blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
f1852c7da40eb5c08990351bb1c5c7ea3197c233
7bfcb91f95d20f1199d54f91c9a095df08b44d83
/Backup/Django_Youtube/WebBanHang/user/models.py
b2d82ecc75ed2668b3c7dbb54babf9acbad04250
[]
no_license
llduyll10/backup
bcb09eb632dd0858d515aacb7132d913da4dc24c
8849d812566977f9a379d38ee1daa2ef42c02c7f
refs/heads/master
2023-02-28T11:22:23.831040
2021-02-01T17:09:55
2021-02-01T17:09:55
335,006,700
0
0
null
null
null
null
UTF-8
Python
false
false
263
py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class CustomerUser(AbstractUser): phone_number = models.CharField(default='', max_length=15) address = models.CharField(default='', max_length=255)
6a20c6b46f1956d64bcd5fc20261bb7af697a8eb
6679ab23bf4f0100eb07cf13be21a8c1b1ae4c1f
/Python_Team_Notes/구현/input_alpha_to_num.py
817176213e5896f5d99570aae3099f7501ab5271
[]
no_license
gimquokka/problem-solving
1c77e0ad1828fa93ebba360dcf774e38e157d7b6
f3c661241d3e41adee330d19db3a66e20d23cf50
refs/heads/master
2023-06-28T10:19:07.230366
2021-07-29T11:29:26
2021-07-29T11:29:26
365,461,737
4
0
null
null
null
null
UTF-8
Python
false
false
131
py
# a ~ z를 입력으로 받아 숫자로 전환 char = input() # ord 함수 이용 num = int(ord(char)) - int(ord('a')) print(num)
72caec1e57d85a6bf4b606a5228254cf3c680874
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_179/ch25_2020_03_23_14_36_52_247565.py
b77b247db72eeb75a6603e8b3a253feeebcab017
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
import math g = 9.8 def calcula_distancia (velocidade, angulo): angulo_radianos = math.degrees(angulo) distancia = (velocidade**2 * math.sin(2*angulo_radianos))/g return distancia if distancia < 98: print ('Muito perto') elif distancia > 102: print ('Muito longe') else: print ('Acertou!')
06648aa873d47bf1a3429114bfc2a4d5585aa1c1
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_20914.py
3c20fbf20829f9b981a226ccaa46c39051a43f32
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
# py.test Tracebacks: Highlight my code, fold frames of framework --tb=short
01aaab4806daf83624fce5a5d71e77ac84e3cb95
714983fc24c6befe80d426dd94134d09ad2cbdfb
/env/lib/python3.6/site-packages/RestAuth/Services/migrations/0004_delete_old_m2m.py
31494a3ab34e3a19585de405f5ad81cb7bb1f511
[]
no_license
sachinlokesh05/login-registration-forgotpassword-and-resetpassword-using-django-rest-framework-
486354ffb3a397c79afc6cbb290ab1cd637f50ac
60769f6b4965836b2220878cfa2e1bc403d8f8a3
refs/heads/master
2023-01-28T22:19:13.483527
2020-01-28T14:07:53
2020-01-28T14:07:53
233,223,694
3
0
null
2023-01-07T22:10:06
2020-01-11T11:49:44
Python
UTF-8
Python
false
false
4,682
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Removing M2M table for field hosts on 'Service' db.delete_table('Services_service_hosts') def backwards(self, orm): # Adding M2M table for field hosts on 'Service' db.create_table('Services_service_hosts', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('service', models.ForeignKey(orm['Services.service'], null=False)), ('serviceaddress', models.ForeignKey(orm['Services.serviceaddress'], null=False)) )) db.create_unique('Services_service_hosts', ['service_id', 'serviceaddress_id']) models = { 'Services.service': { 'Meta': {'object_name': 'Service', '_ormbases': ['auth.User']}, 'user_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'primary_key': 'True'}) }, 'Services.serviceaddress': { 'Meta': {'object_name': 'ServiceAddress'}, 'address': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '39'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'services': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'hosts'", 'symmetrical': 'False', 'to': "orm['Services.Service']"}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['Services']
52bd5b80c303f7ec03c6a84634f9654784e1fe1c
2293c76c3d18e2fcd44ded90bd40113d26285663
/pyeccodes/defs/grib2/modelName_def.py
ca5790b97b3bf22a70902abdc87628726645d7a4
[ "Apache-2.0" ]
permissive
ecmwf/pyeccodes
b1f121dbddf68d176a03805ed5144ba0b37ac211
dce2c72d3adcc0cb801731366be53327ce13a00b
refs/heads/master
2022-04-23T10:37:40.524078
2020-04-18T06:30:29
2020-04-18T06:30:29
255,554,540
9
3
null
null
null
null
UTF-8
Python
false
false
1,990
py
import pyeccodes.accessors as _ def load(h): def wrapped(h): originatingCentre = h.get_l('originatingCentre') if originatingCentre == 242: return 'cosmo-romania' if originatingCentre == 220: return 'cosmo-poland' if originatingCentre == 96: return 'cosmo-greece' generatingProcessIdentifier = h.get_l('generatingProcessIdentifier') if originatingCentre == 76 and generatingProcessIdentifier == 235: return 'cosmo_ru-eps' if originatingCentre == 76 and generatingProcessIdentifier == 135: return 'cosmo_ru' if originatingCentre == 200 and generatingProcessIdentifier == 131: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 46: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 42: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 38: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 34: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 32: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 31: return 'cosmo-i7' if originatingCentre == 200 and generatingProcessIdentifier == 148: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 144: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 139: return 'cosmo-i2' if originatingCentre == 200 and generatingProcessIdentifier == 36: return 'cosmo-i2' subCentre = h.get_l('subCentre') if subCentre == 250: return 'cosmo' if originatingCentre == 250: return 'cosmo' return wrapped
fbfc207ef43a7797ae51a3f77a2080848f479024
d94be223f733daa58ce03f6f2dd701c55355f044
/docs/data/new_east_st_louis-3.py
7270fd573042b368984fc13a16e5220c497a576b
[]
no_license
emirdemirel/JAAH
7bb4f9c2a434e1df34d99596dd294b7c96836bfe
8c065c3b043ad7ac95241c242bb468fe4c731ec7
refs/heads/master
2023-02-10T14:10:52.755206
2021-01-07T23:11:02
2021-01-07T23:11:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
import siteUtils siteUtils.show5HexagramsForFileList(['../../../annotations/new_east_st_louis.json'])
469eebafcf857f87276c308ad37773ed5d6351dd
95ec78292e150591dc0587988cf3a4b9b5ad08c2
/code/srmcollider/Residues.py
988d50d1542f6b880b4d90b333ad0cef6cd72721
[]
no_license
hroest/srmcollider
40b034f4f1713d94a6f36ed78b3ed67857b47eb7
67c0a04fb21a4f089e3aab15d5ee8884b389ec44
refs/heads/master
2021-01-18T23:10:14.927217
2018-01-15T15:04:25
2018-01-15T15:04:25
10,242,093
0
2
null
2017-12-05T22:02:04
2013-05-23T11:18:25
Python
UTF-8
Python
false
false
18,191
py
""" * * Program : SRMCollider * Author : Hannes Roest <[email protected]> * Date : 05.02.2011 * * * Copyright (C) 2011 - 2012 Hannes Roest * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA * """ import string # Isotope Modification # 0 means no modification # 1 means N15 (heavy nitrogen) NOISOTOPEMODIFICATION = 0 N15_ISOTOPEMODIFICATION = 1 class Residues: # http://www.sisweb.com/referenc/source/exactmaa.htm # http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl average_elements = { 'H' : 1.007825 * 99.99/100 + 2.014102 * 0.015/100, 'N' : 14.003074 * 99.63/100 + 15.000109 * 0.37/100, 'O' : 15.994915 * 99.76/100 + 16.999131 * 0.038/100 + 17.999159 * 0.20/100, 'C' : 12.000000 * 98.90/100 + 13.003355 * 1.10, 'P' : 30.973763 } monoisotopic_elements = { 'H' : 1.007825032, 'H2' : 2.01410178, 'C' : 12.000000, 'C13' : 13.00335484, 'N' : 14.003074005, 'N15' : 15.000108898, 'O' : 15.994914620, 'O17' : 16.999132, 'O18' : 17.999161, 'P' : 30.973762, 'S' : 31.972071 } aa_codes = { 'A' : 'Ala', 'R' : 'Arg', 'N' : 'Asn', 'D' : 'Asp', 'C' : 'Cys', 'E' : 'Glu', 'Q' : 'Gln', 'G' : 'Gly', 'H' : 'His', 'I' : 'Ile', 'L' : 'Leu', 'K' : 'Lys', 'M' : 'Met', 'F' : 'Phe', 'P' : 'Pro', 'S' : 'Ser', 'T' : 'Thr', 'W' : 'Trp', 'Y' : 'Tyr', 'V' : 'Val', 'C[160]' : 'Cys+CAM', 'M[147]' : 'Met+Ox', } aa_codes_rev = dict([(v,k) for k,v in aa_codes.iteritems()]) aa_names = { 'A': 'Alanine', 'B': 'Aspartic Acid or Asparagine', 'C': 'Cysteine', 'c': 'Modified cysteine' , 'D': 'Aspartate', 'E': 'Glutamate', 'F': 'Phenylalanine', 'G': 'Glycine', 'H': 'Histidine', 'I': 'Isoleucine', 'K': 'Lysine', 'k': 'Lys->Cys substitution and carbamidomethylation (903)', 'L': 'Leucine', 'M': 'Methionine', 'm': 'Modified methionine' , 'N': 'Asparagine', 'P': 'Proline', 'Q': 'Glutamine', 'R': 'Arginine', 'S': 'Serine', 'T': 'Threonine', 'V': 'Valine', 'W': 'Tryptophan', 'X': 'Leucine/Isoleucine', 'Y': 'Tyrosine', 'Z': 'Glutamic acid' } aa_sum_formulas_text = { 'A' : 'C3H5ON', 'R' : 'C6H12ON4', 'N' : 'C4H6O2N2', 'D' : 'C4H5O3N', 'C' : 'C3H5ONS', 'E' : 'C5H7O3N', 'Q' : 'C5H8O2N2', 'G' : 'C2H3ON', 'H' : 'C6H7ON3', 'I' : 'C6H11ON', 'L' : 'C6H11ON', 'K' : 'C6H12ON2', 'M' : 'C5H9ONS', 'F' : 'C9H9ON', 'P' : 'C5H7ON', 'S' : 'C3H5O2N', 'T' : 'C4H7O2N', 'W' : 'C11H10ON2', 'Y' : 'C9H9O2N', 'V' : 'C5H9ON' } #from http://education.expasy.org/student_projects/isotopident/htdocs/aa-list.html aa_sum_formulas = { 'A' : { 'C' : 3, 'H' : 5 , 'O' : 1, 'N' : 1 }, 'R' : { 'C' : 6, 'H' : 12 , 'O' : 1, 'N' : 4 }, 'N' : { 'C' : 4, 'H' : 6 , 'O' : 2, 'N' : 2 }, 'D' : { 'C' : 4, 'H' : 5 , 'O' : 3, 'N' : 1 }, 'C' : { 'C' : 3, 'H' : 5 , 'O' : 1, 'N' : 1, 'S' : 1 }, 'E' : { 'C' : 5, 'H' : 7 , 'O' : 3, 'N' : 1 }, 'Q' : { 'C' : 5, 'H' : 8 , 'O' : 2, 'N' : 2 }, 'G' : { 'C' : 2, 'H' : 3 , 'O' : 1, 'N' : 1 }, 'H' : { 'C' : 6, 'H' : 7 , 'O' : 1, 'N' : 3 }, 'I' : { 'C' : 6, 'H' : 11 , 'O' : 1, 'N' : 1 }, 'L' : { 'C' : 6, 'H' : 11 , 'O' : 1, 'N' : 1 }, 'K' : { 'C' : 6, 'H' : 12 , 'O' : 1, 'N' : 2 }, 'M' : { 'C' : 5, 'H' : 9 , 'O' : 1, 'N' : 1, 'S' : 1 }, 'F' : { 'C' : 9, 'H' : 9 , 'O' : 1, 'N' : 1 }, 'P' : { 'C' : 5, 'H' : 7 , 'O' : 1, 'N' : 1 }, 'S' : { 'C' : 3, 'H' : 5 , 'O' : 2, 'N' : 1 }, 'T' : { 'C' : 4, 'H' : 7 , 'O' : 2, 'N' : 1 }, 'W' : { 'C' : 11, 'H' : 10 , 'O' : 1, 'N' : 2 }, 'Y' : { 'C' : 9, 'H' : 9 , 'O' : 2, 'N' : 1 }, 'V' : { 'C' : 5, 'H' : 9 , 'O' : 1, 'N' : 1 }, 'C[160]' : { 'C' : 3+2, 'H' : 5+3 , 'O' : 1+1, 'N' : 1+1, 'S' : 1 }, # + CAM = H(3) C(2) N O 'M[147]' : { 'C' : 5, 'H' : 9 , 'O' : 1+1, 'N' : 1, 'S' : 1 }, } mass_H = monoisotopic_elements['H'] mass_N = monoisotopic_elements['N'] mass_O = monoisotopic_elements['O'] mass_C = monoisotopic_elements['C'] mass_S = monoisotopic_elements['S'] mass_P = monoisotopic_elements['P'] mass_NH2 = mass_N + 2*mass_H mass_NH3 = mass_N + 3*mass_H mass_CO = mass_C + mass_O mass_H2O = mass_O + 2*mass_H mass_OH = mass_O + mass_H mass_H3PO4 = mass_P + mass_O * 4 + mass_H * 3 mass_H1PO4 = mass_P + mass_O * 4 + mass_H * 1 mass_H1PO3 = mass_P + mass_O * 3 + mass_H * 1 mass_CAM = 2* mass_C + 4*mass_H + mass_O + mass_N #CH2-CONH2 mass_C13 = monoisotopic_elements['C13'] mass_N15 = monoisotopic_elements['N15'] mass_diffC13 = mass_C13 - mass_C mass_diffN15 = mass_N15 - mass_N average_data = { # Key on abbreviation, give name, molecular weight (in daltons). 'A': ('Alanine', 71.0788), 'B': ('Aspartic Acid or Asparagine', 114.5962), 'C': ('Cysteine', 103.1448), 'c': ('Modified cysteine' , 160.1448), # Add 57 'D': ('Aspartate', 115.0886), 'E': ('Glutamate', 129.1155), 'F': ('Phenylalanine', 147.1766), 'G': ('Glycine', 57.0519), 'H': ('Histidine', 137.1411), 'I': ('Isoleucine', 113.1594), 'K': ('Lysine', 128.1741), 'k': ('Lys->Cys substitution and carbamidomethylation (903)', 128.09496 + 32.0219), 'L': ('Leucine', 113.1594), 'M': ('Methionine', 131.1986), 'm': ('Modified methionine' , 147.1986), # add 16 'N': ('Asparagine', 114.1038), 'P': ('Proline', 97.1167), 'Q': ('Glutamine', 128.1307), 'R': ('Arginine', 156.1875), 'S': ('Serine', 87.0782), 'T': ('Threonine', 101.1051), 'V': ('Valine', 99.1326), 'W': ('Tryptophan', 186.2132), 'X': ('Leucine/Isoleucine', 113.1594), # Can't distinguish leucine/isoleucine. 'Y': ('Tyrosine', 163.176), 'Z': ('Glutamic acid, or glutamine', 128), } #e.g. from http://education.expasy.org/student_projects/isotopident/htdocs/aa-list.html # see also http://www.sbeams.org/svn/sbeams/trunk/sbeams/lib/perl/SBEAMS/Proteomics/AminoAcidModifications.pm monoisotopic_data = { # Key on abbreviation, give name, molecular weight (in daltons). 'A': ('Alanine', 71.03711), 'B': ('Aspartic Acid or Asparagine', 114.04293), 'C': ('Cysteine', 103.00919), 'D': ('Aspartate', 115.02694), 'E': ('Glutamate', 129.04259), 'F': ('Phenylalanine', 147.06841), 'G': ('Glycine', 57.02146), 'H': ('Histidine', 137.05891), 'I': ('Isoleucine', 113.08406), 'K': ('Lysine', 128.09496), 'L': ('Leucine', 113.08406), 'M': ('Methionine', 131.04049), 'N': ('Asparagine', 114.04293), 'P': ('Proline', 97.05276), 'Q': ('Glutamine', 128.05858), 'R': ('Arginine', 156.10111), 'S': ('Serine', 87.03203), 'T': ('Threonine', 101.04768), 'V': ('Valine', 99.06841), 'W': ('Tryptophan', 186.07931), 'X': ('Leucine/Isoleucine', 113.08406), # Can't distinguish leucine/isoleucine 'Y': ('Tyrosine', 163.06333), 'Z': ('Glutamic acid, or glutamine', 128.05858), } monoisotopic_mod = { 'c': ('Modified cysteine', monoisotopic_data["C"][1] + mass_CAM - mass_H ), # CAM replaces H #'c': ('Modified cysteine' , 160.00919), # Add 57 'C[160]': ('Modified cysteine', monoisotopic_data["C"][1] + mass_CAM - mass_H ), # CAM replaces H 'k': ('Lys->Cys substitution and carbamidomethylation (903)', 128.09496 + 31.935685), 'N[115]': ('Asparagine', monoisotopic_data["N"][1] - mass_N - mass_H + mass_O), #'m': ('Modified methionine', 147.04049), # add 16 'm': ('Modified methionine', monoisotopic_data["M"][1] + mass_O), # oxygen 'M[147]': ('Modified methionine', monoisotopic_data["M"][1] + mass_O), # oxygen # SILAC labels 'K[136]' : ('heavy Lysine', monoisotopic_data["K"][1] + 8.014199), #UniMod:259 'R[166]' : ('heavy Arginine', monoisotopic_data["R"][1] + 10.008269), #UniMod:267 'R[162]' : ('heavy Arginine', monoisotopic_data["R"][1] + 6*mass_diffC13), #UniMod:188 'V[104]' : ('heavy Valine', monoisotopic_data["V"][1] + 5*mass_diffC13), # no unimod 'V[105]' : ('heavy Valine', monoisotopic_data["V"][1] + 5*mass_diffC13 + mass_diffN15), # unimod 268 # Pyro Unimod 27 and 28 'E[111]': ('pyro Glutamate', 129.04259 - mass_O - 2*mass_H), 'Q[111]': ('pyro Glutamine', 128.05858 - mass_O - 2*mass_H), # Unimod 385 # Pyro-carbamidomethyl as a delta from Carbamidomethyl-Cys 'C[143]': ('Pyro-carbamidomethyl cysteine' , monoisotopic_data["C"][1] + mass_CAM - mass_H - 3*mass_H - mass_N), # Phospho 'S[166]': ('Phospho Serine', 87.03203 + mass_H1PO3), 'S[167]': ('Phospho Serine', 87.03203 + mass_H1PO3), 'T[181]': ('Phospho Threonine', 101.04768 + mass_H1PO3), 'Y[243]': ('Phospho Tyrosine', 163.06333 + mass_H1PO3), } mod_mapping = { "K[+8]" : "K[136]", "R[+10]": "R[166]", "M[+16]": "M[147]", "N[-1]" : "N[115]", "C[+57]": "C[160]", "C[+40]": "C[160]", "R[+6]" : "R[162]", "V[+5]" : "V[104]", "V[+6]" : "R[105]", "S[+80]" : "S[167]", "T[+80]" : "T[181]", "Y[+80]" : "Y[243]", } monoisotopic_data.update(monoisotopic_mod) #C[169] 58 => ? #C[152] 2 => ? #W[202] 23 => Oxidation? """ http://web.expasy.org/protscale/pscale/Hphob.Doolittle.html GRAVY (Grand Average of Hydropathy) The GRAVY value for a peptide or protein is calculated as the sum of hydropathy values [9] of all the amino acids, divided by the number of residues in the sequence. Amino acid scale: Hydropathicity. Author(s): Kyte J., Doolittle R.F. Reference: J. Mol. Biol. 157:105-132(1982). Amino acid scale values: """ Hydropathy = { 'Ala': 1.800, 'Arg': -4.500, 'Asn': -3.500, 'Asp': -3.500, 'Cys': 2.500, 'Gln': -3.500, 'Glu': -3.500, 'Gly': -0.400, 'His': -3.200, 'Ile': 4.500, 'Leu': 3.800, 'Lys': -3.900, 'Met': 1.900, 'Phe': 2.800, 'Pro': -1.600, 'Ser': -0.800, 'Thr': -0.700, 'Trp': -0.900, 'Tyr': -1.300, 'Val': 4.200, } Hydropathy_aa = dict([ (aa_codes_rev[k],v) for k,v in Hydropathy.iteritems()]) hydrophobicity = { 'F': 5.00, 'W': 4.88, 'L': 4.76, 'X': 4.59, 'I': 4.41, 'M': 3.23, 'V': 3.02, 'C': 2.50, 'Y': 2.00, 'A': 0.16, 'T': -1.08, 'E': -1.50, 'Z': -2.13, 'D': -2.49, 'Q': -2.76, 'R': -2.77, 'S': -2.85, 'B': -3.14, 'G': -3.31, 'N': -3.79, 'H': -4.63, 'P': -4.92, 'K': -5.00 } basicity = { 'G': 202.7, 'C': 206.2, 'A': 206.4, 'S': 207.6, 'D': 208.6, 'V': 208.7, 'L': 209.6, 'X': 210.2, 'B': 210.7, 'I': 210.8, 'T': 211.7, 'F': 212.1, 'N': 212.8, 'Y': 213.1, 'M': 213.3, 'Q': 214.2, 'P': 214.4, 'Z': 214.9, 'E': 215.6, 'W': 216.1, 'K': 221.8, 'H': 223.7, 'R': 237.0 } helicity = { 'F': 1.26, 'W': 1.07, 'L': 1.28, 'X': 1.29, #avg L,I 'I': 1.29, 'M': 1.22, 'V': 1.27, 'C': 0.79, 'Y': 1.11, 'A': 1.24, 'T': 1.09, 'E': 0.85, 'D': 0.89, 'Z': 0.91, #avg Q,E 'B': 0.92, #avg N,D 'Q': 0.96, 'R': 0.95, 'S': 1.00, 'G': 1.15, 'N': 0.94, 'H': 0.97, 'P': 0.57, 'K': 0.88, } pI = { 'G': 6.0, 'A': 6.0, 'V': 6.0, 'L': 6.0, 'X': 6.0, #L or I 'I': 6.0, 'F': 5.5, 'P': 6.3, 'S': 5.7, 'T': 5.6, 'Y': 5.7, 'C': 5.0, 'M': 5.7, 'N': 5.4, 'B': 4.1, #avg N and D 'Q': 5.7, 'Z': 4.5, #avg Q,E 'W': 5.9, 'D': 2.8, 'E': 3.2, 'K': 9.7, 'R': 10.8, 'H': 7.6 } def __init__(self, type="mono"): """Set up the residue data structure.""" #add the phosphorylations self.monoisotopic_data[ 's' ] = ('Phospho-S', self.monoisotopic_data[ 'S' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 't' ] = ('Phospho-T', self.monoisotopic_data[ 'T' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 'y' ] = ('Phospho-Y', self.monoisotopic_data[ 'Y' ][1] + self.mass_H1PO3) self.average_data[ 's' ] = ('Phospho-S', self.average_data[ 'S' ][1] + self.mass_H1PO3) self.average_data[ 't' ] = ('Phospho-T', self.average_data[ 'T' ][1] + self.mass_H1PO3) self.average_data[ 'y' ] = ('Phospho-Y', self.average_data[ 'Y' ][1] + self.mass_H1PO3) if not type: self.residues = self.average_data elif type.startswith("mono"): self.residues = self.monoisotopic_data elif type.startswith("av"): self.residues = self.average_data else: raise ValueError("Type of residue must be one of: mono[isotopic], av[erage] (characters within [] are optional.") keys = self.residues.keys() self.res_pairs = [ string.join((r, s), '') for r in keys for s in keys ] def recalculate_monisotopic_data(self): self.monoisotopic_data = {} for abbrev, formula in self.aa_sum_formulas.iteritems(): mysum = 0.0 for key, value in formula.iteritems(): mysum += self.monoisotopic_elements[ key ] * value self.monoisotopic_data[ abbrev ] = ( self.aa_codes[abbrev] , mysum ) # self.monoisotopic_data['c'] = self.monoisotopic_data['C'] + self.mass_CAM - self.mass_H self.monoisotopic_data['c'] = ( 'Modified cystein', self.monoisotopic_data['C'][1] + self.mass_CAM - self.mass_H) self.monoisotopic_data['k'] = ( 'Lys->Cys substitution and carbamidomethylation (903)', self.monoisotopic_data['K'][1] + 31.935685) self.monoisotopic_data['m'] = ( 'Modified methionine', self.monoisotopic_data['M'][1] + self.mass_O) self.monoisotopic_data[ 's' ] = ('Phospho-S', self.monoisotopic_data[ 'S' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 't' ] = ('Phospho-T', self.monoisotopic_data[ 'T' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 'y' ] = ('Phospho-Y', self.monoisotopic_data[ 'Y' ][1] + self.mass_H1PO3) self.residues = self.monoisotopic_data def recalculate_monisotopic_data_for_N15(self): self.monoisotopic_data = {} for abbrev, formula in self.aa_sum_formulas.iteritems(): mysum = 0.0 for key, value in formula.iteritems(): #replace N with N15 if key == 'N': key = 'N15' mysum += self.monoisotopic_elements[ key ] * value self.monoisotopic_data[ abbrev ] = ( self.aa_codes[abbrev] , mysum ) #IMPORTANT: CAM is added afterwards and is NOT heavy # self.monoisotopic_data['C[160]'] = ( 'Modified cystein', self.monoisotopic_data['C'][1] + self.mass_CAM - self.mass_H) self.monoisotopic_data['N[115]'] = ( 'Modified asparagine', self.monoisotopic_data['N'][1] - self.mass_N15 - self.mass_H + self.mass_O) self.monoisotopic_data['M[147]'] = ( 'Modified methionine', self.monoisotopic_data['M'][1] + self.mass_O) # self.monoisotopic_data['c'] = ( 'Modified cystein', self.monoisotopic_data['C'][1] + self.mass_CAM - self.mass_H) self.monoisotopic_data['k'] = ( 'Lys->Cys substitution and carbamidomethylation (903)', self.monoisotopic_data['K'][1] + 31.935685) self.monoisotopic_data['m'] = ( 'Modified methionine', self.monoisotopic_data['M'][1] + self.mass_O) self.monoisotopic_data[ 's' ] = ('Phospho-S', self.monoisotopic_data[ 'S' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 't' ] = ('Phospho-T', self.monoisotopic_data[ 'T' ][1] + self.mass_H1PO3) self.monoisotopic_data[ 'y' ] = ('Phospho-Y', self.monoisotopic_data[ 'Y' ][1] + self.mass_H1PO3) self.residues = self.monoisotopic_data
8fbeae9a4326bddee26e1a4de2ade8d305654222
f87f51ec4d9353bc3836e22ac4a944951f9c45c0
/.history/HW06_20210715223105.py
d97dd858d1598f85d9ebd66b49358181614c0345
[]
no_license
sanjayMamidipaka/cs1301
deaffee3847519eb85030d1bd82ae11e734bc1b7
9ddb66596497382d807673eba96853a17884d67b
refs/heads/main
2023-06-25T04:52:28.153535
2021-07-26T16:42:44
2021-07-26T16:42:44
389,703,530
0
0
null
null
null
null
UTF-8
Python
false
false
5,070
py
""" Georgia Institute of Technology - CS1301 HW06 - Text Files & CSV Collaboration Statement: """ ######################################### """ Function Name: findCuisine() Parameters: filename (str), cuisine (str) Returns: list of restaurants (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def findCuisine(filename, cuisine): file = open(filename,'r') content = file.readlines() listOfRestaurants = [] for i in range(len(content)): if content[i].strip() == cuisine: listOfRestaurants.append(content[i-1].strip()) #add the name of the restaurant, which is the previous line file.close() return listOfRestaurants """ Function Name: restaurantFilter() Parameters: filename (str) Returns: dictionary that maps cuisine type (str) to a list of restaurants of the same cuisine type (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def restaurantFilter(filename): dict = {} file = open(filename,'r') content = file.readlines() cuisines = [] for i in range(1,len(content),4): line = content[i].strip() if line not in cuisines: cuisines.append(line) for i in range(len(cuisines)): dict[cuisines[i]] = [] for i in range(0,len(content),4): line = content[i].strip() lineBelow = content[i+1].strip() dict[lineBelow].append(line) return dict """ Function Name: createDirectory() Parameters: filename (str), output filename (str) Returns: None (NoneType) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def createDirectory(filename, outputFilename): readFile = open(filename, 'r') writeFile = open(outputFilename, 'w') content = readFile.readlines() fastfood = [] sitdown = [] fastfoodcounter = 1 sitdowncouter = 1 for i in range(2,len(content), 4): restaurant = content[i-2].strip() cuisine = content[i-1].strip() group = content[i].strip() if group == 'Fast Food': fastfood.append(str(fastfoodcounter) + '. ' + restaurant + ' - ' + cuisine + '\n') fastfoodcounter += 1 else: sitdown.append(str(sitdowncouter) + '. ' + restaurant + ' - ' + cuisine) sitdowncouter += 1 writeFile.write('Restaurant Directory' + '\n') writeFile.write('Fast Food' + '\n') writeFile.writelines(fastfood) writeFile.write('Sit-down' + '\n') for i in range(len(sitdown)): if i != len(sitdown)-1: writeFile.write(sitdown[i] + '\n') else: writeFile.write(sitdown[i]) """ Function Name: extraHours() Parameters: filename (str), hour (int) Returns: list of (person, extra money) tuples (tuple) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def extraHours(filename, hour): overtime = [] file = open(filename, 'r') header = file.readline() content = file.readlines() for i in content: line = i.strip().split(',') name = line[0] wage = int(line[2]) hoursWorked = int(line[4]) if hoursWorked > hour: compensation = (hoursWorked - hour) * wage overtime.append((name, compensation)) return overtime """ Function Name: seniorStaffAverage() Parameters: filename (str), year (int) Returns: average age of senior staff members (float) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def seniorStaffAverage(filename, year): averageAge = 0.0 employeeCount = 0 file = open(filename, 'r') header = file.readline() content = file.readlines() for i in content: line = i.strip().split(',') age = int(line[1]) yearHired = int(line[3]) if yearHired < year: averageAge += age employeeCount += 1 averageAge /= employeeCount return round(averageAge,2) """ Function Name: ageDict() Parameters: filename (str), list of age ranges represented by strings (list) Returns: dictionary (dict) that maps each age range (str) to a list of employees (list) """ ######################################### ########## WRITE FUNCTION HERE ########## ######################################### def ageDict(filename, ageRangeList): employeeAgeDictionary = {} for i in ageRangeList: employeeAgeDictionary[i] = [] print(employeeAgeDictionary) # print(findCuisine('restaurants.txt', 'Mexican')) # print(restaurantFilter('restaurants.txt')) # print(createDirectory('restaurants.txt','output.txt')) # print(extraHours('employees.csv', 40)) # print(seniorStaffAverage('employees.csv', 2019)) print(ageDict('employees.csv'))
bb5ebaf33900bfcc44fdc19ac42207993daeaa5f
551d993b15f7e54635cc11d7ed3ee45a2e9aacc6
/AAE/Tensorflow_implementation/unsupervised/regularized_z/model.py
df4e3fcf6ad90ce669025df91eb33dfbcfbcb10a
[ "MIT" ]
permissive
hendrikTpl/GAN_models
6185a3c112a8b45205bdd4c556164b6153fbec19
8234c7f04be39d20fe09f81511b591deab9152a9
refs/heads/master
2021-10-25T16:52:13.239290
2019-04-05T15:28:06
2019-04-05T15:28:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,844
py
from component_without_bn import * class Object: pass def build_graph(is_test=False): # Inputs images = tf.placeholder(dtype=tf.float32, shape=[None, config.ndim_x]) z_sampler = tf.placeholder(dtype=tf.float32, shape=[None, config.ndim_z]) learning_rate = tf.placeholder(dtype=tf.float32, shape=[]) # Graph encoder = encoder_x_z decoder = decoder_z_x discriminator = discriminator_z with tf.variable_scope('encoder'): z_representation = encoder(images) with tf.variable_scope('decoder'): reconstruction = decoder(z_representation) if is_test: test_handle = Object() test_handle.x = images test_handle.z_r = z_representation test_handle.x_r = reconstruction return test_handle probability_fake_sample = discriminator(z_representation) probability_true_sample = discriminator(z_sampler, reuse=True) # Loss function # classification # 0 -> true sample # 1 -> generated sample class_true = tf.ones(shape=(config.batch_size, config.ndim_z / 2), dtype=tf.int32) class_fake = tf.zeros(shape=(config.batch_size, config.ndim_z / 2), dtype=tf.int32) loss_discriminator = opt.softmax_cross_entropy(probability_fake_sample, probability_true_sample, class_fake, class_true) loss_encoder = opt.softmax_cross_entropy(probability_fake_sample, probability_true_sample,\ class_fake, class_true, for_generator=True) loss_resconstruction = opt.euclidean_distance(images, reconstruction) # Variables Collection variables_encoder = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder') variables_decoder = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder') variables_discriminator = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') # Optimizer counter_encoder = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) counter_resconstruction = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) counter_discriminator = tf.Variable(trainable=False, initial_value=0, dtype=tf.float32) opt_resconstruction = opt.optimize(loss_resconstruction, variables_decoder + variables_encoder, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_resconstruction ) opt_discriminator = opt.optimize(config.scale_ratio * loss_discriminator, variables_discriminator, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_discriminator ) opt_encoder = opt.optimize(config.scale_ratio * loss_encoder, variables_encoder, optimizer=tf.train.AdamOptimizer if config.optimizer_is_adam is True else tf.train.RMSPropOptimizer, learning_rate=learning_rate, global_step=counter_encoder ) # output what we want graph_handle = Object() graph_handle.x = images graph_handle.z = z_sampler graph_handle.x_ = reconstruction graph_handle.z_r = z_representation graph_handle.opt_r = opt_resconstruction graph_handle.opt_d = opt_discriminator graph_handle.opt_e = opt_encoder graph_handle.loss_d = loss_discriminator graph_handle.loss_e = loss_encoder graph_handle.loss_r = loss_resconstruction graph_handle.lr = learning_rate return graph_handle
4e84c64706c5b3dcde4f84dc13e6085aa18fa72b
61296b98e4d481893db4bc51d75652c7109ae626
/0000_examples/cobotta_g.py
116d8d398c21d519f84520776dd6e95bfdd43b4d
[ "MIT" ]
permissive
Shogo-Hayakawa/wrs
23d4560b1062cf103ed32db4b2ef1fc2261dd765
405f15be1a3f7740f3eb7d234d96998f6d057a54
refs/heads/main
2023-08-19T19:29:15.409949
2021-11-02T01:22:29
2021-11-02T01:22:29
423,663,614
0
0
MIT
2021-11-02T00:59:17
2021-11-02T00:59:17
null
UTF-8
Python
false
false
1,418
py
import visualization.panda.world as wd import grasping.planning.antipodal as gp import robot_sim.end_effectors.grippers.cobotta_gripper.cobotta_gripper as cg import modeling.collision_model as cm import modeling.geometric_model as gm import numpy as np import math base = wd.World(cam_pos=np.array([.5, .5, .5]), lookat_pos=np.array([0, 0, 0])) gm.gen_frame().attach_to(base) objcm = cm.CollisionModel("objects/holder.stl") objcm.attach_to(base) # base.run() hnd_s = cg.CobottaGripper() # hnd_s.gen_meshmodel().attach_to(base) # base.run() grasp_info_list = gp.plan_grasps(hnd_s, objcm, angle_between_contact_normals=math.radians(175), openning_direction='loc_y', rotation_interval=math.radians(15), max_samples=20, min_dist_between_sampled_contact_points=.001, contact_offset=.001) gp.write_pickle_file(objcm_name="holder", grasp_info_list=grasp_info_list, file_name="cobg_holder_grasps.pickle") for grasp_info in grasp_info_list: jaw_width, jaw_center_pos, jaw_center_rotmat, hnd_pos, hnd_rotmat = grasp_info hnd_s.grip_at_with_jcpose(jaw_center_pos, jaw_center_rotmat, jaw_width) hnd_s.gen_meshmodel().attach_to(base) base.run()
560bbdf2d856311a383f2556ff042c6b24798d81
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/SAF-ENTERPRISE.py
25f13b95d7e50531041d277cb4e2ad47bc261ce1
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
2,343
py
# # PySNMP MIB module SAF-ENTERPRISE (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SAF-ENTERPRISE # Produced by pysmi-0.3.4 at Wed May 1 14:59:53 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") NotificationType, Integer32, Counter32, Bits, iso, Gauge32, Unsigned32, IpAddress, MibIdentifier, enterprises, TimeTicks, ModuleIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Integer32", "Counter32", "Bits", "iso", "Gauge32", "Unsigned32", "IpAddress", "MibIdentifier", "enterprises", "TimeTicks", "ModuleIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") saf = ModuleIdentity((1, 3, 6, 1, 4, 1, 7571)) if mibBuilder.loadTexts: saf.setLastUpdated('2007040300Z') if mibBuilder.loadTexts: saf.setOrganization('SAF Tehnika') if mibBuilder.loadTexts: saf.setContactInfo('SAF Tehnika technical support <[email protected]>') if mibBuilder.loadTexts: saf.setDescription('') tehnika = ObjectIdentity((1, 3, 6, 1, 4, 1, 7571, 100)) if mibBuilder.loadTexts: tehnika.setStatus('current') if mibBuilder.loadTexts: tehnika.setDescription('Subtree to register SAF tehnika modules') microwaveRadio = MibIdentifier((1, 3, 6, 1, 4, 1, 7571, 100, 1)) pointToPoint = MibIdentifier((1, 3, 6, 1, 4, 1, 7571, 100, 1, 1)) mibBuilder.exportSymbols("SAF-ENTERPRISE", tehnika=tehnika, PYSNMP_MODULE_ID=saf, microwaveRadio=microwaveRadio, pointToPoint=pointToPoint, saf=saf)
b18c5a2b2afb8aa641c036874755e5247c1d83d0
be78d77bea1a5eea2a7f0d4090e1fc138623b79a
/cybox/test/objects/link_test.py
bac34e34bbbca2617a14995b938c2e2f2505741b
[ "BSD-3-Clause" ]
permissive
CybOXProject/python-cybox
399f73feb6a54778dca9260b1c0340a3895c6369
25e6e8b3a6f429f079d3fbd9ace3db9eb3d5ab71
refs/heads/master
2020-05-21T19:05:56.725689
2020-05-01T13:33:48
2020-05-01T13:33:48
7,631,169
43
31
BSD-3-Clause
2020-05-01T12:41:03
2013-01-15T19:04:47
Python
UTF-8
Python
false
false
980
py
# Copyright (c) 2017, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. import unittest from mixbox.vendor.six import u from cybox.core import Observables from cybox.objects.link_object import Link from cybox.objects.uri_object import URI from cybox.test.objects import ObjectTestCase class TestLink(ObjectTestCase, unittest.TestCase): object_type = "LinkObjectType" klass = Link _full_dict = { 'value': u("http://www.example.com"), 'type': URI.TYPE_URL, 'url_label': u("Click Here!"), 'xsi:type': object_type, } # https://github.com/CybOXProject/python-cybox/issues/202 def test_correct_namespace_output(self): link = Link() link.value = u("https://www.example.com") xml = Observables(link).to_xml() self.assertTrue(b"cybox:Properties" in xml) self.assertTrue(b"LinkObj:Properties" not in xml) if __name__ == "__main__": unittest.main()
1e8fed92b77867c5a707bc1e8cdaed3ff6f5566b
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/20ed819acd6f85b1facda3b799d3c24b3ada7ad6-<run>-bug.py
9d67f4caf81ac18c3daab8feb6cc8736cb5c336a
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
def run(self, terms, variables, **kwargs): if (not CREDSTASH_INSTALLED): raise AnsibleError('The credstash lookup plugin requires credstash to be installed.') ret = [] for term in terms: try: version = kwargs.pop('version', '') region = kwargs.pop('region', None) table = kwargs.pop('table', 'credential-store') profile_name = kwargs.pop('profile_name', os.getenv('AWS_PROFILE', None)) aws_access_key_id = kwargs.pop('aws_access_key_id', os.getenv('AWS_ACCESS_KEY_ID', None)) aws_secret_access_key = kwargs.pop('aws_secret_access_key', os.getenv('AWS_SECRET_ACCESS_KEY', None)) aws_session_token = kwargs.pop('aws_session_token', os.getenv('AWS_SESSION_TOKEN', None)) kwargs_pass = { 'profile_name': profile_name, 'aws_access_key_id': aws_access_key_id, 'aws_secret_access_key': aws_secret_access_key, 'aws_session_token': aws_session_token, } val = credstash.getSecret(term, version, region, table, context=kwargs, **kwargs_pass) except credstash.ItemNotFound: raise AnsibleError('Key {0} not found'.format(term)) except Exception as e: raise AnsibleError('Encountered exception while fetching {0}: {1}'.format(term, e.message)) ret.append(val) return ret
09d3b6f3dc518b71e5ac7013db8d512620bbe1a1
7bb64fb43c503e8f2ecf0f02619b539af3401d39
/test_files/Zr_Vasprun/test_Vasprun.py
adc1d5cc9df5295240f97a9d3801a1ca67e323a4
[ "MIT" ]
permissive
montoyjh/pymatgen
13c3179cd4cf5ff521e8380e480b23d35709c379
62ecae1c7382a41861e3a5d9b9c8dd1207472409
refs/heads/master
2023-06-09T15:02:15.309354
2019-04-03T14:39:33
2019-04-03T14:39:33
42,539,977
2
2
MIT
2019-06-21T17:15:55
2015-09-15T18:56:26
Propeller Spin
UTF-8
Python
false
false
99
py
#!/usr/bin/env python from pymatgen.io.vasp.outputs import Vasprun run = Vasprun("./vasprun.xml")
00884fcc431f3b0fc1c306f662977b63ebc1c16c
743da4642ac376e5c4e1a3b63c079533a5e56587
/build/lib.win-amd64-3.6/fairseq/modules/quantization/pq/modules/__init__.py
b6881e26bb167f75f55dacfac72238979dd74f80
[ "MIT" ]
permissive
tmtmaj/Exploiting-PrLM-for-NLG-tasks
cdae1b6e451b594b11d8ecef3c1cd4e12fe51c9b
e8752593d3ee881cf9c0fb5ed26d26fcb02e6dd5
refs/heads/main
2023-06-16T08:26:32.560746
2021-07-14T17:50:19
2021-07-14T17:50:19
371,899,601
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qconv import PQConv2d # NOQA from .qlinear import PQLinear # NOQA from .qemb import PQEmbedding # NOQA
f89d77ec7050a0b3fad826498e49acf3dae1ad69
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/4060/157004060.py
58e52da8c9b818275d320822a6d5a4d065d5c91c
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,347
py
from bots.botsconfig import * from records004060 import recorddefs syntax = { 'version' : '00403', #version of ISA to send 'functionalgroup' : 'NP', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGN', MIN: 1, MAX: 1}, {ID: 'N1', MIN: 0, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 2}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'REF', MIN: 0, MAX: 99999}, ]}, {ID: 'HL', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'NM1', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'N2', MIN: 0, MAX: 2}, {ID: 'IN2', MIN: 0, MAX: 99999}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'DTM', MIN: 0, MAX: 99999}, {ID: 'SPY', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'N1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 2}, {ID: 'N3', MIN: 0, MAX: 2}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'DTM', MIN: 0, MAX: 99999}, ]}, ]}, ]}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
52ae3a1a8d1d8f8f7503b9181f015b165f68bf00
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_scrubs.py
6efbee2e9b847a91a88e3d43d8c1023f95e3fd07
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.nouns._scrub import _SCRUB #calss header class _SCRUBS(_SCRUB, ): def __init__(self,): _SCRUB.__init__(self) self.name = "SCRUBS" self.specie = 'nouns' self.basic = "scrub" self.jsondata = {}
9c765fca0194129caa59e74b70cc204fc59bce14
cf1e19f7b6354302037bca563b42218df7d79400
/최단경로/[2307]도로검문.py
3540a2ab6f4b48e1f02290e4e11b12bf476f0669
[]
no_license
kim-kiwon/Baekjoon-Algorithm
680565ddeced2d44506ae6720cf32d8004db42f8
4699e6551d3e7451648b9256c54ea4318b71bd4d
refs/heads/master
2023-04-13T11:10:21.031969
2021-04-26T10:50:08
2021-04-26T10:50:08
325,209,266
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
#다익스트라 + 경로추적 import heapq n, m = map(int, input().split()) INF = int(1e9) graph = [[] for _ in range(n+1)] previous = [1] * (n+1) #이전 노드 저장 for _ in range(m): a, b, dist = map(int, input().split()) graph[a].append((b, dist)) graph[b].append((a, dist)) def dijkstra(): distance = [INF] * (n+1) distance[1] = 0 q = [] q.append((1, 0)) while q: now, dist = heapq.heappop(q) if distance[now] < dist: continue for i in graph[now]: cost = dist + i[1] if cost < distance[i[0]]: distance[i[0]] = cost heapq.heappush(q, (i[0], cost)) previous[i[0]] = now return distance[n] init_val = dijkstra() #다익스트라 수행. 초기 최단경로 저장. temp = [] #1->n 까지 최단경로에 거치는 간선들 저장할 리스트. now = n #n부터 1까지 역순으로 탐지할것. while True: if now == 1: break #1까지 탐지 완료시 종료 a = previous[now] #a : 이전노드 b = now #b : 현재노드 for i in graph[now]: #dist = 이전노드 -> 현재노드 거리. if i[0] == previous[now]: dist = i[1] break temp.append((a, b, dist)) #temp에 이전노드 현재노드 거리 삽입. now = previous[now] max_val = -1e9 #최단경로에 사용하는 간선들 없애는게 아니면 #반드시 최단경로 사용할 것이기에 cost변화 없다. while True: if len(temp) == 0: break #최단경로에 사용한 간선 중 하나 삭제 -> 다익스트라로 거리측정 -> 다시 추가 a, b, dist = temp.pop() graph[a].remove((b, dist)) graph[b].remove((a, dist)) max_val = max(max_val, dijkstra()) graph[a].append((b, dist)) graph[b].append((a, dist)) if max_val >= 1e9: print(-1) else: print(max_val - init_val)
e1c2fca2bad35624293caa5c903e7e1a37fcb96d
e35eb92b5ab6547119585004b9eea3cafe948050
/efsw/archive/errors.py
3b9ac8626e58cb7513fc221356b582c5bec573f4
[]
no_license
einsfr/mmkit
0a084db85b2cf5ba268e692676095d768733f387
f12bc2f83254a3123e02abdc105816cc04c438b5
refs/heads/master
2020-12-31T05:56:19.287611
2016-06-10T05:56:58
2016-06-10T05:56:58
29,473,203
0
0
null
null
null
null
UTF-8
Python
false
false
598
py
ITEM_LINK_SELF_SELF = 'Элемент не может иметь связь с самим собой.' ITEM_LINK_TYPE_UNKNOWN = 'Неизвестный тип связи между элементами: {0}.' ITEM_NOT_FOUND = 'Элемент(ы) с ID {0} не существует(ют).' STORAGE_NOT_FOUND = 'Хранилище(а) с ID {0} не существует(ют).' STORAGE_NOT_ALLOWED_AS_ARCHIVE = 'Хранилище(а) с ID {0} нельзя использовать как архивные.' CATEGORY_NOT_FOUND = 'Категория(и) с ID {0} не существует(ют).'
