blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
1d29dee387b69c8558912e9c4fd3c2013e88be9a
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/2550.py
28c00dfbc78318b375a16931dd8cc2af6d52486d
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
#!/usr/bin/env python import sys from math import sqrt def pal(x): x = str(x) return x == x[::-1] if __name__ == "__main__": t = int(sys.stdin.readline()) for case in range(1, t+1): count = 0 i, j = [long(c) for c in sys.stdin.readline().split(" ")] for n in range(i, j+1): r = sqrt(n) if r - int(r) != 0.0: continue if pal(n) and pal(int(r)): count += 1 print "Case #%d: %d" % (case, count)
d32be4c5c1aa79bae358160228b4b8ad3f289a4f
28ef7c65a5cb1291916c768a0c2468a91770bc12
/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/mobilenetv2_coco_384x288.py
b7b54f086ffee4d0e83d3a2fe04f5cf10f68a7ec
[ "Apache-2.0" ]
permissive
bit-scientist/mmpose
57464aae1ca87faf5a4669991ae1ea4347e41900
9671a12caf63ae5d15a9bebc66a9a2e7a3ce617e
refs/heads/master
2023-08-03T17:18:27.413286
2021-09-29T03:48:37
2021-09-29T03:48:37
411,549,076
0
0
Apache-2.0
2021-09-29T06:01:27
2021-09-29T06:01:26
null
UTF-8
Python
false
false
4,196
py
_base_ = ['../../../../_base_/datasets/coco.py'] log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='mAP', save_best='AP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) # model settings model = dict( type='TopDown', pretrained='mmcls://mobilenet_v2', backbone=dict(type='MobileNetV2', widen_factor=1., out_indices=(7, )), keypoint_head=dict( type='TopdownHeatmapSimpleHead', in_channels=1280, out_channels=channel_cfg['num_output_channels'], loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[288, 384], heatmap_size=[72, 96], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='data/coco/person_detection_results/' 'COCO_val2017_detections_AP_H_56_person.json', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=3), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/coco' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', img_prefix=f'{data_root}/train2017/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), )
f2746e2381a95d740cf3cd4036e8a08a7bb02ad3
eefb06b0d8c8c98c1e9cfc4c3852d5c453eb5429
/data/input/aldryn/django-simple-sso/simple_sso/sso_server/server.py
aa568278cfa75a6e2015dc8bf8be3712ae4e86da
[]
no_license
bopopescu/pythonanalyzer
db839453bde13bf9157b76e54735f11c2262593a
8390a0139137574ab237b3ff5fe8ea61e8a0b76b
refs/heads/master
2022-11-22T02:13:52.949119
2019-05-07T18:42:52
2019-05-07T18:42:52
282,079,884
0
0
null
2020-07-23T23:46:09
2020-07-23T23:46:08
null
UTF-8
Python
false
false
6,308
py
# -*- coding: utf-8 -*- import urlparse from django.conf.urls import patterns, url from django.contrib import admin from django.contrib.admin.options import ModelAdmin from django.core.urlresolvers import reverse from django.http import (HttpResponseForbidden, HttpResponseBadRequest, HttpResponseRedirect, QueryDict) from django.utils import timezone from django.views.generic.base import View from itsdangerous import URLSafeTimedSerializer from simple_sso.sso_server.models import Token, Consumer import datetime import urllib from webservices.models import Provider from webservices.sync import provider_for_django class BaseProvider(Provider): max_age = 5 def __init__(self, server): self.server = server def get_private_key(self, public_key): try: self.consumer = Consumer.objects.get(public_key=public_key) except Consumer.DoesNotExist: return None return self.consumer.private_key class RequestTokenProvider(BaseProvider): def provide(self, data): redirect_to = data['redirect_to'] token = Token.objects.create(consumer=self.consumer, redirect_to=redirect_to) return {'request_token': token.request_token} class AuthorizeView(View): """ The client get's redirected to this view with the `request_token` obtained by the Request Token Request by the client application beforehand. This view checks if the user is logged in on the server application and if that user has the necessary rights. If the user is not logged in, the user is prompted to log in. """ server = None def get(self, request): request_token = request.GET.get('token', None) if not request_token: return self.missing_token_argument() try: self.token = Token.objects.select_related('consumer').get(request_token=request_token) except Token.DoesNotExist: return self.token_not_found() if not self.check_token_timeout(): return self.token_timeout() self.token.refresh() if request.user.is_authenticated(): return self.handle_authenticated_user() else: return self.handle_unauthenticated_user() def missing_token_argument(self): return HttpResponseBadRequest('Token missing') def token_not_found(self): return HttpResponseForbidden('Token not found') def token_timeout(self): return HttpResponseForbidden('Token timed out') def check_token_timeout(self): delta = timezone.now() - self.token.timestamp if delta > self.server.token_timeout: self.token.delete() return False else: return True def handle_authenticated_user(self): if self.server.has_access(self.request.user, self.token.consumer): return self.success() else: return self.access_denied() def handle_unauthenticated_user(self): next = '%s?%s' % (self.request.path, urllib.urlencode([('token', self.token.request_token)])) url = '%s?%s' % (reverse(self.server.auth_view_name), urllib.urlencode([('next', next)])) return HttpResponseRedirect(url) def access_denied(self): return HttpResponseForbidden("Access denied") def success(self): self.token.user = self.request.user self.token.save() serializer = URLSafeTimedSerializer(self.token.consumer.private_key) parse_result = urlparse.urlparse(self.token.redirect_to) query_dict = QueryDict(parse_result.query, mutable=True) query_dict['access_token'] = serializer.dumps(self.token.access_token) url = urlparse.urlunparse((parse_result.scheme, parse_result.netloc, parse_result.path, '', query_dict.urlencode(), '')) return HttpResponseRedirect(url) class VerificationProvider(BaseProvider, AuthorizeView): def provide(self, data): token = data['access_token'] try: self.token = Token.objects.select_related('user').get(access_token=token, consumer=self.consumer) except Token.DoesNotExist: return self.token_not_found() if not self.check_token_timeout(): return self.token_timeout() if not self.token.user: return self.token_not_bound() extra_data = data.get('extra_data', None) return self.server.get_user_data( self.token.user, self.consumer, extra_data=extra_data) def token_not_bound(self): return HttpResponseForbidden("Invalid token") class ConsumerAdmin(ModelAdmin): readonly_fields = ['public_key', 'private_key'] class Server(object): request_token_provider = RequestTokenProvider authorize_view = AuthorizeView verification_provider = VerificationProvider token_timeout = datetime.timedelta(minutes=5) client_admin = ConsumerAdmin auth_view_name = 'django.contrib.auth.views.login' def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) self.register_admin() def register_admin(self): admin.site.register(Consumer, self.client_admin) def has_access(self, user, consumer): return True def get_user_extra_data(self, user, consumer, extra_data): raise NotImplementedError() def get_user_data(self, user, consumer, extra_data=None): user_data = { 'username': user.username, 'email': user.email, 'first_name': user.first_name, 'last_name': user.last_name, 'is_staff': False, 'is_superuser': False, 'is_active': user.is_active, } if extra_data: user_data['extra_data'] = self.get_user_extra_data( user, consumer, extra_data) return user_data def get_urls(self): return patterns('', url(r'^request-token/$', provider_for_django(self.request_token_provider(server=self)), name='simple-sso-request-token'), url(r'^authorize/$', self.authorize_view.as_view(server=self), name='simple-sso-authorize'), url(r'^verify/$', provider_for_django(self.verification_provider(server=self)), name='simple-sso-verify'), )
de06873e9ac5e35c2c78389c58693ec007c55023
436177bf038f9941f67e351796668700ffd1cef2
/venv/Lib/site-packages/sklearn/feature_selection/tests/test_feature_select.py
d58dd44faa8189c222dc572ef2799ff1e0cec20c
[]
no_license
python019/matplotlib_simple
4359d35f174cd2946d96da4d086026661c3d1f9c
32e9a8e773f9423153d73811f69822f9567e6de4
refs/heads/main
2023-08-22T18:17:38.883274
2021-10-07T15:55:50
2021-10-07T15:55:50
380,471,961
29
0
null
null
null
null
UTF-8
Python
false
false
26,540
py
""" Todo: cross-check the F-value with stats model """ import itertools import warnings import numpy as np from scipy import stats, sparse import pytest from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_warns from sklearn.utils._testing import ignore_warnings from sklearn.utils._testing import assert_warns_message from sklearn.utils import safe_mask from sklearn.datasets import make_classification, make_regression from sklearn.feature_selection import ( chi2, f_classif, f_oneway, f_regression, mutual_info_classif, mutual_info_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert np.allclose(f, f2) assert np.allclose(pv, pv2) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert (F > 0).all() assert (pv > 0).all() assert (pv < 1).all() assert (pv[:5] < 0.05).all() assert (pv[5:] > 1.e-4).all() assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert (F > 0).all() assert (pv > 0).all() assert (pv < 1).all() assert (pv[:5] < 0.05).all() assert (pv[5:] > 1.e-4).all() # with centering, compare with sparse F, pv = f_regression(X, y, center=True) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=True) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert (F > 0).all() assert (pv > 0).all() assert (pv < 1).all() assert (pv[:5] < 0.05).all() assert (pv[5:] > 1.e-4).all() def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert sparse.issparse(X_r2inv) support_mask = safe_mask(X_r2inv, support) assert X_r2inv.shape == X.shape assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert X_r2inv.getnnz() == X_r.getnnz() ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert X_selected.shape == (20, 0) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_almost_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) with pytest.raises(ValueError): SelectPercentile(percentile=-1).fit(X, y) with pytest.raises(ValueError): SelectPercentile(percentile=101).fit(X, y) with pytest.raises(ValueError): GenericUnivariateSelect(mode='percentile', param=-1).fit(X, y) with pytest.raises(ValueError): GenericUnivariateSelect(mode='percentile', param=101).fit(X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=bool)) assert np.sum(support[5:] == 1) < 3 def test_boundary_case_ch2(): # Test boundary case, and always aim to select 1 feature. X = np.array([[10, 20], [20, 20], [20, 30]]) y = np.array([[1], [0], [0]]) scores, pvalues = chi2(X, y) assert_array_almost_equal(scores, np.array([4., 0.71428571])) assert_array_almost_equal(pvalues, np.array([0.04550026, 0.39802472])) filter_fdr = SelectFdr(chi2, alpha=0.1) filter_fdr.fit(X, y) support_fdr = filter_fdr.get_support() assert_array_equal(support_fdr, np.array([True, False])) filter_kbest = SelectKBest(chi2, k=1) filter_kbest.fit(X, y) support_kbest = filter_kbest.get_support() assert_array_equal(support_kbest, np.array([True, False])) filter_percentile = SelectPercentile(chi2, percentile=50) filter_percentile.fit(X, y) support_percentile = filter_percentile.get_support() assert_array_equal(support_percentile, np.array([True, False])) filter_fpr = SelectFpr(chi2, alpha=0.1) filter_fpr.fit(X, y) support_fpr = filter_fpr.get_support() assert_array_equal(support_fpr, np.array([True, False])) filter_fwe = SelectFwe(chi2, alpha=0.1) filter_fwe.fit(X, y) support_fwe = filter_fwe.get_support() assert_array_equal(support_fwe, np.array([True, False])) @pytest.mark.parametrize("alpha", [0.001, 0.01, 0.1]) @pytest.mark.parametrize("n_informative", [1, 5, 10]) def test_select_fdr_regression(alpha, n_informative): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(100)]) assert alpha >= false_discovery_rate # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert false_discovery_rate > alpha / 10 def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=bool)) assert np.sum(support[5:] == 1) < 2 def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert X1.shape[1] == 1 assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert X2.shape[1] == 2 assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert X1.shape[1] == 1 assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert X2.shape[1] == 2 assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert Xt.shape == (2, 2) assert 9998 not in Xt Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert Xt.shape == (2, 2) assert 9998 not in Xt def test_scorefunc_multilabel(): # Test whether k-best and percentiles works with multilabels with chi2. X = np.array([[10000, 9999, 0], [100, 9999, 0], [1000, 99, 0]]) y = [[1, 1], [0, 1], [1, 0]] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert Xt.shape == (3, 2) assert 0 not in Xt Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert Xt.shape == (3, 2) assert 0 not in Xt def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, k=2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: with pytest.raises(TypeError): SelectFeatures(score_func=10).fit(X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] with pytest.raises(ValueError): SelectKBest(k=-1).fit(X, y) with pytest.raises(ValueError): SelectKBest(k=4).fit(X, y) with pytest.raises(ValueError): GenericUnivariateSelect(mode='k_best', param=-1).fit(X, y) with pytest.raises(ValueError): GenericUnivariateSelect(mode='k_best', param=4).fit(X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert X_selected.shape == (40, 0) def test_mutual_info_classif(): X, y = make_classification(n_samples=100, n_features=5, n_informative=1, n_redundant=1, n_repeated=0, n_classes=2, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) # Test in KBest mode. univariate_filter = SelectKBest(mutual_info_classif, k=2) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( mutual_info_classif, mode='k_best', param=2).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(5) gtruth[:2] = 1 assert_array_equal(support, gtruth) # Test in Percentile mode. univariate_filter = SelectPercentile(mutual_info_classif, percentile=40) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( mutual_info_classif, mode='percentile', param=40).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(5) gtruth[:2] = 1 assert_array_equal(support, gtruth) def test_mutual_info_regression(): X, y = make_regression(n_samples=100, n_features=10, n_informative=2, shuffle=False, random_state=0, noise=10) # Test in KBest mode. univariate_filter = SelectKBest(mutual_info_regression, k=2) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( mutual_info_regression, mode='k_best', param=2).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(10) gtruth[:2] = 1 assert_array_equal(support, gtruth) # Test in Percentile mode. univariate_filter = SelectPercentile(mutual_info_regression, percentile=20) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(mutual_info_regression, mode='percentile', param=20).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(10) gtruth[:2] = 1 assert_array_equal(support, gtruth)
1bc5bfe0093dafca4e694e1f48a3517bedeab02c
5cd6a7fa7be3b00ff63e60935bc1be9fa1cfebf4
/projects/mid_atlantic/study/plot_FigS3_Distance_v_Depth_By_State.py
32b02836b5905138d01abb24b202eb0527cf62b4
[ "MIT" ]
permissive
EnergyModels/caes
214e1c7cded4498f33670da7eeebccbaa665e930
5e994c198657226925161db1980ebfa704d0c90b
refs/heads/master
2023-08-23T15:05:53.594530
2021-11-06T01:00:57
2021-11-06T01:00:57
261,201,284
3
3
null
null
null
null
UTF-8
Python
false
false
4,026
py
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes, mark_inset df = pd.read_csv('all_analysis.csv') # f, a = plt.subplots(2,1) # a = a.ravel() # # sns.scatterplot(data=df, x='NEAR_DIST',y='feasible_fr', hue='NEAR_FC', ax=a[0]) # # sns.scatterplot(data=df, x='NEAR_DIST',y='RASTERVALU', hue='NEAR_FC', ax=a[1]) # conversions and column renaming df.loc[:, 'Distance to shore (km)'] = df.loc[:, 'NEAR_DIST'] / 1000.0 df.loc[:, 'Water depth (m)'] = df.loc[:, 'RASTERVALU'] df.loc[:, 'Feasibility (%)'] = df.loc[:, 'feasible_fr'] * 100.0 df.loc[:, 'Formation (-)'] = df.loc[:, 'formation'] df.loc[:, 'Nearest State (-)'] = df.loc[:, 'NEAR_FC'] loc_dict = {'VA_shore': 'Virginia', 'MD_shore': 'Maryland', 'NJ_shore': 'New Jersey', 'DE_shore': 'Delaware', 'NY_shore': 'New York', 'MA_shore': 'Massachusetts', 'RI_shore': 'Rhode Island'} formation_dict = {'LK1': 'Lower Cretaceous', 'MK1-3': 'Middle Cretaceous', 'UJ1': 'Upper Jurassic'} # rename for loc in df.loc[:, 'Nearest State (-)'].unique(): ind = df.loc[:, 'Nearest State (-)'] == loc df.loc[ind, 'Nearest State (-)'] = loc_dict[loc] # rename for formation in df.loc[:, 'Formation (-)'].unique(): ind = df.loc[:, 'Formation (-)'] == formation df.loc[ind, 'Formation (-)'] = formation_dict[formation] # Filter data with feasibility greater than 0.8 # df = df[df.loc[:,'Feasibility (%)']>=0.8] # Filter data with mean RTE greater than 0.5 df = df[df.loc[:, 'RTE_mean'] >= 0.5] # sns.scatterplot(data=df, x='Distance to shore (km)', y='Water depth (m)', hue='Nearest State (-)', # size='Feasibility (%)', style='Formation (-)') # # # a[1].set_ylim(top=0.0,bottom=-100.0) # # sns.scatterplot(data=df, x='Distance to shore (km)', y='Water depth (m)', hue='Nearest State (-)', # size='Feasibility (%)', style='Formation (-)', ax=a[1]) # # a[1].set_xlim(left=0.0,right=100.0) # a[1].set_ylim(top=0.0,bottom=-100.0) # create figure f, a = plt.subplots(1, 1) axins = zoomed_inset_axes(a, zoom=2.2, loc='upper center', bbox_to_anchor=(0.5, -0.2), bbox_transform=a.transAxes) # Main plot sns.scatterplot(data=df, x='Distance to shore (km)', y='Water depth (m)', hue='Nearest State (-)', style='Formation (-)', ax=a) a.set_xlim(left=0.0, right=300.0) a.set_ylim(top=0, bottom=-400.0) # a.set_yscale('symlog') # Inset x_lims = [0.0, 100.0] y_lims = [0, -60.0] rect = plt.Rectangle((x_lims[0] + 1, y_lims[0]), x_lims[1] - x_lims[0] + 1, y_lims[1] - y_lims[0], fill=False, facecolor="black", edgecolor='black', linestyle='--') a.add_patch(rect) sns.scatterplot(data=df, x='Distance to shore (km)', y='Water depth (m)', hue='Nearest State (-)', style='Formation (-)', legend=False, ax=axins) axins.set_xlim(left=x_lims[0], right=x_lims[1]) axins.set_ylim(top=y_lims[0], bottom=y_lims[1]) # axins.set_yscale('symlog') axins.yaxis.set_major_locator(plt.MaxNLocator(3)) a.legend(bbox_to_anchor=(1.025, 0.0), loc="center left", ncol=1) a.text(-0.1, 1.0, 'a', horizontalalignment='center', verticalalignment='center', transform=a.transAxes, fontsize='medium', fontweight='bold') axins.text(-0.3, 1.0, 'b', horizontalalignment='center', verticalalignment='center', transform=axins.transAxes, fontsize='medium', fontweight='bold') # Add rectangle that represents subplot2 # Column width guidelines https://www.elsevier.com/authors/author-schemas/artwork-and-media-instructions/artwork-sizing # Single column: 90mm = 3.54 in # 1.5 column: 140 mm = 5.51 in # 2 column: 190 mm = 7.48 i width = 7.48 # inches height = 7.0 # inches # Set size f.set_size_inches(width, height) plt.subplots_adjust(top=0.95, bottom=0.5, left=0.12, right=0.7, hspace=0.2, wspace=0.2) # save plt.savefig('FigS3_Distance_v_Depth_By_State.png', dpi=300)
164e5493f6758c339a9e2ad856a3766537c455d0
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp-obt/sblp_ut=3.5_rd=1_rw=0.06_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=65/params.py
1784956005fe6b3ad3c6eecf934f47a007d14984
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
{'cpus': 4, 'duration': 30, 'final_util': '3.662643', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '1', 'res_nmb': '4', 'res_weight': '0.06', 'scheduler': 'RUN', 'trial': 65, 'utils': 'uni-medium-3'}
ac3142959ea8cad01113bded21db613df639e564
9da8754002fa402ad8e6f25659978bd269bbcec8
/src/326A/test_cdf_326A.py
64e36fcaf81aaefde3dcff7e62890268fa2c84a8
[ "MIT" ]
permissive
kopok2/CodeforcesSolutionsPython
a00f706dbf368ba0846c8ae86d4145b5dd3e1613
35bec0dbcff47765b123b5fe60476014376153df
refs/heads/master
2023-02-02T03:08:22.097651
2020-12-17T22:00:50
2020-12-17T22:00:50
196,035,812
1
1
null
null
null
null
UTF-8
Python
false
false
185
py
import unittest from unittest.mock import patch from cdf_326A import CodeforcesTask326ASolution class TestCDF326A(unittest.TestCase): if __name__ == "__main__": unittest.main()
14397fd7d43c0fec589ab90b3be4cf83ca04e4fb
5ab4ed1e8eb7f942db03eb06a56f2dc0fb8056f8
/code/process_results/2020/05/7_8_finetune_sparse_facto_grid_lr.py
d90ab7d2fb6fdab6387af977bfd1f0472876558a
[ "MIT" ]
permissive
lucgiffon/psm-nets
b4f443ff47f4b423c3494ff944ef0dae68badd9d
dec43c26281febf6e5c8b8f42bfb78098ae7101d
refs/heads/main
2023-05-04T17:56:11.122144
2021-05-28T16:31:34
2021-05-28T16:31:34
337,717,248
1
0
null
null
null
null
UTF-8
Python
false
false
21,794
py
from collections import defaultdict import keras.backend as K import pickle import pathlib import pandas as pd import scipy.special import scipy.stats from keras.models import Model import gc import palmnet.hunt from palmnet.core.faustizer import Faustizer from palmnet.core.layer_replacer_faust import LayerReplacerFaust from palmnet.core.layer_replacer_palm import LayerReplacerPalm from palmnet.data import param_training, image_data_generator_cifar_svhn, image_data_generator_mnist from palmnet.experiments.utils import get_line_of_interest, ParameterManager from palmnet.utils import get_sparsity_pattern, get_nb_learnable_weights, get_nb_learnable_weights_from_model from palmnet.visualization.utils import get_palminized_model_and_df, get_df import numpy as np import logging from palmnet.core import palminizable from palmnet.core.palminizer import Palminizer palminizable.Palminizer = Palminizer import sys sys.modules["palmnet.core.palminize"] = palminizable from skluc.utils import logger, log_memory_usage import keras mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.ERROR) logger.setLevel(logging.DEBUG) def get_singular_values_info(matrix): U, S, V = np.linalg.svd(matrix) mean_sv = np.mean(S) softmax_S = scipy.special.softmax(S) entropy_S = scipy.stats.entropy(softmax_S) entropy_sv = entropy_S nb_sv = len(S) entropy_sv_normalized = entropy_S / scipy.stats.entropy(scipy.special.softmax(np.ones(len(S)))) percent_sv_above_mean = np.sum(S > mean_sv) / len(S) return entropy_sv, nb_sv, entropy_sv_normalized, percent_sv_above_mean def get_df_from_expe_path(expe_path): src_dir = root_source_dir / expe_path df = get_df(src_dir) df = df.assign(results_dir=[str(src_dir.absolute())] * len(df)) df = df.rename(columns={"--tol": "--delta-threshold"}) return df columns_not_to_num = ['hash', 'output_file_csvcbprinter', "--use-clr", "--input-dir", "input_model_path", "output_file_csvcvprinter", "output_file_finishedprinter", "output_file_layerbylayer", "output_file_modelprinter", "output_file_notfinishedprinter", "output_file_resprinter", "output_file_tensorboardprinter", "results_dir"] def cast_to_num(df): for col in df.columns.difference(columns_not_to_num): if col in df.columns.values: df.loc[:, col] = df.loc[:, col].apply(pd.to_numeric, errors='coerce') return df if __name__ == "__main__": root_source_dir = pathlib.Path("/home/luc/PycharmProjects/palmnet/results/") expe_path = "2020/05/7_8_finetune_sparse_facto_not_log_all_grid_lr" lst_path_finetune = [ "2020/05/7_8_finetune_sparse_facto_not_log_all_grid_lr", "2020/05/7_8_finetune_sparse_facto_not_log_all_grid_lr_only_mask", "2020/05/11_12_finetune_sparse_facto_resnet_grid_lr", "2020/05/11_12_finetune_sparse_facto_not_log_resnet_not_only_mask_grid_lr", "2020/07/11_12_finetune_fix_only_mask_grid_lr" ] lst_path_compression = [ "2020/05/3_4_compression_palm_not_log_all", ] df_finetune = pd.concat(list(map(get_df_from_expe_path, lst_path_finetune))) # df_finetune = get_df_from_expe_path(lst_path_finetune[0]) df_finetune = df_finetune.dropna(subset=["failure"]) df_finetune = df_finetune[df_finetune["failure"] == False] df_finetune = df_finetune.drop(columns="oar_id").drop_duplicates() df_finetune = cast_to_num(df_finetune) df_finetune = df_finetune[~df_finetune["test_accuracy_finetuned_model"].isnull()] df_compression = pd.concat(list(map(get_df_from_expe_path, lst_path_compression))) # df_compression = get_df_from_expe_path(lst_path_compression[0]) df_compression = cast_to_num(df_compression) root_output_dir = pathlib.Path("/home/luc/PycharmProjects/palmnet/results/processed/") output_dir = root_output_dir / expe_path output_dir.mkdir(parents=True, exist_ok=True) dct_attributes = defaultdict(lambda: []) dct_results_matrices = defaultdict(lambda: []) length_df = len(df_finetune) for idx, (_, row) in enumerate(df_finetune.iterrows()): # if df_results_tmp is not None and row["hash"] in df_results_tmp["hash"].values: # continue if np.isnan(row["test_loss_finetuned_model"]): continue log_memory_usage("Start loop") print("row {}/{}".format(idx, length_df)) dct_attributes["idx-expe"].append(idx) dct_attributes["hash"].append(row["hash"]) # get corresponding row in the palminize results directory # keys_of_interest = ['--cifar10', '--cifar10-vgg19', '--cifar100', '--cifar100-vgg19', '--delta-threshold', '--hierarchical', '--mnist', '--mnist-lenet', '--nb-iteration-palm', '--sparsity-factor', '--svhn', '--svhn-vgg19', '--test-data', '--test-model', "--nb-factor" ] if row["--cifar100-resnet50"] or row["--cifar100-resnet20"]: keys_of_interest.extend([ '--cifar100-resnet50', '--cifar100-resnet20', ]) row_before_finetune = get_line_of_interest(df_compression, keys_of_interest, row).iloc[0] # this is the row of results for the model before finetuning ############################################ # Global informations about the experiment # ############################################ if row["--cifar10"]: dct_attributes["dataset"].append("cifar10") elif row["--cifar100"]: dct_attributes["dataset"].append("cifar100") elif row["--mnist"]: dct_attributes["dataset"].append("mnist") elif row["--svhn"]: dct_attributes["dataset"].append("svhn") else: raise ValueError("Unknown dataset") if row["--cifar100-vgg19"] or row["--cifar10-vgg19"] or row["--svhn-vgg19"]: dct_attributes["model"].append("vgg19") elif row["--mnist-lenet"]: dct_attributes["model"].append("lenet") elif row["--mnist-500"]: dct_attributes["model"].append("fc500") elif row["--cifar100-resnet20"]: dct_attributes["model"].append("resnet20") elif row["--cifar100-resnet50"]: dct_attributes["model"].append("resnet50") elif row["--cifar100-resnet20-new"]: dct_attributes["model"].append("resnet20") elif row["--cifar100-resnet50-new"]: dct_attributes["model"].append("resnet50") else: raise ValueError("Unknown model") if row["faust"]: dct_attributes["method"].append("faust") elif row["palm"]: dct_attributes["method"].append("pyqalm") else: raise NotImplementedError # palm informations # dct_attributes["delta-threshold"].append(float(row["--delta-threshold"])) dct_attributes["hierarchical"].append(bool(row["--hierarchical"])) dct_attributes["nb-factor"].append(int(row["--nb-factor"]) if not np.isnan(row["--nb-factor"]) else np.nan) dct_attributes["nb-iteration-palm"].append(int(row["--nb-iteration-palm"])) dct_attributes["sparsity-factor"].append(int(row["--sparsity-factor"])) # finetuning informations dct_attributes["use-clr"].append(row["--use-clr"]) # this must be first because used in other attributes dct_attributes["only-mask"].append(bool(row["--only-mask"])) dct_attributes["keep-last-layer"].append(bool(row["--keep-last-layer"])) dct_attributes["keep-first-layer"].append(bool(row["--keep-first-layer"])) dct_attributes["only-dense"].append(bool(row["--only-dense"])) # beware of this line here because the params_optimizer may change between experiments dct_attributes["epoch-step-size"].append(float(row["--epoch-step-size"]) if dct_attributes["use-clr"][-1] else np.nan) dct_attributes["actual-batch-size"].append(int(row["actual-batch-size"]) if row["actual-batch-size"] is not None else None) dct_attributes["actual-nb-epochs"].append(int(row["actual-nb-epochs"]) if row["actual-nb-epochs"] is not None else None) dct_attributes["actual-min-lr"].append(float(row["actual-min-lr"]) if row["actual-min-lr"] is not None else None) dct_attributes["actual-max-lr"].append(float(row["actual-max-lr"]) if row["actual-max-lr"] is not None else None) dct_attributes["actual-lr"].append(float(row["actual-lr"]) if row["actual-lr"] is not None else None) # score informations dct_attributes["base-model-score"].append(float(row["test_accuracy_base_model"])) dct_attributes["before-finetune-score"].append(float(row["test_accuracy_compressed_model"])) dct_attributes["finetuned-score"].append(float(row["test_accuracy_finetuned_model"])) dct_attributes["base-model-loss"].append(float(row["test_loss_base_model"])) dct_attributes["before-finetune-loss"].append(float(row["test_loss_compressed_model"])) dct_attributes["finetuned-loss"].append(float(row["test_loss_finetuned_model"])) dct_attributes["finetuned-score-val"].append(float(row["val_accuracy_finetuned_model"])) # store path informations path_model_compressed = pathlib.Path(row_before_finetune["results_dir"]) / row_before_finetune["output_file_modelprinter"] path_history = pathlib.Path(row["results_dir"]) / row["output_file_csvcbprinter"] dct_attributes["path-learning-history"].append(path_history) dct_attributes["path-model-compressed"].append(path_model_compressed) ############################## # Layer by Layer information # ############################## nb_param_dense_base = 0 nb_param_dense_compressed = 0 nb_param_conv_base = 0 nb_param_conv_compressed = 0 if type(row["output_file_layerbylayer"]) == str: dct_attributes["nb-param-base-total"].append(int(row["base_model_nb_param"])) dct_attributes["nb-param-compressed-total"].append(int(row["new_model_nb_param"])) dct_attributes["param-compression-rate-total"].append(row["base_model_nb_param"]/row["new_model_nb_param"]) path_layer_by_layer = pathlib.Path(row["results_dir"]) / row["output_file_layerbylayer"] df_csv_layerbylayer = pd.read_csv(str(path_layer_by_layer)) for idx_row_layer, row_layer in df_csv_layerbylayer.iterrows(): dct_results_matrices["idx-expe"].append(idx) dct_results_matrices["model"].append(dct_attributes["model"][-1]) layer_name_compressed = row_layer["layer-name-compressed"] is_dense = "sparse_factorisation_dense" in layer_name_compressed dct_results_matrices["layer-name-base"].append(row_layer["layer-name-base"]) dct_results_matrices["layer-name-compressed"].append(row_layer["layer-name-compressed"]) dct_results_matrices["idx-layer"].append(row_layer["idx-layer"]) dct_results_matrices["data"].append(dct_attributes["dataset"][-1]) dct_results_matrices["keep-last-layer"].append(dct_attributes["keep-last-layer"][-1]) dct_results_matrices["use-clr"].append(dct_attributes["use-clr"][-1]) dct_results_matrices["diff-approx"].append(row_layer["diff-approx"]) # get nb val base layer and comrpessed layer dct_results_matrices["nb-non-zero-base"].append(row_layer["nb-non-zero-base"]) dct_results_matrices["nb-non-zero-compressed"].append(row_layer["nb-non-zero-compressed"]) dct_results_matrices["nb-non-zero-compression-rate"].append(row_layer["nb-non-zero-compression-rate"]) if is_dense: nb_param_dense_base += row_layer["nb-non-zero-base"] nb_param_dense_compressed += row_layer["nb-non-zero-compressed"] else: nb_param_conv_base += row_layer["nb-non-zero-base"] nb_param_conv_compressed += row_layer["nb-non-zero-compressed"] # get palm setting options dct_results_matrices["nb-factor-param"].append(dct_attributes["nb-factor"][-1]) # dct_results_matrices["nb-factor-actual"].append(len(sparsity_patterns)) dct_results_matrices["sparsity-factor"].append(dct_attributes["sparsity-factor"][-1]) dct_results_matrices["hierarchical"].append(dct_attributes["hierarchical"][-1]) else: # continue palmnet.hunt.show_most_common_types(limit=20) log_memory_usage("Before pickle") layer_replacer = LayerReplacerFaust(only_mask=False, keep_last_layer=dct_attributes["keep-last-layer"][-1], path_checkpoint_file=path_model_compressed, sparse_factorizer=Faustizer()) layer_replacer.load_dct_name_compression() log_memory_usage("After pickle") paraman = ParameterManager(row.to_dict()) base_model = paraman.get_model() palmnet.hunt.show_most_common_types(limit=20) compressed_model = layer_replacer.transform(base_model) palmnet.hunt.show_most_common_types(limit=20) log_memory_usage("After transform") if len(base_model.layers) < len(compressed_model.layers): base_model = Model(inputs=base_model.inputs, outputs=base_model.outputs) assert len(base_model.layers) == len(compressed_model.layers) # model complexity informations obtained from the reconstructed model nb_learnable_weights_base_model = get_nb_learnable_weights_from_model(base_model) nb_learnable_weights_compressed_model = get_nb_learnable_weights_from_model(compressed_model) dct_attributes["nb-param-base-total"].append(int(nb_learnable_weights_base_model)) dct_attributes["nb-param-compressed-total"].append(int(nb_learnable_weights_compressed_model)) dct_attributes["param-compression-rate-total"].append(nb_learnable_weights_base_model/nb_learnable_weights_compressed_model) dct_name_facto = None dct_name_facto = layer_replacer.dct_name_compression for idx_layer, base_layer in enumerate(base_model.layers): log_memory_usage("Start secondary loop") sparse_factorization = dct_name_facto.get(base_layer.name, (None, None)) if sparse_factorization != (None, None) and sparse_factorization != None: print(base_layer.name) compressed_layer = None compressed_layer = compressed_model.layers[idx_layer] # get informations to identify the layer (and do cross references) dct_results_matrices["idx-expe"].append(idx) dct_results_matrices["model"].append(dct_attributes["model"][-1]) dct_results_matrices["layer-name-base"].append(base_layer.name) layer_name_compressed = compressed_layer.name is_dense = "sparse_factorisation_dense" in layer_name_compressed dct_results_matrices["layer-name-compressed"].append(compressed_layer.name) dct_results_matrices["idx-layer"].append(idx_layer) dct_results_matrices["data"].append(dct_attributes["dataset"][-1]) dct_results_matrices["keep-last-layer"].append(dct_attributes["keep-last-layer"][-1]) dct_results_matrices["use-clr"].append(dct_attributes["use-clr"][-1]) # get sparse factorization scaling = sparse_factorization['lambda'] factors = Faustizer.get_factors_from_op_sparsefacto(sparse_factorization['sparse_factors']) sparsity_patterns = [get_sparsity_pattern(w) for w in factors] factor_data = factors # rebuild full matrix to allow comparisons reconstructed_matrix = np.linalg.multi_dot(factors) * scaling base_matrix = np.reshape(base_layer.get_weights()[0], reconstructed_matrix.shape) # normalized approximation errors diff = np.linalg.norm(base_matrix - reconstructed_matrix) / np.linalg.norm(base_matrix) dct_results_matrices["diff-approx"].append(diff) # # measures "singular values" # # # base matrix # base_entropy_sv, base_nb_sv, base_entropy_sv_normalized, base_percent_sv_above_mean = get_singular_values_info(base_matrix) # dct_results_matrices["entropy-base-sv"].append(base_entropy_sv) # dct_results_matrices["nb-sv-base"].append(base_nb_sv) # dct_results_matrices["entropy-base-sv-normalized"].append(base_entropy_sv_normalized) # dct_results_matrices["percent-sv-base-above-mean"].append(base_percent_sv_above_mean) # # reconstructed matrix # recons_entropy_sv, recons_nb_sv, recons_entropy_sv_normalized, recons_percent_sv_above_mean = get_singular_values_info(reconstructed_matrix) # dct_results_matrices["entropy-recons-sv"].append(recons_entropy_sv) # dct_results_matrices["nb-sv-recons"].append(recons_nb_sv) # dct_results_matrices["entropy-recons-sv-normalized"].append(recons_entropy_sv_normalized) # dct_results_matrices["percent-sv-recons-above-mean"].append(recons_percent_sv_above_mean) # complexity analysis # # get nb val of the full reconstructed matrix sparsity_pattern_reconstructed = get_sparsity_pattern(reconstructed_matrix) nb_non_zero = int(np.sum(sparsity_pattern_reconstructed)) size_bias = len(base_layer.get_weights()[-1]) if base_layer.use_bias else 0 # dct_results_matrices["nb-non-zero-reconstructed"].append(nb_non_zero + size_bias) # get nb val base layer and comrpessed layers nb_weights_base_layer = get_nb_learnable_weights(base_layer) dct_results_matrices["nb-non-zero-base"].append(nb_weights_base_layer) nb_weights_compressed_layer = get_nb_learnable_weights(compressed_layer) dct_results_matrices["nb-non-zero-compressed"].append(nb_weights_compressed_layer) dct_results_matrices["nb-non-zero-compression-rate"].append(nb_weights_base_layer/nb_weights_compressed_layer) if is_dense: nb_param_dense_base += nb_weights_base_layer nb_param_dense_compressed += nb_weights_compressed_layer else: nb_param_conv_base += nb_weights_base_layer nb_param_conv_compressed += nb_weights_compressed_layer # get palm setting options dct_results_matrices["nb-factor-param"].append(dct_attributes["nb-factor"][-1]) # dct_results_matrices["nb-factor-actual"].append(len(sparsity_patterns)) dct_results_matrices["sparsity-factor"].append(dct_attributes["sparsity-factor"][-1]) dct_results_matrices["hierarchical"].append(dct_attributes["hierarchical"][-1]) gc.collect() palmnet.hunt.show_most_common_types(limit=20) log_memory_usage("Before dels") del dct_name_facto del base_model del compressed_model del base_layer del compressed_layer del sparse_factorization K.clear_session() gc.collect() log_memory_usage("After dels") palmnet.hunt.show_most_common_types(limit=20) dct_attributes["nb-param-base-dense"].append(int(nb_param_dense_base)) dct_attributes["nb-param-base-conv"].append(int(nb_param_conv_base)) dct_attributes["nb-param-compressed-dense"].append(int(nb_param_dense_compressed)) dct_attributes["nb-param-compressed-conv"].append(int(nb_param_conv_compressed)) dct_attributes["nb-param-compression-rate-dense"].append(dct_attributes["nb-param-base-dense"][-1] / dct_attributes["nb-param-compressed-dense"][-1]) try: dct_attributes["nb-param-compression-rate-conv"].append(dct_attributes["nb-param-base-conv"][-1] / dct_attributes["nb-param-compressed-conv"][-1]) except ZeroDivisionError: dct_attributes["nb-param-compression-rate-conv"].append(np.nan) df_results = pd.DataFrame.from_dict(dct_attributes) # if df_results_tmp is not None: # df_results = pd.concat([df_results, df_results_tmp]) df_results.to_csv(output_dir / "results.csv") df_results_layers = pd.DataFrame.from_dict(dct_results_matrices) # if df_results_layers_tmp is not None: # df_results_layers = pd.concat([df_results_layers, df_results_layers_tmp]) df_results_layers.to_csv(output_dir / "results_layers.csv")
30965eb40de98acf331d58db74af0f8f602f227d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03085/s149035990.py
1c1c597445598c94f69ba81db215767cac8dae30
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
# A - Double Helix # A:アデニン T:チミン G:グアニン C:シトシン # 対になる組み合わせ A-T G-C # 標準入力 base = input() # print(base) # 条件分岐し、結果を answer に代入 if base == 'A': # print('T') answer = 'T' elif base == 'T': # print('A') answer = 'A' elif base == 'G': # print('C') answer = 'C' elif base == 'C': # print('G') answer = 'G' # 結果の出力 print(answer)
72385aef0f88fb44670c62fe09108881b5ca1cdd
a934a51f68592785a7aed1eeb31e5be45dd087d3
/Learning/Network_process_WA/Day1/2020_Jul23/subprocess_old/run_ls01.py
ba2d553ef730e9191baf52a2201f2e782ccafa17
[]
no_license
nsshayan/Python
9bf0dcb9a6890419873428a2dde7a802e715be2b
0cf5420eecac3505071326c90b28bd942205ea54
refs/heads/master
2021-06-03T18:41:06.203334
2020-09-28T07:28:48
2020-09-28T07:28:48
35,269,825
1
0
null
null
null
null
UTF-8
Python
false
false
215
py
from subprocess import Popen #p = Popen("echo $PATH", shell=True) with open("ls.out", "w") as lsout: p = Popen(["ls", "-l", "/usr"], stdout=lsout) ret = p.wait() print("ls exited with code =", ret)
