blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
990659f28fe89f9d10375d9edc85a48e910e91f4
52b5fa23f79d76883728d8de0bfd202c741e9c43
/kubernetes/client/models/v1beta2_scale_status.py
af1d075c65c7c657052a68400f1a3e347c20cab5
[]
no_license
kippandrew/client-python-tornado
5d00810f57035825a84e37ff8fc89a7e79aed8da
d479dfeb348c5dd2e929327d800fe033b5b3b010
refs/heads/master
2021-09-04T13:01:28.275677
2018-01-18T23:27:34
2018-01-18T23:27:34
114,912,995
0
0
null
null
null
null
UTF-8
Python
false
false
6,119
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v1.8.6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class V1beta2ScaleStatus(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'replicas': 'int', 'selector': 'dict(str, str)', 'target_selector': 'str' } attribute_map = { 'replicas': 'replicas', 'selector': 'selector', 'target_selector': 'targetSelector' } def __init__(self, replicas=None, selector=None, target_selector=None): # noqa: E501 """V1beta2ScaleStatus - a model defined in Swagger""" # noqa: E501 self._replicas = None self._selector = None self._target_selector = None self.discriminator = None self.replicas = replicas if selector is not None: self.selector = selector if target_selector is not None: self.target_selector = target_selector @property def replicas(self): """Gets the replicas of this V1beta2ScaleStatus. # noqa: E501 actual number of observed instances of the scaled object. # noqa: E501 :return: The replicas of this V1beta2ScaleStatus. # noqa: E501 :rtype: int """ return self._replicas @replicas.setter def replicas(self, replicas): """Sets the replicas of this V1beta2ScaleStatus. actual number of observed instances of the scaled object. # noqa: E501 :param replicas: The replicas of this V1beta2ScaleStatus. # noqa: E501 :type: int """ if replicas is None: raise ValueError("Invalid value for `replicas`, must not be `None`") # noqa: E501 self._replicas = replicas @property def selector(self): """Gets the selector of this V1beta2ScaleStatus. # noqa: E501 label query over pods that should match the replicas count. More info: http://kubernetes.io/docs/user-guide/labels#label-selectors # noqa: E501 :return: The selector of this V1beta2ScaleStatus. # noqa: E501 :rtype: dict(str, str) """ return self._selector @selector.setter def selector(self, selector): """Sets the selector of this V1beta2ScaleStatus. label query over pods that should match the replicas count. More info: http://kubernetes.io/docs/user-guide/labels#label-selectors # noqa: E501 :param selector: The selector of this V1beta2ScaleStatus. # noqa: E501 :type: dict(str, str) """ self._selector = selector @property def target_selector(self): """Gets the target_selector of this V1beta2ScaleStatus. # noqa: E501 label selector for pods that should match the replicas count. This is a serializated version of both map-based and more expressive set-based selectors. This is done to avoid introspection in the clients. The string will be in the same format as the query-param syntax. If the target type only supports map-based selectors, both this field and map-based selector field are populated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors # noqa: E501 :return: The target_selector of this V1beta2ScaleStatus. # noqa: E501 :rtype: str """ return self._target_selector @target_selector.setter def target_selector(self, target_selector): """Sets the target_selector of this V1beta2ScaleStatus. label selector for pods that should match the replicas count. This is a serializated version of both map-based and more expressive set-based selectors. This is done to avoid introspection in the clients. The string will be in the same format as the query-param syntax. If the target type only supports map-based selectors, both this field and map-based selector field are populated. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors # noqa: E501 :param target_selector: The target_selector of this V1beta2ScaleStatus. # noqa: E501 :type: str """ self._target_selector = target_selector def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta2ScaleStatus): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
daed34a30c9a24d627c92ee6152105a324fac8aa
6d3bb1ab45d306b90e4727a7f1a0a31b59e7dc5a
/tests/test_kalman.py
3fd0488c1be9dc297e3914231b89d45bc73380e4
[ "MIT" ]
permissive
NepalRobotics/BeliefSystem
6f0023783cb59d251897d20b49900a81294973d7
435e902062884b10f61582443f1fd4b118dd9d3f
refs/heads/devel
2016-09-05T10:33:30.446296
2016-01-31T22:47:50
2016-01-31T22:47:50
41,973,456
0
1
null
2016-01-31T22:47:50
2015-09-05T19:46:07
Python
UTF-8
Python
false
false
8,317
py
""" Tests for the Kalman filter. """ import numpy as np import kalman import tests class _BaseTest(tests.BaseTest): """ Defines common members for all the test cases in this file. """ # Constants the indexes of different things in the state. _POS_X = 0 _POS_Y = 1 _VEL_X = 2 _VEL_Y = 3 # Index of the first LOB. _LOB = 4 # Constants for the indices of the x and y components in a coordinate tuple. _X = 0 _Y = 1 class KalmanTests(_BaseTest): """ Tests for the Kalman class. """ def test_basic(self): """ Tests that the filter gives reasonable values under extremely basic circumstances. """ basic_filter = kalman.Kalman((1, 0), (1, 0)) basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (5, 0)) basic_filter.set_observations((2, 0), (1, 0), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() # We should see values that our quite close to our observation since, # (surprise, surprise) our observation lines up EXACTLY with our model. self._assert_near(2, state[self._POS_X], 0.01) self._assert_near(0, state[self._POS_Y], 0.01) self._assert_near(1, state[self._VEL_X], 0.01) self._assert_near(0, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should have gotten close to zero, since our observations # match our model so well. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) # Run another perfect iteration. basic_filter.set_observations((3, 0), (1, 0), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() self._assert_near(3, state[self._POS_X], 0.01) self._assert_near(0, state[self._POS_Y], 0.01) self._assert_near(1, state[self._VEL_X], 0.01) self._assert_near(0, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should be close again. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) def test_going_forward(self): """ Tests that the model prediction still works if we rotate the whole thing 90 degrees. """ basic_filter = kalman.Kalman((0, 1), (0, 1)) basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (0, 5)) basic_filter.set_observations((0, 2), (0, 1), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() # We should see values that our quite close to our observation since, # (surprise, surprise) our observation lines up EXACTLY with our model. self._assert_near(0, state[self._POS_X], 0.01) self._assert_near(2, state[self._POS_Y], 0.01) self._assert_near(0, state[self._VEL_X], 0.01) self._assert_near(1, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should have gotten close to zero, since our observations # match our model so well. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) # Run another perfect iteration. basic_filter.set_observations((0, 3), (0, 1), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() self._assert_near(0, state[self._POS_X], 0.01) self._assert_near(3, state[self._POS_Y], 0.01) self._assert_near(0, state[self._VEL_X], 0.01) self._assert_near(1, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should be close again. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) def test_going_diagonal(self): """ Tests that the model still works if we go at 45 degrees. """ basic_filter = kalman.Kalman((0, 0), (1, 1)) basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (5, 5)) basic_filter.set_observations((1, 1), (1, 1), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() # We should see values that our quite close to our observation since, # (surprise, surprise) our observation lines up EXACTLY with our model. self._assert_near(1, state[self._POS_X], 0.01) self._assert_near(1, state[self._POS_Y], 0.01) self._assert_near(1, state[self._VEL_X], 0.01) self._assert_near(1, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should have gotten close to zero, since our observations # match our model so well. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) # Run another perfect iteration. basic_filter.set_observations((2, 2), (1, 1), basic_filter.normalize_lobs(0)) basic_filter.update() state = basic_filter.state() self._assert_near(2, state[self._POS_X], 0.01) self._assert_near(2, state[self._POS_Y], 0.01) self._assert_near(1, state[self._VEL_X], 0.01) self._assert_near(1, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) covariances = basic_filter.state_covariances() # Our covariances should be close again. for x in np.nditer(covariances): self._assert_near(0, x, 0.05) def test_transmitter_adding(self): """ Tests that adding new transmitters in the middle works. """ basic_filter = kalman.Kalman((1, 0), (1, 0)) basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (5, 0)) basic_filter.set_observations((2, 0), (1, 0), basic_filter.normalize_lobs(0)) basic_filter.update() # Now, add another one. basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (10, 0)) bearing = basic_filter.normalize_lobs(0) basic_filter.set_observations((3, 0), (1, 0), bearing, bearing) basic_filter.update() state = basic_filter.state() self._assert_near(3, state[self._POS_X], 0.01) self._assert_near(0, state[self._POS_Y], 0.01) self._assert_near(1, state[self._VEL_X], 0.01) self._assert_near(0, state[self._VEL_Y], 0.01) self._assert_near(basic_filter.normalize_lobs(0), state[self._LOB], 0.01) def test_position_error_ellipse(self): """ Tests that we can draw a reasonable position error ellipse. """ basic_filter = kalman.Kalman((1, 0), (1, 0)) width, height, angle = basic_filter.position_error_ellipse(1.96) # Because our initial covariance matrix will make the variances for x and y # the same, we expect the ellipse to be a cicle. self.assertEqual(width, height) # Our angle should be pi/2, since all our covariances are zero. self.assertEqual(np.pi / 2.0, angle) # Now give it an observation in which y is off a lot more than x. basic_filter.set_observations((2, 1), (1, 0)) basic_filter.update() width, height, angle = basic_filter.position_error_ellipse(1.96) # Now, the width should be larger than the height. (It's rotated.) self.assertGreater(width, height) def test_lob_confidence(self): """ Tests that we can compute a confidence interval for the LOB data. """ basic_filter = kalman.Kalman((1, 0), (1, 0)) self.assertEqual([], basic_filter.lob_confidence_intervals(1.96)) # Now give it a transmitter to track. basic_filter.add_transmitter(basic_filter.normalize_lobs(0), (5, 0)) # We should have a non-zero margin of error. error = basic_filter.lob_confidence_intervals(1.96) self.assertGreater(error, 0) def test_flip_transmitter(self): """ Tests that the flip_transmitter method works. """ my_filter = kalman.Kalman((0, 0), (1, 1)) # Do something really easy first. lob = np.pi / 4.0 my_filter.add_transmitter(lob, (2, 2)) my_filter.flip_transmitter(4) self.assertEqual(5.0 * np.pi / 4.0, my_filter.lobs()[0]) # Now we should be able to flip it back. my_filter.flip_transmitter(4) self.assertEqual(np.pi / 4.0, my_filter.lobs()[0])
ff25fb6064326423077dde69fc7e8673e9a34bff
1c2428489013d96ee21bcf434868358312f9d2af
/ultracart/models/conversation_twilio_account.py
a649021e1f36c58540847bbbd1732a8064137324
[ "Apache-2.0" ]
permissive
UltraCart/rest_api_v2_sdk_python
7821a0f6e0e19317ee03c4926bec05972900c534
8529c0bceffa2070e04d467fcb2b0096a92e8be4
refs/heads/master
2023-09-01T00:09:31.332925
2023-08-31T12:52:10
2023-08-31T12:52:10
67,047,356
2
0
null
null
null
null
UTF-8
Python
false
false
4,199
py
# coding: utf-8 """ UltraCart Rest API V2 UltraCart REST API Version 2 # noqa: E501 OpenAPI spec version: 2.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ConversationTwilioAccount(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'merchant_id': 'str', 'twilio_phone_numbers': 'list[str]' } attribute_map = { 'merchant_id': 'merchant_id', 'twilio_phone_numbers': 'twilio_phone_numbers' } def __init__(self, merchant_id=None, twilio_phone_numbers=None): # noqa: E501 """ConversationTwilioAccount - a model defined in Swagger""" # noqa: E501 self._merchant_id = None self._twilio_phone_numbers = None self.discriminator = None if merchant_id is not None: self.merchant_id = merchant_id if twilio_phone_numbers is not None: self.twilio_phone_numbers = twilio_phone_numbers @property def merchant_id(self): """Gets the merchant_id of this ConversationTwilioAccount. # noqa: E501 :return: The merchant_id of this ConversationTwilioAccount. # noqa: E501 :rtype: str """ return self._merchant_id @merchant_id.setter def merchant_id(self, merchant_id): """Sets the merchant_id of this ConversationTwilioAccount. :param merchant_id: The merchant_id of this ConversationTwilioAccount. # noqa: E501 :type: str """ self._merchant_id = merchant_id @property def twilio_phone_numbers(self): """Gets the twilio_phone_numbers of this ConversationTwilioAccount. # noqa: E501 :return: The twilio_phone_numbers of this ConversationTwilioAccount. # noqa: E501 :rtype: list[str] """ return self._twilio_phone_numbers @twilio_phone_numbers.setter def twilio_phone_numbers(self, twilio_phone_numbers): """Sets the twilio_phone_numbers of this ConversationTwilioAccount. :param twilio_phone_numbers: The twilio_phone_numbers of this ConversationTwilioAccount. # noqa: E501 :type: list[str] """ self._twilio_phone_numbers = twilio_phone_numbers def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ConversationTwilioAccount, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConversationTwilioAccount): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
10639ce27fe471d8d20685065f3271f45c21380c
4eac217f1a9c175ee370d83446c6ae763c69a26f
/Level 1/Task3.py
2cbc0809746a1495e4be9f85b91b33bc3ff7de91
[]
no_license
abhinavsharma629/Data-Structures-And-Algorithms-Udacity-Nanodegree
411a74f042a671c6e7d3123bc63716d2d3748cc6
6e7645a9afb6065d12524a94734aeda022438f10
refs/heads/master
2022-11-06T00:49:11.863218
2020-06-20T11:52:42
2020-06-20T11:52:42
273,698,082
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
""" Read file into texts and calls. It's ok if you don't understand how to read files. """ import csv with open('texts.csv', 'r') as f: reader = csv.reader(f) texts = list(reader) def checkCaller(phone_no): if(len(phone_no.split("("))>0): return True def checkCaller(phone_no): if(phone_no[0]=="("): return True if phone_no.split("(")[1].split(")")[0]=="080" else False return False def getReceiver(phone_no): # if telephone no if(phone_no[0]=="("): return phone_no.split("(")[1].split(")")[0] # if mobile no elif(len(phone_no.split(" "))>0): return phone_no.split(" ")[0][0:4] # if telemarketers no else: return phone_no.split("140")[1] list_of_codes=set([]) calls_total=0 call_and_receive_total=0 with open('calls.csv', 'r') as f: reader = csv.reader(f) calls = list(reader) for call in calls: # check if caller from banglore isCallerFromBanglore=checkCaller(call[0]) getReceiverNo=getReceiver(call[1]) # if caller from banglore if(isCallerFromBanglore): list_of_codes.add(getReceiverNo) # check if receiver from banglore isReceiverFromBanglore=checkCaller(call[1]) if(isReceiverFromBanglore): # inc banglore -> banglore calls count call_and_receive_total+=1 # inc total banglore calls count calls_total+=1 print("The numbers called by people in Bangalore have codes:") list_of_codes=sorted(list_of_codes) for list_code in list_of_codes: print(list_code) percent=round((float)((call_and_receive_total/calls_total))*100,2) print("{} percent of calls from fixed lines in Bangalore are calls to other fixed lines in Bangalore.".format(percent)) """ TASK 3: (080) is the area code for fixed line telephones in Bangalore. Fixed line numbers include parentheses, so Bangalore numbers have the form (080)xxxxxxx.) Part A: Find all of the area codes and mobile prefixes called by people in Bangalore. - Fixed lines start with an area code enclosed in brackets. The area codes vary in length but always begin with 0. - Mobile numbers have no parentheses, but have a space in the middle of the number to help readability. The prefix of a mobile number is its first four digits, and they always start with 7, 8 or 9. - Telemarketers' numbers have no parentheses or space, but they start with the area code 140. Print the answer as part of a message: "The numbers called by people in Bangalore have codes:" <list of codes> The list of codes should be print out one per line in lexicographic order with no duplicates. Part B: What percentage of calls from fixed lines in Bangalore are made to fixed lines also in Bangalore? In other words, of all the calls made from a number starting with "(080)", what percentage of these calls were made to a number also starting with "(080)"? Print the answer as a part of a message:: "<percentage> percent of calls from fixed lines in Bangalore are calls to other fixed lines in Bangalore." The percentage should have 2 decimal digits """
f352d8ce22dd736ee5f0204bbde9717188e6d87c
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_groped.py
9e6f4052a029097be877a2408813e55edef8a879
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.nouns._grope import _GROPE #calss header class _GROPED(_GROPE, ): def __init__(self,): _GROPE.__init__(self) self.name = "GROPED" self.specie = 'nouns' self.basic = "grope" self.jsondata = {}
c326f428fae13c4af9cb46ab323d1a372aa587a4
b8a9b1204627c7d6b4123f4dba54631251e27f49
/accounts/migrations/0006_auto_20210313_1624.py
b672084659b2994715f8cc3ffbc278a53f407904
[]
no_license
ianmanalo1026/Coffee-Shop
53aee5b4ff26294ead1808006c7d9ec258aca8d9
f61a94ee416aed436d236c7243625417c7214479
refs/heads/master
2023-03-16T12:24:02.354223
2021-03-16T14:10:23
2021-03-16T14:10:23
347,078,397
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
# Generated by Django 3.1.4 on 2021-03-13 08:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0005_auto_20210313_1606'), ] operations = [ migrations.RenameField( model_name='profile', old_name='first_name', new_name='name', ), migrations.RemoveField( model_name='profile', name='last_name', ), ]
80410beb2f4850b79e647b255bfd7626e96e2884
d3fa61d28cdc0c515ebd4f610122a9141cf69471
/gui/demoDlg-21.py
e155e49b73365362dea088ee8e5824694470688d
[]
no_license
iorilan/python-samples
0bd2d66461bc5580de607c5e9984f713bc506c56
1db836d90731763e30a109c28948734727194232
refs/heads/master
2022-04-05T03:06:18.830332
2020-02-23T16:49:06
2020-02-23T16:49:06
213,014,416
0
0
null
null
null
null
UTF-8
Python
false
false
810
py
from tkinter import * # get base widget set from dialogTable import demos # button callback handlers from quitter import Quitter # attach a quit object to me class Demo(Frame): def __init__(self, parent=None): Frame.__init__(self, parent) self.pack() Label(self, text="Basic demos").pack() for key in demos: func = (lambda key=key: self.printit(key)) #func = (lambda self=self, name=key: self.printit(name)) #func = (lambda handler=self.printit, name=key: handler(name)) Button(self, text=key, command=func).pack(side=TOP, fill=BOTH) Quitter(self).pack(side=TOP, fill=BOTH) def printit(self, name): print(name, 'returns =>', demos[name]()) # fetch, call, print if __name__ == '__main__': Demo().mainloop()
f432c581c95ce2dab16294b0388c1934ff86ade5
9abd182d02355ddf0b79afd4a35f7127a4a66f7a
/tests/auto/test_auto_tasks.py
31cf99827d6d2993bc4ec767aa5e9f469a8fa5ce
[ "Apache-2.0" ]
permissive
dmlc/gluon-cv
e1303086419a5733661d0fcb9095c09d4f2382ad
567775619f3b97d47e7c360748912a4fd883ff52
refs/heads/master
2023-07-19T12:02:36.824294
2023-01-19T00:37:33
2023-01-19T00:37:33
122,896,249
6,064
1,458
Apache-2.0
2023-01-19T00:37:35
2018-02-26T01:33:21
Python
UTF-8
Python
false
false
3,054
py
from gluoncv.auto.tasks import ImageClassification from gluoncv.auto.tasks import ObjectDetection import autogluon.core as ag import time from nose.tools import nottest IMAGE_CLASS_DATASET, _, IMAGE_CLASS_TEST = ImageClassification.Dataset.from_folders( 'https://autogluon.s3.amazonaws.com/datasets/shopee-iet.zip') OBJECT_DETCTION_DATASET = ObjectDetection.Dataset.from_voc('https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip') OBJECT_DETECTION_TRAIN, OBJECT_DETECTION_VAL, OBJECT_DETECTION_TEST = OBJECT_DETCTION_DATASET.random_split(val_size=0.3, test_size=0.2) def test_image_classification(): from gluoncv.auto.tasks import ImageClassification task = ImageClassification({'model': 'resnet18_v1', 'num_trials': 1, 'epochs': 1, 'batch_size': 8}) classifier = task.fit(IMAGE_CLASS_DATASET) assert task.fit_summary().get('valid_acc', 0) > 0 test_result = classifier.predict(IMAGE_CLASS_TEST) def test_image_classification_custom_net(): from gluoncv.auto.tasks import ImageClassification from gluoncv.model_zoo import get_model net = get_model('resnet18_v1') task = ImageClassification({'num_trials': 1, 'epochs': 1, 'custom_net': net, 'batch_size': 8}) classifier = task.fit(IMAGE_CLASS_DATASET) assert task.fit_summary().get('valid_acc', 0) > 0 test_result = classifier.predict(IMAGE_CLASS_TEST) def test_object_detection_estimator(): from gluoncv.auto.tasks import ObjectDetection task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'batch_size': 4}) detector = task.fit(OBJECT_DETECTION_TRAIN) assert task.fit_summary().get('valid_map', 0) > 0 test_result = detector.predict(OBJECT_DETECTION_TEST) def test_object_detection_estimator_transfer(): from gluoncv.auto.tasks import ObjectDetection task = ObjectDetection({'num_trials': 1, 'epochs': 1, 'transfer': ag.Categorical('yolo3_darknet53_coco', 'ssd_512_resnet50_v1_voc'), 'estimator': 'ssd', 'batch_size': 4}) detector = task.fit(OBJECT_DETECTION_TRAIN) assert task.fit_summary().get('valid_map', 0) > 0 test_result = detector.predict(OBJECT_DETECTION_TEST) import unittest @unittest.skip("temporarily disabled") def test_time_out_image_classification(): time_limit = 15 from gluoncv.auto.tasks import ImageClassification task = ImageClassification({'num_trials': 1, 'epochs': 10, 'batch_size': 8}) tic = time.time() classifier = task.fit(IMAGE_CLASS_DATASET, time_limit=time_limit) # check time_limit with a little bit overhead assert (time.time() - tic) < time_limit + 180 @unittest.skip("temporarily disabled") def test_time_out_detection(): time_limit = 15 from gluoncv.auto.tasks import ObjectDetection task = ObjectDetection({'num_trials': 1, 'epochs': 5, 'time_limits': time_limit, 'batch_size': 4}) tic = time.time() detector = task.fit(OBJECT_DETECTION_TRAIN) # check time_limit with a little bit overhead assert (time.time() - tic) < time_limit + 180 if __name__ == '__main__': import nose nose.runmodule()
8b283162d9edbf8dca0e7c46dc70bd9b59e8967e
153fb205395605f631e92950fc86ba205bd85665
/wagtail/wagtailcore/blocks/__init__.py
1b7a1740cfd2dc54b81002c49016129a51f88256
[ "BSD-3-Clause" ]
permissive
YoungSphere/Wagtail_Young
8e385ab37263acf4b609bb6aa1f75d3e9035eee0
536b137446ef5bff464cbe8a82175ba099d4a15a
refs/heads/master
2020-04-23T07:10:45.479469
2019-02-16T14:09:24
2019-02-16T14:09:24
170,998,679
0
0
BSD-3-Clause
2019-02-16T14:05:12
2019-02-16T11:55:39
Python
UTF-8
Python
false
false
334
py
from __future__ import absolute_import # Import block types defined in submodules into the wagtail.wagtailcore.blocks namespace from .base import * # NOQA from .field_block import * # NOQA from .struct_block import * # NOQA from .list_block import * # NOQA from .stream_block import * # NOQA from .static_block import * # NOQA
56d15c6806ad5e594f7fc3174603378618fc75f9
ef187d259d33e97c7b9ed07dfbf065cec3e41f59
/work/atcoder/arc/arc086/D/answers/859172_ahho.py
9dd224c8cbab6c1535202a94895bc8989a7d1f82
[]
no_license
kjnh10/pcw
847f7295ea3174490485ffe14ce4cdea0931c032
8f677701bce15517fb9362cc5b596644da62dca8
refs/heads/master
2020-03-18T09:54:23.442772
2018-07-19T00:26:09
2018-07-19T00:26:09
134,586,379
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
N = int(input()) A = list(map(int,input().split())) # max absolute value _,mi = max((abs(v),i) for i,v in enumerate(A)) mi += 1 print(2*N-2) for i in range(1,N+1): if i != mi: print(mi,i) if A[mi-1] > 0: for i in range(1,N): print(i,i+1) else: for i in reversed(range(1,N)): print(i+1,i)
7a88d194dc4f6647d5d15e898799151518385985
f131222013fd1c23bf23a9af44dbaf2cd2dfbe72
/python 好用库/lib/dundeemt-pysftp-ad3aefc8ec42/dundeemt-pysftp-ad3aefc8ec42/tests/test_walktree.py
467b7fe50b5df8c3aaf901fec09749cb730bcb4a
[]
no_license
shortdistance/workdir
e0bdadcb9d6b5e61e62434d574afad36afa60ba9
7c4a23fdbb8ae14b67aeda47ce53be1bd24ae2d1
refs/heads/master
2021-01-19T23:21:40.885964
2017-04-21T12:55:45
2017-04-21T12:55:45
88,968,923
0
1
null
null
null
null
UTF-8
Python
false
false
4,680
py
'''test pysftp.Connection.walktree and pysftp.walktree - uses py.test''' from __future__ import print_function # pylint: disable = W0142 from common import * from mock import Mock, call def test_walktree_cbclass(): '''test the walktree function with callbacks from a class''' with pysftp.Connection(**SFTP_PUBLIC) as sftp: wtcb = pysftp.WTCallbacks() sftp.walktree('.', fcallback=wtcb.file_cb, dcallback=wtcb.dir_cb, ucallback=wtcb.unk_cb) assert './pub/build/build01/build01a/build-results.txt' in wtcb.flist assert './readme.txt' in wtcb.flist assert len(wtcb.flist) > 3 dlist = ['./pub', './pub/build', './pub/build/build01', './pub/build/build01/build01a', './pub/build/build01/build01b', './pub/build/build01/build01c', './pub/example', './pub/src', './pub/src/libs', './pub/src/media', './pub/src/tests'] assert wtcb.dlist == dlist assert wtcb.ulist == [] def test_walktree_cbmock(): '''test the walktree function, with mocked callbacks (standalone functions) ''' file_cb = Mock(return_value=None) dir_cb = Mock(return_value=None) unk_cb = Mock(return_value=None) with pysftp.Connection(**SFTP_PUBLIC) as sftp: sftp.walktree('.', fcallback=file_cb, dcallback=dir_cb, ucallback=unk_cb) # check calls to the file callback file_cb.assert_called_with('./readme.txt') thecall = call('./pub/build/build01/build01a/build-results.txt') assert thecall in file_cb.mock_calls assert file_cb.call_count > 3 # check calls to the directory callback assert [call('./pub'), call('./pub/build'), call('./pub/build/build01'), call('./pub/build/build01/build01a'), call('./pub/build/build01/build01b'), call('./pub/build/build01/build01c'), call('./pub/example'), call('./pub/src'), call('./pub/src/libs'), call('./pub/src/media'), call('./pub/src/tests')] == dir_cb.mock_calls # check calls to the unknown callback assert [] == unk_cb.mock_calls def test_walktree_no_recurse(): '''test the walktree function, with mocked callbacks (standalone functions) ''' file_cb = Mock(return_value=None) dir_cb = Mock(return_value=None) unk_cb = Mock(return_value=None) with pysftp.Connection(**SFTP_PUBLIC) as sftp: sftp.walktree('.', fcallback=file_cb, dcallback=dir_cb, ucallback=unk_cb, recurse=False) # check calls to the file callback file_cb.assert_called_with('./readme.txt') thecall = call('./readme.sym') assert thecall in file_cb.mock_calls assert file_cb.call_count == 2 # check calls to the directory callback assert [call('./pub'),] == dir_cb.mock_calls # check calls to the unknown callback assert [] == unk_cb.mock_calls def test_walktree_local(): '''test the capability of walktree to walk a local directory structure''' wtcb = pysftp.WTCallbacks() pysftp.walktree('.', fcallback=wtcb.file_cb, dcallback=wtcb.dir_cb, ucallback=wtcb.unk_cb) print(wtcb.dlist) for dname in ['./docs', './tests']: assert dname in wtcb.dlist print(wtcb.ulist) assert wtcb.ulist == [] print(wtcb.flist) for fname in ['./release.sh', './MANIFEST.in', './tests/test_execute.py']: assert fname in wtcb.flist def test_walktree_local_no_recurse(): '''test the capability of walktree with recurse=False to walk a local directory structure''' wtcb = pysftp.WTCallbacks() pysftp.walktree('.', fcallback=wtcb.file_cb, dcallback=wtcb.dir_cb, ucallback=wtcb.unk_cb, recurse=False) print(wtcb.dlist) for dname in ['./docs', './tests']: assert dname in wtcb.dlist print(wtcb.ulist) assert wtcb.ulist == [] print(wtcb.flist) for fname in ['./release.sh', './MANIFEST.in']: assert fname in wtcb.flist assert './tests/test_execute.py' not in wtcb.flist def test_walktree_local_bad(): '''test pysftp.walktree on a non-existing directory''' wtcb = pysftp.WTCallbacks() with pytest.raises(OSError): pysftp.walktree('/non-existing', fcallback=wtcb.file_cb, dcallback=wtcb.dir_cb, ucallback=wtcb.unk_cb)
0ac8b6307780f483b0873e5bd0c05380268fc89b
987390ca6481ec5aa2b9e0e0e849203b6c22ce62
/zkeco-core/adms/memcache.py
a431607921f0052748ffb1b18325a987af26034a
[]
no_license
alungboy/johan-doc
81b2363e7f2ad189d0623007eea66233a2e18f1c
7ced14577405caf6127df03007619fe9cfda3847
refs/heads/master
2020-04-03T18:01:08.531971
2013-08-13T04:26:42
2013-08-13T04:26:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
36,738
py
#!/usr/bin/env python """ client module for memcached (memory cache daemon) Overview ======== See U{the MemCached homepage<http://www.danga.com/memcached>} for more about memcached. Usage summary ============= This should give you a feel for how this module operates:: import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=0) mc.set("some_key", "Some value") value = mc.get("some_key") mc.set("another_key", 3) mc.delete("another_key") mc.set("key", "1") # note that the key used for incr/decr must be a string. mc.incr("key") mc.decr("key") The standard way to use memcache with a database is like this:: key = derive_key(obj) obj = mc.get(key) if not obj: obj = backend_api.get(...) mc.set(obj) # we now have obj, and future passes through this code # will use the object from the cache. Detailed Documentation ====================== More detailed documentation is available in the L{Client} class. """ import sys import socket import time import types try: import cPickle as pickle except ImportError: import pickle try: from zlib import compress, decompress _supports_compress = True except ImportError: _supports_compress = False # quickly define a decompress just in case we recv compressed data. def decompress(val): raise _Error("received compressed data but I don't support compession (import error)") try: from cStringIO import StringIO except ImportError: from StringIO import StringIO from binascii import crc32 # zlib version is not cross-platform serverHashFunction = crc32 __author__ = "Evan Martin <[email protected]>" __version__ = "1.40" __copyright__ = "Copyright (C) 2003 Danga Interactive" __license__ = "Python" SERVER_MAX_KEY_LENGTH = 250 # Storing values larger than 1MB requires recompiling memcached. If you do, # this value can be changed by doing "memcache.SERVER_MAX_VALUE_LENGTH = N" # after importing this module. SERVER_MAX_VALUE_LENGTH = 1024*1024 class _Error(Exception): pass try: # Only exists in Python 2.4+ from threading import local except ImportError: # TODO: add the pure-python local implementation class local(object): pass class Client(local): """ Object representing a pool of memcache servers. See L{memcache} for an overview. In all cases where a key is used, the key can be either: 1. A simple hashable type (string, integer, etc.). 2. A tuple of C{(hashvalue, key)}. This is useful if you want to avoid making this module calculate a hash value. You may prefer, for example, to keep all of a given user's objects on the same memcache server, so you could use the user's unique id as the hash value. @group Setup: __init__, set_servers, forget_dead_hosts, disconnect_all, debuglog @group Insertion: set, add, replace, set_multi @group Retrieval: get, get_multi @group Integers: incr, decr @group Removal: delete, delete_multi @sort: __init__, set_servers, forget_dead_hosts, disconnect_all, debuglog,\ set, set_multi, add, replace, get, get_multi, incr, decr, delete, delete_multi """ _FLAG_PICKLE = 1<<0 _FLAG_INTEGER = 1<<1 _FLAG_LONG = 1<<2 _FLAG_COMPRESSED = 1<<3 _SERVER_RETRIES = 10 # how many times to try finding a free server. # exceptions for Client class MemcachedKeyError(Exception): pass class MemcachedKeyLengthError(MemcachedKeyError): pass class MemcachedKeyCharacterError(MemcachedKeyError): pass class MemcachedStringEncodingError(Exception): pass def __init__(self, servers, debug=0, pickleProtocol=0, pickler=pickle.Pickler, unpickler=pickle.Unpickler, pload=None, pid=None): """ Create a new Client object with the given list of servers. @param servers: C{servers} is passed to L{set_servers}. @param debug: whether to display error messages when a server can't be contacted. @param pickleProtocol: number to mandate protocol used by (c)Pickle. @param pickler: optional override of default Pickler to allow subclassing. @param unpickler: optional override of default Unpickler to allow subclassing. @param pload: optional persistent_load function to call on pickle loading. Useful for cPickle since subclassing isn't allowed. @param pid: optional persistent_id function to call on pickle storing. Useful for cPickle since subclassing isn't allowed. """ local.__init__(self) self.set_servers(servers) self.debug = debug self.stats = {} # Allow users to modify pickling/unpickling behavior self.pickleProtocol = pickleProtocol self.pickler = pickler self.unpickler = unpickler self.persistent_load = pload self.persistent_id = pid def set_servers(self, servers): """ Set the pool of servers used by this client. @param servers: an array of servers. Servers can be passed in two forms: 1. Strings of the form C{"host:port"}, which implies a default weight of 1. 2. Tuples of the form C{("host:port", weight)}, where C{weight} is an integer weight value. """ self.servers = [_Host(s, self.debuglog) for s in servers] self._init_buckets() def get_stats(self): '''Get statistics from each of the servers. @return: A list of tuples ( server_identifier, stats_dictionary ). The dictionary contains a number of name/value pairs specifying the name of the status field and the string value associated with it. The values are not converted from strings. ''' data = [] for s in self.servers: if not s.connect(): continue name = '%s:%s (%s)' % ( s.ip, s.port, s.weight ) s.send_cmd('stats') serverData = {} data.append(( name, serverData )) readline = s.readline while 1: line = readline() if not line or line.strip() == 'END': break stats = line.split(' ', 2) serverData[stats[1]] = stats[2] return(data) def flush_all(self): 'Expire all data currently in the memcache servers.' for s in self.servers: if not s.connect(): continue s.send_cmd('flush_all') s.expect("OK") def debuglog(self, str): if self.debug: sys.stderr.write("MemCached: %s\n" % str) def _statlog(self, func): if not self.stats.has_key(func): self.stats[func] = 1 else: self.stats[func] += 1 def forget_dead_hosts(self): """ Reset every host in the pool to an "alive" state. """ for s in self.servers: s.dead_until = 0 def _init_buckets(self): self.buckets = [] for server in self.servers: for i in range(server.weight): self.buckets.append(server) def _get_server(self, key): if type(key) == types.TupleType: serverhash, key = key else: serverhash = serverHashFunction(key) for i in range(Client._SERVER_RETRIES): server = self.buckets[serverhash % len(self.buckets)] if server.connect(): #print "(using server %s)" % server, return server, key serverhash = serverHashFunction(str(serverhash) + str(i)) return None, None def disconnect_all(self): for s in self.servers: s.close_socket() def delete_multi(self, keys, seconds=0, key_prefix=''): ''' Delete multiple keys in the memcache doing just one query. >>> notset_keys = mc.set_multi({'key1' : 'val1', 'key2' : 'val2'}) >>> mc.get_multi(['key1', 'key2']) == {'key1' : 'val1', 'key2' : 'val2'} 1 >>> mc.delete_multi(['key1', 'key2']) 1 >>> mc.get_multi(['key1', 'key2']) == {} 1 This method is recommended over iterated regular L{delete}s as it reduces total latency, since your app doesn't have to wait for each round-trip of L{delete} before sending the next one. @param keys: An iterable of keys to clear @param seconds: number of seconds any subsequent set / update commands should fail. Defaults to 0 for no delay. @param key_prefix: Optional string to prepend to each key when sending to memcache. See docs for L{get_multi} and L{set_multi}. @return: 1 if no failure in communication with any memcacheds. @rtype: int ''' self._statlog('delete_multi') server_keys, prefixed_to_orig_key = self._map_and_prefix_keys(keys, key_prefix) # send out all requests on each server before reading anything dead_servers = [] rc = 1 for server in server_keys.iterkeys(): bigcmd = [] write = bigcmd.append if time != None: for key in server_keys[server]: # These are mangled keys write("delete %s %d\r\n" % (key, seconds)) else: for key in server_keys[server]: # These are mangled keys write("delete %s\r\n" % key) try: server.send_cmds(''.join(bigcmd)) except socket.error, msg: rc = 0 server.mark_dead(msg[1]) dead_servers.append(server) # if any servers died on the way, don't expect them to respond. for server in dead_servers: del server_keys[server] notstored = [] # original keys. for server, keys in server_keys.iteritems(): try: for key in keys: server.expect("DELETED") except socket.error, msg: server.mark_dead(msg) rc = 0 return rc def delete(self, key, time=0): '''Deletes a key from the memcache. @return: Nonzero on success. @param seconds: number of seconds any subsequent set / update commands should fail. Defaults to 0 for no delay. @rtype: int ''' check_key(key) server, key = self._get_server(key) if not server: return 0 self._statlog('delete') if time != None: cmd = "delete %s %d" % (key, time) else: cmd = "delete %s" % key try: server.send_cmd(cmd) server.expect("DELETED") except socket.error, msg: server.mark_dead(msg[1]) return 0 return 1 def incr(self, key, delta=1): """ Sends a command to the server to atomically increment the value for C{key} by C{delta}, or by 1 if C{delta} is unspecified. Returns None if C{key} doesn't exist on server, otherwise it returns the new value after incrementing. Note that the value for C{key} must already exist in the memcache, and it must be the string representation of an integer. >>> mc.set("counter", "20") # returns 1, indicating success 1 >>> mc.incr("counter") 21 >>> mc.incr("counter") 22 Overflow on server is not checked. Be aware of values approaching 2**32. See L{decr}. @param delta: Integer amount to increment by (should be zero or greater). @return: New value after incrementing. @rtype: int """ return self._incrdecr("incr", key, delta) def decr(self, key, delta=1): """ Like L{incr}, but decrements. Unlike L{incr}, underflow is checked and new values are capped at 0. If server value is 1, a decrement of 2 returns 0, not -1. @param delta: Integer amount to decrement by (should be zero or greater). @return: New value after decrementing. @rtype: int """ return self._incrdecr("decr", key, delta) def _incrdecr(self, cmd, key, delta): check_key(key) server, key = self._get_server(key) if not server: return 0 self._statlog(cmd) cmd = "%s %s %d" % (cmd, key, delta) try: server.send_cmd(cmd) line = server.readline() return int(line) except socket.error, msg: server.mark_dead(msg[1]) return None def add(self, key, val, time = 0, min_compress_len = 0): ''' Add new key with value. Like L{set}, but only stores in memcache if the key doesn't already exist. @return: Nonzero on success. @rtype: int ''' return self._set("add", key, val, time, min_compress_len) def replace(self, key, val, time=0, min_compress_len=0): '''Replace existing key with value. Like L{set}, but only stores in memcache if the key already exists. The opposite of L{add}. @return: Nonzero on success. @rtype: int ''' return self._set("replace", key, val, time, min_compress_len) def set(self, key, val, time=0, min_compress_len=0): '''Unconditionally sets a key to a given value in the memcache. The C{key} can optionally be an tuple, with the first element being the server hash value and the second being the key. If you want to avoid making this module calculate a hash value. You may prefer, for example, to keep all of a given user's objects on the same memcache server, so you could use the user's unique id as the hash value. @return: Nonzero on success. @rtype: int @param time: Tells memcached the time which this value should expire, either as a delta number of seconds, or an absolute unix time-since-the-epoch value. See the memcached protocol docs section "Storage Commands" for more info on <exptime>. We default to 0 == cache forever. @param min_compress_len: The threshold length to kick in auto-compression of the value using the zlib.compress() routine. If the value being cached is a string, then the length of the string is measured, else if the value is an object, then the length of the pickle result is measured. If the resulting attempt at compression yeilds a larger string than the input, then it is discarded. For backwards compatability, this parameter defaults to 0, indicating don't ever try to compress. ''' return self._set("set", key, val, time, min_compress_len) def _map_and_prefix_keys(self, key_iterable, key_prefix): """Compute the mapping of server (_Host instance) -> list of keys to stuff onto that server, as well as the mapping of prefixed key -> original key. """ # Check it just once ... key_extra_len=len(key_prefix) if key_prefix: check_key(key_prefix) # server (_Host) -> list of unprefixed server keys in mapping server_keys = {} prefixed_to_orig_key = {} # build up a list for each server of all the keys we want. for orig_key in key_iterable: if type(orig_key) is types.TupleType: # Tuple of hashvalue, key ala _get_server(). Caller is essentially telling us what server to stuff this on. # Ensure call to _get_server gets a Tuple as well. str_orig_key = str(orig_key[1]) server, key = self._get_server((orig_key[0], key_prefix + str_orig_key)) # Gotta pre-mangle key before hashing to a server. Returns the mangled key. else: str_orig_key = str(orig_key) # set_multi supports int / long keys. server, key = self._get_server(key_prefix + str_orig_key) # Now check to make sure key length is proper ... check_key(str_orig_key, key_extra_len=key_extra_len) if not server: continue if not