9084c5e743b26571e62ba65a4df2d3ec5e68700c
a3972cb6ba32abd18b374975f4abd5318bc95f09
/project/src/yosigy/api/yosigy_list_views.py
960d32f8f54604c94ee00262c81979094695a2d5
[]
no_license
ssr03/MiniDelivery
c57bb45e497cab34787473925663ace46dbb6b2d
659d9757d1f369a6713aa5a66bab2aa5d6381b8e
refs/heads/master
2020-07-30T15:05:01.401229
2019-09-23T11:52:51
2019-09-23T11:52:51
210,267,973
0
0
null
null
null
null
UTF-8
Python
false
false
5,099
py
import enum from datetime import datetime from django.core.paginator import Paginator from django.db.models import F, Count from django.http import JsonResponse from django.views.generic.base import View from accounts.mixins import LoginRequiredMixin from restaurant.api.views import CategoryNum from yosigy.models import Yosigy class YosigyListInfo(enum.IntEnum): POST_TO_SHOW_IN_ONE_PAGE = 4 PAGES_TO_SHOW = 3 class YosigyListAPIView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): category_id = kwargs['category_id'] today = datetime.now().date() tab_value = request.GET.get('tab_value', '') json_data = {} if kwargs['page']: self.page = kwargs['page'] if not category_id or category_id == CategoryNum.ALL_ID: yosigy = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter( restaurant__is_yosigy=True, deadline__gte=today, ) .values( 'restaurant', ) .annotate( is_yosigy_count=Count('yosigymenu__menu'), ) .values( 'pk', 'is_yosigy_count', restaurant_title=F('restaurant__title'), restaurant_img=F('restaurant__img'), yosigy_deadline=F('deadline'), yosigy_notice=F('notice'), ) .order_by('-created_time') ) else: yosigy = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter( restaurant__is_yosigy=True, deadline__gte=today, restaurant__category__pk=category_id, ) .values( 'restaurant', ) .annotate( is_yosigy_count=Count('yosigymenu__menu'), ) .values( 'pk', 'is_yosigy_count', restaurant_title=F('restaurant__title'), restaurant_img=F('restaurant__img'), yosigy_deadline=F('deadline'), yosigy_notice=F('notice'), ) .order_by('-created_time') ) yosigy_set = ( Yosigy.objects .select_related('restaurant') .prefetch_related('yosigymenu_set') .filter(yosigymenu__menu__is_set_menu=True,) .annotate( is_set_menu_count=Count('yosigymenu__menu'), ) .values( 'is_set_menu_count', 'pk', ) ) for i in yosigy: for j in yosigy_set: if i['pk'] == j['pk']: i['is_set_menu_count'] = j['is_set_menu_count'] yosigy=list(yosigy) if not yosigy: json_data = { 'message': '아직 공동 구매할 수 있는 메뉴가 없습니다.', } elif tab_value == 'deadline': yosigy=sorted(yosigy, key=lambda menu:menu['yosigy_deadline']) json_data = self.yosigy_paginator(yosigy) json_data['deadline'] = True elif tab_value == 'all' or tab_value == '': json_data = self.yosigy_paginator(yosigy) json_data['all'] = True return JsonResponse( json_data ) def yosigy_paginator(self, yosigy): paginator = Paginator(yosigy, YosigyListInfo.POST_TO_SHOW_IN_ONE_PAGE) current_page = paginator.get_page(self.page) start = (self.page-1) // YosigyListInfo.PAGES_TO_SHOW * YosigyListInfo.PAGES_TO_SHOW + 1 end = start + YosigyListInfo.PAGES_TO_SHOW last_page = len(paginator.page_range) if last_page < end: end = last_page yosigy_list = current_page.object_list page_range = range(start, end + 1) yosigy_list_data = { 'yosigy_list': yosigy_list, 'current_page': { 'has_previous': current_page.has_previous(), 'has_next': current_page.has_next(), }, 'page_range': [page_range[0], page_range[-1]], } if current_page.has_previous(): yosigy_list_data['current_page']['previous_page_number'] = current_page.previous_page_number() if current_page.has_next(): yosigy_list_data['current_page']['next_page_number'] = current_page.next_page_number() return yosigy_list_data
1217e3e57869565f3ec42a80986e66bb1d63dbd2
e00fe1e065b448f6f8c0472ed2b8a39991fa7b1b
/Fuzzy_clustering/version2/dataset_manager/create_datasets_pca.py
0542341ca3bd78c1d9c10831c04312420e50e87c
[ "Apache-2.0" ]
permissive
joesider9/forecasting_library
1a4ded5b09fc603f91fa1c075e79fc2ed06c08a8
db07ff8f0f2693983058d49004f2fc6f8849d197
refs/heads/master
2023-03-29T12:18:22.261488
2021-04-01T08:57:08
2021-04-01T08:57:08
319,906,316
0
0
null
null
null
null
UTF-8
Python
false
false
65,155
py
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from pytz import timezone from sklearn.decomposition import KernelPCA from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import MinMaxScaler from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import my_scorer from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_daily_nwps class DatasetCreatorPCA: def __init__(self, project, data=None, n_jobs=1, test=False, dates=None): if test is None: raise NotImplemented('test is none for short-term, not implemented for PCA') self.data = data self.is_for_test = test self.project_name = project['_id'] self.static_data = project['static_data'] self.path_nwp_project = self.static_data['pathnwp'] self.path_data = self.static_data['path_data'] self.areas = self.static_data['areas'] self.area_group = self.static_data['area_group'] self.nwp_model = self.static_data['NWP_model'] self.nwp_resolution = self.static_data['NWP_resolution'] self.location = self.static_data['location'] self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = n_jobs self.variables = self.static_data['data_variables'] self.logger = create_logger(logger_name=f"log_{self.static_data['project_group']}", abs_path=self.path_nwp_project, logger_path=f"log_{self.static_data['project_group']}.log", write_type='a') if self.data is not None: self.dates = self.check_dates() elif dates is not None: self.dates = dates def check_dates(self): # Extract dates of power measurements. start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates is checked. Number of time samples %s', str(len(dates))) return pd.DatetimeIndex(dates) def make_dataset_res(self): nwp_3d_pickle = 'nwps_3d_test.pickle' if self.is_for_test else 'nwps_3d.pickle' dataset_cnn_pickle = 'dataset_cnn_test.pickle' if self.is_for_test else 'dataset_cnn.pickle' nwp_3d_pickle = os.path.join(self.path_data, nwp_3d_pickle) dataset_cnn_pickle = os.path.join(self.path_data, dataset_cnn_pickle) if not (os.path.exists(nwp_3d_pickle) and os.path.exists(dataset_cnn_pickle)): data, x_3d = self.get_3d_dataset() else: data = joblib.load(nwp_3d_pickle) x_3d = joblib.load(dataset_cnn_pickle) # FIXME: unused variable data_path = self.path_data if not isinstance(self.areas, dict): self.dataset_for_single_farm(data, data_path) else: dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=25), t + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) flag = False for i, p_dates in enumerate(dates_stack): t = self.dates[i] file_name = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(file_name): nwps = joblib.load(file_name) for date in p_dates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except Exception: continue if flag: break self.dataset_for_multiple_farms(data, self.areas, lats_group, longs_group) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def get_3d_dataset(self): dates_stack = [] for t in self.dates: p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') # 47 hours: 00:00 -> 23:00 dates = [dt.strftime('%d%m%y%H%M') for dt in p_dates if dt in self.data.index] dates_stack.append(dates) # For each date we have prediction append the next 47 hours area = self.area_group if isinstance(self.areas, dict) else self.areas nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], p_dates, self.path_nwp_project, self.nwp_model, area, self.variables, self.compress, self.static_data['type']) for i, p_dates in enumerate(dates_stack)) x = np.array([]) data_var = dict() for var in self.variables: if (var == 'WS' and self.static_data['type'] == 'wind') or \ (var == 'Flux' and self.static_data['type'] == 'pv'): data_var[var + '_prev'] = x data_var[var] = x data_var[var + '_next'] = x else: data_var[var] = x data_var['dates'] = x x_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) x_3d = stack_3d(x_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) if self.is_for_test: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d_test.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn_test.pickle')) else: joblib.dump(data_var, os.path.join(self.path_data, 'nwps_3d.pickle')) joblib.dump(x_3d, os.path.join(self.path_data, 'dataset_cnn.pickle')) self.logger.info('NWP stacked data saved') return data_var, x_3d def train_pca(self, data, components, level): scaler = MinMaxScaler() data_scaled = scaler.fit_transform(data) param_grid = [{ "gamma": np.logspace(-3, 0, 20), }] kpca = KernelPCA(n_components=components, fit_inverse_transform=True, n_jobs=self.n_jobs) grid_search = GridSearchCV(kpca, param_grid, cv=3, scoring=my_scorer, n_jobs=self.n_jobs) grid_search.fit(data_scaled) kpca = grid_search.best_estimator_ fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') joblib.dump({'scaler': scaler, 'kpca': kpca}, fname) def pca_transform(self, data, components, level): fname = os.path.join(self.path_data, 'kpca_' + level + '.pickle') if not os.path.exists(fname): self.train_pca(data, components, level) models = joblib.load(fname) data_scaled = models['scaler'].transform(data) data_compress = models['kpca'].transform(data_scaled) return data_compress def dataset_for_single_farm(self, data, data_path): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(data_path, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def dataset_for_multiple_farms(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) dataset_y = self.data.loc[dataset_X.index].to_frame() dataset_y.columns = ['target'] if self.is_for_test: ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X_test.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y_test.csv')) self.logger.info('Successfully dataset created for Evaluation for %s', self.project_name) else: corr = [] for f in range(dataset_X.shape[1]): corr.append(np.abs(np.corrcoef(dataset_X.values[:, f], dataset_y.values.ravel())[1, 0])) ind = np.argsort(np.array(corr))[::-1] columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] joblib.dump(ind, os.path.join(self.path_data, 'dataset_columns_order.pickle')) dataset_X.to_csv(os.path.join(self.path_data, 'dataset_X.csv')) dataset_y.to_csv(os.path.join(self.path_data, 'dataset_y.csv')) self.logger.info('Successfully dataset created for training for %s', self.project_name) def make_dataset_res_offline(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_offline(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_offline(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t = self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_offline(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_offline(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] for dt in self.dates: if utc: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') dates = [t.strftime('%d%m%y%H%M') for t in pdates] dates_stack.append(dates) else: pdates = pd.date_range(dt + pd.DateOffset(hours=25), dt + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) else: nwp = stack_daily_nwps(self.dates[0], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(stack_daily_nwps)(self.dates[i], pdates, self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) for i, pdates in enumerate(dates_stack)) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) for arrays in nwp_daily: nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_offline(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] return dataset_X def dataset_for_multiple_farms_offline(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] longs = (np.where((longs_group[0, :] >= area[1]) & (longs_group[0, :] <= area[3])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] return dataset_X def make_dataset_res_online(self, utc=False): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False data, X_3d = self.get_3d_dataset_online(utc) if not isinstance(self.areas, dict): X = self.dataset_for_single_farm_online(data) else: dates_stack = [] for t in self.dates: pdates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) flag = False for i, pdates in enumerate(dates_stack): t = self.dates[i] fname = os.path.join(self.path_nwp_project, self.nwp_model + '_' + t.strftime('%d%m%y') + '.pickle') if os.path.exists(fname): nwps = joblib.load(fname) for date in pdates: try: nwp = nwps[date] if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] lats = (np.where((nwp['lat'][:, 0] >= self.area_group[0][0]) & ( nwp['lat'][:, 0] <= self.area_group[1][0])))[0] longs = (np.where((nwp['long'][0, :] >= self.area_group[0][1]) & ( nwp['long'][0, :] <= self.area_group[1][1])))[0] lats_group = nwp['lat'][lats] longs_group = nwp['long'][:, longs] flag = True break except: continue if flag: break X = self.dataset_for_multiple_farms_online(data, self.areas, lats_group, longs_group) return X, X_3d def get_3d_dataset_online(self, utc): def datetime_exists_in_tz(dt, tz): try: dt.tz_localize(tz) return True except: return False dates_stack = [] if utc: pdates = pd.date_range(self.dates[-1] + pd.DateOffset(hours=25), self.dates[-1] + pd.DateOffset(hours=48), freq='H') dates = [dt.strftime('%d%m%y%H%M') for dt in pdates if dt in self.data.index] dates_stack.append(dates) else: pdates = pd.date_range(self.dates[-1] + pd.DateOffset(hours=25), self.dates[-1] + pd.DateOffset(hours=48), freq='H') indices = [i for i, t in enumerate(pdates) if datetime_exists_in_tz(t, tz=timezone('Europe/Athens'))] pdates = pdates[indices] pdates = pdates.tz_localize(timezone('Europe/Athens')) pdates = pdates.tz_convert(timezone('UTC')) dates = [dt.strftime('%d%m%y%H%M') for dt in pdates] dates_stack.append(dates) if not isinstance(self.areas, dict): arrays = stack_daily_nwps(self.dates[-1], dates_stack[0], self.path_nwp_project, self.nwp_model, self.areas, self.variables, self.compress, self.static_data['type']) else: arrays = stack_daily_nwps(self.dates[-1], dates_stack[0], self.path_nwp_project, self.nwp_model, self.area_group, self.variables, self.compress, self.static_data['type']) X = np.array([]) data_var = dict() for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): data_var[var + '_prev'] = X data_var[var] = X data_var[var + '_next'] = X else: data_var[var] = X data_var['dates'] = X X_3d = np.array([]) nwp = arrays[0] x_2d = arrays[1] if x_2d.shape[0] != 0: for var in nwp.keys(): if var != 'dates': data_var[var] = stack_3d(data_var[var], nwp[var]) else: data_var[var] = np.hstack((data_var[var], nwp[var])) X_3d = stack_3d(X_3d, x_2d) self.logger.info('NWP data stacked for date %s', arrays[2]) return data_var, X_3d def dataset_for_single_farm_online(self, data): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = np.transpose(data[var + '_prev'], [0, 2, 1]) X0_level0 = X0[:, 2, 2] X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) X2 = np.transpose(data[var + '_next'], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'flux' if var == 'Flux' else 'wind' var_sort = 'fl' if var == 'Flux' else 'ws' col = ['p_' + var_name] + ['n_' + var_name] + [var_name] col = col + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X0_level0.reshape(-1, 1), X2_level0.reshape(-1, 1), X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = np.transpose(data[var], [0, 2, 1]) X1_level1 = X1[:, 2, 2] ind = [[1, j] for j in range(1, 4)] + [[i, 1] for i in range(2, 4)] ind = np.array(ind) X1_level3d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_down' self.logger.info('Begin PCA training for %s', level) X1_level3d = self.pca_transform(X1_level3d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[2, 3], [3, 2], [3, 3]] ind = np.array(ind) X1_level3u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_mid_up' self.logger.info('Begin PCA training for %s', level) X1_level3u = self.pca_transform(X1_level3u, 2, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[0, j] for j in range(5)] + [[i, 0] for i in range(1, 5)] ind = np.array(ind) X1_level4d = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_down' self.logger.info('Begin PCA training for %s', level) X1_level4d = self.pca_transform(X1_level4d, 3, level) self.logger.info('Successfully PCA transform for %s', level) ind = [[4, j] for j in range(1, 5)] + [[i, 4] for i in range(1, 4)] ind = np.array(ind) X1_level4u = np.hstack([X1[:, indices[0], indices[1]].reshape(-1, 1) for indices in ind]) level = var + '_curr_out_up' self.logger.info('Begin PCA training for %s', level) X1_level4u = self.pca_transform(X1_level4u, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud' if var == 'Cloud' else 'direction' var_sort = 'cl' if var == 'Cloud' else 'wd' col = [var_name] + [var_sort + '_l1.' + str(i) for i in range(3)] + [var_sort + '_l2.' + str(i) for i in range(2)] col = col + [var_sort + '_l3d.' + str(i) for i in range(3)] + [var_sort + '_l3u.' + str(i) for i in range(3)] X = np.hstack((X1_level1.reshape(-1, 1), X1_level3d, X1_level3u, X1_level4d , X1_level4u)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X2 = np.transpose(data[var], [0, 2, 1]) X2_level0 = X2[:, 2, 2] var_name = 'Temp' if var == 'Temperature' else 'wind' var_sort = 'tp' if var == 'Temperature' else 'ws' col = [var_name] X = X2_level0 dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue dataset_X = dataset_X ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X def dataset_for_multiple_farms_online(self, data, areas, lats_group, longs_group): dataset_X = pd.DataFrame() if self.static_data['type'] == 'pv': hours = [dt.hour for dt in data['dates']] months = [dt.month for dt in data['dates']] dataset_X = pd.concat( [dataset_X, pd.DataFrame(np.stack([hours, months]).T, index=data['dates'], columns=['hour', 'month'])]) for var in self.variables: for area_name, area in areas.items(): if len(area) > 1: lats = (np.where((lats_group[:, 0] >= area[0, 0]) & (lats_group[:, 0] <= area[1, 0])))[0] longs = (np.where((longs_group[0, :] >= area[0, 1]) & (longs_group[0, :] <= area[1, 1])))[0] else: lats = (np.where((lats_group[:, 0] >= area[0]) & (lats_group[:, 0] <= area[2])))[0] if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): X0 = data[var + '_prev'][:, lats, :][:, :, longs] X0 = X0.reshape(-1, X0.shape[1] * X0.shape[2]) level = var + '_prev_' + area_name self.logger.info('Begin PCA training for %s', level) X0_compressed = self.pca_transform(X0, 3, level) self.logger.info('Successfully PCA transform for %s', level) X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) X2 = data[var + '_next'][:, lats, :][:, :, longs] X2 = X2.reshape(-1, X2.shape[1] * X2.shape[2]) level = var + '_next_' + area_name self.logger.info('Begin PCA training for %s', level) X2_compressed = self.pca_transform(X2, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name var_sort = 'fl_' + area_name if var == 'Flux' else 'ws_' + area_name col = ['p_' + var_name + '.' + str(i) for i in range(3)] col += ['n_' + var_name + '.' + str(i) for i in range(3)] col += [var_name + '.' + str(i) for i in range(9)] X = np.hstack((X0_compressed, X2_compressed, X1_compressed)) dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif var in {'WD', 'Cloud'}: X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 9, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name var_sort = 'cl_' + area_name if var == 'Cloud' else 'wd_' + area_name col = [var_name + '.' + str(i) for i in range(9)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): X1 = data[var][:, lats, :][:, :, longs] X1 = X1.reshape(-1, X1.shape[1] * X1.shape[2]) level = var + area_name self.logger.info('Begin PCA training for %s', level) X1_compressed = self.pca_transform(X1, 3, level) self.logger.info('Successfully PCA transform for %s', level) var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name var_sort = 'tp_' + area_name if var == 'Temperature' else 'ws_' + area_name col = [var_name + '.' + str(i) for i in range(3)] X = X1_compressed dataset_X = pd.concat([dataset_X, pd.DataFrame(X, index=data['dates'], columns=col)], axis=1) else: continue for var in self.variables: if ((var == 'WS') and (self.static_data['type'] == 'wind')) or ( (var == 'Flux') and (self.static_data['type'] == 'pv')): col = [] col_p = [] col_n = [] for area_name, area in areas.items(): var_name = 'flux_' + area_name if var == 'Flux' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(9)] col_p += ['p_' + var_name + '.' + str(i) for i in range(3)] col_n += ['n_' + var_name + '.' + str(i) for i in range(3)] var_name = 'flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) var_name = 'p_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_p].mean(axis=1) var_name = 'n_flux' if var == 'Flux' else 'wind' dataset_X[var_name] = dataset_X[col_n].mean(axis=1) elif var in {'WD', 'Cloud'}: col = [] for area_name, area in areas.items(): var_name = 'cloud_' + area_name if var == 'Cloud' else 'direction_' + area_name col += [var_name + '.' + str(i) for i in range(9)] var_name = 'cloud' if var == 'Cloud' else 'direction' dataset_X[var_name] = dataset_X[col].mean(axis=1) elif (var in {'Temperature'}) or ((var == 'WS') and (self.static_data['type'] == 'pv')): col = [] for area_name, area in areas.items(): var_name = 'Temp_' + area_name if var == 'Temperature' else 'wind_' + area_name col += [var_name + '.' + str(i) for i in range(3)] var_name = 'Temp' if var == 'Temperature' else 'wind' dataset_X[var_name] = dataset_X[col].mean(axis=1) ind = joblib.load(os.path.join(self.path_data, 'dataset_columns_order.pickle')) columns = dataset_X.columns[ind] dataset_X = dataset_X[columns] self.logger.info('Successfully dataset created for training for %s', self.project_name) return dataset_X
0f41b4c555162561f877240887369c044b1fe898
3d589d1c56b55fbd2b45b03564b8a9442ebf142b
/lib/src/klio/metrics/base.py
1b50aeb1da57930cc8fba17042c72434460c2eb4
[ "Apache-2.0" ]
permissive
spotify/klio
1aff27412e92c9d699259e5ab1eaeb39dc3e9571
e625565708ed846201d2e05f782c0ce585554346
refs/heads/develop
2023-05-25T14:33:28.348335
2022-03-23T20:34:09
2022-03-23T20:34:09
285,928,366
815
57
Apache-2.0
2023-05-24T21:07:09
2020-08-07T22:02:58
Python
UTF-8
Python
false
false
5,765
py
# Copyright 2019-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Base classes from which a metrics consumer (i.e. ffwd, logger, etc.) will need to implement. New consumers are required to implement the :class:`AbstractRelayClient`, and three metrics objects based off of :class:`BaseMetric`: a counter, a gauge, and a timer. """ import abc import six class _DummyAttribute(object): # for the ability to do `FOO_ATTR = abstract_attr()` as well as # decorate a property method pass def abstract_attr(obj=None): """Set an attribute or a property as abstract. Supports class-level attributes as well as methods defined as a ``@property``. Usage: .. code-block:: python class Foo(object): my_foo_attribute = abstract_attr() @property @abstract_attr def my_foo_property(self): pass Args: obj (callable): Python object to "decorate", i.e. a class method. If none is provided, a dummy object is created in order to attach the ``__isabstractattr__`` attribute (similar to ``__isabstractmethod__`` from ``abc.abstractmethod``). Returns object with ``__isabstractattr__`` attribute set to ``True``. """ if not obj: obj = _DummyAttribute() obj.__isabstractattr__ = True return obj def _has_abstract_attributes_implemented(cls, name, bases): """Verify a given class has its abstract attributes implemented.""" for base in bases: abstract_attrs = getattr(base, "_klio_metrics_abstract_attributes", []) class_attrs = getattr(cls, "_klio_metrics_all_attributes", []) for attr in abstract_attrs: if attr not in class_attrs: err_str = ( "Error instantiating class '{0}'. Implementation of " "abstract attribute '{1}' from base class '{2}' is " "required.".format(name, attr, base.__name__) ) raise NotImplementedError(err_str) def _get_all_attributes(clsdict): return [name for name, val in six.iteritems(clsdict) if not callable(val)] def _get_abstract_attributes(clsdict): return [ name for name, val in six.iteritems(clsdict) if not callable(val) and getattr(val, "__isabstractattr__", False) ] class _ABCBaseMeta(abc.ABCMeta): """Enforce behavior upon implementations of ABC classes.""" def __init__(cls, name, bases, clsdict): _has_abstract_attributes_implemented(cls, name, bases) def __new__(metaclass, name, bases, clsdict): clsdict[ "_klio_metrics_abstract_attributes" ] = _get_abstract_attributes(clsdict) clsdict["_klio_metrics_all_attributes"] = _get_all_attributes(clsdict) cls = super(_ABCBaseMeta, metaclass).__new__( metaclass, name, bases, clsdict ) return cls class AbstractRelayClient(six.with_metaclass(_ABCBaseMeta)): """Abstract base class for all metric consumer relay clients. Each new consumer (i.e. ffwd, logging-based metrics) will need to implement this relay class. Attributes: RELAY_CLIENT_NAME (str): must match the key in ``klio-job.yaml`` under ``job_config.metrics``. """ RELAY_CLIENT_NAME = abstract_attr() def __init__(self, klio_config): self.klio_config = klio_config @abc.abstractmethod def unmarshal(self, metric): """Returns a dictionary-representation of the ``metric`` object""" pass @abc.abstractmethod def emit(self, metric): """Emit the given metric object to the particular consumer. ``emit`` will be run in a threadpool separate from the transform, and any errors raised from the method will be logged then ignored. """ pass @abc.abstractmethod def counter(self, name, value=0, transform=None, **kwargs): """Return a newly instantiated counter-type metric specific for the particular consumer. Callers to the ``counter`` method will store new counter objects returned in memory for simple caching. """ pass @abc.abstractmethod def gauge(self, name, value=0, transform=None, **kwargs): """Return a newly instantiated gauge-type metric specific for the particular consumer. Callers to the ``gauge`` method will store new gauge objects returned in memory for simple caching. """ pass @abc.abstractmethod def timer(self, name, transform=None, **kwargs): """Return a newly instantiated timer-type metric specific for the particular consumer. Callers to the ``timer`` method will store new timer objects returned in memory for simple caching. """ pass class BaseMetric(object): """Base class for all metric types. A consumer must implement a counter metric, a gauge metric, and a timer metric. """ def __init__(self, name, value=0, transform=None, **kwargs): self.name = name self.value = value self.transform = transform def update(self, value): self.value = value
2682ec078d2d665c54515022a6840ddf88168001
7a1f6f1aae43b219cd34c3c9b907923fb839e6f5
/Python/Udemy/FXTRADE/pyfxtrading/pyfxtrading/28/app/controllers/webserver.py
bbf2ff35ce8221762754b16b7b6dd096ee8484a4
[]
no_license
amanoman/amanoman.github.io
b5afc80e0e49ed15db793e2ebf69003c05ab8ce0
141c928f6d1df0389859f663f6439d327d4c32d6
refs/heads/master
2023-05-28T07:22:09.735409
2021-03-31T15:00:14
2021-03-31T15:00:14
187,139,297
0
1
null
2023-05-22T23:37:24
2019-05-17T03:19:36
Jupyter Notebook
UTF-8
Python
false
false
543
py
from flask import Flask from flask import render_template import settings app = Flask(__name__, template_folder='../views') @app.teardown_appcontext def remove_session(ex=None): from app.models.base import Session Session.remove() @app.route('/') def index(): app.logger.info('index') return render_template('./google.html', word='World') def start(): # app.run(host='127.0.0.1', port=settings.web_port, threaded=True) app.run(host='0.0.0.0', port=settings.web_port, threaded=True)
2dd09cf0b1134b3972740048402bc6e9ee1c97be
1ece1faa638f85c567fdb237c67340501f86f89e
/model/model_builder.py
5bc0acb8d41370c2b1905ff26fb7f1070790eb67
[]
no_license
seasa2016/transformer_random
54223ee5b04a4563c7903d925436d843b8cf7f1c
e3e13c9a2ddc49558d8e991427a974848a850b9c
refs/heads/master
2020-04-02T12:21:28.167673
2019-03-19T03:45:00
2019-03-19T03:45:00
154,429,913
0
0
null
null
null
null
UTF-8
Python
false
false
7,030
py
import torch import torch.nn as nn from torch.nn.init import xavier_uniform_,xavier_normal_ from .module.Embedding import Embedding from .util.Logger import logger from . import Constant from . import transformer def build_embedding(opt,word_dict,max_len,for_encoder=True,dtype='sum',tag=None): if(for_encoder): embedding_dim = opt.src_word_vec_size else: embedding_dim = opt.tar_word_vec_size #print(Constant.PAD_token) word_padding_idx = word_dict[Constant.PAD_token] num_word_embedding = len(word_dict) # num_word,max_len,emb_dim,feature_dim,dropout=0,dtype='sum' return Embedding(num_word= num_word_embedding, max_len = max_len, emb_dim = embedding_dim, feature_dim = embedding_dim, padding_idx = word_padding_idx, dropout = opt.dropout, dtype = dtype,tag=tag) def build_encoder(opt,src_dict,tag_dict): """ function to build the encoder """ max_len = 128 src_embedding = build_embedding(opt,src_dict,max_len,tag=tag_dict) return transformer.Encoder( opt.enc_layer,opt.num_head, opt.model_dim,opt.nin_dim_en, opt.dropout,src_embedding) def build_decoder(opt,tar_dict): """ function to build the decoder """ max_len = 128 tar_embedding = build_embedding(opt,tar_dict,max_len,for_encoder=False,dtype=opt.decode_pos) return transformer.Decoder( opt.dec_layer,opt.num_head, opt.model_dim,opt.nin_dim_de,len(tar_dict),max_len, opt.self_attn_type,opt.dropout,tar_embedding ) def load_test_model(opt,model_path=None,mode=False): """ use the method the acquire the data_dict and the model """ if model_path is None: if(opt.test_from is None): raise ValueError('test_from shouble not be None') model_path = opt.test_from checkpoint = torch.load(model_path) data_new = dict() for t in ['source','target','tag']: data_new[t] = dict() with open('./{0}/subword.{1}'.format(opt.data,t)) as f_in: for i,word in enumerate(f_in): if(t=='source'): data_new[t][word.strip()[1:-1]] = i else: data_new[t][word.strip()+'_'] = i if(mode == False): model = build_base_model(checkpoint['opt'],opt, data_new, torch.cuda.is_available(),checkpoint) else: #build_model_pre(opt,opt,data_ori,data_new,True,checkpoint=checkpoint) model = build_base_model(opt,opt,data_new,True,checkpoint=checkpoint) model.load_state_dict(checkpoint['model']) model.eval() return model, opt def build_base_model(model_opt,opt,data_token,gpu,checkpoint=None,dtype=None): """ build the base model """ if('tag' in data_token): encoder = build_encoder(model_opt,data_token['source'],len(data_token['tag'])) else: encoder = build_encoder(model_opt,data_token['source'],None) logger.info("finish build encoder") decoder = build_decoder(model_opt,data_token['target']) logger.info("finish build decoder") device = torch.device("cuda" if gpu else "cpu") model = transformer.Transformer(encoder,decoder) #print(model) n_params = sum([p.nelement() for p in model.parameters()]) enc = 0 dec = 0 for name, param in model.named_parameters(): if 'encoder' in name: enc += param.nelement() elif 'decoder' or 'generator' in name: dec += param.nelement() print("the size will be {0} {1} {2}".format(n_params,enc,dec)) if(checkpoint is not None): logger.info('loading model weight from checkpoint') model.load_state_dict(checkpoint['model']) else: if(model_opt.param_init != 0.0): for p in model.parameters(): if(p.requires_grad): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if(model_opt.param_init_glorot): for p in model.parameters(): if(p.requires_grad): if p.dim() > 1: xavier_normal_(p) model.to(device) logger.info('the model is now in the {0} mode'.format(device)) return model def change(model_opt,opt,model,data_new): """ change the decoder and lock the grad for the encoder """ model.decoder = build_decoder(opt,data_new['target']) #update the parameter model_opt.tar_word_vec_size = opt.tar_word_vec_size model_opt.dropout = opt.dropout model_opt.dec_layer = opt.dec_layer model_opt.num_head = opt.num_head model_opt.model_dim = opt.model_dim model_opt.nin_dim_de = opt.nin_dim_de model_opt.self_attn_type = opt.self_attn_type model_opt.dropout = opt.dropout #lock the grad for the encoder model.encoder.embedding.word_emb.requires_grad = False if model_opt.param_init != 0.0: for p in model.parameters(): if(p.requires_grad): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in model.parameters(): if(p.requires_grad): if(p.dim()>1): xavier_normal_(p) if(opt.replace): #one for the pretrain model and the other for the new model logger.info("with mid layer {0} {1}".format(model_opt.model_dim,opt.model_dim)) model.mid = nn.Linear(model_opt.model_dim,opt.model_dim) return model def build_model_pre(model_opt,opt,data_ori,data_new,gpu,checkpoint=None): #in our work,we only use text #build encoder encoder = build_encoder(model_opt,data_ori['source'],len(data_ori['tag'])) logger.info("build the origin encoder") decoder = build_decoder(model_opt,data_ori['target']) logger.info("build the origin decoder") device = torch.device("cuda" if gpu else "cpu") model = transformer.Transformer(encoder,decoder) print(model) if(checkpoint): logger.info('loading model weight from checkpoint') model.load_state_dict(checkpoint['model']) else: raise ValueError('cant access this mode without using pretrain model') model = change(model_opt,opt,model,data_new) #print(model) n_params = sum([p.nelement() for p in model.parameters()]) enc = 0 dec = 0 for name, param in model.named_parameters(): if 'encoder' in name: enc += param.nelement() elif 'decoder' or 'generator' in name: dec += param.nelement() print("the size will be {0} {1} {2}".format(n_params,enc,dec)) model.to(device) logger.info('the model is now in the {0} mode'.format(device)) return model def build_model(model_opt,opt,data_token,checkpoint): logger.info('Building model...') model = build_base_model(model_opt,opt,data_token,torch.cuda.is_available(),checkpoint) return model
b51e6caa09f683cec6c8f09fb1aca60e73ec36f0
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_25/models/resource_performance_no_id_by_array_get_response.py
dc59892d20f80e34fb26c25e0f59584a263ca562
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
6,240
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.25 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_25 import models class ResourcePerformanceNoIdByArrayGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'more_items_remaining': 'bool', 'total_item_count': 'int', 'continuation_token': 'str', 'items': 'list[ResourcePerformanceNoIdByArray]', 'total': 'list[ResourcePerformanceNoIdByArray]' } attribute_map = { 'more_items_remaining': 'more_items_remaining', 'total_item_count': 'total_item_count', 'continuation_token': 'continuation_token', 'items': 'items', 'total': 'total' } required_args = { } def __init__( self, more_items_remaining=None, # type: bool total_item_count=None, # type: int continuation_token=None, # type: str items=None, # type: List[models.ResourcePerformanceNoIdByArray] total=None, # type: List[models.ResourcePerformanceNoIdByArray] ): """ Keyword args: more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved. total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned. continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified). items (list[ResourcePerformanceNoIdByArray]): Performance data, broken down by array. If `total_only=true`, the `items` list will be empty. total (list[ResourcePerformanceNoIdByArray]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful. """ if more_items_remaining is not None: self.more_items_remaining = more_items_remaining if total_item_count is not None: self.total_item_count = total_item_count if continuation_token is not None: self.continuation_token = continuation_token if items is not None: self.items = items if total is not None: self.total = total def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResourcePerformanceNoIdByArrayGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourcePerformanceNoIdByArrayGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
e152459956c322f9cbc51869cd7582e46c883a4f
ca77040a488fea5410449a6ae06693c64c0d3f1a
/web/ui/views/views.py
8bf22427e4bbe80ad2a7a40c428831f5b4e2c697
[]
no_license
patricknevindwyer/space-base-otter
0565412db484b5bb8b2dbc4e8d3878fbd73f7b0b
ea7dd7649c172ca3e4c14b6df8b6715f55f746ba
refs/heads/master
2021-01-19T13:42:53.229964
2017-08-19T21:50:45
2017-08-19T21:50:45
82,412,968
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
from django.shortcuts import render # Create your views here. def index(request): return render(request, "ping.html")
2455804a9deef4d3443589283af4dc9f1ef5c926
dd8227454b817ccf2ceb24b3dfd4260d4ded7a72
/scripts/item/consume_2435694.py
020e445c8c1b62894419c308afa2bc358e797d3f
[ "MIT" ]
permissive
Snewmy/swordie
0dd3c17808b064c2cb2bd9576b51daf01ae5d686
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
refs/heads/master
2023-06-30T21:14:05.225798
2021-07-06T14:32:39
2021-07-06T14:32:39
389,497,502
0
0
null
null
null
null
UTF-8
Python
false
false
174
py
# Heroes Evan Damage Skin success = sm.addDamageSkin(2435694) if success: sm.chat("The Heroes Evan Damage Skin has been added to your account's damage skin collection.")
