete_from_to('type summary delete ', ['Eoo']) self.runCmd('type summary add -x -c Foo') self.complete_from_to('type summary delete ', ['Foo']) self.runCmd('type synthetic add Goo -l test') self.complete_from_to('type synthetic delete ', ['Goo']) self.runCmd('type synthetic add -x Hoo -l test') self.complete_from_to('type synthetic delete ', ['Hoo']) @skipIf(archs=no_match(['x86_64'])) def test_register_read_and_write_on_x86(self): """Test the completion of the commands register read and write on x86""" # The tab completion for "register read/write" won't work without a running process. self.complete_from_to('register read ', 'register read ') self.complete_from_to('register write ', 'register write ') self.build() self.main_source_spec = lldb.SBFileSpec("main.cpp") lldbutil.run_to_source_breakpoint(self, '// Break here', self.main_source_spec) # test cases for register read self.complete_from_to('register read ', ['rax', 'rbx', 'rcx']) self.complete_from_to('register read r', ['rax', 'rbx', 'rcx']) self.complete_from_to('register read ra', 'register read rax') # register read can take multiple register names as arguments self.complete_from_to('register read rax ', ['rax', 'rbx', 'rcx']) # complete with prefix '$' self.completions_match('register read $rb', ['$rbx', '$rbp']) self.completions_match('register read $ra', ['$rax']) self.complete_from_to('register read rax $', ['\$rax', '\$rbx', '\$rcx']) self.complete_from_to('register read $rax ', ['rax', 'rbx', 'rcx']) # test cases for register write self.complete_from_to('register write ', ['rax', 'rbx', 'rcx']) self.complete_from_to('register write r', ['rax', 'rbx', 'rcx']) self.complete_from_to('register write ra', 'register write rax') self.complete_from_to('register write rb', ['rbx', 'rbp']) # register write can only take exact one register name as argument self.complete_from_to('register write rbx ', []) def test_common_completion_target_stophook_ids(self): subcommands = ['delete', 'enable', 'disable'] for subcommand in subcommands: self.complete_from_to('target stop-hook ' + subcommand + ' ', 'target stop-hook ' + subcommand + ' ') self.build() self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.runCmd('target stop-hook add test DONE') for subcommand in subcommands: self.complete_from_to('target stop-hook ' + subcommand + ' ', 'target stop-hook ' + subcommand + ' 1') # Completion should work only on the first argument. for subcommand in subcommands: self.complete_from_to('target stop-hook ' + subcommand + ' 1 ', 'target stop-hook ' + subcommand + ' 1 ') def test_common_completion_type_language(self): self.complete_from_to('type category -l ', ['c']) def test_target_modules_load_dash_u(self): self.build() target = self.dbg.CreateTarget(self.getBuildArtifact("a.out")) self.complete_from_to('target modules load -u ', [target.GetModuleAtIndex(0).GetUUIDString()]) def test_complete_breakpoint_with_ids(self): """These breakpoint subcommands should be completed with a list of breakpoint ids""" subcommands = ['enable', 'disable', 'delete', 'modify', 'name add', 'name delete', 'write'] # The tab completion here is unavailable without a target for subcommand in subcommands: self.complete_from_to('breakpoint ' + subcommand + ' ', 'breakpoint ' + subcommand + ' ') self.build() target = self.dbg.CreateTarget(self.getBuildArtifact('a.out')) self.assertTrue(target, VALID_TARGET) bp = target.BreakpointCreateByName('main', 'a.out') self.assertTrue(bp) self.assertEqual(bp.GetNumLocations(), 1) for subcommand in subcommands: self.complete_from_to('breakpoint ' + subcommand + ' ', ['1']) bp2 = target.BreakpointCreateByName('Bar', 'a.out') self.assertTrue(bp2) self.assertEqual(bp2.GetNumLocations(), 1) for subcommand in subcommands: self.complete_from_to('breakpoint ' + subcommand + ' ', ['1', '2']) for subcommand in subcommands: self.complete_from_to('breakpoint ' + subcommand + ' 1 ', ['1', '2']) def test_complete_breakpoint_with_names(self): self.build() target = self.dbg.CreateTarget(self.getBuildArtifact('a.out')) self.assertTrue(target, VALID_TARGET) # test breakpoint read dedicated self.complete_from_to('breakpoint read -N ', 'breakpoint read -N ') self.complete_from_to('breakpoint read -f breakpoints.json -N ', ['mm']) self.complete_from_to('breakpoint read -f breakpoints.json -N n', 'breakpoint read -f breakpoints.json -N n') self.complete_from_to('breakpoint read -f breakpoints_invalid.json -N ', 'breakpoint read -f breakpoints_invalid.json -N ') # test common breapoint name completion bp1 = target.BreakpointCreateByName('main', 'a.out') self.assertTrue(bp1) self.assertEqual(bp1.GetNumLocations(), 1) self.complete_from_to('breakpoint set -N n', 'breakpoint set -N n') self.assertTrue(bp1.AddNameWithErrorHandling("nn")) self.complete_from_to('breakpoint set -N ', 'breakpoint set -N nn')
d6d0d58f05ad22c9474ef9804ec088549a68f841
5b6b2018ab45cc4710cc5146040bb917fbce985f
/200_longest-palindromic-substring/longest-palindromic-substring.py
60710ba54ef2ad0d3d20d4f30fd1db4aec65a148
[]
no_license
ultimate010/codes_and_notes
6d7c7d42dcfd84354e6fcb5a2c65c6029353a328
30aaa34cb1c840f7cf4e0f1345240ac88b8cb45c
refs/heads/master
2021-01-11T06:56:11.401869
2016-10-30T13:46:39
2016-10-30T13:46:39
72,351,982
0
0
null
null
null
null
UTF-8
Python
false
false
1,016
py
# coding:utf-8 ''' @Copyright:LintCode @Author: ultimate010 @Problem: http://www.lintcode.com/problem/longest-palindromic-substring @Language: Python @Datetime: 16-06-28 14:08 ''' class Solution: # @param {string} s input string # @return {string} the longest palindromic substring def longestPalindrome(self, s): # Write your code here n = len(s) if n <= 1: return s m = 1 ret = '' for i in range(1, 2*n): # at least 2 char if i & 1 == 1: # odd t = i / 2 j = t else: # even t = i / 2 - 1 j = t + 1 while t >= 0 and j < n and s[t] == s[j]: t -= 1 j += 1 # print t, j if t == i: pass # one char else: if j - t - 1 > m: m = j - t - 1 ret = s[t + 1: j] return ret
3fa5ddad1d1612a8b0d4168c59f4f0549f95f6ff
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02937/s033330652.py
6b68eb0299616b86752097386250b1b8f9320039
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
import bisect s = input() t = input() n = len(s) m = len(t) indices = [[] for _ in range(26)] for i in range(n): indices[ord(s[i]) - ord('a')].append(i) for i in range(n): indices[ord(s[i]) - ord('a')].append(i + n) ans = 0 p = 0 for i in range(m): c = ord(t[i]) - ord('a') if len(indices[c]) == 0: print(-1) exit() p = indices[c][bisect.bisect_left(indices[c], p)] + 1 if p >= n: p -= n ans += n ans += p print(ans)
171918eacf53dc68cdf837f4e9b33d81ba426350
a533010ba7e74422c5c7c0193ea2d880e427cb9d
/Python_auto_operation/bin/mlogvis
69b36f81947475e66d1dde10eb0cb5c3e1d112c6
[]
no_license
gateray/learning_python
727b3effe4875f27c86c3e5e66655905f3d5d681
bc08a58f3a5c1f1db884398efa9d27834514199f
refs/heads/master
2021-01-19T06:31:01.616421
2016-06-30T07:39:23
2016-06-30T07:39:23
62,290,273
0
0
null
null
null
null
UTF-8
Python
false
false
345
#!/home/gateray/PycharmProjects/Python_auto_operation/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'mtools==1.1.9','console_scripts','mlogvis' __requires__ = 'mtools==1.1.9' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('mtools==1.1.9', 'console_scripts', 'mlogvis')() )
[ "gateray.example.com" ]
gateray.example.com
32f6b9fff9acce58bdc331e9f0ec63770932d681
0a639bda0058ac76cca97d6123f6c39229f202f1
/companies/models.py
9092279495371d6cf60c4e5d5b187922621a9bb7
[]
no_license
sanchitbareja/occuhunt-web
bb86e630c2caff5815b164435464424b5cf83375
fab152e2ebae3f4dd5c8357696893065bdd30504
refs/heads/master
2020-05-21T01:15:48.973953
2015-01-13T04:03:18
2015-01-13T04:03:18
12,552,735
0
0
null
null
null
null
UTF-8
Python
false
false
3,089
py
from django.db import models import datetime # Create your models here. class CompanyType(models.Model): type = models.CharField(max_length = 256) def __unicode__(self): return self.type ORGANIZATION_TYPES_LIST = ( ('Accounting Services', 'Accounting Services'), ('Aerospace/Defense', 'Aerospace/Defense'), ('Agriculture', 'Agriculture'), ('Architecture/Planning', 'Architecture/Planning'), ('Arts and Entertainment', 'Arts and Entertainment'), ('Automotive/Transportation Manufacturing', 'Automotive/Transportation Manufacturing'), ('Biotech/Pharmaceuticals','Biotech/Pharmaceuticals'), ('Chemicals','Chemicals'), ('Computer Hardware','Computer Hardware'), ('Computer Software', 'Computer Software'), ('Consumer Products', 'Consumer Products'), ('Diversified Services', 'Diversified Services'), ('Education/Higher Education', 'Education/Higher Education'), ('Electronics and Misc. Tech', 'Electronics and Misc. Tech'), ('Energy', 'Energy'), ('Engineering', 'Engineering'), ('Financial Services', 'Financial Services'), ('Food, Beverage and Tobacco', 'Food, Beverage and Tobacco'), ('Government', 'Government'), ('Health Products and Services', 'Health Products and Services'), ('Hospital/Healthcare', 'Hospital/Healthcare'), ('Insurance', 'Insurance'), ('Law/Law Related', 'Law/Law Related'), ('Leisure and Travel', 'Leisure and Travel'), ('Materials and Construction', 'Materials and Construction'), ('Media', 'Media'), ('Metals and Mining', 'Metals and Mining'), ('Non-Profit and Social Services', 'Non-Profit and Social Services'), ('Other Manufacturing', 'Other Manufacturing'), ('Professional, Technical, and Administrative Services', 'Professional, Technical, and Administrative Services'), ('Real Estate', 'Real Estate'), ('Retail and Wholesale Trade', 'Retail and Wholesale Trade'), ('Telecommunications', 'Telecommunications'), ('Transportation Services', 'Transportation Services'), ('Utilities', 'Utilities'), ('Other', 'Other'), ) class Company(models.Model): name = models.CharField(max_length=512) founded = models.CharField(max_length=64, null=True, blank=True) funding = models.CharField(max_length=64, null=True, blank=True) website = models.URLField(max_length=512, null=True, blank=True) careers_website = models.URLField(max_length=512, null=True, blank=True) logo = models.URLField(max_length=512, null=True, blank=True) banner_image = models.URLField(max_length=512, null=True, blank=True) number_employees = models.CharField(max_length=48, null=True, blank=True) organization_type = models.CharField(max_length=512, null=True, blank=True, choices=ORGANIZATION_TYPES_LIST) company_description = models.TextField(null=True, blank=True) competitors = models.CharField(max_length=512, null=True, blank=True) avg_salary = models.CharField(max_length=64, null=True, blank=True) location = models.CharField(max_length=512, null=True, blank=True) intro_video = models.TextField(null=True, blank=True) timestamp = models.DateTimeField(auto_now=False, auto_now_add=True) def __unicode__(self): return self.name
1c165f1ccad36c215f56ef5613cea7ee2101c812
1facfd9d94b0f08ddde2834c717bda55359c2e35
/Python programming for the absolute beginner - Michael Dawson/Chapter 8 - OOP beginning/8.3.py
58bad4a7400168c26ceaa2894583a1b3bd76ba4e
[]
no_license
echpochmak/ppftab
9160383c1d34a559b039af5cd1451a18f2584549
f5747d87051d837eca431f782491ec9ba3b44626
refs/heads/master
2021-09-15T07:23:06.581750
2018-05-28T14:33:13
2018-05-28T14:33:13
261,880,781
1
0
null
2020-05-06T21:18:13
2020-05-06T21:18:13
null
UTF-8
Python
false
false
3,000
py
# The material form the book in polish # Opiekun zwierzaka # Wirtualny pupil, którym należy się opiekować class Critter(object): """Wirtualny pupil""" def __init__(self, name, hunger = 0, boredom = 0): self.name = name self.hunger = hunger self.boredom = boredom def __str__(self): rep = "The valuse of your pet:\n" rep += "The hunger = " + str(self.hunger) rep += "\nThe boredom = " + str(self.boredom) return rep def __pass_time(self): self.hunger += 1 self.boredom += 1 @property def mood(self): unhappiness = self.hunger + self.boredom if unhappiness < 5: m = "szczęśliwy" elif 5 <= unhappiness <= 10: m = "zadowolony" elif 11 <= unhappiness <= 15: m = "podenerwowany" else: m = "wściekły" return m def talk(self): print("Nazywam się", self.name, "i jestem", self.mood, "teraz.\n") self.__pass_time() def eat(self, food = 4): print(""" How much food would you like to serve to you pet? \n 1. Type 1 for one snack. \n 2. Type 2 for 2 snacks. \n 3. Type 3 for 3 snacks. \n 4. Type 4 for 4 snacks. \n 5. Type 5 for 5 snacks. """, end = " ") food = int(input("Wybierasz: ")) print("Mniam, mniam. Dziękuję.") self.hunger -= food if self.hunger < 0: self.hunger = 0 self.__pass_time() def play(self, fun = 4): print(""" How log would you like to play with your pet? \n 1. Type 1 for one minute. \n 2. Type 2 for 2 minutes. \n 3. Type 3 for 3 minutes. \n 4. Type 4 for 4 minutes. \n 5. Type 5 for 5 minutes. """, end = " ") fun = int(input("Wybierasz: ")) print("Hura!") self.boredom -= fun if self.boredom < 0: self.boredom = 0 self.__pass_time() def main(): crit_name = input("Jak chcesz nazwać swojego zwierzaka?: ") crit = Critter(crit_name) choice = None while choice != "0": print \ (""" Opiekun zwierzaka 0 - zakończ 1 - słuchaj swojego zwierzaka 2 - nakarm swojego zwierzaka 3 - pobaw się ze swoim zwierzakiem 4 - show the values of your pet """) choice = input("Wybierasz: ") print() # wyjdź z pętli if choice == "0": print("Do widzenia.") # słuchaj swojego zwierzaka elif choice == "1": crit.talk() # nakarm swojego zwierzaka elif choice == "2": crit.eat() # pobaw się ze swoim zwierzakiem elif choice == "3": crit.play() elif choice == "4": print(crit) # nieznany wybór else: print("\nNiestety,", choice, "nie jest prawidłowym wyborem.") main() input("\n\nAby zakończyć program, naciśnij klawisz Enter.")