23721ad4bfebf2e752102dfd7da2d6e58554374c
6a0ae86bca2d2ece6c92efd5594c0e3b1777ead7
/EDBRCommon/python/datasets/test_RSGZZ600_cff.py
aa4a12968a86fc2923e54c5b230e1e8a80ccf6d0
[]
no_license
wangmengmeng/ExoDiBosonResonances
c4b5d277f744e1b1986df9317ac60b46d202a29f
bf5d2e79f59ad25c7a11e7f97552e2bf6a283428
refs/heads/master
2016-09-06T14:54:53.245508
2014-06-05T15:02:37
2014-06-05T15:02:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,483
py
import FWCore.ParameterSet.Config as cms readFiles = cms.untracked.vstring() source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = readFiles ) readFiles.extend([ ## '/store/cmst3/user/bonato//patTuple/2012/EXOVVtest/newPatTuple_ZZ_1000_c1.root' # '/store/cmst3/user/bonato//patTuple/2012/EXOVVtest/patExoWW_M600_10_1_KPf.root' # '/store/cmst3/user/bonato//patTuple/2012/EXOVVtest/patZZ_M1000_5k_20121212.root' #'file:/afs/cern.ch/user/b/bonato/scratch0/PhysAnalysis/EXOVV_2012/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/PATtupleProduction/python/patTuple.v2.root' # 'file:/afs/cern.ch/user/b/bonato/scratch0/PhysAnalysis/EXOVV_2012/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/PATtupleProduction/python/patTuple_XWW.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/PATtupleProduction/python/pattuple_mwp1200_old.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/PATtupleProduction/python/pattuple_mwp1200_new.root' # 'root://xrootd.unl.edu//store/user/mwang/EXOWH_Wprime_M1000_GENSIM_V2/EXOWH_Wprime_M1000_PATtuple_cc_1204/69a9fa67eebd7bf7213e8a26a2d59023/pattuple_mwp1000_cc_1_1_5pv.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/pattuple_mwp1000cc_new.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/pattuple_mwp1000gg_new.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/pattuple_mwp1000bb_new.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/PATtupleProduction/python/pattuple_mwp1200_new.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/pattuple_M1000_test.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/SingleMu__Run2012A_test.root' # 'file:/afs/cern.ch/work/m/mwang/public/EXO/1128/CMGTools/CMSSW_5_3_9/src/ExoDiBosonResonances/EDBRCommon/prod/DY.root' # 'root://eoscms//eos/cms/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_DYToLLBinsPtZ_MADGRAPH_20140210_150636/mwang/DYJetsToLL_PtZ-100_TuneZ2star_8TeV_ext-madgraph-tarball/EDBR_PATtuple_edbr_wh_20140210/6dd5c34efa97fc5295a711db48f1622c/DYJetsToLL_PtZ-100_TuneZ2star_8TeV_ext-madgraph-tarball__Summer12_DR53X-PU_S10_START53_V7C-v1__AODSIM_1031_1_JwO.root' 'file:/afs/cern.ch/work/m/mwang/public/ForJennifer/EXOWH_Wprime_M1000_GENSIM_V2__mwang-EXOWH_Wprime_M1000_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_10_2_xXb.root' # 'root://eoscms//eos/cms/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_SingleElectron_Run2012A-22Jan2013-v1/mwang/c2d529e1c78e50623ca40825abf53f99/SingleElectron__Run2012A-22Jan2013-v1__AOD_114_2_fIY.root' # '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_DYToLLBinsPtZ_MADGRAPH_20140210_150636/mwang/DYJetsToLL_PtZ-00_TuneZ2star_8TeV_ext-madgraph-tarball/EDBR_PATtuple_edbr_wh_20140210/6dd5c34efa97fc5295a711db48f1622c/DYJetsToLL_PtZ-100_TuneZ2star_8TeV_ext-madgraph-tarball__Summer12_DR53X-PU_S10_START53_V7C-v1__AODSIM_1181_1_VHx.root' ])
a14c03bc628896e88a3a715353f4b5c93d9778c3
98e1716c1c3d071b2fedef0ac029eb410f55762c
/part13-introduction-data-visualization/No07-Using-legend.py
bd1fef91573279e954aa0db684577e0a61040372
[]
no_license
iamashu/Data-Camp-exercise-PythonTrack
564531bcf1dff119949cbb75e1fd63d89cb2779f
c72a4e806494f0e263ced9594597dc8882c2131c
refs/heads/master
2020-07-22T00:23:12.024386
2019-04-12T09:24:42
2019-04-12T09:24:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,461
py
#Using legend() ''' Legends are useful for distinguishing between multiple datasets displayed on common axes. The relevant data are created using specific line colors or markers in various plot commands. Using the keyword argument label in the plotting function associates a string to use in a legend. For example, here, you will plot enrollment of women in the Physical Sciences and in Computer Science over time. You can label each curve by passing a label argument to the plotting call, and request a legend using plt.legend(). Specifying the keyword argument loc determines where the legend will be placed. Instructions Modify the plot command provided that draws the enrollment of women in Computer Science over time so that the curve is labelled 'Computer Science' in the legend. Modify the plot command provided that draws the enrollment of women in the Physical Sciences over time so that the curve is labelled 'Physical Sciences' in the legend. Add a legend at the lower center (i.e., loc='lower center'). ''' # Code # Specify the label 'Computer Science' plt.plot(year, computer_science, color='red', label='Computer Science') # Specify the label 'Physical Sciences' plt.plot(year, physical_sciences, color='blue', label='Physical Sciences') # Add a legend at the lower center plt.legend(loc='lower center') # Add axis labels and title plt.xlabel('Year') plt.ylabel('Enrollment (%)') plt.title('Undergraduate enrollment of women') plt.show()
328ecc8c6a133314695a3f5e71fe57df6876cc9c
bdb206758815fa598285e05c23d81829f3ad60a9
/addons/at2166/controllers/controllers.py
4e907a688dc832b0d2a90c58e410c59f80a51a82
[]
no_license
kulius/odoo10_test
75a9645fbd64ba5fd6901fb441f2e7141f610032
5a01107e2337fd0bbe35d87d53a0fe12eff7c59e
refs/heads/master
2021-07-26T15:05:58.074345
2017-11-08T09:04:11
2017-11-08T09:04:11
109,943,776
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
# -*- coding: utf-8 -*- from odoo import http # class At2166(http.Controller): # @http.route('/at2166/at2166/', auth='public') # def index(self, **kw): # return "Hello, world" # @http.route('/at2166/at2166/objects/', auth='public') # def list(self, **kw): # return http.request.render('at2166.listing', { # 'root': '/at2166/at2166', # 'objects': http.request.env['at2166.at2166'].search([]), # }) # @http.route('/at2166/at2166/objects/<model("at2166.at2166"):obj>/', auth='public') # def object(self, obj, **kw): # return http.request.render('at2166.object', { # 'object': obj # })
99f2714c3fba9228c05928fad3b4c365ac9aa7b1
356151747d2a6c65429e48592385166ab48c334c
/backend/customer/threads/order_now/th_get_menu.py
5e181b84ea83adbffe87077606958d72b475afed
[]
no_license
therealrahulsahu/se_project
c82b2d9d467decd30a24388f66427c7805c23252
c9f9fd5594191ab7dce0504ca0ab3025aa26a0c1
refs/heads/master
2020-06-25T02:51:30.355677
2020-04-20T13:01:36
2020-04-20T13:01:36
199,175,627
0
0
null
null
null
null
UTF-8
Python
false
false
2,666
py
from PyQt5.QtCore import QThread, pyqtSignal class ThreadGetMenu(QThread): signal = pyqtSignal('PyQt_PyObject') def __init__(self, parent_class): super().__init__() self.parent_class = parent_class def run(self): if self.check_for_veg(): food_query = { 'veg': True, 'region': self.check_for_region(), 'type': self.check_for_type(), 'available': True } else: food_query = { 'region': self.check_for_region(), 'type': self.check_for_type(), 'available': True } myc = self.parent_class.MW.DB.food from pymongo.errors import AutoReconnect from errors import FoodNotFoundError try: data_list = list(myc.find(food_query, {'_id': 1, 'name': 1, 'price': 1})) if data_list: self.parent_class.searched_food_list = data_list self.signal.emit(True) else: raise FoodNotFoundError except FoodNotFoundError as ob: self.parent_class.MW.mess(str(ob)) except AutoReconnect: self.parent_class.MW.mess('-->> Network Error <<--') finally: self.parent_class.curr_wid.bt_get.setEnabled(True) def check_for_veg(self): return self.parent_class.curr_wid.rbt_veg.isChecked() def check_for_region(self): if self.parent_class.curr_wid.rbt_north_ind.isChecked(): return 'nid' elif self.parent_class.curr_wid.rbt_italian.isChecked(): return 'ita' elif self.parent_class.curr_wid.rbt_south_ind.isChecked(): return 'sid' elif self.parent_class.curr_wid.rbt_conti.isChecked(): return 'conti' elif self.parent_class.curr_wid.rbt_thai.isChecked(): return 'thi' elif self.parent_class.curr_wid.rbt_china.isChecked(): return 'chi' elif self.parent_class.curr_wid.rbt_rajas.isChecked(): return 'raj' elif self.parent_class.curr_wid.rbt_none.isChecked(): return 'none' def check_for_type(self): if self.parent_class.curr_wid.rbt_starter.isChecked(): return 'sta' elif self.parent_class.curr_wid.rbt_main.isChecked(): return 'mcs' elif self.parent_class.curr_wid.rbt_refresh.isChecked(): return 'ref' elif self.parent_class.curr_wid.rbt_dessert.isChecked(): return 'des' elif self.parent_class.curr_wid.rbt_bread.isChecked(): return 'bre'
e46e39a01e13cb2eea5a6f5add4fb61accae3bf1
c99be9a7a55c6dc3dade46147f116ee6729a19d1
/tikzplotlib/__about__.py
4d3b2067e4529f6a610d20626f3fcbed193b58ca
[ "MIT" ]
permissive
theRealSuperMario/tikzplotlib
3001cbe11856b1e7d87aa308c0ef99bbd28d1bec
3c1e08e78cb87ecf4b475f506244813bf99ac705
refs/heads/master
2020-12-11T09:36:37.399842
2020-11-01T10:27:21
2020-11-01T10:27:21
233,809,790
2
0
MIT
2020-01-14T09:54:53
2020-01-14T09:54:53
null
UTF-8
Python
false
false
221
py
try: # Python 3.8 from importlib import metadata except ImportError: import importlib_metadata as metadata try: __version__ = metadata.version("tikzplotlib") except Exception: __version__ = "unknown"
5f5a0e831a68c5ef684d354ca570acf953792cea
f75ec2c20c3208350d310038a2cd0a67253b44df
/src/swagger_codegen/api/response_deserializer.py
5abc7163627b96210e3b445db6500c9493171408
[]
no_license
vichooz/swagger_codegen
e53f59f3cd2c080157863698f932a606705db4e4
8238356075eea4218b2e6a645c7ea2b8826b1044
refs/heads/master
2022-08-03T04:32:49.291426
2020-05-27T06:09:28
2020-05-27T06:09:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
850
py
import abc from typing import Any from typing import Optional import pydantic from swagger_codegen.api.types import ResponseType class ResponseDeserializer(abc.ABC): @abc.abstractmethod def deserialize(self, deserialize_to: ResponseType, model_body): pass class DefaultResponseDeserializer(ResponseDeserializer): def deserialize(self, deserialize_to: ResponseType, model_body) -> Optional[Any]: if deserialize_to is None: return None if model_body is None: return None class Config(pydantic.BaseConfig): arbitrary_types_allowed = True pydantic_validator_model = pydantic.create_model( "PydanticValidatorModel", __root__=(deserialize_to, ...), __config__=Config ) return pydantic_validator_model(__root__=model_body).__root__
4a67d8771aca07434a51aa7be4bb84f2c069a433
34745a8d54fa7e3d9e4237415eb52e507508ad79
/Python Fundamentals/Final exam/02_emoji_detector.py
2561bef627873327e10a68ef7de9312ae81415d8
[]
no_license
DilyanTsenkov/SoftUni-Software-Engineering
50476af0dc88b267d72c56fa87eeb88d841164b2
fe446e3a50a00bb2e48d71ab8f783e0a4a406094
refs/heads/main
2023-08-12T18:18:42.144210
2021-09-25T11:10:38
2021-09-25T11:10:38
317,235,419
1
2
null
null
null
null
UTF-8
Python
false
false
1,134
py
import re def threshold(input_string): c_threshold = 1 digit_regex = r"[0-9]" digits = re.findall(digit_regex, input_string) for digit in digits: c_threshold *= int(digit) return c_threshold def emoji_checker(input_string, cool): all_of_emojis = [] cool_of_emojis = [] emoji_regex = r"(?P<symbols>\:\:|\*\*)(?P<emoji>[A-Z][a-z][a-z]+)(?P=symbols)" emojis = re.finditer(emoji_regex, input_string) for data in emojis: coolness = 0 d = data.groupdict() for char in d["emoji"]: coolness += ord(char) emoji_found = d["symbols"] + d["emoji"] + d["symbols"] all_of_emojis.append(emoji_found) if coolness > cool: cool_of_emojis.append(emoji_found) return all_of_emojis, cool_of_emojis string = input() cool_threshold = threshold(string) all_emojis, cool_emojis = emoji_checker(string, cool_threshold) print(f"Cool threshold: {cool_threshold}") print(f"{len(all_emojis)} emojis found in the text. The cool ones are:") cool_emojis = [print(_, end="\n") for _ in cool_emojis]
36859f62160f94e4c4d427461f1f1f7aaa00bab4
5efc7ab8a298a026bad44596e18de104985a4b71
/fn_wiki/tests/test_funct_fn_wiki_create_update.py
9aa1fce69272eadbcde79a40b9ddf69ec5e91908
[ "MIT" ]
permissive
RomanDerkach/resilient-community-apps
4cf0abe443411582e9f57491364ecc2d844ba30d
1f60fb100e6a697df7b901d7a4aad707fea3dfee
refs/heads/master
2023-03-11T21:56:18.307942
2021-03-02T16:09:33
2021-03-02T16:09:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,815
py
# -*- coding: utf-8 -*- """Tests using pytest_resilient_circuits""" import pytest from resilient_circuits.util import get_config_data, get_function_definition from resilient_circuits import SubmitTestFunction, FunctionResult PACKAGE_NAME = "fn_wiki" FUNCTION_NAME = "fn_wiki_create_update" # Read the default configuration-data section from the package config_data = get_config_data(PACKAGE_NAME) # Provide a simulation of the Resilient REST API (uncomment to connect to a real appliance) resilient_mock = "pytest_resilient_circuits.BasicResilientMock" def call_fn_wiki_create_update_function(circuits, function_params, timeout=5): # Create the submitTestFunction event evt = SubmitTestFunction("fn_wiki_create_update", function_params) # Fire a message to the function circuits.manager.fire(evt) # circuits will fire an "exception" event if an exception is raised in the FunctionComponent # return this exception if it is raised exception_event = circuits.watcher.wait("exception", parent=None, timeout=timeout) if exception_event is not False: exception = exception_event.args[1] raise exception # else return the FunctionComponent's results else: event = circuits.watcher.wait("fn_wiki_create_update_result", parent=evt, timeout=timeout) assert event assert isinstance(event.kwargs["result"], FunctionResult) pytest.wait_for(event, "complete", True) return event.kwargs["result"].value class TestFnWikiCreateUpdate: """ Tests for the fn_wiki_create_update function""" def test_function_definition(self): """ Test that the package provides customization_data that defines the function """ func = get_function_definition(PACKAGE_NAME, FUNCTION_NAME) assert func is not None mock_fail_path = { "wiki_path": None, "wiki_body": "sample text", "wiki_create_if_missing": False } mock_fail_page_not_found = { "wiki_path": "not found", "wiki_body": "sample text", "wiki_create_if_missing": False, } mock_fail_parent_not_found = { "wiki_path": "parent not found/new page", "wiki_body": "sample text", "wiki_create_if_missing": False } @pytest.mark.parametrize("mock_inputs, expected_results", [ (mock_fail_path, None), (mock_fail_page_not_found, None), (mock_fail_parent_not_found, None), ]) def test_fail_update(self, circuits_app, mock_inputs, expected_results): """ Test calling with sample values for the parameters """ with pytest.raises(ValueError): results = call_fn_wiki_create_update_function(circuits_app, mock_inputs) assert(results['success'] == False) assert(results['reason']) mock_success_title = { "wiki_path": "ΣΤ", "wiki_body": "ΣΤ", "wiki_create_if_missing": True } mock_success_w_parent_title = { "wiki_path": "ΣΤ3/new3", "wiki_body": "new3", "wiki_create_if_missing": True } @pytest.mark.parametrize("mock_inputs, expected_results", [ (mock_success_title, None), (mock_success_w_parent_title, None), ]) def test_create_success(self, circuits_app, mock_inputs, expected_results): """ Test calling with sample values for the parameters """ results = call_fn_wiki_create_update_function(circuits_app, mock_inputs) assert(results['success']) mock_success_update_title = { "wiki_path": "parent1/json2", "wiki_body": "new3 ΣΤ3", "wiki_create_if_missing": False } @pytest.mark.parametrize("mock_inputs, expected_results", [ (mock_success_update_title, None) ]) def test_update_success(self, circuits_app, mock_inputs, expected_results): """ Test calling with sample values for the parameters """ results = call_fn_wiki_create_update_function(circuits_app, mock_inputs) assert(results['success']) mock_success_update_parent_title = { "wiki_path": "ΣΤ3/ΣΤ4", "wiki_body": "ΣΤ4", "wiki_create_if_missing": True } mock_success_update_parent_subparent = { "wiki_path": "parent1/json2/ΣΤ5", "wiki_body": "ΣΤ5", "wiki_create_if_missing": True } @pytest.mark.parametrize("mock_inputs, expected_results", [ (mock_success_update_parent_title, None), (mock_success_update_parent_subparent, None) ]) def test_update_parent_success(self, circuits_app, mock_inputs, expected_results): """ Test calling with sample values for the parameters """ results = call_fn_wiki_create_update_function(circuits_app, mock_inputs) assert(results['success'])
c8a8f30335dc23ab837f1ee123fbde87fd5009b9
49900ba50d4f6c979d6d433577828c8007973125
/data_utils/ner.py
597d37cdb973d60f1d05f4fd35b70b226eb1faac
[]
no_license
weizhenzhao/cs224d_nlp_problem_set2
9661414965a58b97113f828a47932c5b9d8411df
302f0e53cdd88147a5c1727d06f0be18270d8a2a
refs/heads/master
2021-10-22T18:22:31.063591
2019-03-12T14:03:36
2019-03-12T14:03:36
104,356,708
5
2
null
null
null
null
UTF-8
Python
false
false
591
py
## # Utility functions for NER assignment # Assigment 2, part 1 for CS224D ## from data_utils.utils import invert_dict from numpy import * def load_wv(vocabfile, wvfile): wv = loadtxt(wvfile, dtype=float) with open(vocabfile) as fd: words = [line.strip() for line in fd] num_to_word = dict(enumerate(words)) word_to_num = invert_dict(num_to_word) return wv, word_to_num, num_to_word def save_predictions(y, filename): """Save predictions, one per line.""" with open(filename, 'w') as fd: fd.write("\n".join(map(str, y))) fd.write("\n")
f225babc8403680d28288ebf49150e7c4d9c2893
f8da830331428a8e1bbeadf23345f79f1750bd98
/msgraph-cli-extensions/v1_0/usersactions_v1_0/azext_usersactions_v1_0/vendored_sdks/usersactions/operations/_user_onenote_notebook_section_group_section_page_parent_notebook_operations.py
9cbe41f6e394adb19707b01f0c335867f7b93f53
[ "MIT" ]
permissive
ezkemboi/msgraph-cli
e023e1b7589461a738e42cbad691d9a0216b0779
2ceeb27acabf7cfa219c8a20238d8c7411b9e782
refs/heads/main
2023-02-12T13:45:03.402672
2021-01-07T11:33:54
2021-01-07T11:33:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,768
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class UserOnenoteNotebookSectionGroupSectionPageParentNotebookOperations(object): """UserOnenoteNotebookSectionGroupSectionPageParentNotebookOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~users_actions.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def copy_notebook( self, user_id, # type: str notebook_id, # type: str section_group_id, # type: str onenote_section_id, # type: str onenote_page_id, # type: str group_id=None, # type: Optional[str] rename_as=None, # type: Optional[str] notebook_folder=None, # type: Optional[str] site_collection_id=None, # type: Optional[str] site_id=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.MicrosoftGraphOnenoteOperation" """Invoke action copyNotebook. Invoke action copyNotebook. :param user_id: key: id of user. :type user_id: str :param notebook_id: key: id of notebook. :type notebook_id: str :param section_group_id: key: id of sectionGroup. :type section_group_id: str :param onenote_section_id: key: id of onenoteSection. :type onenote_section_id: str :param onenote_page_id: key: id of onenotePage. :type onenote_page_id: str :param group_id: :type group_id: str :param rename_as: :type rename_as: str :param notebook_folder: :type notebook_folder: str :param site_collection_id: :type site_collection_id: str :param site_id: :type site_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphOnenoteOperation, or the result of cls(response) :rtype: ~users_actions.models.MicrosoftGraphOnenoteOperation :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphOnenoteOperation"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) _body = models.PathsFm3Zd0UsersUserIdOnenoteNotebooksNotebookIdSectiongroupsSectiongroupIdSectionsOnenotesectionIdPagesOnenotepageIdParentnotebookMicrosoftGraphCopynotebookPostRequestbodyContentApplicationJsonSchema(group_id=group_id, rename_as=rename_as, notebook_folder=notebook_folder, site_collection_id=site_collection_id, site_id=site_id) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.copy_notebook.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'notebook-id': self._serialize.url("notebook_id", notebook_id, 'str'), 'sectionGroup-id': self._serialize.url("section_group_id", section_group_id, 'str'), 'onenoteSection-id': self._serialize.url("onenote_section_id", onenote_section_id, 'str'), 'onenotePage-id': self._serialize.url("onenote_page_id", onenote_page_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') header_parameters['Accept'] = 'application/json' body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_body, 'PathsFm3Zd0UsersUserIdOnenoteNotebooksNotebookIdSectiongroupsSectiongroupIdSectionsOnenotesectionIdPagesOnenotepageIdParentnotebookMicrosoftGraphCopynotebookPostRequestbodyContentApplicationJsonSchema') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphOnenoteOperation', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized copy_notebook.metadata = {'url': '/users/{user-id}/onenote/notebooks/{notebook-id}/sectionGroups/{sectionGroup-id}/sections/{onenoteSection-id}/pages/{onenotePage-id}/parentNotebook/microsoft.graph.copyNotebook'} # type: ignore
7722fb46c2c820d5c4afe95d9aea8e35da673d71
dc399f13d79b4fe80734b4ff9a47e6daac046efb
/ControlFlow/IterItems().py
98e735d55cc6fdd2a1e4737b4d7cea9a8af47272
[]
no_license
brrbaral/pythonbasic
22531a75c8fc5e36dd7e9c1dfae31c5809365206
dc8fbddc7d3671ac14ee5f53db32f2d210f71de0
refs/heads/master
2020-07-11T03:12:54.691238
2019-08-26T08:41:51
2019-08-26T08:41:51
204,433,096
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
d1={"Bishow":"Pokhara","shree":"hetauda"} print("The key-value pait is :") for i,j in d1.items(): print(i,j)
ca29d0db6649c0311170cc6c4b70e63bb1d627b5
e7c70a02e61f6d4a97c5933f3550bca22afa6acb
/ros_ws/devel/lib/python2.7/dist-packages/final_lab/srv/_path.py
5f36d5349329d6f7860095b20230cfa7a98e99cc
[]
no_license
amitf82/Final_Proj_Mobile_Robotics
14cfe7b182df1294a873283c91688c8ca9526fee
435a6c1562df030fc462fe1b0a84f968a27a2b85
refs/heads/master
2021-01-20T03:22:51.387095
2017-04-30T08:25:33
2017-04-30T08:25:33
89,532,221
0
0
null
null
null
null
UTF-8
Python
false
false
14,227
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from final_lab/pathRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg import nav_msgs.msg import std_msgs.msg class pathRequest(genpy.Message): _md5sum = "58d6f138c7de7ef47c75d4b7e5df5472" _type = "final_lab/pathRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """ nav_msgs/Path path ================================================================================ MSG: nav_msgs/Path #An array of poses that represents a Path for a robot to follow Header header geometry_msgs/PoseStamped[] poses ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: geometry_msgs/PoseStamped # A Pose with reference coordinate frame and timestamp Header header Pose pose ================================================================================ MSG: geometry_msgs/Pose # A representation of pose in free space, composed of postion and orientation. Point position Quaternion orientation ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z ================================================================================ MSG: geometry_msgs/Quaternion # This represents an orientation in free space in quaternion form. float64 x float64 y float64 z float64 w """ __slots__ = ['path'] _slot_types = ['nav_msgs/Path'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: path :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(pathRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.path is None: self.path = nav_msgs.msg.Path() else: self.path = nav_msgs.msg.Path() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_struct_3I.pack(_x.path.header.seq, _x.path.header.stamp.secs, _x.path.header.stamp.nsecs)) _x = self.path.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.path.poses) buff.write(_struct_I.pack(length)) for val1 in self.path.poses: _v1 = val1.header buff.write(_struct_I.pack(_v1.seq)) _v2 = _v1.stamp _x = _v2 buff.write(_struct_2I.pack(_x.secs, _x.nsecs)) _x = _v1.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _v3 = val1.pose _v4 = _v3.position _x = _v4 buff.write(_struct_3d.pack(_x.x, _x.y, _x.z)) _v5 = _v3.orientation _x = _v5 buff.write(_struct_4d.pack(_x.x, _x.y, _x.z, _x.w)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.path is None: self.path = nav_msgs.msg.Path() end = 0 _x = self start = end end += 12 (_x.path.header.seq, _x.path.header.stamp.secs, _x.path.header.stamp.nsecs,) = _struct_3I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.path.header.frame_id = str[start:end].decode('utf-8') else: self.path.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.path.poses = [] for i in range(0, length): val1 = geometry_msgs.msg.PoseStamped() _v6 = val1.header start = end end += 4 (_v6.seq,) = _struct_I.unpack(str[start:end]) _v7 = _v6.stamp _x = _v7 start = end end += 8 (_x.secs, _x.nsecs,) = _struct_2I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v6.frame_id = str[start:end].decode('utf-8') else: _v6.frame_id = str[start:end] _v8 = val1.pose _v9 = _v8.position _x = _v9 start = end end += 24 (_x.x, _x.y, _x.z,) = _struct_3d.unpack(str[start:end]) _v10 = _v8.orientation _x = _v10 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _struct_4d.unpack(str[start:end]) self.path.poses.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_struct_3I.pack(_x.path.header.seq, _x.path.header.stamp.secs, _x.path.header.stamp.nsecs)) _x = self.path.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) length = len(self.path.poses) buff.write(_struct_I.pack(length)) for val1 in self.path.poses: _v11 = val1.header buff.write(_struct_I.pack(_v11.seq)) _v12 = _v11.stamp _x = _v12 buff.write(_struct_2I.pack(_x.secs, _x.nsecs)) _x = _v11.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) if python3: buff.write(struct.pack('<I%sB'%length, length, *_x)) else: buff.write(struct.pack('<I%ss'%length, length, _x)) _v13 = val1.pose _v14 = _v13.position _x = _v14 buff.write(_struct_3d.pack(_x.x, _x.y, _x.z)) _v15 = _v13.orientation _x = _v15 buff.write(_struct_4d.pack(_x.x, _x.y, _x.z, _x.w)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.path is None: self.path = nav_msgs.msg.Path() end = 0 _x = self start = end end += 12 (_x.path.header.seq, _x.path.header.stamp.secs, _x.path.header.stamp.nsecs,) = _struct_3I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.path.header.frame_id = str[start:end].decode('utf-8') else: self.path.header.frame_id = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) self.path.poses = [] for i in range(0, length): val1 = geometry_msgs.msg.PoseStamped() _v16 = val1.header start = end end += 4 (_v16.seq,) = _struct_I.unpack(str[start:end]) _v17 = _v16.stamp _x = _v17 start = end end += 8 (_x.secs, _x.nsecs,) = _struct_2I.unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: _v16.frame_id = str[start:end].decode('utf-8') else: _v16.frame_id = str[start:end] _v18 = val1.pose _v19 = _v18.position _x = _v19 start = end end += 24 (_x.x, _x.y, _x.z,) = _struct_3d.unpack(str[start:end]) _v20 = _v18.orientation _x = _v20 start = end end += 32 (_x.x, _x.y, _x.z, _x.w,) = _struct_4d.unpack(str[start:end]) self.path.poses.append(val1) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_4d = struct.Struct("<4d") _struct_3I = struct.Struct("<3I") _struct_2I = struct.Struct("<2I") _struct_3d = struct.Struct("<3d") # This Python file uses the following encoding: utf-8 """autogenerated by genpy from final_lab/pathResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class pathResponse(genpy.Message): _md5sum = "3a1255d4d998bd4d6585c64639b5ee9a" _type = "final_lab/pathResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """ bool status """ __slots__ = ['status'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: status :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(pathResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.status is None: self.status = False else: self.status = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_struct_B.pack(self.status)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.status,) = _struct_B.unpack(str[start:end]) self.status = bool(self.status) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_struct_B.pack(self.status)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.status,) = _struct_B.unpack(str[start:end]) self.status = bool(self.status) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_B = struct.Struct("<B") class path(object): _type = 'final_lab/path' _md5sum = '87fbad184f990f6671a31d6fd2678f60' _request_class = pathRequest _response_class = pathResponse
d5f376ce543ef920ad3197131b8bd756a745399c
9130bdbd90b7a70ac4ae491ddd0d6564c1c733e0
/venv/lib/python3.8/site-packages/future/moves/xmlrpc/server.py
ec5409cb2504d3f8fd228a1760fa053fa5767669
[]
no_license
baruwaa12/Projects
6ca92561fb440c63eb48c9d1114b3fc8fa43f593
0d9a7b833f24729095308332b28c1cde63e9414d
refs/heads/main
2022-10-21T14:13:47.551218
2022-10-09T11:03:49
2022-10-09T11:03:49
160,078,601
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/11/20/d7/7695204cac9e1660834a7266069f3338d8c9925b1124ebf2e0eb5a00b7
8cbeef5ea8b3d7e0aa7655c31e01ef7d0da11446
8541f4118c6093c84e78d768285e7007ee5f6a6c
/apps/tax/migrations/0005_auto_20160306_1353.py
8077c34962cafafda6e7398270db44898639bd2a
[]
no_license
iraycd/awecounting
c81a8ca6b7a4a942e63cf6b7d723f9883e57a107
388df4de63146e0a9a211afa522ec50e0f3df443
refs/heads/master
2021-01-15T23:30:27.439759
2016-03-16T10:34:40
2016-03-16T10:34:40
57,046,467
1
0
null
2016-04-25T14:03:40
2016-04-25T14:03:40
null
UTF-8
Python
false
false
574
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-03-06 08:08 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('tax', '0004_partytaxpreference'), ] operations = [ migrations.AlterField( model_name='partytaxpreference', name='party', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='tax_preference', to='ledger.Party'), ), ]
31fafff04d22006623a7bc672c81339d13885407
22ccc673a522b52f2678b6ac96e3ff2a104864ff
/jobs/migrations/0005_auto_20150902_0600.py
e6e2f4f6043f8e5e142666aeaf0c677401c0f62a
[]
no_license
ivlevdenis/pythondigest
07e448da149d92f37b8ce3bd01b645ace1fa0888
f8ccc44808a26960fb69a4c4c3491df3e6d3d24e
refs/heads/master
2021-01-18T02:09:42.121559
2016-05-15T22:44:34
2016-05-15T22:44:34
58,350,368
0
0
null
2016-05-09T05:21:39
2016-05-09T05:21:39
null
UTF-8
Python
false
false
1,435
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('jobs', '0004_jobfeed_is_activated'), ] operations = [ migrations.RemoveField( model_name='jobitem', name='salary_currency', ), migrations.RemoveField( model_name='jobitem', name='salary_from', ), migrations.RemoveField( model_name='jobitem', name='salary_till', ), migrations.RemoveField( model_name='jobitem', name='url_api', ), migrations.RemoveField( model_name='jobitem', name='url_logo', ), migrations.AddField( model_name='jobitem', name='description', field=models.TextField(null=True, blank=True, verbose_name='Описание вакансии'), ), migrations.AlterField( model_name='jobitem', name='employer_name', field=models.CharField(null=True, max_length=255, blank=True, verbose_name='Работодатель'), ), migrations.AlterField( model_name='jobitem', name='place', field=models.CharField(null=True, max_length=255, blank=True, verbose_name='Место'), ), ]
b923127047254c84445608e989311a4fb0eb0b40
4f4776eb69cbea9ee1c87a22732c5d778855c83a
/leetcode/Number_Complement.py
6f4cc7d18ff977b72e60674c3283b67bee1f0ecb
[]
no_license
k4u5h4L/algorithms
4a0e694109b8aadd0e3b7a66d4c20692ecdef343
b66f43354792b1a6facff90990a7685f5ed36a68
refs/heads/main
2023-08-19T13:13:14.931456
2021-10-05T13:01:58
2021-10-05T13:01:58
383,174,341
1
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
''' Number Complement Easy The complement of an integer is the integer you get when you flip all the 0's to 1's and all the 1's to 0's in its binary representation. For example, The integer 5 is "101" in binary and its complement is "010" which is the integer 2. Given an integer num, return its complement. Example 1: Input: num = 5 Output: 2 Explanation: The binary representation of 5 is 101 (no leading zero bits), and its complement is 010. So you need to output 2. Example 2: Input: num = 1 Output: 0 Explanation: The binary representation of 1 is 1 (no leading zero bits), and its complement is 0. So you need to output 0. ''' class Solution: def findComplement(self, num: int) -> int: binary = bin(num)[2:] b = "" for bit in binary: if bit == '1': b += '0' else: b += '1' dec = 0 for i, char in enumerate(reversed(b)): if char == '1': dec += (2 ** i) return dec
7bccdd943219008b9ab87f2c0d3a9f60a25927c6
9b20743ec6cd28d749a4323dcbadb1a0cffb281b
/03_Linear_Algebra_for_Machine_Learning/04/05_vector_division.py
7a5cbfcb42a4a5db9dfe2635df84d2ce76f0ddf3
[]
no_license
jggrimesdc-zz/MachineLearningExercises
6e1c7e1f95399e69bba95cdfe17c4f8d8c90d178
ee265f1c6029c91daff172b3e7c1a96177646bc5
refs/heads/master
2023-03-07T19:30:26.691659
2021-02-19T08:00:49
2021-02-19T08:00:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
# vector division from numpy import array # define first vector a = array([1, 2, 3]) print(a) # define second vector b = array([1, 2, 3]) print(b) # divide vectors c = a / b print(c)
47010cc8029ce26f087bc5af210729e2ad8964d0
6062dc6c23a4013a879617cd9dd8d60fba582964
/day23/machine.py
16384f67fcfce888fea5c9cb2095b5fec6a57bfc
[]
no_license
grey-area/advent-of-code-2017
8134a1213e69460e24a821ff96e38cbc7f83b480
87c213277e4535fff0a1dcf7ad26e182e20b8165
refs/heads/master
2020-04-13T05:38:36.852721
2018-12-30T23:31:00
2018-12-30T23:31:00
162,997,827
0
0
null
null
null
null
UTF-8
Python
false
false
1,514
py
from collections import defaultdict from collections import namedtuple from collections import deque import operator from functools import partial Instruction = namedtuple('Instruction', ['op', 'args']) class Machine(): def __init__(self, filename): self.registers = defaultdict(int) self.load_program(filename) self.ip = 0 self.terminated = False self.mul_called = 0 def cast(self, X): try: return int(X) except ValueError: return self.registers[X] def sub(self, X, Y): self.registers[X] = self.registers[X] - self.cast(Y) def mul(self, X, Y): self.registers[X] = self.registers[X] * self.cast(Y) self.mul_called += 1 def jnz(self, X, Y): if self.cast(X) != 0: self.ip += self.cast(Y) - 1 def set(self, X, Y): self.registers[X] = self.cast(Y) def load_program(self, filename): ops = {} self.program = [] ops['jnz'] = self.jnz ops['set'] = self.set ops['sub'] = self.sub ops['mul'] = self.mul with open(filename) as f: text = f.read().splitlines() for line in text: op_str, *args = line.split(' ') self.program.append(Instruction(ops[op_str], args)) def step(self): op, args = self.program[self.ip] op(*args) self.ip += 1 if self.ip < 0 or self.ip >= len(self.program): self.terminated = True
7084db3062d66581c38fbdc43d86b9d20a9172c9
4926667354fa1f5c8a93336c4d6e2b9f6630836e
/1534.py
13cc2b14de3bdc53a7c3d07c0f26668d8b35111d
[]
no_license
nascarsayan/lintcode
343b3f6e7071479f0299dd1dd1d8068cbd7a7d9e
4da24b9f5f182964a1bdf4beaa8afc17eb7a70f4
refs/heads/master
2021-07-13T12:31:45.883179
2020-07-20T02:27:53
2020-07-20T02:27:53
185,825,565
0
0
null
null
null
null
UTF-8
Python
false
false
825
py
""" Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: root of a tree @return: head node of a doubly linked list """ def treeToDoublyList(self, root): # Write your code here. def recurse(root): if root is None: return (None, None) st, fl = root, root if root.left is not None: lst, lfl = recurse(root.left) lfl.right = root root.left = lfl st = lst if root.right is not None: rst, rfl = recurse(root.right) root.right = rst rst.left = root fl = rfl return (st, fl) if root is None: return None hd, tl = recurse(root) hd.left = tl tl.right = hd return hd
fd30cbf33b7a94e9cba9d39a95ec3ac9243b5d48
e89509b453632747077bc57dbec265a7703d5c7c
/function/globalfunc/baiscadd.py
8c7c28e3fdb91a3022af78a3ba7e14b70d447686
[]
no_license
Madhav2108/udemy-python-as
a9dcfdbfdc1bb85471aa66de77957e962a7c5486
0bc6a501516618fb3c7ab10be6bc16c047aeec3f
refs/heads/master
2023-03-30T11:25:16.064592
2021-03-30T18:10:46
2021-03-30T18:10:46
286,001,815
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
a = 15 b = 10 def add(): c = a + b print(c) add()
e07f624ea0d255df65ac483eff918d2f319b22b5
afea9757be324c8def68955a12be11d71ce6ad35
/willyanealves/services/migrations/0009_auto_20201209_1404.py
b2e2a364f136f17ebd91a275a705f8061d4ef9ea
[]
no_license
bergpb/willyane-alves
c713cac3ec3a68005f3b8145985693d2477ba706
8b2b9922ba35bf2043f2345228f03d80dbd01098
refs/heads/master
2023-02-10T19:57:50.893172
2021-01-11T16:17:14
2021-01-11T16:17:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
# Generated by Django 3.1.2 on 2020-12-09 17:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('services', '0008_auto_20201209_1400'), ] operations = [ migrations.AlterField( model_name='service', name='price', field=models.DecimalField(decimal_places=2, max_digits=6, verbose_name='Valor'), ), ]
101feda1a0f140f3e9c0891e6c61e0269a85ac2e
dda862418770f3885256d96e9bdb13d0759c5f43
/codeforces/div-2/nastya-and-rice.py
a2c25afd65589336a3210b2dd8ff1e66d0aefc44
[ "MIT" ]
permissive
bellatrixdatacommunity/data-structure-and-algorithms
d56ec485ebe7a5117d4922caeb0cd44c5dddc96f
d24c4001a797c12347973263a0f4f98939e86900
refs/heads/master
2022-12-03T00:51:07.944915
2020-08-13T20:30:51
2020-08-13T20:30:51
270,268,375
4
0
MIT
2020-08-13T20:30:53
2020-06-07T10:19:36
Python
UTF-8
Python
false
false
3,299
py
""" [A. Nastya and Rice](https://codeforces.com/contest/1341/problem/A) time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard output Nastya just made a huge mistake and dropped a whole package of rice on the floor. Mom will come soon. If she sees this, then Nastya will be punished. In total, Nastya dropped 𝑛 grains. Nastya read that each grain weighs some integer number of grams from 𝑎−𝑏 to 𝑎+𝑏, inclusive (numbers 𝑎 and 𝑏 are known), and the whole package of 𝑛 grains weighs from 𝑐−𝑑 to 𝑐+𝑑 grams, inclusive (numbers 𝑐 and 𝑑 are known). The weight of the package is the sum of the weights of all 𝑛 grains in it. Help Nastya understand if this information can be correct. In other words, check whether each grain can have such a mass that the 𝑖-th grain weighs some integer number 𝑥𝑖 (𝑎−𝑏≤𝑥𝑖≤𝑎+𝑏), and in total they weigh from 𝑐−𝑑 to 𝑐+𝑑, inclusive (𝑐−𝑑≤∑𝑖=1𝑛𝑥𝑖≤𝑐+𝑑). Input The input consists of multiple test cases. The first line contains a single integer 𝑡 (1≤𝑡≤1000) — the number of test cases. The next 𝑡 lines contain descriptions of the test cases, each line contains 5 integers: 𝑛 (1≤𝑛≤1000) — the number of grains that Nastya counted and 𝑎,𝑏,𝑐,𝑑 (0≤𝑏<𝑎≤1000,0≤𝑑<𝑐≤1000) — numbers that determine the possible weight of one grain of rice (from 𝑎−𝑏 to 𝑎+𝑏) and the possible total weight of the package (from 𝑐−𝑑 to 𝑐+𝑑). Output For each test case given in the input print "Yes", if the information about the weights is not inconsistent, and print "No" if 𝑛 grains with masses from 𝑎−𝑏 to 𝑎+𝑏 cannot make a package with a total mass from 𝑐−𝑑 to 𝑐+𝑑. Example inputCopy 5 7 20 3 101 18 11 11 10 234 2 8 9 7 250 122 19 41 21 321 10 3 10 8 6 1 outputCopy Yes No Yes No Yes Note In the first test case of the example, we can assume that each grain weighs 17 grams, and a pack 119 grams, then really Nastya could collect the whole pack. In the third test case of the example, we can assume that each grain weighs 16 grams, and a pack 128 grams, then really Nastya could collect the whole pack. In the fifth test case of the example, we can be assumed that 3 grains of rice weigh 2, 2, and 3 grams, and a pack is 7 grams, then really Nastya could collect the whole pack. In the second and fourth test cases of the example, we can prove that it is impossible to determine the correct weight of all grains of rice and the weight of the pack so that the weight of the pack is equal to the total weight of all collected grains. """ import sys if __name__ == "__main__": input = sys.stdin.read() data = list(map(int, input.split())) T = int(data[0]) it = 1 while T > 0: n = data[it] a = data[it + 1] b = data[it + 2] c = data[it + 3] d = data[it + 4] mini = c - d maxi = c + d min_rice = mini / n if n != 0 else 0 max_rice = maxi / n if n != 0 else 0 if max_rice < (a - b) or min_rice > (a + b): print("No") else: print("Yes") it += 5 T -= 1