12caf078872a5634ca4638aed6dbdbd7776b5062
6097031d8e85400214085f152164a29346d106e3
/maxheap.py
7e3f269c4b2365d3684fe48cdb32ec815206f9cd
[]
no_license
ekourkchi/GalaxyGroups
2fccca4998850c0838d0c7ef949bba8b1267716a
19e98da0015b0462133133a23915e6d633614ad3
refs/heads/master
2022-04-03T09:30:19.667796
2020-02-13T03:05:48
2020-02-13T03:05:48
112,898,380
2
0
null
null
null
null
UTF-8
Python
false
false
4,137
py
#!/home/ehsan/Ureka/Ureka/variants/common/bin/python import numpy as np from math import * from copy import * class heapNode: key = None ID = None flag = False def __init__(self, key, ID): self.key = key self.ID = ID def toString(self): print self.key, self.ID, self.flag # ********************************************* class maxHeap: size = 0 # Number of current elements array = [] # ***************** def __init__(self): self.size = 0 self.array = [] # ***************** def push(self, key, ID): #print "push:", key, ID, self.size newNode = heapNode(key, ID) self.array.append(newNode) child = self.size while child > 0: parent = (child+1)/2-1 if self.array[child].key > self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] child = parent else: break #for i in range(0,self.size+1): #print self.array[i].key self.size+=1 return 0 # ***************** def lrmax(self, left, right): if right <= self.size-1: if self.array[left].key >= self.array[right].key: return left else: return right elif left <= self.size-1: return left else: return 0 # ***************** def pop(self): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return None N = self.size output = self.array[0] self.array[0] = self.array[N-1] parent = 0 while parent <= N-1: left = 2*parent+1 right = 2*parent+2 child = self.lrmax(left, right) if child != 0: if self.array[child].key >= self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] parent = child else: break else: break self.array.pop(N-1) self.size -= 1 return output # ***************** def setFlag(self, key): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return False for i in range(0, self.size): if self.array[i].key == key: self.array[i].flag = True # ***************** def peek(self): if self.size == 0 : print "\n[Error] No elements in the mean Heap ...\n" return None else: return self.array[0] # ***************** """ This method removes heap elements which have the same id as the input ID The number of removed elements would be returned """ def remove(self, ID): boolean = 0 if self.size == 0 : #print "\n[Error] No elements in the mean Heap ...\n" return boolean else: i = 0 while i < self.size: # ID would be the object ID if self.array[i].ID == ID: parent = i N = self.size self.array[parent] = self.array[N-1] while parent <= N-1: left = 2*parent+1 right = 2*parent+2 child = self.lrmax(left, right) if child != 0: if self.array[child].key >= self.array[parent].key: self.array[parent], self.array[child] = self.array[child], self.array[parent] parent = child else: break else: break self.array.pop(N-1) self.size -= 1 boolean+=1 i-=1 # The new item must be checked again i+=1 return boolean # ***************** def Size(self): return self.size # ***************** def toString(self): for i in range(0,self.size): self.array[i].toString(); # ********************************************* # ********************************************* if __name__ == '__main__': myHeap = maxHeap() myHeap.push(4, "e4") myHeap.push(7, "e7") myHeap.push(2, "e2") myHeap.push(6, "e6") myHeap.push(8, "e7") myHeap.push(5, "e5") myHeap.push(3, "e7") print "\n", myHeap.Size() print myHeap.remove("e5") print "\n", myHeap.Size() while myHeap.Size()>0: myHeap.pop().toString() #print myHeap.peek().key
4e3d52464d257688f122a23748edd43590043b89
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flasharray/FA_2_24/models/network_interface_neighbor_capability.py
76ae203e5847eb8a031597b8f2d39119f564eac0
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
4,245
py
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.24 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_24 import models class NetworkInterfaceNeighborCapability(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'supported': 'bool', 'enabled': 'bool' } attribute_map = { 'supported': 'supported', 'enabled': 'enabled' } required_args = { } def __init__( self, supported=None, # type: bool enabled=None, # type: bool ): """ Keyword args: supported (bool): If true, this capability is supported by this neighbor; false otherwise. enabled (bool): If true, this capability is enabled by this neighbor; false otherwise. """ if supported is not None: self.supported = supported if enabled is not None: self.enabled = enabled def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `NetworkInterfaceNeighborCapability`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(NetworkInterfaceNeighborCapability, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NetworkInterfaceNeighborCapability): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
2ecaa0902b36455da6e55c02523cefe6bcec5bfc
e5f4c22bfae93d3d96dea1b0ed8f3e4df373243f
/test.py
f3a74709481a1e1e55a6bdc81b7b3e3e0cf3f866
[]
no_license
MrLokans/discover_flask
5925a2ab07480398543d51e33c8be2cf23b2c36b
63f847409dd67725bdef754cd0041f2647dabf4e
refs/heads/master
2021-01-10T16:25:21.767911
2016-03-07T05:44:17
2016-03-07T05:44:17
52,816,186
0
0
null
null
null
null
UTF-8
Python
false
false
1,919
py
import unittest from app import app class AppTestCase(unittest.TestCase): def setUp(self): self.tester = app.test_client(self) def login(self, username, password, follow_redirects=True): return self.tester.post('/login', data={'username': username, 'password': password}, follow_redirects=follow_redirects) def logout(self): return self.tester.get('/logout', follow_redirects=True) def correctly_login(self, follow_redirects=True): return self.login('admin', 'password', follow_redirects) def test_index(self): response = self.tester.get('/login', content_type='html/text') self.assertEqual(response.status_code, 200) def test_login_page_is_loaded(self): response = self.tester.get('/login', content_type='html/text') self.assertEqual(response.status_code, 200) self.assertIn('Please login', response.data.decode('utf-8')) def test_login_process_behaves_correctly_with_correct_creds(self): response = self.correctly_login() self.assertIn('Successfully logged in', response.data.decode('utf-8')) def test_login_process_behaves_correctly_with_incorrect_creds(self): response = self.login('incorrectuser', 'incorrectpassword') self.assertIn('Invalid username', response.data.decode('utf-8')) def test_logout_works(self): response = self.correctly_login() response = self.logout() self.assertIn('Logged out.', response.data.decode('utf-8')) def test_main_page_requires_user_being_logged_in(self): response = self.tester.get('/', content_type='html/text', follow_redirects=True) self.assertIn('Login required', response.data.decode('utf-8')) if __name__ == '__main__': unittest.main()
a145346bc456c2281fad96365f8d9a5af1f4cd7d
52b5773617a1b972a905de4d692540d26ff74926
/.history/sets_20200609191149.py
89a07ef2d3f4c49463319f9699998f9dd296f2fc
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,000
py
import json def Strings(str): # dictionary--> key value pairs values = {} newArray = [] keys = [] for i in str: newArray.append(i.split(":")) for j in range(0,len(newArray)): if newArray[j][0] in values: values[j][0] = # if newArray[j][0] in values: # values[newArray[j][0]] += int(newArray[j][1]) # else: # values[newArray[j][0]] = int(newArray[j][1]) # for k in values: # keys.append(k) # keys = sorted(keys) # newString = "" # last =len(keys)-1 # lastString = "" # lastString +=keys[last] + ":" + json.dumps(values[keys[last]]) # for i in range(len(keys)-1): # if keys[i] in values: # newString += keys[i] + ":"+ json.dumps(values[keys[i]])+"," # finalString = newString + lastString # print(type(finalString)) Strings(["Z:1","B:3","C:3","Z:4","B:2"]) # "B:5,C:3,Z:5"
8a463bda0d0c60cd4f34f3e9d156d3254165acfc
ebfcae1c5ba2997b2ac4471d5bedc3f5daffcb31
/repos/Flask-Large-Application-Example-master/tests/views/test_pypi_packages.py
27394594cc76c8ccde073c14c83e1f2757b0f036
[ "MIT" ]
permissive
babiato/flaskapp1
84de2d0b26a54f5820d3bbe97926782ad41e005c
530beb9e3b8516e0e93960b99521c23a523ef546
refs/heads/master
2023-02-26T16:36:49.760632
2021-02-04T09:08:40
2021-02-04T09:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,239
py
from flask import current_app from flask.ext.celery import CELERY_LOCK import pytest from redis.exceptions import LockError from pypi_portal.extensions import db, redis from pypi_portal.models.pypi import Package from pypi_portal.models.redis import POLL_SIMPLE_THROTTLE from pypi_portal.tasks import pypi class FakeDelay(object): @staticmethod def ready(): return False def test_index(): assert '200 OK' == current_app.test_client().get('/pypi/').status def test_sync_empty(alter_xmlrpc): alter_xmlrpc(set()) redis.delete(POLL_SIMPLE_THROTTLE) Package.query.delete() db.session.commit() assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status assert [] == db.session.query(Package.name, Package.summary, Package.latest_version).all() def test_sync_few(alter_xmlrpc): alter_xmlrpc([dict(name='packageB', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual def test_sync_rate_limit(alter_xmlrpc): alter_xmlrpc([dict(name='packageC', summary='Test package.', version='3.0.0'), ]) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual def test_sync_parallel(alter_xmlrpc): alter_xmlrpc([dict(name='packageD', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) redis_key = CELERY_LOCK.format(task_name='pypi_portal.tasks.pypi.update_package_list') lock = redis.lock(redis_key, timeout=1) assert lock.acquire(blocking=False) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [('packageB', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert expected == actual try: lock.release() except LockError: pass def test_sync_many(alter_xmlrpc): alter_xmlrpc([ dict(name='packageB1', summary='Test package.', version='3.0.0'), dict(name='packageB2', summary='Test package.', version='3.0.0'), dict(name='packageB3', summary='Test package.', version='3.0.0'), dict(name='packageB4', summary='Test package.', version='3.0.0'), dict(name='packageB5', summary='Test package.', version='3.0.0'), ]) redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [ ('packageB', 'Test package.', '3.0.0'), ('packageB1', 'Test package.', '3.0.0'), ('packageB2', 'Test package.', '3.0.0'), ('packageB3', 'Test package.', '3.0.0'), ('packageB4', 'Test package.', '3.0.0'), ('packageB5', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert sorted(expected) == sorted(actual) def test_sync_unhandled_exception(): old_throttle = pypi.THROTTLE pypi.THROTTLE = 'nan' redis.delete(POLL_SIMPLE_THROTTLE) with pytest.raises(ValueError): current_app.test_client().get('/pypi/sync').status() pypi.THROTTLE = old_throttle def test_sync_timeout(): old_delay = pypi.update_package_list.delay pypi.update_package_list.delay = FakeDelay redis.delete(POLL_SIMPLE_THROTTLE) assert '302 FOUND' == current_app.test_client().get('/pypi/sync').status expected = [ ('packageB', 'Test package.', '3.0.0'), ('packageB1', 'Test package.', '3.0.0'), ('packageB2', 'Test package.', '3.0.0'), ('packageB3', 'Test package.', '3.0.0'), ('packageB4', 'Test package.', '3.0.0'), ('packageB5', 'Test package.', '3.0.0'), ] actual = db.session.query(Package.name, Package.summary, Package.latest_version).all() assert sorted(expected) == sorted(actual) pypi.update_package_list.delay = old_delay
6e242cc43e2c7d24c5cfd1f02e749621f9366a0e
0bfb4208bdf7fcfd75311c777e25a3b639bf566d
/backend/code/iep/auth/models.py
fb6f856736cbe2fd1a25f1dc89baf52a17eff536
[ "Apache-2.0" ]
permissive
socek/iep
ab7833f94af739abd19f569f28de84cdcc689e95
793e35ca5304eef7b7dacb5dd8d486622f497759
refs/heads/master
2020-05-16T13:48:12.252161
2019-12-03T08:28:05
2019-12-03T08:28:05
183,082,207
0
0
Apache-2.0
2019-12-03T08:28:07
2019-04-23T19:24:49
Python
UTF-8
Python
false
false
1,193
py
from bcrypt import checkpw from bcrypt import gensalt from bcrypt import hashpw from iep.application.model import Model class User(Model): def __init__( self, uid, created_at=None, updated_at=None, name=None, email=None, is_admin=None, password=None, ): super().__init__(uid, created_at, updated_at) self.name = name self.email = email self.is_admin = is_admin self.password = password def do_password_match(self, password): """ Validate if provided password match with the password from the model. """ if self.password: return checkpw(password.encode("utf8"), self.password) else: return False def set_password(self, password): self.password = hashpw(password.encode("utf8"), gensalt()) def to_dict(self): return { 'uid': self.uid, 'created_at': self.created_at, 'updated_at': self.updated_at, 'name': self.name, 'email': self.email, 'is_admin': self.is_admin, 'password': self.password, }
f77ffc69cb16459c8138b3e8578323ac411365e2
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-4/5644d97cc5014e18b14799feeb9b354d528a6489-<test_invalid_interfaces>-bug.py
88bcd68511e3ab151bad7e95439f0d409610e661
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
def test_invalid_interfaces(self): event = self.create_sample_event(platform='invalid-interfaces') self.browser.get('/{}/{}/issues/{}/'.format(self.org.slug, self.project.slug, event.group.id)) self.browser.wait_until('.entries') self.browser.snapshot('issue details invalid interfaces')
bb4d3c4ffba8b3fdd9dae18528199a1e9560a1a0
43ede7b8fb546c00804c0ef94501f6e48ba170d6
/Cursos Python/Python 3 - Solyd/Orientacao_a_objeto.py
e902f0d109aa9feef7f8a68a9651bc74a65cd1bb
[]
no_license
bopopescu/Python-13
db407d17252473e78e705e563cfee4dbd316c6b9
c8bef500f2d3e4a63d850f96dfa219eff2ecebda
refs/heads/master
2022-11-22T16:24:08.490879
2020-06-11T14:22:24
2020-06-11T14:22:24
281,830,055
0
0
null
2020-07-23T02:26:31
2020-07-23T02:26:30
null
UTF-8
Python
false
false
1,339
py
class Cliente: def __init__(self, nome, cpf, idade): self.__nome = nome self.__cpf = cpf self.__idade = idade def dados_cliente(self): return {'nome': self.__nome, 'cpf': self.__cpf, 'idade': self.__idade} class Conta(Cliente): def __init__(self, nome, cpf, idade, saldo, limite): super().__init__(nome, cpf, idade) # Representante da conta self.__nome = nome self.__cpf = cpf self.__idade = idade # dados da conta self.__saldo = float(saldo) self.__limite = float(limite) def saldo_atual(self): print(f'Saldo atual: R${self.__saldo:.2f}') def dono(self): print('nome: ', self.__nome) print('cpf:', self.__cpf) print('idade :', self.__idade) def sacar(self, valor_saque): self.__saldo -= float(valor_saque) print(f'Saque de R${valor_saque}, Realizado com sucesso!') def depositar(self, valor_deposito): self.__saldo += float(valor_deposito) cliente = Cliente('Erickson', '19542634-05', 18) dc = cliente.dados_cliente() conta = Conta(dc['nome'], dc['cpf'], dc['idade'], 1500.00, 5000.00) conta.saldo_atual() conta.sacar(257.05) conta.saldo_atual() conta.saldo_atual() conta.depositar(750.00) conta.saldo_atual()
ccf9a734c56a27aad1c7b63e96282803ea84b5a4
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/f1dbf6292b80b7cc67661707e7f1d8b5b0a06eb5-<check_params>-bug.py
b748d6d0116f380fc5635eaf4ef57ebc08f34ef9
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
def check_params(self): 'Check all input params' if (not self.key_id.isdigit()): self.module.fail_json(msg='Error: key_id is not digit.') if ((int(self.key_id) < 1) or (int(self.key_id) > 4294967295)): self.module.fail_json(msg='Error: The length of key_id is between 1 and 4294967295.') if (self.state == 'present'): if ((self.auth_type == 'encrypt') and ((len(self.password) < 20) or (len(self.password) > 392))): self.module.fail_json(msg='Error: The length of encrypted password is between 20 and 392.') elif ((self.auth_type == 'text') and ((len(self.password) < 1) or (len(self.password) > 255))): self.module.fail_json(msg='Error: The length of text password is between 1 and 255.')
dfdfdc73b69afa83125300340f0252cfe3100d38
a127d0feb3bcf4f2581f385bb24f2b789c771c9c
/10syo/95_2.py
0a1ea7e35fd38d9a0daad78a923622656306fdf5
[]
no_license
NgoVanDau/nlp100knock
01383e4cc5a1470508744668103b9ea1a238b892
3ef63c0d2dfb55c0e6a31aced645f284325a98a5
refs/heads/master
2023-03-22T13:19:23.932429
2018-08-05T05:27:11
2018-08-05T05:27:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
fname_input = 'combined_out.tab' class Data: def __init__(self, human_score, my_score): self.human_score = human_score self.my_score = my_score def __repr__(self): return 'Data%s' % repr(self.__dict__) # データ配列作成 with open(fname_input) as data_file: def read_data(): for line in data_file: word1, word2, human_score, my_score = line.split('\t') yield Data(float(human_score), float(my_score)) data = list(read_data()) # 順位付け data_sorted_by_human_score = sorted(data, key=lambda data: data.human_score) for order, d in enumerate(data_sorted_by_human_score): d.human_order = order data_sorted_by_my_score = sorted(data, key=lambda data: data.my_score) for order, d in enumerate(data_sorted_by_my_score): d.my_order = order # スピアマン相関係数算出 N = len(data) total = sum((d.human_order - d.my_order) ** 2 for d in data) result = 1 - (6 * total) / (N ** 3 - N) print(result)
796965104f9a8b405aea58339305c0e917d2c247
7aae3051a7d08a280f7adc55b4b984bc48c87db3
/vehicle/admins/vehicle_model_admin.py
ba26d4ec5f9adf2698da8711bc9fa8bd44e5b5a4
[]
no_license
ohahlev/ahlev-django-vehicle
d087375e3b49cda9253a776f79e4531bbf0a686d
51895c200b40be7a298a4054ba2d8945df6a84d0
refs/heads/master
2020-11-30T07:00:12.441028
2020-01-21T01:25:48
2020-01-21T01:25:48
230,340,642
0
0
null
null
null
null
UTF-8
Python
false
false
1,253
py
from django.utils.html import format_html from django.contrib import admin from imagekit import ImageSpec from imagekit.admin import AdminThumbnail from imagekit.processors import ResizeToFill from imagekit.cachefiles import ImageCacheFile from ..models.vehicle_model import VehicleModel from .widgets import AdminSmallestThumbnailSpec, AdminSmallThumbnailSpec class VehicleModelAdmin(admin.ModelAdmin): def preview_thumbnail(self, obj): if obj.logo_thumbnail: return format_html(u"<img src='{}'/>", obj.logo_thumbnail.url) preview_thumbnail.short_description = 'Preview' readonly_fields = ['preview_thumbnail'] fieldsets = [ ("NAME", { 'fields': ['name', 'logo', 'preview_thumbnail'], }), ] search_fields = ['name'] list_display = ['name', 'preview_thumbnail', 'date_created', 'last_updated'] class Media: css = { 'all': ( 'vehicle/css/vehicle.css', ) } ''' js = ( 'js/jquery.min.js', 'js/popper.min.js', 'js/bootstrap.min.js', 'js/mdb.min.js', 'js/myscript.js' ) ''' admin.site.register(VehicleModel, VehicleModelAdmin)
7d19f4be3e65d55621b576d2306fd4eb58e60381
015ce35e6344d1726173594ae509dfc1ca6f856d
/2-basics/Study basics/loops.py
7ce93a431733e32e961c8476c4ae0d1bd2085bee
[]
no_license
ayman-elkassas/Python-Notebooks
4af80df75c15a6ac3049450b3920d500fef0e581
26a8265f458c40ac22965d55722f32a650851683
refs/heads/master
2023-04-03T19:12:17.707673
2021-04-10T21:32:37
2021-04-10T21:32:37
356,699,690
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
count=5 while count>99: print("yes") count-=1 else: print("if") for letter in "python": print(letter)
19ef56453f855c29a72eaa6c8c52e2ca967e6a36
f8e8e365c9cf58b61d72655bc2340baeaed5baff
/Leetcode/Python Solutions/Binary Search/ValidPerfectSquare.py
c4e8a70a8beb4c70db11315cbe222321332ff181
[ "MIT" ]
permissive
Mostofa-Najmus-Sakib/Applied-Algorithm
39a69f6b9ed113efe4a420d19cad79e0aa317637
bc656fd655617407856e0ce45b68585fa81c5035
refs/heads/master
2023-08-31T19:54:34.242559
2021-11-05T03:43:35
2021-11-05T03:43:35
412,263,430
0
0
MIT
2021-09-30T23:45:29
2021-09-30T23:45:25
null
UTF-8
Python
false
false
898
py
""" LeetCode Problem 367. Valid Perfect Square Link: https://leetcode.com/problems/valid-perfect-square/ Written by: Mostofa Adib Shakib Language: Python Observation: 1) Number less than 2 will always form perfect squares so return True. 2) The number will always be in the first half of the array. Hence, we can discard the second half. Time Complexity: O(log n) Space Complexity: O(1) """ class Solution: def isPerfectSquare(self, num: int) -> bool: if num <= 1: return True left = 2 right = num//2 while left <= right: mid = (left + right) // 2 guess = mid * mid if guess == num: return True elif guess < num: left = mid + 1 else: right = mid - 1 return False
ed0466956305c5f5e6955a737d43b2039c8f0fc5
2a54e8d6ed124c64abb9e075cc5524bb859ba0fa
/.history/4-functional-programming/7-list-comprehension_20200422222427.py
81d606e197ec10031073a3db9b3879a25cb59bc1
[]
no_license
CaptainStorm21/Python-Foundation
01b5fbaf7a913506518cf22e0339dd948e65cea1
a385adeda74f43dd7fb2d99d326b0be23db25024
refs/heads/master
2021-05-23T01:29:18.885239
2020-04-23T19:18:06
2020-04-23T19:18:06
253,171,611
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
#list, set, dicitonary my_list = [] for char in 'HELLO': my_list.append(char) print(my_list) dict_list = [char for char in 'good morning'] print(dict_list) num_list = [num for num in range (0, 100)] print(num_list) print("divide by 3 with no remainder") num_list3 = [num for num in range (0, 100) if(num%3 ==0)] print(num_list3)
c2ee78250d0f3860d8ec164c11ab88e734704bed
8efd8bcd3945d88370f6203e92b0376ca6b41c87
/problems100_200/151_Reverse_Words_in_a_String.py
11b5357b6300152e2debfd6b3f1328822ffebdd4
[]
no_license
Provinm/leetcode_archive
732ad1ef5dcdfdde6dd5a33522e86f7e24ae2db5
3e72dcaa579f4ae6f587898dd316fce8189b3d6a
refs/heads/master
2021-09-21T08:03:31.427465
2018-08-22T15:58:30
2018-08-22T15:58:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
#coding=utf-8 ''' 151. Reverse Words in a String Given an input string, reverse the string word by word. Example: Input: "the sky is blue", Output: "blue is sky the". Note: A word is defined as a sequence of non-space characters. Input string may contain leading or trailing spaces. However, your reversed string should not contain leading or trailing spaces. You need to reduce multiple spaces between two words to a single space in the reversed string. Follow up: For C programmers, try to solve it in-place in O(1) space. ''' class Solution(object): def reverseWords(self, s): """ :type s: str :rtype: str """ lst = [i for i in s.split(" ") if i] return ' '.join(reversed(lst)) s = " the sky is blue" ss = Solution() r = ss.reverseWords(s) print(r)
6659b4d8145e55d900dcabb7398db42929c560f4
d75560d9acde4f1f6457898d8862b06ba5f8dd7b
/backend/msm_sgsjhsjh4803_de_13561/wsgi.py
3cd1976c5b367e8dc49ef8d3516ab2cc510980f7
[]
no_license
crowdbotics-apps/msm-sgsjhsjh4803-de-13561
af6563f775832664041dbd8abc5d05af9d8d4a4f
9364d828ffee0edfe68d263fce2b0a7cb2949039
refs/heads/master
2022-12-29T15:25:29.870944
2020-10-19T08:18:12
2020-10-19T08:18:12
305,263,685
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
""" WSGI config for msm_sgsjhsjh4803_de_13561 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'msm_sgsjhsjh4803_de_13561.settings') application = get_wsgi_application()
e348b3e0dfab26e0cc1f9c6a114ae59be50476c4
4c8755443320f0e8fde2718aec40c49ef27ab6fe
/{{cookiecutter.repo_name}}/cookiecutter_repo/utils/loaders.py
0d90448aa34fd2244e0f3ef816996b8e56608d99
[ "MIT" ]
permissive
ethman/cookiecutter-nussl
28266f2b714607493016aa554794617e1cb431aa
302df1bee74b13ff0e2c6725997f7b7fa26b32d5
refs/heads/master
2020-12-09T23:50:09.844838
2020-01-12T17:19:06
2020-01-12T17:19:06
233,449,725
0
0
null
2020-01-12T19:54:48
2020-01-12T19:54:47
null
UTF-8
Python
false
false
586
py
from .. import dataset, model def load_dataset(dataset_class, dataset_folder, dataset_config): DatasetClass = getattr(dataset, dataset_class) dataset_instance = DatasetClass(dataset_folder, dataset_config) return dataset_instance def load_model(model_config): model_class = model_config.pop('class', 'SeparationModel') ModelClass = getattr(model, model_class) if model_class == 'SeparationModel': model_instance = ModelClass(model_config, extra_modules=model.extras) else: model_instance = ModelClass(model_config) return model_instance
837d8f52574c6bab972f540869f2bca52b2bf000
94c8dd4126da6e9fe9acb2d1769e1c24abe195d3
/qiskit/circuit/library/boolean_logic/quantum_or.py
0864affb7958edffe5050f3c8d54af82bdc515be
[ "Apache-2.0" ]
permissive
levbishop/qiskit-terra
a75c2f96586768c12b51a117f9ccb7398b52843d
98130dd6158d1f1474e44dd5aeacbc619174ad63
refs/heads/master
2023-07-19T19:00:53.483204
2021-04-20T16:30:16
2021-04-20T16:30:16
181,052,828
1
0
Apache-2.0
2019-06-05T15:32:13
2019-04-12T17:20:54
Python
UTF-8
Python
false
false
3,664
py
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Implementations of boolean logic quantum circuits.""" from typing import List, Optional from qiskit.circuit import QuantumRegister, QuantumCircuit from qiskit.circuit.library.standard_gates import MCXGate class OR(QuantumCircuit): r"""A circuit implementing the logical OR operation on a number of qubits. For the OR operation the state :math:`|1\rangle` is interpreted as ``True``. The result qubit is flipped, if the state of any variable qubit is ``True``. The OR is implemented using a multi-open-controlled X gate (i.e. flips if the state is :math:`|0\rangle`) and applying an X gate on the result qubit. Using a list of flags, qubits can be skipped or negated. The OR gate without special flags: .. jupyter-execute:: :hide-code: from qiskit.circuit.library import OR import qiskit.tools.jupyter circuit = OR(5) %circuit_library_info circuit Using flags we can negate qubits or skip them. For instance, if we have 5 qubits and want to return ``True`` if the first qubit is ``False`` or one of the last two are ``True`` we use the flags ``[-1, 0, 0, 1, 1]``. .. jupyter-execute:: :hide-code: from qiskit.circuit.library import OR import qiskit.tools.jupyter circuit = OR(5, flags=[-1, 0, 0, 1, 1]) %circuit_library_info circuit """ def __init__(self, num_variable_qubits: int, flags: Optional[List[int]] = None, mcx_mode: str = 'noancilla') -> None: """Create a new logical OR circuit. Args: num_variable_qubits: The qubits of which the OR is computed. The result will be written into an additional result qubit. flags: A list of +1/0/-1 marking negations or omissions of qubits. mcx_mode: The mode to be used to implement the multi-controlled X gate. """ # store num_variables_qubits and flags self.num_variable_qubits = num_variable_qubits self.flags = flags # add registers qr_variable = QuantumRegister(num_variable_qubits, name='variable') qr_result = QuantumRegister(1, name='result') super().__init__(qr_variable, qr_result, name='or') # determine the control qubits: all that have a nonzero flag flags = flags or [1] * num_variable_qubits control_qubits = [q for q, flag in zip(qr_variable, flags) if flag != 0] # determine the qubits that need to be flipped (if a flag is > 0) flip_qubits = [q for q, flag in zip(qr_variable, flags) if flag > 0] # determine the number of ancillas self.num_ancilla_qubits = MCXGate.get_num_ancilla_qubits(len(control_qubits), mode=mcx_mode) if self.num_ancilla_qubits > 0: qr_ancilla = QuantumRegister(self.num_ancilla_qubits, 'ancilla') self.add_register(qr_ancilla) else: qr_ancilla = [] self.x(qr_result) if len(flip_qubits) > 0: self.x(flip_qubits) self.mcx(control_qubits, qr_result[:], qr_ancilla[:], mode=mcx_mode) if len(flip_qubits) > 0: self.x(flip_qubits)
a663a571c791506a5bbea2e874df529dbed68ebb
c75ec82316ed5322c5844912ce9c528c24360b9f
/nsd1907/py02/day01/cut_log.py
cceaf977d83d75e82696a61778603e0948c24313
[]
no_license
MrZhangzhg/nsd2019
a94cde22f2e4bd648bb9e56ca63827f558f3c083
54f6d2c7b348a69f13ad5f38f2fbdc8207528749
refs/heads/master
2021-08-22T17:38:27.697675
2020-02-22T08:36:21
2020-02-22T08:36:21
183,539,489
21
24
null
2020-05-17T12:07:55
2019-04-26T02:06:16
HTML
UTF-8
Python
false
false
525
py
import time t9 = time.strptime('2019-05-15 09:00:00', '%Y-%m-%d %H:%M:%S') t12 = time.strptime('2019-05-15 12:00:00', '%Y-%m-%d %H:%M:%S') with open('mylog.txt') as fobj: for line in fobj: t = time.strptime(line[:19], '%Y-%m-%d %H:%M:%S') if t > t12: break if t >= t9: print(line, end='') # with open('mylog.txt') as fobj: # for line in fobj: # t = time.strptime(line[:19], '%Y-%m-%d %H:%M:%S') # if t9 <= t <= t12: # print(line, end='')
7394010400225008bcf0ebefdea0242ca3765d3e
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_96/1509.py
985390ba9c8945569ce4096912a9a40962d7ecaf
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,095
py
from string import split f1=open('B-large.in','r') f2=open('out.txt','w') t=int(f1.readline()) for i in range (t): k=0 s=f1.readline() data=list(map(int,s.split(' '))) u=data[1]+0 for j in range(data[0]): if data[j+3]==0 or data[j+3]==1: if data[j+3]>=data[2]: k+=1 elif data[1]==0: if data[j+3] % 3==0 and data[j+3]//3>=data[2]: k+=1 elif data[j+3]%3!=0 and data[j+3]//3+1>=data[2]: k+=1 else: if data[j+3]%3==1 and data[j+3]//3+1>=data[2]: k+=1 elif data[j+3]%3==0 and data[j+3]//3+1==data[2] and u!=0: u-=1 k+=1 elif data[j+3]%3==0 and data[j+3]//3>=data[2]: k+=1 elif data[j+3]%3==2 and data[j+3]//3+2==data[2] and u!=0: u-=1 k+=1 elif data[j+3]%3==2 and data[j+3]//3+1>=data[2]: k+=1 f2.write ("Case #"+str(i+1)+": "+str(k)+"\n") f1.close() f2.close()
3a7a4e0fc74d98a3d4bb90e7220f2bca91eaa4d0
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/97/usersdata/239/54617/submittedfiles/lecker.py
e3ba12e1ff6dc558621a8f2f17a217e1787cc426
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
813
py
# -*- coding: utf-8 -*- from __future__ import division def lecker (lista): cont=0 for i in range (0,len(lista),1 if i==0: if lista[i]>lista[i+1]: cont=cont+1 elif i==(len(lista)-1): if lista[i]>lista[i-1]: cont=cont+1 else: if lista[i]>lista[i-1]: if lista[i]>lista[i+1]: cont=cont+1 if cont==1: return True else: return False n=int(input("Digite a quantidade de elementos da lista:")) a=[] for i in range (0,n,1): valor=int(input("Digite o valor:")) a.append(valor) b=[] for i in range (0,n,1): valor=int(input("Digite o valor:")) b.append(valor) if lecker (a): print("S") else: print("N") if lecker (b): print("S") else: print("N")
4ae9d4cd17ad18027fa1dffe901e6463804b40c4
5db0fab37c2b8a618d85d3b60fab9f806c416474
/src/python/pants/backend/python/typecheck/mypy/skip_field.py
672a681eeba2e506b35d3c2f51bbadb683934354
[ "Apache-2.0" ]
permissive
pantsbuild/pants
4988d1ac5474ec95f94ce2218aeb759401e4b011
98cbda8545f0d58c586ed2daa76fefd729d5e0d5
refs/heads/main
2023-09-05T03:44:17.646899
2023-09-01T19:52:09
2023-09-01T19:52:09
7,209,075
2,708
593
Apache-2.0
2023-09-14T19:33:33
2012-12-17T17:39:04
Python
UTF-8
Python
false
false
897
py
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.backend.python.target_types import ( PythonSourcesGeneratorTarget, PythonSourceTarget, PythonTestsGeneratorTarget, PythonTestTarget, PythonTestUtilsGeneratorTarget, ) from pants.engine.target import BoolField class SkipMyPyField(BoolField): alias = "skip_mypy" default = False help = "If true, don't run MyPy on this target's code." def rules(): return [ PythonSourcesGeneratorTarget.register_plugin_field(SkipMyPyField), PythonSourceTarget.register_plugin_field(SkipMyPyField), PythonTestsGeneratorTarget.register_plugin_field(SkipMyPyField), PythonTestTarget.register_plugin_field(SkipMyPyField), PythonTestUtilsGeneratorTarget.register_plugin_field(SkipMyPyField), ]
66b654358f12a58b653f3dd74fb992717fe0bcc6
a6b46a37bb2fc9e27ed000cb5d2e1fcef6e7527c
/python/common/expressions.py
fac15ec0ea42f9bfa0e78d51628dfc525e99d9a9
[ "MIT" ]
permissive
data-man-34/ad_examples
3c4b522b64a8387aed922a6fd062114a3e96c26f
f0d5d95c443cf1cfaf293a2e76b9bff3cbfd85b7
refs/heads/master
2020-04-09T15:12:48.677931
2018-12-04T18:58:22
2018-12-04T18:58:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,371
py
import tokenize import re import os import numpy as np # from sklearn.metrics import f1_score from sklearn.metrics import precision_recall_fscore_support """ General Rule-parsing functions. We might use only a subset of the features available. For some rule illustrations/examples, see test_rule_apis() To test: pythonw -m common.expressions """ # Supported datatypes DTYPE_CATEGORICAL = 0 # categorical DTYPE_CONTINUOUS = 1 # numerical float values DTYPE_BINARY = 2 # categorical {'0','1'} LABEL_VAR_INDEX = -1 UNINITIALIZED_VAR_INDEX = -2 ILLEGAL_VAR_INDEX = -3 UNKNOWN_CATEGORICAL_VALUE_INDEX = -1 DEFAULT_PREDICATE_WEIGHT = 1.0 class stack(list): def push(self, item): self.append(item) def is_empty(self): return not self class DType(object): def __init__(self): self.name = None def is_numeric(self): pass def is_continuous(self): pass class Factor(DType): """Stores information about the values that a categorical variable can take. Also provides the one-hot encodings Attributes: __values: dict Mapping of categorical values from string representations to integer. __fromindex: dict Mapping of integers to corresponding categorical string representations. __onehot: dict Mapping of categorical (integer) values to corresponding one-hot representations. __onehotNA: np.array One-hot vector that will be returned when the value is missing. This has 'nan' in all positions of the vector. """ def __init__(self, vals, sort=True): """Creates a Factor instance from the input set of values. Args: vals: list An unique set of allowable values/levels for the factor. sort: boolean, (default True) Whether to sort the values alphabetically before assigning them indexes. Sometimes the input order might need to be maintained (with sort=False) e.g., if these represent column names which occur in the specific input order. """ DType.__init__(self) self.__values = {} self.__fromindex = {} self.__onehot = {} tmp = [x for x in vals if x != ''] if sort: tmp = sorted(tmp) self.__onehotNA = np.empty(len(tmp)) self.__onehotNA.fill(np.nan) tmphot = np.zeros(len(tmp), dtype=float) for i in range(0, len(tmp)): self.__values[tmp[i]] = i self.__fromindex[i] = tmp[i] self.__onehot[i] = np.array(tmphot) # store a new copy self.__onehot[i][i] = 1 def is_numeric(self): return False def is_continuous(self): return False def all_values(self): return self.__values def index_of(self, value): return self.__values.get(value) def encode_to_one_hot(self, index): """Encode the categorical variable to one-hot vector. Some algorithms like scikit-learn decision trees need the data to be presented only as numeric vectors. In that case, we need to encode all categorical features as one-hot vectors. Args: index: int Index of the value Returns: np.array """ ret = self.__onehot.get(index) return self.__onehotNA if ret is None else ret def __getitem__(self, index): return self.__fromindex[index] def num_values(self): return len(self.__values) def __repr__(self): return 'Factor ' + repr(self.__values) def __str__(self): return 'Factor ' + repr(self.__values) class NumericContinuous(DType): """Definitions for Gaussian distributed real values.""" def __init__(self, vals): """Initializes the mean and variance of the Gaussian variable.""" DType.__init__(self) # Ignore NaNs n = np.count_nonzero(~np.isnan(vals)) if n > 0: self.mean = np.nanmean(vals) self.variance = np.nanvar(vals) else: self.mean = 0 self.variance = 0 def is_numeric(self): return True def is_continuous(self): return True def __repr__(self): return 'Continuous(mean=' + str(self.mean) + ", var=" + str(self.variance) + ")" def __str__(self): return 'Continuous(mean=' + str(self.mean) + ", var=" + str(self.variance) + ")" class FeatureMetadata(object): """Contains all metadata related to features. Attributes: lblname: string The column name of the label column. lbldef: Factor All permissible label values. featurenames: Factor All feature names stored in the same order as features. featuredefs: list Contains info about each feature. """ def __init__(self, lblname=None, lbldef=None, featurenames=None, featuredefs=None): self.lblname = lblname self.lbldef = lbldef self.featurenames = featurenames self.featuredefs = featuredefs def num_features(self): return 0 if self.featuredefs is None else len(self.featuredefs) def _tostr(self): return "[FeatureMetadata]\nlblname: " + str(self.lblname) + "\n" + \ "lbldef: " + str(self.lbldef) + "\n" + \ "featurenames: " + str(self.featurenames) + "\n" + \ "featuredefs: " + str(self.featuredefs) def __repr__(self): return self._tostr() def __str__(self): return self._tostr() class Expression(object): """Base class for any expression that needs to be parsed or evaluated.""" def evaluate(self, inst, lbl, meta): """Given an instance, will evaluate the expression. The expression might return a literal or a True/False value. """ pass def compile(self, meta): """Resolves the variable and literal bindings such that the expression can be evaluated efficiently later. """ pass def ground(self, inst, lbl, meta): """Grounds the expression with values from the instance and returns a string representation. This is useful for debugging since it makes the evaluation transparent. """ pass def expr(self, meta): """Returns a readable string representation of the rule that can be parsed.""" def get_variables(self): """Returns the set of variables bound to the expression""" raise TypeError("Unsupported operation: get_variables()") def __repr__(self): return str(self) class Term(Expression): pass class Literal(Term): """A literal. Literals might be numeric, strings, or categorical. If categorical, they are converted to internal (integer) representation when compiled. Attributes: val: object (float/string/category) The actual value valindex: int If the corresponding feature is categorical, then the integer representation of the value is stored. categorical: boolean Indicates whether the literal is categorical. rexp: Compiled regular expression Used to remove quotes (surrounding the literal), if required. """ rexp = re.compile(r" *(['\"])(.*)\1 *") def __init__(self, val, removequotes=False): self.val = val self.valindex = UNKNOWN_CATEGORICAL_VALUE_INDEX self.categorical = None if removequotes: m = Literal.rexp.match(val) if m is not None: self.val = m.group(2) else: pass def evaluate(self, inst, lbl, meta): if self.categorical is None: raise ValueError("Undetermined whether literal '" + str(self.val) + "' is categorical or not.") elif self.categorical: ret = self.valindex else: ret = self.val # print(str(self) + ': ' + str(ret)) return ret def ground(self, inst, lbl, meta): return repr(self.val) def expr(self, meta): if meta is None: raise ValueError("Invalid metadata") if self.categorical is not None and self.categorical: return "'" + str(self.val) + "'" return str(self.val) def get_variables(self): return set([]) # A literal does not contain any variable def __str__(self): return "Lit(" + str(self.val) + "<" + str(self.valindex) + ">" + ")" class Var(Term): """Variable/Feature. This represents the feature/label variable. Initially, the name of the feature is stored. This gets compiled later into the feature index such that evaluation can be faster. Label variable is indicated by the feature index '-1'. Before compilation, the feature index is initialized to '-2'. After compilation, the feature index corresponding to the variable name is looked up using the metadata. Attributes: name: string The name of the feature. Usually corresponds to a columnname on the data. varindex: int The index of the variable -- computed during compilation. vartype: int (default DTYPE_CATEGORICAL) The datatype for the variable. """ def __init__(self, name): self.name = name self.varindex = UNINITIALIZED_VAR_INDEX # uninitialized self.vartype = DTYPE_CATEGORICAL def evaluate(self, inst, lbl, meta): ret = None if self.varindex == LABEL_VAR_INDEX: ret = lbl elif self.vartype == DTYPE_CATEGORICAL and self.varindex >= 0: # self.vartype is categorical ret = int(inst[self.varindex]) elif self.vartype == DTYPE_CONTINUOUS and self.varindex >= 0: # self.vartype is numeric continuous ret = inst[self.varindex] # print(str(self) + ': ' + str(ret)) return None if self.vartype == DTYPE_CATEGORICAL and ret < 0 else ret def compile(self, meta): self.varindex = UNINITIALIZED_VAR_INDEX # set to uninitialized first # print('Compiling Var ' + str(self.name)) if self.name == meta.lblname: self.varindex = LABEL_VAR_INDEX # label column else: idx = meta.featurenames.index_of(self.name) # -3 = unknown self.varindex = ILLEGAL_VAR_INDEX if idx is None else idx if self.varindex == ILLEGAL_VAR_INDEX: raise ValueError("Unknown variable: '%s' in expression. Allowed variables: %s or '%s'" % (self.name, str(meta.featurenames.all_values().keys()), meta.lblname)) if self.varindex >= 0 and meta.featuredefs is not None \ and meta.featuredefs[self.varindex].is_continuous(): self.vartype = DTYPE_CONTINUOUS # DTYPE_CONTINUOUS else: self.vartype = DTYPE_CATEGORICAL # DTYPE_CATEGORICAL def ground(self, inst, lbl, meta): val = "?" if self.varindex == LABEL_VAR_INDEX: # label val = "'" + meta.lbldef[lbl] + "'" elif self.varindex >= 0: # assume that all features are continuous val = inst[self.varindex] return str(self.name) + "(" + repr(val) + ")" def expr(self, meta): if self.varindex == LABEL_VAR_INDEX: # label return meta.lblname elif self.varindex >= 0: return meta.featurenames[self.varindex] raise ValueError("Uncompiled Rule: %s" % (str(self),)) def get_variables(self): return {self.varindex} def __str__(self): return "Var(" + str(self.name) + "<" + str(self.varindex) + ">)" class Predicate(Expression): pass class Atom(Predicate): pass class BinaryPredicate(Predicate): """Predicate taking two inputs.""