26aa690ec62cb1867208234cd0c19ab8f7a9663a
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/S/stefanw/kommunalverwaltung_nrw.py
aef5bdefc3a1b54035f7bc556bd8da592cd801c6
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,508
py
import scraperwiki import lxml.html as lh from lxml import etree LIST_URL = 'http://www3.chamaeleon.de/komnav/kundensuchergebnis.php?Ort=&PLZ=%s&OBGM=&Bundesland=Nordrhein-Westfalen&anfrage=imnrw' DETAIL_URL = 'http://www3.chamaeleon.de/komnav/kundensuchedetail.php?schluessel=%s&anfrage=imnrw&PLZ=%s&Ort=&Bundesland=Nordrhein-Westfalen&OBGM=&single_search=' def plz_generator(): for i in (3,4,5): for j in range(10): yield "%s%s" % (i, j) kommune = [] for plz in plz_generator(): print plz content = scraperwiki.scrape(LIST_URL % plz) content = content.decode('latin1') if 'Leider keinen Datensatz gefunden' in content: continue doc = lh.fromstring(content) for row in doc.cssselect('tr'): td = row.cssselect('td') if not td: continue kommune.append({ 'name': td[0].text_content().strip(), 'plz': td[1].text_content().strip(), 'head': td[3].text_content().strip(), 'key': td[4].cssselect('a')[0].attrib['href'].split('schluessel=')[1].split('&anfrage=')[0], 'source': td[4].cssselect('a')[0].attrib['href'] }) wanted = { u'': None, u'Stadt-/Gemeinde-/Kreisname': None, u'PLZ': None, u'Bundesland': None, u'Bev\xf6lkerungsdichte Einwohner pro km\xb2': None, u'(Ober-)b\xfcrgermeisterin/Landr\xe4tin/Oberkreisdirektorinbzw.(Ober-)b\xfcrgermeister/Landrat/Oberkreisdirektor': None, u'EMail': 'email', u'Postanschrift': 'address', u'Regierungsbezirk': 'gov_area', u'Fax': 'fax', u'Telefonzentrale': 'phone', u'Hausanschrift (Verwaltungssitz)': 'address2', u'PLZ-Hausanschrift': 'plz2', u'Ausl\xe4nderanteil (in %)': 'immigrant_percentage', u'EinwohnerInnen': 'population', u'davon weiblich/m\xe4nnlich (in %)': 'female_male_percentage', u'Fl\xe4che (in km\xb2)': 'area', u'Anzahl Besch\xe4ftigte': 'employees', u'Homepage der Kommune': 'url' } print repr(wanted.keys()) for kom in kommune: for v in wanted.values(): if v is not None: kom[v] = None content = scraperwiki.scrape(DETAIL_URL % (kom['key'], kom['plz'])) content = content.decode('latin1') doc = lh.fromstring(content) for row in doc.cssselect('tr'): td = row.cssselect('td') if not td: continue key = td[0].text_content().split(':')[0].strip() if wanted.get(key, None) is not None: kom[wanted[key]] = td[1].text_content().strip() elif key not in wanted: print repr(key) print repr(kom) scraperwiki.sqlite.save(['key'], kom, table_name='nrw_kommune')import scraperwiki import lxml.html as lh from lxml import etree LIST_URL = 'http://www3.chamaeleon.de/komnav/kundensuchergebnis.php?Ort=&PLZ=%s&OBGM=&Bundesland=Nordrhein-Westfalen&anfrage=imnrw' DETAIL_URL = 'http://www3.chamaeleon.de/komnav/kundensuchedetail.php?schluessel=%s&anfrage=imnrw&PLZ=%s&Ort=&Bundesland=Nordrhein-Westfalen&OBGM=&single_search=' def plz_generator(): for i in (3,4,5): for j in range(10): yield "%s%s" % (i, j) kommune = [] for plz in plz_generator(): print plz content = scraperwiki.scrape(LIST_URL % plz) content = content.decode('latin1') if 'Leider keinen Datensatz gefunden' in content: continue doc = lh.fromstring(content) for row in doc.cssselect('tr'): td = row.cssselect('td') if not td: continue kommune.append({ 'name': td[0].text_content().strip(), 'plz': td[1].text_content().strip(), 'head': td[3].text_content().strip(), 'key': td[4].cssselect('a')[0].attrib['href'].split('schluessel=')[1].split('&anfrage=')[0], 'source': td[4].cssselect('a')[0].attrib['href'] }) wanted = { u'': None, u'Stadt-/Gemeinde-/Kreisname': None, u'PLZ': None, u'Bundesland': None, u'Bev\xf6lkerungsdichte Einwohner pro km\xb2': None, u'(Ober-)b\xfcrgermeisterin/Landr\xe4tin/Oberkreisdirektorinbzw.(Ober-)b\xfcrgermeister/Landrat/Oberkreisdirektor': None, u'EMail': 'email', u'Postanschrift': 'address', u'Regierungsbezirk': 'gov_area', u'Fax': 'fax', u'Telefonzentrale': 'phone', u'Hausanschrift (Verwaltungssitz)': 'address2', u'PLZ-Hausanschrift': 'plz2', u'Ausl\xe4nderanteil (in %)': 'immigrant_percentage', u'EinwohnerInnen': 'population', u'davon weiblich/m\xe4nnlich (in %)': 'female_male_percentage', u'Fl\xe4che (in km\xb2)': 'area', u'Anzahl Besch\xe4ftigte': 'employees', u'Homepage der Kommune': 'url' } print repr(wanted.keys()) for kom in kommune: for v in wanted.values(): if v is not None: kom[v] = None content = scraperwiki.scrape(DETAIL_URL % (kom['key'], kom['plz'])) content = content.decode('latin1') doc = lh.fromstring(content) for row in doc.cssselect('tr'): td = row.cssselect('td') if not td: continue key = td[0].text_content().split(':')[0].strip() if wanted.get(key, None) is not None: kom[wanted[key]] = td[1].text_content().strip() elif key not in wanted: print repr(key) print repr(kom) scraperwiki.sqlite.save(['key'], kom, table_name='nrw_kommune')
323a4c7eddab68f041ff6fe4f9828b26f769b0ca
525c6a69bcf924f0309b69f1d3aff341b06feb8e
/sunyata/backend/chainer/core/map/power.py
f883795e8d4b0bb7d086f28a97f498406b350ed9
[]
no_license
knighton/sunyata_2017
ba3af4f17184d92f6277d428a81802ac12ef50a4
4e9d8e7d5666d02f9bb0aa9dfbd16b7a8e97c1c8
refs/heads/master
2021-09-06T13:19:06.341771
2018-02-07T00:28:07
2018-02-07T00:28:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
from chainer import functions as F from ....base.core.map.power import BasePowerAPI class ChainerPowerAPI(BasePowerAPI): def __init__(self): BasePowerAPI.__init__(self) def pow(self, x, a): return F.math.basic_math.pow(x, a) def rsqrt(self, x): return F.rsqrt(x) def sqrt(self, x): return F.sqrt(x) def square(self, x): return F.square(x)
d9bec0f6c57a3c8732298f0a3c6a95177cd043cd
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-6378.py
52a0e4f72cbae1d4e1737577e4ff7f5cd9ab764f
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,288
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) $RetType: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
5f578f05e9eeca2e7a85d76fb6cb42a0d606f54b
8ec910de801b424540abb4e6e955838a287663b6
/Bucles/ManoMoneda.py
7ea1f29e4f99d1de6ef426446f1d5ad4a59e551a
[]
no_license
hector81/Aprendiendo_Python
f4f211ace32d334fb6b495b1b8b449d83a7f0bf8
9c73f32b0c82f08e964472af1923f66c0fbb4c22
refs/heads/master
2022-12-28T03:41:20.378415
2020-09-28T09:15:03
2020-09-28T09:15:03
265,689,885
0
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
# El programa simulará el juego de adivinar en qué mano está la moneda. # Le preguntará a la persona el nombre y cuantas partidas quiere jugar, # luego calculará el ganador. import random def introducirNumero(): while True: try: numeroVecesPartida = int(input("Por favor ingrese un número : ")) if numeroVecesPartida > 0: return numeroVecesPartida break except ValueError: print("Oops! No era válido. Intente nuevamente...") print("Por favor ingrese un número de partidas: ") numeroVecesPartida = introducirNumero() while numeroVecesPartida > 0: print('¿En que mano tengo la moneda? Si crees que en la derecha pulsa 1 y si es en la izquierda pulsa 2') numeroEleccion = int(input("Escoge la mano : ")) if numeroEleccion > 2 or numeroEleccion < 1: print('Tienes que poner 1:derecha o 2:izquierda. No valen otros numeros') else: numeroAleatorio = random.randint(1, 2) if numeroAleatorio == numeroEleccion: print('Has acertado') numeroVecesPartida = 0 else: if (numeroVecesPartida - 1) == 0: print('No has acertado y ya no quedan intentos') numeroVecesPartida = 0 else: print('No has acertado. Vuelve a intertarlo. Te quedan ' + str(numeroVecesPartida - 1) + ' intentos') numeroVecesPartida = numeroVecesPartida - 1
6b57aa51eb80cb2ba879e3fe19dc47e190d2b60e
65cefe621c2444d9b793d7969d2e2c3ff54373d1
/analyze/api.py
c831cbc8c9d0c07781dd86cede87b9b4f346509d
[ "Apache-2.0" ]
permissive
leekangsan/HanziSRS
01585e694fbf81428085b8a162acf101f7f5bec1
50f84a9171b61df3305e8922b645b553e895a509
refs/heads/master
2020-03-29T05:19:19.583429
2018-04-28T04:37:35
2018-04-28T04:37:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
import requests from bs4 import BeautifulSoup def jukuu(word): params = { 'q': word } res = requests.get('http://www.jukuu.com/search.php', params=params) soup = BeautifulSoup(res.text, 'html.parser') for c, e in zip(soup.find_all('tr', {'class':'c'}), soup.find_all('tr', {'class':'e'})): yield { 'Chinese': c.text.strip(), 'English': e.text.strip() } if __name__ == '__main__': print(list(jukuu('寒假')))
296283618e61a02a6f6c8c8516a5ae54f984803f
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02766/s873846892.py
1b5165713fefb3469a152f09d2a75411c31b81ee
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
def main(): N, K = map(int, input().split()) ans = base10to(N, K) print(len(ans)) def base10to(n, b): if (int(n/b)): return base10to(int(n/b), b) + str(n%b) return str(n%b) if __name__ == '__main__': main()
068d8dce5daa9ac6705c8b77bd447240a513c227
a38bf459ae380f67e0de22f7106a8df4385a7076
/tests/integration/goldens/logging/samples/generated_samples/logging_v2_generated_config_service_v2_list_views_sync.py
b273c465d3ec976b018c54a7b83e2a4218b81327
[ "Apache-2.0" ]
permissive
googleapis/gapic-generator-python
73ce9d52f6f5bb2652d49b237b24263d6637b1da
4eee26181e8db9fb5144eef5a76f178c1594e48a
refs/heads/main
2023-09-04T11:12:14.728757
2023-09-02T10:34:44
2023-09-02T10:34:44
129,809,857
116
65
Apache-2.0
2023-09-12T18:57:01
2018-04-16T21:47:04
Python
UTF-8
Python
false
false
1,852
py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for ListViews # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-logging # [START logging_v2_generated_ConfigServiceV2_ListViews_sync] # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import logging_v2 def sample_list_views(): # Create a client client = logging_v2.ConfigServiceV2Client() # Initialize request argument(s) request = logging_v2.ListViewsRequest( parent="parent_value", ) # Make the request page_result = client.list_views(request=request) # Handle the response for response in page_result: print(response) # [END logging_v2_generated_ConfigServiceV2_ListViews_sync]
73f8dacb0a6fd98a99721e8a113c12641950a990
175522feb262e7311fde714de45006609f7e5a07
/code/nprd/visualize_PTB.py
aab1cc504cd8b84b3cb1e24016f16bf6ca0b9dde
[]
no_license
m-hahn/predictive-rate-distortion
a048927dbc692000211df09da09ad1ed702525df
1ff573500a2313e0a79d68399cbd83970bf05e4d
refs/heads/master
2020-04-17T13:49:36.961798
2019-06-20T12:37:28
2019-06-20T12:37:28
166,631,865
0
0
null
null
null
null
UTF-8
Python
false
false
3,051
py
# Was called runMemoryManyConfigs_NeuralFlow_Words_English.py from matplotlib.ticker import MaxNLocator import math import subprocess import random import os from paths import LOG_PATH_WORDS import numpy as np ids = [x.split("_")[-1][:-4] for x in os.listdir("/home/user/CS_SCR/CODEBOOKS/") if "nprd" in x] print(ids) language = "PTB" model = "REAL" ress = [] times = [] epochs_nums = [] for idn in ids: with open("/home/user/CS_SCR/CODE/predictive-rate-distortion/results/outputs-nprd-words/test-estimates-"+language+"_"+"nprd_words_PTB_saveCodebook.py"+"_model_"+idn+"_"+model+".txt", "r") as inFile: args = next(inFile).strip().split(" ") epochs = len(next(inFile).strip().split(" ")) epochs_nums.append(epochs) next(inFile) next(inFile) next(inFile) time = float(next(inFile).strip()) times.append(time) print(args) beta = args[-3] beta = -math.log(float(beta)) if abs(beta - round(beta)) > 0.001: continue if round(beta) not in [1.0, 3.0, 5.0]: continue dat = [] with open("/home/user/CS_SCR/CODE/predictive-rate-distortion/results/nprd-samples/samples_"+idn+".txt", "r") as inFile: data = [x.split("\t") for x in inFile.read().strip().split("\n")] for i in range(0, len(data), 30): dat.append(data[i:i+30]) assert data[i][0] == '0', data[i] # print(len(dat)) ress.append((idn, round(beta), dat)) print(epochs_nums) print(times) #quit() ress = sorted(ress, key=lambda x:x[1]) #print(ress) import matplotlib import matplotlib.pyplot as plt numsOfTexts = [len(x[2]) for x in ress] print(numsOfTexts) variations = [] for j in range(min(numsOfTexts)): #len(ress[0][2])): data = ress[0][2][j] print(data) pos = np.asarray([int(x[0]) for x in data]) char = [x[1] for x in data] ys = [] for i in range(len(ress)): ys.append([float(x[2]) for x in ress[i][2][j]]) ys[-1] = np.asarray(ys[-1]) print(ys[-1]) print(ys[0]) fig, ax = plt.subplots() for y, color, style in zip(ys, ["red", "green", "blue"], ["dotted", "dashdot", "solid"]): ax.plot(pos[16:], y[16:], color=color, linestyle=style) variation = [y[16] for y in ys] variation = max(variation) - min(variation) variations.append((j, variation)) plt.subplots_adjust(left=0.03, right=0.99, top=0.99, bottom=0.17) fig.set_size_inches(9, 1.7) #ax.grid(False) plt.xticks(pos[16:], [x.decode("utf-8") for x in char][16:]) # plt.axvline(x=15.5, color="green") ax.grid(False) ax.set_ylabel("Cross-Entropy", fontsize=12) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) # figure(figsize=(25,10)) fileName = "sample_"+str(j) fig.savefig("figures/"+fileName+".png", bbox_inches='tight') # plt.show() plt.gcf().clear() print("figures/"+fileName+".png") with open("figures/"+fileName+".txt", "w") as outFile: print >> outFile, (" ".join(char[:16])) print(sorted(variations, key=lambda x:x[1]))
8043bf4f0fcdecc59ee5421189b23a4884fc8599
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp/sblp_ut=3.5_rd=0.65_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=30/params.py
d0a52d0abffd2812cb65883935448f5d49c0ec13
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
{'cpus': 4, 'duration': 30, 'final_util': '3.528333', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '0.65', 'res_nmb': '4', 'res_weight': '0.04', 'scheduler': 'RUN', 'trial': 30, 'utils': 'uni-medium-3'}
7e3a97d42210041be00fe78eac7fdc797d8027a2
e74e89592d8a3b1a0b465a7b1595708b224362d2
/pset_pandas1_wine_reviews/data_cleaning/solutions/p8.py
3d5b21f733b7e5400eea8fc4cc02f3214b41120a
[ "MIT" ]
permissive
mottaquikarim/pydev-psets
016f60f1e9d9a534bd9a66ecde8eb412beee37d1
9749e0d216ee0a5c586d0d3013ef481cc21dee27