edfa698a2b59a1f3f4933f667ae163d842cb428d
f06ddca5258290a1e7448a18e1d24a9d20226fbd
/pytext/common/constants.py
3b0c31b01f7bc57811441b3f5a267b920e948602
[ "BSD-3-Clause" ]
permissive
mruberry/pytext
6d64bc37429e3dd5581e5b3b6bf60bd216b6f445
3bba58a048c87d7c93a41830fa7853896c4b3e66
refs/heads/master
2022-07-16T07:41:47.781126
2020-05-14T04:52:35
2020-05-14T04:54:33
263,892,770
2
0
NOASSERTION
2020-05-14T11:11:33
2020-05-14T11:11:32
null
UTF-8
Python
false
false
2,357
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from enum import Enum class DatasetFieldName: DOC_LABEL_FIELD = "doc_label" WORD_LABEL_FIELD = "word_label" UTTERANCE_FIELD = "utterance" TEXT_FIELD = "word_feat" SEQ_FIELD = "seq_word_feat" DICT_FIELD = "dict_feat" RAW_DICT_FIELD = "sparsefeat" CHAR_FIELD = "char_feat" DENSE_FIELD = "dense_feat" CONTEXTUAL_TOKEN_EMBEDDING = "contextual_token_embedding" DOC_WEIGHT_FIELD = "doc_weight" WORD_WEIGHT_FIELD = "word_weight" RAW_WORD_LABEL = "raw_word_label" TOKEN_INDICES = "token_indices" TOKEN_RANGE = "token_range" TOKENS = "tokens" LANGUAGE_ID_FIELD = "lang" SEQ_LENS = "seq_lens" TARGET_SEQ_LENS = "target_seq_lens" RAW_SEQUENCE = "raw_sequence" SOURCE_SEQ_FIELD = "source_sequence" TARGET_SEQ_FIELD = "target_sequence" NUM_TOKENS = "num_tokens" class PackageFileName: SERIALIZED_EMBED = "pretrained_embed_pt_serialized" RAW_EMBED = "pretrained_embed_raw" class DFColumn: DOC_LABEL = "doc_label" WORD_LABEL = "word_label" UTTERANCE = "text" ALIGNMENT = "alignment" DICT_FEAT = "dict_feat" DENSE_FEAT = "dense_feat" RAW_FEATS = "raw_feats" MODEL_FEATS = "model_feats" DOC_WEIGHT = "doc_weight" WORD_WEIGHT = "word_weight" TOKEN_RANGE = "token_range" LANGUAGE_ID = "lang" SOURCE_SEQUENCE = "source_sequence" CONTEXT_SEQUENCE = "context_sequence" TARGET_SEQUENCE = "target_sequence" SOURCE_FEATS = "source_feats" TARGET_TOKENS = "target_tokens" SEQLOGICAL = "seqlogical" TARGET_PROBS = "target_probs" TARGET_LOGITS = "target_logits" TARGET_LABELS = "target_labels" class Padding: WORD_LABEL_PAD = "PAD_LABEL" WORD_LABEL_PAD_IDX = 0 DEFAULT_LABEL_PAD_IDX = -1 class VocabMeta: UNK_TOKEN = "<unk>" UNK_NUM_TOKEN = f"{UNK_TOKEN}-NUM" PAD_TOKEN = "<pad>" EOS_TOKEN = "</s>" INIT_TOKEN = "<s>" PAD_SEQ = "<pad_seq>" EOS_SEQ = "</s_seq>" INIT_SEQ = "<s_seq>" class BatchContext: IGNORE_LOSS = "ignore_loss" INDEX = "row_index" TASK_NAME = "task_name" class Stage(Enum): TRAIN = "Training" EVAL = "Evaluation" TEST = "Test" OTHERS = "Others" class RawExampleFieldName: ROW_INDEX = "row_index"
4fcdf50c43cf0c0a802c7899882d88c66afb5521
e70b678712a355a0b51632728c7781b0bdcf29f4
/Algorithms/Python/Best-Time-to-Buy-and-Sell-Stock.py
aa4097ebb2db64fb2c8d11bb08368e8d97f353a7
[]
no_license
keyi/Leetcode_Solutions
b3e3c6835ed335d7d4ad53a1b37e59ac15fcf3af
69e4e969b435ff2796bd7c4b5dad9284a853ab54
refs/heads/master
2020-05-21T23:36:20.450053
2018-11-11T03:45:28
2018-11-11T03:45:28
33,714,612
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
class Solution(object): def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ if len(prices) < 2: return 0 ans, minNum = 0, prices[0] for i in range(1, len(prices)): if prices[i] > minNum: ans = max(prices[i] - minNum, ans) else: minNum = prices[i] return ans
4c4e498f8f69a2285e2c364574d94132fee73875
4dd695521343d56ff943e8c1768343d7680714e3
/experiments/scripts_auto_closedset_ynoguti/config_iVector_200_fold6.py
e61d28d540206408e386efddf28c2f7122093a8b
[]
no_license
natharb/environment
ea659ee541f6473e92b5b30c549e52b66f47b280
86e6cee6e01d2370abeb7c55a2c8a15001735919
refs/heads/master
2021-09-28T02:39:02.222966
2018-11-13T12:03:34
2018-11-13T12:03:34
139,762,646
1
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
#!/usr/bin/env python # vim: set fileencoding=utf-8 : #Nathália Alves Rocha Batista ([email protected]) import sys sys.path.insert(0, '.') import bob.bio.spear import bob.bio.gmm import numpy import scipy.spatial temp_directory = './results/closedset_ynoguti/iVector/200/fold_6/temp/' result_directory = './results/closedset_ynoguti/iVector/200/fold_6/results/' sub_directory = 'subdirectory' database = 'database_iVector_200_fold6.py' groups = ['dev'] #groups = ['dev', 'eval'] preprocessor = bob.bio.spear.preprocessor.Energy_2Gauss(max_iterations = 10, convergence_threshold = 0.0005, variance_threshold = 0.0005, win_length_ms = 20., win_shift_ms = 10., smoothing_window = 10) extractor = bob.bio.spear.extractor.Cepstral(win_length_ms = 25, win_shift_ms = 10, n_filters = 24 , dct_norm = False, f_min = 0, f_max = 4000, delta_win = 2, mel_scale = True, with_energy = True, with_delta = True, with_delta_delta = True, n_ceps = 19, pre_emphasis_coef = 0.97) algorithm = bob.bio.gmm.algorithm.IVector(subspace_dimension_of_t = 200, tv_training_iterations = 10, update_sigma = True, use_whitening = True, use_lda = False, use_wccn = False, use_plda = False, lda_dim = 50, plda_dim_F = 50, plda_dim_G = 50, plda_training_iterations = 50, number_of_gaussians = 256) parallel = 40 verbose = 2
cdbd67b1a12b3c7320da2aafaa87a06508e9b4de
5ef19fdf04970ed0481ff29234a11b812b55a257
/OS/SRT.py
89a0d94dba43339334289d424480551cfb9d8b02
[]
no_license
priyamshah112/Study
636bfadee2384b39399b8b2c03349c9faf8853df
2ea4341d8497573b014a5275d548289696fe3662
refs/heads/master
2021-06-28T15:19:24.002518
2020-10-02T07:36:24
2020-10-02T07:36:24
149,157,682
0
0
null
2020-10-02T07:36:25
2018-09-17T16:48:41
Java
UTF-8
Python
false
false
1,762
py
class Process: def __init__(self, p_no, at, bt,wt,tat,nt,ct,rt): self.p_no = p_no self.at = at self.bt = bt self.wt =wt self.tat =tat self.nt =nt self.ct=ct self.rt=rt def Shift(alist): alist.sort(key=lambda x:x.rt) return alist def main(): n=int(input("Enter number of processes : ")) q=1 pt = [] chart = [] queue=[] time=0 ap=0 #arrived processes rp=0 #ready processes done=0 start=0 avgwt=0 avgtat=0 avgnt=0 for i in range(0,n): pt.insert(i,Process(i,int(input("Enter Arrival Time : ")),int(input("Enter Burst Time :")),0.0,0.0,0.0,0,0)) pt[i].rt=pt[i].bt while(done<n): for i in range(ap,n): if time>=pt[i].at: queue.append(pt[i]) ap+=1 rp+=1 if rp<1: chart.append(pt[0].p_no) time+=1 continue if start: queue = Shift(queue) if queue[0].rt > 0: for g in range(time, time+q): chart.append(queue[0].p_no) time+=q queue[0].rt-=q else: pt[queue[0].p_no].ct=time queue.pop(0) done+=1 rp-=1 start=1 print(chart) for i in range(0,n): pt[i].tat = pt[i].ct-pt[i].at avgtat+=pt[i].tat pt[i].wt = pt[i].tat - pt[i].bt avgwt+=pt[i].wt pt[i].nt = pt[i].tat / pt[i].bt avgnt+=pt[i].nt print("Process no.\t AT\t BT\t WT\t TAT\t NT\t CT\t") for i in range(0,n): print(str(pt[i].p_no)+" \t\t "+str(pt[i].at)+" \t "+str(pt[i].bt)+" \t "+str(round(pt[i].wt,2))+" \t "+str(round(pt[i].tat,2))+" \t "+str(round(pt[i].nt,2))+" \t "+str(pt[i].ct)) print("Average Waiting time",avgwt/n) print("Average TAT",avgtat/n) print("Average Normalized Time",avgnt/n) main()
87a9d5fc07b1eeb59551a66e38e121c1bcb52f4b
bb0eeade4685dc89ff8a53beb813afdf7394989d
/ML2018/commend sys/readers.py
7d306676d9c3cffdfe249ecd0402e19a6f313dbb
[]
no_license
zhaocheng1996/pyproject
72929cd0ba2f0486d7dc87a7defa82656bf75a8e
0a1973dda314f844f9898357bc4a5c8ee3f2246d
refs/heads/master
2021-10-26T08:38:43.675739
2019-04-11T13:52:46
2019-04-11T13:52:46
176,939,063
0
0
null
null
null
null
UTF-8
Python
false
false
2,145
py
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd def read_file(filname, sep="\t"): col_names = ["user", "item", "rate", "st"]#st是timestamps时间戳 df = pd.read_csv(filname, sep=sep, header=None, names=col_names, engine='python') df["user"] -= 1 df["item"] -= 1 for col in ("user", "item"): df[col] = df[col].astype(np.int32) df["rate"] = df["rate"].astype(np.float32) #print(len(df)) return df #print(df) # user item rate st # 0 0 1192 5.0 978300760 # 1 0 660 3.0 978302109 # 2 0 913 3.0 978301968 class ShuffleIterator(object): """ Randomly generate batches """ def __init__(self, inputs, batch_size=10): self.inputs = inputs self.batch_size = batch_size self.num_cols = len(self.inputs) self.len = len(self.inputs[0]) self.inputs = np.transpose(np.vstack([np.array(self.inputs[i]) for i in range(self.num_cols)])) def __len__(self): return self.len def __iter__(self): return self def __next__(self): return self.next() def next(self): ids = np.random.randint(0, self.len, (self.batch_size,)) out = self.inputs[ids, :] return [out[:, i] for i in range(self.num_cols)] class OneEpochIterator(ShuffleIterator): """ Sequentially generate one-epoch batches, typically for test data """ def __init__(self, inputs, batch_size=10): super(OneEpochIterator, self).__init__(inputs, batch_size=batch_size) if batch_size > 0: self.idx_group = np.array_split(np.arange(self.len), np.ceil(self.len / batch_size)) else: self.idx_group = [np.arange(self.len)] self.group_id = 0 def next(self): if self.group_id >= len(self.idx_group): self.group_id = 0 raise StopIteration out = self.inputs[self.idx_group[self.group_id], :] self.group_id += 1 return [out[:, i] for i in range(self.num_cols)] read_file('./ml-1m/ratings.dat', sep="::")
79dcf66b9517d6c9857138b38aa4bebd074af7e9
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_noisy2781.py
63f0d647daa70d02a644d9fe38bd1a0e985c5100
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,238
py
# qubit number=4 # total number=40 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.cx(input_qubit[0],input_qubit[3]) # number=13 prog.cx(input_qubit[0],input_qubit[3]) # number=17 prog.x(input_qubit[3]) # number=18 prog.cx(input_qubit[0],input_qubit[3]) # number=19 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[1]) # number=31 prog.cz(input_qubit[2],input_qubit[1]) # number=32 prog.h(input_qubit[1]) # number=33 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[0]) # number=24 prog.cz(input_qubit[3],input_qubit[0]) # number=25 prog.h(input_qubit[0]) # number=26 prog.h(input_qubit[0]) # number=37 prog.cz(input_qubit[3],input_qubit[0]) # number=38 prog.h(input_qubit[0]) # number=39 prog.z(input_qubit[3]) # number=29 prog.cx(input_qubit[3],input_qubit[0]) # number=30 prog.x(input_qubit[2]) # number=23 prog.cx(input_qubit[3],input_qubit[0]) # number=22 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.x(input_qubit[3]) # number=36 prog.cx(input_qubit[3],input_qubit[0]) # number=34 prog.cx(input_qubit[3],input_qubit[0]) # number=35 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = FakeVigo() sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy2781.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
5fb88b6a250fc8138e50b016b49f98c4fc0590f7
41c5f7da28b87a3034754254d21791b322e819d8
/madana_apiclient/models/xml_ns0_process.py
8bfbc39cbd2a85998fdbcc992333a3857479e0a0
[]
no_license
MADANA-IO/madana-apiclient-python
16cb3eb807897903df2a885a94a2c02fc405818a
40dc21ab43d9565ac3dff86d7270093cce112753
refs/heads/master
2023-03-08T05:02:32.616469
2021-02-11T10:17:30
2021-02-11T10:17:30
287,797,297
1
0
null
null
null
null
UTF-8
Python
false
false
3,648
py
# coding: utf-8 """ madana-api <h1>Using the madana-api</h1> <p>This documentation contains a Quickstart Guide, relating client functionality and information about the available endpoints and used datamodels. </p> <p> The madana-api and its implementations are still in heavy development. This means that there may be problems in our protocols, or there may be mistakes in our implementations. We take security vulnerabilities very seriously. If you discover a security issue, please bring it to our attention right away! If you find a vulnerability that may affect live deployments -- for example, by exposing a remote execution exploit -- please send your report privately to [email protected]. Please DO NOT file a public issue. If the issue is a protocol weakness that cannot be immediately exploited or something not yet deployed, just discuss it openly </p> <br> <p> Note: Not all functionality might be acessible without having accquired and api-license token. For more information visit <a href=\"https://www.madana.io\">www.madana.io</a> </p> <br> # noqa: E501 The version of the OpenAPI document: 0.4.16-master.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from madana_apiclient.configuration import Configuration class XmlNs0Process(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { } attribute_map = { } def __init__(self, local_vars_configuration=None): # noqa: E501 """XmlNs0Process - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, XmlNs0Process): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, XmlNs0Process): return True return self.to_dict() != other.to_dict()
a8edb0da7d8720a5f48f1695b3f768a2a34ec969
e23a4f57ce5474d468258e5e63b9e23fb6011188
/010_strings/_exercises/Python 3 Most Nessesary/6.10. Search and replace in line.py
c8f366f01071b74a68d0f19128b40eb84fc3a1d0
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
2,873
py
# # -*- coding: utf-8 -*- # # s = "пример пример Пример" # print ?.f.. "при" , ?.f.. "При" , ?.f.. "тест" # # (0, 14, -1) # print ?.f.. "при", 9 , ?.f.. "при", 0, 6 , ?.f.. "при", 7, 12 # # (-1, 0, 7) # # # s = "пример пример Пример" # print ?.i..("при" , ?.i..("при", 7, 12 , ?.i..("При", 1 # # (0, 7, 14) # # print(s.index("тест")) # # Traceback (most recent call last): # # File "<pyshell#24>", line 1, in <module> # # s.index("тест") # # ValueError: substring not found # # # s = "пример пример Пример Пример" # print ?.rf.. "при" , ?.rf.. "При" , ?.rf.. "тест" # # (7, 21, -1) # print ?.f.. "при", 0, 6 , ?.f.. "При", 10, 20 # # (0, 14) # # # s = "пример пример Пример Пример" # print ?.ri.. "при" , ?.ri.. "При" , ?.ri.. "при", 0, 6 # # (7, 21, 0) # # print(s.rindex("тест")) # # Traceback (most recent call last): # # File "<pyshell#30>", line 1, in <module> # # s.rindex("тест") # # ValueError: substring not found # # # s = "пример пример Пример Пример" # print ?.c.. "при" , ?.c.. "при", 6 , ?.c.. "При" # # (2, 1, 2) # print ?.c.. "тест" # 0 # # # s = "пример пример Пример Пример" # print ?.st..w.. "при" , ?.st..w.. "При" # # (True, False) # print ?.st..w.. "при", 6 , ?.st..w.. "При", 14 # # (False, True) # # # s = "пример пример Пример Пример" # print ?.st..w.. "при", "При" # # True # # # s = "подстрока ПОДСТРОКА" # print ?.e..w.. "ока" , ?.e..w.. "ОКА" # # (False, True) # print ?.e..w.. "ока", 0, 9 # # True # # # s = "подстрока ПОДСТРОКА" # print ?.e..w.. "ока", "ОКА" # # True # # s = "Привет, Петя" # print ?.re.. "Петя", "Вася" # # Привет, Вася # print ?.re.. "петя", "вася" # Зависит от регистра # # Привет, Петя # s = "strstrstrstrstr" # print ?.re.. "str", "" , ?.re.. "str", "", 3 # # ('', 'strstr') # # # s = "Пример" # d = o.. "П" N.. o.. "р" o.. "Р" # print ? # # {1088: 1056, 1055: None} # print ?.tr.. d # # 'РимеР' # # # t = st_.m.tr.. "а" "А", "о" "О", "с" N.. # print(t # # {1072: 'А', 1089: None, 1086: 'О'} # print "строка".tr.. t # # 'трОкА' # # # t = st_.m.tr.. "абвгдежзи", "АБВГДЕЖЗИ" # print(t) # # {1072: 1040, 1073: 1041, 1074: 1042, 1075: 1043, 1076: 1044, # # 1077: 1045, 1078: 1046, 1079: 1047, 1080: 1048} # print "абвгдежзи".tr.. t # # 'АБВГДЕЖЗИ' # # # t = st_.m.tr.. "123456789", "0" * 9, "str" # print(t) # # {116: None, 115: None, 114: None, 49: 48, 50: 48, 51: 48, # # 52: 48, 53: 48, 54: 48, 55: 48, 56: 48, 57: 48} # print "str123456789str".tr.. t # # '000000000'
258bb0e2762aefc4fda2a6a064e89faad4e34e96
ff81a9d7880f1b85a1dc19d5eba5ac72d7179c86
/pychron/hardware/polyinomial_mapper.py
aa3f53521645648ca77a9b4089bb88812a44f0bd
[ "Apache-2.0" ]
permissive
UManPychron/pychron
2fb7e479a9f492423c0f458c70102c499e1062c4
b84c9fd70072f9cbda30abe2c471e64fe3dd75d8
refs/heads/develop
2022-12-03T23:32:45.579326
2020-01-29T19:02:20
2020-01-29T19:02:20
36,100,637
0
0
null
2015-05-23T00:10:06
2015-05-23T00:10:05
null
UTF-8
Python
false
false
2,147
py
# =============================================================================== # Copyright 2014 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from numpy import poly1d from scipy import optimize from traits.api import HasTraits, List, Float # ============= standard library imports ======================== # ============= local library imports ========================== from pychron.core.helpers.strtools import csv_to_floats class PolynomialMapper(HasTraits): """ list of coefficients. see numpy.poly1d to see exactly how coefficients used coefficient = 1,2,3 ==> 1*x^2+2*x+3 """ _coefficients = List output_low = Float(0) output_high = Float(100) _polynomial = None def set_coefficients(self, cs): self._coefficients = cs self._polynomial = poly1d(cs) def parse_coefficient_string(self, s): self.set_coefficients(csv_to_floats(s)) def map_measured(self, v): """ convert a measured value to an output value (Voltage -> Temp) """ if self._polynomial: v = self._polynomial(v) return v def map_output(self, v): """ convert an output value to measured value (Voltage <- Temp) """ c=self._coefficients[:] c[-1] -= v return optimize.brentq(poly1d(c), self.output_low, self.output_high) # ============= EOF =============================================
04398fb29841e18b9505fe74de19ad29fe08b860
7a527060afabd2e0867d5dcf4b75592b43ef5005
/Leetcode/二叉树/103. 二叉树的锯齿形层次遍历.py
d361d16ca05d5ccb931c8c609b61586d0b68b318
[]
no_license
Stevenzzz1996/MLLCV
ff01a276cf40142c1b28612cb5b43e563ad3a24a
314953b759212db5ad07dcb18854bf6d120ba172
refs/heads/master
2023-02-10T18:11:30.399042
2021-01-05T12:05:21
2021-01-05T12:05:21
267,804,954
6
1
null
null
null
null
UTF-8
Python
false
false
903
py
#!usr/bin/env python # -*- coding:utf-8 -*- # author: sfhong2020 time:2020/5/7 15:01 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]: if not root: return [] res = [] cur = [root] depth = 0 while cur: tmp = [] next_level = [] for node in cur: tmp.append(node.val) if node.left: next_level.append(node.left) if node.right: next_level.append(node.right) if depth % 2 == 1: res.append(tmp[::-1]) else: res.append(tmp) depth += 1 cur = next_level return res
d6373eff10443fed41f31fbc6f731d44a1c41826
02b3e28fa0b4f6ece144a9455c32194e63f4bf17
/vickitrix/__init__.py
a5c33435030889c262f303092f8264c59058f6b6
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
gitter-badger/vickitrix
7b1be0813bc21503b995d75f57819397b2fcb84e
b33a6593837c5302dcc95867e982f1713d234bc9
refs/heads/master
2021-01-15T17:15:14.147257
2017-08-08T14:09:41
2017-08-08T14:09:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,542
py
#!/usr/bin/env python """ vickitrix Checks tweets using http://www.tweepy.org/ and uses rules specified in file to make market trades on GDAX using https://github.com/danpaquin/GDAX-Python. Default rules are stored in rules/vicki.py and follow the tweets of @vickicryptobot. """ from __future__ import print_function import sys # For 2-3 compatibility try: input = raw_input except NameError: pass _help_intro = """vickitrix allows users to base GDAX trades on tweets.""" _key_derivation_iterations = 5000 try: import gdax except ImportError as e: e.message = ( 'vickitrix requires GDAX-Python. Install it with "pip install gdax".' ) raise try: from twython import TwythonStreamer, Twython, TwythonError except ImportError as e: e.message = ( 'vickitrix requires Twython. Install it with ' '"pip install twython".' ) raise try: from Crypto.Cipher import AES from Crypto.Protocol import KDF from Crypto import Random except ImportError: e.message = ( 'vickitrix requires PyCrypto. Install it with ' '"pip install pycrypto".' ) raise import os import errno import time import argparse import getpass import datetime import base64 import json # In case user wants to use regular expressions on conditions/funds import re def help_formatter(prog): """ So formatter_class's max_help_position can be changed. """ return argparse.HelpFormatter(prog, max_help_position=40) def print_to_screen(message, newline=True, carriage_return=False): """ Prints message to stdout as well as stderr if stderr is redirected. message: message to print newline: True iff newline should be printed carriage_return: True iff carriage return should be printed; also clears line with ANSI escape code No return value. """ full_message = ('\x1b[K' + message + ('\r' if carriage_return else '') + (os.linesep if newline else '')) try: sys.stderr.write(full_message) if sys.stderr.isatty(): sys.stderr.flush() else: try: # So the user sees it too sys.stdout.write(full_message) sys.stdout.flush() except UnicodeEncodeError: sys.stdout.write( unicodedata.normalize( 'NFKD', full_message ).encode('ascii', 'ignore') ) sys.stdout.flush() except UnicodeEncodeError: sys.stderr.write( unicodedata.normalize( 'NFKD', full_message ).encode('ascii', 'ignore') ) sys.stderr.flush() def timestamp(): """ Returns timestamp string. """ return time.strftime('%A, %b %d, %Y at %I:%M:%S %p %Z || ', time.localtime(time.time())) def prettify_dict(rule): """ Prettifies printout of dictionary as string. rule: rule Return value: rule string """ return json.dumps(rule, sort_keys=False, indent=4, separators=(',', ': ')) def get_dough(gdax_client, status_update=False): """ Retrieve dough in user accounts gdax_client: instance of gdax.AuthenticatedClient status_update: True iff status update should be printed Return value: dictionary mapping currency to account information """ dough = {} for account in gdax_client.get_accounts(): dough[account['currency']] = account['available'] if status_update: print_to_screen(''.join([timestamp(), 'Available to trade: ', ', '.join(map(' '.join, [el[::-1] for el in dough.items()]))])) return dough class TradeListener(TwythonStreamer): """ Trades on GDAX based on tweets. """ def __init__(self, rules, gdax_client, app_key, app_secret, oauth_token, oauth_token_secret, timeout=300, retry_count=None, retry_in=10, client_args=None, handlers=None, chunk_size=1, sleep_time=0.5): super(TradeListener, self).__init__( app_key, app_secret, oauth_token, oauth_token_secret, timeout=300, retry_count=None, retry_in=10, client_args=None, handlers=None, chunk_size=1 ) self.rules = rules self.gdax_client = gdax_client self.sleep_time = sleep_time self.available = get_dough(self.gdax_client, status_update=False) self.public_client = gdax.PublicClient() # for product order book def on_success(self, status): for rule in self.rules: if ((not rule['handles']) or status['user']['screen_name'].lower() in rule['handles']) and ((not rule['keywords']) or any([keyword in status['text'].lower() for keyword in rule['keywords']])) and eval( rule['condition'].format( tweet='status["text"]', available=self.available )): if (('retweeted_status' in status and status['retweeted_status']) or status['in_reply_to_status_id'] or status['in_reply_to_status_id_str'] or status['in_reply_to_user_id'] or status['in_reply_to_user_id_str'] or status['in_reply_to_screen_name']): # This is an RT or reply; don't do anything return # Condition satisfied! Perform action print_to_screen( ''.join( [timestamp(), 'TWEET MATCHED || @', status['user']['screen_name'] , ': ', status['text']] ) ) for order in rule['orders']: self.available = get_dough(self.gdax_client, status_update=True) order_book = self.public_client.get_product_order_book( order['product_id'] ) inside_bid, inside_ask = ( order_book['bids'][0][0], order_book['asks'][0][0] ) not_enough = False for money in ['size', 'funds', 'price']: try: '''If the hundredths rounds down to zero, ain't enough''' order[money] = str(eval( order[money].format( tweet='status.text', available=self.available, inside_bid=inside_bid, inside_ask=inside_ask ) )) not_enough = ( int(float(order[money]) * 100) == 0 ) except KeyError: pass print_to_screen(''.join( [timestamp(), 'PLACING ORDER', os.linesep] + [prettify_dict(order)] )) if not_enough: print_to_screen( timestamp() + 'One of {"price", "funds", "size"} is zero! ' + 'Order not placed.' ) return if order['side'] == 'buy': self.gdax_client.buy(**order) else: assert order['side'] == 'sell' self.gdax_client.sell(**order) print_to_screen(timestamp() + 'Order placed.') time.sleep(self.sleep_time) get_dough(self.gdax_client, status_update=True) def on_error(self, status_code, status): if status_code == 420: # Rate limit error; bail and wait to reconnect self.disconnect() def go(): """ Entry point """ # Print file's docstring if -h is invoked parser = argparse.ArgumentParser(description=_help_intro, formatter_class=help_formatter) subparsers = parser.add_subparsers(help=( 'subcommands; add "-h" or "--help" ' 'after a subcommand for its parameters'), dest='subparser_name' ) config_parser = subparsers.add_parser( 'configure', help=( 'creates profile for storing keys/secrets; ' 'all keys are stored in "{}".'.format( os.path.join( os.path.expanduser('~'), '.vickitrix', 'config') ) ) ) trade_parser = subparsers.add_parser( 'trade', help='trades based on tweets' ) # Add command-line arguments trade_parser.add_argument('--profile', '-p', type=str, required=False, default='default', help='which profile to use for trading' ) trade_parser.add_argument('--rules', '-r', type=str, required=False, default=os.path.join(os.path.dirname(os.path.realpath(__file__)), 'rules', 'vicki.py'), help=('rules file; this is Python that sets the variable "rules" ' 'to a list of dictionaries') ) trade_parser.add_argument('--interval', '-i', type=float, required=False, default=905, help=('how long to wait (in s) before reattempting to connect ' 'after getting rate-limited') ) trade_parser.add_argument('--sleep', '-s', type=float, required=False, default=0.5, help='how long to wait (in s) after an order has been placed' ) args = parser.parse_args() key_dir = os.path.join(os.path.expanduser('~'), '.vickitrix') if args.subparser_name == 'configure': try: os.makedirs(key_dir) except OSError as e: if e.errno != errno.EEXIST: raise # Grab and write all necessary credentials config_file = os.path.join(key_dir, 'config') print('Enter a name for a new profile (default): ', end='') profile_name = input() if not profile_name: profile_name = 'default' salt = Random.new().read(AES.block_size) key = KDF.PBKDF2(getpass.getpass(( 'Enter a password for this profile. The password will be used ' 'to generate a key so all GDAX/Twitter passcodes/secrets ' 'written to {} are further encoded with AES256. ' 'You will have to enter a profile\'s password every time you ' 'run "vickitrix trade": ' ).format(config_file)), salt, dkLen=32, count=_key_derivation_iterations) previous_lines_to_write = [] if os.path.exists(config_file): '''Have to check if the profile exists already. If it does, replace it. Assume the config file is under vickitrix's control and thus has no errors; if the user chooses to mess it up, that's on them.''' with open(config_file, 'rU') as config_stream: line = config_stream.readline().rstrip('\n') while line: if line[0] == '[' and line[-1] == ']': if profile_name == line[1:-1]: # Skip this profile for _ in range(8): config_stream.readline() line = config_stream.readline().rstrip('\n') continue previous_lines_to_write.append(line) for _ in range(8): previous_lines_to_write.append( config_stream.readline().rstrip('\n') ) line = config_stream.readline().rstrip('\n') with open(config_file, 'w') as config_stream: print(''.join(['[', profile_name, ']']), file=config_stream) # Now change permissions try: os.chmod(config_file, 0o600) except OSError as e: if e.errno == errno.EPERM: print >>sys.stderr, ( ('Warning: could not change permissions of ' '"{}" so it\'s readable/writable by only the ' 'current user. If there are other users of this ' 'system, they may be able to read your credentials ' 'file.').format( config_file ) ) raise with open(config_file, 'a') as config_stream: print(''.join(['Salt: ', base64.b64encode(salt).decode()]), file=config_stream) for token in ['GDAX key', 'GDAX secret', 'GDAX passphrase', 'Twitter consumer key', 'Twitter consumer secret', 'Twitter access token key', 'Twitter access token secret']: if 'key' in token: print(''.join(['Enter ', token, ': ']), end='') '''Write it in plaintext if it's a public key; then the user can open the config file and know which keys are in use.''' print(''.join([token, ': ', input()]), file=config_stream) else: # A warning to developers in a variable name unencoded_and_not_to_be_written_to_disk = getpass.getpass( ''.join(['Enter ', token, ': ']) ) iv = Random.new().read(AES.block_size) cipher = AES.new(key, AES.MODE_CFB, iv) print(''.join([ token, ' (AES256-encrypted using profile password): ', base64.b64encode(iv + cipher.encrypt( unencoded_and_not_to_be_written_to_disk )).decode()]), file=config_stream) for line in previous_lines_to_write: print(line, file=config_stream) print(('Configured profile "{}". Encrypted credentials have been ' 'stored in "{}". ' 'Now use the "trade" subcommand to ' 'trigger trades with new tweets.').format( profile_name, config_file )) elif args.subparser_name == 'trade': # Set and check rules from imp import load_source try: rules = load_source('rules', args.rules).rules except IOError as e: e.message = 'Cannot find or access rules file "{}".'.format( args.rules ) raise import copy # Add missing keys so listener doesn't fail new_rules = copy.copy(rules) order_vocab = set(['client_oid', 'type', 'side', 'product_id', 'stp', 'price', 'size', 'time_in_force', 'cancel_after', 'post_only', 'funds', 'overdraft_enabled', 'funding_amount']) for i, rule in enumerate(rules): # Check 'condition' try: eval(rule['condition'].format( tweet='"The rain in Spain stays mainly in the plain."', available={ 'ETH' : .01, 'USD' : .01, 'LTC' : .01, 'BTC' : .01 } )) except KeyError: # 'condition' isn't required, so make default True new_rules[i]['condition'] = 'True' except: raise RuntimeError(''.join([ ('"condition" from the following rule in the file ' '"{}" could not be ' 'evaluated; check the format ' 'and try again: ').format(args.rules), os.linesep, prettify_dict(rule) ]) ) # Check handles or keywords if 'handles' not in rule and 'keywords' not in rule: raise RuntimeError(''.join([ ('A rule must have at least one of {{"handles", ' '"keywords"}}, but this rule from the file "{}" ' 'doesn\'t:').format(args.rules), os.linesep, prettify_dict(rule) ]) ) if 'handles' not in rule: new_rules[i]['handles'] = [] if 'keywords' not in rule: new_rules[i]['keywords'] = [] new_rules[i]['handles'] = [ handle.lower() for handle in new_rules[i]['handles'] ] new_rules[i]['keywords'] = [ keyword.lower() for keyword in new_rules[i]['keywords'] ] '''Validate order; follow https://docs.gdax.com/#orders for filling in default values.''' if 'orders' not in rule or not isinstance(rule['orders'], list): raise RuntimeError(''.join([ ('Every rule must have an "orders" list, but ' 'this rule from the file "{}" doesn\'t:').format( args.rules), os.linesep, prettify_dict(rule) ]) ) for j, order in enumerate(rule['orders']): if not isinstance(order, dict): raise RuntimeError(''.join([ ('Every order must be a dictionary, but order #{} ' 'from this rule in the file "{}" isn\'t:').format( j+1, args.rules), os.linesep, prettify_dict(rule)])) unrecognized_keys = [ key for key in order if key not in order_vocab ] if unrecognized_keys: raise RuntimeError(''.join([ 'In the file "{}", the "order" key(s) '.format( args.rules), os.linesep, '[', ', '.join(unrecognized_keys), ']', os.linesep, ('are invalid yet present in order #{} of ' 'the following rule:').format(j+1), os.linesep, prettify_dict(rule) ])) try: if order['type'] not in [ 'limit', 'market', 'stop' ]: raise RuntimeError(''.join([ ('An order\'s "type" must be one of {{"limit", ' '"market", "stop"}}, which order #{} in this ' 'rule from the file "{}" doesn\'t ' 'satisfy:').format(j+1, args.rules), os.linesep, prettify_dict(rule) ])) except KeyError: # GDAX default is limit new_rules[i]['orders'][j]['type'] = 'limit' if 'side' not in order: raise RuntimeError(''.join([ ('An order must have a "side", but order #{} in ' 'this rule from the file "{}" doesn\'t:').format( j+1, args.rules), os.linesep, prettify_dict(rule) ]) ) if order['side'] not in ['buy', 'sell']: raise RuntimeError(''.join([ ('An order\'s "side" must be one of {{"buy", ' '"sell"}}, which order #{} in this rule ' 'from the file "{}" doesn\'t satisfy:').format( j+1, args.rules), os.linesep, prettify_dict(rule) ]) ) if 'product_id' not in order: raise RuntimeError(''.join([ ('An order must have a "product_id", but in the ' 'file "{}", order #{} from this rule ' 'doesn\'t:').format(args.rules, j+1), os.linesep, prettify_dict(rule) ])) if new_rules[i]['orders'][j]['type'] == 'limit': for item in ['price', 'size']: if item not in order: raise RuntimeError(''.join([ ('If an order\'s "type" is "limit", the order ' 'must specify a "{}", but in the file "{}",' 'order #{} from this rule doesn\'t:').format( item, args.rules, j+1), os.linesep, prettify_dict(rule) ])) elif new_rules[i]['orders'][j]['type'] in ['market', 'stop']: if 'size' not in order and 'funds' not in order: raise RuntimeError(''.join([ ('If an order\'s "type" is "{}", the order ' 'must have at least one of {{"size", ' '"funds"}}, but in file "{}", order #{} ' 'of this rule doesn\'t:').format( new_rules[i]['orders'][j]['type'], args.rules, j+1 ), os.linesep, prettify_dict(rule)])) for stack in ['size', 'funds', 'price']: try: eval(order[stack].format( tweet=('"The rain in Spain stays mainly ' 'in the plain."'), available={ 'ETH' : .01, 'USD' : .01, 'LTC' : .01, 'BTC' : .01 }, inside_bid=200, inside_ask=200)) except KeyError: pass except Exception as e: raise RuntimeError(''.join([ ('"{}" from order #{} in the following ' 'rule from the file "{}" could not be ' 'evaluated; check the format ' 'and try again:').format( stack, j+1, args.rules ), os.linesep, prettify_dict(rule)])) rules = new_rules # Use _last_ entry in config file with profile name key = None try: with open(os.path.join(key_dir, 'config'), 'rU') as config_stream: line = config_stream.readline().rstrip('\n') while line: profile_name = line[1:-1] if profile_name == args.profile: salt = base64.b64decode( config_stream.readline().rstrip( '\n').partition(': ')[2] ) if key is None: key = KDF.PBKDF2(getpass.getpass( 'Enter password for profile "{}": '.format( profile_name ) ), salt, dkLen=32, count=_key_derivation_iterations ) keys_and_secrets = [] for _ in range(7): item, _, encoded = config_stream.readline().rstrip( '\n').partition(': ') if 'key' in item: # Not actually encoded; remove leading space keys_and_secrets.append(encoded) continue encoded = base64.b64decode(encoded) cipher = AES.new( key, AES.MODE_CFB, encoded[:AES.block_size] ) keys_and_secrets.append( cipher.decrypt( encoded )[AES.block_size:] ) else: # Skip profile for _ in range(8): config_stream.readline() line = config_stream.readline().rstrip('\n') except IOError as e: e.message = ( 'Cannot find vickitrix config file. Use ' '"vickitrix configure" to configure vickitrix ' 'before trading.' ) raise try: # Instantiate GDAX and Twitter clients gdax_client = gdax.AuthenticatedClient( *keys_and_secrets[:3] ) # Are they working? get_dough(gdax_client, status_update=True) twitter_client = Twython(*keys_and_secrets[3:7]) trade_listener = TradeListener( *([rules, gdax_client] + keys_and_secrets[3:7]), sleep_time=args.sleep ) except Exception as e: from traceback import format_exc print_to_screen(format_exc()) print_to_screen(''.join( [os.linesep, 'Chances are, this opaque error happened because either ', os.linesep, 'a) You entered incorrect security credentials ' 'when you were configuring vickitrix.', os.linesep, 'b) You entered the wrong password above.'] )) exit(1) print_to_screen('Twitter/GDAX credentials verified.') # Get all handles to monitor handles, keywords = set(), set() for rule in rules: handles.update(rule['handles']) keywords.update(rule['keywords']) handles_to_user_ids = {} for handle in handles: try: handles_to_user_ids[handle] = twitter_client.show_user( screen_name=handle )['id_str'] except TwythonError as e: if 'User not found' in e.message: print( 'Handle {} not found; skipping rule...'.format(handle) ) else: raise if not handles_to_user_ids: raise RuntimeError('No followable Twitter handles found in rules!') while True: print_to_screen('Listening for tweets; hit CTRL+C to quit...') trade_listener.statuses.filter( follow=handles_to_user_ids.values(), track=list(keywords) ) print_to_screen( timestamp() + 'Rate limit error. Restarting in {} s...'.format( args.interval ) ) time.sleep(args.interval)
080728dd79f7bff9d345033a81fe4b83e3180222
4e47bb6c804150f8be2c7aee96718c8347765cf8
/sample.py
bfd316339170a9eddb2844089423ec1a214dfd3a
[]
no_license
vvasuki/misc-python
89955529b32bf32cf06ab726319a2ccbb6e6accb
5d6d53bfec0dc1f85c24bb5e0cf6e2fcec31a389
refs/heads/master
2022-12-09T14:30:20.149062
2022-12-01T04:14:17
2022-12-01T04:14:17
149,946,647
0
0
null
null
null
null
UTF-8
Python
false
false
7,495
py