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): self.p1 = p1 self.p2 = p2 self.weight = weight def compile(self, meta): # print('Compiling ' + str(self.p1) + ' ' + str(isinstance(self.p1, Predicate))) self.p1.compile(meta) # print('Compiling ' + str(self.p2) + ' ' + str(isinstance(self.p2, Predicate))) self.p2.compile(meta) def get_variables(self): vars = set() vars.update(self.p1.get_variables()) vars.update(self.p2.get_variables()) return vars def get_str_weight(self, suppress_default_weight=True): if suppress_default_weight and self.weight == DEFAULT_PREDICATE_WEIGHT: return "" return "[" + str(self.weight) + "]" class UnaryPredicate(Predicate): """Predicate taking one input.""" def __init__(self, p=None, weight=DEFAULT_PREDICATE_WEIGHT): self.p = p self.weight = weight def compile(self, meta): self.p.compile(meta) def get_variables(self): vars = set() vars.update(self.p.get_variables()) return vars def get_str_weight(self, suppress_default_weight=True): if suppress_default_weight and self.weight == DEFAULT_PREDICATE_WEIGHT: return "" return "[" + str(self.weight) + "]" class Cmp(BinaryPredicate): """Base class for evaluating comparison operators.""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): BinaryPredicate.__init__(self, p1=p1, p2=p2, weight=weight) def evaluate(self, inst, lbl, meta): e1 = self.p1.evaluate(inst, lbl, meta) e2 = self.p2.evaluate(inst, lbl, meta) ret = None if e1 is None or e2 is None else self.evaluateCmp(e1, e2) # print(str(self) + ': ' + str(ret)) if ret is None: raise ValueError('predicate value for %s unbound \n inst: %s' \ % (str(self), str(inst))) return ret def evaluateCmp(self, e1, e2): raise NotImplementedError('Comparison operator not implemented.') def compile(self, meta): self.p1.compile(meta) self.p2.compile(meta) # Comparisons must be between a variable and a literal. tvar = self.p1 if isinstance(self.p1, Var) else self.p2 if isinstance(self.p2, Var) else None tlit = self.p1 if isinstance(self.p1, Literal) else self.p2 if isinstance(self.p2, Literal) else None if tvar is not None and tlit is not None: if tvar.varindex == LABEL_VAR_INDEX: # label column tlit.categorical = True # class variables are always categorical tlit.valindex = meta.lbldef.index_of(tlit.val) elif tvar.varindex >= 0: # feature column # assume that all features are continuous tlit.categorical = False else: raise ValueError('Comparisons must be between a variable and a literal.') def ground(self, inst, lbl, meta): raise NotImplementedError('ground() not implemented.') def __str__(self): return "Cmp(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class CmpEq(Cmp): """Compares if values of two expressions are equal""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): Cmp.__init__(self, p1=p1, p2=p2, weight=weight) def evaluateCmp(self, e1, e2): return e1 == e2 def ground(self, inst, lbl, meta): return "" + self.p1.ground(inst, lbl, meta) + " = " + self.p2.ground(inst, lbl, meta) + "" def expr(self, meta): return "(" + self.p1.expr(meta) + " = " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "CmpEq(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class CmpLr(Cmp): """Compares if e1 < e2""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): Cmp.__init__(self, p1=p1, p2=p2, weight=weight) def evaluateCmp(self, e1, e2): return e1 < e2 def ground(self, inst, lbl, meta): return "" + self.p1.ground(inst, lbl, meta) + " < " + self.p2.ground(inst, lbl, meta) + "" def expr(self, meta): return "(" + self.p1.expr(meta) + " < " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "CmpLr(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class CmpLE(Cmp): """Compares if e1 <= e2""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): Cmp.__init__(self, p1=p1, p2=p2, weight=weight) def evaluateCmp(self, e1, e2): return e1 <= e2 def ground(self, inst, lbl, meta): return "" + self.p1.ground(inst, lbl, meta) + " <= " + self.p2.ground(inst, lbl, meta) + "" def expr(self, meta): return "(" + self.p1.expr(meta) + " <= " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "CmpLE(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class CmpGr(Cmp): """Compares if e1 > e2""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): Cmp.__init__(self, p1=p1, p2=p2, weight=weight) def evaluateCmp(self, e1, e2): return e1 > e2 def ground(self, inst, lbl, meta): return "" + self.p1.ground(inst, lbl, meta) + " > " + self.p2.ground(inst, lbl, meta) + "" def expr(self, meta): return "(" + self.p1.expr(meta) + " > " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "CmpGr(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class CmpGE(Cmp): """Compares if e1 >= e2""" def __init__(self, p1=None, p2=None, weight=DEFAULT_PREDICATE_WEIGHT): Cmp.__init__(self, p1=p1, p2=p2, weight=weight) def evaluateCmp(self, e1, e2): return e1 >= e2 def ground(self, inst, lbl, meta): return "" + self.p1.ground(inst, lbl, meta) + " >= " + self.p2.ground(inst, lbl, meta) + "" def expr(self, meta): return "(" + self.p1.expr(meta) + " >= " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "CmpGE(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class Or(BinaryPredicate): def __init__(self, p1, p2, weight=DEFAULT_PREDICATE_WEIGHT): BinaryPredicate.__init__(self, p1=p1, p2=p2, weight=weight) def evaluate(self, inst, lbl, meta): e1 = self.p1.evaluate(inst, lbl, meta) if e1 is None: raise ValueError('predicate value unbound for e1') elif e1: return True e2 = self.p2.evaluate(inst, lbl, meta) ret = None if e1 is None or e2 is None else e1 or e2 # print(str(self) + ': ' + str(ret)) if ret is None: raise ValueError('predicate value unbound for e2') return ret def ground(self, inst, lbl, meta): return "(" + self.p1.ground(inst, lbl, meta) + " | " + self.p2.ground(inst, lbl, meta) + ")" def expr(self, meta): return "(" + self.p1.expr(meta) + " | " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "Or(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class And(BinaryPredicate): def __init__(self, p1, p2, weight=DEFAULT_PREDICATE_WEIGHT): BinaryPredicate.__init__(self, p1=p1, p2=p2, weight=weight) def evaluate(self, inst, lbl, meta): e1 = self.p1.evaluate(inst, lbl, meta) if e1 is None: raise ValueError('predicate value unbound for e1') elif not e1: return False e2 = self.p2.evaluate(inst, lbl, meta) ret = None if e1 is None or e2 is None else e1 and e2 # print(str(self) + ': ' + str(ret)) if ret is None: raise ValueError('predicate value unbound for e2') return ret def ground(self, inst, lbl, meta): return "(" + self.p1.ground(inst, lbl, meta) + " & " + self.p2.ground(inst, lbl, meta) + ")" def expr(self, meta): return "(" + self.p1.expr(meta) + " & " + self.p2.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "And(" + str(self.p1) + ", " + str(self.p2) + ")" + self.get_str_weight() class Not(UnaryPredicate): def __init__(self, p, weight=DEFAULT_PREDICATE_WEIGHT): UnaryPredicate.__init__(self, p=p, weight=weight) def evaluate(self, inst, lbl, meta): e = self.p.evaluate(inst, lbl, meta) ret = None if e is None else not e # print(str(self) + ': ' + str(ret)) if ret is None: raise ValueError('predicate value unbound') return ret def ground(self, inst, lbl, meta): return "~(" + self.p.ground(inst, lbl, meta) + ")" def expr(self, meta): return "~(" + self.p.expr(meta) + ")" + self.get_str_weight() def __str__(self): return "Not(" + str(self.p) + ")" + self.get_str_weight() class RuleParser(object): """Methods to parse strings as Expression objects.""" # noinspection PyMethodMayBeStatic def parse(self, s): """Parses string 's' and returns an Expression object. :param s: str :return: Predicate """ # A kludgy way to make it work for both Python 2.7 and 3.5+ try: import StringIO rdr = StringIO.StringIO(s).readline except: from io import StringIO rdr = StringIO(s).readline def precedence(op): """Higher value means higher precedence""" if op == "|": return 1 elif op == "&": return 2 elif op == "~": return 3 elif op == "=" or op == "<=" or op == "<" or op == ">" or op == ">=": return 4 elif op == "": # usually as endmarker return 0 else: return 0 def consume_operator(astk, ostk, op): while not ostk.is_empty(): top = ostk[len(ostk) - 1] # print("top: %s op: %s precedence(top): %d precedence(op): %d" % (top,op,precedence(top),precedence(op))) if op == ")" and top == "(": ostk.pop() break elif op == "]" and top == "[": # populate predicate weight ostk.pop() # There must be a predicate and a numeric literal on stack if len(astk) < 2: raise ValueError("invalid weight found") wtlit = astk.pop() pred = astk.pop() if not isinstance(wtlit, Literal) or not isinstance(pred, Predicate): raise ValueError("invalid weight format") pred.weight = wtlit.val astk.push(pred) break elif op == "]" and not top == "[": raise ValueError("invalid ']' found") if precedence(op) <= precedence(top): if top == "=": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(CmpEq(t1, t2)) elif top == "<": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(CmpLr(t1, t2)) elif top == "<=": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(CmpLE(t1, t2)) elif top == ">": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(CmpGr(t1, t2)) elif top == ">=": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(CmpGE(t1, t2)) elif top == "~": ostk.pop() t1 = astk.pop() astk.push(Not(t1)) elif top == "&": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(And(t1, t2)) elif top == "|": ostk.pop() t2 = astk.pop() t1 = astk.pop() astk.push(Or(t1, t2)) else: break else: break astk = stack() ostk = stack() # operator stack g = tokenize.generate_tokens(rdr) # tokenize the string ret = None for toknum, tokval, _, _, _ in g: if toknum == tokenize.OP: # print('OP ' + tokval + ' ' + str(toknum)) if tokval == "(": # nested predicate ostk.push(tokval) elif tokval == ")": consume_operator(astk, ostk, tokval) elif tokval == "[": # predicate weight ostk.push(tokval) elif tokval == "]": consume_operator(astk, ostk, tokval) elif tokval == "-": # handle negative numbers ostk.push(tokval) elif tokval in ["=", "&", "|", "~", "<=", "<", ">", ">="]: consume_operator(astk, ostk, tokval) ostk.push(tokval) else: raise SyntaxError("Illegal operator '" + tokval + "' found in rule expression") elif toknum == tokenize.NAME: # print('NAME ' + tokval + ' ' + str(toknum)) astk.push(Var(tokval)) elif toknum == tokenize.STRING: # print('STR/NUM ' + tokval + ' ' + str(toknum)) astk.push(Literal(tokval, removequotes=True)) elif toknum == tokenize.NUMBER: # print('STR/NUM ' + tokval + ' ' + str(toknum)) sign = 1 if len(ostk) > 0 and ostk[len(ostk) - 1] == "-": sign = -1 ostk.pop() astk.push(Literal(sign * float(tokval))) elif toknum == tokenize.INDENT or toknum == tokenize.DEDENT: pass elif toknum == tokenize.ENDMARKER: consume_operator(astk, ostk, "") ret = None if astk.is_empty() else astk.pop() # print(ret) if not astk.is_empty(): print(astk) print(ostk) raise SyntaxError("Invalid rule syntax in " + str(s)) else: print('UNK ' + tokval + ' ' + str(toknum)) # print("astk: %s" % (str(astk),)) # print("ostk: %s" % (str(ostk),)) return ret def string_to_predicate(str_predicate, meta=None, parser=None): """Converts a string representation of rule to a Predicate object""" parser_ = RuleParser() if parser is None else parser predicate = parser_.parse(str_predicate) if meta is not None: predicate.compile(meta) return predicate class PredicateContext(object): """Holds predicate traversal context Attributes: neg: boolean features: set of tuples """ def __init__(self): self.neg = False self.features = [] def traverse_predicate_conjunctions(predicate, context): """ Updates traversal context recursively Collects all the And/Cmp predicate expressions into predicate list. Expressions other than {Cmp, And} will raise error. :param predicate: Expression :param context: PredicateContext :return: None """ if isinstance(predicate, Cmp): p1 = None # holds Var p2 = None # holds Literal if isinstance(predicate.p1, Var): p1 = predicate.p1 elif isinstance(predicate.p2, Var): p1 = predicate.p2 if isinstance(predicate.p1, Literal): p2 = predicate.p1 elif isinstance(predicate.p2, Literal): p2 = predicate.p2 if p1 is not None and p2 is not None: context.features.append((p1, p2, predicate)) else: raise ValueError("Unbound Var or Literal. Expected Comparison of Var and Literal.") elif isinstance(predicate, And): traverse_predicate_conjunctions(predicate.p1, context) traverse_predicate_conjunctions(predicate.p2, context) else: raise ValueError("Expected conjunctive form, but found Or()") return context def conjunctive_predicate_to_list(predicate): context = PredicateContext() traverse_predicate_conjunctions(predicate, context) return context.features class ConjunctiveRule(object): """ Represents a conjunction (And) of simple one-feature-value comparison predicates """ def __init__(self, predicates, meta, id=None): self.predicates = predicates self.meta = meta # id might be required e.g., when we have to remember the node # of the tree that this corresponds to. self.id = id self.support = None self.confusion_matrix = None def set_confusion_matrix(self, positive_indexes, y): mask = np.array([True] * len(y)) mask[positive_indexes] = False negative_indexes = np.where(mask)[0] tp = np.sum(y[positive_indexes]) fp = len(positive_indexes) - tp tn = np.sum(y[negative_indexes]) fn = len(negative_indexes) - tn self.confusion_matrix = np.array([[tp, fp], [fn, tn]], dtype=np.float32) self.support = tp * 1.0 / (tp + fp) @staticmethod def parse(str_rule, meta): rule = string_to_predicate(str_rule, meta) conjunctions = conjunctive_predicate_to_list(rule) predicates = [] for p1, p2, predicate in conjunctions: if not (isinstance(predicate.p1, Var) and isinstance(predicate.p2, Literal)): raise ValueError("Conjunctive predicates must be of format: Variable = Literal") predicates.append(predicate) return ConjunctiveRule(predicates, meta) def evaluate_inst(self, inst, label): """ Checks if the instance satisfies all the predicates (i.e., 'And') """ result = True i = 0 while result and i < len(self.predicates): result = result and self.predicates[i].evaluate(inst, label, self.meta) i += 1 return result def where_satisfied(self, insts, labels): """ Returns all indexes of insts which satisfy the rule :param insts: np.ndarray :param labels: np.array :return: np.array """ satisfied = [] for i in range(insts.shape[0]): if self.evaluate_inst(insts[i, :], labels[i]): satisfied.append(i) return np.array(satisfied, dtype=np.int32) def _str_confusion_mat(self): if self.confusion_matrix is None: return 'None' else: return "[%s, %s]" % \ (str(list(self.confusion_matrix[0,:])), str(list(self.confusion_matrix[1,:]))) def __str__(self): predicate_strs = [] for predicate in self.predicates: predicate_strs.append(predicate.expr(self.meta)) return " & ".join(predicate_strs) def __len__(self): if self.predicates is not None: return len(self.predicates) return 0 def __repr__(self): predicate_strs = [] for predicate in self.predicates: predicate_strs.append(predicate.expr(self.meta)) return "%s%s%s" % \ ("" if self.support is None else "support: %0.4f; " % self.support, " & ".join(predicate_strs), "" if self.confusion_matrix is None else "; %s" % self._str_confusion_mat()) def convert_feature_ranges_to_rules(ranges, meta): """ Converts list of maps of feature-ranges to Rule objects. Each range map in the input list will be converted to a separate Rule. The leaf nodes of a tree-based model usually partition the feature space into subspaces defined by corresponding feature ranges. These feature-ranges can be represented by the ConjunctiveRule data structure. :param ranges: list of dict [{feature_index: (min_val, max_val), ...}, ...] :param meta: FeatureMetadata :return: list of ConjunctiveRule, list of strings """ rules = [] str_rules = [] for range_map in ranges: predicates = [] for feature, range in range_map.items(): if np.isfinite(range[0]): predicates.append("%s > %f" % (meta.featurenames[feature], range[0])) if np.isfinite(range[1]): predicates.append("%s <= %f" % (meta.featurenames[feature], range[1])) str_rule = " & ".join(predicates) rules.append(ConjunctiveRule.parse(str_rule, meta)) str_rules.append(str_rule) return rules, str_rules def convert_conjunctive_rule_to_feature_ranges(rule, meta): extents = dict() for feature, featuredef in enumerate(meta.featuredefs): if featuredef.is_continuous(): extents[feature] = (-np.inf, np.inf) for predicate in rule.predicates: feature = predicate.p1.varindex if not meta.featuredefs[feature].is_continuous(): continue value = predicate.p2.val f_range = extents[feature] if isinstance(predicate, CmpGr) or isinstance(predicate, CmpGE): f_range = (max(f_range[0], value), f_range[1]) elif isinstance(predicate, CmpLr) or isinstance(predicate, CmpLE): f_range = (f_range[0], min(f_range[1], value)) extents[feature] = f_range return extents def convert_conjunctive_rules_to_strings(rules): return [str(rule) for rule in rules] def convert_conjunctive_rules_to_feature_ranges(rules, meta): ranges = [convert_conjunctive_rule_to_feature_ranges(rule, meta) for rule in rules] return ranges def convert_strings_to_conjunctive_rules(str_rules, meta): rules = [] for str_rule in str_rules: rules.append(ConjunctiveRule.parse(str_rule, meta)) return rules def get_max_len_in_rules(rules): return max([len(rule) for rule in rules]) def get_rule_satisfaction_matrix(x, y, rules): """ Returns a matrix that shows which instances satisfy which rules Each column of the returned matrix corresponds to a rules and each row to an instance. If an instance satisfies a rule, the corresponding value will be 1, else 0. :param x: np.ndarray :param y: np.array :param rules: list :param opts: AadOpts :return: np.ndarray matrix with x.shape[0] rows and len(rules) rows """ satisfaction_matrix = np.zeros((x.shape[0], len(rules)), dtype=np.int32) for i, rule in enumerate(rules): idxs = rule.where_satisfied(x, y) satisfaction_matrix[idxs, i] = 1 return satisfaction_matrix def check_if_at_least_one_rule_satisfied(x, y, rules): """ For each input instance, check if it satisfies at least one rule Basically performs a disjunction of rules. Can be applied to rules in DNF format. :param x: np.ndarray :param y: np.array This could be None if unsupervised and if it is not required to evaluate any rule :param rules: list of rules :return: np.array Binary indicator for each instance """ sat_vec = np.zeros(x.shape[0], dtype=np.int32) for rule in rules: idxs = rule.where_satisfied(x, y) sat_vec[idxs] += 1 return np.minimum(sat_vec, 1) def evaluate_ruleset(x, y, rules, average="binary"): """ For each input instance, check if it satisfies at least one rule and computes F1 """ y_hat = check_if_at_least_one_rule_satisfied(x, y, rules) precision, recall, f1, _ = precision_recall_fscore_support(y_true=y, y_pred=y_hat, average=average) return precision, recall, f1 def save_strings_to_file(strs, file_path): if file_path is None or file_path == '': raise ValueError with open(file_path, 'w') as f: for s in strs: f.write(s + os.linesep) def load_strings_from_file(file_path): strs = [] with open(file_path) as f: for line in f: line = line.strip() if line != "": strs.append(line) return strs def get_feature_meta_default(x, y, feature_names=None, label_name='label', labels=None, featuredefs=None): """ A simple convenience method that creates a default FeatureMetadata In the default metadata: 1. If feature names are not provided, the columns/features of x are assigned names F1, F2, ... 2. The class label is referred to as 'label' 3. All columns are treated as continuous numeric In case dataset-specific names are to be assigned, create the appropriate metadata in a similar manner as illustrated here. """ if feature_names is None: f_names = Factor(["F%d" % (i+1) for i in range(x.shape[1])], sort=False) else: if x.shape[1] != len(feature_names): raise ValueError("feature_names should have same length as columns in x") f_names = Factor(feature_names, sort=False) if featuredefs is None: featuredefs = [NumericContinuous(x[:, i]) for i in range(x.shape[1])] if labels is None: labels = np.unique(y) meta = FeatureMetadata(lblname=label_name, lbldef=Factor(labels), featurenames=f_names, featuredefs=featuredefs) return meta def evaluate_instances_for_predicate(predicate, insts, labels, meta): satisfied = [] for i in range(insts.shape[0]): if predicate.evaluate(insts[i, :], labels[i], meta): satisfied.append(i) return np.array(satisfied, dtype=np.int32) def test_rule_apis(): from .gen_samples import read_anomaly_dataset x, y = read_anomaly_dataset("toy2") y = np.asarray(y, dtype=np.int32) meta = get_feature_meta_default(x, y) print(meta) parser = RuleParser() """ Since the default metadata names the features as F1, F2, ... and the class label as 'label', we will refer to these by the same names in the predicate rules. RuleParser can parse any well-formed logical predicates such as those in predicate_strs below. """ predicate_strs = [ # internal representation: # CmpEq(Var(label<-1>), Lit(0.0<0>)) # Var(label<-1>) : <-1> means that the variable 'label' is not a regular feature # Lit(0.0<0>) : the label '0' got changed to 0.0 because it was numeric. # To make label '0', change the label to string. # <0> means that '0' is at the 0-th position of the label Factor "label = 0", # all 0 labeled # internal representation: # CmpEq(Var(label<-1>), Lit(1.0<1>)) "label = 1", # all 1 labeled # internal representation: # And(Or(Or(CmpGE(Var(F1<0>), Lit(0.0<-1>)), CmpLr(Var(F2<1>), Lit(2.0<-1>))), CmpLr(Var(F1<0>), Lit(-5.0<-1>))), CmpGr(Var(F2<1>), Lit(0.0<-1>))) # Var(F1<0>) : feature 'F1' is the 0-th feature # Var(F2<1>) : feature 'F2' is the 1-st feature # Lit(0.0<-1>) : <-1> here means 0.0 is numeric, and not categorical # ... and so on ... "(F1 >= 0 | F2 < 2 | F1 < -5) & F2 > 0", # just an arbitrary predicate # internal representation: # Or(Not(CmpGE(Var(F2<1>), Lit(2.0<-1>))), CmpEq(Var(label<-1>), Lit(1.0<1>))) "(~(F2 >= 2) | (label = 1))", # a Horn clause: (F2 >= 2) => (label = 1) # internal representation: # And(And(And(CmpGE(Var(F1<0>), Lit(1.0<-1>)), CmpLr(Var(F1<0>), Lit(5.0<-1>))), CmpGE(Var(F2<1>), Lit(0.0<-1>))), CmpLr(Var(F2<1>), Lit(6.0<-1>))) "F1 >= 1 & F1 < 5 & (F2 >= 0) & (F2 < 6)", # conjunctive predicate ] for predicate_str in predicate_strs: predicate = parser.parse(predicate_str) predicate.compile(meta) # bind feature indexes to feature names matches = evaluate_instances_for_predicate(predicate, x, y, meta) print("%s matched: %d\n repr: %s" % (predicate.expr(meta), len(matches), str(predicate))) # the rule(s) below are conjunctive # conjunctive_str = "(F1 >= 1) & (F1 < 5) & (F2 >= 0) & (F2 < 6)" conjunctive_str = "F1 >= 1 & F1 < 5 & (F2 >= 0) & (F2 < 6)" # conjunctive rules can be used with the convenience class ConjunctiveRule rule = ConjunctiveRule.parse(conjunctive_str, meta) idxs = rule.where_satisfied(x, y) rule.set_confusion_matrix(idxs, y) print(str(rule)) if __name__ == "__main__": test_rule_apis()
1586616caf1191874f3dfdf0a908af9d390cbd3e
54eeab2befaa4bf0d96a7bd18110900f8f32c766
/other/sql/sqlite.py
cc06497fe5586ae73d672cbedf67aa19174a1c04
[]
no_license
w8833531/mypython
40239ada90426db73444ee54e6e79decc6c9fc9b
45ed12a611efd33838766e7bd73840e6d8b73e28
refs/heads/master
2021-01-19T06:59:09.790525
2017-10-18T06:20:43
2017-10-18T06:20:43
87,513,649
0
0
null
null
null
null
UTF-8
Python
false
false
1,373
py
#!/usr/bin/env python #-*- coding: utf-8 -*- #由于SQLite的驱动内置在Python标准库中,所以我们可以直接来操作SQLite数据库。 #要操作关系数据库,首先需要连接到数据库,一个数据库连接称为Connection; #连接到数据库后,需要打开游标,称之为Cursor,通过Cursor执行SQL语句,然后,获得执行结果。 #导入SQLite 驱动 import sqlite3 try: # 连接到SQLite数据库 # 数据库文件是test.db # 如果文件不存在,会自动在当前目录创建: conn = sqlite3.connect('test.db') cursor = conn.cursor() # cursor.execute('create table user (id varchar(20) primary key, name varchar(20))') cursor.execute('insert into user (id, name) values(\'3\', \'Wu\')') print cursor.rowcount except sqlite3.Error as e: print e finally: cursor.close() conn.commit() conn.close() #在Python中操作数据库时,要先导入数据库对应的驱动,然后,通过Connection对象和Cursor对象操作数据。 #要确保打开的Connection对象和Cursor对象都正确地被关闭,否则,资源就会泄露。 try: conn = sqlite3.connect('test.db') cursor = conn.cursor() cursor.execute('select * from user') values = cursor.fetchall() print values except sqlite3.Error as e: print e finally: cursor.close() conn.close()
24f4ad0bc75271d08496072c0885072c734d3990
5b1ff6054c4f60e4ae7315db9f20a334bc0b7634
/Launchkey_MK2/Colors.py
6f5028d35ea48a5ef4fb11c613cb1206a59fc846
[]
no_license
maratbakirov/AbletonLive9_RemoteScripts
2869122174634c75405a965401aa97a2dae924a1
4a1517c206353409542e8276ebab7f36f9bbd4ef
refs/heads/master
2021-06-05T14:38:27.959025
2021-05-09T11:42:10
2021-05-09T11:42:10
13,348,327
3
4
null
2016-10-16T13:51:11
2013-10-05T16:27:04
Python
UTF-8
Python
false
false
4,566
py
#Embedded file name: /Users/versonator/Jenkins/live/output/mac_64_static/Release/python-bundle/MIDI Remote Scripts/Launchkey_MK2/Colors.py from _Framework.ButtonElement import Color from .consts import BLINK_LED_CHANNEL, PULSE_LED_CHANNEL class Blink(Color): def __init__(self, midi_value = 0, *a, **k): super(Blink, self).__init__(midi_value, *a, **k) def draw(self, interface): interface.send_value(0) interface.send_value(self.midi_value, channel=BLINK_LED_CHANNEL) class Pulse(Color): def __init__(self, midi_value = 0, *a, **k): super(Pulse, self).__init__(midi_value, *a, **k) def draw(self, interface): interface.send_value(0) interface.send_value(self.midi_value, channel=PULSE_LED_CHANNEL) class Rgb: BLACK = Color(0) DARK_GREY = Color(1) GREY = Color(2) WHITE = Color(3) RED = Color(5) RED_BLINK = Blink(5) RED_PULSE = Pulse(5) RED_HALF = Color(7) ORANGE = Color(9) ORANGE_HALF = Color(11) AMBER = Color(96) AMBER_HALF = Color(14) YELLOW = Color(13) YELLOW_HALF = Color(15) DARK_YELLOW = Color(17) DARK_YELLOW_HALF = Color(19) GREEN = Color(21) GREEN_BLINK = Blink(21) GREEN_PULSE = Pulse(21) GREEN_HALF = Color(27) MINT = Color(29) MINT_HALF = Color(31) LIGHT_BLUE = Color(37) LIGHT_BLUE_HALF = Color(39) BLUE = Color(45) BLUE_HALF = Color(47) DARK_BLUE = Color(49) DARK_BLUE_HALF = Color(51) PURPLE = Color(53) PURPLE_HALF = Color(55) DARK_PURPLE = Color(59) BRIGHT_PURPLE = Color(81) DARK_ORANGE = Color(84) CLIP_COLOR_TABLE = {15549221: 60, 12411136: 61, 11569920: 62, 8754719: 63, 5480241: 64, 695438: 65, 31421: 66, 197631: 67, 3101346: 68, 6441901: 69, 8092539: 70, 3947580: 71, 16712965: 72, 12565097: 73, 10927616: 74, 8046132: 75, 4047616: 76, 49071: 77, 1090798: 78, 5538020: 79, 8940772: 80, 10701741: 81, 12008809: 82, 9852725: 83, 16149507: 84, 12581632: 85, 8912743: 86, 1769263: 87, 2490280: 88, 6094824: 89, 1698303: 90, 9160191: 91, 9611263: 92, 12094975: 93, 14183652: 94, 16726484: 95, 16753961: 96, 16773172: 97, 14939139: 98, 14402304: 99, 12492131: 100, 9024637: 101, 8962746: 102, 10204100: 103, 8758722: 104, 13011836: 105, 15810688: 106, 16749734: 107, 16753524: 108, 16772767: 109, 13821080: 110, 12243060: 111, 11119017: 112, 13958625: 113, 13496824: 114, 12173795: 115, 13482980: 116, 13684944: 117, 14673637: 118, 16777215: 119} RGB_COLOR_TABLE = ((0, 0), (1, 1973790), (2, 8355711), (3, 16777215), (4, 16731212), (5, 16711680), (6, 5832704), (7, 1638400), (8, 16760172), (9, 16733184), (10, 5840128), (11, 2562816), (12, 16777036), (13, 16776960), (14, 5855488), (15, 1644800), (16, 8978252), (17, 5570304), (18, 1923328), (19, 1321728), (20, 5046092), (21, 65280), (22, 22784), (23, 6400), (24, 5046110), (25, 65305), (26, 22797), (27, 6402), (28, 5046152), (29, 65365), (30, 22813), (31, 7954), (32, 5046199), (33, 65433), (34, 22837), (35, 6418), (36, 5030911), (37, 43519), (38, 16722), (39, 4121), (40, 5015807), (41, 22015), (42, 7513), (43, 2073), (44, 5000447), (45, 255), (46, 89), (47, 25), (48, 8867071), (49, 5505279), (50, 1638500), (51, 983088), (52, 16731391), (53, 16711935), (54, 5832793), (55, 1638425), (56, 16731271), (57, 16711764), (58, 5832733), (59, 2228243), (60, 16717056), (61, 10040576), (62, 7950592), (63, 4416512), (64, 211200), (65, 22325), (66, 21631), (67, 255), (68, 17743), (69, 2425036), (70, 8355711), (71, 2105376), (72, 16711680), (73, 12451629), (74, 11529478), (75, 6618889), (76, 1084160), (77, 65415), (78, 43519), (79, 11007), (80, 4129023), (81, 7995647), (82, 11672189), (83, 4202752), (84, 16730624), (85, 8970502), (86, 7536405), (87, 65280), (88, 3931942), (89, 5898097), (90, 3735500), (91, 5999359), (92, 3232198), (93, 8880105), (94, 13835775), (95, 16711773), (96, 16744192), (97, 12169216), (98, 9502464), (99, 8609031), (100, 3746560), (101, 1330192), (102, 872504), (103, 1381674), (104, 1450074), (105, 6896668), (106, 11010058), (107, 14569789), (108, 14182940), (109, 16769318), (110, 10412335), (111, 6796559), (112, 1973808), (113, 14483307), (114, 8454077), (115, 10131967), (116, 9332479), (117, 4210752), (118, 7697781), (119, 14745599), (120, 10485760), (121, 3473408), (122, 1757184), (123, 475648), (124, 12169216), (125, 4141312), (126, 11755264), (127, 4920578))
ab14c4d4a9d8c432ae24647c18b9e98e4968ece0
90be755a741d6c93dd59d4acef8b27b4cf93ff54
/src/elsia/scripts/get_abs_ori.py
8decc0c43e2f8716f8f28629c4b7ed417de7cc24
[]
no_license
karry3775/Elsia_ws
05aa5786a6f3f64b70c7ceafead6d72d4ca18bab
031f8006e9a439d9947be5ed288a666f20fca3a7
refs/heads/master
2023-02-21T05:21:10.842475
2021-01-23T14:58:57
2021-01-23T15:21:46
326,032,434
0
0
null
null
null
null
UTF-8
Python
false
false
6,405
py
#!/usr/bin/env python import rospy from sensor_msgs.msg import Image from tf.transformations import quaternion_from_euler, euler_from_quaternion from cv_bridge import CvBridge, CvBridgeError from nav_msgs.msg import Odometry import cv2 import numpy as np import math as m # initialize the node rospy.init_node("get_abs_ori_node") # global variables best_ori_estimate = 0.0 ini_angle_offset = 0.0 # create publishers odom_pub = rospy.Publisher("/abs_orientation_odom", Odometry, queue_size=10) image_pub = rospy.Publisher("/considered_image", Image, queue_size=10) # global variable for whether to DEBUG or not DEBUG = False def wrap2Pi(theta): wrappedUpVal = m.atan2(m.sin(theta), m.cos(theta)) return wrappedUpVal def abs_ori_cb(msg): global best_ori_estimate try: cv_image = CvBridge().imgmsg_to_cv2(msg, "bgr8") # crop out the excess image cv_image = cv_image[100:300, 100:300, :] except CvBridgeError as e: print("[INFO]: Error in obtaining image from CvBridge! Skipping frame!") else: # convert to gray gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY) # convert to edges edges = cv2.Canny(gray, 50, 150) cv2.imshow("edges", edges) cv2.waitKey(1) # convert to thresholded image ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV) # extract hough lines lines = cv2.HoughLinesP(edges, 1, m.pi/180, 2, None, 20, 1) # list of [count, angle] pairs cnt_ang_pair = [] # draw lines for i in range(lines.shape[0]): for line in lines[i]: pt1 = (line[0], line[1]) pt2 = (line[2], line[3]) cv2.line(cv_image, pt1, pt2, (255, 0, 0), 3) # calculate angle ang = m.atan2(pt2[1]-pt1[1], pt2[0]-pt1[0]) cnt_ang_pair.append([1, m.degrees(ang)]) ###################### show the detected lines ######################## cv2.imshow("frame", cv_image) cv2.waitKey(1) ####################################################################### if len(cnt_ang_pair) != 0: # sort the cnt_ang_pair cnt_ang_pair.sort(key=lambda x: x[1]) # bunch up the pairs based on predetermined threshold ang_thresh_deg = 1 bunch = [cnt_ang_pair[0]] for i in range(1, len(cnt_ang_pair)): pairs = cnt_ang_pair[i] if abs(pairs[1] - bunch[-1][1]) < ang_thresh_deg: # update the value and the count new_count = bunch[-1][0] + 1 new_value = ( (bunch[-1][1] * (new_count - 1) * 1.0) / new_count) + (pairs[1]*1.0) / new_count bunch[-1] = [new_count, new_value] else: # time to append bunch.append(pairs) # sort bunch based on first value i.e. count bunch.sort(key=lambda x: x[0], reverse=True) if DEBUG: print("The cnt_ang_pair list is: \n {} \n".format(cnt_ang_pair)) print("The bunched up list is: \n {} \n".format(bunch)) # use the first value of bunch f_ori = m.radians(bunch[0][1]) # in degrees f_ori1 = wrap2Pi(f_ori + m.radians(90) - ini_angle_offset) f_ori2 = wrap2Pi(f_ori + m.radians(-90) - ini_angle_offset) f_ori3 = wrap2Pi(f_ori + m.radians(180) - ini_angle_offset) # we need to find which has the smallest difference # f_ori, f_ori1 or f_ori2 if(abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori1)) and abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori2)) and abs(wrap2Pi(best_ori_estimate - f_ori)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori elif(abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori)) and abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori2)) and abs(wrap2Pi(best_ori_estimate - f_ori1)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori1 elif(abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori)) and abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori1)) and abs(wrap2Pi(best_ori_estimate - f_ori2)) < abs(wrap2Pi(best_ori_estimate - f_ori3))): best_ori_estimate_temp = f_ori2 else: best_ori_estimate_temp = f_ori3 # will get the best_ori_estimate in degrees , the choice is made so that any difference will be amplified more than radians best_ori_estimate = best_ori_estimate_temp if DEBUG: print("best ori estimate: {} deg".format( m.degrees(best_ori_estimate))) # to debug lets plot the best_ori_estimate in the image pt1 = [200, 200] pt2 = [200, 200] line_angle = best_ori_estimate pt2[0] = int(pt2[0] + 200*m.cos(line_angle)) pt2[1] = int(pt2[1] + 200*m.sin(line_angle)) cv2.line(cv_image, (pt1[0], pt1[1]), (pt2[0], pt2[1]), (0, 0, 255), 3) # publish abs odometry for yaw # create euler angles roll = 0 pitch = 0 yaw = -best_ori_estimate # convert to quaternion q = quaternion_from_euler(roll, pitch, yaw) # create a odom message odom_msg = Odometry() odom_msg.pose.pose.orientation.x = q[0] odom_msg.pose.pose.orientation.y = q[1] odom_msg.pose.pose.orientation.z = q[2] odom_msg.pose.pose.orientation.w = q[3] odom_msg.header.frame_id = "odom" odom_msg.header.stamp = rospy.Time().now() odom_pub.publish(odom_msg) rosimg = CvBridge().cv2_to_imgmsg(cv_image, "bgr8") image_pub.publish(rosimg) if __name__ == "__main__": try: abs_ori_sub = rospy.Subscriber( "/stereo/left_upward/image_rect", Image, abs_ori_cb) rospy.spin() except rospy.ROSInterruptException: pass
b1dde0477b45dffe82a9f680f72b5dc5f910eee9
3eb4d64a8bb0bc240a2ef189724f4d51b5275eac
/heltour/tournament/migrations/0106_auto_20161031_0546.py
059d9943ff0cb31240b7a8a561df84ba822d9f3b
[ "MIT" ]
permissive
brucemubayiwa/heltour
c01cc88be7f86dce8246f619d7aa2da37e0e0ac2
fa4e9b06343acaf6a8a99337860e1ad433e68f6b
refs/heads/master
2021-01-23T19:59:04.099215
2017-09-06T03:34:31
2017-09-06T03:34:31
102,840,526
1
0
null
2017-09-08T08:53:30
2017-09-08T08:53:30
null
UTF-8
Python
false
false
2,839
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-10-31 05:46 from __future__ import unicode_literals from django.db import migrations import django.db.models.deletion import select2.fields class Migration(migrations.Migration): dependencies = [ ('tournament', '0105_seasonplayer_final_rating'), ] operations = [ migrations.AlterField( model_name='alternateassignment', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='availabletime', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='gamenomination', name='nominating_player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='leaguemoderator', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playeravailability', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerbye', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerlateregistration', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='playerwithdrawl', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='seasonplayer', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='seasonprizewinner', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), migrations.AlterField( model_name='teammember', name='player', field=select2.fields.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tournament.Player'), ), ]
3ec6bfaea601759fd9ce090e2468cd49049e454d
88cfeb8f7076450e7a38d31ab2d11883c1818c8d
/net/dpn92.py
bee4297159590c50e4ca40b1570569426a17eb3b
[]
no_license
ZQPei/Alibaba_Cloud_German_AI_Challenge_for_Earth_Observation
4e5a127c12e0c02ed1914ab000a131e1a7f7d844
c2efb32763af0a56a3a7ecb9d83c0744f71d5c14
refs/heads/master
2020-04-26T04:31:57.731178
2019-02-17T01:10:55
2019-02-17T01:10:55
173,305,034
2
0
null
null
null
null
UTF-8
Python
false
false
3,563
py
'''Dual Path Networks in PyTorch.''' import torch import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def __init__(self, cfg): super(DPN, self).__init__() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(10, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 17) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for i,stride in enumerate(strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN26(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (2,2,2,2), 'dense_depth': (16,32,24,128) } return DPN(cfg) def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg) def test(): net = DPN92() x = torch.randn(1,3,32,32) y = net(x) print(y) # test()
9262d9b3881e896a97b190c2ea16eeea43d24d9c
958c19436632b41b43c9462337d13e836935a9da
/E01_python_for_data_analysis/04_NumPy/0403_numpy_cal.py
24af0cf6e7c79bf551a52bc51df3c822da19b676
[]
no_license
Vincent105/ML
4752b2a99c124e01e40e383a0177fb5d82115cb6
fa926caabf83628b3fb7d74cee02a3e923a917f7
refs/heads/master
2020-12-29T18:21:50.144711
2020-10-12T09:56:41
2020-10-12T09:56:41
238,697,320
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
import numpy as np arr = np.array([[1., 2., 3.], [4., 5., 6.]]) print(arr) print(arr * arr) print(arr * arr - arr) # 数组与标量的算术运算会将标量值传播到各个元素: print(1 / arr) print(arr * 0.5) # 大小相同的数组之间的比较会生成布尔值数组: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]]) print(arr2) print(arr2 > arr)
b352068896dbae835d20da90ab54de2d4f34fec9
d2eb7bd335175edd844a3e6c1c633ee0dc2dbb25
/contests_atcoder/arc017/arc017_c.py
80b806e3389e7dfd81e012229a4a9723cc08f1d5
[ "BSD-2-Clause" ]
permissive
stdiorion/competitive-programming
5020a12b85f1e691ceb0cacd021606a9dc58b72c
e7cf8ef923ccefad39a1727ca94c610d650fcb76
refs/heads/main
2023-03-27T01:13:42.691586
2021-03-08T08:05:53
2021-03-08T08:05:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
667
py
from bisect import bisect_left, bisect_right n, x = map(int, input().split()) w = [int(input()) for _ in range(n)] pt1 = w[:16] pt2 = w[16:] w1 = [] for bit in range(1 << len(pt1)): weight = 0 for i in range(len(pt1)): if (bit >> i) & 1: weight += pt1[i] w1.append(weight) if not len(pt2): print(w1.count(x)) exit() w2 = [] for bit in range(1 << len(pt2)): weight = 0 for i in range(len(pt2)): if (bit >> i) & 1: weight += pt2[i] w2.append(weight) ans = 0 w1.sort() w2.sort() i2 = 0 for weight1 in w1: ans += bisect_right(w2, x - weight1) - bisect_left(w2, x - weight1) print(ans)
23241518e94ae0d5c41c03ff56152a117f302c17
d7ec67a5ba315103fa6a6bae6dc045f1fecf7add
/docs_master_tensorflow/keras/tf_dqn_simple_master/dqn_agent.py
d0dc2cccfa0c1fbf14d21175a9b41c3605ff96e2
[]
no_license
munezou/PycharmProject
cc62f5e4278ced387233a50647e8197e009cc7b4
26126c02cfa0dc4c0db726f2f2cabb162511a5b5
refs/heads/master
2023-03-07T23:44:29.106624
2023-01-23T16:16:08
2023-01-23T16:16:08
218,804,126
2
1
null
2023-02-28T23:58:22
2019-10-31T15:57:22
Jupyter Notebook
UTF-8
Python
false
false
4,247
py
from collections import deque import os import numpy as np import tensorflow as tf class DQNAgent: """ Multi Layer Perceptron with Experience Replay """ def __init__(self, enable_actions, environment_name): # parameters self.name = os.path.splitext(os.path.basename(__file__))[0] self.environment_name = environment_name self.enable_actions = enable_actions self.n_actions = len(self.enable_actions) self.minibatch_size = 32 self.replay_memory_size = 1000 self.learning_rate = 0.001 self.discount_factor = 0.9 self.exploration = 0.1 self.model_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models") self.model_name = "{}.ckpt".format(self.environment_name) # replay memory self.D = deque(maxlen=self.replay_memory_size) # model self.init_model() # variables self.current_loss = 0.0 def init_model(self): # input layer (8 x 8) self.x = tf.placeholder(tf.float32, [None, 8, 8]) # flatten (64) x_flat = tf.reshape(self.x, [-1, 64]) # fully connected layer (32) W_fc1 = tf.Variable(tf.truncated_normal([64, 64], stddev=0.01)) b_fc1 = tf.Variable(tf.zeros([64])) h_fc1 = tf.nn.relu(tf.matmul(x_flat, W_fc1) + b_fc1) # output layer (n_actions) W_out = tf.Variable(tf.truncated_normal([64, self.n_actions], stddev=0.01)) b_out = tf.Variable(tf.zeros([self.n_actions])) self.y = tf.matmul(h_fc1, W_out) + b_out # loss function self.y_ = tf.placeholder(tf.float32, [None, self.n_actions]) self.loss = tf.reduce_mean(tf.square(self.y_ - self.y)) # train operation optimizer = tf.train.RMSPropOptimizer(self.learning_rate) self.training = optimizer.minimize(self.loss) # saver self.saver = tf.train.Saver() # session self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def Q_values(self, state): # Q(state, action) of all actions return self.sess.run(self.y, feed_dict={self.x: [state]})[0] def select_action(self, state, epsilon): if np.random.rand() <= epsilon: # random return np.random.choice(self.enable_actions) else: # max_action Q(state, action) return self.enable_actions[np.argmax(self.Q_values(state))] def store_experience(self, state, action, reward, state_1, terminal): self.D.append((state, action, reward, state_1, terminal)) def experience_replay(self): state_minibatch = [] y_minibatch = [] # sample random minibatch minibatch_size = min(len(self.D), self.minibatch_size) minibatch_indexes = np.random.randint(0, len(self.D), minibatch_size) for j in minibatch_indexes: state_j, action_j, reward_j, state_j_1, terminal = self.D[j] action_j_index = self.enable_actions.index(action_j) y_j = self.Q_values(state_j) if terminal: y_j[action_j_index] = reward_j else: # reward_j + gamma * max_action' Q(state', action') y_j[action_j_index] = reward_j + self.discount_factor * np.max(self.Q_values(state_j_1)) # NOQA state_minibatch.append(state_j) y_minibatch.append(y_j) # training self.sess.run(self.training, feed_dict={self.x: state_minibatch, self.y_: y_minibatch}) # for log self.current_loss = self.sess.run(self.loss, feed_dict={self.x: state_minibatch, self.y_: y_minibatch}) def load_model(self, model_path=None): if model_path: # load from model_path self.saver.restore(self.sess, model_path) else: # load from checkpoint checkpoint = tf.train.get_checkpoint_state(self.model_dir) if checkpoint and checkpoint.model_checkpoint_path: self.saver.restore(self.sess, checkpoint.model_checkpoint_path) def save_model(self): self.saver.save(self.sess, os.path.join(self.model_dir, self.model_name))