server_keys.has_key(server): server_keys[server] = [] server_keys[server].append(key) prefixed_to_orig_key[key] = orig_key return (server_keys, prefixed_to_orig_key) def set_multi(self, mapping, time=0, key_prefix='', min_compress_len=0): ''' Sets multiple keys in the memcache doing just one query. >>> notset_keys = mc.set_multi({'key1' : 'val1', 'key2' : 'val2'}) >>> mc.get_multi(['key1', 'key2']) == {'key1' : 'val1', 'key2' : 'val2'} 1 This method is recommended over regular L{set} as it lowers the number of total packets flying around your network, reducing total latency, since your app doesn't have to wait for each round-trip of L{set} before sending the next one. @param mapping: A dict of key/value pairs to set. @param time: Tells memcached the time which this value should expire, either as a delta number of seconds, or an absolute unix time-since-the-epoch value. See the memcached protocol docs section "Storage Commands" for more info on <exptime>. We default to 0 == cache forever. @param key_prefix: Optional string to prepend to each key when sending to memcache. Allows you to efficiently stuff these keys into a pseudo-namespace in memcache: >>> notset_keys = mc.set_multi({'key1' : 'val1', 'key2' : 'val2'}, key_prefix='subspace_') >>> len(notset_keys) == 0 True >>> mc.get_multi(['subspace_key1', 'subspace_key2']) == {'subspace_key1' : 'val1', 'subspace_key2' : 'val2'} True Causes key 'subspace_key1' and 'subspace_key2' to be set. Useful in conjunction with a higher-level layer which applies namespaces to data in memcache. In this case, the return result would be the list of notset original keys, prefix not applied. @param min_compress_len: The threshold length to kick in auto-compression of the value using the zlib.compress() routine. If the value being cached is a string, then the length of the string is measured, else if the value is an object, then the length of the pickle result is measured. If the resulting attempt at compression yeilds a larger string than the input, then it is discarded. For backwards compatability, this parameter defaults to 0, indicating don't ever try to compress. @return: List of keys which failed to be stored [ memcache out of memory, etc. ]. @rtype: list ''' self._statlog('set_multi') server_keys, prefixed_to_orig_key = self._map_and_prefix_keys(mapping.iterkeys(), key_prefix) # send out all requests on each server before reading anything dead_servers = [] for server in server_keys.iterkeys(): bigcmd = [] write = bigcmd.append try: for key in server_keys[server]: # These are mangled keys store_info = self._val_to_store_info(mapping[prefixed_to_orig_key[key]], min_compress_len) write("set %s %d %d %d\r\n%s\r\n" % (key, store_info[0], time, store_info[1], store_info[2])) server.send_cmds(''.join(bigcmd)) except socket.error, msg: server.mark_dead(msg[1]) dead_servers.append(server) # if any servers died on the way, don't expect them to respond. for server in dead_servers: del server_keys[server] notstored = [] # original keys. for server, keys in server_keys.iteritems(): try: for key in keys: line = server.readline() if line == 'STORED': continue else: notstored.append(prefixed_to_orig_key[key]) #un-mangle. except (_Error, socket.error), msg: server.mark_dead(msg) return notstored def _val_to_store_info(self, val, min_compress_len): """ Transform val to a storable representation, returning a tuple of the flags, the length of the new value, and the new value itself. """ flags = 0 if isinstance(val, str): pass elif isinstance(val, int): flags |= Client._FLAG_INTEGER val = "%d" % val # force no attempt to compress this silly string. min_compress_len = 0 elif isinstance(val, long): flags |= Client._FLAG_LONG val = "%d" % val # force no attempt to compress this silly string. min_compress_len = 0 else: flags |= Client._FLAG_PICKLE file = StringIO() pickler = self.pickler(file, protocol=self.pickleProtocol) if self.persistent_id: pickler.persistent_id = self.persistent_id pickler.dump(val) val = file.getvalue() # silently do not store if value length exceeds maximum if len(val) >= SERVER_MAX_VALUE_LENGTH: return(0) lv = len(val) # We should try to compress if min_compress_len > 0 and we could import zlib and this string is longer than our min threshold. if min_compress_len and _supports_compress and lv > min_compress_len: comp_val = compress(val) #Only retain the result if the compression result is smaller than the original. if len(comp_val) < lv: flags |= Client._FLAG_COMPRESSED val = comp_val return (flags, len(val), val) def _set(self, cmd, key, val, time, min_compress_len = 0): check_key(key) server, key = self._get_server(key) if not server: return 0 self._statlog(cmd) store_info = self._val_to_store_info(val, min_compress_len) if not store_info: return(0) fullcmd = "%s %s %d %d %d\r\n%s" % (cmd, key, store_info[0], time, store_info[1], store_info[2]) try: server.send_cmd(fullcmd) return(server.expect("STORED") == "STORED") except socket.error, msg: server.mark_dead(msg[1]) return 0 def get(self, key): '''Retrieves a key from the memcache. @return: The value or None. ''' check_key(key) server, key = self._get_server(key) if not server: return None self._statlog('get') try: server.send_cmd("get %s" % key) rkey, flags, rlen, = self._expectvalue(server) if not rkey: return None value = self._recv_value(server, flags, rlen) server.expect("END") except (_Error, socket.error), msg: if type(msg) is types.TupleType: msg = msg[1] server.mark_dead(msg) return None return value def get_multi(self, keys, key_prefix=''): ''' Retrieves multiple keys from the memcache doing just one query. >>> success = mc.set("foo", "bar") >>> success = mc.set("baz", 42) >>> mc.get_multi(["foo", "baz", "foobar"]) == {"foo": "bar", "baz": 42} 1 >>> mc.set_multi({'k1' : 1, 'k2' : 2}, key_prefix='pfx_') == [] 1 This looks up keys 'pfx_k1', 'pfx_k2', ... . Returned dict will just have unprefixed keys 'k1', 'k2'. >>> mc.get_multi(['k1', 'k2', 'nonexist'], key_prefix='pfx_') == {'k1' : 1, 'k2' : 2} 1 get_mult [ and L{set_multi} ] can take str()-ables like ints / longs as keys too. Such as your db pri key fields. They're rotored through str() before being passed off to memcache, with or without the use of a key_prefix. In this mode, the key_prefix could be a table name, and the key itself a db primary key number. >>> mc.set_multi({42: 'douglass adams', 46 : 'and 2 just ahead of me'}, key_prefix='numkeys_') == [] 1 >>> mc.get_multi([46, 42], key_prefix='numkeys_') == {42: 'douglass adams', 46 : 'and 2 just ahead of me'} 1 This method is recommended over regular L{get} as it lowers the number of total packets flying around your network, reducing total latency, since your app doesn't have to wait for each round-trip of L{get} before sending the next one. See also L{set_multi}. @param keys: An array of keys. @param key_prefix: A string to prefix each key when we communicate with memcache. Facilitates pseudo-namespaces within memcache. Returned dictionary keys will not have this prefix. @return: A dictionary of key/value pairs that were available. If key_prefix was provided, the keys in the retured dictionary will not have it present. ''' self._statlog('get_multi') server_keys, prefixed_to_orig_key = self._map_and_prefix_keys(keys, key_prefix) # send out all requests on each server before reading anything dead_servers = [] for server in server_keys.iterkeys(): try: server.send_cmd("get %s" % " ".join(server_keys[server])) except socket.error, msg: server.mark_dead(msg[1]) dead_servers.append(server) # if any servers died on the way, don't expect them to respond. for server in dead_servers: del server_keys[server] retvals = {} for server in server_keys.iterkeys(): try: line = server.readline() while line and line != 'END': rkey, flags, rlen = self._expectvalue(server, line) # Bo Yang reports that this can sometimes be None if rkey is not None: val = self._recv_value(server, flags, rlen) retvals[prefixed_to_orig_key[rkey]] = val # un-prefix returned key. line = server.readline() except (_Error, socket.error), msg: server.mark_dead(msg) return retvals def _expectvalue(self, server, line=None): if not line: line = server.readline() if line[:5] == 'VALUE': resp, rkey, flags, len = line.split() flags = int(flags) rlen = int(len) return (rkey, flags, rlen) else: return (None, None, None) def _recv_value(self, server, flags, rlen): rlen += 2 # include \r\n buf = server.recv(rlen) if len(buf) != rlen: raise _Error("received %d bytes when expecting %d" % (len(buf), rlen)) if len(buf) == rlen: buf = buf[:-2] # strip \r\n if flags & Client._FLAG_COMPRESSED: buf = decompress(buf) if flags == 0 or flags == Client._FLAG_COMPRESSED: # Either a bare string or a compressed string now decompressed... val = buf elif flags & Client._FLAG_INTEGER: val = int(buf) elif flags & Client._FLAG_LONG: val = long(buf) elif flags & Client._FLAG_PICKLE: try: file = StringIO(buf) unpickler = self.unpickler(file) if self.persistent_load: unpickler.persistent_load = self.persistent_load val = unpickler.load() except Exception, e: self.debuglog('Pickle error: %s\n' % e) val = None else: self.debuglog("unknown flags on get: %x\n" % flags) return val class _Host: _DEAD_RETRY = 30 # number of seconds before retrying a dead server. def __init__(self, host, debugfunc=None): if isinstance(host, types.TupleType): host, self.weight = host else: self.weight = 1 if host.find(":") > 0: self.ip, self.port = host.split(":") self.port = int(self.port) else: self.ip, self.port = host, 11211 if not debugfunc: debugfunc = lambda x: x self.debuglog = debugfunc self.deaduntil = 0 self.socket = None self.buffer = '' def _check_dead(self): if self.deaduntil and self.deaduntil > time.time(): return 1 self.deaduntil = 0 return 0 def connect(self): if self._get_socket(): return 1 return 0 def mark_dead(self, reason): self.debuglog("MemCache: %s: %s. Marking dead." % (self, reason)) self.deaduntil = time.time() + _Host._DEAD_RETRY self.close_socket() def _get_socket(self): if self._check_dead(): return None if self.socket: return self.socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Python 2.3-ism: s.settimeout(1) try: s.connect((self.ip, self.port)) except socket.error, msg: self.mark_dead("connect: %s" % msg[1]) return None self.socket = s self.buffer = '' return s def close_socket(self): if self.socket: self.socket.close() self.socket = None def send_cmd(self, cmd): self.socket.sendall(cmd + '\r\n') def send_cmds(self, cmds): """ cmds already has trailing \r\n's applied """ self.socket.sendall(cmds) def readline(self): buf = self.buffer recv = self.socket.recv while True: index = buf.find('\r\n') if index >= 0: break data = recv(4096) if not data: self.mark_dead('Connection closed while reading from %s' % repr(self)) break buf += data if index >= 0: self.buffer = buf[index+2:] buf = buf[:index] else: self.buffer = '' return buf def expect(self, text): line = self.readline() if line != text: self.debuglog("while expecting '%s', got unexpected response '%s'" % (text, line)) return line def recv(self, rlen): self_socket_recv = self.socket.recv buf = self.buffer while len(buf) < rlen: foo = self_socket_recv(4096) buf += foo if len(foo) == 0: raise _Error, ( 'Read %d bytes, expecting %d, ' 'read returned 0 length bytes' % ( len(buf), foo )) self.buffer = buf[rlen:] return buf[:rlen] def __str__(self): d = '' if self.deaduntil: d = " (dead until %d)" % self.deaduntil return "%s:%d%s" % (self.ip, self.port, d) def check_key(key, key_extra_len=0): """Checks sanity of key. Fails if: Key length is > SERVER_MAX_KEY_LENGTH (Raises MemcachedKeyLength). Contains control characters (Raises MemcachedKeyCharacterError). Is not a string (Raises MemcachedStringEncodingError) """ if type(key) == types.TupleType: key = key[1] if not isinstance(key, str): raise Client.MemcachedStringEncodingError, ("Keys must be str()'s, not" "unicode. Convert your unicode strings using " "mystring.encode(charset)!") if isinstance(key, basestring): if len(key) + key_extra_len > SERVER_MAX_KEY_LENGTH: raise Client.MemcachedKeyLengthError, ("Key length is > %s" % SERVER_MAX_KEY_LENGTH) for char in key: if ord(char) < 33 or ord(char) == 127: raise Client.MemcachedKeyCharacterError, "Control characters not allowed" def _doctest(): import doctest, memcache servers = ["127.0.0.1:11211"] mc = Client(servers, debug=1) globs = {"mc": mc} return doctest.testmod(memcache, globs=globs) if __name__ == "__main__": print "Testing docstrings..." _doctest() print "Running tests:" print #servers = ["127.0.0.1:11211", "127.0.0.1:11212"] servers = ["127.0.0.1:11211"] mc = Client(servers, debug=1) def to_s(val): if not isinstance(val, types.StringTypes): return "%s (%s)" % (val, type(val)) return "%s" % val def test_setget(key, val): print "Testing set/get {'%s': %s} ..." % (to_s(key), to_s(val)), mc.set(key, val) newval = mc.get(key) if newval == val: print "OK" return 1 else: print "FAIL" return 0 class FooStruct: def __init__(self): self.bar = "baz" def __str__(self): return "A FooStruct" def __eq__(self, other): if isinstance(other, FooStruct): return self.bar == other.bar return 0 test_setget("a_string", "some random string") test_setget("an_integer", 42) if test_setget("long", long(1<<30)): print "Testing delete ...", if mc.delete("long"): print "OK" else: print "FAIL" print "Testing get_multi ...", print mc.get_multi(["a_string", "an_integer"]) print "Testing get(unknown value) ...", print to_s(mc.get("unknown_value")) f = FooStruct() test_setget("foostruct", f) print "Testing incr ...", x = mc.incr("an_integer", 1) if x == 43: print "OK" else: print "FAIL" print "Testing decr ...", x = mc.decr("an_integer", 1) if x == 42: print "OK" else: print "FAIL" # sanity tests print "Testing sending spaces...", try: x = mc.set("this has spaces", 1) except Client.MemcachedKeyCharacterError, msg: print "OK" else: print "FAIL" print "Testing sending control characters...", try: x = mc.set("this\x10has\x11control characters\x02", 1) except Client.MemcachedKeyCharacterError, msg: print "OK" else: print "FAIL" print "Testing using insanely long key...", try: x = mc.set('a'*SERVER_MAX_KEY_LENGTH + 'aaaa', 1) except Client.MemcachedKeyLengthError, msg: print "OK" else: print "FAIL" print "Testing sending a unicode-string key...", try: x = mc.set(u'keyhere', 1) except Client.MemcachedStringEncodingError, msg: print "OK", else: print "FAIL", try: x = mc.set((u'a'*SERVER_MAX_KEY_LENGTH).encode('utf-8'), 1) except: print "FAIL", else: print "OK", import pickle s = pickle.loads('V\\u4f1a\np0\n.') try: x = mc.set((s*SERVER_MAX_KEY_LENGTH).encode('utf-8'), 1) except Client.MemcachedKeyLengthError: print "OK" else: print "FAIL" print "Testing using a value larger than the memcached value limit...", x = mc.set('keyhere', 'a'*SERVER_MAX_VALUE_LENGTH) if mc.get('keyhere') == None: print "OK", else: print "FAIL", x = mc.set('keyhere', 'a'*SERVER_MAX_VALUE_LENGTH + 'aaa') if mc.get('keyhere') == None: print "OK" else: print "FAIL" # vim: ts=4 sw=4 et :
[ "xiongjianhong@a5b1b082-b159-ab12-9a9e-d79e7dfc8adf" ]
xiongjianhong@a5b1b082-b159-ab12-9a9e-d79e7dfc8adf
8e53fc2821f50c18518010717b0e82b25950cac2
89155ebee895cbd04e4eb7a9d079a820d90ffd7e
/viewset_modelviewset_application/viewset_modelviewset_application/settings.py
9861cd4ac9f55a125dc627f00b6bae60651a2efc
[]
no_license
mahmudgithub/Rest-api-playground
822c0671b534fc057461703711ef980d9d31ce56
a452a329d60c9104afdeadde13f7493741e4914a
refs/heads/master
2023-03-31T17:23:13.605754
2021-04-11T14:10:31
2021-04-11T14:10:31
331,842,045
1
0
null
null
null
null
UTF-8
Python
false
false
2,851
py
import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '9lzw6zp^-1(=b#u!$w%7x(7_$7alx_nrvz4kd+gkl$&1q1!%m2' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app', 'rest_framework' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'viewset_modelviewset_application.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'viewset_modelviewset_application.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
adb170a554dd4d70c7c27dcdfa73e45fe7a48dd5
63304bd3fd27aca73e949579a732e183ba0c88af
/httprunner/client.py
fb3161acdfbff488d6136512fa89db89b25b4442
[ "MIT" ]
permissive
janice1027/HttpRunner
330de17485654041cf2c07022c8860364d742362
7fa1057f1675dc73640bb90c4a22e8811153226a
refs/heads/master
2021-04-27T11:50:58.682691
2018-02-22T10:53:24
2018-02-22T10:53:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,481
py
import json import re import time import requests import urllib3 from httprunner import logger from httprunner.exception import ParamsError from requests import Request, Response from requests.exceptions import (InvalidSchema, InvalidURL, MissingSchema, RequestException) urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) absolute_http_url_regexp = re.compile(r"^https?://", re.I) def prepare_kwargs(method, kwargs): if method == "POST": # if request content-type is application/json, request data should be dumped content_type = kwargs.get("headers", {}).get("content-type", "") if content_type.startswith("application/json") and "data" in kwargs: kwargs["data"] = json.dumps(kwargs["data"]) class ApiResponse(Response): def raise_for_status(self): if hasattr(self, 'error') and self.error: raise self.error Response.raise_for_status(self) class HttpSession(requests.Session): """ Class for performing HTTP requests and holding (session-) cookies between requests (in order to be able to log in and out of websites). Each request is logged so that HttpRunner can display statistics. This is a slightly extended version of `python-request <http://python-requests.org>`_'s :py:class:`requests.Session` class and mostly this class works exactly the same. However the methods for making requests (get, post, delete, put, head, options, patch, request) can now take a *url* argument that's only the path part of the URL, in which case the host part of the URL will be prepended with the HttpSession.base_url which is normally inherited from a HttpRunner class' host property. """ def __init__(self, base_url=None, *args, **kwargs): super(HttpSession, self).__init__(*args, **kwargs) self.base_url = base_url if base_url else "" def _build_url(self, path): """ prepend url with hostname unless it's already an absolute URL """ if absolute_http_url_regexp.match(path): return path elif self.base_url: return "%s%s" % (self.base_url, path) else: raise ParamsError("base url missed!") def request(self, method, url, name=None, **kwargs): """ Constructs and sends a :py:class:`requests.Request`. Returns :py:class:`requests.Response` object. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param name: (optional) Placeholder, make compatible with Locust's HttpSession :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary or bytes to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'filename': file-like-objects`` for multipart encoding upload. :param auth: (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or \ a (`connect timeout, read timeout <user/advanced.html#timeouts>`_) tuple. :type timeout: float or tuple :param allow_redirects: (optional) Set to True by default. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy. :param stream: (optional) whether to immediately download the response content. Defaults to ``False``. :param verify: (optional) if ``True``, the SSL cert will be verified. A CA_BUNDLE path can also be provided. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. """ # prepend url with hostname unless it's already an absolute URL url = self._build_url(url) logger.log_info("{method} {url}".format(method=method, url=url)) logger.log_debug("request kwargs: {kwargs}".format(kwargs=kwargs)) # store meta data that is used when reporting the request to locust's statistics request_meta = {} # set up pre_request hook for attaching meta data to the request object request_meta["method"] = method request_meta["start_time"] = time.time() if "httpntlmauth" in kwargs: from requests_ntlm import HttpNtlmAuth auth_account = kwargs.pop("httpntlmauth") kwargs["auth"] = HttpNtlmAuth( auth_account["username"], auth_account["password"]) kwargs.setdefault("timeout", 120) response = self._send_request_safe_mode(method, url, **kwargs) request_meta["url"] = (response.history and response.history[0] or response)\ .request.path_url # record the consumed time request_meta["response_time"] = int((time.time() - request_meta["start_time"]) * 1000) # get the length of the content, but if the argument stream is set to True, we take # the size from the content-length header, in order to not trigger fetching of the body if kwargs.get("stream", False): request_meta["content_size"] = int(response.headers.get("content-length") or 0) else: request_meta["content_size"] = len(response.content or "") request_meta["request_headers"] = response.request.headers request_meta["request_body"] = response.request.body request_meta["status_code"] = response.status_code request_meta["response_headers"] = response.headers request_meta["response_content"] = response.content logger.log_debug("response status_code: {}".format(response.status_code)) logger.log_debug("response headers: {}".format(response.headers)) logger.log_debug("response body: {}".format(response.text)) try: response.raise_for_status() except RequestException as e: logger.log_error(u"{exception}".format(exception=str(e))) else: logger.log_info( """status_code: {}, response_time: {} ms, response_length: {} bytes"""\ .format(request_meta["status_code"], request_meta["response_time"], \ request_meta["content_size"])) return response def _send_request_safe_mode(self, method, url, **kwargs): """ Send a HTTP request, and catch any exception that might occur due to connection problems. Safe mode has been removed from requests 1.x. """ try: prepare_kwargs(method, kwargs) return requests.Session.request(self, method, url, **kwargs) except (MissingSchema, InvalidSchema, InvalidURL): raise except RequestException as ex: resp = ApiResponse() resp.error = ex resp.status_code = 0 # with this status_code, content returns None resp.request = Request(method, url).prepare() return resp
[ "httprunner" ]
httprunner
6aa6c6c2e52debf96874619e6fbbdf59fef074ed
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/confidentialledger/azure-confidentialledger/tests/_shared/client_test_common.py
bede3f24bfa399b552959f905ed8251774a61e19
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
10,554
py
import hashlib import os import tempfile from azure.confidentialledger import ( LedgerUserRole, TransactionState, ) from .constants import NETWORK_CERTIFICATE, USER_CERTIFICATE from .testcase import ConfidentialLedgerTestCase CONFIDENTIAL_LEDGER_URL = "https://fake-confidential-ledger.azure.com" class ConfidentialLedgerClientTestMixin: class BaseTest(ConfidentialLedgerTestCase): def setUp(self): super(ConfidentialLedgerClientTestMixin.BaseTest, self).setUp() self.confidential_ledger_url = self.set_value_to_scrub( "CONFIDENTIAL_LEDGER_URL", CONFIDENTIAL_LEDGER_URL ) with tempfile.NamedTemporaryFile( "w", suffix=".pem", delete=False ) as tls_cert_file: tls_cert_file.write(NETWORK_CERTIFICATE) self.network_certificate_path = tls_cert_file.name with tempfile.NamedTemporaryFile( "w", suffix=".pem", delete=False ) as user_cert_file: user_cert_file.write( self.set_value_to_scrub( "CONFIDENTIAL_LEDGER_USER_CERTIFICATE", USER_CERTIFICATE ) ) self.user_certificate_path = user_cert_file.name def tearDown(self): os.remove(self.user_certificate_path) os.remove(self.network_certificate_path) return super(ConfidentialLedgerClientTestMixin.BaseTest, self).tearDown() def test_append_entry_flow(self): entry_contents = "Test entry from Python SDK" append_result = self.client.append_to_ledger(entry_contents=entry_contents) self.assertTrue(append_result.transaction_id) self.assertTrue(append_result.sub_ledger_id) # Test unpacking append_result_sub_ledger_id, append_result_transaction_id = append_result self.client.wait_until_durable(transaction_id=append_result_transaction_id) transaction_status = self.client.get_transaction_status( transaction_id=append_result_transaction_id ) self.assertIsNotNone(transaction_status) self.assertIs(transaction_status.state, TransactionState.COMMITTED) self.assertEqual( transaction_status.transaction_id, append_result_transaction_id ) receipt = self.client.get_transaction_receipt( transaction_id=append_result_transaction_id ) self.assertEqual(receipt.transaction_id, append_result_transaction_id) self.assertTrue(receipt.contents) latest_entry = self.client.get_ledger_entry() # The transaction ids may not be equal in the unfortunate edge case where a governance # operation occurs after the ledger append (e.g. because a node was restarted). Then, # the latest id will be higher. self.assertGreaterEqual( latest_entry.transaction_id, append_result_transaction_id ) self.assertEqual(latest_entry.contents, entry_contents) self.assertEqual(latest_entry.sub_ledger_id, append_result_sub_ledger_id) self.client.append_to_ledger( "Test entry 2 from Python SDK", wait_for_commit=True ) latest_entry = self.client.get_ledger_entry() self.assertNotEqual( latest_entry.transaction_id, append_result_transaction_id ) self.assertNotEqual(latest_entry.contents, entry_contents) self.assertEqual(latest_entry.sub_ledger_id, append_result_sub_ledger_id) original_entry = self.client.get_ledger_entry( transaction_id=append_result_transaction_id ) self.assertEqual( original_entry.transaction_id, append_result_transaction_id ) self.assertEqual(original_entry.contents, entry_contents) self.assertEqual(original_entry.sub_ledger_id, append_result_sub_ledger_id) def test_append_entry_flow_with_sub_ledger_id(self): sub_ledger_id = "132" entry_contents = "Test sub-ledger entry from Python SDK" append_result = self.client.append_to_ledger( entry_contents=entry_contents, sub_ledger_id=sub_ledger_id ) self.assertTrue(append_result.transaction_id) self.assertEqual(append_result.sub_ledger_id, sub_ledger_id) # Test unpacking append_result_sub_ledger_id, append_result_transaction_id = append_result self.client.wait_until_durable(transaction_id=append_result_transaction_id) transaction_status = self.client.get_transaction_status( transaction_id=append_result_transaction_id ) self.assertIsNotNone(transaction_status) self.assertIs(transaction_status.state, TransactionState.COMMITTED) self.assertEqual( transaction_status.transaction_id, append_result_transaction_id ) receipt = self.client.get_transaction_receipt( transaction_id=append_result_transaction_id ) self.assertEqual(receipt.transaction_id, append_result_transaction_id) self.assertTrue(receipt.contents) latest_entry = self.client.get_ledger_entry(sub_ledger_id=sub_ledger_id) # The transaction ids may not be equal in the unfortunate edge case where a governance # operation occurs after the ledger append (e.g. because a node was restarted). Then, # the latest id will be higher. self.assertGreaterEqual( latest_entry.transaction_id, append_result_transaction_id ) self.assertEqual(latest_entry.contents, entry_contents) self.assertEqual(latest_entry.sub_ledger_id, append_result_sub_ledger_id) self.client.append_to_ledger( "Test sub-ledger entry 2 from Python SDK", sub_ledger_id=sub_ledger_id, wait_for_commit=True, ) latest_entry = self.client.get_ledger_entry(sub_ledger_id=sub_ledger_id) self.assertNotEqual( latest_entry.transaction_id, append_result_transaction_id ) self.assertNotEqual(latest_entry.contents, entry_contents) self.assertEqual(latest_entry.sub_ledger_id, sub_ledger_id) original_entry = self.client.get_ledger_entry( transaction_id=append_result_transaction_id, sub_ledger_id=sub_ledger_id ) self.assertEqual( original_entry.transaction_id, append_result_transaction_id ) self.assertEqual(original_entry.contents, entry_contents) self.assertEqual(original_entry.sub_ledger_id, append_result_sub_ledger_id) def test_range_query(self): modulus = 5 num_messages_sent = 201 # Should result in 2 pages. messages = {m: [] for m in range(modulus)} for i in range(num_messages_sent): message = "message-{0}".format(i) kwargs = ( {} if modulus == 0 else {"sub_ledger_id": "{0}".format(i % modulus)} ) append_result = self.client.append_to_ledger( entry_contents=message, **kwargs ) messages[i % modulus].append( (append_result.transaction_id, message, kwargs) ) num_matched = 0 for i in range(modulus): query_result = self.client.get_ledger_entries( from_transaction_id=messages[i][0][0], **messages[i][0][2] ) for index, historical_entry in enumerate(query_result): self.assertEqual( historical_entry.transaction_id, messages[i][index][0] ) self.assertEqual(historical_entry.contents, messages[i][index][1]) num_matched += 1 # Due to replication delay, it's possible not all messages are matched. self.assertGreaterEqual(num_matched, 0.9 * num_messages_sent) def test_user_management(self): user_id = "0" * 36 # AAD Object Ids have length 36 user = self.client.create_or_update_user( user_id, LedgerUserRole.CONTRIBUTOR ) self.assertEqual(user.id, user_id) self.assertEqual(user.role, LedgerUserRole.CONTRIBUTOR) user = self.client.get_user(user_id) self.assertEqual(user.id, user_id) self.assertEqual(user.role, LedgerUserRole.CONTRIBUTOR) self.client.delete_user(user_id) user = self.client.create_or_update_user(user_id, LedgerUserRole.READER) self.assertEqual(user.id, user_id) self.assertEqual(user.role, LedgerUserRole.READER) user = self.client.get_user(user_id) self.assertEqual(user.id, user_id) self.assertEqual(user.role, LedgerUserRole.READER) self.client.delete_user(user_id) def test_verification_methods(self): consortium = self.client.get_consortium() self.assertEqual(len(consortium.members), 1) for member in consortium.members: self.assertTrue(member.certificate) self.assertTrue(member.id) constitution = self.client.get_constitution() self.assertTrue(constitution.contents) self.assertTrue(constitution.digest) self.assertEqual( constitution.digest.lower(), hashlib.sha256(constitution.contents.encode()).hexdigest().lower(), ) ledger_enclaves = self.client.get_enclave_quotes() self.assertEqual(len(ledger_enclaves.quotes), 3) self.assertIn(ledger_enclaves.source_node, ledger_enclaves.quotes) for node_id, quote in ledger_enclaves.quotes.items(): self.assertEqual(node_id, quote.node_id) self.assertTrue(quote.node_id) self.assertTrue(quote.mrenclave) self.assertTrue(quote.raw_quote) self.assertTrue(quote.version)
b8fc676b24f897ed85ac06ddd8a5dcf79961772a
bc441bb06b8948288f110af63feda4e798f30225
/api_gateway_sdk/model/easy_flow/deploy_batch_pb2.py
d10e3afba86214003b6501929a438872c85b6ba4
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
5,564
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: deploy_batch.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from api_gateway_sdk.model.easy_flow import deploy_target_pb2 as api__gateway__sdk_dot_model_dot_easy__flow_dot_deploy__target__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='deploy_batch.proto', package='easy_flow', syntax='proto3', serialized_options=_b('ZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flow'), serialized_pb=_b('\n\x12\x64\x65ploy_batch.proto\x12\teasy_flow\x1a\x33\x61pi_gateway_sdk/model/easy_flow/deploy_target.proto\"\xbe\x01\n\x0b\x44\x65ployBatch\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\x10\n\x08\x62\x61tchNum\x18\x02 \x01(\x05\x12\x15\n\rbatchInterval\x18\x03 \x01(\x05\x12/\n\x07\x62\x61tches\x18\x04 \x03(\x0b\x32\x1e.easy_flow.DeployBatch.Batches\x12\x12\n\nfailedStop\x18\x05 \x01(\x08\x1a\x33\n\x07\x42\x61tches\x12(\n\x07targets\x18\x01 \x03(\x0b\x32\x17.easy_flow.DeployTargetBEZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flowb\x06proto3') , dependencies=[api__gateway__sdk_dot_model_dot_easy__flow_dot_deploy__target__pb2.DESCRIPTOR,]) _DEPLOYBATCH_BATCHES = _descriptor.Descriptor( name='Batches', full_name='easy_flow.DeployBatch.Batches', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='targets', full_name='easy_flow.DeployBatch.Batches.targets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=226, serialized_end=277, ) _DEPLOYBATCH = _descriptor.Descriptor( name='DeployBatch', full_name='easy_flow.DeployBatch', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='easy_flow.DeployBatch.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchNum', full_name='easy_flow.DeployBatch.batchNum', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batchInterval', full_name='easy_flow.DeployBatch.batchInterval', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batches', full_name='easy_flow.DeployBatch.batches', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='failedStop', full_name='easy_flow.DeployBatch.failedStop', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DEPLOYBATCH_BATCHES, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=87, serialized_end=277, ) _DEPLOYBATCH_BATCHES.fields_by_name['targets'].message_type = api__gateway__sdk_dot_model_dot_easy__flow_dot_deploy__target__pb2._DEPLOYTARGET _DEPLOYBATCH_BATCHES.containing_type = _DEPLOYBATCH _DEPLOYBATCH.fields_by_name['batches'].message_type = _DEPLOYBATCH_BATCHES DESCRIPTOR.message_types_by_name['DeployBatch'] = _DEPLOYBATCH _sym_db.RegisterFileDescriptor(DESCRIPTOR) DeployBatch = _reflection.GeneratedProtocolMessageType('DeployBatch', (_message.Message,), { 'Batches' : _reflection.GeneratedProtocolMessageType('Batches', (_message.Message,), { 'DESCRIPTOR' : _DEPLOYBATCH_BATCHES, '__module__' : 'deploy_batch_pb2' # @@protoc_insertion_point(class_scope:easy_flow.DeployBatch.Batches) }) , 'DESCRIPTOR' : _DEPLOYBATCH, '__module__' : 'deploy_batch_pb2' # @@protoc_insertion_point(class_scope:easy_flow.DeployBatch) }) _sym_db.RegisterMessage(DeployBatch) _sym_db.RegisterMessage(DeployBatch.Batches) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
5ad76af557aa31011c1d9fd48b790dd553e175b8
02d1d89ed3c2a71a4f5a36f3a19f0683a0ae37e5
/navigation/terrain_id/terrain_training/build/milk/milk/tests/test_perceptron.py
6069de0370dbe07b08d521102bee703edf4c253c
[ "MIT" ]
permissive
lforet/robomow
49dbb0a1c873f75e11228e24878b1e977073118b
eca69d000dc77681a30734b073b2383c97ccc02e
refs/heads/master
2016-09-06T10:12:14.528565
2015-05-19T16:20:24
2015-05-19T16:20:24
820,388
11
6
null
null
null
null
UTF-8
Python
false
false
728
py
import numpy as np from milk.supervised.perceptron import perceptron_learner from milk.supervised import _perceptron from milksets.yeast import load def test_raw(): np.random.seed(23) data = np.random.random((100,10)) data[50:] += .5 labels = np.repeat((0,1), 50) weights = np.zeros((11)) eta = 0.1 for i in xrange(20): _perceptron.perceptron(data, labels, weights, eta) errs = _perceptron.perceptron(data, labels, weights, eta) assert errs < 10 def test_wrapper(): features,labels = load() labels = (labels >= 5) learner = perceptron_learner() model = learner.train(features, labels) test = map(model.apply, features) assert np.mean(labels != test) < .35
e82043fb547aed02d1c9a63e9a349ebb3ecee747
9163d7b7f9301b4a334ced0a91e28348fdaa8882
/other_function/generate_image_without_rule.py
d3223d3c6cfcb34fd6acd170520b6a7976211050
[ "Apache-2.0" ]
permissive
frankiegu/generate_click_captcha
2c9c551bec69d5c40e6a1354ec6f7dbef18e6447
7fdb2cafe4c2b5d0245b9b8c4fc9a8b8dee5f3a9
refs/heads/master
2021-03-03T14:56:30.486088
2019-01-03T16:03:00
2019-01-03T16:03:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
#!/usr/bin/python # -*- coding: UTF-8 -*- from PIL import Image import random img = Image.new("RGB", (640, 480), (0, 255, 0)) w, h = img.size for i in range(h): for j in range(w): a = random.randint(10, 230) b = random.randint(10, 230) c = random.randint(10, 230) img.putpixel((j, i), (a, b, c)) img.show()
d3296ed2a784f2ba7881764db316ee68412339b7
60aac823e576a1c415bc25901e113ad0f52fbd9a
/abc204/b.py
a639b661cf948d6b00950b036601a1220c600983
[]
no_license
nishiwakki/atCoder
d4209e717529ab606d0e6fceb0ce170d228b1532
fc5a6b667aa8c11c368fc712c5633da5ebf6bdf2
refs/heads/main
2023-06-23T08:08:12.072211
2021-07-24T14:01:52
2021-07-24T14:01:52
309,862,702
0
0
null
null
null
null
UTF-8
Python
false
false
143
py
# -*- coding: UTF-8 -*- N = int(input()) A = list(map(int, input().split())) ans = 0 for a in A: if a > 10: ans += a-10 print(ans)
54da71a35a2983c730ede3d625d2a5f53256bc8f
50dd2a43daa8316fc11e0c176b5872738fcc5dde
/Learning/125_GetSpotlightNewPics/GetSpotlightNewPics.py
4940becf12590fdad010000d2471096aef24c6a1
[]
no_license
FrenchBear/Python
58204d368e3e72071eef298ff00d06ff51bd7914
b41ab4b6a59ee9e145ef2cd887a5fe306973962b
refs/heads/master
2023-08-31T18:43:37.792427
2023-08-26T15:53:20
2023-08-26T15:53:20
124,466,047
0
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
# GetSpotlightNewPics # Retrieves new Spotlight (microsoft wallpapers) pictures # # 2023-03-25 PV # 2023-04-12 PV Logfile # 2023-07-19 PV Added missing import import datetime import shutil import os from common_fs import get_files, extension_part source = r'C:\Users\Pierr\AppData\Local\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets' dest = r'C:\Users\Pierr\OneDrive\PicturesODMisc\Papiers peints\Spotlight' logfile = r'C:\temp\GetSpotlightNewPics-' + datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S.log') doit = True dest_files = set(file.lower() for file in get_files(dest) if extension_part(file.lower()) == '.jpg') print("GetSpotlightNewPics started") with open(logfile, 'w') as log: copied = 0 for filebase in get_files(source): file = filebase.lower()+'.jpg' if file not in dest_files: print('Add', file) log.write(f'Add {file}\n') copied += 1 if doit: shutil.copyfile(os.path.join(source, filebase), os.path.join(dest, file)) print('Copied:', copied) log.write(f'Copied: {copied}\n')
a340f7261fc62eeabc63f2815bac12c4125010b6
3b2940c38412e5216527e35093396470060cca2f
/top/api/rest/FuwuScoresGetRequest.py
74b17bad19a9821410b0b86c51d54b0c0426e9c7
[]
no_license
akingthink/goods
842eb09daddc2611868b01ebd6e330e5dd7d50be
ffdb5868a8df5c2935fc6142edcdf4c661c84dca
refs/heads/master
2021-01-10T14:22:54.061570
2016-03-04T09:48:24
2016-03-04T09:48:24
45,093,302
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
''' Created by auto_sdk on 2015-01-20 12:44:31 ''' from top.api.base import RestApi class FuwuScoresGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.current_page = None self.date = None self.page_size = None def getapiname(self): return 'taobao.fuwu.scores.get'
997ca3426e4c754a39df1f9a351c36b3da37e50a
64bdedbe9ede8c21f8daef2234faf248e8bcad2f
/flask_app/flask_blog/main/routes.py
5940ba8d9dd8fefe1821b71dae8384a32317b247
[ "MIT" ]
permissive
Ziang-Lu/Flask-Blog
c02b5f6501af2d7f55350e337b5eed6a7f3d528b
aa0aa4d019de47e122cded8d4ff637d1b6edc410
refs/heads/master
2023-08-05T00:59:35.440152
2023-07-15T07:08:54
2023-07-15T07:08:54
203,568,155
1
0
MIT
2023-07-25T17:50:37
2019-08-21T11:15:05
Python
UTF-8
Python
false
false
2,022
py
# -*- coding: utf-8 -*- """ Flask main-related routes module. """ from datetime import datetime import requests from flask import Blueprint, flash, redirect, render_template, request, url_for from flask_login import current_user from ..utils import POST_SERVICE, get_iter_pages # Create a main-related blueprint main_bp = Blueprint(name='main', import_name=__name__) @main_bp.route('/') @main_bp.route('/home') def home(): """ Home page. :return: """ page = request.args.get('page', type=int, default=1) request_url = f'{POST_SERVICE}/posts?page={page}&per_page=5' username = request.args.get('user') if username: # Try to fetch all the posts by all the users that this user follows as # well as this user himself if not current_user.is_authenticated: flash('Please log in first.', category='danger') return redirect(url_for('auth.login')) elif current_user.username != username: flash( 'You can only view your own followed posts.', category='danger' ) return redirect(url_for('main.home', user=current_user.username)) request_url += f'&user={username}' r = requests.get(request_url) paginated_data = r.json() posts_data = paginated_data['data']['posts'] # Convert the datetime strings back to objects for post in posts_data: post['date_posted'] = datetime.fromisoformat(post['date_posted']) pages = paginated_data['pagination_meta']['pages'] context = { 'p': { 'items': posts_data, 'page': page, 'pages': pages, 'total': paginated_data['pagination_meta']['total'], 'iter_pages': get_iter_pages(pages, page) } } return render_template('home.html', **context) @main_bp.route('/about') def about(): """ About page. :return: """ context = { 'title': 'About' } return render_template('about.html', **context)
d34a9292cb308aac1c26003f0a06be2a49244505
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02953/s447346234.py
650a3b88da697c512c29fd85204e7c24463e8dae
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
236
py
N=int(input()) H=list(map(int,input().split())) if N>1: for i in range(N-1): if H[i]<=H[i+1]-1: H[i+1]-=1 if H[i]>H[i+1]: print('No') exit() print('Yes') else: print('Yes')
43c481740de68c095956f67ca9dab167d5cca6b9
2cf560477807e9f3e869474defda47f2638347b4
/glitter_news/urls.py
35d0dcf2342ae5c739e2fabf9d84b2241c1e3c0d
[]
no_license
axsapronov/django-glitter-news
37035d45fd1edbf619659b9451184500ab2fce33
000d548bafa8c777a3721611ba4620173713b87d
refs/heads/master
2021-06-06T10:06:39.859177
2016-04-13T11:50:18
2016-04-13T11:50:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# -*- coding: utf-8 -*- from django.conf.urls import url from . import views, feeds urlpatterns = [ url( r'^$', views.PostListView.as_view(), name='list' ), url( r'^category/(?P<slug>[-\w]+)/$', views.PostListCategoryView.as_view(), name='post-list-category' ), url( r'^(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$', views.PostDetailView.as_view(), name='post-detail' ), url( r'^feed/$', feeds.NewsFeed(), name='feed' ), url( r'^feed/(?P<slug>[-\w]+)/$', feeds.NewsCategoryFeed(), name='category-feed' ), ]
2047311125959d36fc25fbb7f1224110b20fae54
52107637d2687db30f168ba15ffd1e1e534f4cb4
/mirdata/datasets/tonas.py
ab1246b7ec924539ae8aa594a9b692e98d1cc01d
[ "BSD-3-Clause" ]
permissive
mir-dataset-loaders/mirdata
9be10e0201b08abf51fc72338ccaaacc8216145b
496eb4a9120aa16ff6963792f0c8b738a0c3f310
refs/heads/master
2023-05-07T13:15:16.517429
2023-03-27T13:54:37
2023-03-27T13:54:37
170,765,267
297
65
BSD-3-Clause
2023-08-05T22:48:48
2019-02-14T22:11:33
Python
UTF-8
Python
false
false
12,719
py