refs/heads/master
2023-01-10T11:15:57.041287
2021-06-07T23:38:34
2021-06-07T23:38:34
178,547,933
5
2
MIT
2023-01-03T22:28:27
2019-03-30T11:09:08
Jupyter Notebook
UTF-8
Python
false
false
564
py
""" Cleaning Data VIII - Find Null Values """ import numpy as np import pandas as pd wine_reviews = pd.read_csv('../../winemag-data-130k.csv') wine_reviews.rename(columns={'points': 'rating'}, inplace=True) # Use the below df for these problems: wine_ratings = wine_reviews[['title', 'country', 'rating', 'price']] # Return a count of the null values in wine_ratings. print(wine_ratings.isnull().sum()) """ title 0 country 63 rating 0 price 8996 """ # Print out the number of rows in wine_ratings. print(len(wine_ratings)) # 129971
5b421ca138ad52f140295d34f8ee1fdfc8559474
bc01e1d158e7d8f28451a7e108afb8ec4cb7d5d4
/sage/src/sage/modular/cusps_nf.py
ea7befba4c0d9a2601835cf1167a18323322bd32
[]
no_license
bopopescu/geosci
28792bda1ec1f06e23ba8dcb313769b98f793dad
0d9eacbf74e2acffefde93e39f8bcbec745cdaba
refs/heads/master
2021-09-22T17:47:20.194233
2018-09-12T22:19:36
2018-09-12T22:19:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
42,980
py
r""" The set `\mathbb{P}^1(K)` of cusps of a number field K AUTHORS: - Maite Aranes (2009): Initial version EXAMPLES: The space of cusps over a number field k: :: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 5 sage: kCusps is NFCusps(k) True Define a cusp over a number field: :: sage: NFCusp(k, a, 2/(a+1)) Cusp [a - 5: 2] of Number Field in a with defining polynomial x^2 + 5 sage: kCusps((a,2)) Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k,oo) Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 Different operations with cusps over a number field: :: sage: alpha = NFCusp(k, 3, 1/a + 2); alpha Cusp [a + 10: 7] of Number Field in a with defining polynomial x^2 + 5 sage: alpha.numerator() a + 10 sage: alpha.denominator() 7 sage: alpha.ideal() Fractional ideal (7, a + 3) sage: alpha.ABmatrix() [a + 10, -3*a + 1, 7, -2*a] sage: alpha.apply([0, 1, -1,0]) Cusp [7: -a - 10] of Number Field in a with defining polynomial x^2 + 5 Check Gamma0(N)-equivalence of cusps: :: sage: N = k.ideal(3) sage: alpha = NFCusp(k, 3, a + 1) sage: beta = kCusps((2, a - 3)) sage: alpha.is_Gamma0_equivalent(beta, N) True Obtain transformation matrix for equivalent cusps: :: sage: t, M = alpha.is_Gamma0_equivalent(beta, N, Transformation=True) sage: M[2] in N True sage: M[0]*M[3] - M[1]*M[2] == 1 True sage: alpha.apply(M) == beta True List representatives for Gamma_0(N) - equivalence classes of cusps: :: sage: Gamma0_NFCusps(N) [Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5, Cusp [1: 3] of Number Field in a with defining polynomial x^2 + 5, ...] """ #***************************************************************************** # Copyright (C) 2009, Maite Aranes <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** from sage.structure.parent_base import ParentWithBase from sage.structure.element import Element, is_InfinityElement from sage.misc.cachefunc import cached_method from sage.misc.superseded import deprecated_function_alias _nfcusps_cache = {} _list_reprs_cache = {} def NFCusps_clear_list_reprs_cache(): """ Clear the global cache of lists of representatives for ideal classes. EXAMPLES:: sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() sage: k.<a> = NumberField(x^3 + 11) sage: N = k.ideal(a+1) sage: sage.modular.cusps_nf.list_of_representatives(N) (Fractional ideal (1), Fractional ideal (17, a - 5)) sage: sage.modular.cusps_nf._list_reprs_cache.keys() [Fractional ideal (a + 1)] sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() sage: sage.modular.cusps_nf._list_reprs_cache.keys() [] """ global _list_reprs_cache _list_reprs_cache = {} def list_of_representatives(N): """ Returns a list of ideals, coprime to the ideal ``N``, representatives of the ideal classes of the corresponding number field. Note: This list, used every time we check `\\Gamma_0(N)` - equivalence of cusps, is cached. INPUT: - ``N`` -- an ideal of a number field. OUTPUT: A list of ideals coprime to the ideal ``N``, such that they are representatives of all the ideal classes of the number field. EXAMPLES:: sage: sage.modular.cusps_nf.NFCusps_clear_list_reprs_cache() sage: sage.modular.cusps_nf._list_reprs_cache.keys() [] :: sage: from sage.modular.cusps_nf import list_of_representatives sage: k.<a> = NumberField(x^4 + 13*x^3 - 11) sage: N = k.ideal(713, a + 208) sage: L = list_of_representatives(N); L (Fractional ideal (1), Fractional ideal (37, a + 12), Fractional ideal (47, a - 9)) The output of ``list_of_representatives`` has been cached: :: sage: sage.modular.cusps_nf._list_reprs_cache.keys() [Fractional ideal (713, a + 208)] sage: sage.modular.cusps_nf._list_reprs_cache[N] (Fractional ideal (1), Fractional ideal (37, a + 12), Fractional ideal (47, a - 9)) """ if N in _list_reprs_cache: lreps = _list_reprs_cache[N] if not (lreps is None): return lreps lreps = NFCusps_ideal_reps_for_levelN(N)[0] _list_reprs_cache[N] = lreps return lreps def NFCusps_clear_cache(): """ Clear the global cache of sets of cusps over number fields. EXAMPLES:: sage: sage.modular.cusps_nf.NFCusps_clear_cache() sage: k.<a> = NumberField(x^3 + 51) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^3 + 51 sage: sage.modular.cusps_nf._nfcusps_cache.keys() [Number Field in a with defining polynomial x^3 + 51] sage: NFCusps_clear_cache() sage: sage.modular.cusps_nf._nfcusps_cache.keys() [] """ global _nfcusps_cache _nfcusps_cache = {} def NFCusps(number_field, use_cache=True): r""" The set of cusps of a number field `K`, i.e. `\mathbb{P}^1(K)`. INPUT: - ``number_field`` -- a number field - ``use_cache`` -- bool (default=True) - to set a cache of number fields and their associated sets of cusps OUTPUT: The set of cusps over the given number field. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 5 sage: kCusps is NFCusps(k) True Saving and loading works: :: sage: loads(kCusps.dumps()) == kCusps True We test use_cache: :: sage: NFCusps_clear_cache() sage: k.<a> = NumberField(x^2 + 11) sage: kCusps = NFCusps(k, use_cache=False) sage: sage.modular.cusps_nf._nfcusps_cache {} sage: kCusps = NFCusps(k, use_cache=True) sage: sage.modular.cusps_nf._nfcusps_cache {Number Field in a with defining polynomial x^2 + 11: ...} sage: kCusps is NFCusps(k, use_cache=False) False sage: kCusps is NFCusps(k, use_cache=True) True """ if use_cache: key = number_field if key in _nfcusps_cache: C = _nfcusps_cache[key] if not (C is None): return C C = NFCuspsSpace(number_field) if use_cache: _nfcusps_cache[key] = C return C #************************************************************************** #* NFCuspsSpace class * #************************************************************************** class NFCuspsSpace(ParentWithBase): """ The set of cusps of a number field. See ``NFCusps`` for full documentation. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 5 """ def __init__(self, number_field): """ See ``NFCusps`` for full documentation. EXAMPLES:: sage: k.<a> = NumberField(x^3 + x^2 + 13) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^3 + x^2 + 13 """ self.__number_field = number_field ParentWithBase.__init__(self, self) def __cmp__(self, right): """ Return equality only if right is the set of cusps for the same field. Comparing sets of cusps for two different fields gives the same result as comparing the two fields. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: L.<a> = NumberField(x^2 + 23) sage: kCusps = NFCusps(k); kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 5 sage: LCusps = NFCusps(L); LCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 23 sage: kCusps == NFCusps(k) True sage: LCusps == NFCusps(L) True sage: LCusps == kCusps False """ t = cmp(type(self), type(right)) if t: return t else: return cmp(self.number_field(), right.number_field()) def _repr_(self): """ String representation of the set of cusps of a number field. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 2) sage: kCusps = NFCusps(k) sage: kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 2 sage: kCusps._repr_() 'Set of all cusps of Number Field in a with defining polynomial x^2 + 2' sage: kCusps.rename('Number Field Cusps'); kCusps Number Field Cusps sage: kCusps.rename(); kCusps Set of all cusps of Number Field in a with defining polynomial x^2 + 2 """ return "Set of all cusps of %s" %(self.number_field()) def _latex_(self): """ Return latex representation of self. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k) sage: latex(kCusps) # indirect doctest \mathbf{P}^1(\Bold{Q}[a]/(a^{2} + 5)) """ return "\\mathbf{P}^1(%s)" %(self.number_field()._latex_()) def __call__(self, x): """ Convert x into the set of cusps of a number field. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k) sage: c = kCusps(a,2) Traceback (most recent call last): ... TypeError: __call__() takes exactly 2 arguments (3 given) :: sage: c = kCusps((a,2)); c Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 sage: kCusps(2/a) Cusp [-2*a: 5] of Number Field in a with defining polynomial x^2 + 5 sage: kCusps(oo) Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 """ return NFCusp(self.number_field(), x, parent=self) @cached_method def zero(self): """ Return the zero cusp. NOTE: This method just exists to make some general algorithms work. It is not intended that the returned cusp is an additive neutral element. EXAMPLE:: sage: k.<a> = NumberField(x^2 + 5) sage: kCusps = NFCusps(k) sage: kCusps.zero() Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 """ return self(0) zero_element = deprecated_function_alias(17694, zero) def number_field(self): """ Return the number field that this set of cusps is attached to. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: kCusps = NFCusps(k) sage: kCusps.number_field() Number Field in a with defining polynomial x^2 + 1 """ return self.__number_field #************************************************************************** #* NFCusp class * #************************************************************************** class NFCusp(Element): r""" Creates a number field cusp, i.e., an element of `\mathbb{P}^1(k)`. A cusp on a number field is either an element of the field or infinity, i.e., an element of the projective line over the number field. It is stored as a pair (a,b), where a, b are integral elements of the number field. INPUT: - ``number_field`` -- the number field over which the cusp is defined. - ``a`` -- it can be a number field element (integral or not), or a number field cusp. - ``b`` -- (optional) when present, it must be either Infinity or coercible to an element of the number field. - ``lreps`` -- (optional) a list of chosen representatives for all the ideal classes of the field. When given, the representative of the cusp will be changed so its associated ideal is one of the ideals in the list. OUTPUT: ``[a: b]`` -- a number field cusp. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 5) sage: NFCusp(k, a, 2) Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k, (a,2)) Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k, a, 2/(a+1)) Cusp [a - 5: 2] of Number Field in a with defining polynomial x^2 + 5 Cusp Infinity: :: sage: NFCusp(k, 0) Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k, oo) Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k, 3*a, oo) Cusp [0: 1] of Number Field in a with defining polynomial x^2 + 5 sage: NFCusp(k, a + 5, 0) Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 Saving and loading works: :: sage: alpha = NFCusp(k, a, 2/(a+1)) sage: loads(dumps(alpha))==alpha True Some tests: :: sage: I*I -1 sage: NFCusp(k, I) Traceback (most recent call last): ... TypeError: unable to convert I to a cusp of the number field :: sage: NFCusp(k, oo, oo) Traceback (most recent call last): ... TypeError: unable to convert (+Infinity, +Infinity) to a cusp of the number field :: sage: NFCusp(k, 0, 0) Traceback (most recent call last): ... TypeError: unable to convert (0, 0) to a cusp of the number field :: sage: NFCusp(k, "a + 2", a) Cusp [-2*a + 5: 5] of Number Field in a with defining polynomial x^2 + 5 :: sage: NFCusp(k, NFCusp(k, oo)) Cusp Infinity of Number Field in a with defining polynomial x^2 + 5 sage: c = NFCusp(k, 3, 2*a) sage: NFCusp(k, c, a + 1) Cusp [-a - 5: 20] of Number Field in a with defining polynomial x^2 + 5 sage: L.<b> = NumberField(x^2 + 2) sage: NFCusp(L, c) Traceback (most recent call last): ... ValueError: Cannot coerce cusps from one field to another """ def __init__(self, number_field, a, b=None, parent=None, lreps=None): """ Constructor of number field cusps. See ``NFCusp`` for full documentation. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: c = NFCusp(k, 3, a+1); c Cusp [3: a + 1] of Number Field in a with defining polynomial x^2 + 1 sage: c.parent() Set of all cusps of Number Field in a with defining polynomial x^2 + 1 sage: kCusps = NFCusps(k) sage: c.parent() is kCusps True """ if parent is None: parent = NFCusps(number_field) Element.__init__(self, parent) R = number_field.maximal_order() if b is None: if not a:#that is cusp "0" self.__a = R(0) self.__b = R(1) return if isinstance(a, NFCusp): if a.parent() == parent: self.__a = R(a.__a) self.__b = R(a.__b) else: raise ValueError("Cannot coerce cusps from one field to another") elif a in R: self.__a = R(a) self.__b = R(1) elif a in number_field: self.__b = R(a.denominator()) self.__a = R(a * self.__b) elif is_InfinityElement(a): self.__a = R(1) self.__b = R(0) elif isinstance(a, (int, long)): self.__a = R(a) self.__b = R(1) elif isinstance(a, (tuple, list)): if len(a) != 2: raise TypeError("unable to convert %r to a cusp \ of the number field"%a) if a[1].is_zero(): self.__a = R(1) self.__b = R(0) elif a[0] in R and a[1] in R: self.__a = R(a[0]) self.__b = R(a[1]) elif isinstance(a[0], NFCusp):#we know that a[1] is not zero if a[1] == 1: self.__a = a[0].__a self.__b = a[0].__b else: r = a[0].__a / (a[0].