blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
4f08dc744434feff1d32cee783de86333bb13fb9
76787cd4117d71377bd27d251b6d30b41922ff67
/tests/integration/response/schema/test_countries.py
34f80377ee2c79759a4d9a4a17217fb723874f4e
[ "MIT" ]
permissive
jaebradley/draftkings_client
50ba0f25e38b78f75d92a57660bfb110e3a27e69
2184e2e3cf66bfe9e4cc6f6d577c80602ab7121a
refs/heads/v3
2022-12-09T14:35:50.263181
2022-01-19T06:36:24
2022-01-19T06:36:24
73,451,976
138
47
MIT
2022-12-08T01:23:13
2016-11-11T06:29:44
Python
UTF-8
Python
false
false
2,712
py
import os from unittest import TestCase from draft_kings.response.objects.countries import Country, Countries from draft_kings.response.schema.countries import CountriesSchema from tests.config import ROOT_DIRECTORY class TestCountries(TestCase): def setUp(self) -> None: with open(os.path.join(ROOT_DIRECTORY, 'tests/files/countries.json'), encoding="utf-8") as data_file: self.schema = CountriesSchema() self.data = self.schema.loads(data_file.read()) def test_deserialization(self) -> None: self.assertIsNotNone(self.data) def test_countries_data(self) -> None: self.assertEqual( Countries( countries=[ Country( country_id=1, country_code="US", name="United States", is_licensed=True ), Country( country_id=14, country_code="AU", name="Australia", is_licensed=True ), Country( country_id=15, country_code="AT", name="Austria", is_licensed=True ), Country( country_id=2, country_code="CA", name="Canada", is_licensed=True ), Country( country_id=4, country_code="DE", name="Germany", is_licensed=True ), Country( country_id=89, country_code="IE", name="Ireland", is_licensed=True ), Country( country_id=117, country_code="MT", name="Malta", is_licensed=True ), Country( country_id=132, country_code="NL", name="Netherlands", is_licensed=True ), Country( country_id=3, country_code="GB", name="United Kingdom", is_licensed=True ) ] ), self.data )
ba4c4198b6f4565bd1b715c26f548292f2287c5f
cda43bf6a84f7e55fab26aa70cda934683a51fe5
/residualflows/train_toy_dioDionelis.py
b211dab5f7e76b0f94b3aaae0281197026274108
[]
no_license
nikolaosdionelis/NeuralNetworksNNs
abb55622882e31c8d130a8986868b3d19ede186f
8a217490ad5bb3f7fccf4002c6b43a06c1e562fc
refs/heads/master
2022-11-13T00:50:23.578197
2020-07-12T18:52:20
2020-07-12T18:52:20
279,042,013
5
1
null
null
null
null
UTF-8
Python
false
false
33,216
py
#import os #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"]="1" import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="1" #import os import time import argparse import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import math import torch import numpy as np import lib.optimizers as optim import lib.layers.base as base_layers import lib.utils as utils import lib.layers as layers import lib.toy_data as toy_data from lib.visualize_flow import visualize_transform ACTIVATION_FNS = { 'relu': torch.nn.ReLU, 'tanh': torch.nn.Tanh, 'elu': torch.nn.ELU, 'selu': torch.nn.SELU, 'fullsort': base_layers.FullSort, 'maxmin': base_layers.MaxMin, 'swish': base_layers.Swish, 'lcube': base_layers.LipschitzCube, } parser = argparse.ArgumentParser() # Use 8 Gaussians # We use 8 Gaussians #parser.add_argument( # '--data', choices=['swissroll', '8gaussians') #parser.add_argument( # '--data', choices=['swissroll', '8gaussians', 'pinwheel', 'circles', 'moons', '2spirals', 'checkerboard', 'rings'], # type=str, default='pinwheel') # 8 Gaussians # Use 8 Gaussians parser.add_argument( '--data', choices=['swissroll', '8gaussians', 'pinwheel', 'circles', 'moons', '2spirals', 'checkerboard', 'rings'], type=str, default='8gaussians') # 8 Gaussians # Use 8 Gaussians parser.add_argument('--arch', choices=['iresnet', 'realnvp'], default='iresnet') parser.add_argument('--coeff', type=float, default=0.9) parser.add_argument('--vnorms', type=str, default='222222') parser.add_argument('--n-lipschitz-iters', type=int, default=5) parser.add_argument('--atol', type=float, default=None) parser.add_argument('--rtol', type=float, default=None) parser.add_argument('--learn-p', type=eval, choices=[True, False], default=False) parser.add_argument('--mixed', type=eval, choices=[True, False], default=True) #parser.add_argument('--dims', type=str, default='128-128-128-128') parser.add_argument('--act', type=str, choices=ACTIVATION_FNS.keys(), default='swish') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--dims', type=str, default='128-128') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--dims', type=str, default='64-64') #parser.add_argument('--dims', type=str, default='128-128-128-128') parser.add_argument('--dims', type=str, default='32-32') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--dims', type=str, default='16-16') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--dims', type=str, default='128-128-128-128') #parser.add_argument('--nblocks', type=int, default=100) parser.add_argument('--brute-force', type=eval, choices=[True, False], default=False) #parser.add_argument('--nblocks', type=int, default=100) #parser.add_argument('--nblocks', type=int, default=100) parser.add_argument('--nblocks', type=int, default=50) #parser.add_argument('--nblocks', type=int, default=100) #parser.add_argument('--nblocks', type=int, default=100) parser.add_argument('--actnorm', type=eval, choices=[True, False], default=False) parser.add_argument('--batchnorm', type=eval, choices=[True, False], default=False) parser.add_argument('--exact-trace', type=eval, choices=[True, False], default=False) parser.add_argument('--n-power-series', type=int, default=None) parser.add_argument('--n-samples', type=int, default=1) parser.add_argument('--n-dist', choices=['geometric', 'poisson'], default='geometric') #parser.add_argument('--niters', type=int, default=50000) #parser.add_argument('--batch_size', type=int, default=500) #parser.add_argument('--niters', type=int, default=50000) #parser.add_argument('--niters', type=int, default=50000) #parser.add_argument('--niters', type=int, default=500) #parser.add_argument('--niters', type=int, default=50000) parser.add_argument('--niters', type=int, default=7000) #parser.add_argument('--niters2', type=int, default=5000) parser.add_argument('--niters2', type=int, default=100) #parser.add_argument('--batch_size', type=int, default=500) #parser.add_argument('--batch_size', type=int, default=500) #parser.add_argument('--batch_size', type=int, default=250) #parser.add_argument('--batch_size', type=int, default=500) parser.add_argument('--batch_size', type=int, default=500) #parser.add_argument('--test_batch_size', type=int, default=10000) #parser.add_argument('--lr', type=float, default=1e-5) #parser.add_argument('--lr', type=float, default=1e-5) #parser.add_argument('--lr', type=float, default=1e-5) #parser.add_argument('--lr', type=float, default=1e-3) #parser.add_argument('--lr', type=float, default=1e-5) parser.add_argument('--lr', type=float, default=1e-1) #parser.add_argument('--lr', type=float, default=1e-5) #parser.add_argument('--lr', type=float, default=1e-5) #parser.add_argument('--test_batch_size', type=int, default=10000) #parser.add_argument('--test_batch_size', type=int, default=10000) #parser.add_argument('--test_batch_size', type=int, default=200) #parser.add_argument('--test_batch_size', type=int, default=10000) parser.add_argument('--test_batch_size', type=int, default=500) #parser.add_argument('--test_batch_size', type=int, default=10000) #parser.add_argument('--test_batch_size', type=int, default=10000) parser.add_argument('--weight-decay', type=float, default=1e-5) parser.add_argument('--annealing-iters', type=int, default=0) parser.add_argument('--save', type=str, default='experiments/iresnet_toy') #parser.add_argument('--viz_freq', type=int, default=100) #parser.add_argument('--viz_freq', type=int, default=100) #parser.add_argument('--val_freq', type=int, default=100) parser.add_argument('--viz_freq', type=int, default=1000) parser.add_argument('--val_freq', type=int, default=1000) #parser.add_argument('--viz_freq', type=int, default=10) #parser.add_argument('--val_freq', type=int, default=10) parser.add_argument('--log_freq', type=int, default=1000) #parser.add_argument('--gpu', type=int, default=0) #parser.add_argument('--gpu', type=int, default=0) #parser.add_argument('--seed', type=int, default=0) #parser.add_argument('--seed', type=int, default=0) #parser.add_argument('--seed', type=int, default=0) #parser.add_argument('--seed', type=int, default=1) #parser.add_argument('--seed', type=int, default=0) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--gpu', type=int, default=0) args = parser.parse_args() # logger utils.makedirs(args.save) logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__)) logger.info(args) #device = torch.device('cuda:' + str(args.gpu)) device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu') print('') print(device) print(device.type) print('') np.random.seed(args.seed) torch.manual_seed(args.seed) if device.type == 'cuda': torch.cuda.manual_seed(args.seed) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def standard_normal_sample(size): return torch.randn(size) def standard_normal_logprob(z): logZ = -0.5 * math.log(2 * math.pi) return logZ - z.pow(2) / 2 def compute_loss(args, model, batch_size=None, beta=1.): if batch_size is None: batch_size = args.batch_size # load data x = toy_data.inf_train_gen(args.data, batch_size=batch_size) x = torch.from_numpy(x).type(torch.float32).to(device) #print('') #print(x.shape) #print('') #print(x) #print('') #plt.figure() #plt.plot(x[:, 0].cpu().squeeze().numpy(), x[:, 1].cpu().squeeze().numpy(), 'o') ##plt.ion() #plt.show() #plt.pause(2) #sfadadfa zero = torch.zeros(x.shape[0], 1).to(x) # transform to z z, delta_logp = model(x, zero) # compute log p(z) # compute log p(z) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = logpz - beta * delta_logp loss = -torch.mean(logpx) return loss, torch.mean(logpz), torch.mean(-delta_logp) # x is a Tensor => batch_size x 2 # x is the same as args.data => batch_size x 2 # x is a Tensor => batch_size x 2 def compute_loss2(x, args, model, batch_size=None, beta=1.): if batch_size is None: batch_size = args.batch_size zero = torch.zeros(x.shape[0], 1).to(x) # transform to z z, delta_logp = model(x, zero) # x is a Tensor => batch_size x 2 # x is the same as args.data => batch_size x 2 # compute log p(z) # compute log p(z) logpz = standard_normal_logprob(z).sum(1, keepdim=True) logpx = logpz - beta * delta_logp #loss = -torch.mean(logpx) #return loss, torch.mean(logpz), torch.mean(-delta_logp) #return torch.mean(logpx), torch.mean(logpz), torch.mean(-delta_logp) #return torch.mean(logpx), torch.mean(logpz), torch.mean(-delta_logp) return torch.mean(logpx) import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable # The GAN Model class Generator(nn.Module): def __init__(self, nhidden): super(Generator, self).__init__() #self.lin1 = nn.Linear(1, nhidden) #self.lin2 = nn.Linear(nhidden, 1) self.lin1 = nn.Linear(2, nhidden) self.lin2 = nn.Linear(nhidden, 2) def forward(self, z): h = F.relu(self.lin1(z)) x = self.lin2(h) return x def loss_fn(first_term_loss, second_term_loss, third_term_loss): # diff = t1 - t2 # .numel() number of elements # return torch.sum(diff * diff) / diff.numel() #return first_term_loss + second_term_loss + third_term_loss return first_term_loss def loss_fn2(genFGen2, args, model): genFGen3 = torch.randn((args.batch_size, 2)).to(device) first_term_loss = compute_loss2(genFGen2, args, model, beta=beta) print('') print(first_term_loss) import math #mu = torch.from_numpy(np.array([2.8099582e+00, 9.6440443e-04], dtype="float32")).to(device) #mu = torch.from_numpy(np.array([[2.805741, -0.00889241]], dtype="float32")).to(device) mu = torch.from_numpy(np.array([2.805741, -0.00889241], dtype="float32")).to(device) #S = torch.from_numpy(np.array([[0.35833913, 0.0], [0.0, 0.34720358]], dtype="float32")).to(device) #S = torch.from_numpy(np.array([[pow(0.35833913,2), 0.0], [0.0, pow(0.34720358,2)]], dtype="float32")).to(device) S = torch.from_numpy(np.array([[pow(0.3442525,2), 0.0], [0.0, pow(0.35358343,2)]], dtype="float32")).to(device) #print('') #import timeit #import scipy.stats #start = timeit.default_timer() #storeAll = torch.from_numpy(np.array(0.0, dtype="float32")).to(device) #for loopIndex_i in range(genFGen2.size()[0]): # #print((((torch.from_numpy(np.array(-np.log(2 * math.pi), dtype="float32")).to(device))) - # # ((0.5 * torch.log(torch.det(S)))) - 0.5 * # # ((((torch.matmul(torch.matmul(((genFGen2[loopIndex_i:1+loopIndex_i, :]) - mu), torch.inverse(S)), # # torch.transpose((genFGen2[loopIndex_i:1+loopIndex_i, :]) - mu, 0, 1)))))))) # # storeAll += ((((torch.from_numpy(np.array(-np.log(2 * math.pi), dtype="float32")).to(device))) - # ((0.5 * torch.log(torch.det(S)))) - 0.5 * ( # (((torch.matmul(torch.matmul(((genFGen2[loopIndex_i:1 + loopIndex_i, :]) - mu), torch.inverse(S)), # torch.transpose((genFGen2[loopIndex_i:1 + loopIndex_i, :]) - mu, 0, 1)))))))).squeeze() # #storeAll /= genFGen2.size()[0] #print(storeAll) #stop = timeit.default_timer() #print('Time: ', stop - start) #print('') #print(torch.exp(((torch.from_numpy(np.array(-np.log(2 * math.pi), dtype="float32")).to(device))) - # ((0.5 * torch.log(torch.det(S)))) - 0.5 * # ((((torch.matmul(torch.matmul(((genFGen2[0:1, :]) - mu), torch.inverse(S)), # torch.transpose((genFGen2[0:1, :]) - mu, 0, 1)))))))) #import scipy.stats #print(scipy.stats.multivariate_normal.pdf(genFGen2[0:1, :].cpu().detach().numpy(), # mean=mu.cpu().detach().numpy(), cov=S.cpu().detach().numpy())) #first_term_loss = storeAll #asdfasdfadfa #print('') #import timeit #import scipy.stats #start = timeit.default_timer() storeAll = torch.from_numpy(np.array(0.0, dtype="float32")).to(device) for loopIndex_i in range(genFGen2.size()[0]): #storeAll += np.log(scipy.stats.multivariate_normal.pdf(genFGen2[loopIndex_i:1+loopIndex_i, :].cpu().detach().numpy(), # mean=mu.cpu().detach().numpy(), cov=S.cpu().detach().numpy())) toUse_storeAll = torch.distributions.MultivariateNormal(loc=mu, covariance_matrix=S) storeAll += toUse_storeAll.log_prob(genFGen2[loopIndex_i:1+loopIndex_i, :].squeeze(0)) storeAll /= genFGen2.size()[0] print(storeAll) first_term_loss = storeAll #asdfasdfadfa #stop = timeit.default_timer() #print('Time: ', stop - start) #print('') #asdfsdfaa xData = toy_data.inf_train_gen(args.data, batch_size=args.batch_size) xData = torch.from_numpy(xData).type(torch.float32).to(device) #import timeit #start = timeit.default_timer() #second_term_loss = 0.0 #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')) #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')) #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')) #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')) #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')).to(device) #second_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')).to(device) #for i in genFGen2: # for j in xData: # # second_term_loss += np.linalg.norm(i.cpu().detach().numpy()-j.cpu().detach().numpy()) # # # second_term_loss += torch.norm(i-j, 2) # # second_term_loss += torch.norm(i-j) # # # second_term_loss += torch.dist(i.type(torch.float64), j.type(torch.float64), 2) # second_term_loss += torch.dist(i, j, 2) # # second_term_loss /= args.batch_size # #second_term_loss *= 0.1 # #second_term_loss /= args.batch_size #print('') #print(first_term_loss) #print(torch.exp(first_term_loss)) #print('') #print(second_term_loss) #stop = timeit.default_timer() #print('Time: ', stop - start) #print('') #asdfsdfa #second_term_loss = [] #for i in genFGen2: # second_term_lossTwo = [] # for j in xData: # #second_term_lossTwo.append(torch.dist(i, j, 2).unsqueeze(0)) # second_term_lossTwo.append(torch.dist(i, j, 2)) # second_term_loss.append(second_term_lossTwo) # #second_term_loss.append(.unsqueeze(0)) # #second_term_loss.append() #second_term_loss = torch.cat(second_term_loss) ##second_term_loss = torch.cat(second_term_loss, dim=1) ##second_term_loss *= 0.1 #second_term_loss = torch.mean(second_term_loss) #import timeit #start = timeit.default_timer() var1 = [] for i in genFGen2: for j in xData: new_stuff = torch.dist(i, j, 2) # this is a tensor var1.append(new_stuff.unsqueeze(0)) #var1.append(new_stuff) var1_tensor = torch.cat(var1) #var1_tensor = torch.cat(var1, dim=1) #second_term_loss = torch.mean(var1_tensor) #second_term_loss = torch.mean(var1_tensor) / args.batch_size #second_term_loss = 10.0 * torch.mean(var1_tensor) / args.batch_size #second_term_loss = torch.min(var1_tensor) second_term_loss = torch.min(var1_tensor) / args.batch_size #second_term_loss = 10.0 * torch.min(var1_tensor) / args.batch_size #second_term_loss = torch.from_numpy(np.array(None, dtype='float32')).to(device) #for i in genFGen2: # second_term_lossTwo = torch.from_numpy(np.array(None, dtype='float32')).to(device) # for j in xData: # second_term_lossTwo = torch.cat((second_term_lossTwo, torch.dist(i, j, 2)), 0) # second_term_loss = torch.cat((second_term_loss, torch.mean(second_term_lossTwo, 0)), 0) # #second_term_loss *= 0.1 #second_term_loss = torch.mean(second_term_loss) #print('') #print(second_term_loss) #stop = timeit.default_timer() #print('Time: ', stop - start) #print('') #print(second_term_loss) #print(torch.min(var1_tensor) / args.batch_size) #print('') #asdfdffa second_term_loss *= 10000.0 print('') print(first_term_loss) print(second_term_loss) #print('') #print('') #asdfdffa third_term_loss = torch.from_numpy(np.array(0.0, dtype='float32')).to(device) for i in range(args.batch_size): for j in range(args.batch_size): if i != j: # third_term_loss += ((np.linalg.norm(genFGen3[i,:].cpu().detach().numpy()-genFGen3[j,:].cpu().detach().numpy())) / (np.linalg.norm(genFGen2[i,:].cpu().detach().numpy()-genFGen2[j,:].cpu().detach().numpy()))) # third_term_loss += ((torch.norm(genFGen3[i,:]-genFGen3[j,:], 2)) / (torch.norm(genFGen2[i,:]-genFGen2[j,:], 2))) # third_term_loss += ((torch.norm(genFGen3[i,:]-genFGen3[j,:])) / (torch.norm(genFGen2[i,:]-genFGen2[j,:]))) # third_term_loss += ((torch.norm(genFGen3[i,:] - genFGen3[j,:])) / (torch.norm(genFGen2[i,:] - genFGen2[j,:]))) third_term_loss += ((torch.dist(genFGen3[i, :], genFGen3[j, :], 2)) / (torch.dist(genFGen2[i, :], genFGen2[j, :], 2))) third_term_loss /= (args.batch_size - 1) third_term_loss /= args.batch_size #third_term_loss *= 1000.0 third_term_loss *= 100.0 #return first_term_loss + second_term_loss + third_term_loss print(third_term_loss) print('') #asdfsfa return first_term_loss + second_term_loss + third_term_loss #return first_term_loss + second_term_loss def parse_vnorms(): ps = [] for p in args.vnorms: if p == 'f': ps.append(float('inf')) else: ps.append(float(p)) return ps[:-1], ps[1:] def compute_p_grads(model): #scales = 0. scales = 0. nlayers = 0 for m in model.modules(): if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): scales = scales + m.compute_one_iter() nlayers += 1 scales.mul(1 / nlayers).mul(0.01).backward() for m in model.modules(): if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): if m.domain.grad is not None and torch.isnan(m.domain.grad): m.domain.grad = None def build_nnet(dims, activation_fn=torch.nn.ReLU): nnet = [] domains, codomains = parse_vnorms() if args.learn_p: if args.mixed: domains = [torch.nn.Parameter(torch.tensor(0.)) for _ in domains] else: domains = [torch.nn.Parameter(torch.tensor(0.))] * len(domains) codomains = domains[1:] + [domains[0]] for i, (in_dim, out_dim, domain, codomain) in enumerate(zip(dims[:-1], dims[1:], domains, codomains)): nnet.append(activation_fn()) nnet.append( base_layers.get_linear( in_dim, out_dim, coeff=args.coeff, n_iterations=args.n_lipschitz_iters, atol=args.atol, rtol=args.rtol, domain=domain, codomain=codomain, zero_init=(out_dim == 2), ) ) return torch.nn.Sequential(*nnet) def update_lipschitz(model, n_iterations): for m in model.modules(): if isinstance(m, base_layers.SpectralNormConv2d) or isinstance(m, base_layers.SpectralNormLinear): m.compute_weight(update=True, n_iterations=n_iterations) if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): m.compute_weight(update=True, n_iterations=n_iterations) def get_ords(model): ords = [] for m in model.modules(): if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear): domain, codomain = m.compute_domain_codomain() if torch.is_tensor(domain): domain = domain.item() if torch.is_tensor(codomain): codomain = codomain.item() ords.append(domain) ords.append(codomain) return ords def pretty_repr(a): return('[[' + ','.join(list(map(lambda i: '{}'.format(i), a))) + ']]') if __name__ == '__main__': activation_fn = ACTIVATION_FNS[args.act] if args.arch == 'iresnet': dims = [2] + list(map(int, args.dims.split('-'))) + [2] blocks = [] if args.actnorm: blocks.append(layers.ActNorm1d(2)) for _ in range(args.nblocks): blocks.append( layers.iResBlock( build_nnet(dims, activation_fn), n_dist=args.n_dist, n_power_series=args.n_power_series, exact_trace=args.exact_trace, brute_force=args.brute_force, n_samples=args.n_samples, neumann_grad=False, grad_in_forward=False, ) ) if args.actnorm: blocks.append(layers.ActNorm1d(2)) if args.batchnorm: blocks.append(layers.MovingBatchNorm1d(2)) model = layers.SequentialFlow(blocks).to(device) elif args.arch == 'realnvp': blocks = [] for _ in range(args.nblocks): blocks.append(layers.CouplingLayer(2, swap=False)) blocks.append(layers.CouplingLayer(2, swap=True)) if args.actnorm: blocks.append(layers.ActNorm1d(2)) if args.batchnorm: blocks.append(layers.MovingBatchNorm1d(2)) model = layers.SequentialFlow(blocks).to(device) logger.info(model) logger.info("Number of trainable parameters: {}".format(count_parameters(model))) genGen = Generator(16) #optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) #optimizerGen = optim.SGD(genGen.parameters(), lr=0.1, momentum=0.9) #optimizerGen = optim.SGD(genGen.parameters(), lr=0.1, momentum=0.9) #optimizerGen = optim.SGD(genGen.parameters(), lr=0.1, momentum=0.9) #optimizerGen = optim.Adam(genGen.parameters(), lr=args.lr, weight_decay=args.weight_decay) #optimizerGen = optim.Adam(genGen.parameters(), lr=args.lr, weight_decay=args.weight_decay) optimizerGen = optim.Adam(genGen.parameters(), lr=args.lr) time_meter = utils.RunningAverageMeter(0.93) loss_meter = utils.RunningAverageMeter(0.93) logpz_meter = utils.RunningAverageMeter(0.93) delta_logp_meter = utils.RunningAverageMeter(0.93) end = time.time() best_loss = float('inf') model.train() #for itr in range(1, args.niters2 + 1): #for itr in range(1, args.niters + 1): #for itr in range(1, args.niters + 1): for itr in range(1, 2): optimizer.zero_grad() #optimizerGen.zero_grad() beta = min(1, itr / args.annealing_iters) if args.annealing_iters > 0 else 1. loss, logpz, delta_logp = compute_loss(args, model, beta=beta) #genFGen2 = genGen.forward(torch.randn((args.batch_size, 2))) #genFGen2 = genFGen2.type(torch.float32).to(device) #lossGen = loss_fn2(genFGen2, args, model) #if itr == 1: # xData = toy_data.inf_train_gen(args.data, batch_size=args.batch_size) # xData = torch.from_numpy(xData).type(torch.float32).to(device) # plt.figure() # plt.plot(xData[:, 0].cpu().squeeze().numpy(), xData[:, 1].cpu().squeeze().numpy(), 'o') # #plt.ion() # plt.show() # plt.pause(0.5) #plt.figure() #plt.plot(genFGen2[:, 0].cpu().detach().numpy(), genFGen2[:, 1].cpu().detach().numpy(), 'o') ##plt.ion() #plt.show() #plt.pause(1) loss_meter.update(loss.item()) logpz_meter.update(logpz.item()) delta_logp_meter.update(delta_logp.item()) loss.backward() #lossGen.backward() if args.learn_p and itr > args.annealing_iters: compute_p_grads(model) optimizer.step() #optimizerGen.step() update_lipschitz(model, args.n_lipschitz_iters) time_meter.update(time.time() - end) logger.info( 'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f})' ' | Logp(z) {:.6f}({:.6f}) | DeltaLogp {:.6f}({:.6f})'.format( itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, logpz_meter.val, logpz_meter.avg, delta_logp_meter.val, delta_logp_meter.avg ) ) if itr % args.val_freq == 0 or itr == args.niters: update_lipschitz(model, 200) with torch.no_grad(): model.eval() test_loss, test_logpz, test_delta_logp = compute_loss(args, model, batch_size=args.test_batch_size) log_message = ( '[TEST] Iter {:04d} | Test Loss {:.6f} ' '| Test Logp(z) {:.6f} | Test DeltaLogp {:.6f}'.format( itr, test_loss.item(), test_logpz.item(), test_delta_logp.item() ) ) logger.info(log_message) logger.info('Ords: {}'.format(pretty_repr(get_ords(model)))) if test_loss.item() < best_loss: best_loss = test_loss.item() utils.makedirs(args.save) torch.save({ 'args': args, 'state_dict': model.state_dict(), }, os.path.join(args.save, 'checkpt.pth')) model.train() #if itr == 1 or itr % args.viz_freq == 0: if itr % args.viz_freq == 0: with torch.no_grad(): model.eval() p_samples = toy_data.inf_train_gen(args.data, batch_size=20000) sample_fn, density_fn = model.inverse, model.forward plt.figure(figsize=(9, 3)) visualize_transform(p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn, samples=True, npts=400, device=device) fig_filename = os.path.join(args.save, 'figs', '{:04d}.jpg'.format(itr)) print('') print(fig_filename) print('') utils.makedirs(os.path.dirname(fig_filename)) plt.savefig(fig_filename) #plt.ion() plt.show() plt.pause(0.1) plt.close() model.train() end = time.time() logger.info('Training 1 has finished.') #utils.save_checkpoint({'state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), # 'args': args}, os.path.join(args.save, 'models'), args.niters) #utils.save_checkpoint({'state_dict': model.state_dict()}, os.path.join(args.save, 'models'), args.niters) #utils.save_checkpoint({'state_dict': model.state_dict()}, os.path.join(args.save, 'models'), args.niters) #utils.save_checkpoint({'state_dict': model.state_dict()}, os.path.join(args.save, 'models'), args.niters) #utils.save_checkpoint({'state_dict': model.state_dict()}, os.path.join(args.save, 'models'), args.niters) #adsfgdsgsdfgdsaa #utils.save_checkpoint({'state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), # 'args': args}, os.path.join(args.save, 'models'), args.niters) #adsfgdsgsdsaa #model = torch.load(os.path.join(os.path.join(args.save, 'models'), 'checkpt-%04d.pth' % args.niters)) #model.load_state_dict(os.path.join(os.path.join(args.save, 'models'), 'checkpt-%04d.pth' % args.niters)) checkpoint = torch.load(os.path.join(os.path.join(args.save, 'models'), 'checkpt-%04d.pth' % args.niters)) model.load_state_dict(checkpoint['state_dict']) #optimizer.load_state_dict(checkpoint['optimizer_state_dict']) #args.load_state_dict(checkpoint['args']) time2_meter = utils.RunningAverageMeter(0.93) loss2_meter = utils.RunningAverageMeter(0.93) end = time.time() best_loss = float('inf') for itr in range(1, args.niters2 + 1): #for itr in range(1, args.niters + 1): #optimizer.zero_grad() optimizerGen.zero_grad() #beta = min(1, itr / args.annealing_iters) if args.annealing_iters > 0 else 1. #loss, logpz, delta_logp = compute_loss(args, model, beta=beta) genFGen2 = genGen.forward(torch.randn((args.batch_size, 2))) genFGen2 = genFGen2.type(torch.float32).to(device) lossGen = loss_fn2(genFGen2, args, model) if itr == 1: xData = toy_data.inf_train_gen(args.data, batch_size=args.batch_size) xData = torch.from_numpy(xData).type(torch.float32).to(device) plt.figure() plt.plot(xData[:, 0].cpu().squeeze().numpy(), xData[:, 1].cpu().squeeze().numpy(), 'ob') plt.grid() #plt.xlim(1.0, 4.5) #plt.ylim(-1.5, 1.5) #plt.ion() plt.show() plt.pause(0.1) plt.figure() plt.plot(genFGen2[:, 0].cpu().detach().numpy(), genFGen2[:, 1].cpu().detach().numpy(), 'ob') plt.plot(xData[:, 0].cpu().squeeze().numpy(), xData[:, 1].cpu().squeeze().numpy(), '+r') plt.grid() #plt.xlim(1.0, 4.5) #plt.ylim(-1.5, 1.5) #plt.ion() plt.show() plt.pause(0.1) #loss_meter.update(loss.item()) #logpz_meter.update(logpz.item()) loss2_meter.update(lossGen.item()) #delta_logp_meter.update(delta_logp.item()) #loss.backward() lossGen.backward() #if args.learn_p and itr > args.annealing_iters: # compute_p_grads(model) #optimizer.step() optimizerGen.step() #update_lipschitz(model, args.n_lipschitz_iters) time2_meter.update(time.time() - end) logger.info('Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f})'.format( itr, time2_meter.val, time2_meter.avg, loss2_meter.val, loss2_meter.avg)) #if itr % args.val_freq == 0 or itr == args.niters: # update_lipschitz(model, 200) # with torch.no_grad(): # model.eval() # test_loss, test_logpz, test_delta_logp = compute_loss(args, model, batch_size=args.test_batch_size) # log_message = ( # '[TEST] Iter {:04d} | Test Loss {:.6f} ' # '| Test Logp(z) {:.6f} | Test DeltaLogp {:.6f}'.format( # itr, test_loss.item(), test_logpz.item(), test_delta_logp.item() # ) # ) # logger.info(log_message) # logger.info('Ords: {}'.format(pretty_repr(get_ords(model)))) # if test_loss.item() < best_loss: # best_loss = test_loss.item() # utils.makedirs(args.save) # torch.save({ # 'args': args, # 'state_dict': model.state_dict(), # }, os.path.join(args.save, 'checkpt.pth')) # model.train() #if itr == 1 or itr % args.viz_freq == 0: # with torch.no_grad(): # model.eval() # p_samples = toy_data.inf_train_gen(args.data, batch_size=20000) # sample_fn, density_fn = model.inverse, model.forward # plt.figure(figsize=(9, 3)) # visualize_transform(p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, # inverse_transform=density_fn, samples=True, npts=400, device=device) # fig_filename = os.path.join(args.save, 'figs', '{:04d}.jpg'.format(itr)) # print('') # print(fig_filename) # print('') # utils.makedirs(os.path.dirname(fig_filename)) # plt.savefig(fig_filename) # #plt.ion() # plt.show() # plt.pause(0.5) # plt.close() # model.train() # end = time.time() logger.info('Training 2 has finished.')