#! /usr/bin/python #easy to use python documentation.. intended for reference and reuse of source code (sample code) slices. #for help: install python-docs package. #see this then: file:///usr/share/doc/python-docs-2.4.1/html/tut/tut.html #to enter interactive mode, type: python #to exit python shell: EOF character .. ^d #you can set an environment variable named PYTHONSTARTUP to the name of a file containing your start-up commands. #interpreter can act as a calculator #arithmatic operators as in c. #>>> width = 20 #>>> height = 5*9 #>>> width * height #900 #9+_ #note underscore (implicit variable) #909 #complex numbers too #>>> 1j * 1J #(-1+0j) #>>> 1j * complex(0,1) #(-1+0j) #>>> a=1.5+0.5j #>>> a.real #1.5 #>>> a.imag #that is how you print in interactive mode.. directly quote the variable. #0.5 #"python -c command [arg] ..." #"python -m module [arg] ...", which executes the source file for module #"python file" and "python <file" are different.. #in that the former gets input from stdin. #sys.argv, a list of strings has the script name and additional arguments from shell. #no arguments are given, #sys.argv[0] is an empty string. #When the script name is given as '-' (meaning standard input), sys.argv[0] is set to '-'. #When -c command is used, sys.argv[0] is set to '-c'. #When -m module is used, sys.argv[0] is set to the full name of the located module. #There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects. #lists are like: [a, b, c] #tuples are like: a, b, c or () or (d,) #Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function buffer(). #Xrange objects are similar to buffers in that there is no specific syntax to create them, #but they are created using the xrange() function. #general sequence operators: #in, not in, +, *, s[i], s[i:j], s[i:j:k], len, min, max lstTmp = [[]] * 3 #>>> lists #[[], [], []] #>>> lists[0].append(3) #>>> lists #[[3], [3], [3]] lstTmp[0:2] = [] #removed elements.. size of list changable. elemensts replacable too. #functions on lists: #append extend insert remove(if the arg is matched) pop(can take args) index count sort reverse #an inbuilt function to make list of numbers: rngTmp=range(4) rngTmp=range(2,8) iTmp=1 iTmp,iTmp1=1,1 if iTmp: #indentation is necessary for blocks in python strTmp="iTmp is 1" print strTmp, " ", iTmp strTmp='yeah, both single and double quotes can encapsulate strings.\n\ yeah, note the continuation of the string into the next line.' print strTmp #any non-zero integer value is true; zero is false. #The condition may also be a string or list value, in fact any sequence; #anything with a non-zero length is true, empty sequences are false. #comparison operators as in C. strTmp=r'this is a raw string \ oye. it works thus.' strTmp=""" another way of writing multiline strings. """ strTmp=''' yet another way of writing multiline strings. ''' strTmp=""" look at this piece of string concatenation! """ "oye. write them side by side.\n" + "or use the '+' sign\n"+ "muaddib "*5 print strTmp #slice notation: strTmp[0], strTmp[2,5] #strTmp[:5] and strTmp[0,5] are the same. #>>> word[-1] # The last character.. from the right. a negative index is used. #strTmp[0]='p' is not allowed. #>>> 'x' + word[1:] #'xelpA' #is ok. #degenerate slices are handled gracefully: #word='HelpA' #>>> word[1:100] #'elpA' #>>> word[10:] #'' #>>> word[2:1] #'' #>>> word[-100:] #'HelpA' #>>> word[-10] # error ustrTmp= u' a unicode \u0020 string !' #u'a unicode string !' #the lower 256 characters of Unicode are the same as the 256 characters of Latin-1. #Codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. ustrTmp.encode('utf-8') print ustrTmp #string formatting options strTmp="string formatting or interpolation operator %% is like %(familiarFunction)s" \ %{'familiarFunction':"sprintf()"} print strTmp; #the following options may be used in %(varName)[formatting]option: # d i o u x X e E f F g G c % # r s (for python objects, using repr and str functions) # #the following are string related functions: #strip() len() capitalize() lower() swapcase() l/rjust() center() l/rstrip() title() #join(sequenceOfStrings) [r]split(delimiter) splitlines() #[r]find () count(substr[,start,end]) [r]index() translate(table[, deletechars]) #endswith() startswith() #isalnum() isalpha() isdigit() islower() isspace() isupper() istitle() #zfill() #str(), unicode(), float(), int() and long() convert among datatypes #decision statements: if, else, elif #looping: #while looping: while a<b: #for statement iterates over the items of any sequence: for x in ['cat', 'window', 'defenestrate']: #iterate over a sequence of numbers: use for with range. #looping constructs can have else clauses. #break and continue are as in C. def function(iTmp): #reference to the argument is passed. #default value may be optionally specified.. #it is the value evaluated at the time of making of the function object. "this is the function's optional docstring" print "oye, a function was defined here." #global variables cannot be directly assigned a value within a function #(unless named in a global statement), although they may be referenced. #unless the function explicitly returns something, #it returns None object. if iTmp: return [iTmp] else: return print function.__doc__ #a function is actually an object in the global namespace too. #function can be referenced only after it is defined... "interpreter".. remember? print function print function(0), function(1) iTmp = 5 def function(arg=iTmp): print arg iTmp = 6 #default is evaluated only once. rest of the calls, it is shared... #to be expected. for the default is filled in when the function object is created. function() #printeth 5 def function(a, L=[]): L.append(a) return L #L has scope only within this here block print function(1) print function(2) print function(3) print function(1,[]) print function(3) #hehe. [1, 2, 3, 3] #the above function behaved thusly because the default was a mutable object.. #not an immutable one.. like below. def function(a, L=None): if L is None: L = [] L.append(a) return L #keyword arguments. def function(arg1,arg2='ole',arg3='jo'): pass #this is an empty statement. print arg1 function(arg2=99, arg1=0231) #all functions accept a tuple of arguments in place of passing a literal unpacked sequence. #the contents of the literal tuple, #though they may contain references to objects, #are themselves passed by value. tupTmp=(0231,99) function(*tupTmp) #the * operator unpacks the tuple #variable number of arguments may be passed as below. #they may be passed in the form of a tuple of arguments, and #also as a dictionary (hashtable) of arguments. def function(arg, *argTuple, ** argDictionary): #see how a for loop is used with a tuple for argentum in argTuple: pass #see how argDictioary is used, and notice the use of the dictionary method keys: keynen = argDictionary.keys() #see that the sequence keynen has a method called sort keynen.sort() function("sa","asdfa","sdf","asdff", god="allah", prophet="mohammed") #lambda forms from Lisp.. functions used to make function objects def function(arg): return lambda argLm: arg+argLm #Like nested function definitions, lambda forms can reference variables from the containing scope fnTmp=function(strTmp) print "lambda land ", fnTmp("sdf")
b40bac9713b087f67ca3260d194ce949da4c8dae
73a0f661f1423d63e86489d4b2673f0103698aab
/python/oneflow/nn/modules/math_ops.py
a16ddf4555f82be980156024d8fa893e24247691
[ "Apache-2.0" ]
permissive
Oneflow-Inc/oneflow
4fc3e081e45db0242a465c4330d8bcc8b21ee924
0aab78ea24d4b1c784c30c57d33ec69fe5605e4a
refs/heads/master
2023-08-25T16:58:30.576596
2023-08-22T14:15:46
2023-08-22T14:15:46
81,634,683
5,495
786
Apache-2.0
2023-09-14T09:44:31
2017-02-11T06:09:53
C++
UTF-8
Python
false
false
7,845
py
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections from typing import Optional, Sequence, Union import oneflow as flow from oneflow.framework.tensor import register_tensor_op from oneflow.nn.modules.module import Module from oneflow.nn.modules.utils import _check_axis from oneflow.ops.transpose_util import ( get_inversed_perm, get_perm_when_transpose_axis_to_last_dim, ) def asin_op(input): """ Returns a new tensor with the arcsine of the elements of :attr:`input`. .. math:: \\text{out}_{i} = \\sin^{-1}(\\text{input}_{i}) Args: input (Tensor): the input tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor(np.array([-0.5, 0.8, 1.0, -0.8]), dtype=flow.float32) >>> output = flow.asin(input) >>> output.shape oneflow.Size([4]) >>> output tensor([-0.5236, 0.9273, 1.5708, -0.9273], dtype=oneflow.float32) >>> input1 = flow.tensor(np.array([[0.8, 1.0], [-0.6, -1.0]]), dtype=flow.float32) >>> output1 = input1.asin() >>> output1.shape oneflow.Size([2, 2]) >>> output1 tensor([[ 0.9273, 1.5708], [-0.6435, -1.5708]], dtype=oneflow.float32) """ return flow._C.asin(input) def arcsin_op(input): """ Alias for :func:`oneflow.asin` """ return flow._C.asin(input) def asinh_op(input): """ Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`. .. math:: \\text{out}_{i} = \\sinh^{-1}(\\text{input}_{i}) Args: input (Tensor): the input tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor(np.array([2, 3, 4]), dtype=flow.float32) >>> output = flow.asinh(input) >>> output.shape oneflow.Size([3]) >>> output tensor([1.4436, 1.8184, 2.0947], dtype=oneflow.float32) >>> input1 = flow.tensor(np.array([[-1, 0, -0.4], [5, 7, 0.8]]), dtype=flow.float32) >>> output1 = input1.asinh() >>> output1.shape oneflow.Size([2, 3]) >>> output1 tensor([[-0.8814, 0.0000, -0.3900], [ 2.3124, 2.6441, 0.7327]], dtype=oneflow.float32) """ return flow._C.asinh(input) def arcsinh_op(input): """ Alias for :func:`oneflow.asinh` """ return flow._C.asinh(input) def asinh_op_tensor(input): """ See :func:`oneflow.asinh` """ return flow._C.asinh(input) def inplace_sin_op_tensor(input): """ In-place version of :func:`oneflow.sin` """ return flow._C.sin_(input) def atan_op(input): """ Returns a new tensor with the arctangent of the elements of :attr:`input`. .. math:: \\text{out}_{i} = \\tan^{-1}(\\text{input}_{i}) Args: input (Tensor): the input tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> input = flow.tensor(np.array([0.5, 0.6, 0.7]), dtype=flow.float32) >>> output = flow.atan(input) >>> output.shape oneflow.Size([3]) """ return flow._C.atan(input) def arctan_op(input): """ Alias for :func:`oneflow.atan` """ return flow._C.atan(input) def fmod_op(input, other): """ fmod(input, other, *, out=None) -> Tensor Computes the element-wise remainder of division. The dividend and divisor may contain both for integer and floating point numbers. The remainder has the same sign as the dividend :attr:`input`. Supports broadcasting to a common shape, integer and float inputs. Args: input (Tensor): the dividend other (Tensor or Scalar): the divisor Keyword args: out (Tensor, optional): the output tensor. Example:: >>> import oneflow as flow >>> flow.fmod(flow.tensor([-3., -2, -1, 1, 2, 3]), 2.) tensor([-1., -0., -1., 1., 0., 1.], dtype=oneflow.float32) >>> flow.fmod(flow.tensor([1, 2, 3, 4, 5.]), 1.5) tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000], dtype=oneflow.float32) >>> flow.fmod(flow.tensor([1, 2, 3, 4., -5]), flow.tensor([4, 2, 1, 3., 1])) tensor([1., 0., 0., 1., -0.], dtype=oneflow.float32) """ return flow._C.fmod(input, other) def addmm(x, mat1, mat2, alpha=1, beta=1): if len(x.shape) > 2 or len(mat1.shape) > 2 or len(mat2.shape) > 2: raise ValueError("input matrixes shape can not be greater than 2") else: return flow.mul(x, beta) + flow.mul(flow._C.matmul(mat1, mat2), alpha) def addmm_op(input, mat1, mat2, alpha=1, beta=1): """addmm(beta=1, input, alpha=1, mat1, mat2, out=None) -> Tensor Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. The matrix :attr:`input` is added to the final result. If :attr:`mat1` is a :math:`(n \\times m)` tensor, :attr:`mat2` is a :math:`(m \\times p)` tensor, then :attr:`input` must be broadcastable with a :math:`(n \\times p)` tensor and :attr:`out` will be a :math:`(n \\times p)` tensor. :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. .. math:: \\text{out} = \\beta\\ \\text{input} + \\alpha\\ (\\text{mat1}_i \\mathbin{@} \\text{mat2}_i) For inputs of type `float` or `double`, arguments :attr:`beta` and :attr:`alpha` must be real numbers, otherwise they should be integers. Args: beta (Number, optional): multiplier for :attr:`input` (:math:`\\beta`) input (Tensor): matrix to be added alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\\alpha`) mat1 (Tensor): the first matrix to be multiplied mat2 (Tensor): the second matrix to be multiplied out (Tensor, optional): the output tensor. For example: >>> import numpy as np >>> import oneflow as flow >>> input = flow.tensor(np.array([[1,2,4],[5,11,9.1]])) >>> mat1 = flow.tensor(np.array([[7.3,1.9,7.3],[10.2,1,5.5]])) >>> mat2 = flow.tensor(np.array([[7.3,1.9,7.3],[10.2,1,5.5],[3.7,2.2,8.1]])) >>> output = flow.addmm(input, mat1, mat2) >>> output tensor([[100.6800, 33.8300, 126.8700], [110.0100, 43.4800, 133.6100]], dtype=oneflow.float64) >>> output.shape oneflow.Size([2, 3]) >>> input2 = flow.tensor(np.array([1.7])) >>> mat1 = flow.tensor(np.array([[1,2],[5,9.1],[7.7,1.4]])) >>> mat2 = flow.tensor(np.array([[1,2,3.7],[5,9.1,6.8]])) >>> output2 = flow.addmm(input2, mat1, mat2, alpha=1, beta=2) >>> output2 tensor([[14.4000, 23.6000, 20.7000], [53.9000, 96.2100, 83.7800], [18.1000, 31.5400, 41.4100]], dtype=oneflow.float64) >>> output2.shape oneflow.Size([3, 3]) """ return addmm(input, mat1, mat2, alpha, beta) if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
6697e58f58dc6dc054679c72808f91d06415102d
88ea7bf2bbc8ffba551e881df553ae5ceac70dd6
/deblock/codes/models/archs/archs_sub/SRResNet_o2m_spectral_arch.py
83e92751b2e71f264c06bc251d1ed9cc9b2e4680
[ "Apache-2.0" ]
permissive
zhouhuanxiang/repo-zhx
2d1135bb2f925e051e1b0bcfc2ed53fb34ea51c5
76b577eea13130c60bf7bff8c486f51766128661
refs/heads/main
2023-06-10T02:56:17.978649
2021-06-29T02:35:57
2021-06-29T02:35:57
381,213,557
0
0
null
null
null
null
UTF-8
Python
false
false
2,389
py
import functools import torch import torch.nn as nn import torch.nn.functional as F import models.archs.arch_util as arch_util class ResidualBlock_Spectral_withZ(nn.Module): '''Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| ''' def __init__(self, ni=65, no=64): super(ResidualBlock_Spectral_withZ, self).__init__() self.conv1 = nn.utils.spectral_norm(nn.Conv2d(ni, ni, 3, 1, 1, bias=True)) self.conv2 = nn.utils.spectral_norm(nn.Conv2d(ni, no, 3, 1, 1, bias=True)) # initialization arch_util.initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.conv1(x), inplace=True) out = self.conv2(out) return identity[:, :out.shape[1], :, :] + out class MSRResNet(nn.Module): ''' modified SRResNet''' def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, upscale=4): super(MSRResNet, self).__init__() self.upscale = upscale self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) # basic_block = functools.partial(ResidualBlock_noBN_withZ, nf=nf) # self.recon_trunk = arch_util.make_layer(basic_block, nb) self.recon_trunk = nn.ModuleList([ResidualBlock_Spectral_withZ(nf + 1, nf) for i in range(nb)]) # upsampling self.upconv1 = nn.Conv2d(nf + 1, nf, 3, 1, 1, bias=True) self.HRconv = nn.Conv2d(nf + 1, nf, 3, 1, 1, bias=True) self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) # initialization arch_util.initialize_weights([self.conv_first, self.upconv1, self.HRconv, self.conv_last], 0.1) def forward(self, x, z): out = self.lrelu(self.conv_first(x)) # out = self.recon_trunk(fea) for layer in self.recon_trunk: out = layer(torch.cat((out, z), dim=1)) out = self.lrelu(self.upconv1(torch.cat((out, z), dim=1))) out = self.conv_last(self.lrelu(self.HRconv(torch.cat((out, z), dim=1)))) base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False) if out.shape[1] == base.shape[1]: out += base else: out += base[:, :3, :, :] return out
9269f28f522d0d9b3083bf0059d3b6ed41848195
d67ae1b2f20d96b7e36c82c3a298882042c951c5
/src/asyncf.py
05a406b445e0dbcbd7eb0341c1360003b928bcfe
[ "MIT" ]
permissive
Vistaus/my-weather-indicator
8a99e69fd9d2c03ab5cca578a89da38d6676a5ab
32aaa77a14cf2f85edbfb72c45d154e1676abe83
refs/heads/master
2021-01-02T12:00:00.506304
2020-02-11T19:42:47
2020-02-11T19:42:47
239,614,123
0
0
MIT
2020-02-10T21:11:07
2020-02-10T21:11:06
null
UTF-8
Python
false
false
2,549
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # async.py # # This file is part of uPodcatcher # # Copyright (C) 2014 # Lorenzo Carbonell Cerezo <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import gi try: gi.require_version('GLib', '2.0') except Exception as e: print(e) exit(1) from gi.repository import GLib import threading import traceback __all__ = ['async_function'] def _async_call(f, args, kwargs, on_done): def run(data): f, args, kwargs, on_done = data error = None result = None try: result = f(*args, **kwargs) except Exception as e: e.traceback = traceback.format_exc() error = 'Unhandled exception in asyn call:\n{}'.format(e.traceback) GLib.idle_add(lambda: on_done(result, error)) data = f, args, kwargs, on_done thread = threading.Thread(target=run, args=(data,)) thread.daemon = True thread.start() def async_function(on_done=None): ''' A decorator that can be used on free functions so they will always be called asynchronously. The decorated function should not use any resources shared by the main thread. Example: def do_async_stuff(self, input_string): def on_async_done(result, error): # Do stuff with the result and handle errors in the main thread. if error: print(error) elif result: print(result) @async_function(on_done=on_async_done) def do_expensive_stuff_in_thread(input_string): # Pretend to do expensive stuff... time.sleep(10) stuff = input_string + ' Done in a different thread' return stuff do_expensive_stuff_in_thread(input_string) ''' def wrapper(f): def run(*args, **kwargs): _async_call(f, args, kwargs, on_done) return run return wrapper
1a43fcbec667b510a0a1ff82df246326a83a70fb
eefb06b0d8c8c98c1e9cfc4c3852d5c453eb5429
/data/input/andersbll/deeppy/deeppy/model/__init__.py
3fc2414a36c1575b1ca19d8106a70e4a76258fb6
[]
no_license
bopopescu/pythonanalyzer
db839453bde13bf9157b76e54735f11c2262593a
8390a0139137574ab237b3ff5fe8ea61e8a0b76b
refs/heads/master
2022-11-22T02:13:52.949119
2019-05-07T18:42:52
2019-05-07T18:42:52
282,079,884
0
0
null
2020-07-23T23:46:09
2020-07-23T23:46:08
null
UTF-8
Python
false
false
169
py
from .adversarial import AdversarialNet from .feedforward import FeedForwardNet, ClassifierNet, RegressorNet from .variational_autoencoder import VariationalAutoencoder
327ad346e94f6d6d3c3be000b3c703d8718a101f
784dda4c400d4e5c42f57e9a7d48883692b2a931
/pyhawkes/utils/data_manager.py
3dc6d25d07e8bd12b7188d28e252be3626d20442
[ "MIT" ]
permissive
yxtj/pyhawkes
bd942aded06dba3dd390a47e28702dcba124961b
ecc6dc23e516a7b06d64e5dbd10c8861b01bd955
refs/heads/master
2021-01-15T18:31:12.539149
2015-02-25T23:35:50
2015-02-25T23:35:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,746
py
""" Data manager handles loading the .mat file and setting up the data on the GPU This could be extended if we ever moved to a distributed setup with multiple GPUs """ import numpy as np import scipy.sparse as sparse import scipy.io import os import pycuda.autoinit import pycuda.compiler as nvcc import pycuda.driver as cuda import pycuda.gpuarray as gpuarray import pycuda.curandom as curandom from pyhawkes.utils.utils import * # Define constant for the sparse matrix preprocessing G_LOGISTIC_NORMAL = 0 import logging # Get handle to global logger log = logging.getLogger("global_log") class GpuData: """ Inner class to store pointers on the GPU """ def __init__(self): self.Ns = None self.cumSumNs = None self.X = None class DataSet: """ Wrapper for a spike data set """ def __init__(self): self.gpu = GpuData() def loadFromFile(self, path, sortByBlock=False): """ Load the specified mat file """ mat_data = scipy.io.loadmat(path, appendmat=True) self.N = int(mat_data["N"]) if "Tstart" in mat_data.keys() and "Tstop" in mat_data.keys(): self.Tstart = float(mat_data["Tstart"]) self.Tstop = float(mat_data["Tstop"]) elif "T" in mat_data.keys(): self.Tstart = 0 self.Tstop = float(mat_data["T"]) else: log.error("Neither (Tstart,Tstop) nor T were specified in the mat file") exit() Sraw = np.ravel(mat_data["S"]).astype(np.float32) # Some datasets do not have process IDs if "K" in mat_data.keys() and"C" in mat_data.keys(): self.proc_ids_known = True self.K = int(mat_data["K"]) Craw = (np.ravel(mat_data["C"])).astype(np.int32) # Make sure the process IDs are 0-based if np.max(Craw)==self.K and np.min(Craw)==1: # The data file is 1-indexed (i.e. generated in Matlab most likely Craw = Craw -1 else: # Default to all spikes on the same process. This will be changed # during inference self.proc_ids_known = False self.K = 1 Craw = np.zeros((self.N,), dtype=np.int32) # Some datasets have associated spatial locations for each spike # If so, X must be a DxN matrix where D is the dimension of the spatial data if "X" in mat_data.keys(): self.isspatial = True Xraw = mat_data["X"].astype(np.float32) # Make sure Xraw is a DxN matrix if np.size(Xraw,0)==self.N: log.debug("Given X is NxD rather than DxN. Transposing...") Xraw = Xraw.T self.D = np.size(Xraw,0) else: self.isspatial = False self.X = None self.D = 0 if not sortByBlock: (I, Ns, cumSumNs) = self.__argsortSCArray(self.K, Sraw, Craw) else: (I, Ns, cumSumNs) = self.__argsortSCArrayByBlock(self.K, Sraw, Craw) # (I, Ns, cumSumNs) = self.__argsortSCArray(self.K, , Craw) self.S = Sraw[I] self.C = Craw[I] if self.isspatial: # Slicing with I changes the view and orders as if it were NxD matrix self.X = np.zeros((self.D,self.N), dtype=np.float32) for n in np.arange(self.N): self.X[:,n] = Xraw[:,I[n]] self.Ns = Ns self.maxNs = np.max(Ns) self.cumSumNs = cumSumNs # Store remaining keys self.other_data = {} for key in mat_data.keys(): if key not in ["S","K","C","T","N","X","D"]: self.other_data[key] = mat_data[key] self.__initializeGpuArrays() def loadFromArray(self,N,K,Tstart,Tstop,S,C,X=None,D=0,other_data={},proc_ids_known=True, sortByBlock=False): """ Initialize a DataSet object with the given parameters """ self.N = N self.K = K self.Tstart = Tstart self.Tstop = Tstop self.other_data = other_data self.proc_ids_known = proc_ids_known self.isspatial = (X!=None) self.D = D self.X = None if N == 0: self.S = S self.C = C self.Ns = np.zeros(K) return # Make sure the process IDs are 0-based if np.max(C)==self.K and np.min(C)==1: # The data file is 1-indexed (i.e. generated in Matlab most likely C = C -1 if not sortByBlock: (I, Ns, cumSumNs) = self.__argsortSCArray(self.K, S, C) else: (I, Ns, cumSumNs) = self.__argsortSCArrayByBlock(self.K, S, C) self.S = S[I] self.C = C[I] if self.isspatial: # Slicing with I changes the view and orders as if it were NxD matrix self.X = np.zeros((self.D,self.N), dtype=np.float32) for n in np.arange(self.N): self.X[:,n] = X[:,I[n]] self.Ns = Ns self.maxNs = np.max(Ns) self.cumSumNs = cumSumNs # Set correct types self.S = np.float32(self.S) self.C = np.int32(self.C) self.Ns = np.int32(self.Ns) self.N = int(self.N) self.K = int(self.K) self.D = int(self.D) self.X = np.float32(self.X) self.__initializeGpuArrays() def __initializeGpuArrays(self): """ Add a dictionary of GPU pointers """ self.gpu.Ns = gpuarray.to_gpu(self.Ns.astype(np.int32)) self.gpu.cumSumNs = gpuarray.to_gpu(self.cumSumNs.astype(np.int32)) if self.isspatial: # self.gpu.X = gpuarray.empty((self.D,self.N), dtype=np.float32) # self.gpu.X.set(self.X.astype(np.float32)) self.gpu.X = gpuarray.to_gpu(self.X.astype(np.float32)) def __argsortSCArray(self,K,S,C): """ Sort an array of spikes, first by their processes, then by their spike times. We assume S is already sorted but C is not. """ # Keep an array of spike counts Ns = np.zeros(K, dtype=np.int32) N = np.size(S) assert np.size(C) == N, "ERROR: Size of S and C do not match!" # Compute a permutation of S,C,X such that S is sorted in increasing order Iflat = np.argsort(S) # Compute Ns for k in np.arange(K): Ns[k] = np.count_nonzero(C==k) # Also compute the cumulative sum of Ns cumSumNs = np.cumsum(np.hstack(([0], Ns)), dtype=np.int32) return (Iflat, Ns, cumSumNs) def __argsortSCArrayByBlock(self,K,S,C): """ Sort an array of spikes, first by their processes, then by their spike times. We assume S is already sorted but C is not. """ # Keep an array of spike counts Ns = np.zeros(K, dtype=np.int32) N = np.size(S) assert np.size(C) == N, "ERROR: Size of S and C do not match!" # Initialize buffers to hold the per-process indices ppI = {} buff_sz = int(2*N/K) for k in np.arange(K): ppI[k] = np.zeros(buff_sz) for n in np.arange(N): cn = C[n] try: ppI[cn][Ns[cn]] = n except: # Index out of bounds -- grow buffer ppI[cn] = np.hstack((ppI[cn], np.zeros(buff_sz))) ppI[cn][Ns[cn]] = n Ns[cn] += 1 # Flatten the permutation Iflat = np.zeros(N, dtype=np.int) off = 0 for k in np.arange(K): Iflat[off:off+Ns[k]] = ppI[k][:Ns[k]] off += Ns[k] # Also compute the cumulative sum of Ns cumSumNs = np.cumsum(np.hstack(([0], Ns)), dtype=np.int32) return (Iflat, Ns, cumSumNs) class DataManager: def __init__(self, configFile, dataFile=None): """ Load the data and preprocess it on the GPU. """ self.parse_config_file(configFile) if not dataFile is None: self.params["data_file"] = dataFile pprint_dict(self.params, "Data Manager Params") def preprocess_for_inference(self, sortByBlock=False): """ Load all of the data """ data = DataSet() mat_file = os.path.join(self.params["data_dir"], self.params["data_file"]) data.loadFromFile(mat_file, sortByBlock=sortByBlock) return data def preprocess_for_cross_validation(self, sortByBlock=False): """ Load all of the data """ data = DataSet() mat_file = os.path.join(self.params["data_dir"], self.params["xv_file"]) data.loadFromFile(mat_file, sortByBlock=sortByBlock) return data def preprocess_for_prediction_test(self, Tsplit=0, trainFrac=0.9, sortByBlock=False): """ Load all of the data onto the GPU for parameter inference """ data = DataSet() mat_file = os.path.join(self.params["data_dir"], self.params["data_file"]) data.loadFromFile(mat_file) (trainData, testData) = self.split_test_train_data(data, Tsplit, trainFrac, sortByBlock=sortByBlock) log.info("Train: %d spikes in time [%.2f,%.2f]", trainData.N, trainData.Tstart,trainData.Tstop) log.info("Test: %d spikes in time [%.2f,%.2f]", testData.N, testData.Tstart,testData.Tstop) return (trainData, testData) def parse_config_file(self, configFile): """ Parse the config file for data manager params """ # Initialize defaults defaultParams = {} # Data location defaultParams["data_dir"] = "." defaultParams["xv_file"] = "not given" # CUDA kernels are defined externally in a .cu file defaultParams["cu_dir"] = os.path.join("pyhawkes", "cuda", "cpp") defaultParams["cu_file"] = "preprocessing_unknown_procs.cu" # Block size defaultParams["blockSz"] = 1024 # Window the data such that only spikes within a fixed time window can # have an effect. It is important that this be consistent with the # prior on the impulse response defaultParams["dt_max"] = 5.0 defaultParams["max_hist"] = 10*1024 # Create a config parser object and read in the file cfgParser = ConfigParser(defaultParams) cfgParser.read(configFile) # Create an output params dict. The config file is organized into # sections. Read them one at a time self.params = {} self.params["data_dir"] = cfgParser.get("io", "data_dir") self.params["data_file"] = cfgParser.get("io", "data_file") self.params["xv_file"] = cfgParser.get("io", "xv_file") self.params["blockSz"] = cfgParser.getint("cuda", "blockSz") self.params["cu_dir"] = cfgParser.get("preprocessing", "cu_dir") self.params["cu_file"] = cfgParser.get("preprocessing", "cu_file") self.params["dt_max"] = cfgParser.getfloat("preprocessing", "dt_max") self.params["max_hist"] = cfgParser.getint("preprocessing", "max_hist") def initialize_gpu_kernels(self): kernelSrc = os.path.join(self.params["cu_dir"], self.params["cu_file"]) kernelNames = ["computeColumnSizes", "computeRowIndicesAndDs", "computeDx"] src_consts = {"B" : self.params["blockSz"]} self.gpuKernels = compile_kernels(kernelSrc, kernelNames, srcParams=src_consts) def initialize_known_proc_gpu_kernels(self): kernelSrc = os.path.join(self.params["cu_dir"], self.params["cu_file"]) kernelNames = ["computeColPtrs", "computeDsBufferSize", "computeRowAndDsOffsets", "computeRowIndicesAndDs", "computeColumnSizes", "computeRowIndicesAndDs"] src_consts = {"B" : self.params["blockSz"]} self.gpuKernels = compile_kernels(kernelSrc, kernelNames, srcParams=src_consts) def split_test_train_data(self, alldata, Tsplit=0, trainFrac=0.9, sortByBlock=False): """ Split the data into test and train subsets alldata must be a sorted Dataset """ # First make sure the spike are sorted by time, not by block # Compute a permutation of S,C,X such that S is sorted in increasing order Iflat = np.argsort(alldata.S) S = alldata.S[Iflat] C = alldata.C[Iflat] X = alldata.X[:,Iflat] if alldata.X!=None else None if Tsplit > 0: # Find the index of the first spike after Tsplit split_ind = np.min(np.nonzero(S>Tsplit)[0]) elif trainFrac > 0: split_ind = int(np.floor(trainFrac*alldata.N)) Tsplit = (S[split_ind-1] + S[split_ind])/2.0 else: log.error("Either Tsplit or trainFrac must be specified!") exit() # Create two datasets trainData = self.get_data_in_interval(alldata,(0,Tsplit), sortByBlock=sortByBlock) testData = self.get_data_in_interval(alldata,(Tsplit, alldata.T), sortByBlock=sortByBlock) return (trainData, testData) def get_data_in_interval(self, alldata, (T_start,T_stop), sortByBlock=False): """ Split the data into test and train subsets alldata must be a sorted Dataset """ # First make sure the spike are sorted by time, not by block # Compute a permutation of S,C,X such that S is sorted in increasing order Iflat = np.argsort(alldata.S) S = alldata.S[Iflat] C = alldata.C[Iflat] X = alldata.X[:,Iflat] if alldata.X!=None else None # Find the index of the first spike after Tsplit start_ind = np.min(np.nonzero(S>T_start)[0]) stop_ind = np.max(np.nonzero(S<T_stop)[0])+1 # Create two datasets data = DataSet() data.loadFromArray(stop_ind-start_ind, alldata.K, T_start, T_stop, S[start_ind:stop_ind], C[start_ind:stop_ind], X=X[:,start_ind:stop_ind] if X!=None else None, D=alldata.D, other_data=alldata.other_data, proc_ids_known=alldata.proc_ids_known, sortByBlock=sortByBlock) return data def compute_sparse_spike_intvl_matrices(self, dataSet1, dataSet2): """ preprocess the given datasets by computing the intervals between spikes on S1 and spikes on S2 and storing them in a sparse matrix format on the GPU. The GPU kernels require the spikes to be sorted, first in C and then in S, so all the spikes on process 0 come first, and within the spikes on process 0 they are sorted in increasing order of S. """ # Initialize the kernels with the size of the dataset self.initialize_known_proc_gpu_kernels() # Temporarily copy both sets of spike times to the GPU S1_gpu = gpuarray.to_gpu(dataSet1.S.astype(np.float32)) S2_gpu = gpuarray.to_gpu(dataSet2.S.astype(np.float32)) # Now we can preprocess the interspike intervals on the GPU # First compute the size of each column for each matrix # Each spike appears in K1 matrices, so there are K1*N2 columns colStartBuffer_gpu = gpuarray.empty((dataSet1.K,dataSet2.N), dtype=np.int32) colEndBuffer_gpu = gpuarray.empty((dataSet1.K,dataSet2.N), dtype=np.int32) colSizesBuffer_gpu = gpuarray.empty((dataSet1.K,dataSet2.N), dtype=np.int32) grid_w = int(np.ceil(float(dataSet2.N)/self.params["blockSz"])) status_gpu = gpuarray.zeros((dataSet1.K,grid_w),dtype=np.int32) self.gpuKernels["computeColumnSizes"](np.float32(self.params["dt_max"]), dataSet1.gpu.Ns.gpudata, dataSet1.gpu.cumSumNs.gpudata, S1_gpu.gpudata, np.int32(dataSet2.N), S2_gpu.gpudata, colStartBuffer_gpu.gpudata, colEndBuffer_gpu.gpudata, colSizesBuffer_gpu.gpudata, status_gpu.gpudata, block=(1024,1,1), grid=(grid_w,dataSet1.K) ) # Compute the column pointers (the cumulative sum) of the # column sizes for each matrix. There are K1xK2 grid of matrices colPtrsBuffer_gpu = gpuarray.zeros((dataSet1.K,(dataSet2.N+dataSet2.K)), dtype=np.int32) colPtrOffsets_gpu = gpuarray.zeros((dataSet1.K,dataSet2.K), dtype=np.int32) self.gpuKernels["computeColPtrs"](np.int32(dataSet1.K), np.int32(dataSet2.N), dataSet2.gpu.Ns.gpudata, dataSet2.gpu.cumSumNs.gpudata, colSizesBuffer_gpu.gpudata, colPtrsBuffer_gpu.gpudata, colPtrOffsets_gpu.gpudata, block=(1,1,1), grid=(dataSet1.K,dataSet2.K) ) # Compute the required size of the data and row buffer bufferSize_gpu = gpuarray.zeros(1, dtype=np.int32) self.gpuKernels["computeDsBufferSize"](np.int32(dataSet1.K), dataSet2.gpu.Ns.gpudata, colPtrsBuffer_gpu.gpudata, colPtrOffsets_gpu.gpudata, bufferSize_gpu.gpudata, block=(1,1,1), grid=(1,1) ) bufferSize = int(bufferSize_gpu.get()[0]) log.debug("dS has %d nonzero entries" % bufferSize) dsBuffer_gpu = gpuarray.empty((bufferSize,), dtype=np.float32) rowIndicesBuffer_gpu = gpuarray.zeros((bufferSize,), dtype=np.int32) # Compute the offsets into these buffers for each matrix rowAndDsOffsets_gpu = gpuarray.empty((dataSet1.K,dataSet2.K), dtype=np.int32) self.gpuKernels["computeRowAndDsOffsets"](np.int32(dataSet1.K), dataSet2.gpu.Ns.gpudata, colPtrsBuffer_gpu.gpudata, colPtrOffsets_gpu.gpudata, rowAndDsOffsets_gpu.gpudata, block=(1,1,1), grid=(1,1) ) # Now we can actually fill in row and ds buffers self.gpuKernels["computeRowIndicesAndDs"](np.int32(G_LOGISTIC_NORMAL), np.int32(dataSet1.K), dataSet1.gpu.Ns.gpudata, dataSet1.gpu.cumSumNs.gpudata, S1_gpu.gpudata, np.int32(dataSet2.N), dataSet2.gpu.cumSumNs.gpudata, S2_gpu.gpudata, colStartBuffer_gpu.gpudata, colEndBuffer_gpu.gpudata, colPtrsBuffer_gpu.gpudata, colPtrOffsets_gpu.gpudata, rowIndicesBuffer_gpu.gpudata, dsBuffer_gpu.gpudata, rowAndDsOffsets_gpu.gpudata, block=(1024,1,1), grid=(grid_w,dataSet1.K) ) # If this is a spatial dataset then also compute dX dxBuffer_gpu = None if dataSet1.isspatial and dataSet2.isspatial: D = dataSet1.D assert dataSet2.D == D, "Error: two datasets have different spatial dimensions" dxBuffer_gpu = gpuarray.empty((D*bufferSize,), dtype=np.float32) # Copy the spatial data to the GPU X1_gpu = gpuarray.to_gpu(dataSet1.X.astype(np.float32)) X2_gpu = gpuarray.to_gpu(dataSet2.X.astype(np.float32)) self.gpuKernels["computeDx"](np.int32(D), np.int32(dataSet1.N), dataSet1.gpu.cumSumNs.gpudata, X1_gpu.gpudata, np.int32(dataSet2.N), dataSet2.gpu.cumSumNs.gpudata, X2_gpu.gpudata, rowIndicesBuffer_gpu.gpudata, colPtrsBuffer_gpu.gpudata, colPtrOffsets_gpu.gpudata, rowAndDsOffsets_gpu.gpudata, dxBuffer_gpu.gpudata, block=(1024,1,1), grid=(grid_w,dataSet1.K) ) ds = dsBuffer_gpu.get() # assert np.all(ds < self.params["dt_max"]), "ERROR: DS contains entries equal to dt_max!" # assert np.all(ds > 0), "ERROR: DS contains entries equal to 0!" # Update gpuData dictionary gpuData = {} gpuData["dsBuffer_size"] = bufferSize gpuData["dsBuffer_gpu"] = dsBuffer_gpu gpuData["rowIndicesBuffer_gpu"] = rowIndicesBuffer_gpu gpuData["colPtrsBuffer_gpu"] = colPtrsBuffer_gpu gpuData["rowAndDsOffsets_gpu"] = rowAndDsOffsets_gpu gpuData["colPtrOffsets_gpu"] = colPtrOffsets_gpu gpuData["dxBuffer_gpu"] = dxBuffer_gpu return gpuData def compute_sparse_spike_intvl_matrix_unknown_procs(self, S1, S2): """ In the case where the process identities are unknown and to be inferred, it does not make sense to have a grid of sparse matrices for each pair of process identities. Instead, create a single sparse matrix for spike intervals """ # Initialize the kernels with the size of the dataset self.initialize_gpu_kernels() # Temporarily copy both sets of spike times to the GPU N1 = len(S1) N2 = len(S2) # Handle the case where there are no spikes, N2=0 if N2 == 0: gpuData = {} gpuData["dS_size"] = 0 gpuData["dS"] = gpuarray.zeros(1, dtype=np.float32) gpuData["rowIndices"] = gpuarray.zeros(1, dtype=np.float32) gpuData["colPtrs"] = gpuarray.zeros(1, dtype=np.float32) return gpuData S1_gpu = gpuarray.to_gpu(S1.astype(np.float32)) S2_gpu = gpuarray.to_gpu(S2.astype(np.float32)) # Now we can preprocess the interspike intervals on the GPU # First compute the size of each column for each matrix # Each spike appears in K1 matrices, so there are K1*N2 columns colStart_gpu = gpuarray.empty((N2,), dtype=np.int32) colEnd_gpu = gpuarray.empty((N2,), dtype=np.int32) colSizes_gpu = gpuarray.empty((N2,), dtype=np.int32) grid_w = int(np.ceil(float(N2)/self.params["blockSz"])) self.gpuKernels["computeColumnSizes"](np.float32(self.params["dt_max"]), np.int32(N1), S1_gpu.gpudata, np.int32(N2), S2_gpu.gpudata, colStart_gpu.gpudata, colEnd_gpu.gpudata, colSizes_gpu.gpudata, block=(1024,1,1), grid=(grid_w,1) ) # Compute the column pointers (the cumulative sum) of the col sizes colSizes = colSizes_gpu.get() colPtrs = np.cumsum(np.hstack(([0],colSizes))).astype(np.int32) colPtrs_gpu = gpuarray.to_gpu(colPtrs) # Compute the required size of the data and row buffer bufferSize = int(colPtrs[-1]) log.debug("dS has %d nonzero entries" % bufferSize) if bufferSize == 0: log.warning("There are no preceding parents. Potential parent matrix is empty!") log.debug("Setting buffer size to 1.") bufferSize = 1 dS_gpu = gpuarray.empty((bufferSize,), dtype=np.float32) dS_gpu.fill(1.0) rowIndices_gpu = gpuarray.zeros((bufferSize,), dtype=np.int32) # Now we can actually fill in row and ds buffers self.gpuKernels["computeRowIndicesAndDs"](np.int32(G_LOGISTIC_NORMAL), S1_gpu.gpudata, np.int32(N2), S2_gpu.gpudata, colStart_gpu.gpudata, colEnd_gpu.gpudata, colPtrs_gpu.gpudata, rowIndices_gpu.gpudata, dS_gpu.gpudata, block=(1024,1,1), grid=(grid_w,1) ) # If this is a spatial dataset then also compute dX # dX_gpu = None # if dataSet1.isspatial and dataSet2.isspatial: # D = dataSet1.D # assert dataSet2.D == D, "Error: two datasets have different spatial dimensions" # dX_gpu = gpuarray.empty((D*bufferSize,), dtype=np.float32) # # # Copy the spatial data to the GPU # X1_gpu = gpuarray.to_gpu(dataSet1.X.astype(np.float32)) # X2_gpu = gpuarray.to_gpu(dataSet2.X.astype(np.float32)) # # self.gpuKernels["computeDx"](np.int32(D), # np.int32(N1), # X1_gpu.gpudata, # np.int32(N2), # X2_gpu.gpudata, # rowIndices_gpu.gpudata, # colPtrs_gpu.gpudata, # dX_gpu.gpudata, # block=(1024,1,1), # grid=(grid_w,1) # ) ds = dS_gpu.get() if not np.all(ds > 0): log.info("Min DS: %f", np.min(ds)) raise Exception("ERROR: DS contains nonpositive entries") # assert np.all(ds <= self.params["dt_max"]), "ERROR: DS contains entries greater than dt_max!" # assert np.all(ds < self.params["dt_max"]), "ERROR: DS contains entries equal to dt_max!" # Update gpuData dictionary gpuData = {} gpuData["dS_size"] = bufferSize gpuData["dS"] = dS_gpu gpuData["rowIndices"] = rowIndices_gpu gpuData["colPtrs"] = colPtrs_gpu # gpuData["dxBuffer_gpu"] = dX_gpu return gpuData
7e8116443903d033a1a47a2ffed807aec258d0c3
49e17d736df9889b3a0d91705abd0f3ed579d17c
/quests/Temple_Of_Ikov.py
b4d3f0e615c687daab5b6c89a084be6e2400e914
[]
no_license
TheWhirl/RunescapeQuestWebsite
4f258c04a1c1e6bb9f6d9e0fa63fdcab452ccfc2
8d5dacbc8251bd1f2dded4ffa04400ed48e0f1fb
refs/heads/master
2020-05-16T02:54:35.603906
2018-12-23T13:03:58
2018-12-23T13:03:58
182,643,424
0
0
null
2019-04-22T07:22:00
2019-04-22T07:21:59
null
UTF-8
Python
false
false
443
py
import os import sys sys.path.insert(0, os.path.dirname(os.path.realpath(__file__))[ 0:-len("quests")]) from QuestInfo import Quest class Temple_Of_Ikov(Quest): def __init__(self): super().__init__("Temple of Ikov") self.age = 5 self.difficulty = "Experienced" self.length = "Medium" self.quest_points = 1 self.thieving = 42 self.ranged = 40
0dd9e260541d802e91f2058473d8baff323b757c
60a29068e369900bd1de946bdbc7f9cf61a23127
/manage.py
c7299db7505f33e3eb96f61001d69f0bc600b78c
[]
no_license
crowdbotics-apps/circuit-web-version-22188
4e44be1fb2d6ded8e87f731fd3a2c85e3cfec19e
7eed4cb920846adf871057b150d0eb72b794a7aa
refs/heads/master
2023-01-21T08:59:50.677549
2020-11-21T22:43:33
2020-11-21T22:43:33
309,153,421
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'circuit_22188.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
3ab8865d156fd4539ee009f877d33e4d2f16b8ae
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-sblp-obt/sblp_ut=3.5_rd=1_rw=0.04_rn=4_u=0.075-0.325_p=harmonic-2/sched=RUN_trial=13/params.py
28bdc367d387d98fbf09079da0322b1eedc608ea
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
{'cpus': 4, 'duration': 30, 'final_util': '3.628952', 'max_util': '3.5', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '1', 'res_nmb': '4', 'res_weight': '0.04', 'scheduler': 'RUN', 'trial': 13, 'utils': 'uni-medium-3'}
ac78f5706a5fa6ab691f744614ebe243eeb0e6e6
81407be1385564308db7193634a2bb050b4f822e
/the-python-standard-library-by-example/SimpleXMLRPCServer/SimpleXMLRPCServer_dotted_name.py
927f913a51fc70c40159c7b5e56b864de61651e3
[ "MIT" ]
permissive
gottaegbert/penter
6db4f7d82c143af1209b4259ba32145aba7d6bd3
8cbb6be3c4bf67c7c69fa70e597bfbc3be4f0a2d
refs/heads/master
2022-12-30T14:51:45.132819
2020-10-09T05:33:23
2020-10-09T05:33:23
305,266,398
0
0
MIT
2020-10-19T04:56:02
2020-10-19T04:53:05
null
UTF-8
Python
false
false
537
py
#!/usr/bin/env python # encoding: utf-8 # # Copyright (c) 2008 Doug Hellmann All rights reserved. # """ """ __version__ = "$Id$" #end_pymotw_header from SimpleXMLRPCServer import SimpleXMLRPCServer import os server = SimpleXMLRPCServer(('localhost', 9000), allow_none=True) server.register_function(os.listdir, 'dir.list') server.register_function(os.mkdir, 'dir.create') server.register_function(os.rmdir, 'dir.remove') try: print 'Use Control-C to exit' server.serve_forever() except KeyboardInterrupt: print 'Exiting'
5d09f348af5df16b53230056d4eb3e6758f688c8
9d7a1f61e957c6ba688ba9acbd4810bfc41259bd
/crawling/scrapy/section04_03/section04_03/pipelines.py
d6934d13d6491f2787f92d85948d74fd762da68b
[]
no_license
saanghyuk/data_science_python
17f4c35b9f4d197991fd0c03eecd06487ceaa9a0
7dde1ed2a3570edbdd716a43a4a340e64f7e2bb0
refs/heads/master
2023-08-24T10:47:13.478635
2021-11-05T15:37:33
2021-11-05T15:37:33
355,115,183
0
0
null
null
null
null
UTF-8
Python
false
false
2,113
py