__b * a[1]) self.__b = R(r.denominator()) self.__a = R(r*self.__b) else: try: r = number_field(a[0]/a[1]) self.__b = R(r.denominator()) self.__a = R(r * self.__b) except (ValueError, TypeError): raise TypeError("unable to convert %r to a cusp \ of the number field"%a) else: try: r = number_field(a) self.__b = R(r.denominator()) self.__a = R(r * self.__b) except (ValueError, TypeError): raise TypeError("unable to convert %r to a cusp \ of the number field"%a) else:#'b' is given if is_InfinityElement(b): if is_InfinityElement(a) or (isinstance(a, NFCusp) and a.is_infinity()): raise TypeError("unable to convert (%r, %r) \ to a cusp of the number field"%(a, b)) self.__a = R(0) self.__b = R(1) return elif not b: if not a: raise TypeError("unable to convert (%r, %r) \ to a cusp of the number field"%(a, b)) self.__a = R(1) self.__b = R(0) return if not a: self.__a = R(0) self.__b = R(1) return if (b in R or isinstance(b, (int, long))) and (a in R or isinstance(a, (int, long))): self.__a = R(a) self.__b = R(b) else: if a in R or a in number_field: r = a / b elif is_InfinityElement(a): self.__a = R(1) self.__b = R(0) return elif isinstance(a, NFCusp): if a.is_infinity(): self.__a = R(1) self.__b = R(0) return r = a.__a / (a.__b * b) elif isinstance(a, (int, long)): r = R(a) / b elif isinstance(a, (tuple, list)): if len(a) != 2: raise TypeError("unable to convert (%r, %r) \ to a cusp of the number field"%(a, b)) r = R(a[0]) / (R(a[1]) * b) else: try: r = number_field(a) / b except (ValueError, TypeError): raise TypeError("unable to convert (%r, %r) \ to a cusp of the number field"%(a, b)) self.__b = R(r.denominator()) self.__a = R(r * self.__b) if not lreps is None: # Changes the representative of the cusp so the ideal associated # to the cusp is one of the ideals of the given list lreps. # Note: the trivial class is always represented by (1). I = self.ideal() for J in lreps: if (J/I).is_principal(): newI = J l = (newI/I).gens_reduced()[0] self.__a = R(l * self.__a) self.__b = R(l * self.__b) def _repr_(self): """ String representation of this cusp. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: c = NFCusp(k, a, 2); c Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1 sage: c._repr_() 'Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1' sage: c.rename('[a:2](cusp of a number field)');c [a:2](cusp of a number field) sage: c.rename();c Cusp [a: 2] of Number Field in a with defining polynomial x^2 + 1 """ if self.__b.is_zero(): return "Cusp Infinity of %s"%self.parent().number_field() else: return "Cusp [%s: %s] of %s"%(self.__a, self.__b, \ self.parent().number_field()) def number_field(self): """ Returns the number field of definition of the cusp ``self`` EXAMPLES:: sage: k.<a> = NumberField(x^2 + 2) sage: alpha = NFCusp(k, 1, a + 1) sage: alpha.number_field() Number Field in a with defining polynomial x^2 + 2 """ return self.parent().number_field() def is_infinity(self): """ Returns ``True`` if this is the cusp infinity. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: NFCusp(k, a, 2).is_infinity() False sage: NFCusp(k, 2, 0).is_infinity() True sage: NFCusp(k, oo).is_infinity() True """ return self.__b == 0 def numerator(self): """ Return the numerator of the cusp ``self``. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: c = NFCusp(k, a, 2) sage: c.numerator() a sage: d = NFCusp(k, 1, a) sage: d.numerator() 1 sage: NFCusp(k, oo).numerator() 1 """ return self.__a def denominator(self): """ Return the denominator of the cusp ``self``. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 1) sage: c = NFCusp(k, a, 2) sage: c.denominator() 2 sage: d = NFCusp(k, 1, a + 1);d Cusp [1: a + 1] of Number Field in a with defining polynomial x^2 + 1 sage: d.denominator() a + 1 sage: NFCusp(k, oo).denominator() 0 """ return self.__b def _number_field_element_(self): """ Coerce to an element of the number field. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 2) sage: NFCusp(k, a, 2)._number_field_element_() 1/2*a sage: NFCusp(k, 1, a + 1)._number_field_element_() -1/3*a + 1/3 """ if self.__b.is_zero(): raise TypeError("%s is not an element of %s"%(self, \ self.number_field())) k = self.number_field() return k(self.__a / self.__b) def _ring_of_integers_element_(self): """ Coerce to an element of the ring of integers of the number field. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 2) sage: NFCusp(k, a+1)._ring_of_integers_element_() a + 1 sage: NFCusp(k, 1, a + 1)._ring_of_integers_element_() Traceback (most recent call last): ... TypeError: Cusp [1: a + 1] of Number Field in a with defining polynomial x^2 + 2 is not an integral element """ if self.__b.is_one(): return self.__a if self.__b.is_zero(): raise TypeError("%s is not an element of %s"%(self, \ self.number_field.ring_of_integers())) R = self.number_field().ring_of_integers() try: return R(self.__a/self.__b) except (ValueError, TypeError): raise TypeError("%s is not an integral element"%self) def _latex_(self): r""" Latex representation of this cusp. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 11) sage: latex(NFCusp(k, 3*a, a + 1)) # indirect doctest \[3 a: a + 1\] sage: latex(NFCusp(k, 3*a, a + 1)) == NFCusp(k, 3*a, a + 1)._latex_() True sage: latex(NFCusp(k, oo)) \infty """ if self.__b.is_zero(): return "\\infty" else: return "\\[%s: %s\\]"%(self.__a._latex_(), \ self.__b._latex_()) def __cmp__(self, right): """ Compare the cusps self and right. Comparison is as for elements in the number field, except with the cusp oo which is greater than everything but itself. The ordering in comparison is only really meaningful for infinity. EXAMPLES:: sage: k.<a> = NumberField(x^3 + x + 1) sage: kCusps = NFCusps(k) Comparing with infinity:: sage: c = kCusps((a,2)) sage: d = kCusps(oo) sage: c < d True sage: kCusps(oo) < d False Comparison as elements of the number field:: sage: kCusps(2/3) < kCusps(5/2) False sage: k(2/3) < k(5/2) False """ if self.__b.is_zero(): # self is oo, which is bigger than everything but oo. if right.__b.is_zero(): return 0 else: return 1 elif right.__b.is_zero(): if self.__b.is_zero(): return 0 else: return -1 return cmp(self._number_field_element_(), right._number_field_element_()) def __neg__(self): """ The negative of this cusp. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 23) sage: c = NFCusp(k, a, a+1); c Cusp [a: a + 1] of Number Field in a with defining polynomial x^2 + 23 sage: -c Cusp [-a: a + 1] of Number Field in a with defining polynomial x^2 + 23 """ return NFCusp(self.parent().number_field(), -self.__a, self.__b) def apply(self, g): """ Return g(``self``), where ``g`` is a 2x2 matrix, which we view as a linear fractional transformation. INPUT: - ``g`` -- a list of integral elements [a, b, c, d] that are the entries of a 2x2 matrix. OUTPUT: A number field cusp, obtained by the action of ``g`` on the cusp ``self``. EXAMPLES: :: sage: k.<a> = NumberField(x^2 + 23) sage: beta = NFCusp(k, 0, 1) sage: beta.apply([0, -1, 1, 0]) Cusp Infinity of Number Field in a with defining polynomial x^2 + 23 sage: beta.apply([1, a, 0, 1]) Cusp [a: 1] of Number Field in a with defining polynomial x^2 + 23 """ k = self.number_field() return NFCusp(k, g[0]*self.__a + g[1]*self.__b, \ g[2]*self.__a + g[3]*self.__b) def ideal(self): """ Returns the ideal associated to the cusp ``self``. EXAMPLES:: sage: k.<a> = NumberField(x^2 + 23) sage: alpha = NFCusp(k, 3, a-1) sage: alpha.ideal() Fractional ideal (3, 1/2*a - 1/2) sage: NFCusp(k, oo).ideal() Fractional ideal (1) """ k = self.number_field() return k.ideal(self.__a, self.__b) def ABmatrix(self): """ Returns AB-matrix associated to the cusp ``self``. Given R a Dedekind domain and A, B ideals of R in inverse classes, an AB-matrix is a matrix realizing the isomorphism between R+R and A+B. An AB-matrix associated to a cusp [a1: a2] is an AB-matrix with A the ideal associated to the cusp (A=<a1, a2>) and first column given by the coefficients of the cusp. EXAMPLES: :: sage: k.<a> = NumberField(x^3 + 11) sage: alpha = NFCusp(k, oo) sage: alpha.ABmatrix() [1, 0, 0, 1] :: sage: alpha = NFCusp(k, 0) sage: alpha.ABmatrix() [0, -1, 1, 0] Note that the AB-matrix associated to a cusp is not unique, and the output of the ``ABmatrix`` function may change. :: sage: alpha = NFCusp(k, 3/2, a-1) sage: M = alpha.ABmatrix() sage: M # random [-a^2 - a - 1, -3*a - 7, 8, -2*a^2 - 3*a + 4] sage: M[0] == alpha.numerator() and M[2]==alpha.denominator() True An AB-matrix associated to a cusp alpha will send Infinity to alpha: :: sage: alpha = NFCusp(k, 3, a-1) sage: M = alpha.ABmatrix() sage: (k.ideal(M[1], M[3])*alpha.ideal()).is_principal() True sage: M[0] == alpha.numerator() and M[2]==alpha.denominator() True sage: NFCusp(k, oo).apply(M) == alpha True """ k = self.number_field() A = self.ideal() if self.is_infinity(): return [1, 0, 0, 1] if not self: return [0, -1, 1, 0] if A.is_principal(): B = k.ideal(1) else: B = k.ideal(A.gens_reduced()[1])/A assert (A*B).is_principal() a1 = self.__a a2 = self.__b g = (A*B).gens_reduced()[0] Ainv = A**(-1) A1 = a1*Ainv A2 = a2*Ainv r = A1.element_1_mod(A2) b1 = -(1-r)/a2*g b2 = (r/a1)*g ABM = [a1, b1, a2, b2] return ABM def is_Gamma0_equivalent(self, other, N, Transformation=False): r""" Checks if cusps ``self`` and ``other`` are `\Gamma_0(N)`- equivalent. INPUT: - ``other`` -- a number field cusp or a list of two number field elements which define a cusp. - ``N`` -- an ideal of the number field (level) OUTPUT: - bool -- ``True`` if the cusps are equivalent. - a transformation matrix -- (if ``Transformation=True``) a list of integral elements [a, b, c, d] which are the entries of a 2x2 matrix M in `\Gamma_0(N)` such that M * ``self`` = ``other`` if ``other`` and ``self`` are `\Gamma_0(N)`- equivalent. If ``self`` and ``other`` are not equivalent it returns zero. EXAMPLES: :: sage: K.<a> = NumberField(x^3-10) sage: N = K.ideal(a-1) sage: alpha = NFCusp(K, 0) sage: beta = NFCusp(K, oo) sage: alpha.is_Gamma0_equivalent(beta, N) False sage: alpha.is_Gamma0_equivalent(beta, K.ideal(1)) True sage: b, M = alpha.is_Gamma0_equivalent(beta, K.ideal(1),Transformation=True) sage: alpha.apply(M) Cusp Infinity of Number Field in a with defining polynomial x^3 - 10 :: sage: k.<a> = NumberField(x^2+23) sage: N = k.ideal(3) sage: alpha1 = NFCusp(k, a+1, 4) sage: alpha2 = NFCusp(k, a-8, 29) sage: alpha1.is_Gamma0_equivalent(alpha2, N) True sage: b, M = alpha1.is_Gamma0_equivalent(alpha2, N, Transformation=True) sage: alpha1.apply(M) == alpha2 True sage: M[2] in N True """ k = self.number_field() other = NFCusp(k, other) if not (self.ideal()/other.ideal()).is_principal(): if not Transformation: return False else: return False, 0 reps = list_of_representatives(N) alpha1 = NFCusp(k, self, lreps=reps) alpha2 = NFCusp(k, other, lreps=reps) delta = k.ideal(alpha1.__b) + N if (k.ideal(alpha2.__b) + N)!= delta: if not Transformation: return False else: return False, 0 M1 = alpha1.ABmatrix() M2 = alpha2.ABmatrix() A = alpha1.ideal() B = k.ideal(M1[1], M1[3]) ABdelta = A*B*delta*delta units = units_mod_ideal(ABdelta) for u in units: if (M2[2]*M1[3] - u*M1[2]*M2[3]) in ABdelta: if not Transformation: return True else: AuxCoeff = [1, 0, 0, 1] Aux = M2[2]*M1[3] - u*M1[2]*M2[3] if Aux in A*B*N: if not u==1: AuxCoeff[3] = u else: A1 = (A*B*N)/ABdelta A2 = B*k.ideal(M1[2]*M2[2])/(A*ABdelta) f = A1.element_1_mod(A2) w = ((1 - f)*Aux)/(M1[2]*M2[2]) AuxCoeff[3] = u AuxCoeff[1] = w from sage.matrix.all import Matrix Maux = Matrix(k, 2, AuxCoeff) M1inv = Matrix(k, 2, M1).inverse() Mtrans = Matrix(k, 2, M2)*Maux*M1inv assert Mtrans[1][0] in N return True, Mtrans.list() if not Transformation: return False else: return False, 0 #************************************************************************** # Global functions: # - Gamma0_NFCusps --compute list of inequivalent cusps # Internal use only: # - number_of_Gamma0_NFCusps -- useful to test Gamma0_NFCusps # - NFCusps_ideal_reps_for_levelN -- lists of reps for ideal classes # - units_mod_ideal -- needed to check Gamma0(N)-equiv of cusps #************************************************************************** def Gamma0_NFCusps(N): r""" Returns a list of inequivalent cusps for `\Gamma_0(N)`, i.e., a set of representatives for the orbits of ``self`` on `\mathbb{P}^1(k)`. INPUT: - ``N`` -- an integral ideal of the number field k (the level). OUTPUT: A list of inequivalent number field cusps. EXAMPLES: :: sage: k.<a> = NumberField(x^2 + 5) sage: N = k.ideal(3) sage: L = Gamma0_NFCusps(N) The cusps in the list are inequivalent: :: sage: all([not L[i].is_Gamma0_equivalent(L[j], N) for i, j in \ mrange([len(L), len(L)]) if i<j]) True We test that we obtain the right number of orbits: :: sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps sage: len(L) == number_of_Gamma0_NFCusps(N) True Another example: :: sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) sage: N = k.ideal(5) sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps sage: len(Gamma0_NFCusps(N)) == number_of_Gamma0_NFCusps(N) # long time (over 1 sec) True """ # We create L a list of three lists, which are different and each a list of # prime ideals, coprime to N, representing the ideal classes of k L = NFCusps_ideal_reps_for_levelN(N, nlists=3) Laux = L[1]+L[2] Lreps = list_of_representatives(N) Lcusps = [] k = N.number_field() for A in L[0]: #find B in inverse class: if A.is_trivial(): B = k.ideal(1) #B = k.unit_ideal() produces an error because we need fract ideal g = 1 else: Lbs = [P for P in Laux if (P*A).is_principal()] B = Lbs[0] g = (A*B).gens_reduced()[0] #for every divisor of N we have to find cusps from sage.arith.all import divisors for d in divisors(N): #find delta prime coprime to B in inverse class of d*A #by searching in our list of auxiliary prime ideals Lds = [P for P in Laux if (P*d*A).is_principal() and P.is_coprime(B)] deltap = Lds[0] a = (deltap*d*A).gens_reduced()[0] I = d + N/d #especial case: A=B=d=<1>: if a.is_one() and I.is_trivial(): Lcusps.append(NFCusp(k, 0, 1, lreps=Lreps)) else: u = k.unit_group().gens() for b in I.invertible_residues_mod(u): #Note: if I trivial, invertible_residues_mod returns [1] #lift b to (R/a)star #we need the part of d which is coprime to I, call it M M = d.prime_to_idealM_part(I) deltAM = deltap*A*M u = (B*deltAM).element_1_mod(I) v = (I*B).element_1_mod(deltAM) newb = u*b + v #build AB-matrix: #----> extended gcd for k.ideal(a), k.ideal(newb) Y = k.ideal(newb).element_1_mod(k.ideal(a)) # if xa + yb = 1, cusp = y*g /a Lcusps.append(NFCusp(k, Y*g, a, lreps=Lreps)) return Lcusps def number_of_Gamma0_NFCusps(N): """ Returns the total number of orbits of cusps under the action of the congruence subgroup `\\Gamma_0(N)`. INPUT: - ``N`` -- a number field ideal. OUTPUT: ingeter -- the number of orbits of cusps under Gamma0(N)-action. EXAMPLES:: sage: k.