""" TONAS Loader .. admonition:: Dataset Info :class: dropdown This dataset contains a music collection of 72 sung excerpts representative of three a cappella singing styles (Deblas, and two variants of Martinete). It has been developed within the COFLA research project context. The distribution is as follows: 1. 16 Deblas 2. 36 Martinete 1 3. 20 Martinete 2 This collection was built in the context of a study on similarity and style classification of flamenco a cappella singing styles (Tonas) by the flamenco expert Dr. Joaquin Mora, Universidad de Sevilla. We refer to (Mora et al. 2010) for a comprehensive description of the considered styles and their musical characteristics. All 72 excerpts are monophonic, their average duration is 30 seconds and there is enough variability for a proper evaluation of our methods, including a variety of singers, recording conditions, presence of percussion, clapping, background voices and noise. We also provide manual melodic transcriptions, generated by the COFLA team and Cristina López Gómez. The annotations are represented by specifying the value (in this case, Notes and F0) at the related timestamps. TONAS' note and F0 annotations also have "Energy" information, which refers to the average energy value through all the frames in which a note or a F0 value is comprised. Using this dataset: TONAS dataset can be obtained upon request. Please refer to this link: https://zenodo.org/record/1290722 to request access and follow the indications of the .download() method for a proper storing and organization of the TONAS dataset. Citing this dataset: When TONAS is used for academic research, we would highly appreciate if scientific publications of works partly based on the TONAS dataset quote the following publication: - Music material: Mora, J., Gomez, F., Gomez, E., Escobar-Borrego, F.J., Diaz-Banez, J.M. (2010). Melodic Characterization and Similarity in A Cappella Flamenco Cantes. 11th International Society for Music Information Retrieval Conference (ISMIR 2010). - Transcriptions: Gomez, E., Bonada, J. (in Press). Towards Computer-Assisted Flamenco Transcription: An Experimental Comparison of Automatic Transcription Algorithms As Applied to A Cappella Singing. Computer Music Journal. """ import csv import logging import os from typing import TextIO, Tuple, Optional from deprecated.sphinx import deprecated import librosa import numpy as np from smart_open import open from mirdata import annotations, jams_utils, core, io BIBTEX = """ Music material: @inproceedings{tonas_music, author = {Mora, Joaquin and Gómez, Francisco and Gómez, Emilia and Borrego, Francisco Javier and Díaz-Báñez, José}, year = {2010}, month = {01}, pages = {351-356}, title = {Characterization and Similarity in A Cappella Flamenco Cantes.} } Transcriptions: @inproceedings{tonas_annotations, author = {E. {Gómez} and J. {Bonada}}, journal = {Computer Music Journal}, title = {Towards Computer-Assisted Flamenco Transcription: An Experimental Comparison of Automatic Transcription Algorithms as Applied to A Cappella Singing}, year = {2013}, volume = {37}, number = {2}, pages = {73-90}, doi = {10.1162/COMJ_a_00180}} """ INDEXES = { "default": "1.0", "test": "1.0", "1.0": core.Index(filename="tonas_index_1.0.json"), } DOWNLOAD_INFO = """ PLEASE READ CAREFULLY ALL THE INFORMATION SO YOU DON'T MISS ANY STEP: Unfortunately, the TONAS dataset is not available to be shared openly. However, you can request access to the dataset in the following link, providing a brief explanation of what your are going to use the dataset for: ==> https://zenodo.org/record/1290722 Then, unzip the dataset, change the dataset name to: "tonas" (with lowercase), and locate it to {}. If you unzip it into a different path, please remember to set the right data_home when initializing the dataset. """ LICENSE_INFO = """ The TONAS dataset is offered free of charge for internal non-commercial use only. You can not redistribute it nor modify it. Dataset by COFLA team. Copyright © 2012 COFLA project, Universidad de Sevilla. Distribution rights granted to Music Technology Group, Universitat Pompeu Fabra. All Rights Reserved. """ class Track(core.Track): """TONAS track class Args: track_id (str): track id of the track data_home (str): Local path where the dataset is stored. If `None`, looks for the data in the default directory, `~/mir_datasets/TONAS` Attributes: f0_path (str): local path where f0 melody annotation file is stored notes_path(str): local path where notation annotation file is stored audio_path(str): local path where audio file is stored track_id (str): track id singer (str): performing singer (cantaor) title (str): title of the track song tuning_frequency (float): tuning frequency of the symbolic notation Cached Properties: f0_automatic (F0Data): automatically extracted f0 f0_corrected (F0Data): manually corrected f0 annotations notes (NoteData): annotated notes """ def __init__(self, track_id, data_home, dataset_name, index, metadata): super().__init__(track_id, data_home, dataset_name, index, metadata) self.f0_path = self.get_path("f0") self.notes_path = self.get_path("notes") self.audio_path = self.get_path("audio") @property def style(self): return self._track_metadata.get("style") @property def singer(self): return self._track_metadata.get("singer") @property def title(self): return self._track_metadata.get("title") @property def tuning_frequency(self): return _load_tuning_frequency(self.notes_path) @property def audio(self) -> Tuple[np.ndarray, float]: """The track's audio Returns: * np.ndarray - audio signal * float - sample rate """ return load_audio(self.audio_path) @core.cached_property def f0_automatic(self) -> Optional[annotations.F0Data]: return load_f0(self.f0_path, False) @core.cached_property def f0_corrected(self) -> Optional[annotations.F0Data]: return load_f0(self.f0_path, True) @property def f0(self): logging.warning( "Track.f0 is deprecated as of 0.3.4 and will be removed in a future version. Use" " Track.f0_automatic or Track.f0_corrected" ) return self.f0_corrected @core.cached_property def notes(self) -> Optional[annotations.NoteData]: return load_notes(self.notes_path) def to_jams(self): """Get the track's data in jams format Returns: jams.JAMS: the track's data in jams format """ return jams_utils.jams_converter( audio_path=self.audio_path, f0_data=[(self.f0, "pitch_contour")], note_data=[(self.notes, "note_hz")], metadata=self._track_metadata, ) def load_audio(fhandle: str) -> Tuple[np.ndarray, float]: """Load a TONAS audio file. Args: fhandle (str): path to an audio file Returns: * np.ndarray - the mono audio signal * float - The sample rate of the audio file """ return librosa.load(fhandle, sr=44100, mono=True) # no decorator because of https://github.com/mir-dataset-loaders/mirdata/issues/503 def load_f0(fpath: str, corrected: bool) -> Optional[annotations.F0Data]: """Load TONAS f0 annotations Args: fpath (str): path pointing to f0 annotation file corrected (bool): if True, loads manually corrected frequency values otherwise, loads automatically extracted frequency values Returns: F0Data: predominant f0 melody """ times = [] freqs = [] freqs_corr = [] energies = [] with open(fpath, "r") as fhandle: reader = np.genfromtxt(fhandle) for line in reader: times.append(float(line[0])) freqs.append(float(line[2])) freqs_corr.append(float(line[3])) energies.append(float(line[1])) freq_array = np.array(freqs_corr if corrected else freqs, dtype="float") energy_array = np.array(energies, dtype="float") voicing_array = (freq_array > 0).astype("float") return annotations.F0Data( np.array(times, dtype="float"), "s", freq_array, "hz", voicing_array, "binary", energy_array, "energy", ) @io.coerce_to_string_io def load_notes(fhandle: TextIO) -> Optional[annotations.NoteData]: """Load TONAS note data from the annotation files Args: fhandle (str or file-like): path or file-like object pointing to a notes annotation file Returns: NoteData: note annotations """ intervals = [] pitches = [] energy = [] reader = csv.reader(fhandle, delimiter=",") tuning = next(reader)[0] for line in reader: intervals.append([line[0], float(line[0]) + float(line[1])]) # Convert midi value to frequency note_hz = _midi_to_hz(float(line[2]), float(tuning)) pitches.append(note_hz) energy.append(float(line[3])) note_data = annotations.NoteData( np.array(intervals, dtype="float"), "s", np.array(pitches, dtype="float"), "hz", np.array(energy, dtype="float"), "energy", ) return note_data @io.coerce_to_string_io def _load_tuning_frequency(fhandle: TextIO) -> float: """Load tuning frequency of the track with re Args: fhandle (str or file-like): path or file-like object pointing to a notes annotation file Returns: tuning_frequency (float): returns new tuning frequency considering the deviation """ # Compute tuning frequency cents_deviation = float(next(csv.reader(fhandle, delimiter=","))[0]) tuning_frequency = 440 * ( 2 ** (cents_deviation / 1200) ) # Frequency of A (common value is 440Hz) return tuning_frequency def _midi_to_hz(midi_note, tuning_deviation): """Function to convert MIDI to Hz with certain tuning freq Args: midi_note (float): note represented in midi value tuning_deviation (float): deviation in cents with respect to 440Hz Returns: (float): note in Hz considering the new tuning frequency """ tuning_frequency = 440 * ( 2 ** (tuning_deviation / 1200) ) # Frequency of A (common value is 440Hz) return (tuning_frequency / 32) * (2 ** ((midi_note - 9) / 12)) @core.docstring_inherit(core.Dataset) class Dataset(core.Dataset): """ The TONAS dataset """ def __init__(self, data_home=None, version="default"): super().__init__( data_home, version, name="tonas", track_class=Track, bibtex=BIBTEX, indexes=INDEXES, download_info=DOWNLOAD_INFO, license_info=LICENSE_INFO, ) @core.cached_property def _metadata(self): metadata_path = os.path.join(self.data_home, "TONAS-Metadata.txt") metadata = {} try: with open(metadata_path, "r", errors="ignore") as f: reader = csv.reader( (x.replace("\0", "") for x in f), delimiter="\t" ) # Fix wrong byte for line in reader: if line: # Do not consider empty lines index = line[0].replace(".wav", "") metadata[index] = { "style": line[1], "title": line[2], "singer": line[3], } except FileNotFoundError: raise FileNotFoundError("Metadata not found. Did you run .download()?") return metadata @deprecated(reason="Use mirdata.datasets.tonas.load_audio", version="0.3.4") def load_audio(self, *args, **kwargs): return load_audio(*args, **kwargs) @deprecated(reason="Use mirdata.datasets.tonas.load_f0", version="0.3.4") def load_f0(self, *args, **kwargs): return load_f0(*args, **kwargs) @deprecated(reason="Use mirdata.datasets.tonas.load_notes", version="0.3.4") def load_notes(self, *args, **kwargs): return load_notes(*args, **kwargs)
1fbeed6d1f4cf47293abb9b8829b7839b6fd8f97
7d8a4d58fc4c5a73ce8c85e513253a86d6290d3b
/plugin.video.fen/resources/lib/modules/player.py
249b06a8a63cab8e5773dd11789c1c58150c8a88
[]
no_license
bopopescu/icon
cda26d4463d264b7e2080da51f29d84cc48dfb81
e385a6225dd11b7fea5a11215d655cf5006bb018
refs/heads/master
2022-01-12T19:00:04.951604
2019-07-10T05:35:44
2019-07-10T05:35:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,191
py
# -*- coding: utf-8 -*- import xbmc, xbmcplugin, xbmcgui import sys import urllib import json from urlparse import parse_qsl from resources.lib.modules.indicators_bookmarks import detect_bookmark, erase_bookmark from resources.lib.modules.nav_utils import hide_busy_dialog, close_all_dialog from resources.lib.modules.utils import sec2time import settings # from resources.lib.modules.utils import logger __handle__ = int(sys.argv[1]) window = xbmcgui.Window(10000) class FenPlayer(xbmc.Player): def __init__ (self): xbmc.Player.__init__(self) self.set_resume = settings.set_resume() self.set_watched = settings.set_watched() self.autoplay_nextep = settings.autoplay_next_episode() self.nextep_threshold = settings.nextep_threshold() self.nextep_info = None self.delete_nextep_playcount = True def run(self, url=None): params = dict(parse_qsl(sys.argv[2].replace('?',''))) rootname = params.get('rootname', '') try: if rootname == 'nill': url = urllib.unquote(params.get("url")) self.play(url) return url = url if url else params.get("url") if 'url' in params else None url = urllib.unquote(url) if not url: return self.meta = json.loads(window.getProperty('fen_media_meta')) rootname = self.meta['rootname'] if 'rootname' in self.meta else '' bookmark = self.bookmarkChoice() if bookmark == -1: return self.meta.update({'url': url, 'bookmark': bookmark}) listitem = xbmcgui.ListItem(path=url) try: listitem.setProperty('StartPercent', str(self.meta.get('bookmark'))) listitem.setArt({'poster': self.meta.get('poster'), 'fanart': self.meta.get('fanart'), 'banner': self.meta.get('banner'), 'clearlogo': self.meta.get('clearlogo'), 'landscape': self.meta.get('landscape')}) if self.meta['vid_type'] == 'movie': listitem.setInfo( 'video', {'mediatype': 'movie', 'trailer': str(self.meta['trailer']), 'title': self.meta['title'], 'size': '0', 'duration': self.meta['duration'], 'plot': self.meta['plot'], 'rating': self.meta['rating'], 'premiered': self.meta['premiered'], 'studio': self.meta['studio'],'year': self.meta['year'], 'genre': self.meta['genre'], 'tagline': self.meta['tagline'], 'code': self.meta['imdb_id'], 'imdbnumber': self.meta['imdb_id'], 'director': self.meta['director'], 'writer': self.meta['writer'], 'votes': self.meta['votes']}) elif self.meta['vid_type'] == 'episode': listitem.setInfo( 'video', {'mediatype': 'episode', 'trailer': str(self.meta['trailer']), 'title': self.meta['ep_name'], 'tvshowtitle': self.meta['title'], 'size': '0', 'plot': self.meta['plot'], 'year': self.meta['year'], 'premiered': self.meta['premiered'], 'genre': self.meta['genre'], 'season': int(self.meta['season']), 'episode': int(self.meta['episode']), 'duration': str(self.meta['duration']), 'rating': self.meta['rating']}) except: pass try: self.play(url, listitem) except: xbmcplugin.setResolvedUrl(__handle__, True, listitem) self.monitor() except: return def bookmarkChoice(self): season = self.meta.get('season', '') episode = self.meta.get('episode', '') if season == 0: season = '' if episode == 0: episode = '' bookmark = 0 try: resume_point, curr_time = detect_bookmark(self.meta['vid_type'], self.meta['media_id'], season, episode) except: resume_point = 0 if resume_point > 0: percent = resume_point raw_time = float(curr_time) time = sec2time(raw_time, n_msec=0) bookmark = self.getResumeStatus(time, percent, bookmark, self.meta.get('from_library', None)) if bookmark == 0: erase_bookmark(self.meta['vid_type'], self.meta['media_id'], season, episode) return bookmark def getResumeStatus(self, time, percent, bookmark, from_library): if settings.auto_resume(): return percent dialog = xbmcgui.Dialog() xbmc.sleep(600) choice = dialog.contextmenu(['Resume from [B]%s[/B]' % time, 'Start from Beginning']) return percent if choice == 0 else bookmark if choice == 1 else -1 def monitor(self): self.library_setting = 'library' if 'from_library' in self.meta else None self.autoplay_next_episode = True if self.meta['vid_type'] == 'episode' and self.autoplay_nextep else False while not self.isPlayingVideo(): xbmc.sleep(100) close_all_dialog() while self.isPlayingVideo(): try: self.total_time = self.getTotalTime() self.curr_time = self.getTime() xbmc.sleep(100) if self.autoplay_next_episode: current_point = round(float(self.curr_time/self.total_time*100),1) if current_point >= self.nextep_threshold: if not self.nextep_info: self.nextEpPrep() else: pass except: pass self.mediaWatchedMarker() def mediaWatchedMarker(self): try: if self.delete_nextep_playcount: window.clearProperty('current_autoplay_next_number') resume_point = round(float(self.curr_time/self.total_time*100),1) from_search = 'true' xbmc.sleep(3000) if self.set_resume < resume_point < self.set_watched: from resources.lib.modules.indicators_bookmarks import set_bookmark set_bookmark(self.meta['vid_type'], self.meta['media_id'], self.curr_time, self.total_time, self.meta.get('season', ''), self.meta.get('episode', ''), from_search) elif resume_point > self.set_watched: if self.meta['vid_type'] == 'movie': from resources.lib.modules.indicators_bookmarks import mark_movie_as_watched_unwatched watched_function = mark_movie_as_watched_unwatched watched_params = {"mode": "mark_movie_as_watched_unwatched", "action": 'mark_as_watched', "media_id": self.meta['media_id'], "title": self.meta['title'], "year": self.meta['year'], "from_search": from_search} else: from resources.lib.modules.indicators_bookmarks import mark_episode_as_watched_unwatched watched_function = mark_episode_as_watched_unwatched watched_params = {"mode": "mark_episode_as_watched_unwatched", "action": "mark_as_watched", "season": self.meta['season'], "episode": self.meta['episode'], "media_id": self.meta['media_id'], "title": self.meta['title'], "year": self.meta['year'], "imdb_id": self.meta['imdb_id'], "tvdb_id": self.meta["tvdb_id"], "from_search": from_search} watched_function(watched_params) else: pass except: pass return def nextEpPrep(self): auto_nextep_limit_reached = False autoplay_next_check_threshold = settings.autoplay_next_check_threshold() try: current_number = int(window.getProperty('current_autoplay_next_number')) except: current_number = 1 if autoplay_next_check_threshold != 0: if current_number == autoplay_next_check_threshold: auto_nextep_limit_reached = True continue_playing = xbmcgui.Dialog().yesno('Fen Next Episode', '[B]Are you still watching %s?[/B]' % self.meta['title'], '', '', 'Not Watching', 'Still Watching', 10000) if not continue_playing == 1: from resources.lib.modules.nav_utils import notification notification('Fen Next Episode Cancelled', 6000) self.nextep_info = {'pass': True} if not self.nextep_info: from resources.lib.modules.next_episode import nextep_playback_info, nextep_play self.nextep_info = nextep_playback_info(self.meta['tmdb_id'], int(self.meta['season']), int(self.meta['episode']), self.library_setting) if not self.nextep_info.get('pass', False): if not auto_nextep_limit_reached: self.delete_nextep_playcount = False window.setProperty('current_autoplay_next_number', str(current_number+1)) nextep_play(self.nextep_info) # def onAVStarted(self): # close_all_dialog() # def onPlayBackStarted(self): # close_all_dialog() def playAudioAlbum(self, t_files=None, name=None, from_seperate=False): import os import xbmcaddon from resources.lib.modules.utils import clean_file_name, batch_replace, to_utf8 from resources.lib.modules.nav_utils import setView __addon_id__ = 'plugin.video.fen' __addon__ = xbmcaddon.Addon(id=__addon_id__) __handle__ = int(sys.argv[1]) addon_dir = xbmc.translatePath(__addon__.getAddonInfo('path')) icon_directory = settings.get_theme() default_furk_icon = os.path.join(icon_directory, 'furk.png') formats = ('.3gp', ''), ('.aac', ''), ('.flac', ''), ('.m4a', ''), ('.mp3', ''), \ ('.ogg', ''), ('.raw', ''), ('.wav', ''), ('.wma', ''), ('.webm', ''), ('.ra', ''), ('.rm', '') params = dict(parse_qsl(sys.argv[2].replace('?',''))) furk_files_list = [] playlist = xbmc.PlayList(xbmc.PLAYLIST_MUSIC) playlist.clear() if from_seperate: t_files = [i for i in t_files if clean_file_name(i['path']) == params.get('item_path')] for item in t_files: try: name = item['path'] if not name else name if not 'audio' in item['ct']: continue url = item['url_dl'] track_name = clean_file_name(batch_replace(to_utf8(item['name']), formats)) listitem = xbmcgui.ListItem(track_name) listitem.setThumbnailImage(default_furk_icon) listitem.setInfo(type='music',infoLabels={'title': track_name, 'size': int(item['size']), 'album': clean_file_name(batch_replace(to_utf8(name), formats)),'duration': item['length']}) listitem.setProperty('mimetype', 'audio/mpeg') playlist.add(url, listitem) if from_seperate: furk_files_list.append((url, listitem, False)) except: pass self.play(playlist) if from_seperate: xbmcplugin.addDirectoryItems(__handle__, furk_files_list, len(furk_files_list)) setView('view.furk_files') xbmcplugin.endOfDirectory(__handle__)
7c3dfc04897f0d4d50c778ed9925e8a9a3c4fdb4
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p2DJ/New/R2/benchmark/startCirq84.py
a797a7c4d5d7e49cf7b5aedb3b512c541b22a87e
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,711
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=2 # total number=9 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=6 c.append(cirq.X.on(input_qubit[1])) # number=7 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=8 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=4 c.append(cirq.X.on(input_qubit[1])) # number=2 c.append(cirq.X.on(input_qubit[1])) # number=3 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq84.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
f8bf83673f352023ed8c7419fc205c8eee6cfc42
e9f096e564afc9f0cfabaeaac67c2ff2b1c46d24
/pymysql01/update.py
db767436d4285c1e11b745dfe591e848422f87e9
[]
no_license
zh199609/pythonLearning
dcb4bfb4560fab0ac66a88934af278489abff38d
430c70f1892966cf8f6b01e30e3a7996e83cc7ff
refs/heads/master
2021-11-21T12:49:21.522780
2021-08-31T13:14:55
2021-08-31T13:14:55
238,373,672
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
# 创建连接 import pymysql conn = pymysql.connect(host="localhost", user='root', password='root', database='books', autocommit=True) # 获取游标 cursor = conn.cursor() # 执行sql sql = "update t_book set title = '西游记修改01' where id = 4" cursor.execute(sql) print("影响的记录数:", cursor.rowcount) # 关闭游标 cursor.close() # 关闭连接 conn.close() try: print('try') except Exception as e: print(e) finally: print('finally')
b8f99ce6a6829a95a5e4779296dbd76a1d416365
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-bms/huaweicloudsdkbms/v1/model/address_info.py
5ab5c287376294e8571e0f93ba2a0651682fba42
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
6,832
py
# coding: utf-8 import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class AddressInfo: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'version': 'str', 'addr': 'str', 'os_ext_ip_stype': 'str', 'os_ext_ips_ma_cmac_addr': 'str', 'os_ext_ip_sport_id': 'str' } attribute_map = { 'version': 'version', 'addr': 'addr', 'os_ext_ip_stype': 'OS-EXT-IPS:type', 'os_ext_ips_ma_cmac_addr': 'OS-EXT-IPS-MAC:mac_addr', 'os_ext_ip_sport_id': 'OS-EXT-IPS:port_id' } def __init__(self, version=None, addr=None, os_ext_ip_stype=None, os_ext_ips_ma_cmac_addr=None, os_ext_ip_sport_id=None): """AddressInfo The model defined in huaweicloud sdk :param version: IP地址版本。4:代表IPv4。6:代表IPv6。 :type version: str :param addr: IP地址 :type addr: str :param os_ext_ip_stype: IP地址类型。fixed:代表私有IP地址。floating:代表浮动IP地址。 :type os_ext_ip_stype: str :param os_ext_ips_ma_cmac_addr: MAC地址。 :type os_ext_ips_ma_cmac_addr: str :param os_ext_ip_sport_id: IP地址对应的端口ID :type os_ext_ip_sport_id: str """ self._version = None self._addr = None self._os_ext_ip_stype = None self._os_ext_ips_ma_cmac_addr = None self._os_ext_ip_sport_id = None self.discriminator = None self.version = version self.addr = addr if os_ext_ip_stype is not None: self.os_ext_ip_stype = os_ext_ip_stype if os_ext_ips_ma_cmac_addr is not None: self.os_ext_ips_ma_cmac_addr = os_ext_ips_ma_cmac_addr if os_ext_ip_sport_id is not None: self.os_ext_ip_sport_id = os_ext_ip_sport_id @property def version(self): """Gets the version of this AddressInfo. IP地址版本。4:代表IPv4。6:代表IPv6。 :return: The version of this AddressInfo. :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this AddressInfo. IP地址版本。4:代表IPv4。6:代表IPv6。 :param version: The version of this AddressInfo. :type version: str """ self._version = version @property def addr(self): """Gets the addr of this AddressInfo. IP地址 :return: The addr of this AddressInfo. :rtype: str """ return self._addr @addr.setter def addr(self, addr): """Sets the addr of this AddressInfo. IP地址 :param addr: The addr of this AddressInfo. :type addr: str """ self._addr = addr @property def os_ext_ip_stype(self): """Gets the os_ext_ip_stype of this AddressInfo. IP地址类型。fixed:代表私有IP地址。floating:代表浮动IP地址。 :return: The os_ext_ip_stype of this AddressInfo. :rtype: str """ return self._os_ext_ip_stype @os_ext_ip_stype.setter def os_ext_ip_stype(self, os_ext_ip_stype): """Sets the os_ext_ip_stype of this AddressInfo. IP地址类型。fixed:代表私有IP地址。floating:代表浮动IP地址。 :param os_ext_ip_stype: The os_ext_ip_stype of this AddressInfo. :type os_ext_ip_stype: str """ self._os_ext_ip_stype = os_ext_ip_stype @property def os_ext_ips_ma_cmac_addr(self): """Gets the os_ext_ips_ma_cmac_addr of this AddressInfo. MAC地址。 :return: The os_ext_ips_ma_cmac_addr of this AddressInfo. :rtype: str """ return self._os_ext_ips_ma_cmac_addr @os_ext_ips_ma_cmac_addr.setter def os_ext_ips_ma_cmac_addr(self, os_ext_ips_ma_cmac_addr): """Sets the os_ext_ips_ma_cmac_addr of this AddressInfo. MAC地址。 :param os_ext_ips_ma_cmac_addr: The os_ext_ips_ma_cmac_addr of this AddressInfo. :type os_ext_ips_ma_cmac_addr: str """ self._os_ext_ips_ma_cmac_addr = os_ext_ips_ma_cmac_addr @property def os_ext_ip_sport_id(self): """Gets the os_ext_ip_sport_id of this AddressInfo. IP地址对应的端口ID :return: The os_ext_ip_sport_id of this AddressInfo. :rtype: str """ return self._os_ext_ip_sport_id @os_ext_ip_sport_id.setter def os_ext_ip_sport_id(self, os_ext_ip_sport_id): """Sets the os_ext_ip_sport_id of this AddressInfo. IP地址对应的端口ID :param os_ext_ip_sport_id: The os_ext_ip_sport_id of this AddressInfo. :type os_ext_ip_sport_id: str """ self._os_ext_ip_sport_id = os_ext_ip_sport_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AddressInfo): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
f3e7038704cb777b458dce69e5130f105f8dd4d7
6ecff67d6103ddbd787f78c35182722b83b8a37e
/백준/Python/카테고리/DFS/11724(연결 요소의 개수).py
7a4091ce202ede0784f000483c362a969b976680
[]
no_license
jsungmin6/Algorithm
9ef2339aa00921e7df756a8dff569954a008c118
bc1ea9de9f7ba3f1aa6616ebef8719540d72e0bf
refs/heads/master
2023-05-27T06:24:16.123307
2021-06-11T09:22:21
2021-06-11T09:22:21
259,299,624
0
0
null
null
null
null
UTF-8
Python
false
false
733
py
''' visited 와 graph를 만들어 구하는게 아닐까 ''' from collections import deque import sys input = sys.stdin.readline N,M = map(int,input().split()) visited = [0]*(N+1) graph = [[] for i in range(N+1)] def dfs(i): visited[i] = 1 need_visit=deque(graph[i]) while need_visit: node = need_visit.popleft() if visited[node] !=0: continue visited[node] = 1 for k in graph[node]: if visited[k] !=0: continue need_visit.append(k) for _ in range(M): u,v = map(int,input().split()) graph[u].append(v) graph[v].append(u) cnt=0 for i in range(1,N+1): if visited[i] != 1: dfs(i) cnt+=1 print(cnt)
26b2fcf42fe20f5c02c69785b561a485bae9c91f
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/PhysicsAnalysis/D3PDMaker/QcdD3PDMaker/python/JSTrackJets.py
f04421edf54f821f6b1056046460cf90fb8a50b8
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
5,137
py
# Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration ############################################################### # # JetTrackZClusterTool jobOptions file # # PhysicsAnalysis/JetEtMissDPDModifier/share/JetTrackZClusterTool_jobOptions.py # # https://svnweb.cern.ch/trac/atlasoff/browser/PhysicsAnalysis/D3PDMaker/SUSYD3PDMaker/trunk/share/JetTrackZClusterTool_jobOptions.py #============================================================== #-------------------------------------------------------------- # JetTrackZClusterTool Options #-------------------------------------------------------------- # Import configurable for tool from JetRecTools.JetRecToolsConf import JetTrackZClusterTool from JetRec.JetGetters import * from JetRec.JetRecConf import * def createJSTrackJets ( theseq, myjetfinder, myjetdr ): # Setup tool so that it can be used JS_MyJetTrackZClusterTool = JetTrackZClusterTool( "JS_JetTrackZClusterTool_%s%d" % (myjetfinder,myjetdr*10) ) JS_MyJetTrackZClusterTool.TrackJetMinMulti = 2 JS_MyJetTrackZClusterTool.TrackJetMinPt = 4000 # MeV JS_MyJetTrackZClusterTool.UseVtxSeeding = True JS_MyJetTrackZClusterTool.DeltaZRange = 10000.0 JS_MyJetTrackZClusterTool.TrackParticleContainerName = "TrackParticleCandidate" JS_MyJetTrackZClusterTool.VxContainerName = "VxPrimaryCandidate" JS_MyJetTrackZClusterTool.OutputLevel = 3 #-------------------------------------------------------------- # TrackSelector Tool Options #-------------------------------------------------------------- from InDetTrackSelectorTool.InDetTrackSelectorToolConf import InDet__InDetDetailedTrackSelectorTool from AthenaCommon.AppMgr import ToolSvc trackSelector = InDet__InDetDetailedTrackSelectorTool( "JS_MyDetailedTrackSelectorTool" ) ToolSvc += trackSelector #See InDetDetailedTrackSelectorTool.h for additional options and defaults trackSelector.pTMin = 500 # MeV trackSelector.etaMax = 2.5 trackSelector.nHitBLayer = 0 trackSelector.nHitPix = 0 trackSelector.nHitBLayerPlusPix = 1 #0 trackSelector.nHitSct = 6 #0 trackSelector.nHitSi = 7 #7 trackSelector.nHitTrt = 0 trackSelector.IPd0Max = 1.0 #1 # d0 cut trackSelector.IPz0Max = 1.5 # z0*sin(theta) cut trackSelector.z0Max = 200 # z0 cut trackSelector.fitChi2OnNdfMax = 10000 #1000 #3.5 #3 trackSelector.d0significanceMax = -1. trackSelector.z0significanceMax = -1. # Try to set InDet default tools to avoid strange bugs try: trackSelector.Extrapolator = ToolSvc.InDetExtrapolator except: from AthenaCommon.Logging import logging l = logging.getLogger("TrackSelectionForJets::setupTrackSelectorTool") l.warning("No ToolSvc.InDetExtrapolator available. Tracking might cause infinite loop") pass #trackSelector.OutputLevel = 3 from TrkTrackSummaryTool.AtlasTrackSummaryTool import AtlasTrackSummaryTool atst = AtlasTrackSummaryTool() ToolSvc += atst trackSelector.TrackSummaryTool = atst ## from JetSubStructure.JetSubStructureConf import JetSubStructure__CachedTrackSelectorTool CachedTrackSelector = JetSubStructure__CachedTrackSelectorTool("JS_CachedTrackSelectorTool") ToolSvc += CachedTrackSelector CachedTrackSelector.TrackSelector = trackSelector ## # Tell "JetTrackZClusterTool" to use this tool JS_MyJetTrackZClusterTool.TrackSelector = CachedTrackSelector.TrackSelector #-------------------------------------------------------------- # JetFinder Tool Options (Anti-Kt) #-------------------------------------------------------------- from JetRec.JetRecConf import JetFastJetFinderTool myfastfinder = JetFastJetFinderTool("JS_%s%dTrackJetFinder" % (myjetfinder,myjetdr*10)) if myjetfinder == 'AntiKt': myfastfinder.Algorithm = "anti-kt" elif myjetfinder == 'CamKt': myfastfinder.Algorithm = "cambridge" myfastfinder.Radius = myjetdr myfastfinder.RecombScheme = "E" myfastfinder.Strategy = "Best" myfastfinder.FailIfMisconfigured = True myfastfinder.Inclusive = True myfastfinder.CalculateJetArea = False myfastfinder.StoreNFlipValues = 0 ToolSvc += myfastfinder # Tell "TrackZClusterTool" to use this tool JS_MyJetTrackZClusterTool.JetFinder = myfastfinder #------------------------------------------------------------- # Jet Getter #------------------------------------------------------------- JS_TrackZToolList = [JS_MyJetTrackZClusterTool, JetSignalSelectorTool('JSTZ_JetFinalPtCut',UseTransverseMomentum = True,MinimumSignal= jetFlags.finalMinEt()), JetSorterTool('JSTZ_JetSorter',SortOrder="ByPtDown") ] mytrackzjetgetter = make_StandardJetGetter(myjetfinder, myjetdr,'TrackZ',seq = theseq, allTools = JS_TrackZToolList) return mytrackzjetgetter #============================================================== # # End of job options file # ###############################################################
16173f46fa2faecd70a0cdf9cbd51a926f590924
17268419060d62dabb6e9b9ca70742f0a5ba1494
/pp/types.py
4dd35737400a72f4e304189cf8101cc22720358d
[ "MIT" ]
permissive
TrendingTechnology/gdsfactory
a19124423b12cbbb4f35b61f33303e9a012f82e5
c968558dba1bae7a0421bdf49dc192068147b776
refs/heads/master
2023-02-22T03:05:16.412440
2021-01-24T03:38:00
2021-01-24T03:38:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
"""Common data types.""" from typing import Callable, Dict, Tuple, Union from pp.component import Component Layer = Tuple[int, int] ComponentOrFunction = Union[Callable, Component] NameToFunctionDict = Dict[str, Callable] Number = Union[float, int] def get_name_to_function_dict(*functions) -> Dict[str, Callable]: """Returns a dict with function name as key and function as value""" return {func.__name__: func for func in functions} __all__ = [ "Layer", "ComponentOrFunction", "NameToFunctionDict", "Number", "get_name_to_function_dict", ]
c5f27f2348c5d7b812eaf52d13e8b3cb56d2b862
fcc7dd9d9c7f22808f907759cec6a339c5a1421c
/my_workstation/my-v2/core.PrePostInitMeta.py
3edabd35eb190368ee17c81725ad1b667c000f50
[]
no_license
EmbraceLife/fastai_treasures
3ae792771af3510848c7bb19003b04cff8001e1e
4230be915e70a7e5a22f2f7e5137cca7045754fd
refs/heads/master
2022-10-30T07:46:46.397037
2020-09-09T04:09:14
2020-09-09T04:09:14
173,718,178
21
6
null
2022-10-06T05:32:28
2019-03-04T09:52:12
Jupyter Notebook
UTF-8
Python
false
false
2,111
py
from local.test import * from local.imports import * from local.notebook.showdoc import show_doc from local.core import * # check the official source show_doc(PrePostInitMeta, title_level=3) class PrePostInitMeta(type): """ "A metaclass that calls optional `__pre_init__` and `__post_init__` methods" Why need `PrePostInitMeta`? - not only run `__init__`, but also - automatically run `__pre_init__`, `__post_init__` How to use `PrePostInitMeta`? - create a subclass to `PrePostInitMeta` - you can add `__pre_init__` and `__post_init__` to `__init__` - program will run them in the order of `__pre_init__`, `__init__` and `__post_init__` - if any of them is missing, a `_pass()` method will run instead How to create `PrePostInitMeta`? - how to lay out the logic flow? - use pdb break at the first line of `__new__` - basically `__new__` run before running `t=_T()` - to prepare all the additional methods of `x` or `_T` """ def __new__(cls, name, bases, dct): # pdb break here to run the hidden codes x = super().__new__(cls, name, bases, dct) def _pass(self, *args,**kwargs): pass for o in ('__init__', '__pre_init__', '__post_init__'): if not hasattr(x,o): setattr(x,o,_pass) old_init = x.__init__ @functools.wraps(old_init) def _init(self,*args,**kwargs): self.__pre_init__() old_init(self, *args,**kwargs) self.__post_init__() setattr(x, '__init__', _init) return x # simple but standard example class _T(metaclass=PrePostInitMeta): def __pre_init__(self): self.a = 0; assert self.a==0 def __init__(self): self.a += 1; assert self.a==1 def __post_init__(self): self.a += 1; assert self.a==2 t = _T() #pdb t.a # what would happen when lacking __pre_init__ class _T(metaclass=PrePostInitMeta): def __pre_init__(self): self.a = 0; assert self.a==0 def __init__(self): self.a += 1; assert self.a==1 # def __post_init__(self): self.a += 1; assert self.a==2 t = _T()#pdb t.a
0ead5a6450132dc13eb9ea466a731aed48251aa1
0880faa6ef7f30da63a74739203b0f9d7d4fe10e
/wesbanco/items.py
b03a2b1076a10cef81ffb6f9dcaca01f7f808313
[]
no_license
wesleybowen/wesbanco
11c930d9facd5f2ee64b31316192796635529eb9
75e29924f2b57cd4b8da84a04e74fe10a5547942
refs/heads/main
2023-03-26T14:01:32.826370
2021-03-25T08:56:09
2021-03-25T08:56:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
import scrapy class WesbancoItem(scrapy.Item): title = scrapy.Field() description = scrapy.Field() date = scrapy.Field()
e9ba4883701edcd0c2ced8d8e106f5dd022f75af
d659d8f29ef2f01ac1fc8c292e8a836ba36bfd16
/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
d3e80f02224a7672245d9fcd858c436a9ace5d96
[ "Apache-2.0" ]
permissive
monuminu/transformers
dc0fa4730ca6e37c2053f8b327c37bb322dd99cc
82c6e8fc0efaece02eb6e809b7b03df909ff6c11
refs/heads/master
2023-07-15T13:13:23.525788
2021-08-03T09:41:42
2021-08-03T09:41:42
369,849,849
1
0
Apache-2.0
2021-05-29T05:26:17
2021-05-22T16:00:10
Python
UTF-8
Python
false
false
72,328
py
# coding=utf-8 # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BlenderbotSmall model. """ import copy import math import random from typing import Optional, Tuple import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_blenderbot_small import BlenderbotSmallConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BlenderbotSmallConfig" _TOKENIZER_FOR_DOC = "BlenderbotSmallTokenizer" BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/blenderbot_small-90M", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), float("-inf")) mask_cond = torch.arange(mask.size(-1)) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) # Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings, embedding_dim) def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall class BlenderbotSmallAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})." self.scaling = self.head_dim ** -0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = F.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall class BlenderbotSmallEncoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ): """ Args: hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall class BlenderbotSmallDecoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BlenderbotSmallAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ): """ Args: hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class BlenderbotSmallPreTrainedModel(PreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model" def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs BLENDERBOT_SMALL_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BlenderbotSmallConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" Conversation example:: >>> from transformers import BlenderbotSmallTokenizer, BlenderbotSmallForConditionalGeneration >>> mname = 'facebook/blenderbot_small-90M' >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) >>> tokenizer = BlenderbotSmallTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) >>> inputs = tokenizer([UTTERANCE], return_tensors='pt') >>> inputs.pop("token_type_ids") >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) what kind of carbs do they eat? i don't know much about carbs. >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.</s> " ... "<s>what kind of carbs do they eat? i don't know much about carbs.</s> " ... "<s>I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='pt') >>> inputs.pop("token_type_ids") >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) """ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BlenderbotSmallTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BlenderbotSmallTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ BlenderbotSmall uses the :obj:`bos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`). decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will also be used by default. head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: :obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds` have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert :obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds` takes the value of :obj:`inputs_embeds`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a :class:`BlenderbotSmallEncoderLayer`. Args: config: BlenderbotSmallConfig embed_tokens (torch.nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) self.init_weights() def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BlenderbotSmallTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: if getattr(self.config, "gradient_checkpointing", False) and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`BlenderbotSmallDecoderLayer` Args: config: BlenderbotSmallConfig embed_tokens (torch.nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.init_weights() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length ).to(self.device) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BlenderbotSmallTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) # BlenderbotSmall applies layer norm on hidden_states inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == ( len(self.layers) ), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BlenderbotSmallEncoder(config, self.shared) self.decoder = BlenderbotSmallDecoder(config, self.shared) self.init_weights() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Example:: >>> from transformers import BlenderbotSmallTokenizer, BlenderbotSmallModel >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ r"final_logits_bias", r"encoder\.version", r"decoder\.version", r"lm_head\.weight", ] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) self.model = BlenderbotSmallModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) self.init_weights() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) self._resize_final_logits_bias(new_num_tokens) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def forward( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): # cut decoder_input_ids if past is used if past is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the :class:`~transformers.EncoderDecoderModel` framework. """ def __init__(self, config): super().__init__(config) self.decoder = BlenderbotSmallDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel): def __init__(self, config): super().__init__(config) config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False self.model = BlenderbotSmallDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.init_weights() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BlenderbotSmallTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids`` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. Returns: Example:: >>> from transformers import BlenderbotSmallTokenizer, BlenderbotSmallForCausalLM >>> tokenizer = BlenderbotSmallTokenizer.from_pretrained('facebook/bart-large') >>> model = BlenderbotSmallForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past, "use_cache": use_cache, } @staticmethod def _reorder_cache(past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
8be82b1ecb01d00e2c59861f5272e0287388f6c9
eebe1e43538bcc11a0558b58f2e6a6d22abc6a4a
/DGesQuad/manage.py
bc8d80251e82e44eba5bd6aa3df20298527c7f17
[]
no_license
zurcx/GesQuad
9718843be1e24e5a11572ad90a7a0da1065f15f6
e1b5413ecfb740fd92e2dac8858b9e86fbb6efad
refs/heads/master
2021-01-10T20:11:22.635706
2013-04-25T16:02:02
2013-04-25T16:02:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "DGesQuad.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
595539f9f15b03ff08b9a21351d7fb2c6c6668e1