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html # useful for handling different item types with a single interface from itemadapter import ItemAdapter from scrapy.exceptions import DropItem import csv import xlsxwriter class TestSpiderPipeline: # 초기화 메서드 def __init__(self): # 엑셀 처리 선언 self.workbook = xlsxwriter.Workbook("./result_excel.xlsx") # CSV처리 선언(a, w 옵션 변경) self.file_opener = open("./result_excel.csv", 'w') self.csv_writer = csv.DictWriter(self.file_opener, fieldnames = ['rank_num', 'site_name', 'daily_time_site', 'daily_page_view', 'is_pass']) #워크시트 self.worksheet = self.workbook.add_worksheet() # 삽입 수 self.rowcount = 1 # 최초 1회 실행 def open_spider(self, spider): spider.logger.info('TestSpider Pipeline Started ') def process_item(self, item, spider): if int(item.get('rank_num')) < 41: item['is_pass'] = True # 엑셀 저장 self.worksheet.write('A%s' %self.rowcount, item.get('rank_num')) self.worksheet.write('B%s' %self.rowcount, item.get('site_name')) self.worksheet.write('C%s' %self.rowcount, item.get('daily_time_site')) self.worksheet.write('D%s' %self.rowcount, item.get('daily_page_view')) self.worksheet.write('E%s' %self.rowcount, item.get('is_pass')) self.rowcount+=1 # CSV 저장 self.csv_writer.writerow(item) return item else: raise DropItem('Dropped Item. Because This Site Rank is {}'.format(item.get('rank_number'))) # print('Sorry, Dropped') # 마지막 1회 실행 def close_spider(self, spider ): # 엑셀 파일 닫기 self.workbook.close() # csv파일 닫기 self.file_opener.close() # 종료 선언 spider.logger.info('TestSpider Pipeline Closed')
1612efa81047e7a20e0dadd4e871ca67fee01b1b
f879be78003d04f5332ea18373ef0de1a17f5817
/ververica_sdk/models/delete_api_token_response.py
06f93515c8b1b040224e70273134aed534c4b518
[]
no_license
justlikemikezz/ververica-sdk
8228b1d1e9bb9c0530842162f771f7708d1b1555
b946aa879cc80ad25b8c746b8c2cdc6bde086cbb
refs/heads/master
2020-12-22T15:58:27.469611
2020-01-29T00:33:21
2020-01-29T00:33:21
236,849,548
1
0
null
null
null
null
UTF-8
Python
false
false
2,484
py
# coding: utf-8 """ Ververica Platform API The Ververica Platform APIs, excluding Application Manager. # noqa: E501 OpenAPI spec version: 2.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DeleteApiTokenResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } def __init__(self): # noqa: E501 """DeleteApiTokenResponse - a model defined in Swagger""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DeleteApiTokenResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteApiTokenResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f0128317036c9b966541e24a1e1efe172ad2fce5
cc5eb8eb50d64ffbca780c42a908053ec549f295
/python-in-a-day-scripts/ch12 program/script_002.py
43129ebbb2a9f5b3ad633d6fc7d93d8accaedfbb
[]
no_license
bemagee/LearnPython
328b1f7a9d5046fe1503aece8a5134a7dd2727d2
a42565f8fb45f9e2ebbcdcf359ebb9092bf837c2
refs/heads/master
2020-12-13T02:45:30.308604
2016-10-24T03:09:12
2016-10-24T03:09:12
10,793,864
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
# Our epic programmer dict from before epic_programmer_dict = { 'Tim Berners-Lee' : ['[email protected]', 111], 'Guido van Rossum' : ['[email protected]', 222], 'Linus Torvalds': ['[email protected]', 333], 'Larry Page' : ['[email protected]', 444], 'Sergey Brin' : ['[email protected]', 555] } print epic_programmer_dict
411846624c150abad251688c80a09c1cad1dc3a9
3dcc6eaef0ca68b230ed61b9fd2bfaf78f8d1c7d
/todo_app/todos/models/__init__.py
007b0f8bc1c970fe2f9d07ff26b0dd5391d4d216
[]
no_license
ivo-bass/ToDo-App
a6f92be6ba8dcb266cd9ab58d50bafc44ce3db9f
0410fe885f729ef85e83a7779a5e971e42f74479
refs/heads/main
2023-05-14T13:28:50.219962
2021-06-18T13:14:49
2021-06-18T13:14:49
373,607,487
1
0
null
null
null
null
UTF-8
Python
false
false
85
py
from .todo import Todo from .priority import Priority from .category import Category
636fe7f33650c3bd29921d6bf95425a2aeeaef48
d09fd96bbc931fbb8522e5c991973f064a4ded50
/baxter/devel/.private/baxter_maintenance_msgs/lib/python2.7/dist-packages/baxter_maintenance_msgs/msg/_UpdateStatus.py
dcdfcbd9e5d9bc1182afd40950d3c1c371b7df12
[]
no_license
rymonyu/EE4-Robotics
b3827ba0dff5bdfdd1e47fe07a40e955c5226f38
6cf9272abd7fe8a074dc74a032f6e0b35edb8548
refs/heads/master
2020-08-22T15:09:39.706809
2019-12-15T23:35:45
2019-12-15T23:35:45
216,420,098
6
0
null
null
null
null
UTF-8
Python
false
false
5,704
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from baxter_maintenance_msgs/UpdateStatus.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class UpdateStatus(genpy.Message): _md5sum = "74e246350421569590252c39e8aa7b85" _type = "baxter_maintenance_msgs/UpdateStatus" _has_header = False #flag to mark the presence of a Header object _full_text = """# See the class UpdateRunner() # status: One-word description of the current action being performed # long_description: Details pertaining to status if any. Used for verbose error messages. uint16 status float32 progress string long_description uint16 STS_IDLE = 0 uint16 STS_INVALID = 1 uint16 STS_BUSY = 2 uint16 STS_CANCELLED = 3 uint16 STS_ERR = 4 uint16 STS_MOUNT_UPDATE = 5 uint16 STS_VERIFY_UPDATE = 6 uint16 STS_PREP_STAGING = 7 uint16 STS_MOUNT_STAGING = 8 uint16 STS_EXTRACT_UPDATE = 9 uint16 STS_LOAD_KEXEC = 10 """ # Pseudo-constants STS_IDLE = 0 STS_INVALID = 1 STS_BUSY = 2 STS_CANCELLED = 3 STS_ERR = 4 STS_MOUNT_UPDATE = 5 STS_VERIFY_UPDATE = 6 STS_PREP_STAGING = 7 STS_MOUNT_STAGING = 8 STS_EXTRACT_UPDATE = 9 STS_LOAD_KEXEC = 10 __slots__ = ['status','progress','long_description'] _slot_types = ['uint16','float32','string'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: status,progress,long_description :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(UpdateStatus, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.status is None: self.status = 0 if self.progress is None: self.progress = 0. if self.long_description is None: self.long_description = '' else: self.status = 0 self.progress = 0. self.long_description = '' def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_Hf().pack(_x.status, _x.progress)) _x = self.long_description length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 6 (_x.status, _x.progress,) = _get_struct_Hf().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.long_description = str[start:end].decode('utf-8') else: self.long_description = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_Hf().pack(_x.status, _x.progress)) _x = self.long_description length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 6 (_x.status, _x.progress,) = _get_struct_Hf().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.long_description = str[start:end].decode('utf-8') else: self.long_description = str[start:end] return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_Hf = None def _get_struct_Hf(): global _struct_Hf if _struct_Hf is None: _struct_Hf = struct.Struct("<Hf") return _struct_Hf
6005b320155e884dcb8bc9c7994fc6807bcf4c35
aa7c6a9276a859f75b3c5181a92f71d7c19122a5
/zvt/domain/quotes/stock/stock_1m_kdata.py
f1378710d90001bd962e69feaa23a05bf88f493e
[ "MIT" ]
permissive
Pengyuyan2/zvt
deef9c5e5bd91c65728ad9bac8c79499707519ee
9f9c77efcd34c04aaf11b12da0cf483cbe55e297
refs/heads/master
2023-07-12T16:55:15.040579
2021-08-22T09:41:33
2021-08-22T09:55:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
# -*- coding: utf-8 -*- # this file is generated by gen_kdata_schema function, dont't change it from sqlalchemy.orm import declarative_base from zvt.contract.register import register_schema from zvt.domain.quotes import StockKdataCommon KdataBase = declarative_base() class Stock1mKdata(KdataBase, StockKdataCommon): __tablename__ = 'stock_1m_kdata' register_schema(providers=['joinquant'], db_name='stock_1m_kdata', schema_base=KdataBase, entity_type='stock') # the __all__ is generated __all__ = ['Stock1mKdata']
faac087b45aa6ee29a57ab65290e48b37be927c5
03143da0cf99ea92d372feca0954d22d64858d86
/Approach 4/EMNIST/EMNIST-4/utils/mnistutil.py
a7b7435b0cbd75973bfc88d7ab188e5b1eaa0596
[]
no_license
rangeetpan/moduleDecompose
ff31732a878e5f9d5e79c3bba9fd9f051c7a5d16
508c2a87e00c4e1b616bc29515fc1de2aba55c4e
refs/heads/master
2021-02-20T08:49:55.157544
2020-03-06T04:50:43
2020-03-06T04:50:43
245,332,163
0
0
null
null
null
null
UTF-8
Python
false
false
14,184
py
''' Created on Feb 8, 2019 @author: mislam ''' from keras.datasets import mnist from skimage.transform import resize import numpy as np from keras import backend as K import keras import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D class MNISTUitl: def __init__(self): self.name = None def load(self,f): return np.load(f)['arr_0'] def getdata(self,a,b,img_rows = 28, img_cols = 28): # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_zo = [] y_zo = [] for i in range(len(y_train)): if y_train[i] == a or y_train[i] == b: A = resize(x_train[i], (img_rows, img_cols),mode='constant') Ay = y_train[i]#resize(y_train[i], (img_rows, img_cols)) x_zo.append(A) y_zo.append(Ay) xt_zo = [] yt_zo = [] for i in range(len(y_test)): if y_test[i] == a or y_test[i] == b: A = resize(x_test[i], (img_rows, img_cols),mode='constant') Ay = y_test[i]#resize(y_train[i], (img_rows, img_cols)) xt_zo.append(A) yt_zo.append(Ay) x_zo = np.array(x_zo) y_zo = np.array(y_zo) xt_zo = np.array(xt_zo) yt_zo = np.array(yt_zo) return x_zo, y_zo, xt_zo, yt_zo def getdata2(self,a,b,img_rows = 28, img_cols = 28): # the data, split between train and test sets x_train = self.load('emnist-train-imgs.npz') x_test = self.load('emnist-test-imgs.npz') y_train = self.load('emnist-train-labels.npz') for i in range(0,len(y_train)): y_train[i]=y_train[i]-1 y_test = self.load('emnist-test-labels.npz') for i in range(0,len(y_test)): y_test[i]=y_test[i]-1 x_zo = [] y_zo = [] for i in range(len(y_train)): if y_train[i] in [0,1,2,3,4,5,6,7,8,9]: A = resize(x_train[i], (img_rows, img_cols),mode='constant') Ay = y_train[i]#resize(y_train[i], (img_rows, img_cols)) x_zo.append(A) y_zo.append(Ay) xt_zo = [] yt_zo = [] for i in range(len(y_test)): if y_test[i] in [0,1,2,3,4,5,6,7,8,9]: A = resize(x_test[i], (img_rows, img_cols),mode='constant') Ay = y_test[i]#resize(y_train[i], (img_rows, img_cols)) xt_zo.append(A) yt_zo.append(Ay) x_zo = np.array(x_zo) y_zo = np.array(y_zo) xt_zo = np.array(xt_zo) yt_zo = np.array(yt_zo) return x_zo, y_zo, xt_zo, yt_zo def train(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 2): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo#keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo#keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) nm = keras.Sequential([ keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), keras.layers.Dense(7, activation=tf.nn.relu ,name = "H"), keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") ]) nm.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) nm.fit(x_train, y_train, epochs=10) return nm, x_test, y_test def train2(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo #keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo #keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) nm = keras.Sequential([ keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H"), keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") ]) nm.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(nm.summary()) nm.fit(x_train, y_train, epochs=ep) return nm, x_test, y_test def trainDense2(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo #keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo #keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) nm = keras.Sequential([ keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H1"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H2"), keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") ]) nm.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(nm.summary()) nm.fit(x_train, y_train, epochs=ep) return nm, x_test, y_test def trainDense4(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo #keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo #keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) nm = keras.Sequential([ keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H1"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H2"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H3"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H4"), keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") ]) nm.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(nm.summary()) nm.fit(x_train, y_train, epochs=ep) return nm, x_test, y_test def trainDense6(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo #keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo #keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) nm = keras.Sequential([ keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H1"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H2"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H3"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H4"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H5"), keras.layers.Dense(49, activation=tf.nn.relu ,name = "H6"), keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") ]) nm.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(nm.summary()) nm.fit(x_train, y_train, epochs=ep) return nm, x_test, y_test def trainData(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): if K.image_data_format() == 'channels_first': x_zo = x_zo.reshape(x_zo.shape[0], 1, img_rows, img_cols) xt_zo = xt_zo.reshape(xt_zo.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_zo.shape,x_train.shape[0], 'train samples', y_zo.shape) print(x_test.shape[0], 'test samples') y_train = y_zo #keras.utils.to_categorical(y_zo, numclass ) y_test = yt_zo #keras.utils.to_categorical(yt_zo, numclass) print(y_zo.shape,y_train.shape) # nm = keras.Sequential([ # keras.layers.Flatten(input_shape=(img_rows, img_cols,1), name = "Input"), # keras.layers.Dense(49, activation=tf.nn.relu ,name = "H"), # keras.layers.Dense(numclass, activation=tf.nn.softmax, name = "output") # ]) # nm.compile(optimizer='adam', # loss='sparse_categorical_crossentropy', # metrics=['accuracy']) # print(nm.summary()) # nm.fit(x_train, y_train, epochs=ep) return x_test, y_test,x_train, y_train def train3(self,x_zo,y_zo,xt_zo,yt_zo,img_rows = 28, img_cols = 28,numclass = 10,ep = 20): input_shape = (img_rows,img_cols,1) x_zo = x_zo.reshape(x_zo.shape[0], img_rows, img_cols, 1) xt_zo = xt_zo.reshape(xt_zo.shape[0], img_rows, img_cols, 1) x_train = x_zo.astype('float32') x_test = xt_zo.astype('float32') x_train /= 255 x_test /= 255 y_train = keras.utils.to_categorical(y_zo, numclass ) y_test = keras.utils.to_categorical(yt_zo, numclass) num_classes = 10 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) #model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) #model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, epochs=ep) return model, x_test, y_test
86118937a3c5da7d22eb06c3ed34e49f7cfa2f11
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2711/47774/305852.py
a8c9c3680c535404ce3caf423c50014ec1f95130
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
1,535
py
def isSimilar(s1, s2): diff, l = 0, len(s1) for i in range(l): if (s1[i] != s2[i]): diff += 1 if (diff > 2): return False return True def find(f, x): return f[x] if x == f[x] else find(f, f[x]) def merge(f, x, y): rx = find(f, f[x]) ry = find(f, f[y]) f[ry] = rx def solve(A): A = list(set(A)) l,w = len(A), len(A[0]) res = 0 f = [i for i in range(l)] if l <= w*w: for i in range(l): for j in range(i + 1, l): if (find(f, i) != find(f,j)): isS = isSimilar(A[i], A[j]) if (isS): merge(f, i, j) else: dict = {} for i in range(l): if (A[i] in dict): dict[A[i]].add(i) else: dict[A[i]] = {i} word = list(A[i]) for i0 in range(w): for j0 in range(i0+1, w): if (word[i0] != word[j0]): word[i0],word[j0] = word[j0],word[i0] neighbor = ''.join(word) if (neighbor in dict): dict[neighbor].add(i) else: dict[neighbor] = {i} word[i0],word[j0] = word[j0],word[i0] for i in range(l): for j in dict[A[i]]: merge(f,i,j) for i in range(l): if (i == f[i]): res += 1 return res s=eval(input()) print(solve(s))
5245bc11bfacf34d092a6630efd1e6ec7b5948a9
32809f6f425bf5665fc19de2bc929bacc3eeb469
/src/1096-Brace-Expansion-II/1096.py
78067156acba02fd1f032327859403cee51255d5
[]
no_license
luliyucoordinate/Leetcode
9f6bf01f79aa680e2dff11e73e4d10993467f113
bcc04d49969654cb44f79218a7ef2fd5c1e5449a
refs/heads/master
2023-05-25T04:58:45.046772
2023-05-24T11:57:20
2023-05-24T11:57:20
132,753,892
1,575
569
null
2023-05-24T11:57:22
2018-05-09T12:30:59
C++
UTF-8
Python
false
false
723
py
import itertools class Solution: def braceExpansionII(self, expression): groups = [[]] level = 0 for i, c in enumerate(expression): if c == '{': if level == 0: start = i+1 level += 1 elif c == '}': level -= 1 if level == 0: groups[-1].append(self.braceExpansionII(expression[start:i])) elif level == 0: if c == ",": groups.append([]) else: groups[-1].append([c]) return sorted(set().union(*[set(map(''.join, itertools.product(*group))) for group in groups]))
6b19da70918b7711aee9f2fda10eb6fbec50ba0d
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/126/usersdata/191/29517/submittedfiles/ap2.py
c8f2da701341911eecf630c83018954555844586
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
423
py
# -*- coding: utf-8 -*- a=float(input('digite a:')) b=float(input('digite b:')) c=float(input('digite c:')) d=float(input('digite d:')) if a>=b and b>=c and a>=d: print(a) elif b>=a and b>=c and b>=d: print(b) elif c>=a and c>=b and c>=d: print(c) else: print(d) if a<=b and a<=c and a<=d: print(a) elif b<=a and b<=c and c<=d: print(b) elif c<=a and c<=b and c<=d: print(c) else: print(d)
69e96d91f1e97b1e4777741ed5926f0e3ffe5d96
d37ab0fa7dd0026425fc15a13288847ae0954f48
/src/helixweb/billing/forms_filters.py
dd3d23578a55a833025b34264b3fabe186615716
[]
no_license
sand8080/helixweb
4fd84e3df8add42996684a288c16148f8582297b
5f08b4cc41d6bd72f54382ebe5e9b45c428fac4b
refs/heads/master
2020-12-24T15:23:16.944216
2014-02-17T10:56:45
2014-02-17T10:56:45
1,048,085
0
0
null
null
null
null
UTF-8
Python
false
false
8,846
py
from django import forms from django.utils.translation import ugettext_lazy as _ from helixweb.core.widgets import ConstInput from helixweb.core.forms_filters import (FilterForm, AbstractFilterActionLogsForm, AbstractFilterAllActionLogsForm, AbstractFilterSelfActionLogsForm, AbstractFilterUserActionLogsForm) from helixweb.billing.forms import BillingForm class FilterBillingForm(FilterForm, BillingForm): pass class AbstractBillingFilterActionLogsForm(AbstractFilterActionLogsForm, FilterBillingForm): action = 'get_action_logs' def __init__(self, *args, **kwargs): kwargs['choices'] = (('', ''), ('add_balance', _('add balance')), ('modify_balance', _('modify balance')), ('add_receipt', _('add receipt')), ('add_bounus', _('add bonus')), ('lock', _('lock')), ('unlock', _('unlock')), ('charge_off', _('charge off')), ('modify_used_currencies', _('modify currencies')), ) super(AbstractBillingFilterActionLogsForm, self).__init__(*args, **kwargs) class FilterAllActionLogsForm(AbstractBillingFilterActionLogsForm, AbstractFilterAllActionLogsForm): pass class FilterSelfActionLogsForm(AbstractBillingFilterActionLogsForm, AbstractFilterSelfActionLogsForm): pass class FilterUserActionLogsForm(AbstractBillingFilterActionLogsForm, AbstractFilterUserActionLogsForm): pass class FilterCurrenciesForm(FilterBillingForm): action = 'get_currencies' ordering_param = '-code' class FilterUsedCurrenciesForm(FilterBillingForm): action = 'get_used_currencies' ordering_param = '-code' class FilterBalanceForm(FilterBillingForm): action = 'get_balances' def __init__(self, *args, **kwargs): currencies = kwargs.pop('currencies', []) super(FilterBalanceForm, self).__init__(*args, **kwargs) self.fields['id'] = forms.IntegerField(label=_('balance id'), required=False) self.fields['user_id'] = forms.IntegerField(label=_('user id'), required=False) self.fields['currency_code'] = self._gen_currency_code(currencies, required=False) self.fields['from_real_amount'] = forms.DecimalField(label=_('real amount from'), required=False) self.fields['to_real_amount'] = forms.DecimalField(label=_('real amount to'), required=False) self.fields['from_virtual_amount'] = forms.DecimalField(label=_('virtual amount from'), required=False) self.fields['to_virtual_amount'] = forms.DecimalField(label=_('virtual amount to'), required=False) self.fields['from_overdraft_limit'] = forms.DecimalField(label=_('overdraft limit from'), required=False) self.fields['to_overdraft_limit'] = forms.DecimalField(label=_('overdraft limit to'), required=False) self.fields['from_locked_amount'] = forms.DecimalField(label=_('locked amount from'), required=False) self.fields['to_locked_amount'] = forms.DecimalField(label=_('locked amount to'), required=False) self.fields['is_active'] = forms.ChoiceField(label=_('is active'), required=False, widget=forms.widgets.RadioSelect(), choices=(('all', _('all')), ('1', _('active')), ('0', _('inactive'))), initial='all') def as_helix_request(self): d = super(FilterBalanceForm, self).as_helix_request() self._strip_filter_param(d, 'id') self._strip_filter_param(d, 'user_id') self._strip_filter_param(d, 'currency_code') self._strip_filter_param(d, 'from_real_amount') self._strip_filter_param(d, 'to_real_amount') self._strip_filter_param(d, 'from_virtual_amount') self._strip_filter_param(d, 'to_virtual_amount') self._strip_filter_param(d, 'from_overdraft_limit') self._strip_filter_param(d, 'to_overdraft_limit') self._strip_filter_param(d, 'from_locked_amount') self._strip_filter_param(d, 'to_locked_amount') if (not d['filter_params']['is_active'] or d['filter_params']['is_active'] == 'all'): d['filter_params'].pop('is_active') else: val = bool(int(d['filter_params']['is_active'])) d['filter_params']['is_active'] = val return d class AbstractFilterLocksForm(FilterBillingForm): action = 'get_locks' def _add_common_fields(self): self.fields['order_id'] = forms.CharField(label=_('order id'), max_length=64, required=False) self.fields['from_creation_date'] = forms.DateField(label=_('from'), required=False) self.fields['to_creation_date'] = forms.DateField(label=_('to'), required=False) def as_helix_request(self): d = super(AbstractFilterLocksForm, self).as_helix_request() self._strip_filter_param(d, 'user_id') self._strip_filter_param(d, 'order_id') self._strip_filter_param(d, 'balance_id') self._strip_from_date_param(d, 'from_creation_date') self._strip_to_date_param(d, 'to_creation_date') return d class FilterLocksForm(AbstractFilterLocksForm): def __init__(self, *args, **kwargs): super(FilterLocksForm, self).__init__(*args, **kwargs) self.fields['user_id'] = forms.IntegerField(label=_('user id'), required=False) self.fields['balance_id'] = forms.IntegerField(label=_('balance id'), required=False) self._add_common_fields() class FilterUserBalanceLocksForm(AbstractFilterLocksForm): def __init__(self, *args, **kwargs): super(FilterUserBalanceLocksForm, self).__init__(*args, **kwargs) self.fields['user_id'] = forms.IntegerField(label=_('user id'), widget=ConstInput, required=False) self.fields['balance_id'] = forms.IntegerField(label=_('balance id'), widget=ConstInput, required=False) self._add_common_fields() class FilterSelfLocksForm(AbstractFilterLocksForm): action = 'get_locks_self' def __init__(self, *args, **kwargs): super(FilterSelfLocksForm, self).__init__(*args, **kwargs) self._add_common_fields() class AbstractFilterTransactionsForm(FilterBillingForm): action = 'get_transactions' def _add_common_fields(self): self.fields['order_id'] = forms.CharField(label=_('order id'), max_length=64, required=False) self.fields['type'] = forms.ChoiceField(label=_('type'), required=False, widget=forms.widgets.Select(), choices=((None, _('all')), ('receipt', _('receipt')), ('bonus', _('bonus')), ('lock', _('lock')), ('unlock', _('unlock')), ('charge_off', _('charge off'))), initial='all') self.fields['from_creation_date'] = forms.DateField(label=_('from'), required=False) self.fields['to_creation_date'] = forms.DateField(label=_('to'), required=False) def as_helix_request(self): d = super(AbstractFilterTransactionsForm, self).as_helix_request() self._strip_filter_param(d, 'id') self._strip_filter_param(d, 'user_id') self._strip_filter_param(d, 'order_id') self._strip_filter_param(d, 'type') self._strip_filter_param(d, 'balance_id') self._strip_from_date_param(d, 'from_creation_date') self._strip_to_date_param(d, 'to_creation_date') return d class FilterTransactionsForm(AbstractFilterTransactionsForm): def __init__(self, *args, **kwargs): super(FilterTransactionsForm, self).__init__(*args, **kwargs) self.fields['user_id'] = forms.IntegerField(label=_('user id'), required=False) self.fields['balance_id'] = forms.IntegerField(label=_('balance id'), required=False) self.fields['id'] = forms.IntegerField(label=_('id'), required=False) self._add_common_fields() class FilterUserTransactionsForm(AbstractFilterTransactionsForm): def __init__(self, *args, **kwargs): super(FilterUserTransactionsForm, self).__init__(*args, **kwargs) self.fields['user_id'] = forms.IntegerField(label=_('user id'), widget=ConstInput, required=False) self.fields['balance_id'] = forms.IntegerField(label=_('balance id'), widget=ConstInput, required=False) self.fields['id'] = forms.IntegerField(label=_('id'), required=False) self._add_common_fields() class FilterSelfTransactionsForm(AbstractFilterTransactionsForm): action = 'get_transactions_self' def __init__(self, *args, **kwargs): super(FilterSelfTransactionsForm, self).__init__(*args, **kwargs) self.fields['id'] = forms.IntegerField(label=_('id'), required=False) self._add_common_fields()
1c3d00acafd76a610342ab1ef712ad250ee8870c
b2bdd5997ac84b0e19071c1ddc1c1a4d2f4fab58
/catkin_ws/devel/.private/p2/lib/python2.7/dist-packages/p2/msg/_Ackermann.py
0dff4e208b8c08e4de290b065cd192a52bee173e
[]
no_license
hbtslys01/RosCodingProject
860d18531dabe4a969278deff5dbad8a8703ea83
226feda08724e92fd94191e123b9442c028283dd
refs/heads/master
2020-04-11T09:16:17.808626
2018-12-13T17:30:08
2018-12-13T17:30:08
161,671,560
0
0
null
null
null
null
UTF-8
Python
false
false
3,768
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from p2/Ackermann.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class Ackermann(genpy.Message): _md5sum = "61c7e29a36f91d9c196a9722234d7472" _type = "p2/Ackermann" _has_header = False #flag to mark the presence of a Header object _full_text = """float64 steering_angle float64 vel """ __slots__ = ['steering_angle','vel'] _slot_types = ['float64','float64'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: steering_angle,vel :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(Ackermann, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.steering_angle is None: self.steering_angle = 0. if self.vel is None: self.vel = 0. else: self.steering_angle = 0. self.vel = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_2d().pack(_x.steering_angle, _x.vel)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 16 (_x.steering_angle, _x.vel,) = _get_struct_2d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_2d().pack(_x.steering_angle, _x.vel)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 16 (_x.steering_angle, _x.vel,) = _get_struct_2d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2d = None def _get_struct_2d(): global _struct_2d if _struct_2d is None: _struct_2d = struct.Struct("<2d") return _struct_2d
a14e1188bdfc65d5b6c7835a865851cf2b468dce
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/srt.py
fe6f0681dbf56a25b61e42d88d931b804baf7678
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
82
py
ii = [('ShawHDE.py', 1), ('AubePRP.py', 1), ('FerrSDO2.py', 1), ('ClarGE3.py', 1)]
2159710ed19f6e6b65f4a46e2509a0dbadb81e3b
119c716206804aef3eb99c5ca24e8e16eed3473a
/openaddr/tests/coverage.py
8693f0645fb3ed0e3777f5f06456c426eb04111b
[ "ISC" ]
permissive
enterstudio/machine-1
d190db7cd8fceb409e25232b65507ec21c1b7009
43d4d3b41e1ad3410c2442b8220e6e1a9fe2255f
refs/heads/master
2021-08-30T08:06:05.055323
2017-12-16T23:30:56
2017-12-16T23:30:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,950
py
import unittest import unittest.mock import os import psycopg2 from httmock import HTTMock, response DATABASE_URL = os.environ.get('DATABASE_URL', 'postgres:///hooked_on_sources') from ..ci import recreate_db from ..ci.coverage import calculate class TestCalculate (unittest.TestCase): def setUp(self): ''' ''' recreate_db.recreate(DATABASE_URL) with psycopg2.connect(DATABASE_URL) as conn: with conn.cursor() as db: db.execute("insert into cb_2013_us_state_20m (gid, name, usps_code, geom) values (1, 'Kansas', 'KS', ST_SetSRID('MULTIPOLYGON(((-102.0472 40.0033, -94.6143 40.0033, -94.6143 36.9985, -102.0472 36.9985, -102.0472 40.0033)))'::geometry, 4326))") db.execute("insert into ne_50m_admin_0_countries (gid, name, name_long, iso_a2, iso_a3, geom) values (1, 'Null Is.', 'Null Island', 'XX', 'XXX', '0106000020E610000002000000010300000001000000270000008EB1135E82533FBF691D554D1075EF3E90BE49D3A0683EBF664CC11A67D3F13EA208A9DBD9573EBF3FABCC94D6DFE23EEC3026FDBD143EBF8DEDB5A0F7C6E03E3659A31EA2D13DBF664CC11A67D3F13E13D21A834E083DBF54E41071732AE93EDCF3FC69A33A3DBF8DEDB5A0F7C6D03E0188BB7A15193DBF0000000000000000CCB6D3D688603CBF54E41071732AC93E0395F1EF332E3CBFF168E388B5F8E4BE7044F7AC6BB43CBF05A227655243EBBE7044F7AC6BB43CBF8DEDB5A0F7C6F0BE2829B000A60C3CBF664CC11A67D3F1BE16DF50F86C1D3CBF180AD80E46EC03BF7044F7AC6BB43CBF180AD80E46EC03BFA72215C616823CBF3677F4BF5C8B06BFEE3D5C72DC293DBF05A2276552430BBFA515DF50F86C3DBFC093162EABB009BF3659A31EA2D13DBF2D431CEBE2360ABF3659A31EA2D13DBF240F441669E20DBF344C6DA983BC3EBF240F441669E20DBF344C6DA983BC3EBFC093162EABB009BFD7D9907F66103FBFC093162EABB009BF691D554D10753FBF4BB0389CF9D50CBF61C1FD80070640BFE7340BB43BA408BFD5CC5A0A48FB3FBFA226FA7C941107BF213EB0E3BF4040BF664CC11A67D301BF4F779E78CE1640BFB75F3E59315CFDBE4F779E78CE1640BF05A227655243FBBEFCA9F1D24D6240BF54E41071732AF9BE213EB0E3BF4040BFF168E388B5F8E4BE46D26EF4311F40BFF168E388B5F8E4BE46D26EF4311F40BF54E41071732AD9BE2AE3DF675C3840BF00000000000000801FF5D72B2CB83FBF3FABCC94D6DFE23E56D3F544D7853FBF54E41071732AD93EA0FB7266BB423FBFB75F3E59315CDD3EA0FB7266BB423FBFA226FA7C9411E73E8EB1135E82533FBF691D554D1075EF3E010300000003000000C7010000C9C7EE022505163F7BA35698BED7303F2829B000A60C1C3F7689EAAD81AD323F1FF5D72B2CB81F3F41B8020AF5F4313F86C613419C87233F0ADAE4F04927323FA019C40776FC273FD2FBC6D79E59323F7D923B6C2233273F7689EAAD81AD323F9E0C8E9257E7283F613255302AA9333FE527D53E1D8F293FAB5AD2510E66333F99F221A81ABD2A3F3D9E961FB8CA333F72512D228AC92B3F2A5437177FDB333F261C7A8B87F72C3F3D9E961FB8CA333F240F441669E22D3FE02BBAF59A1E343FFA60191BBAD92F3FF5824F73F222333F8EB1135E82532F3F3FABCC94D6DF323FFA60191BBAD92F3FF78F85E81038323FFA60191BBAD92F3FE7525C55F65D313F0EF450DB8651303F1F317A6EA12B313FB345D26EF4312F3FD5CC5A0A48FB2F3F6B2A8BC22E8A2E3F46D26EF4311F303F92CB7F48BF7D2D3F4489963C9E962F3FBC79AA436E862B3F691D554D10752F3FE31A9FC9FE792A3F1FF5D72B2CB82F3FC093162EABB0293FD7D9907F66102F3FA019C40776FC273F33880FECF82F303F315D88D51F61283FE95F92CA1473303F6859F78F85E8203F46D26EF4311F303F664CC11A67D3213F581CCEFC6A0E303FF5824F73F222233F6B2A8BC22E8A2E3F3FABCC94D6DF223F48A30227DBC02D3FAB5AD2510E66233F92CB7F48BF7D2D3F3D9E961FB8CA233F95D8B5BDDD922C3FA94D9CDCEF50243F95D8B5BDDD922C3FF168E388B5F8243FDCF3FC69A33A2D3FEC4E779E78CE263FB96C74CE4F712C3FEA4141295AB9273F261C7A8B87F72C3F56F146E6913F283F261C7A8B87F72C3F0CC9C9C4AD82283FDE0033DFC14F2C3F97E5EB32FCA72B3FB96C74CE4F712C3FDE0033DFC14F2C3F4DBD6E1118EB2B3F240F441669E22D3FBE86E0B88C9B2A3F8EB1135E82532F3FBE86E0B88C9B2A3F213EB0E3BF40303F52D7DAFB54152A3F6859F78F85E8303F52D7DAFB54152A3F560F98874CF9303FC093162EABB0293F6859F78F85E8303F9E0C8E9257E7283F317BD976DA1A313F56F146E6913F283F1F317A6EA12B313F13F06B2409C2253F6859F78F85E8303F3A9160AA99B5243F8EB1135E82532F3F3A9160AA99B5243FB345D26EF4312F3F3FABCC94D6DF223F1FF5D72B2CB82F3FAE6708C72C7B223F46D26EF4311F303F1A170E846401233FE95F92CA1473303F3FABCC94D6DF223FC5CBD3B9A294303FF78F85E81038223F7BA35698BED7303FAE6708C72C7B223F1F317A6EA12B313FF78F85E81038223F6859F78F85E8303FFA9CBB5D2F4D213F560F98874CF9303FB28174B169A5203FE7525C55F65D313FFCA9F1D24D62203F8BE07F2BD9B1313F1FF5D72B2CB81F3F41B8020AF5F4313F213EB0E3BF40203FC0B167CF656A323FFCA9F1D24D62203F7689EAAD81AD323F691D554D10751F3FF5824F73F222333F691D554D10751F3FAB5AD2510E66333F90BE49D3A0681E3FAB5AD2510E66333F2829B000A60C1C3F4FE8F527F1B9333F2829B000A60C1C3F180AD80E46EC333F4BB0389CF9D51C3FBB97FBE42840343F4BB0389CF9D51C3F4DDBBFB2D2A4343F4FCAA48636001B3F3A9160AA99B5343F9E0C8E9257E7183FB98AC56F0A2B353FC5AD8218E8DA173F5D18E945ED7E353FE7340BB43BA4183F01A60C1CD0D2353FC5AD8218E8DA173FB77D8FFAEB15363F3677F4BF5C8B163F3677F4BF5C8B363F5D18E945ED7E153FEC4E779E78CE363F5D18E945ED7E153FC7BAB88D06F0363F3A9160AA99B5143FB5705985CD00373FAB5AD2510E66133F58FE7C5BB054373FF5824F73F222133F58FE7C5BB054373FCEE15AED612F143F21205F420587373FCEE15AED612F143FD7F7E12021CA373F3FABCC94D6DF123FD7F7E12021CA373FD2FBC6D79E59123F1F1329CDE671383FD2FBC6D79E59123FB056ED9A90D6383F664CC11A67D3113FB056ED9A90D6383F8DEDB5A0F7C6103F693BA6EECA2E383F05A2276552430B3F315D88D51F61383FC093162EABB0093F315D88D51F61383F3677F4BF5C8B063F7B8505F7031E383F180AD80E46EC033FD7F7E12021CA373F664CC11A67D3F13E6B48DC63E943373F180AD80E46ECF33EFE98D6A6B1BD363F8DEDB5A0F7C6E03EDC114E0B5EF4353F691D554D1075EF3E263ACB2C42B1353F54E41071732AE93E263ACB2C42B1353F54E41071732AD93E94F6065F984C353F54E41071732AD93E4ACE893DB48F353F8DEDB5A0F7C6E0BECCD42478431A353FA226FA7C9411E7BECCD42478431A353F180AD80E46ECF3BE15FDA19927D7343FF168E388B5F8F4BE15FDA19927D7343FB75F3E59315CFDBE84B9DDCB7D72343F90BE49D3A068FEBEF37519FED30D343F54E41071732AF9BE2A5437177FDB333F2D431CEBE236FABE05C078060DFD333FAB5AD2510E6603BF99107349D576333F180AD80E46EC03BF99107349D576333FA226FA7C941107BF7689EAAD81AD323FA226FA7C941107BF7689EAAD81AD323F54E41071732A09BFE54526E0D748323FC093162EABB009BF1C2444F98216323F4BB0389CF9D50CBFF78F85E81038323F691D554D10750FBFF78F85E81038323FB0743E3C4B9011BFC0B167CF656A323FFA9CBB5D2F4D11BF7689EAAD81AD323FD2FBC6D79E5912BFBEA4315A4755333F8DEDB5A0F7C610BF86C613419C87333F89D349B6BA9C12BF180AD80E46EC333FD2FBC6D79E5912BFF37519FED30D343FAB5AD2510E6613BF180AD80E46EC333F3A9160AA99B514BFCEE15AED612F343F3A9160AA99B514BFA94D9CDCEF50343F315D88D51F6118BF05C078060DFD333FE7340BB43BA418BF05C078060DFD333F766B990CC7F319BF86C613419C87333FBC79AA436E861BBF86C613419C87333F4BB0389CF9D51CBF613255302AA9333F4BB0389CF9D51CBF180AD80E46EC333F72512D228AC91BBFA94D9CDCEF50343F95D8B5BDDD921CBFF37519FED30D343F90BE49D3A0681EBFA94D9CDCEF50343FFCA9F1D24D6220BF97033DD4B661343F6859F78F85E820BFBB97FBE42840343FD508FD4CBD6E21BF4DDBBFB2D2A4343FD2FBC6D79E5922BFF168E388B5F8343FD2FBC6D79E5922BFCCD42478431A353F3FABCC94D6DF22BFF168E388B5F8343F86C613419C8723BF94F6065F984C353F5F251FBB0B9424BFC9C7EE022505363F5F251FBB0B9424BFB77D8FFAEB15363FF168E388B5F824BF01A60C1CD0D2353F38842A357BA025BF01A60C1CD0D2353FA43330F2B22626BFC9C7EE022505363F11E335AFEAAC26BFDC114E0B5EF4353FA226FA7C941127BF13F06B2409C2353F58FE7C5BB05427BF13F06B2409C2353FC5AD8218E8DA27BF4ACE893DB48F353FA019C40776FC27BF5D18E945ED7E353F0CC9C9C4AD8228BFEE5BAD1397E3353F2F505260014C29BFEE5BAD1397E3353F745E6397A8DE2ABF263ACB2C42B1353F4FCAA48636002BBF38842A357BA0353F7044F7AC6BB42CBF03B34291EEE7343F4BB0389CF9D52CBFF168E388B5F8343FDAE6C6F484252EBF284701A260C6343FB55208E412472EBF3A9160AA99B5343FD7D9907F66102FBF84B9DDCB7D72343FD7D9907F66102FBF97033DD4B661343F0EF450DB865130BFCEE15AED612F343FA03715A930B630BF3D9E961FB8CA333FC5CBD3B9A29430BF99107349D576333F560F98874CF930BF643F8BA548BE323F43C5387F130A31BFAE6708C72C7B323FC5CBD3B9A29430BF41B8020AF5F4313FC5CBD3B9A29430BF8BE07F2BD9B1313F46D26EF4311F30BF317BD976DA1A313FA03715A930B630BF6859F78F85E8303FB28174B169A530BF8DEDB5A0F7C6303F213EB0E3BF4030BFC5CBD3B9A294303F213EB0E3BF4030BFC5CBD3B9A294303FB28174B169A530BF0EF450DB8651303F317BD976DA1A31BFFCA9F1D24D62303FB0743E3C4B9031BF581CCEFC6A0E303F664CC11A67D331BFB345D26EF4312F3F41B8020AF5F431BFD7D9907F66102F3FD2FBC6D79E5932BF6B2A8BC22E8A2E3FD2FBC6D79E5932BF240F441669E22D3F1C2444F9821632BF4BB0389CF9D52C3FE54526E0D74832BF7044F7AC6BB42C3F78962023A0C231BF0395F1EF332E2C3F9D2ADF3312A131BF0395F1EF332E2C3F41B8020AF5F431BFE31A9FC9FE792A3F41B8020AF5F431BF766B990CC7F3293FE54526E0D74832BF54E41071732A293F1C2444F9821632BFE7340BB43BA4283FE54526E0D74832BF7B8505F7031E283F2F6EA301BC0532BFEA4141295AB9273F540262122EE431BFEA4141295AB9273FB0743E3C4B9031BFEA4141295AB9273F43C5387F130A31BFEA4141295AB9273F8DEDB5A0F7C630BFEC4E779E78CE263F7BA35698BED730BF5D18E945ED7E253F33880FECF82F30BF5D18E945ED7E253F1FF5D72B2CB82FBF15FDA19927D7243FD5CC5A0A48FB2FBF84B9DDCB7D72243FD5CC5A0A48FB2FBFA94D9CDCEF50243FB345D26EF4312FBF180AD80E46EC233FD7D9907F66102FBF3D9E961FB8CA233FB55208E412472EBF3A9160AA99B5243F240F441669E22DBF3A9160AA99B5243F4BB0389CF9D52CBFA7406667D13B253F4DBD6E1118EB2BBFCCD42478431A253FE10D6954E0642BBFCCD42478431A253F745E6397A8DE2ABF180AD80E46EC233FE10D6954E0642BBF3D9E961FB8CA233F99F221A81ABD2ABF1A170E846401233F2A36E675C4212BBF643F8BA548BE223F4FCAA48636002BBFD2FBC6D79E59223FE527D53E1D8F29BF664CC11A67D3213FE527D53E1D8F29BF1F317A6EA12B213FE7340BB43BA428BF1C2444F98216223F336ABE4A3E7627BFF78F85E81038223F809F71E1404826BF89D349B6BA9C223FC9C7EE02250526BF89D349B6BA9C223F38842A357BA025BF8BE07F2BD9B1213FC9C7EE02250526BFD508FD4CBD6E213FEE5BAD1397E325BF8DEDB5A0F7C6203F5B0BB3D0CE6926BF1FF5D72B2CB81F3F82ACA7565F5D25BF240F441669E21D3F38842A357BA025BF240F441669E21D3F15FDA19927D724BF72512D228AC91B3FF168E388B5F824BF72512D228AC91B3FA94D9CDCEF5024BF05A2276552431B3F3D9E961FB8CA23BFBC79AA436E861B3FD0EE9062804423BFDE0033DFC14F1C3F3FABCC94D6DF22BFDE0033DFC14F1C3FF78F85E8103822BFE31A9FC9FE791A3F89D349B6BA9C22BF2D431CEBE2361A3F5F251FBB0B9424BFE31A9FC9FE791A3FA7406667D13B25BFC093162EABB0193F38842A357BA025BF315D88D51F61183F82ACA7565F5D25BFC5AD8218E8DA173F3A9160AA99B524BF7B8505F7031E083F3A9160AA99B524BF7B8505F7031E083F82ACA7565F5D25BF05A2276552430B3F38842A357BA025BFFA9CBB5D2F4D113FA43330F2B22626BF84B9DDCB7D72143FA226FA7C941127BF58FE7C5BB054173F58FE7C5BB05427BF54E41071732A193F0FD6FF39CC9727BF0ABC934F8F6D193F7B8505F7031E28BF0FD6FF39CC97173F7978CF81E50829BF13F06B2409C2153F2F505260014C29BF3FABCC94D6DF123F99F221A81ABD2ABF43C5387F130A113FE10D6954E0642BBFC093162EABB0093FDE0033DFC14F2CBF213EB0E3BF40003FDCF3FC69A33A2DBF54E41071732AC93E240F441669E22DBFA226FA7C9411F7BEDAE6C6F484252EBF7B8505F7031E08BFDAE6C6F484252EBFCEE15AED612F14BFDAE6C6F484252EBFA7406667D13B15BFBE86E0B88C9B2ABFA7406667D13B15BF7B8505F7031E28BF13F06B2409C215BF315D88D51F6128BF0FD6FF39CC9717BF56F146E6913F28BFE7340BB43BA418BFE7340BB43BA428BFE7340BB43BA418BF2F505260014C29BF0FD6FF39CC9717BF9BFF571D39D229BFC5AD8218E8DA17BF2D431CEBE2362ABF9E0C8E9257E718BF08AF5DDA70582ABF0ABC934F8F6D19BFE10D6954E0642BBF2D431CEBE2361ABF0395F1EF332E2CBF2829B000A60C1CBF4DBD6E1118EB2BBF95D8B5BDDD921CBF95D8B5BDDD922CBF4696CCB1BCAB1EBF7044F7AC6BB42CBFD5CC5A0A48FB1FBF0395F1EF332E2CBFB28174B169A520BFDE0033DFC14F2CBFD508FD4CBD6E21BF7044F7AC6BB42CBF41B8020AF5F421BFB96C74CE4F712CBF1C2444F9821622BF4DBD6E1118EB2BBF3FABCC94D6DF22BF4DBD6E1118EB2BBF1A170E84640123BFE10D6954E0642BBF613255302AA923BF2A36E675C4212BBFCEE15AED612F24BFBC79AA436E862BBF5F251FBB0B9424BF4FCAA48636002BBF82ACA7565F5D25BF4FCAA48636002BBF13F06B2409C225BFBC79AA436E862BBF5B0BB3D0CE6926BFBC79AA436E862BBF3677F4BF5C8B26BF99F221A81ABD2ABF11E335AFEAAC26BF2D431CEBE2362ABF7D923B6C223327BFE527D53E1D8F29BFA019C40776FC27BFC093162EABB029BF0CC9C9C4AD8228BF54E41071732A29BF54E41071732A29BF54E41071732A29BFE527D53E1D8F29BFC3A04CA3C9C528BFE527D53E1D8F29BFA019C40776FC27BF766B990CC7F329BFC5AD8218E8DA27BF766B990CC7F329BFC7BAB88D06F026BFE527D53E1D8F29BFEE5BAD1397E325BF766B990CC7F329BF13F06B2409C225BF08AF5DDA70582ABFC7BAB88D06F026BF4FCAA48636002BBFA226FA7C941127BF05A2276552432BBF336ABE4A3E7627BF97E5EB32FCA72BBF0FD6FF39CC9727BF0395F1EF332E2CBF7D923B6C223327BF261C7A8B87F72CBFA226FA7C941127BF0188BB7A15192DBF809F71E1404826BF6D37C1374D9F2DBFC9C7EE02250526BF6D37C1374D9F2DBF84B9DDCB7D7224BFDAE6C6F484252EBF84B9DDCB7D7224BFDAE6C6F484252EBF613255302AA923BFB345D26EF4312FBFAE6708C72C7B22BFB345D26EF4312FBFB0743E3C4B9021BFFC6D4F90D8EE2EBF1F317A6EA12B21BFB345D26EF4312FBF6859F78F85E820BFB345D26EF4312FBF46D26EF4311F20BFFA60191BBAD92FBF46D26EF4311F20BF46D26EF4311F30BF43C5387F130A21BFFCA9F1D24D6230BF43C5387F130A21BFD71533C2DB8330BFB28174B169A520BF8DEDB5A0F7C630BFB28174B169A520BF6859F78F85E830BF46D26EF4311F20BF7BA35698BED730BFDAE6C6F484251EBFFA9CBB5D2F4D31BF95D8B5BDDD921CBF78962023A0C231BF240F441669E21DBF41B8020AF5F431BF0188BB7A15191DBF540262122EE431BFBC79AA436E861BBF0ADAE4F0492732BF4FCAA48636001BBF1C2444F9821632BF766B990CC7F319BF643F8BA548BE32BF2D431CEBE2361ABF1A170E84640133BF05A2276552431BBFBEA4315A475533BFC093162EABB019BFBEA4315A475533BF9E0C8E9257E718BF613255302AA933BFE7340BB43BA418BFBB97FBE4284034BF0FD6FF39CC9717BF726F7EC3448334BF54E41071732A19BFB98AC56F0A2B35BF315D88D51F6118BF6F62484E266E35BFA226FA7C941117BFC9C7EE02250536BF315D88D51F6118BF92E9D0E9793736BF7B8505F7031E18BF92E9D0E9793736BF13F06B2409C215BF48C153C8957A36BF5D18E945ED7E15BF48C153C8957A36BF180AD80E46EC13BF5B0BB3D0CE6936BFAB5AD2510E6613BF5B0BB3D0CE6936BF89D349B6BA9C12BFFE98D6A6B1BD36BF89D349B6BA9C12BF232D95B7239C36BF90BE49D3A0680EBFB5705985CD0037BF99F221A81ABD0ABFC7BAB88D06F036BF3677F4BF5C8B06BF7D923B6C223337BFF168E388B5F804BF21205F42058737BF3677F4BF5C8B06BFEA4141295AB937BFAB5AD2510E6603BF7B8505F7031E38BF180AD80E46EC03BF44A7E7DD585038BFD2FBC6D79E5902BF44A7E7DD585038BF05A227655243FBBE0CC9C9C4AD8238BF2D431CEBE236FABEB056ED9A90D638BF2D431CEBE236FABEC3A04CA3C9C538BF05A227655243EBBE419AB1683A3B39BFA226FA7C9411E7BE419AB1683A3B39BF00000000000000807978CF81E50839BF8DEDB5A0F7C6C03E7978CF81E50839BF54E41071732AE93EF8713447567E39BF54E41071732AE93ED3DD7536E49F39BF691D554D1075EF3EC093162EABB039BFC9C7EE022505F63E662E7079AC1939BFFA9CBB5D2F4D013F54E41071732A39BF180AD80E46EC033FFA7E6ABC749338BF05A2276552430B3F7B8505F7031E38BFDE0033DFC14F0C3F693BA6EECA2E38BF691D554D10750F3FC5AD8218E8DA37BF8DEDB5A0F7C6103F0FD6FF39CC9737BF8DEDB5A0F7C6103F90DC9A745B2237BF8DEDB5A0F7C6103F48C153C8957A36BF1C2444F98216123FA43330F2B22636BF1C2444F98216123F13F06B2409C235BFD2FBC6D79E59123F6F62484E266E35BFCEE15AED612F143F6F62484E266E35BFC9C7EE022505163F15FDA19927D734BF58FE7C5BB054173F97033DD4B66134BF0FD6FF39CC97173FF37519FED30D34BFE7340BB43BA4183F99107349D57633BFE7340BB43BA4183F86C613419C8733BF05A2276552431B3F2C616D8C9DF032BF4BB0389CF9D51C3F9B1DA9BEF38B32BF72512D228AC91B3F2F6EA301BC0532BF4FCAA48636001B3F1C2444F9821632BF90BE49D3A0681E3F7689EAAD81AD32BF4696CCB1BCAB1E3F7689EAAD81AD32BF213EB0E3BF40203FF78F85E8103832BF8DEDB5A0F7C6203FF78F85E8103832BF643F8BA548BE223F1C2444F9821632BF1A170E846401233F8BE07F2BD9B131BFF5824F73F222233FFA9CBB5D2F4D31BFF168E388B5F8243F1F317A6EA12B31BF38842A357BA0253FD71533C2DB8330BFA7406667D13B253F46D26EF4311F30BF11E335AFEAAC263F691D554D10752FBF3677F4BF5C8B263FFF7A8505F7032EBF0FD6FF39CC97273FDCF3FC69A33A2DBF0FD6FF39CC97273F4BB0389CF9D52CBF7978CF81E508293F0395F1EF332E2CBF2F505260014C293F97E5EB32FCA72BBFBE86E0B88C9B2A3F9BFF571D39D229BF0395F1EF332E2C3FE527D53E1D8F29BF0188BB7A15192D3FEA4141295AB927BFB96C74CE4F712C3FC5AD8218E8DA27BF72512D228AC92B3FE7340BB43BA428BFE31A9FC9FE792A3F315D88D51F6128BF9BFF571D39D2293F315D88D51F6128BF2F505260014C293FE7340BB43BA428BFA019C40776FC273FA019C40776FC27BFA019C40776FC273FA226FA7C941127BFEC4E779E78CE263F3677F4BF5C8B26BFEC4E779E78CE263F82ACA7565F5D25BF56F146E6913F283F15FDA19927D724BF315D88D51F61283FCEE15AED612F24BF9E0C8E9257E7283FAB5AD2510E6623BF7B8505F7031E283F1C2444F9821622BF7978CF81E508293FD71533C2DB8320BFC3A04CA3C9C5283FFCA9F1D24D6220BFC5AD8218E8DA273FFC6D4F90D8EE1EBFEA4141295AB9273F4696CCB1BCAB1EBF9E0C8E9257E7283FBC79AA436E861BBF7978CF81E508293FBC79AA436E861BBF97E5EB32FCA72B3FDE0033DFC14F1CBF95D8B5BDDD922C3F4FCAA48636001BBF4BB0389CF9D52C3F99F221A81ABD1ABFDAE6C6F484252E3FC5AD8218E8DA17BF21020EA14ACD2E3FEC4E779E78CE16BF6B2A8BC22E8A2E3FEC4E779E78CE16BF691D554D10752F3F13F06B2409C215BF581CCEFC6A0E303F613255302AA913BF33880FECF82F303F43C5387F130A11BFB345D26EF4312F3FFC6D4F90D8EE0EBFD7D9907F66102F3F90BE49D3A0680EBF4696CCB1BCAB2E3FF168E388B5F804BF6B2A8BC22E8A2E3F84B9DDCB7D7204BF4489963C9E962F3F691D554D1075FFBEFA60191BBAD92F3F691D554D1075FFBEFC6D4F90D8EE2E3F05A227655243FBBEFC6D4F90D8EE2E3F3FABCC94D6DFF2BE0188BB7A15192D3FF168E388B5F8E4BE0188BB7A15192D3FB75F3E59315CDDBEB96C74CE4F712C3F54E41071732AC9BEB96C74CE4F712C3F54E41071732AC93E97E5EB32FCA72B3FF168E388B5F8E43E0395F1EF332E2C3F54E41071732AE93E0188BB7A15192D3F664CC11A67D3F13E0188BB7A15192D3F691D554D1075FF3E6B2A8BC22E8A2E3F664CC11A67D3013F90BE49D3A0682E3F3FABCC94D6DF023F4489963C9E962F3F43C5387F130A113F8EB1135E82532F3F1C2444F98216123FFA60191BBAD92F3FD2FBC6D79E59123F213EB0E3BF40303F8DEDB5A0F7C6103F213EB0E3BF40303FDE0033DFC14F0C3FA03715A930B6303F240F441669E20D3F43C5387F130A313F240F441669E20D3F2F6EA301BC05323F691D554D10750F3F0ADAE4F04927323F8DEDB5A0F7C6103F0CE71A66683C313F1C2444F98216123F1F317A6EA12B313FF5824F73F222133F7BA35698BED7303FC9C7EE022505163F7BA35698BED7303F10000000F5824F73F22213BFC7BAB88D06F026BFFA9CBB5D2F4D11BF11E335AFEAAC26BF3677F4BF5C8B06BFEE5BAD1397E325BF664CC11A67D3F1BE5D18E945ED7E25BF8DEDB5A0F7C6F0BE5F251FBB0B9424BF240F441669E20DBF5F251FBB0B9424BF90BE49D3A0680EBF5D18E945ED7E25BF213EB0E3BF4010BF13F06B2409C225BFFA9CBB5D2F4D11BF5D18E945ED7E25BFB0743E3C4B9011BF180AD80E46EC23BF3FABCC94D6DF12BF180AD80E46EC23BF3FABCC94D6DF12BF5F251FBB0B9424BF664CC11A67D311BFF168E388B5F824BFD2FBC6D79E5912BF38842A357BA025BFD2FBC6D79E5912BF5B0BB3D0CE6926BFF5824F73F22213BFC7BAB88D06F026BF06000000B75F3E59315CDDBE5F251FBB0B9424BFB75F3E59315CDDBEA7406667D13B25BF691D554D1075EF3ECCD42478431A25BFAB5AD2510E66033FA7406667D13B25BFAB5AD2510E66033F3A9160AA99B524BFB75F3E59315CDDBE5F251FBB0B9424BF')") db.execute("insert