<a> = NumberField(x^3 + 11) sage: N = k.ideal(2, a+1) sage: from sage.modular.cusps_nf import number_of_Gamma0_NFCusps sage: number_of_Gamma0_NFCusps(N) 4 sage: L = Gamma0_NFCusps(N) sage: len(L) == number_of_Gamma0_NFCusps(N) True sage: k.<a> = NumberField(x^2 + 7) sage: N = k.ideal(9) sage: number_of_Gamma0_NFCusps(N) 6 sage: N = k.ideal(a*9 + 7) sage: number_of_Gamma0_NFCusps(N) 24 """ k = N.number_field() # The number of Gamma0(N)-sub-orbits for each Gamma-orbit: from sage.arith.all import divisors Ugens = [k(u) for u in k.unit_group().gens()] s = sum([len((d+N/d).invertible_residues_mod(Ugens)) for d in divisors(N)]) # There are h Gamma-orbits, with h class number of underlying number field. return s*k.class_number() def NFCusps_ideal_reps_for_levelN(N, nlists=1): """ Returns a list of lists (``nlists`` different lists) of prime ideals, coprime to ``N``, representing every ideal class of the number field. INPUT: - ``N`` -- number field ideal. - ``nlists`` -- optional (default 1). The number of lists of prime ideals we want. OUTPUT: A list of lists of ideals representatives of the ideal classes, all coprime to ``N``, representing every ideal. EXAMPLES:: sage: k.<a> = NumberField(x^3 + 11) sage: N = k.ideal(5, a + 1) sage: from sage.modular.cusps_nf import NFCusps_ideal_reps_for_levelN sage: NFCusps_ideal_reps_for_levelN(N) [(Fractional ideal (1), Fractional ideal (2, a + 1))] sage: L = NFCusps_ideal_reps_for_levelN(N, 3) sage: all([len(L[i])==k.class_number() for i in range(len(L))]) True :: sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) sage: N = k.ideal(6) sage: from sage.modular.cusps_nf import NFCusps_ideal_reps_for_levelN sage: NFCusps_ideal_reps_for_levelN(N) [(Fractional ideal (1), Fractional ideal (13, a - 2), Fractional ideal (43, a - 1), Fractional ideal (67, a + 17))] sage: L = NFCusps_ideal_reps_for_levelN(N, 5) sage: all([len(L[i])==k.class_number() for i in range(len(L))]) True """ k = N.number_field() G = k.class_group() L = [] for i in range(nlists): L.append([k.ideal(1)]) it = k.primes_of_degree_one_iter() for I in G.list(): check = 0 if not I.is_principal(): Iinv = (I.ideal())**(-1) while check<nlists: J = next(it) if (J*Iinv).is_principal() and J.is_coprime(N): L[check].append(J) check = check + 1 return [tuple(l) for l in L] def units_mod_ideal(I): """ Returns integral elements of the number field representing the images of the global units modulo the ideal ``I``. INPUT: - ``I`` -- number field ideal. OUTPUT: A list of integral elements of the number field representing the images of the global units modulo the ideal ``I``. Elements of the list might be equivalent to each other mod ``I``. EXAMPLES:: sage: from sage.modular.cusps_nf import units_mod_ideal sage: k.<a> = NumberField(x^2 + 1) sage: I = k.ideal(a + 1) sage: units_mod_ideal(I) [1] sage: I = k.ideal(3) sage: units_mod_ideal(I) [1, a, -1, -a] :: sage: from sage.modular.cusps_nf import units_mod_ideal sage: k.<a> = NumberField(x^3 + 11) sage: k.unit_group() Unit group with structure C2 x Z of Number Field in a with defining polynomial x^3 + 11 sage: I = k.ideal(5, a + 1) sage: units_mod_ideal(I) [1, 2*a^2 + 4*a - 1, ...] :: sage: from sage.modular.cusps_nf import units_mod_ideal sage: k.<a> = NumberField(x^4 - x^3 -21*x^2 + 17*x + 133) sage: k.unit_group() Unit group with structure C6 x Z of Number Field in a with defining polynomial x^4 - x^3 - 21*x^2 + 17*x + 133 sage: I = k.ideal(3) sage: U = units_mod_ideal(I) sage: all([U[j].is_unit() and not (U[j] in I) for j in range(len(U))]) True """ k = I.number_field() Uk = k.unit_group() Istar = I.idealstar(2) ulist = Uk.gens_values() elist = [Istar(I.ideallog(u)).order() for u in ulist] from sage.misc.mrange import xmrange from sage.misc.all import prod return [prod([u**e for u,e in zip(ulist,ei)],k(1)) for ei in xmrange(elist)]
[ "valber@HPC" ]
valber@HPC
d27a3896f5fa3feb5f17cd7861eb6378cabfc5d6
867846ed1df7f560ccc473413a70020155f66ad4
/writeImageToBinary.py
8ebf38106007bbfc86bd7004a67293c4219d32a9
[]
no_license
abhineet123/PTF
84297bf5aa95320dbc2d34f422f2dd563ff65a58
0c63f7f8251af0d70c329b2cef53694db76c1656
refs/heads/master
2023-08-18T18:34:40.513936
2023-08-09T17:28:51
2023-08-09T17:28:51
157,794,848
5
1
null
2021-05-16T18:48:32
2018-11-16T01:24:05
MATLAB
UTF-8
Python
false
false
4,088
py
# from DecompUtils import * # from distanceGrid import applyFilter # import time import os import cv2 import numpy as np # from Misc import getParamDict if __name__ == '__main__': db_root_dir = 'C:/Datasets' track_root_dir = '../Tracking Data' img_root_dir = '../Image Data' dist_root_dir = '../Distance Data' track_img_root_dir = '../Tracked Images' # params_dict = getParamDict() # param_ids = readDistGridParams() # # actors = params_dict['actors'] # sequences = params_dict['sequences'] # challenges = params_dict['challenges'] # filter_types = params_dict['filter_types'] # # actor_id = param_ids['actor_id'] # seq_id = param_ids['seq_id'] # challenge_id = param_ids['challenge_id'] # inc_id = param_ids['inc_id'] # start_id = param_ids['start_id'] # filter_id = param_ids['filter_id'] # kernel_size = param_ids['kernel_size'] # show_img = param_ids['show_img'] # # arg_id = 1 # if len(sys.argv) > arg_id: # actor_id = int(sys.argv[arg_id]) # arg_id += 1 # if len(sys.argv) > arg_id: # seq_id = int(sys.argv[arg_id]) # arg_id += 1 # if len(sys.argv) > arg_id: # challenge_id = int(sys.argv[arg_id]) # arg_id += 1 # if len(sys.argv) > arg_id: # filter_id = int(sys.argv[arg_id]) # arg_id += 1 # # if actor_id >= len(actors): # print 'Invalid actor_id: ', actor_id # sys.exit() # # actor = actors[actor_id] # sequences = sequences[actor] # # if seq_id >= len(sequences): # print 'Invalid dataset_id: ', seq_id # sys.exit() # if challenge_id >= len(challenges): # print 'Invalid challenge_id: ', challenge_id # sys.exit() # if filter_id >= len(filter_types): # print 'Invalid filter_id: ', filter_id # sys.exit() # # seq_name = sequences[seq_id] # filter_type = filter_types[filter_id] # challenge = challenges[challenge_id] # # if actor == 'METAIO': # seq_name = seq_name + '_' + challenge actor = 'GRAM' seq_name = 'idot_1_intersection_city_day_short' start_id = 0 filter_type = 'none' kernel_size = 3 show_img = 1 print 'actor: ', actor # print 'seq_id: ', seq_id print 'seq_name: ', seq_name # print 'filter_type: ', filter_type # print 'kernel_size: ', kernel_size src_dir = db_root_dir + '/' + actor + '/Images/' + seq_name if not os.path.exists(img_root_dir): os.makedirs(img_root_dir) if filter_type != 'none': img_fname = img_root_dir + '/' + seq_name + '_' + filter_type + str(kernel_size) + '.bin' else: img_fname = img_root_dir + '/' + seq_name + '.bin' print 'Reading images from: {:s}'.format(src_dir) print 'Writing image binary data to: {:s}'.format(img_fname) img_fid = open(img_fname, 'wb') file_list = os.listdir(src_dir) # print 'file_list: ', file_list no_of_frames = len(file_list) print 'no_of_frames: ', no_of_frames end_id = no_of_frames init_img = cv2.imread(src_dir + '/image{:06d}.jpg'.format(1)) img_height = init_img.shape[0] img_width = init_img.shape[1] # np.array([no_of_frames, ], dtype=np.uint32).tofile(img_fid) np.array([img_width, img_height], dtype=np.uint32).tofile(img_fid) win_name = 'Filtered Image' if show_img: cv2.namedWindow(win_name) for frame_id in xrange(start_id, end_id): # print 'frame_id: ', frame_id curr_img = cv2.imread(src_dir + '/image{:06d}.jpg'.format(frame_id + 1)) if len(curr_img.shape) == 3: curr_img_gs = cv2.cvtColor(curr_img, cv2.cv.CV_BGR2GRAY) else: curr_img_gs = curr_img # if filter_type != 'none': # curr_img_gs = applyFilter(curr_img_gs, filter_type, kernel_size) curr_img_gs.astype(np.uint8).tofile(img_fid) if show_img: cv2.imshow(win_name, curr_img_gs) if cv2.waitKey(1) == 27: break img_fid.close()
336b66817aeb69caf5a08e2b80c1beac92d48c6d
de01cb554c2292b0fbb79b4d5413a2f6414ea472
/algorithms/Easy/1275.find-winner-on-a-tic-tac-toe-game.py
b051c0e2d84dffb8192059fd3585ceb77ed909e8
[]
no_license
h4hany/yeet-the-leet
98292017eadd3dde98a079aafcd7648aa98701b4
563d779467ef5a7cc85cbe954eeaf3c1f5463313
refs/heads/master
2022-12-10T08:35:39.830260
2020-09-02T23:12:15
2020-09-02T23:12:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,576
py
# # @lc app=leetcode id=1275 lang=python3 # # [1275] Find Winner on a Tic Tac Toe Game # # https://leetcode.com/problems/find-winner-on-a-tic-tac-toe-game/description/ # # algorithms # Easy (52.88%) # Total Accepted: 17K # Total Submissions: 32.2K # Testcase Example: '[[0,0],[2,0],[1,1],[2,1],[2,2]]' # # Tic-tac-toe is played by two players A and B on a 3 x 3 grid. # # Here are the rules of Tic-Tac-Toe: # # # Players take turns placing characters into empty squares (" "). # The first player A always places "X" characters, while the second player B # always places "O" characters. # "X" and "O" characters are always placed into empty squares, never on filled # ones. # The game ends when there are 3 of the same (non-empty) character filling any # row, column, or diagonal. # The game also ends if all squares are non-empty. # No more moves can be played if the game is over. # # # Given an array moves where each element is another array of size 2 # corresponding to the row and column of the grid where they mark their # respective character in the order in which A and B play. # # Return the winner of the game if it exists (A or B), in case the game ends in # a draw return "Draw", if there are still movements to play return "Pending". # # You can assume that moves is valid (It follows the rules of Tic-Tac-Toe), the # grid is initially empty and A will play first. # # # Example 1: # # # Input: moves = [[0,0],[2,0],[1,1],[2,1],[2,2]] # Output: "A" # Explanation: "A" wins, he always plays first. # "X " "X " "X " "X " "X " # " " -> " " -> " X " -> " X " -> " X " # " " "O " "O " "OO " "OOX" # # # Example 2: # # # Input: moves = [[0,0],[1,1],[0,1],[0,2],[1,0],[2,0]] # Output: "B" # Explanation: "B" wins. # "X " "X " "XX " "XXO" "XXO" "XXO" # " " -> " O " -> " O " -> " O " -> "XO " -> "XO " # " " " " " " " " " " "O " # # # Example 3: # # # Input: moves = [[0,0],[1,1],[2,0],[1,0],[1,2],[2,1],[0,1],[0,2],[2,2]] # Output: "Draw" # Explanation: The game ends in a draw since there are no moves to make. # "XXO" # "OOX" # "XOX" # # # Example 4: # # # Input: moves = [[0,0],[1,1]] # Output: "Pending" # Explanation: The game has not finished yet. # "X " # " O " # " " # # # # Constraints: # # # 1 <= moves.length <= 9 # moves[i].length == 2 # 0 <= moves[i][j] <= 2 # There are no repeated elements on moves. # moves follow the rules of tic tac toe. # # class Solution: def tictactoe(self, moves: List[List[int]]) -> str:
e9f6eacfaf01a7fff4da4c15768700dfd006c709
423cc7775d1ab9874729ba304d7682a12b4a4d43
/plugins/analyzer/previewcomparer.py
6cc2539edc04ea1fb6f7350dfbf6e684d05043bc
[]
no_license
eyeyunianto/ghiro
7ec2dc5ae2b766883da6f26975fd41829336e8f8
24ce80244893fc94300e1c4f5e3305bd182d65a6
refs/heads/master
2020-04-06T04:33:07.155509
2015-06-21T21:30:27
2015-06-21T21:30:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,807
py
# Ghiro - Copyright (C) 2013-2015 Ghiro Developers. # This file is part of Ghiro. # See the file 'docs/LICENSE.txt' for license terms. import logging from itertools import izip from lib.analyzer.base import BaseAnalyzerModule from lib.utils import str2image from lib.db import get_file try: from PIL import Image IS_PIL = True except ImportError: IS_PIL = False logger = logging.getLogger(__name__) class ImageComparer(): """Image comparator.""" @staticmethod def calculate_difference(preview, original_image_id): """Calculate difference between two images. @param preview: preview dict @param original_image_id: original image ID @return: difference, difference percentage """ try: i1 = str2image(get_file(original_image_id).read()) except IOError as e: logger.warning("Comparer error reading image: {0}".format(e)) return # Check if thumb was resized. if "original_file" in preview: i2 = str2image(get_file(preview["original_file"]).read()) else: i2 = str2image(get_file(preview["file"]).read()) # Resize. width, height = i2.size try: i1 = i1.resize([width, height], Image.ANTIALIAS) except IOError as e: logger.warning("Comparer error reading image: {0}".format(e)) return # Checks. #assert i1.mode == i2.mode, "Different kinds of images." #assert i1.size == i2.size, "Different sizes." # Calculate difference. pairs = izip(i1.getdata(), i2.getdata()) if len(i1.getbands()) == 1: # for gray-scale jpegs dif = sum(abs(p1-p2) for p1,p2 in pairs) else: dif = sum(abs(c1-c2) for p1,p2 in pairs for c1,c2 in zip(p1,p2)) ncomponents = i1.size[0] * i1.size[1] * 3 # Get diff percentage. diff_perc = int((dif / 255.0 * 100) / ncomponents) # Binary option. if diff_perc >= 15: diff = True else: diff = False return diff, diff_perc class PreviewComparerAnalyzer(BaseAnalyzerModule): """Compares previews extracted with the original image.""" order = 20 def check_deps(self): return IS_PIL def run(self, task): # Compare previews to catch differences. if "metadata" in self.results: if "preview" in self.results["metadata"]: for preview in self.results["metadata"]["preview"]: difference = ImageComparer.calculate_difference(preview, self.results["file_data"]) if difference: preview["diff"], preview["diff_percent"] = difference return self.results
a9f0ba50e1273c6a25a49d2e0bba74d1942c67b8