42bcc717daa52c76b623b77adb64ac1e50d8fe60
b57d337ddbe946c113b2228a0c167db787fd69a1
/scr/py00033SpiderDeath.py
6fd5b9134c2358a8544c5ef441100d8e4da50196
[]
no_license
aademchenko/ToEE
ebf6432a75538ae95803b61c6624e65b5cdc53a1
dcfd5d2de48b9d9031021d9e04819b309d71c59e
refs/heads/master
2020-04-06T13:56:27.443772
2018-11-14T09:35:57
2018-11-14T09:35:57
157,520,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,258
py
from toee import * from utilities import * from combat_standard_routines import * def san_dying( attachee, triggerer ): if should_modify_CR( attachee ): modify_CR( attachee, get_av_level() ) if (attachee.map == 5069): game.global_vars[3] = game.global_vars[3] + 1 if (game.party_alignment == LAWFUL_NEUTRAL or game.party_alignment == CHAOTIC_NEUTRAL or game.party_alignment == TRUE_NEUTRAL or game.party_alignment == LAWFUL_EVIL or game.party_alignment == CHAOTIC_EVIL or game.party_alignment == NEUTRAL_EVIL): ring = attachee.item_find( 3000 ) ring.destroy() elif (attachee.map == 5002): if (game.party_alignment == LAWFUL_GOOD or game.party_alignment == CHAOTIC_GOOD or game.party_alignment == NEUTRAL_GOOD or game.party_alignment == LAWFUL_EVIL or game.party_alignment == CHAOTIC_EVIL or game.party_alignment == NEUTRAL_EVIL): ring = attachee.item_find( 3000 ) ring.destroy() elif (attachee.map == 5003): if (game.party_alignment == LAWFUL_GOOD or game.party_alignment == CHAOTIC_GOOD or game.party_alignment == NEUTRAL_GOOD or game.party_alignment == LAWFUL_NEUTRAL or game.party_alignment == CHAOTIC_NEUTRAL or game.party_alignment == TRUE_NEUTRAL): ring = attachee.item_find( 3000 ) ring.destroy() return RUN_DEFAULT
fa428df271c1a095589ea4dda94bbd27ca4f7705
06870667821f26b0c8c96b52321938df58fd91f6
/parking_scrapers/scrapers/new_haven.py
85e9236cddfb6c481a2d0bfc60ccfb3c43b84610
[]
no_license
jmcarp/open-parking-spaces
69244962a316fe6bd3273ba6837bfe8d0f1f4b8e
5f855a1b25c9109f15af26e1fb3b4ecbd3ef5845
refs/heads/master
2023-01-24T11:43:53.641262
2020-11-30T19:00:46
2020-11-30T19:00:46
312,906,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
import re from typing import Iterator import lxml.html import requests from base import LotSpaces, Scraper class NewHavenScraper(Scraper): """Scrape New Haven html. https://parknewhaven.com """ HTML_URL = "https://parknewhaven.com" TIMEOUT = 5 SPACES_PATTERN = re.compile(r"(.*?):\s+(\d+)% \((\d+) available\)", re.IGNORECASE) name = "new_haven" def fetch_spaces(self) -> Iterator[LotSpaces]: response = requests.get( self.HTML_URL, headers={"User-Agent": "open-parking-spaces"}, timeout=self.TIMEOUT, ) response.raise_for_status() doc = lxml.html.fromstring(response.content) links = doc.xpath( '//div[contains(@class, "tickr")]//a[contains(@class, "tickrlink")]' ) for link in links: match = self.SPACES_PATTERN.search(link.text_content()) assert match is not None lot, percent, spaces = match.groups() yield LotSpaces( lot=lot, spaces=int(spaces), url=link.attrib["href"], )
a31b322b32555a927b3a63f5092900042142b843
27398b2a8ed409354d6a36c5e1d2089dad45b4ac
/backend/common/decapod_common/models/properties.py
2a7dbbf75e03a2cf644b94bf0f4bf491dda45988
[ "Apache-2.0" ]
permissive
amar266/ceph-lcm
e0d6c1f825f5ac07d2926bfbe6871e760b904340
6b23ffd5b581d2a1743c0d430f135261b7459e38
refs/heads/master
2021-04-15T04:41:55.950583
2018-03-23T12:51:26
2018-03-23T12:51:26
126,484,605
0
0
null
2018-03-23T12:50:28
2018-03-23T12:50:27
null
UTF-8
Python
false
false
3,449
py
# -*- coding: utf-8 -*- # Copyright (c) 2016 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains special property descriptors.""" import enum import importlib class Property: SENTINEL = object() class ChoicesProperty(Property): def __init__(self, attr_name, choices): self.choices = choices self.attr_name = attr_name def __get__(self, instance, owner): value = getattr(instance, self.attr_name, self.SENTINEL) if value is self.SENTINEL: raise AttributeError() return value def __set__(self, instance, value): choices = self.choices if callable(choices) and type(choices) is not enum.EnumMeta: choices = choices() try: if value in choices: setattr(instance, self.attr_name, value) return except TypeError: pass raise ValueError("Unknown error") class ModelProperty(Property): @classmethod def get_value_id(cls, value): if hasattr(value, "model_id"): return value.model_id if isinstance(value, dict): return value.get("_id", value.get("id")) if value is None: return None return str(value) @classmethod def get_model(cls, klass, model_id): return klass.find_by_model_id(model_id) def __init__(self, model_class_name, id_attribute): self.model_class_name = model_class_name self.id_attribute = id_attribute self.instance_attribute = id_attribute + "_instance" def __get__(self, instance, owner): value = instance.__dict__.get(self.instance_attribute, self.SENTINEL) if value is not self.SENTINEL: return value model_id = instance.__dict__.get(self.id_attribute) model = self.get_model(self.get_class(), model_id) instance.__dict__[self.instance_attribute] = model return model def __set__(self, instance, value): value_id = self.get_value_id(value) instance.__dict__[self.id_attribute] = value_id instance.__dict__[self.instance_attribute] = self.SENTINEL def get_class(self): module, obj_name = self.model_class_name.rsplit(".", 1) module = importlib.import_module(module) klass = getattr(module, obj_name) return klass class ModelListProperty(ModelProperty): @classmethod def get_value_id(cls, value): return [super(ModelListProperty, cls).get_value_id(item) for item in value] @classmethod def get_model(cls, klass, model_id): query = { "model_id": {"$in": model_id}, "is_latest": True } models = [] for item in klass.list_raw(query): model = klass() model.update_from_db_document(item) models.append(model) return models
215a011898e29aea78aa8531f6aadbd936358259
d68c9105c03bef9dce2e438b5b91c2bdd0d856e2
/[9095] 1, 2, 3 더하기.py
308b6ff62e407f5494c58d595b9839b3addcf2e6
[]
no_license
newfull5/Baekjoon-Online-Judge
2a2dd1080af234551ecab6277968fedeb170a1f4
00d04f6c21080e3ad7c0fb06ca311f2324a591c0
refs/heads/master
2023-06-29T21:05:07.539911
2021-07-16T09:23:46
2021-07-16T09:23:46
267,557,726
0
0
null
null
null
null
UTF-8
Python
false
false
321
py
def Reculsive(n): global answer if n >=3: Reculsive(n-3) if n >=2: Reculsive(n-2) if n >=1: Reculsive(n-1) if n == 0: answer += 1 return for _ in range(int(input())): answer = 0 Reculsive(int(input())) print(answer)
fcf3fe369d825fc8f70166e86d6154d98a1eccfa
23bc3e2bc6b2b9e3fd19f738d4767d09bec590b5
/CourseWork/Labs/lab3/vivek_pygame_base_template.py
e880efac680ed5ff5a5856816fdf28423d8e2bb4
[]
no_license
vivekVells/GameDesignProgramming
4e683114bf487d2ea4c5c1c4a2b7a3375e8be8e7
bee0fbc4d0a8d0e4001d6c9c9b35fea6b74da1f9
refs/heads/master
2020-03-27T13:49:52.159394
2018-12-12T09:37:01
2018-12-12T09:37:01
146,630,596
0
0
null
2018-12-12T08:32:11
2018-08-29T16:49:28
Python
UTF-8
Python
false
false
2,516
py
""" Show how to use a sprite backed by a graphic. Sample Python/Pygame Programs Simpson College Computer Science http://programarcadegames.com/ http://simpson.edu/computer-science/ Explanation video: http://youtu.be/vRB_983kUMc """ import pygame # Define some colors BLACK = (0, 0, 0) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) pygame.init() # Set the width and height of the screen [width, height] size = (700, 500) screen = pygame.display.set_mode(size) pygame.display.set_caption("Vivek's 1st House via PyGame") # Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() # -------- Main Program Loop ----------- while not done: # --- Main event loop for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close done = True # Flag that we are done so we exit this loop # --- Game logic should go here # --- Drawing code should go here # First, clear the screen to white. Don't put other drawing commands # above this, or they will be erased with this command. screen.fill(WHITE) # rect(screen, GREEN, [x,y,breadth, length], 0) # polygon(screen, BLACK, [[midx, midy], [leftx, lefty], [rightx, righty]], 5) # drawing house pygame.draw.rect(screen, RED, [100, 200, 200, 200], 0) # drawing chimney pygame.draw.rect(screen, BLACK, [125, 140, 20, 60], 0) # drawing roof pygame.draw.polygon(screen, WHITE, [[200, 100], [100, 200], [300, 200]], 0) pygame.draw.polygon(screen, BLACK, [[200, 100], [100, 200], [300, 200]], 3) # drawing window pygame.draw.rect(screen, GREEN, [125, 250, 10, 30], 0) pygame.draw.rect(screen, GREEN, [175, 250, 10, 30], 0) pygame.draw.rect(screen, GREEN, [225, 250, 10, 30], 0) pygame.draw.rect(screen, GREEN, [275, 250, 10, 30], 0) # drawing the door pygame.draw.rect(screen, BLACK, [190, 350, 20, 50], 0) BLUE = (0, 0, 255) BOARD_X = 50 BOARD_Y = 350 BOARD_LENGTH = 150 BOARD_WIDTH = 70 BOARD_COLOR_FILL = 0 pygame.draw.rect(screen, BLUE, [BOARD_X, BOARD_Y, BOARD_LENGTH, BOARD_WIDTH], BOARD_COLOR_FILL) # --- Go ahead and update the screen with what we've drawn. pygame.display.flip() # --- Limit to 60 frames per second clock.tick(60) # Close the window and quit. # If you forget this line, the program will 'hang' # on exit if running from IDLE. pygame.quit()
4bb3df61f7e8707d0f5b6dc0a372e300a836a1f0
d5e4d88e4124ab2387bac64e7d7b76ff37793bf6
/011/problem11.py
072127ab96c86257506ca23cee758a4aa9743be4
[]
no_license
grawinkel/ProjectEuler
1ae5572eec92e4307183e8b30222ffa39ef4bbce
b470dd4219c769587769c9a70ec3bae5d3ca1166
refs/heads/master
2021-05-26T20:01:03.410567
2012-10-05T16:58:48
2012-10-05T16:58:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,421
py
# To change this template, choose Tools | Templates # and open the template in the editor. __author__="meatz" __date__ ="$01.08.2010 14:10:38$" m = [] max = 0 maxa,maxb = 0,0 def nw(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a-1][b-1]) * int(m[a-2][b-2]) * int(m[a-3][b-3]) if (prod > max): max = prod maxa = a maxb = b def n(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a-1][b]) * int(m[a-2][b]) * int(m[a-3][b]) if (prod > max): max = prod maxa = a maxb = b def sw(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a+1][b-1]) * int(m[a+2][b-2]) * int(m[a+3][b-3]) if (prod > max): max = prod maxa = a maxb = b def w(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a][b-1]) * int(m[a][b-2]) * int(m[a][b-3]) if (prod > max): max = prod maxa = a maxb = b def s(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a+1][b]) * int(m[a+2][b]) * int(m[a+3][b]) if (prod > max): max = prod maxa = a maxb = b def se(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a+1][b+1]) * int(m[a+2][b+2]) * int(m[a+3][b+3]) if (prod > max): max = prod maxa = a maxb = b def ne(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a-1][b+1]) * int(m[a-2][b+2]) * int(m[a-3][b+3]) if (prod > max): max = prod maxa = a maxb = b def e(a,b): global max,maxa,maxb prod = int(m[a][b]) * int(m[a][b+1]) * int(m[a][b+2]) * int(m[a][b+3]) if (prod > max): max = prod maxa = a maxb = b def run(m): for a in range(20): for b in range(20): if (a-3>=0): n(a,b) if (a+3<=19): s(a,b) if (b-3>=0): #check the west w(a,b) if (a-3>=0): nw(a,b) if (a+3<=19): sw(a,b) if (b+3<20): #check the east e(a,b) if (a-3>=0): ne(a,b) if (a+3<20): se(a,b) if __name__ == "__main__": f = open("data.txt","r") for x in f.readlines(): m.append(x.split(" ")) run(m) print max
b290f6c4c523dba303d7efb6b9edbfc26d01ce6b
4d0bbeb8ab52f7e450aff20056f7509e12751258
/lists/migrations/0003_list.py
da0266eb470c2bba6c9bd9b11f8ba74b47076401
[]
no_license
chicocheco/tdd_book
f7c9246dcb4eb5327704c72f655bf6e187b28849
574b1082aa523c7434f50e0c4cbdf5777ddf50ef
refs/heads/master
2022-05-02T17:44:27.217329
2020-03-13T18:57:22
2020-03-13T18:57:22
197,633,503
0
0
null
2022-04-22T22:19:12
2019-07-18T17:56:43
JavaScript
UTF-8
Python
false
false
441
py
# Generated by Django 2.2.3 on 2019-08-08 07:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lists', '0002_item_text'), ] operations = [ migrations.CreateModel( name='List', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], ), ]
74500f2dd0b8c53a83c336ef4540ba2e49d79f58
5ca1893df92150683d386ba61f849a8a20e80f0a
/RSRvenv/lib/python3.5/site-packages/polcart/__init__.py
e72aa4dbaf2557af7d2da9b78431fe7fe7b21272
[]
no_license
JaredJRoss/RSR
a5340a087b7e19f5c9c8a47d8b322e2384ae8152
6601afbab963f095f939ba4ca07cc07c7257e271
refs/heads/master
2021-07-10T18:26:28.128522
2018-01-08T20:24:20
2018-01-08T20:24:20
104,166,288
0
6
null
2017-11-27T23:35:25
2017-09-20T04:38:26
Python
UTF-8
Python
false
false
23
py
from .polcart import *
8e54379c9e0e2512323873740a307b5ac6552d0b
de79ece8981f0fd241bcea578e4a534a1213397e
/spirl/configs/few_shot_imitation_learning/kitchen/hierarchical_cl_gc_demo_slide_demo_trained_vae/conf.py
1f2fcbafcc3b7ab14bb8c70bf240ee9d69987572
[ "BSD-3-Clause" ]
permissive
ahmeda14960/fist
3ee684cd7da0bb531d791321f1af09adad386ab4
baf2b0bfed12a9bc0db9a099abeefad1ef618d1c
refs/heads/master
2023-08-02T01:35:29.983633
2021-09-13T20:07:28
2021-09-13T20:07:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,905
py
import os from spirl.models.closed_loop_spirl_mdl import GoalClSPiRLMdl from spirl.components.logger import Logger from spirl.utils.general_utils import AttrDict from spirl.configs.default_data_configs.kitchen import data_spec from spirl.components.evaluator import TopOfNSequenceEvaluator from spirl.data.kitchen.src.kitchen_data_loader import KitchenStateSeqDataset current_dir = os.path.dirname(os.path.realpath(__file__)) fewshot_dataset = KitchenStateSeqDataset( data_path='data/kitchen/kitchen-demo-microwave_kettle_hinge_slide.hdf5', subseq_len=10, ) env = AttrDict( task_list = ['microwave', 'kettle', 'slide cabinet', 'hinge cabinet'] ) contra_model_cf = AttrDict( state_dimension=data_spec.state_dim, hidden_size=128, feature_size=32, ) configuration = { 'model': GoalClSPiRLMdl, 'logger': Logger, 'data_dir': '.', 'epoch_cycles_train': 1, 'evaluator': TopOfNSequenceEvaluator, 'top_of_n_eval': 100, 'top_comp_metric': 'mse', 'batch_size': 128, 'num_epochs': 50, 'fewshot_data': fewshot_dataset, 'fewshot_batch_size': 128, 'contra_config': contra_model_cf, 'contra_ckpt': './experiments/contrastive/kitchen/exact-mixed-all/exact_model.pt', 'finetune_vae': True } configuration = AttrDict(configuration) model_config = AttrDict( state_dim=data_spec.state_dim, action_dim=data_spec.n_actions, n_rollout_steps=10, kl_div_weight=5e-4, nz_enc=128, nz_mid=128, n_processing_layers=5, cond_decode=True, # checkpt_path=f'{os.environ["EXP_DIR"]}/skill_prior_learning/kitchen/hierarchical_cl_gc_no_slide' ) # Dataset data_config = AttrDict() data_config.dataset_spec = data_spec data_config.dataset_spec['dataset_path'] = './data/kitchen/kitchen-mixed-no-slide.hdf5' data_config.dataset_spec.subseq_len = model_config.n_rollout_steps + 1 # flat last action from seq gets cropped
00213373c71f2901f04b9c3f250dfd0d591ee90b
bfd41fc543f6dbfc821341522cf8e7a9d2e34ce8
/venv/lib/python2.7/site-packages/astroid/scoped_nodes.py
f9ec7b774f86c4821ff457b8eb19100ab3217d62
[]
no_license
MaraKovalcik/Flask
783243560ead637a381f76d3893da2b212eff898
1ff8413f3551b051f8e6c76db6cf402fc7428188
refs/heads/master
2021-01-22T09:09:16.165734
2015-02-24T16:57:14
2015-02-24T16:57:14
31,268,626
1
0
null
null
null
null
UTF-8
Python
false
false
47,465
py
# copyright 2003-2013 LOGILAB S.A. (Paris, FRANCE), all rights reserved. # contact http://www.logilab.fr/ -- mailto:[email protected] # # This file is part of astroid. # # astroid is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 2.1 of the License, or (at your # option) any later version. # # astroid is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License # for more details. # # You should have received a copy of the GNU Lesser General Public License along # with astroid. If not, see <http://www.gnu.org/licenses/>. """This module contains the classes for "scoped" node, i.e. which are opening a new local scope in the language definition : Module, Class, Function (and Lambda, GenExpr, DictComp and SetComp to some extent). """ from __future__ import with_statement __doctype__ = "restructuredtext en" import sys from itertools import chain try: from io import BytesIO except ImportError: from cStringIO import StringIO as BytesIO import six from logilab.common.compat import builtins from logilab.common.decorators import cached, cachedproperty from astroid.exceptions import NotFoundError, \ AstroidBuildingException, InferenceError from astroid.node_classes import Const, DelName, DelAttr, \ Dict, From, List, Pass, Raise, Return, Tuple, Yield, YieldFrom, \ LookupMixIn, const_factory as cf, unpack_infer, Name, CallFunc from astroid.bases import NodeNG, InferenceContext, Instance,\ YES, Generator, UnboundMethod, BoundMethod, _infer_stmts, \ BUILTINS from astroid.mixins import FilterStmtsMixin from astroid.bases import Statement from astroid.manager import AstroidManager ITER_METHODS = ('__iter__', '__getitem__') PY3K = sys.version_info >= (3, 0) def remove_nodes(func, cls): def wrapper(*args, **kwargs): nodes = [n for n in func(*args, **kwargs) if not isinstance(n, cls)] if not nodes: raise NotFoundError() return nodes return wrapper def function_to_method(n, klass): if isinstance(n, Function): if n.type == 'classmethod': return BoundMethod(n, klass) if n.type != 'staticmethod': return UnboundMethod(n) return n def std_special_attributes(self, name, add_locals=True): if add_locals: locals = self.locals else: locals = {} if name == '__name__': return [cf(self.name)] + locals.get(name, []) if name == '__doc__': return [cf(self.doc)] + locals.get(name, []) if name == '__dict__': return [Dict()] + locals.get(name, []) raise NotFoundError(name) MANAGER = AstroidManager() def builtin_lookup(name): """lookup a name into the builtin module return the list of matching statements and the astroid for the builtin module """ builtin_astroid = MANAGER.ast_from_module(builtins) if name == '__dict__': return builtin_astroid, () try: stmts = builtin_astroid.locals[name] except KeyError: stmts = () return builtin_astroid, stmts # TODO move this Mixin to mixins.py; problem: 'Function' in _scope_lookup class LocalsDictNodeNG(LookupMixIn, NodeNG): """ this class provides locals handling common to Module, Function and Class nodes, including a dict like interface for direct access to locals information """ # attributes below are set by the builder module or by raw factories # dictionary of locals with name as key and node defining the local as # value def qname(self): """return the 'qualified' name of the node, eg module.name, module.class.name ... """ if self.parent is None: return self.name return '%s.%s' % (self.parent.frame().qname(), self.name) def frame(self): """return the first parent frame node (i.e. Module, Function or Class) """ return self def scope(self): """return the first node defining a new scope (i.e. Module, Function, Class, Lambda but also GenExpr, DictComp and SetComp) """ return self def _scope_lookup(self, node, name, offset=0): """XXX method for interfacing the scope lookup""" try: stmts = node._filter_stmts(self.locals[name], self, offset) except KeyError: stmts = () if stmts: return self, stmts if self.parent: # i.e. not Module # nested scope: if parent scope is a function, that's fine # else jump to the module pscope = self.parent.scope() if not pscope.is_function: pscope = pscope.root() return pscope.scope_lookup(node, name) return builtin_lookup(name) # Module def set_local(self, name, stmt): """define <name> in locals (<stmt> is the node defining the name) if the node is a Module node (i.e. has globals), add the name to globals if the name is already defined, ignore it """ #assert not stmt in self.locals.get(name, ()), (self, stmt) self.locals.setdefault(name, []).append(stmt) __setitem__ = set_local def _append_node(self, child): """append a child, linking it in the tree""" self.body.append(child) child.parent = self def add_local_node(self, child_node, name=None): """append a child which should alter locals to the given node""" if name != '__class__': # add __class__ node as a child will cause infinite recursion later! self._append_node(child_node) self.set_local(name or child_node.name, child_node) def __getitem__(self, item): """method from the `dict` interface returning the first node associated with the given name in the locals dictionary :type item: str :param item: the name of the locally defined object :raises KeyError: if the name is not defined """ return self.locals[item][0] def __iter__(self): """method from the `dict` interface returning an iterator on `self.keys()` """ return iter(self.keys()) def keys(self): """method from the `dict` interface returning a tuple containing locally defined names """ return list(self.locals.keys()) def values(self): """method from the `dict` interface returning a tuple containing locally defined nodes which are instance of `Function` or `Class` """ return [self[key] for key in self.keys()] def items(self): """method from the `dict` interface returning a list of tuple containing each locally defined name with its associated node, which is an instance of `Function` or `Class` """ return list(zip(self.keys(), self.values())) def __contains__(self, name): return name in self.locals has_key = __contains__ # Module ##################################################################### class Module(LocalsDictNodeNG): _astroid_fields = ('body',) fromlineno = 0 lineno = 0 # attributes below are set by the builder module or by raw factories # the file from which as been extracted the astroid representation. It may # be None if the representation has been built from a built-in module file = None # Alternatively, if built from a string/bytes, this can be set file_bytes = None # encoding of python source file, so we can get unicode out of it (python2 # only) file_encoding = None # the module name name = None # boolean for astroid built from source (i.e. ast) pure_python = None # boolean for package module package = None # dictionary of globals with name as key and node defining the global # as value globals = None # Future imports future_imports = None # names of python special attributes (handled by getattr impl.) special_attributes = set(('__name__', '__doc__', '__file__', '__path__', '__dict__')) # names of module attributes available through the global scope scope_attrs = set(('__name__', '__doc__', '__file__', '__path__')) def __init__(self, name, doc, pure_python=True): self.name = name self.doc = doc self.pure_python = pure_python self.locals = self.globals = {} self.body = [] self.future_imports = set() @cachedproperty def file_stream(self): if self.file_bytes is not None: return BytesIO(self.file_bytes) if self.file is not None: return open(self.file, 'rb') return None def block_range(self, lineno): """return block line numbers. start from the beginning whatever the given lineno """ return self.fromlineno, self.tolineno def scope_lookup(self, node, name, offset=0): if name in self.scope_attrs and not name in self.locals: try: return self, self.getattr(name) except NotFoundError: return self, () return self._scope_lookup(node, name, offset) def pytype(self): return '%s.module' % BUILTINS def display_type(self): return 'Module' def getattr(self, name, context=None, ignore_locals=False): if name in self.special_attributes: if name == '__file__': return [cf(self.file)] + self.locals.get(name, []) if name == '__path__' and self.package: return [List()] + self.locals.get(name, []) return std_special_attributes(self, name) if not ignore_locals and name in self.locals: return self.locals[name] if self.package: try: return [self.import_module(name, relative_only=True)] except AstroidBuildingException: raise NotFoundError(name) except SyntaxError: raise NotFoundError(name) except Exception:# XXX pylint tests never pass here; do we need it? import traceback traceback.print_exc() raise NotFoundError(name) getattr = remove_nodes(getattr, DelName) def igetattr(self, name, context=None): """inferred getattr""" # set lookup name since this is necessary to infer on import nodes for # instance if not context: context = InferenceContext() try: return _infer_stmts(self.getattr(name, context), context, frame=self, lookupname=name) except NotFoundError: raise InferenceError(name) def fully_defined(self): """return True if this module has been built from a .py file and so contains a complete representation including the code """ return self.file is not None and self.file.endswith('.py') def statement(self): """return the first parent node marked as statement node consider a module as a statement... """ return self def previous_sibling(self): """module has no sibling""" return def next_sibling(self): """module has no sibling""" return if sys.version_info < (2, 8): @cachedproperty def _absolute_import_activated(self): for stmt in self.locals.get('absolute_import', ()): if isinstance(stmt, From) and stmt.modname == '__future__': return True return False else: _absolute_import_activated = True def absolute_import_activated(self): return self._absolute_import_activated def import_module(self, modname, relative_only=False, level=None): """import the given module considering self as context""" if relative_only and level is None: level = 0 absmodname = self.relative_to_absolute_name(modname, level) try: return MANAGER.ast_from_module_name(absmodname) except AstroidBuildingException: # we only want to import a sub module or package of this module, # skip here if relative_only: raise return MANAGER.ast_from_module_name(modname) def relative_to_absolute_name(self, modname, level): """return the absolute module name for a relative import. The relative import can be implicit or explicit. """ # XXX this returns non sens when called on an absolute import # like 'pylint.checkers.astroid.utils' # XXX doesn't return absolute name if self.name isn't absolute name if self.absolute_import_activated() and level is None: return modname if level: if self.package: level = level - 1 package_name = self.name.rsplit('.', level)[0] elif self.package: package_name = self.name else: package_name = self.name.rsplit('.', 1)[0] if package_name: if not modname: return package_name return '%s.%s' % (package_name, modname) return modname def wildcard_import_names(self): """return the list of imported names when this module is 'wildcard imported' It doesn't include the '__builtins__' name which is added by the current CPython implementation of wildcard imports. """ # take advantage of a living module if it exists try: living = sys.modules[self.name] except KeyError: pass else: try: return living.__all__ except AttributeError: return [name for name in living.__dict__.keys() if not name.startswith('_')] # else lookup the astroid # # We separate the different steps of lookup in try/excepts # to avoid catching too many Exceptions default = [name for name in self.keys() if not name.startswith('_')] try: all = self['__all__'] except KeyError: return default try: explicit = next(all.assigned_stmts()) except InferenceError: return default except AttributeError: # not an assignment node # XXX infer? return default # Try our best to detect the exported name. infered = [] try: explicit = next(explicit.infer()) except InferenceError: return default if not isinstance(explicit, (Tuple, List)): return default str_const = lambda node: (isinstance(node, Const) and isinstance(node.value, six.string_types)) for node in explicit.elts: if str_const(node): infered.append(node.value) else: try: infered_node = next(node.infer()) except InferenceError: continue if str_const(infered_node): infered.append(infered_node.value) return infered class ComprehensionScope(LocalsDictNodeNG): def frame(self): return self.parent.frame() scope_lookup = LocalsDictNodeNG._scope_lookup class GenExpr(ComprehensionScope): _astroid_fields = ('elt', 'generators') def __init__(self): self.locals = {} self.elt = None self.generators = [] class DictComp(ComprehensionScope): _astroid_fields = ('key', 'value', 'generators') def __init__(self): self.locals = {} self.key = None self.value = None self.generators = [] class SetComp(ComprehensionScope): _astroid_fields = ('elt', 'generators') def __init__(self): self.locals = {} self.elt = None self.generators = [] class _ListComp(NodeNG): """class representing a ListComp node""" _astroid_fields = ('elt', 'generators') elt = None generators = None if sys.version_info >= (3, 0): class ListComp(_ListComp, ComprehensionScope): """class representing a ListComp node""" def __init__(self): self.locals = {} else: class ListComp(_ListComp): """class representing a ListComp node""" # Function ################################################################### def _infer_decorator_callchain(node): """ Detect decorator call chaining and see if the end result is a static or a classmethod. """ current = node while True: if isinstance(current, CallFunc): try: current = next(current.func.infer()) except InferenceError: return elif isinstance(current, Function): if not current.parent: return try: # TODO: We don't handle multiple inference results right now, # because there's no flow to reason when the return # is what we are looking for, a static or a class method. result = next(current.infer_call_result(current.parent)) if current is result: # This will lead to an infinite loop, where a decorator # returns itself. return except (StopIteration, InferenceError): return if isinstance(result, (Function, CallFunc)): current = result else: if isinstance(result, Instance): result = result._proxied if isinstance(result, Class): if (result.name == 'classmethod' and result.root().name == BUILTINS): return 'classmethod' elif (result.name == 'staticmethod' and result.root().name == BUILTINS): return 'staticmethod' else: return else: # We aren't interested in anything else returned, # so go back to the function type inference. return else: return def _function_type(self): """ Function type, possible values are: method, function, staticmethod, classmethod. """ # Can't infer that this node is decorated # with a subclass of `classmethod` where `type` is first set, # so do it here. if self.decorators: for node in self.decorators.nodes: if isinstance(node, CallFunc): _type = _infer_decorator_callchain(node) if _type is None: continue else: return _type if not isinstance(node, Name): continue try: for infered in node.infer(): if not isinstance(infered, Class): continue for ancestor in infered.ancestors(): if isinstance(ancestor, Class): if (ancestor.name == 'classmethod' and ancestor.root().name == BUILTINS): return 'classmethod' elif (ancestor.name == 'staticmethod' and ancestor.root().name == BUILTINS): return 'staticmethod' except InferenceError: pass return self._type class Lambda(LocalsDictNodeNG, FilterStmtsMixin): _astroid_fields = ('args', 'body',) name = '<lambda>' # function's type, 'function' | 'method' | 'staticmethod' | 'classmethod' type = 'function' def __init__(self): self.locals = {} self.args = [] self.body = [] def pytype(self): if 'method' in self.type: return '%s.instancemethod' % BUILTINS return '%s.function' % BUILTINS def display_type(self): if 'method' in self.type: return 'Method' return 'Function' def callable(self): return True def argnames(self): """return a list of argument names""" if self.args.args: # maybe None with builtin functions names = _rec_get_names(self.args.args) else: names = [] if self.args.vararg: names.append(self.args.vararg) if self.args.kwarg: names.append(self.args.kwarg) return names def infer_call_result(self, caller, context=None): """infer what a function is returning when called""" return self.body.infer(context) def scope_lookup(self, node, name, offset=0): if node in self.args.defaults or node in self.args.kw_defaults: frame = self.parent.frame() # line offset to avoid that def func(f=func) resolve the default # value to the defined function offset = -1 else: # check this is not used in function decorators frame = self return frame._scope_lookup(node, name, offset) class Function(Statement, Lambda): if PY3K: _astroid_fields = ('decorators', 'args', 'body', 'returns') returns = None else: _astroid_fields = ('decorators', 'args', 'body') special_attributes = set(('__name__', '__doc__', '__dict__')) is_function = True # attributes below are set by the builder module or by raw factories blockstart_tolineno = None decorators = None _type = "function" type = cachedproperty(_function_type) def __init__(self, name, doc): self.locals = {} self.args = [] self.body = [] self.name = name self.doc = doc self.extra_decorators = [] self.instance_attrs = {} @cachedproperty def fromlineno(self): # lineno is the line number of the first decorator, we want the def # statement lineno lineno = self.lineno if self.decorators is not None: lineno += sum(node.tolineno - node.lineno + 1 for node in self.decorators.nodes) return lineno @cachedproperty def blockstart_tolineno(self): return self.args.tolineno def block_range(self, lineno): """return block line numbers. start from the "def" position whatever the given lineno """ return self.fromlineno, self.tolineno def getattr(self, name, context=None): """this method doesn't look in the instance_attrs dictionary since it's done by an Instance proxy at inference time. """ if name == '__module__': return [cf(self.root().qname())] if name in self.instance_attrs: return self.instance_attrs[name] return std_special_attributes(self, name, False) def is_method(self): """return true if the function node should be considered as a method""" # check we are defined in a Class, because this is usually expected # (e.g. pylint...) when is_method() return True return self.type != 'function' and isinstance(self.parent.frame(), Class) def decoratornames(self): """return a list of decorator qualified names""" result = set() decoratornodes = [] if self.decorators is not None: decoratornodes += self.decorators.nodes decoratornodes += self.extra_decorators for decnode in decoratornodes: for infnode in decnode.infer(): result.add(infnode.qname()) return result decoratornames = cached(decoratornames) def is_bound(self): """return true if the function is bound to an Instance or a class""" return self.type == 'classmethod' def is_abstract(self, pass_is_abstract=True): """Returns True if the method is abstract. A method is considered abstract if - the only statement is 'raise NotImplementedError', or - the only statement is 'pass' and pass_is_abstract is True, or - the method is annotated with abc.astractproperty/abc.abstractmethod """ if self.decorators: for node in self.decorators.nodes: try: infered = next(node.infer()) except InferenceError: continue if infered and infered.qname() in ('abc.abstractproperty', 'abc.abstractmethod'): return True for child_node in self.body: if isinstance(child_node, Raise): if child_node.raises_not_implemented(): return True if pass_is_abstract and isinstance(child_node, Pass): return True return False # empty function is the same as function with a single "pass" statement if pass_is_abstract: return True def is_generator(self): """return true if this is a generator function""" # XXX should be flagged, not computed return next(self.nodes_of_class((Yield, YieldFrom), skip_klass=(Function, Lambda)), False) def infer_call_result(self, caller, context=None): """infer what a function is returning when called""" if self.is_generator(): yield Generator() return # This is really a gigantic hack to work around metaclass generators # that return transient class-generating functions. Pylint's AST structure # cannot handle a base class object that is only used for calling __new__, # but does not contribute to the inheritance structure itself. We inject # a fake class into the hierarchy here for several well-known metaclass # generators, and filter it out later. if (self.name == 'with_metaclass' and len(self.args.args) == 1 and self.args.vararg is not None): metaclass = next(caller.args[0].infer(context)) if isinstance(metaclass, Class): c = Class('temporary_class', None) c.hide = True c.parent = self c.bases = [next(b.infer(context)) for b in caller.args[1:]] c._metaclass = metaclass yield c return returns = self.nodes_of_class(Return, skip_klass=Function) for returnnode in returns: if returnnode.value is None: yield Const(None) else: try: for infered in returnnode.value.infer(context): yield infered except InferenceError: yield YES def _rec_get_names(args, names=None): """return a list of all argument names""" if names is None: names = [] for arg in args: if isinstance(arg, Tuple): _rec_get_names(arg.elts, names) else: names.append(arg.name) return names # Class ###################################################################### def _is_metaclass(klass, seen=None): """ Return if the given class can be used as a metaclass. """ if klass.name == 'type': return True if seen is None: seen = set() for base in klass.bases: try: for baseobj in base.infer(): if baseobj in seen: continue else: seen.add(baseobj) if isinstance(baseobj, Instance): # not abstract return False if baseobj is YES: continue if baseobj is klass: continue if not isinstance(baseobj, Class): continue if baseobj._type == 'metaclass': return True if _is_metaclass(baseobj, seen): return True except InferenceError: continue return False def _class_type(klass, ancestors=None): """return a Class node type to differ metaclass, interface and exception from 'regular' classes """ # XXX we have to store ancestors in case we have a ancestor loop if klass._type is not None: return klass._type if _is_metaclass(klass): klass._type = 'metaclass' elif klass.name.endswith('Interface'): klass._type = 'interface' elif klass.name.endswith('Exception'): klass._type = 'exception' else: if ancestors is None: ancestors = set() if klass in ancestors: # XXX we are in loop ancestors, and have found no type klass._type = 'class' return 'class' ancestors.add(klass) for base in klass.ancestors(recurs=False): name = _class_type(base, ancestors) if name != 'class': if name == 'metaclass' and not _is_metaclass(klass): # don't propagate it if the current class # can't be a metaclass continue klass._type = base.type break if klass._type is None: klass._type = 'class' return klass._type def _iface_hdlr(iface_node): """a handler function used by interfaces to handle suspicious interface nodes """ return True class Class(Statement, LocalsDictNodeNG, FilterStmtsMixin): # some of the attributes below are set by the builder module or # by a raw factories # a dictionary of class instances attributes _astroid_fields = ('decorators', 'bases', 'body') # name decorators = None special_attributes = set(('__name__', '__doc__', '__dict__', '__module__', '__bases__', '__mro__', '__subclasses__')) blockstart_tolineno = None _type = None _metaclass_hack = False hide = False type = property(_class_type, doc="class'type, possible values are 'class' | " "'metaclass' | 'interface' | 'exception'") def __init__(self, name, doc): self.instance_attrs = {} self.locals = {} self.bases = [] self.body = [] self.name = name self.doc = doc def _newstyle_impl(self, context=None): if context is None: context = InferenceContext() if self._newstyle is not None: return self._newstyle for base in self.ancestors(recurs=False, context=context): if base._newstyle_impl(context): self._newstyle = True break klass = self._explicit_metaclass() # could be any callable, we'd need to infer the result of klass(name, # bases, dict). punt if it's not a class node. if klass is not None and isinstance(klass, Class): self._newstyle = klass._newstyle_impl(context) if self._newstyle is None: self._newstyle = False return self._newstyle _newstyle = None newstyle = property(_newstyle_impl, doc="boolean indicating if it's a new style class" "or not") @cachedproperty def blockstart_tolineno(self): if self.bases: return self.bases[-1].tolineno else: return self.fromlineno def block_range(self, lineno): """return block line numbers. start from the "class" position whatever the given lineno """ return self.fromlineno, self.tolineno def pytype(self): if self.newstyle: return '%s.type' % BUILTINS return '%s.classobj' % BUILTINS def display_type(self): return 'Class' def callable(self): return True def is_subtype_of(self, type_name, context=None): if self.qname() == type_name: return True for anc in self.ancestors(context=context): if anc.qname() == type_name: return True def infer_call_result(self, caller, context=None): """infer what a class is returning when called""" if self.is_subtype_of('%s.type' % (BUILTINS,), context) and len(caller.args) == 3: name_node = next(caller.args[0].infer(context)) if (isinstance(name_node, Const) and isinstance(name_node.value, six.string_types)): name = name_node.value else: yield YES return result = Class(name, None) bases = next(caller.args[1].infer(context)) if isinstance(bases, (Tuple, List)): result.bases = bases.itered() else: # There is currently no AST node that can represent an 'unknown' # node (YES is not an AST node), therefore we simply return YES here # although we know at least the name of the class. yield YES return result.parent = caller.parent yield result else: yield Instance(self) def scope_lookup(self, node, name, offset=0): if node in self.bases: frame = self.parent.frame() # line offset to avoid that class A(A) resolve the ancestor to # the defined class offset = -1 else: frame = self return frame._scope_lookup(node, name, offset) # list of parent class as a list of string (i.e. names as they appear # in the class definition) XXX bw compat def basenames(self): return [bnode.as_string() for bnode in self.bases] basenames = property(basenames) def ancestors(self, recurs=True, context=None): """return an iterator on the node base classes in a prefixed depth first order :param recurs: boolean indicating if it should recurse or return direct ancestors only """ # FIXME: should be possible to choose the resolution order # FIXME: inference make infinite loops possible here yielded = set([self]) if context is None: context = InferenceContext() if sys.version_info[0] >= 3: if not self.bases and self.qname() != 'builtins.object': yield builtin_lookup("object")[1][0] return for stmt in self.bases: try: for baseobj in stmt.infer(context): if not isinstance(baseobj, Class): if isinstance(baseobj, Instance): baseobj = baseobj._proxied else: # duh ? continue if not baseobj.hide: if baseobj in yielded: continue # cf xxx above yielded.add(baseobj) yield baseobj if recurs: for grandpa in baseobj.ancestors(recurs=True, context=context): if grandpa in yielded: continue # cf xxx above yielded.add(grandpa) yield grandpa except InferenceError: # XXX log error ? continue def local_attr_ancestors(self, name, context=None): """return an iterator on astroid representation of parent classes which have <name> defined in their locals """ for astroid in self.ancestors(context=context): if name in astroid: yield astroid def instance_attr_ancestors(self, name, context=None): """return an iterator on astroid representation of parent classes which have <name> defined in their instance attribute dictionary """ for astroid in self.ancestors(context=context): if name in astroid.instance_attrs: yield astroid def has_base(self, node): return node in self.bases def local_attr(self, name, context=None): """return the list of assign node associated to name in this class locals or in its parents :raises `NotFoundError`: if no attribute with this name has been find in this class or its parent classes """ try: return self.locals[name] except KeyError: # get if from the first parent implementing it if any for class_node in self.local_attr_ancestors(name, context): return class_node.locals[name] raise NotFoundError(name) local_attr = remove_nodes(local_attr, DelAttr) def instance_attr(self, name, context=None): """return the astroid nodes associated to name in this class instance attributes dictionary and in its parents :raises `NotFoundError`: if no attribute with this name has been find in this class or its parent classes """ # Return a copy, so we don't modify self.instance_attrs, # which could lead to infinite loop. values = list(self.instance_attrs.get(name, [])) # get all values from parents for class_node in self.instance_attr_ancestors(name, context): values += class_node.instance_attrs[name] if not values: raise NotFoundError(name) return values instance_attr = remove_nodes(instance_attr, DelAttr) def instanciate_class(self): """return Instance of Class node, else return self""" return Instance(self) def getattr(self, name, context=None): """this method doesn't look in the instance_attrs dictionary since it's done by an Instance proxy at inference time. It may return a YES object if the attribute has not been actually found but a __getattr__ or __getattribute__ method is defined """ values = self.locals.get(name, []) if name in self.special_attributes: if name == '__module__': return [cf(self.root().qname())] + values # FIXME: do we really need the actual list of ancestors? # returning [Tuple()] + values don't break any test # this is ticket http://www.logilab.org/ticket/52785 # XXX need proper meta class handling + MRO implementation if name == '__bases__' or (name == '__mro__' and self.newstyle): node = Tuple() node.items = self.ancestors(recurs=True, context=context) return [node] + values return std_special_attributes(self, name) # don't modify the list in self.locals! values = list(values) for classnode in self.ancestors(recurs=True, context=context): values += classnode.locals.get(name, []) if not values: raise NotFoundError(name) return values def igetattr(self, name, context=None): """inferred getattr, need special treatment in class to handle descriptors """ # set lookup name since this is necessary to infer on import nodes for # instance if not context: context = InferenceContext() try: for infered in _infer_stmts(self.getattr(name, context), context, frame=self, lookupname=name): # yield YES object instead of descriptors when necessary if not isinstance(infered, Const) and isinstance(infered, Instance): try: infered._proxied.getattr('__get__', context) except NotFoundError: yield infered else: yield YES else: yield function_to_method(infered, self) except NotFoundError: if not name.startswith('__') and self.has_dynamic_getattr(context): # class handle some dynamic attributes, return a YES object yield YES else: raise InferenceError(name) def has_dynamic_getattr(self, context=None): """return True if the class has a custom __getattr__ or __getattribute__ method """ # need to explicitly handle optparse.Values (setattr is not detected) if self.name == 'Values' and self.root().name == 'optparse': return True try: self.getattr('__getattr__', context) return True except NotFoundError: #if self.newstyle: XXX cause an infinite recursion error try: getattribute = self.getattr('__getattribute__', context)[0] if getattribute.root().name != BUILTINS: # class has a custom __getattribute__ defined return True except NotFoundError: pass return False def methods(self): """return an iterator on all methods defined in the class and its ancestors """ done = {} for astroid in chain(iter((self,)), self.ancestors()): for meth in astroid.mymethods(): if meth.name in done: continue done[meth.name] = None yield meth def mymethods(self): """return an iterator on all methods defined in the class""" for member in self.values(): if isinstance(member, Function): yield member def interfaces(self, herited=True, handler_func=_iface_hdlr): """return an iterator on interfaces implemented by the given class node """ # FIXME: what if __implements__ = (MyIFace, MyParent.