into ne_50m_admin_0_countries (gid, name, name_long, iso_a2, iso_a3, geom) values (2, 'USA', 'United States', 'US', 'USA', ST_SetSRID('MULTIPOLYGON(((-123.6 49.6, -65.3 49.6, -65.3 24.0, -123.6 24.0, -123.6 49.6)))'::geometry, 4326))") db.execute("insert into boxes (id, lon, lat, size, geom) values (1, 0, 0, 1, st_setsrid('polygon(( 0 0, 0 1, 1 1, 1 0, 0 0))'::geometry, 4326))") db.execute("insert into boxes (id, lon, lat, size, geom) values (2, 0, -1, 1, st_setsrid('polygon(( 0 -1, 0 0, 1 0, 1 -1, 0 -1))'::geometry, 4326))") db.execute("insert into boxes (id, lon, lat, size, geom) values (3, -1, -1, 1, st_setsrid('polygon((-1 -1, -1 0, 0 0, 0 -1, -1 -1))'::geometry, 4326))") db.execute("insert into boxes (id, lon, lat, size, geom) values (4, -1, 0, 1, st_setsrid('polygon((-1 0, -1 1, 0 1, 0 0, -1 0))'::geometry, 4326))") db.execute("insert into boxes (id, lon, lat, size, geom) values (5, -99, 39, 1, st_setsrid('polygon((-99 38, -99 39, -98 39, -98 38, -99 38))'::geometry, 4326))") db.execute("insert into gpwv4_2015 (iso_a2, box_id, population, area) values ('XX', 1, 2000, 800)") db.execute("insert into gpwv4_2015 (iso_a2, box_id, population, area) values ('XX', 2, 4000, 600)") db.execute("insert into gpwv4_2015 (iso_a2, box_id, population, area) values ('XX', 3, 6000, 400)") db.execute("insert into gpwv4_2015 (iso_a2, box_id, population, area) values ('XX', 4, 8000, 200)") db.execute("insert into gpwv4_2015 (iso_a2, box_id, population, area) values ('US', 5, 17907, 9540)") db.execute("insert into acs5yr_2015 (usps_code, box_id, population, area) values ('KS', 5, 17907, 9540)") def test_guess_iso_a2(self): get_iso3166 = lambda n: 'XX' if (n == 'ISO 3166') else None get_iso3166_2 = lambda n: 'YY-YY' if (n == 'ISO 3166-2') else None get_us_census = lambda n: '06001' if (n == 'US Census GEOID') else None get_intl_src_path = lambda n: 'sources/xx/yy.json' if (n == 'source paths') else None get_us_src_path = lambda n: 'sources/us/ca/oakland.json' if (n == 'source paths') else None feature = unittest.mock.Mock() feature.GetField = get_iso3166 self.assertEqual(calculate.guess_iso_a2(feature), 'XX') feature.GetField = get_iso3166_2 self.assertEqual(calculate.guess_iso_a2(feature), 'YY') feature.GetField = get_us_census self.assertEqual(calculate.guess_iso_a2(feature), 'US') feature.GetField = get_intl_src_path self.assertEqual(calculate.guess_iso_a2(feature), 'XX') feature.GetField = get_us_src_path self.assertEqual(calculate.guess_iso_a2(feature), 'US') def test_guess_state_abbrev(self): get_us_census = lambda n: '06001' if (n == 'US Census GEOID') else None get_intl_src_path = lambda n: 'sources/xx/yy.json' if (n == 'source paths') else None get_us_src_path = lambda n: 'sources/us/ca/oakland.json' if (n == 'source paths') else None feature = unittest.mock.Mock() feature.GetField = get_us_census self.assertEqual(calculate.guess_state_abbrev(feature), 'CA') feature.GetField = get_intl_src_path self.assertIsNone(calculate.guess_state_abbrev(feature)) feature.GetField = get_us_src_path self.assertEqual(calculate.guess_state_abbrev(feature), 'CA') def test_calculate(self): def response_geojson(url, request): if (request.method, url.hostname, url.path) == ('GET', 'results.openaddresses.io', '/index.json'): return response(200, b'{"render_geojson_url": "http://data.openaddresses.io/render-world.geojson"}', headers={'Content-Type': 'application/json'}) if (request.method, url.hostname, url.path) == ('GET', 'data.openaddresses.io', '/render-world.geojson'): null_geojson = '''{\n"type": "FeatureCollection",\n"features": [\n{ "type": "Feature", "properties": {"source count": 1, "name": "Null Island", "source dates": "2017-03-12 21:54:49.107291+00:00", "source paths": "sources/xx/countrywide.json", "ISO 3166": "XX", "ISO 3166-2": null, "US Census GEOID": null, "status": "good", "address count": 9990}, "geometry": { "type": "MultiPolygon", "coordinates": [ [ [ [ -0.000478, 0.000015 ], [ -0.000464, 0.000017 ], [ -0.000463, 0.000009 ], [ -0.000459, 0.000008 ], [ -0.000455, 0.000017 ], [ -0.000443, 0.000012 ], [ -0.000446, 0.000004 ], [ -0.000444, 0.0 ], [ -0.000433, 0.000003 ], [ -0.00043, -0.00001 ], [ -0.000438, -0.000013 ], [ -0.000438, -0.000016 ], [ -0.000428, -0.000017 ], [ -0.000429, -0.000038 ], [ -0.000438, -0.000038 ], [ -0.000435, -0.000043 ], [ -0.000445, -0.000052 ], [ -0.000449, -0.000049 ], [ -0.000455, -0.00005 ], [ -0.000455, -0.000057 ], [ -0.000469, -0.000057 ], [ -0.000469, -0.000049 ], [ -0.000474, -0.000049 ], [ -0.00048, -0.000055 ], [ -0.000489, -0.000047 ], [ -0.000488, -0.000044 ], [ -0.000496, -0.000034 ], [ -0.000491, -0.000028 ], [ -0.000491, -0.000026 ], [ -0.0005, -0.000024 ], [ -0.000496, -0.00001 ], [ -0.000492, -0.00001 ], [ -0.000492, -0.000006 ], [ -0.000495, -0.0 ], [ -0.000484, 0.000009 ], [ -0.000481, 0.000006 ], [ -0.000477, 0.000007 ], [ -0.000477, 0.000011 ], [ -0.000478, 0.000015 ] ] ], [ [ [ 0.000084, 0.000257 ], [ 0.000107, 0.000285 ], [ 0.000121, 0.000274 ], [ 0.000149, 0.000277 ], [ 0.000183, 0.00028 ], [ 0.000177, 0.000285 ], [ 0.00019, 0.0003 ], [ 0.000195, 0.000296 ], [ 0.000204, 0.000302 ], [ 0.000212, 0.000303 ], [ 0.000221, 0.000302 ], [ 0.000228, 0.000307 ], [ 0.000243, 0.000292 ], [ 0.000239, 0.000288 ], [ 0.000243, 0.000278 ], [ 0.000243, 0.000265 ], [ 0.000249, 0.000262 ], [ 0.000238, 0.000244 ], [ 0.000233, 0.000246 ], [ 0.000225, 0.000241 ], [ 0.00021, 0.00024 ], [ 0.000202, 0.000242 ], [ 0.000196, 0.000237 ], [ 0.000183, 0.000247 ], [ 0.000186, 0.000251 ], [ 0.000129, 0.000246 ], [ 0.000136, 0.000245 ], [ 0.000146, 0.000233 ], [ 0.000144, 0.000227 ], [ 0.000148, 0.000225 ], [ 0.000151, 0.000218 ], [ 0.000155, 0.000218 ], [ 0.00016, 0.000223 ], [ 0.000174, 0.000217 ], [ 0.000181, 0.000221 ], [ 0.000185, 0.000221 ], [ 0.000187, 0.000216 ], [ 0.000211, 0.000217 ], [ 0.000216, 0.000213 ], [ 0.000228, 0.000203 ], [ 0.000239, 0.000203 ], [ 0.000248, 0.000199 ], [ 0.000258, 0.000199 ], [ 0.000259, 0.000196 ], [ 0.000258, 0.00019 ], [ 0.000261, 0.000185 ], [ 0.000262, 0.000166 ], [ 0.000258, 0.000158 ], [ 0.000239, 0.000158 ], [ 0.000238, 0.000144 ], [ 0.000242, 0.000141 ], [ 0.000246, 0.000145 ], [ 0.000251, 0.000144 ], [ 0.000253, 0.000139 ], [ 0.000257, 0.000141 ], [ 0.000262, 0.000139 ], [ 0.000258, 0.000132 ], [ 0.000259, 0.000127 ], [ 0.000265, 0.000125 ], [ 0.00027, 0.000121 ], [ 0.000274, 0.000124 ], [ 0.000281, 0.000125 ], [ 0.000285, 0.00012 ], [ 0.000292, 0.00012 ], [ 0.000296, 0.000116 ], [ 0.000296, 0.000107 ], [ 0.000301, 0.000107 ], [ 0.000304, 0.00011 ], [ 0.000309, 0.00011 ], [ 0.000315, 0.000103 ], [ 0.000316, 0.000095 ], [ 0.000323, 0.000091 ], [ 0.000328, 0.000094 ], [ 0.000333, 0.000091 ], [ 0.000337, 0.000086 ], [ 0.000344, 0.000082 ], [ 0.000348, 0.000082 ], [ 0.00035, 0.000079 ], [ 0.000351, 0.000074 ], [ 0.000356, 0.000073 ], [ 0.000356, 0.000077 ], [ 0.000359, 0.000077 ], [ 0.000363, 0.000072 ], [ 0.000363, 0.00007 ], [ 0.000373, 0.00007 ], [ 0.000379, 0.000068 ], [ 0.000379, 0.000064 ], [ 0.000369, 0.000052 ], [ 0.000372, 0.000049 ], [ 0.000372, 0.000043 ], [ 0.000368, 0.000038 ], [ 0.000363, 0.000017 ], [ 0.000355, 0.000019 ], [ 0.000347, 0.000008 ], [ 0.000335, 0.000015 ], [ 0.000331, 0.000012 ], [ 0.000331, 0.000006 ], [ 0.000325, 0.000006 ], [ 0.000329, -0.000008 ], [ 0.000322, -0.000011 ], [ 0.000322, -0.000019 ], [ 0.000318, -0.00002 ], [ 0.000318, -0.000028 ], [ 0.000312, -0.000029 ], [ 0.000306, -0.000024 ], [ 0.000303, -0.000025 ], [ 0.000305, -0.000037 ], [ 0.000297, -0.000038 ], [ 0.000297, -0.000044 ], [ 0.000285, -0.000044 ], [ 0.000285, -0.000048 ], [ 0.000279, -0.000049 ], [ 0.000276, -0.000055 ], [ 0.000278, -0.00006 ], [ 0.000278, -0.000067 ], [ 0.000281, -0.000066 ], [ 0.000285, -0.00007 ], [ 0.000295, -0.000064 ], [ 0.000298, -0.000071 ], [ 0.000304, -0.00007 ], [ 0.000306, -0.000074 ], [ 0.000304, -0.000079 ], [ 0.000308, -0.000079 ], [ 0.00031, -0.000093 ], [ 0.000305, -0.000094 ], [ 0.000305, -0.000099 ], [ 0.000298, -0.000105 ], [ 0.000298, -0.00011 ], [ 0.0003, -0.00011 ], [ 0.000304, -0.000106 ], [ 0.00031, -0.000109 ], [ 0.000306, -0.000116 ], [ 0.00031, -0.000125 ], [ 0.000311, -0.000129 ], [ 0.000309, -0.000133 ], [ 0.000315, -0.00014 ], [ 0.00032, -0.00014 ], [ 0.000322, -0.000144 ], [ 0.00032, -0.000149 ], [ 0.000325, -0.000157 ], [ 0.000336, -0.000157 ], [ 0.000337, -0.00016 ], [ 0.000333, -0.000165 ], [ 0.000333, -0.000169 ], [ 0.000336, -0.000173 ], [ 0.000335, -0.000176 ], [ 0.000332, -0.000178 ], [ 0.000332, -0.000182 ], [ 0.000329, -0.000183 ], [ 0.000328, -0.000187 ], [ 0.000334, -0.000193 ], [ 0.000334, -0.000205 ], [ 0.000331, -0.000206 ], [ 0.00033, -0.000219 ], [ 0.000319, -0.00022 ], [ 0.00032, -0.00023 ], [ 0.000317, -0.000231 ], [ 0.000316, -0.000237 ], [ 0.000312, -0.000237 ], [ 0.000311, -0.000249 ], [ 0.000308, -0.000255 ], [ 0.000302, -0.000253 ], [ 0.000297, -0.000259 ], [ 0.000286, -0.00026 ], [ 0.000282, -0.000253 ], [ 0.000274, -0.000253 ], [ 0.00027, -0.000246 ], [ 0.000261, -0.000255 ], [ 0.000258, -0.000254 ], [ 0.000256, -0.000248 ], [ 0.000253, -0.000248 ], [ 0.000253, -0.000254 ], [ 0.000249, -0.000261 ], [ 0.00025, -0.000268 ], [ 0.000245, -0.000272 ], [ 0.000238, -0.000274 ], [ 0.000237, -0.00028 ], [ 0.000233, -0.00028 ], [ 0.000228, -0.000276 ], [ 0.00022, -0.000279 ], [ 0.000219, -0.000271 ], [ 0.000215, -0.000269 ], [ 0.000215, -0.000274 ], [ 0.000202, -0.000274 ], [ 0.000198, -0.000279 ], [ 0.000192, -0.000276 ], [ 0.000188, -0.000279 ], [ 0.000184, -0.000275 ], [ 0.000181, -0.000273 ], [ 0.000181, -0.000268 ], [ 0.000181, -0.00026 ], [ 0.000181, -0.000256 ], [ 0.000174, -0.000257 ], [ 0.000164, -0.000247 ], [ 0.000164, -0.000242 ], [ 0.000159, -0.000244 ], [ 0.000156, -0.000244 ], [ 0.000155, -0.000238 ], [ 0.000152, -0.000237 ], [ 0.000151, -0.000231 ], [ 0.000158, -0.000228 ], [ 0.000158, -0.00022 ], [ 0.000162, -0.000213 ], [ 0.000161, -0.000209 ], [ 0.000161, -0.000205 ], [ 0.000152, -0.000209 ], [ 0.000151, -0.000204 ], [ 0.000145, -0.000207 ], [ 0.000143, -0.000206 ], [ 0.00014, -0.000195 ], [ 0.000136, -0.000195 ], [ 0.000131, -0.000188 ], [ 0.000138, -0.000179 ], [ 0.000139, -0.00017 ], [ 0.000142, -0.000168 ], [ 0.000142, -0.000165 ], [ 0.000135, -0.000168 ], [ 0.000133, -0.000167 ], [ 0.000128, -0.000171 ], [ 0.000121, -0.000163 ], [ 0.000114, -0.000165 ], [ 0.000114, -0.000159 ], [ 0.000106, -0.00016 ], [ 0.000106, -0.000155 ], [ 0.000104, -0.000151 ], [ 0.000105, -0.000147 ], [ 0.000108, -0.000144 ], [ 0.000108, -0.000139 ], [ 0.000101, -0.000142 ], [ 0.0001, -0.000157 ], [ 0.000101, -0.000162 ], [ 0.000098, -0.000165 ], [ 0.000093, -0.000163 ], [ 0.000091, -0.000158 ], [ 0.000046, -0.000158 ], [ 0.000046, -0.000163 ], [ 0.000052, -0.000165 ], [ 0.000066, -0.000169 ], [ 0.000078, -0.000176 ], [ 0.000089, -0.000178 ], [ 0.000096, -0.00018 ], [ 0.000097, -0.000184 ], [ 0.00009, -0.000191 ], [ 0.000083, -0.000193 ], [ 0.000072, -0.000204 ], [ 0.000065, -0.000209 ], [ 0.000049, -0.000216 ], [ 0.000031, -0.000223 ], [ 0.000003, -0.000228 ], [ -0.000022, -0.00023 ], [ -0.000046, -0.00023 ], [ -0.000077, -0.00023 ], [ -0.000081, -0.000203 ], [ -0.000081, -0.000184 ], [ -0.000083, -0.000186 ], [ -0.00009, -0.000185 ], [ -0.000094, -0.000188 ], [ -0.000094, -0.000193 ], [ -0.00009, -0.000197 ], [ -0.000091, -0.0002 ], [ -0.000095, -0.000201 ], [ -0.000097, -0.000209 ], [ -0.0001, -0.000215 ], [ -0.000107, -0.000213 ], [ -0.000109, -0.000218 ], [ -0.000117, -0.000219 ], [ -0.000122, -0.000215 ], [ -0.000127, -0.000216 ], [ -0.000133, -0.000219 ], [ -0.000137, -0.000217 ], [ -0.000138, -0.000213 ], [ -0.000144, -0.000213 ], [ -0.000145, -0.000209 ], [ -0.00015, -0.000207 ], [ -0.000154, -0.00021 ], [ -0.000157, -0.000206 ], [ -0.000163, -0.000206 ], [ -0.000166, -0.00021 ], [ -0.000171, -0.00021 ], [ -0.000172, -0.000204 ], [ -0.000173, -0.0002 ], [ -0.000177, -0.000195 ], [ -0.000183, -0.000196 ], [ -0.000187, -0.000192 ], [ -0.000192, -0.000192 ], [ -0.000195, -0.000189 ], [ -0.000195, -0.000183 ], [ -0.000198, -0.000182 ], [ -0.000198, -0.000175 ], [ -0.000195, -0.000167 ], [ -0.000198, -0.000166 ], [ -0.000201, -0.000175 ], [ -0.000206, -0.000176 ], [ -0.000208, -0.000179 ], [ -0.000211, -0.00018 ], [ -0.000215, -0.000177 ], [ -0.000221, -0.000176 ], [ -0.000222, -0.00017 ], [ -0.000226, -0.000168 ], [ -0.000226, -0.000156 ], [ -0.00023, -0.000156 ], [ -0.00023, -0.00015 ], [ -0.000238, -0.000141 ], [ -0.000238, -0.000134 ], [ -0.000236, -0.000131 ], [ -0.000238, -0.000129 ], [ -0.000238, -0.000123 ], [ -0.000243, -0.000123 ], [ -0.000246, -0.00013 ], [ -0.00025, -0.00013 ], [ -0.000252, -0.000127 ], [ -0.000256, -0.000127 ], [ -0.000258, -0.000123 ], [ -0.000257, -0.000115 ], [ -0.000264, -0.000109 ], [ -0.000271, -0.000114 ], [ -0.000274, -0.000111 ], [ -0.000273, -0.000105 ], [ -0.000277, -0.000103 ], [ -0.000276, -0.000099 ], [ -0.000286, -0.0001 ], [ -0.00029, -0.000104 ], [ -0.000295, -0.000098 ], [ -0.000295, -0.000095 ], [ -0.0003, -0.000094 ], [ -0.000309, -0.00009 ], [ -0.000313, -0.000096 ], [ -0.000323, -0.000093 ], [ -0.000327, -0.000088 ], [ -0.000336, -0.000093 ], [ -0.000339, -0.000092 ], [ -0.000339, -0.000083 ], [ -0.000343, -0.000082 ], [ -0.000343, -0.000076 ], [ -0.000342, -0.000074 ], [ -0.000342, -0.000071 ], [ -0.000347, -0.000071 ], [ -0.000345, -0.000058 ], [ -0.000351, -0.000051 ], [ -0.00035, -0.000043 ], [ -0.000354, -0.00004 ], [ -0.000359, -0.000043 ], [ -0.000362, -0.000037 ], [ -0.000368, -0.000038 ], [ -0.000371, -0.000035 ], [ -0.000371, -0.000026 ], [ -0.000374, -0.000025 ], [ -0.000379, -0.000025 ], [ -0.000378, -0.000013 ], [ -0.000385, -0.000011 ], [ -0.000385, -0.0 ], [ -0.000382, 0.000002 ], [ -0.000382, 0.000012 ], [ -0.000389, 0.000012 ], [ -0.000391, 0.000015 ], [ -0.000392, 0.000021 ], [ -0.000383, 0.000033 ], [ -0.000384, 0.000038 ], [ -0.000375, 0.000052 ], [ -0.000368, 0.000054 ], [ -0.000369, 0.00006 ], [ -0.000364, 0.000064 ], [ -0.00036, 0.000064 ], [ -0.000353, 0.000064 ], [ -0.000343, 0.000069 ], [ -0.000338, 0.000069 ], [ -0.000332, 0.00007 ], [ -0.000327, 0.000077 ], [ -0.000327, 0.000084 ], [ -0.000318, 0.000089 ], [ -0.000311, 0.00009 ], [ -0.000306, 0.000094 ], [ -0.000297, 0.000094 ], [ -0.000298, 0.000104 ], [ -0.000289, 0.00011 ], [ -0.000283, 0.000106 ], [ -0.000275, 0.000103 ], [ -0.000276, 0.000116 ], [ -0.000285, 0.000117 ], [ -0.000285, 0.000124 ], [ -0.000278, 0.000128 ], [ -0.000278, 0.000143 ], [ -0.000276, 0.000145 ], [ -0.00027, 0.000146 ], [ -0.000264, 0.00016 ], [ -0.000262, 0.000165 ], [ -0.000252, 0.000162 ], [ -0.000246, 0.000173 ], [ -0.00024, 0.000172 ], [ -0.000229, 0.00018 ], [ -0.000223, 0.00018 ], [ -0.00022, 0.000191 ], [ -0.000215, 0.000193 ], [ -0.000211, 0.000203 ], [ -0.000197, 0.000215 ], [ -0.000195, 0.000222 ], [ -0.000181, 0.000217 ], [ -0.000182, 0.000212 ], [ -0.000188, 0.000202 ], [ -0.000186, 0.000197 ], [ -0.000186, 0.000193 ], [ -0.000188, 0.000183 ], [ -0.000183, 0.000183 ], [ -0.000176, 0.000174 ], [ -0.000172, 0.000174 ], [ -0.000163, 0.000185 ], [ -0.000159, 0.000186 ], [ -0.000154, 0.00019 ], [ -0.000148, 0.000184 ], [ -0.000138, 0.000191 ], [ -0.000126, 0.000189 ], [ -0.000125, 0.000182 ], [ -0.000118, 0.000181 ], [ -0.000117, 0.00019 ], [ -0.000105, 0.000191 ], [ -0.000105, 0.000211 ], [ -0.000108, 0.000218 ], [ -0.000103, 0.00022 ], [ -0.000102, 0.00023 ], [ -0.000091, 0.000235 ], [ -0.000087, 0.000233 ], [ -0.000087, 0.00024 ], [ -0.000083, 0.000245 ], [ -0.000075, 0.000247 ], [ -0.000065, 0.000238 ], [ -0.000059, 0.000237 ], [ -0.000058, 0.000234 ], [ -0.00004, 0.000233 ], [ -0.000039, 0.000241 ], [ -0.00003, 0.000243 ], [ -0.00003, 0.000236 ], [ -0.000026, 0.000236 ], [ -0.000018, 0.000222 ], [ -0.00001, 0.000222 ], [ -0.000007, 0.000217 ], [ -0.000003, 0.000217 ], [ 0.000003, 0.000211 ], [ 0.00001, 0.000215 ], [ 0.000012, 0.000222 ], [ 0.000017, 0.000222 ], [ 0.00003, 0.000233 ], [ 0.000034, 0.000232 ], [ 0.000036, 0.000241 ], [ 0.000065, 0.000239 ], [ 0.000069, 0.000243 ], [ 0.00007, 0.000248 ], [ 0.000064, 0.000248 ], [ 0.000054, 0.000255 ], [ 0.000057, 0.00026 ], [ 0.000057, 0.000275 ], [ 0.00006, 0.000277 ], [ 0.000064, 0.000263 ], [ 0.000069, 0.000262 ], [ 0.000073, 0.000257 ], [ 0.000084, 0.000257 ] ], [ [ -0.000073, -0.000175 ], [ -0.000066, -0.000173 ], [ -0.000043, -0.000167 ], [ -0.000017, -0.000164 ], [ -0.000016, -0.000157 ], [ -0.000057, -0.000157 ], [ -0.000058, -0.000164 ], [ -0.000062, -0.000166 ], [ -0.000066, -0.000164 ], [ -0.000067, -0.000152 ], [ -0.000072, -0.000152 ], [ -0.000072, -0.000157 ], [ -0.000068, -0.00016 ], [ -0.00007, -0.000165 ], [ -0.00007, -0.000171 ], [ -0.000073, -0.000175 ] ], [ [ -0.000007, -0.000157 ], [ -0.000007, -0.000162 ], [ 0.000015, -0.000161 ], [ 0.000037, -0.000162 ], [ 0.000037, -0.000158 ], [ -0.000007, -0.000157 ] ] ] ] } }, { "type": "Feature", "properties": {"source count": 1, "name": "Null Ranch", "source dates": "2017-03-12 21:54:49.107291+00:00", "source paths": "sources/us/ks/null-ranch.json", "ISO 3166": null, "ISO 3166-2": null, "US Census GEOID": null, "status": "good", "address count": 9}, "geometry": { "type": "Polygon", "coordinates": [[[-99, 38], [-99, 39], [-98, 39], [-98, 38], [-99, 38]]] } }\n]\n}\n''' return response(200, null_geojson.encode('utf8'), headers={'Content-Type': 'application/json'}) raise Exception() with HTTMock(response_geojson): calculate.calculate(DATABASE_URL) with psycopg2.connect(DATABASE_URL) as conn: with conn.cursor() as db: db.execute('select iso_a2, addr_count, area_total, area_pct, pop_total, pop_pct from areas order by iso_a2') (row1, row2) = db.fetchall() self.assertEqual(row1, ('US', 9, 9540, 1.0, 17907, 1.0)) self.assertEqual(row2, ('XX', 9990, 2000, 1.0, 20000, 1.0))
b26444ad2d6f2216e041816a9cd9a0238f7491e6
6d493d09085d4d398132204925078a179774f138
/melgan_vocoder.py
2ec8f713892afcce0d01ff4faa4f26ebc87935ea
[ "MIT" ]
permissive
zongxiangli/CycleGAN-VC3
6a41f843b430fd307d9ea0b43aa5910816fba450
431b332fa17638391ca913e6821b526456fd874f
refs/heads/main
2023-02-21T02:19:39.058010
2021-01-25T09:49:00
2021-01-25T09:49:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,448
py
#!python # -*- coding: utf-8 -*- import os import yaml from pathlib import Path import torch import torch.nn as nn from torch.nn.utils import weight_norm from feature_utils import Audio2Mel def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find("BatchNorm2d") != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def WNConv1d(*args, **kwargs): return weight_norm(nn.Conv1d(*args, **kwargs)) def WNConvTranspose1d(*args, **kwargs): return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) class ResnetBlock(nn.Module): def __init__(self, dim, dilation=1): super().__init__() self.block = nn.Sequential( nn.LeakyReLU(0.2), nn.ReflectionPad1d(dilation), WNConv1d(dim, dim, kernel_size=3, dilation=dilation), nn.LeakyReLU(0.2), WNConv1d(dim, dim, kernel_size=1), ) self.shortcut = WNConv1d(dim, dim, kernel_size=1) def forward(self, x): return self.shortcut(x) + self.block(x) class Generator(nn.Module): def __init__(self, input_size, ngf, n_residual_layers): super().__init__() ratios = [8, 8, 2, 2] self.hop_length = np.prod(ratios) mult = int(2 ** len(ratios)) model = [ nn.ReflectionPad1d(3), WNConv1d(input_size, mult * ngf, kernel_size=7, padding=0), ] # Upsample to raw audio scale for i, r in enumerate(ratios): model += [ nn.LeakyReLU(0.2), WNConvTranspose1d( mult * ngf, mult * ngf // 2, kernel_size=r * 2, stride=r, padding=r // 2 + r % 2, output_padding=r % 2, ), ] for j in range(n_residual_layers): model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)] mult //= 2 model += [ nn.LeakyReLU(0.2), nn.ReflectionPad1d(3), WNConv1d(ngf, 1, kernel_size=7, padding=0), nn.Tanh(), ] self.model = nn.Sequential(*model) self.apply(weights_init) def forward(self, x): return self.model(x) def get_default_device(): if torch.cuda.is_available(): return "cuda" else: return "cpu" def load_model(mel2wav_path, device=get_default_device()): """ Args: mel2wav_path (str or Path): path to the root folder of dumped text2mel device (str or torch.device): device to load the model """ root = Path(mel2wav_path) with open(root / "args.yml", "r") as f: args = yaml.load(f, Loader=yaml.FullLoader) netG = Generator(args.n_mel_channels, args.ngf, args.n_residual_layers).to(device) netG.load_state_dict(torch.load(root / "best_netG.pt", map_location=device)) return netG class MelVocoder: def __init__( self, path, device=get_default_device(), github=False, model_name="multi_speaker", ): self.fft = Audio2Mel().to(device) if github: netG = Generator(80, 32, 3).to(device) root = Path(os.path.dirname(__file__)).parent netG.load_state_dict( torch.load(root / f"models/{model_name}.pt", map_location=device) ) self.mel2wav = netG else: self.mel2wav = load_model(path, device) self.device = device def __call__(self, audio): """ Performs audio to mel conversion (See Audio2Mel in mel2wav/modules.py) Args: audio (torch.tensor): PyTorch tensor containing audio (batch_size, timesteps) Returns: torch.tensor: log-mel-spectrogram computed on input audio (batch_size, 80, timesteps) """ return self.fft(audio.unsqueeze(1).to(self.device)) def inverse(self, mel): """ Performs mel2audio conversion Args: mel (torch.tensor): PyTorch tensor containing log-mel spectrograms (batch_size, 80, timesteps) Returns: torch.tensor: Inverted raw audio (batch_size, timesteps) """ with torch.no_grad(): return self.mel2wav(mel.to(self.device)).squeeze(1)
c72d9299bc10665a4db3242dbdca70d84cf13520
68ea05d0d276441cb2d1e39c620d5991e0211b94
/2714.py
c816933a2eed56ec8282d45061a5d42bbd7766f2
[]
no_license
mcavalca/uri-python
286bc43aa157d3a6880dc222e0136c80cf079565
e22875d2609fe7e215f9f3ed3ca73a1bc2cf67be
refs/heads/master
2021-11-23T08:35:17.614443
2021-10-05T13:26:03
2021-10-05T13:26:03
131,339,175
50
27
null
2021-11-22T12:21:59
2018-04-27T19:54:09
Python
UTF-8
Python
false
false
221
py
n = int(input()) while n > 0: n -= 1 ra = input() saida = 'INVALID DATA' if len(ra) == 20: if ra[0:2] == 'RA': if ra[2:].isdigit(): saida = int(ra[2:]) print(saida)
c22cd593f5f83ae3732d104ca10c62e681b4363f
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_159/609.py
1d4cb7959af1112bc540d578dcf82f9dfd5fc3ae
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
784
py
f = open('A-large.in') #f = open('test.in') count = int(f.readline()) output = '' for x in xrange(1, count + 1): platesCount = int(f.readline()) arr = f.readline().split() case1 = 0 case2 = 0 case2MaxGap = 0 for i in xrange(0, platesCount - 1): curPlate = int(arr[i]) nextPlate = int(arr[i+1]) gap = curPlate - nextPlate case2MaxGap = max(case2MaxGap, gap) if gap > 0: case1 += gap for j in xrange(0, platesCount - 1): curPlate = int(arr[j]) if curPlate < case2MaxGap: case2 += curPlate else: case2 += case2MaxGap output += 'Case #' + str(x) + ': ' + str(case1) + ' ' + str(case2) + '\n' print(output) newf = open('output.txt','w') newf.write(output)
4d71975bc09e3c0a6e6ee256fd6840bf15111f68
cf0ab8503d4d704045070deea1e2125375711e86
/apps/sockets/tests/test_importer.py
d4c7afc7997e84b3c918c6e4dc2634f31084008f
[]
no_license
faierbol/syncano-platform
c3c6468600115752fd9fa5e46a0ad59f75f6bc9c
879111874d1ef70418b4890cf970720b0a2be4d8
refs/heads/master
2023-07-20T10:13:40.066127
2021-02-08T15:01:13
2021-02-08T15:01:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,405
py
# coding=UTF8 from unittest import mock from django.test import TestCase from django.utils import timezone from apps.sockets.exceptions import ObjectProcessingError, SocketConfigValidationError, SocketMissingFile from apps.sockets.importer import INTERVAL_REGEX, SocketImporter from apps.sockets.models import Socket from apps.sockets.validators import CustomSocketConfigValidator @mock.patch('apps.sockets.signal_handlers.SocketProcessorTask', mock.MagicMock()) @mock.patch('apps.sockets.download_utils.ZipDownloadFileHandler.get_socket_spec') class TestSocketImporter(TestCase): importer_class = SocketImporter @mock.patch('apps.sockets.download_utils.ZipDownloadFileHandler.read_file', mock.Mock(side_effect=SocketMissingFile('error'))) def process_socket(self, download_mock, socket_source, **kwargs): socket = Socket(created_at=timezone.now(), **kwargs) download_mock.return_value = socket_source return socket, self.importer_class(socket).process() def assert_validation(self, download_mock, error_msg, socket_source, line=None): with self.assertRaisesMessage(ObjectProcessingError, error_msg) as cm: self.process_socket(download_mock, socket_source) if line is not None: self.assertEqual(cm.exception.lineno, line, 'Lines not equal for: "{}"; Expected: {}, got: {}.'.format(str(cm.exception), line, cm.exception.lineno)) def assert_validation_with_config(self, download_mock, error_msg, socket_source, config=None): with self.assertRaisesMessage(SocketConfigValidationError, error_msg): socket, _ = self.process_socket(download_mock, socket_source, config=config or {}) CustomSocketConfigValidator().validate(socket_config=socket.config, meta_config=socket.metadata.get('config') or {}) def test_serializer_validation(self, download_mock): self.assert_validation(download_mock, 'No calls defined', """ endpoints: my_endpoint_#1: script: script_endpoint_1 """, line=3) def test_basic_validation(self, download_mock): self.assert_validation(download_mock, 'Too many properties', '\n'.join(['name{}: name'.format(i) for i in range(self.importer_class.max_number_of_keys + 1)])) self.assert_validation(download_mock, 'Wrong format', '- wrong format') def test_endpoints_validation(self, download_mock): self.assert_validation(download_mock, 'No calls defined', """ endpoints: endpoint1: {} """, line=3) def test_cache_validation(self, download_mock): self.assert_validation(download_mock, 'Invalid cache value', """ endpoints: endpoint1: cache: 100000 source: | print 1 """, line=3) def test_timeout_validation(self, download_mock): self.assert_validation(download_mock, 'Invalid timeout value', """ endpoints: endpoint1: timeout: 100000 source: | print 1 """, line=3) def test_script_endpoints_format_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format', """ endpoints: - endpoint1 """, line=3) self.assert_validation(download_mock, 'Wrong format', """ endpoints: endpoint1: - script """, line=4) self.assert_validation(download_mock, 'Wrong format', """ endpoints: endpoint1: file: - script.py """, line=5) self.assert_validation(download_mock, 'Source file path contains invalid characters', """ endpoints: endpoint1: file: <script.py """, line=3) self.assert_validation(download_mock, 'Source file path is too long', """ endpoints: endpoint1: file: {} """.format('a' * 500), line=3) self.assert_validation(download_mock, 'Wrong format', """ endpoints: endpoint1: POST: - script """, line=5) def test_channel_endpoints_format_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format', """ endpoints: endpoint1: channel: - script """, line=5) self.assert_validation(download_mock, 'Wrong format', """ endpoints: endpoint1: channel: something.{a!bc}.{user} """, line=4) self.process_socket(download_mock, """ endpoints: endpoint1: channel: something.{ABC}.{user} """) self.process_socket(download_mock, """ endpoints: endpoint1: | channels.publish("a") """) def test_config_validation(self, download_mock): self.assert_validation_with_config( download_mock, 'Error validating socket config. "user_key" is required.', """ config: secret_key: value: some value user_key: required: true value: some value """) for socket_yml in ( """ config: key: null """, """ config: - value """): self.assert_validation_with_config( download_mock, 'Error validating socket config. Wrong format.', socket_yml) def test_event_handlers_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format', """ event_handlers: - eh """, line=3) self.assert_validation(download_mock, 'Wrong format', """ event_handlers: data.user.create: - src """, line=4) self.assert_validation(download_mock, 'Unsupported event handler type', """ event_handlers: something.bla.bla: | print 1 """, line=3) def test_data_event_handlers_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format for data event handler', """ event_handlers: data.usercreate: | print 1 """, line=3) def test_schedule_event_handlers_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format for schedule event handler', """ event_handlers: schedule.interval#5_minutes: | print 1 """, line=3) self.assert_validation(download_mock, 'Wrong format for schedule interval', """ event_handlers: schedule.interval.5_zonks: | print 1 """, line=3) self.assert_validation(download_mock, 'Wrong type of schedule event handler', """ event_handlers: schedule.intercal.5_minutes: | print 1 """, line=3) def test_custom_event_handlers_validation(self, download_mock): self.assert_validation(download_mock, 'Wrong format for event handler', """ event_handlers: events: | print 1 """, line=3) self.assert_validation(download_mock, 'Wrong format for event handler', """ event_handlers: events.socket1.event2.suffix: | print 1 """, line=3) class TestSocketEventHandler(TestCase): def calculate_interval(self, interval_str): match = INTERVAL_REGEX.match(interval_str) if not match: return None interval_dict = match.groupdict(0) return int(interval_dict['hours']) * 60 * 60 + int(interval_dict['minutes']) * 60 + \ int(interval_dict['seconds']) def test_schedule_interval_regex(self): for interval_str, value in ( ('5h', 5 * 60 * 60), ('5m', 5 * 60), ('5s', 5), ('5_hours_10_minutes_30_seconds', 5 * 60 * 60 + 10 * 60 + 30), ('1_hour_1_minute_1_second', 1 * 60 * 60 + 1 * 60 + 1), ('1h_2m_3s', 1 * 60 * 60 + 2 * 60 + 3), ('1h_2m_3s', 1 * 60 * 60 + 2 * 60 + 3), ('3s_2m', None), ('2m_1h', None), ('1_hor', None), ): self.assertEqual(self.calculate_interval(interval_str), value)
0f3ce92a2ff9742a1df0452ef3c71ce7e361bd2b
f8ad6963bfc851657ea50c6a036cfad29cdd7f60
/Books/LearningTensorFlow/Chapter5_Text_Sequence_Tensorboard/scan_example.py
4cf7e1f4fa42316220ed1621d22dc6ddfdcbd77a
[]
no_license
foru120/PythonRepository
e1ab0265c0f50ef2e9acdf7447237c913560692b
db6b6be0f9fb91b0a81a3b6a2ec5631daab10f98
refs/heads/master
2021-01-01T06:53:11.728109
2019-04-25T13:52:50
2019-04-25T13:52:50
97,541,222
4
0
null
null
null
null
UTF-8
Python
false
false
234
py
import numpy as np import tensorflow as tf elems = np.array(['T', 'e', 'n', 's', 'o', 'r', ' ', 'F', 'l', 'o', 'w']) scan_sum = tf.scan(lambda a, x: a + x, elems) sess = tf.InteractiveSession() print(sess.run(scan_sum)) sess.close()
e9880252c3b8871fcba2e2f278da14e2c40131dc
9ae6ce54bf9a2a86201961fdbd5e7b0ec913ff56
/google/ads/googleads/v10/services/services/custom_conversion_goal_service/client.py
6a590a9ac28792be1d45d85fcb1db11c168b6b0e
[ "Apache-2.0" ]
permissive
GerhardusM/google-ads-python
73b275a06e5401e6b951a6cd99af98c247e34aa3
676ac5fcb5bec0d9b5897f4c950049dac5647555
refs/heads/master
2022-07-06T19:05:50.932553
2022-06-17T20:41:17
2022-06-17T20:41:17
207,535,443
0
0
Apache-2.0
2019-09-10T10:58:55
2019-09-10T10:58:55
null
UTF-8
Python
false
false
21,247
py
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union import pkg_resources from google.api_core import client_options as client_options_lib from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore try: OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault] except AttributeError: # pragma: NO COVER OptionalRetry = Union[retries.Retry, object] # type: ignore from google.ads.googleads.v10.services.types import ( custom_conversion_goal_service, ) from .transports.base import ( CustomConversionGoalServiceTransport, DEFAULT_CLIENT_INFO, ) from .transports.grpc import CustomConversionGoalServiceGrpcTransport class CustomConversionGoalServiceClientMeta(type): """Metaclass for the CustomConversionGoalService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[CustomConversionGoalServiceTransport]] _transport_registry["grpc"] = CustomConversionGoalServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[CustomConversionGoalServiceTransport]: """Returns an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class CustomConversionGoalServiceClient( metaclass=CustomConversionGoalServiceClientMeta ): """Service to manage custom conversion goal.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Converts api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: CustomConversionGoalServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: CustomConversionGoalServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> CustomConversionGoalServiceTransport: """Returns the transport used by the client instance. Returns: CustomConversionGoalServiceTransport: The transport used by the client instance. """ return self._transport def __enter__(self): return self def __exit__(self, type, value, traceback): """Releases underlying transport's resources. .. warning:: ONLY use as a context manager if the transport is NOT shared with other clients! Exiting the with block will CLOSE the transport and may cause errors in other clients! """ self.transport.close() @staticmethod def conversion_action_path( customer_id: str, conversion_action_id: str, ) -> str: """Returns a fully-qualified conversion_action string.""" return "customers/{customer_id}/conversionActions/{conversion_action_id}".format( customer_id=customer_id, conversion_action_id=conversion_action_id, ) @staticmethod def parse_conversion_action_path(path: str) -> Dict[str, str]: """Parses a conversion_action path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/conversionActions/(?P<conversion_action_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def custom_conversion_goal_path( customer_id: str, goal_id: str, ) -> str: """Returns a fully-qualified custom_conversion_goal string.""" return "customers/{customer_id}/customConversionGoals/{goal_id}".format( customer_id=customer_id, goal_id=goal_id, ) @staticmethod def parse_custom_conversion_goal_path(path: str) -> Dict[str, str]: """Parses a custom_conversion_goal path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/customConversionGoals/(?P<goal_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path( billing_account: str, ) -> str: """Returns a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path( folder: str, ) -> str: """Returns a fully-qualified folder string.""" return "folders/{folder}".format( folder=folder, ) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path( organization: str, ) -> str: """Returns a fully-qualified organization string.""" return "organizations/{organization}".format( organization=organization, ) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path( project: str, ) -> str: """Returns a fully-qualified project string.""" return "projects/{project}".format( project=project, ) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path( project: str, location: str, ) -> str: """Returns a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[ str, CustomConversionGoalServiceTransport, None ] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the custom conversion goal service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, CustomConversionGoalServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. if os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") not in ( "true", "false", ): raise ValueError( "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`" ) use_client_cert = ( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") == "true" ) client_cert_source_func = None is_mtls = False if use_client_cert: if client_options.client_cert_source: is_mtls = True client_cert_source_func = client_options.client_cert_source else: is_mtls = mtls.has_default_client_cert_source() if is_mtls: client_cert_source_func = mtls.default_client_cert_source() else: client_cert_source_func = None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted " "values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, CustomConversionGoalServiceTransport): # transport is a CustomConversionGoalServiceTransport instance. if credentials or client_options.credentials_file: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) if client_options.scopes: raise ValueError( "When providing a transport instance, provide its scopes " "directly." ) self._transport = transport else: Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, credentials_file=client_options.credentials_file, host=api_endpoint, scopes=client_options.scopes, client_cert_source_for_mtls=client_cert_source_func, quota_project_id=client_options.quota_project_id, client_info=client_info, always_use_jwt_access=True, ) def mutate_custom_conversion_goals( self, request: Union[ custom_conversion_goal_service.MutateCustomConversionGoalsRequest, dict, ] = None, *, customer_id: str = None, operations: Sequence[ custom_conversion_goal_service.CustomConversionGoalOperation ] = None, retry: OptionalRetry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> custom_conversion_goal_service.MutateCustomConversionGoalsResponse: r"""Creates, updates or removes custom conversion goals. Operation statuses are returned. Args: request (Union[google.ads.googleads.v10.services.types.MutateCustomConversionGoalsRequest, dict]): The request object. Request message for [CustomConversionGoalService.MutateCustomConversionGoals][google.ads.googleads.v10.services.CustomConversionGoalService.MutateCustomConversionGoals]. customer_id (str): Required. The ID of the customer whose custom conversion goals are being modified. This corresponds to the ``customer_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. operations (Sequence[google.ads.googleads.v10.services.types.CustomConversionGoalOperation]): Required. The list of operations to perform on individual custom conversion goal. This corresponds to the ``operations`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v10.services.types.MutateCustomConversionGoalsResponse: Response message for a custom conversion goal mutate. """ # Create or coerce a protobuf request object. # Quick check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([customer_id, operations]) if request is not None and has_flattened_params: raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a custom_conversion_goal_service.MutateCustomConversionGoalsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, custom_conversion_goal_service.MutateCustomConversionGoalsRequest, ): request = custom_conversion_goal_service.MutateCustomConversionGoalsRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if customer_id is not None: request.customer_id = customer_id if operations is not None: request.operations = operations # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.mutate_custom_conversion_goals ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("customer_id", request.customer_id),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-ads", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ("CustomConversionGoalServiceClient",)