b1c7a768f38e2e987a112da6170f49503b9db05f
/stockkeeping/migrations/0021_remove_purchase_stockitem.py
56aa900ba0363ea26816b298cca975bca2319252
[]
no_license
Niladrykar/bracketerp
8b7491aa319f60ec3dcb5077258d75b0394db374
ca4ee60c2254c6c132a38ce52410059cc6b19cae
refs/heads/master
2022-12-11T04:23:07.504966
2019-03-18T06:58:13
2019-03-18T06:58:13
176,218,029
1
0
null
2022-12-08T03:01:46
2019-03-18T06:27:37
JavaScript
UTF-8
Python
false
false
338
py
# Generated by Django 2.0.6 on 2018-11-02 11:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('stockkeeping', '0020_auto_20181102_1628'), ] operations = [ migrations.RemoveField( model_name='purchase', name='stockitem', ), ]
9611ea5034446ad9760170ff5cf6b279139456de
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/helpers/pydev/pydev_pysrc.py
b9ed49e8005e3b547bd967bac75b0d83e7dd1861
[ "Apache-2.0", "EPL-1.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
100
py
'''An empty file in pysrc that can be imported (from sitecustomize) to find the location of pysrc'''
770326a7c554452415a3a4823c7975bc958ac5bb
45a2fef5a35090e2c3794824735dc137553c3d3b
/backup/fcards/utils.py
a968797ac2ea04b200ab1d427b0368cd1c17ba3c
[]
no_license
kris-brown/personal_website
9248ec23e2ebab8d820a0c6be70f6fb06a80144f
4dadfeba80eaf3f25f87b6f7bed48aa9db6ec8fc
refs/heads/master
2021-08-28T00:03:07.483092
2021-08-09T06:19:56
2021-08-09T06:19:56
190,462,717
1
0
null
null
null
null
UTF-8
Python
false
false
3,164
py
from typing import List as L, Tuple as T '''Misc helpful things''' def flatten(lol:L[list])->list: return [item for sublist in lol for item in sublist] ################################################################################ class Tree(object): ''' Parse a nested bullet structure where nesting is determined by whitespace, e.g. - A - A1 - A2 - A2i - B ''' def __init__(self, value : str, children : L['Tree']) -> None: self.value = value; self.children = children def __str__(self)->str: return self.print(0) def __len__(self)->int: return 1 + sum(map(len,self.children)) def showflat(self,_discard : bool = True)->str: '''Discard root and show flattened information (for Anki cards)''' if _discard: curr = '' else: if self.value and self.value[0]=='-': curr = '\n'+self.value[1:] else: curr = '\n'+self.value return curr + ''.join([c.showflat(_discard=False) for c in self.children]) def print(self, indent : int) -> str: '''Visualize as tree''' rest = ''.join([c.print(indent+1) for c in self.children]) return '\n' + '\t'*indent + self.value + rest @classmethod def from_str(cls, lines:L[str]) -> 'Tree': '''Takes the "content" of an orgmode node (list of strings) and makes a Tree''' pairs = [(cls.level(x),x) for x in filter(lambda x: not x.isspace(),lines)] try: root = Tree(value = 'root', children = cls.parse_children(pairs)) except ValueError as e: print(e) for k,v in pairs: print(k,v) import pdb;pdb.set_trace();assert False return root @classmethod def parse_children(cls, pairs : L[T[int,str]]) -> L['Tree']: '''Recursively parse a list of (indent-level, <content>) pairs''' if not pairs: return [] # Base case: no more children next_val = pairs[0][1].strip() # our first element is definitely a child. childlevel = pairs[0][0] # All children have this indentation level children = [] # The list that we will return next_pairs = [] # type: L[T[int,str]] ## the lines that are descendents of the child for i,x in pairs[1:]: if i < childlevel: raise ValueError('Indentation level incorrectly parsed: ',x) elif i > childlevel: next_pairs.append((i,x)) # something that belongs to next child at some depth else: # We've returned back to the child indentation level, so everything we've seen up to now gets added children.append(Tree(value = next_val, children = cls.parse_children(next_pairs))) next_val, next_pairs = x.strip(), [] # reset these variables # Add the last tree children.append(Tree(value=next_val,children = cls.parse_children(next_pairs))) return children @staticmethod def level(astr : str) -> int: '''Get indentation level assuming tab spacing = 8''' ws = astr[:len(astr) - len(astr.lstrip())] return ws.count(' ')+8*ws.count('\t')
0fa8fa2d1973353700ed4feebe10f79b52b7481f
27ed6d2db4f38cd351b642042341771d93aee121
/python/medicUI/widgets.py
89f63dc250a9fceacb72d24418ce995ab37e74c9
[ "MIT" ]
permissive
wmoten/medic
eab20630e6666372e50d12fa0998ceefc9411e68
bc2e9ec09e33ce2d0cedd8dc0c17f567208503ed
refs/heads/master
2020-04-07T09:58:58.947534
2018-03-08T05:51:35
2018-03-08T05:51:35
124,202,109
0
0
MIT
2018-03-07T08:13:48
2018-03-07T08:13:48
null
UTF-8
Python
false
false
23,842
py
from Qt import QtWidgets, QtCore, QtGui from . import model from . import delegate from . import functions import medic import os import re IconDir = os.path.abspath(os.path.join(__file__, "../icons")) class ParameterFunctions(): @staticmethod def SetParmeterValue(param_container, pram_dict): for prm in pram_dict: if prm["function"]: prm["function"](param_container, prm["name"], prm["widget"]) @staticmethod def SetInt(param, name, widget): t = widget.text() if not t: t = 0 param.set(name, int(t)) @staticmethod def SetFloat(param, name, widget): t = widget.text() if not t: t = 0 param.set(name, float(t)) @staticmethod def SetBool(param, name, widget): param.set(name, widget.isChecked()) @staticmethod def SetString(param, name, widget): param.set(name, str(widget.text())) @staticmethod def CreateWidget(info): name, label, parm_type, default = info if parm_type is medic.Types.Null or\ parm_type is medic.Types.BoolArray or\ parm_type is medic.Types.IntArray or\ parm_type is medic.Types.FloatArray or\ parm_type is medic.Types.StringArray: print "This type parameter is not supported yet : %s" % parm_type return None, None widget = None function = None if parm_type == medic.Types.Bool: widget = QtWidgets.QCheckBox() widget.setChecked(default) function = ParameterFunctions.SetBool elif parm_type == medic.Types.Int: widget = NumericLine.CreateIntLine() widget.setText(str(default)) function = ParameterFunctions.SetInt elif parm_type == medic.Types.Float: widget = NumericLine.CreateFloatLine() widget.setText(str(default)) function = ParameterFunctions.SetFloat elif parm_type == medic.Types.String: widget = QtWidgets.QLineEdit() widget.setText(default) function = ParameterFunctions.SetString widget.setObjectName("parameter_widget") return widget, function class BrowserButtonWidget(QtWidgets.QFrame): BackClicked = QtCore.Signal() NextClicked = QtCore.Signal() def __init__(self, parent=None): super(BrowserButtonWidget, self).__init__(parent=parent) self.setObjectName("medic_browser_buttons_widget") self.__back_button = None self.__next_button = None self.__makeWidgets() def __makeWidgets(self): main_layout = QtWidgets.QHBoxLayout() self.setLayout(main_layout) self.__back_button = QtWidgets.QPushButton() self.__next_button = QtWidgets.QPushButton() self.__back_button.setObjectName("medic_browser_back") self.__next_button.setObjectName("medic_browser_next") main_layout.addWidget(self.__back_button) main_layout.addWidget(self.__next_button) main_layout.setSpacing(1) self.__back_button.clicked.connect(self.BackClicked.emit) self.__next_button.clicked.connect(self.NextClicked.emit) def setBackEnabled(self, v): self.__back_button.setEnabled(v) def setNextEnabled(self, v): self.__next_button.setEnabled(v) class CurrentKarteLabel(QtWidgets.QLabel): def __init__(self, parent=None): super(CurrentKarteLabel, self).__init__(parent=parent) self.setObjectName("medic_current_karte") class StatusLabel(QtWidgets.QLabel): def __init__(self, parent=None): super(StatusLabel, self).__init__(parent=parent) self.setObjectName("status_label") self.setFixedWidth(70) self.__ready_icon = QtGui.QPixmap(os.path.join(IconDir, "success.png")).scaled(16, 16) self.__success_icon = QtGui.QPixmap(os.path.join(IconDir, "success.png")).scaled(16, 16) self.__failure_icon = QtGui.QPixmap(os.path.join(IconDir, "failure.png")).scaled(16, 16) self.setStatus(model.Ready) def setStatus(self, status): if status is model.Ready: self.setText("<font color='#b0b0b0'>Ready</font>") elif status is model.Success: self.setText("<font color='#1cc033'>Success</font>") else: self.setText("<font color='#eb2b66'>Failure</font>") class TesterList(QtWidgets.QListView): TesterChanged = QtCore.Signal("QModelIndex") SingleTestTriggered = QtCore.Signal() def __init__(self, parent=None): super(TesterList, self).__init__(parent=parent) self.setObjectName("medic_tester_list") self.setUniformItemSizes(True) self.source_model = model.TesterModel() self.delegate = delegate.TesterDelegate() self.setItemDelegate(self.delegate) self.setModel(self.source_model) self.__current_tester = None def updateSelected(self): for index in self.selectedIndexes(): self.update(index) def currentTester(self): return self.__current_tester def reset(self): self.clearSelection() self.__current_tester = None def selectionChanged(self, selected, deselected): indexes = selected.indexes() if not indexes: self.clearSelection() self.__current_tester = None self.TesterChanged.emit(None) else: self.__current_tester = self.source_model.data(indexes[0], model.TesterItemRole) self.TesterChanged.emit(indexes[0]) super(TesterList, self).selectionChanged(selected, deselected) def mousePressEvent(self, evnt): super(TesterList, self).mousePressEvent(evnt) if QtCore.Qt.MouseButton.LeftButton == evnt.button(): index = self.indexAt(evnt.pos()) if index.row() < 0: self.__current_tester = None self.clearSelection() elif QtCore.Qt.MouseButton.RightButton == evnt.button(): menu = QtWidgets.QMenu(self) test = QtWidgets.QAction("Single Test", menu) menu.addAction(test) pos = self.mapToGlobal(evnt.pos()) menu.popup(QtCore.QPoint(pos.x() - 10, pos.y() - 10)) test.triggered.connect(self.__testTriggered) def __testTriggered(self): self.SingleTestTriggered.emit() class KarteList(QtWidgets.QListView): KarteChanged = QtCore.Signal("QModelIndex") def __init__(self, parent=None): super(KarteList, self).__init__(parent=parent) self.setObjectName("medic_karte_list") self.setUniformItemSizes(True) self.source_model = model.KarteModel() self.delegate = delegate.KarteDelegate() self.setModel(self.source_model) self.setItemDelegate(self.delegate) self.__current_karte = None def currentKarte(self): return self.__current_karte def selectionChanged(self, selected, deselected): indexes = selected.indexes() if not indexes: self.clearSelection() self.__current_karte = None self.KarteChanged.emit(None) else: self.__current_karte = self.source_model.data(indexes[0], model.KarteItemRole) self.KarteChanged.emit(indexes[0]) super(KarteList, self).selectionChanged(selected, deselected) def mousePressEvent(self, evnt): if QtCore.Qt.MouseButton.LeftButton == evnt.button(): index = self.indexAt(evnt.pos()) if index.row() < 0: self.clearSelection() self.__current_karte = None super(KarteList, self).mousePressEvent(evnt) class NumericLine(QtWidgets.QLineEdit): RegexInt = re.compile("[^0-9-]") RegexFloat = re.compile("[^0-9-.]") def __init__(self, parent=None): super(NumericLine, self).__init__(parent) self.__regex = None self.textEdited.connect(self.__regexCheck) def __regexCheck(self, txt): if self.__regex and txt: self.setText(self.__regex.sub("", txt)) @staticmethod def CreateIntLine(): e = NumericLine() e.__regex = NumericLine.RegexInt return e @staticmethod def CreateFloatLine(): e = NumericLine() e.__regex = NumericLine.RegexFloat return e class ReportList(QtWidgets.QListView): def __init__(self, parent=None): super(ReportList, self).__init__(parent) self.source_model = model.ReportModel() self.setModel(self.source_model) self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.delegate = delegate.ReportDelegate() self.setItemDelegate(self.delegate) def setReportItems(self, report_items): self.source_model.setReportItems(report_items) def selectionChanged(self, selected, deselected): indexes = selected.indexes() functions.ClearSelection() for index in self.selectedIndexes(): report = self.source_model.data(index, model.ReportRole) report.addSelection() super(ReportList, self).selectionChanged(selected, deselected) def mousePressEvent(self, evnt): if QtCore.Qt.MouseButton.LeftButton == evnt.button(): index = self.indexAt(evnt.pos()) if index.row() < 0: self.clearSelection() super(ReportList, self).mousePressEvent(evnt) class TesterDetailWidget(QtWidgets.QWidget): ReportsChanged = QtCore.Signal() def __init__(self, parent=None): super(TesterDetailWidget, self).__init__(parent) self.setObjectName("tester_detail_widget") self.__tester_item = None self.__params = [] self.__param_container = None self.__qt_top_layout = None self.__qt_parameter_layout = None self.__qt_bottom_layout = None self.__qt_test_label = None self.__qt_report_list = None self.__qt_fix_selected_button = None self.__qt_fix_all_button = None self.__createWidgets() self.__clear() def onReset(self): self.__clear() def reset(self): self.__clear() def setTesterItem(self, testerItem): self.__tester_item = testerItem self.__setTester(self.__tester_item) self.__setReportItems(self.__tester_item.reports()) def __setTester(self, testerItem): self.__setTesterName(testerItem.name()) self.__setDescription(testerItem.description()) self.__clearParameters() self.__setParameters(testerItem.parameters()) self.__setFixable(testerItem.isFixable()) def __setReportItems(self, report_items): self.__qt_report_list.setReportItems(report_items) if not report_items: self.__setFixable(False) def __createWidgets(self): main_layout = QtWidgets.QVBoxLayout() self.setLayout(main_layout) main_layout.setContentsMargins(0, 0, 0, 0) # frame frame = QtWidgets.QFrame() frame.setObjectName("detail_frame") main_layout.addWidget(frame) frame_layout = QtWidgets.QVBoxLayout() frame.setLayout(frame_layout) frame_layout.setContentsMargins(10, 10, 10, 10) # layout self.