6a7d1bfe97a9a6af626cfbca8a9591a1abd35904
c88cd09f52ba3b0549ae223ba8a96dff256b71bc
/Codechef/ANUWTA.py
ccc4a525cd89bb2248849140873b90175b88c24c
[]
no_license
Ishita-Tiwari/competitive-programming
cadd3007fffc89e1b6905bbdb3fbdd0250e29cdc
c54659081de2ca87f00a7a399cc15d6aa919e772
refs/heads/master
2021-08-17T11:47:12.890012
2021-07-22T13:56:02
2021-07-22T13:56:02
188,955,292
3
1
null
null
null
null
UTF-8
Python
false
false
97
py
t = int(input()) for T in range(t): n = int(input()) print(((n * (n + 1)) // 2) + n)
92f0d23f55c9015d1f365d9e204979a391d1b0e4
5a8214b3a452c574e6c883bf5d90ba58ba87c461
/leetcode/48.rotate-image.py
db4b09988b60fd7639cb9e4e1bf241fac3a2f0ad
[]
no_license
phlalx/algorithms
69a3c8519687816e3c6333ec12b40659d3e3167f
f4da5a5dbda640b9bcbe14cb60a72c422b5d6240
refs/heads/master
2023-02-03T10:30:30.181735
2020-12-26T09:47:38
2020-12-26T09:47:38
129,254,618
0
0
null
null
null
null
UTF-8
Python
false
false
1,563
py
# TAGS implem # make a drawing # # @lc app=leetcode id=48 lang=python3 # # [48] Rotate Image # # https://leetcode.com/problems/rotate-image/description/ # # algorithms # Medium (50.40%) # Likes: 2053 # Dislikes: 179 # Total Accepted: 307.7K # Total Submissions: 596.5K # Testcase Example: '[[1,2,3],[4,5,6],[7,8,9]]' # # You are given an n x n 2D matrix representing an image. # # Rotate the image by 90 degrees (clockwise). # # Note: # # You have to rotate the image in-place, which means you have to modify the # input 2D matrix directly. DO NOT allocate another 2D matrix and do the # rotation. # # Example 1: # # # Given input matrix = # [ # ⁠ [1,2,3], # ⁠ [4,5,6], # ⁠ [7,8,9] # ], # # rotate the input matrix in-place such that it becomes: # [ # ⁠ [7,4,1], # ⁠ [8,5,2], # ⁠ [9,6,3] # ] # # # Example 2: # # # Given input matrix = # [ # ⁠ [ 5, 1, 9,11], # ⁠ [ 2, 4, 8,10], # ⁠ [13, 3, 6, 7], # ⁠ [15,14,12,16] # ], # # rotate the input matrix in-place such that it becomes: # [ # ⁠ [15,13, 2, 5], # ⁠ [14, 3, 4, 1], # ⁠ [12, 6, 8, 9], # ⁠ [16, 7,10,11] # ] # # # # @lc code=start class Solution: def rotate(self, t: List[List[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ if not t or not t[0]: return t n = len(t[0]) for a in range(n // 2): b = n - a - 1 for i in range(b - a): t[a][a+i], t[a+i][b], t[b][b-i], t[b-i][a] = t[b-i][a], t[a][a+i], t[a+i][b], t[b][b-i] # @lc code=end
e2611d1cd34427015fc98b5c6c870673d634990c
b2cfcacbd898f758a56d095f2140681934205d89
/GeekShop_mentor/src_lesson_7/step_1(own_admin_start)/geekshop/adminapp/views.py
e33e89d0dc71607f5a2ff803da6531ffe1ed0eda
[]
no_license
AndreySperansky/Django_1
7d3be3ea2ede8e46d932fdae146ce4a7c4e300b4
0fec0a9a02b887fd8b45a5b763b7da5dc6377208
refs/heads/master
2022-12-15T19:56:23.611288
2020-09-21T17:40:40
2020-09-21T17:40:40
284,131,625
0
0
null
null
null
null
UTF-8
Python
false
false
1,625
py
from django.shortcuts import render, get_object_or_404 from authapp.models import ShopUser from mainapp.models import ProductCategory, Product def users(request): title = 'админка/пользователи' users_list = ShopUser.objects.all().order_by('-is_active', '-is_superuser', '-is_staff', 'username') content = { 'title': title, 'objects': users_list } return render(request, 'adminapp/users.html', content) def user_create(request): pass def user_update(request, pk): pass def user_delete(request, pk): pass def categories(request): title = 'админка/категории' categories_list = ProductCategory.objects.all() content = { 'title': title, 'objects': categories_list } return render(request, 'adminapp/categories.html', content) def category_create(request): pass def category_update(request, pk): pass def category_delete(request, pk): pass def products(request, pk): title = 'админка/продукт' category = get_object_or_404(ProductCategory, pk=pk) products_list = Product.objects.filter(category__pk=pk).order_by('name') content = { 'title': title, 'category': category, 'objects': products_list, } return render(request, 'adminapp/products.html', content) def product_create(request, pk): pass def product_read(request, pk): pass def product_update(request, pk): pass def product_delete(request, pk): pass
ab2dd271acd9d5e775479f648fceeef73b690fb5
210e1cffcd8a705c2a8a1485ed5532b9169f5d10
/whoville/cloudbreak/models/security_group_response.py
c3208c1dbfa2e90b7ce3774562626a3d18b27bbe
[ "Apache-2.0" ]
permissive
mikchaos/whoville
2a45bc6636d448733d8d2368ac88a980cf6954ea
6eabaea4b74ac0b632c03db8252590131c6ce63b
refs/heads/master
2020-04-19T08:53:04.430990
2019-01-29T05:01:57
2019-01-29T05:01:57
168,092,002
0
0
Apache-2.0
2019-01-29T05:00:06
2019-01-29T05:00:06
null
UTF-8
Python
false
false
11,025
py
# coding: utf-8 """ Cloudbreak API Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\"http://hortonworks.com/apache/cloudbreak/\">http://hortonworks.com/apache/cloudbreak/</a> OpenAPI spec version: 2.7.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class SecurityGroupResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'description': 'str', 'security_group_id': 'str', 'cloud_platform': 'str', 'name': 'str', 'id': 'int', 'owner': 'str', 'account': 'str', 'security_rules': 'list[SecurityRuleResponse]', 'public_in_account': 'bool' } attribute_map = { 'description': 'description', 'security_group_id': 'securityGroupId', 'cloud_platform': 'cloudPlatform', 'name': 'name', 'id': 'id', 'owner': 'owner', 'account': 'account', 'security_rules': 'securityRules', 'public_in_account': 'publicInAccount' } def __init__(self, description=None, security_group_id=None, cloud_platform=None, name=None, id=None, owner=None, account=None, security_rules=None, public_in_account=False): """ SecurityGroupResponse - a model defined in Swagger """ self._description = None self._security_group_id = None self._cloud_platform = None self._name = None self._id = None self._owner = None self._account = None self._security_rules = None self._public_in_account = None if description is not None: self.description = description if security_group_id is not None: self.security_group_id = security_group_id self.cloud_platform = cloud_platform if name is not None: self.name = name if id is not None: self.id = id if owner is not None: self.owner = owner if account is not None: self.account = account if security_rules is not None: self.security_rules = security_rules self.public_in_account = public_in_account @property def description(self): """ Gets the description of this SecurityGroupResponse. description of the resource :return: The description of this SecurityGroupResponse. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this SecurityGroupResponse. description of the resource :param description: The description of this SecurityGroupResponse. :type: str """ if description is not None and len(description) > 1000: raise ValueError("Invalid value for `description`, length must be less than or equal to `1000`") if description is not None and len(description) < 0: raise ValueError("Invalid value for `description`, length must be greater than or equal to `0`") self._description = description @property def security_group_id(self): """ Gets the security_group_id of this SecurityGroupResponse. Exisiting security group id :return: The security_group_id of this SecurityGroupResponse. :rtype: str """ return self._security_group_id @security_group_id.setter def security_group_id(self, security_group_id): """ Sets the security_group_id of this SecurityGroupResponse. Exisiting security group id :param security_group_id: The security_group_id of this SecurityGroupResponse. :type: str """ self._security_group_id = security_group_id @property def cloud_platform(self): """ Gets the cloud_platform of this SecurityGroupResponse. type of cloud provider :return: The cloud_platform of this SecurityGroupResponse. :rtype: str """ return self._cloud_platform @cloud_platform.setter def cloud_platform(self, cloud_platform): """ Sets the cloud_platform of this SecurityGroupResponse. type of cloud provider :param cloud_platform: The cloud_platform of this SecurityGroupResponse. :type: str """ if cloud_platform is None: raise ValueError("Invalid value for `cloud_platform`, must not be `None`") self._cloud_platform = cloud_platform @property def name(self): """ Gets the name of this SecurityGroupResponse. name of the resource :return: The name of this SecurityGroupResponse. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this SecurityGroupResponse. name of the resource :param name: The name of this SecurityGroupResponse. :type: str """ self._name = name @property def id(self): """ Gets the id of this SecurityGroupResponse. id of the resource :return: The id of this SecurityGroupResponse. :rtype: int """ return self._id @id.setter def id(self, id): """ Sets the id of this SecurityGroupResponse. id of the resource :param id: The id of this SecurityGroupResponse. :type: int """ self._id = id @property def owner(self): """ Gets the owner of this SecurityGroupResponse. id of the resource owner that is provided by OAuth provider :return: The owner of this SecurityGroupResponse. :rtype: str """ return self._owner @owner.setter def owner(self, owner): """ Sets the owner of this SecurityGroupResponse. id of the resource owner that is provided by OAuth provider :param owner: The owner of this SecurityGroupResponse. :type: str """ self._owner = owner @property def account(self): """ Gets the account of this SecurityGroupResponse. account id of the resource owner that is provided by OAuth provider :return: The account of this SecurityGroupResponse. :rtype: str """ return self._account @account.setter def account(self, account): """ Sets the account of this SecurityGroupResponse. account id of the resource owner that is provided by OAuth provider :param account: The account of this SecurityGroupResponse. :type: str """ self._account = account @property def security_rules(self): """ Gets the security_rules of this SecurityGroupResponse. list of security rules that relates to the security group :return: The security_rules of this SecurityGroupResponse. :rtype: list[SecurityRuleResponse] """ return self._security_rules @security_rules.setter def security_rules(self, security_rules): """ Sets the security_rules of this SecurityGroupResponse. list of security rules that relates to the security group :param security_rules: The security_rules of this SecurityGroupResponse. :type: list[SecurityRuleResponse] """ self._security_rules = security_rules @property def public_in_account(self): """ Gets the public_in_account of this SecurityGroupResponse. resource is visible in account :return: The public_in_account of this SecurityGroupResponse. :rtype: bool """ return self._public_in_account @public_in_account.setter def public_in_account(self, public_in_account): """ Sets the public_in_account of this SecurityGroupResponse. resource is visible in account :param public_in_account: The public_in_account of this SecurityGroupResponse. :type: bool """ if public_in_account is None: raise ValueError("Invalid value for `public_in_account`, must not be `None`") self._public_in_account = public_in_account def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, SecurityGroupResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
91af10910e07ae524e190b9ebf9a91f72007e792
32150af04590afe11f5c1229faf840e2e8c2a9ab
/Assignments/AS03/Week 5 HMEQ CART.py
b21ea8103f32726716f239ee33861966908b788a
[]
no_license
nsbgit/IIT-S21-CS-484
f595f67dd72e0c0f65f9cbaafe581ab41ea4cab3
1850f0e571d0c72d875baedf87aae3d6943af382
refs/heads/main
2023-05-06T23:26:30.687201
2021-05-31T23:40:22
2021-05-31T23:40:22
332,584,584
2
1
null
null
null
null
UTF-8
Python
false
false
4,725
py
# Load the necessary libraries import matplotlib.pyplot as plt import matplotlib.ticker as mticker import numpy import pandas # Define a function to visualize the percent of a particular target category by a nominal predictor def TargetPercentByNominal ( targetVar, # target variable targetCat, # target category predictor, # nominal predictor val4na): # imputed value for NaN crossTable = pandas.crosstab(index = predictor.fillna(val4na), columns = targetVar, margins = True, dropna = True) crossTable['Percent'] = 100 * (crossTable[targetCat] / crossTable['All']) print(crossTable) plotTable = crossTable[crossTable.index != 'All'] plt.bar(plotTable.index, plotTable['Percent']) plt.xlabel(predictor.name) plt.ylabel('Percent of ' + targetVar.name + ' = ' + str(targetCat)) plt.gca().xaxis.set_major_locator(mticker.MultipleLocator(1)) plt.grid(True, axis='y') plt.show() return(crossTable) # Define a function to visualize the percent of a particular target category by an interval predictor def TargetPercentByInterval ( targetVar, # target variable targetCat, # target category predictor, # nominal predictor val4na): # imputed value for NaN crossTable = pandas.crosstab(index = predictor.fillna(val4na), columns = targetVar, margins = True, dropna = True) crossTable['Percent'] = 100 * (crossTable[targetCat] / crossTable['All']) print(crossTable) plotTable = crossTable[crossTable.index != 'All'] plt.scatter(plotTable.index, plotTable['Percent']) plt.xlabel(predictor.name) plt.ylabel('Percent of ' + targetVar.name + ' = ' + str(targetCat)) plt.grid(True, axis='both') plt.show() return(crossTable) hmeq = pandas.read_csv('hmeq.csv', delimiter=',') nTotal = len(hmeq) # Generate the frequency table and the bar chart for the BAD target variable crossTable = pandas.crosstab(index = hmeq['BAD'], columns = ["Count"], margins = True, dropna = False) crossTable['Percent'] = 100 * (crossTable['Count'] / nTotal) crossTable = crossTable.drop(columns = ['All']) print(crossTable) plotTable = crossTable[crossTable.index != 'All'] plt.bar(plotTable.index, plotTable['Percent']) plt.xticks([[0], [1]]) plt.xlabel('BAD') plt.ylabel('Percent') plt.grid(True, axis='y') plt.show() # Cross-tabulate BAD by DELINQ resultTable = TargetPercentByNominal(hmeq['BAD'], 1, hmeq['DELINQ'], val4na = -1) # Cross-tabulate BAD by DEROG resultTable = TargetPercentByNominal(hmeq['BAD'], 1, hmeq['DEROG'], val4na = -1) # Cross-tabulate BAD by JOB resultTable = TargetPercentByNominal(hmeq['BAD'], 1, hmeq['JOB'], val4na = 'Unknown') # Cross-tabulate BAD by NINQ resultTable = TargetPercentByNominal(hmeq['BAD'], 1, hmeq['NINQ'], val4na = -1) # Cross-tabulate BAD by REASON resultTable = TargetPercentByNominal(hmeq['BAD'], 1, hmeq['REASON'], val4na = 'Unknown') # Cross-tabulate BAD by DEBTINC resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['DEBTINC'], val4na = -10) # Cross-tabulate BAD by CLAGE resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['CLAGE'], val4na = -10) # Cross-tabulate BAD by CLNO resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['CLNO'], val4na = -10) # Cross-tabulate BAD by LOAN resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['LOAN'], val4na = -10) # Cross-tabulate BAD by MORTDUE resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['MORTDUE'], val4na = -10) # Cross-tabulate BAD by VALUE resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['VALUE'], val4na = -10) # Cross-tabulate BAD by YOJ resultTable = TargetPercentByInterval(hmeq['BAD'], 1, hmeq['YOJ'], val4na = -10) # Specify the target and the predictor variables X_name = ['DEBTINC', 'DELINQ'] Y_name = 'BAD' trainData = hmeq[['DEBTINC', 'DELINQ', 'BAD']].dropna() X_inputs = trainData[X_name] Y_target = trainData[Y_name] # How many missing values are there? print('Number of Missing Observations:') print(X_inputs.isnull().sum()) print(Y_target.isnull().sum()) # Load the TREE library from SKLEARN from sklearn import tree classTree = tree.DecisionTreeClassifier(criterion='entropy', max_depth=2, random_state=60616) hmeq_DT = classTree.fit(X_inputs, Y_target) print('Accuracy of Decision Tree classifier on training set: {:.6f}' .format(classTree.score(X_inputs, Y_target))) import graphviz dot_data = tree.export_graphviz(hmeq_DT, out_file=None, impurity = True, filled = True, feature_names = X_name, class_names = ['0', '1']) graph = graphviz.Source(dot_data) print(graph)
3676f283e395d049f59998b475e78308256c0321
db0fe327ae984b7a461c02be74c439fe7d41c220
/Question_repo/libs/repo_data.py
47c31cbbfeb20ee14e0a507f5b9489b3cc15dd93
[]
no_license
xingzhe1998/T_QUE
4da80366bc721cc0cd222f7f7fde8331c6df85ee
4c0d39402659b7c8fc448165c784ab125c700b41
refs/heads/master
2020-06-24T16:29:22.652765
2019-07-26T12:55:45
2019-07-26T12:55:45
199,016,012
0
0
null
null
null
null
UTF-8
Python
false
false
1,309
py
from apps.repo.models import Answers, User, Questions from django.db.models import Count def check_rank(data): return data["id__count"] def user_answer_data(user): # 答题数量及总量 # count=> 计数 answer_num = Answers.objects.filter(user=user).count() question_all = Questions.objects.all().__len__() # 用户总量 user_sum = User.objects.all().__len__() # 答题情况 # 每个用户答题数量:按用户统计答题数量 rank = Answers.objects.values('user').annotate(Count('id')) # <QuerySet [{'user': 1, 'id__count': 1}, {'user': 2, 'id__count': 1}, {'user': 3, 'id__count': 2}]> # print(rank) 按答题量排序 rank = sorted(rank, key=check_rank, reverse=True) # 统计每个人的排名(为提升效率,可写入memcache) rank_dict = {} cur_rank = 0 cur_count = 0 for index, item in enumerate(rank, start=1): if cur_count != item["id__count"]: cur_rank = index cur_count = item["id__count"] rank_dict[item["user"]] = dict(item, **{"rank":cur_rank}) # print(rank_dict) kwgs = { "answer_num": answer_num, "question_all": question_all, "user_sum": user_sum, "rank": rank_dict[user.id] if answer_num else {"rank":0, }, } return kwgs
8560eab3f2fc20fb2784b79adb1f3d5c9ff9d7c8
d1742451b25705fc128acc245524659628ab3e7d
/Data Structure & Algorithm/Segment Tree/Segment Tree Query.py
2c6201ceabaf2ce509db9d2239a70e8e6527bab1
[]
no_license
Shovon588/Programming
ebab793a3c97aedddfcad5ea06e7e22f5c54a86e
e4922c9138998358eed09a1be7598f9b060c685f
refs/heads/master
2022-12-23T18:29:10.141117
2020-10-04T17:29:32
2020-10-04T17:29:32
256,915,133
1
0
null
null
null
null
UTF-8
Python
false
false
663
py
def func(node,low,high): if low==high: tree[node]=a[low-1] return left=2*node right=(2*node)+1 mid=(low+high)//2 func(left,low,mid) func(right,mid+1,high) tree[node]=tree[left]+tree[right] def query(node,b,e,i,j): if b>=i and e<=j: return tree[node] if i>e or j<b: return 0 left=2*node right=(2*node)+1 mid=(b+e)//2 p1=query(left,b,mid,i,j) p2=query(right,mid+1,e,i,j) return p1+p2 n=int(input()) a=list(map(int,input().split())) tree=[0]*(3*n) func(1,1,n) for i in range(int(input())): l,m=map(int,input().split()) b=query(1,1,n,l,m) print(b)
af2538c02b261ca582200a1d3a1e2fe9f4d58da2
8b54951abdc4a8c119b057c5231adf65fdd5a915
/lock_signal.py
fef29effd8931853c5369ee4e80d6ecf89fc05d7
[]
no_license
larago/gevent
0a645fbc97ec1f7f85c6a3a961b82739d1e64c7a
b41360ca8ebf6fbad8463d5128bb7b4bf837a7b9
refs/heads/master
2021-01-11T14:58:55.860636
2017-01-28T09:34:38
2017-01-28T09:34:38
80,270,162
0
0
null
null
null
null
UTF-8
Python
false
false
516
py
# encoding=utf8 from gevent import sleep from gevent.pool import Pool from gevent.lock import BoundedSemaphore sem = BoundedSemaphore(2) def worker1(n): sem.acquire() print 'Worker %s acquired semaphore' % n sleep(0) sem.release() print 'Worker %s releasedd semaphore' % n def worker2(n): with sem: print 'Worker %i acquired semaphore' % n sleep(0) print 'Worker %i released semaphore' % n pool = Pool() pool.map(worker1, xrange(0, 2)) pool.map(worker2, xrange(3, 6))
20ec50dbb59c877aabc53633286aa894e4a4907c
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-codecraft/huaweicloudsdkcodecraft/v5/model/register_competition_info_response.py
c351c82d2c877b2af1bf58f524e51d1749af18c2
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
4,282
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class RegisterCompetitionInfoResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'is_permitted': 'bool', 'team_id': 'str' } attribute_map = { 'is_permitted': 'is_permitted', 'team_id': 'team_id' } def __init__(self, is_permitted=None, team_id=None): """RegisterCompetitionInfoResponse The model defined in huaweicloud sdk :param is_permitted: 是否允许提交作品,true-允许,false-不允许 :type is_permitted: bool :param team_id: 团队ID :type team_id: str """ super(RegisterCompetitionInfoResponse, self).__init__() self._is_permitted = None self._team_id = None self.discriminator = None if is_permitted is not None: self.is_permitted = is_permitted if team_id is not None: self.team_id = team_id @property def is_permitted(self): """Gets the is_permitted of this RegisterCompetitionInfoResponse. 是否允许提交作品,true-允许,false-不允许 :return: The is_permitted of this RegisterCompetitionInfoResponse. :rtype: bool """ return self._is_permitted @is_permitted.setter def is_permitted(self, is_permitted): """Sets the is_permitted of this RegisterCompetitionInfoResponse. 是否允许提交作品,true-允许,false-不允许 :param is_permitted: The is_permitted of this RegisterCompetitionInfoResponse. :type is_permitted: bool """ self._is_permitted = is_permitted @property def team_id(self): """Gets the team_id of this RegisterCompetitionInfoResponse. 团队ID :return: The team_id of this RegisterCompetitionInfoResponse. :rtype: str """ return self._team_id @team_id.setter def team_id(self, team_id): """Sets the team_id of this RegisterCompetitionInfoResponse. 团队ID :param team_id: The team_id of this RegisterCompetitionInfoResponse. :type team_id: str """ self._team_id = team_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RegisterCompetitionInfoResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
3043c42d97729db02e9e2dfc1c55597e1cf93c21
80afa26ba73b53f38e3fc21bf395030762fe8981
/200. Number of Islands.py
ae34d2da127bdf85debe74d5795951cefd3b567d
[]
no_license
iamshivamgoswami/Random-DSA-Questions
45b402063dbd2e31da2eee7590b6991aa624637d
e36250d08cf0de59cd0a59b4f3293e55793b1a6f
refs/heads/main
2023-07-15T15:48:36.363321
2021-08-26T03:40:47
2021-08-26T03:40:47
392,702,686
0
0
null
null
null
null
UTF-8
Python
false
false
535
py
class Solution: def numIslands(self, grid: List[List[str]]) -> int: def dfs(i, j): grid[i][j] = "0" for x, y in [(i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)]: if 0 <= x < len(grid) and 0 <= y < len(grid[0]) and grid[x][y] == "1": dfs(x, y) count = 0 for i in range(len(grid)): for j in range(len(grid[0])): if grid[i][j] == "1": count += 1 dfs(i, j) return count
5e8b05b53016ffca5bed18a5013345269a00b769
7549c5f2e2b8ecc6d8f7ccc8030e005ffdf15018
/modules/python_base/09/9.1.3/finally.py
6c930a0a22b024c92df588cea78ced2a5f4298f0
[]
no_license
gao634209276/myPython
d16bbf53645531e03cd2da4f211e783d0b93f703
40b4e8dcd329c34a73808a51743131d554832ab6
refs/heads/master
2020-06-20T22:21:55.521914
2017-09-01T14:27:31
2017-09-01T14:27:31
74,817,170
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
#!/usr/bin/python # -*- coding: UTF-8 -*- # finally错误的用法 # try: # f = file("hello2.txt", "r") # print "读文件" # except IOError: # 捕获IOError异常 # print "文件不存在" # finally: # 其他异常情况 # f.close() # try...except...finally try: f = open("hello.txt", "r") try: print f.read(5) except: print "读取文件错误" finally: # finally子句一般用于释放资源 print "释放资源" f.close() except IOError: print "文件不存在"
7c49980f44f9b0929a02ad6e53a286947278a7c5
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_167/ch16_2019_03_01_13_58_05_885182.py
74ce338f954775fb384946b2469a654fe753e495
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
def distancia_euclidiana(x1,y1,x2,y2): d= ((x1-x2)+(y1-y2)) ** 1/2 return d
e71dabbd598b0e442f49c9a54a5edd5d114097bf
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_118/ch117_2020_03_31_17_46_06_284632.py
7d0d3bd8c16e279f5555404740242af0f74d1a9b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
import math def snell_descartes(n1,n2,o1): o2=math.asin((n1*math.sin(math.radians(t1)))/n2) return o2
e7545cd95e31563f8e17fbe8a574b2b3b02f8418
7dfabdddeb5b8f1628e445cdb6d536958c8bc85b
/pcdet/models/backbones_3d/spconv_unet_fpn_nom.py
58ecf873afd22147eaecebc11a861dc296d6efa2
[ "Apache-2.0" ]
permissive
vehxianfish/SRDAN_Open
d6ba16ebc201c9651fac16bc30f57dc3a740041f
47c1bd9d2369d8e486b18a7aea220af7324c9011
refs/heads/master
2023-08-15T10:36:56.483018
2021-09-25T03:35:53
2021-09-25T03:35:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,243
py
from functools import partial import spconv import torch import torch.nn as nn from ...utils import common_utils from .spconv_backbone import post_act_block class SparseBasicBlock(spconv.SparseModule): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, indice_key=None, norm_fn=None): super(SparseBasicBlock, self).__init__() self.conv1 = spconv.SubMConv3d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False, indice_key=indice_key ) self.bn1 = norm_fn(planes) self.relu = nn.ReLU() self.conv2 = spconv.SubMConv3d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False, indice_key=indice_key ) self.bn2 = norm_fn(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x.features assert x.features.dim() == 2, 'x.features.dim()=%d' % x.features.dim() out = self.conv1(x) out.features = self.bn1(out.features) out.features = self.relu(out.features) out = self.conv2(out) out.features = self.bn2(out.features) if self.downsample is not None: identity = self.downsample(x) out.features += identity out.features = self.relu(out.features) return out class UNetV2FPN(nn.Module): """ Sparse Convolution based UNet for point-wise feature learning. Reference Paper: https://arxiv.org/abs/1907.03670 (Shaoshuai Shi, et. al) From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network """ def __init__(self, model_cfg, input_channels, grid_size, voxel_size, point_cloud_range, num_fpn_up=0, num_fpn_downup=0, **kwargs): super().__init__() self.model_cfg = model_cfg self.sparse_shape = grid_size[::-1] + [1, 0, 0] self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range self.num_fpn_up = num_fpn_up self.num_fpn_downup = num_fpn_downup norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) self.conv_input = spconv.SparseSequential( spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm1'), norm_fn(16), nn.ReLU(), ) block = post_act_block self.downup_up = self.model_cfg.get('DOWNUP_UP_MODULE', False) self.conv1 = spconv.SparseSequential( block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'), ) self.conv2 = spconv.SparseSequential( # [1600, 1408, 41] <- [800, 704, 21] block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'), block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='spconv2_1'), block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='spconv2_2'), ) self.conv3 = spconv.SparseSequential( # [800, 704, 21] <- [400, 352, 11] block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='spconv3_1', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='spconv3_2', conv_type='spconv'), ) self.conv4 = spconv.SparseSequential( # [400, 352, 11] <- [200, 176, 5] block(64, 64, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='spconv4_1'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='spconv4_2'), ) self.share_up_module = self.model_cfg.get('SHARE_UP_MODULE', False) if self.model_cfg.get('RETURN_ENCODED_TENSOR', True): last_pad = self.model_cfg.get('last_pad', 0) self.conv_out = spconv.SparseSequential( # conv 4: 1, 64, 5, 126, 126 to 128, 2, 126, 126 spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2'), # 1, 128, 2, 126, 126 -> 256, 126, 126 norm_fn(128), nn.ReLU(), ) else: self.conv_out = None if self.num_fpn_up + self.num_fpn_downup > 0: self.FPN = True last_pad = self.model_cfg.get('last_pad', 0) ######### can change different receptive field ######### ######### can change different receptive field ######### ######### can change different receptive field ######### # fpn conv: GPU not possible to have too many fpn conv if self.num_fpn_up > 0: self.conv3_ident = spconv.SparseSequential( spconv.SparseConv3d(64, 64, (1, 1, 1), stride=(1, 1, 1), padding=last_pad, bias=False, indice_key='spconv_ident_3'), # 128, 5, 252, 252 -> 640, 252, 252 norm_fn(64), nn.ReLU(), ) if not self.share_up_module: self.conv_up_t4_to_3 = SparseBasicBlock(64, 64, indice_key='subm4', norm_fn=norm_fn) self.conv_up_m4_to_3 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4') self.conv4_to_3 = block(64, 64, 3, norm_fn=norm_fn, indice_key='spconv4', conv_type='inverseconv') # conv3: 1, 64, 11, 252, 252 to 128, 5, 252, 252 self.conv3_out = spconv.SparseSequential( spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2_3'), # 128, 5, 252, 252 -> 640, 252, 252 norm_fn(128), nn.ReLU(), ) if self.num_fpn_up > 1: self.conv2_ident = spconv.SparseSequential( spconv.SparseConv3d(32, 32, (1, 1, 1), stride=(1, 1, 1), padding=last_pad, bias=False, indice_key='spconv_ident_3'), # 128, 5, 252, 252 -> 640, 252, 252 norm_fn(32), nn.ReLU(), ) # conv2: 1, 32, 21, 504, 504 to 64, 10, 504, 504 self.conv2_out = spconv.SparseSequential( spconv.SparseConv3d(32, 64, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2_2'), # 64, 10, 504, 504 -> 640, 504, 504 norm_fn(64), nn.ReLU(), ) # fpn deconv if self.num_fpn_downup > 0: # conv2: 64, 10, 504, 504 to 1, 32, 21, 504, 504 to self.conv5 = spconv.SparseSequential( # [800, 704, 21] <- [400, 352, 11] block(64, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv5', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm5'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm5'), ) self.conv5_out = spconv.SparseSequential( spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2_5'), # 64, 10, 504, 504 -> 640, 504, 504 norm_fn(128), nn.ReLU(), ) self.conv_up_t5_to_4 = SparseBasicBlock(64, 64, indice_key='subm5', norm_fn=norm_fn) self.conv_up_m5_to_4 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm5') self.conv5_to_4 = block(64, 64, 3, norm_fn=norm_fn, indice_key='spconv5', conv_type='inverseconv') self.conv4_ident = spconv.SparseSequential( spconv.SparseConv3d(64, 64, (1, 1, 1), stride=(1, 1, 1), padding=last_pad, bias=False, indice_key='spconv_ident_4'), # 128, 11, 126, 126 norm_fn(64), nn.ReLU(), ) self.conv4_out = spconv.SparseSequential( spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2_4'), # 64, 10, 504, 504 -> 640, 504, 504 norm_fn(128), nn.ReLU(), ) # if self.num_fpn_downup > 1: else: self.FPN = False # decoder # if self.num_fpn_downup > 0: # self.conv_up_t5 = SparseBasicBlock(64, 64, indice_key='subm5', norm_fn=norm_fn) # self.conv_up_m5 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm5') # self.inv_conv5 = block(64, 64, 3, norm_fn=norm_fn, indice_key='spconv5', conv_type='inverseconv') # [400, 352, 11] <- [200, 176, 5] self.conv_up_t4 = SparseBasicBlock(64, 64, indice_key='subm4', norm_fn=norm_fn) self.conv_up_m4 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4') self.inv_conv4 = block(64, 64, 3, norm_fn=norm_fn, indice_key='spconv4', conv_type='inverseconv') # [800, 704, 21] <- [400, 352, 11] self.conv_up_t3 = SparseBasicBlock(64, 64, indice_key='subm3', norm_fn=norm_fn) self.conv_up_m3 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3') self.inv_conv3 = block(64, 32, 3, norm_fn=norm_fn, indice_key='spconv3', conv_type='inverseconv') # [1600, 1408, 41] <- [800, 704, 21] self.conv_up_t2 = SparseBasicBlock(32, 32, indice_key='subm2', norm_fn=norm_fn) self.conv_up_m2 = block(64, 32, 3, norm_fn=norm_fn, indice_key='subm2') self.inv_conv2 = block(32, 16, 3, norm_fn=norm_fn, indice_key='spconv2', conv_type='inverseconv') # [1600, 1408, 41] <- [1600, 1408, 41] self.conv_up_t1 = SparseBasicBlock(16, 16, indice_key='subm1', norm_fn=norm_fn) self.conv_up_m1 = block(32, 16, 3, norm_fn=norm_fn, indice_key='subm1') self.conv0 = spconv.SparseSequential( block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1') ) self.num_point_features = 16 def UR_block_forward(self, x_lateral, x_bottom, conv_t, conv_m, conv_inv): x_trans = conv_t(x_lateral) x = x_trans x.features = torch.cat((x_bottom.features, x_trans.features), dim=1) x_m = conv_m(x) x = self.channel_reduction(x, x_m.features.shape[1]) x.features = x_m.features + x.features x = conv_inv(x) return x def FPN_block_forward(self, x_lateral, x_bottom, conv_ident, conv_inv, conv_t=None, conv_m=None): #conv_t, conv_m, x_ident = conv_ident(x_lateral) # x = x_ident # x.features = torch.cat((x_bottom.features, x_trans.features), dim=1) if conv_t is not None: x_bottom = conv_t(x_bottom) if conv_m is not None: x_bottom = conv_m(x_bottom) x = conv_inv(x_bottom) # x = self.channel_reduction(x, x_m.features.shape[1]) # print("channel_reduction", x.dense().shape) # x.features = x_m.features + x.features # print("x.features", x.dense().shape) # x = conv_inv(x) # print("xfi", x.dense().shape) x.features = x.features + x_ident.features # print("xfi", x.dense().shape) return x @staticmethod def channel_reduction(x, out_channels): """ Args: x: x.features (N, C1) out_channels: C2 Returns: """ features = x.features n, in_channels = features.shape assert (in_channels % out_channels == 0) and (in_channels >= out_channels) x.features = features.view(n, out_channels, -1).sum(dim=2) return x def forward(self, batch_dict): """ Args: batch_dict: batch_size: int vfe_features: (num_voxels, C) voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx] Returns: batch_dict: encoded_spconv_tensor: sparse tensor point_features: (N, C) """ voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords'] batch_size = batch_dict['batch_size'] input_sp_tensor = spconv.SparseConvTensor( features=voxel_features, indices=voxel_coords.int(), spatial_shape=self.sparse_shape, batch_size=batch_size ) x = self.conv_input(input_sp_tensor) # print("x", x.dense().shape) # , 16, 41, 1008, 1008 x_conv1 = self.conv1(x) # print("x_conv1", x_conv1.dense().shape) # 1, 16, 41, 1008, 1008 x_conv2 = self.conv2(x_conv1) # print("x_conv2", x_conv2.dense().shape) # 1, 32, 21, 504, 504 x_conv3 = self.conv3(x_conv2) # print("x_conv3", x_conv3.dense().shape) # 1, 64, 11, 252, 252 x_conv4 = self.conv4(x_conv3) # print("x_conv4", x_conv4.dense().shape) # 1, 64, 5, 126, 126 if self.conv_out is not None: # for detection head # [200, 176, 5] -> [200, 176, 2] out = self.conv_out(x_conv4) batch_dict['encoded_spconv_tensor'] = out batch_dict['encoded_spconv_tensor_stride'] = 8 if self.FPN: if self.num_fpn_up > 0 and not self.downup_up: if self.share_up_module: x_fpn3 = self.FPN_block_forward(x_conv3, x_conv4, self.conv3_ident, self.inv_conv4, conv_t=self.conv_up_t4, conv_m=self.conv_up_m4) else: x_fpn3 = self.FPN_block_forward(x_conv3, x_conv4, self.conv3_ident, self.conv4_to_3, conv_t=self.conv_up_t4_to_3, conv_m=self.conv_up_m4_to_3) out_3 = self.conv3_out(x_fpn3) batch_dict['encoded_spconv_tensor_fpn3'] = out_3 batch_dict['encoded_spconv_tensor_stride_fpn3'] = 8#16 # if self.num_fpn_up > 1: # out_2 = self.conv2_out(x_conv2) # batch_dict['encoded_spconv_tensor_fpn2'] = out_2 # batch_dict['encoded_spconv_tensor_stride_fpn2'] = 32 if self.num_fpn_downup > 0: # print("x_conv4", x_conv4.dense().shape) # 64, 5, 126, 126 x_conv5 = self.conv5(x_conv4) # print("conv5", x_conv5.dense().shape) # 64, 3, 63, 63 out_5 = self.conv5_out(x_conv5) # print("out_5", out_5.dense().shape) # 128, 1, 63, 63 batch_dict['encoded_spconv_tensor_fpn5'] = out_5 batch_dict['encoded_spconv_tensor_stride_fpn5'] = 8#16 x_fpn4 = self.FPN_block_forward(x_conv4, x_conv5, self.conv4_ident, self.conv5_to_4, conv_t=self.conv_up_t5_to_4, conv_m=self.conv_up_m5_to_4) # print("x_fpn4", x_fpn4.dense().shape) # 64, 5, 126, 126 out_4 = self.conv4_out(x_fpn4) # print("out_4", out_4.dense().shape) # 128, 2, 126, 126 batch_dict['encoded_spconv_tensor_fpn4'] = out_4 batch_dict['encoded_spconv_tensor_stride_fpn4'] = 8#16 if self.num_fpn_up > 0 and self.downup_up: if self.share_up_module: x_fpn3 = self.FPN_block_forward(x_conv3, x_fpn4, self.conv3_ident, self.inv_conv4, conv_t=self.conv_up_t4, conv_m=self.conv_up_m4) else: x_fpn3 = self.FPN_block_forward(x_conv3, x_fpn4, self.conv3_ident, self.conv4_to_3, conv_t=self.conv_up_t4_to_3, conv_m=self.conv_up_m4_to_3) out_3 = self.conv3_out(x_fpn3) batch_dict['encoded_spconv_tensor_fpn3'] = out_3 batch_dict['encoded_spconv_tensor_stride_fpn3'] = 8#16 # print("cv out", out.dense().shape) # 1, 128, 2, 126, 126 -> 256, 126, 126 # for segmentation head # [400, 352, 11] <- [200, 176, 5] x_up4 = self.UR_block_forward(x_conv4, x_conv4, self.conv_up_t4, self.conv_up_m4, self.inv_conv4) # print("x_up4 out", x_up4.dense().shape) # 1, 64, 11, 252, 252 # [800, 704, 21] <- [400, 352, 11] x_up3 = self.UR_block_forward(x_conv3, x_up4, self.conv_up_t3, self.conv_up_m3, self.inv_conv3) # print("x_up3 out", x_up3.dense().shape) # 1, 32, 21, 504, 504 # [1600, 1408, 41] <- [800, 704, 21] x_up2 = self.UR_block_forward(x_conv2, x_up3, self.conv_up_t2, self.conv_up_m2, self.inv_conv2) # print("x_up2 out", x_up2.dense().shape) # 1, 16, 41, 1008, 1008 # [1600, 1408, 41] <- [1600, 1408, 41] x_up1 = self.UR_block_forward(x_conv1, x_up2, self.conv_up_t1, self.conv_up_m1, self.conv0) # print("x_up1 out", x_up1.dense().shape) # 16, 41, 1008, 1008 batch_dict['point_features'] = x_up1.features point_coords = common_utils.get_voxel_centers( x_up1.indices[:, 1:], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_dict['point_coords'] = torch.cat((x_up1.indices[:, 0:1].float(), point_coords), dim=1) return batch_dict
535ad5ea0cc874c6d7e51ccadc8482f2f6343596
2309fbe9f9b86685f533706e6877ac3cfae99632
/tests/src/Regression_Testing/Test_Scripts/Click_on_TAR.py
099c02daa09fc1944c2154963b58662a39772477
[ "MIT" ]
permissive
komathi1607/cQube
909a8834608ce19989347863be538022bfaacd84
6cc629a600075a1e5332f84f8ffa940a3eebfcd0
refs/heads/master
2022-11-15T07:46:19.314371
2020-06-05T00:55:17
2020-06-05T00:55:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
779
py
import time import unittest from selenium import webdriver from Data.parameters import Data from TS.reuse_func import cqube from get_dir import pwd class test_TAR(unittest.TestCase): def setUp(self): driver_path = pwd() self.driver = webdriver.Chrome(executable_path=driver_path.get_driver_path()) driver = cqube(self.driver) driver.open_cqube_appln() driver = cqube(self.driver) driver.login_cqube() def test_TAR_Page(self): self.driver.find_element_by_xpath(Data.Dashboard).click() time.sleep(2) self.driver.find_element_by_xpath(Data.TAR).click() time.sleep(2) def tearDown(self): time.sleep(5) self.driver.close() if __name__ == "__main__": unittest.main()
81ed140b023ae1c2e0ee981bb65a3c175e059052
3356ecffb180dd617a8ded3bca89a067122e9d65
/lab1/task_7.py
0c781a6c6f9d656ecab036074ee523467f7bbfbe
[]
no_license
python-practice-b02-927/TodorovRV
bae93783b15e6e0397c7dfae018dfac58b719a03
d6765f8b65ae88b2d0ca021340ff1848d4b3605a
refs/heads/master
2020-07-22T20:18:45.296515
2019-11-19T11:46:03
2019-11-19T11:46:03
207,315,122
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
#!/usr/bin/python3 from pyrob.api import * @task def task_5_4(): while not wall_is_beneath(): move_down() while wall_is_beneath(): move_right() move_down() move_left() while wall_is_above() and (not wall_is_on_the_left()): move_left() if __name__ == '__main__': run_tasks()
38613ed23f71373e77774283f60636d3ef9b8b70
e87c04d6c2bbba383f9c75620b16f02358039ab5
/200826프로/Re최소비용구하기_G5.py
d8fd01ea1428cd215e57f2eb2c491840f6e2f32f
[]
no_license
yoonwoo123/Algorithm
2bf6e103009572cbcf3abfd783f6c28762529340
5d1e76f1bf6c2fc6acb25dc5296d62b2ca453ec6
refs/heads/master
2022-06-18T14:06:06.248906
2022-05-29T10:41:15
2022-05-29T10:41:15
221,483,283
0
0
null
null
null
null
UTF-8
Python
false
false
1,240
py
# 0628백준 못풀었던 최소비용구하기 재도전 import sys, heapq sys.stdin = open("최소비용_input.txt") input = sys.stdin.readline def dijkstra(graph, start, end): distances = {node : float('inf') for node in graph} distances[start] = 0 queue = [] heapq.heappush(queue, [distances[start], start]) while queue: currentDistance, currentNode = heapq.heappop(queue) if currentDistance > distances[currentNode]: continue for adjacent, weight in graph[currentNode].items(): distance = currentDistance + weight if distance < distances[adjacent]: distances[adjacent] = distance heapq.heappush(queue, [distance, adjacent]) return distances[end] N = int(input()) M = int(input()) graph = {i : {} for i in range(1, N+1)} for _ in range(M): start, end, toll = map(int, input().split()) # 주의해야할 점!! 같은 버스(같은 키)값으로 더 큰 값이 들어오는건 무시해줘야 # 최소비용을 정확히 구할 수 있다. if end in graph[start] and toll >= graph[start][end]: continue graph[start][end] = toll start, end = map(int, input().split()) print(dijkstra(graph, start, end))
39c80ed7609de255a1d4095a62be36b57429a380
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/XjgoXNmnz59txiQp3_20.py
5a5eb8ffec5c428b019e2cbaa644d2f512144599
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
def split(number): if (number < 5): return number rem = number % 3 div3 = number//3 if (rem == 2): return 3 ** (div3) * 2 return 3 ** (div3-1) * (3 + rem)
86e9fa6a8c3ed0a7e6035870f5d3efbab277cffc
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_35/202.py
85cf40d5f4d6c4e8f2519c5092793cfc5a85d792
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,956
py
#!/usr/bin/python MAX_ALT = 11000 def is_valid_index(i, j, alts): return i >= 0 and j >= 0 and i < len(alts) and j < len(alts[i]) def find_flow_dir(i, j, alts): dirs = [(alts[i][j], (i, j)), (alts[i - 1][j] if is_valid_index(i - 1, j, alts) else MAX_ALT, (i - 1, j)), (alts[i][j - 1] if is_valid_index(i, j - 1, alts) else MAX_ALT, (i, j - 1)), (alts[i][j + 1] if is_valid_index(i, j + 1, alts) else MAX_ALT, (i, j + 1)), (alts[i + 1][j] if is_valid_index(i + 1, j, alts) else MAX_ALT, (i + 1, j))] return min(dirs, key=lambda x: x[0])[1] def flow(i, j, n, ans, alts, eq): while ans[i][j] == -1: ans[i][j] = n ni, nj = find_flow_dir(i, j, alts) if (ni, nj) == (i, j): # found a sink break i, j = ni, nj eq[n] = ans[i][j] def print_basin(basin, f): for row in basin: f.write(' '.join(map(str, row)) + '\n') def parent(num, eq): if eq[num] != num: eq[num] = parent(eq[num], eq) return eq[num] def to_alph(basin, eq): nums_seen = {} count = 0 for i in xrange(H): for j in xrange(W): p = parent(basin[i][j], eq) if p not in nums_seen: nums_seen[p] = count count += 1 basin[i][j] = chr(ord('a') + nums_seen[p]) f = open('B-large.in', 'r') lines = [line.strip() for line in f.readlines()] f.close() N = int(lines[0]) f = open('B-large.out', 'w') line_num = 1 for case in xrange(1, N + 1): H, W = map(int, lines[line_num].split(' ')) alts = [0]*H for i in xrange(H): alts[i] = map(int, lines[line_num + i + 1].split(' ')) assert len(alts[i]) == W ans = [0] * H for i in xrange(H): ans[i] = [-1] * W equivalencies = {} count = 0 for i in xrange(H): for j in xrange(W): if ans[i][j] == -1: flow(i, j, count, ans, alts, equivalencies) count += 1 to_alph(ans, equivalencies) f.write('Case #%d:\n' % case) print_basin(ans, f) line_num += 1 + H f.close()
c891b8067ded9d4dbe6bf8eef18d752dd94634f4
78137d5e4e688749399bbb386b26536e4ac6d9fa
/pytorch3d/renderer/camera_conversions.py
9fb73e5fcc8140e159b9f0ae21645212077e7ee4
[ "MIT", "BSD-3-Clause" ]
permissive
bruinxiong/pytorch3d
4235681c6356f7e69fa506d8474a3c7cf83d9fe6
18a3c5cbb9055bcda44590d39db65bb0c74db799
refs/heads/master
2022-06-18T16:28:39.589229
2022-05-18T20:11:36
2022-05-18T20:11:36
238,892,798
0
0
NOASSERTION
2022-05-18T20:11:37
2020-02-07T10:04:39
Python
UTF-8
Python
false
false
6,893
py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Tuple import torch from ..transforms import matrix_to_rotation_6d from .cameras import PerspectiveCameras LOGGER = logging.getLogger(__name__) def _cameras_from_opencv_projection( R: torch.Tensor, tvec: torch.Tensor, camera_matrix: torch.Tensor, image_size: torch.Tensor, ) -> PerspectiveCameras: focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1) principal_point = camera_matrix[:, :2, 2] # Retype the image_size correctly and flip to width, height. image_size_wh = image_size.to(R).flip(dims=(1,)) # Screen to NDC conversion: # For non square images, we scale the points such that smallest side # has range [-1, 1] and the largest side has range [-u, u], with u > 1. # This convention is consistent with the PyTorch3D renderer, as well as # the transformation function `get_ndc_to_screen_transform`. scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 scale = scale.expand(-1, 2) c0 = image_size_wh / 2.0 # Get the PyTorch3D focal length and principal point. focal_pytorch3d = focal_length / scale p0_pytorch3d = -(principal_point - c0) / scale # For R, T we flip x, y axes (opencv screen space has an opposite # orientation of screen axes). # We also transpose R (opencv multiplies points from the opposite=left side). R_pytorch3d = R.clone().permute(0, 2, 1) T_pytorch3d = tvec.clone() R_pytorch3d[:, :, :2] *= -1 T_pytorch3d[:, :2] *= -1 return PerspectiveCameras( R=R_pytorch3d, T=T_pytorch3d, focal_length=focal_pytorch3d, principal_point=p0_pytorch3d, image_size=image_size, device=R.device, ) def _opencv_from_cameras_projection( cameras: PerspectiveCameras, image_size: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: R_pytorch3d = cameras.R.clone() # pyre-ignore T_pytorch3d = cameras.T.clone() # pyre-ignore focal_pytorch3d = cameras.focal_length p0_pytorch3d = cameras.principal_point T_pytorch3d[:, :2] *= -1 R_pytorch3d[:, :, :2] *= -1 tvec = T_pytorch3d R = R_pytorch3d.permute(0, 2, 1) # Retype the image_size correctly and flip to width, height. image_size_wh = image_size.to(R).flip(dims=(1,)) # NDC to screen conversion. scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 scale = scale.expand(-1, 2) c0 = image_size_wh / 2.0 # pyre-fixme[29]: `Union[BoundMethod[typing.Callable(torch.Tensor.__neg__)[[Named... principal_point = -p0_pytorch3d * scale + c0 focal_length = focal_pytorch3d * scale camera_matrix = torch.zeros_like(R) camera_matrix[:, :2, 2] = principal_point camera_matrix[:, 2, 2] = 1.0 camera_matrix[:, 0, 0] = focal_length[:, 0] camera_matrix[:, 1, 1] = focal_length[:, 1] return R, tvec, camera_matrix def _pulsar_from_opencv_projection( R: torch.Tensor, tvec: torch.Tensor, camera_matrix: torch.Tensor, image_size: torch.Tensor, znear: float = 0.1, ) -> torch.Tensor: assert len(camera_matrix.size()) == 3, "This function requires batched inputs!" assert len(R.size()) == 3, "This function requires batched inputs!" assert len(tvec.size()) in (2, 3), "This function reuqires batched inputs!" # Validate parameters. image_size_wh = image_size.to(R).flip(dims=(1,)) assert torch.all( image_size_wh > 0 ), "height and width must be positive but min is: %s" % ( str(image_size_wh.min().item()) ) assert ( camera_matrix.size(1) == 3 and camera_matrix.size(2) == 3 ), "Incorrect camera matrix shape: expected 3x3 but got %dx%d" % ( camera_matrix.size(1), camera_matrix.size(2), ) assert ( R.size(1) == 3 and R.size(2) == 3 ), "Incorrect R shape: expected 3x3 but got %dx%d" % ( R.size(1), R.size(2), ) if len(tvec.size()) == 2: tvec = tvec.unsqueeze(2) assert ( tvec.size(1) == 3 and tvec.size(2) == 1 ), "Incorrect tvec shape: expected 3x1 but got %dx%d" % ( tvec.size(1), tvec.size(2), ) # Check batch size. batch_size = camera_matrix.size(0) assert R.size(0) == batch_size, "Expected R to have batch size %d. Has size %d." % ( batch_size, R.size(0), ) assert ( tvec.size(0) == batch_size ), "Expected tvec to have batch size %d. Has size %d." % ( batch_size, tvec.size(0), ) # Check image sizes. image_w = image_size_wh[0, 0] image_h = image_size_wh[0, 1] assert torch.all( image_size_wh[:, 0] == image_w ), "All images in a batch must have the same width!" assert torch.all( image_size_wh[:, 1] == image_h ), "All images in a batch must have the same height!" # Focal length. fx = camera_matrix[:, 0, 0].unsqueeze(1) fy = camera_matrix[:, 1, 1].unsqueeze(1) # Check that we introduce less than 1% error by averaging the focal lengths. fx_y = fx / fy if torch.any(fx_y > 1.01) or torch.any(fx_y < 0.99): LOGGER.warning( "Pulsar only supports a single focal lengths. For converting OpenCV " "focal lengths, we average them for x and y directions. " "The focal lengths for x and y you provided differ by more than 1%, " "which means this could introduce a noticeable error." ) f = (fx + fy) / 2 # Normalize f into normalized device coordinates. focal_length_px = f / image_w # Transfer into focal_length and sensor_width. focal_length = torch.tensor([znear - 1e-5], dtype=torch.float32, device=R.device) focal_length = focal_length[None, :].repeat(batch_size, 1) sensor_width = focal_length / focal_length_px # Principal point. cx = camera_matrix[:, 0, 2].unsqueeze(1) cy = camera_matrix[:, 1, 2].unsqueeze(1) # Transfer principal point offset into centered offset. cx = -(cx - image_w / 2) cy = cy - image_h / 2 # Concatenate to final vector. param = torch.cat([focal_length, sensor_width, cx, cy], dim=1) R_trans = R.permute(0, 2, 1) cam_pos = -torch.bmm(R_trans, tvec).squeeze(2) cam_rot = matrix_to_rotation_6d(R_trans) cam_params = torch.cat([cam_pos, cam_rot, param], dim=1) return cam_params def _pulsar_from_cameras_projection( cameras: PerspectiveCameras, image_size: torch.Tensor, ) -> torch.Tensor: opencv_R, opencv_T, opencv_K = _opencv_from_cameras_projection(cameras, image_size) return _pulsar_from_opencv_projection(opencv_R, opencv_T, opencv_K, image_size)
24a344875f69d03d0e0a3a6a855fce30a6b147d7
6b0f007ca1d3426c71b2298adac853ddce996b49
/Schoolwebsite/schoolapp/migrations/0030_auto_20201223_1852.py
ff5d81f44974039c5d2f45fb26b161bd10c597f6
[]
no_license
AbdurRahman111/Full_School_Management_System
49b37e8615b94bc20aeabc3ef41e468cf2dd9b47
0508fa6ba7b529429c4dae2feeb19a991547457e
refs/heads/master
2023-02-27T04:24:13.272126
2021-02-05T16:17:44
2021-02-05T16:17:44
336,323,426
0
0
null
null
null
null
UTF-8
Python
false
false
2,037
py
# Generated by Django 3.1.4 on 2020-12-23 12:52 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('schoolapp', '0029_auto_20201223_1031'), ] operations = [ migrations.AlterField( model_name='assignment_comments_all', name='time_comment', field=models.DateTimeField(blank=True, default=datetime.datetime(2020, 12, 23, 18, 51, 59, 873142)), ), migrations.AlterField( model_name='teacher_assignment_upload_file', name='date', field=models.DateField(blank=True, default=datetime.datetime(2020, 12, 23, 18, 51, 59, 872143)), ), migrations.AlterField( model_name='teacher_assignment_upload_file', name='due_date', field=models.DateField(blank=True, default=datetime.datetime(2020, 12, 23, 18, 51, 59, 872143)), ), migrations.AlterField( model_name='timeoff_staffs_teachers', name='date', field=models.DateField(blank=True, default=datetime.datetime(2020, 12, 23, 18, 51, 59, 874141)), ), migrations.CreateModel( name='Dean_login_information', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Dean_ID', models.CharField(max_length=50)), ('Dean_Name', models.CharField(max_length=255)), ('Dean_pass', models.CharField(max_length=255)), ('phone', models.CharField(max_length=255)), ('address', models.CharField(max_length=255)), ('dob', models.CharField(max_length=255)), ('major', models.CharField(max_length=255)), ('IT_Service_info', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='schoolapp.it_service_login_information')), ], ), ]
b6c3ca36933ac9dc94c8c51052fd4e4dc4c105c6
d35167f7ab29813d926bd702fa652090556befdf
/generated/test_frotms_PaddleOCR2Pytorch.py
9d914b969c0b5beed4af3cacfde687594af223c5
[]
no_license
jansel/pytorch-jit-paritybench
65e5311d43daf5065beac52a68488ce188199fa8
7e55a422588c1d1e00f35a3d3a3ff896cce59e18
refs/heads/master
2023-08-12T04:43:16.669114
2023-06-08T17:36:32
2023-06-08T17:36:32
270,464,378
35
15
null
2023-06-08T17:36:34
2020-06-07T23:42:50
Python
UTF-8
Python
false
false
313,216
py
import sys _module = sys.modules[__name__] del sys main = _module generate_multi_language_configs = _module ch_ppocr_v2_det_converter = _module ch_ppocr_v2_rec_converter = _module ch_ppocr_v3_det_converter = _module ch_ppocr_v3_rec_converter = _module ch_ppocr_v3_rec_converter_nodistill = _module det_converter = _module det_fcenet_converter = _module e2e_converter = _module layoutxlm_re_converter = _module layoutxlm_ser_converter = _module multilingual_ppocr_v3_rec_converter = _module ppstructure_table_det_converter = _module ppstructure_table_rec_converter = _module ppstructure_table_structure_converter = _module rec_converter = _module rec_nrtr_mtb_converter = _module rec_sar_converter = _module rec_svtr_converter = _module rec_vitstr_converter = _module srn_converter = _module attention_grucell = _module attention_head = _module common = _module conv = _module diff = _module fc = _module gelu = _module gru_cell = _module hard_swish = _module hs = _module layernorm = _module lstm = _module pp_ocr = _module pp_rec_resnet_fpn = _module pp_rec_srn_head = _module pp_self_attention = _module pp_table_att_head = _module pp_table_fpn = _module pp_table_mobilenet_v3 = _module pt_rec_resnet_fpn = _module pt_rec_srn_head = _module pt_self_attention = _module pt_table_att_head = _module pt_table_fpn = _module pt_table_mobilenet_v3 = _module rec_resnet_fpn = _module rec_srn = _module rec_srn_head = _module table_att_head = _module table_det = _module table_mobile = _module table_mobilenet_v3 = _module onnx_optimizer = _module ptstructure = _module ptppyolov2 = _module ppyolo_utils = _module ppyolov2 = _module ppyolov2_base = _module ppyolov2_darknet = _module ppyolov2_layout = _module ppyolov2_pt = _module ppyolov2_resnet = _module ppyolov2_yolo_fpn = _module ppyolov2_yolo_head = _module pt_utils = _module utils = _module predict_system = _module table = _module matcher = _module predict_structure = _module predict_table = _module tablepyxl = _module style = _module utility = _module infer_ser_e2e = _module infer_ser_re_e2e = _module data = _module vocab = _module transformers = _module bert = _module tokenizer = _module layoutlm = _module modeling = _module layoutxlm = _module modeling = _module visual_backbone = _module model_utils = _module tokenizer_utils = _module utils = _module vqa_utils = _module pytorchocr = _module base_ocr_v20 = _module imaug = _module gen_table_mask = _module operators = _module architectures = _module base_model = _module backbones = _module det_mobilenet_v3 = _module det_resnet = _module det_resnet_vd = _module det_resnet_vd_sast = _module e2e_resnet_vd_pg = _module rec_mobilenet_v3 = _module rec_mv1_enhance = _module rec_nrtr_mtb = _module rec_resnet_31 = _module rec_resnet_fpn = _module rec_resnet_vd = _module rec_svtrnet = _module rec_vitstr = _module table_mobilenet_v3 = _module table_resnet_vd = _module common = _module heads = _module cls_head = _module det_db_head = _module det_east_head = _module det_fce_head = _module det_pse_head = _module det_sast_head = _module e2e_pg_head = _module multiheadAttention = _module rec_att_head = _module rec_ctc_head = _module rec_nrtr_head = _module rec_sar_head = _module rec_srn_head = _module self_attention = _module table_att_head = _module necks = _module db_fpn = _module east_fpn = _module fce_fpn = _module fpn = _module pg_fpn = _module rnn = _module sast_fpn = _module table_fpn = _module transforms = _module stn = _module tps = _module tps_spatial_transformer = _module postprocess = _module cls_postprocess = _module db_postprocess = _module east_postprocess = _module fce_postprocess = _module locality_aware_nms = _module pg_postprocess = _module pse_postprocess = _module pse = _module setup = _module pse_postprocess = _module rec_postprocess = _module sast_postprocess = _module extract_batchsize = _module extract_textpoint_fast = _module extract_textpoint_slow = _module pgnet_pp_utils = _module visual = _module logging = _module poly_nms = _module predict_cls = _module predict_det = _module predict_e2e = _module predict_rec = _module pytorchocr_utility = _module from _paritybench_helpers import _mock_config, patch_functional from unittest.mock import mock_open, MagicMock from torch.autograd import Function from torch.nn import Module import abc, collections, copy, enum, functools, inspect, itertools, logging, math, matplotlib, numbers, numpy, pandas, queue, random, re, scipy, sklearn, string, tensorflow, time, torch, torchaudio, torchtext, torchvision, types, typing, uuid, warnings import numpy as np from torch import Tensor patch_functional() open = mock_open() yaml = logging = sys = argparse = MagicMock() ArgumentParser = argparse.ArgumentParser _global_config = args = argv = cfg = config = params = _mock_config() argparse.ArgumentParser.return_value.parse_args.return_value = _global_config yaml.load.return_value = _global_config sys.argv = _global_config __version__ = '1.0.0' xrange = range wraps = functools.wraps from collections import OrderedDict import numpy as np import torch import copy import torch.nn as nn import torch.nn.functional as F import math import torchvision from numbers import Integral import time from copy import deepcopy from torch.nn import Module as Layer from abc import abstractmethod from collections import namedtuple from torch.nn import Module import logging import inspect import functools import random from torch import nn from functools import partial from torch.nn import Linear from torch.nn.init import xavier_uniform_ from torch.nn import ModuleList as LayerList from torch.nn import Dropout from torch.nn import LayerNorm from torch.nn import Conv2d from torch.nn.init import xavier_normal_ from torch.nn import functional as F import itertools from numpy.fft import ifft import string import torch.distributed as dist class PTAttentionGRUCell(nn.Module): def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False): super(PTAttentionGRUCell, self).__init__() self.i2h = nn.Linear(input_size, hidden_size, bias=False) self.h2h = nn.Linear(hidden_size, hidden_size) self.score = nn.Linear(hidden_size, 1, bias=False) self.rnn = nn.GRUCell(input_size=input_size + num_embeddings, hidden_size=hidden_size, bias=True) self.hidden_size = hidden_size def forward(self, prev_hidden, batch_H, char_onehots): batch_H_proj = self.i2h(batch_H) prev_hidden_proj = torch.unsqueeze(self.h2h(prev_hidden), dim=1) res = torch.add(batch_H_proj, prev_hidden_proj) res = torch.tanh(res) e = self.score(res) alpha = F.softmax(e, dim=1) alpha = alpha.permute(0, 2, 1) context = torch.squeeze(torch.matmul(alpha, batch_H), dim=1) concat_context = torch.cat([context, char_onehots.float()], 1) cur_hidden = self.rnn(concat_context, prev_hidden) return (cur_hidden, cur_hidden), alpha class PTAttentionHead(nn.Module): def __init__(self, in_channels, out_channels, hidden_size, **kwargs): super(PTAttentionHead, self).__init__() self.input_size = in_channels self.hidden_size = hidden_size self.num_classes = out_channels self.attention_cell = PTAttentionGRUCell(in_channels, hidden_size, out_channels, use_gru=False) self.generator = nn.Linear(hidden_size, out_channels) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char.type(torch.int64), onehot_dim) return input_ont_hot def forward(self, inputs, targets=None, batch_max_length=25): batch_size = inputs.size()[0] num_steps = batch_max_length hidden = torch.zeros((batch_size, self.hidden_size)) output_hiddens = [] if targets is not None: for i in range(num_steps): char_onehots = self._char_to_onehot(targets[:, i], onehot_dim=self.num_classes) (outputs, hidden), alpha = self.attention_cell(hidden, inputs, char_onehots) output_hiddens.append(torch.unsqueeze(outputs, dim=1)) output = torch.cat(output_hiddens, dim=1) probs = self.generator(output) else: targets = torch.zeros([batch_size], dtype=torch.int32) probs = None char_onehots = None outputs = None alpha = None for i in range(num_steps): char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) (outputs, hidden), alpha = self.attention_cell(hidden, inputs, char_onehots) probs_step = self.generator(outputs) if probs is None: probs = torch.unsqueeze(probs_step, dim=1) else: probs = torch.cat([probs, torch.unsqueeze(probs_step, dim=1)], dim=1) next_input = probs_step.argmax(dim=1) targets = next_input return probs class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0 class GELU(nn.Module): def __init__(self, inplace=True): super(GELU, self).__init__() self.inplace = inplace def forward(self, x): return torch.nn.functional.gelu(x) class Swish(nn.Module): def __init__(self, inplace=True): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: x.mul_(torch.sigmoid(x)) return x else: return x * torch.sigmoid(x) class Activation(nn.Module): def __init__(self, act_type, inplace=True): super(Activation, self).__init__() act_type = act_type.lower() if act_type == 'relu': self.act = nn.ReLU(inplace=inplace) elif act_type == 'relu6': self.act = nn.ReLU6(inplace=inplace) elif act_type == 'sigmoid': raise NotImplementedError elif act_type == 'hard_sigmoid': self.act = Hsigmoid(inplace) elif act_type == 'hard_swish': self.act = Hswish(inplace=inplace) elif act_type == 'leakyrelu': self.act = nn.LeakyReLU(inplace=inplace) elif act_type == 'gelu': self.act = GELU(inplace=inplace) elif act_type == 'swish': self.act = Swish(inplace=inplace) else: raise NotImplementedError def forward(self, inputs): return self.act(inputs) class ConvBNLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, act=None, name=None): super(ConvBNLayer, self).__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, bias=False) bn_name = 'bn_' + name self.bn = nn.BatchNorm2d(out_channels) self.act = act if act is not None: self._act = Activation(act) def forward(self, x): x = self.conv(x) x = self.bn(x) if self.act is not None: x = self._act(x) return x class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride, shortcut=True, if_first=False, name=None): super(BasicBlock, self).__init__() self.stride = stride self.conv0 = ConvBNLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', name=name + '_branch2a') self.conv1 = ConvBNLayer(in_channels=out_channels, out_channels=out_channels, kernel_size=3, act=None, name=name + '_branch2b') if not shortcut: self.short = ConvBNLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + '_branch1') self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = torch.add(short, conv1) y = F.relu(y) return y class BottleneckBlock(nn.Module): def __init__(self, in_channels, out_channels, stride, shortcut=True, if_first=False, name=None): super(BottleneckBlock, self).__init__() self.conv0 = ConvBNLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=1, act='relu', name=name + '_branch2a') self.conv1 = ConvBNLayer(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', name=name + '_branch2b') self.conv2 = ConvBNLayer(in_channels=out_channels, out_channels=out_channels * 4, kernel_size=1, act=None, name=name + '_branch2c') if not shortcut: self.short = ConvBNLayer(in_channels=in_channels, out_channels=out_channels * 4, kernel_size=1, stride=1, is_vd_mode=False if if_first else True, name=name + '_branch1') self.shortcut = shortcut def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = torch.add(short, conv2) y = F.relu(y) return y class ResNetFPN(nn.Module): def __init__(self, in_channels=1, layers=50, **kwargs): super(ResNetFPN, self).