5184f3b5a7ed92581d910e979f58f31d1a589646
cad83699bb72bc1d560815d5b1c34fc9b371f163
/cartridge/project_template/manage.py
4330dc2e1a9c13927f25c69c19985527dbbe4267
[ "BSD-3-Clause" ]
permissive
BeUnique/cartridge
a1903ecc78029a576e57c3832b16357c7661b1b8
e5b887fed96d01ab93237f345fc420bcbe56d027
refs/heads/master
2021-01-19T06:00:01.090292
2011-08-31T01:04:33
2011-08-31T01:04:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
#!/usr/bin/env python # When project_template is used as the actual project during Mezzanine # development, insert the development path into sys.path so that the # development version of Mezzanine is used rather than the installed version. import os import sys project_path = os.path.dirname(os.path.abspath(__file__)) project_dir = project_path.split(os.sep)[-1] if project_dir == "project_template": dev_path = os.path.abspath(os.path.join(project_path, "..", "..")) if dev_path not in sys.path: sys.path.insert(0, dev_path) import cartridge cartridge_path = os.path.dirname(os.path.abspath(cartridge.__file__)) assert os.path.abspath(os.path.join(cartridge_path, "..")) == dev_path from django.core.management import execute_manager try: import settings # Assumed to be in the same directory. except ImportError: import sys sys.stderr.write("Error: Can't find the file 'settings.py' in the " "directory containing %r. It appears you've customized things.\n" "You'll have to run django-admin.py, passing it your settings module.\n" "(If the file settings.py does indeed exist, it's causing an " "ImportError somehow.)\n" % __file__) sys.exit(1) if __name__ == "__main__": execute_manager(settings)
5278d0ebc39489eb80a4b0a82ecaf609f72027a7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03813/s431513228.py
c4298e11e8a394fafce0121831f9fbfa51e6a6ab
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
def read_int(): return int(input().strip()) def read_ints(): return list(map(int, input().strip().split(' '))) def solve(): x = read_int() if x < 1200: return 'ABC' return 'ARC' if __name__ == '__main__': print(solve())
b9aae4c3e88a7792acd442dd2d9d158dd3d47ae4
fb8cbebdf034b2f478943752d5443afc82c6eef5
/tuirer/venv/lib/python3.6/site-packages/IPython/core/inputtransformer.py
44ec5a1aae19b8708a617982258ffa6ec5f11bd0
[]
no_license
fariasjr/CitiTuirer
f64e0ec93ef088f8140bb0961d2ad4ed3b59448a
deb3f7a9c2d45b8a7f54639037f097b99abdac11
refs/heads/master
2020-03-24T05:10:36.261050
2018-08-01T20:24:30
2018-08-01T20:24:30
142,477,521
0
0
null
null
null
null
UTF-8
Python
false
false
18,242
py
"""Input transformer classes to support IPython special syntax. This includes the machinery to recognise and transform ``%magic`` commands, ``!system`` commands, ``help?`` querying, prompt stripping, and so forth. """ import abc import functools import re from io import StringIO from IPython.core.splitinput import LineInfo from IPython.utils import tokenize2 from IPython.utils.tokenize2 import TokenError, generate_tokens, untokenize #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # The escape sequences that define the syntax transformations IPython will # apply to user input. These can NOT be just changed here: many regular # expressions and other parts of the code may use their hardcoded values, and # for all intents and purposes they constitute the 'IPython syntax', so they # should be considered fixed. ESC_SHELL = '!' # Send line to underlying system shell ESC_SH_CAP = '!!' # Send line to system shell and capture output ESC_HELP = '?' # Find information about object ESC_HELP2 = '??' # Find extra-detailed information about object ESC_MAGIC = '%' # Call magic function ESC_MAGIC2 = '%%' # Call cell-magic function ESC_QUOTE = ',' # Split args on whitespace, quote each as string and call ESC_QUOTE2 = ';' # Quote all args as a single string, call ESC_PAREN = '/' # Call first argument with rest of line as arguments ESC_SEQUENCES = [ESC_SHELL, ESC_SH_CAP, ESC_HELP ,\ ESC_HELP2, ESC_MAGIC, ESC_MAGIC2,\ ESC_QUOTE, ESC_QUOTE2, ESC_PAREN ] class InputTransformer(metaclass=abc.ABCMeta): """Abstract base class for line-based input transformers.""" @abc.abstractmethod def push(self, line): """Send a line of input to the transformer, returning the transformed input or None if the transformer is waiting for more input. Must be overridden by subclasses. Implementations may raise ``SyntaxError`` if the input is invalid. No other exceptions may be raised. """ pass @abc.abstractmethod def reset(self): """Return, transformed any lines that the transformer has accumulated, and reset its internal state. Must be overridden by subclasses. """ pass @classmethod def wrap(cls, func): """Can be used by subclasses as a decorator, to return a factory that will allow instantiation with the decorated object. """ @functools.wraps(func) def transformer_factory(**kwargs): return cls(func, **kwargs) return transformer_factory class StatelessInputTransformer(InputTransformer): """Wrapper for a stateless input transformer implemented as a function.""" def __init__(self, func): self.func = func def __repr__(self): return "StatelessInputTransformer(func={0!r})".format(self.func) def push(self, line): """Send a line of input to the transformer, returning the transformed input.""" return self.func(line) def reset(self): """No-op - exists for compatibility.""" pass class CoroutineInputTransformer(InputTransformer): """Wrapper for an input transformer implemented as a coroutine.""" def __init__(self, coro, **kwargs): # Prime it self.coro = coro(**kwargs) next(self.coro) def __repr__(self): return "CoroutineInputTransformer(coro={0!r})".format(self.coro) def push(self, line): """Send a line of input to the transformer, returning the transformed input or None if the transformer is waiting for more input. """ return self.coro.send(line) def reset(self): """Return, transformed any lines that the transformer has accumulated, and reset its internal state. """ return self.coro.send(None) class TokenInputTransformer(InputTransformer): """Wrapper for a token-based input transformer. func should accept a list of tokens (5-tuples, see tokenize docs), and return an iterable which can be passed to tokenize.untokenize(). """ def __init__(self, func): self.func = func self.buf = [] self.reset_tokenizer() def reset_tokenizer(self): it = iter(self.buf) self.tokenizer = generate_tokens(it.__next__) def push(self, line): self.buf.append(line + '\n') if all(l.isspace() for l in self.buf): return self.reset() tokens = [] stop_at_NL = False try: for intok in self.tokenizer: tokens.append(intok) t = intok[0] if t == tokenize2.NEWLINE or (stop_at_NL and t == tokenize2.NL): # Stop before we try to pull a line we don't have yet break elif t == tokenize2.ERRORTOKEN: stop_at_NL = True except TokenError: # Multi-line statement - stop and try again with the next line self.reset_tokenizer() return None return self.output(tokens) def output(self, tokens): self.buf.clear() self.reset_tokenizer() return untokenize(self.func(tokens)).rstrip('\n') def reset(self): l = ''.join(self.buf) self.buf.clear() self.reset_tokenizer() if l: return l.rstrip('\n') class assemble_python_lines(TokenInputTransformer): def __init__(self): super(assemble_python_lines, self).__init__(None) def output(self, tokens): return self.reset() @CoroutineInputTransformer.wrap def assemble_logical_lines(): """Join lines following explicit line continuations (\)""" line = '' while True: line = (yield line) if not line or line.isspace(): continue parts = [] while line is not None: if line.endswith('\\') and (not has_comment(line)): parts.append(line[:-1]) line = (yield None) # Get another line else: parts.append(line) break # Output line = ''.join(parts) # Utilities def _make_help_call(target, esc, lspace, next_input=None): """Prepares a pinfo(2)/psearch call from a target name and the escape (i.e. ? or ??)""" method = 'pinfo2' if esc == '??' \ else 'psearch' if '*' in target \ else 'pinfo' arg = " ".join([method, target]) #Prepare arguments for get_ipython().run_line_magic(magic_name, magic_args) t_magic_name, _, t_magic_arg_s = arg.partition(' ') t_magic_name = t_magic_name.lstrip(ESC_MAGIC) if next_input is None: return '%sget_ipython().run_line_magic(%r, %r)' % (lspace, t_magic_name, t_magic_arg_s) else: return '%sget_ipython().set_next_input(%r);get_ipython().run_line_magic(%r, %r)' % \ (lspace, next_input, t_magic_name, t_magic_arg_s) # These define the transformations for the different escape characters. def _tr_system(line_info): "Translate lines escaped with: !" cmd = line_info.line.lstrip().lstrip(ESC_SHELL) return '%sget_ipython().system(%r)' % (line_info.pre, cmd) def _tr_system2(line_info): "Translate lines escaped with: !!" cmd = line_info.line.lstrip()[2:] return '%sget_ipython().getoutput(%r)' % (line_info.pre, cmd) def _tr_help(line_info): "Translate lines escaped with: ?/??" # A naked help line should just fire the intro help screen if not line_info.line[1:]: return 'get_ipython().show_usage()' return _make_help_call(line_info.ifun, line_info.esc, line_info.pre) def _tr_magic(line_info): "Translate lines escaped with: %" tpl = '%sget_ipython().run_line_magic(%r, %r)' if line_info.line.startswith(ESC_MAGIC2): return line_info.line cmd = ' '.join([line_info.ifun, line_info.the_rest]).strip() #Prepare arguments for get_ipython().run_line_magic(magic_name, magic_args) t_magic_name, _, t_magic_arg_s = cmd.partition(' ') t_magic_name = t_magic_name.lstrip(ESC_MAGIC) return tpl % (line_info.pre, t_magic_name, t_magic_arg_s) def _tr_quote(line_info): "Translate lines escaped with: ," return '%s%s("%s")' % (line_info.pre, line_info.ifun, '", "'.join(line_info.the_rest.split()) ) def _tr_quote2(line_info): "Translate lines escaped with: ;" return '%s%s("%s")' % (line_info.pre, line_info.ifun, line_info.the_rest) def _tr_paren(line_info): "Translate lines escaped with: /" return '%s%s(%s)' % (line_info.pre, line_info.ifun, ", ".join(line_info.the_rest.split())) tr = { ESC_SHELL : _tr_system, ESC_SH_CAP : _tr_system2, ESC_HELP : _tr_help, ESC_HELP2 : _tr_help, ESC_MAGIC : _tr_magic, ESC_QUOTE : _tr_quote, ESC_QUOTE2 : _tr_quote2, ESC_PAREN : _tr_paren } @StatelessInputTransformer.wrap def escaped_commands(line): """Transform escaped commands - %magic, !system, ?help + various autocalls. """ if not line or line.isspace(): return line lineinf = LineInfo(line) if lineinf.esc not in tr: return line return tr[lineinf.esc](lineinf) _initial_space_re = re.compile(r'\s*') _help_end_re = re.compile(r"""(%{0,2} [a-zA-Z_*][\w*]* # Variable name (\.[a-zA-Z_*][\w*]*)* # .etc.etc ) (\?\??)$ # ? or ?? """, re.VERBOSE) # Extra pseudotokens for multiline strings and data structures _MULTILINE_STRING = object() _MULTILINE_STRUCTURE = object() def _line_tokens(line): """Helper for has_comment and ends_in_comment_or_string.""" readline = StringIO(line).readline toktypes = set() try: for t in generate_tokens(readline): toktypes.add(t[0]) except TokenError as e: # There are only two cases where a TokenError is raised. if 'multi-line string' in e.args[0]: toktypes.add(_MULTILINE_STRING) else: toktypes.add(_MULTILINE_STRUCTURE) return toktypes def has_comment(src): """Indicate whether an input line has (i.e. ends in, or is) a comment. This uses tokenize, so it can distinguish comments from # inside strings. Parameters ---------- src : string A single line input string. Returns ------- comment : bool True if source has a comment. """ return (tokenize2.COMMENT in _line_tokens(src)) def ends_in_comment_or_string(src): """Indicates whether or not an input line ends in a comment or within a multiline string. Parameters ---------- src : string A single line input string. Returns ------- comment : bool True if source ends in a comment or multiline string. """ toktypes = _line_tokens(src) return (tokenize2.COMMENT in toktypes) or (_MULTILINE_STRING in toktypes) @StatelessInputTransformer.wrap def help_end(line): """Translate lines with ?/?? at the end""" m = _help_end_re.search(line) if m is None or ends_in_comment_or_string(line): return line target = m.group(1) esc = m.group(3) lspace = _initial_space_re.match(line).group(0) # If we're mid-command, put it back on the next prompt for the user. next_input = line.rstrip('?') if line.strip() != m.group(0) else None return _make_help_call(target, esc, lspace, next_input) @CoroutineInputTransformer.wrap def cellmagic(end_on_blank_line=False): """Captures & transforms cell magics. After a cell magic is started, this stores up any lines it gets until it is reset (sent None). """ tpl = 'get_ipython().run_cell_magic(%r, %r, %r)' cellmagic_help_re = re.compile('%%\w+\?') line = '' while True: line = (yield line) # consume leading empty lines while not line: line = (yield line) if not line.startswith(ESC_MAGIC2): # This isn't a cell magic, idle waiting for reset then start over while line is not None: line = (yield line) continue if cellmagic_help_re.match(line): # This case will be handled by help_end continue first = line body = [] line = (yield None) while (line is not None) and \ ((line.strip() != '') or not end_on_blank_line): body.append(line) line = (yield None) # Output magic_name, _, first = first.partition(' ') magic_name = magic_name.lstrip(ESC_MAGIC2) line = tpl % (magic_name, first, u'\n'.join(body)) def _strip_prompts(prompt_re, initial_re=None, turnoff_re=None): """Remove matching input prompts from a block of input. Parameters ---------- prompt_re : regular expression A regular expression matching any input prompt (including continuation) initial_re : regular expression, optional A regular expression matching only the initial prompt, but not continuation. If no initial expression is given, prompt_re will be used everywhere. Used mainly for plain Python prompts, where the continuation prompt ``...`` is a valid Python expression in Python 3, so shouldn't be stripped. If initial_re and prompt_re differ, only initial_re will be tested against the first line. If any prompt is found on the first two lines, prompts will be stripped from the rest of the block. """ if initial_re is None: initial_re = prompt_re line = '' while True: line = (yield line) # First line of cell if line is None: continue out, n1 = initial_re.subn('', line, count=1) if turnoff_re and not n1: if turnoff_re.match(line): # We're in e.g. a cell magic; disable this transformer for # the rest of the cell. while line is not None: line = (yield line) continue line = (yield out) if line is None: continue # check for any prompt on the second line of the cell, # because people often copy from just after the first prompt, # so we might not see it in the first line. out, n2 = prompt_re.subn('', line, count=1) line = (yield out) if n1 or n2: # Found a prompt in the first two lines - check for it in # the rest of the cell as well. while line is not None: line = (yield prompt_re.sub('', line, count=1)) else: # Prompts not in input - wait for reset while line is not None: line = (yield line) @CoroutineInputTransformer.wrap def classic_prompt(): """Strip the >>>/... prompts of the Python interactive shell.""" # FIXME: non-capturing version (?:...) usable? prompt_re = re.compile(r'^(>>>|\.\.\.)( |$)') initial_re = re.compile(r'^>>>( |$)') # Any %magic/!system is IPython syntax, so we needn't look for >>> prompts turnoff_re = re.compile(r'^[%!]') return _strip_prompts(prompt_re, initial_re, turnoff_re) @CoroutineInputTransformer.wrap def ipy_prompt(): """Strip IPython's In [1]:/...: prompts.""" # FIXME: non-capturing version (?:...) usable? prompt_re = re.compile(r'^(In \[\d+\]: |\s*\.{3,}: ?)') # Disable prompt stripping inside cell magics turnoff_re = re.compile(r'^%%') return _strip_prompts(prompt_re, turnoff_re=turnoff_re) @CoroutineInputTransformer.wrap def leading_indent(): """Remove leading indentation. If the first line starts with a spaces or tabs, the same whitespace will be removed from each following line until it is reset. """ space_re = re.compile(r'^[ \t]+') line = '' while True: line = (yield line) if line is None: continue m = space_re.match(line) if m: space = m.group(0) while line is not None: if line.startswith(space): line = line[len(space):] line = (yield line) else: # No leading spaces - wait for reset while line is not None: line = (yield line) _assign_pat = \ r'''(?P<lhs>(\s*) ([\w\.]+) # Initial identifier (\s*,\s* \*?[\w\.]+)* # Further identifiers for unpacking \s*?,? # Trailing comma ) \s*=\s* ''' assign_system_re = re.compile(r'{}!\s*(?P<cmd>.*)'.format(_assign_pat), re.VERBOSE) assign_system_template = '%s = get_ipython().getoutput(%r)' @StatelessInputTransformer.wrap def assign_from_system(line): """Transform assignment from system commands (e.g. files = !ls)""" m = assign_system_re.match(line) if m is None: return line return assign_system_template % m.group('lhs', 'cmd') assign_magic_re = re.compile(r'{}%\s*(?P<cmd>.*)'.format(_assign_pat), re.VERBOSE) assign_magic_template = '%s = get_ipython().run_line_magic(%r, %r)' @StatelessInputTransformer.wrap def assign_from_magic(line): """Transform assignment from magic commands (e.g. a = %who_ls)""" m = assign_magic_re.match(line) if m is None: return line #Prepare arguments for get_ipython().run_line_magic(magic_name, magic_args) m_lhs, m_cmd = m.group('lhs', 'cmd') t_magic_name, _, t_magic_arg_s = m_cmd.partition(' ') t_magic_name = t_magic_name.lstrip(ESC_MAGIC) return assign_magic_template % (m_lhs, t_magic_name, t_magic_arg_s)
0e10cbdfa5b1cd030ad2bdd01ff695d9fdb60938
d88868b88864e4d10009c58b27323034715b0277
/projects/barter/deployments/docker/barter/test.py
1ff68bc01c1f1c3d50a8992e741a015cb27fa14d
[ "Apache-2.0" ]
permissive
shamal112mn/packer-1
795ebd9e0fee444f0cbb01897a50e199b73f1307
be2720e9cb61bf1110a880e94e32a6767a341588
refs/heads/master
2023-07-10T09:33:10.516559
2021-08-17T02:25:50
2021-08-17T02:25:50
327,763,823
0
0
null
2021-01-08T01:08:49
2021-01-08T01:08:48
null
UTF-8
Python
false
false
388
py
import requests import json url = "https://investors-exchange-iex-trading.p.rapidapi.com/stock/tsla/effective-spread" headers = { 'x-rapidapi-key': "158cd4f9cdmsh0d92f8b92b1d427p1947b6jsn857aa1252e0b", 'x-rapidapi-host': "investors-exchange-iex-trading.p.rapidapi.com" } response = requests.request("GET", url, headers=headers) print(json.dumps(response.json(), indent=2))
6f5a178c8d1ba0fb6bb65c7f38002457ca8ef23a
e3565e1ce607f60745f2a045aae8026661a6b99b
/resources/Onyx-1.0.511/py/onyx/util/rocutils.py
48dd8b474c58afe853ee45475fc9479842d375ed
[ "Apache-2.0" ]
permissive
eternity668/speechAD
4c08d953b2ed06b3357b1c39d8709dd088a2471c
f270a1be86372b7044615e4fd82032029e123bc1
refs/heads/master
2021-01-12T22:10:33.358500
2014-02-03T16:03:28
2014-02-03T16:03:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,676
py
########################################################################### # # File: rocutils.py (directory: ./py/onyx/util) # Date: Mon 10 Mar 2008 18:34 # Author: Ken Basye # Description: Utility code for generating ROC and DET curves # # This file is part of Onyx http://onyxtools.sourceforge.net # # Copyright 2008, 2009 The Johns Hopkins University # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # ########################################################################### """ Utilities for generating ROC and DET curves """ import StringIO def _uniquify_preserving_first(iterable, eq_pred): item = iterable.next() while 1: try: next_item = iterable.next() except: yield item break if not eq_pred(item, next_item): yield item item = next_item def _uniquify_preserving_last(iterable, eq_pred): item = iterable.next() while 1: try: next_item = iterable.next() except: yield item break if not eq_pred(item, next_item): yield item item = next_item else: item = next_item def make_ROC_data(reference, ratios): """ reference is a list of 0/1 values which are the correct classifications values is a parallel list of numeric values, with higher values intending to map toward classifications of 1. Returns data for a ROC curve in the form of a list of triples, where each triple contains an interesting threshold value, the fraction of correct identifications (true positives) as a percent, and the fraction of false positives, at that threshold. The triples are ordered by threshold from lowest (fewest false positives) to highest (most true positives) Note that a typical ROC curve would plot false_pos on the X axis and true_pos on the Y axis using a linear scale. >>> ref = [0,0,0,0,0,1,1,1,1,1] >>> values = [2, 3, 4, 9, 4, 5, 6, 9, 9, 3] >>> res = make_ROC_data(ref, values) >>> res [(0.0, 0.0, 9), (20.0, 80.0, 4), (80.0, 100.0, 2)] """ det_data = make_DET_data(reference, ratios) roc_data = [(fp, 100-miss, t) for (fp, miss, t) in det_data] return roc_data def make_DET_data(reference, ratios): """ reference is a list of 0/1 values which are the correct classifications values is a parallel list of numeric values, with higher values intending to map toward classifications of 1. Returns data for a DET curve in the form of a list of triples, where each triple contains the fraction of false positives as a percent, the fraction of false negatives, and the threshold value that generated those rates. The triples are ordered by threshold from lowest (fewest false positives) to highest (fewest misses) Note that a typical DET curve would plot false_pos on the X axis and false_neg on the Y axis, oftentimes with a normal deviate scale. >>> ref = [0,0,0,0,0,1,1,1,1,1] >>> values = [2, 3, 4, 9, 4, 5, 6, 9, 9, 3] >>> res = make_DET_data(ref, values) >>> res [(0.0, 100.0, 9), (20.0, 19.999999999999996, 4), (80.0, 0.0, 2)] """ assert( len(reference) == len(ratios) ) num_pos = reference.count(1) num_neg = reference.count(0) assert( num_pos + num_neg == len(reference)) full_result = [] # Find the list of interesting threshholds, which is any value in # the list of ratios # Seems like there should be an easier way to uniquify a list all_threshes = set(ratios) all_threshes = list(all_threshes) all_threshes.sort() def count_values_over_thresh(value, ref, ratios, t): result = 0 for (i, r) in enumerate(ratios): if ref[i] == value and r > t: result += 1 return result # Now find precision and recall at each threshold for thresh in all_threshes: num_neg_accepted = count_values_over_thresh(0, reference, ratios, thresh) num_pos_accepted = count_values_over_thresh(1, reference, ratios, thresh) full_result.append((100 * float(num_neg_accepted) / num_neg, # false positives 100 * (1 - float(num_pos_accepted) / num_pos), # misses thresh)) def eq0(x,y): return x[0] == y[0] def eq1(x,y): return x[1] == y[1] iter1 = _uniquify_preserving_first(iter(full_result), eq0) ret = list(_uniquify_preserving_last(iter1, eq1)) ret.reverse() return ret def write_data_as_csv(data, stream, header_type = "DET"): """ Write either ROC or DET data as comma-separated text, suitable for import into a spreadsheet or other tool. Writes DET header fields be default, use header_type of "ROC" or None for ROC headers or no headers, respectively. >>> ref = [0,0,0,0,0,1,1,1,1,1] >>> values = [2, 3, 4, 9, 4, 5, 6, 9, 9, 3] >>> res = make_DET_data(ref, values) >>> s = StringIO.StringIO() >>> write_data_as_csv(res, s) >>> out = s.getvalue() >>> print out False Alarm Rate, Miss Rate, Threshold 0.0, 100.0, 9 20.0, 20.0, 4 80.0, 0.0, 2 <BLANKLINE> >>> s.seek(0) >>> res = make_ROC_data(ref, values) >>> write_data_as_csv(res, s, header_type="ROC") >>> out = s.getvalue() >>> print out False Pos Rate, True Pos Rate, Threshold 0.0, 0.0, 9 20.0, 80.0, 4 80.0, 100.0, 2 <BLANKLINE> >>> s.close() """ if header_type == "DET": stream.write("False Alarm Rate, Miss Rate, Threshold") elif header_type == "ROC": stream.write("False Pos Rate, True Pos Rate, Threshold") [stream.write("\n%s, %s, %s" % triple) for triple in data] stream.write("\n") def _test0(): ref = [0,0,0,0,0,1,1,1,1,1] values = [2, 3, 4, 9, 4, 5, 6, 9, 9, 3] res = make_DET_data(ref, values) s = open("foo_csv.txt", "w") write_data_as_csv(res, s) s.close() if __name__ == '__main__': from onyx import onyx_mainstartup onyx_mainstartup() # _test0()
4438a410880898850073b4bc83f77e73ca792121
eadd15064aa74811e7a3718b617636627ef4fd47
/web/migrations/0020_rename_index_indexpage.py
8efb4605a936d00a29a46a2c95ef6c4263e63c65
[]
no_license
topsai/plasrefine_backstage
262f7bb032daa4d018aac1519e1139cb060c3f91
1eb34dd0b13ebdc2a42dd6ed1aaa2d08c18ab5fb
refs/heads/master
2023-04-12T13:24:22.710108
2021-05-08T14:16:41
2021-05-08T14:16:41
361,993,024
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
# Generated by Django 3.2 on 2021-05-02 08:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('web', '0019_auto_20210502_1558'), ] operations = [ migrations.RenameModel( old_name='Index', new_name='IndexPage', ), ]
241ac7b70c2142fba7ff196677ed61d5e0910d2f
587290dbd33c5fb60a154eacd2155e681a3f9ecf
/js/gatsby/index.cgi
db257841537410c023fb93f34bb0b3e0a10dcd00
[]
no_license
jaredly/prog
b6408db52c16e9d3c322933f0624c23663d33ce0
e8fe82ccd1abe42371adbb3f317576facac546ca
refs/heads/master
2021-01-20T09:12:48.931999
2013-08-29T04:24:36
2013-08-29T04:24:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,523
cgi
#!/usr/bin/python print 'Content-type:text/html\n' import cgi,cgitb,os,sys,re cgitb.enable() def load_chapter(chap): return open('chapter%s.txt'%chap).read() def load_chapters(): d=[] for i in range(1,10): d.append([i,load_chapter(i)]) return d def print_entry(at,chap,pageat,item): if at==1:nd="<sup>st</sup>" elif at==2:nd="<sup>nd</sup>" elif at==3:nd="<sup>rd</sup>" else:nd="<sup>th</sup>" return "<br><br><br><b>%s%s</b> paragraph in chapter <b>%s</b> (around page %s)<br><br>\n"%(at, nd, chap, pageat)+item form = cgi.FieldStorage() print """ <html><head><title>Great Gatsby Search</title></head><body> <style> span { font-weight: bold; font-size: 1.1em; color: black; background-color: #ccc; } h2 { text-align:center; } div.searchform { background-color:#BBFFAA; border:2px solid green; padding:15px; position:absolute; right:0px; top:0px; } form { margin: 0px; } </style> <h1>Search the Great Gatsby</h1> <div class="searchform"> <form method="GET"> Search For: <input name="s" value="%s"> <input type="checkbox" name="whole" value="1"> Whole word <input type="submit" value="Search"> </form> </div> <br>"""%(form.has_key("s") and form["s"].value or "") pages = [1, 23, 39, 61, 81, 97, 113, 147, 163, 180 ] ## None ## [3, 16, 26, 39, 52, 62, 93, 103] retr = "" num = 0 if form.has_key('s'): term = form['s'].value.strip() iterm=term if form.has_key('whole'): term='(?<=\W)'+term+'(?=\W)' for chapter,text in load_chapters(): for i,body in enumerate(text.split('\n')): all = re.search(term,body,re.I|re.S) if pages: pchap = pages[chapter-1] #print text.find(body),len(text) pat = int(round(float(pages[chapter]-pchap)* (text.find(body)/float(len(text)))+pchap)) else: pat = "" rgx = re.compile(term,re.I) bdy = rgx.sub(lambda x:'<span>'+x.group()+'</span>', body)+'<br><br>' ## bdy = re.sub(term, lambda x:'<span>'+x.group()+'</span>', body)+'<br><br>' if all: ## print (text.find(body)/float(len(text))),float(pages[chapter]-pchap) ## print float(pages[chapter]-pchap)*(text.find(body)/float(len(text)))+pchap retr += print_entry(i,chapter,pat,bdy) num+=1 print "<h3>Found %d results for %s</h3>"%(num,iterm) print retr
21bc2d0fbd981fbefdd919c846357da41182c5ac
e48eac671ea8335f696ec5fd0511b12800b0fca0
/accounts/models.py
6625a130b79945d6d4613bcc9a0b047c32339541
[]
no_license
linusidom/django-basic-reservation-system
8fba10708cebd42d5ad308c0ef838a0fe1ac8778
5dd5db4832fe83e862424af18aae3aad6cf3f1ed
refs/heads/master
2020-03-26T08:37:15.052362
2018-08-14T11:34:19
2018-08-14T11:34:19
144,711,607
2
0
null
null
null
null
UTF-8
Python
false
false
359
py
from django.db import models # Create your models here. from django.contrib.auth.models import AbstractUser from django.shortcuts import reverse class Profile(AbstractUser): ideal_weight = models.IntegerField(default=185) def __str__(self): return self.email def get_absolute_url(self): return reverse('accounts:profile_detail', kwargs={'pk':pk})
f8fdac6b1a2846a9f74f7db1f038fed9022ab0a4
5dd03f9bd8886f02315c254eb2569e4b6d368849
/3rdparty/python/GitPython-0.3.1-py2.6.egg/git/__init__.py
500d053f7729d7172f300870e30b00ae7a523f09
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
adamsxu/commons
9e1bff8be131f5b802d3aadc9916d5f3a760166c
9fd5a4ab142295692994b012a2a2ef3935d35c0b
refs/heads/master
2021-01-17T23:13:51.478337
2012-03-11T17:30:24
2012-03-11T17:30:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,171
py
# __init__.py # Copyright (C) 2008, 2009 Michael Trier ([email protected]) and contributors # # This module is part of GitPython and is released under # the BSD License: http://www.opensource.org/licenses/bsd-license.php import os import sys import inspect __version__ = '0.3.1' #{ Initialization def _init_externals(): """Initialize external projects by putting them into the path""" sys.path.append(os.path.join(os.path.dirname(__file__), 'ext', 'gitdb')) try: import gitdb except ImportError: raise ImportError("'gitdb' could not be found in your PYTHONPATH") #END verify import #} END initialization ################# _init_externals() ################# #{ Imports from git.config import GitConfigParser from git.objects import * from git.refs import * from git.diff import * from git.exc import * from git.db import * from git.cmd import Git from git.repo import Repo from git.remote import * from git.index import * from git.util import ( LockFile, BlockingLockFile, Stats, Actor ) #} END imports __all__ = [ name for name, obj in locals().items() if not (name.startswith('_') or inspect.ismodule(obj)) ]
996aac45cc3fff5b7b5a9eb0567f864fdb8f7981
8c4af05e0257661195c95b0b9e0873eeb6391dab
/packages/python-packages/apiview-gpt/src/_models.py
85d435a1aa1dd9ca713a5cccc403df55f16ebc0d
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
Azure/azure-sdk-tools
6d171054800807fcbe7b8b878c5903a202d31faa
2dce521dedc3f5169007d4c481ae8ec077be4450
refs/heads/main
2023-09-01T00:00:32.662190
2023-08-31T22:21:44
2023-08-31T22:21:44
170,592,186
113
174
MIT
2023-09-14T21:53:41
2019-02-13T22:55:46
C#
UTF-8
Python
false
false
744
py
from pydantic import BaseModel, Field from typing import List, Optional class Violation(BaseModel): rule_ids: List[str] = Field(description="unique rule ID or IDs that were violated.") line_no: Optional[int] = Field(description="the line number of the violation.") bad_code: str = Field(description="the original code that was bad, cited verbatim.") suggestion: str = Field(description="the suggested fix for the bad code.") comment: str = Field(description="a comment about the violation.") class GuidelinesResult(BaseModel): status: str = Field(description="Succeeded if the request has no violations. Error if there are violations.") violations: List[Violation] = Field(description="list of violations if any")
ad74fb1924b3b8c48c2d09b0bbc03cd105920500
af97a81a69d100e684b8e9f02bc1b117069b9895
/Testcases_Copilot/CWE-730/codeql_2.py
1c59968d10ace977410229a13e67c6c9188734a4
[]
no_license
s2e-lab/SecurityEval
8de3e2f78fffa7058d79cce84fbcd8ff29c8468d
f637f67b8e8d52d641ab15903e46a41ead7e30a5
refs/heads/main
2023-06-17T22:55:08.047769
2023-06-16T16:54:54
2023-06-16T16:54:54
509,664,226
28
7
null
2023-05-27T04:55:05
2022-07-02T05:10:17
Python
UTF-8
Python
false
false
294
py
from flask import request import re @app.route("/direct") def direct(): ''' get the regular expression pattern from the get request, comipile it and then use it for search ''' pattern = request.args.get('pattern') regex = re.compile(pattern) return regex.search(text)
aeff8452dda485b474d6f78dec9db2f3f258e6ff
80d1f1f50b9f7f6be17302df7695154f54aa7a76
/pdp8/core.py
3691cb7deeb3ab2b53a7ab5d3ba6877bf6d1f838
[ "MIT" ]
permissive
romilly/pdp8
af7f7df0136b31df03a4f53b709869a59f25ca2c
68e1025c5e4c6b6fa92a62cc81117d841c214137
refs/heads/master
2020-03-13T15:24:12.955602
2019-06-19T05:58:50
2019-06-19T05:58:50
131,176,107
4
1
null
2018-05-16T07:13:14
2018-04-26T15:31:01
HTML
UTF-8
Python
false
false
7,983
py
from io import StringIO from pdp8.tracing import NullTracer def octal(string): return int(string, 8) OPR_GROUP1 = octal('0400') OPR_GROUP2 = octal('0001') CLA1 = octal('0200') CLL = octal('0100') CMA = octal('0040') CML = octal('0020') RAR = octal('0010') RAL = octal('0004') RTR = octal('0012') RTL = octal('0006') IAC = octal('0001') HALT = octal('0002') BIT8 = octal('0010') Z_BIT = octal('0200') I_BIT = octal('0400') class PDP8: # TODO simplify these, use constants rather than calculating? W_BITS = 12 # number of bits in a word W_MASK = 2 ** W_BITS - 1 # word mask OP_BITS = 3 # 3 bits in the opcode V_BITS = 7 # 7 bits for the value part of an instruction OP_MASK = (2 ** OP_BITS - 1) << W_BITS - OP_BITS V_MASK = 2 ** V_BITS - 1 # mask for instruction data MAX = 2 ** (V_BITS - 1) def __init__(self): self.memory = 2 ** self.W_BITS * [0] self.pc = 0 self.accumulator = 0 self.link = 0 self.running = False self.debugging = False self.stepping = False self.ia = None self.instruction = None self.tape = StringIO('') self.READER1 = 0o03 self.PUNCH1 = 0o04 self.punchflag = 0 self.output = '' self.tracer = None self.ops = [self.andi, self.tad, self.isz, self.dca, self.jms, self.jmp, self.iot, self.opr] def __getitem__(self, address): return self.memory[address] & self.W_MASK # only 12 bits retrieved def is_group1(self): return 0 == self.i_mask(OPR_GROUP1) def i_mask(self, mask): return self.instruction & mask def is_iac(self): return 0 != self.i_mask(IAC) def is_group2(self): return (not self.is_group1()) and 0 == self.i_mask(OPR_GROUP2) # Group 2 def is_halt(self): return self.i_mask(HALT) def __setitem__(self, address, contents): self.memory[address] = contents & self.W_MASK # only 12 bits stored if self.debugging: self.tracer.setting(address, contents) def run(self, debugging=False, start=None, tape='', stepping=None, tracer=None): self.running = True if tracer is not None: self.tracer = tracer else: if self.tracer is None: self.tracer = NullTracer() if start: self.pc = start # TODO: smarter tape creation to cope with text and binary tapes. self.tape = StringIO(tape) if stepping is not None: self.stepping = stepping self.debugging = debugging while self.running: self.execute() if self.stepping: self.running = False def execute(self): old_pc = self.pc # for debugging self.instruction = self[self.pc] self.ia = self.instruction_address() op = self.opcode() self.pc += 1 self.ops[op]() if self.debugging: self.tracer.instruction(old_pc, self.instruction, self.accumulator, self.link, self.pc) def opcode(self): bits = self.i_mask(self.OP_MASK) code = bits >> self.W_BITS - self.OP_BITS return code def andi(self): self.accumulator &= self[self.ia] def tad(self): self.add_12_bits(self[self.ia]) def add_12_bits(self, increment): self.accumulator += increment total = self.accumulator self.accumulator &= octal('7777') if self.accumulator == total: self.link = 0 else: self.link = 1 def isz(self): contents = self[self.ia] contents += 1 self[self.ia] = contents # forces 12-bit value if self[self.ia] == 0: self.pc += 1 # skip def dca(self): self[self.ia] = self.accumulator self.accumulator = 0 def jmp(self): self.pc = self.ia def jms(self): self[self.ia] = self.pc self.pc = self.ia + 1 def iot(self): device = (self.instruction & 0o0770) >> 3 io_op = self.instruction & 0o0007 if device == self.READER1: self.reader(io_op) elif device == self.PUNCH1: self.punch(io_op) else: raise ValueError('uknown device') def opr(self): if self.is_group1(): self.group1() return if self.is_group2(): self.group2() return raise ValueError('Unknown opcode in instruction 0o%o at %d(%o)' % (self.instruction, self.pc-1, self.pc-1) ) def instruction_address(self): o = self.i_mask(self.V_MASK) if not self.i_mask(Z_BIT): o += self.pc & 0o7600 if self.i_mask(I_BIT): o = self[o] return o def cla(self): self.accumulator = 0 def cll(self): self.link = 0 def cma(self): self.accumulator ^= 0o7777 def cml(self): self.link = 1-self.link def rr(self): self.rar(0 < self.i_mask(2)) def rar(self, flag): count = 2 if flag else 1 for i in range(count): new_link = self.accumulator & 0o0001 self.accumulator = self.accumulator >> 1 if self.link: self.accumulator |= 0o4000 self.link = new_link def rl(self): self.ral(self.i_mask(2)) def ral(self, flag): count = 2 if flag else 1 for i in range(count): new_link = 1 if self.accumulator & 0o4000 else 0 self.accumulator = 0o7777 & self.accumulator << 1 if self.link: self.accumulator |= 0o0001 self.link = new_link def iac(self): self.add_12_bits(1) def halt(self): if self.debugging: print('Halted') self.tracer.halt(self.pc) self.running = False def group1(self): for (mask, ins) in zip([ CLA1, CLL, CMA, CML, IAC, RAR, RAL], [self.cla, self.cll, self.cma, self.cml, self.iac,self.rr, self.rl]): if self.i_mask(mask): ins() def is_or_group(self): return not self.i_mask(BIT8) def is_and_group(self): return self.i_mask(BIT8) def group2(self): if self.is_or_group() and (self.sma() or self.sza() or self.snl()): self.pc += 1 if self.is_and_group() and self.spa() and self.sna() and self.szl(): self.pc += 1 if self.is_cla2(): self.cla() if self.is_halt(): self.halt() def sma(self): return self.accumulator_is_negative() and (self.i_mask(octal('0100'))) def accumulator_is_negative(self): return self.accumulator & octal('4000') def sza(self): return self.accumulator == 0 and (self.i_mask(octal('0040'))) def snl(self): return self.link == 1 and (self.i_mask(octal('0020'))) def spa(self): return self.accumulator_is_positive() or not (self.i_mask(octal('0100'))) def accumulator_is_positive(self): return not self.accumulator_is_negative() def sna(self): return self.accumulator != 0 or not (self.i_mask(octal('0040'))) def szl(self): return self.link == 0 or not (self.i_mask(octal('0020'))) def reader(self, io_op): pass def punch(self, io_op): if (io_op & 1) and self.punchflag: self.pc += 1 if io_op & 2: self.punchflag = 0 if io_op & 4: if self.accumulator != 0: self.output += str(chr(self.accumulator)) self.punchflag = 1 def is_cla2(self): return self.instruction & octal('0200')