__qt_parameter_layout = QtWidgets.QVBoxLayout() button_layout = QtWidgets.QHBoxLayout() # widgets self.__qt_tester_label = QtWidgets.QLabel() self.__qt_description = QtWidgets.QTextEdit() self.__qt_description.setFixedHeight(50) self.__qt_description.setReadOnly(True) self.__qt_tester_label.setObjectName("detail_tester_label") self.__qt_description.setObjectName("detail_tester_description") self.__qt_report_list = ReportList() self.__qt_report_list.setObjectName("detial_report_list") self.__qt_fix_selected_button = QtWidgets.QPushButton("Fix Selected") self.__qt_fix_all_button = QtWidgets.QPushButton("Fix All") self.__qt_fix_selected_button.setObjectName("detail_button") self.__qt_fix_all_button.setObjectName("detail_button") self.__qt_fix_selected_button.setMaximumWidth(100) self.__qt_fix_all_button.setMaximumWidth(100) button_layout.addWidget(self.__qt_fix_selected_button) button_layout.addWidget(self.__qt_fix_all_button) frame_layout.addWidget(self.__qt_tester_label) frame_layout.addSpacing(20) frame_layout.addWidget(self.__qt_description) frame_layout.addWidget(self.__qt_report_list) frame_layout.addLayout(self.__qt_parameter_layout) frame_layout.addLayout(button_layout) self.__qt_fix_all_button.clicked.connect(self.__fixAll) self.__qt_fix_selected_button.clicked.connect(self.__fixSelected) def __clear(self): self.__tester_item = None self.__qt_report_list.setReportItems([]) self.__setTesterName("") self.__setFixable(False) self.__setDescription("") self.__clearParameters() def __setTesterName(self, name): self.__qt_tester_label.setText(name) def __setDescription(self, desc): self.__qt_description.setText(desc) def __setFixable(self, enable): self.__qt_fix_selected_button.setEnabled(enable) self.__qt_fix_all_button.setEnabled(enable) def __clearLayout(self, layout): while (True): item = layout.takeAt(0) if item: l = item.layout() w = item.widget() if l: self.__clearLayout(l) if w: layout.removeWidget(w) w.setParent(None) else: break def __clearParameters(self): self.__params = [] self.__param_container = None self.__clearLayout(self.__qt_parameter_layout) def __setParameters(self, params): self.__param_container = params for info in params.getParamInfos(): p_name, p_label, p_type, p_default = info widget, function = ParameterFunctions.CreateWidget(info) if widget: layout = QtWidgets.QHBoxLayout() label = QtWidgets.QLabel(p_label) label.setObjectName("parameter_label") layout.addWidget(label) layout.addWidget(widget) self.__params.append({"name": p_name, "widget": widget, "function": function}) self.__qt_parameter_layout.addLayout(layout) def __fixAll(self): if self.__tester_item: ParameterFunctions.SetParmeterValue(self.__param_container, self.__params) remove_items = [] for report in self.__tester_item.reports(): if self.__tester_item.fix(report, self.__param_container): remove_items.append(report) self.__tester_item.removeReports(remove_items) self.__setReportItems(self.__tester_item.reports()) self.ReportsChanged.emit() def __fixSelected(self): if self.__tester_item: ParameterFunctions.SetParmeterValue(self.__param_container, self.__params) remove_items = [] all_reports = self.__tester_item.reports() for index in map(lambda x: x.row(), self.__qt_report_list.selectedIndexes()): report = all_reports[index] if self.__tester_item.fix(report, self.__param_container): remove_items.append(report) self.__tester_item.removeReports(remove_items) self.__setReportItems(self.__tester_item.reports()) self.ReportsChanged.emit() class TopBarWidget(QtWidgets.QFrame): BackClicked = QtCore.Signal() NextClicked = QtCore.Signal() def __init__(self, parent=None): super(TopBarWidget, self).__init__(parent=parent) self.setObjectName("medic_top_bar") self.__browser_button_widget = None self.__current_karte_label = None self.reset_button = None self.test_button = None self.status_label = None self.__phase_items = {} self.__phase = 0 self.__makeWidgets() self.setPhase(0) def setBrowserButtonEnabled(self, prevValue, nextValue): self.__browser_button_widget.setBackEnabled(prevValue) self.__browser_button_widget.setNextEnabled(nextValue) def setCurrentKarteName(self, name): self.__current_karte_label.setText(name) def phase(self): return self.__phase def next(self): self.setPhase(self.__phase + 1) def back(self): self.setPhase(self.__phase - 1) def setPhase(self, phase): self.__phase = phase for p, items in self.__phase_items.iteritems(): if p == self.__phase: for item in items: item.show() else: for item in items: item.hide() def __makeWidgets(self): main_layout = QtWidgets.QVBoxLayout() main_layout.setContentsMargins(0, 0, 0, 0) self.setLayout(main_layout) horizon_layout = QtWidgets.QHBoxLayout() horizon_layout.setSpacing(10) horizon_layout.setContentsMargins(0, 0, 0, 0) self.__browser_button_widget = BrowserButtonWidget() self.reset_button = QtWidgets.QPushButton() self.test_button = QtWidgets.QPushButton() self.reset_button.setObjectName("reset_button") self.test_button.setObjectName("test_button") self.status_label = StatusLabel() self.__current_karte_label = CurrentKarteLabel() self.__phase_items[1] = [self.reset_button, self.test_button, self.status_label] horizon_layout.addWidget(self.__browser_button_widget) horizon_layout.addSpacing(20) horizon_layout.addWidget(self.reset_button) horizon_layout.addWidget(self.test_button) horizon_layout.addWidget(self.status_label) horizon_layout.addStretch(9999) horizon_layout.addWidget(self.__current_karte_label) main_layout.addLayout(horizon_layout) self.__browser_button_widget.BackClicked.connect(self.BackClicked.emit) self.__browser_button_widget.NextClicked.connect(self.NextClicked.emit) class MainWidget(QtWidgets.QWidget): ConditionChanged = QtCore.Signal(bool, bool) KarteChanged = QtCore.Signal(str) StatusChanged = QtCore.Signal(int) def __init__(self, parent=None): super(MainWidget, self).__init__(parent=parent) self.setObjectName("medic_main_widget") self.__kartes_widget = None self.__testers_widget = None self.__phase = 0 self.__phase_widgets = {} self.__callback_ids = [] self.__makeWidgets() self.setPhase(0) def phase(self): return self.__phase def next(self): self.setPhase(self.__phase + 1) def back(self): self.setPhase(self.__phase - 1) def setPhase(self, p): self.__phase = p for phase, widgets in self.__phase_widgets.iteritems(): if phase is p: for widget in widgets: widget.show() else: for widget in widgets: widget.hide() if self.__phase is 0: able_back = False able_next = True if self.__kartes_widget.currentKarte() else False self.__testers_widget.reset() else: able_back = True able_next = False if self.__phase is 1: self.reset() self.ConditionChanged.emit(able_back, able_next) def __makeWidgets(self): main_layout = QtWidgets.QHBoxLayout() main_layout.setContentsMargins(0, 0, 0, 0) main_layout.setSpacing(0) self.setLayout(main_layout) self.__kartes_widget = KarteList() self.__testers_widget = TesterList() self.__detail_widget = TesterDetailWidget() ## phase 0 main_layout.addWidget(self.__kartes_widget) self.__phase_widgets[0] = [self.__kartes_widget] ## phase 2 h_layout = QtWidgets.QHBoxLayout() h_layout.addWidget(self.__testers_widget) h_layout.addWidget(self.__detail_widget) self.__phase_widgets[1] = [self.__testers_widget, self.__detail_widget] main_layout.addLayout(h_layout) ## signal self.__kartes_widget.KarteChanged.connect(self.__karteChanged) self.__testers_widget.TesterChanged.connect(self.__testerChanged) self.__detail_widget.ReportsChanged.connect(self.__reportsChanged) self.__testers_widget.SingleTestTriggered.connect(self.__singleTest) ## set maya event callback self.__callback_ids.append(functions.registSceneOpenCallback(self.__sceneChanged)) self.__callback_ids.append(functions.registNewSceneOpenCallback(self.__sceneChanged)) self.destroyed.connect(self.__removeCallbacks) def __removeCallbacks(self): functions.removeCallbacks(self.__callback_ids) def __sceneChanged(self, *args): self.reset() def reset(self): karte_item = self.__kartes_widget.currentKarte() if karte_item: karte_item.reset() self.StatusChanged.emit(model.Ready) self.update() tester_item = self.__testers_widget.currentTester() self.__detail_widget.reset() if tester_item: self.__detail_widget.setTesterItem(tester_item) def test(self): self.__detail_widget.reset() karte_item = self.__kartes_widget.currentKarte() if karte_item: karte_item.testAll(testerCallback=self.forceUpdate) self.StatusChanged.emit(karte_item.status()) self.update() tester_item = self.__testers_widget.currentTester() if tester_item: self.__detail_widget.setTesterItem(tester_item) def __singleTest(self): self.__detail_widget.reset() karte_item = self.__kartes_widget.currentKarte() tester_item = self.__testers_widget.currentTester() if karte_item and tester_item: karte_item.test(tester_item, testerCallback=self.forceUpdate) self.StatusChanged.emit(karte_item.status()) self.update() self.__detail_widget.setTesterItem(tester_item) def forceUpdate(self): self.update() QtWidgets.QApplication.processEvents() def __testerChanged(self, current): tester_item = self.__testers_widget.model().data(current, model.TesterItemRole) if tester_item: self.__detail_widget.setTesterItem(tester_item) else: self.__detail_widget.reset() def __reportsChanged(self): self.__testers_widget.updateSelected() karte_item = self.__kartes_widget.currentKarte() self.StatusChanged.emit(karte_item.status()) def __karteChanged(self, current): able_back = False if self.__phase is 0 else True able_next = False karte_model = self.__kartes_widget.model() tester_model = self.__testers_widget.model() karte_item = karte_model.data(current, model.KarteItemRole) if karte_item: self.KarteChanged.emit(karte_item.name()) tester_model.setTesterItems(karte_model.data(current, model.KarteTesterItemsRole)) able_next = True else: self.KarteChanged.emit("") tester_model.setTesterItems([]) self.ConditionChanged.emit(able_back, able_next)
bd298e7985f0b09e4222e354e3f0afc394e96595
b47f2e3f3298388b1bcab3213bef42682985135e
/experiments/heat-3d/tmp_files/1539.py
27d7e85b4987f69ec0aa2f1e52f9247dec53052f
[ "BSD-2-Clause" ]
permissive
LoopTilingBenchmark/benchmark
29cc9f845d323431e3d40e878cbfc6d1aad1f260
52a3d2e70216552a498fd91de02a2fa9cb62122c
refs/heads/master
2020-09-25T09:45:31.299046
2019-12-04T23:25:06
2019-12-04T23:25:06
225,975,074
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/heat-3d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/heat-3d/tmp_files/1539.c') procedure('kernel_heat_3d') loop(0) tile(0,2,8,2) tile(0,4,8,4) tile(0,6,8,6) tile(1,2,8,2) tile(1,4,8,4) tile(1,6,8,6)
f2a797d1c550dbc9843f6fe14e7ad572536407a7
a24b8446639f2157e2ecbdb7c11eda8e4e4344cc
/Configurations/UserConfigs/2018_AntiIso/ST_t_topConfig.py
82fbbb685a0a6b4499f198945b017c0e1a347268
[]
no_license
aloeliger/ReweightScheme
dcebc5651094d8d3da65885c59dae4070983624a
05c9783fcf8e024fd26a6dbb9b1fbab4aee3c7f4
refs/heads/master
2021-12-11T16:10:12.881863
2021-08-27T21:02:21
2021-08-27T21:02:21
215,565,834
0
1
null
null
null
null
UTF-8
Python
false
false
1,797
py
import ROOT from Configurations.Weights.CrossSectionWeightingModule.CrossSectionWeight import crossSectionWeight from Configurations.Weights.MuIDIsoReweightingModule.MuIDIsoWeight import muIDIsoWeight_2018 as muIDIsoWeight from Configurations.Weights.MuTrackingWeightModule.MuTrackingWeight import muTrackingWeight_2018 as muTrackingWeight from Configurations.Weights.PileupWeightingModule.PileupWeight import pileupWeight_2018 as pileupWeight from Configurations.Weights.TauFakeRateWeightModule.eTauFakeRateWeight import eTauFakeRateWeight_2018 as eTauFakeRateWeight from Configurations.Weights.TauIDModule.TauIDWeight import tauIDWeight_2018 as tauIDWeight from Configurations.Weights.TriggerSFModule.TriggerWeight import triggerWeight_2018 as triggerWeight from Configurations.Weights.bTaggingWeightModule.bTaggingWeight import bTaggingWeight_2018 from Configurations.Weights.PrefiringWeightModule.PrefiringWeight import PrefiringWeighting from Configurations.ConfigDefinition import ReweightConfiguration EWKConfiguration = ReweightConfiguration() EWKConfiguration.name = "ST_t_top" EWKConfiguration.inputFile = "/data/aloeliger/SMHTT_Selected_2018_AntiIso_Deep/ST_t_top.root" crossSectionWeight.sample = 'ST_t_top' crossSectionWeight.year = '2018' totalEventsFile = ROOT.TFile.Open("/data/aloeliger/SMHTT_Selected_2018_AntiIso_Deep/ST_t_top.root") crossSectionWeight.totalEvents = totalEventsFile.eventCount.GetBinContent(2) totalEventsFile.Close() pileupWeight.year = '2018' pileupWeight.sample = 'ST_t_top' pileupWeight.InitPileupWeightings(pileupWeight) EWKConfiguration.listOfWeights = [ crossSectionWeight, muIDIsoWeight, muTrackingWeight, pileupWeight, eTauFakeRateWeight, #tauIDWeight, triggerWeight, bTaggingWeight_2018, #PrefiringWeighting, ]
0c75fb6bf1bbf0e8a76928ce29bf5b4f0a014996
6a4ebebbe0d7f81efc4f1749054a2ed7242c0e58
/setup.py
345a9c9073ffb87c82e6fbcc413a8d8703519644
[ "LicenseRef-scancode-public-domain" ]
permissive
skylarker/granary
6e192ecd2475febb3585728d5ba7afe34742107d
2fd8ef017588b955e78606242ce582849cfd57ac
refs/heads/master
2020-12-26T21:35:04.155528
2016-04-18T18:15:30
2016-04-18T18:15:30
56,891,160
1
0
null
2016-04-22T23:43:09
2016-04-22T23:43:09
null
UTF-8
Python
false
false
1,868
py