__init__() supported_layers = {(18): {'depth': [2, 2, 2, 2], 'block_class': BasicBlock}, (34): {'depth': [3, 4, 6, 3], 'block_class': BasicBlock}, (50): {'depth': [3, 4, 6, 3], 'block_class': BottleneckBlock}, (101): {'depth': [3, 4, 23, 3], 'block_class': BottleneckBlock}, (152): {'depth': [3, 8, 36, 3], 'block_class': BottleneckBlock}} stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)] num_filters = [64, 128, 256, 512] self.depth = supported_layers[layers]['depth'] self.conv = ConvBNLayer(in_channels=in_channels, out_channels=64, kernel_size=7, stride=2, act='relu', name='conv1') self.block_list = nn.ModuleList() in_ch = 64 if layers >= 50: for block in range(len(self.depth)): for i in range(self.depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = 'res' + str(block + 2) + 'a' else: conv_name = 'res' + str(block + 2) + 'b' + str(i) else: conv_name = 'res' + str(block + 2) + chr(97 + i) bottlenectBlock = BottleneckBlock(in_channels=in_ch, out_channels=num_filters[block], stride=stride_list[block] if i == 0 else 1, name=conv_name) in_ch = num_filters[block] * 4 self.block_list.add_module('bottleneckBlock_{}_{}'.format(block, i), bottlenectBlock) else: for block in range(len(self.depth)): for i in range(self.depth[block]): conv_name = 'res' + str(block + 2) + chr(97 + i) if i == 0 and block != 0: stride = 2, 1 else: stride = 1, 1 basicBlock = BasicBlock(in_channels=in_ch, out_channels=num_filters[block], stride=stride_list[block] if i == 0 else 1, is_first=block == i == 0, name=conv_name) in_ch = basicBlock.out_channels self.block_list.add_module(conv_name, basicBlock) out_ch_list = [in_ch // 4, in_ch // 2, in_ch] self.base_block = nn.ModuleList() self.conv_trans = [] self.bn_block = [] for i in [-2, -3]: in_channels = out_ch_list[i + 1] + out_ch_list[i] bb_0 = nn.Conv2d(in_channels=in_channels, out_channels=out_ch_list[i], kernel_size=1, bias=True) self.base_block.add_module('F_{}_base_block_0'.format(i), bb_0) bb_1 = nn.Conv2d(in_channels=out_ch_list[i], out_channels=out_ch_list[i], kernel_size=3, padding=1, bias=True) self.base_block.add_module('F_{}_base_block_1'.format(i), bb_1) bb_2 = nn.Sequential(nn.BatchNorm2d(out_ch_list[i]), Activation('relu')) self.base_block.add_module('F_{}_base_block_2'.format(i), bb_2) bb_3 = nn.Conv2d(in_channels=out_ch_list[i], out_channels=512, kernel_size=1, bias=True) self.base_block.add_module('F_{}_base_block_3'.format(i), bb_3) self.out_channels = 512 def __call__(self, x): x = self.conv(x) fpn_list = [] F = [] for i in range(len(self.depth)): fpn_list.append(np.sum(self.depth[:i + 1])) for i, block in enumerate(self.block_list): x = block(x) for number in fpn_list: if i + 1 == number: F.append(x) base = F[-1] j = 0 for i, block in enumerate(self.base_block): if i % 3 == 0 and i < 6: j = j + 1 b, c, w, h = F[-j - 1].shape if [w, h] == list(base.shape[2:]): base = base else: base = self.conv_trans[j - 1](base) base = self.bn_block[j - 1](base) base = torch.cat([base, F[-j - 1]], dim=1) base = block(base) return base class ShortCut(nn.Module): def __init__(self, in_channels, out_channels, stride, name, is_first=False): super(ShortCut, self).__init__() self.use_conv = True if in_channels != out_channels or stride != 1 or is_first == True: if stride == (1, 1): self.conv = ConvBNLayer(in_channels, out_channels, 1, 1, name=name) else: self.conv = ConvBNLayer(in_channels, out_channels, 1, stride, name=name) else: self.use_conv = False def forward(self, x): if self.use_conv: x = self.conv(x) return x class Lambda(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x): return self.func(x) class FFN(nn.Module): """ Feed-Forward Network """ def __init__(self, d_inner_hid, d_model, dropout_rate): super(FFN, self).__init__() self.dropout_rate = dropout_rate self.fc1 = torch.nn.Linear(in_features=d_model, out_features=d_inner_hid) self.fc2 = torch.nn.Linear(in_features=d_inner_hid, out_features=d_model) def forward(self, x): hidden = self.fc1(x) hidden = F.relu(hidden) if self.dropout_rate: hidden = F.dropout(hidden, p=self.dropout_rate) out = self.fc2(hidden) return out class MultiHeadAttention(nn.Module): """ Multi-Head Attention """ def __init__(self, d_key, d_value, d_model, n_head=1, dropout_rate=0.0): super(MultiHeadAttention, self).__init__() self.n_head = n_head self.d_key = d_key self.d_value = d_value self.d_model = d_model self.dropout_rate = dropout_rate self.q_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.k_fc = torch.nn.Linear(in_features=d_model, out_features=d_key * n_head, bias=False) self.v_fc = torch.nn.Linear(in_features=d_model, out_features=d_value * n_head, bias=False) self.proj_fc = torch.nn.Linear(in_features=d_value * n_head, out_features=d_model, bias=False) def _prepare_qkv(self, queries, keys, values, cache=None): if keys is None: keys, values = queries, queries static_kv = False else: static_kv = True q = self.q_fc(queries) q = torch.reshape(q, shape=[q.size(0), q.size(1), self.n_head, self.d_key]) q = q.permute(0, 2, 1, 3) if cache is not None and static_kv and 'static_k' in cache: k = cache['static_k'] v = cache['static_v'] else: k = self.k_fc(keys) v = self.v_fc(values) k = torch.reshape(k, shape=[k.size(0), k.size(1), self.n_head, self.d_key]) k = k.permute(0, 2, 1, 3) v = torch.reshape(v, shape=[v.size(0), v.size(1), self.n_head, self.d_value]) v = v.permute(0, 2, 1, 3) if cache is not None: if static_kv and not 'static_k' in cache: cache['static_k'], cache['static_v'] = k, v elif not static_kv: cache_k, cache_v = cache['k'], cache['v'] k = torch.cat([cache_k, k], dim=2) v = torch.cat([cache_v, v], dim=2) cache['k'], cache['v'] = k, v return q, k, v def forward(self, queries, keys, values, attn_bias, cache=None): keys = queries if keys is None else keys values = keys if values is None else values q, k, v = self._prepare_qkv(queries, keys, values, cache) product = torch.matmul(q, k.transpose(2, 3)) product = product * self.d_model ** -0.5 if attn_bias is not None: product += attn_bias weights = F.softmax(product, dim=-1) if self.dropout_rate: weights = F.dropout(weights, p=self.dropout_rate) out = torch.matmul(weights, v) out = out.permute(0, 2, 1, 3) out = torch.reshape(out, shape=[out.size(0), out.size(1), out.shape[2] * out.shape[3]]) out = self.proj_fc(out) return out class LambdaXY(nn.Module): """An easy way to create a pytorch layer for a simple `func`.""" def __init__(self, func): """create a layer that simply calls `func` with `x`""" super().__init__() self.func = func def forward(self, x, y): return self.func(x, y) class PrePostProcessLayer(nn.Module): """ PrePostProcessLayer """ def __init__(self, process_cmd, d_model, dropout_rate): super(PrePostProcessLayer, self).__init__() self.process_cmd = process_cmd self.functors = nn.ModuleList() cur_a_len = 0 cur_n_len = 0 cur_d_len = 0 for cmd in self.process_cmd: if cmd == 'a': self.functors.add_module('add_res_connect_{}'.format(cur_a_len), LambdaXY(lambda x, y: x + y if y is not None else x)) cur_a_len += 1 elif cmd == 'n': layerNorm = torch.nn.LayerNorm(normalized_shape=d_model, elementwise_affine=True, eps=1e-05) self.functors.add_module('layer_norm_%d' % cur_n_len, layerNorm) cur_n_len += 1 elif cmd == 'd': self.functors.add_module('add_drop_{}'.format(cur_d_len), Lambda(lambda x: F.dropout(x, p=dropout_rate) if dropout_rate else x)) cur_d_len += 1 def forward(self, x, residual=None): for i, (cmd, functor) in enumerate(zip(self.process_cmd, self.functors)): if cmd == 'a': x = functor(x, residual) else: x = functor(x) return x class EncoderLayer(nn.Module): """ EncoderLayer """ def __init__(self, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(EncoderLayer, self).__init__() self.preprocesser1 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.self_attn = MultiHeadAttention(d_key, d_value, d_model, n_head, attention_dropout) self.postprocesser1 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) self.preprocesser2 = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) self.ffn = FFN(d_inner_hid, d_model, relu_dropout) self.postprocesser2 = PrePostProcessLayer(postprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): attn_output = self.self_attn(self.preprocesser1(enc_input), None, None, attn_bias) attn_output = self.postprocesser1(attn_output, enc_input) ffn_output = self.ffn(self.preprocesser2(attn_output)) ffn_output = self.postprocesser2(ffn_output, attn_output) return ffn_output class Encoder(nn.Module): """ encoder """ def __init__(self, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd='n', postprocess_cmd='da'): super(Encoder, self).__init__() self.encoder_layers = nn.ModuleList() for i in range(n_layer): encoderLayer = EncoderLayer(n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) self.encoder_layers.add_module('layer_%d' % i, encoderLayer) self.processer = PrePostProcessLayer(preprocess_cmd, d_model, prepostprocess_dropout) def forward(self, enc_input, attn_bias): for encoder_layer in self.encoder_layers: enc_output = encoder_layer(enc_input, attn_bias) enc_input = enc_output enc_output = self.processer(enc_output) return enc_output class PrepareEncoder(nn.Module): def __init__(self, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0, bos_idx=0, word_emb_param_name=None, pos_enc_param_name=None): super(PrepareEncoder, self).__init__() self.src_emb_dim = src_emb_dim self.src_max_len = src_max_len self.emb = torch.nn.Embedding(num_embeddings=self.src_max_len, embedding_dim=self.src_emb_dim, sparse=True) self.dropout_rate = dropout_rate def forward(self, src_word, src_pos): src_word_emb = src_word.type(torch.float32) src_word_emb = self.src_emb_dim ** 0.5 * src_word_emb src_pos = torch.squeeze(src_pos, dim=-1) src_pos_enc = self.emb(src_pos.type(torch.int64)) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc if self.dropout_rate: out = F.dropout(enc_input, p=self.dropout_rate) else: out = enc_input return out class WrapEncoderForFeature(nn.Module): def __init__(self, src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, bos_idx=0): super(WrapEncoderForFeature, self).__init__() self.prepare_encoder = PrepareEncoder(src_vocab_size, d_model, max_length, prepostprocess_dropout, bos_idx=bos_idx, word_emb_param_name='src_word_emb_table') self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) def forward(self, enc_inputs): conv_features, src_pos, src_slf_attn_bias = enc_inputs enc_input = self.prepare_encoder(conv_features, src_pos) enc_output = self.encoder(enc_input, src_slf_attn_bias) return enc_output class PVAM(nn.Module): def __init__(self, in_channels, char_num, max_text_length, num_heads, num_encoder_tus, hidden_dims): super(PVAM, self).__init__() self.char_num = char_num self.max_length = max_text_length self.num_heads = num_heads self.num_encoder_TUs = num_encoder_tus self.hidden_dims = hidden_dims t = 256 c = 512 self.wrap_encoder_for_feature = WrapEncoderForFeature(src_vocab_size=1, max_length=t, n_layer=self.num_encoder_TUs, n_head=self.num_heads, d_key=int(self.hidden_dims / self.num_heads), d_value=int(self.hidden_dims / self.num_heads), d_model=self.hidden_dims, d_inner_hid=self.hidden_dims, prepostprocess_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, preprocess_cmd='n', postprocess_cmd='da', weight_sharing=True) self.flatten0 = Lambda(lambda x: torch.flatten(x, start_dim=0, end_dim=1)) self.fc0 = torch.nn.Linear(in_features=in_channels, out_features=in_channels) self.emb = torch.nn.Embedding(num_embeddings=self.max_length, embedding_dim=in_channels) self.flatten1 = Lambda(lambda x: torch.flatten(x, start_dim=0, end_dim=2)) self.fc1 = torch.nn.Linear(in_features=in_channels, out_features=1, bias=False) def forward(self, inputs, encoder_word_pos, gsrm_word_pos): b, c, h, w = inputs.shape conv_features = torch.reshape(inputs, shape=[-1, c, h * w]) conv_features = conv_features.permute(0, 2, 1) b, t, c = conv_features.shape enc_inputs = [conv_features, encoder_word_pos, None] word_features = self.wrap_encoder_for_feature(enc_inputs) b, t, c = word_features.shape word_features = self.fc0(word_features) word_features_ = torch.reshape(word_features, [-1, 1, t, c]) word_features_ = word_features_.repeat([1, self.max_length, 1, 1]) word_pos_feature = self.emb(gsrm_word_pos) word_pos_feature_ = torch.reshape(word_pos_feature, [-1, self.max_length, 1, c]) word_pos_feature_ = word_pos_feature_.repeat([1, 1, t, 1]) y = word_pos_feature_ + word_features_ y = torch.tanh(y) attention_weight = self.fc1(y) attention_weight = torch.reshape(attention_weight, shape=[-1, self.max_length, t]) attention_weight = F.softmax(attention_weight, dim=-1) pvam_features = torch.matmul(attention_weight, word_features) return pvam_features class PrepareDecoder(nn.Module): def __init__(self, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0, bos_idx=0, word_emb_param_name=None, pos_enc_param_name=None): super(PrepareDecoder, self).__init__() self.src_emb_dim = src_emb_dim """ self.emb0 = Embedding(num_embeddings=src_vocab_size, embedding_dim=src_emb_dim) """ self.emb0 = torch.nn.Embedding(num_embeddings=src_vocab_size, embedding_dim=self.src_emb_dim, padding_idx=bos_idx) self.emb1 = torch.nn.Embedding(num_embeddings=src_max_len, embedding_dim=self.src_emb_dim) self.dropout_rate = dropout_rate def forward(self, src_word, src_pos): src_word = torch.squeeze(src_word.type(torch.int64), dim=-1) src_word_emb = self.emb0(src_word) src_word_emb = self.src_emb_dim ** 0.5 * src_word_emb src_pos = torch.squeeze(src_pos, dim=-1) src_pos_enc = self.emb1(src_pos) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc if self.dropout_rate: out = F.dropout(enc_input, p=self.dropout_rate) else: out = enc_input return out class WrapEncoder(nn.Module): """ embedder + encoder """ def __init__(self, src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, weight_sharing, bos_idx=0): super(WrapEncoder, self).__init__() self.prepare_decoder = PrepareDecoder(src_vocab_size, d_model, max_length, prepostprocess_dropout, bos_idx=bos_idx) self.encoder = Encoder(n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) def forward(self, enc_inputs): src_word, src_pos, src_slf_attn_bias = enc_inputs enc_input = self.prepare_decoder(src_word, src_pos) enc_output = self.encoder(enc_input, src_slf_attn_bias) return enc_output class GSRM(nn.Module): def __init__(self, in_channels, char_num, max_text_length, num_heads, num_encoder_tus, num_decoder_tus, hidden_dims): super(GSRM, self).__init__() self.char_num = char_num self.max_length = max_text_length self.num_heads = num_heads self.num_encoder_TUs = num_encoder_tus self.num_decoder_TUs = num_decoder_tus self.hidden_dims = hidden_dims self.fc0 = torch.nn.Linear(in_features=in_channels, out_features=self.char_num) self.wrap_encoder0 = WrapEncoder(src_vocab_size=self.char_num + 1, max_length=self.max_length, n_layer=self.num_decoder_TUs, n_head=self.num_heads, d_key=int(self.hidden_dims / self.num_heads), d_value=int(self.hidden_dims / self.num_heads), d_model=self.hidden_dims, d_inner_hid=self.hidden_dims, prepostprocess_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, preprocess_cmd='n', postprocess_cmd='da', weight_sharing=True) self.wrap_encoder1 = WrapEncoder(src_vocab_size=self.char_num + 1, max_length=self.max_length, n_layer=self.num_decoder_TUs, n_head=self.num_heads, d_key=int(self.hidden_dims / self.num_heads), d_value=int(self.hidden_dims / self.num_heads), d_model=self.hidden_dims, d_inner_hid=self.hidden_dims, prepostprocess_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, preprocess_cmd='n', postprocess_cmd='da', weight_sharing=True) self.mul = lambda x: torch.matmul(x, self.wrap_encoder0.prepare_decoder.emb0.weight.t()) def forward(self, inputs, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2): b, t, c = inputs.shape pvam_features = torch.reshape(inputs, [-1, c]) word_out = self.fc0(pvam_features) word_ids = torch.argmax(F.softmax(word_out, dim=-1), dim=1) word_ids = torch.reshape(word_ids, shape=[-1, t, 1]) """ This module is achieved through bi-transformers, ngram_feature1 is the froward one, ngram_fetaure2 is the backward one """ pad_idx = self.char_num word1 = F.pad(word_ids.type(torch.float32), [0, 0, 1, 0, 0, 0], value=1.0 * pad_idx) word1 = word1.type(torch.int64) word1 = word1[:, :-1, :] word2 = word_ids enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1] enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2] gsrm_feature1 = self.wrap_encoder0(enc_inputs_1) gsrm_feature2 = self.wrap_encoder1(enc_inputs_2) gsrm_feature2 = F.pad(gsrm_feature2, [0, 0, 0, 1, 0, 0], value=0.0) gsrm_feature2 = gsrm_feature2[:, 1:] gsrm_features = gsrm_feature1 + gsrm_feature2 gsrm_out = self.mul(gsrm_features) b, t, c = gsrm_out.shape gsrm_out = torch.reshape(gsrm_out, [-1, c]) return gsrm_features, word_out, gsrm_out class VSFD(nn.Module): def __init__(self, in_channels=512, pvam_ch=512, char_num=38): super(VSFD, self).__init__() self.char_num = char_num self.fc0 = torch.nn.Linear(in_features=in_channels * 2, out_features=pvam_ch) self.fc1 = torch.nn.Linear(in_features=pvam_ch, out_features=self.char_num) def forward(self, pvam_feature, gsrm_feature): b, t, c1 = pvam_feature.shape b, t, c2 = gsrm_feature.shape combine_feature_ = torch.cat([pvam_feature, gsrm_feature], dim=2) img_comb_feature_ = torch.reshape(combine_feature_, shape=[-1, c1 + c2]) img_comb_feature_map = self.fc0(img_comb_feature_) img_comb_feature_map = torch.sigmoid(img_comb_feature_map) img_comb_feature_map = torch.reshape(img_comb_feature_map, shape=[-1, t, c1]) combine_feature = img_comb_feature_map * pvam_feature + (1.0 - img_comb_feature_map) * gsrm_feature img_comb_feature = torch.reshape(combine_feature, shape=[-1, c1]) out = self.fc1(img_comb_feature) return out class SRNHead(nn.Module): def __init__(self, in_channels, out_channels, max_text_length, num_heads, num_encoder_TUs, num_decoder_TUs, hidden_dims, **kwargs): super(SRNHead, self).__init__() self.char_num = out_channels self.max_length = max_text_length self.num_heads = num_heads self.num_encoder_TUs = num_encoder_TUs self.num_decoder_TUs = num_decoder_TUs self.hidden_dims = hidden_dims self.pvam = PVAM(in_channels=in_channels, char_num=self.char_num, max_text_length=self.max_length, num_heads=self.num_heads, num_encoder_tus=self.num_encoder_TUs, hidden_dims=self.hidden_dims) self.gsrm = GSRM(in_channels=in_channels, char_num=self.char_num, max_text_length=self.max_length, num_heads=self.num_heads, num_encoder_tus=self.num_encoder_TUs, num_decoder_tus=self.num_decoder_TUs, hidden_dims=self.hidden_dims) self.vsfd = VSFD(in_channels=in_channels, char_num=self.char_num) self.gsrm.wrap_encoder1.prepare_decoder.emb0 = self.gsrm.wrap_encoder0.prepare_decoder.emb0 def forward(self, inputs, others): encoder_word_pos = others[0] gsrm_word_pos = others[1].type(torch.long) gsrm_slf_attn_bias1 = others[2] gsrm_slf_attn_bias2 = others[3] pvam_feature = self.pvam(inputs, encoder_word_pos, gsrm_word_pos) gsrm_feature, word_out, gsrm_out = self.gsrm(pvam_feature, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2) final_out = self.vsfd(pvam_feature, gsrm_feature) if not self.training: final_out = F.softmax(final_out, dim=1) _, decoded_out = torch.topk(final_out, k=1) predicts = OrderedDict([('predict', final_out), ('pvam_feature', pvam_feature), ('decoded_out', decoded_out), ('word_out', word_out), ('gsrm_out', gsrm_out)]) return predicts class AttentionGRUCell(nn.Module): def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False): super(AttentionGRUCell, self).__init__() self.i2h = nn.Linear(input_size, hidden_size, bias=False) self.h2h = nn.Linear(hidden_size, hidden_size) self.score = nn.Linear(hidden_size, 1, bias=False) self.rnn = nn.GRUCell(input_size=input_size + num_embeddings, hidden_size=hidden_size) self.hidden_size = hidden_size def forward(self, prev_hidden, batch_H, char_onehots): batch_H_proj = self.i2h(batch_H) prev_hidden_proj = torch.unsqueeze(self.h2h(prev_hidden), dim=1) res = torch.add(batch_H_proj, prev_hidden_proj) res = torch.tanh(res) e = self.score(res) alpha = F.softmax(e, dim=1) alpha = alpha.permute(0, 2, 1) context = torch.squeeze(torch.matmul(alpha, batch_H), dim=1) concat_context = torch.cat([context, char_onehots.float()], 1) cur_hidden = self.rnn(concat_context, prev_hidden) return (cur_hidden, cur_hidden), alpha class TableAttentionHead(nn.Module): def __init__(self, in_channels, hidden_size, loc_type, in_max_len=488, **kwargs): super(TableAttentionHead, self).__init__() self.input_size = in_channels[-1] self.hidden_size = hidden_size self.elem_num = 30 self.max_text_length = 100 self.max_elem_length = kwargs.get('max_elem_length', 500) self.max_cell_num = 500 self.structure_attention_cell = AttentionGRUCell(self.input_size, hidden_size, self.elem_num, use_gru=False) self.structure_generator = nn.Linear(hidden_size, self.elem_num) self.loc_type = loc_type self.in_max_len = in_max_len if self.loc_type == 1: self.loc_generator = nn.Linear(hidden_size, 4) else: if self.in_max_len == 640: self.loc_fea_trans = nn.Linear(400, self.max_elem_length + 1) elif self.in_max_len == 800: self.loc_fea_trans = nn.Linear(625, self.max_elem_length + 1) else: self.loc_fea_trans = nn.Linear(256, self.max_elem_length + 1) self.loc_generator = nn.Linear(self.input_size + hidden_size, 4) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char.type(torch.int64), onehot_dim) return input_ont_hot def forward(self, inputs, targets=None): fea = inputs[-1] if len(fea.shape) == 3: pass else: last_shape = int(np.prod(fea.shape[2:])) fea = torch.reshape(fea, [fea.shape[0], fea.shape[1], last_shape]) fea = fea.permute(0, 2, 1) batch_size = fea.shape[0] hidden = torch.zeros((batch_size, self.hidden_size)) output_hiddens = [] if self.training and targets is not None: raise NotImplementedError else: temp_elem = torch.zeros([batch_size], dtype=torch.int32) structure_probs = None loc_preds = None elem_onehots = None outputs = None alpha = None max_elem_length = torch.as_tensor(self.max_elem_length) i = 0 while i < max_elem_length + 1: elem_onehots = self._char_to_onehot(temp_elem, onehot_dim=self.elem_num) (outputs, hidden), alpha = self.structure_attention_cell(hidden, fea, elem_onehots) output_hiddens.append(torch.unsqueeze(outputs, dim=1)) structure_probs_step = self.structure_generator(outputs) temp_elem = structure_probs_step.argmax(dim=1, keepdim=False) i += 1 output = torch.cat(output_hiddens, dim=1) structure_probs = self.structure_generator(output) structure_probs = F.softmax(structure_probs, dim=-1) if self.loc_type == 1: loc_preds = self.loc_generator(output) loc_preds = F.sigmoid(loc_preds) else: loc_fea = fea.permute(0, 2, 1) loc_fea = self.loc_fea_trans(loc_fea) loc_fea = loc_fea.permute(0, 2, 1) loc_concat = torch.cat([output, loc_fea], dim=2) loc_preds = self.loc_generator(loc_concat) loc_preds = F.sigmoid(loc_preds) return {'structure_probs': structure_probs, 'loc_preds': loc_preds} class AttentionLSTMCell(nn.Module): def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False): super(AttentionLSTMCell, self).__init__() self.i2h = nn.Linear(input_size, hidden_size, bias=False) self.h2h = nn.Linear(hidden_size, hidden_size) self.score = nn.Linear(hidden_size, 1, bias=False) if not use_gru: self.rnn = nn.LSTMCell(input_size=input_size + num_embeddings, hidden_size=hidden_size) else: self.rnn = nn.GRUCell(input_size=input_size + num_embeddings, hidden_size=hidden_size) self.hidden_size = hidden_size def forward(self, prev_hidden, batch_H, char_onehots): batch_H_proj = self.i2h(batch_H) prev_hidden_proj = torch.unsqueeze(self.h2h(prev_hidden[0]), dim=1) res = torch.add(batch_H_proj, prev_hidden_proj) res = torch.tanh(res) e = self.score(res) alpha = F.softmax(e, dim=1) alpha = alpha.permute(0, 2, 1) context = torch.squeeze(torch.matmul(alpha, batch_H), dim=1) concat_context = torch.cat([context, char_onehots.float()], 1) cur_hidden = self.rnn(concat_context, prev_hidden) return (cur_hidden, cur_hidden), alpha class AttentionLSTM(nn.Module): def __init__(self, in_channels, out_channels, hidden_size, **kwargs): super(AttentionLSTM, self).__init__() self.input_size = in_channels self.hidden_size = hidden_size self.num_classes = out_channels self.attention_cell = AttentionLSTMCell(in_channels, hidden_size, out_channels, use_gru=False) self.generator = nn.Linear(hidden_size, out_channels) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char, onehot_dim) return input_ont_hot def forward(self, inputs, targets=None, batch_max_length=25): batch_size = inputs.shape[0] num_steps = batch_max_length hidden = torch.zeros((batch_size, self.hidden_size)), torch.zeros((batch_size, self.hidden_size)) output_hiddens = [] if targets is not None: for i in range(num_steps): char_onehots = self._char_to_onehot(targets[:, i], onehot_dim=self.num_classes) hidden, alpha = self.attention_cell(hidden, inputs, char_onehots) hidden = hidden[1][0], hidden[1][1] output_hiddens.append(torch.unsqueeze(hidden[0], dim=1)) output = torch.cat(output_hiddens, dim=1) probs = self.generator(output) else: targets = torch.zeros([batch_size], dtype=torch.int32) probs = None for i in range(num_steps): char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) hidden, alpha = self.attention_cell(hidden, inputs, char_onehots) probs_step = self.generator(hidden[0]) hidden = hidden[1][0], hidden[1][1] if probs is None: probs = torch.unsqueeze(probs_step, dim=1) else: probs = torch.cat([probs, torch.unsqueeze(probs_step, dim=1)], dim=1) next_input = probs_step.argmax(dim=1) targets = next_input return probs class TableFPN(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(TableFPN, self).__init__() self.out_channels = 512 self.in2_conv = nn.Conv2d(in_channels=in_channels[0], out_channels=self.out_channels, kernel_size=1, bias=False) self.in3_conv = nn.Conv2d(in_channels=in_channels[1], out_channels=self.out_channels, kernel_size=1, stride=1, bias=False) self.in4_conv = nn.Conv2d(in_channels=in_channels[2], out_channels=self.out_channels, kernel_size=1, bias=False) self.in5_conv = nn.Conv2d(in_channels=in_channels[3], out_channels=self.out_channels, kernel_size=1, bias=False) self.p5_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p4_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p3_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p2_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.fuse_conv = nn.Conv2d(in_channels=self.out_channels * 4, out_channels=512, kernel_size=3, padding=1, bias=False) def forward(self, x): c2, c3, c4, c5 = x in5 = self.in5_conv(c5) in4 = self.in4_conv(c4) in3 = self.in3_conv(c3) in2 = self.in2_conv(c2) out4 = in4 + F.interpolate(in5, size=in4.shape[2:4], mode='nearest') out3 = in3 + F.interpolate(out4, size=in3.shape[2:4], mode='nearest') out2 = in2 + F.interpolate(out3, size=in2.shape[2:4], mode='nearest') p4 = F.interpolate(out4, size=in5.shape[2:4], mode='nearest') p3 = F.interpolate(out3, size=in5.shape[2:4], mode='nearest') p2 = F.interpolate(out2, size=in5.shape[2:4], mode='nearest') fuse = torch.cat([in5, p4, p3, p2], dim=1) fuse_conv = self.fuse_conv(fuse) * 0.005 return [c5 + fuse_conv] def hard_sigmoid(x, slope=0.1666667, offset=0.5): return torch.clamp(slope * x + offset, 0.0, 1.0) class SEModule(nn.Module): def __init__(self, in_channels, reduction=4, name=''): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // reduction, kernel_size=1, stride=1, padding=0, bias=True) self.conv2 = nn.Conv2d(in_channels=in_channels // reduction, out_channels=in_channels, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) outputs = hard_sigmoid(outputs, slope=0.2, offset=0.5) return inputs * outputs class ResidualUnit(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, use_se, act=None, name=''): super(ResidualUnit, self).__init__() self.if_shortcut = stride == 1 and in_channels == out_channels self.if_se = use_se self.expand_conv = ConvBNLayer(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, if_act=True, act=act, name=name + '_expand') self.bottleneck_conv = ConvBNLayer(in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), groups=mid_channels, if_act=True, act=act, name=name + '_depthwise') if self.if_se: self.mid_se = SEModule(mid_channels, name=name + '_se') self.linear_conv = ConvBNLayer(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, if_act=False, act=None, name=name + '_linear') def forward(self, inputs): x = self.expand_conv(inputs) x = self.bottleneck_conv(x) if self.if_se: x = self.mid_se(x) x = self.linear_conv(x) if self.if_shortcut: x = torch.add(inputs, x) return x def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class MobileNetV3(nn.Module): def __init__(self, in_channels=3, model_name='large', scale=0.5, disable_se=False, **kwargs): """ the MobilenetV3 backbone network for detection module. Args: params(dict): the super parameters for build network """ super(MobileNetV3, self).__init__() self.disable_se = disable_se if model_name == 'large': cfg = [[3, 16, 16, False, 'relu', 1], [3, 64, 24, False, 'relu', 2], [3, 72, 24, False, 'relu', 1], [5, 72, 40, True, 'relu', 2], [5, 120, 40, True, 'relu', 1], [5, 120, 40, True, 'relu', 1], [3, 240, 80, False, 'hardswish', 2], [3, 200, 80, False, 'hardswish', 1], [3, 184, 80, False, 'hardswish', 1], [3, 184, 80, False, 'hardswish', 1], [3, 480, 112, True, 'hardswish', 1], [3, 672, 112, True, 'hardswish', 1], [5, 672, 160, True, 'hardswish', 2], [5, 960, 160, True, 'hardswish', 1], [5, 960, 160, True, 'hardswish', 1]] cls_ch_squeeze = 960 elif model_name == 'small': cfg = [[3, 16, 16, True, 'relu', 2], [3, 72, 24, False, 'relu', 2], [3, 88, 24, False, 'relu', 1], [5, 96, 40, True, 'hardswish', 2], [5, 240, 40, True, 'hardswish', 1], [5, 240, 40, True, 'hardswish', 1], [5, 120, 48, True, 'hardswish', 1], [5, 144, 48, True, 'hardswish', 1], [5, 288, 96, True, 'hardswish', 2], [5, 576, 96, True, 'hardswish', 1], [5, 576, 96, True, 'hardswish', 1]] cls_ch_squeeze = 576 else: raise NotImplementedError('mode[' + model_name + '_model] is not implemented!') supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] assert scale in supported_scale, 'supported scale are {} but input scale is {}'.format(supported_scale, scale) inplanes = 16 self.conv = ConvBNLayer(in_channels=in_channels, out_channels=make_divisible(inplanes * scale), kernel_size=3, stride=2, padding=1, groups=1, if_act=True, act='hardswish', name='conv1') self.stages = nn.ModuleList() self.out_channels = [] block_list = [] i = 0 inplanes = make_divisible(inplanes * scale) for k, exp, c, se, nl, s in cfg: se = se and not self.disable_se start_idx = 2 if model_name == 'large' else 0 if s == 2 and i > start_idx: self.out_channels.append(inplanes) self.stages.append(nn.Sequential(*block_list)) block_list = [] block_list.append(ResidualUnit(in_channels=inplanes, mid_channels=make_divisible(scale * exp), out_channels=make_divisible(scale * c), kernel_size=k, stride=s, use_se=se, act=nl, name='conv' + str(i + 2))) inplanes = make_divisible(scale * c) i += 1 block_list.append(ConvBNLayer(in_channels=inplanes, out_channels=make_divisible(scale * cls_ch_squeeze), kernel_size=1, stride=1, padding=0, groups=1, if_act=True, act='hardswish', name='conv_last')) self.stages.append(nn.Sequential(*block_list)) self.out_channels.append(make_divisible(scale * cls_ch_squeeze)) def forward(self, x): x = self.conv(x) out_list = [] for stage in self.stages: x = stage(x) out_list.append(x) return out_list DISABLE_SE = True INPUT_SIZE = 1, 3, 488, 488 IN_CHANNELS = INPUT_SIZE[1] MODEL_NAME = 'large' SCALE = 1.0 class PTNet(torch.nn.Module): def __init__(self, **kwargs): super(PTNet, self).__init__() self.backbone = pt_table_mobilenet_v3.MobileNetV3(in_channels=IN_CHANNELS, model_name=MODEL_NAME, scale=SCALE, disable_se=DISABLE_SE) head_in_channels = self.backbone.out_channels def forward(self, x, **kwargs): x = self.backbone(x) return x class DeformableConvV2(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, weight_attr=None, bias_attr=None, lr_scale=1, regularizer=None, skip_quant=False, dcn_bias_regularizer=None, dcn_bias_lr_scale=2.0): super(DeformableConvV2, self).__init__() self.offset_channel = 2 * kernel_size ** 2 * groups self.mask_channel = kernel_size ** 2 * groups if bias_attr: dcn_bias_attr = True else: dcn_bias_attr = False self.conv_dcn = torchvision.ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=(kernel_size - 1) // 2 * dilation, dilation=dilation, groups=groups // 2 if groups > 1 else 1, bias=dcn_bias_attr) self.conv_offset = nn.Conv2d(in_channels, groups * 3 * kernel_size ** 2, kernel_size, stride=stride, padding=(kernel_size - 1) // 2, bias=True) if skip_quant: self.conv_offset.skip_quant = True def forward(self, x): offset_mask = self.conv_offset(x) offset, mask = torch.split(offset_mask, split_size_or_sections=[self.offset_channel, self.mask_channel], dim=1) mask = torch.sigmoid(mask) y = self.conv_dcn(x, offset, mask=mask) return y class DropBlock(nn.Module): def __init__(self, block_size, keep_prob, name, data_format='NCHW'): """ DropBlock layer, see https://arxiv.org/abs/1810.12890 Args: block_size (int): block size keep_prob (int): keep probability name (str): layer name data_format (str): data format, NCHW or NHWC """ super(DropBlock, self).__init__() self.block_size = block_size self.keep_prob = keep_prob self.name = name self.data_format = data_format def forward(self, x): if not self.training or self.keep_prob == 1: return x else: gamma = (1.0 - self.keep_prob) / self.block_size ** 2 if self.data_format == 'NCHW': shape = x.shape[2:] else: shape = x.shape[1:3] for s in shape: gamma *= s / (s - self.block_size + 1) matrix = torch.rand(x.size(), dtype=x.dtype) < gamma mask_inv = F.max_pool2d(matrix, self.block_size, stride=1, padding=self.block_size // 2, data_format=self.data_format) mask = 1.0 - mask_inv y = x * mask * (mask.numel() / mask.sum()) return y class PPYOLODetBlockCSP(nn.Module): def __init__(self, cfg, ch_in, ch_out, act, norm_type, name, data_format='NCHW'): """ PPYOLODetBlockCSP layer Args: cfg (list): layer configs for this block ch_in (int): input channel ch_out (int): output channel act (str): default mish name (str): block name data_format (str): data format, NCHW or NHWC """ super(PPYOLODetBlockCSP, self).__init__() self.data_format = data_format self.conv1 = ConvBNLayer(ch_in, ch_out, 1, padding=0, act=act, norm_type=norm_type, name=name + '_left', data_format=data_format) self.conv2 = ConvBNLayer(ch_in, ch_out, 1, padding=0, act=act, norm_type=norm_type, name=name + '_right', data_format=data_format) self.conv3 = ConvBNLayer(ch_out * 2, ch_out * 2, 1, padding=0, act=act, norm_type=norm_type, name=name, data_format=data_format) self.conv_module = nn.Sequential() for idx, (layer_name, layer, args, kwargs) in enumerate(cfg): name = name.replace('.', '_') layer_name = layer_name.replace('.', '_') kwargs.update(name=name + '_' + layer_name, data_format=data_format) _layer = layer(*args, **kwargs) self.conv_module.add_module(layer_name, _layer) def forward(self, inputs): conv_left = self.conv1(inputs) conv_right = self.conv2(inputs) conv_left = self.conv_module(conv_left) if self.data_format == 'NCHW': conv = torch.cat([conv_left, conv_right], dim=1) else: conv = torch.cat([conv_left, conv_right], dim=-1) conv = self.conv3(conv) return conv, conv class SPP(nn.Module): def __init__(self, ch_in, ch_out, k, pool_size, norm_type, freeze_norm=False, name='', act='leaky', data_format='NCHW'): """ SPP layer, which consist of four pooling layer follwed by conv layer Args: ch_in (int): input channel of conv layer ch_out (int): output channel of conv layer k (int): kernel size of conv layer norm_type (str): batch norm type freeze_norm (bool): whether to freeze norm, default False name (str): layer name act (str): activation function data_format (str): data format, NCHW or NHWC """ super(SPP, self).__init__() self.pool = nn.ModuleList() self.data_format = data_format for i, size in enumerate(pool_size): self.pool.add_module('{}_pool_{}'.format(name, i), nn.MaxPool2d(kernel_size=size, stride=1, padding=size // 2, ceil_mode=False)) self.conv = ConvBNLayer(ch_in, ch_out, k, padding=k // 2, norm_type=norm_type, freeze_norm=freeze_norm, name=name, act=act, data_format=data_format) def forward(self, x): outs = [x] for i, pool in enumerate(self.pool): outs.append(pool(x)) if self.data_format == 'NCHW': y = torch.cat(outs, dim=1) else: y = torch.cat(outs, dim=-1) y = self.conv(y) return y class PPYOLOPAN(nn.Module): __shared__ = ['norm_type', 'data_format'] def __init__(self, in_channels=[512, 1024, 2048], norm_type='bn', data_format='NCHW', act='mish', conv_block_num=3, drop_block=False, block_size=3, keep_prob=1.0, spp=False): """ PPYOLOPAN layer with SPP, DropBlock and CSP connection. Args: in_channels (list): input channels for fpn norm_type (str): batch norm type, default bn data_format (str): data format, NCHW or NHWC act (str): activation function, default mish conv_block_num (int): conv block num of each pan block drop_block (bool): whether use DropBlock or not block_size (int): block size of DropBlock keep_prob (float): keep probability of DropBlock spp (bool): whether use spp or not """ super(PPYOLOPAN, self).__init__() assert len(in_channels) > 0, 'in_channels length should > 0' self.in_channels = in_channels self.num_blocks = len(in_channels) self.drop_block = drop_block self.block_size = block_size self.keep_prob = keep_prob self.spp = spp self.conv_block_num = conv_block_num self.data_format = data_format if self.drop_block: dropblock_cfg = [['dropblock', DropBlock, [self.block_size, self.keep_prob], dict()]] else: dropblock_cfg = [] self.fpn_blocks = nn.ModuleList() self.fpn_routes = nn.ModuleDict() self.fpn_routes_names = [] fpn_channels = [] for i, ch_in in enumerate(self.in_channels[::-1]): if i > 0: ch_in += 512 // 2 ** (i - 1) channel = 512 // 2 ** i base_cfg = [] for j in range(self.conv_block_num): base_cfg += [['{}_0'.format(j), ConvBNLayer, [channel, channel, 1], dict(padding=0, act=act, norm_type=norm_type)], ['{}_1'.format(j), ConvBNLayer, [channel, channel, 3], dict(padding=1, act=act, norm_type=norm_type)]] if i == 0 and self.spp: base_cfg[3] = ['spp', SPP, [channel * 4, channel, 1], dict(pool_size=[5, 9, 13], act=act, norm_type=norm_type)] cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:] name = 'fpn_{}'.format(i) self.fpn_blocks.add_module(name, PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name, data_format)) fpn_channels.append(channel * 2) if i < self.num_blocks - 1: name = 'fpn_transition_{}'.format(i) self.fpn_routes.add_module(name, ConvBNLayer(ch_in=channel * 2, ch_out=channel, filter_size=1, stride=1, padding=0, act=act, norm_type=norm_type, data_format=data_format, name=name)) self.fpn_routes_names.append(name) self.pan_blocks = nn.ModuleDict() self.pan_blocks_names = [] self.pan_routes = nn.ModuleDict() self.pan_routes_names = [] self._out_channels = [512 // 2 ** (self.num_blocks - 2)] for i in reversed(range(self.num_blocks - 1)): name = 'pan_transition_{}'.format(i) self.pan_routes.add_module(name, ConvBNLayer(ch_in=fpn_channels[i + 1], ch_out=fpn_channels[i + 1], filter_size=3, stride=2, padding=1, act=act, norm_type=norm_type, data_format=data_format, name=name)) route_name = [name] + self.pan_routes_names self.pan_routes_names = route_name base_cfg = [] ch_in = fpn_channels[i] + fpn_channels[i + 1] channel = 512 // 2 ** i for j in range(self.conv_block_num): base_cfg += [['{}_0'.format(j), ConvBNLayer, [channel, channel, 1], dict(padding=0, act=act, norm_type=norm_type)], ['{}_1'.format(j), ConvBNLayer, [channel, channel, 3], dict(padding=1, act=act, norm_type=norm_type)]] cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:] name = 'pan_{}'.format(i) self.pan_blocks.add_module(name, PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name, data_format)) pan_block_name = [name] + self.pan_blocks_names self.pan_blocks_names = pan_block_name self._out_channels.append(channel * 2) self._out_channels = self._out_channels[::-1] def forward(self, blocks, for_mot=False): assert len(blocks) == self.num_blocks blocks = blocks[::-1] fpn_feats = [] if for_mot: emb_feats = [] for i, (block, fpn_block) in enumerate(zip(blocks, self.fpn_blocks)): if i > 0: if self.data_format == 'NCHW': block = torch.cat([route, block], dim=1) else: block = torch.cat([route, block], dim=-1) route, tip = fpn_block(block) fpn_feats.append(tip) if for_mot: emb_feats.append(route) if i < self.num_blocks - 1: route = self.fpn_routes[self.fpn_routes_names[i]](route) route = F.interpolate(route, scale_factor=2.0) pan_feats = [fpn_feats[-1]] route = fpn_feats[self.num_blocks - 1] for i, pan_route_name, pan_block_name in zip(reversed(range(self.num_blocks - 1)), reversed(self.pan_routes_names), reversed(self.pan_blocks_names)): block = fpn_feats[i] route = self.pan_routes[pan_route_name](route) if self.data_format == 'NCHW': block = torch.cat([route, block], dim=1) else: block = torch.cat([route, block], dim=-1) route, tip = self.pan_blocks[pan_block_name](block) pan_feats.append(tip) if for_mot: return {'yolo_feats': pan_feats[::-1], 'emb_feats': emb_feats} else: return pan_feats[::-1] @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} class ResNet(nn.Module): def __init__(self, in_channels=3, layers=50, **kwargs): super(ResNet, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format(supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] self.conv1_1 = ConvBNLayer(in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, act='relu', name='conv1_1') self.conv1_2 = ConvBNLayer(in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', name='conv1_2') self.conv1_3 = ConvBNLayer(in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', name='conv1_3') self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.stages = nn.ModuleList() self.out_channels = [] if layers >= 50: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = 'res' + str(block + 2) + 'a' else: conv_name = 'res' + str(block + 2) + 'b' + str(i) else: conv_name = 'res' + str(block + 2) + chr(97 + i) bottleneck_block = BottleneckBlock(in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), bottleneck_block) self.out_channels.append(num_filters[block] * 4) self.stages.append(block_list) else: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False for i in range(depth[block]): conv_name = 'res' + str(block + 2) + chr(97 + i) basic_block = BasicBlock(in_channels=num_channels[block] if i == 0 else num_filters[block], out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), basic_block) self.out_channels.append(num_filters[block]) self.stages.append(block_list) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) out = [] for block in self.stages: y = block(y) out.append(y) return out def _de_sigmoid(x, eps=1e-07): x = torch.clip(x, eps, 1.0 / eps) x = torch.clip(1.0 / x - 1.0, eps, 1.0 / eps) x = -torch.log(x) return x class YOLOv3Head(nn.Module): __shared__ = ['num_classes', 'data_format'] __inject__ = ['loss'] def __init__(self, in_channels=[1024, 512, 256], anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], num_classes=80, loss='YOLOv3Loss', iou_aware=False, iou_aware_factor=0.4, data_format='NCHW'): """ Head for YOLOv3 network Args: num_classes (int): number of foreground classes anchors (list): anchors anchor_masks (list): anchor masks loss (object): YOLOv3Loss instance iou_aware (bool): whether to use iou_aware iou_aware_factor (float): iou aware factor data_format (str): data format, NCHW or NHWC """ super(YOLOv3Head, self).__init__() assert len(in_channels) > 0, 'in_channels length should > 0' self.in_channels = in_channels self.num_classes = num_classes self.loss = loss self.iou_aware = iou_aware self.iou_aware_factor = iou_aware_factor self.parse_anchor(anchors, anchor_masks) self.num_outputs = len(self.anchors) self.data_format = data_format self.yolo_outputs = nn.ModuleList() self.yolo_outputs_names = [] for i in range(len(self.anchors)): if self.iou_aware: num_filters = len(self.anchors[i]) * (self.num_classes + 6) else: num_filters = len(self.anchors[i]) * (self.num_classes + 5) name = 'yolo_output_{}'.format(i) conv = nn.Conv2d(in_channels=self.in_channels[i], out_channels=num_filters, kernel_size=1, stride=1, padding=0) conv.skip_quant = True self.yolo_outputs.add_module(name, conv) self.yolo_outputs_names.append(name) def parse_anchor(self, anchors, anchor_masks): self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks] self.mask_anchors = [] anchor_num = len(anchors) for masks in anchor_masks: self.mask_anchors.append([]) for mask in masks: assert mask < anchor_num, 'anchor mask index overflow' self.mask_anchors[-1].extend(anchors[mask]) def forward(self, feats, targets=None): assert len(feats) == len(self.anchors) yolo_outputs = [] for i, (feat, yolo_output) in enumerate(zip(feats, self.yolo_outputs)): yolo_output = yolo_output(feat) if self.data_format == 'NHWC': yolo_output = yolo_output.permute(0, 3, 1, 2) yolo_outputs.append(yolo_output) if self.training: return self.loss(yolo_outputs, targets, self.anchors) elif self.iou_aware: y = [] for i, out in enumerate(yolo_outputs): na = len(self.anchors[i]) ioup, x = out[:, 0:na, :, :], out[:, na:, :, :] b, c, h, w = x.shape no = c // na x = x.reshape((b, na, no, h * w)) ioup = ioup.reshape((b, na, 1, h * w)) obj = x[:, :, 4:5, :] ioup = F.sigmoid(ioup) obj = F.sigmoid(obj) obj_t = obj ** (1 - self.iou_aware_factor) * ioup ** self.iou_aware_factor obj_t = _de_sigmoid(obj_t) loc_t = x[:, :, :4, :] cls_t = x[:, :, 5:, :] y_t = torch.cat([loc_t, obj_t, cls_t], dim=2) y_t = y_t.reshape((b, c, h, w)) y.append(y_t) return y else: return yolo_outputs @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} class PPYOLOv2Base(nn.Module): def __init__(self, **kwargs): super(PPYOLOv2Base, self).__init__() self._init_params(**kwargs) self._init_network() self._initialize_weights() def _init_params(self, **kwargs): self.num_classes = kwargs.get('INIT_num_classes', 80) self.arch = kwargs.get('INIT_arch', 50) self.scale_x_y = kwargs.get('INIT_scale_x_y', 1.05) self.downsample_ratio = kwargs.get('INIT_downsample_ratio', 32) self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] self.anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) def _init_network(self): if self.arch == 50: self._init_network_resnet50() elif self.arch == 101: self._init_network_resnet101() else: raise ValueError('INIT_arch must be [50, 101], but got {}'.format(self.arch)) def _init_network_resnet50(self): self.backbone = ResNet(depth=50, ch_in=64, variant='d', lr_mult_list=[1.0, 1.0, 1.0, 1.0], groups=1, base_width=64, norm_type='bn', norm_decay=0, freeze_norm=False, freeze_at=-1, return_idx=[1, 2, 3], dcn_v2_stages=[3], num_stages=4, std_senet=False) self.neck = PPYOLOPAN(in_channels=[512, 1024, 2048], norm_type='bn', data_format='NCHW', act='mish', conv_block_num=3, drop_block=True, block_size=3, keep_prob=1.0, spp=True) self.head = YOLOv3Head(in_channels=[1024, 512, 256], anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], num_classes=self.num_classes, loss='YOLOv3Loss', iou_aware=True, iou_aware_factor=0.5, data_format='NCHW') def _init_network_resnet101(self): self.backbone = ResNet(depth=101, ch_in=64, variant='d', lr_mult_list=[1.0, 1.0, 1.0, 1.0], groups=1, base_width=64, norm_type='bn', norm_decay=0, freeze_norm=False, freeze_at=-1, return_idx=[1, 2, 3], dcn_v2_stages=[3], num_stages=4, std_senet=False) self.neck = PPYOLOPAN(in_channels=[512, 1024, 2048], norm_type='bn', data_format='NCHW', act='mish', conv_block_num=3, drop_block=False, block_size=3, keep_prob=1.0, spp=True) self.head = YOLOv3Head(in_channels=[1024, 512, 256], anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], num_classes=self.num_classes, loss='YOLOv3Loss', iou_aware=True, iou_aware_factor=0.5, data_format='NCHW') def forward(self, x): x = self.backbone(x) x = self.neck(x) x = self.head(x) return x def load_paddle_weights(self, weights_path): None with fluid.dygraph.guard(): para_state_dict, opti_state_dict = fluid.load_dygraph(weights_path) sd = para_state_dict for key, value in sd.items(): None for key, value in self.state_dict().items(): None for key, value in self.state_dict().items(): if key.endswith('num_batches_tracked'): continue ppname = key ppname = ppname.replace('.running_mean', '._mean') ppname = ppname.replace('.running_var', '._variance') if key.startswith('backbone.conv'): pass if key.startswith('backbone.res_layers'): ppname = ppname.replace('.res_layers', '') ppname = ppname.replace('.blocks', '') if key.startswith('neck.fpn_blocks'): ppname = ppname.replace('.fpn_blocks', '') ppname = ppname.replace('.fpn_', '.fpn.') ppname = ppname.replace('.conv_module.0_0', '.conv_module.0.0') ppname = ppname.replace('.conv_module.0_1', '.conv_module.0.1') ppname = ppname.replace('.conv_module.1_0', '.conv_module.1.0') ppname = ppname.replace('.conv_module.1_1', '.conv_module.1.1') ppname = ppname.replace('.conv_module.2_0', '.conv_module.2.0') ppname = ppname.replace('.conv_module.2_1', '.conv_module.2.1') if key.startswith('neck.fpn_routes'): ppname = ppname.replace('.fpn_routes', '') ppname = ppname.replace('.fpn_transition_', '.fpn_transition.') if key.startswith('neck.pan_blocks'): ppname = ppname.replace('.pan_blocks', '') ppname = ppname.replace('.pan_', '.pan.') ppname = ppname.replace('.conv_module.0_0', '.conv_module.0.0') ppname = ppname.replace('.conv_module.0_1', '.conv_module.0.1') ppname = ppname.replace('.conv_module.1_0', '.conv_module.1.0') ppname = ppname.replace('.conv_module.1_1', '.conv_module.1.1') ppname = ppname.replace('.conv_module.2_0', '.conv_module.2.0') ppname = ppname.replace('.conv_module.2_1', '.conv_module.2.1') if key.startswith('neck.pan_routes'): ppname = ppname.replace('.pan_routes', '') ppname = ppname.replace('.pan_transition_', '.pan_transition.') if key.startswith('head.yolo_outputs'): ppname = ppname.replace('head.yolo_outputs.yolo_output_', 'yolo_head.yolo_output.') try: weights = sd[ppname] self.state_dict()[key].copy_(torch.Tensor(weights)) except Exception as e: None None raise e None def load_pytorch_weights(self, weights_path): self.load_state_dict(torch.load(weights_path)) None def save_pytorch_weights(self, weights_path): try: torch.save(self.state_dict(), weights_path, _use_new_zipfile_serialization=False) except: torch.save(self.state_dict(), weights_path) None class DownSample(nn.Module): def __init__(self, ch_in, ch_out, filter_size=3, stride=2, padding=1, norm_type='bn', norm_decay=0.0, freeze_norm=False, data_format='NCHW'): """ downsample layer Args: ch_in (int): input channel ch_out (int): output channel filter_size (int): filter size, default 3 stride (int): stride, default 2 padding (int): padding size, default 1 norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. freeze_norm (bool): whether to freeze norm, default False data_format (str): data format, NCHW or NHWC """ super(DownSample, self).__init__() self.conv_bn_layer = ConvBNLayer(ch_in=ch_in, ch_out=ch_out, filter_size=filter_size, stride=stride, padding=padding, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.ch_out = ch_out def forward(self, inputs): out = self.conv_bn_layer(inputs) return out class Blocks(nn.Module): def __init__(self, block, ch_in, ch_out, count, name_adapter, stage_num, variant='b', groups=1, base_width=64, lr=1.0, norm_type='bn', norm_decay=0.0, freeze_norm=True, dcn_v2=False, std_senet=False): super(Blocks, self).__init__() self.blocks = nn.Sequential() for i in range(count): conv_name = name_adapter.fix_layer_warp_name(stage_num, count, i) layer = block(ch_in=ch_in, ch_out=ch_out, stride=2 if i == 0 and stage_num != 2 else 1, shortcut=False if i == 0 else True, variant=variant, groups=groups, base_width=base_width, lr=lr, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, dcn_v2=dcn_v2, std_senet=std_senet) self.blocks.add_module(conv_name, layer) if i == 0: ch_in = ch_out * block.expansion def forward(self, inputs): block_out = self.blocks(inputs) return block_out DarkNet_cfg = {(53): [1, 2, 8, 8, 4]} class DarkNet(nn.Module): __shared__ = ['norm_type', 'data_format'] def __init__(self, depth=53, freeze_at=-1, return_idx=[2, 3, 4], num_stages=5, norm_type='bn', norm_decay=0.0, freeze_norm=False, data_format='NCHW'): """ Darknet, see https://pjreddie.com/darknet/yolo/ Args: depth (int): depth of network freeze_at (int): freeze the backbone at which stage filter_size (int): filter size, default 3 return_idx (list): index of stages whose feature maps are returned norm_type (str): batch norm type, default bn norm_decay (str): decay for weight and bias of batch norm layer, default 0. data_format (str): data format, NCHW or NHWC """ super(DarkNet, self).__init__() self.depth = depth self.freeze_at = freeze_at self.return_idx = return_idx self.num_stages = num_stages self.stages = DarkNet_cfg[self.depth][0:num_stages] self.conv0 = ConvBNLayer(ch_in=3, ch_out=32, filter_size=3, stride=1, padding=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.downsample0 = DownSample(ch_in=32, ch_out=32 * 2, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self._out_channels = [] self.darknet_conv_block_list = nn.ModuleList() self.downsample_list = nn.ModuleDict() self.downsample_list_names = [] ch_in = [64, 128, 256, 512, 1024] for i, stage in enumerate(self.stages): name = 'stage_{}'.format(i) conv_block = Blocks(int(ch_in[i]), 32 * 2 ** i, stage, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format, name=name) self.darknet_conv_block_list.add_module(name, conv_block) if i in return_idx: self._out_channels.append(64 * 2 ** i) for i in range(num_stages - 1): down_name = 'stage_{}_downsample'.format(i) downsample = DownSample(ch_in=32 * 2 ** (i + 1), ch_out=32 * 2 ** (i + 2), norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, data_format=data_format) self.downsample_list.add_module(down_name, downsample) self.downsample_list_names.append(down_name) def forward(self, inputs): x = inputs out = self.conv0(x) out = self.downsample0(out) blocks = [] for i, conv_block_i in enumerate(self.darknet_conv_block_list): out = conv_block_i(out) if i in self.return_idx: blocks.append(out) if i < self.num_stages - 1: out = self.downsample_list[self.downsample_list_names[i]](out) return blocks class ConvNormLayer(nn.Module): def __init__(self, ch_in, ch_out, filter_size, stride, groups=1, norm_type='bn', norm_decay=0.0, norm_groups=32, lr_scale=1.0, freeze_norm=False, initializer=None): super(ConvNormLayer, self).__init__() assert norm_type in ['bn', 'sync_bn', 'gn'] bias_attr = False self.conv = nn.Conv2d(in_channels=ch_in, out_channels=ch_out, kernel_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, bias=bias_attr) norm_lr = 0.0 if freeze_norm else 1.0 if norm_type == 'bn': self.norm = nn.BatchNorm2d(ch_out) elif norm_type == 'sync_bn': self.norm = nn.SyncBatchNorm(ch_out) elif norm_type == 'gn': self.norm = nn.GroupNorm(num_groups=norm_groups, num_channels=ch_out, affine=bias_attr) def forward(self, inputs): out = self.conv(inputs) out = self.norm(out) return out class SELayer(nn.Module): def __init__(self, ch, reduction_ratio=16): super(SELayer, self).__init__() self.pool = nn.AdaptiveAvgPool2d(1) stdv = 1.0 / math.sqrt(ch) c_ = ch // reduction_ratio self.squeeze = nn.Linear(in_features=ch, out_features=c_, bias=True) stdv = 1.0 / math.sqrt(c_) self.extract = nn.Linear(in_features=c_, out_features=ch, bias=True) def forward(self, inputs): out = self.pool(inputs) out = out.squeeze(dim=3).squeeze(dim=2) out = self.squeeze(out) out = F.relu(out) out = self.extract(out) out = F.sigmoid(out) out = out.unsqueeze(dim=2).unsqueeze(dim=3) scale = out * inputs return scale class BottleNeck(nn.Module): expansion = 4 def __init__(self, ch_in, ch_out, stride, shortcut, variant='b', groups=1, base_width=4, lr=1.0, norm_type='bn', norm_decay=0.0, freeze_norm=True, dcn_v2=False, std_senet=False): super(BottleNeck, self).__init__() if variant == 'a': stride1, stride2 = stride, 1 else: stride1, stride2 = 1, stride width = int(ch_out * (base_width / 64.0)) * groups self.shortcut = shortcut if not shortcut: if variant == 'd' and stride == 2: self.short = nn.Sequential() self.short.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)) self.short.add_module('conv', ConvNormLayer(ch_in=ch_in, ch_out=ch_out * self.expansion, filter_size=1, stride=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr)) else: self.short = ConvNormLayer(ch_in=ch_in, ch_out=ch_out * self.expansion, filter_size=1, stride=stride, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) self.branch2a = ConvNormLayer(ch_in=ch_in, ch_out=width, filter_size=1, stride=stride1, groups=1, act='relu', norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) self.branch2b = ConvNormLayer(ch_in=width, ch_out=width, filter_size=3, stride=stride2, groups=groups, act='relu', norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr, dcn_v2=dcn_v2) self.branch2c = ConvNormLayer(ch_in=width, ch_out=ch_out * self.expansion, filter_size=1, stride=1, groups=1, norm_type=norm_type, norm_decay=norm_decay, freeze_norm=freeze_norm, lr=lr) self.std_senet = std_senet if self.std_senet: self.se = SELayer(ch_out * self.expansion) def forward(self, inputs): out = self.branch2a(inputs) out = self.branch2b(out) out = self.branch2c(out) if self.std_senet: out = self.se(out) if self.shortcut: short = inputs else: short = self.short(inputs) out = torch.add(out, short) out = F.relu(out) return out class NameAdapter(object): """Fix the backbones variable names for pretrained weight""" def __init__(self, model): super(NameAdapter, self).__init__() self.model = model @property def model_type(self): return getattr(self.model, '_model_type', '') @property def variant(self): return getattr(self.model, 'variant', '') def fix_conv_norm_name(self, name): if name == 'conv1': bn_name = 'bn_' + name else: bn_name = 'bn' + name[3:] if self.model_type == 'SEResNeXt': bn_name = name + '_bn' return bn_name def fix_shortcut_name(self, name): if self.model_type == 'SEResNeXt': name = 'conv' + name + '_prj' return name def fix_bottleneck_name(self, name): if self.model_type == 'SEResNeXt': conv_name1 = 'conv' + name + '_x1' conv_name2 = 'conv' + name + '_x2' conv_name3 = 'conv' + name + '_x3' shortcut_name = name else: conv_name1 = name + '_branch2a' conv_name2 = name + '_branch2b' conv_name3 = name + '_branch2c' shortcut_name = name + '_branch1' return conv_name1, conv_name2, conv_name3, shortcut_name def fix_basicblock_name(self, name): if self.model_type == 'SEResNeXt': conv_name1 = 'conv' + name + '_x1' conv_name2 = 'conv' + name + '_x2' shortcut_name = name else: conv_name1 = name + '_branch2a' conv_name2 = name + '_branch2b' shortcut_name = name + '_branch1' return conv_name1, conv_name2, shortcut_name def fix_layer_warp_name(self, stage_num, count, i): name = 'res' + str(stage_num) if count > 10 and stage_num == 4: if i == 0: conv_name = name + 'a' else: conv_name = name + 'b' + str(i) else: conv_name = name + chr(ord('a') + i) if self.model_type == 'SEResNeXt': conv_name = str(stage_num + 2) + '_' + str(i + 1) return conv_name def fix_c1_stage_name(self): return 'res_conv1' if self.model_type == 'ResNeXt' else 'conv1' class Res5Head(nn.Module): def __init__(self, depth=50): super(Res5Head, self).__init__() feat_in, feat_out = [1024, 512] if depth < 50: feat_in = 256 na = NameAdapter(self) block = BottleNeck if depth >= 50 else BasicBlock self.res5 = Blocks(block, feat_in, feat_out, count=3, name_adapter=na, stage_num=5) self.feat_out = feat_out if depth < 50 else feat_out * 4 def forward(self, roi_feat, stage=0): y = self.res5(roi_feat) return y class YoloDetBlock(nn.Module): def __init__(self, ch_in, channel, norm_type, freeze_norm=False, name='', data_format='NCHW'): """ YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767 Args: ch_in (int): input channel channel (int): base channel norm_type (str): batch norm type freeze_norm (bool): whether to freeze norm, default False name (str): layer name data_format (str): data format, NCHW or NHWC """ super(YoloDetBlock, self).__init__() self.ch_in = ch_in self.channel = channel assert channel % 2 == 0, 'channel {} cannot be divided by 2'.format(channel) conv_def = [['conv0', ch_in, channel, 1, '_0_0'], ['conv1', channel, channel * 2, 3, '_0_1'], ['conv2', channel * 2, channel, 1, '_1_0'], ['conv3', channel, channel * 2, 3, '_1_1'], ['route', channel * 2, channel, 1, '_2']] self.conv_module = nn.Sequential() for idx, (conv_name, ch_in, ch_out, filter_size, post_name) in enumerate(conv_def): self.conv_module.add_module(conv_name, ConvBNLayer(ch_in=ch_in, ch_out=ch_out, filter_size=filter_size, padding=(filter_size - 1) // 2, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name + post_name)) self.tip = ConvBNLayer(ch_in=channel, ch_out=channel * 2, filter_size=3, padding=1, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name + '.tip') def forward(self, inputs): route = self.conv_module(inputs) tip = self.tip(route) return route, tip def add_coord(x, data_format): b = x.size()[0] if data_format == 'NCHW': h, w = x.shape[2], x.shape[3] else: h, w = x.shape[1], x.shape[2] gx = torch.arange(w, dtype=x.dtype) / ((w - 1.0) * 2.0) - 1.0 gy = torch.arange(h, dtype=x.dtype) / ((h - 1.0) * 2.0) - 1.0 if data_format == 'NCHW': gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w]) gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w]) else: gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1]) gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1]) gx.stop_gradient = True gy.stop_gradient = True return gx, gy class CoordConv(nn.Module): def __init__(self, ch_in, ch_out, filter_size, padding, norm_type, freeze_norm=False, name='', data_format='NCHW'): """ CoordConv layer Args: ch_in (int): input channel ch_out (int): output channel filter_size (int): filter size, default 3 padding (int): padding size, default 0 norm_type (str): batch norm type, default bn name (str): layer name data_format (str): data format, NCHW or NHWC """ super(CoordConv, self).__init__() self.conv = ConvBNLayer(ch_in + 2, ch_out, filter_size=filter_size, padding=padding, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name) self.data_format = data_format def forward(self, x): gx, gy = add_coord(x, self.data_format) if self.data_format == 'NCHW': y = torch.cat([x, gx, gy], dim=1) else: y = torch.cat([x, gx, gy], dim=-1) y = self.conv(y) return y class PPYOLODetBlock(nn.Module): def __init__(self, cfg, name, data_format='NCHW'): """ PPYOLODetBlock layer Args: cfg (list): layer configs for this block name (str): block name data_format (str): data format, NCHW or NHWC """ super(PPYOLODetBlock, self).__init__() self.conv_module = nn.Sequential() for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]): kwargs.update(name='{}_{}'.format(name, conv_name), data_format=data_format) self.conv_module.add_module(conv_name, layer(*args, **kwargs)) conv_name, layer, args, kwargs = cfg[-1] kwargs.update(name='{}_{}'.format(name, conv_name), data_format=data_format) self.tip = layer(*args, **kwargs) def forward(self, inputs): route = self.conv_module(inputs) tip = self.tip(route) return route, tip class PPYOLOTinyDetBlock(nn.Module): def __init__(self, ch_in, ch_out, name, drop_block=False, block_size=3, keep_prob=1.0, data_format='NCHW'): """ PPYOLO Tiny DetBlock layer Args: ch_in (list): input channel number ch_out (list): output channel number name (str): block name drop_block: whether user DropBlock block_size: drop block size keep_prob: probability to keep block in DropBlock data_format (str): data format, NCHW or NHWC """ super(PPYOLOTinyDetBlock, self).__init__() self.drop_block_ = drop_block self.conv_module = nn.Sequential() cfgs = [['_0', ch_in, ch_out, 1, 1, 0, 1], ['_1', ch_out, ch_out, 5, 1, 2, ch_out], ['_', ch_out, ch_out, 1, 1, 0, 1], ['_route', ch_out, ch_out, 5, 1, 2, ch_out]] for cfg in cfgs: conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, groups = cfg self.conv_module.add_module(name + conv_name, ConvBNLayer(ch_in=conv_ch_in, ch_out=conv_ch_out, filter_size=filter_size, stride=stride, padding=padding, groups=groups, name=name + conv_name)) self.tip = ConvBNLayer(ch_in=ch_out, ch_out=ch_out, filter_size=1, stride=1, padding=0, groups=1, name=name + conv_name) if self.drop_block_: self.drop_block = DropBlock(block_size=block_size, keep_prob=keep_prob, data_format=data_format, name=name + '_dropblock') def forward(self, inputs): if self.drop_block_: inputs = self.drop_block(inputs) route = self.conv_module(inputs) tip = self.tip(route) return route, tip class YOLOv3FPN(nn.Module): __shared__ = ['norm_type', 'data_format'] def __init__(self, in_channels=[256, 512, 1024], norm_type='bn', freeze_norm=False, data_format='NCHW'): """ YOLOv3FPN layer Args: in_channels (list): input channels for fpn norm_type (str): batch norm type, default bn data_format (str): data format, NCHW or NHWC """ super(YOLOv3FPN, self).