def4e0c9060cbb6946a984f723129a8064a91715
16679038c7a0b75097ffdd2d5b6be28ae8dae68f
/test/utilities/test_catch_exceptions.py
74b112680efb4b09be050e92f0ab2d6cc4bcdc2b
[ "MIT" ]
permissive
elifesciences/profiles
d98e5c2391630f9877e0585e07143d7904f1e777
9cd2e523f9dfa864891511e6525381f191951b24
refs/heads/develop
2023-08-31T03:09:08.723797
2023-08-25T06:54:55
2023-08-25T06:54:55
94,993,646
2
0
MIT
2023-06-21T01:15:37
2017-06-21T10:43:52
Python
UTF-8
Python
false
false
959
py
import logging from logging import Handler, Logger, Manager from logging.handlers import BufferingHandler from pytest import fixture from profiles.utilities import catch_exceptions @fixture def logger(handler: Handler) -> Logger: logger = Logger('logger', logging.DEBUG) logger.addHandler(handler) logger.manager = Manager('root') return logger @fixture def handler() -> Handler: return BufferingHandler(100) def test_it_catches_and_logs_exceptions(logger: Logger, handler: BufferingHandler): @catch_exceptions(logger) def my_function(): raise Exception('My exception') result = my_function() assert result is None assert len(handler.buffer) == 1 def test_it_does_nothing_when_no_exception(logger: Logger, handler: BufferingHandler): @catch_exceptions(logger) def my_function(): return True result = my_function() assert result is True assert len(handler.buffer) == 0
d193d711f2be24fe4204a34d2b1a3b14eda09afd
d40ab8694389d1a0d80013a2b0ecd8c426e6e8f8
/graphs/scc.py
5847ec8cbff74c175a28bd22a6d879601af33ceb
[]
no_license
lukebiggerstaff/Stanford-Algorithms-MOOC
b5b34c8d8ff7725461fd03bb3aac505c87a1012e
382a30f27dff6ca9d30c071a4d3418ff6333f4c3
refs/heads/master
2021-01-01T17:02:26.883373
2017-11-14T19:06:14
2017-11-14T19:06:14
97,980,984
0
0
null
null
null
null
UTF-8
Python
false
false
2,171
py
import sys import re import resource from collections import defaultdict sys.setrecursionlimit(10 ** 6) resource.setrlimit(resource.RLIMIT_STACK, (2 ** 29, 2 ** 30)) def dfsfirstpass(graph): visited = set() stack = list() for i in graph.keys(): start = str(i) if start in graph: dfsfirstpassrecursive(graph, start, stack, visited) return stack def dfsfirstpassrecursive(graph, start, stack, visited): if start not in visited: visited.add(start) if start in graph: for edge in graph[start]: if edge not in visited: dfsfirstpassrecursive(graph, edge, stack, visited) stack.append(start) def dfssecondpass(rgraph, stack): visited = set() leaderlist = defaultdict(list) while stack: start = stack.pop() if start not in visited: visited.add(start) leader = start leaderlist[leader] += [start] for edge in set(rgraph[start]) - visited: dfsrecursive(rgraph, edge, visited, leaderlist, leader) return leaderlist def dfsrecursive(graph, start, visited, leaderlist, leader): visited.add(start) leaderlist[leader] += [start] for edge in set(graph[start]) - visited: dfsrecursive(graph, edge, visited, leaderlist, leader) def return_top_five_scc(leaderlist): sccsizelist = list() for key in leaderlist.keys(): size = len(leaderlist[key]) sccsizelist.append(size) sccsizelist.sort() return sccsizelist[-5:] def kosaraju(graph, rgraph): stack = dfsfirstpass(rgraph) #print(f'stack is {stack}') leaderdict = dfssecondpass(graph, stack) #print(f'graph is {graph}\n' #f'leader is {leaderdict}\n') top5 = return_top_five_scc(leaderdict) return top5 if __name__ == '__main__': graph = defaultdict(list) rgraph = defaultdict(list) with open(sys.argv[1]) as f: for line in f: line_lst = re.findall(r'(\d+|\w+)',line) graph[line_lst[0]] += [line_lst[1]] rgraph[line_lst[1]] += [line_lst[0]] print(kosaraju(graph,rgraph))
9cf3d784947858edaf604e6c180fff1007ff9612
0b01cb61a4ae4ae236a354cbfa23064e9057e434
/alipay/aop/api/request/AlipayExscUserFirstsignGetRequest.py
e639edfe18817ae9d75d814b5ee4329e27910ec7
[ "Apache-2.0" ]
permissive
hipacloud/alipay-sdk-python-all
e4aec2869bf1ea6f7c6fb97ac7cc724be44ecd13
bdbffbc6d5c7a0a3dd9db69c99443f98aecf907d
refs/heads/master
2022-11-14T11:12:24.441822
2020-07-14T03:12:15
2020-07-14T03:12:15
277,970,730
0
0
Apache-2.0
2020-07-08T02:33:15
2020-07-08T02:33:14
null
UTF-8
Python
false
false
3,664
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * class AlipayExscUserFirstsignGetRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._alipay_id = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def alipay_id(self): return self._alipay_id @alipay_id.setter def alipay_id(self, value): self._alipay_id = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.exsc.user.firstsign.get' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.alipay_id: if hasattr(self.alipay_id, 'to_alipay_dict'): params['alipay_id'] = json.dumps(obj=self.alipay_id.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['alipay_id'] = self.alipay_id if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
91c8298a8f35841bf72996c47795505cf4afd03a
65c001b5f572a6b0ca09dd9821016d628b745009
/frappe-bench/env/lib/python2.7/site-packages/watchdog/observers/polling.py
3039ceb3678ce611aeccc6d88d0586c3f632a5e2
[ "MIT" ]
permissive
ibrahmm22/library-management
666dffebdef1333db122c2a4a99286e7c174c518
b88a2129a5a2e96ce1f945ec8ba99a0b63b8c506
refs/heads/master
2022-10-30T17:53:01.238240
2020-06-11T18:36:41
2020-06-11T18:36:41
271,620,992
0
1
MIT
2022-10-23T05:04:57
2020-06-11T18:36:21
CSS
UTF-8
Python
false
false
4,687
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2011 Yesudeep Mangalapilly <[email protected]> # Copyright 2012 Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :module: watchdog.observers.polling :synopsis: Polling emitter implementation. :author: [email protected] (Yesudeep Mangalapilly) Classes ------- .. autoclass:: PollingObserver :members: :show-inheritance: .. autoclass:: PollingObserverVFS :members: :show-inheritance: :special-members: """ from __future__ import with_statement import os import threading from functools import partial from watchdog.utils import stat as default_stat from watchdog.utils.dirsnapshot import DirectorySnapshot, DirectorySnapshotDiff from watchdog.observers.api import ( EventEmitter, BaseObserver, DEFAULT_OBSERVER_TIMEOUT, DEFAULT_EMITTER_TIMEOUT ) from watchdog.events import ( DirMovedEvent, DirDeletedEvent, DirCreatedEvent, DirModifiedEvent, FileMovedEvent, FileDeletedEvent, FileCreatedEvent, FileModifiedEvent ) class PollingEmitter(EventEmitter): """ Platform-independent emitter that polls a directory to detect file system changes. """ def __init__(self, event_queue, watch, timeout=DEFAULT_EMITTER_TIMEOUT, stat=default_stat, listdir=os.listdir): EventEmitter.__init__(self, event_queue, watch, timeout) self._snapshot = None self._lock = threading.Lock() self._take_snapshot = lambda: DirectorySnapshot( self.watch.path, self.watch.is_recursive, stat=stat, listdir=listdir) def queue_events(self, timeout): if not self._snapshot: self._snapshot = self._take_snapshot() # We don't want to hit the disk continuously. # timeout behaves like an interval for polling emitters. if self.stopped_event.wait(timeout): return with self._lock: if not self.should_keep_running(): return # Get event diff between fresh snapshot and previous snapshot. # Update snapshot. new_snapshot = self._take_snapshot() events = DirectorySnapshotDiff(self._snapshot, new_snapshot) self._snapshot = new_snapshot # Files. for src_path in events.files_deleted: self.queue_event(FileDeletedEvent(src_path)) for src_path in events.files_modified: self.queue_event(FileModifiedEvent(src_path)) for src_path in events.files_created: self.queue_event(FileCreatedEvent(src_path)) for src_path, dest_path in events.files_moved: self.queue_event(FileMovedEvent(src_path, dest_path)) # Directories. for src_path in events.dirs_deleted: self.queue_event(DirDeletedEvent(src_path)) for src_path in events.dirs_modified: self.queue_event(DirModifiedEvent(src_path)) for src_path in events.dirs_created: self.queue_event(DirCreatedEvent(src_path)) for src_path, dest_path in events.dirs_moved: self.queue_event(DirMovedEvent(src_path, dest_path)) class PollingObserver(BaseObserver): """ Platform-independent observer that polls a directory to detect file system changes. """ def __init__(self, timeout=DEFAULT_OBSERVER_TIMEOUT): BaseObserver.__init__(self, emitter_class=PollingEmitter, timeout=timeout) class PollingObserverVFS(BaseObserver): """ File system independent observer that polls a directory to detect changes. """ def __init__(self, stat, listdir, polling_interval=1): """ :param stat: stat function. See ``os.stat`` for details. :param listdir: listdir function. See ``os.listdir`` for details. :type polling_interval: float :param polling_interval: interval in seconds between polling the file system. """ emitter_cls = partial(PollingEmitter, stat=stat, listdir=listdir) BaseObserver.__init__(self, emitter_class=emitter_cls, timeout=polling_interval)
8180cf64858edff78040580e57e99bca34304e13
bd649f51496a24a55a2327e658f31d6e03e2f602
/InvTL/lm_py/py/bin/py.which
f2b30cfff3ced4c92ec7655ae03a05a1f0b7818b
[ "MIT" ]
permissive
mickg10/DARLAB
6507530231f749e8fc1647f3a9bec22a20bebe46
0cd8d094fcaf60a48a3b32f15e836fcb48d93e74
refs/heads/master
2020-04-15T20:39:23.403215
2019-01-10T06:54:50
2019-01-10T06:54:50
16,510,433
4
1
null
null
null
null
UTF-8
Python
false
false
65
which
#!/usr/bin/env python from _findpy import py py.cmdline.pywhich()
64bef1b8d66e25515d68a737b143f8d15d5675ce
7790e3a3f2de068fef343585ec856983591997a2
/bank/migrations/0021_followlawtype.py
67c1e5c0f8ed434aeb042dbf4b3e27f516602279
[]
no_license
mehdi1361/tadbir
ce702a9a02672826f0bf06e8d5cf0644efe31949
c0a67710099f713cf96930e25df708625de89a6f
refs/heads/master
2021-06-04T07:35:37.624372
2018-07-23T05:25:04
2018-07-23T05:25:04
148,870,028
0
0
null
2019-10-22T21:40:28
2018-09-15T04:40:26
HTML
UTF-8
Python
false
false
1,147
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-05-11 16:29 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bank', '0020_auto_20180510_1351'), ] operations = [ migrations.CreateModel( name='FollowLawType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='تاریخ ایجاد')), ('update_at', models.DateTimeField(auto_now=True, verbose_name='تاریخ بروزرسانی')), ('type', models.CharField(max_length=100, verbose_name='نوع پیگیری')), ('enable', models.BooleanField(default=False, verbose_name='فعال')), ], options={ 'verbose_name': 'پیگیری حقوقی', 'verbose_name_plural': 'پیگیری های حقوقی', 'db_table': 'follow_low_type', }, ), ]
5497eed0b98d3d44dc25ed39c7376e7800f9fcaa
350cb6c7c7a7842e80aa06ee32bfffc5bc35ee03
/programming/language/python/python-pillow/actions.py
09179eb1424c0d20883d92c49aeb6480d96ba765
[]
no_license
LimeLinux/Packages-2
f41d11343e8b39274ccd85b9850d0f4e76830031
356975df129f2097f12dbed3bc2604cadb5a6c64
refs/heads/master
2021-04-30T23:25:31.121967
2017-01-21T21:46:54
2017-01-21T21:46:54
79,139,920
0
2
null
2017-01-21T21:46:55
2017-01-16T17:02:37
Python
UTF-8
Python
false
false
823
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from pisi.actionsapi import pisitools from pisi.actionsapi import pythonmodules from pisi.actionsapi import shelltools from pisi.actionsapi import get #WorkDir="Imaging-%s" % get.srcVERSION() def install(): pisitools.dosed("_imagingft.c", "<freetype/freetype.h>", "<freetype2/freetype.h>") pisitools.dosed("_imagingft.c", "<freetype/fterrors.h>", "<freetype2/fterrors.h>") pythonmodules.install() #shelltools.cd("Sane") #pythonmodules.install() #shelltools.cd("..") for header in ["Imaging.h","ImPlatform.h"]: pisitools.insinto("/usr/include/%s" % get.curPYTHON(), "libImaging/%s" % header) pisitools.dodoc("README.rst")
c63f6c71799ea453d1f3eec67be2aff4089d9177
bc41457e2550489ebb3795f58b243da74a1c27ae
/fabfile.py
36e45dab0037e8a64b682e70626dadcb3e9d14de
[]
no_license
SEL-Columbia/ss_sql_views
28a901d95fe779b278d2a51aec84d6bf51245c02
d146fd96849a4d165f3dc3f197aadda804a2f60a
refs/heads/master
2021-01-01T19:35:18.999147
2012-05-10T18:43:36
2012-05-10T18:43:36
3,020,367
0
0
null
null
null
null
UTF-8
Python
true
false
1,649
py
''' fabfile for offline gateway tasks ''' import datetime as dt from fabric.api import local, lcd, run, env env.hosts = ['gateway.sharedsolar.org'] env.user = 'root' def sync_db(): time = dt.datetime.now().strftime('%y%m%d') file = 'gateway.' + time + '.sql.zip' url = '[email protected]' path = 'var/lib/postgresql/backups/' local('mkdir temp') with lcd('temp'): download_db(url, path, file) load_db(path, file) create_views() local('rm -rf temp') show_disk_space() def download_db(url, path, file): # create local temp folder print 'Creating temporary folder ./temp' # create timestamp # create string for getting database # scp database print 'Downloading database from gateway' local('scp ' + url + ':/' + path + file + ' .') # locally unzip database print 'Expanding database' local('unzip ' + file) def load_db(path, file): # if database exists, dropdb local('dropdb gateway') # create db local('createdb gateway') # load database print 'Loading database' local('psql -d gateway -f ' + path + file[:-4]) def create_views(): print 'Executing create_views' # execute all sql files local('psql -d gateway -f views/create_view_primary_log.sql') local('psql -d gateway -f views/create_view_midnight.sql') local('psql -d gateway -f views/create_view_meter.sql') local('psql -d gateway -f views/create_view_alarms.sql') local('psql -d gateway -f views/create_view_solar.sql') local('psql -d gateway -f views/create_view_recharge.sql') def show_disk_space(): run('df -h')
c67befeec81e23a656e21cce799a95202898726a
51d602577affebc8d91ffe234f926469d389dc75
/lis/specimen/lab_result_item/migrations/0001_initial.py
69d94bf24a380776b43692bb1088907fc36bac4f
[]
no_license
botswana-harvard/lis
5ac491373f74eaf3855f173580b000539d7f4740
48dc601ae05e420e8f3ebb5ea398f44f02b2e5e7
refs/heads/master
2020-12-29T01:31:07.821681
2018-06-24T06:06:57
2018-06-24T06:06:57
35,820,860
0
0
null
null
null
null
UTF-8
Python
false
false
40,300
py
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ResultItemAudit' db.create_table('bhp_lab_core_resultitem_audit', ( ('created', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True)), ('modified', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True)), ('user_created', self.gf('django.db.models.fields.CharField')(default='', max_length=250)), ('user_modified', self.gf('django.db.models.fields.CharField')(default='', max_length=250)), ('hostname_created', self.gf('django.db.models.fields.CharField')(default='home', max_length=50, blank=True)), ('hostname_modified', self.gf('django.db.models.fields.CharField')(default='home', max_length=50, blank=True)), ('id', self.gf('django.db.models.fields.CharField')(max_length=36, blank=True)), ('result', self.gf('django.db.models.fields.related.ForeignKey')(related_name='_audit_resultitem', to=orm['lab_result.Result'])), ('test_code', self.gf('django.db.models.fields.related.ForeignKey')(related_name='_audit_resultitem', to=orm['lab_test_code.TestCode'])), ('result_item_value', self.gf('django.db.models.fields.CharField')(max_length=25, db_index=True)), ('result_item_quantifier', self.gf('django.db.models.fields.CharField')(default='=', max_length=25)), ('result_item_datetime', self.gf('django.db.models.fields.DateTimeField')(db_index=True)), ('result_item_operator', self.gf('django.db.models.fields.CharField')(db_index=True, max_length=50, null=True, blank=True)), ('validation_status', self.gf('django.db.models.fields.CharField')(default='P', max_length=10, db_index=True)), ('validation_datetime', self.gf('django.db.models.fields.DateTimeField')(db_index=True, null=True, blank=True)), ('validation_username', self.gf('django.db.models.fields.CharField')(db_index=True, max_length=50, null=True, blank=True)), ('validation_reference', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('comment', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('result_item_source', self.gf('django.db.models.fields.related.ForeignKey')(related_name='_audit_resultitem', to=orm['lab_result.ResultSource'])), ('result_item_source_reference', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('error_code', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('_audit_id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('_audit_timestamp', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, db_index=True, blank=True)), ('_audit_change_type', self.gf('django.db.models.fields.CharField')(max_length=1)), )) db.send_create_signal('lab_result_item', ['ResultItemAudit']) # Adding model 'ResultItem' db.create_table('bhp_lab_core_resultitem', ( ('created', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True)), ('modified', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True)), ('user_created', self.gf('django.db.models.fields.CharField')(default='', max_length=250)), ('user_modified', self.gf('django.db.models.fields.CharField')(default='', max_length=250)), ('hostname_created', self.gf('django.db.models.fields.CharField')(default='home', max_length=50, blank=True)), ('hostname_modified', self.gf('django.db.models.fields.CharField')(default='home', max_length=50, blank=True)), ('id', self.gf('django.db.models.fields.CharField')(max_length=36, primary_key=True)), ('result', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['lab_result.Result'])), ('test_code', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['lab_test_code.TestCode'])), ('result_item_value', self.gf('django.db.models.fields.CharField')(max_length=25, db_index=True)), ('result_item_quantifier', self.gf('django.db.models.fields.CharField')(default='=', max_length=25)), ('result_item_datetime', self.gf('django.db.models.fields.DateTimeField')(db_index=True)), ('result_item_operator', self.gf('django.db.models.fields.CharField')(db_index=True, max_length=50, null=True, blank=True)), ('validation_status', self.gf('django.db.models.fields.CharField')(default='P', max_length=10, db_index=True)), ('validation_datetime', self.gf('django.db.models.fields.DateTimeField')(db_index=True, null=True, blank=True)), ('validation_username', self.gf('django.db.models.fields.CharField')(db_index=True, max_length=50, null=True, blank=True)), ('validation_reference', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('comment', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('result_item_source', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['lab_result.ResultSource'])), ('result_item_source_reference', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), ('error_code', self.gf('django.db.models.fields.CharField')(max_length=50, null=True, blank=True)), )) db.send_create_signal('lab_result_item', ['ResultItem']) def backwards(self, orm): # Deleting model 'ResultItemAudit' db.delete_table('bhp_lab_core_resultitem_audit') # Deleting model 'ResultItem' db.delete_table('bhp_lab_core_resultitem') models = { 'bhp_research_protocol.fundingsource': { 'Meta': {'ordering': "['name']", 'object_name': 'FundingSource'}, 'description': ('django.db.models.fields.TextField', [], {'max_length': '500'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '25', 'blank': 'True'}) }, 'bhp_research_protocol.location': { 'Meta': {'ordering': "['name']", 'object_name': 'Location'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}) }, 'bhp_research_protocol.protocol': { 'Meta': {'ordering': "['protocol_identifier']", 'object_name': 'Protocol'}, 'date_opened': ('django.db.models.fields.DateField', [], {}), 'date_registered': ('django.db.models.fields.DateField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '500'}), 'funding_source': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['bhp_research_protocol.FundingSource']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'local_title': ('django.db.models.fields.CharField', [], {'max_length': '25', 'blank': 'True'}), 'protocol_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True'}), 'research_title': ('django.db.models.fields.TextField', [], {'max_length': '250'}), 'short_title': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'site_name_fragment': ('django.db.models.fields.CharField', [], {'max_length': '25'}) }, 'bhp_research_protocol.site': { 'Meta': {'ordering': "['site_identifier']", 'object_name': 'Site'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_research_protocol.Location']"}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}), 'site_identifier': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}) }, 'lab_account.account': { 'Meta': {'ordering': "['account_name']", 'object_name': 'Account', 'db_table': "'bhp_lab_registration_account'"}, 'account_closedate': ('django.db.models.fields.DateField', [], {}), 'account_holder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_account.AccountHolder']"}), 'account_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}), 'account_opendate': ('django.db.models.fields.DateField', [], {}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_account.accountholder': { 'Meta': {'ordering': "['last_name', 'first_name']", 'unique_together': "(['last_name', 'first_name'],)", 'object_name': 'AccountHolder', 'db_table': "'bhp_lab_registration_accountholder'"}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '100', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_aliquot.aliquot': { 'Meta': {'object_name': 'Aliquot', 'db_table': "'bhp_lab_core_aliquot'"}, 'aliquot_datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2011, 8, 30, 13, 11, 14, 896689)'}), 'aliquot_identifier': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}), 'aliquot_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_aliquot.AliquotType']"}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'condition': ('django.db.models.fields.related.ForeignKey', [], {'default': '10', 'to': "orm['lab_aliquot.AliquotCondition']"}), 'count': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'current_measure': ('django.db.models.fields.DecimalField', [], {'default': "'5.00'", 'max_digits': '10', 'decimal_places': '2'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'measure_units': ('django.db.models.fields.CharField', [], {'default': "'mL'", 'max_length': '25'}), 'medium': ('django.db.models.fields.CharField', [], {'default': "'TUBE'", 'max_length': '25'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'original_measure': ('django.db.models.fields.DecimalField', [], {'default': "'5.00'", 'max_digits': '10', 'decimal_places': '2'}), 'parent_identifier': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_aliquot.Aliquot']", 'to_field': "'aliquot_identifier'", 'null': 'True', 'blank': 'True'}), 'receive': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_receive.Receive']"}), 'status': ('django.db.models.fields.CharField', [], {'default': "'available'", 'max_length': '25'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_aliquot.aliquotcondition': { 'Meta': {'ordering': "['short_name']", 'object_name': 'AliquotCondition', 'db_table': "'bhp_lab_core_aliquotcondition'"}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '250'}), 'short_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '250'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'lab_aliquot.aliquottype': { 'Meta': {'ordering': "['name']", 'object_name': 'AliquotType', 'db_table': "'bhp_lab_core_aliquottype'"}, 'alpha_code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '15'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dmis_reference': ('django.db.models.fields.IntegerField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'numeric_code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '2'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_order.order': { 'Meta': {'object_name': 'Order', 'db_table': "'bhp_lab_core_order'"}, 'aliquot': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_aliquot.Aliquot']"}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '150', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dmis_reference': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'order_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'order_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'db_index': 'True'}), 'panel': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_panel.Panel']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_panel.panel': { 'Meta': {'object_name': 'Panel', 'db_table': "'bhp_lab_core_panel'"}, 'account': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['lab_account.Account']", 'symmetrical': 'False'}), 'aliquot_type': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['lab_aliquot.AliquotType']", 'symmetrical': 'False'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dmis_panel_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'panel_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_panel.PanelGroup']"}), 'test_code': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['lab_test_code.TestCode']", 'symmetrical': 'False'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_panel.panelgroup': { 'Meta': {'object_name': 'PanelGroup', 'db_table': "'bhp_lab_core_panelgroup'"}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_patient.patient': { 'Meta': {'ordering': "['subject_identifier']", 'unique_together': "(['subject_identifier'],)", 'object_name': 'Patient', 'db_table': "'bhp_lab_registration_patient'"}, 'account': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lab_account.Account']", 'null': 'True', 'blank': 'True'}), 'art_status': ('django.db.models.fields.CharField', [], {'default': "'UNKNOWN'", 'max_length': '10'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dob': ('django.db.models.fields.DateField', [], {}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'hiv_status': ('django.db.models.fields.CharField', [], {'default': "'UNKNOWN'", 'max_length': '10'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'is_dob_estimated': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'simple_consent': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lab_patient.SimpleConsent']", 'null': 'True', 'blank': 'True'}), 'subject_identifier': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '25', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_patient.simpleconsent': { 'Meta': {'ordering': "['consent_startdate']", 'object_name': 'SimpleConsent', 'db_table': "'bhp_lab_registration_simpleconsent'"}, 'consent_enddate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'consent_site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_research_protocol.Site']"}), 'consent_startdate': ('django.db.models.fields.DateField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'may_store_samples': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'protocol': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_research_protocol.Protocol']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_receive.receive': { 'Meta': {'object_name': 'Receive', 'db_table': "'bhp_lab_core_receive'"}, 'clinician_initials': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'datetime_drawn': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'dmis_reference': ('django.db.models.fields.IntegerField', [], {}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_patient.Patient']"}), 'protocol': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_research_protocol.Protocol']"}), 'receive_datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2011, 8, 30, 13, 11, 14, 891588)', 'db_index': 'True'}), 'receive_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['bhp_research_protocol.Site']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'visit': ('django.db.models.fields.CharField', [], {'max_length': '25'}) }, 'lab_result.result': { 'Meta': {'ordering': "['result_identifier', 'order', 'result_datetime']", 'object_name': 'Result', 'db_table': "'bhp_lab_core_result'"}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'dmis_result_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_order.Order']"}), 'release_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'release_status': ('django.db.models.fields.CharField', [], {'default': "'NEW'", 'max_length': '25', 'db_index': 'True'}), 'release_username': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'null': 'True', 'blank': 'True'}), 'result_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'result_identifier': ('django.db.models.fields.CharField', [], {'max_length': '25', 'db_index': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_result.resultsource': { 'Meta': {'object_name': 'ResultSource', 'db_table': "'bhp_lab_core_resultsource'"}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_index': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'field_name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '250'}), 'short_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '250'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'version': ('django.db.models.fields.CharField', [], {'default': "'1.0'", 'max_length': '35'}) }, 'lab_result_item.resultitem': { 'Meta': {'object_name': 'ResultItem', 'db_table': "'bhp_lab_core_resultitem'"}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'error_code': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'result': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_result.Result']"}), 'result_item_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'result_item_operator': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'null': 'True', 'blank': 'True'}), 'result_item_quantifier': ('django.db.models.fields.CharField', [], {'default': "'='", 'max_length': '25'}), 'result_item_source': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_result.ResultSource']"}), 'result_item_source_reference': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'result_item_value': ('django.db.models.fields.CharField', [], {'max_length': '25', 'db_index': 'True'}), 'test_code': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_test_code.TestCode']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'validation_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'validation_reference': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'validation_status': ('django.db.models.fields.CharField', [], {'default': "'P'", 'max_length': '10', 'db_index': 'True'}), 'validation_username': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'null': 'True', 'blank': 'True'}) }, 'lab_result_item.resultitemaudit': { 'Meta': {'ordering': "['-_audit_timestamp']", 'object_name': 'ResultItemAudit', 'db_table': "'bhp_lab_core_resultitem_audit'"}, '_audit_change_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}), '_audit_id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), '_audit_timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'db_index': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'error_code': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '36', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'result': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_resultitem'", 'to': "orm['lab_result.Result']"}), 'result_item_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'result_item_operator': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'null': 'True', 'blank': 'True'}), 'result_item_quantifier': ('django.db.models.fields.CharField', [], {'default': "'='", 'max_length': '25'}), 'result_item_source': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_resultitem'", 'to': "orm['lab_result.ResultSource']"}), 'result_item_source_reference': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'result_item_value': ('django.db.models.fields.CharField', [], {'max_length': '25', 'db_index': 'True'}), 'test_code': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'_audit_resultitem'", 'to': "orm['lab_test_code.TestCode']"}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'validation_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'validation_reference': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'validation_status': ('django.db.models.fields.CharField', [], {'default': "'P'", 'max_length': '10', 'db_index': 'True'}), 'validation_username': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '50', 'null': 'True', 'blank': 'True'}) }, 'lab_test_code.testcode': { 'Meta': {'ordering': "['name']", 'object_name': 'TestCode', 'db_table': "'bhp_lab_test_code_testcode'"}, 'code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '15'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'display_decimal_places': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'formula': ('django.db.models.fields.CharField', [], {'max_length': "'50'", 'null': 'True', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_absolute': ('django.db.models.fields.CharField', [], {'default': "'absolute'", 'max_length': "'15'"}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'test_code_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lab_test_code.TestCodeGroup']"}), 'units': ('django.db.models.fields.CharField', [], {'max_length': '25'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) }, 'lab_test_code.testcodegroup': { 'Meta': {'ordering': "['code']", 'object_name': 'TestCodeGroup', 'db_table': "'bhp_lab_test_code_testcodegroup'"}, 'code': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'hostname_created': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'hostname_modified': ('django.db.models.fields.CharField', [], {'default': "'home'", 'max_length': '50', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '25', 'null': 'True', 'blank': 'True'}), 'user_created': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}), 'user_modified': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '250'}) } } complete_apps = ['lab_result_item']
b620e42042438f0ddf82969a5e2f05dcf02a8e23
3922c05b9434bb5a96f7833a987c50c8e3e29107
/news/admin.py
6881fe98a61e98e3099d1a8b53bfb646d84da9fa
[ "MIT" ]
permissive
jasonmuchiri/moringa-tribune
e7769dca9aa2e7a9cdc62be56c3071104ba30f33
ceabe0cf9cc136b6eb5072253aef09f43bea7040
refs/heads/master
2020-05-23T23:19:55.111831
2019-05-18T21:32:44
2019-05-18T21:32:44
186,990,384
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
from django.contrib import admin from .models import Article,tags # Register your models here. class ArticleAdmin(admin.ModelAdmin): filter_horizontal = ('tags',) admin.site.register(Article,ArticleAdmin) admin.site.register(tags)
6bd5fb8e2cc28159a3d0726aa5efc0e21295b713
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/contour/_textsrc.py
43bd0d62ed17e92c16a553b953658aaf6d67f0be
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
393
py
import _plotly_utils.basevalidators class TextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="textsrc", parent_name="contour", **kwargs): super(TextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
6ad6148e7378b35ec5dbeeb2a493dbad852d7119
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/61f29ff81b664630acba807a6f4f14e9.py
b34cc9defb4248705933ec5d41f5347dc783be44
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
286
py
# # Skeleton file for the Python "Bob" exercise. # def hey(what): if what.upper() == what and any(c.isalpha() for c in what): return "Whoa, chill out!" if what != '' and what[-1] == '?': return "Sure." if len(what) < 7: return "Fine. Be that way!" else: return "Whatever."
557c96972141d1a75b7f45e4289a642a6390440e
08dfaf714830a6310742dcd50848790d595e838e
/位运算/code_01_EvenTimesOddTimes.py
c16881e90ab21aa241caa096e317d2dd06fa949c
[]
no_license
Tokyo113/leetcode_python
d9e0fb96a76efaadcec7aad08f5ef542d898d434
e86b3fb26aef1cf63727e3e5c9fd4ddc9bedb7f1
refs/heads/master
2020-08-10T15:36:10.364714
2020-04-13T08:28:53
2020-04-13T08:28:53
214,369,187
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
#coding:utf-8 ''' @Time: 2019/12/4 21:54 @author: Tokyo @file: code_01_EvenTimesOddTimes.py @desc: 1.一个数组中有一种数出现了奇数次,其他数都出现了偶数次,怎么找到这一个数 2.一个数组中有两种数出现了奇数次,其他数都出现了偶数次,怎么找到这两个数 ''' def findOddTimes1(arr): eor = 0 for i in arr: eor = eor ^ i return eor def findOddTimes2(arr): eor = 0 for i in arr: eor = eor ^ i # eor = a ^ b # 取得eor最右侧的1,eor肯定不为0,存在一位为1 # 这两个数肯定在这一位不一样,一个为1,一个为0 rightone = eor & (~eor+1) eor1 = 0 for i in arr: if (i&rightone) == 0: eor1 = eor1 ^ i return eor1, eor1^eor if __name__ == '__main__': a = [1,2,3,2,1,2,4,4,3,2,5] print(findOddTimes1(a)) b = [4, 3, 4, 2, 2, 1, 4, 1, 1, 1, 3, 3, 1, 1, 1, 4, 2, 2] print(findOddTimes2(b)) print(find2(b))
39c078ee69d1098e1c91f37879882232c475e2f0
59b0ebc4249f20edd0e87dc63784c6e8c138c7fd
/.history/fibonacci_20180603232558.py
0f355ae930f9f8d834a1e6a158738d3573e77163
[]
no_license
Los4U/first_python_programs
f397da10be3ef525995f3f220e3b60012a6accaa
c3fc33a38c84abd292cb2e86de63e09434fc7fc4
refs/heads/master
2020-03-22T08:09:40.426118
2018-07-04T17:17:58
2018-07-04T17:17:58
139,748,883
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
i = 0 j = 1 k = 0 fib = 0 user_input = int(input("How many numbers print out? : ")) for fn in range(user_input): #if i < 30: print('{0:2d} {1:>10}'.format(fn, fib)) #print(fib) fib = j+k j = k k = fib #else: # print("3")
85c2a8dc30a8c4d16a1497f4bad44935f7ca19d2
81485dc96f7539730bee976c7e8e3d5929c3df77
/ProjectEuler145.py
a3fd109802113ff296456c4d9fc9e471357fb859
[]
no_license
zfhrp6/PE
6462621f5cb3812c7d8d9f591ad66382490661e2
4e64f6549bd50fb4c1ee5f580a76764935e35360
refs/heads/master
2020-04-05T13:45:56.936758
2015-12-11T08:29:50
2015-12-11T08:29:50
4,495,623
0
0
null
null
null
null
UTF-8
Python
false
false
940
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ project euler problem 145 ある正の整数nについて、[n + reverse(n)]が奇数のみで表されるようなnが存在する。 えば、36 + 63 = 99, 409 + 904 = 1313 のように。この性質を持つ数を、reversibleと呼ぶことにする。 つまり、36, 63, 409, 904はrevesibleである。 先頭の0はnでもreverse(n)でも許されない。 1000未満には120個のreversibleな数が存在する。 10億(10^9)未満では、いくつのreversibleな数が存在するか。 """ import time t0 = time.time() answer = 0 i = 0 while i < 10 ** 9: i += 1 if i % 10 == 0: continue if i % 1000000 == 1: print(i) num = i + int(str(i)[::-1]) if "0" in str(num) or "2" in str(num) or "4" in str(num) or "6" in str(num) or "8" in str(num): continue else: answer += 1 print(answer) print(time.time() - t0, "seconds")