__implements__)... try: implements = Instance(self).getattr('__implements__')[0] except NotFoundError: return if not herited and not implements.frame() is self: return found = set() missing = False for iface in unpack_infer(implements): if iface is YES: missing = True continue if not iface in found and handler_func(iface): found.add(iface) yield iface if missing: raise InferenceError() _metaclass = None def _explicit_metaclass(self): """ Return the explicit defined metaclass for the current class. An explicit defined metaclass is defined either by passing the ``metaclass`` keyword argument in the class definition line (Python 3) or (Python 2) by having a ``__metaclass__`` class attribute, or if there are no explicit bases but there is a global ``__metaclass__`` variable. """ for base in self.bases: try: for baseobj in base.infer(): if isinstance(baseobj, Class) and baseobj.hide: self._metaclass = baseobj._metaclass self._metaclass_hack = True break except InferenceError: pass if self._metaclass: # Expects this from Py3k TreeRebuilder try: return next(node for node in self._metaclass.infer() if node is not YES) except (InferenceError, StopIteration): return None if sys.version_info >= (3, ): return None if '__metaclass__' in self.locals: assignment = self.locals['__metaclass__'][-1] elif self.bases: return None elif '__metaclass__' in self.root().locals: assignments = [ass for ass in self.root().locals['__metaclass__'] if ass.lineno < self.lineno] if not assignments: return None assignment = assignments[-1] else: return None try: infered = next(assignment.infer()) except InferenceError: return if infered is YES: # don't expose this return None return infered def metaclass(self): """ Return the metaclass of this class. If this class does not define explicitly a metaclass, then the first defined metaclass in ancestors will be used instead. """ klass = self._explicit_metaclass() if klass is None: for parent in self.ancestors(): klass = parent.metaclass() if klass is not None: break return klass def has_metaclass_hack(self): return self._metaclass_hack def _islots(self): """ Return an iterator with the inferred slots. """ if '__slots__' not in self.locals: return for slots in self.igetattr('__slots__'): # check if __slots__ is a valid type for meth in ITER_METHODS: try: slots.getattr(meth) break except NotFoundError: continue else: continue if isinstance(slots, Const): # a string. Ignore the following checks, # but yield the node, only if it has a value if slots.value: yield slots continue if not hasattr(slots, 'itered'): # we can't obtain the values, maybe a .deque? continue if isinstance(slots, Dict): values = [item[0] for item in slots.items] else: values = slots.itered() if values is YES: continue for elt in values: try: for infered in elt.infer(): if infered is YES: continue if (not isinstance(infered, Const) or not isinstance(infered.value, str)): continue if not infered.value: continue yield infered except InferenceError: continue # Cached, because inferring them all the time is expensive @cached def slots(self): """ Return all the slots for this node. """ return list(self._islots())
ae48ce85c8caa8b2632e5bbc58f086388955ab75
df7f13ec34591fe1ce2d9aeebd5fd183e012711a
/hata/discord/application_command/application_command/tests/test__validate_version.py
0311466ec90e46c18abaa78702c11bd7846f90a8
[ "LicenseRef-scancode-warranty-disclaimer" ]
permissive
HuyaneMatsu/hata
63e2f6a2d7a7539fd8f18498852d9d3fe5c41d2e
53f24fdb38459dc5a4fd04f11bdbfee8295b76a4
refs/heads/master
2023-08-20T15:58:09.343044
2023-08-20T13:09:03
2023-08-20T13:09:03
163,677,173
3
3
Apache-2.0
2019-12-18T03:46:12
2018-12-31T14:59:47
Python
UTF-8
Python
false
false
1,003
py
import vampytest from ..fields import validate_version def test__validate_version__0(): """ Tests whether `validate_version` works as intended. Case: passing. """ version = 202302260011 for input_value, expected_output in ( (version, version), (str(version), version), ): output = validate_version(input_value) vampytest.assert_eq(output, expected_output) def test__validate_version__1(): """ Tests whether `validate_version` works as intended. Case: `ValueError`. """ for input_value in ( '-1', -1, ): with vampytest.assert_raises(AssertionError, ValueError): validate_version(input_value) def test__validate_version__2(): """ Tests whether `validate_version` works as intended. Case: `TypeError`. """ for input_value in ( 12.6, ): with vampytest.assert_raises(TypeError): validate_version(input_value)
c65f10f40c7746b6a0f8b226efa07085cf5a26f6
3634703ad8685c9bc5d73edf148b7b8722356c0e
/Algorithm/programmers/pg_2016년.py
872b394b834701e55c74ca2098cf27d1a25d7d18
[]
no_license
chj3748/TIL
23d88f97ebc8b1e3a06bb93752dfd2d331d01fd8
40a4e524c28945c95f059b0dee598abb686abe04
refs/heads/master
2022-02-26T16:43:56.964719
2022-02-14T04:43:20
2022-02-14T04:43:20
235,233,054
1
0
null
null
null
null
UTF-8
Python
false
false
369
py
# math | programmers 2016년 # github.com/chj3748 import sys def input(): return sys.stdin.readline().rstrip() def solution(a, b): months = [0, 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] for i in range(1, 14): months[i] += months[i - 1] weeks = [ 'THU', 'FRI', 'SAT', 'SUN', 'MON', 'TUE', 'WED'] return weeks[(months[a] + b) % 7]
b27b059c477b45152d67c266b8bde14dfdbcfe93
e122ab31559f7551e4bc4dff6dfa7f7dbbd10168
/jaqs/__init__.py
0be750ea380b5ec64652ff6b426589ec22e928c8
[ "Apache-2.0" ]
permissive
WayneWan413/JAQS
ffb909d6d550451552697358735ec5dd74975b2d
e7362fc261f49dd7a4353c9a9a3f98d6ef9a78b4
refs/heads/master
2021-08-30T10:30:20.675837
2017-12-17T14:14:59
2017-12-17T14:14:59
113,726,696
0
0
null
null
null
null
UTF-8
Python
false
false
294
py
# encoding: utf-8 """ JAQS ~~~~ Open source quantitative research&trading framework. copyright: (c) 2017 quantOS-org. license: Apache 2.0, see LICENSE for details. """ import os __version__ = '0.6.6' SOURCE_ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
d3e1cb323db751ac2050493151ddde48bb868a90
566638e179b0add891e1d5c8900d35ae531af6dc
/alembic_simplelis/versions/6487bfd4c8aa_renamed_columns.py
6cd0406fe6bfe944447113a2432ef47fb6ff8af3
[]
no_license
likit/querystud
9b023a45adfdbf6dc8a3a2f97fefb82b765c8690
1702c09ff6931b2cd94d0b55ef42f244c503a68a
refs/heads/master
2020-03-25T19:25:40.412824
2018-08-09T18:08:48
2018-08-09T18:08:48
144,082,461
0
0
null
null
null
null
UTF-8
Python
false
false
1,273
py
"""renamed columns Revision ID: 6487bfd4c8aa Revises: 8c08809abb09 Create Date: 2018-08-09 15:54:28.683879 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '6487bfd4c8aa' down_revision = '8c08809abb09' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('labs', sa.Column('reportDate', sa.Date(), nullable=True)) op.add_column('labs', sa.Column('reportTime', sa.Time(), nullable=True)) op.alter_column('labs', 'recvDate', existing_type=sa.DATE(), nullable=False) op.alter_column('labs', 'recvTime', existing_type=postgresql.TIME(), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('labs', 'recvTime', existing_type=postgresql.TIME(), nullable=True) op.alter_column('labs', 'recvDate', existing_type=sa.DATE(), nullable=True) op.drop_column('labs', 'reportTime') op.drop_column('labs', 'reportDate') # ### end Alembic commands ###
61c4329bc9311c20d6ca2fdca35994a57d850ee5
38fff7bdefd8d62a740d51329b50d0e1e49258bb
/projects/oscrypto/fuzz_keys.py
891da04cd3fd9abfb86f3c556edf67a2c729e495
[ "Apache-2.0" ]
permissive
google/oss-fuzz
026384c2ada61ef68b147548e830f60730c5e738
f0275421f84b8f80ee767fb9230134ac97cb687b
refs/heads/master
2023-08-31T23:30:28.157702
2023-08-31T21:49:30
2023-08-31T21:49:30
63,809,205
9,438
2,315
Apache-2.0
2023-09-14T20:32:19
2016-07-20T19:39:50
Shell
UTF-8
Python
false
false
938
py
#!/usr/bin/python3 # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import atheris from oscrypto import keys def TestOneInput(data): try: keys.parse_pkcs12(data, b'123') except ValueError: pass except OSError: pass def main(): atheris.instrument_all() atheris.Setup(sys.argv, TestOneInput, enable_python_coverage=True) atheris.Fuzz() if __name__ == "__main__": main()
50bee84349089e1aa4828f68a88a6d8a89dfdf41
568d7d17d09adeeffe54a1864cd896b13988960c
/month01/day07/exercise05.py
3493424818067ec8a5a6e612d415a224bd930150
[ "Apache-2.0" ]
permissive
Amiao-miao/all-codes
e2d1971dfd4cecaaa291ddf710999f2fc4d8995f
ec50036d42d40086cac5fddf6baf4de18ac91e55
refs/heads/main
2023-02-24T10:36:27.414153
2021-02-01T10:51:55
2021-02-01T10:51:55
334,908,634
1
0
null
null
null
null
UTF-8
Python
false
false
723
py
dict_travel_info = { "北京": { "景区": ["长城", "故宫"], "美食": ["烤鸭", "豆汁焦圈", "炸酱面"] }, "四川": { "景区": ["九寨沟", "峨眉山"], "美食": ["火锅", "兔头"] } } #1.打印北京的第一个景区 print(dict_travel_info["北京"]["景区"][0]) # 打印四川的第二个美食 print(dict_travel_info["四川"]["美食"][1]) # 2. 所有城市 (一行一个) for key in dict_travel_info: print(key) #3.北京所有美食(一行一个) for i in dict_travel_info["北京"]["美食"]: print(i) # 4.打印所有城市的所有美食(一行一个) for value in dict_travel_info.values(): for v in value["美食"]: print(v)
f6d7fbdef5cdaedb0fe2f8536b75a1173aca58fe
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/containerservice/azure-mgmt-containerservice/generated_samples/maintenance_configurations_create_update.py
c0abfbc1bab5cf537fc774e2f3b60eed6869983b
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,900
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.containerservice import ContainerServiceClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-containerservice # USAGE python maintenance_configurations_create_update.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = ContainerServiceClient( credential=DefaultAzureCredential(), subscription_id="subid1", ) response = client.maintenance_configurations.create_or_update( resource_group_name="rg1", resource_name="clustername1", config_name="default", parameters={ "properties": { "notAllowedTime": [{"end": "2020-11-30T12:00:00Z", "start": "2020-11-26T03:00:00Z"}], "timeInWeek": [{"day": "Monday", "hourSlots": [1, 2]}], } }, ) print(response) # x-ms-original-file: specification/containerservice/resource-manager/Microsoft.ContainerService/aks/stable/2023-07-01/examples/MaintenanceConfigurationsCreate_Update.json if __name__ == "__main__": main()
d993401850d52d98db8b268955eeb445554951db
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_371/ch47_2020_10_04_13_40_50_371443.py
3cc3cadd86d947006768c00c032c11e851f56842
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
def estritamente_crescente(lista): numero_atual = 0 numero_anterior =0 i=0 nova_lista=[] while len(lista)>i: numero_atual=lista[i] if numero_atual>numero_anterior: numero_anterior=numero_atual nova_lista.append(numero_atual) i+=1 else: i+=1 return nova_lista
e73ea00412857d8bc51a1b6f7dd676d32b152336
1c6a29a7dcd62470d594d5e42dbea9ff79cc47f5
/shade/_heat/utils.py
24cb0b07115e1da1eb535444aa86612c446b7d0a
[ "Apache-2.0" ]
permissive
major/shade
a1691a3e3311f1b87f4a31c3a26929ddc2541b7a
0ced9b5a7568dd8e4a33b6627f636639bcbbd8a3
refs/heads/master
2023-06-07T17:15:47.089102
2020-06-01T22:59:14
2020-06-01T22:59:14
54,499,600
0
0
Apache-2.0
2023-06-01T21:26:36
2016-03-22T18:34:14
Python
UTF-8
Python
false
false
1,842
py
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import base64 import os from six.moves.urllib import error from six.moves.urllib import parse from six.moves.urllib import request from shade import exc def base_url_for_url(url): parsed = parse.urlparse(url) parsed_dir = os.path.dirname(parsed.path) return parse.urljoin(url, parsed_dir) def normalise_file_path_to_url(path): if parse.urlparse(path).scheme: return path path = os.path.abspath(path) return parse.urljoin('file:', request.pathname2url(path)) def read_url_content(url): try: # TODO(mordred) Use requests content = request.urlopen(url).read() except error.URLError: raise exc.OpenStackCloudException( 'Could not fetch contents for %s' % url) if content: try: content.decode('utf-8') except ValueError: content = base64.encodestring(content) return content def resource_nested_identifier(rsrc): nested_link = [l for l in rsrc.links or [] if l.get('rel') == 'nested'] if nested_link: nested_href = nested_link[0].get('href') nested_identifier = nested_href.split("/")[-2:] return "/".join(nested_identifier)
633f67db56b3fc27c70671b9cff7a90c51faa754
96538cc3eee3d73d429f3476d0e895be95d695e3
/worker/db/redisdb.py
e7b69ffd0713371d1380120d397a1485debac7fe
[]
no_license
FashtimeDotCom/distributed-spider
d9555670216e68d4ff031e466cbf3529d080a534
33292f098403fa73239e0c7353e4cc5918be981b
refs/heads/master
2020-03-22T11:43:14.796426
2018-07-06T10:51:48
2018-07-06T11:34:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,874
py
# -*- coding: utf-8 -*- ''' Created on 2016-11-16 16:25 --------- @summary: 操作redis数据库 --------- @author: Boris ''' import sys sys.path.append('../') import init import redis import utils.tools as tools from utils.log import log IP = tools.get_conf_value('config.conf', 'redis', 'ip') PORT = int(tools.get_conf_value('config.conf', 'redis', 'port')) DB = int(tools.get_conf_value('config.conf', 'redis', 'db')) USER_PASS = tools.get_conf_value('config.conf', 'redis', 'user_pass') class Singleton(object): def __new__(cls, *args, **kwargs): if not hasattr(cls,'_inst'): cls._inst=super(Singleton,cls).__new__(cls, *args, **kwargs) return cls._inst class RedisDB(): def __init__(self, ip = IP, port = PORT, db = DB, user_pass = USER_PASS): # super(RedisDB, self).__init__() if not hasattr(self,'_redis'): try: self._redis = redis.Redis(host = ip, port = port, db = db, password = user_pass, decode_responses=True) # redis默认端口是6379 self._pipe = self._redis.pipeline(transaction=True) # redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。 except Exception as e: raise else: log.debug('连接到redis数据库 ip:%s port:%s'%(ip, port)) def sadd(self, table, values): ''' @summary: 使用无序set集合存储数据, 去重 --------- @param table: @param values: 值; 支持list 或 单个值 --------- @result: 若库中存在 返回0,否则入库,返回1。 批量添加返回None ''' if isinstance(values, list): self._pipe.multi() for value in values: self._pipe.sadd(table, value) self._pipe.execute() else: return self._redis.sadd(table, values) def zadd(self, table, values, prioritys = 0): ''' @summary: 使用有序set集合存储数据, 去重(值存在更新) --------- @param table: @param values: 值; 支持list 或 单个值 @param prioritys: 优先级; double类型,支持list 或 单个值。 根据此字段的值来排序, 值越小越优先。 可不传值,默认value的优先级为0 --------- @result:若库中存在 返回0,否则入库,返回1。 批量添加返回None ''' if isinstance(values, list): if not isinstance(prioritys, list): prioritys = [prioritys] * len(values) else: assert len(values) == len(prioritys), 'values值要与prioritys值一一对应' self._pipe.multi() for value, priority in zip(values, prioritys): self._pipe.zadd(table, value, priority) self._pipe.execute() else: return self._redis.zadd(table, values, prioritys) def zget(self, table, count = 0, is_pop = True): ''' @summary: 从有序set集合中获取数据 --------- @param table: @param count: 数量 @param is_pop:获取数据后,是否在原set集合中删除,默认是 --------- @result: 列表 ''' start_pos = 0 # 包含 end_pos = 0 if count == 0 else count - 1 # 包含 self._pipe.multi() # 标记事务的开始 参考 http://www.runoob.com/redis/redis-transactions.html self._pipe.zrange(table, start_pos, end_pos) # 取值 if is_pop: self._pipe.zremrangebyrank(table, start_pos, end_pos) # 删除 results, count = self._pipe.execute() return results def zget_count(self, table, priority_min = None, priority_max = None): ''' @summary: 获取表数据的数量 --------- @param table: @param priority_min:优先级范围 最小值(包含) @param priority_max:优先级范围 最大值(包含) --------- @result: ''' if priority_min != None and priority_max != None: return self._redis.zcount(table, priority_min, priority_max) else: return self._redis.zcard(table) def lpush(self, table, values): if isinstance(values, list): self._pipe.multi() for value in values: self._pipe.rpush(table, value) self._pipe.execute() else: return self._redis.rpush(table, values) def lpop(self, table, count = 1): ''' @summary: --------- @param table: @param count: --------- @result: 返回列表 ''' datas = [] count = count if count <= self.lget_count(table) else self.lget_count(table) if count: if count > 1: self._pipe.multi() while count: data = self._pipe.lpop(table) count -= 1 datas = self._pipe.execute() else: datas.append(self._redis.lpop(table)) return datas def lget_count(self, table): return self._redis.llen(table) def clear(self, table): self._redis.delete(table) if __name__ == '__main__': db = RedisDB() # data = { # "url": "http://www.icm9.com/", # "status": 0, # "remark": { # "spider_depth": 3, # "website_name": "早间新闻", # "website_position": 23, # "website_domain": "icm9.com", # "website_url": "http://www.icm9.com/" # }, # "depth": 0, # "_id": "5b15f33d53446530acf20539", # "site_id": 1, # "retry_times": 0 # } # print(db.sadd('25:25', data)) # print(db.zadd('26:26', [data])) # # print(db.sadd('1', 1)) db.zadd('news_urls', '1', 1) db.zadd('news_urls', '2', 1) db.zadd('news_urls', '3', 2) count = db.zget_count('news_urls', 2, 2) print(count) # print(type(data[0])) # db.clear('name') # import time # start = time.time() # # for i in range(10000): # # db.zadd('test6', i) # db.zadd('test7', list(range(10000)), [1]) # print(time.time() - start) # db.zadd('test3', '1', 5) # db.zadd('test3', '2', 6) # db.zadd('test3', '3', 4) data = db.zget('news_urls', 2) print(data)
9792a5b3135bd29aa5e53b9ae8901a638fa9d8f1
c6759b857e55991fea3ef0b465dbcee53fa38714
/tools/nntool/nntool/quantization/multiplicative/quantizers/default_mult.py
0385ebd178ce814eee4883e29eda75e12c0747cf
[ "AGPL-3.0-or-later", "AGPL-3.0-only", "GPL-1.0-or-later", "LicenseRef-scancode-other-copyleft", "Apache-2.0" ]
permissive
GreenWaves-Technologies/gap_sdk
1b343bba97b7a5ce62a24162bd72eef5cc67e269
3fea306d52ee33f923f2423c5a75d9eb1c07e904
refs/heads/master
2023-09-01T14:38:34.270427
2023-08-10T09:04:44
2023-08-10T09:04:44
133,324,605
145
96
Apache-2.0
2023-08-27T19:03:52
2018-05-14T07:50:29
C
UTF-8
Python
false
false
1,696
py
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import logging import numpy as np from nntool.quantization.qtype_constraint import MatchAll from nntool.quantization.quantizers.no_change_mixin import NoChangeMixin from nntool.quantization.unified_quantization_handler import (in_qs_constraint, needs_stats, out_qs_constraint, params_type) from ..mult_quantization_handler import MultQuantizionHandler LOG = logging.getLogger('nntool.' + __name__) @params_type('__default__') @in_qs_constraint(MatchAll({'dtype': set([np.int8, np.int16, np.uint8, np.uint16])})) @out_qs_constraint(MatchAll({'dtype': set([np.int8, np.int16, np.uint8, np.uint16])})) @needs_stats(False) class NoChangeMult(MultQuantizionHandler, NoChangeMixin): @classmethod def _quantize(cls, params, in_qs, stats, **kwargs): return cls._handle(params, in_qs, stats, 'scaled', **kwargs)
c64212fbcaa3ae1e49feb372c55e74cd6e4024a0
26bcead33b5ae529883f940d34c8ed6e1f1571af
/src/wordnet/__init__.py
4e32b07df0478eabe63805e0922d9d3093bec5ff
[]
no_license
julieweeds/WordNet
a6ef1c7c757f60108c73ad02cfd43e902c2094c1
69c353c2cc0b6e5527f016a317e59bd43b8ceb45
refs/heads/master
2020-12-25T19:26:01.102329
2015-06-09T15:02:27
2015-06-09T15:02:27
9,606,663
0
0
null
null
null
null
UTF-8
Python
false
false
21
py
__author__ = 'Julie'
488399fdb504ae50e47833dff927ee9e6ba0f590
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/Sourcem8/pirates/effects/JRTeleportEffect.py
8882e9e00c07ab5214be47edb6f53d4ae176d94a
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
8,337
py
# File: J (Python 2.4) from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.particles import ParticleEffect from direct.particles import Particles from direct.particles import ForceGroup from EffectController import EffectController from PooledEffect import PooledEffect import random class JRTeleportEffect(PooledEffect, EffectController): card2Scale = 32.0 cardScale = 32.0 def __init__(self, parent = None): PooledEffect.__init__(self) EffectController.__init__(self) if parent is not None: self.reparentTo(parent) if not JRTeleportEffect.particleDummy: JRTeleportEffect.particleDummy = render.attachNewNode(ModelNode('JRTeleportEffectParticleDummy')) JRTeleportEffect.particleDummy.setColorScaleOff() JRTeleportEffect.particleDummy.setLightOff() JRTeleportEffect.particleDummy.setFogOff() JRTeleportEffect.particleDummy.setDepthWrite(0) JRTeleportEffect.particleDummy.setBin('fixed', 40) self.effectScale = 1.0 self.duration = 3.0 self.radius = 1.0 model = loader.loadModel('models/effects/particleMaps') self.card = model.find('**/particleEvilSmoke') self.card2 = model.find('**/particleWhiteSmoke') self.f = ParticleEffect.ParticleEffect('JRTeleportEffect') self.f.reparentTo(self) self.p0 = Particles.Particles('particles-1') self.p0.setFactory('ZSpinParticleFactory') self.p0.setRenderer('SpriteParticleRenderer') self.p0.setEmitter('SphereVolumeEmitter') self.p1 = Particles.Particles('particles-2') self.p1.setFactory('ZSpinParticleFactory') self.p1.setRenderer('SpriteParticleRenderer') self.p1.setEmitter('SphereVolumeEmitter') self.f.addParticles(self.p0) self.f.addParticles(self.p1) f1 = ForceGroup.ForceGroup('Noise') force1 = LinearNoiseForce(0.5, 0) force1.setVectorMasks(0, 1, 1) force1.setActive(1) f1.addForce(force1) self.f.addForceGroup(f1) self.p0.setPoolSize(256) self.p0.setBirthRate(0.050000000000000003) self.p0.setLitterSize(24) self.p0.setLitterSpread(8) self.p0.setSystemLifespan(0.0) self.p0.setLocalVelocityFlag(1) self.p0.setSystemGrowsOlderFlag(0) self.p0.factory.setLifespanBase(1.25) self.p0.factory.setLifespanSpread(0.5) self.p0.factory.setMassBase(4.0) self.p0.factory.setMassSpread(0.0) self.p0.factory.setTerminalVelocityBase(400.0) self.p0.factory.setTerminalVelocitySpread(0.0) self.p0.factory.setInitialAngle(0.0) self.p0.factory.setInitialAngleSpread(90.0) self.p0.factory.enableAngularVelocity(1) self.p0.factory.setAngularVelocity(500.0) self.p0.factory.setAngularVelocitySpread(100.0) self.p0.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAINOUT) self.p0.renderer.setUserAlpha(1.0) self.p0.renderer.setFromNode(self.card) self.p0.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p0.renderer.setXScaleFlag(1) self.p0.renderer.setYScaleFlag(1) self.p0.renderer.setAnimAngleFlag(1) self.p0.renderer.setNonanimatedTheta(0.0) self.p0.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p0.renderer.setAlphaDisable(0) self.p0.renderer.setColorBlendMode(ColorBlendAttrib.MAdd, ColorBlendAttrib.OIncomingAlpha, ColorBlendAttrib.OOne) self.p0.renderer.getColorInterpolationManager().addLinear(0.0, 0.59999999999999998, Vec4(1.0, 1.0, 0.20000000000000001, 1.0), Vec4(0.80000000000000004, 0.59999999999999998, 0.25, 0.75), 1) self.p0.renderer.getColorInterpolationManager().addLinear(0.59999999999999998, 1.0, Vec4(0.80000000000000004, 0.59999999999999998, 0.25, 0.75), Vec4(0.5, 0.25, 0.0, 0.0), 1) self.p0.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p0.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p0.emitter.setRadiateOrigin(Point3(0.0, 0.0, -5.0)) self.p1.setPoolSize(150) self.p1.setBirthRate(0.01) self.p1.setLitterSize(3) self.p1.setLitterSpread(0) self.p1.setSystemLifespan(0.0) self.p1.setLocalVelocityFlag(1) self.p1.setSystemGrowsOlderFlag(0) self.p1.factory.setLifespanBase(1.0) self.p1.factory.setLifespanSpread(0.0) self.p1.factory.setMassBase(1.0) self.p1.factory.setMassSpread(0.0) self.p1.factory.setTerminalVelocityBase(400.0) self.p1.factory.setTerminalVelocitySpread(0.0) self.p1.factory.setInitialAngle(0.0) self.p1.factory.setInitialAngleSpread(45.0) self.p1.factory.enableAngularVelocity(0) self.p1.factory.setFinalAngle(360.0) self.p1.factory.setFinalAngleSpread(0.0) self.p1.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAINOUT) self.p1.renderer.setUserAlpha(1.0) self.p1.renderer.setFromNode(self.card2) self.p1.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p1.renderer.setXScaleFlag(1) self.p1.renderer.setYScaleFlag(1) self.p1.renderer.setAnimAngleFlag(1) self.p1.renderer.setNonanimatedTheta(0.0) self.p1.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p1.renderer.setAlphaDisable(0) self.p1.renderer.setColorBlendMode(ColorBlendAttrib.MAdd, ColorBlendAttrib.OIncomingAlpha, ColorBlendAttrib.OOne) self.p1.renderer.getColorInterpolationManager().addLinear(0.0, 0.5, Vec4(1.0, 1.0, 0.20000000000000001, 1.0), Vec4(0.80000000000000004, 0.59999999999999998, 0.25, 0.75), 1) self.p1.renderer.getColorInterpolationManager().addLinear(0.5, 1.0, Vec4(0.80000000000000004, 0.59999999999999998, 0.25, 0.75), Vec4(0.5, 0.25, 0.0, 0.5), 1) self.p1.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p1.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p1.emitter.setRadiateOrigin(Point3(0.0, 0.0, 0.0)) self.setEffectScale(self.effectScale) def createTrack(self): self.startEffect = Sequence(Func(self.p0.setBirthRate, 0.10000000000000001), Func(self.p0.clearToInitial), Func(self.p1.setBirthRate, 0.02), Func(self.p1.clearToInitial), Func(self.f.start, self, self.particleDummy)) self.endEffect = Sequence(Func(self.p0.setBirthRate, 100), Func(self.p1.setBirthRate, 100), Wait(2.0), Func(self.cleanUpEffect)) self.track = Sequence(self.startEffect, Wait(self.duration), self.endEffect) def reSize(self, t): if self.p1: self.p1.emitter.setRadius(self.radius * t) def setEffectScale(self, scale): self.effectScale = scale if self.p0: self.p0.renderer.setInitialXScale(0.025000000000000001 * self.effectScale * self.cardScale) self.p0.renderer.setFinalXScale(0.014999999999999999 * self.effectScale * self.cardScale) self.p0.renderer.setInitialYScale(0.014999999999999999 * self.effectScale * self.cardScale) self.p0.renderer.setFinalYScale(0.050000000000000003 * self.effectScale * self.cardScale) self.p0.emitter.setAmplitude(self.effectScale) self.p0.emitter.setOffsetForce(Vec3(0.0, 0.0, -1.5) * self.effectScale) self.p0.emitter.setRadius(self.effectScale) if self.p1: self.p1.renderer.setInitialXScale(0.014999999999999999 * self.effectScale * self.cardScale) self.p1.renderer.setFinalXScale(0.029999999999999999 * self.effectScale * self.cardScale) self.p1.renderer.setInitialYScale(0.014999999999999999 * self.effectScale * self.cardScale) self.p1.renderer.setFinalYScale(0.050000000000000003 * self.effectScale * self.cardScale) self.p1.emitter.setAmplitude(self.effectScale) self.p1.emitter.setOffsetForce(Vec3(0.0, 0.0, -3.0) * self.effectScale) self.p1.emitter.setRadius(self.effectScale * 1.25) def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self)
8e28e993c80f61da18a42c1591380ee8d5027018
94d5ef47d3244950a0308c754e0aa55dca6f2a0e
/migrations/versions/e19ce0373a4f_made_degrees_and_personal_info_a_a_one_.py
1cdef1768726407a573115deba478c710260bcc0
[]
no_license
MUMT-IT/mis2018
9cbc7191cdc1bcd7e0c2de1e0586d8bd7b26002e
69fabc0b16abfeba44173caa93d4f63fa79033fd
refs/heads/master
2023-08-31T16:00:51.717449
2023-08-31T11:30:13
2023-08-31T11:30:13
115,810,883
5
5
null
2023-09-14T10:08:35
2017-12-30T17:06:00
HTML
UTF-8
Python
false
false
2,377
py
"""made degrees and personal info a a one-to-many relationship Revision ID: e19ce0373a4f Revises: 7d048ab06595 Create Date: 2021-03-04 09:41:21.032186 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'e19ce0373a4f' down_revision = '7d048ab06595' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('eduqa_degrees', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('eduqa_programs', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=False), sa.Column('degree_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['degree_id'], ['eduqa_degrees.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('eduqa_curriculums', sa.Column('id', sa.Integer(), nullable=False), sa.Column('program_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['program_id'], ['eduqa_programs.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column(u'staff_edu_degree', sa.Column('personal_info_id', sa.Integer(), nullable=True)) op.add_column(u'staff_edu_degree', sa.Column('received_date', sa.Date(), nullable=True)) op.create_foreign_key(None, 'staff_edu_degree', 'staff_personal_info', ['personal_info_id'], ['id']) op.drop_constraint(u'staff_personal_info_highest_degree_id_fkey', 'staff_personal_info', type_='foreignkey') op.drop_column(u'staff_personal_info', 'highest_degree_id') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column(u'staff_personal_info', sa.Column('highest_degree_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key(u'staff_personal_info_highest_degree_id_fkey', 'staff_personal_info', 'staff_edu_degree', ['highest_degree_id'], ['id']) op.drop_constraint(None, 'staff_edu_degree', type_='foreignkey') op.drop_column(u'staff_edu_degree', 'received_date') op.drop_column(u'staff_edu_degree', 'personal_info_id') op.drop_table('eduqa_curriculums') op.drop_table('eduqa_programs') op.drop_table('eduqa_degrees') # ### end Alembic commands ###
d5de15191b5b65b8672942b474be1928172186e4
4806d5b15b45e30be16c857faaacaa278eba09d3
/parse/parse_gansu_worker.py
a675f10751af6f727dfa48302b11fee243b2bc58
[]
no_license
osenlin/gsxt_spider
9ebc90b778ca1fe31f3339ddeccdac66808a1d96
6e75fe9802620284e8c19c6f23a9a90911b39016
refs/heads/master
2020-03-20T01:10:50.348913
2018-06-12T12:34:53
2018-06-12T12:34:53
137,068,844
5
9
null
null
null
null
UTF-8
Python
false
false
28,729
py
#!/usr/bin/env python # encoding: utf-8 """ @author: youfeng @email: [email protected] @license: Apache Licence @file: parse_base_worker.py @time: 2017/2/3 17:32 """ import traceback from pyquery import PyQuery from base.parse_base_worker import ParseBaseWorker from common import util from common.annual_field import * from common.global_field import Model from common.gsxt_field import * # todo 甘肃亚盛股份实业(集团)有限公司兴盛分公司 解析逻辑有问题, 会漏掉属性解析 class GsxtParseGanSuWorker(ParseBaseWorker): def __init__(self, **kwargs): ParseBaseWorker.__init__(self, **kwargs) # 基本信息 def get_base_info(self, base_info): page = self.get_crawl_page(base_info) res = PyQuery(page, parser='html').find('.info_name').items() base_info_dict = {} money = util.get_match_value("toDecimal6\('", "'\);", page) for item in res: item_content = item.text().replace('•', '') item_content = item_content.replace(':', ':') part = item_content.split(':', 1) k = GsModel.format_base_model(part[0].replace(' ', '')) base_info_dict[k] = part[1].strip() base_info_dict[GsModel.PERIOD] = u"{0}至{1}". \ format(base_info_dict.get(GsModel.PERIOD_FROM), base_info_dict.get(GsModel.PERIOD_TO)) reg_unit = base_info_dict.get(GsModel.REGISTERED_CAPITAL) if reg_unit is not None: base_info_dict[GsModel.REGISTERED_CAPITAL] = money + reg_unit # 股东信息 try: shareholder_info_dict = self.get_inline_shareholder_info(page) except ValueError: self.log.error('company:{0},error-part:shareholder_info_dict,error-info:{1}'.format( base_info.get('company', u''), traceback.format_exc())) shareholder_info_dict = {} base_info_dict.update(shareholder_info_dict) # 变更信息 try: change_info_dict = self.get_inline_change_info(page) except ValueError: self.log.error('company:{0},error-part:change_info_dict,error-info:{1}'.format( base_info.get('company', u''), traceback.format_exc())) change_info_dict = {} base_info_dict.update(change_info_dict) return base_info_dict # 股东信息 @staticmethod def get_inline_shareholder_info(page): shareholder_info_dict = {} shareholder_list = [] trs = PyQuery(page, parser='html').find('#gd_JSTab').find('tr').items() for tr in trs: tds = tr.find('td') if tds is None or len(tds) < 2: continue share_model = { GsModel.ShareholderInformation.SHAREHOLDER_NAME: tds.eq(1).text().replace(u'\\t', u''), GsModel.ShareholderInformation.SUBSCRIPTION_AMOUNT: util.get_amount_with_unit(tds.eq(2).text()), GsModel.ShareholderInformation.PAIED_AMOUNT: util.get_amount_with_unit(tds.eq(3).text()), GsModel.ShareholderInformation.SUBSCRIPTION_DETAIL: [{ GsModel.ShareholderInformation.SUBSCRIPTION_TYPE: tds.eq(4).text(), GsModel.ShareholderInformation.SUBSCRIPTION_TIME: tds.eq(6).text(), GsModel.ShareholderInformation.SUBSCRIPTION_PUBLISH_TIME: tds.eq(7).text(), }], GsModel.ShareholderInformation.PAIED_DETAIL: [{ GsModel.ShareholderInformation.PAIED_TYPE: tds.eq(8).text(), GsModel.ShareholderInformation.PAIED_TIME: tds.eq(10).text(), GsModel.ShareholderInformation.PAIED_PUBLISH_TIME: tds.eq(11).text() }] } shareholder_list.append(share_model) if len(shareholder_list) > 0: shareholder_info_dict[GsModel.SHAREHOLDER_INFORMATION] = shareholder_list return shareholder_info_dict # 变更信息 @staticmethod def get_inline_change_info(page): change_info_dict = {} change_records_list = [] trs = PyQuery(page, parser='html').find('#changeTab').find('tr').items() for tr in trs: tds = tr.find('td') if len(tds) < 2: continue change_model = { GsModel.ChangeRecords.CHANGE_ITEM: tds.eq(1).text(), # 去除多余的字 GsModel.ChangeRecords.BEFORE_CONTENT: util.format_content(tds.eq(2).text()), GsModel.ChangeRecords.AFTER_CONTENT: util.format_content(tds.eq(3).text()), # 日期格式化 GsModel.ChangeRecords.CHANGE_DATE: tds.eq(4).text() } change_records_list.append(change_model) if len(change_records_list) > 0: change_info_dict[GsModel.CHANGERECORDS] = change_records_list return change_info_dict # 主要人员 def get_key_person_info(self, key_person_info): """ :param key_person_info: 网页库字典, 里面包含list 与 detail 两个列表, 列表中存储的为网页数据 其中两个列表一定会存在一个, 否则则认为这个数据包无效, list一般储存列表翻页信息, detail存储列表项详情信息 具体结构参考mongodb网页库或者查看 common/global_field.py 中Model定义注释 主要人员一般存储在list列表中, 因为主要人员不包含列表结构不需要detail列表 :return: 返回工商schema字典 """ key_person_info_dict = {} page = self.get_crawl_page(key_person_info) items = PyQuery(page, parser='html').find('#per270').items() key_person_list = [] for item in items: spans = item.find('span') if len(spans) < 2: continue key_person = { GsModel.KeyPerson.KEY_PERSON_NAME: spans.eq(0).text().strip(), GsModel.KeyPerson.KEY_PERSON_POSITION: spans.eq(1).text().strip()} key_person_list.append(key_person) if len(key_person_list) > 0: key_person_info_dict[GsModel.KEY_PERSON] = key_person_list return key_person_info_dict # 分支机构 def get_branch_info(self, branch_info): branch_info_dict = {} page = self.get_crawl_page(branch_info) items = PyQuery(page, parser='html').find('#fzjg308').items() branch_list = [] for item in items: spans = item.find('span') if len(spans) < 7: continue branch_model = { GsModel.Branch.COMPAY_NAME: spans.eq(0).text(), GsModel.Branch.CODE: spans.eq(3).text(), GsModel.Branch.REGISTERED_ADDRESS: spans.eq(6).text() # 待定 } branch_list.append(branch_model) if len(branch_list) > 0: branch_info_dict[GsModel.BRANCH] = branch_list return branch_info_dict # 出资信息 def get_contributive_info(self, con_info): con_info_dict = {} part_a_con = {} part_b_con = {} pages_list = self.get_crawl_page(con_info, True) # for else 业务逻辑是什么? for page in pages_list: trs = PyQuery(page.get(u'text', u''), parser='html').find('#invTab').find('tr').items() ''' 注释: 查找id为invTab的<tr>集合,则进入循环(分支1) ''' for tr in trs: tds = tr.find('td') if len(tds) < 2: continue con_model = { GsModel.ContributorInformation.SHAREHOLDER_NAME: tds.eq(1).text(), GsModel.ContributorInformation.SHAREHOLDER_TYPE: tds.eq(2).text(), GsModel.ContributorInformation.CERTIFICATE_TYPE: tds.eq(3).text(), GsModel.ContributorInformation.CERTIFICATE_NO: tds.eq(4).text() } part_a_con[tds.eq(1).text().strip()] = con_model else: ''' 注释: 查找id为invTab的<tr>集合,没有数据集,则进入else分支,查找id为tzrPageTab的<tr>集合(分支2) ''' trs = PyQuery(page.get('text', ''), parser='html').find('#tzrPageTab').find('tr').items() for tr in trs: tds = tr.find('td') if len(tds) < 2: continue con_model = { GsModel.ContributorInformation.SHAREHOLDER_NAME: tds.eq(1).text(), GsModel.ContributorInformation.SHAREHOLDER_TYPE: tds.eq(2).text() } part_a_con[con_model[GsModel.ContributorInformation.SHAREHOLDER_NAME]] = con_model pages_detail = self.get_crawl_page(con_info, True, Model.type_detail) if pages_detail is not None: for page in pages_detail: tables = PyQuery(page.get(u'text', u''), parser='html').find('.detailsList').items() shareholder_name, sub_model = self._get_sharehold_detail(tables) shareholder_name.replace(u'.', u'') part_b_con[shareholder_name] = sub_model con_list = [] for k_list, v_list in part_a_con.items(): v_list.update(part_b_con.get(k_list, {})) con_list.append(v_list) if len(con_list) > 0: con_info_dict[GsModel.CONTRIBUTOR_INFORMATION] = con_list return con_info_dict # 清算信息 def get_liquidation_info(self, liquidation_info): return {} def get_chattel_mortgage_info_detail(self, onclick, detail_list): result = dict() if onclick is None or onclick.strip() == '': return result temp_list = onclick.split(u'\'') if temp_list is None or len(temp_list) < 2: return result temp_list = temp_list[1].split(u'\'') if temp_list is None or len(temp_list) <= 0: return result morreg_id = temp_list[0] # 遍历所有页面 for detail in detail_list: url = detail.get('url') if not isinstance(url, basestring): continue if morreg_id not in url: continue text = detail.get('text') if not isinstance(text, basestring) or text.strip() == u'': continue table_list = PyQuery(text, parser='html').find('.detailsList') if table_list is None or table_list.length < 5: raise FieldMissError # 动产抵押登记信息 td_list = table_list.eq(0).find('td') cm_dict = dict() result[GsModel.ChattelMortgageInfo.ChattelDetail.CHATTEL_MORTGAGE] = cm_dict cm_dict[GsModel.ChattelMortgageInfo.ChattelDetail.ChattelMortgage.REGISTER_NUM] = td_list.eq(0).text() cm_dict[GsModel.ChattelMortgageInfo.ChattelDetail.ChattelMortgage.REGISTER_DATE] = td_list.eq(1).text() cm_dict[GsModel.ChattelMortgageInfo.ChattelDetail.ChattelMortgage.REGISTER_OFFICE] = td_list.eq(2).text() # 抵押权人概况信息 tr_list = table_list.eq(1).find('tr').items() mps_list = list() result[GsModel.ChattelMortgageInfo.ChattelDetail.MORTGAGE_PERSON_STATUS] = mps_list for tr in tr_list: td_list = tr.find('td') if td_list is None or td_list.length < 5: continue item = dict() item[GsModel.ChattelMortgageInfo.ChattelDetail.MortgagePersonStatus.MORTGAGE_PERSON_NAME] = td_list.eq( 1).