__init__() assert len(in_channels) > 0, 'in_channels length should > 0' self.in_channels = in_channels self.num_blocks = len(in_channels) self._out_channels = [] self.yolo_blocks = nn.ModuleDict() self.yolo_blocks_names = [] self.routes = nn.ModuleDict() self.routes_names = [] self.data_format = data_format for i in range(self.num_blocks): name = 'yolo_block_{}'.format(i) in_channel = in_channels[-i - 1] if i > 0: in_channel += 512 // 2 ** i yolo_block = YoloDetBlock(in_channel, channel=512 // 2 ** i, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name) self.yolo_blocks.add_module(name, yolo_block) self.yolo_blocks_names.append(name) self._out_channels.append(1024 // 2 ** i) if i < self.num_blocks - 1: name = 'yolo_transition_{}'.format(i) route = ConvBNLayer(ch_in=512 // 2 ** i, ch_out=256 // 2 ** i, filter_size=1, stride=1, padding=0, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name) self.routes.add_module(name, route) self.routes_names.append(name) def forward(self, blocks, for_mot=False): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] if for_mot: emb_feats = [] for i, block in enumerate(blocks): if i > 0: if self.data_format == 'NCHW': block = torch.cat([route, block], dim=1) else: block = torch.cat([route, block], dim=-1) route, tip = self.yolo_blocks[self.yolo_blocks_names[i]](block) yolo_feats.append(tip) if for_mot: emb_feats.append(route) if i < self.num_blocks - 1: route = self.routes[self.routes_names[i]](route) route = F.interpolate(route, scale_factor=2.0) if for_mot: return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats} else: return yolo_feats @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} class PPYOLOFPN(nn.Module): __shared__ = ['norm_type', 'data_format'] def __init__(self, in_channels=[512, 1024, 2048], norm_type='bn', freeze_norm=False, data_format='NCHW', coord_conv=False, conv_block_num=2, drop_block=False, block_size=3, keep_prob=1.0, spp=False): """ PPYOLOFPN layer Args: in_channels (list): input channels for fpn norm_type (str): batch norm type, default bn data_format (str): data format, NCHW or NHWC coord_conv (bool): whether use CoordConv or not conv_block_num (int): conv block num of each pan block drop_block (bool): whether use DropBlock or not block_size (int): block size of DropBlock keep_prob (float): keep probability of DropBlock spp (bool): whether use spp or not """ super(PPYOLOFPN, self).__init__() assert len(in_channels) > 0, 'in_channels length should > 0' self.in_channels = in_channels self.num_blocks = len(in_channels) self.coord_conv = coord_conv self.drop_block = drop_block self.block_size = block_size self.keep_prob = keep_prob self.spp = spp self.conv_block_num = conv_block_num self.data_format = data_format if self.coord_conv: ConvLayer = CoordConv else: ConvLayer = ConvBNLayer if self.drop_block: dropblock_cfg = [['dropblock', DropBlock, [self.block_size, self.keep_prob], dict()]] else: dropblock_cfg = [] self._out_channels = [] self.yolo_blocks = nn.ModuleDict() self.yolo_blocks_names = [] self.routes = nn.ModuleDict() self.routes_names = [] for i, ch_in in enumerate(self.in_channels[::-1]): if i > 0: ch_in += 512 // 2 ** i channel = 64 * 2 ** self.num_blocks // 2 ** i base_cfg = [] c_in, c_out = ch_in, channel for j in range(self.conv_block_num): base_cfg += [['conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1], dict(padding=0, norm_type=norm_type, freeze_norm=freeze_norm)], ['conv{}'.format(2 * j + 1), ConvBNLayer, [c_out, c_out * 2, 3], dict(padding=1, norm_type=norm_type, freeze_norm=freeze_norm)]] c_in, c_out = c_out * 2, c_out base_cfg += [['route', ConvLayer, [c_in, c_out, 1], dict(padding=0, norm_type=norm_type, freeze_norm=freeze_norm)], ['tip', ConvLayer, [c_out, c_out * 2, 3], dict(padding=1, norm_type=norm_type, freeze_norm=freeze_norm)]] if self.conv_block_num == 2: if i == 0: if self.spp: spp_cfg = [['spp', SPP, [channel * 4, channel, 1], dict(pool_size=[5, 9, 13], norm_type=norm_type, freeze_norm=freeze_norm)]] else: spp_cfg = [] cfg = base_cfg[0:3] + spp_cfg + base_cfg[3:4] + dropblock_cfg + base_cfg[4:6] else: cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6] elif self.conv_block_num == 0: if self.spp and i == 0: spp_cfg = [['spp', SPP, [c_in * 4, c_in, 1], dict(pool_size=[5, 9, 13], norm_type=norm_type, freeze_norm=freeze_norm)]] else: spp_cfg = [] cfg = spp_cfg + dropblock_cfg + base_cfg name = 'yolo_block_{}'.format(i) yolo_block = PPYOLODetBlock(cfg, name) self.yolo_blocks.add_module(name, yolo_block) self.yolo_blocks_names.append(name) self._out_channels.append(channel * 2) if i < self.num_blocks - 1: name = 'yolo_transition_{}'.format(i) route = ConvBNLayer(ch_in=channel, ch_out=256 // 2 ** i, filter_size=1, stride=1, padding=0, norm_type=norm_type, freeze_norm=freeze_norm, data_format=data_format, name=name) self.routes.add_module(name, route) self.routes_names.append(name) def forward(self, blocks, for_mot=False): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] if for_mot: emb_feats = [] for i, block in enumerate(blocks): if i > 0: if self.data_format == 'NCHW': block = torch.cat([route, block], dim=1) else: block = torch.cat([route, block], dim=-1) route, tip = self.yolo_blocks[self.yolo_blocks_names[i]](block) yolo_feats.append(tip) if for_mot: emb_feats.append(route) if i < self.num_blocks - 1: route = self.routes[self.routes_names[i]](route) route = F.interpolate(route, scale_factor=2.0, data_format=self.data_format) if for_mot: return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats} else: return yolo_feats @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} class PPYOLOTinyFPN(nn.Module): __shared__ = ['norm_type', 'data_format'] def __init__(self, in_channels=[80, 56, 34], detection_block_channels=[160, 128, 96], norm_type='bn', data_format='NCHW', **kwargs): """ PPYOLO Tiny FPN layer Args: in_channels (list): input channels for fpn detection_block_channels (list): channels in fpn norm_type (str): batch norm type, default bn data_format (str): data format, NCHW or NHWC kwargs: extra key-value pairs, such as parameter of DropBlock and spp """ super(PPYOLOTinyFPN, self).__init__() assert len(in_channels) > 0, 'in_channels length should > 0' self.in_channels = in_channels[::-1] assert len(detection_block_channels) > 0, 'detection_block_channelslength should > 0' self.detection_block_channels = detection_block_channels self.data_format = data_format self.num_blocks = len(in_channels) self.drop_block = kwargs.get('drop_block', False) self.block_size = kwargs.get('block_size', 3) self.keep_prob = kwargs.get('keep_prob', 1.0) self.spp_ = kwargs.get('spp', False) if self.spp_: self.spp = SPP(self.in_channels[0] * 4, self.in_channels[0], k=1, pool_size=[5, 9, 13], norm_type=norm_type, name='spp') self._out_channels = [] self.yolo_blocks = nn.ModuleDict() self.yolo_blocks_names = [] self.routes = nn.ModuleDict() self.routes_names = [] for i, (ch_in, ch_out) in enumerate(zip(self.in_channels, self.detection_block_channels)): name = 'yolo_block_{}'.format(i) if i > 0: ch_in += self.detection_block_channels[i - 1] yolo_block = PPYOLOTinyDetBlock(ch_in, ch_out, name, drop_block=self.drop_block, block_size=self.block_size, keep_prob=self.keep_prob) self.yolo_blocks.add_module(name, yolo_block) self.yolo_blocks_names.append(name) self._out_channels.append(ch_out) if i < self.num_blocks - 1: name = 'yolo_transition_{}'.format(i) route = ConvBNLayer(ch_in=ch_out, ch_out=ch_out, filter_size=1, stride=1, padding=0, norm_type=norm_type, data_format=data_format, name=name) self.routes.add_module(name, route) self.routes_names.append(name) def forward(self, blocks, for_mot=False): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] if for_mot: emb_feats = [] for i, block in enumerate(blocks): if i == 0 and self.spp_: block = self.spp(block) if i > 0: if self.data_format == 'NCHW': block = torch.cat([route, block], dim=1) else: block = torch.cat([route, block], dim=-1) route, tip = self.yolo_blocks[self.yolo_blocks_names[i]](block) yolo_feats.append(tip) if for_mot: emb_feats.append(route) if i < self.num_blocks - 1: route = self.routes[self.routes_names[i]](route) route = F.interpolate(route, scale_factor=2.0) if for_mot: return {'yolo_feats': yolo_feats, 'emb_feats': emb_feats} else: return yolo_feats @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape]} class LayoutLMPooler(Layer): def __init__(self, hidden_size, pool_act='tanh'): super(LayoutLMPooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() self.pool_act = pool_act def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) if self.pool_act == 'tanh': pooled_output = self.activation(pooled_output) return pooled_output class LayoutLMEmbeddings(Layer): """ Include embeddings from word, position and token_type embeddings """ def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.1, max_position_embeddings=512, max_2d_position_embeddings=1024, layer_norm_eps=1e-12, pad_token_id=0, type_vocab_size=16): super(LayoutLMEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(vocab_size, hidden_size, padding_idx=pad_token_id) self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) self.x_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) self.y_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) self.h_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) self.w_position_embeddings = nn.Embedding(max_2d_position_embeddings, hidden_size) self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps) self.dropout = nn.Dropout(hidden_dropout_prob) self.register_buffer('position_ids', torch.arange(max_position_embeddings).expand((1, -1))) def forward(self, input_ids, bbox=None, token_type_ids=None, position_ids=None): if position_ids is None: ones = torch.ones_like(input_ids, dtype=torch.long) seq_length = torch.cumsum(ones, dim=-1) position_ids = seq_length - ones position_ids.stop_gradient = True if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids, dtype=torch.long) word_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError('The :obj:`bbox`coordinate values should be within 0-1000 range.') from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = word_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutXLMPooler(Layer): def __init__(self, hidden_size, with_pool): super(LayoutXLMPooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = nn.Tanh() self.with_pool = with_pool def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) if self.with_pool == 'tanh': pooled_output = self.activation(pooled_output) return pooled_output class LayoutXLMEmbeddings(Layer): """ Include embeddings from word, position and token_type embeddings """ def __init__(self, config): super(LayoutXLMEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config['vocab_size'], config['hidden_size'], padding_idx=0) self.position_embeddings = nn.Embedding(config['max_position_embeddings'], config['hidden_size']) self.x_position_embeddings = nn.Embedding(config['max_2d_position_embeddings'], config['coordinate_size']) self.y_position_embeddings = nn.Embedding(config['max_2d_position_embeddings'], config['coordinate_size']) self.h_position_embeddings = nn.Embedding(config['max_2d_position_embeddings'], config['coordinate_size']) self.w_position_embeddings = nn.Embedding(config['max_2d_position_embeddings'], config['coordinate_size']) self.token_type_embeddings = nn.Embedding(config['type_vocab_size'], config['hidden_size']) self.LayerNorm = nn.LayerNorm(config['hidden_size'], eps=config['layer_norm_eps']) self.dropout = nn.Dropout(config['hidden_dropout_prob']) self.register_buffer('position_ids', torch.arange(config['max_position_embeddings']).expand((1, -1))) def _cal_spatial_position_embeddings(self, bbox): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError('The :obj:`bbox`coordinate values should be within 0-1000 range.') from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat([left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings], dim=-1) return spatial_position_embeddings def forward(self, input_ids, bbox=None, token_type_ids=None, position_ids=None): if position_ids is None: ones = torch.ones_like(input_ids, dtype=torch.long) seq_length = torch.cumsum(ones, dim=-1) position_ids = seq_length - ones position_ids.stop_gradient = True if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids, dtype=torch.long) input_embedings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError('The :obj:`bbox`coordinate values should be within 0-1000 range.') from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = input_embedings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutXLMSelfOutput(Layer): def __init__(self, config): super(LayoutXLMSelfOutput, self).__init__() self.dense = nn.Linear(config['hidden_size'], config['hidden_size']) self.LayerNorm = nn.LayerNorm(config['hidden_size'], eps=config['layer_norm_eps']) self.dropout = nn.Dropout(config['hidden_dropout_prob']) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LayoutXLMSelfAttention(Layer): def __init__(self, config): super(LayoutXLMSelfAttention, self).__init__() if config['hidden_size'] % config['num_attention_heads'] != 0 and not hasattr(config, 'embedding_size'): raise ValueError('The hidden size {} is not a multiple of the number of attention heads {}'.format(config['hidden_size'], config['num_attention_heads'])) self.fast_qkv = config['fast_qkv'] self.num_attention_heads = config['num_attention_heads'] self.attention_head_size = int(config['hidden_size'] / config['num_attention_heads']) self.all_head_size = self.num_attention_heads * self.attention_head_size self.has_relative_attention_bias = config['has_relative_attention_bias'] self.has_spatial_attention_bias = config['has_spatial_attention_bias'] if config['fast_qkv']: self.qkv_linear = nn.Linear(config['hidden_size'], 3 * self.all_head_size, bias=False) self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) else: self.query = nn.Linear(config['hidden_size'], self.all_head_size) self.key = nn.Linear(config['hidden_size'], self.all_head_size) self.value = nn.Linear(config['hidden_size'], self.all_head_size) self.dropout = nn.Dropout(config['attention_probs_dropout_prob']) def transpose_for_scores(self, x): new_x_shape = x.shape[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.reshape(new_x_shape) return x.permute(0, 2, 1, 3) def compute_qkv(self, hidden_states): if self.fast_qkv: qkv = self.qkv_linear(hidden_states) q, k, v = torch.chunk(qkv, 3, dim=-1) if q.ndimension() == self.q_bias.ndimension(): q = q + self.q_bias v = v + self.v_bias else: _sz = (1,) * (q.ndimension() - 1) + (-1,) q = q + self.q_bias.reshape(_sz) v = v + self.v_bias.reshape(_sz) else: q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) return q, k, v def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None): q, k, v = self.compute_qkv(hidden_states) query_layer = self.transpose_for_scores(q) key_layer = self.transpose_for_scores(k) value_layer = self.transpose_for_scores(v) query_layer = query_layer / math.sqrt(self.attention_head_size) attention_scores = torch.matmul(query_layer, key_layer.permute(0, 1, 3, 2)) if self.has_relative_attention_bias: attention_scores += rel_pos if self.has_spatial_attention_bias: attention_scores += rel_2d_pos attention_scores = attention_scores.float().masked_fill_(attention_mask, float('-inf')) attention_probs = F.softmax(attention_scores, dim=-1) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.shape[:-2] + (self.all_head_size,) context_layer = context_layer.reshape(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class LayoutXLMAttention(Layer): def __init__(self, config): super(LayoutXLMAttention, self).__init__() self.self = LayoutXLMSelfAttention(config) self.output = LayoutXLMSelfOutput(config) def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None): self_outputs = self.self(hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] return outputs class LayoutXLMIntermediate(Layer): def __init__(self, config): super(LayoutXLMIntermediate, self).__init__() self.dense = nn.Linear(config['hidden_size'], config['intermediate_size']) if config['hidden_act'] == 'gelu': self.intermediate_act_fn = nn.GELU() else: assert False, 'hidden_act is set as: {}, please check it..'.format(config['hidden_act']) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class LayoutXLMOutput(Layer): def __init__(self, config): super(LayoutXLMOutput, self).__init__() self.dense = nn.Linear(config['intermediate_size'], config['hidden_size']) self.LayerNorm = nn.LayerNorm(config['hidden_size'], eps=config['layer_norm_eps']) self.dropout = nn.Dropout(config['hidden_dropout_prob']) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LayoutXLMLayer(Layer): def __init__(self, config): super(LayoutXLMLayer, self).__init__() self.seq_len_dim = 1 self.attention = LayoutXLMAttention(config) self.add_cross_attention = False self.intermediate = LayoutXLMIntermediate(config) self.output = LayoutXLMOutput(config) def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, rel_pos=None, rel_2d_pos=None): self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] layer_output = self.feed_forward_chunk(attention_output) outputs = (layer_output,) + outputs return outputs def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): ret = 0 if bidirectional: num_buckets //= 2 ret += (relative_position > 0).long() * num_buckets n = torch.abs(relative_position) else: n = torch.max(-relative_position, torch.zeros_like(relative_position)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret class LayoutXLMEncoder(Layer): def __init__(self, config): super(LayoutXLMEncoder, self).__init__() self.config = config self.layer = nn.ModuleList([LayoutXLMLayer(config) for _ in range(config['num_hidden_layers'])]) self.has_relative_attention_bias = config['has_relative_attention_bias'] self.has_spatial_attention_bias = config['has_spatial_attention_bias'] if self.has_relative_attention_bias: self.rel_pos_bins = config['rel_pos_bins'] self.max_rel_pos = config['max_rel_pos'] self.rel_pos_onehot_size = config['rel_pos_bins'] self.rel_pos_bias = nn.Linear(self.rel_pos_onehot_size, config['num_attention_heads'], bias=False) if self.has_spatial_attention_bias: self.max_rel_2d_pos = config['max_rel_2d_pos'] self.rel_2d_pos_bins = config['rel_2d_pos_bins'] self.rel_2d_pos_onehot_size = config['rel_2d_pos_bins'] self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_onehot_size, config['num_attention_heads'], bias=False) self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_onehot_size, config['num_attention_heads'], bias=False) def _cal_1d_pos_emb(self, hidden_states, position_ids): rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) rel_pos = relative_position_bucket(rel_pos_mat, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos) rel_pos = torch.nn.functional.one_hot(rel_pos, num_classes=self.rel_pos_onehot_size).type_as(hidden_states.dtype) rel_pos = self.rel_pos_bias(rel_pos).permute(0, 3, 1, 2).contiguous() return rel_pos def _cal_2d_pos_emb(self, hidden_states, bbox): position_coord_x = bbox[:, :, 0] position_coord_y = bbox[:, :, 3] rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) rel_pos_x = relative_position_bucket(rel_pos_x_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos) rel_pos_y = relative_position_bucket(rel_pos_y_2d_mat, num_buckets=self.rel_2d_pos_bins, max_distance=self.max_rel_2d_pos) rel_pos_x = F.one_hot(rel_pos_x, num_classes=self.rel_2d_pos_onehot_size).type_as(hidden_states.dtype) rel_pos_y = F.one_hot(rel_pos_y, num_classes=self.rel_2d_pos_onehot_size).type_as(hidden_states.dtype) rel_pos_x = self.rel_pos_x_bias(rel_pos_x).permute(0, 3, 1, 2).contiguous() rel_pos_y = self.rel_pos_y_bias(rel_pos_y).permute(0, 3, 1, 2).contiguous() rel_2d_pos = rel_pos_x + rel_pos_y return rel_2d_pos def forward(self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, output_attentions=False, output_hidden_states=False, bbox=None, position_ids=None): all_hidden_states = () if output_hidden_states else None rel_pos = self._cal_1d_pos_emb(hidden_states, position_ids) if self.has_relative_attention_bias else None rel_2d_pos = self._cal_2d_pos_emb(hidden_states, bbox) if self.has_spatial_attention_bias else None hidden_save = dict() hidden_save['input_hidden_states'] = hidden_states for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None hidden_save['input_attention_mask'] = attention_mask hidden_save['input_layer_head_mask'] = layer_head_mask layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, rel_pos=rel_pos, rel_2d_pos=rel_2d_pos) hidden_states = layer_outputs[0] hidden_save['{}_data'.format(i)] = hidden_states return hidden_states, class Conv_BN_ReLU(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0): super(Conv_BN_ReLU, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_planes, momentum=0.1) self.relu = nn.ReLU() for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward(self, x): return self.relu(self.bn(self.conv(x))) class FPN(nn.Module): def __init__(self, in_channels, out_channels): super(FPN, self).__init__() self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0) self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.out_channels = out_channels * 4 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def _upsample(self, x, scale=1): return F.upsample(x, scale_factor=scale, mode='bilinear') def _upsample_add(self, x, y, scale=1): return F.upsample(x, scale_factor=scale, mode='bilinear') + y def forward(self, x): f2, f3, f4, f5 = x p5 = self.toplayer_(f5) f4 = self.latlayer1_(f4) p4 = self._upsample_add(p5, f4, 2) p4 = self.smooth1_(p4) f3 = self.latlayer2_(f3) p3 = self._upsample_add(p4, f3, 2) p3 = self.smooth2_(p3) f2 = self.latlayer3_(f2) p2 = self._upsample_add(p3, f2, 2) p2 = self.smooth3_(p2) p3 = self._upsample(p3, 2) p4 = self._upsample(p4, 4) p5 = self._upsample(p5, 8) fuse = torch.cat([p2, p3, p4, p5], dim=1) return fuse class LastLevelMaxPool(nn.Module): """ This module is used in the original FPN to generate a downsampled P6 feature from P5. """ def __init__(self): super(LastLevelMaxPool, self).__init__() self.num_levels = 1 self.in_feature = 'p5' def forward(self, x): return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] class CNNBlockBase(Module): def __init__(self, in_channels, out_channels, stride): """ The `__init__` method of any subclass should also contain these arguments. Args: in_channels (int): out_channels (int): stride (int): """ super(CNNBlockBase, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = stride def freeze(self): for p in self.parameters(): p.stop_gradient = True class FrozenBatchNorm(nn.BatchNorm2d): def __init__(self, num_channels): super(FrozenBatchNorm, self).__init__(num_channels) def get_norm(norm, out_channels): """ Args: norm (str or callable): either one of BN, SyncBN, FrozenBN, GN; or a callable that takes a channel number and returns the normalization layer as a nn.Layer. out_channels (int): out_channels Returns: nn.Layer or None: the normalization layer """ if norm is None: return None if isinstance(norm, str): if len(norm) == 0: return None norm = {'BN': nn.BatchNorm2d, 'SyncBN': nn.SyncBatchNorm, 'FrozenBN': FrozenBatchNorm}[norm] return norm(out_channels) class BasicStem(CNNBlockBase): """ The standard ResNet stem (layers before the first residual block), with a conv, relu and max_pool. """ def __init__(self, in_channels=3, out_channels=64, norm='BN'): """ Args: norm (str or callable): norm after the first conv layer. See :func:`layers.get_norm` for supported format. """ super(BasicStem, self).__init__(in_channels, out_channels, 4) self.in_channels = in_channels self.conv1 = Conv2d(in_channels, out_channels, kernel_size=7, stride=2, padding=3, bias=False, norm=get_norm(norm, out_channels)) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x class DeformBottleneckBlock(CNNBlockBase): """ Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv <deformconv>` in the 3x3 convolution. """ def __init__(self, in_channels, out_channels, *, bottleneck_channels, stride=1, num_groups=1, norm='BN', stride_in_1x1=False, dilation=1, deform_modulated=False, deform_num_groups=1): raise NotImplementedError def build_resnet_backbone(cfg, input_shape=None): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ if input_shape is None: ch = 3 else: ch = input_shape.channels norm = cfg.MODEL.RESNETS.NORM stem = BasicStem(in_channels=ch, out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS, norm=norm) freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT out_features = cfg.MODEL.RESNETS.OUT_FEATURES depth = cfg.MODEL.RESNETS.DEPTH num_groups = cfg.MODEL.RESNETS.NUM_GROUPS width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS assert res5_dilation in {1, 2}, 'res5_dilation cannot be {}.'.format(res5_dilation) num_blocks_per_stage = {(18): [2, 2, 2, 2], (34): [3, 4, 6, 3], (50): [3, 4, 6, 3], (101): [3, 4, 23, 3], (152): [3, 8, 36, 3]}[depth] if depth in [18, 34]: assert out_channels == 64, 'Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34' assert not any(deform_on_per_stage), 'MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34' assert res5_dilation == 1, 'Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34' assert num_groups == 1, 'Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34' stages = [] for idx, stage_idx in enumerate(range(2, 6)): dilation = res5_dilation if stage_idx == 5 else 1 first_stride = 1 if idx == 0 or stage_idx == 5 and dilation == 2 else 2 stage_kargs = {'num_blocks': num_blocks_per_stage[idx], 'stride_per_block': [first_stride] + [1] * (num_blocks_per_stage[idx] - 1), 'in_channels': in_channels, 'out_channels': out_channels, 'norm': norm} if depth in [18, 34]: stage_kargs['block_class'] = BasicBlock else: stage_kargs['bottleneck_channels'] = bottleneck_channels stage_kargs['stride_in_1x1'] = stride_in_1x1 stage_kargs['dilation'] = dilation stage_kargs['num_groups'] = num_groups if deform_on_per_stage[idx]: stage_kargs['block_class'] = DeformBottleneckBlock stage_kargs['deform_modulated'] = deform_modulated stage_kargs['deform_num_groups'] = deform_num_groups else: stage_kargs['block_class'] = BottleneckBlock blocks = ResNet.make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 stages.append(blocks) return ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at) def build_resnet_fpn_backbone(cfg, input_shape=None): bottom_up = build_resnet_backbone(cfg, input_shape) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN(bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), fuse_type=cfg.MODEL.FPN.FUSE_TYPE) return backbone def read_config(fp=None): if fp is None: dir_name = os.path.dirname(os.path.abspath(__file__)) fp = os.path.join(dir_name, 'visual_backbone.yaml') with open(fp, 'r') as fin: yacs_config = _yacs_config cfg = yacs_config.CfgNode().load_cfg(fin) cfg.freeze() return cfg class VisualBackbone(Module): def __init__(self, config): super(VisualBackbone, self).__init__() self.cfg = read_config() self.backbone = build_resnet_fpn_backbone(self.cfg) assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD) num_channels = len(self.cfg.MODEL.PIXEL_MEAN) self.register_buffer('pixel_mean', torch.as_tensor(self.cfg.MODEL.PIXEL_MEAN).reshape([num_channels, 1, 1])) self.register_buffer('pixel_std', torch.as_tensor(self.cfg.MODEL.PIXEL_STD).reshape([num_channels, 1, 1])) self.out_feature_key = 'p2' self.pool = nn.AdaptiveAvgPool2d(config['image_feature_pool_shape'][:2]) if len(config['image_feature_pool_shape']) == 2: config['image_feature_pool_shape'].append(self.backbone.output_shape()[self.out_feature_key].channels) assert self.backbone.output_shape()[self.out_feature_key].channels == config['image_feature_pool_shape'][2] def forward(self, images): images_input = (torch.as_tensor(images) - self.pixel_mean) / self.pixel_std features = self.backbone(images_input) features = features[self.out_feature_key] features = self.pool(features).flatten(start_dim=2).transpose([0, 2, 1]) return features class BiaffineAttention(Layer): """Implements a biaffine attention operator for binary relation classification.""" def __init__(self, in_features, out_features): super(BiaffineAttention, self).__init__() self.in_features = in_features self.out_features = out_features self.bilinear = nn.Bilinear(in_features, in_features, out_features, bias=False) self.linear = nn.Linear(2 * in_features, out_features) def forward(self, x_1, x_2): return self.bilinear(x_1, x_2) + self.linear(torch.cat((x_1, x_2), dim=-1)) class REDecoder(Layer): def __init__(self, hidden_size=768, hidden_dropout_prob=0.1): super(REDecoder, self).__init__() self.entity_emb = nn.Embedding(3, hidden_size) projection = nn.Sequential(nn.Linear(hidden_size * 2, hidden_size), nn.ReLU(), nn.Dropout(hidden_dropout_prob), nn.Linear(hidden_size, hidden_size // 2), nn.ReLU(), nn.Dropout(hidden_dropout_prob)) self.ffnn_head = copy.deepcopy(projection) self.ffnn_tail = copy.deepcopy(projection) self.rel_classifier = BiaffineAttention(hidden_size // 2, 2) def build_relation(self, relations, entities): batch_size = len(relations) new_relations = [] for b in range(batch_size): if len(entities[b]['start']) <= 2: entities[b] = {'end': [1, 1], 'label': [0, 0], 'start': [0, 0]} all_possible_relations = set([(i, j) for i in range(len(entities[b]['label'])) for j in range(len(entities[b]['label'])) if entities[b]['label'][i] == 1 and entities[b]['label'][j] == 2]) if len(all_possible_relations) == 0: all_possible_relations = {(0, 1)} positive_relations = set(list(zip(relations[b]['head'], relations[b]['tail']))) negative_relations = all_possible_relations - positive_relations positive_relations = set([i for i in positive_relations if i in all_possible_relations]) reordered_relations = list(positive_relations) + list(negative_relations) relation_per_doc = {'head': [i[0] for i in reordered_relations], 'tail': [i[1] for i in reordered_relations], 'label': [1] * len(positive_relations) + [0] * (len(reordered_relations) - len(positive_relations))} assert len(relation_per_doc['head']) != 0 new_relations.append(relation_per_doc) return new_relations, entities def get_predicted_relations(self, logits, relations, entities): pred_relations = [] for i, pred_label in enumerate(logits.argmax(-1)): if pred_label != 1: continue rel = {} rel['head_id'] = relations['head'][i] rel['head'] = entities['start'][rel['head_id']], entities['end'][rel['head_id']] rel['head_type'] = entities['label'][rel['head_id']] rel['tail_id'] = relations['tail'][i] rel['tail'] = entities['start'][rel['tail_id']], entities['end'][rel['tail_id']] rel['tail_type'] = entities['label'][rel['tail_id']] rel['type'] = 1 pred_relations.append(rel) return pred_relations def forward(self, hidden_states, entities, relations): batch_size, max_n_words, context_dim = hidden_states.shape relations, entities = self.build_relation(relations, entities) loss = 0 all_pred_relations = [] for b in range(batch_size): head_entities = torch.as_tensor(relations[b]['head']) tail_entities = torch.as_tensor(relations[b]['tail']) relation_labels = torch.as_tensor(relations[b]['label'], dtype=torch.long) entities_start_index = torch.as_tensor(entities[b]['start']) entities_labels = torch.as_tensor(entities[b]['label']) head_index = entities_start_index[head_entities] head_label = entities_labels[head_entities] head_label_repr = self.entity_emb(head_label) tail_index = entities_start_index[tail_entities] tail_label = entities_labels[tail_entities] tail_label_repr = self.entity_emb(tail_label) tmp_hidden_states = hidden_states[b][head_index] if len(tmp_hidden_states.shape) == 1: tmp_hidden_states = torch.unsqueeze(tmp_hidden_states, dim=0) head_repr = torch.cat((tmp_hidden_states, head_label_repr), dim=-1) tmp_hidden_states = hidden_states[b][tail_index] if len(tmp_hidden_states.shape) == 1: tmp_hidden_states = torch.unsqueeze(tmp_hidden_states, dim=0) tail_repr = torch.cat((tmp_hidden_states, tail_label_repr), dim=-1) heads = self.ffnn_head(head_repr) tails = self.ffnn_tail(tail_repr) logits = self.rel_classifier(heads, tails) loss = None pred_relations = self.get_predicted_relations(logits, relations[b], entities[b]) all_pred_relations.append(pred_relations) return loss, all_pred_relations class Conv2d(nn.Conv2d): def __init__(self, *args, **kwargs): norm = kwargs.pop('norm', None) activation = kwargs.pop('activation', None) super(Conv2d, self).