405d5ab969287f184ea589e73d61cc3be1c5d12b
/kinparse/kinparse.py
4ebc18408467834295ad57576d63765bbbb410ce
[ "MIT" ]
permissive
CBJamo/kinparse
a847c594f1bbed015797bb31ea8c15cc339f9d85
3f4e8e9d881290cbac8e7b71886b0ed6cab0cd9b
refs/heads/master
2020-03-09T06:32:02.646762
2018-04-08T13:02:52
2018-04-08T13:02:52
128,641,751
0
0
null
2018-04-08T13:01:53
2018-04-08T13:01:53
null
UTF-8
Python
false
false
7,150
py
# MIT license # # Copyright (C) 2016 by XESS Corporation. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Parsers for netlist files of various formats (only KiCad, at present). """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import open from future import standard_library standard_library.install_aliases() from .py_2_3 import * from pyparsing import * THIS_MODULE = locals() def _parse_netlist_kicad(text): """ Return a pyparsing object storing the contents of a KiCad netlist. """ def _paren_clause(keyword, value): """ Create a parser for a parenthesized list with an initial keyword. """ lp = Literal('(').suppress() rp = Literal(')').suppress() return (lp + Keyword(keyword, caseless=True).suppress() + value('val') + rp )(keyword) #++++++++++++++++++++++++++++ Parser Definition +++++++++++++++++++++++++++ # Basic elements. word = Word(alphas) inum = Word(nums) fnum = Word(nums) + Optional(Literal('.') + Optional(Word(nums))) string = ZeroOrMore(White()).suppress() + CharsNotIn('()') + ZeroOrMore(White()).suppress() qstring = dblQuotedString() ^ sglQuotedString() qstring.addParseAction(removeQuotes) anystring = qstring ^ string # Design section. source = _paren_clause('source', Optional(anystring)) date = _paren_clause('date', Optional(anystring)) tool = _paren_clause('tool', Optional(anystring)) number = _paren_clause('number', inum) name = _paren_clause('name', anystring) names = _paren_clause('names', anystring) tstamp = _paren_clause('tstamp', anystring) tstamps = _paren_clause('tstamps', anystring) title = _paren_clause('title', Optional(anystring)) company = _paren_clause('company', Optional(anystring)) rev = _paren_clause('rev', Optional(anystring)) value = _paren_clause('value', anystring) comment = Group(_paren_clause('comment', number & value)) comments = Group(OneOrMore(comment))('comments') title_block = _paren_clause('title_block', Optional(title) & Optional(company) & Optional(rev) & Optional(date) & Optional(source) & comments) sheet = Group(_paren_clause('sheet', number + name + tstamps + Optional(title_block))) sheets = Group(OneOrMore(sheet))('sheets') design = _paren_clause('design', Optional(source) & Optional(date) & Optional(tool) & Optional(sheets)) # Components section. ref = _paren_clause('ref', anystring) datasheet = _paren_clause('datasheet', anystring) field = Group(_paren_clause('field', name & anystring('text'))) fields = _paren_clause('fields', ZeroOrMore(field)) lib = _paren_clause('lib', anystring) part = _paren_clause('part', anystring) footprint = _paren_clause('footprint', anystring) libsource = _paren_clause('libsource', lib & part) sheetpath = _paren_clause('sheetpath', names & tstamps) comp = Group(_paren_clause('comp', ref & value & Optional(datasheet) & Optional(fields) & Optional(libsource) & Optional(footprint) & Optional(sheetpath) & Optional(tstamp))) components = _paren_clause('components', ZeroOrMore(comp)) # Part library section. description = _paren_clause('description', anystring) docs = _paren_clause('docs', anystring) pnum = _paren_clause('num', anystring) ptype = _paren_clause('type', anystring) pin = Group(_paren_clause('pin', pnum & name & ptype)) pins = _paren_clause('pins', ZeroOrMore(pin)) alias = Group(_paren_clause('alias', anystring)) aliases = _paren_clause('aliases', ZeroOrMore(alias)) fp = Group(_paren_clause('fp', anystring)) footprints = _paren_clause('footprints', ZeroOrMore(fp)) libpart = Group(_paren_clause('libpart', lib & part & Optional( fields) & Optional(pins) & Optional(footprints) & Optional(aliases) & Optional(description) & Optional(docs))) libparts = _paren_clause('libparts', ZeroOrMore(libpart)) # Libraries section. logical = _paren_clause('logical', anystring) uri = _paren_clause('uri', anystring) library = Group(_paren_clause('library', logical & uri)) libraries = _paren_clause('libraries', ZeroOrMore(library)) # Nets section. code = _paren_clause('code', inum) part_pin = _paren_clause('pin', anystring) node = Group(_paren_clause('node', ref & part_pin)) nodes = Group(OneOrMore(node))('nodes') net = Group(_paren_clause('net', code & name & nodes)) nets = _paren_clause('nets', ZeroOrMore(net)) # Entire netlist. version = _paren_clause('version', word) end_of_file = ZeroOrMore(White()) + stringEnd parser = _paren_clause('export', version + (design & components & Optional(libparts) & Optional(libraries) & nets ))('netlist') + end_of_file.suppress() return parser.parseString(text) def parse_netlist(src, tool='kicad'): """ Return a pyparsing object storing the contents of a netlist. Args: src: Either a text string, or a filename, or a file object that stores the netlist. Returns: A pyparsing object that stores the netlist contents. Exception: PyparsingException. """ try: text = src.read() except Exception: try: text = open(src,'r').read() except Exception: text = src if not isinstance(text, basestring): raise Exception("What is this shit you're handing me? [{}]\n".format(src)) try: # Use the tool name to find the function for loading the library. func_name = '_parse_netlist_{}'.format(tool) parse_func = THIS_MODULE[func_name] return parse_func(text) except KeyError: # OK, that didn't work so well... logger.error('Unsupported ECAD tool library: {}'.format(tool)) raise Exception
479c637690d2609afb78de27ddf5b36e90b1d02e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03011/s370991894.py
b6c99e9bd6ab11dbd9f475b8b3e37ac126223374
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
time=list(map(int,input().split())) print(sum(time)-max(time))
695b7501286789e70267ff4ce0dcf1ccb349a120
6a63a3b241e161d1e69f1521077617ad86f31eab
/release/rllib_tests/multi_gpu_learning_tests/run.py
7835956daf7972e9fe0bad297fab58c3f0d175a8
[ "MIT", "BSD-3-Clause", "Apache-2.0" ]
permissive
jovany-wang/ray
47a9df67e8ea26337517d625df50eb0b8b892135
227aef381a605cb1ebccbba4e84b840634196a35
refs/heads/master
2023-09-03T23:53:00.050619
2022-08-20T21:50:52
2022-08-20T21:50:52
240,190,407
1
1
Apache-2.0
2023-03-04T08:57:04
2020-02-13T06:13:19
Python
UTF-8
Python
false
false
818
py
"""Multi-GPU learning tests for RLlib (torch and tf). """ import json import os from pathlib import Path from ray.rllib.utils.test_utils import run_learning_tests_from_yaml if __name__ == "__main__": # Get path of this very script to look for yaml files. abs_yaml_path = Path(__file__).parent print("abs_yaml_path={}".format(abs_yaml_path)) yaml_files = abs_yaml_path.rglob("*.yaml") yaml_files = sorted( map(lambda path: str(path.absolute()), yaml_files), reverse=True ) # Run all tests in the found yaml files. results = run_learning_tests_from_yaml(yaml_files) test_output_json = os.environ.get( "TEST_OUTPUT_JSON", "/tmp/rllib_multi_gpu_learning_tests.json" ) with open(test_output_json, "wt") as f: json.dump(results, f) print("Ok.")
7edca1e18a6672b3567128648ab71cf7a75a0200
e6d55aa3c68644bdfe37a9472931c01950e27609
/ceggelab/ce/models.py
4fef63b2b397da38f1d012d9759b53a3e5d2848a
[]
no_license
KamonratNg/cegge
2c5597554f183479d4f18a10d9e4132a299ea591
64e3b3012ea96f2fd1c25f1581e83a9c193f7092
refs/heads/master
2023-01-06T18:23:46.668810
2020-11-11T17:56:54
2020-11-11T17:56:54
309,621,257
0
0
null
null
null
null
UTF-8
Python
false
false
562
py
from django.db import models # Create your models here. class Studentrecord(models.Model): student_name_en = models.CharField(max_length=200) student_name_th = models.CharField(max_length=200) student_ID = models.IntegerField(default=0) type = (('M','Master programs'), ('D','Doctoral programs'), ('P','Postdoctorate'), ('R','Researcher')) student_level = models.CharField(max_length=30, choices= type) def __str__(self): return self.student_name_en +' '+ str(self.student_ID) +' '+ self.student_level
9f5a25ac8aac1ab659663cbe98f1f78fec020788
b3e42025194b81680086d097fed9aa6c84bfce9a
/apps/vendors/locations_urls.py
98387686246dcb4232cee0b5d2523610b972344e
[ "MIT" ]
permissive
superdev999/ProvenBanking
95c65698d9f3a552d04edfd4fd9d4469fb43a47f
2153e9d737e2b235e502c848986ca35b6f310b8d
refs/heads/master
2021-01-12T05:17:31.864890
2017-08-17T00:11:59
2017-08-17T00:11:59
77,897,989
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
from django.conf.urls import patterns, include, url from med_social.decorators import member_required from vendors.views import (CreateVendorLocation, EditVendorLocation, DeleteVendorLocation, VendorLocationList) # namespace = locations urlpatterns = patterns('', url(r'^(?P<pk>\d+)/create/$', member_required(CreateVendorLocation.as_view()), name='create'), url(r'^(?P<pk>\d+)/list/$', member_required(VendorLocationList.as_view()), name='list'), url(r'^(?P<pk>\d+)/(?P<loc_pk>\d+)/edit/$', member_required(EditVendorLocation.as_view()), name='edit'), url(r'^(?P<pk>\d+)/delete/$', member_required(DeleteVendorLocation.as_view()), name='delete'), )
088511264beb5b545d0e43bf09441aa35f1c34e7
f845225329fa9750c838bf511fed3beb48cc86af
/listings/migrations/0001_initial.py
9ea3d0e0a6433a346296dafd185e3909e32ea71a
[]
no_license
Fabricourt/btre_project-
ac8c2b84cc8b7f4f5368a204dc23b378d488b356
13defd495ba309ac31550d22ad7d6306638f91eb
refs/heads/master
2020-04-15T11:03:05.980170
2019-01-08T11:16:56
2019-01-08T11:16:56
164,611,152
0
0
null
null
null
null
UTF-8
Python
false
false
2,168
py
# Generated by Django 2.1.4 on 2018-12-23 13:47 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('realtors', '0001_initial'), ] operations = [ migrations.CreateModel( name='Listing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('address', models.CharField(max_length=200)), ('city', models.CharField(max_length=100)), ('state', models.CharField(max_length=100)), ('zipcode', models.CharField(max_length=20)), ('description', models.TextField(blank=True)), ('price', models.IntegerField()), ('bedrooms', models.IntegerField()), ('bathrooms', models.DecimalField(decimal_places=1, max_digits=2)), ('garage', models.IntegerField(default=0)), ('sqft', models.IntegerField()), ('lot_size', models.DecimalField(decimal_places=1, max_digits=5)), ('photo_main', models.ImageField(upload_to='photos/%Y/%m/%d/')), ('photo_1', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_2', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_3', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_4', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_5', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_6', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('is_published', models.BooleanField(default=True)), ('list_date', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('realtor', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='realtors.Realtor')), ], ), ]
4dd1a54ae37966be0ac487524f3fed672f577f6a
e0980f704a573894350e285f66f4cf390837238e
/.history/streams/blocks_20201023164513.py
720eace3df9f2dc075a573f46a06fa46c97fa7f1
[]
no_license
rucpata/WagtailWebsite
28008474ec779d12ef43bceb61827168274a8b61
5aa44f51592f49c9a708fc5515ad877c6a29dfd9
refs/heads/main
2023-02-09T15:30:02.133415
2021-01-05T14:55:45
2021-01-05T14:55:45
303,961,094
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
from wagtail.core import blocks from wagtail.images.blocks import ImageChooserBlock class TitleBlock(blocks.StructBlock): text = blocks.CharBlock( required = True, elp_text='Tekst do wyświetlenia', ) class Meta: template = 'streams/title_block.html' icon = 'edycja' label = 'Tytuł' help_text = 'Wyśrodkowany tekst do wyświetlenia na stronie.' class LinkValue(blocks.StructValue): """Dodatkowao logika dla lików""" def url(self) -> str: internal_page = self.get('internal_page') external_link = self.get('external_link') if internal_page: return internal_page.url elif external_link: return external_link return '' class Link(blocks.StructBlock): link_text = blocks.CharBlock( max_length=50, default='Więcej szczegółów' ) interal_page = blocks.PageChooserBlock( required=False ) external_link = blocks.URLBlock( required=False ) class Meta: value_class = LinkValue class Card(blocks.StructBlock): title = blocks.CharBlock( max_length=100, help_text = 'Pogrubiony tytuł tej karty. Maksymalnie 100 znaków.' ) text = blocks.TextBlock( max_length=255, help_text='Opcjonalny tekst tej karty. Maksymalnie 255 znaków.' ) image = ImageChooserBlock( help_text = 'Obraz zostanie automatycznie przycięty o 570 na 370 pikseli' ) link = Link(help_text = 'Wwybierz link') class CardsBlock(blocks.StructBlock): cards = blocks.ListBlock( Card() ) class Meta: template = 'streams/card_block.html' icon = 'image' label = 'Karty standardowe' class ImageAndTextBlock(blocks.StructBlock): image = ImageChooserBlock(help_text='Obraz automatycznie ') image_alignment title text link - Link()
9d1e4dd14768158747ff119fc01cb8c311ebdd4d
78144baee82268a550400bbdb8c68de524adc68f
/Production/python/Summer16v3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8_cff.py
9c1d46ac3678e0c9fb9f265b964da728f5774dfe
[]
no_license
tklijnsma/TreeMaker
e6989c03189b849aff2007bad22e2bfc6922a244
248f2c04cc690ef2e2202b452d6f52837c4c08e5
refs/heads/Run2_2017
2023-05-26T23:03:42.512963
2020-05-12T18:44:15
2020-05-12T18:44:15
263,960,056
1
2
null
2020-09-25T00:27:35
2020-05-14T15:57:20
null
UTF-8
Python
false
false
10,792
py
import FWCore.ParameterSet.Config as cms maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) readFiles = cms.untracked.vstring() secFiles = cms.untracked.vstring() source = cms.Source ("PoolSource",fileNames = readFiles, secondaryFileNames = secFiles) readFiles.extend( [ '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/110000/280DF6F8-7AD0-E811-884A-0025905AC97A.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/110000/3A8373E0-30D3-E811-BB36-5CB901C2A510.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/110000/4A870E50-46D1-E811-8F9A-B05ADA036C70.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/110000/A414A398-7FD3-E811-8D9F-D0BF9C039BA0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/4ABB6C52-8CD3-E811-A423-3464A9B96F00.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/5A9D98D2-E5D1-E811-AA01-D0BF9C033BB0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/5C7E66B1-70D0-E811-A909-0025905AC960.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/6A02244F-46D1-E811-BBDA-308D99304920.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/945BD266-71D0-E811-9334-0025905AC822.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/9E43F36D-19D2-E811-963C-D0BF9C033BB0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/120000/A65097C8-70D0-E811-88A0-0025905AC878.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/270000/20058975-71D0-E811-90A1-0025905AC822.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/270000/46642371-8DD0-E811-A385-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/04FAC2F3-85D0-E811-A1D3-0025905AC804.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/12074C68-77D0-E811-BB2C-308D99304920.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/16417F20-E8D1-E811-8DD5-70106F421A38.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/188DBE42-7BD0-E811-BC13-0025905AC95E.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/1A1CFF47-66D2-E811-B1A8-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/2491B0B8-EDD1-E811-A921-0025905AC878.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/265F7031-17D2-E811-A3CD-B05ADA036C70.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/2E1F2B37-EED1-E811-AEB8-0025905AC97A.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/3057A8F6-2BD7-E811-8A21-0025905AC960.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/36777B9F-16D2-E811-85E2-308D99304920.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/38089DBD-77D0-E811-BD2A-3464A9B96F00.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/38AD82A6-77D0-E811-87BA-0025905AC97A.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/38B410CF-02D3-E811-BBBE-0025905AC97A.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/3E3C6740-78D0-E811-9589-70106F421A38.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/4247B8DC-76D0-E811-8446-D0BF9C033BB0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/465CD2A8-77D0-E811-9CB2-0025905AC984.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/4849DDDD-28D2-E811-873F-5CB901C34160.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/4C1E7B4B-52D3-E811-AB67-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/5CD3B066-5CD1-E811-BD7D-3464A9B95F50.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/6231669A-8DD0-E811-ACAC-0025905C4432.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/6CB63142-EED1-E811-88FB-3464A9B95F50.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/6EEC0D29-EED1-E811-B5B9-5CB901C34160.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/7262D733-18D2-E811-A1B7-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/84746DF9-EDD1-E811-AD9E-0025905C22B0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/8A40163D-EED1-E811-9FD0-0025905AC97A.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/8A4D8549-7ED2-E811-BD85-5CB901C2A510.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/8CDC2043-78D0-E811-B968-70106F421A38.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/94CC1A77-E7D1-E811-B258-70106F421A38.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/963B5C2A-56D5-E811-BC02-0025905C22B0.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/9AF7C401-22D2-E811-B004-70106F421A38.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/A2F7AA92-8BD0-E811-A224-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/A400A9FD-EDD1-E811-ABBA-0025905AC878.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/B2374305-EED1-E811-957F-0025905AF57E.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/B2ED5B9B-EDD1-E811-9E41-3464A9B95F70.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/B80039B5-84D0-E811-A240-0025905AC984.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/BE9FBDEA-64D2-E811-ACC8-70106F42AFF8.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/C4733248-18D2-E811-BEE4-5CB901C39220.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/C668A9E1-EDD1-E811-85B1-3464A9B95F70.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/CA2BA0C8-77D0-E811-BA4F-3464A9B96F00.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/D2FBC84E-80D2-E811-B5ED-3464A9B96F00.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/E829D498-75D0-E811-8BFB-0025905C42D2.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/E87999BD-77D0-E811-9AE7-3464A9B96F00.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/FAD546B8-ECD1-E811-9C16-3464A9B95F70.root', '/store/mc/RunIISummer16MiniAODv3/QCD_Pt_80to120_TuneCUETP8M1_13TeV_pythia8/MINIAODSIM/PUMoriond17_94X_mcRun2_asymptotic_v3-v1/60000/FE444634-17D2-E811-82EF-B05ADA036C70.root', ] )
01a3a428407e02aaf5a3e666649d68eaa1e1e1b1
8a4f0d4aad4a901bd08fd5eb92b2a31fb1bac167
/dizoo/smac/config/smac_MMM_coma_config.py
b99dd285cf57a67513b658576e9a62336a1d8eaa
[ "Apache-2.0" ]
permissive
lichuminglcm/DI-engine
3977eed854dc634f8796764e0a7e0b71b615747f
e9052f195d231a9875afb053ba815c6341857571
refs/heads/main
2023-08-21T05:09:49.931351
2021-10-11T12:32:36
2021-10-11T12:32:36
415,903,070
0
0
Apache-2.0
2021-10-11T12:32:37
2021-10-11T11:48:26
Python
UTF-8
Python
false
false
2,855
py
import sys from copy import deepcopy from ding.entry import serial_pipeline from easydict import EasyDict agent_num = 10 collector_env_num = 16 evaluator_env_num = 8 main_config = dict( env=dict( map_name='MMM', difficulty=7, reward_only_positive=True, mirror_opponent=False, agent_num=agent_num, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, shared_memory=False, stop_value=0.999, n_evaluator_episode=32, ), policy=dict( model=dict( # (int) agent_num: The number of the agent. # For SMAC 3s5z, agent_num=8; for 2c_vs_64zg, agent_num=2. agent_num=agent_num, # (int) obs_shape: The shapeension of observation of each agent. # For 3s5z, obs_shape=150; for 2c_vs_64zg, agent_num=404. # (int) global_obs_shape: The shapeension of global observation. # For 3s5z, obs_shape=216; for 2c_vs_64zg, agent_num=342. obs_shape=dict( agent_state=186, global_state=290, ), # (int) action_shape: The number of action which each agent can take. # action_shape= the number of common action (6) + the number of enemies. # For 3s5z, obs_shape=14 (6+8); for 2c_vs_64zg, agent_num=70 (6+64). action_shape=16, # (List[int]) The size of hidden layer actor_hidden_size_list=[64], ), # used in state_num of hidden_state collect=dict( n_episode=32, unroll_len=10, env_num=collector_env_num, ), eval=dict(env_num=evaluator_env_num, evaluator=dict(eval_freq=100, )), other=dict( eps=dict( type='exp', start=0.5, end=0.01, decay=200000, ), replay_buffer=dict( # (int) max size of replay buffer replay_buffer_size=5000, # (int) max use count of data, if count is bigger than this value, the data will be removed from buffer max_use=10, ), ), ), ) main_config = EasyDict(main_config) create_config = dict( env=dict( type='smac', import_names=['dizoo.smac.envs.smac_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='coma'), collector=dict(type='episode', get_train_sample=True), ) create_config = EasyDict(create_config) def train(args): config = [main_config, create_config] serial_pipeline(config, seed=args.seed) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--seed', '-s', type=int, default=0) args = parser.parse_args() train(args)
00f80ba31ddfb7053bb5c584ada8ce11612618d3
1baf76e19a719ebb2207f2af2924fc53349d6a60
/internship3_env/bin/black
7ae627598807eb9072010262c912bdf4e16afbd3
[ "MIT" ]
permissive
Zamy97/internship_3
4deb0df914e68930b23faa6bf7e0ca7fd342fbd8
9c9db252b6818316e9864839075bb1d23714f7e4
refs/heads/master
2023-01-01T15:33:45.980776
2020-10-28T02:47:34
2020-10-28T02:47:34
307,861,296
0
0
null
null
null
null
UTF-8
Python
false
false
338
#!/Users/zamy/Desktop/Python_Projects/excl_intrnship_projects/excl_internship_0/internship_3/internship_3/internship3_env/bin/python3 # -*- coding: utf-8 -*- import re import sys from black import patched_main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(patched_main())
e92f37657c6db9b8535a58da0709431147348625
6413fe58b04ac2a7efe1e56050ad42d0e688adc6
/tempenv/lib/python3.7/site-packages/plotly/validators/parcats/line/colorbar/_lenmode.py
bcb4aa6f6f7b818eda6ecb5c198c420b34567bf3
[ "MIT" ]
permissive
tytechortz/Denver_temperature
7f91e0ac649f9584147d59193568f6ec7efe3a77
9d9ea31cd7ec003e8431dcbb10a3320be272996d
refs/heads/master
2022-12-09T06:22:14.963463
2019-10-09T16:30:52
2019-10-09T16:30:52
170,581,559
1
0
MIT
2022-06-21T23:04:21
2019-02-13T21:22:53
Python
UTF-8
Python
false
false
568
py
import _plotly_utils.basevalidators class LenmodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='lenmode', parent_name='parcats.line.colorbar', **kwargs ): super(LenmodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'colorbars'), role=kwargs.pop('role', 'info'), values=kwargs.pop('values', ['fraction', 'pixels']), **kwargs )
b124bf0ba59ebf9333a3780b526609d07c55a3e6
ac1938e7513d8e58f2228962b10caa1044a3d8ff
/python-fundamentals/39-find_the_duplicate/solution.py
eb8b89c18dca0a01d877565a4f8a2dce20c66afe
[]
no_license
annikaslund/python_practice
fb211cfec725573a3e9f5f358c869e1edd8608a3
a6a1586ebbb1883afc8d7920848167955fa258a0
refs/heads/master
2020-04-22T07:33:32.389883
2019-02-14T16:53:53
2019-02-14T16:53:53
170,220,379
0
0
null
null
null
null
UTF-8
Python
false
false
181
py
def find_the_duplicate(nums): """Find duplicate number in nums.""" seen = set() for num in nums: if num in seen: return num seen.add(num)
659c8d2a968faea0223a4e997f381d01e84cd5bb
49edd8549054f63a73c846d0bdf48930703b9aed
/app/core/tests/test_commands.py
62b7167bf5c90ce7dbf86dd6f42b6fa7e37f8d6e
[]
no_license
AlekseiChirkov/recipe-app-api
370ccc8239197d700407449e892abd0a804e1504
e5d1a0561951b46e0766c96e28f5f4ad707a9bc9
refs/heads/main
2023-08-23T10:14:50.337020
2021-10-04T07:02:19
2021-10-04T07:02:19
381,278,748
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase class CommandTests(TestCase): def test_wait_for_db_ready(self): """ Test wating for db when db is available :return: """ with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.return_value = True call_command('wait_for_db') self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) def test_wait_for_db(self, ts): """ Test waiting for db :return: """ with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6)
54431f70529ad477776902aaf6afb9bed0e1f2d0
7ae20e08e736e6df546cb5a80df2baf067686b52
/tasks/sprint-3/Финал B - Effective Quick Sort/effective_quick_sort_test.py
4938fba3eee95666adf5ae8f300c6c7e8bbbcacb
[]
no_license
Grey2k/yandex.praktikum-alghoritms
faf466374c932733cc1c5049a2df719d8fd33ac7
97b1b4858265b44266a33b834e1e9a1349739048
refs/heads/master
2023-08-28T02:46:16.502298
2021-09-28T19:08:35
2021-09-28T19:08:35
334,646,281
10
1
null
null
null
null
UTF-8
Python
false
false
7,881
py
import unittest import io from unittest.mock import patch from effective_quick_sort import main class EffectiveQuickSortTest(unittest.TestCase): @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 4 100', 'gena 6 1000', 'gosha 2 90', 'rita 2 90', 'timofey 4 80', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_one(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'gena', 'timofey', 'alla', 'gosha', 'rita', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 0 0', 'gena 0 0', 'rita 0 0', 'timofey 0 0', 'gosha 0 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_two(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena', 'gosha', 'rita', 'timofey', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 1 0', 'gena 0 0', 'gosha 1 100', 'rita 0 0', 'timofey 0 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_three(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gosha', 'gena', 'rita', 'timofey', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 1 0', 'gena 0 0', 'gosha 1 100', 'rita 2 0', 'timofey 2 100', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_four(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'rita', 'timofey', 'alla', 'gosha', 'gena', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '1', 'alla 1 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_five(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'alla 1 0', 'gena 1 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_six(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'gena 1 0', 'alla 1 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_seven(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'gena 2 10', 'alla 2 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_eight(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'gena 1 10', 'alla 2 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_nine(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 1 10', 'gena 1 10', 'gosha 1 10', 'rita 2 100', 'timofey 2 100', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_ten(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'rita', 'timofey', 'alla', 'gena', 'gosha', ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'alla 1 0', 'gena 1 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_eleven(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'alla 2 0', 'gena 2 10', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_twelve(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '2', 'alla 2 0', 'gena 1 10', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_thirteen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '3', 'alla 1 0', 'gosha 1 0', 'gena 1 0', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_fourteen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena', 'gosha' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '3', 'alla 2 0', 'gosha 2 0', 'gena 2 10', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_fifteen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gosha', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '3', 'alla 2 0', 'gosha 1 10', 'gena 1 10', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_sixteen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'alla', 'gena', 'gosha' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '5', 'alla 1 100', 'gena 1 1000', 'gosha 1 90', 'rita 1 90', 'timofey 10 80', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_seventeen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'timofey', 'gosha', 'rita', 'alla', 'gena' ]) + '\n') @patch('sys.stdin', io.StringIO("\n".join([ '13', 'tufhdbi 76 58', 'rqyoazgbmv 59 78', 'qvgtrlkmyrm 35 27', 'tgcytmfpj 70 27', 'xvf 84 19', 'jzpnpgpcqbsmczrgvsu 30 3', 'evjphqnevjqakze 92 15', 'wwzwv 87 8', 'tfpiqpwmkkduhcupp 1 82', 'tzamkyqadmybky 5 81', 'amotrxgba 0 6', 'easfsifbzkfezn 100 28', 'kivdiy 70 47', ]))) @patch('sys.stdout', new_callable=io.StringIO) def test_input_eighteen(self, stdout): main() self.assertEqual(stdout.getvalue(), "\n".join([ 'easfsifbzkfezn', 'evjphqnevjqakze', 'wwzwv', 'xvf', 'tufhdbi', 'tgcytmfpj', 'kivdiy', 'rqyoazgbmv', 'qvgtrlkmyrm', 'jzpnpgpcqbsmczrgvsu', 'tzamkyqadmybky', 'tfpiqpwmkkduhcupp', 'amotrxgba', ]) + '\n') def test_comparator(self): self.assertEqual((-1, 0, 'alla') > (-2, 0, 'gosha'), True) self.assertEqual((-1, 0, 'alla') < (-1, 0, 'gosha'), True) self.assertEqual((-1, 10, 'alla') > (-1, 0, 'gosha'), True)
3f5d882eb5c278177e7ea02ad9b0bae7cf3d56a7
dd80a584130ef1a0333429ba76c1cee0eb40df73
/external/chromium_org/chrome/common/extensions/docs/server2/features_bundle_test.py
50767975bc1ae25f4024e0185a990181d1544b71
[ "BSD-3-Clause", "MIT" ]
permissive
karunmatharu/Android-4.4-Pay-by-Data
466f4e169ede13c5835424c78e8c30ce58f885c1
fcb778e92d4aad525ef7a995660580f948d40bc9
refs/heads/master
2021-03-24T13:33:01.721868
2017-02-18T17:48:49
2017-02-18T17:48:49
81,847,777
0
2
MIT
2020-03-09T00:02:12
2017-02-13T16:47:00
null
UTF-8
Python
false
false
7,104
py
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import unittest from extensions_paths import EXTENSIONS from server_instance import ServerInstance from test_file_system import TestFileSystem _TEST_FILESYSTEM = { 'api': { '_api_features.json': json.dumps({ 'audioCapture': { 'channel': 'stable', 'extension_types': ['platform_app'] }, 'background': [ { 'channel': 'stable', 'extension_types': ['extension'] }, { 'channel': 'stable', 'extension_types': ['platform_app'], 'whitelist': ['im not here'] } ], 'omnibox': { 'dependencies': ['manifest:omnibox'], 'contexts': ['blessed_extension'] }, 'syncFileSystem': { 'dependencies': ['permission:syncFileSystem'], 'contexts': ['blessed_extension'] }, 'tabs': { 'channel': 'stable', 'extension_types': ['extension', 'legacy_packaged_app'], 'contexts': ['blessed_extension'] }, 'test': { 'channel': 'stable', 'extension_types': 'all', 'contexts': [ 'blessed_extension', 'unblessed_extension', 'content_script'] }, 'windows': { 'dependencies': ['api:tabs'], 'contexts': ['blessed_extension'] } }), '_manifest_features.json': json.dumps({ 'app.content_security_policy': { 'channel': 'stable', 'extension_types': ['platform_app'], 'min_manifest_version': 2, 'whitelist': ['this isnt happening'] }, 'background': { 'channel': 'stable', 'extension_types': ['extension', 'legacy_packaged_app', 'hosted_app'] }, 'manifest_version': { 'channel': 'stable', 'extension_types': 'all' }, 'omnibox': { 'channel': 'stable', 'extension_types': ['extension'] }, 'page_action': { 'channel': 'stable', 'extension_types': ['extension'] }, 'sockets': { 'channel': 'dev', 'extension_types': ['platform_app'] } }), '_permission_features.json': json.dumps({ 'bluetooth': { 'channel': 'dev', 'extension_types': ['platform_app'] }, 'power': { 'channel': 'stable', 'extension_types': [ 'extension', 'legacy_packaged_app', 'platform_app' ] }, 'syncFileSystem': { 'channel': 'stable', 'extension_types': ['platform_app'] }, 'tabs': { 'channel': 'stable', 'extension_types': ['extension'] } }) }, 'docs': { 'templates': { 'json': { 'manifest.json': json.dumps({ 'background': { 'documentation': 'background_pages.html' }, 'manifest_version': { 'documentation': 'manifest/manifest_version.html', 'example': 2, 'level': 'required' }, 'page_action': { 'documentation': 'pageAction.html', 'example': {}, 'level': 'only_one' } }), 'permissions.json': json.dumps({ 'fakeUnsupportedFeature': {}, 'syncFileSystem': { 'partial': 'permissions/sync_file_system.html' }, 'tabs': { 'partial': 'permissions/tabs.html' }, }) } } } } class FeaturesBundleTest(unittest.TestCase): def setUp(self): self._server = ServerInstance.ForTest( TestFileSystem(_TEST_FILESYSTEM, relative_to=EXTENSIONS)) def testManifestFeatures(self): expected_features = { 'background': { 'name': 'background', 'channel': 'stable', 'platforms': ['extensions'], 'documentation': 'background_pages.html' }, 'manifest_version': { 'name': 'manifest_version', 'channel': 'stable', 'platforms': ['apps', 'extensions'], 'documentation': 'manifest/manifest_version.html', 'level': 'required', 'example': 2 }, 'omnibox': { 'name': 'omnibox', 'channel': 'stable', 'platforms': ['extensions'] }, 'page_action': { 'name': 'page_action', 'channel': 'stable', 'platforms': ['extensions'], 'documentation': 'pageAction.html', 'level': 'only_one', 'example': {} }, 'sockets': { 'name': 'sockets', 'channel': 'dev', 'platforms': ['apps'] } } self.assertEqual( expected_features, self._server.features_bundle.GetManifestFeatures().Get()) def testPermissionFeatures(self): expected_features = { 'bluetooth': { 'name': 'bluetooth', 'channel': 'dev', 'platforms': ['apps'], }, 'fakeUnsupportedFeature': { 'name': 'fakeUnsupportedFeature', 'platforms': [] }, 'power': { 'name': 'power', 'channel': 'stable', 'platforms': ['apps', 'extensions'], }, 'syncFileSystem': { 'name': 'syncFileSystem', 'channel': 'stable', 'platforms': ['apps'], 'partial': 'permissions/sync_file_system.html' }, 'tabs': { 'name': 'tabs', 'channel': 'stable', 'platforms': ['extensions'], 'partial': 'permissions/tabs.html' } } self.assertEqual( expected_features, self._server.features_bundle.GetPermissionFeatures().Get()) def testAPIFeatures(self): expected_features = { 'audioCapture': { 'name': 'audioCapture', 'channel': 'stable', 'platforms': ['apps'] }, 'background': { 'name': 'background', 'channel': 'stable', 'platforms': ['extensions'] }, 'omnibox': { 'name': 'omnibox', 'platforms': ['extensions'], 'contexts': ['blessed_extension'], 'dependencies': ['manifest:omnibox'] }, 'syncFileSystem': { 'name': 'syncFileSystem', 'platforms': ['apps'], 'contexts': ['blessed_extension'], 'dependencies': ['permission:syncFileSystem'] }, 'tabs': { 'name': 'tabs', 'channel': 'stable', 'platforms': ['extensions'], 'contexts': ['blessed_extension'], }, 'test': { 'name': 'test', 'channel': 'stable', 'platforms': ['apps', 'extensions'], 'contexts': [ 'blessed_extension', 'unblessed_extension', 'content_script'], }, 'windows': { 'name': 'windows', 'platforms': ['extensions'], 'contexts': ['blessed_extension'], 'dependencies': ['api:tabs'] } } self.assertEqual( expected_features, self._server.features_bundle.GetAPIFeatures().Get()) if __name__ == '__main__': unittest.main()
279e0d1e2d470454199c547c791cb5ef62e33742
18305efd1edeb68db69880e03411df37fc83b58b
/pdb_files3000rot/yw/1ywr/tractability_450/pymol_results_file.py
ebb72d9d9960837c67a5b78068b76528df0d8d86
[]
no_license
Cradoux/hotspot_pipline
22e604974c8e38c9ffa979092267a77c6e1dc458
88f7fab8611ebf67334474c6e9ea8fc5e52d27da
refs/heads/master
2021-11-03T16:21:12.837229
2019-03-28T08:31:39
2019-03-28T08:31:39
170,106,739
0
0
null
null
null
null
UTF-8
Python
false
false
6,618
py
from os.path import join import tempfile import zipfile from pymol import cmd, finish_launching from pymol.cgo import * finish_launching() dirpath = None def cgo_arrow(atom1='pk1', atom2='pk2', radius=0.07, gap=0.0, hlength=-1, hradius=-1, color='blue red', name=''): from chempy import cpv radius, gap = float(radius), float(gap) hlength, hradius = float(hlength), float(hradius) try: color1, color2 = color.split() except: color1 = color2 = color color1 = list(cmd.get_color_tuple(color1)) color2 = list(cmd.get_color_tuple(color2)) def get_coord(v): if not isinstance(v, str): return v if v.startswith('['): return cmd.safe_list_eval(v) return cmd.get_atom_coords(v) xyz1 = get_coord(atom1) xyz2 = get_coord(atom2) normal = cpv.normalize(cpv.sub(xyz1, xyz2)) if hlength < 0: hlength = radius * 3.0 if hradius < 0: hradius = hlength * 0.6 if gap: diff = cpv.scale(normal, gap) xyz1 = cpv.sub(xyz1, diff) xyz2 = cpv.add(xyz2, diff) xyz3 = cpv.add(cpv.scale(normal, hlength), xyz2) obj = [cgo.CYLINDER] + xyz1 + xyz3 + [radius] + color1 + color2 + [cgo.CONE] + xyz3 + xyz2 + [hradius, 0.0] + color2 + color2 + [1.0, 0.0] return obj dirpath = tempfile.mkdtemp() zip_dir = 'out.zip' with zipfile.ZipFile(zip_dir) as hs_zip: hs_zip.extractall(dirpath) cmd.load(join(dirpath,"protein.pdb"), "protein") cmd.show("cartoon", "protein") if dirpath: f = join(dirpath, "label_threshold_10.mol2") else: f = "label_threshold_10.mol2" cmd.load(f, 'label_threshold_10') cmd.hide('everything', 'label_threshold_10') cmd.label("label_threshold_10", "name") cmd.set("label_font_id", 7) cmd.set("label_size", -0.4) if dirpath: f = join(dirpath, "label_threshold_14.mol2") else: f = "label_threshold_14.mol2" cmd.load(f, 'label_threshold_14') cmd.hide('everything', 'label_threshold_14') cmd.label("label_threshold_14", "name") cmd.set("label_font_id", 7) cmd.set("label_size", -0.4) if dirpath: f = join(dirpath, "label_threshold_17.mol2") else: f = "label_threshold_17.mol2" cmd.load(f, 'label_threshold_17') cmd.hide('everything', 'label_threshold_17') cmd.label("label_threshold_17", "name") cmd.set("label_font_id", 7) cmd.set("label_size", -0.4) colour_dict = {'acceptor':'red', 'donor':'blue', 'apolar':'yellow', 'negative':'purple', 'positive':'cyan'} threshold_list = [10, 14, 17] gfiles = ['donor.grd', 'apolar.grd', 'acceptor.grd'] grids = ['donor', 'apolar', 'acceptor'] num = 0 surf_transparency = 0.2 if dirpath: gfiles = [join(dirpath, g) for g in gfiles] for t in threshold_list: for i in range(len(grids)): try: cmd.load(r'%s'%(gfiles[i]), '%s_%s'%(grids[i], str(num))) cmd.isosurface('surface_%s_%s_%s'%(grids[i], t, num), '%s_%s'%(grids[i], num), t) cmd.set('transparency', surf_transparency, 'surface_%s_%s_%s'%(grids[i], t, num)) cmd.color(colour_dict['%s'%(grids[i])], 'surface_%s_%s_%s'%(grids[i], t, num)) cmd.group('threshold_%s'%(t), members = 'surface_%s_%s_%s'%(grids[i],t, num)) cmd.group('threshold_%s' % (t), members='label_threshold_%s' % (t)) except: continue try: cmd.group('hotspot_%s' % (num), members='threshold_%s' % (t)) except: continue for g in grids: cmd.group('hotspot_%s' % (num), members='%s_%s' % (g,num)) cluster_dict = {"16.1989994049":[], "16.1989994049_arrows":[]} cluster_dict["16.1989994049"] += [COLOR, 0.00, 0.00, 1.00] + [ALPHA, 0.6] + [SPHERE, float(-1.0), float(-3.0), float(23.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([-1.0,-3.0,23.5], [-4.133,-2.917,23.047], color="blue red", name="Arrows_16.1989994049_1") cluster_dict["16.1989994049"] += [COLOR, 0.00, 0.00, 1.00] + [ALPHA, 0.6] + [SPHERE, float(2.5), float(-3.0), float(15.0), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([2.5,-3.0,15.0], [3.509,-5.374,14.235], color="blue red", name="Arrows_16.1989994049_2") cluster_dict["16.1989994049"] += [COLOR, 0.00, 0.00, 1.00] + [ALPHA, 0.6] + [SPHERE, float(2.0), float(3.5), float(19.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([2.0,3.5,19.5], [4.113,5.844,19.273], color="blue red", name="Arrows_16.1989994049_3") cluster_dict["16.1989994049"] += [COLOR, 0.00, 0.00, 1.00] + [ALPHA, 0.6] + [SPHERE, float(4.0), float(3.5), float(26.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([4.0,3.5,26.5], [2.411,5.22,24.84], color="blue red", name="Arrows_16.1989994049_4") cluster_dict["16.1989994049"] += [COLOR, 1.00, 1.000, 0.000] + [ALPHA, 0.6] + [SPHERE, float(2.85864055667), float(-0.56159484147), float(21.1266280078), float(1.0)] cluster_dict["16.1989994049"] += [COLOR, 1.00, 0.00, 0.00] + [ALPHA, 0.6] + [SPHERE, float(2.5), float(-3.0), float(16.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([2.5,-3.0,16.5], [3.933,-5.403,17.063], color="red blue", name="Arrows_16.1989994049_5") cluster_dict["16.1989994049"] += [COLOR, 1.00, 0.00, 0.00] + [ALPHA, 0.6] + [SPHERE, float(2.5), float(-3.0), float(16.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([2.5,-3.0,16.5], [3.933,-5.403,17.063], color="red blue", name="Arrows_16.1989994049_6") cluster_dict["16.1989994049"] += [COLOR, 1.00, 0.00, 0.00] + [ALPHA, 0.6] + [SPHERE, float(4.0), float(3.0), float(22.5), float(1.0)] cluster_dict["16.1989994049_arrows"] += cgo_arrow([4.0,3.0,22.5], [2.892,6.029,22.446], color="red blue", name="Arrows_16.1989994049_7") cmd.load_cgo(cluster_dict["16.1989994049"], "Features_16.1989994049", 1) cmd.load_cgo(cluster_dict["16.1989994049_arrows"], "Arrows_16.1989994049") cmd.set("transparency", 0.2,"Features_16.1989994049") cmd.group("Pharmacophore_16.1989994049", members="Features_16.1989994049") cmd.group("Pharmacophore_16.1989994049", members="Arrows_16.1989994049") if dirpath: f = join(dirpath, "label_threshold_16.1989994049.mol2") else: f = "label_threshold_16.1989994049.mol2" cmd.load(f, 'label_threshold_16.1989994049') cmd.hide('everything', 'label_threshold_16.1989994049') cmd.label("label_threshold_16.1989994049", "name") cmd.set("label_font_id", 7) cmd.set("label_size", -0.4) cmd.group('Pharmacophore_16.1989994049', members= 'label_threshold_16.1989994049') cmd.bg_color("white") cmd.show("cartoon", "protein") cmd.color("slate", "protein") cmd.show("sticks", "organic") cmd.hide("lines", "protein")
882f0f25e1b5052422d03c13ad8d30b00414aa07
4ba50e4df5b7d8d8330135559554b990ce67bce4
/tests/__init__.py
67087766e181371172841cfcf3dd1f3c7da689ea
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
scottyhq/snowexsql
dd0c6741c7d0e0f679606f0d94368df667f4d533
c673a746592d2a6dc02547ac11a68a697dfe0d34
refs/heads/master
2023-04-15T02:44:28.769853
2021-05-01T14:49:56
2021-05-01T14:49:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
39
py
"""Unit test package for snowexsql."""