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.MortgagePersonStatus.CERTIFICATE_TYPE] = td_list.eq( 2).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.MortgagePersonStatus.CERTIFICATE_NUM] = td_list.eq( 3).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.MortgagePersonStatus.ADDRESS] = td_list.eq(4).text() mps_list.append(item) # 被担保债权概况信息 td_list = table_list.eq(2).find('td') gps_dict = dict() result[GsModel.ChattelMortgageInfo.ChattelDetail.GUARANTEED_PERSON_STATUS] = gps_dict gps_dict[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteedPersonStatus.KIND] = td_list.eq(0).text() gps_dict[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteedPersonStatus.AMOUNT] = td_list.eq(1).text() gps_dict[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteedPersonStatus.SCOPE] = td_list.eq(2).text() gps_dict[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteedPersonStatus.PERIOD] = td_list.eq(3).text() gps_dict[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteedPersonStatus.REMARK] = td_list.eq(4).text() # 抵押物概况信息 tr_list = table_list.eq(3).find('tr').items() gs_list = list() result[GsModel.ChattelMortgageInfo.ChattelDetail.GUARANTEE_STATUS] = gs_list for tr in tr_list: td_list = tr.find('td') if td_list is None or td_list.length < 5: continue item = dict() item[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteeStatus.NAME] = td_list.eq( 1).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteeStatus.AFFILIATION] = td_list.eq( 2).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteeStatus.SITUATION] = td_list.eq( 3).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.GuaranteeStatus.REMARK] = td_list.eq(4).text() gs_list.append(item) # 变更信息 tr_list = table_list.eq(4).find('tr').items() change_list = list() result[GsModel.ChattelMortgageInfo.ChattelDetail.CHANGE_INFO] = change_list for tr in tr_list: td_list = tr.find('td') if td_list is None or td_list.length < 3: continue item = dict() item[GsModel.ChattelMortgageInfo.ChattelDetail.ChangeInfo.CHANGE_DATE] = td_list.eq( 1).text() item[GsModel.ChattelMortgageInfo.ChattelDetail.ChangeInfo.CHANGE_CONTENT] = td_list.eq( 2).text() break return result # 动产抵押登记信息 def get_chattel_mortgage_info(self, chattel_mortgage_info): chattel_mortgage_info_dict = dict() result_list = list() # 记录信息 空表也需要 chattel_mortgage_info_dict[GsModel.CHATTEL_MORTGAGE_INFO] = result_list detail_list = self.get_crawl_page(chattel_mortgage_info, multi=True, part=Model.type_detail) page_text = self.get_crawl_page(chattel_mortgage_info) if page_text is None: return chattel_mortgage_info_dict jq = PyQuery(page_text, parser='html') move_tab = jq.find("#moveTab") tr_list = move_tab.find('tr').items() for tr in tr_list: td_list = tr.find('td') if td_list.length < 8: continue item = dict() item[GsModel.ChattelMortgageInfo.REGISTER_NUM] = td_list.eq(1).text() item[GsModel.ChattelMortgageInfo.REGISTER_DATE] = td_list.eq(2).text() item[GsModel.ChattelMortgageInfo.REGISTER_OFFICE] = td_list.eq(3).text() item[GsModel.ChattelMortgageInfo.CREDIT_AMOUNT] = util.get_amount_with_unit(td_list.eq(4).text()) item[GsModel.ChattelMortgageInfo.STATUS] = td_list.eq(5).text() item[GsModel.ChattelMortgageInfo.PUBLISH_DATE] = td_list.eq(6).text() item[GsModel.ChattelMortgageInfo.CHATTEL_DETAIL] = self.get_chattel_mortgage_info_detail( td_list.eq(7).find('a').attr('onclick'), detail_list) if len(item) > 0: result_list.append(item) return chattel_mortgage_info_dict # 列入经营异常名录信息 def get_abnormal_operation_info(self, abnormal_operation_info): abnormal_operation_info_dict = dict() result_list = list() # 记录信息 空表也需要 abnormal_operation_info_dict[GsModel.ABNORMAL_OPERATION_INFO] = result_list page_text = self.get_crawl_page(abnormal_operation_info) if page_text is None: return abnormal_operation_info_dict jq = PyQuery(page_text, parser='html') move_tab = jq.find("#excpTab") tr_list = move_tab.find('tr').items() for tr in tr_list: td_list = tr.find('td') if td_list.length < 7: continue item = dict() item[GsModel.AbnormalOperationInfo.ENROL_REASON] = td_list.eq(1).text() item[GsModel.AbnormalOperationInfo.ENROL_DATE] = td_list.eq(2).text() item[GsModel.AbnormalOperationInfo.ENROL_DECIDE_OFFICE] = td_list.eq(3).text() item[GsModel.AbnormalOperationInfo.REMOVE_REASON] = td_list.eq(4).text() item[GsModel.AbnormalOperationInfo.REMOVE_DATE] = td_list.eq(5).text() item[GsModel.AbnormalOperationInfo.REMOVE_DECIDE_OFFICE] = td_list.eq(6).text() if len(item) > 0: result_list.append(item) return abnormal_operation_info_dict # 股权出质登记信息 详情 def get_equity_pledged_info_detail(self, onclick, detail_list): return {} # 股权出质登记信息 股权出资登记 def get_equity_pledged_info(self, equity_pledged_info): equity_pledged_info_dict = dict() result_list = list() # 记录信息 空表也需要 equity_pledged_info_dict[GsModel.EQUITY_PLEDGED_INFO] = result_list detail_list = self.get_crawl_page(equity_pledged_info, multi=True, part=Model.type_detail) page_text = self.get_crawl_page(equity_pledged_info) if page_text is None: return equity_pledged_info_dict jq = PyQuery(page_text, parser='html') move_tab = jq.find("#stockTab") tr_list = move_tab.find('tr').items() for tr in tr_list: td_list = tr.find('td') if td_list.length < 11: continue item = dict() item[GsModel.EquityPledgedInfo.REGISTER_NUM] = td_list.eq(1).text() item[GsModel.EquityPledgedInfo.MORTGAGOR] = td_list.eq(2).text() item[GsModel.EquityPledgedInfo.MORTGAGOR_NUM] = td_list.eq(3).text() item[GsModel.EquityPledgedInfo.PLEDGE_STOCK_AMOUNT] = util.get_amount_with_unit(td_list.eq(4).text()) item[GsModel.EquityPledgedInfo.PLEDGEE] = td_list.eq(5).text() item[GsModel.EquityPledgedInfo.PLEDGEE_NUM] = td_list.eq(6).text() item[GsModel.EquityPledgedInfo.REGISTER_DATE] = td_list.eq(7).text() item[GsModel.EquityPledgedInfo.STATUS] = td_list.eq(8).text() item[GsModel.EquityPledgedInfo.PUBLISH_DATE] = td_list.eq(9).text() item[GsModel.EquityPledgedInfo.EQUITY_PLEDGED_DETAIL] = self.get_equity_pledged_info_detail( td_list.eq(10).find('a').attr('onclick'), detail_list) if len(item) > 0: result_list.append(item) return equity_pledged_info_dict # 年报信息 def get_annual_info(self, annual_item_list): return ParseGanSuAnnual(annual_item_list, self.log).get_result() class ParseGanSuAnnual(object): def __init__(self, annual_item_list, log): self.annual_info_dict = {} if not isinstance(annual_item_list, list) or len(annual_item_list) <= 0: return self.log = log self.annual_item_list = annual_item_list # 分发解析 self.dispatch() def dispatch(self): if self.annual_item_list is None: raise IndexError("未抓取到相关网页,或者抓取网页失败") if len(self.annual_item_list) <= 0: return {} annual_item = self.annual_item_list[0] page = annual_item.get(u'text', u'') if page is None or len(page) == 0: return {} py_all = PyQuery(page, parser='html') # 基本信息 info = py_all.find('.info_name').items() annual_base_info = self.get_annual_base_info(info) self.annual_info_dict.update(annual_base_info) # 年报 企业资产状况信息 tds = py_all.find('#zczkId') asset_model = self.get_annual_asset_info(tds, py_all) self.annual_info_dict[AnnualReports.ENTERPRISE_ASSET_STATUS_INFORMATION] = asset_model divs = py_all.find('.webStyle.anchebotLine').items() for div in divs: # 网店 if u'网址' in div.text(): py_websites = div.find('#webInfo').items() lst_websites = self.get_annual_web_site_info(py_websites) self.annual_info_dict[AnnualReports.WEBSITES] = lst_websites # 对外投资 elif u'注册号' in div.text(): py_inv_company = div.find('#webInfo').items() lst_inv = self.get_annual_inv_info(py_inv_company) self.annual_info_dict[AnnualReports.INVESTED_COMPANIES] = lst_inv # 对外担保 py_share_hold = py_all.find('#dBaoAnrepTab').find('tr').items() lst_out_guaranty = self.get_annual_out_guarantee_info(py_share_hold) self.annual_info_dict[AnnualReports.OUT_GUARANTEE_INFO] = lst_out_guaranty # 股东出资信息 py_share_hold = py_all.find('#gdczAnrepTab').find('tr').items() lst_share_hold = self.get_annual_share_hold_info(py_share_hold) self.annual_info_dict[AnnualReports.SHAREHOLDER_INFORMATION] = lst_share_hold # 股权变更 py_edit_shareholding_change = py_all.find('#gqAlertTab').find('tr').items() lst_edit_shareholding_change = self.get_annual_edit_shareholding_change(py_edit_shareholding_change) self.annual_info_dict[AnnualReports.EDIT_SHAREHOLDING_CHANGE_INFOS] = lst_edit_shareholding_change # 修改记录 py_edit_change = py_all.find('#modifyTab').find('tr').items() lst_edit_change = self.get_annual_edit_change(py_edit_change) self.annual_info_dict[AnnualReports.EDIT_CHANGE_INFOS] = lst_edit_change # 年报基本信息 @staticmethod def get_annual_base_info(py_items): annual_base_info_dict = {} for item in py_items: item_content = item.text().replace(u'•', u'').replace(u':', u':') part = item_content.split(u':', 2) k = AnnualReports.format_base_model(part[0].strip()) annual_base_info_dict[k] = part[1].strip() return annual_base_info_dict # 年报网站信息 @staticmethod def get_annual_web_site_info(py_websites): lst_web = [] for py_web in py_websites: py_items = py_web.find('p').items() web_item = {} for item in py_items: if len(item.find('span')) == 1: web_item[AnnualReports.WebSites.NAME] = item.text() else: item_content = item.text().replace(u'·', u'') part = item_content.split(u':', 2) k = AnnualReports.format_website_model(part[0].strip()) web_item[k] = part[1].strip() lst_web.append(web_item) return lst_web # 年报 企业资产状况信息 @staticmethod def get_annual_asset_info(table_body, py_all): if len(table_body) <= 0: return {} model = {} lst_value = table_body.find('td').text().split(' ') lst_title = table_body.find('th').text().split(' ') if lst_title[0] == '': ent_body = py_all.find('#entZczk') lst_value = ent_body.find('td').text().split(' ') lst_title = ent_body.find('th').text().split(' ') map_title_value = zip(lst_title, lst_value) for k_title, v_value in map_title_value: k = AnnualReports.format_asset_model(k_title) model[k] = v_value return model # 年报 对外投资信息 @staticmethod def get_annual_inv_info(py_inv_company): lst_inv = [] for py_inv_item in py_inv_company: inv_item = {} ps_items = py_inv_item.find('p').items() for item in ps_items: if len(item.find('span')) == 1: inv_item[AnnualReports.InvestedCompanies.COMPANY_NAME] = item.text() else: item_content = item.text().replace(u'·', u'') part = item_content.split(u':', 2) inv_item[AnnualReports.InvestedCompanies.CODE] = part[1].strip() lst_inv.append(inv_item) return lst_inv # 年报 对外担保方法 @staticmethod def get_annual_out_guarantee_info(py_items): lst = [] for trs in py_items: tds = trs.find('td') if tds.text() == '': continue out_guarantee_model = { AnnualReports.OutGuaranteeInfo.CREDITOR: tds.eq(1).text(), AnnualReports.OutGuaranteeInfo.OBLIGOR: tds.eq(2).text(), AnnualReports.OutGuaranteeInfo.DEBT_TYPE: tds.eq(3).text(), AnnualReports.OutGuaranteeInfo.DEBT_AMOUNT: tds.eq(4).text(), AnnualReports.OutGuaranteeInfo.PERFORMANCE_PERIOD: tds.eq(5).text(), AnnualReports.OutGuaranteeInfo.GUARANTEE_PERIOD: tds.eq(6).text(), AnnualReports.OutGuaranteeInfo.GUARANTEE_TYPE: tds.eq(7).text() } lst.append(out_guarantee_model) return lst # 年报 股东出资信息(客户端分页) @staticmethod def get_annual_share_hold_info(gdcz_item): lst = [] for trs in gdcz_item: tds = trs.find('td') if tds.text() == '': continue share_model = { AnnualReports.ShareholderInformation.SHAREHOLDER_NAME: tds.eq(1).text(), AnnualReports.ShareholderInformation.SUBSCRIPTION_AMOUNT: util.get_amount_with_unit(tds.eq(2).text()), AnnualReports.ShareholderInformation.SUBSCRIPTION_TIME: tds.eq(3).text(), AnnualReports.ShareholderInformation.SUBSCRIPTION_TYPE: tds.eq(4).text(), AnnualReports.ShareholderInformation.PAIED_AMOUNT: util.get_amount_with_unit(tds.eq(5).text()), AnnualReports.ShareholderInformation.PAIED_TIME: tds.eq(6).text(), AnnualReports.ShareholderInformation.PAIED_TYPE: tds.eq(7).text() } lst.append(share_model) return lst # 年报 股权变更方法 @staticmethod def get_annual_edit_shareholding_change(py_items): lst = [] for trs in py_items: tds = trs.find('td') if tds.text() == '': continue change_model = { AnnualReports.EditShareholdingChangeInfos.SHAREHOLDER_NAME: tds.eq(1).text(), AnnualReports.EditShareholdingChangeInfos.BEFORE_CONTENT: tds.eq(2).text(), AnnualReports.EditShareholdingChangeInfos.AFTER_CONTENT: tds.eq(3).text(), AnnualReports.EditShareholdingChangeInfos.CHANGE_DATE: tds.eq(4).text() } lst.append(change_model) return lst def get_result(self): return self.annual_info_dict # 年报 修改记录 @staticmethod def get_annual_edit_change(py_items): lst = [] for trs in py_items: tds = trs.find('td') if tds.text().strip() == u'': continue edit_model = { AnnualReports.EditChangeInfos.CHANGE_ITEM: tds.eq(1).text(), AnnualReports.EditChangeInfos.BEFORE_CONTENT: tds.eq(2).text(), AnnualReports.EditChangeInfos.AFTER_CONTENT: tds.eq(3).text(), AnnualReports.EditChangeInfos.CHANGE_DATE: tds.eq(4).text() } lst.append(edit_model) return lst
3cce5f338f335566330177c42858bb6eb0baddd8
80e6e31054fe9105d2c26be7aac53c4cd6a4a33f
/scripts/spyder/amac_company.py
a1708762c46b6687a0c4ff41381e2b7ae1bca9d9
[]
no_license
alionishere/learn_python
8a7f6dc7d754a357d4cb720f4bc0d5c3e6e5e895
832b8e0579da0b7ab37e815be10204f8de1ad22d
refs/heads/master
2021-06-24T11:02:05.111027
2021-06-23T08:47:06
2021-06-23T08:47:06
223,834,194
0
0
null
null
null
null
UTF-8
Python
false
false
14,079
py
# -*- coding: utf-8 -*- import requests,io,sys,time from bs4 import BeautifulSoup import json,urllib import cx_Oracle from lxml import etree import threading from queue import Queuea def conndb(): username="kingstar" userpwd="kingstar" host="10.29.7.211" port=1521 dbname="siddc01" dsn=cx_Oracle.makedsn(host, port, dbname) db=cx_Oracle.connect(username, userpwd, dsn) return db def ExecDB(sql): db=conndb() cursor = db.cursor() cursor.execute(sql) db.commit() cursor.close() db.close() #return result def GetJson(url): payload = {} headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) ret.encoding = 'utf-8' ret = ret.text text = json.loads(ret) return text def getHtml(url): b = False while not b: try: page=urllib.request.urlopen(url) html=page.read().decode(encoding='utf-8',errors='strict') page.close() b = True except : pass return html def ListTemp(lists): if lists: member = lists[0].xpath('string(.)').replace('\n','').replace(' ','').replace(' ','') else : member = 'None' return member def Getcontent(url): text2 = GetJson(url) content = text2['content'] return content def Gettxt(text): txt=' '.join(text.split()) return txt def Trysql(sql): try: sql = ExecDB(sql.encode("GB18030")) #print(sql) except: #print("sql:",sql) pass def Truncate(): truncate_1 = "truncate table amac_smjj_company" truncate_1 = ExecDB(truncate_1) def GetQ(): url = 'http://gs.amac.org.cn/amac-infodisc/api/pof/manager?rand=0.3904312621164139&page=0&size=20' global q q = Queue() text = GetJson(url) n = text['totalPages'] for i in range(n): url2 = 'http://gs.amac.org.cn/amac-infodisc/api/pof/manager?rand=0.3904312621164139&page='+str(i)+'&size=20' q.put(url2) return q def Thread(): threads=[] for code in range(20): thread=threading.Thread(target=Work) threads.append(thread) for t in threads: t.start() #启动一个线程 for t in threads: t.join() #等待每个线程 def Work(): while not q.empty(): print(q.qsize()) url3 = q.get() try : txt = GetJson(url3) print(txt) m = txt['numberOfElements'] content = Getcontent(url3) for x in range(m): dicts = content[x] managerName =str(dicts['managerName']) registerNo =str(dicts['registerNo']) registerAddress =str(dicts['registerAddress']) officeAddress =str(dicts['officeAddress']) sql = "insert into amac_smjj_company(managerName,registerNo,registerAddress,officeAddress)"\ "values('"+managerName+"','"+registerNo+"','"+registerAddress+"','"+officeAddress+"')" # #print(sql) sql = Trysql(sql) # html_doc1 = getHtml(fundurl) # html = etree.HTML(html_doc1) # jjmc = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[1]/td[2]'))).strip().replace('\'','\'\'') # jjbm = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[2]/td[2]'))).strip() # clsj = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[3]/td[2]'))).strip().replace('-','') # basj = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[4]/td[2]'))).strip().replace('-','') # jjbajd = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[5]/td[2]'))).strip().replace('-','') # jjlx = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[6]/td[2]'))).strip() # bz = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[7]/td[2]'))).strip() # jjglr = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[8]/td[2]'))).strip() # gllx = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[9]/td[2]'))).strip() # tgr = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[10]/td[2]'))).strip() # yzzt = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[11]/td[2]'))).strip() # jjxxzhgxsj = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[12]/td[2]'))).strip().replace('-','') # jjxhtbts = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[13]/td[2]'))).strip() # dyyb = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[15]/td[2]'))).strip() # bnb = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[16]/td[2]'))).strip() # nb = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[17]/td[2]'))).strip() # jb = str(ListTemp(html.xpath('/html/body/div/div[2]/div/table/tbody/tr[18]/td[2]'))).strip() # sql2 = "insert into amac_smjj_fund(jjmc,jjbm,clsj,basj,jjbajd,jjlx,bz,jjglr,gllx,tgr,"\ # "yzzt,jjxxzhgxsj,jjxhtbts,dyyb,bnb,nb,jb) "\ # "values('"+jjmc+"','"+jjbm+"','"+clsj+"','"+basj+"','"+jjbajd+"','"+jjlx+"','"+bz\ # +"','"+jjglr+"','"+gllx+"','"+tgr+"','"+yzzt+"','"+jjxxzhgxsj+"','"+jjxhtbts+"','"\ # +dyyb+"','"+bnb+"','"+nb+"','"+jb+"')" # #print(sql2) # sql2 = Trysql(sql2) # html_doc2 = getHtml(managerurl) # html2 = etree.HTML(html_doc2) # jgcxxx = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[1]/td[2]')))).strip().replace('\'','\'\'') # jjglrch = str(ListTemp(html2.xpath('//*[@id="complaint2"]'))).replace('&nbsp','').strip().replace('\'','\'\'') # jjglrzh = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[4]/td[2]'))).strip().replace('\'','\'\'') # djbh = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[5]/td[2]'))).strip() # zzjgdm = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[6]/td[2]'))).strip() # djsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[7]/td[2]'))).strip().replace('-','') # clsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[7]/td[4]'))).strip().replace('-','') # zcdz = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[8]/td[2]'))).strip() # bgdz = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[9]/td[2]'))).strip() # zczb = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[10]/td[2]'))).strip() # sjzb = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[10]/td[4]'))).strip() # qyxz = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[11]/td[2]'))).strip() # zczbsjbl = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[11]/td[4]'))).strip() # gljjzylb = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[12]/td[2]'))).strip() # sqqtywlx = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[12]/td[4]'))).strip() # ygrs = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[13]/td[2]'))).strip() # jgwz = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[13]/td[4]'))).strip() # sfwhy = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[15]/td[2]'))).strip() # if sfwhy == '是' : # dqhylx = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[16]/td[2]'))).strip() # rhsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[16]/td[4]'))).strip().replace('-','') # flyjszt = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[18]/td[2]'))).strip() # if flyjszt == '办结': # lsswsmc = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[19]/td[2]'))).strip().replace('\'','\'\'') # lsxm = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[20]/td[2]'))).strip() # fddbr = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[22]/td[2]'))).strip() # sfycyzg = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[23]/td[2]'))).strip() # zgqdfs = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[23]/td[4]'))).strip() # gzll = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[24]/td[2]')))).strip().replace('\'','\'\'') # ggqk = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[25]/td[2]')))).strip().replace('\'','\'\'') # jgxxzhgxsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[30]/td[2]'))).strip().replace('-','') # tbtsxx = str(ListTemp(html2.xpath('//*[@id="specialInfos"]'))).strip() # else : # lsswsmc = '' # lsxm = '' # fddbr = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[20]/td[2]'))).strip() # sfycyzg = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[21]/td[2]'))).strip() # zgqdfs = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[21]/td[4]'))).strip() # gzll = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[22]/td[2]')))).strip().replace('\'','\'\'') # ggqk = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[23]/td[2]')))).strip().replace('\'','\'\'') # jgxxzhgxsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[28]/td[2]'))).strip().replace('-','') # tbtsxx = str(ListTemp(html2.xpath('//*[@id="specialInfos"]'))).strip() # else: # dqhylx = '' # rhsj = '' # flyjszt = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[17]/td[2]'))).strip() # if flyjszt == '办结' : # lsswsmc = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[18]/td[2]'))).strip().replace('\'','\'\'') # lsxm = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[19]/td[2]'))).strip() # fddbr = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[21]/td[2]'))).strip() # sfycyzg = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[22]/td[2]'))).strip() # zgqdfs = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[22]/td[4]'))).strip() # gzll = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[23]/td[2]')))).strip().replace('\'','\'\'') # ggqk = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[24]/td[2]')))).strip().replace('\'','\'\'') # jgxxzhgxsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[29]/td[2]'))).strip().replace('-','') # tbtsxx = str(ListTemp(html2.xpath('//*[@id="specialInfos"]'))).strip() # else : # lsswsmc = '' # lsxm = '' # fddbr = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[19]/td[2]'))).strip() # sfycyzg = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[20]/td[2]'))).strip() # zgqdfs = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[20]/td[4]'))).strip() # gzll = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[21]/td[2]')))).strip().replace('\'','\'\'') # ggqk = str(Gettxt(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[22]/td[2]')))).strip().replace('\'','\'\'') # jgxxzhgxsj = str(ListTemp(html2.xpath('/html/body/div/div[2]/div/table/tbody/tr[27]/td[2]'))).strip().replace('-','') # tbtsxx = str(ListTemp(html2.xpath('//*[@id="specialInfos"]'))).strip() # sql3 = "declare \n"\ # " gzll_v clob; \n"\ # " ggqk_v clob; \n"\ # "begin \n"\ # " gzll_v := '"+gzll+"';\n"\ # " ggqk_v := '"+ggqk+"';\n"\ # " insert into amac_smjj_manager (jgcxxx,jjglrch,jjglrzh,djbh,zzjgdm,djsj,clsj,zcdz,bgdz,zczb,sjzb,qyxz,zczbsjbl,"\ # "gljjzylb,sqqtywlx,ygrs,jgwz,sfwhy,dqhylx,rhsj,flyjszt,lsswsmc,lsxm,fddbr,sfycyzg,zgqdfs,gzll,ggqk,jgxxzhgxsj,tbtsxx) "\ # "values('"+jgcxxx+"','"+jjglrch+"','"+jjglrzh+"','"+djbh+"','"+zzjgdm+"','"+djsj+"','"+clsj+"','"+zcdz+"','"\ # +bgdz+"','"+zczb+"','"+sjzb+"','"+qyxz+"','"+zczbsjbl+"','"+gljjzylb+"','"+sqqtywlx+"','"+ygrs+"','"+jgwz+"','"\ # +sfwhy+"','"+dqhylx+"','"+rhsj+"','"+flyjszt+"','"+lsswsmc+"','"+lsxm+"','"+fddbr+"','"+sfycyzg+"','"+zgqdfs\ # +"',gzll_v,ggqk_v,'"+jgxxzhgxsj+"','"+tbtsxx+"');\n"\ # "end;" # sql3 = Trysql(sql3) except : #print("ERR: "+url3+"\n") q.put(url3) def main(): Truncate() GetQ() #Thread() Work() if __name__ == '__main__': start = time.time() print(start) main() end = time.time() print(end) m, s = divmod(end-start, 60) h, m = divmod(m, 60) print("运行时长:%02d:%02d:%02d" % (h, m, s))
f5cb07d8502e20680654e1356fdb1f556e65edf0
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/ads/googleads/v6/googleads-py/google/ads/googleads/v6/services/services/ad_group_extension_setting_service/client.py
751f45c7d71aa3e7c322a037ec62396c7f357549
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,859
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Callable, Dict, Optional, Sequence, Tuple, Type, Union import pkg_resources from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v6.enums.types import extension_setting_device from google.ads.googleads.v6.enums.types import extension_type from google.ads.googleads.v6.resources.types import ad_group_extension_setting from google.ads.googleads.v6.services.types import ad_group_extension_setting_service from google.rpc import status_pb2 as status # type: ignore from .transports.base import AdGroupExtensionSettingServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import AdGroupExtensionSettingServiceGrpcTransport class AdGroupExtensionSettingServiceClientMeta(type): """Metaclass for the AdGroupExtensionSettingService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = OrderedDict() # type: Dict[str, Type[AdGroupExtensionSettingServiceTransport]] _transport_registry['grpc'] = AdGroupExtensionSettingServiceGrpcTransport def get_transport_class(cls, label: str = None, ) -> Type[AdGroupExtensionSettingServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class AdGroupExtensionSettingServiceClient(metaclass=AdGroupExtensionSettingServiceClientMeta): """Service to manage ad group extension settings.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = 'googleads.googleapis.com' DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AdGroupExtensionSettingServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info(info) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AdGroupExtensionSettingServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename) kwargs['credentials'] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> AdGroupExtensionSettingServiceTransport: """Return the transport used by the client instance. Returns: AdGroupExtensionSettingServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def ad_group_path(customer_id: str,ad_group_id: str,) -> str: """Return a fully-qualified ad_group string.""" return "customers/{customer_id}/adGroups/{ad_group_id}".format(customer_id=customer_id, ad_group_id=ad_group_id, ) @staticmethod def parse_ad_group_path(path: str) -> Dict[str,str]: """Parse a ad_group path into its component segments.""" m = re.match(r"^customers/(?P<customer_id>.+?)/adGroups/(?P<ad_group_id>.+?)$", path) return m.groupdict() if m else {} @staticmethod def ad_group_extension_setting_path(customer_id: str,ad_group_id: str,extension_type: str,) -> str: """Return a fully-qualified ad_group_extension_setting string.""" return "customers/{customer_id}/adGroupExtensionSettings/{ad_group_id}~{extension_type}".format(customer_id=customer_id, ad_group_id=ad_group_id, extension_type=extension_type, ) @staticmethod def parse_ad_group_extension_setting_path(path: str) -> Dict[str,str]: """Parse a ad_group_extension_setting path into its component segments.""" m = re.match(r"^customers/(?P<customer_id>.+?)/adGroupExtensionSettings/(?P<ad_group_id>.+?)~(?P<extension_type>.+?)$", path) return m.groupdict() if m else {} @staticmethod def extension_feed_item_path(customer_id: str,feed_item_id: str,) -> str: """Return a fully-qualified extension_feed_item string.""" return "customers/{customer_id}/extensionFeedItems/{feed_item_id}".format(customer_id=customer_id, feed_item_id=feed_item_id, ) @staticmethod def parse_extension_feed_item_path(path: str) -> Dict[str,str]: """Parse a extension_feed_item path into its component segments.""" m = re.match(r"^customers/(?P<customer_id>.+?)/extensionFeedItems/(?P<feed_item_id>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str, ) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format(billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str,str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str, ) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder, ) @staticmethod def parse_common_folder_path(path: str) -> Dict[str,str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str, ) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization, ) @staticmethod def parse_common_organization_path(path: str) -> Dict[str,str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str, ) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project, ) @staticmethod def parse_common_project_path(path: str) -> Dict[str,str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str, ) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format(project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str,str]: """Parse a location path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path) return m.groupdict() if m else {} def __init__(self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[str, AdGroupExtensionSettingServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the ad group extension setting service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.AdGroupExtensionSettingServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool(util.strtobool(os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false"))) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, AdGroupExtensionSettingServiceTransport): # transport is a AdGroupExtensionSettingServiceTransport instance. if credentials: raise ValueError('When providing a transport instance, ' 'provide its credentials directly.') self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = AdGroupExtensionSettingServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_ad_group_extension_setting(self, request: ad_group_extension_setting_service.GetAdGroupExtensionSettingRequest = None, *, resource_name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> ad_group_extension_setting.AdGroupExtensionSetting: r"""Returns the requested ad group extension setting in full detail. Args: request (:class:`google.ads.googleads.v6.services.types.GetAdGroupExtensionSettingRequest`): The request object. Request message for [AdGroupExtensionSettingService.GetAdGroupExtensionSetting][google.ads.googleads.v6.services.AdGroupExtensionSettingService.GetAdGroupExtensionSetting]. resource_name (:class:`str`): Required. The resource name of the ad group extension setting to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v6.resources.types.AdGroupExtensionSetting: An ad group extension setting. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError('If the `request` argument is set, then none of ' 'the individual field arguments should be set.') # Minor optimization to avoid making a copy if the user passes # in a ad_group_extension_setting_service.GetAdGroupExtensionSettingRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, ad_group_extension_setting_service.GetAdGroupExtensionSettingRequest): request = ad_group_extension_setting_service.GetAdGroupExtensionSettingRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_ad_group_extension_setting] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata(( ('resource_name', request.resource_name), )), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response def mutate_ad_group_extension_settings(self, request: ad_group_extension_setting_service.MutateAdGroupExtensionSettingsRequest = None, *, customer_id: str = None, operations: Sequence[ad_group_extension_setting_service.AdGroupExtensionSettingOperation] = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> ad_group_extension_setting_service.MutateAdGroupExtensionSettingsResponse: r"""Creates, updates, or removes ad group extension settings. Operation statuses are returned. Args: request (:class:`google.ads.googleads.v6.services.types.MutateAdGroupExtensionSettingsRequest`): The request object. Request message for [AdGroupExtensionSettingService.MutateAdGroupExtensionSettings][google.ads.googleads.v6.services.AdGroupExtensionSettingService.MutateAdGroupExtensionSettings]. customer_id (:class:`str`): Required. The ID of the customer whose ad group extension settings are being modified. This corresponds to the ``customer_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. operations (:class:`Sequence[google.ads.googleads.v6.services.types.AdGroupExtensionSettingOperation]`): Required. The list of operations to perform on individual ad group extension settings. This corresponds to the ``operations`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v6.services.types.MutateAdGroupExtensionSettingsResponse: Response message for an ad group extension setting mutate. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([customer_id, operations]): raise ValueError('If the `request` argument is set, then none of ' 'the individual field arguments should be set.') # Minor optimization to avoid making a copy if the user passes # in a ad_group_extension_setting_service.MutateAdGroupExtensionSettingsRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, ad_group_extension_setting_service.MutateAdGroupExtensionSettingsRequest): request = ad_group_extension_setting_service.MutateAdGroupExtensionSettingsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if customer_id is not None: request.customer_id = customer_id if operations is not None: request.operations = operations # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.mutate_ad_group_extension_settings] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata(( ('customer_id', request.customer_id), )), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ( 'AdGroupExtensionSettingServiceClient', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
0f97f6497d711f09d33f01461d992e7caa12c186
ed32eb1eb0a328a4ffe89e178fc4987470f333cd
/module/multi_process/multi_process_data_share_queue.py
5a0bf787d49a21a07716851ed7ecdbf5bd202769
[]
no_license
xiaoyaojjian/py_learn
c6f5bdf31bcebf29dd914e81e6be9305a61265cc
95e494ea823d2074a05c1c2a49595002a1576093
refs/heads/master
2020-12-05T23:22:11.017066
2016-09-08T01:13:08
2016-09-08T01:13:08
67,654,055
1
0
null
null
null
null
UTF-8
Python
false
false
350
py
""" 使用 multiprocessing 中的 Queue 队列, 实现进程间数据共享 """ from multiprocessing import Process, Queue def fun(q, n): q.put(['hi, ', n]) if __name__ == '__main__': q = Queue() q.put('Ao') for i in range(5): p = Process(target=fun, args=(q, i)) p.start() while True: print(q.get())
a811d153e337706d515599bbb07ff549b3e288e1
b0f45a16f34ff84e217ff20cc06f1e8280459504
/antgo/measures/matting_task.py
b4d89c343881b9e68b17ca02028d5a8540f7ccae
[]
no_license
zhaoqike/antgo
c41dd4b8bc3e969f6008a6c17f0b44d0fe4a8eae
c8a62b2567f62db15f26c75dcc2191cb69f392ab
refs/heads/master
2021-07-18T17:37:58.652112
2017-09-12T01:19:15
2017-09-12T01:19:15
102,823,416
0
0
null
2017-09-12T08:04:20
2017-09-08T05:57:28
Python
UTF-8
Python
false
false
3,153
py
# encoding=utf-8 # @Time : 17-7-25 # @File : matting_task.py # @Author : from __future__ import division from __future__ import unicode_literals from __future__ import print_function import numpy as np from antgo.task.task import * from antgo.measures.base import * from antgo.dataflow.common import * from antgo.measures.error import * class AntSADMatting(AntMeasure): def __init__(self, task): super(AntSADMatting, self).__init__(task, 'MATTING-SAD') assert (task.task_type == 'MATTING') self.is_support_rank = True def eva(self, data, label): if label is not None: data = zip(data, label) count = 0 sad = 0.0 for predict, gt in data: assert(len(predict.shape) == 2) assert(len(gt.shape) == 2) sad += np.sum(np.abs(predict - gt)) count += 1 val = sad / count return {'statistic':{'name':self.name, 'value':[{'name':self.name, 'value': val, 'type': 'SCALAR'}]}} def AntMSEMatting(AntMeasure): def __init__(self, task): super(AntMSEMatting, self).__init__(task, 'MATTING-MSE') assert (task.task_type == 'MATTING') self.is_support_rank = True def eva(self, data, label): if label is not None: data = zip(data, label) count = 0 res = 0.0 for predict, gt in data: assert(len(predict.shape) == 2) assert(len(gt.shape) == 2) res += mse(gt, predict) count += 1 val = res / count return {'statistic': {'name': self.name, 'value': [{'name': self.name, 'value': val, 'type': 'SCALAR'}]}} def AntGradientMatting(AntMeasure): def __init__(self, task): # paper: Christoph Rhemann, etc. A Perceptually Motivated Online Benchmark for Image Matting super(AntGradientMatting, self).__init__(task, 'MATTING-GRADIENT') assert (task.task_type == 'MATTING') # delta = 1.4, q = 2 self.is_support_rank = True def eva(self, data, label): if label is not None: data = zip(data, label) count = 0 res = 0.0 for predict, gt in data: assert(len(predict.shape) == 2) assert(len(gt.shape) == 2) predict_grad = scipy.ndimage.filters.gaussian_filter(predict, 1.4, order=1) gt_grad = scipy.ndimage.filters.gaussian_filter(gt, 1.4, order=1) res += np.sum(np.power(predict_grad - gt_grad, 2)) count += 1 val = res / count return {'statistic': {'name': self.name, 'value': [{'name': self.name, 'value': val, 'type': 'SCALAR'}]}} def AntConnectivityMatting(AntMeasure): def __init__(self, task): # paper: Christoph Rhemann, etc. A Perceptually Motivated Online Benchmark for Image Matting super(AntConnectivityMatting, self).__init__(task, 'MATTING-CONNECTIVITY') assert (task.task_type == 'MATTING') # theta=0.15, p=1 self.is_support_rank = True def eva(self, data, label): if label is not None: data = zip(data, label) count = 0 res = 0.0 for predict, gt in data: assert(len(predict.shape) == 2) assert(len(gt.shape) == 2) count += 1 val = 0.0 return {'statistic': {'name': self.name, 'value': [{'name': self.name, 'value': val, 'type': 'SCALAR'}]}}
33f8e8c7bd58dedd1a60ff330d66f61e776030ca
17e1fef277dce4113f5d4f34107ba9f4b25d6646
/env/bin/s3multiput
f5e975662b4c63d861ea8958d11063454b5b4f2c
[]
no_license
morenopc/botoS3-storages-test-project
278a597d9c79b8b2c79b9e4b8bbe953e4c079270
4672fb00d0866e019d04ec6cd0a27bf3a049b0e1
refs/heads/master
2021-01-23T22:15:24.813838
2012-10-23T17:49:44
2012-10-23T17:49:44
6,357,058
0
1
null
2020-07-25T21:42:25
2012-10-23T17:46:06
Python
UTF-8
Python
false
false
12,970