__init__(*args, **kwargs) self.norm = norm self.activation = activation def forward(self, x): x = super(Conv2d, self).forward(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x class ShapeSpec(namedtuple('_ShapeSpec', ['channels', 'height', 'width', 'stride'])): def __new__(cls, channels=None, height=None, width=None, stride=None): return super().__new__(cls, channels, height, width, stride) class Backbone(nn.Module): def __init__(self): super(Backbone, self).__init__() @abstractmethod def forward(self, *args): pass @property def size_divisibility(self) ->int: return 0 def output_shape(self): return {name: ShapeSpec(channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]) for name in self._out_features} COMMUNITY_MODEL_PREFIX = 'https://bj.bcebos.com/paddlenlp/models/transformers/community/' class InitTrackerMeta(type(Layer)): """ This metaclass wraps the `__init__` method of a class to add `init_config` attribute for instances of that class, and `init_config` use a dict to track the initial configuration. If the class has `_wrap_init` method, it would be hooked after `__init__` and called as `_wrap_init(self, init_fn, init_args)`. Since InitTrackerMeta would be used as metaclass for pretrained model classes, which always are Layer and `type(Layer)` is not `type`, thus use `type(Layer)` rather than `type` as base class for it to avoid inheritance metaclass conflicts. """ def __init__(cls, name, bases, attrs): init_func = cls.__init__ help_func = getattr(cls, '_wrap_init', None) if '__init__' in attrs else None cls.__init__ = InitTrackerMeta.init_and_track_conf(init_func, help_func) super(InitTrackerMeta, cls).__init__(name, bases, attrs) @staticmethod def init_and_track_conf(init_func, help_func=None): """ wraps `init_func` which is `__init__` method of a class to add `init_config` attribute for instances of that class. Args: init_func (callable): It should be the `__init__` method of a class. help_func (callable, optional): If provided, it would be hooked after `init_func` and called as `_wrap_init(self, init_func, *init_args, **init_args)`. Default None. Returns: function: the wrapped function """ @functools.wraps(init_func) def __impl__(self, *args, **kwargs): init_func(self, *args, **kwargs) if help_func: help_func(self, init_func, *args, **kwargs) self.init_config = kwargs if args: kwargs['init_args'] = args kwargs['init_class'] = self.__class__.__name__ return __impl__ MODEL_HOME = '/root/.paddlenlp/models' def fn_args_to_dict(func, *args, **kwargs): """ Inspect function `func` and its arguments for running, and extract a dict mapping between argument names and keys. """ if hasattr(inspect, 'getfullargspec'): spec_args, spec_varargs, spec_varkw, spec_defaults, _, _, _ = inspect.getfullargspec(func) else: spec_args, spec_varargs, spec_varkw, spec_defaults = inspect.getargspec(func) init_dict = dict(zip(spec_args, args)) kwargs_dict = dict(zip(spec_args[-len(spec_defaults):], spec_defaults)) if spec_defaults else {} kwargs_dict.update(kwargs) init_dict.update(kwargs_dict) return init_dict def _load_paddle_layoutxlm_weights(torch_model, weights_path): with paddle.fluid.dygraph.guard(): load_layer_state_dict, opti_state_dict = paddle.fluid.load_dygraph(weights_path) load_layer = [] not_load_layer = [] torch_state_dict = torch_model.state_dict() for k, v in load_layer_state_dict.items(): ppname = name = k if ppname.endswith('._mean'): name = ppname.replace('._mean', '.running_mean') if ppname.endswith('._variance'): name = ppname.replace('._variance', '.running_var') load_layer.append(name) cur_weights = torch_state_dict[name] cur_w_shape = cur_weights.shape if ppname.endswith('.weight'): if len(v.shape) == len(cur_w_shape) == 2 and v.shape[0] == cur_w_shape[1] and v.shape[1] == cur_w_shape[0]: if ppname.startswith('layoutxlm.embeddings.'): torch_state_dict[name].copy_(torch.Tensor(v)) else: torch_state_dict[name].copy_(torch.Tensor(v.T)) else: torch_state_dict[name].copy_(torch.Tensor(v)) else: torch_state_dict[name].copy_(torch.Tensor(v)) None def _load_torch_weights(torch_model, weights_path): torch_model.load_state_dict(torch.load(weights_path)) None def load_layoutxlm_weights(torch_model, weights_path): if weights_path.endswith('.pdparams'): _load_paddle_layoutxlm_weights(torch_model, weights_path) else: _load_torch_weights(torch_model, weights_path) logger_initialized = {} @functools.lru_cache() def get_logger(name='root', log_file=None, log_level=logging.DEBUG): """Initialize and get a logger by name. If the logger has not been initialized, this method will initialize the logger by adding one or two handlers, otherwise the initialized logger will be directly returned. During initialization, a StreamHandler will always be added. If `log_file` is specified a FileHandler will also be added. Args: name (str): Logger name. log_file (str | None): The log filename. If specified, a FileHandler will be added to the logger. log_level (int): The logger level. Note that only the process of rank 0 is affected, and other processes will set the level to "Error" thus be silent most of the time. Returns: logging.Logger: The expected logger. """ logger = logging.getLogger(name) if name in logger_initialized: return logger for logger_name in logger_initialized: if name.startswith(logger_name): return logger formatter = logging.Formatter('[%(asctime)s] %(name)s %(levelname)s: %(message)s', datefmt='%Y/%m/%d %H:%M:%S') stream_handler = logging.StreamHandler(stream=sys.stdout) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) if log_file is not None and dist.get_rank() == 0: log_file_folder = os.path.split(log_file)[0] os.makedirs(log_file_folder, exist_ok=True) file_handler = logging.FileHandler(log_file, 'a') file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger_initialized[name] = True return logger logger = get_logger() def build_backbone(config, model_type): if model_type == 'det': support_dict = ['MobileNetV3', 'ResNet', 'ResNet_vd', 'ResNet_SAST'] elif model_type == 'rec' or model_type == 'cls': support_dict = ['MobileNetV1Enhance', 'MobileNetV3', 'ResNet', 'ResNetFPN', 'MTB', 'ResNet31', 'SVTRNet', 'ViTSTR'] elif model_type == 'e2e': support_dict = ['ResNet'] elif model_type == 'table': support_dict = ['ResNet', 'MobileNetV3'] else: raise NotImplementedError module_name = config.pop('name') assert module_name in support_dict, Exception('when model typs is {}, backbone only support {}'.format(model_type, support_dict)) module_class = eval(module_name)(**config) return module_class def build_head(config, **kwargs): support_dict = ['DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer', 'TableAttentionHead', 'SARHead', 'FCEHead'] module_name = config.pop('name') assert module_name in support_dict, Exception('head only support {}'.format(support_dict)) None module_class = eval(module_name)(**config, **kwargs) return module_class def build_neck(config): support_dict = ['FPN', 'DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN', 'TableFPN', 'RSEFPN', 'LKPAN', 'FCEFPN'] module_name = config.pop('name') assert module_name in support_dict, Exception('neck only support {}'.format(support_dict)) module_class = eval(module_name)(**config) return module_class def build_transform(config): support_dict = ['TPS', 'STN_ON'] module_name = config.pop('name') assert module_name in support_dict, Exception('transform only support {}'.format(support_dict)) module_class = eval(module_name)(**config) return module_class class BaseModel(nn.Module): def __init__(self, config, **kwargs): """ the module for OCR. args: config (dict): the super parameters for module. """ super(BaseModel, self).__init__() in_channels = config.get('in_channels', 3) model_type = config['model_type'] if 'Transform' not in config or config['Transform'] is None: self.use_transform = False else: self.use_transform = True config['Transform']['in_channels'] = in_channels self.transform = build_transform(config['Transform']) in_channels = self.transform.out_channels config['Backbone']['in_channels'] = in_channels self.backbone = build_backbone(config['Backbone'], model_type) in_channels = self.backbone.out_channels if 'Neck' not in config or config['Neck'] is None: self.use_neck = False else: self.use_neck = True config['Neck']['in_channels'] = in_channels self.neck = build_neck(config['Neck']) in_channels = self.neck.out_channels if 'Head' not in config or config['Head'] is None: self.use_head = False else: self.use_head = True config['Head']['in_channels'] = in_channels self.head = build_head(config['Head'], **kwargs) self.return_all_feats = config.get('return_all_feats', False) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) def forward(self, x): y = dict() if self.use_transform: x = self.transform(x) x = self.backbone(x) y['backbone_out'] = x if self.use_neck: x = self.neck(x) y['neck_out'] = x if self.use_head: x = self.head(x) if isinstance(x, dict) and 'ctc_nect' in x.keys(): y['neck_out'] = x['ctc_neck'] y['head_out'] = x elif isinstance(x, dict): y.update(x) else: y['head_out'] = x if self.return_all_feats: if self.training: return y else: return {'head_out': y['head_out']} else: return x class ResNet_vd(nn.Module): def __init__(self, in_channels=3, layers=50, dcn_stage=None, out_indices=None, **kwargs): super(ResNet_vd, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format(supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512] self.dcn_stage = dcn_stage if dcn_stage is not None else [False, False, False, False] self.out_indices = out_indices if out_indices is not None else [0, 1, 2, 3] self.conv1_1 = ConvBNLayer(in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, act='relu', name='conv1_1') self.conv1_2 = ConvBNLayer(in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', name='conv1_2') self.conv1_3 = ConvBNLayer(in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', name='conv1_3') self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.stages = nn.ModuleList() self.out_channels = [] if layers >= 50: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False is_dcn = self.dcn_stage[block] for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = 'res' + str(block + 2) + 'a' else: conv_name = 'res' + str(block + 2) + 'b' + str(i) else: conv_name = 'res' + str(block + 2) + chr(97 + i) bottleneck_block = BottleneckBlock(in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name, is_dcn=is_dcn) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), bottleneck_block) if block in self.out_indices: self.out_channels.append(num_filters[block] * 4) self.stages.append(block_list) else: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False for i in range(depth[block]): conv_name = 'res' + str(block + 2) + chr(97 + i) basic_block = BasicBlock(in_channels=num_channels[block] if i == 0 else num_filters[block], out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), basic_block) if block in self.out_indices: self.out_channels.append(num_filters[block]) self.stages.append(block_list) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) out = [] for i, block in enumerate(self.stages): y = block(y) if i in self.out_indices: out.append(y) return out class ResNet_SAST(nn.Module): def __init__(self, in_channels=3, layers=50, **kwargs): super(ResNet_SAST, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format(supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] num_channels = [64, 256, 512, 1024, 2048] if layers >= 50 else [64, 64, 128, 256] num_filters = [64, 128, 256, 512, 512] self.conv1_1 = ConvBNLayer(in_channels=in_channels, out_channels=32, kernel_size=3, stride=2, act='relu', name='conv1_1') self.conv1_2 = ConvBNLayer(in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu', name='conv1_2') self.conv1_3 = ConvBNLayer(in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu', name='conv1_3') self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.stages = nn.ModuleList() self.out_channels = [3, 64] if layers >= 50: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = 'res' + str(block + 2) + 'a' else: conv_name = 'res' + str(block + 2) + 'b' + str(i) else: conv_name = 'res' + str(block + 2) + chr(97 + i) bottleneck_block = BottleneckBlock(in_channels=num_channels[block] if i == 0 else num_filters[block] * 4, out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), bottleneck_block) self.out_channels.append(num_filters[block] * 4) self.stages.append(block_list) else: for block in range(len(depth)): block_list = nn.Sequential() shortcut = False for i in range(depth[block]): conv_name = 'res' + str(block + 2) + chr(97 + i) basic_block = BasicBlock(in_channels=num_channels[block] if i == 0 else num_filters[block], out_channels=num_filters[block], stride=2 if i == 0 and block != 0 else 1, shortcut=shortcut, if_first=block == i == 0, name=conv_name) shortcut = True block_list.add_module('bb_%d_%d' % (block, i), basic_block) self.out_channels.append(num_filters[block]) self.stages.append(block_list) def forward(self, inputs): out = [inputs] y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) out.append(y) y = self.pool2d_max(y) for block in self.stages: y = block(y) out.append(y) return out class DepthwiseSeparable(nn.Module): def __init__(self, num_channels, num_filters1, num_filters2, num_groups, stride, scale, dw_size=3, padding=1, use_se=False): super(DepthwiseSeparable, self).__init__() self.use_se = use_se self._depthwise_conv = ConvBNLayer(num_channels=num_channels, num_filters=int(num_filters1 * scale), filter_size=dw_size, stride=stride, padding=padding, num_groups=int(num_groups * scale)) if use_se: self._se = SEModule(int(num_filters1 * scale)) self._pointwise_conv = ConvBNLayer(num_channels=int(num_filters1 * scale), filter_size=1, num_filters=int(num_filters2 * scale), stride=1, padding=0) def forward(self, inputs): y = self._depthwise_conv(inputs) if self.use_se: y = self._se(y) y = self._pointwise_conv(y) return y class MobileNetV1Enhance(nn.Module): def __init__(self, in_channels=3, scale=0.5, last_conv_stride=1, last_pool_type='max', **kwargs): super().__init__() self.scale = scale self.block_list = [] self.conv1 = ConvBNLayer(num_channels=in_channels, filter_size=3, channels=3, num_filters=int(32 * scale), stride=2, padding=1) conv2_1 = DepthwiseSeparable(num_channels=int(32 * scale), num_filters1=32, num_filters2=64, num_groups=32, stride=1, scale=scale) self.block_list.append(conv2_1) conv2_2 = DepthwiseSeparable(num_channels=int(64 * scale), num_filters1=64, num_filters2=128, num_groups=64, stride=1, scale=scale) self.block_list.append(conv2_2) conv3_1 = DepthwiseSeparable(num_channels=int(128 * scale), num_filters1=128, num_filters2=128, num_groups=128, stride=1, scale=scale) self.block_list.append(conv3_1) conv3_2 = DepthwiseSeparable(num_channels=int(128 * scale), num_filters1=128, num_filters2=256, num_groups=128, stride=(2, 1), scale=scale) self.block_list.append(conv3_2) conv4_1 = DepthwiseSeparable(num_channels=int(256 * scale), num_filters1=256, num_filters2=256, num_groups=256, stride=1, scale=scale) self.block_list.append(conv4_1) conv4_2 = DepthwiseSeparable(num_channels=int(256 * scale), num_filters1=256, num_filters2=512, num_groups=256, stride=(2, 1), scale=scale) self.block_list.append(conv4_2) for _ in range(5): conv5 = DepthwiseSeparable(num_channels=int(512 * scale), num_filters1=512, num_filters2=512, num_groups=512, stride=1, dw_size=5, padding=2, scale=scale, use_se=False) self.block_list.append(conv5) conv5_6 = DepthwiseSeparable(num_channels=int(512 * scale), num_filters1=512, num_filters2=1024, num_groups=512, stride=(2, 1), dw_size=5, padding=2, scale=scale, use_se=True) self.block_list.append(conv5_6) conv6 = DepthwiseSeparable(num_channels=int(1024 * scale), num_filters1=1024, num_filters2=1024, num_groups=1024, stride=last_conv_stride, dw_size=5, padding=2, use_se=True, scale=scale) self.block_list.append(conv6) self.block_list = nn.Sequential(*self.block_list) if last_pool_type == 'avg': self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) else: self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.out_channels = int(1024 * scale) def forward(self, inputs): y = self.conv1(inputs) y = self.block_list(y) y = self.pool(y) return y class MTB(nn.Module): def __init__(self, cnn_num, in_channels): super(MTB, self).__init__() self.block = nn.Sequential() self.out_channels = in_channels self.cnn_num = cnn_num if self.cnn_num == 2: for i in range(self.cnn_num): self.block.add_module('conv_{}'.format(i), nn.Conv2d(in_channels=in_channels if i == 0 else 32 * 2 ** (i - 1), out_channels=32 * 2 ** i, kernel_size=3, stride=2, padding=1)) self.block.add_module('relu_{}'.format(i), nn.ReLU()) self.block.add_module('bn_{}'.format(i), nn.BatchNorm2d(32 * 2 ** i)) def forward(self, images): x = self.block(images) if self.cnn_num == 2: x = x.permute(0, 3, 2, 1) x_shape = x.shape x = torch.reshape(x, (x_shape[0], x_shape[1], x_shape[2] * x_shape[3])) return x class ResNet31(nn.Module): """ Args: in_channels (int): Number of channels of input image tensor. layers (list[int]): List of BasicBlock number for each stage. channels (list[int]): List of out_channels of Conv2d layer. out_indices (None | Sequence[int]): Indices of output stages. last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. """ def __init__(self, in_channels=3, layers=[1, 2, 5, 3], channels=[64, 128, 256, 256, 512, 512, 512], out_indices=None, last_stage_pool=False): super(ResNet31, self).__init__() assert isinstance(in_channels, int) assert isinstance(last_stage_pool, bool) self.out_indices = out_indices self.last_stage_pool = last_stage_pool self.conv1_1 = nn.Conv2d(in_channels, channels[0], kernel_size=3, stride=1, padding=1) self.bn1_1 = nn.BatchNorm2d(channels[0]) self.relu1_1 = nn.ReLU(inplace=True) self.conv1_2 = nn.Conv2d(channels[0], channels[1], kernel_size=3, stride=1, padding=1) self.bn1_2 = nn.BatchNorm2d(channels[1]) self.relu1_2 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.block2 = self._make_layer(channels[1], channels[2], layers[0]) self.conv2 = nn.Conv2d(channels[2], channels[2], kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(channels[2]) self.relu2 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.block3 = self._make_layer(channels[2], channels[3], layers[1]) self.conv3 = nn.Conv2d(channels[3], channels[3], kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(channels[3]) self.relu3 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True) self.block4 = self._make_layer(channels[3], channels[4], layers[2]) self.conv4 = nn.Conv2d(channels[4], channels[4], kernel_size=3, stride=1, padding=1) self.bn4 = nn.BatchNorm2d(channels[4]) self.relu4 = nn.ReLU(inplace=True) self.pool5 = None if self.last_stage_pool: self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True) self.block5 = self._make_layer(channels[4], channels[5], layers[3]) self.conv5 = nn.Conv2d(channels[5], channels[5], kernel_size=3, stride=1, padding=1) self.bn5 = nn.BatchNorm2d(channels[5]) self.relu5 = nn.ReLU(inplace=True) self.out_channels = channels[-1] def _make_layer(self, input_channels, output_channels, blocks): layers = [] for _ in range(blocks): downsample = None if input_channels != output_channels: downsample = nn.Sequential(nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(output_channels)) layers.append(BasicBlock(input_channels, output_channels, downsample=downsample)) input_channels = output_channels return nn.Sequential(*layers) def forward(self, x): x = self.conv1_1(x) x = self.bn1_1(x) x = self.relu1_1(x) x = self.conv1_2(x) x = self.bn1_2(x) x = self.relu1_2(x) outs = [] for i in range(4): layer_index = i + 2 pool_layer = getattr(self, 'pool{}'.format(layer_index)) block_layer = getattr(self, 'block{}'.format(layer_index)) conv_layer = getattr(self, 'conv{}'.format(layer_index)) bn_layer = getattr(self, 'bn{}'.format(layer_index)) relu_layer = getattr(self, 'relu{}'.format(layer_index)) if pool_layer is not None: x = pool_layer(x) x = block_layer(x) x = conv_layer(x) x = bn_layer(x) x = relu_layer(x) outs.append(x) if self.out_indices is not None: return tuple([outs[i] for i in self.out_indices]) return x def drop_path(x, drop_prob=0.0, training=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... """ if drop_prob == 0.0 or not training: return x keep_prob = torch.as_tensor(1 - drop_prob) shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype) random_tensor = torch.floor(random_tensor) output = x.divide(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, input): return input class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer='gelu', drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = Activation(act_type=act_layer, inplace=True) self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class ConvMixer(nn.Module): def __init__(self, dim, num_heads=8, HW=[8, 25], local_k=[3, 3]): super().__init__() self.HW = HW self.dim = dim self.local_mixer = nn.Conv2d(dim, dim, local_k, 1, [local_k[0] // 2, local_k[1] // 2], groups=num_heads) def forward(self, x): h = self.HW[0] w = self.HW[1] x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w]) x = self.local_mixer(x) x = x.flatten(2).permute(0, 2, 1) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, mixer='Global', HW=[8, 25], local_k=[7, 11], qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.HW = HW if HW is not None: H = HW[0] W = HW[1] self.N = H * W self.C = dim if mixer == 'Local' and HW is not None: hk = local_k[0] wk = local_k[1] mask = torch.ones(H * W, H + hk - 1, W + wk - 1, dtype=torch.float32) for h in range(0, H): for w in range(0, W): mask[h * W + w, h:h + hk, w:w + wk] = 0.0 mask_paddle = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk // 2].flatten(1) mask_inf = torch.full([H * W, H * W], fill_value=float('-Inf'), dtype=torch.float32) mask = torch.where(mask_paddle < 1, mask_paddle, mask_inf) self.mask = mask.unsqueeze(0).unsqueeze(1) self.mixer = mixer def forward(self, x): if self.HW is not None: N = self.N C = self.C else: _, N, C = x.shape qkv = self.qkv(x) qkv = qkv.reshape((-1, N, 3, self.num_heads, C // self.num_heads)).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q.matmul(k.permute(0, 1, 3, 2)) if self.mixer == 'Local': attn += self.mask attn = nn.functional.softmax(attn, dim=-1) attn = self.attn_drop(attn) x = attn.matmul(v).permute(0, 2, 1, 3).reshape((-1, N, C)) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mixer='Global', local_mixer=[7, 11], HW=None, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer='gelu', norm_layer='nn.LayerNorm', epsilon=1e-06, prenorm=True): super().__init__() if isinstance(norm_layer, str): self.norm1 = eval(norm_layer)(dim, eps=epsilon) else: self.norm1 = norm_layer(dim) if mixer == 'Global' or mixer == 'Local': self.mixer = Attention(dim, num_heads=num_heads, mixer=mixer, HW=HW, local_k=local_mixer, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) elif mixer == 'Conv': self.mixer = ConvMixer(dim, num_heads=num_heads, HW=HW, local_k=local_mixer) else: raise TypeError('The mixer must be one of [Global, Local, Conv]') self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() if isinstance(norm_layer, str): self.norm2 = eval(norm_layer)(dim, eps=epsilon) else: self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp_ratio = mlp_ratio self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.prenorm = prenorm def forward(self, x): if self.prenorm: x = self.norm1(x + self.drop_path(self.mixer(x))) x = self.norm2(x + self.drop_path(self.mlp(x))) else: x = x + self.drop_path(self.mixer(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=[32, 100], in_channels=3, embed_dim=768, sub_num=2, patch_size=[4, 4], mode='pope'): super().__init__() num_patches = img_size[1] // 2 ** sub_num * (img_size[0] // 2 ** sub_num) self.img_size = img_size self.num_patches = num_patches self.embed_dim = embed_dim self.norm = None if mode == 'pope': if sub_num == 2: self.proj = nn.Sequential(ConvBNLayer(in_channels=in_channels, out_channels=embed_dim // 2, kernel_size=3, stride=2, padding=1, act='gelu', bias_attr=True), ConvBNLayer(in_channels=embed_dim // 2, out_channels=embed_dim, kernel_size=3, stride=2, padding=1, act='gelu', bias_attr=True)) if sub_num == 3: self.proj = nn.Sequential(ConvBNLayer(in_channels=in_channels, out_channels=embed_dim // 4, kernel_size=3, stride=2, padding=1, act='gelu', bias_attr=True), ConvBNLayer(in_channels=embed_dim // 4, out_channels=embed_dim // 2, kernel_size=3, stride=2, padding=1, act='gelu', bias_attr=True), ConvBNLayer(in_channels=embed_dim // 2, out_channels=embed_dim, kernel_size=3, stride=2, padding=1, act='gelu', bias_attr=True)) elif mode == 'linear': self.proj = nn.Conv2d(1, embed_dim, kernel_size=patch_size, stride=patch_size) self.num_patches = img_size[0] // patch_size[0] * img_size[1] // patch_size[1] def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], "Input image size ({}*{}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1]) x = self.proj(x).flatten(2).permute(0, 2, 1) return x class SubSample(nn.Module): def __init__(self, in_channels, out_channels, types='Pool', stride=[2, 1], sub_norm='nn.LayerNorm', act=None): super().__init__() self.types = types if types == 'Pool': self.avgpool = nn.AvgPool2d(kernel_size=[3, 5], stride=stride, padding=[1, 2]) self.maxpool = nn.MaxPool2d(kernel_size=[3, 5], stride=stride, padding=[1, 2]) self.proj = nn.Linear(in_channels, out_channels) else: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1) self.norm = eval(sub_norm)(out_channels) if act is not None: self.act = act() else: self.act = None def forward(self, x): if self.types == 'Pool': x1 = self.avgpool(x) x2 = self.maxpool(x) x = (x1 + x2) * 0.5 out = self.proj(x.flatten(2).permute(0, 2, 1)) else: x = self.conv(x) out = x.flatten(2).permute(0, 2, 1) out = self.norm(out) if self.act is not None: out = self.act(out) return out class SVTRNet(nn.Module): def __init__(self, img_size=[32, 100], in_channels=3, embed_dim=[64, 128, 256], depth=[3, 6, 3], num_heads=[2, 4, 8], mixer=['Local'] * 6 + ['Global'] * 6, local_mixer=[[7, 11], [7, 11], [7, 11]], patch_merging='Conv', mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0.0, last_drop=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, norm_layer='nn.LayerNorm', sub_norm='nn.LayerNorm', epsilon=1e-06, out_channels=192, out_char_num=25, block_unit='Block', act='gelu', last_stage=True, sub_num=2, prenorm=True, use_lenhead=False, **kwargs): super().__init__() self.img_size = img_size self.embed_dim = embed_dim self.out_channels = out_channels self.prenorm = prenorm patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging self.patch_embed = PatchEmbed(img_size=img_size, in_channels=in_channels, embed_dim=embed_dim[0], sub_num=sub_num) num_patches = self.patch_embed.num_patches self.HW = [img_size[0] // 2 ** sub_num, img_size[1] // 2 ** sub_num] self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[0])) self.pos_drop = nn.Dropout(p=drop_rate) Block_unit = eval(block_unit) dpr = np.linspace(0, drop_path_rate, sum(depth)) self.blocks1 = nn.ModuleList([Block_unit(dim=embed_dim[0], num_heads=num_heads[0], mixer=mixer[0:depth[0]][i], HW=self.HW, local_mixer=local_mixer[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer=act, attn_drop=attn_drop_rate, drop_path=dpr[0:depth[0]][i], norm_layer=norm_layer, epsilon=epsilon, prenorm=prenorm) for i in range(depth[0])]) if patch_merging is not None: self.sub_sample1 = SubSample(embed_dim[0], embed_dim[1], sub_norm=sub_norm, stride=[2, 1], types=patch_merging) HW = [self.HW[0] // 2, self.HW[1]] else: HW = self.HW self.patch_merging = patch_merging self.blocks2 = nn.ModuleList([Block_unit(dim=embed_dim[1], num_heads=num_heads[1], mixer=mixer[depth[0]:depth[0] + depth[1]][i], HW=HW, local_mixer=local_mixer[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer=act, attn_drop=attn_drop_rate, drop_path=dpr[depth[0]:depth[0] + depth[1]][i], norm_layer=norm_layer, epsilon=epsilon, prenorm=prenorm) for i in range(depth[1])]) if patch_merging is not None: self.sub_sample2 = SubSample(embed_dim[1], embed_dim[2], sub_norm=sub_norm, stride=[2, 1], types=patch_merging) HW = [self.HW[0] // 4, self.HW[1]] else: HW = self.HW self.blocks3 = nn.ModuleList([Block_unit(dim=embed_dim[2], num_heads=num_heads[2], mixer=mixer[depth[0] + depth[1]:][i], HW=HW, local_mixer=local_mixer[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer=act, attn_drop=attn_drop_rate, drop_path=dpr[depth[0] + depth[1]:][i], norm_layer=norm_layer, epsilon=epsilon, prenorm=prenorm) for i in range(depth[2])]) self.last_stage = last_stage if last_stage: self.avg_pool = nn.AdaptiveAvgPool2d([1, out_char_num]) self.last_conv = nn.Conv2d(in_channels=embed_dim[2], out_channels=self.out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.hardswish = Activation('hard_swish', inplace=True) self.dropout = nn.Dropout(p=last_drop) if not prenorm: self.norm = eval(norm_layer)(embed_dim[-1], eps=epsilon) self.use_lenhead = use_lenhead if use_lenhead: self.len_conv = nn.Linear(embed_dim[2], self.out_channels) self.hardswish_len = Activation('hard_swish', inplace=True) self.dropout_len = nn.Dropout(p=last_drop) torch.nn.init.xavier_normal_(self.pos_embed) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward_features(self, x): x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) if self.patch_merging is not None: x = self.sub_sample1(x.permute(0, 2, 1).reshape([-1, self.embed_dim[0], self.HW[0], self.HW[1]])) for blk in self.blocks2: x = blk(x) if self.patch_merging is not None: x = self.sub_sample2(x.permute(0, 2, 1).reshape([-1, self.embed_dim[1], self.HW[0] // 2, self.HW[1]])) for blk in self.blocks3: x = blk(x) if not self.prenorm: x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) if self.use_lenhead: len_x = self.len_conv(x.mean(1)) len_x = self.dropout_len(self.hardswish_len(len_x)) if self.last_stage: if self.patch_merging is not None: h = self.HW[0] // 4 else: h = self.HW[0] x = self.avg_pool(x.permute(0, 2, 1).reshape([-1, self.embed_dim[2], h, self.HW[1]])) x = self.last_conv(x) x = self.hardswish(x) x = self.dropout(x) if self.use_lenhead: return x, len_x return x scale_dim_heads = {'tiny': [192, 3], 'small': [384, 6], 'base': [768, 12]} class ViTSTR(nn.Module): def __init__(self, img_size=[224, 224], in_channels=1, scale='tiny', seqlen=27, patch_size=[16, 16], embed_dim=None, depth=12, num_heads=None, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_path_rate=0.0, drop_rate=0.0, attn_drop_rate=0.0, norm_layer='nn.LayerNorm', act_layer='gelu', epsilon=1e-06, out_channels=None, **kwargs): super().