e829b3c4b85543d0c217195b930a908a47eb42ec
386d1b6557f4cbaf20794cd222f3b7b8598ef6a6
/data/clean_data/A1/81.py
8adc1c38d7e03dff806e025dd070c4524f27725c
[]
no_license
woowei0102/code2pro
3baf86985f911264362963c503f12d20bdc1f89f
0b16c62a1cb9053ab59edd7a52e1b3b39fdf66dc
refs/heads/main
2023-06-28T23:09:23.998798
2021-07-13T11:49:27
2021-07-13T11:49:27
385,585,282
0
0
null
null
null
null
UTF-8
Python
false
false
621
py
class Account: def __init__(self, name): self.name = name self.balance = 0 def deposit(self, amount): self.balance += amount print('{}存了NT$'.format(self.name) + str(amount) + '元') def withdraw(self, amount): if self.balance >= amount: self.balance -= amount else: print('{}的存款不足.'.format(self.name)) def show(self): print("{}餘額NT${:,.0f}元".format(self.name,self.balance)) userA = Account("Jack") userA.withdraw(1000) userA.deposit(5000) userA.withdraw(1000) userA.show()
d1c982f88855f761cac1e63ac2a25c7026cee10c
9daf1ecdfc69a1a97998465fae2102f0f2845eb0
/deepbond/models/rcnn_crf.py
3118eefd7a1f3809a359955b8e9450ee478a342e
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
mtreviso/deepbond
f3d23de8955f8ff1085b24fe53ebb7ff722a2a7f
a36ccb71e4457889d340920260f18666835d703f
refs/heads/master
2023-04-07T22:58:34.650115
2023-03-15T16:27:58
2023-03-15T16:27:58
114,040,073
17
2
null
null
null
null
UTF-8
Python
false
false
5,573
py
import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence as pack from torch.nn.utils.rnn import pad_packed_sequence as unpack from deepbond import constants from deepbond.initialization import init_xavier, init_kaiming from deepbond.models.model import Model from deepbond.modules.crf import CRF class RCNNCRF(Model): """Recurrent Convolutional Neural Network + CRF. As described in: https://arxiv.org/pdf/1610.00211.pdf """ def __init__(self, words_field, tags_field, options): super().__init__(words_field, tags_field) # # Embeddings # word_embeddings = None if self.words_field.vocab.vectors is not None: word_embeddings = self.words_field.vocab.vectors options.word_embeddings_size = word_embeddings.size(1) self.word_emb = nn.Embedding( num_embeddings=len(self.words_field.vocab), embedding_dim=options.word_embeddings_size, padding_idx=constants.PAD_ID, _weight=word_embeddings, ) self.dropout_emb = nn.Dropout(options.emb_dropout) if options.freeze_embeddings: self.word_emb.weight.requires_grad = False features_size = options.word_embeddings_size # # CNN 1D # self.cnn_1d = nn.Conv1d(in_channels=features_size, out_channels=options.conv_size, kernel_size=options.kernel_size, padding=options.kernel_size // 2) self.max_pool = nn.MaxPool1d(options.pool_length, padding=options.pool_length // 2) self.dropout_cnn = nn.Dropout(options.cnn_dropout) self.relu = torch.nn.ReLU() features_size = (options.conv_size // options.pool_length + options.pool_length // 2) # # RNN # self.is_bidir = options.bidirectional self.sum_bidir = options.sum_bidir self.rnn_type = options.rnn_type if self.rnn_type == 'gru': rnn_class = nn.GRU elif self.rnn_type == 'lstm': rnn_class = nn.LSTM else: rnn_class = nn.RNN hidden_size = options.hidden_size[0] self.rnn = rnn_class(features_size, hidden_size, bidirectional=self.is_bidir, batch_first=True) self.dropout_rnn = nn.Dropout(options.rnn_dropout) self.sigmoid = torch.nn.Sigmoid() features_size = hidden_size eos_tag_id = self.tags_field.vocab.stoi['.'] if '.' in self.tags_field.vocab.stoi else self.tags_field.vocab.stoi['_'] self.crf = CRF( self.nb_classes, bos_tag_id=self.tags_field.vocab.stoi['_'], # hack eos_tag_id=eos_tag_id, pad_tag_id=None, batch_first=True, ) # # Linear # n = 1 if not self.is_bidir or self.sum_bidir else 2 self.linear_out = nn.Linear(n * features_size, self.nb_classes) self.init_weights() self.is_built = True def init_weights(self): if self.cnn_1d is not None: init_kaiming(self.cnn_1d, dist='uniform', nonlinearity='relu') if self.rnn is not None: init_xavier(self.rnn, dist='uniform') if self.linear_out is not None: init_xavier(self.linear_out, dist='uniform') def build_loss(self, loss_weights=None): self._loss = self.crf def loss(self, emissions, gold): mask = gold != constants.TAGS_PAD_ID crf_gold = gold.clone() crf_gold[mask == 0] = 0 return self._loss(emissions, crf_gold, mask=mask.float()) def predict_classes(self, batch): emissions = self.forward(batch) mask = batch.words != constants.PAD_ID _, path = self.crf.decode(emissions, mask=mask[:, 2:].float()) return [torch.tensor(p) for p in path] def predict_proba(self, batch): raise Exception('Predict() probability is not available.') def forward(self, batch): assert self.is_built assert self._loss is not None h = batch.words mask = h != constants.PAD_ID lengths = mask.int().sum(dim=-1) # (bs, ts) -> (bs, ts, emb_dim) h = self.word_emb(h) h = self.dropout_emb(h) # Turn (bs, ts, emb_dim) into (bs, emb_dim, ts) for CNN h = h.transpose(1, 2) # (bs, emb_dim, ts) -> (bs, conv_size, ts) h = self.relu(self.cnn_1d(h)) # Turn (bs, conv_size, ts) into (bs, ts, conv_size) for Pooling h = h.transpose(1, 2) # (bs, ts, conv_size) -> (bs, ts, pool_size) h = self.max_pool(h) h = self.dropout_cnn(h) # (bs, ts, pool_size) -> (bs, ts, hidden_size) h = pack(h, lengths, batch_first=True, enforce_sorted=False) h, _ = self.rnn(h) h, _ = unpack(h, batch_first=True) # if you'd like to sum instead of concatenate: if self.sum_bidir: h = (h[:, :, :self.rnn.hidden_size] + h[:, :, self.rnn.hidden_size:]) h = self.sigmoid(h) # apply dropout h = self.dropout_rnn(h) # (bs, ts, hidden_size) -> (bs, ts, nb_classes) h = self.linear_out(h) # remove <bos> and <eos> tokens # (bs, ts, nb_classes) -> (bs, ts-2, nb_classes) h = h[:, 1:-1, :] return h
1cd352d1bca1e800029113e0addaac329f0597b1
4f7dc1bd5a5561c9f3fb693f0d6f4c6b13504db6
/library/v0.5/analysis_tools/kinase_enrichment/kinase_enrichment.py
00278ff36b510fa6436063457fa111a67be34ad7
[]
no_license
bluejek128/microglia
296b02d21f82f0769c18e3fa7e63eadd374e4965
f9f2281c277d1b71ca80e26cc071fa096e653e68
refs/heads/master
2020-03-13T21:48:14.750943
2018-05-07T20:43:32
2018-05-07T20:43:32
131,304,292
0
0
null
null
null
null
UTF-8
Python
false
false
7,204
py
################################################################# ################################################################# ############### DE ################################################################# ################################################################# ############################################# ########## 1. Load libraries ############################################# ##### 1. General support ##### import qgrid, requests, json import pandas as pd import numpy as np from IPython.display import display, Markdown, HTML ##### 2. Other libraries ##### ####################################################### ####################################################### ########## Support ####################################################### ####################################################### ############################################# ########## 1. Get Enrichr Results ############################################# def get_enrichr_results(user_list_id, gene_set_libraries, overlappingGenes=True): ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/enrich' query_string = '?userListId=%s&backgroundType=%s' results = [] for gene_set_library in gene_set_libraries: response = requests.get( ENRICHR_URL + query_string % (user_list_id, gene_set_library) ) if not response.ok: raise Exception('Error fetching enrichment results') data = json.loads(response.text) resultDataframe = pd.DataFrame(data[gene_set_library], columns=['rank', 'term_name', 'pvalue', 'zscore', 'combined_score', 'overlapping_genes', 'FDR', 'old_pvalue', 'old_FDR']) selectedColumns = ['term_name','zscore','combined_score','pvalue', 'FDR'] if not overlappingGenes else ['term_name','zscore','combined_score','FDR', 'pvalue', 'overlapping_genes'] resultDataframe = resultDataframe.loc[:,selectedColumns] resultDataframe['gene_set_library'] = gene_set_library results.append(resultDataframe) concatenatedDataframe = pd.concat(results) return concatenatedDataframe ############################################# ########## 2. Display Result Table ############################################# def results_table(enrichment_dataframe, source_label, target_label): # Get libraries for gene_set_library in enrichment_dataframe['gene_set_library'].unique(): # Get subset enrichment_dataframe_subset = enrichment_dataframe[enrichment_dataframe['gene_set_library'] == gene_set_library].copy() # Get unique values from source column enrichment_dataframe_subset[source_label] = [x.split('_')[0] for x in enrichment_dataframe_subset['term_name']] enrichment_dataframe_subset = enrichment_dataframe_subset.sort_values(['FDR', 'pvalue']).rename(columns={'pvalue': 'P-value'}).drop_duplicates(source_label) # Add links and bold for significant results enrichment_dataframe_subset[source_label] = ['<a href="http://amp.pharm.mssm.edu/Harmonizome/gene/{x}" target="_blank">{x}</a>'.format(**locals()) for x in enrichment_dataframe_subset[source_label]] enrichment_dataframe_subset[source_label] = [rowData[source_label].replace('target="_blank">', 'target="_blank"><b>').replace('</a>', '*</b></a>') if rowData['FDR'] < 0.05 else rowData[source_label] for index, rowData in enrichment_dataframe_subset.iterrows()] # Add rank enrichment_dataframe_subset['Rank'] = ['<b>'+str(x+1)+'</b>' for x in range(len(enrichment_dataframe_subset.index))] # Add overlapping genes with tooltip enrichment_dataframe_subset['nr_overlapping_genes'] = [len(x) for x in enrichment_dataframe_subset['overlapping_genes']] enrichment_dataframe_subset['overlapping_genes'] = [', '.join(x) for x in enrichment_dataframe_subset['overlapping_genes']] enrichment_dataframe_subset[target_label.title()] = ['{nr_overlapping_genes} {geneset} '.format(**rowData)+target_label+'s' for index, rowData in enrichment_dataframe_subset.iterrows()] # enrichment_dataframe[target_label.title()] = ['<span class="gene-tooltip">{nr_overlapping_genes} {geneset} '.format(**rowData)+target_label+'s<div class="gene-tooltip-text">{overlapping_genes}</div></span>'.format(**rowData) for index, rowData in enrichment_dataframe.iterrows()] # Convert to HTML pd.set_option('max.colwidth', -1) html_table = enrichment_dataframe_subset.head(50)[['Rank', source_label, 'P-value', 'FDR', target_label.title()]].to_html(escape=False, index=False, classes='w-100') html_results = '<div style="max-height: 200px; overflow-y: scroll;">{}</div>'.format(html_table) # Add CSS display(HTML('<style>.w-100{width: 100%;} .text-left th{text-align: left !important;}</style>')) display(HTML('<style>.slick-cell{overflow: visible;}.gene-tooltip{text-decoration: underline; text-decoration-style: dotted;}.gene-tooltip .gene-tooltip-text{visibility: hidden; position: absolute; left: 60%; width: 250px; z-index: 1000; text-align: center; background-color: black; color: white; padding: 5px 10px; border-radius: 5px;} .gene-tooltip:hover .gene-tooltip-text{visibility: visible;} .gene-tooltip .gene-tooltip-text::after {content: " ";position: absolute;bottom: 100%;left: 50%;margin-left: -5px;border-width: 5px;border-style: solid;border-color: transparent transparent black transparent;}</style>')) # Display gene set display(Markdown('### A. KEA (experimentally validated substrates)' if gene_set_library == 'KEA_2015' else '### B. ARCHS4 (coexpressed genes)')) # Display table display(HTML(html_results)) ####################################################### ####################################################### ########## S1. Function ####################################################### ####################################################### ############################################# ########## 1. Run ############################################# def run(enrichr_results, signature_label): # Initialize results results = [] # Loop through genesets for geneset in ['upregulated', 'downregulated']: # Append ChEA results enrichment_dataframe = get_enrichr_results(enrichr_results[geneset]['userListId'], gene_set_libraries=['KEA_2015', 'ARCHS4_Kinases_Coexp']) enrichment_dataframe['geneset'] = geneset results.append(enrichment_dataframe) # Concatenate results tf_dataframe = pd.concat(results) return {'tf_dataframe': tf_dataframe, 'signature_label': signature_label} ############################################# ########## 2. Plot ############################################# def plot(kinase_enrichment_results, plot_counter): results_table(kinase_enrichment_results['tf_dataframe'].copy(), source_label='Kinase', target_label='substrate') # Figure Legend display(Markdown('** Table '+plot_counter('table')+' | Kinase Enrichment Analysis Results. **The figure contains browsable tables displaying the results of the Protein Kinase (PK) enrichment analysis generated using Enrichr. Every row represents a PK; significant PKs are highlighted in bold. A displays results generated using KEA, indicating PKs whose experimentally validated substrates are enriched. C displays results generated using the ARCHS4 library, indicating PKs whose top coexpressed genes (according to the ARCHS4 dataset) are enriched.'.format(**locals())))
c1080f3be20f44fea54a411bbe22c1ee9d6f684d
fe4f2aeb889f939ea6caf4a34371a3558064abcd
/vqa/model_vlmap_answer_full.py
f1185b07099b9fce81c71ccfbf3435a883d84cff
[ "MIT" ]
permissive
HyeonwooNoh/VQA-Transfer-ExternalData
cf9c1b82dd55389dfe5f52d8fd196780dd3d4629
d21b700bcdc3ba3c392ff793b3f5efe23eb68ed6
refs/heads/master
2021-10-25T22:58:00.318492
2019-04-08T04:52:46
2019-04-08T04:52:46
122,662,354
21
3
null
null
null
null
UTF-8
Python
false
false
11,656
py
import cPickle import h5py import os import numpy as np import tensorflow as tf from util import log from vlmap import modules W_DIM = 300 # Word dimension L_DIM = 1024 # Language dimension V_DIM = 1024 class Model(object): def __init__(self, batch, config, is_train=True): self.batch = batch self.config = config self.image_dir = config.image_dir self.is_train = is_train self.word_weight_dir = getattr(config, 'vlmap_word_weight_dir', None) if self.word_weight_dir is None: log.warn('word_weight_dir is None') self.losses = {} self.report = {} self.mid_result = {} self.vis_image = {} self.global_step = tf.train.get_or_create_global_step(graph=None) self.latent_loss_weight = tf.convert_to_tensor(0.1) self.report['model_step'] = self.global_step self.report['latent_loss_weight'] = self.latent_loss_weight self.vocab = cPickle.load(open(config.vocab_path, 'rb')) self.answer_dict = cPickle.load(open( os.path.join(config.tf_record_dir, 'answer_dict.pkl'), 'rb')) self.num_answer = len(self.answer_dict['vocab']) self.num_train_answer = self.answer_dict['num_train_answer'] self.train_answer_mask = tf.expand_dims(tf.sequence_mask( self.num_train_answer, maxlen=self.num_answer, dtype=tf.float32), axis=0) self.test_answer_mask = 1.0 - self.train_answer_mask self.glove_map = modules.LearnGloVe(self.vocab) self.answer_exist_mask = modules.AnswerExistMask( self.answer_dict, self.word_weight_dir) log.infov('loading image features...') with h5py.File(config.vfeat_path, 'r') as f: self.features = np.array(f.get('image_features')) log.infov('feature done') self.spatials = np.array(f.get('spatial_features')) log.infov('spatials done') self.normal_boxes = np.array(f.get('normal_boxes')) log.infov('normal_boxes done') self.num_boxes = np.array(f.get('num_boxes')) log.infov('num_boxes done') self.max_box_num = int(f['data_info']['max_box_num'].value) self.vfeat_dim = int(f['data_info']['vfeat_dim'].value) log.infov('done') self.build() def filter_train_vars(self, trainable_vars): train_vars = [] for var in trainable_vars: if var.name.split('/')[0] == 'q_linear_l': pass elif var.name.split('/')[0] == 'pooled_linear_l': pass elif var.name.split('/')[0] == 'joint_fc': pass elif var.name.split('/')[0] == 'WordWeightAnswer': pass else: train_vars.append(var) return train_vars def filter_transfer_vars(self, all_vars): transfer_vars = [] for var in all_vars: if var.name.split('/')[0] == 'q_linear_l': transfer_vars.append(var) elif var.name.split('/')[0] == 'pooled_linear_l': transfer_vars.append(var) elif var.name.split('/')[0] == 'joint_fc': transfer_vars.append(var) return transfer_vars def build(self): """ build network architecture and loss """ """ Visual features """ with tf.device('/cpu:0'): def load_feature(image_idx): selected_features = np.take(self.features, image_idx, axis=0) return selected_features V_ft = tf.py_func( load_feature, inp=[self.batch['image_idx']], Tout=tf.float32, name='sample_features') V_ft.set_shape([None, self.max_box_num, self.vfeat_dim]) num_V_ft = tf.gather(self.num_boxes, self.batch['image_idx'], name='gather_num_V_ft', axis=0) self.mid_result['num_V_ft'] = num_V_ft normal_boxes = tf.gather(self.normal_boxes, self.batch['image_idx'], name='gather_normal_boxes', axis=0) self.mid_result['normal_boxes'] = normal_boxes log.warning('v_linear_v') v_linear_v = modules.fc_layer( V_ft, V_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='v_linear_v') """ Encode question """ q_embed = tf.nn.embedding_lookup(self.glove_map, self.batch['q_intseq']) # [bs, L_DIM] q_L_ft = modules.encode_L(q_embed, self.batch['q_intseq_len'], L_DIM, cell_type='GRU') q_L_mean = modules.fc_layer( q_L_ft, L_DIM, use_bias=True, use_bn=False, use_ln=False, activation_fn=None, is_training=self.is_train, scope='q_L_mean') q_L_log_sigma_sq = modules.fc_layer( q_L_ft, L_DIM, use_bias=True, use_bn=False, use_ln=False, activation_fn=None, is_training=self.is_train, scope='q_L_log_sigma_sq') q_L_sigma = tf.sqrt(tf.exp(q_L_log_sigma_sq)) noise = tf.random_normal(tf.shape(q_L_mean), mean=0, stddev=1, seed=123) q_L_mean_noise = q_L_mean + noise * q_L_sigma # [bs, V_DIM} log.warning('q_linear_v') q_linear_v = modules.fc_layer( q_L_ft, V_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_linear_v') self.mid_result['q_linear_v'] = q_linear_v """ Perform attention """ att_score = modules.hadamard_attention( v_linear_v, num_V_ft, q_linear_v, use_ln=False, is_train=self.is_train) self.mid_result['att_score'] = att_score pooled_V_ft = modules.attention_pooling(V_ft, att_score) self.mid_result['pooled_V_ft'] = pooled_V_ft """ Answer classification """ log.warning('pooled_linear_l') pooled_linear_l = modules.fc_layer( pooled_V_ft, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='pooled_linear_l') self.mid_result['pooled_linear_l'] = pooled_linear_l log.warning('q_linear_l') l_linear_l = modules.fc_layer( q_L_mean_noise, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_linear_l') self.mid_result['l_linear_l'] = l_linear_l joint = modules.fc_layer( pooled_linear_l * l_linear_l, L_DIM * 2, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='joint_fc') joint = tf.nn.dropout(joint, 0.5) self.mid_result['joint'] = joint logit = modules.WordWeightAnswer( joint, self.answer_dict, self.word_weight_dir, use_bias=True, is_training=self.is_train, scope='WordWeightAnswer') self.mid_result['logit'] = logit """ Compute loss and accuracy """ with tf.name_scope('loss'): answer_target = self.batch['answer_target'] loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=answer_target, logits=logit) train_loss = tf.reduce_mean(tf.reduce_sum( loss * self.train_answer_mask, axis=-1)) report_loss = tf.reduce_mean(tf.reduce_sum(loss, axis=-1)) pred = tf.cast(tf.argmax(logit, axis=-1), dtype=tf.int32) one_hot_pred = tf.one_hot(pred, depth=self.num_answer, dtype=tf.float32) acc = tf.reduce_mean( tf.reduce_sum(one_hot_pred * answer_target, axis=-1)) exist_acc = tf.reduce_mean( tf.reduce_sum(one_hot_pred * answer_target * self.answer_exist_mask, axis=-1)) test_acc = tf.reduce_mean( tf.reduce_sum(one_hot_pred * answer_target * self.test_answer_mask, axis=-1)) max_exist_answer_acc = tf.reduce_mean( tf.reduce_max(answer_target * self.answer_exist_mask, axis=-1)) test_max_answer_acc = tf.reduce_mean( tf.reduce_max(answer_target * self.test_answer_mask, axis=-1)) test_max_exist_answer_acc = tf.reduce_mean( tf.reduce_max(answer_target * self.answer_exist_mask * self.test_answer_mask, axis=-1)) normal_test_acc = tf.where( tf.equal(test_max_answer_acc, 0), test_max_answer_acc, test_acc / test_max_answer_acc) latent_loss = self.latent_loss(q_L_mean, q_L_log_sigma_sq) self.mid_result['pred'] = pred self.losses['answer'] = train_loss self.losses['latent'] = self.latent_loss_weight * latent_loss self.report['latent_loss'] = latent_loss self.report['train_latent_loss'] = self.losses['latent'] self.report['answer_train_loss'] = train_loss self.report['answer_report_loss'] = report_loss self.report['answer_accuracy'] = acc self.report['exist_answer_accuracy'] = exist_acc self.report['test_answer_accuracy'] = test_acc self.report['normal_test_answer_accuracy'] = normal_test_acc self.report['max_exist_answer_accuracy'] = max_exist_answer_acc self.report['test_max_answer_accuracy'] = test_max_answer_acc self.report['test_max_exist_answer_accuracy'] = test_max_exist_answer_acc """ Prepare image summary """ """ with tf.name_scope('prepare_summary'): self.vis_image['image_attention_qa'] = self.visualize_vqa_result( self.batch['image_id'], self.mid_result['normal_boxes'], self.mid_result['num_V_ft'], self.mid_result['att_score'], self.batch['q_intseq'], self.batch['q_intseq_len'], self.batch['answer_target'], self.mid_result['pred'], max_batch_num=20, line_width=2) """ self.loss = 0 for key, loss in self.losses.items(): self.loss = self.loss + loss # scalar summary for key, val in self.report.items(): tf.summary.scalar('train/{}'.format(key), val, collections=['heavy_train', 'train']) tf.summary.scalar('val/{}'.format(key), val, collections=['heavy_val', 'val']) tf.summary.scalar('testval/{}'.format(key), val, collections=['heavy_testval', 'testval']) # image summary for key, val in self.vis_image.items(): tf.summary.image('train-{}'.format(key), val, max_outputs=10, collections=['heavy_train']) tf.summary.image('val-{}'.format(key), val, max_outputs=10, collections=['heavy_val']) tf.summary.image('testval-{}'.format(key), val, max_outputs=10, collections=['heavy_testval']) return self.loss def latent_loss(self, z_mu, z_log_sigma_sq): latent_loss = tf.reduce_sum( 1 + z_log_sigma_sq - tf.square(z_mu) - tf.exp(z_log_sigma_sq), axis=-1) return -0.5 * tf.reduce_mean(latent_loss)
6043f98f1ed60196e5ff93332d829900c7068f56
b2cf4b4900a3a8728c673af47df8fe6b577900ed
/experiments/src/ex29/ex29_6_final.py
3e32695b484e0ed2e12f1853a57b571fe1622683
[]
no_license
gabormakrai/landuseregression
7b7b2a2e78de263a5db765c3cf4d827e2023b771
ac103485dc846758c2bf75e10d52080e334af61e
refs/heads/master
2021-01-20T01:13:57.867355
2018-09-24T22:19:49
2018-09-24T22:19:49
42,457,548
10
0
null
null
null
null
UTF-8
Python
false
false
8,669
py
from ex29.crossvalidation import splitDataForXValidation,\ splitDataForXValidationWithLocation from data.data import loadData from sklearn.ensemble.forest import RandomForestRegressor,\ RandomForestClassifier from eval.rmse import rmseEval OUTPUT_FILE = "/experiments/ex29/ex29_6_final.csv" OUTPUT_LOG_FILE = "/experiments/ex29/ex29_6_final.txt" DATA_FILE = "/data/london3_hour_2016.csv" groups = [['71.0', '70.0', '38.0', '55.0', '91.0', '73.0', '89.0'], ['5.0', '29.0', '53.0', '67.0', '49.0', '50.0', '44.0'], ['80.0', '81.0', '31.0', '14.0', '78.0', '46.0', '7.0'], ['69.0', '52.0', '26.0', '79.0', '9.0', '16.0', '13.0'], ['15.0', '57.0', '24.0', '19.0', '43.0', '33.0', '51.0']] all_features = ['building_area', 'building_count', 'natural_area', 'leisure_area', 'landuse_area', 'lane_length', 'length', 'atc', 'windspeed', 'windspeed', 'rain', 'temperature', 'humidity', 'pressure', 'hour', 'day_of_week', 'month', 'bank_holiday'] tw_features = ['winddirection', 'windspeed', 'rain', 'temperature', 'humidity', 'pressure', 'hour', 'day_of_week', 'month', 'bank_holiday'] twa_features = ['winddirection', 'windspeed', 'rain', 'temperature', 'humidity', 'pressure', 'hour', 'day_of_week', 'month', 'bank_holiday', 'atc'] enabled_classification_features = [False, False, True, True, True, False, True, True, False, False, False, False, False, True, True, False, False, True] def create_model(): return RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) def create_classifier_model(): return RandomForestClassifier(max_depth=20, n_estimators = 100, n_jobs = -1, random_state=42) output_log = open(OUTPUT_LOG_FILE, "w") output = open(OUTPUT_FILE, "w") output.write("prediction,observation,station,model\n") # load the data data = {} columns = [] loadData(DATA_FILE, [], data, columns) def log(line): output_log.write(line) output_log.write("\n") output_log.flush() print(line) log("all_features: " + str(all_features)) log("tw_features: " + str(tw_features)) log("twa_features: " + str(twa_features)) classification_features = [all_features[i] for i in range(0, len(all_features)) if enabled_classification_features[i]] log("classification_features: " + str(classification_features)) def generate_label(observations, tw_predictions, twa_predictions): label = [] for i in range(0, len(observations)): tw_abs = abs(observations[i] - tw_predictions[i]) twa_abs = abs(observations[i] - twa_predictions[i]) if tw_abs < twa_abs: label.append(0) else: label.append(1) return label def generate_combined_prediction(classifier_prediction, prediction_tw, prediction_twa): pred = [] for i in range(0, len(classifier_prediction)): if classifier_prediction[i] == 0: pred.append(prediction_tw[i]) else: pred.append(prediction_twa[i]) return pred def generate_train_test_station_list(group, groups): train_stations = [] for i in range(0, len(groups)): if i != group: train_stations.extend(groups[i]) test_stations = groups[group] return train_stations, test_stations all_observations = [] all_pred_ALL = [] all_pred_TW = [] all_pred_TWA = [] all_pred_combined = [] all_test_location = [] for group in range(0, len(groups)): log("group: " + str(group + 1)) train_stations, test_stations = generate_train_test_station_list(group, groups) log("\ttrain_stations: " + str(train_stations)) log("\ttest_stations: " + str(test_stations)) train_station_set = set([float(s) for s in train_stations]) test_station_set = set([float(s) for s in test_stations]) trainX, testX, trainY, testY, trainLocation, testLocation = splitDataForXValidationWithLocation(train_station_set, test_station_set, "location", data, all_features, "target") model = RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) model.fit(trainX, trainY) prediction_TW = model.predict(testX) rmse = rmseEval(testY, prediction_TW)[1] log("\tALL rmse: " + str(rmse)) all_observations.extend(testY) all_pred_ALL.extend(prediction_TW) all_test_location.extend(testLocation) trainX, testX, trainY, testY, trainLocation, testLocation = splitDataForXValidationWithLocation(train_station_set, test_station_set, "location", data, tw_features, "target") model = RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) model.fit(trainX, trainY) prediction_TW = model.predict(testX) rmse = rmseEval(testY, prediction_TW)[1] log("\tTW rmse: " + str(rmse)) all_pred_TW.extend(prediction_TW) trainX, testX, trainY, testY, trainLocation, testLocation = splitDataForXValidationWithLocation(train_station_set, test_station_set, "location", data, twa_features, "target") model = RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) model.fit(trainX, trainY) prediction_TWA = model.predict(testX) rmse = rmseEval(testY, prediction_TWA)[1] log("\tTWA rmse: " + str(rmse)) all_pred_TWA.extend(prediction_TWA) group2s = [groups[i] for i in range(0, len(groups)) if i != group] log("group2s: " + str(group2s)) #combination classifier_X = [] classifier_Y = [] for group2 in range(0, len(group2s)): train_stations, test_stations = generate_train_test_station_list(group2, group2s) log("\ttrain_stations: " + str(train_stations)) log("\ttest_stations: " + str(test_stations)) train_station_set = set([float(s) for s in train_stations]) test_station_set = set([float(s) for s in test_stations]) trainX, testX, trainY, testY = splitDataForXValidation(train_station_set, test_station_set, "location", data, tw_features, "target") model = RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) model.fit(trainX, trainY) prediction_3groups_TW = model.predict(testX) trainX, testX, trainY, testY = splitDataForXValidation(train_station_set, test_station_set, "location", data, twa_features, "target") model = RandomForestRegressor(min_samples_leaf = 29, n_estimators = 64, n_jobs = -1, random_state=42) model.fit(trainX, trainY) prediction_3groups_TWA = model.predict(testX) trainX, testX, trainY, testY = splitDataForXValidation(train_station_set, test_station_set, "location", data, classification_features, "target") classifier_X.extend(testX) label = generate_label(testY, prediction_3groups_TW, prediction_3groups_TWA) classifier_Y.extend(label) train_stations, test_stations = generate_train_test_station_list(group, groups) log("\ttrain_stations: " + str(train_stations)) log("\ttest_stations: " + str(test_stations)) train_station_set = set([float(s) for s in train_stations]) test_station_set = set([float(s) for s in test_stations]) model = create_classifier_model() model.fit(classifier_X, classifier_Y) _, testX, _, testY, trainLocation, testLocation = splitDataForXValidationWithLocation(train_station_set, test_station_set, "location", data, classification_features, "target") classifier_prediction = model.predict(testX) combined_prediction = generate_combined_prediction(classifier_prediction, prediction_TW, prediction_TWA) rmse = rmseEval(testY, combined_prediction)[1] log("\tTW+TWA:" + str(rmse)) all_pred_combined.extend(combined_prediction) rmse = rmseEval(all_observations, all_pred_ALL)[1] log("ALL rmse:" + str(rmse)) rmse = rmseEval(all_observations, all_pred_TW)[1] log("TW rmse:" + str(rmse)) rmse = rmseEval(all_observations, all_pred_TWA)[1] log("TWA rmse:" + str(rmse)) rmse = rmseEval(all_observations, all_pred_combined)[1] log("TW+TWA rmse:" + str(rmse)) for i in range(0, len(all_observations)): obs = all_observations[i] pred_ALL = all_pred_ALL[i] pred_TW = all_pred_TW[i] pred_TWA = all_pred_TWA[i] pred_combined = all_pred_combined[i] location = all_test_location[i] output.write(str(obs) + "," + str(pred_ALL) + ",RFR_ALL," + str(location) + "\n") output.write(str(obs) + "," + str(pred_TW) + ",RFR_TW," + str(location) + "\n") output.write(str(obs) + "," + str(pred_TWA) + ",RFR_TWA," + str(location) + "\n") output.write(str(obs) + "," + str(pred_combined) + ",RFR_combined," + str(location) + "\n") output_log.close() output.close()
43a4b48b9af6e391d2d94d872ba672bbdee47e83
bc441bb06b8948288f110af63feda4e798f30225
/agent_admin_sdk/model/topology/link_pb2.py
57425310345e86fec127525b11152a17ac288f7c
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
true
3,202
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: link.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from agent_admin_sdk.model.topology import linkStyle_pb2 as agent__admin__sdk_dot_model_dot_topology_dot_linkStyle__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='link.proto', package='topology', syntax='proto3', serialized_options=_b('ZBgo.easyops.local/contracts/protorepo-models/easyops/model/topology'), serialized_pb=_b('\n\nlink.proto\x12\x08topology\x1a.agent_admin_sdk/model/topology/linkStyle.proto\"J\n\x04Link\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x0e\n\x06target\x18\x02 \x01(\t\x12\"\n\x05style\x18\x03 \x01(\x0b\x32\x13.topology.LinkStyleBDZBgo.easyops.local/contracts/protorepo-models/easyops/model/topologyb\x06proto3') , dependencies=[agent__admin__sdk_dot_model_dot_topology_dot_linkStyle__pb2.DESCRIPTOR,]) _LINK = _descriptor.Descriptor( name='Link', full_name='topology.Link', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='topology.Link.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target', full_name='topology.Link.target', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='style', full_name='topology.Link.style', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=72, serialized_end=146, ) _LINK.fields_by_name['style'].message_type = agent__admin__sdk_dot_model_dot_topology_dot_linkStyle__pb2._LINKSTYLE DESCRIPTOR.message_types_by_name['Link'] = _LINK _sym_db.RegisterFileDescriptor(DESCRIPTOR) Link = _reflection.GeneratedProtocolMessageType('Link', (_message.Message,), { 'DESCRIPTOR' : _LINK, '__module__' : 'link_pb2' # @@protoc_insertion_point(class_scope:topology.Link) }) _sym_db.RegisterMessage(Link) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
9a8385ebac75bfafb7f8a0eded1d52e017c2102c
fd281c5c50d31c32ff3724d6cfc9534d8bf65b06
/artigos/migrations/0002_auto_20170922_1603.py
fcd70e91a35936ae7094e5bb9b521c2d1b548346
[]
no_license
thiagorocha06/mairimed-site
72ef24cdf0bdc016dac821bb3d8117283a6d9f52
5537755ced8c1e4ff8641686acf241b254e50670
refs/heads/master
2021-01-22T17:48:17.227737
2017-10-29T10:39:26
2017-10-29T10:39:26
100,734,508
0
0
null
null
null
null
UTF-8
Python
false
false
4,052
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-09-22 19:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('artigos', '0001_initial'), ] operations = [ migrations.AlterField( model_name='artigo', name='ef_top1', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='ef_top2', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='ef_top3', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='ef_top4', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top1', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top2', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top3', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top4', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top5', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='etio_top6', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top1', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top2', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top3', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top4', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top5', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='exames_top6', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top1', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top2', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top3', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top4', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top5', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='med_top6', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='artigo', name='top1', field=models.TextField(blank=True, null=True), ), ]