#!/home/moreno/projects/django/botoS3-storages-test-project/env/bin/python # Copyright (c) 2006,2007,2008 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # multipart portions copyright Fabian Topfstedt # https://gist.github.com/924094 import math import mimetypes from multiprocessing import Pool import getopt, sys, os import boto from boto.exception import S3ResponseError from boto.s3.connection import S3Connection from filechunkio import FileChunkIO usage_string = """ SYNOPSIS s3put [-a/--access_key <access_key>] [-s/--secret_key <secret_key>] -b/--bucket <bucket_name> [-c/--callback <num_cb>] [-d/--debug <debug_level>] [-i/--ignore <ignore_dirs>] [-n/--no_op] [-p/--prefix <prefix>] [-k/--key_prefix <key_prefix>] [-q/--quiet] [-g/--grant grant] [-w/--no_overwrite] [-r/--reduced] path Where access_key - Your AWS Access Key ID. If not supplied, boto will use the value of the environment variable AWS_ACCESS_KEY_ID secret_key - Your AWS Secret Access Key. If not supplied, boto will use the value of the environment variable AWS_SECRET_ACCESS_KEY bucket_name - The name of the S3 bucket the file(s) should be copied to. path - A path to a directory or file that represents the items to be uploaded. If the path points to an individual file, that file will be uploaded to the specified bucket. If the path points to a directory, s3_it will recursively traverse the directory and upload all files to the specified bucket. debug_level - 0 means no debug output (default), 1 means normal debug output from boto, and 2 means boto debug output plus request/response output from httplib ignore_dirs - a comma-separated list of directory names that will be ignored and not uploaded to S3. num_cb - The number of progress callbacks to display. The default is zero which means no callbacks. If you supplied a value of "-c 10" for example, the progress callback would be called 10 times for each file transferred. prefix - A file path prefix that will be stripped from the full path of the file when determining the key name in S3. For example, if the full path of a file is: /home/foo/bar/fie.baz and the prefix is specified as "-p /home/foo/" the resulting key name in S3 will be: /bar/fie.baz The prefix must end in a trailing separator and if it does not then one will be added. key_prefix - A prefix to be added to the S3 key name, after any stripping of the file path is done based on the "-p/--prefix" option. reduced - Use Reduced Redundancy storage grant - A canned ACL policy that will be granted on each file transferred to S3. The value of provided must be one of the "canned" ACL policies supported by S3: private|public-read|public-read-write|authenticated-read no_overwrite - No files will be overwritten on S3, if the file/key exists on s3 it will be kept. This is useful for resuming interrupted transfers. Note this is not a sync, even if the file has been updated locally if the key exists on s3 the file on s3 will not be updated. If the -n option is provided, no files will be transferred to S3 but informational messages will be printed about what would happen. """ def usage(): print usage_string sys.exit() def submit_cb(bytes_so_far, total_bytes): print '%d bytes transferred / %d bytes total' % (bytes_so_far, total_bytes) def get_key_name(fullpath, prefix, key_prefix): key_name = fullpath[len(prefix):] l = key_name.split(os.sep) return key_prefix + '/'.join(l) def _upload_part(bucketname, aws_key, aws_secret, multipart_id, part_num, source_path, offset, bytes, debug, cb, num_cb, amount_of_retries=10): if debug == 1: print "_upload_part(%s, %s, %s)" % (source_path, offset, bytes) """ Uploads a part with retries. """ def _upload(retries_left=amount_of_retries): try: if debug == 1: print 'Start uploading part #%d ...' % part_num conn = S3Connection(aws_key, aws_secret) conn.debug = debug bucket = conn.get_bucket(bucketname) for mp in bucket.get_all_multipart_uploads(): if mp.id == multipart_id: with FileChunkIO(source_path, 'r', offset=offset, bytes=bytes) as fp: mp.upload_part_from_file(fp=fp, part_num=part_num, cb=cb, num_cb=num_cb) break except Exception, exc: if retries_left: _upload(retries_left=retries_left - 1) else: print 'Failed uploading part #%d' % part_num raise exc else: if debug == 1: print '... Uploaded part #%d' % part_num _upload() def upload(bucketname, aws_key, aws_secret, source_path, keyname, reduced, debug, cb, num_cb, acl='private', headers={}, guess_mimetype=True, parallel_processes=4): """ Parallel multipart upload. """ conn = S3Connection(aws_key, aws_secret) conn.debug = debug bucket = conn.get_bucket(bucketname) if guess_mimetype: mtype = mimetypes.guess_type(keyname)[0] or 'application/octet-stream' headers.update({'Content-Type': mtype}) mp = bucket.initiate_multipart_upload(keyname, headers=headers, reduced_redundancy=reduced) source_size = os.stat(source_path).st_size bytes_per_chunk = max(int(math.sqrt(5242880) * math.sqrt(source_size)), 5242880) chunk_amount = int(math.ceil(source_size / float(bytes_per_chunk))) pool = Pool(processes=parallel_processes) for i in range(chunk_amount): offset = i * bytes_per_chunk remaining_bytes = source_size - offset bytes = min([bytes_per_chunk, remaining_bytes]) part_num = i + 1 pool.apply_async(_upload_part, [bucketname, aws_key, aws_secret, mp.id, part_num, source_path, offset, bytes, debug, cb, num_cb]) pool.close() pool.join() if len(mp.get_all_parts()) == chunk_amount: mp.complete_upload() key = bucket.get_key(keyname) key.set_acl(acl) else: mp.cancel_upload() def main(): # default values aws_access_key_id = None aws_secret_access_key = None bucket_name = '' ignore_dirs = [] total = 0 debug = 0 cb = None num_cb = 0 quiet = False no_op = False prefix = '/' key_prefix = '' grant = None no_overwrite = False reduced = False try: opts, args = getopt.getopt(sys.argv[1:], 'a:b:c::d:g:hi:k:np:qs:wr', ['access_key=', 'bucket=', 'callback=', 'debug=', 'help', 'grant=', 'ignore=', 'key_prefix=', 'no_op', 'prefix=', 'quiet', 'secret_key=', 'no_overwrite', 'reduced']) except: usage() # parse opts for o, a in opts: if o in ('-h', '--help'): usage() if o in ('-a', '--access_key'): aws_access_key_id = a if o in ('-b', '--bucket'): bucket_name = a if o in ('-c', '--callback'): num_cb = int(a) cb = submit_cb if o in ('-d', '--debug'): debug = int(a) if o in ('-g', '--grant'): grant = a if o in ('-i', '--ignore'): ignore_dirs = a.split(',') if o in ('-n', '--no_op'): no_op = True if o in ('w', '--no_overwrite'): no_overwrite = True if o in ('-p', '--prefix'): prefix = a if prefix[-1] != os.sep: prefix = prefix + os.sep if o in ('-k', '--key_prefix'): key_prefix = a if o in ('-q', '--quiet'): quiet = True if o in ('-s', '--secret_key'): aws_secret_access_key = a if o in ('-r', '--reduced'): reduced = True if len(args) != 1: usage() path = os.path.expanduser(args[0]) path = os.path.expandvars(path) path = os.path.abspath(path) if not bucket_name: print "bucket name is required!" usage() c = boto.connect_s3(aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) c.debug = debug b = c.get_bucket(bucket_name) # upload a directory of files recursively if os.path.isdir(path): if no_overwrite: if not quiet: print 'Getting list of existing keys to check against' keys = [] for key in b.list(get_key_name(path, prefix, key_prefix)): keys.append(key.name) for root, dirs, files in os.walk(path): for ignore in ignore_dirs: if ignore in dirs: dirs.remove(ignore) for file in files: fullpath = os.path.join(root, file) key_name = get_key_name(fullpath, prefix, key_prefix) copy_file = True if no_overwrite: if key_name in keys: copy_file = False if not quiet: print 'Skipping %s as it exists in s3' % file if copy_file: if not quiet: print 'Copying %s to %s/%s' % (file, bucket_name, key_name) if not no_op: if os.stat(fullpath).st_size == 0: # 0-byte files don't work and also don't need multipart upload k = b.new_key(key_name) k.set_contents_from_filename(fullpath, cb=cb, num_cb=num_cb, policy=grant, reduced_redundancy=reduced) else: upload(bucket_name, aws_access_key_id, aws_secret_access_key, fullpath, key_name, reduced, debug, cb, num_cb, grant or 'private') total += 1 # upload a single file elif os.path.isfile(path): key_name = get_key_name(os.path.abspath(path), prefix, key_prefix) copy_file = True if no_overwrite: if b.get_key(key_name): copy_file = False if not quiet: print 'Skipping %s as it exists in s3' % path if copy_file: if not quiet: print 'Copying %s to %s/%s' % (path, bucket_name, key_name) if not no_op: if os.stat(path).st_size == 0: # 0-byte files don't work and also don't need multipart upload k = b.new_key(key_name) k.set_contents_from_filename(path, cb=cb, num_cb=num_cb, policy=grant, reduced_redundancy=reduced) else: upload(bucket_name, aws_access_key_id, aws_secret_access_key, path, key_name, reduced, debug, cb, num_cb, grant or 'private') if __name__ == "__main__": main()
4b64ead8aaa5f3622333594515050ea8272d1336
c39e19e8fada4df5bf8999f93a470fc5db0b8ea7
/tensorflow/python/keras/distribute/keras_stateful_lstm_model_correctness_test.py
4802c8d07d7c1f2aa5807fb9066c48b3319404fb
[ "Apache-2.0" ]
permissive
ivomarb/tensorflow
6bb05bc6dbaa8e59b43d00a8216bb0b8cb766080
df2fbb89588065fca2c6e5fcfba7d8c2b4378591
refs/heads/master
2020-06-26T05:03:06.321649
2019-07-29T20:30:03
2019-07-29T21:40:30
199,530,704
1
0
Apache-2.0
2019-07-29T21:45:39
2019-07-29T21:45:38
null
UTF-8
Python
false
false
4,359
py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for stateful tf.keras LSTM models using DistributionStrategy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import keras from tensorflow.python.distribute import combinations from tensorflow.python.distribute import strategy_combinations from tensorflow.python.eager import test from tensorflow.python.keras.distribute import keras_correctness_test_base from tensorflow.python.keras.optimizer_v2 import gradient_descent as gradient_descent_keras def strategies_for_stateful_embedding_model(): """Returns TPUStrategy with single core device assignment.""" return [ strategy_combinations.tpu_strategy_one_core, strategy_combinations.tpu_strategy_one_step_one_core ] def test_combinations_for_stateful_embedding_model(): return (combinations.combine( distribution=strategies_for_stateful_embedding_model(), mode='graph', use_numpy=False, use_validation_data=False, run_distributed=[True, False])) class DistributionStrategyStatefulLstmModelCorrectnessTest( keras_correctness_test_base .TestDistributionStrategyEmbeddingModelCorrectnessBase): def get_model(self, max_words=10, initial_weights=None, distribution=None, run_distributed=None, input_shapes=None): del input_shapes batch_size = keras_correctness_test_base._GLOBAL_BATCH_SIZE with keras_correctness_test_base.MaybeDistributionScope(distribution): word_ids = keras.layers.Input( shape=(max_words,), batch_size=batch_size, dtype=np.int32, name='words') word_embed = keras.layers.Embedding(input_dim=20, output_dim=10)(word_ids) lstm_embed = keras.layers.LSTM( units=4, return_sequences=False, stateful=True)( word_embed) preds = keras.layers.Dense(2, activation='softmax')(lstm_embed) model = keras.Model(inputs=[word_ids], outputs=[preds]) if initial_weights: model.set_weights(initial_weights) optimizer_fn = gradient_descent_keras.SGD model.compile( optimizer=optimizer_fn(learning_rate=0.1), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) return model # TODO(jhseu): Disabled to fix b/130808953. Need to investigate why it # doesn't work and enable for DistributionStrategy more generally. @combinations.generate(test_combinations_for_stateful_embedding_model()) def disabled_test_stateful_lstm_model_correctness( self, distribution, use_numpy, use_validation_data, run_distributed): self.run_correctness_test( distribution, use_numpy, use_validation_data, is_stateful_model=True, run_distributed=run_distributed) @combinations.generate( combinations.times( keras_correctness_test_base.test_combinations_with_tpu_strategies(), combinations.combine(run_distributed=[True, False]))) def test_incorrectly_use_multiple_cores_for_stateful_lstm_model( self, distribution, use_numpy, use_validation_data, run_distributed): with self.assertRaisesRegexp( ValueError, 'Single core must be used for computation on stateful models. Consider ' 'adding `device_assignment` parameter to TPUStrategy'): self.run_correctness_test( distribution, use_numpy, use_validation_data, is_stateful_model=True, run_distributed=run_distributed) if __name__ == '__main__': test.main()
94e94f0a49146bdb6be636a8ec08afefab19692d
34652a47355a8dbe9200db229a1bbc62619de364
/Matlibplots/dataset/weighted_moving_average.py
ba1c72dd6c5721cf2c82d983bfe57dd402757fc0
[]
no_license
btrif/Python_dev_repo
df34ab7066eab662a5c11467d390e067ab5bf0f8
b4c81010a1476721cabc2621b17d92fead9314b4
refs/heads/master
2020-04-02T13:34:11.655162
2019-11-10T11:08:23
2019-11-10T11:08:23
154,487,015
0
1
null
null
null
null
UTF-8
Python
false
false
1,098
py
# Created by Bogdan Trif on 05-02-2018 , 11:25 AM. import numpy as np import matplotlib.pyplot as plt #first generate some datapoint for a randomly sampled noisy sinewave x = np.random.random(1000)*10 noise = np.random.normal(scale=0.3,size=len(x)) y = np.sin(x) + noise #plot the data plt.plot(x,y,'ro',alpha=0.3,ms=4,label='data') plt.xlabel('Time') plt.ylabel('Intensity') def weighted_moving_average(x,y,step_size=0.05,width=1): bin_centers = np.arange(np.min(x),np.max(x)-0.5*step_size,step_size)+0.5*step_size bin_avg = np.zeros(len(bin_centers)) #We're going to weight with a Gaussian function def gaussian(x,amp=1,mean=0,sigma=1): return amp*np.exp(-(x-mean)**2/(2*sigma**2)) for index in range(0,len(bin_centers)): bin_center = bin_centers[index] weights = gaussian(x,mean=bin_center,sigma=width) bin_avg[index] = np.average(y,weights=weights) return (bin_centers,bin_avg) #plot the moving average bins, average = weighted_moving_average(x,y) plt.plot(bins, average,label='moving average') plt.grid(which='both') plt.show()
104faf0976a57398e08a2092df8011c01c40ff5a
2e5dbb3b851a3e96d715bc50c54b2dbe84b52a7d
/dl/lecture01/furniture/download_furniture.py
bf49967dc44eb0f6705f470a5f97d465ab403096
[]
no_license
devforfu/fastai_courses
b3116ec93cef2174e661c1d1884a33d8510f08a5
82ee6e299c805f10e224c6a3473ac75ffbfdada4
refs/heads/master
2020-04-02T07:04:23.766567
2018-12-21T16:49:04
2018-12-21T16:49:04
154,180,455
4
1
null
null
null
null
UTF-8
Python
false
false
5,327
py
import os import json import argparse from io import BytesIO from pathlib import Path from dataclasses import dataclass, asdict from functools import partial import configparser from multiprocessing import Pool, cpu_count import requests import numpy as np import pandas as pd from PIL import Image from fastai.core import partition from projects.logger import get_logger PATH = Path.home()/'data'/'furniture' IMAGES = PATH/'images' TRAIN_IMAGES = IMAGES/'train' VALID_IMAGES = IMAGES/'valid' TEST_IMAGES = IMAGES/'test' LABELS = PATH/'labels.csv' HEADERS = {'User-Agent': 'Python3'} RANDOM_STATE = 1 np.random.seed(RANDOM_STATE) log = get_logger() def main(): args = parse_args() name = args.subset path = IMAGES/name os.makedirs(path, exist_ok=True) json_file = PATH/f'{name}.json' index_file = PATH/f'{name}_index.csv' prepare_url_index(json_file, index_file, pct=args.pct) log.info(f'Downloading {args.pct:2.2%} of {json_file}...') index = pd.read_csv(index_file) info = download(index, path, args.chunk_size, args.proxy) info.to_pickle(IMAGES/f'{name}_info.pickle') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--subset', default='train', choices=['train', 'validation', 'test'], help='Subset to download' ) parser.add_argument( '--pct', default=0.1, type=float, help='Percent of images to download' ) parser.add_argument( '--chunk-size', default=1000, type=int, help='Number of images to download per multi-threaded pool run' ) parser.add_argument( '--proxy', default=None, help='proxy configuration (if required)' ) args = parser.parse_args() if args.proxy is not None: conf = configparser.ConfigParser() conf.read(args.proxy) proxy = dict(conf['proxy']) url = 'socks5://{username}:{password}@{host}:{port}'.format(**proxy) args.proxy = {'http': url, 'https': url} return args def prepare_url_index(json_file, index_file, pct=0.1): """Saves meta-information about images into CSV file. Args: json_file: Path to JSON file with dataset information. index_file: Path to CSV file to save image URL, label ID, and image ID pct: Percentage of dataset to take. """ with json_file.open() as file: content = json.load(file) images = content['images'] if 'annotations' in content: labels = content['annotations'] else: labels = [ {'image_id': img['image_id'], 'label_id': 0} for img in images] urls = [img['url'][0] for img in images] records = pd.DataFrame([ {'url': url, **lbl} for url, lbl in zip(urls, labels)]) if pct is not None and pct < 1: pct = max(0.0, min(pct, 1.0)) subsets = [] for key, group in records.groupby('label_id'): size = int(len(group) * pct) subsets.extend(group.sample(size, random_state=RANDOM_STATE).to_dict('records')) records = pd.DataFrame(subsets) records.to_csv(index_file, index=None) @dataclass class ImageInfo: path: Path label_id: int image_id: int url: str failed: bool = False def download(index, path, chunk_size: int=1000, proxy: dict=None): """Downloads images with URLs from index dataframe.""" n_cpu = cpu_count() worker = partial(download_single, path, proxy) queue = index.to_dict('records') meta = [] with Pool(n_cpu) as pool: chunks = partition(queue, chunk_size) n_chunks = len(chunks) for i, chunk in enumerate(chunks): log.info('Downloading chunk %d of %d' % (i+1, n_chunks)) data = [x for x in pool.imap_unordered(worker, chunk) if not x.failed] meta.extend([asdict(info) for info in data]) return pd.DataFrame(meta) def download_single(folder, proxy, info): url = info['url'] img_name = str(info['image_id']) + '.jpg' path = folder/img_name result = { 'label_id': info['label_id'], 'image_id': info['image_id'], 'path': path, 'url': url} if path.exists(): return ImageInfo(**result) error, msg = True, '' try: r = requests.get( url, allow_redirects=True, timeout=60, headers=HEADERS, proxies=proxy) r.raise_for_status() error = False except requests.HTTPError: msg = 'HTTP error' except requests.ConnectionError: msg = 'Connection error' except requests.Timeout: msg = 'Waiting response too long' except Exception as e: msg = str(e)[:80] if error: log.warning('%s: %s', msg, url) return ImageInfo(failed=True, **result) try: pil_image = Image.open(BytesIO(r.content)).convert('RGB') pil_image.save(path, format='JPEG', quality=90) except Exception as e: log.warning('Cannot create PIL Image: %s', str(e)) return ImageInfo(failed=True, **result) if os.stat(path).st_size <= 0: log.warning('Saved image file is emtpy: %s', path) return ImageInfo(failed=True, **result) return ImageInfo(**result) if __name__ == '__main__': main()
9a7ac17a45a71f1de7afea23e28e8af49840222c
645aa520f2eff7e6001574e57c986aba129e4dd3
/tests/test_visualize_pathways.py
608a46c9346eadcb1ae18f44d046049486192b9e
[ "Apache-2.0" ]
permissive
google/transitfeed
08c4ecfb6872b6c0dc409d9a35b32ef515e30253
104b5a5b339c62a94c1579d7209a41c7c0833e35
refs/heads/master
2023-09-05T03:08:17.640950
2022-05-23T16:23:53
2022-05-23T16:23:53
24,061,376
680
299
Apache-2.0
2022-09-28T09:02:50
2014-09-15T15:16:32
Python
UTF-8
Python
false
false
649
py
import os.path import unittest import visualize_pathways def get_file_contents(filename): with open(filename, 'rb') as f: return f.read() class TestVisualizePathways(unittest.TestCase): def test_gtfs_to_graphviz(self): testdata_dir = os.path.join(os.path.dirname(__file__), 'data/au-sydney-entrances') golden_data = get_file_contents( os.path.join(testdata_dir, 'au-sydney-entrances.dot')) reader = visualize_pathways.GtfsReader(testdata_dir) self.assertEqual( str(visualize_pathways.gtfs_to_graphviz(reader)), golden_data)
24e60d5e6ab4bd5e2bb4c8fbc73fed26abb5cbe7
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part003815.py
5e5bdd4608ad234dd7dc490f41749f64838b0581
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,296
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher66552(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.2.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher66552._instance is None: CommutativeMatcher66552._instance = CommutativeMatcher66552() return CommutativeMatcher66552._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 66551 return yield from collections import deque
425ae4bad5ec2bf6ae6e55096f9b329ab59d9a73
022b22d343e2c3d89a865c2b5d684e82c692771e
/frontend_docker/project/main/views.py
753ec13fe01e0c17192f09af50c9bdade4d1cc2f
[ "MIT" ]
permissive
jessequinn/hbsis
f4050f5f0850001bc3284ce2c94266ccb00a4c70
149b8c41c75732dcbcc23e667831fdb42cab786e
refs/heads/master
2022-12-18T01:13:27.354613
2019-02-08T10:27:35
2019-02-08T10:27:35
169,249,120
0
0
MIT
2022-12-08T01:35:31
2019-02-05T13:54:21
JavaScript
UTF-8
Python
false
false
5,545
py
import datetime import json import pytz import urllib.request from flask import render_template, request, flash, Blueprint, redirect, url_for from flask_login import login_required, current_user from project import app, db from project.models import WeatherRegistration from .forms import WeatherRegistrationForm main_blueprint = Blueprint( 'main', __name__, template_folder='templates' ) def datetimefilter(value, format="%A"): ''' Datetime filter for Jinja. Formats date to US/Eastern from the UTC value. :param value: input value :param format: format of return date. default day of week. :return: formatted date ''' value = datetime.datetime.fromtimestamp(value) tz = pytz.timezone('US/Eastern') utc = pytz.timezone('UTC') value = utc.localize(value, is_dst=None).astimezone(pytz.utc) local_dt = value.astimezone(tz) return local_dt.strftime(format) app.jinja_env.filters['datetimefilter'] = datetimefilter @main_blueprint.route('/', methods=['GET', 'POST']) @login_required def home(): ''' Main page after login. Contains a search form for city weather forecast. :return: rendered template ''' weatherRegistrations = db.session.query(WeatherRegistration).filter_by(user_id=current_user.id).all() with urllib.request.urlopen('http://localhost:5050/countries') as url: data = json.loads(url.read().decode()) error = None form = WeatherRegistrationForm(request.form) form.country.choices = [(c, c) for c in data['data']] # dyanmically produce countries if request.method == 'POST': if form.validate_on_submit(): if form.city.data != '': with urllib.request.urlopen( 'http://localhost:5050/' + form.country.data.upper() + '/' + form.city.data.capitalize()) as url: ids = json.loads(url.read().decode()) if not ids['data']: error = 'No data exists for ' + form.city.data.capitalize() + '!' return render_template('index.html', form=form, error=error, user=current_user, weatherRegistrations=weatherRegistrations) else: if any(ids['data'][0]['id'] == wr.city_id for wr in weatherRegistrations): error = form.city.data.capitalize() + ' has already been registered.' return render_template('index.html', form=form, error=error, user=current_user, weatherRegistrations=weatherRegistrations) else: new_weatherregistration = WeatherRegistration(form.city.data, ids['data'][0]['id'], form.country.data, current_user.id) db.session.add(new_weatherregistration) failed = False try: db.session.commit() except Exception as e: db.session.rollback() db.session.flush() failed = True print(e) if failed: error = 'Error with registration.' return render_template('index.html', form=form, error=error, user=current_user, weatherRegistrations=weatherRegistrations) else: flash(form.city.data.capitalize() + ' was registered successfully.') return redirect(url_for('main.home')) else: error = 'Enter a city name!' return render_template('index.html', form=form, error=error, user=current_user, weatherRegistrations=weatherRegistrations) @main_blueprint.route('/forecast<id>') @login_required def forecast(id): ''' 5 day forecast page. :param id: city id :return: rendered template ''' with urllib.request.urlopen( 'http://api.openweathermap.org/data/2.5/forecast/daily?id=' + id + '&cnt=5&APPID=eb8b1a9405e659b2ffc78f0a520b1a46&units=metric') as url: data = json.loads(url.read().decode()) return render_template('forecast.html', data=data) @main_blueprint.route('/remove<id>') @login_required def remove(id): ''' Function simply removes city from list of cities. :param id: city id :return: rendered template ''' with urllib.request.urlopen('http://localhost:5050/countries') as url: data = json.loads(url.read().decode()) form = WeatherRegistrationForm(request.form) form.country.choices = [(c, c) for c in data['data']] # dyanmically produce countries db.session.query(WeatherRegistration).filter_by(id=id).delete() failed = False try: db.session.commit() except Exception as e: db.session.rollback() db.session.flush() failed = True print(e) if failed: error = 'Could not remove registration.' weatherRegistrations = db.session.query(WeatherRegistration).filter_by(user_id=current_user.id).all() return render_template('index.html', form=form, error=error, user=current_user, weatherRegistrations=weatherRegistrations) else: flash('Registration was removed successfully.') return redirect(url_for('main.home'))
bc27b8fa61132158c9004b0c3d96302cee57c123
c9fde4576216a22e8d5711bbe97adda1aafa2f08
/model-optimizer/mo/front/caffe/extractor.py
8f6115655b5973294584661bca6889d30733e4aa
[ "Apache-2.0" ]
permissive
dliang0406/dldt
c703d6a837de3f996528fc8a9543f9530b23342c
d9b10abcebafe8b10ba81e09e433de7a366c072c
refs/heads/2018
2020-04-03T08:24:47.723353
2018-10-29T07:58:05
2018-10-29T07:58:05
155,132,108
3
1
Apache-2.0
2019-10-10T08:39:46
2018-10-29T01:03:54
C++
UTF-8
Python
false
false
5,994
py
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from mo.front.caffe.extractors.batchnorm import batch_norm_ext from mo.front.caffe.extractors.concat import concat_ext from mo.front.caffe.extractors.convolution import convolution_ext from mo.front.caffe.extractors.deconvolution import deconvolution_ext from mo.front.caffe.extractors.eltwise import eltwise_ext from mo.front.caffe.extractors.flatten import flatten_ext from mo.front.caffe.extractors.inner_product import inner_product_ext from mo.front.caffe.extractors.input import global_input_ext, input_ext from mo.front.caffe.extractors.lrn import lrn_ext from mo.front.caffe.extractors.native_caffe import native_caffe_node_extractor from mo.front.caffe.extractors.permute import permute_ext from mo.front.caffe.extractors.pooling import pooling_ext from mo.front.caffe.extractors.power import power_ext from mo.front.caffe.extractors.relu import relu_ext from mo.front.caffe.extractors.reshape import reshape_ext from mo.front.caffe.extractors.roipooling import roipooling_ext from mo.front.caffe.extractors.scale import scale_ext from mo.front.caffe.extractors.slice import slice_ext from mo.front.caffe.extractors.softmax import softmax_ext from mo.front.common.partial_infer.elemental import copy_shape_infer from mo.front.common.register_custom_ops import extension_op_extractor from mo.front.extractor import CaffePythonFrontExtractorOp, FrontExtractorOp from mo.graph.graph import Node from mo.ops.op import Op from mo.utils.error import Error from mo.utils.utils import refer_to_faq_msg def node_pb_arg(pb_extractor): return lambda node: pb_extractor(node.pb, node.model_pb) """ Keys are names that appear as layer names in .prototxt. Full list is available here: http://caffe.berkeleyvision.org/tutorial/layers.html """ caffe_type_extractors = { # Data Layers 'input': node_pb_arg(input_ext), 'globalinput': node_pb_arg(global_input_ext), # Common Layers 'innerproduct': node_pb_arg(inner_product_ext), 'inner_product': node_pb_arg(inner_product_ext), 'dropout': node_pb_arg(lambda _, __: dict(op='Dropout', infer=copy_shape_infer)), # Vision Layers 'convolution': node_pb_arg(convolution_ext), 'deconvolution': node_pb_arg(deconvolution_ext), 'pooling': node_pb_arg(pooling_ext), # Normalization Layers 'batchnorm': node_pb_arg(batch_norm_ext), 'lrn': node_pb_arg(lrn_ext), # Activation Layers 'power': node_pb_arg(power_ext), 'relu': node_pb_arg(relu_ext), 'scale': node_pb_arg(scale_ext), # Utility Layers 'concat': node_pb_arg(concat_ext), 'eltwise': node_pb_arg(eltwise_ext), 'flatten': node_pb_arg(flatten_ext), 'reshape': node_pb_arg(reshape_ext), 'slice': node_pb_arg(slice_ext), 'softmax': node_pb_arg(softmax_ext), # Custom, implemented in IE, SSD-specific 'permute': node_pb_arg(permute_ext), # Custom, implemented in IE, Fast-RCNN-specific 'roipooling': node_pb_arg(roipooling_ext), } def common_caffe_fields(node: Node) -> dict: if node.has_valid('op') and node.op == 'Identity': return {} pb = node.pb if node.pb else node layer_type = pb.type if isinstance(layer_type, int): layer_type = pb.LayerType.DESCRIPTOR.values_by_number[layer_type].name layer_type = str(layer_type) return { 'kind': 'op', 'name': pb.name, 'type': layer_type, 'op': layer_type, # generic code relies on op; it should be overridden by specific op extractor 'infer': None, 'precision': 'FP32' # TODO use real precision derived from the model } def caffe_extractor(node: Node, lowered_keys_map: dict) -> (bool, dict): if node.has_valid('op') and node.op == 'Identity': return True, {} result = common_caffe_fields(node) supported = False name = None layer_type = result['type'].lower() if layer_type in lowered_keys_map: layer_type = lowered_keys_map[layer_type] assert layer_type in caffe_type_extractors name = layer_type if name: # it is either standard or registered via CustomLayersMapping.xml attrs = caffe_type_extractors[name](node) # intentionally as Python registry if not found returns None if attrs is not None: result.update(attrs) supported = True if not supported: raise Error('Found custom layer "{}". Model Optimizer does not support this layer. '.format(node.id) + 'Please, implement extension. ' + refer_to_faq_msg(45)) if 'infer' not in result or not result['infer']: result.update(native_caffe_node_extractor(node)) phase_attr = check_phase(node) result.update(phase_attr) return supported, result def check_phase(node: Node): if node.has_valid('pb') and hasattr(node.pb, 'include'): for i in node.pb.include: if hasattr(i, 'phase'): return {'phase': i.phase} return {} def register_caffe_python_extractor(op: Op, name: str = None): if not name and hasattr(op, 'op'): name = op.op if not name: raise Error("Can not register Op {}. Please, call function 'register_caffe_python_extractor'" "with parameter 'name' .".format(op), refer_to_faq_msg(87)) CaffePythonFrontExtractorOp.registered_ops[name] = lambda node: extension_op_extractor(node, op)
a0364d6e371684383b61216b8d9e5677beb97814
b394bb6bd3e8848688b525f55e82962f152c1bb3
/demos/upload/linear_systems/Complexity of Mat-Mat multiplication and LU.py
f4e79703fc521e02f24bfee84b294558fbd90ad9
[]
no_license
lukeolson/cs450-f20-demos
02c2431d7696348cf9ca1ab67bdd5c44a97ac38b
040e7dfa15c68f7f426cf69655cb600926f9f626
refs/heads/master
2023-01-22T19:12:33.394521
2020-12-03T19:48:18
2020-12-03T19:48:18
288,542,898
5
10
null
2020-10-05T19:39:07
2020-08-18T19:13:52
null
UTF-8
Python
false
false
1,025
py
#!/usr/bin/env python # coding: utf-8 # # Relative cost of matrix operations # In[1]: import numpy as np import scipy.linalg as spla import scipy as sp import matplotlib.pyplot as pt from time import time np.alterdot() # In[2]: n_values = (10**np.linspace(1, 3.25, 15)).astype(np.int32) n_values # In[3]: def mat_mul(A): return A.dot(A) for name, f in [ ("mat_mul", mat_mul), ("lu", spla.lu_factor), ]: times = [] print("----->", name) for n in n_values: print(n) A = np.random.randn(n, n) start_time = time() f(A) times.append(time() - start_time) pt.plot(n_values, times, label=name) pt.grid() pt.legend(loc="best") pt.xlabel("Matrix size $n$") pt.ylabel("Wall time [s]") # * The faster algorithms make the slower ones look bad. But... it's all relative. # * Is there a better way of plotting this? # * Can we see the asymptotic cost ($O(n^3)$) of these algorithms from the plot? # In[3]:
90afc3a58e3e9c99e3416d2d843ca5e084f3e87a
a2b6bc9bdd2bdbe5871edb613065dd2397175cb3
/medium/Rotate List.py
8ad51c14cc944ec9af60a8ec92c7c8d4a1311263
[]
no_license
Asunqingwen/LeetCode
ed8d2043a31f86e9e256123439388d7d223269be
b7c59c826bcd17cb1333571eb9f13f5c2b89b4ee
refs/heads/master
2022-09-26T01:46:59.790316
2022-09-01T08:20:37
2022-09-01T08:20:37
95,668,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
# -*- coding: utf-8 -*- # @Time : 2019/10/29 0029 10:26 # @Author : 没有蜡笔的小新 # @E-mail : [email protected] # @FileName: Rotate List.py # @Software: PyCharm # @Blog :https://blog.csdn.net/Asunqingwen # @GitHub :https://github.com/Asunqingwen """ Given a linked list, rotate the list to the right by k places, where k is non-negative. Example 1: Input: 1->2->3->4->5->NULL, k = 2 Output: 4->5->1->2->3->NULL Explanation: rotate 1 steps to the right: 5->1->2->3->4->NULL rotate 2 steps to the right: 4->5->1->2->3->NULL Example 2: Input: 0->1->2->NULL, k = 4 Output: 2->0->1->NULL Explanation: rotate 1 steps to the right: 2->0->1->NULL rotate 2 steps to the right: 1->2->0->NULL rotate 3 steps to the right: 0->1->2->NULL rotate 4 steps to the right: 2->0->1->NULL """ import json class ListNode: def __init__(self, x): self.val = x self.next = None def stringToIntegerList(input): return json.loads(input) def stringToListNode(input): input = input.split(',') dummyRoot = ListNode(0) ptr = dummyRoot for number in input: ptr.next = ListNode(int(number)) ptr = ptr.next ptr = dummyRoot.next return ptr def listNodeToString(node): if not node: return "[]" result = "" while node: result += str(node.val) + ", " node = node.next return "[" + result[:-2] + "]" def rotateRight(head: ListNode, k: int) -> ListNode: p1 = head length = 0 while p1: length += 1 p1 = p1.next if length <= 1 or k == 0: return head k %= length p1, p2 = head, head for i in range(k): p2 = p2.next for i in range(length - k): if not p1.next: p1.next = head if not p2.next: p2.next = head p1 = p1.next p2 = p2.next head = p1 for i in range(length - 1): p1 = p1.next p1.next = None return head if __name__ == '__main__': input = "1,2" k = 0 head = stringToListNode(input) result = rotateRight(head, k) result = listNodeToString(result) print(result)
f3815f70c32f2896f4449435b1bacfddcf8375c9
39e647e9ec8524a1cee90ef15f37a3d3bbf8ac43
/poet/trunk/pythonLibs/Django-1.3/tests/modeltests/proxy_models/models.py
30f14bc931b97f11cff5cbcf7a99bf9d15829bc7
[ "BSD-3-Clause" ]
permissive
AgileAdaptiveTools/POETTools
85158f043e73b430c1d19a172b75e028a15c2018
60244865dd850a3e7346f9c6c3daf74ea1b02448
refs/heads/master
2021-01-18T14:46:08.025574
2013-01-28T19:18:11
2013-01-28T19:18:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,229
py
""" By specifying the 'proxy' Meta attribute, model subclasses can specify that they will take data directly from the table of their base class table rather than using a new table of their own. This allows them to act as simple proxies, providing a modified interface to the data from the base class. """ from django.contrib.contenttypes.models import ContentType from django.db import models # A couple of managers for testing managing overriding in proxy model cases. class PersonManager(models.Manager): def get_query_set(self): return super(PersonManager, self).get_query_set().exclude(name="fred") class SubManager(models.Manager): def get_query_set(self): return super(SubManager, self).get_query_set().exclude(name="wilma") class Person(models.Model): """ A simple concrete base class. """ name = models.CharField(max_length=50) objects = PersonManager() def __unicode__(self): return self.name class Abstract(models.Model): """ A simple abstract base class, to be used for error checking. """ data = models.CharField(max_length=10) class Meta: abstract = True class MyPerson(Person): """ A proxy subclass, this should not get a new table. Overrides the default manager. """ class Meta: proxy = True ordering = ["name"] objects = SubManager() other = PersonManager() def has_special_name(self): return self.name.lower() == "special" class ManagerMixin(models.Model): excluder = SubManager() class Meta: abstract = True class OtherPerson(Person, ManagerMixin): """ A class with the default manager from Person, plus an secondary manager. """ class Meta: proxy = True ordering = ["name"] class StatusPerson(MyPerson): """ A non-proxy subclass of a proxy, it should get a new table. """ status = models.CharField(max_length=80) # We can even have proxies of proxies (and subclass of those). class MyPersonProxy(MyPerson): class Meta: proxy = True class LowerStatusPerson(MyPersonProxy): status = models.CharField(max_length=80) class User(models.Model): name = models.CharField(max_length=100) def __unicode__(self): return self.name class UserProxy(User): class Meta: proxy = True class UserProxyProxy(UserProxy): class Meta: proxy = True # We can still use `select_related()` to include related models in our querysets. class Country(models.Model): name = models.CharField(max_length=50) class State(models.Model): name = models.CharField(max_length=50) country = models.ForeignKey(Country) def __unicode__(self): return self.name class StateProxy(State): class Meta: proxy = True # Proxy models still works with filters (on related fields) # and select_related, even when mixed with model inheritance class BaseUser(models.Model): name = models.CharField(max_length=255) class TrackerUser(BaseUser): status = models.CharField(max_length=50) class ProxyTrackerUser(TrackerUser): class Meta: proxy = True class Issue(models.Model): summary = models.CharField(max_length=255) assignee = models.ForeignKey(TrackerUser) def __unicode__(self): return ':'.join((self.__class__.__name__,self.summary,)) class Bug(Issue): version = models.CharField(max_length=50) reporter = models.ForeignKey(BaseUser) class ProxyBug(Bug): """ Proxy of an inherited class """ class Meta: proxy = True class ProxyProxyBug(ProxyBug): """ A proxy of proxy model with related field """ class Meta: proxy = True class Improvement(Issue): """ A model that has relation to a proxy model or to a proxy of proxy model """ version = models.CharField(max_length=50) reporter = models.ForeignKey(ProxyTrackerUser) associated_bug = models.ForeignKey(ProxyProxyBug) class ProxyImprovement(Improvement): class Meta: proxy = True
fd8aa3ea52ca26a7bff1f7c7d6f9d22f8f4d59b7
c038d06c31de0919d70c04f517f7490146ff80df
/train_nn.py
b8a8c4cc52d03dcfcdb4e339de6e584971a4eca1
[]
no_license
KWAN-YWAN/gtd-analytics
235df79f9b95b1734928cd2a9b4d54c5bf3f88e8
10fd7fa2965bb0efcc2396d86d3998afbc0fe7c8
refs/heads/master
2020-03-28T18:13:39.976015
2018-07-11T21:56:29
2018-07-11T21:56:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,579
py
#!/usr/bin/env python import numpy as np import pandas as pd # Plotter library import seaborn as sns import matplotlib.pyplot as plt # Own libraries import data_preparation as prep from nn import Nn from sklearn import preprocessing def filter_data(df): # Filter for only kidnapping data (1st, 2nd or 3rd attack type) kidnap_cats = [5, 6] df = df[df.attacktype1.isin(kidnap_cats) | df.attacktype2.isin(kidnap_cats) | df.attacktype3.isin( kidnap_cats) | df.ishostkid == 1] # Drop attacktype columns. They aren't needed anymore df = df.drop(['attacktype1', 'attacktype2', 'attacktype3', 'ishostkid'], axis=1) # Filter also broken data from our classes df = df[df.hostkidoutcome.notnull()] # Filter data for NaN nreleased or value -99 df = df[df.nreleased.notnull()] df = df[df.nreleased != -99] # Filter also data where nhostkid is lower than nreleased df = df[df.nhostkid >= df.nreleased] return df def augmentate_data(df): # Add an ID group for gname to the DataFrame df['gname_id'], _ = prep.str_to_index_arr(df['gname']) # Add a normalisation for how many of the hostage victims survived df['nreleased_p'] = np.divide(df.nreleased, df.nhostkid) # Add a column of died hostages df['ndied'] = np.subtract(df.nhostkid, df.nreleased) # Drop all string columns and keep only numeric ones. df = df._get_numeric_data() return df def handle_NaN_in_data(df): from sklearn.preprocessing import Imputer fill_NaN = Imputer(missing_values='NaN', strategy='mean', axis=0) imputed_df = pd.DataFrame(fill_NaN.fit_transform(df)) imputed_df.columns = df.columns imputed_df.index = df.index df = imputed_df return df def set_NaN_to_value(df, value): return df.replace(np.nan, value) def set_unknown_to_NaN(df, unknown_values): for unknown_value in unknown_values: df.replace(unknown_value, np.nan) return df def visualize_data(df, path='', suffix=''): # First: a plot about number of kidnapped persons sns.set(style="darkgrid", color_codes=True) g1 = sns.jointplot( 'iyear', 'nhostkid', data=df, kind="reg", color='r', size=7, xlim=[1970, 2016] ) g1.set_axis_labels('Years', 'Number of kidnapped victims') g1.savefig(path + 'interaction-iyear_nhostkid' + suffix + '.png') g1.savefig(path + 'interaction-iyear_nhostkid' + suffix + '.pdf') # Outcomes vs percentage of released victims g2 = sns.violinplot( x='hostkidoutcome', y='nreleased_p', data=df, hue='ransom' ) g2.figure.savefig(path + 'interaction-hostkidoutcome_nreleased_p' + suffix + '.png') g2.figure.savefig(path + 'interaction-hostkidoutcome_nreleased_p' + suffix + '.pdf') ### Correlation corr = df.corr() # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio g3 = sns.heatmap( corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5} ) g3.figure.savefig(path + 'correlation_full' + suffix + '.png') g3.figure.savefig(path + 'correlation_full' + suffix + '.pdf') def train(X, Y): from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier() model.fit(X_train, Y_train) def train_svm(X, y, C=1.0): ''' Trains the SVM with X as input and y as output data Input: - X: Input vector with features - y: Output vector with one label column - C: SVM regularisation parameter ''' from sklearn.svm import SVC svm_model = SVC(kernel='linear', C=C, decision_function_shape='ovr') svm_model.fit(X, y) return svm_model def predict_svm(model, X, y): Z = model.predict(X) return Z if __name__ == "__main__": ##### # The purpose of our classifier is to predict the hostkidoutcome category and a percentage of released persons. # Y: hostkidoutcome, npreleased # X: extended, iyear, gname_id, nhostkid, ndays, ransom, ransompaid, ishostkid ##### ### Data filtering # Read data and exclude cols # @Snippet: To exclude: lambda x: x not in ["eventid","imonth","iday", "attacktype2","claims2","claimmode2","claimmode3","gname2"] df = prep.read_data('globalterrorismdb_0617dist.csv', usecols=['nreleased', 'attacktype1', 'attacktype2', 'attacktype3', 'extended', 'iyear', 'gname', 'nhostkid', 'nhours', 'ndays', 'ransom', 'ransompaid', 'ransompaidus', 'ishostkid', 'hostkidoutcome']) df = filter_data(df) df = augmentate_data(df) # We also have sometimes -99 or -9 as values when things were unknown. We have to replace them as well with NaNs df = set_unknown_to_NaN(df, [-9, -99]) # We have a whole number of columns which contains NaNs for missing data. To overcome those, we simply use the sklearn Imputer to fill the NaNs with the mean values df = set_NaN_to_value(df, -1) head = df.head() print(df.head()) # Plot data visualize_data(df, path="plots/") print('Resulting columns for training: \n{}\n'.format(df.columns)) # Normalize to 0-1 x = df.values x_normed = x / x.max(axis=0) df = pd.DataFrame(columns=[head], data=x_normed) print(df) ### Separate set into train, validation, test by assigning each to the preferred class randomly. train = df.sample(frac=0.6, replace=True) validation = df.sample(frac=0.2, replace=True) test = df.sample(frac=0.2, replace=True) labels = ['hostkidoutcome', 'nreleased_p'] X_train, Y_train, Y_train_columns = prep.separate_labels(train, labels) X_validation, Y_validation, Y_validation_columns = prep.separate_labels(validation, labels) X_test, Y_test, Y_test_columns = prep.separate_labels(test, labels) nn = Nn() nn.create_model() nn.load_model_from_json() # nn.train(x=X_train.values, # y=Y_train.values, # validation_data=(X_validation.values, Y_validation.values)) # nn.persist_model() score = nn.evaluate(x=X_test, y=Y_test) print("Achieved Score:", score)