"""setuptools setup module for granary. Docs: https://packaging.python.org/en/latest/distributing.html http://pythonhosted.org/setuptools/setuptools.html Based on https://github.com/pypa/sampleproject/blob/master/setup.py """ import unittest from setuptools import setup, find_packages from setuptools.command.test import ScanningLoader class TestLoader(ScanningLoader): def __init__(self, *args, **kwargs): super(ScanningLoader, self).__init__(*args, **kwargs) # webutil/test/__init__.py makes App Engine SDK's bundled libraries importable. import oauth_dropins.webutil.test setup(name='granary', version='1.3.1', description='Free yourself from silo API chaff and expose the sweet social data foodstuff inside in standard formats and protocols!', long_description=open('README.rst').read(), url='https://github.com/snarfed/granary', packages=find_packages(), include_package_data=True, author='Ryan Barrett', author_email='[email protected]', license='Public domain', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Environment :: Web Environment', 'License :: OSI Approved :: MIT License', 'License :: Public Domain', 'Programming Language :: Python :: 2', 'Topic :: Software Development :: Libraries :: Python Modules', ], keywords='facebook twitter google+ twitter activitystreams html microformats2 mf2 atom', install_requires=[ # Keep in sync with requirements.txt! 'beautifulsoup4', 'html2text', 'jinja2', 'mf2py>=0.2.7', 'mf2util>=0.3.3', 'oauth-dropins>=1.3', 'requests<2.6.0', ], test_loader='setup:TestLoader', test_suite='granary.test', )
918f237882bc12ca5169f08d0b2a86dd2b388b12
ec00584ab288267a7cf46c5cd4f76bbec1c70a6b
/Python/__function/functions1/functions1/23 keyword non-keyword argument.py
9adc44c2843f16255ab0ee092696537a2eac3237
[]
no_license
rahuldbhadange/Python
b4cc806ff23953389c9507f43d817b3815260e19
7e162117f1acc12537c7eeb36d6983d804122ff3
refs/heads/master
2021-06-23T05:04:20.053777
2020-01-28T10:34:28
2020-01-28T10:34:28
217,307,612
0
0
null
2021-06-10T22:44:11
2019-10-24T13:35:42
Python
UTF-8
Python
false
false
553
py
#3.keyword arguments: During fn call,using parameter name,passing value #4.non-keyword arguments:During fn call,without parameter name,passing value def display(branch,code): print(branch,code) display("CSE","05") #non-keyword argument display(branch="ECE",code="04") #keyword argument (using parameter name) display(code="02",branch="EEE") #keyword argument #display(code="12","IT") #default and non-default related to fn definition #key-word and non-keyword relatd to fn call #Note: After keyword argument,we cannot have nonkeyword argument
d1cc019f002492e4ca2f30241964186934bb36af
930309163b930559929323647b8d82238724f392
/abc108_b.py
c72c059e12f6e5358657caa002cf6e7a6a309c3c
[]
no_license
GINK03/atcoder-solvers
874251dffc9f23b187faa77c439b445e53f8dfe1
b1e7ac6e9d67938de9a85df4a2f9780fb1fbcee7
refs/heads/master
2021-11-07T14:16:52.138894
2021-09-12T13:32:29
2021-09-12T13:32:29
11,724,396
3
1
null
null
null
null
UTF-8
Python
false
false
162
py
x1, y1, x2, y2 = map(int, input().split()) dx = x2 - x1 dy = y2 - y1 x3 = x2 - dy y3 = y2 + dx x4 = x3 - dx y4 = y3 - dy print("%d %d %d %d" % (x3, y3, x4, y4))
c7c1943a417de7573e5aebf77ae57a09db5008a5
3b89c0a97ac6b58b6923a213bc8471e11ad4fe69
/python/CodingExercises/LeetCode1.py
86ca7efb65730bbd49152c8028c24b15a168c256
[]
no_license
ksayee/programming_assignments
b187adca502ecf7ff7b51dc849d5d79ceb90d4a6
13bc1c44e1eef17fc36724f20b060c3339c280ea
refs/heads/master
2021-06-30T07:19:34.192277
2021-06-23T05:11:32
2021-06-23T05:11:32
50,700,556
1
3
null
null
null
null
UTF-8
Python
false
false
747
py
''' 1. Two Sum Given an array of integers, return indices of the two numbers such that they add up to a specific target. You may assume that each input would have exactly one solution, and you may not use the same element twice. Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. ''' def LeetCode1(ary,k): dict={} fnl_lst=[] for i in range(0,len(ary)): key=ary[i] diff=k-key if diff in dict.keys(): val=dict[diff] tup=(i,val) fnl_lst.append(tup) else: dict[key]=i return fnl_lst def main(): ary=[2, 7, 11, 15] k=9 print(LeetCode1(ary,k)) if __name__=='__main__': main()
0c7109401894b8ab6fa958daf9320f6f6999c573
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03231/s342511104.py
c53bcfef1be5b00fe39ad9752b5ac05a7a1bf748
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
from math import gcd N, M = map(int, input().split()) S = input() T = input() L = N*M // gcd(N, M) for i in range(N): if M*i % N == 0: j = M*i // N if S[i] != T[j]: print(-1) exit() print(L)
3acd2877be2d35889598ed2111ffaffb3f802be0
4b434c6af1d205e33941289211159dfde865e38e
/con.Bmaml.eq/train.py
fdc88d237727a3c3e47393deafa25044993743e3
[]
no_license
a1600012888/BMAML
3b2a7f264ed13ef598cc3677d18714c4f8354176
4802a917d8061011be9a2b09174598216812cc58
refs/heads/master
2020-04-14T19:10:40.363219
2019-01-16T17:03:18
2019-01-16T17:03:18
164,047,888
9
1
null
null
null
null
UTF-8
Python
false
false
5,915
py
import torch from collections import OrderedDict from tqdm import tqdm from utils import AvgMeter from torch.nn.utils import vector_to_parameters, parameters_to_vector def TrainOneTask(Task, M, SVGD, optimizer, DEVICE, num_of_step = 3, step_size = 1e-3): X, Y, Xtest, Ytest, std = Task X = X.to(DEVICE) Y = Y.to(DEVICE) Xtest = Xtest.to(DEVICE) Ytest = Ytest.to(DEVICE) std = std.to(DEVICE) * 100 # * 100 to stablize SVGD.NablaLogP.update(X, Y, std) SVGD.InitMomentumUpdaters() with torch.no_grad(): start_logp = 0 for paramsvec in M: start_logp = start_logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) start_logp = start_logp / len(M) for i in range(num_of_step): M = SVGD.step(M, retain_graph = True, step_size = step_size) with torch.no_grad(): end_logp = 0 for paramsvec in M: end_logp = end_logp + SVGD.NablaLogP(True, paramsvec, ret_grad = False) end_logp = end_logp / len(M) SVGD.NablaLogP.update(Xtest, Ytest, std) logp = 0 for paramsvec in M: logp = logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) logp = logp / len(M) loss = logp * -1.0 loss.backward() optimizer.step() optimizer.zero_grad() ret_dic = OrderedDict() ret_dic['start_logp_train'] = start_logp.item() ret_dic['end_logp_train'] = end_logp.item() ret_dic['end_logp_joint'] = logp.item() return ret_dic def TrainOneTaskWithChaserLoss(Task, M, SVGD, optimizer, DEVICE, num_of_step = 3, step_size = 1e-3): optimizer.zero_grad() X, Y, Xtest, Ytest, std = Task X = X.to(DEVICE) Y = Y.to(DEVICE) Xtest = Xtest.to(DEVICE) Ytest = Ytest.to(DEVICE) std = std.to(DEVICE) * 100 # * 100 to stablize SVGD.NablaLogP.update(X, Y, std) SVGD.InitMomentumUpdaters() # Compute the LogP for initial particles (For hyper-param tuning) with torch.no_grad(): start_logp = 0 for paramsvec in M: start_logp = start_logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) start_logp = start_logp / len(M) # Inner fit for i in range(num_of_step): M = SVGD.step(M, retain_graph = True, step_size = step_size) # Compute the LogP of the training set after the fitting (For hyper-param tuning) with torch.no_grad(): end_logp = 0 for paramsvec in M: end_logp = end_logp + SVGD.NablaLogP(True, paramsvec, ret_grad = False) end_logp = end_logp / len(M) Xtrain_and_test = torch.cat((X, Xtest)) Ytrain_and_test = torch.cat((Y, Ytest)) SVGD.NablaLogP.update(Xtrain_and_test, Ytrain_and_test, std) SVGD.InitMomentumUpdaters() # Compute the LogP of the whole set after the fitting (For hyper-param tuning) with torch.no_grad(): logp = 0 for paramsvec in M: logp = logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) logp = logp / len(M) # Approximate the true prior M_true = [] for paramsvec in M: m = torch.nn.ParameterList([torch.nn.Parameter(p.detach()) for p in paramsvec]) #m = [p.detach() for p in paramsvec] M_true.append(m) #M_true = SVGD.step(M, retain_graph=False, step_size=step_size) for i in range(num_of_step): M_true= SVGD.step(M_true, retain_graph=False, step_size=step_size) chaser_loss = 0 for paramsvec, paramsvec_true in zip(M, M_true): vec = parameters_to_vector(paramsvec) vec_true = parameters_to_vector(paramsvec_true).detach() chaser_loss = chaser_loss + torch.dot((vec - vec_true),(vec - vec_true) ) #for param, param_true in zip(paramsvec, paramsvec_true): # chaser_loss = chaser_loss + torch.mean((param - param_true.detach()) ** 2) chaser_loss = chaser_loss / len(M) # Compute the true LogP of the whole set (For hyper-param tuning) with torch.no_grad(): true_logp = 0 for paramsvec in M_true: true_logp = true_logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) true_logp = true_logp / len(M) chaser_loss.backward() optimizer.step() optimizer.zero_grad() ret_dic = OrderedDict() ret_dic['start_logp_train'] = start_logp.item() ret_dic['end_logp_train'] = end_logp.item() ret_dic['end_logp_joint'] = logp.item() ret_dic['true_logp_joint'] = true_logp.item() ret_dic['chaser_loss'] = chaser_loss.item() return ret_dic def test(TaskLoader, M, SVGD, DEVICE, num_of_step = 3, step_size = 1e-3): ''' test for continious ''' raw_M = M LogP = AvgMeter() pbar = tqdm(range(100)) for i in pbar: task = next(TaskLoader) for j in range(len(task)-1): X, Y, Xtest, Ytest, std = task[j] X_next, Y_next, Xtest_next, Ytest_next, std_next = task[j+1] X = X.to(DEVICE) Y = Y.to(DEVICE) #Xtest = Xtest.to(DEVICE) #Ytest = Ytest.to(DEVICE) #std = std.to(DEVICE) * 100 # * 100 to stablize Xtest = Xtest_next.to(DEVICE) Ytest = Ytest_next.to(DEVICE) std = std_next.to(DEVICE) * 100 # * 100 to stablize SVGD.NablaLogP.update(X, Y, std) SVGD.InitMomentumUpdaters() #Mt = SVGD.step(M, retain_graph=False, step_size=step_size) for tt in range(num_of_step): M = SVGD.step(M, retain_graph = False, step_size = step_size )#/ (len(task) -1 )) SVGD.NablaLogP.update(Xtest, Ytest, std) with torch.no_grad(): logp = 0 for paramsvec in M: logp = logp + SVGD.NablaLogP(True, paramsvec, ret_grad=False) logp = logp / len(M) LogP.update(logp.item()) pbar.set_description("Running Validation") pbar.set_postfix({'Logp_test':LogP.mean}) M = raw_M return LogP.mean
67b0a46a7d02e459b2ca4a9e9d9c5635591b21bf
b659e99f89cf17ae886857383cb5b708847fe3f1
/gettingStarted/problem7.py
8402c5ac64f20f3cd28685736d51b82d10eddaae
[]
no_license
nitheeshmavila/practice-python
bea06cc4b2b9247b926e07fd5a3987552e531242
f54bf8934a4cf160cdfc9dc43176f1eea3bc7a41
refs/heads/master
2021-07-03T17:24:29.450939
2021-06-16T08:40:48
2021-06-16T08:40:48
100,113,256
1
0
null
null
null
null
UTF-8
Python
false
false
443
py
''' Problem 7: How many multiplications are performed when each of the following lines(line 1 and line 2) of code is executed? ''' noofCalls = 0 def square(n): print(n) global noofCalls noofCalls += 1 return n*n def printCalls(): print('no of multiplications performed:',noofCalls) print(square(5)) # line1 printCalls() print(square(2*5)) #line2 printCalls() ''' output ----- no of multiplications performed:1 '''
dd70383bd799a8f104e751a763ba69d1a5ff85be
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03330/s307392217.py
de40af9fdc43a32599ce03bad31896ab49cb00ac
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
787
py
def main(): from itertools import permutations N, C = map(int, input().split()) change_cost = [[int(x) for x in input().split()] for _ in range(C)] init_color = [[int(x) - 1 for x in input().split()] for _ in range(N)] ctr = [[0] * C for _ in range(3)] for r in range(N): for c in range(N): p = (r + c) % 3 color = init_color[r][c] ctr[p][color] += 1 mi = 1000 * 500 * 500 + 1 for perm in permutations(range(C), r=3): it = iter(perm) t = 0 for p in range(3): color_to_be = next(it) for color, count in enumerate(ctr[p]): t += change_cost[color][color_to_be] * count mi = min(mi, t) print(mi) if __name__ == '__main__': main()
390906999c1c0e7466b96f59d5a0c7e6cc9ab7d4
986d78fdcb40f4ee7db15bafc77070c087d16b63
/studies/MultiBoomSparMass_v2/point_design.py
f0268c72689269395046cb2711265a992c71d693
[ "MIT" ]
permissive
hdolfen/AeroSandbox
8578b5e36b9a4be69801c1c9ad8819965f236edb
4c48690e31f5f2006937352a63d653fe268c42c3
refs/heads/master
2023-01-20T15:36:58.111907
2020-11-24T13:11:44
2020-11-24T13:11:44
313,655,155
0
0
MIT
2020-11-24T13:11:46
2020-11-17T15:05:02
null
UTF-8
Python
false
false
1,885
py
### Imports from aerosandbox.structures.beams import * import copy n_booms = 1 # n_booms = 2 # load_location_fraction = 0.50 # n_booms = 3 # load_location_fraction = 0.60 mass = 80 * 6 span = 7.3 ### Set up problem opti = cas.Opti() beam = TubeBeam1( opti=opti, length=span / 2, points_per_point_load=100, diameter_guess=10, thickness=1e-3, bending=True, torsion=False, max_allowable_stress=570e6, ) lift_force = 9.81 * mass # load_location = opti.variable() # opti.set_initial(load_location, 12) # opti.subject_to([ # load_location > 1, # load_location < beam.length - 1, # ]) assert (n_booms == np.array([1,2,3])).any() if n_booms == 2 or n_booms == 3: load_location = beam.length * load_location_fraction beam.add_point_load(location = load_location, force = -lift_force / n_booms) beam.add_elliptical_load(force=lift_force / 2) beam.setup() # Constraints (in addition to stress) opti.subject_to([ # beam.u[-1] < 2, # tip deflection. Source: http://web.mit.edu/drela/Public/web/hpa/hpa_structure.pdf # beam.u[-1] > -2 # tip deflection. Source: http://web.mit.edu/drela/Public/web/hpa/hpa_structure.pdf beam.du * 180 / cas.pi < 10, # local dihedral constraint beam.du * 180 / cas.pi > -10, # local anhedral constraint cas.diff(beam.nominal_diameter) < 0, # manufacturability ]) # # Zero-curvature constraint (restrict to conical tube spars only) # opti.subject_to([ # cas.diff(cas.diff(beam.nominal_diameter)) == 0 # ]) opti.minimize(beam.mass) p_opts = {} s_opts = {} s_opts["max_iter"] = 1e6 # If you need to interrupt, just use ctrl+c # s_opts["mu_strategy"] = "adaptive" opti.solver('ipopt', p_opts, s_opts) sol = opti.solve() beam_sol = copy.deepcopy(beam).substitute_solution(sol) spar_mass = beam_sol.mass * 2 # Run a sanity check beam_sol.draw_bending() print("Spar mass:", spar_mass)
f53ed7447917dec09d5d66ad99297a866cab65af
78f3fe4a148c86ce9b80411a3433a49ccfdc02dd
/2018/11/graphics/elex18-all-suburb-map-20181119/graphic_config.py
006fc1be9c13a6867f9c6636d339a291b2f137a6
[]
no_license
nprapps/graphics-archive
54cfc4d4d670aca4d71839d70f23a8bf645c692f
fe92cd061730496cb95c9df8fa624505c3b291f8
refs/heads/master
2023-03-04T11:35:36.413216
2023-02-26T23:26:48
2023-02-26T23:26:48
22,472,848
16
7
null
null
null
null
UTF-8
Python
false
false
305
py
#!/usr/bin/env python import base_filters COPY_GOOGLE_DOC_KEY = '105w9FOQjFxe2xS_gA8rB6fXNWs-Tlyr4Jgu3icfRJgI' USE_ASSETS = False # Use these variables to override the default cache timeouts for this graphic # DEFAULT_MAX_AGE = 20 # ASSETS_MAX_AGE = 300 JINJA_FILTER_FUNCTIONS = base_filters.FILTERS