a4f6c54a5d544fc14b830f131426060871b97721
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/59/usersdata/161/48984/submittedfiles/testes.py
aa8ccc2aca043bef467a8eafb70d9d924c95f684
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
n=int(input('numero:')) soma=0 for i in range(0,n+1,1): fat=1 for a in range(1,i+1,1): fat=fat*a soma=soma+(1/math.factorial) print(soma)
6ccd2c5d4edca415ab24a1f3efd1a03ab45a84e7
773f6abee91e5368e43b34d8ad179c4ab9056da1
/gen/wellknownfiletype.py
fb3c550fa4fa8b577314a4ae3c13e8a54548196e
[]
no_license
richstoner/aibs
3dc9489ee6a1db836d58ec736b13d35a7cffc215
bfc7e732b53b4dff55f7c3edccdd0703f4bab25f
refs/heads/master
2021-01-10T05:11:09.484238
2013-03-03T06:19:34
2013-03-03T06:19:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
# -*- coding: utf-8 -*- # Rich Stoner, 2013 class WellKnownFileType(object): '''aibs.model.wellknownfiletype (autogen)''' # Fields self.id = 0 self.name = '' # Associations self.well_known_files = [] # has_many WellKnownFile def __init__(self, initialData={}): for k,v in initData.iteritems(): setattr(self, k, v) # add class methods and private methods here
1368e722eb797feff1eca7bb87f37bd18411b067
150d9e4cee92be00251625b7f9ff231cc8306e9f
/RemoveDupLL.py
356fd8431d9a51ac2bd0a44d1c699d17ce8499ff
[]
no_license
JerinPaulS/Python-Programs
0d3724ce277794be597104d9e8f8becb67282cb0
d0778178d89d39a93ddb9b95ca18706554eb7655
refs/heads/master
2022-05-12T02:18:12.599648
2022-04-20T18:02:15
2022-04-20T18:02:15
216,547,245
0
0
null
null
null
null
UTF-8
Python
false
false
1,390
py
''' Given the head of a sorted linked list, delete all duplicates such that each element appears only once. Return the linked list sorted as well. Example 1: Input: head = [1,1,2] Output: [1,2] Example 2: Input: head = [1,1,2,3,3] Output: [1,2,3] Constraints: The number of nodes in the list is in the range [0, 300]. -100 <= Node.val <= 100 The list is guaranteed to be sorted in ascending order. ''' # Definition for singly-linked list. class ListNode(object): def __init__(self, val=0, next=None): self.val = val self.next = next class Solution(object): def deleteDuplicates(self, head): """ :type head: ListNode :rtype: ListNode """ current = head start = head if current is None: return(head) else: current = current.next while current: if current.val == start.val: current = current.next else: start.next = current start = start.next start.next = None return(head) def print_l(head): while head: print(head.val) head = head.next obj = Solution() head = ListNode(1) #head.next = ListNode(1) #head.next.next = ListNode(2) #head.next.next.next = ListNode(3) #head.next.next.next.next = ListNode(3) print_l(obj.deleteDuplicates(head))
bd9bf52af07739506da5af2853530d5eb1039364
3d65a2d72e65083c752281368cf040ae977e4757
/analysis_modules/create_false_odor_packets.py
073d56d041990cffb7401e49375a73b6e39bf9ef
[]
no_license
florisvb/OdorAnalysis
6b4b2c32979b9139856aee20cc63c34cfe63819e
18beae8d3c6be271f171b1c36c9fd932a8a404ba
refs/heads/master
2020-06-03T14:48:34.962795
2012-10-23T22:28:21
2012-10-23T22:28:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,652
py
import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np import copy import data_fit import odor_dataset as od import fly_plot_lib.plot as fpl import matplotlib def play_movie_from_model(gm=None): fig = plt.figure() t_start = 13 anim_params = {'t': t_start, 'xlim': [0,1], 'ylim': [-.1,.1], 't_max': 19, 'dt': 0.05, 'resolution': 0.001} array, extent = gm.get_array_2d(anim_params['t'], anim_params['xlim'], anim_params['ylim'], anim_params['resolution']) im = plt.imshow( array, cmap=plt.get_cmap('jet')) def updatefig(*args): anim_params['t'] += anim_params['dt'] if anim_params['t'] > anim_params['t_max']: anim_params['t'] = 10 array, extent = gm.get_array_2d(anim_params['t'], anim_params['xlim'], anim_params['ylim'], anim_params['resolution']) im.set_array(array) return im, ani = animation.FuncAnimation(fig, updatefig, anim_params, interval=50, blit=True) plt.show() def make_false_odor_trace(gm, timestamps, position): x = position[0] y = position[1] inputs = [timestamps, [x, y]] trace = gm.get_val(inputs) odor_trace = od.Odor_Trace(position) odor_trace.trace = trace odor_trace.timestamps = timestamps return odor_trace def make_false_odor_dataset(gm=None, timestamps=None, positions=None): if gm is None: parameters = { 'mean_0_intercept': 0, 'mean_0_slope': .2, 'mean_1_intercept': 0.16, 'mean_1_slope': 0, 'std_0_intercept': 0.2, 'std_0_slope': 0.05, 'std_1_intercept': 0.05, 'std_1_slope': 0.02, 'magnitude': 1, } gm = data_fit.models.GaussianModel2D_TimeVarying(parameters=parameters) if timestamps is None: t_max = 3 dt = 0.002 timestamps = np.arange(0,t_max,dt) if positions is None: if 0: positions = [[0, .165], [.1, .165], [.2, .165], [.3, .165], [.4, .165], [.5, .165], [.6, .165], [0, .175], [.1, .175], [.2, .175], [.3, .175], [.4, .175], [.5, .175], [.6, .175], [0, .135], [.1, .135], [.2, .135], [.3, .135], [.4, .135], [.5, .135], [.6, .135], [0, .195], [.1, .195], [.2, .195], [.3, .195], [.4, .195], [.5, .195], [.6, .195], [0, .155], [.1, .155], [.2, .155], [.3, .155], [.4, .155], [.5, .155], [.6, .155]] if 1: positions = [] x_pos = np.arange(0,1,.05).tolist() y_pos = np.arange(0, .33, .05).tolist() for i, x in enumerate(x_pos): for j, y in enumerate(y_pos): positions.append( [x,y] ) print positions[-1] for position in positions: position = np.array(positions) odor_dataset = od.Dataset() key = 0 for position in positions: odor_trace = make_false_odor_trace(gm, timestamps, position) odor_dataset.odor_traces.setdefault(key, odor_trace) key += 1 return odor_dataset def fit_1d_gaussian(odor_dataset, t, axis=0, keys=None, plot=True, lims=[-1,1], ignore_parameter_names=[]): if keys is None: keys = odor_dataset.odor_traces.keys() ordinate = [] odor = [] odor_std = [] for key in keys: odor_trace = odor_dataset.odor_traces[key] ordinate.append( odor_trace.position[axis] ) index_at_t = np.argmin( np.abs(odor_trace.timestamps - t) ) odor.append( odor_trace.voltage[index_at_t] ) odor_std.append( odor_trace.voltage_std[index_at_t] ) ordinate = np.array(ordinate) odor = np.array(odor) odor_std = np.array(odor_std) print ordinate print odor # now fit gaussian to data gm = data_fit.models.GaussianModel1D() inputs = [ordinate] #return odor, ordinate gm.fit_with_guess(odor, inputs, ignore_parameter_names=ignore_parameter_names) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(ordinate, odor, 'ob') for i, pt in enumerate(ordinate): ax.vlines(pt, odor[i]-odor_std[i], odor[i]+odor_std[i], linewidth=2) x = np.arange(lims[0], lims[1], 0.001) vals = gm.get_val(x) ax.plot(x, vals) fpl.adjust_spines(ax, ['left', 'bottom']) ax.set_xlabel('x position, m') ax.set_ylabel('odor value, ethanol') ax.set_title('mean and std dev of measured odor values and gaussian fit') return gm, ordinate, odor, odor_std def fit_1d_gaussian_time_varying(odor_dataset, tmin=15.2, tmax=18, tres=0.1, num=None, colormap='jet', tres_for_plot=0.5, axis=0, keys=None, lims=None, ignore_parameter_names=[], plot=True): if lims is None: if axis==0: lims = [-.3,1] elif axis==1: lims = [-.1,.1] if keys is None: sets, keys_to_position = od.find_sets(odor_dataset,axis) lengths_of_sets = np.asarray([len(s) for s in sets.values()]) set_to_use = np.argmax(lengths_of_sets) if num is not None: set_to_use = num keys = sets[sets.keys()[set_to_use]] timestamps = np.arange(tmin, tmax, tres) ordinate = [] odor = [] odor_std = [] for t in timestamps: odor_data_at_time_t = [] odor_std_data_at_time_t = [] for key in keys: odor_trace = odor_dataset.odor_traces[key] odor_at_time_t = np.interp(t, odor_trace.timestamps, odor_trace.voltage) odor_data_at_time_t.append(odor_at_time_t) odor_std_at_time_t = np.interp(t, odor_trace.timestamps, odor_trace.voltage_std) odor_std_data_at_time_t.append(odor_std_at_time_t) if t == timestamps[0]: ordinate.append( odor_trace.position[axis] ) odor.append(np.array(odor_data_at_time_t)) odor_std.append(np.array(odor_std_data_at_time_t)) ordinate = np.array(ordinate) # now fit gaussian to data gm = data_fit.models.GaussianModel1D_TimeVarying() inputs = [ordinate] gm.fit(timestamps, odor, inputs) if plot: fig = plt.figure() ax = fig.add_subplot(111) norm = matplotlib.colors.Normalize(tmin, tmax) cmap = matplotlib.cm.ScalarMappable(norm, colormap) t_arr = np.arange(tmin, tmax, tres_for_plot) for t in t_arr: # find index of timestamps array that corresponds to this t index = np.argmin(np.abs(timestamps-t)) color = cmap.to_rgba(t) for i, pt in enumerate(ordinate): ax.vlines(pt, odor[index][i]-odor_std[index][i], odor[index][i]+odor_std[index][i], color='black', linewidth=1) ax.plot(ordinate, odor[index], 'o', color=color, markersize=8) x = np.arange(lims[0], lims[1], 0.001) vals = gm.get_val([t, [x]]) ax.plot(x, vals, color=color, linewidth=2) fpl.adjust_spines(ax, ['left', 'bottom']) ax.set_xlabel('x position, m') ax.set_ylabel('odor value, ethanol') ax.set_title('mean and std dev of measured odor values and time varying gaussian fit\ncolor=time') return gm # fitting routine # sets, keys_to_positions = od.find_sets(odor_dataset, axis=0, min_keys_in_set=4, threshold=0.004) ################################################################################################# # 2D Gaussian stuff - doesn't work with the data I've collected ################################################################################################# def fit_2d_gaussian(odor_dataset, t=13.6, keys=None): #od.calc_windspeed(odor_dataset, position=[0, 0.16]) if keys is None: keys = odor_dataset.odor_traces.keys() # guess for center: #x0_guess = t*odor_dataset.windspeed + 0 x0_guess = 0 y0_guess = -0.01 x = [] y = [] odor = [] for key in keys: odor_trace = odor_dataset.odor_traces[key] x.append( odor_trace.position[0] ) y.append( odor_trace.position[1] ) index_at_t = np.argmin( np.abs(odor_trace.timestamps - t) ) odor.append( odor_trace.voltage[index_at_t] ) x = np.array(x) y = np.array(y) odor = np.array(odor) print x print y print odor # now fit gaussian to data gm = data_fit.models.GaussianModel2D() inputs = [x,y] gm.fit_with_guess(odor, inputs) fig = plt.figure() ax = fig.add_subplot(111) gm.show_fit(odor, inputs, ax=ax, lims=[[-.2,1], [-.1,.1]], resolution=0.001) ax.set_xlabel('x position, m') ax.set_ylabel('y position, m') ax.set_title('Odor heatmap (gaussian fit), one point in time') return gm def fit_2d_gaussian_moving(odor_dataset): t_list = np.arange(0, 2, .1) gm_list = [] for t in t_list: gm = fit_2d_gaussian(odor_dataset, t=t, plot=False) gm_list.append(gm) mean_0_list = np.zeros_like(t_list) std_0_list = np.zeros_like(t_list) mean_1_list = np.zeros_like(t_list) std_1_list = np.zeros_like(t_list) magnitude_list = np.zeros_like(t_list) for i, gm in enumerate(gm_list): mean_0_list[i] = gm.parameters['mean_0'] std_0_list[i] = gm.parameters['std_0'] mean_1_list[i] = gm.parameters['mean_1'] std_1_list[i] = gm.parameters['std_1'] magnitude_list[i] = gm.parameters['magnitude'] parameter_list = [mean_0_list, std_0_list, mean_1_list, std_1_list, magnitude_list] lm_list = [] for i, param in enumerate(parameter_list): lm = data_fit.models.LinearModel(parameters={'slope': 1, 'intercept': 0}) print parameter_list[i] lm.fit(parameter_list[i], t_list) print lm.parameters print lm_list.append(copy.copy(lm)) return gm_list, parameter_list, lm_list def fit_2d_gaussian_moving_builtin(odor_dataset): timestamps = np.arange(13, 16, .01) def get_positions(odor_dataset): x = [] y = [] for key, odor_trace in odor_dataset.odor_traces.items(): x.append( odor_trace.position[0] ) y.append( odor_trace.position[1] ) return [np.array(x), np.array(y)] def get_odor(timestamps, odor_dataset): odor = [] for t in timestamps: odor_at_t = [] for key, odor_trace in odor_dataset.odor_traces.items(): index_at_t = np.argmin( np.abs(odor_trace.timestamps - t) ) odor_at_t.append( odor_trace.voltage[index_at_t] ) odor.append(np.array(odor_at_t)) return odor positions = get_positions(odor_dataset) odor = get_odor(timestamps, odor_dataset) gm = data_fit.models.GaussianModel2D_TimeVarying() gm.fit(timestamps, odor, positions) return gm
d8c01001bdd05781a5065833b44d905e0e0a580d
c8bdf62ce953b37cd79c9666b669c0aa938fef91
/selfdrive/mapd/default_speeds_generator.py
59436a7b70a4cd918a47a08d1c6a2a507b086754
[ "MIT", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
richardyu-au/openpilot
0a7b70e29888494e25013f38680b726114f05421
27e0adc434906e37fd7674160a0a8c2dd5c3c180
refs/heads/devel
2020-04-29T02:03:56.521067
2019-03-11T19:13:18
2019-03-11T19:13:18
175,751,297
0
0
MIT
2019-03-15T04:59:35
2019-03-15T04:59:34
null
UTF-8
Python
false
false
9,481
py
#!/usr/bin/env python import json OUTPUT_FILENAME = "default_speeds_by_region.json" def main(): countries = [] """ -------------------------------------------------- US - United State of America -------------------------------------------------- """ US = Country("US") # First step, create the country using the ISO 3166 two letter code countries.append(US) # Second step, add the country to countries list """ Default rules """ # Third step, add some default rules for the country # Speed limit rules are based on OpenStreetMaps (OSM) tags. # The dictionary {...} defines the tag_name: value # if a road in OSM has a tag with the name tag_name and this value, the speed limit listed below will be applied. # The text at the end is the speed limit (use no unit for km/h) # Rules apply in the order in which they are written for each country # Rules for specific regions (states) take priority over country rules # If you modify existing country rules, you must update all existing states without that rule to use the old rule US.add_rule({"highway": "motorway"}, "65 mph") # On US roads with the tag highway and value motorway, the speed limit will default to 65 mph US.add_rule({"highway": "trunk"}, "55 mph") US.add_rule({"highway": "primary"}, "55 mph") US.add_rule({"highway": "secondary"}, "45 mph") US.add_rule({"highway": "tertiary"}, "35 mph") US.add_rule({"highway": "unclassified"}, "55 mph") US.add_rule({"highway": "residential"}, "25 mph") US.add_rule({"highway": "service"}, "25 mph") US.add_rule({"highway": "motorway_link"}, "55 mph") US.add_rule({"highway": "trunk_link"}, "55 mph") US.add_rule({"highway": "primary_link"}, "55 mph") US.add_rule({"highway": "secondary_link"}, "45 mph") US.add_rule({"highway": "tertiary_link"}, "35 mph") US.add_rule({"highway": "living_street"}, "15 mph") """ States """ new_york = US.add_region("New York") # Fourth step, add a state/region to country new_york.add_rule({"highway": "primary"}, "45 mph") # Fifth step , add rules to the state. See the text above for how to write rules new_york.add_rule({"highway": "secondary"}, "55 mph") new_york.add_rule({"highway": "tertiary"}, "55 mph") new_york.add_rule({"highway": "residential"}, "30 mph") new_york.add_rule({"highway": "primary_link"}, "45 mph") new_york.add_rule({"highway": "secondary_link"}, "55 mph") new_york.add_rule({"highway": "tertiary_link"}, "55 mph") # All if not written by the state, the rules will default to the country rules #california = US.add_region("California") # California uses only the default US rules michigan = US.add_region("Michigan") michigan.add_rule({"highway": "motorway"}, "70 mph") oregon = US.add_region("Oregon") oregon.add_rule({"highway": "motorway"}, "55 mph") oregon.add_rule({"highway": "secondary"}, "35 mph") oregon.add_rule({"highway": "tertiary"}, "30 mph") oregon.add_rule({"highway": "service"}, "15 mph") oregon.add_rule({"highway": "secondary_link"}, "35 mph") oregon.add_rule({"highway": "tertiary_link"}, "30 mph") south_dakota = US.add_region("South Dakota") south_dakota.add_rule({"highway": "motorway"}, "80 mph") south_dakota.add_rule({"highway": "trunk"}, "70 mph") south_dakota.add_rule({"highway": "primary"}, "65 mph") south_dakota.add_rule({"highway": "trunk_link"}, "70 mph") south_dakota.add_rule({"highway": "primary_link"}, "65 mph") wisconsin = US.add_region("Wisconsin") wisconsin.add_rule({"highway": "trunk"}, "65 mph") wisconsin.add_rule({"highway": "tertiary"}, "45 mph") wisconsin.add_rule({"highway": "unclassified"}, "35 mph") wisconsin.add_rule({"highway": "trunk_link"}, "65 mph") wisconsin.add_rule({"highway": "tertiary_link"}, "45 mph") """ -------------------------------------------------- AU - Australia -------------------------------------------------- """ AU = Country("AU") countries.append(AU) """ Default rules """ AU.add_rule({"highway": "motorway"}, "100") AU.add_rule({"highway": "trunk"}, "80") AU.add_rule({"highway": "primary"}, "80") AU.add_rule({"highway": "secondary"}, "50") AU.add_rule({"highway": "tertiary"}, "50") AU.add_rule({"highway": "unclassified"}, "80") AU.add_rule({"highway": "residential"}, "50") AU.add_rule({"highway": "service"}, "40") AU.add_rule({"highway": "motorway_link"}, "90") AU.add_rule({"highway": "trunk_link"}, "80") AU.add_rule({"highway": "primary_link"}, "80") AU.add_rule({"highway": "secondary_link"}, "50") AU.add_rule({"highway": "tertiary_link"}, "50") AU.add_rule({"highway": "living_street"}, "30") """ -------------------------------------------------- CA - Canada -------------------------------------------------- """ CA = Country("CA") countries.append(CA) """ Default rules """ CA.add_rule({"highway": "motorway"}, "100") CA.add_rule({"highway": "trunk"}, "80") CA.add_rule({"highway": "primary"}, "80") CA.add_rule({"highway": "secondary"}, "50") CA.add_rule({"highway": "tertiary"}, "50") CA.add_rule({"highway": "unclassified"}, "80") CA.add_rule({"highway": "residential"}, "40") CA.add_rule({"highway": "service"}, "40") CA.add_rule({"highway": "motorway_link"}, "90") CA.add_rule({"highway": "trunk_link"}, "80") CA.add_rule({"highway": "primary_link"}, "80") CA.add_rule({"highway": "secondary_link"}, "50") CA.add_rule({"highway": "tertiary_link"}, "50") CA.add_rule({"highway": "living_street"}, "20") """ -------------------------------------------------- DE - Germany -------------------------------------------------- """ DE = Country("DE") countries.append(DE) """ Default rules """ DE.add_rule({"highway": "motorway"}, "none") DE.add_rule({"highway": "living_street"}, "10") DE.add_rule({"zone:traffic": "DE:rural"}, "100") DE.add_rule({"zone:traffic": "DE:urban"}, "50") DE.add_rule({"bicycle_road": "yes"}, "30") """ --- DO NOT MODIFY CODE BELOW THIS LINE --- """ """ --- ADD YOUR COUNTRY OR STATE ABOVE --- """ # Final step write_json(countries) def write_json(countries): out_dict = {} for country in countries: out_dict.update(country.jsonify()) json_string = json.dumps(out_dict, indent=2) with open(OUTPUT_FILENAME, "wb") as f: f.write(json_string) class Region(object): ALLOWABLE_TAG_KEYS = ["highway", "zone:traffic", "bicycle_road"] ALLOWABLE_HIGHWAY_TYPES = ["motorway", "trunk", "primary", "secondary", "tertiary", "unclassified", "residential", "service", "motorway_link", "trunk_link", "primary_link", "secondary_link", "tertiary_link", "living_street"] def __init__(self, name): self.name = name self.rules = [] def add_rule(self, tag_conditions, speed): new_rule = {} if not isinstance(tag_conditions, dict): raise TypeError("Rule tag conditions must be dictionary") if not all(tag_key in self.ALLOWABLE_TAG_KEYS for tag_key in tag_conditions): raise ValueError("Rule tag keys must be in allowable tag kesy") # If this is by mistake, please update ALLOWABLE_TAG_KEYS if 'highway' in tag_conditions: if not tag_conditions['highway'] in self.ALLOWABLE_HIGHWAY_TYPES: raise ValueError("Invalid Highway type {}".format(tag_conditions["highway"])) new_rule['tags'] = tag_conditions try: new_rule['speed'] = str(speed) except ValueError: raise ValueError("Rule speed must be string") self.rules.append(new_rule) def jsonify(self): ret_dict = {} ret_dict[self.name] = self.rules return ret_dict class Country(Region): ALLOWABLE_COUNTRY_CODES = ["AF","AX","AL","DZ","AS","AD","AO","AI","AQ","AG","AR","AM","AW","AU","AT","AZ","BS","BH","BD","BB","BY","BE","BZ","BJ","BM","BT","BO","BQ","BA","BW","BV","BR","IO","BN","BG","BF","BI","KH","CM","CA","CV","KY","CF","TD","CL","CN","CX","CC","CO","KM","CG","CD","CK","CR","CI","HR","CU","CW","CY","CZ","DK","DJ","DM","DO","EC","EG","SV","GQ","ER","EE","ET","FK","FO","FJ","FI","FR","GF","PF","TF","GA","GM","GE","DE","GH","GI","GR","GL","GD","GP","GU","GT","GG","GN","GW","GY","HT","HM","VA","HN","HK","HU","IS","IN","ID","IR","IQ","IE","IM","IL","IT","JM","JP","JE","JO","KZ","KE","KI","KP","KR","KW","KG","LA","LV","LB","LS","LR","LY","LI","LT","LU","MO","MK","MG","MW","MY","MV","ML","MT","MH","MQ","MR","MU","YT","MX","FM","MD","MC","MN","ME","MS","MA","MZ","MM","NA","NR","NP","NL","NC","NZ","NI","NE","NG","NU","NF","MP","NO","OM","PK","PW","PS","PA","PG","PY","PE","PH","PN","PL","PT","PR","QA","RE","RO","RU","RW","BL","SH","KN","LC","MF","PM","VC","WS","SM","ST","SA","SN","RS","SC","SL","SG","SX","SK","SI","SB","SO","ZA","GS","SS","ES","LK","SD","SR","SJ","SZ","SE","CH","SY","TW","TJ","TZ","TH","TL","TG","TK","TO","TT","TN","TR","TM","TC","TV","UG","UA","AE","GB","US","UM","UY","UZ","VU","VE","VN","VG","VI","WF","EH","YE","ZM","ZW"] def __init__(self, ISO_3166_alpha_2): Region.__init__(self, ISO_3166_alpha_2) if ISO_3166_alpha_2 not in self.ALLOWABLE_COUNTRY_CODES: raise ValueError("Not valid IOS 3166 country code") self.regions = {} def add_region(self, name): self.regions[name] = Region(name) return self.regions[name] def jsonify(self): ret_dict = {} ret_dict[self.name] = {} for r_name, region in self.regions.iteritems(): ret_dict[self.name].update(region.jsonify()) ret_dict[self.name]['Default'] = self.rules return ret_dict if __name__ == '__main__': main()
96fbda29f56474fb36c91a465db699b27f1b825b
09f0505f3ac1dccaf301c1e363423f38768cc3cc
/r_DailyProgrammer/Intermediate/C302/__init__.py
5c911bdc5a9c77577af17aa4a5625a99607d6350
[]
no_license
Awesome-Austin/PythonPractice
02212292b92814016d062f0fec1c990ebde21fe7
9a717f91d41122be6393f9fcd1a648c5e62314b3
refs/heads/master
2023-06-21T11:43:59.366064
2021-07-29T23:33:00
2021-07-29T23:33:00
270,854,302
0
0
null
2020-08-11T20:47:10
2020-06-08T23:24:09
Python
UTF-8
Python
false
false
71
py
#! python3 from r_DailyProgrammer.Intermediate.C302.main import main
[ "{ID}+{username}@users.noreply.github.com" ]
{ID}+{username}@users.noreply.github.com
2e5aa056829a7e404aebb2f952bfc8b7aa726fe6
9b5d0b7d7c9cdaef2851b675292e5eef651ab257
/tools/extract/liftOver_wrapper.py
6b23580be746f0f57f2fa12ee10ca9983d07cffb
[ "CC-BY-2.5", "MIT" ]
permissive
msGenDev/Yeps-EURAC
392fd497a6891a5a22204b236c26dcd133793f21
7b679ea17ba294893cc560354d759cfd61c0b450
refs/heads/master
2021-01-16T21:49:26.499975
2010-04-05T17:52:50
2010-04-05T17:52:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,909
py
#!/usr/bin/env python #Guruprasad Ananda """ Converts coordinates from one build/assembly to another using liftOver binary and mapping files downloaded from UCSC. """ import sys, os, string import tempfile import re assert sys.version_info[:2] >= ( 2, 4 ) def stop_err(msg): sys.stderr.write(msg) sys.exit() def safe_bed_file(infile): """Make a BED file with track and browser lines ready for liftOver. liftOver will fail with track or browser lines. We can make it happy by converting these to comments. See: https://lists.soe.ucsc.edu/pipermail/genome/2007-May/013561.html """ fix_pat = re.compile("^(track|browser)") (fd, fname) = tempfile.mkstemp() in_handle = open(infile) out_handle = open(fname, "w") for line in in_handle: if fix_pat.match(line): line = "#" + line out_handle.write(line) in_handle.close() out_handle.close() return fname if len( sys.argv ) != 7: stop_err( "USAGE: prog input out_file1 out_file2 input_dbkey output_dbkey minMatch" ) infile = sys.argv[1] outfile1 = sys.argv[2] outfile2 = sys.argv[3] in_dbkey = sys.argv[4] mapfilepath = sys.argv[5] minMatch = sys.argv[6] try: assert float(minMatch) except: minMatch = 0.1 #ensure dbkey is set if in_dbkey == "?": stop_err( "Input dataset genome build unspecified, click the pencil icon in the history item to specify it." ) if not os.path.isfile( mapfilepath ): stop_err( "%s mapping is not currently available." % ( mapfilepath.split('/')[-1].split('.')[0] ) ) safe_infile = safe_bed_file(infile) cmd_line = "liftOver -minMatch=" + str(minMatch) + " " + safe_infile + " " + mapfilepath + " " + outfile1 + " " + outfile2 + " > /dev/null 2>&1" try: os.system( cmd_line ) except Exception, exc: stop_err( "Exception caught attempting conversion: %s" % str( exc ) ) finally: os.remove(safe_infile)
017a4d9314cc977d5c80644063b57eaa990b050d
b0174911702ab63f7ba0d0ca4cb03ae6453dc182
/calas7262/service/interfaces.py
9c34585091728f72ed26c481c929d96a16b1d145
[ "MIT" ]
permissive
astrorafael/calas7262
4001bffdc586b91677095ac4f112170911c93e7c
8ff4c0ce5bf670fe0bf6fde218ecd7c993c41d0e
refs/heads/master
2020-08-01T18:12:39.020668
2019-10-28T10:07:18
2019-10-28T10:07:18
211,072,096
1
0
null
null
null
null
UTF-8
Python
false
false
2,426
py
# ---------------------------------------------------------------------- # Copyright (c) 2014 Rafael Gonzalez. # # See the LICENSE file for details # ---------------------------------------------------------------------- #-------------------- # System wide imports # ------------------- from __future__ import division, absolute_import # --------------- # Twisted imports # --------------- from zope.interface import implementer, Interface class IPausable(Interface): """ A pausable interface for services. Run pause/resume code at the appropriate times. @type paused: C{boolean} @ivar paused: Whether the service is paused. """ def pauseService(): """ Pauses the service. It can take a while, so it returns a Deferred @rtype: L{Deferred<defer.Deferred>} @return: a L{Deferred<defer.Deferred>} which is triggered when the service has finished shutting down. If shutting down is immediate, a value can be returned (usually, C{None}). """ def resumeService(): """ Resumes the service. It can take a while, so it returns a Deferred @rtype: L{Deferred<defer.Deferred>} @return: a L{Deferred<defer.Deferred>} which is triggered when the service has finished shutting down. If shutting down is immediate, a value can be returned (usually, C{None}). """ class IReloadable(Interface): """ A reloadable interface for services. Run reload code at the appropriate times. """ def reloadService(config=None): """ Reloads the service by reading on the fly its service configuration. Configuration can be stored be a file (more likely) or a database. If C{config} is C{None}, then the service must find out what changed may be reading a configuration file (most likely) or a database. Otherwise, C{config} as an object or data type meaningful for the service itself passeb by a container I{IReloadable} C{MultiCervice}. @type config: any meaningful datatype or object. @rtype: L{Deferred<defer.Deferred>} @return: a L{Deferred<defer.Deferred>} which is triggered when the service has finished reloading. If reloading is immediate, a value can be returned (usually, C{None}). """ __all__ = [ "IReloadable", "IPausable" ]
12617fabbf89c88ca061ddde97c6781271a3d367
7357d367b0af4650ccc5b783b7a59090fdde47bb
/neo/Core/TX/IssueTransaction.py
8113d4c98a96ad128375898867a454f12b1368c5
[ "MIT" ]
permissive
BarracudaPff/code-golf-data-python
fb0cfc74d1777c4246d56a5db8525432bf37ab1a
42e8858c2ebc6a061012bcadb167d29cebb85c5e
refs/heads/main
2023-05-29T05:52:22.856551
2020-05-23T22:12:48
2020-05-23T22:12:48
378,832,634
0
0
null
null
null
null
UTF-8
Python
false
false
1,228
py
""" Description: Issue Transaction Usage: from neo.Core.TX.IssueTransaction import IssueTransaction """ class IssueTransaction(Transaction): """docstring for IssueTransaction""" def __init__(self, *args, **kwargs): """ Create an instance. Args: *args: **kwargs: """ super(IssueTransaction, self).__init__(*args, **kwargs) self.Type = TransactionType.IssueTransaction self.Nonce = None def SystemFee(self): """ Get the system fee. Returns: Fixed8: """ if self.Version >= 1: return Fixed8.Zero() all_neo_gas = True for output in self.outputs: if output.AssetId != GetSystemCoin().Hash and output.AssetId != GetSystemShare().Hash: all_neo_gas = False if all_neo_gas: return Fixed8.Zero() return super(IssueTransaction, self).SystemFee() def GetScriptHashesForVerifying(self, snapshot): pass def DeserializeExclusiveData(self, reader): """ Deserialize full object. Args: reader (neo.IO.BinaryReader): """ self.Type = TransactionType.IssueTransaction if self.Version > 1: raise Exception("Invalid TX Type") def SerializeExclusiveData(self, writer): pass
d7d3e50712748c0c8737e836bb75ea879e62ba06
f5bfdaccf014b9a986a8d1e58a4655c21b8368ce
/send_recv/basic_conn/client.py
2e1bae8dfa62e99c7500ac9dd12c31c24b8e853e
[]
no_license
wlgud0402/class
a6029bb51160cb2ba39dd59b3826532becd61895
ae84bfe4bb832d1a5a8434f3a6f78a57da272d62
refs/heads/master
2022-10-09T18:47:53.165134
2020-06-13T07:46:21
2020-06-13T07:46:21
271,963,794
0
0
null
null
null
null
UTF-8
Python
false
false
264
py
import socket import time client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # ipv4, TCP client_socket.connect(('127.0.0.1', 3000)) # client_socket.sendall(bytes([234, 185 ,128])) client_socket.sendall("김지형".encode()) client_socket.close()
9341990ffd55f00376c0f6771d2fff7b135601e0
76938f270e6165514162856b2ed33c78e3c3bcb5
/lib/coginvasion/minigame/CameraShyHeadPanels.py
d54c8dccdc92354cc6b09258cd61a99ec93f52ad
[]
no_license
coginvasion/src
9a5ec682845cc4c9c013fcc35e9b379bd4360b6c
2d7fcdb0cd073050250cb51292ee48300a9fe19f
refs/heads/master
2021-01-19T06:50:11.786112
2015-11-08T12:28:52
2015-11-08T12:28:52
61,545,543
1
2
null
null
null
null
UTF-8
Python
false
false
3,548
py
# Embedded file name: lib.coginvasion.minigame.CameraShyHeadPanels from panda3d.core import Point3, VBase4 from direct.directnotify.DirectNotifyGlobal import directNotify from direct.gui.DirectGui import DirectFrame from lib.coginvasion.toon.ToonHead import ToonHead from HeadPanels import HeadPanels class CameraShyHeadPanels(HeadPanels): notify = directNotify.newCategory('CameraShyHeadPanels') def __init__(self): HeadPanels.__init__(self) self.framePositions = [Point3(0.15, 0, -0.15), Point3(0.15, 0, -0.43), Point3(0.15, 0, -0.71), Point3(0.15, 0, -0.99)] self.otherPlayerHeadHolderTransforms = {'scale': Point3(2, 1, 0.5), 'pos': Point3(1.03, 0, 0)} self.otherPlayerHeadXValues = [-0.45, 0, 0.45] self.state2Color = {0: VBase4(0.05, 0.05, 0.05, 1.0), 1: VBase4(0.5, 0.5, 0.5, 1.0), 2: VBase4(0.75, 0.75, 0.75, 1.0), 3: VBase4(1.0, 1.0, 1.0, 1.0)} self.avId2otherPlayerAvIds2otherPlayerHeadsFrame = {} def generate(self, gender, head, headtype, color, doId, name): HeadPanels.generate(self, gender, head, headtype, color, doId, name, 0) def generateOtherPlayerGui(self): for avId in self.doId2Frame.keys(): self.avId2otherPlayerAvIds2otherPlayerHeadsFrame[avId] = {} headNumber = -1 frame = self.doId2Frame[avId][0] otherPlayerHeadsFrame = DirectFrame(relief=None, scale=0.85, parent=frame) otherPlayerHeadsFrame['image'] = frame['image'] otherPlayerHeadsFrame['image_color'] = frame['image_color'] otherPlayerHeadsFrame['image_scale'] = self.otherPlayerHeadHolderTransforms['scale'] otherPlayerHeadsFrame.setPos(self.otherPlayerHeadHolderTransforms['pos']) otherPlayerHeadsFrame.setBin('gui-popup', 70) self.frameList.append(otherPlayerHeadsFrame) for otherAvId in self.doId2Frame.keys(): if otherAvId != avId: headNumber += 1 otherAv = base.cr.doId2do.get(otherAvId) gender = otherAv.getGender() head, color = otherAv.getHeadStyle() animal = otherAv.getAnimal() headFrame = otherPlayerHeadsFrame.attachNewNode('otherPlayerHeadFrame') headFrame.setPosHprScale(self.otherPlayerHeadXValues[headNumber], 5, -0.1, 180, 0, 0, 0.2, 0.2, 0.2) headFrame.setColorScale(self.state2Color[0]) toon = ToonHead(None) toon.generateHead(gender, animal, head) r, g, b, _ = color color = (r, g, b, 1.0) toon.setHeadColor(color) toon.setDepthWrite(1) toon.setDepthTest(1) toon.reparentTo(headFrame) self.avId2otherPlayerAvIds2otherPlayerHeadsFrame[avId][otherAvId] = headFrame return def updateOtherPlayerHead(self, avId, otherPlayerAvId, state): frame = self.avId2otherPlayerAvIds2otherPlayerHeadsFrame[avId][otherPlayerAvId] frame.setColorScale(self.state2Color[state]) def delete(self): self.otherPlayerHeadHolderTransforms = None self.otherPlayerHeadXValues = None self.state2Color = None self.avId2otherPlayerAvIds2otherPlayerHeadsFrame = None HeadPanels.delete(self) return
0764441710a1e2bc191eba04dedbcb39accb063a
502af3505e4e670c507ee6a5dedbc41995cefa09
/deep_generative_models/tasks/arae/sample.py
8206a693522c003f87c778e649a89ad618c03744
[]
no_license
manoj04418/deep-generative-models
c1e8062e280ac6d1f3fb8ab359a21e870a2276df
402d06773320231d9135c88d8a6033f916a68f89
refs/heads/master
2022-10-02T10:44:14.857680
2020-06-10T14:50:48
2020-06-10T14:50:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
import argparse from deep_generative_models.configuration import load_configuration from deep_generative_models.tasks.gan_with_autoencoder.sample import SampleGANWithAutoEncoder if __name__ == '__main__': options_parser = argparse.ArgumentParser(description="Sample from ARAE.") options_parser.add_argument("configuration", type=str, help="Configuration json file.") options = options_parser.parse_args() SampleGANWithAutoEncoder().timed_run(load_configuration(options.configuration))
8c0f067abeaf7da4af4794f4fd818c33ee8870ef
3f7240da3dc81205a0a3bf3428ee4e7ae74fb3a2
/src/Week10/Recursion/Recursive Math/recursiveMath.py
3971edeec5e2ac01cd6538f02737243d4440daeb
[]
no_license
theguyoverthere/CMU15-112-Spring17
b4ab8e29c31410b4c68d7b2c696a76b9d85ab4d8
b8287092b14e82d2a3aeac6c27bffbc95382eb34
refs/heads/master
2021-04-27T08:52:45.237631
2018-10-02T15:38:18
2018-10-02T15:38:18
107,882,442
0
0
null
null
null
null
UTF-8
Python
false
false
2,603
py
# A few example recursive functions. # Can you figure out what each one does, in general? import math def f1(x): if x == 0: return 0 else: return 1 + f1(x-1) #f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 3 def f2(x): if x == 0: return 40 else: return 1 + f2(x-1) #f(0) = 40, f(1) = 41, f(2) = 42 def f3(x): if x == 0: return 0 else: return 2 + f3(x-1) #f(0) = 0, f(1) = 2, f(2) = 4, f(3) = 6 def f4(x): if x == 0: return 40 else: return 2 + f4(x-1) #f(0) = 40, f(1) = 42, f(2) = 44, f(3) = 46 def f5(x): if x == 0: return 0 #Triangular Numbers else: return x + f5(x-1) #f(0) = 0, f(1) = 1, f(2) = 3, f(3) = 6 def f6(x): if x == 0: return 0 else: return 2*x-1 + f6(x-1) #f(0) = 0, f(1) = 1, f(2)= 4, f(3) = 9 # (x - 1)** 2 = x**2 - 2 * x + 1 # 2 *x - 1 + (x -1) ** 2 = x ** 2 def f7(x): if x == 0: return 1 else: return 2*f7(x-1) #f(0) = 1, f(1) = 2, f(2) = 4 , f(3) = 8, f(4) = 16 def f8(x): if x < 2: return 0 else: return 1 + f8(x//2) #f(0) = 1, f(1) = 0, f(2) = 1, f(4) = 2, f(8) = 3 def f9(x): if x < 2: return 1 else: return f9(x-1) + f9(x-2) #Fibonacci Numbers def f10(x): if x == 0: return 1 # Factorials! else: return x*f10(x-1) #f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 6, f(4) = 24 def f11(x, y): if y < 0: return -f11(x, -y) elif y == 0: return 0 else: return x + f11(x, y-1) #f(2,3) = 2 + f(2, 2) # = 2 + 2 + f(2, 1) # = 2 + 2 + 2 + f(2, 0) # = 2 + 2 + 2 + 0 # = 6 def f12(x,y): if (x < 0) and (y < 0): return f12(-x,-y) elif (x == 0) or (y == 0): return 0 else: return x+y-1 + f12(x-1, y-1) #Returns product of x and y # (x - 1)*(y - 1) = x * y - (x + y - 1) def f13(L): assert(type(L) == list) if len(L) < 2: return [ ] else: return f13(L[2:]) + [L[1]] # [0, 1, 2, 3, 4, 5] ---> [5, 3, 1] # [2, 3, 4, 5] ---> [5, 3] # [4, 5] ---> [] + [5] = [5] # [] ---> [] def go(): while True: n = input("Enter function # (1-13, or 0 to quit): ") if n == "0": break elif n == "11": print("f11(5, 7) ==", f11(5, 7)) elif n == "12": print("f12(5, 7) ==", f12(5, 7)) elif n == "13": print("f13(list(range(20)) ==", f13(list(range(20)))) else: f = globals()["f"+n] print("f"+n+": ", [f(x) for x in range(10)]) print() go()
2d4e5375e79cc35c8674acf1f09ed3ea017a8102
01bf95e0c0d57e3a1392f9d7e20580376c9e39a2
/keystone/backends/sqlalchemy/migrate_repo/versions/002_rename_token_table.py
1d15d9dac471ffd9d2e3887ea331871420c26b32
[ "Apache-2.0" ]
permissive
oubiwann/keystone
433713dd5d542484fc754ecfd097dc02759555b2
5c70d24462d75256fb6167d58e13d9c0a3d60427
refs/heads/master
2021-01-15T16:00:31.822891
2011-12-02T14:39:59
2011-12-02T14:39:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
""" Addresses bug 854425 Renames the 'token' table to 'tokens', in order to appear more consistent with other table names. """ # pylint: disable=C0103 import sqlalchemy meta = sqlalchemy.MetaData() def upgrade(migrate_engine): meta.bind = migrate_engine sqlalchemy.Table('token', meta).rename('tokens') def downgrade(migrate_engine): meta.bind = migrate_engine sqlalchemy.Table('tokens', meta).rename('token')
162ca16f1c1766a7e0eba5b50a4d4e47a7f382d6
6b09043b97fb379aebd4363ff07d4cc53e8ec0b9
/Day 8/08-DailyFlash_Solutions/22_Jan_Solutions_Three/Python/p1.py
95966c06b2a0fe2542e4ee03e372c0259eb8dc23
[]
no_license
Aadesh-Shigavan/Python_Daily_Flash
6a4bdd73a33f533f3b121fae9eef973e10bf3945
b118beeca3f4c97de54ae1a610f83da81157009a
refs/heads/master
2022-11-28T13:03:17.573906
2020-08-06T15:36:36
2020-08-06T15:36:36
276,581,310
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
''' Program 1: Write a program that accepts two integers from user and prints addition & Subtraction of them. {Note: checks for greater number to subtracts with while subtracting numbers} Input: 10 20 Output: Addition is 20 Subtraction is 10 ''' var1=int(input("enter first integer ")) var2=int(input("enter second integer ")) add=var1+var2 print("Addition is ",add) if(var1 > var2): sub=var1-var2 print("Subtraction is ",sub) elif(var2>var1): sub=var2-var1 print("Subtraction is ",sub)
b04295b6bd02ded41471966b990097969fe52ff6
55628a9a08a6b6646b4a8aa74bedbf2e3fd7d850
/.history/master_20200108222014.py
f0ad1ad6e18e50c3c5af481bb7301cae10b1b643
[]
no_license
StRobertCHSCS/final-project-team
c115dc11b318f7ac782c94860a8801bb558bd107
48907e72813c4dd3b48ff36f794f6fce04533219
refs/heads/master
2020-12-03T22:35:37.833893
2020-01-31T04:05:38
2020-01-31T04:05:38
231,506,873
1
0
null
null
null
null
UTF-8
Python
false
false
3,220
py
import arcade import random # Set how many rows and columns we will have ROW_COUNT = 29 COLUMN_COUNT = 51 # This sets the WIDTH and HEIGHT of each grid location WIDTH = 20 HEIGHT = 20 # This sets the margin between each cell # and on the edges of the screen. MARGIN = 5 # Do the math to figure out our screen dimensions SCREEN_WIDTH = (WIDTH + MARGIN) * COLUMN_COUNT + MARGIN SCREEN_HEIGHT = (HEIGHT + MARGIN) * ROW_COUNT + MARGIN movedic = {"up":False, "down":False, "left":False, "right" = False} player_x_column = 5 player_y_row = 5 texture = arcade.load_texture("griddd.jpg") grid = [] def on_update(delta_time): snake_move() def on_draw(): arcade.start_render() grid_background() snake() apple() print (movedic) def grid_background(): arcade.draw_texture_rectangle(SCREEN_WIDTH//2, SCREEN_HEIGHT//2, texture.width, texture.height, texture, 0) def snake_move(): global player_x, player_y, player_x_column, player_y_row, moveList if (0 < player_x_column < COLUMN_COUNT) and (0 < player_y_row < ROW_COUNT): if up: player_y_row += 1 elif down: player_y_row -= 1 elif right: player_x_column += 1 elif left: player_x_column -= 1 else: player_x_column = 5 player_y_row = 5 movedic # Player coordinates player_x = (MARGIN + WIDTH) * player_x_column + MARGIN + WIDTH // 2 player_y = (MARGIN + HEIGHT) * player_y_row + MARGIN + HEIGHT // 2 def snake(): arcade.draw_rectangle_filled(player_x, player_y, WIDTH, HEIGHT, arcade.color.BLUE) def apple(): apple_x = random.randint(0, COLUMN_COUNT) apple_y = random.randint(0, ROW_COUNT) arcade.draw_rectangle_filled(apple_x, apple_y, WIDTH, HEIGHT, arcade.color.RED) def wall(): pass def on_key_press(key, modifiers): global up, down, left, right if key == arcade.key.W: up = True down = False right = False left = False elif key == arcade.key.S: down = True up = False right = False left = False elif key == arcade.key.A: left = True up = False down = False right = False elif key == arcade.key.D: right = True up = False down = False left = False def on_key_release(key, modifiers): pass def on_mouse_press(x, y, button, modifiers): pass def setup(): global grid arcade.open_window(SCREEN_WIDTH, SCREEN_HEIGHT, "snake") arcade.set_background_color(arcade.color.BLACK) arcade.schedule(on_update, 1/10) # Override arcade window methods window = arcade.get_window() window.on_draw = on_draw window.on_key_press = on_key_press window.on_key_release = on_key_release window.on_mouse_press = on_mouse_press # array is simply a list of lists. for row in range(ROW_COUNT): # Add an empty array that will hold each cell # in this row grid.append([]) for column in range(COLUMN_COUNT): grid[row].append(0) # Append a cell arcade.run() if __name__ == '__main__': setup()
038ed0403663029f64d78bc9575373753b2fc331
bf28036f99ee0d94ac6c5172659018c5b55fa337
/drum.py
b4f15451e9124ed7a1e29d1c8559af5b9569f58c
[]
no_license
shantinavgurukul/Dictionary_questions
1fb2da829675fb8e5ef23b7259e2de29f58ce505
ac79ec33901de4414359e48a88cf2cc882d79b5c
refs/heads/master
2022-12-26T13:15:33.477165
2020-10-05T16:21:00
2020-10-05T16:21:00
301,469,439
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
import json dict1 ={ "emp1": { "name": "Lisa", "designation": "programmer", "age": "34", "salary": "54000" }, "emp2": { "name": "Elis", "designation": "Trainee", "age": "24", "salary": "40000" }, } out_file = open("myfile.json", "w") # a=write(o) # store=json.dumps(dict1,indent = 6) # # out_file.close() # print(store) json.dumps(out_file,indent=4) print(out_file)
f5f87e659a58abd555e1e571e39cf2b5eedc1cd1
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/weecology_retriever/retriever-master/scripts/prism_climate.py
ed1da4bfd28d1a966b678c31c30ee3d3244572a9
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
2,745
py
#retriever """Retriever script for direct download of PRISM climate data""" from future import standard_library standard_library.install_aliases() from builtins import range from retriever.lib.templates import Script import urllib.request, urllib.parse, urllib.error class main(Script): def __init__(self, **kwargs): Script.__init__(self, **kwargs) self.name = "PRISM Climate Data" self.shortname = "prism-climate" self.retriever_minimum_version = '2.0.dev' self.version = '1.1.1' self.ref = "http://prism.oregonstate.edu/" self.urls = {"climate": "http://services.nacse.org/prism/data/public/4km/"} self.description = "The PRISM data set represents climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. " def get_file_names(self, clim_var, mval, year, month): """Create a list of all filenames in a given monthly data zip file """ file_extensions = ['bil', 'bil.aux.xml', 'hdr', 'info.txt', 'prj', 'stx', 'xml'] file_names = [] for extension in file_extensions: file_names.append("PRISM_{}_stable_4km{}_{}{}_bil.{}".format(clim_var, mval, year, month, extension)) return file_names def download(self, engine=None, debug=False): if engine.name != "Download Only": raise Exception("The PRISM dataset contains only non-tabular data files, and can only be used with the 'download only' engine.") Script.download(self, engine, debug) clim_vars = ['ppt', 'tmax', 'tmean', 'tmin'] years = list(range(1981, 2015)) months = ["{:02d}".format(i) for i in range(1,13)] for clim_var in clim_vars: mval = "M3" if clim_var == 'ppt' else "M2" for year in years: for month in months: file_names = self.get_file_names(clim_var, mval, year, month) file_url = urllib.parse.urljoin(self.urls["climate"], "{}/{}{}".format(clim_var, year, month)) archivename = "PRISM_{}_stable_4km{}_{}{}_bil.zip".format(clim_var, mval, year, month) self.engine.download_files_from_archive(file_url, file_names, archivename=archivename, keep_in_dir=True) self.engine.register_files(file_names) SCRIPT = main()
59fcde378e9247778415b7848b2705ccfe8e3385
11a0fab712b139bcba9e90f6acdc7597dff68dbb
/mestrado/ppgmcs/m07-elaboracao-de-dissertacao-i/projeto/codigo/teste1/grade/grade.py
daaca83d32160a4d36b59cbfca4b0cb9ba952eb3
[]
no_license
fapers/MeusTreinamentos
17ba096d518df533433ae2528b70d18717f3cf96
32a6b791b0c3dbb8b29ffd177597919e768b09b5
refs/heads/master
2023-06-04T14:00:37.847808
2021-06-28T02:37:11
2021-06-28T02:37:11
292,962,787
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
import numpy as np def newgrade(h, d, t, p): grade = np.arange(len(h)*len(d)*len(t)).reshape(len(d), len(h), len(t)) for i in range(len(d)): for j in range(len(h)): for k in range(len(t)): aleatorio = np.random.choice(p) grade[i][j][k] = int(aleatorio) return grade def grade(t, p): grade = np.arrange(len(t)*len(p)*np.sum(p).reshape(len(t), np.sum(p))
05e423199bcd4237ba3acf5f863237c356aa85d7
95289559871f328cbed764cee33f85994599ef1f
/my_package/SeparableConvFlow/SeparableConvFlowLayer.py
3428875de42fdbb72f8502bd817f5a3fa7a06b03
[ "MIT" ]
permissive
Bostwickenator/Dain-App
10a6f725e8c82b2a9a4f59060521d675f5b63e40
27a9dc83f36b549129a1815a095da9c782c8752e
refs/heads/master
2023-03-18T16:41:31.839901
2021-03-20T20:00:53
2021-03-20T20:00:53
349,823,152
0
0
MIT
2021-03-20T20:59:25
2021-03-20T19:58:53
Python
UTF-8
Python
false
false
4,368
py
# this is for wrapping the customized layer import torch from torch.autograd import Function import separableconvflow_cuda as my_lib import warnings #Please check how the STN FUNCTION is written : #https://github.com/fxia22/stn.pytorch/blob/master/script/functions/gridgen.py #https://github.com/fxia22/stn.pytorch/blob/master/script/functions/stn.py class SeparableConvFlowLayer(Function): def __init__(self,filtersize): self.filtersize = filtersize warnings.warn("\nSeparable Conv Flow Layer is not precise enough for optical flow due to a divison operation") super(SeparableConvFlowLayer,self).__init__() def forward(self, input1,input2,input3): intBatches = input1.size(0) intInputDepth = input1.size(1) intInputHeight = input1.size(2) intInputWidth = input1.size(3) intFilterSize = min(input2.size(1), input3.size(1)) intOutputHeight = min(input2.size(2), input3.size(2)) intOutputWidth = min(input2.size(3), input3.size(3)) assert(intInputHeight - self.filtersize == intOutputHeight - 1) assert(intInputWidth - self.filtersize == intOutputWidth - 1) assert(intFilterSize == self.filtersize) assert(input1.is_contiguous() == True) assert(input2.is_contiguous() == True) assert(input3.is_contiguous() == True) # output = input1.new().resize_(intBatches, intInputDepth, intOutputHeight, intOutputWidth).zero_() flow_ouput = torch.zeros(intBatches, 2,intOutputHeight, intOutputWidth) # as a byproduct of SepConv, but no # assert(input1.is_contiguous()) # assert(input2.is_contiguous()) self.input1 = input1.contiguous() # need to use in the backward process, so we need to cache it self.input2 = input2.contiguous() # TODO: Note that this is simply a shallow copy? self.input3 = input3.contiguous() if input1.is_cuda: self.device = torch.cuda.current_device() else: self.device = -1 if input1.is_cuda : # output = output.cuda() flow_ouput = flow_ouput.cuda() err = my_lib.SeparableConvFlowLayer_gpu_forward(input1, input2,input3,flow_ouput) else: # output = torch.cuda.FloatTensor(input1.data.size()) err = my_lib.SeparableConvFlowLayer_cpu_forward(input1, input2,input3,flow_ouput) if err != 0: print(err) # the function returns the output to its caller return flow_ouput #TODO: if there are multiple outputs of this function, then the order should be well considered? def backward(self, gradoutput): # print("Backward of Interpolation Layer") # gradinput1 = input1.new().zero_() # gradinput2 = input2.new().zero_() gradinput1 = torch.zeros(self.input1.size()) # the input1 has zero gradient because flow backprop. nothing to gradinput1 gradinput2 = torch.zeros(self.input2.size()) gradinput3 = torch.zeros(self.input3.size()) if self.input1.is_cuda: # print("CUDA backward") gradinput1 = gradinput1.cuda(self.device) gradinput2 = gradinput2.cuda(self.device) gradinput3 = gradinput3.cuda(self.device) # the input1 image should not require any gradients # print("Does input1 requires gradients? " + str(self.input1.requires_grad)) # err = my_lib.SeparableConvFlowLayer_gpu_backward(self.input1,self.input2,self.input3, gradoutput,gradinput1,gradinput2,gradinput3) err = my_lib.SeparableConvFlowLayer_gpu_backward(self.input1,self.input2,self.input3, gradoutput,gradinput1,gradinput2,gradinput3) if err != 0 : print(err) else: # print("CPU backward") # print(gradoutput) # print(err) # err = my_lib.SeparableConvFlowLayer_cpu_backward(self.input1, self.input2, self.input3, gradoutput, gradinput1, gradinput2, gradinput3) err = my_lib.SeparableConvFlowLayer_cpu_backward(self.input1, self.input2, self.input3, gradoutput, gradinput1, gradinput2, gradinput3) if err != 0 : print(err) # print(gradinput1) # print(gradinput2) # print(gradinput1) return gradinput1, gradinput2,gradinput3
87c07543dd40fb4839f8bd146fa7eb9bd2b4adca
0fefd630aa4b500a1a218f5f12d351dfeb79d4a7
/Class-HomeWork/03.RectanglePosition.py
8253241100608d02637c7cb68e4136c21fa3125e
[ "MIT" ]
permissive
bozhikovstanislav/Python-Fundamentals
a7e7659d7ce8996f9e5dc17a8a0c5fcd5fbab65f
072fd2c8bc962d20d4c526947349fdeae0bc94a5
refs/heads/master
2020-04-15T00:22:02.395202
2019-03-10T15:46:48
2019-03-10T15:46:48
164,237,382
0
0
null
null
null
null
UTF-8
Python
false
false
1,532
py
def is_inside(rect_a, rect_b): b_left = rect_a.get_x() >= rect_b.get_x() b_top = rect_a.get_y() <= rect_b.get_y() b_get_right_ = rect_a.get_x1() <= rect_b.get_x1() get_bottum_ = rect_a.get_y1() <= rect_b.get_y1() if b_left and b_get_right_ and b_top and get_bottum_: return 'Inside' return 'Not inside' class Rectungle: def __init__(self, x, y, width, height): self.__x = x self.__y = y self.__width = width self.__height = height def set_x(self, x): if isinstance(x, int): return x def get_x(self): return self.__x def set_y(self, y): if isinstance(y, int): return y def get_y(self): return self.__y def set_width(self, width): if isinstance(width, int): return width def get_width(self): return self.__width def set_height(self, height): if isinstance(height, int): return height def get_height(self): return self.__height def get_x1(self): h = self.get_x() + abs(self.get_width()) return h def get_y1(self): return self.get_y() + self.get_height() rectungle_one = list(map(int, input().split())) rectungle_tow = list(map(int, input().split())) rect_one = Rectungle(rectungle_one[0], rectungle_one[1], rectungle_one[2], rectungle_one[3]) rect_tow = Rectungle(rectungle_tow[0], rectungle_tow[1], rectungle_tow[2], rectungle_tow[3]) print(is_inside(rect_one, rect_tow))
b5cffee6d892f73cbea112ed9209626b511c5b1e
7c1be5665bf193281a90ba44ce0c7fe2215c2630
/拼多多/pin_04.py
a9eb15ca196e2c0e424ceed3f119dcf366c71c46
[]
no_license
TechInTech/Interview_Codes
47a8748ff0b70b37949034926fdc01ec1f912584
24145a34de7a80b8dd7379914ab27e0017541b25
refs/heads/master
2020-07-08T22:37:27.952537
2019-10-14T05:42:00
2019-10-14T05:42:00
203,798,729
1
0
null
null
null
null
UTF-8
Python
false
false
1,407
py
# -*- coding:utf-8 -*- import sys if __name__ == '__main__': str_input = sys.stdin.readline().strip().split(' ') sub_str = [] for i in str_input: if len(i) > 1: sub_str.append(i[0] + i[-1]) else: sub_str.append(i[0]) # print(sub_str) str_dict = {} flag = True while flag: for item in sub_str: if len(item) == 1: if item in str_dict.values(): key = list(str_dict.keys())[list(str_dict.values()).index(item)] str_dict[key] = item else: str_dict[item] = item else: if item[0] in str_dict.values(): key = list(str_dict.keys())[list(str_dict.values()).index(item[0])] str_dict[key] = item[-1] else: str_dict[item[0]] = item[-1] list_dict = [] for k1, it1 in str_dict.items(): list_dict.extend([k1, it1]) if len(str_dict) == 1 or len(set(list_dict)) >= 3: flag = False else: sub_str = [] for k, it in str_dict.items(): sub_str.append(k + it) str_dict = {} if len(str_dict) > 1 or (len(str_dict) == 1 and list(str_dict.keys())[0] != list(str_dict.values())[0]): print(False) else: print(True)
56c83d148ef48487ce438c5eb9f69b92baa0f3bb
6b1dd40d16ae6169e7ed780c5062e88d10502c85
/Kaggle/Playgroud/RiskPrediction/Home-Credit-Default-Risk-master/py/trash/922_predict_829-1.py
13011603b4e56baf37e707fbd78dcb77ebcf9844
[ "MIT" ]
permissive
hehuanlin123/DeepLearning
8a59680a341cfc525d50aa5afc3e44202ca4acc4
6b7feabbbde9ac9489f76da4c06eeb6703fb165a
refs/heads/master
2022-07-12T09:26:08.617883
2019-06-10T11:31:37
2019-06-10T11:31:37
183,748,407
1
0
null
null
null
null
UTF-8
Python
false
false
5,733
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 29 01:21:16 2018 @author: Kazuki """ import numpy as np import pandas as pd from tqdm import tqdm import gc, os import sys argv = sys.argv sys.path.append(f'/home/{os.environ.get("USER")}/PythonLibrary') import lgbextension as ex import lightgbm as lgb from multiprocessing import cpu_count from sklearn.model_selection import GroupKFold from sklearn.metrics import roc_auc_score from glob import glob import utils, utils_cat utils.start(__file__) #============================================================================== SEED = 71 LOOP = 5 NFOLD = 7 SUBMIT_FILE_PATH = '../output/829-1.csv.gz' HEAD = 600 EXE_SUBMIT = False COMMENT = 'CV(single): 0.806418 + 0.002499 600features' param = { 'objective': 'binary', 'metric': 'auc', 'learning_rate': 0.01, 'max_depth': 6, 'num_leaves': 63, 'max_bin': 255, 'min_child_weight': 10, 'min_data_in_leaf': 150, 'reg_lambda': 0.5, # L2 regularization term on weights. 'reg_alpha': 0.5, # L1 regularization term on weights. 'colsample_bytree': 0.9, 'subsample': 0.9, # 'nthread': 32, 'nthread': cpu_count(), 'bagging_freq': 1, 'verbose':-1, # 'seed': SEED } np.random.seed(SEED) #============================================================================== imp = pd.read_csv('LOG/imp_801_imp_lgb.py-2.csv') imp.sort_values('total', ascending=False, inplace=True) def mk_submit(HEAD=HEAD): features = imp.head(HEAD).feature files_tr = ('../feature/train_' + features + '.f').tolist() files_te = ('../feature/test_' + features + '.f').tolist() # ============================================================================= # load # ============================================================================= # train X_train = pd.concat([ pd.read_feather(f) for f in tqdm(files_tr, mininterval=60) ], axis=1) y_train = utils.read_pickles('../data/label').TARGET X_train.head().to_csv(SUBMIT_FILE_PATH.replace('.csv', '_X.csv'), index=False, compression='gzip') if X_train.columns.duplicated().sum()>0: raise Exception(f'duplicated!: { X_train.columns[X_train.columns.duplicated()] }') print('no dup :) ') print(f'X_train.shape {X_train.shape}') gc.collect() CAT = list( set(X_train.columns) & set(utils_cat.ALL) ) COL = X_train.columns.tolist() # test X_test = pd.concat([ pd.read_feather(f) for f in tqdm(files_te, mininterval=60) ], axis=1)[COL] # ============================================================================= # groupKfold # ============================================================================= sk_tbl = pd.read_csv('../data/user_id_v7.csv.gz') # TODO: check user_tbl = sk_tbl.user_id.drop_duplicates().reset_index(drop=True).to_frame() sub_train = pd.read_csv('../input/application_train.csv.zip', usecols=['SK_ID_CURR']).set_index('SK_ID_CURR') sub_train['y'] = y_train.values group_kfold = GroupKFold(n_splits=NFOLD) # ============================================================================= # training with cv # ============================================================================= model_all = [] auc_mean = 0 for i in range(LOOP): dtrain = lgb.Dataset(X_train, y_train, categorical_feature=CAT, free_raw_data=False) # shuffle fold ids = list(range(user_tbl.shape[0])) np.random.shuffle(ids) user_tbl['g'] = np.array(ids) % NFOLD sk_tbl_ = pd.merge(sk_tbl, user_tbl, on='user_id', how='left').set_index('SK_ID_CURR') sub_train['g'] = sk_tbl_.g folds = group_kfold.split(X_train, sub_train['y'], sub_train['g']) gc.collect() param['seed'] = i ret, models = lgb.cv(param, dtrain, 9999, folds=folds, early_stopping_rounds=100, verbose_eval=50, seed=i) model_all += models auc_mean += ret['auc-mean'][-1] auc_mean /= LOOP result = f"CV auc-mean(feature {HEAD}): {auc_mean}" print(result) utils.send_line(result) # ============================================================================= # predict # ============================================================================= sub = pd.read_pickle('../data/sub.p') gc.collect() label_name = 'TARGET' sub[label_name] = 0 for model in model_all: y_pred = model.predict(X_test) sub[label_name] += pd.Series(y_pred).rank() sub[label_name] /= len(model_all) sub[label_name] /= sub[label_name].max() sub['SK_ID_CURR'] = sub['SK_ID_CURR'].map(int) sub.to_csv(SUBMIT_FILE_PATH, index=False, compression='gzip') # ============================================================================= # submission # ============================================================================= if EXE_SUBMIT: print('submit') utils.submit(SUBMIT_FILE_PATH, COMMENT) # ============================================================================= # main # ============================================================================= mk_submit(HEAD) #============================================================================== utils.end(__file__) utils.stop_instance()
91564fe0e139d2f5aacf5af9c5d65c3f535552ce
310acdc816471356063121a966f6243eb5ee4bc3
/timeserio/validation/__init__.py
36dcf7d16029512b047b9ccbfc7cf74dd88a9d1a
[ "MIT" ]
permissive
octoenergy/timeserio
e3d1b79d7425448346bc52ef2ae8c6daf625d368
fbf99a05e420e684a941dd8223d07183644ced2d
refs/heads/master
2023-04-06T22:19:29.835755
2022-10-10T08:33:55
2022-10-10T08:33:55
196,452,519
69
12
MIT
2023-03-25T02:06:46
2019-07-11T19:18:04
Python
UTF-8
Python
false
false
69
py
from .validation import is_valid_multimodel, is_valid_pickle # noqa
ba1831997efc65fdd8de32d918565cd280a23b1f
a00ed711e3e08b50ad6e91cc07a2cddc4a1de5ea
/airflow/decorators/python.py
3f00681ccfdde818a19511335dab7fefa7db6aa4
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
ishiis/airflow
4305794e36b611d01f49e3f2401be3dc49782670
292440d54f4db84aaf0c5a98cf5fcf34303f2fa8
refs/heads/master
2022-07-30T00:51:28.806940
2022-07-14T12:07:11
2022-07-14T12:07:11
209,801,072
1
0
Apache-2.0
2019-09-20T13:47:26
2019-09-20T13:47:26
null
UTF-8
Python
false
false
3,205
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Callable, Optional, Sequence from airflow.decorators.base import DecoratedOperator, TaskDecorator, task_decorator_factory from airflow.operators.python import PythonOperator class _PythonDecoratedOperator(DecoratedOperator, PythonOperator): """ Wraps a Python callable and captures args/kwargs when called for execution. :param python_callable: A reference to an object that is callable :param op_kwargs: a dictionary of keyword arguments that will get unpacked in your function (templated) :param op_args: a list of positional arguments that will get unpacked when calling your callable (templated) :param multiple_outputs: If set to True, the decorated function's return value will be unrolled to multiple XCom values. Dict will unroll to XCom values with its keys as XCom keys. Defaults to False. """ template_fields: Sequence[str] = ('op_args', 'op_kwargs') template_fields_renderers = {"op_args": "py", "op_kwargs": "py"} # since we won't mutate the arguments, we should just do the shallow copy # there are some cases we can't deepcopy the objects (e.g protobuf). shallow_copy_attrs: Sequence[str] = ('python_callable',) def __init__(self, *, python_callable, op_args, op_kwargs, **kwargs) -> None: kwargs_to_upstream = { "python_callable": python_callable, "op_args": op_args, "op_kwargs": op_kwargs, } super().__init__( kwargs_to_upstream=kwargs_to_upstream, python_callable=python_callable, op_args=op_args, op_kwargs=op_kwargs, **kwargs, ) def python_task( python_callable: Optional[Callable] = None, multiple_outputs: Optional[bool] = None, **kwargs, ) -> TaskDecorator: """Wraps a function into an Airflow operator. Accepts kwargs for operator kwarg. Can be reused in a single DAG. :param python_callable: Function to decorate :param multiple_outputs: If set to True, the decorated function's return value will be unrolled to multiple XCom values. Dict will unroll to XCom values with its keys as XCom keys. Defaults to False. """ return task_decorator_factory( python_callable=python_callable, multiple_outputs=multiple_outputs, decorated_operator_class=_PythonDecoratedOperator, **kwargs, )
de8f80151a4960a8f4e5d28c3ea758062ee104bf
e8c3e7964f4b448e94481704d29508e9d6bd1798
/CommonTools/python/HagiwaraAndZeppenfeldTwoDimensionalModel_wz_f5z_ifLessThen0SetTo0_0505Files_1SetTo1.py
a08f9f4a69a9ca55ba3d7591cf98e7a06773d704
[]
no_license
senka/ZZ_2l2nu_4l_CMS_combination
1401f81dc255ea0ae4a0a5c73b022670849a1152
197655fa2143ffe1665cd7a1c6e5af2a2f48e57a
refs/heads/master
2021-01-13T02:06:27.885996
2014-08-09T16:15:14
2014-08-09T16:15:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,872
py
from CombinedEWKAnalysis.CommonTools.AnomalousCouplingModel import * import ROOT as r import os basepath = '%s/src/CombinedEWKAnalysis/CommonTools/data/WV_semileptonic'%os.environ['CMSSW_BASE'] #filename = '%s/ATGC_shape_coefficients.root'%basepath #filename = '%s/signal_WV.root'%basepath #this model is in the equal couplings scenario of HISZ or something similar #it does the old style limits of setting the other parameter to zero class HagiwaraAndZeppenfeldTwoDimensionalModel_wz_f5z_ifLessThen0SetTo0_0505Files_1SetTo1(AnomalousCouplingModel): def __init__(self,mode): AnomalousCouplingModel.__init__(self) self.processes = ['WWgammaZ'] self.channels = ['WV_atgc_semileptonic'] # self.lepchannels = ['ch1','ch2','ch3','ch4'] self.lepchannels = ['ch1','ch2','ch3','ch4','ch5','ch6'] # self.lepchannels = ['ch1','ch2'] self.pois = ['dkg','dg1','lZ'] self.mode = mode self.anomCoupSearchWindows = {'dkg':['-0.006','0.006'], 'dg1':['-0.006','0.006'], 'lZ' :['-0.006','0.006'] } # self.anomCoupSearchWindows = {'dkg':['-0.015','0.015'], # 'dg1':['-0.015','0.015'], # 'lZ' :['-0.015','0.015'] } self.verbose = False def buildScaling(self,process,channel,lepchannel): scalerName = '%s_%s_%s'%(process,channel,lepchannel) print '\t\t *********************** Hagiwara reading: %s/signal_WV_%s_f5z_ifLessThen1SetTo1.root'%(basepath,lepchannel) filename = '%s/signal_WV_%s_f5z_ifLessThen1SetTo1_0505Files.root'%(basepath,lepchannel) # f = r.TFile('%s/mu_boosted.root'%basepath,'READ') print '\t\t *********************** Hagiwara reading: %s/%s_boosted.root'%(basepath,lepchannel) f = r.TFile('%s/%s_boosted.root'%(basepath,lepchannel),'READ') # SM_diboson_shape = f.Get('diboson').Clone('SM_wv_semil_mu_shape_for_scale') if ('ch' in lepchannel): print 'reading ZZ2l2nu for %s'%lepchannel SM_diboson_shape = f.Get('zz2l2nu').Clone('SM_wv_semil_%s_shape_for_scale'%lepchannel) else: print 'reading diboson %s'%lepchannel SM_diboson_shape = f.Get('diboson').Clone('SM_wv_semil_%s_shape_for_scale'%lepchannel) SM_diboson_shape.SetDirectory(0) f.Close() self.modelBuilder.out._import(SM_diboson_shape) SM_diboson_shape_dhist = r.RooDataHist('DHIST_SM_wv_semil_%s_shape_for_scale'%lepchannel, 'DHIST_SM_wv_semil_%s_shape_for_scale'%lepchannel, r.RooArgList(self.modelBuilder.out.var('W_pt_%s'%lepchannel)), self.modelBuilder.out.obj('SM_wv_semil_%s_shape_for_scale'%lepchannel)) self.modelBuilder.out._import(SM_diboson_shape_dhist) # self.modelBuilder.factory_('RooHistFunc::Scaling_base_pdf_%s({W_pt},DHIST_SM_wv_semil_mu_shape_for_scale)'%(scalerName)) self.modelBuilder.factory_('RooHistFunc::Scaling_base_pdf_%s({W_pt_%s},DHIST_SM_wv_semil_%s_shape_for_scale)'%(scalerName,lepchannel,lepchannel)) self.modelBuilder.factory_('RooATGCProcessScaling_wz::Scaling_%s(W_pt_%s,dkg,lZ,dg1,Scaling_base_pdf_%s,"%s")'%(scalerName,lepchannel,scalerName,filename)) if ( self.mode == 'dkglZ' ): self.modelBuilder.out.function('Scaling_%s'%scalerName).setLimitType(0) self.modelBuilder.out.var('dg1').setVal(0) self.modelBuilder.out.var('dg1').setConstant(True) elif ( self.mode == 'dg1lZ' ): self.modelBuilder.out.function('Scaling_%s'%scalerName).setLimitType(1) self.modelBuilder.out.var('dkg').setVal(0) self.modelBuilder.out.var('dkg').setConstant(True) elif ( self.mode == 'dkgdg1' ): self.modelBuilder.out.function('Scaling_%s'%scalerName).setLimitType(2) self.modelBuilder.out.var('lZ').setVal(0) self.modelBuilder.out.var('lZ').setConstant(True) else: raise RuntimeError('InvalidCouplingChoice', 'We can only use [dkg,lZ], [dg1,lZ], and [dkg,dg1]'\ ' as POIs right now!') return scalerName dkglZModel_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1 = HagiwaraAndZeppenfeldTwoDimensionalModel_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1('dkglZ') dg1lZModel_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1 = HagiwaraAndZeppenfeldTwoDimensionalModel_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1('dg1lZ') dkgdg1Model_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1 = HagiwaraAndZeppenfeldTwoDimensionalModel_wz_f5z_ifLessThen1SetTo1_0505Files_1SetTo1('dkgdg1')
333db2238260b5ce45d4d105fa1e5cac5933855d
dfc686228834750216b2cd6eea14d2a6d12422e4
/Hackerrank_Python_solution/RegexandParsing/DetectHTMLTagsAttributesandAttributeValues.py
920d82f47e5c38a13364c5af8b4e6a11668ec42b
[]
no_license
Parth-Ps/python
8466e8856bf301908544eb60ae4a68338ccf4550
bb448c2a7996d17883214fe8eb11caa61e211400
refs/heads/master
2023-01-22T13:30:50.507021
2020-12-02T07:59:53
2020-12-02T07:59:53
317,788,331
0
0
null
null
null
null
UTF-8
Python
false
false
770
py
''' Title : Detect HTML Tags, Attributes and Attribute Values Subdomain : Regex and Parsing Domain : Python Author : Ahmedur Rahman Shovon Created : 15 July 2016 ''' from html.parser import HTMLParser class CustomHTMLParser(HTMLParser): def handle_starttag(self,tag,attrs): print(tag) self.handle_attrs(attrs) def handle_startendtag(self,tag,attrs): print(tag) self.handle_attrs(attrs) def handle_attrs(self,attrs): for attrs_pair in attrs: print('->',attrs_pair[0].strip(),'>',attrs_pair[1].strip()) n = int(input()) html_string = '' for i in range(n): html_string += input() customHTMLParser = CustomHTMLParser() customHTMLParser.feed(html_string) customHTMLParser.close()
92d7a6472e931edc858825d8e9d035a8f6ac359a
772936057748d5cfb7fc8a4d521cfc223ebdd6f3
/Insertion Sort/Insertion Sort.py
f5d104199fb7aec3f24326b91e1e77c210f27b04
[]
no_license
xCE3/ChiCodesPython
57e48b0b2b4fb355628a08dbe605d3b597513183
a5e2600b66b16deee331804030add5eb47e1295f
refs/heads/master
2020-06-13T16:33:13.677896
2019-07-31T16:00:52
2019-07-31T16:00:52
194,712,372
1
1
null
null
null
null
UTF-8
Python
false
false
249
py
def insertion_sort(arr): for i in range(1, len(arr)): for j in range(i-1, -1, -1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return arr print(insertion_sort([2,8,5,3,10,9,-2,21,9]))
324f74a6c4f93ac617ebbd3b593a6080f88fe1d1
2a67dc681af4c4b9ef7a8e18c2ff75377dc5b44f
/aws.ec2.VpcEndpoint.basic-w-tags-python/__main__.py
ec260cab0c46c84539b68d1d8344454640761a1a
[]
no_license
ehubbard/templates-aws
e323b693a18234defe6bd56ffcc64095dc58e3a1
2ae2e7a5d05490078017fed6d132dcdde1f21c63
refs/heads/master
2022-11-17T13:53:14.531872
2020-07-10T21:56:27
2020-07-10T21:56:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
import pulumi import pulumi_aws as aws s3 = aws.ec2.VpcEndpoint("s3", service_name="com.amazonaws.us-west-2.s3", tags={ "Environment": "test", }, vpc_id=aws_vpc["main"]["id"])
b818a9154b0d83fa3304579263317d182517db0d
d570d68fff337f2b14b61afe9d8cba6b228b3a6a
/tests/pep492/test_async_await.py
c9f0ceb66a15c1107515479aa795eb93daeb8e2e
[ "BSD-2-Clause" ]
permissive
meren/aiopg
bce6c50229061818e3d1a318c748479d1896881c
798e41babe50394a0f7704d99c31d9d011fae16f
refs/heads/master
2020-12-07T00:33:04.878681
2015-12-21T12:07:43
2015-12-21T12:07:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,452
py
import unittest import asyncio import aiopg class TestAsyncWith(unittest.TestCase): def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.database = 'aiopg' self.user = 'aiopg' self.host = '127.0.0.1' self.password = 'aiopg' def tearDown(self): self.loop.close() self.loop = None async def connect(self, no_loop=False, **kwargs): loop = None if no_loop else self.loop conn = await aiopg.connect(database=self.database, user=self.user, password=self.password, host=self.host, loop=loop, **kwargs) self.addCleanup(conn.close) return conn def test_cursor_await(self): async def go(): conn = await self.connect() cursor = await conn.cursor() await cursor.execute('SELECT 42;') resp = await cursor.fetchone() assert resp == (42, ) cursor.close() self.loop.run_until_complete(go()) def test_connect_context_manager(self): async def go(): kw = dict(database='aiopg', user='aiopg', password='passwd', host='127.0.0.1', loop=self.loop) async with aiopg.connect(**kw) as conn: cursor = await conn.cursor() await cursor.execute('SELECT 42') resp = await cursor.fetchone() assert resp == (42, ) cursor.close() assert conn.closed self.loop.run_until_complete(go()) def test_connection_context_manager(self): async def go(): conn = await self.connect() assert not conn.closed async with conn: cursor = await conn.cursor() await cursor.execute('SELECT 42;') resp = await cursor.fetchone() assert resp == (42, ) cursor.close() assert conn.closed self.loop.run_until_complete(go()) def test_cursor_create_with_context_manager(self): async def go(): conn = await self.connect() async with conn.cursor() as cursor: await cursor.execute('SELECT 42;') resp = await cursor.fetchone() assert resp == (42, ) assert not cursor.closed assert cursor.closed self.loop.run_until_complete(go()) def test_cursor_with_context_manager(self): async def go(): conn = await self.connect() cursor = await conn.cursor() await cursor.execute('SELECT 42;') assert not cursor.closed async with cursor: resp = await cursor.fetchone() assert resp == (42, ) assert cursor.closed self.loop.run_until_complete(go()) def test_cursor_lightweight(self): async def go(): conn = await self.connect() cursor = await conn.cursor() await cursor.execute('SELECT 42;') assert not cursor.closed async with cursor: pass assert cursor.closed self.loop.run_until_complete(go()) def test_pool_context_manager(self): async def go(): pool = await aiopg.create_pool(host=self.host, user=self.user, database=self.database, password=self.password, loop=self.loop) async with pool: conn = await pool.acquire() async with conn.cursor() as cursor: await cursor.execute('SELECT 42;') resp = await cursor.fetchone() assert resp == (42, ) pool.release(conn) assert cursor.closed assert pool.closed self.loop.run_until_complete(go()) def test_create_pool_context_manager(self): async def go(): async with aiopg.create_pool(host=self.host, user=self.user, database=self.database, password=self.password, loop=self.loop) as pool: async with pool.get() as conn: async with conn.cursor() as cursor: await cursor.execute('SELECT 42;') resp = await cursor.fetchone() assert resp == (42, ) assert cursor.closed assert conn.closed assert pool.closed self.loop.run_until_complete(go()) def test_cursor_aiter(self): async def go(): result = [] conn = await self.connect() assert not conn.closed async with conn: cursor = await conn.cursor() await cursor.execute('SELECT generate_series(1, 5);') async for v in cursor: result.append(v) assert result == [(1,), (2, ), (3, ), (4, ), (5, )] cursor.close() assert conn.closed self.loop.run_until_complete(go())
a4ad1faf3f8c1120766cdb1d029093ef98d85b5d
ddb38cabda8f8d1ad7c8a8b4af3698c4022ee9d6
/examples/link.py
9773c330149be4beda4f402ba295e9f813a6e7f8
[ "MIT" ]
permissive
caofanCPU/rich
6bc282ca3310cee3aa35f87a507fe3d79dda6af7
cda20808ab645a239ac3538013bd6ba2d324bb45
refs/heads/master
2023-01-05T22:51:28.496542
2020-10-30T10:58:00
2020-10-30T10:58:00
289,209,964
2
0
MIT
2020-10-30T10:58:01
2020-08-21T07:45:54
null
UTF-8
Python
false
false
192
py
from rich import print print("If your terminal supports links, the following text should be clickable:") print("[link=https://www.willmcgugan.com][i]Visit [red]my[/red][/i] [yellow]Blog[/]")
a05ac4c0d8cc17a6a095d7611a3e500f21cf8e59
0b204928356d6825124787877b487b27bce19790
/exercises/Chapter 07/07-17.py
01e858f27ccd0bd3920b2a7326d164f1fb30dd65
[]
no_license
shuxinzhang/nltk-learning
bff095f585bc42e697ca6cf523d71aec4a8aeeeb
0428ec5d73b325c91f1d82fb26324482ca69aae4
refs/heads/master
2021-01-01T04:43:26.536545
2017-07-26T13:37:06
2017-07-26T13:37:06
97,234,566
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
# -*- coding: utf-8 -*- import matplotlib matplotlib.use('TkAgg') import nltk ''' ★ An n-gram chunker can use information other than the current part-of-speech tag and the n-1 previous chunk tags. Investigate other models of the context, such as the n-1 previous part-of-speech tags, or some combination of previous chunk tags along with previous and following part-of-speech tags. '''
00ef7c0f0e8373c683ffa1edcfa145d5849fffaf
c6760258b3ad3dd912f0842b8ae03cbea188a8c4
/fsleyes/actions/addmaskdataseries.py
e298c1805fd70b7c1f2afcc59b0cd5e3f7029faa
[ "BSD-3-Clause", "CC-BY-3.0", "Apache-2.0" ]
permissive
sanjayankur31/fsleyes
aa822f627cde38ec766180fb591c9af7d18d2126
46ccb4fe2b2346eb57576247f49714032b61307a
refs/heads/master
2020-04-09T08:41:18.380424
2018-12-03T11:44:51
2018-12-03T11:44:51
160,204,259
1
0
null
2018-12-03T14:31:31
2018-12-03T14:31:31
null
UTF-8
Python
false
false
9,453
py
#!/usr/bin/env python # # addmaskdataseries.py - The AddMaskDataSeriesAction class. # # Author: Paul McCarthy <[email protected]> # """This module provides the :class:`AddMaskDataSeriesAction` class, an action used by the :class:`.TimeSeriesPanel`. """ import wx import numpy as np import fsl.data.image as fslimage import fsleyes.strings as strings import fsleyes.plotting.dataseries as dataseries from . import base class AddMaskDataSeriesAction(base.Action): """The ``AddMaskDataSeriesAction`` class is used by the :class:`.TimeSeriesPanel`. It prompts the user to select a mask image for the currently selected overlay (assumed to be a 4D time series :class:`.Image`), then extracts the mean time series for the non-zero voxels within the mask, and adds them as a :class:`.DataSeries` to the ``TimeSeriesPanel``. """ def __init__(self, overlayList, displayCtx, plotPanel): """Create an ``AddMaskDataSeriesAction``. :arg overlayList: The :class:`.OverlayList`. :arg displayCtx: The :class:`.DisplayContext`. :arg plotPanel: The :class:`.TimeSeriesPanel`. """ base.Action.__init__(self, self.__addMaskDataSeries) self.__overlayList = overlayList self.__displayCtx = displayCtx self.__plotPanel = plotPanel self.__name = '{}_{}'.format(type(self).__name__, id(self)) self.__maskOptions = [] overlayList.addListener('overlays', self.__name, self.__overlayListChanged) displayCtx .addListener('selectedOverlay', self.__name, self.__overlayListChanged) self.__overlayListChanged() def destroy(self): """Must be called when this ``AddMaskDataSeriesAction`` is no longer in use. """ self.__overlayList.removeListener('overlays', self.__name) self.__displayCtx .removeListener('selectedOverlay', self.__name) self.__overlayList = None self.__displayCtx = None self.__plotPanel = None self.__maskOptions = None base.Action.destroy(self) def __overlayListChanged(self, *a): """Called when the :class:`.OverlayList` changes. Updates the :attr:`.Action.enabled` flag based on the currently selected overlay, and the contents of the overlay list. """ overlay = self.__displayCtx.getSelectedOverlay() if (len(self.__overlayList) == 0 or (not isinstance(overlay, fslimage.Image))): self.enabled = False return self.__maskOptions = [o for o in self.__overlayList if isinstance(o, fslimage.Image) and o is not overlay and o.sameSpace(overlay)] self.enabled = (overlay.ndim > 3 and len(self.__maskOptions) > 0) def __addMaskDataSeries(self): """Run the ``AddMaskDataSeriesAction``. Prompt the user to select a mask, using a :class:`MaskDialog`, then calculates the mean time series in that mask, then adds that time series to the :class:`.TimeSeriesPanel` that owns this action instance. """ overlay = self.__displayCtx.getSelectedOverlay() opts = self.__displayCtx.getOpts(overlay) options = self.__maskOptions frame = wx.GetApp().GetTopWindow() msg = strings.messages[self, 'selectMask'].format(overlay.name) cbmsg = strings.messages[self, 'weighted'] title = strings.titles[ self, 'selectMask'].format(overlay.name) dlg = MaskDialog( frame, [o.name for o in options], title=title, message=msg, checkboxMessage=cbmsg) if dlg.ShowModal() != wx.ID_OK: return maskimg = options[dlg.GetChoice()] weight = dlg.GetCheckBox() ds = dataseries.DataSeries(overlay, self.__overlayList, self.__displayCtx, self.__plotPanel) data = overlay.nibImage.get_data()[opts.index(atVolume=False)] mask = maskimg.nibImage.get_data() maskmask = mask > 0 ydata = data[maskmask] # Weighted mean if weight: maskvals = mask[maskmask] ydata = (maskvals * ydata.T).T ydata = ydata.mean(axis=0) xdata = np.arange(len(ydata)) ds.colour = self.__plotPanel.getOverlayPlotColour(overlay) ds.alpha = 1 ds.lineWidth = 1 ds.lineStyle = '-' ds.label = '{} [mask: {}]'.format(overlay.name, maskimg.name) # We have to run the data through # prepareDataSeries to e.g. scale # the x axis by pixdims, and apply # other plot settings ds.setData(xdata, ydata) ds.setData(*self.__plotPanel.prepareDataSeries(ds)) self.__plotPanel.dataSeries.append(ds) class MaskDialog(wx.Dialog): """A dialog which displays some options to the user: - A ``Choice`` widget containing a list of mask images - A checkbox allowing the user to select whether to calculate the weighted mean time series, weighted by the mask values, or calculate the unweighted mean. The selections are available via the :meth:`GetMask` and :meth:`GetWeighted` methods """ def __init__(self, parent, choices, title=None, message=None, checkbox=True, checkboxMessage=None): """Create a ``ChoiceDialog``. :arg parent: ``wx`` parent object. :arg choices: List of strings, the choices to present to the user. :arg title: Dialog title :arg message: Message to show above choice widget. :arg checkbox: Show a checkbox :arg checkboxMessage: Message to show alongside checkbox widget. """ if title is None: title = '' if message is None: message = '' if checkboxMessage is None: checkboxMessage = '' wx.Dialog.__init__(self, parent, title=title, style=wx.DEFAULT_DIALOG_STYLE) self.__message = wx.StaticText(self, label=message) self.__choice = wx.Choice(self, choices=choices) if checkbox: self.__checkbox = wx.CheckBox(self, label=checkboxMessage) else: self.__checkbox = None self.__okButton = wx.Button(self, label='Ok', id=wx.ID_OK) self.__cancelButton = wx.Button(self, label='Cancel', id=wx.ID_CANCEL) self.__okButton .Bind(wx.EVT_BUTTON, self.__onOkButton) self.__cancelButton.Bind(wx.EVT_BUTTON, self.__onCancelButton) self.__okButton.SetDefault() self.__mainSizer = wx.BoxSizer(wx.VERTICAL) self.__buttonSizer = wx.BoxSizer(wx.HORIZONTAL) self.__buttonSizer.Add((1, 1), flag=wx.EXPAND, proportion=1) self.__buttonSizer.Add(self.__okButton) self.__buttonSizer.Add((5, 1), flag=wx.EXPAND) self.__buttonSizer.Add(self.__cancelButton) self.__mainSizer.Add(self.__message, flag=wx.EXPAND | wx.ALL, proportion=1, border=20) self.__mainSizer.Add(self.__choice, flag=wx.EXPAND | wx.LEFT | wx.RIGHT, border=20) if checkbox: self.__mainSizer.Add(self.__checkbox, flag=wx.EXPAND | wx.LEFT | wx.RIGHT | wx.TOP, border=20) self.__mainSizer.Add(self.__buttonSizer, flag=wx.EXPAND | wx.ALL, border=20) self.SetSizer(self.__mainSizer) self.Layout() self.Fit() self.CentreOnParent() @property def okButton(self): """Returns the OK button. """ return self.__okButton @property def cancelButton(self): """Returns the cancel button. """ return self.__cancelButton @property def checkbox(self): """Returns the checkbox. """ return self.__checkbox @property def choice(self): """Returns the choice widget. """ return self.__choice def GetChoice(self): """Returns the index of the currently selected choice.""" return self.__choice.GetSelection() def GetCheckBox(self): """Returns the index of the currently selected choice.""" if self.__checkbox is None: raise RuntimeError('This dialog does not have a checkbox') return self.__checkbox.GetValue() def __onOkButton(self, ev): """Called when the ok button is pushed. """ self.EndModal(wx.ID_OK) def __onCancelButton(self, ev): """Called when the cancel button is pushed. """ self.EndModal(wx.ID_CANCEL)
38cedd932c2f25213428fe2e550d32592b7fec2f
efbe970cb374d4416c2c500a495994397ea18dd5
/plugins/invites.py
bf0da04c4e1913d561661270ad7e34769e2cc491
[ "MIT" ]
permissive
void-being/bepis-bot
f7d9fbc7663bb8a28c70e312fa4fb20c53c406c7
491b8de94b94384df6b26fa6a1325ee578020b7e
refs/heads/master
2020-07-11T17:28:10.080879
2018-11-15T23:44:06
2018-11-15T23:44:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,749
py
from logging import getLogger from utils.common import GENERAL_CHANNEL from utils.db import InviteDatabase, Database from utils.deco import ensure_profile from disco.api.http import APIException from disco.bot import Plugin class InvitePlug(Plugin): def load(self, config): self.invite_db = InviteDatabase() self.db = Database("InvitePlug") self.logger = getLogger("InvitePlug") super().load(config) self.logger.info("Finished loading invite plugin") @Plugin.listen("GuildMemberAdd") def on_member(self, event): if self.invite_db.already_joined(event): self.logger.info("User {0} has rejoined the server".format(event.user.id)) else: for invite in self.invite_db: try: invite_obj = event.client.api.invites_get(invite['invite_code']) print(invite_obj.uses, "/", invite_obj.max_uses) except APIException: self.logger.info("Invite revoked! Rewarding accordingly") self.db.create_user(event.user) invited = self.db.find_user(event.user.id) inviter = self.db.find_user(invite['user_id']) invited.bepis += 20 inviter.bepis += 30 event.client.api.channels_messages_create( GENERAL_CHANNEL, "Thanks for inviting <@{0}>, <@{1}>. You've earned 30 bepis and" " <@{1}> earned 20 for using the referral link".format(invited.user_id, inviter.user_id) ) self.invite_db.remove_invite(invite['invite_code']) self.logger.info("Removed invite and rewarded users") break else: self.db.create_user(event.user) self.logger.info("Created account for User {0}".format(event.user.id)) @Plugin.command("invite") @ensure_profile def create_invite(self, event, user): invite = self.invite_db.invites.find_one({"user_id": user.user_id}) if invite: invite_code = invite['invite_code'] else: invite = event.msg.channel.create_invite( max_age=0, max_uses=1, unique=True ) invite_code = invite.code self.invite_db.register_invite(invite_code, user.user_id) event.msg.reply("There! Here's your referral link. Whenever a person joins with this link, you'll get 30 bepis" "and they'll get 20. Make sure to get a new link after inviting someone! https://discord.gg/" + invite_code)
5974adfcd647a183ebd24dc44138ee6aea00339a
284d146079ff247ce46a06f08e3651551ea4a6bd
/n_grams.py
934161b64db190d9a55cd08baa067f16ba2cf3e4
[]
no_license
massyah/GRN-analysis
e872e36d7c07ad9674391c7ca017d3c55342ab7d
1f985555198693cc9be21d70d1c93050f0ad2f9a
refs/heads/master
2021-01-10T21:11:28.267953
2017-01-10T20:40:03
2017-01-10T20:40:03
1,071,136
0
0
null
null
null
null
UTF-8
Python
false
false
3,664
py
#!/usr/bin/env python # encoding: utf-8 import copy # project="Th17 differentiation" # termFile=project+"/articles_th17.txt" # pubmed_files=[f for f in os.listdir("./"+project) if f.startswith("entrez ")] stop_words=open("stop_words.txt").readlines() stop_words=[x.strip() for x in stop_words] occ_number={} exemple_sentences={} n_grams_occurences={} def build_n_grams(n,table): n_grams=[] for i in range(0,len(table)-n+1): n_grams.append(tuple(table[i:i+n])) return n_grams # toRemove=re.compile("|".join(["of","the","in","for","with","by","this","well","as"])) def tokenize_sentence(s): s=s.replace("(","") s=s.replace(")","") s=s.replace(",","") splitted=[] recognized=allTermsRe.findall(s) for parts in allTermsRe.split(s): if (parts in recognized): parts=parts.lower() if "_"+parts in allTerms: parts="_"+parts splitted.append(allTerms[parts].name) else: for w in parts.split(): if w.lower() in stop_words: continue w=w.lower() w=w.strip(",.") splitted.append(w.lower()) return splitted def compute_occurences(): global occ_number,n_grams_occurences occ_number={} n_grams_occurences={} for s in allSentences: #we get rid of () s=s.string splitted=[] tokens=tokenize_sentence(s) for tok in tokens: if tok not in occ_number: occ_number[tok]=0 occ_number[tok]+=1 if tok not in exemple_sentences: exemple_sentences[tok]=[] exemple_sentences[tok].append(s) for i in range(2,6): grams=build_n_grams(i,tokens) for g in grams: g=tuple(g) if g not in n_grams_occurences: n_grams_occurences[g]=0 if g not in exemple_sentences: exemple_sentences[g]=[] n_grams_occurences[g]+=1 exemple_sentences[g].append(s) # print occ_number #we first build the frequencies of terms related to all publications allPublications={} allSentences=[] allTerms={} allTermsRe=None allPredicates=[] uid=0 sentencesUid=0 evidencesUid=0 pubmedIdTopub={} nxG=None project="Th17 differentiation" termFile="Th17 differentiation human/th17_human_terms.txt" pubmed_files=[f for f in os.listdir("./"+project) if f.startswith("entrez ")] parse_file(termFile) compute_occurences() occ_number_general=copy.copy(occ_number) n_grams_occurences_general=copy.copy(n_grams_occurences) exemple_sentences_general=copy.copy(exemple_sentences) n_sents_general=len(allSentences) print "General term frequencies computed" allPublications={} allSentences=[] allPredicates=[] pubmedIdTopub={} nxG=None project="Th17 differentiation human" termFile=project+"/th17_human_terms.txt" pubmed_files=[f for f in os.listdir("./"+project) if f.startswith("entrez ")] pubmed_files.append("pubmed_result.txt") parse_file(termFile) occ_number={} exemple_sentences={} n_grams_occurences={} compute_occurences() n_sents=len(allSentences) print "Human specific frequencies computed" diff_freq={} for k,v in occ_number.items(): if k not in diff_freq: diff_freq[k]=0 if k not in occ_number_general: diff_freq[k]=1.0*v/n_sents else: diff_freq[k]=1.0*occ_number[k]/n_sents-1.0*occ_number_general[k]/n_sents_general #sort the dicts by freqs occ_number=occ_number.items() occ_number.sort(key=lambda x:x[1],reverse=True) occ_number_general=occ_number_general.items() occ_number_general.sort(key=lambda x:x[1],reverse=True) n_grams_occurences=[x for x in n_grams_occurences.items() if x[1]>3] n_grams_occurences.sort(key=lambda x:x[1],reverse=True) n_grams_occurences_general=[x for x in n_grams_occurences_general.items() if x[1]>3] n_grams_occurences_general.sort(key=lambda x:x[1],reverse=True) diff_freq=diff_freq.items() diff_freq.sort(key=lambda x:x[1],reverse=True)
3dbda848af9311c79540f19a16701a5fa967df65
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/KoubeiItemExtitemQueryResponse.py
dcc088d4e0ab28be40c13158601fdb346f4422aa
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
855
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.ExtItem import ExtItem class KoubeiItemExtitemQueryResponse(AlipayResponse): def __init__(self): super(KoubeiItemExtitemQueryResponse, self).__init__() self._extitem = None @property def extitem(self): return self._extitem @extitem.setter def extitem(self, value): if isinstance(value, ExtItem): self._extitem = value else: self._extitem = ExtItem.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(KoubeiItemExtitemQueryResponse, self).parse_response_content(response_content) if 'extitem' in response: self.extitem = response['extitem']
1f4f4feed8d738e787ed86e3d7022992d076cb0f
648f427a9d9a73720f76df972be2983354e13b61
/test/functional/p2p-leaktests.py
74f52f84f1e26ac02479c2fe64a636ad5c488e14
[ "MIT" ]
permissive
aixinwang/Gfc
e659850e398dc9ab8b6a697b9262462a8e316e8a
4a7fdac234f5f51055e471e77aaff62cfa4c6eab
refs/heads/master
2021-04-03T08:33:03.198293
2018-03-14T04:32:38
2018-03-14T04:32:38
125,152,463
0
0
null
null
null
null
UTF-8
Python
false
false
5,654
py
#!/usr/bin/env python3 # Copyright (c) 2017 The GFC coin bt developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test message sending before handshake completion. A node should never send anything other than VERSION/VERACK/REJECT until it's received a VERACK. This test connects to a node and sends it a few messages, trying to intice it into sending us something it shouldn't. """ from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * banscore = 10 class CLazyNode(NodeConnCB): def __init__(self): super().__init__() self.unexpected_msg = False self.ever_connected = False def bad_message(self, message): self.unexpected_msg = True self.log.info("should not have received message: %s" % message.command) def on_open(self, conn): self.connected = True self.ever_connected = True def on_version(self, conn, message): self.bad_message(message) def on_verack(self, conn, message): self.bad_message(message) def on_reject(self, conn, message): self.bad_message(message) def on_inv(self, conn, message): self.bad_message(message) def on_addr(self, conn, message): self.bad_message(message) def on_alert(self, conn, message): self.bad_message(message) def on_getdata(self, conn, message): self.bad_message(message) def on_getblocks(self, conn, message): self.bad_message(message) def on_tx(self, conn, message): self.bad_message(message) def on_block(self, conn, message): self.bad_message(message) def on_getaddr(self, conn, message): self.bad_message(message) def on_headers(self, conn, message): self.bad_message(message) def on_getheaders(self, conn, message): self.bad_message(message) def on_ping(self, conn, message): self.bad_message(message) def on_mempool(self, conn): self.bad_message(message) def on_pong(self, conn, message): self.bad_message(message) def on_feefilter(self, conn, message): self.bad_message(message) def on_sendheaders(self, conn, message): self.bad_message(message) def on_sendcmpct(self, conn, message): self.bad_message(message) def on_cmpctblock(self, conn, message): self.bad_message(message) def on_getblocktxn(self, conn, message): self.bad_message(message) def on_blocktxn(self, conn, message): self.bad_message(message) # Node that never sends a version. We'll use this to send a bunch of messages # anyway, and eventually get disconnected. class CNodeNoVersionBan(CLazyNode): # send a bunch of veracks without sending a message. This should get us disconnected. # NOTE: implementation-specific check here. Remove if bitcoind ban behavior changes def on_open(self, conn): super().on_open(conn) for i in range(banscore): self.send_message(msg_verack()) def on_reject(self, conn, message): pass # Node that never sends a version. This one just sits idle and hopes to receive # any message (it shouldn't!) class CNodeNoVersionIdle(CLazyNode): def __init__(self): super().__init__() # Node that sends a version but not a verack. class CNodeNoVerackIdle(CLazyNode): def __init__(self): self.version_received = False super().__init__() def on_reject(self, conn, message): pass def on_verack(self, conn, message): pass # When version is received, don't reply with a verack. Instead, see if the # node will give us a message that it shouldn't. This is not an exhaustive # list! def on_version(self, conn, message): self.version_received = True conn.send_message(msg_ping()) conn.send_message(msg_getaddr()) class P2PLeakTest(BitcoinTestFramework): def __init__(self): super().__init__() self.num_nodes = 1 self.extra_args = [['-banscore='+str(banscore)]] def run_test(self): no_version_bannode = CNodeNoVersionBan() no_version_idlenode = CNodeNoVersionIdle() no_verack_idlenode = CNodeNoVerackIdle() connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], no_version_bannode, send_version=False)) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], no_version_idlenode, send_version=False)) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], no_verack_idlenode)) no_version_bannode.add_connection(connections[0]) no_version_idlenode.add_connection(connections[1]) no_verack_idlenode.add_connection(connections[2]) NetworkThread().start() # Start up network handling in another thread assert wait_until(lambda: no_version_bannode.ever_connected, timeout=10) assert wait_until(lambda: no_version_idlenode.ever_connected, timeout=10) assert wait_until(lambda: no_verack_idlenode.version_received, timeout=10) # Mine a block and make sure that it's not sent to the connected nodes self.nodes[0].generate(1) #Give the node enough time to possibly leak out a message time.sleep(5) #This node should have been banned assert not no_version_bannode.connected [conn.disconnect_node() for conn in connections] # Make sure no unexpected messages came in assert(no_version_bannode.unexpected_msg == False) assert(no_version_idlenode.unexpected_msg == False) assert(no_verack_idlenode.unexpected_msg == False) if __name__ == '__main__': P2PLeakTest().main()
4be69bac70655e225aa2eeed666f85b2c6cf5500
680bd46e8eae20e78a425f766432711a47235374
/models/big_number_item.py
1844314793bf8a7d60cf2454e718fdbf79835d64
[ "Apache-2.0" ]
permissive
ILMostro/lm-sdk-python
9f45217d64c0fc49caf2f4b279a124c2efe3d24d
40da5812ab4d50dd1c6c3c68f7ea13c4d8f4fb49
refs/heads/master
2022-02-01T16:51:12.810483
2019-07-16T17:54:11
2019-07-16T17:54:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,277
py
# coding: utf-8 """ LogicMonitor REST API LogicMonitor is a SaaS-based performance monitoring platform that provides full visibility into complex, hybrid infrastructures, offering granular performance monitoring and actionable data and insights. logicmonitor_sdk enables you to manage your LogicMonitor account programmatically. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from logicmonitor_sdk.models.color_threshold import ColorThreshold # noqa: F401,E501 class BigNumberItem(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'bottom_label': 'str', 'color_thresholds': 'list[ColorThreshold]', 'data_point_name': 'str', 'position': 'int', 'right_label': 'str', 'rounding': 'int', 'use_comma_separators': 'bool' } attribute_map = { 'bottom_label': 'bottomLabel', 'color_thresholds': 'colorThresholds', 'data_point_name': 'dataPointName', 'position': 'position', 'right_label': 'rightLabel', 'rounding': 'rounding', 'use_comma_separators': 'useCommaSeparators' } def __init__(self, bottom_label=None, color_thresholds=None, data_point_name=None, position=None, right_label=None, rounding=None, use_comma_separators=None): # noqa: E501 """BigNumberItem - a model defined in Swagger""" # noqa: E501 self._bottom_label = None self._color_thresholds = None self._data_point_name = None self._position = None self._right_label = None self._rounding = None self._use_comma_separators = None self.discriminator = None if bottom_label is not None: self.bottom_label = bottom_label if color_thresholds is not None: self.color_thresholds = color_thresholds self.data_point_name = data_point_name if position is not None: self.position = position if right_label is not None: self.right_label = right_label if rounding is not None: self.rounding = rounding self.use_comma_separators = use_comma_separators @property def bottom_label(self): """Gets the bottom_label of this BigNumberItem. # noqa: E501 :return: The bottom_label of this BigNumberItem. # noqa: E501 :rtype: str """ return self._bottom_label @bottom_label.setter def bottom_label(self, bottom_label): """Sets the bottom_label of this BigNumberItem. :param bottom_label: The bottom_label of this BigNumberItem. # noqa: E501 :type: str """ self._bottom_label = bottom_label @property def color_thresholds(self): """Gets the color_thresholds of this BigNumberItem. # noqa: E501 :return: The color_thresholds of this BigNumberItem. # noqa: E501 :rtype: list[ColorThreshold] """ return self._color_thresholds @color_thresholds.setter def color_thresholds(self, color_thresholds): """Sets the color_thresholds of this BigNumberItem. :param color_thresholds: The color_thresholds of this BigNumberItem. # noqa: E501 :type: list[ColorThreshold] """ self._color_thresholds = color_thresholds @property def data_point_name(self): """Gets the data_point_name of this BigNumberItem. # noqa: E501 :return: The data_point_name of this BigNumberItem. # noqa: E501 :rtype: str """ return self._data_point_name @data_point_name.setter def data_point_name(self, data_point_name): """Sets the data_point_name of this BigNumberItem. :param data_point_name: The data_point_name of this BigNumberItem. # noqa: E501 :type: str """ if data_point_name is None: raise ValueError("Invalid value for `data_point_name`, must not be `None`") # noqa: E501 self._data_point_name = data_point_name @property def position(self): """Gets the position of this BigNumberItem. # noqa: E501 :return: The position of this BigNumberItem. # noqa: E501 :rtype: int """ return self._position @position.setter def position(self, position): """Sets the position of this BigNumberItem. :param position: The position of this BigNumberItem. # noqa: E501 :type: int """ self._position = position @property def right_label(self): """Gets the right_label of this BigNumberItem. # noqa: E501 :return: The right_label of this BigNumberItem. # noqa: E501 :rtype: str """ return self._right_label @right_label.setter def right_label(self, right_label): """Sets the right_label of this BigNumberItem. :param right_label: The right_label of this BigNumberItem. # noqa: E501 :type: str """ self._right_label = right_label @property def rounding(self): """Gets the rounding of this BigNumberItem. # noqa: E501 :return: The rounding of this BigNumberItem. # noqa: E501 :rtype: int """ return self._rounding @rounding.setter def rounding(self, rounding): """Sets the rounding of this BigNumberItem. :param rounding: The rounding of this BigNumberItem. # noqa: E501 :type: int """ self._rounding = rounding @property def use_comma_separators(self): """Gets the use_comma_separators of this BigNumberItem. # noqa: E501 :return: The use_comma_separators of this BigNumberItem. # noqa: E501 :rtype: bool """ return self._use_comma_separators @use_comma_separators.setter def use_comma_separators(self, use_comma_separators): """Sets the use_comma_separators of this BigNumberItem. :param use_comma_separators: The use_comma_separators of this BigNumberItem. # noqa: E501 :type: bool """ if use_comma_separators is None: raise ValueError("Invalid value for `use_comma_separators`, must not be `None`") # noqa: E501 self._use_comma_separators = use_comma_separators def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(BigNumberItem, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BigNumberItem): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
3a056a7330c5f4fa3afb79da1bd70e37f1fd2f32
9e4eab70447a892becf36cec0e656318d27a26f3
/core/middlewares/common.py
f10909e45820993e0991bb19f280a120a1d8637d
[ "MIT" ]
permissive
aldwyn-acn/effigia
7afa8f52641e2cdcbf69a66a593a4a58191c9b9b
cd105ee3a938785791cff474fd2959352a41a6a6
refs/heads/master
2020-03-31T01:04:49.710702
2019-07-30T23:12:32
2019-07-30T23:12:32
151,765,928
0
0
null
2018-10-05T19:03:27
2018-10-05T19:03:27
null
UTF-8
Python
false
false
1,629
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from actstream import action from django.utils.deprecation import MiddlewareMixin from apps.galleries.views import GalleryItemView from apps.galleries.models import Gallery from apps.portfolios.views import PortfolioItemView from apps.portfolios.models import Portfolio from apps.groups.views import GroupItemView from apps.groups.models import Group MODELS_FOR_SAVING_VISITS = { GalleryItemView: Gallery, GroupItemView: Group, PortfolioItemView: Portfolio, } class MiddlewareObjectMixin(object): def get_object(self, klass, **kwargs): if kwargs.get('slug'): return klass.objects.get(slug=kwargs['slug']) def is_item_view(self, view_func, view_kwargs): return (hasattr(view_func, 'view_class') and view_func.view_class in MODELS_FOR_SAVING_VISITS and view_kwargs.get('slug')) class EffigiaVisitMiddleware(MiddlewareObjectMixin, MiddlewareMixin): def process_view(self, request, view_func, view_args, view_kwargs): """ Save an action for the visited objects of the current user """ if (self.is_item_view(view_func, view_kwargs)): klass = MODELS_FOR_SAVING_VISITS[view_func.view_class] obj = self.get_object(klass, **view_kwargs) if request.user.is_authenticated(): action.send(request.user, verb='visited a %s' % obj._meta.verbose_name, target=obj) else: obj.anonymous_visits_count += 1 obj.save() return view_func(request, *view_args, **view_kwargs)
64286712f027df5f47a92489c32b3602446d79b1
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/40/usersdata/102/24477/submittedfiles/funcoes.py
85696e1d61292798d9f6040a5edaa4363fc470ec
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
from __future__ import division import numpy as np def calcula_valor_absoluto(x): if x<0: x=x*(-1) return x else: return x def cacula_pi(m): soma=0 i=1 j=2 while i<=m: if 1<=m and m<=2000: if i%2==0: soma=soma-(4/(j*(j+1)*(j+2))) else: soma=soma+(4/(j*(j+1)*(j+2))) i=i+1 j=j+2 pi=3+soma return pi def fatorial(a): fatorial=1 for i in range(1,a+1,1): fatorial=fatorial*i return fatorial def calcula_cos_seno(z,epsilon): i=1 j=2 soma=0 termo=((2**j)/fatorial(j)) while termo>epsilon: if i%2!=0: soma=soma-termo else: somaa=soma+termo i=i+1 j=j+2 termo=((2**j)/aatorial(j)) cosseno=1+soma return cosseno def calcula_razao_aurea(m,epsilon): calcula_razao_aurea=2*(calcula_cos_seno(calcula_pi(m)/5.0,epsilon)) return razao_aurea