__init__() self.seqlen = seqlen embed_dim = embed_dim if embed_dim is not None else scale_dim_heads[scale][0] num_heads = num_heads if num_heads is not None else scale_dim_heads[scale][1] out_channels = out_channels if out_channels is not None else embed_dim self.patch_embed = PatchEmbed(img_size=img_size, in_channels=in_channels, embed_dim=embed_dim, patch_size=patch_size, mode='linear') num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = np.linspace(0, drop_path_rate, depth) self.blocks = nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, epsilon=epsilon, prenorm=False) for i in range(depth)]) self.norm = eval(norm_layer)(embed_dim, eps=epsilon) self.out_channels = out_channels torch.nn.init.xavier_normal_(self.pos_embed) torch.nn.init.xavier_normal_(self.cls_token) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.repeat(B, 1, 1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x def forward(self, x): x = self.forward_features(x) x = x[:, :self.seqlen] return x.permute(0, 2, 1).unsqueeze(2) class ClsHead(nn.Module): """ Class orientation Args: params(dict): super parameters for build Class network """ def __init__(self, in_channels, class_dim, **kwargs): super(ClsHead, self).__init__() self.training = False self.pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Linear(in_channels, class_dim, bias=True) def forward(self, x): x = self.pool(x) x = torch.reshape(x, shape=[x.shape[0], x.shape[1]]) x = self.fc(x) if not self.training: x = F.softmax(x, dim=1) return x class Head(nn.Module): def __init__(self, in_channels, **kwargs): super(Head, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels // 4, kernel_size=3, padding=1, bias=False) self.conv_bn1 = nn.BatchNorm2d(in_channels // 4) self.relu1 = Activation(act_type='relu') self.conv2 = nn.ConvTranspose2d(in_channels=in_channels // 4, out_channels=in_channels // 4, kernel_size=2, stride=2) self.conv_bn2 = nn.BatchNorm2d(in_channels // 4) self.relu2 = Activation(act_type='relu') self.conv3 = nn.ConvTranspose2d(in_channels=in_channels // 4, out_channels=1, kernel_size=2, stride=2) def forward(self, x): x = self.conv1(x) x = self.conv_bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.conv_bn2(x) x = self.relu2(x) x = self.conv3(x) x = torch.sigmoid(x) return x class DBHead(nn.Module): """ Differentiable Binarization (DB) for text detection: see https://arxiv.org/abs/1911.08947 args: params(dict): super parameters for build DB network """ def __init__(self, in_channels, k=50, **kwargs): super(DBHead, self).__init__() self.k = k binarize_name_list = ['conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48', 'conv2d_transpose_1', 'binarize'] thresh_name_list = ['conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50', 'conv2d_transpose_3', 'thresh'] self.binarize = Head(in_channels) self.thresh = Head(in_channels) def step_function(self, x, y): return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) def forward(self, x): shrink_maps = self.binarize(x) if not self.training: return {'maps': shrink_maps} threshold_maps = self.thresh(x) binary_maps = self.step_function(shrink_maps, threshold_maps) y = torch.cat([shrink_maps, threshold_maps, binary_maps], dim=1) return {'maps': y} class EASTHead(nn.Module): """ """ def __init__(self, in_channels, model_name, **kwargs): super(EASTHead, self).__init__() self.model_name = model_name if self.model_name == 'large': num_outputs = [128, 64, 1, 8] else: num_outputs = [64, 32, 1, 8] self.det_conv1 = ConvBNLayer(in_channels=in_channels, out_channels=num_outputs[0], kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='det_head1') self.det_conv2 = ConvBNLayer(in_channels=num_outputs[0], out_channels=num_outputs[1], kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='det_head2') self.score_conv = ConvBNLayer(in_channels=num_outputs[1], out_channels=num_outputs[2], kernel_size=1, stride=1, padding=0, if_act=False, act=None, name='f_score') self.geo_conv = ConvBNLayer(in_channels=num_outputs[1], out_channels=num_outputs[3], kernel_size=1, stride=1, padding=0, if_act=False, act=None, name='f_geo') def forward(self, x): f_det = self.det_conv1(x) f_det = self.det_conv2(f_det) f_score = self.score_conv(f_det) f_score = torch.sigmoid(f_score) f_geo = self.geo_conv(f_det) f_geo = (torch.sigmoid(f_geo) - 0.5) * 2 * 800 pred = {'f_score': f_score, 'f_geo': f_geo} return pred def multi_apply(func, *args, **kwargs): pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) class FCEHead(nn.Module): """The class for implementing FCENet head. FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text Detection. [https://arxiv.org/abs/2104.10442] Args: in_channels (int): The number of input channels. scales (list[int]) : The scale of each layer. fourier_degree (int) : The maximum Fourier transform degree k. """ def __init__(self, in_channels, fourier_degree=5): super().__init__() assert isinstance(in_channels, int) self.downsample_ratio = 1.0 self.in_channels = in_channels self.fourier_degree = fourier_degree self.out_channels_cls = 4 self.out_channels_reg = (2 * self.fourier_degree + 1) * 2 self.out_conv_cls = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels_cls, kernel_size=3, stride=1, padding=1, groups=1, bias=True) self.out_conv_reg = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels_reg, kernel_size=3, stride=1, padding=1, groups=1, bias=True) def forward(self, feats, targets=None): cls_res, reg_res = multi_apply(self.forward_single, feats) level_num = len(cls_res) outs = {} if not self.training: for i in range(level_num): tr_pred = F.softmax(cls_res[i][:, 0:2, :, :], dim=1) tcl_pred = F.softmax(cls_res[i][:, 2:, :, :], dim=1) outs['level_{}'.format(i)] = torch.cat([tr_pred, tcl_pred, reg_res[i]], dim=1) else: preds = [[cls_res[i], reg_res[i]] for i in range(level_num)] outs['levels'] = preds return outs def forward_single(self, x): cls_predict = self.out_conv_cls(x) reg_predict = self.out_conv_reg(x) return cls_predict, reg_predict class PSEHead(nn.Module): def __init__(self, in_channels, hidden_dim=256, out_channels=7, **kwargs): super(PSEHead, self).__init__() self.conv1 = nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(hidden_dim) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, **kwargs): out = self.conv1(x) out = self.relu1(self.bn1(out)) out = self.conv2(out) return {'maps': out} class SAST_Header1(nn.Module): def __init__(self, in_channels, **kwargs): super(SAST_Header1, self).__init__() out_channels = [64, 64, 128] self.score_conv = nn.Sequential(ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_score1'), ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_score2'), ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_score3'), ConvBNLayer(out_channels[2], 1, 3, 1, act=None, name='f_score4')) self.border_conv = nn.Sequential(ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_border1'), ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_border2'), ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_border3'), ConvBNLayer(out_channels[2], 4, 3, 1, act=None, name='f_border4')) def forward(self, x): f_score = self.score_conv(x) f_score = torch.sigmoid(f_score) f_border = self.border_conv(x) return f_score, f_border class SAST_Header2(nn.Module): def __init__(self, in_channels, **kwargs): super(SAST_Header2, self).__init__() out_channels = [64, 64, 128] self.tvo_conv = nn.Sequential(ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tvo1'), ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tvo2'), ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tvo3'), ConvBNLayer(out_channels[2], 8, 3, 1, act=None, name='f_tvo4')) self.tco_conv = nn.Sequential(ConvBNLayer(in_channels, out_channels[0], 1, 1, act='relu', name='f_tco1'), ConvBNLayer(out_channels[0], out_channels[1], 3, 1, act='relu', name='f_tco2'), ConvBNLayer(out_channels[1], out_channels[2], 1, 1, act='relu', name='f_tco3'), ConvBNLayer(out_channels[2], 2, 3, 1, act=None, name='f_tco4')) def forward(self, x): f_tvo = self.tvo_conv(x) f_tco = self.tco_conv(x) return f_tvo, f_tco class SASTHead(nn.Module): """ """ def __init__(self, in_channels, **kwargs): super(SASTHead, self).__init__() self.head1 = SAST_Header1(in_channels) self.head2 = SAST_Header2(in_channels) def forward(self, x): f_score, f_border = self.head1(x) f_tvo, f_tco = self.head2(x) predicts = {} predicts['f_score'] = f_score predicts['f_border'] = f_border predicts['f_tvo'] = f_tvo predicts['f_tco'] = f_tco return predicts class PGHead(nn.Module): """ """ def __init__(self, in_channels, **kwargs): super(PGHead, self).__init__() self.conv_f_score1 = ConvBNLayer(in_channels=in_channels, out_channels=64, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_score{}'.format(1)) self.conv_f_score2 = ConvBNLayer(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, act='relu', name='conv_f_score{}'.format(2)) self.conv_f_score3 = ConvBNLayer(in_channels=64, out_channels=128, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_score{}'.format(3)) self.conv1 = nn.Conv2d(in_channels=128, out_channels=1, kernel_size=3, stride=1, padding=1, groups=1, bias=False) self.conv_f_boder1 = ConvBNLayer(in_channels=in_channels, out_channels=64, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_boder{}'.format(1)) self.conv_f_boder2 = ConvBNLayer(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, act='relu', name='conv_f_boder{}'.format(2)) self.conv_f_boder3 = ConvBNLayer(in_channels=64, out_channels=128, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_boder{}'.format(3)) self.conv2 = nn.Conv2d(in_channels=128, out_channels=4, kernel_size=3, stride=1, padding=1, groups=1, bias=False) self.conv_f_char1 = ConvBNLayer(in_channels=in_channels, out_channels=128, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_char{}'.format(1)) self.conv_f_char2 = ConvBNLayer(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, act='relu', name='conv_f_char{}'.format(2)) self.conv_f_char3 = ConvBNLayer(in_channels=128, out_channels=256, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_char{}'.format(3)) self.conv_f_char4 = ConvBNLayer(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, act='relu', name='conv_f_char{}'.format(4)) self.conv_f_char5 = ConvBNLayer(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_char{}'.format(5)) self.conv3 = nn.Conv2d(in_channels=256, out_channels=37, kernel_size=3, stride=1, padding=1, groups=1, bias=False) self.conv_f_direc1 = ConvBNLayer(in_channels=in_channels, out_channels=64, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_direc{}'.format(1)) self.conv_f_direc2 = ConvBNLayer(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, act='relu', name='conv_f_direc{}'.format(2)) self.conv_f_direc3 = ConvBNLayer(in_channels=64, out_channels=128, kernel_size=1, stride=1, padding=0, act='relu', name='conv_f_direc{}'.format(3)) self.conv4 = nn.Conv2d(in_channels=128, out_channels=2, kernel_size=3, stride=1, padding=1, groups=1, bias=False) def forward(self, x): f_score = self.conv_f_score1(x) f_score = self.conv_f_score2(f_score) f_score = self.conv_f_score3(f_score) f_score = self.conv1(f_score) f_score = torch.sigmoid(f_score) f_border = self.conv_f_boder1(x) f_border = self.conv_f_boder2(f_border) f_border = self.conv_f_boder3(f_border) f_border = self.conv2(f_border) f_char = self.conv_f_char1(x) f_char = self.conv_f_char2(f_char) f_char = self.conv_f_char3(f_char) f_char = self.conv_f_char4(f_char) f_char = self.conv_f_char5(f_char) f_char = self.conv3(f_char) f_direction = self.conv_f_direc1(x) f_direction = self.conv_f_direc2(f_direction) f_direction = self.conv_f_direc3(f_direction) f_direction = self.conv4(f_direction) predicts = {} predicts['f_score'] = f_score predicts['f_border'] = f_border predicts['f_char'] = f_char predicts['f_direction'] = f_direction return predicts class MultiheadAttention(nn.Module): """Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: ext{MultiHead}(Q, K, V) = ext{Concat}(head_1,\\dots,head_h)W^O ext{where} head_i = ext{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model num_heads: parallel attention layers, or heads """ def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.out_proj = Linear(embed_dim, embed_dim, bias=bias) self._reset_parameters() self.conv1 = torch.nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1)) self.conv2 = torch.nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1)) self.conv3 = torch.nn.Conv2d(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1)) def _reset_parameters(self): xavier_uniform_(self.out_proj.weight) def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, attn_mask=None): """ Inputs of forward function query: [target length, batch size, embed dim] key: [sequence length, batch size, embed dim] value: [sequence length, batch size, embed dim] key_padding_mask: if True, mask padding based on batch size incremental_state: if provided, previous time steps are cashed need_weights: output attn_output_weights static_kv: key and value are static Outputs of forward function attn_output: [target length, batch size, embed dim] attn_output_weights: [batch size, target length, sequence length] """ q_shape = query.shape src_shape = key.shape q = self._in_proj_q(query) k = self._in_proj_k(key) v = self._in_proj_v(value) q *= self.scaling q = torch.reshape(q, (q_shape[0], q_shape[1], self.num_heads, self.head_dim)) q = q.permute(1, 2, 0, 3) k = torch.reshape(k, (src_shape[0], q_shape[1], self.num_heads, self.head_dim)) k = k.permute(1, 2, 0, 3) v = torch.reshape(v, (src_shape[0], q_shape[1], self.num_heads, self.head_dim)) v = v.permute(1, 2, 0, 3) if key_padding_mask is not None: assert key_padding_mask.shape[0] == q_shape[1] assert key_padding_mask.shape[1] == src_shape[0] attn_output_weights = torch.matmul(q, k.permute(0, 1, 3, 2)) if attn_mask is not None: attn_mask = torch.unsqueeze(torch.unsqueeze(attn_mask, 0), 0) attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = torch.reshape(attn_output_weights, [q_shape[1], self.num_heads, q_shape[0], src_shape[0]]) key = torch.unsqueeze(torch.unsqueeze(key_padding_mask, 1), 2) key = key.type(torch.float32) y = torch.full(size=key.shape, fill_value=float('-Inf'), dtype=torch.float32) y = torch.where(key == 0.0, key, y) attn_output_weights += y attn_output_weights = F.softmax(attn_output_weights.type(torch.float32), dim=-1, dtype=torch.float32 if attn_output_weights.dtype == torch.float16 else attn_output_weights.dtype) attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training) attn_output = torch.matmul(attn_output_weights, v) attn_output = torch.reshape(attn_output.permute(2, 0, 1, 3), [q_shape[0], q_shape[1], self.embed_dim]) attn_output = self.out_proj(attn_output) return attn_output def _in_proj_q(self, query): query = query.permute(1, 2, 0) query = torch.unsqueeze(query, dim=2) res = self.conv1(query) res = torch.squeeze(res, dim=2) res = res.permute(2, 0, 1) return res def _in_proj_k(self, key): key = key.permute(1, 2, 0) key = torch.unsqueeze(key, dim=2) res = self.conv2(key) res = torch.squeeze(res, dim=2) res = res.permute(2, 0, 1) return res def _in_proj_v(self, value): value = value.permute(1, 2, 0) value = torch.unsqueeze(value, dim=2) res = self.conv3(value) res = torch.squeeze(res, dim=2) res = res.permute(2, 0, 1) return res class AttentionHead(nn.Module): def __init__(self, in_channels, out_channels, hidden_size, **kwargs): super(AttentionHead, self).__init__() self.input_size = in_channels self.hidden_size = hidden_size self.num_classes = out_channels self.attention_cell = AttentionGRUCell(in_channels, hidden_size, out_channels, use_gru=False) self.generator = nn.Linear(hidden_size, out_channels) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char.type(torch.int64), onehot_dim) return input_ont_hot def forward(self, inputs, targets=None, batch_max_length=25): batch_size = inputs.size()[0] num_steps = batch_max_length hidden = torch.zeros((batch_size, self.hidden_size)) output_hiddens = [] if targets is not None: for i in range(num_steps): char_onehots = self._char_to_onehot(targets[:, i], onehot_dim=self.num_classes) (outputs, hidden), alpha = self.attention_cell(hidden, inputs, char_onehots) output_hiddens.append(torch.unsqueeze(outputs, dim=1)) output = torch.cat(output_hiddens, dim=1) probs = self.generator(output) else: targets = torch.zeros([batch_size], dtype=torch.int32) probs = None char_onehots = None outputs = None alpha = None for i in range(num_steps): char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) (outputs, hidden), alpha = self.attention_cell(hidden, inputs, char_onehots) probs_step = self.generator(outputs) if probs is None: probs = torch.unsqueeze(probs_step, dim=1) else: probs = torch.cat([probs, torch.unsqueeze(probs_step, dim=1)], dim=1) next_input = probs_step.argmax(dim=1) targets = next_input return probs class CTCHead(nn.Module): def __init__(self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, return_feats=False, **kwargs): super(CTCHead, self).__init__() if mid_channels is None: self.fc = nn.Linear(in_channels, out_channels, bias=True) else: self.fc1 = nn.Linear(in_channels, mid_channels, bias=True) self.fc2 = nn.Linear(mid_channels, out_channels, bias=True) self.out_channels = out_channels self.mid_channels = mid_channels self.return_feats = return_feats def forward(self, x, labels=None): if self.mid_channels is None: predicts = self.fc(x) else: x = self.fc1(x) predicts = self.fc2(x) if self.return_feats: result = x, predicts else: result = predicts if not self.training: predicts = F.softmax(predicts, dim=2) result = predicts return result class Beam: """ Beam search """ def __init__(self, size, device=False): self.size = size self._done = False self.scores = torch.zeros((size,), dtype=torch.float32) self.all_scores = [] self.prev_ks = [] self.next_ys = [torch.full((size,), 0, dtype=torch.int64)] self.next_ys[0][0] = 2 def get_current_state(self): """Get the outputs for the current timestep.""" return self.get_tentative_hypothesis() def get_current_origin(self): """Get the backpointers for the current timestep.""" return self.prev_ks[-1] @property def done(self): return self._done def advance(self, word_prob): """Update beam status and check if finished or not.""" num_words = word_prob.shape[1] if len(self.prev_ks) > 0: beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob) else: beam_lk = word_prob[0] flat_beam_lk = beam_lk.reshape([-1]) best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) self.all_scores.append(self.scores) self.scores = best_scores prev_k = best_scores_id // num_words self.prev_ks.append(prev_k) self.next_ys.append(best_scores_id - prev_k * num_words) if self.next_ys[-1][0] == 3: self._done = True self.all_scores.append(self.scores) return self._done def sort_scores(self): """Sort the scores.""" return self.scores, torch.tensor([i for i in range(int(self.scores.shape[0]))], dtype=torch.int32) def get_the_best_score_and_idx(self): """Get the score of the best in the beam.""" scores, ids = self.sort_scores() return scores[1], ids[1] def get_tentative_hypothesis(self): """Get the decoded sequence for the current timestep.""" if len(self.next_ys) == 1: dec_seq = self.next_ys[0].unsqueeze(1) else: _, keys = self.sort_scores() hyps = [self.get_hypothesis(k) for k in keys] hyps = [([2] + h) for h in hyps] dec_seq = torch.tensor(hyps, dtype=torch.int64) return dec_seq def get_hypothesis(self, k): """ Walk back to construct the full hypothesis. """ hyp = [] for j in range(len(self.prev_ks) - 1, -1, -1): hyp.append(self.next_ys[j + 1][k]) k = self.prev_ks[j][k] return list(map(lambda x: x.item(), hyp[::-1])) class Embeddings(nn.Module): def __init__(self, d_model, vocab, padding_idx, scale_embedding): super(Embeddings, self).__init__() self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx) w0 = np.random.normal(0.0, d_model ** -0.5, (vocab, d_model)).astype(np.float32) self.embedding.weight.data = torch.from_numpy(w0) self.d_model = d_model self.scale_embedding = scale_embedding def forward(self, x): if self.scale_embedding: x = self.embedding(x) return x * math.sqrt(self.d_model) return self.embedding(x) class PositionalEncoding(nn.Module): """Inject some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings, so that the two can be summed. Here, we use sine and cosine functions of different frequencies. .. math:: ext{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) ext{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) ext{where pos is the word position and i is the embed idx) Args: d_model: the embed dim (required). dropout: the dropout value (default=0.1). max_len: the max. length of the incoming sequence (default=5000). Examples: >>> pos_encoder = PositionalEncoding(d_model) """ def __init__(self, dropout, dim, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros([max_len, dim]) position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) div_term = torch.exp(torch.arange(0, dim, 2).type(torch.float32) * (-math.log(10000.0) / dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = torch.unsqueeze(pe, 0) pe = pe.permute(1, 0, 2) self.register_buffer('pe', pe) def forward(self, x): """Inputs of forward function Args: x: the sequence fed to the positional encoder model (required). Shape: x: [sequence length, batch size, embed dim] output: [sequence length, batch size, embed dim] Examples: >>> output = pos_encoder(x) """ x = x + self.pe[:x.shape[0], :] return self.dropout(x) def _get_clones(module, N): return LayerList([copy.deepcopy(module) for i in range(N)]) class TransformerDecoder(nn.Module): """TransformerDecoder is a stack of N decoder layers Args: decoder_layer: an instance of the TransformerDecoderLayer() class (required). num_layers: the number of sub-decoder-layers in the decoder (required). norm: the layer normalization component (optional). """ def __init__(self, decoder_layer, num_layers): super(TransformerDecoder, self).__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None): """Pass the inputs (and mask) through the decoder layer in turn. Args: tgt: the sequence to the decoder (required). memory: the sequnce from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). """ output = tgt for i in range(self.num_layers): output = self.layers[i](output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) return output class TransformerDecoderLayer(nn.Module): """TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). """ def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1): super(TransformerDecoderLayer, self).__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=attention_dropout_rate) self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=attention_dropout_rate) self.conv1 = nn.Conv2d(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1)) self.conv2 = nn.Conv2d(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1)) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.norm3 = LayerNorm(d_model) self.dropout1 = Dropout(residual_dropout_rate) self.dropout2 = Dropout(residual_dropout_rate) self.dropout3 = Dropout(residual_dropout_rate) def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None): """Pass the inputs (and mask) through the decoder layer. Args: tgt: the sequence to the decoder layer (required). memory: the sequnce from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). """ tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt = tgt.permute(1, 2, 0) tgt = torch.unsqueeze(tgt, 2) tgt2 = self.conv2(F.relu(self.conv1(tgt))) tgt2 = torch.squeeze(tgt2, 2) tgt2 = tgt2.permute(2, 0, 1) tgt = torch.squeeze(tgt, 2) tgt = tgt.permute(2, 0, 1) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt class TransformerEncoder(nn.Module): """TransformerEncoder is a stack of N encoder layers Args: encoder_layer: an instance of the TransformerEncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). norm: the layer normalization component (optional). """ def __init__(self, encoder_layer, num_layers): super(TransformerEncoder, self).__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers def forward(self, src): """Pass the input through the endocder layers in turn. Args: src: the sequnce to the encoder (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). """ output = src for i in range(self.num_layers): output = self.layers[i](output, src_mask=None, src_key_padding_mask=None) return output class TransformerEncoderLayer(nn.Module): """TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). """ def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1): super(TransformerEncoderLayer, self).__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=attention_dropout_rate) self.conv1 = nn.Conv2d(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1)) self.conv2 = nn.Conv2d(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1)) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.dropout1 = Dropout(residual_dropout_rate) self.dropout2 = Dropout(residual_dropout_rate) def forward(self, src, src_mask=None, src_key_padding_mask=None): """Pass the input through the endocder layer. Args: src: the sequnce to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). """ src2 = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) src = src.permute(1, 2, 0) src = torch.unsqueeze(src, 2) src2 = self.conv2(F.relu(self.conv1(src))) src2 = torch.squeeze(src2, 2) src2 = src2.permute(2, 0, 1) src = torch.squeeze(src, 2) src = src.permute(2, 0, 1) src = src + self.dropout2(src2) src = self.norm2(src) return src class Transformer(nn.Module): """A transformer model. User is able to modify the attributes as needed. The architechture is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Args: d_model: the number of expected features in the encoder/decoder inputs (default=512). nhead: the number of heads in the multiheadattention models (default=8). num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6). num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). custom_encoder: custom encoder (default=None). custom_decoder: custom decoder (default=None). """ def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, beam_size=0, num_decoder_layers=6, dim_feedforward=1024, attention_dropout_rate=0.0, residual_dropout_rate=0.1, custom_encoder=None, custom_decoder=None, in_channels=0, out_channels=0, scale_embedding=True): super(Transformer, self).__init__() self.out_channels = out_channels self.embedding = Embeddings(d_model=d_model, vocab=self.out_channels, padding_idx=0, scale_embedding=scale_embedding) self.positional_encoding = PositionalEncoding(dropout=residual_dropout_rate, dim=d_model) if custom_encoder is not None: self.encoder = custom_encoder elif num_encoder_layers > 0: encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate) self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers) else: self.encoder = None if custom_decoder is not None: self.decoder = custom_decoder else: decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers) self._reset_parameters() self.beam_size = beam_size self.d_model = d_model self.nhead = nhead self.tgt_word_prj = nn.Linear(d_model, self.out_channels, bias=False) w0 = np.random.normal(0.0, d_model ** -0.5, (self.out_channels, d_model)).astype(np.float32) self.tgt_word_prj.weight.data = torch.from_numpy(w0) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): xavier_normal_(m.weight) if m.bias is not None: torch.nn.init.zeros_(m.bias) def forward_train(self, src, tgt): tgt = tgt[:, :-1] tgt_key_padding_mask = self.generate_padding_mask(tgt) tgt = self.embedding(tgt).permute(1, 0, 2) tgt = self.positional_encoding(tgt) tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0]) if self.encoder is not None: src = self.positional_encoding(src.permute(1, 0, 2)) memory = self.encoder(src) else: memory = src.squeeze(2).permute(2, 0, 1) output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=None, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=None) output = output.permute(1, 0, 2) logit = self.tgt_word_prj(output) return logit def forward(self, src, targets=None): """Take in and process masked source/target sequences. Args: src: the sequence to the encoder (required). tgt: the sequence to the decoder (required). Shape: - src: :math:`(S, N, E)`. - tgt: :math:`(T, N, E)`. Examples: >>> output = transformer_model(src, tgt) """ if self.training: max_len = targets[1].max() tgt = targets[0][:, :2 + max_len] return self.forward_train(src, tgt) elif self.beam_size > 0: return self.forward_beam(src) else: return self.forward_test(src) def forward_test(self, src): bs = src.shape[0] if self.encoder is not None: src = self.positional_encoding(src.permute(1, 0, 2)) memory = self.encoder(src) else: memory = torch.squeeze(src, 2).permute(2, 0, 1) dec_seq = torch.full((bs, 1), 2, dtype=torch.int64) dec_prob = torch.full((bs, 1), 1.0, dtype=torch.float32) for len_dec_seq in range(1, 25): dec_seq_embed = self.embedding(dec_seq).permute(1, 0, 2) dec_seq_embed = self.positional_encoding(dec_seq_embed) tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[0]) output = self.decoder(dec_seq_embed, memory, tgt_mask=tgt_mask, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None) dec_output = output.permute(1, 0, 2) dec_output = dec_output[:, -1, :] tgt_word_prj = self.tgt_word_prj(dec_output) word_prob = F.softmax(tgt_word_prj, dim=1) preds_idx = word_prob.argmax(dim=1) if torch.equal(preds_idx, torch.full(preds_idx.shape, 3, dtype=torch.int64)): break preds_prob = torch.max(word_prob, dim=1).values dec_seq = torch.cat([dec_seq, torch.reshape(preds_idx, (-1, 1))], dim=1) dec_prob = torch.cat([dec_prob, torch.reshape(preds_prob, (-1, 1))], dim=1) return [dec_seq, dec_prob] def forward_beam(self, images): """ Translation work in one batch """ def get_inst_idx_to_tensor_position_map(inst_idx_list): """ Indicate the position of an instance in a tensor. """ return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)} def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm): """ Collect tensor parts associated to active instances. """ beamed_tensor_shape = beamed_tensor.shape n_curr_active_inst = len(curr_active_inst_idx) new_shape = n_curr_active_inst * n_bm, beamed_tensor_shape[1], beamed_tensor_shape[2] beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1]) beamed_tensor = beamed_tensor.index_select(curr_active_inst_idx, axis=0) beamed_tensor = beamed_tensor.reshape(new_shape) return beamed_tensor def collate_active_info(src_enc, inst_idx_to_position_map, active_inst_idx_list): n_prev_active_inst = len(inst_idx_to_position_map) active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list] active_inst_idx = torch.tensor(active_inst_idx, dtype=torch.int64) active_src_enc = collect_active_part(src_enc.permute(1, 0, 2), active_inst_idx, n_prev_active_inst, n_bm).permute(1, 0, 2) active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list) return active_src_enc, active_inst_idx_to_position_map def beam_decode_step(inst_dec_beams, len_dec_seq, enc_output, inst_idx_to_position_map, n_bm, memory_key_padding_mask): """ Decode and update beam status, and then return active beam idx """ def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq): dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done] dec_partial_seq = torch.stack(dec_partial_seq) dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq]) return dec_partial_seq def predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask): dec_seq = self.embedding(dec_seq).permute(1, 0, 2) dec_seq = self.positional_encoding(dec_seq) tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[0]) dec_output = self.decoder(dec_seq, enc_output, tgt_mask=tgt_mask, tgt_key_padding_mask=None, memory_key_padding_mask=memory_key_padding_mask) dec_output = dec_output.permute(1, 0, 2) dec_output = dec_output[:, -1, :] word_prob = F.softmax(self.tgt_word_prj(dec_output), dim=1) word_prob = torch.reshape(word_prob, (n_active_inst, n_bm, -1)) return word_prob def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map): active_inst_idx_list = [] for inst_idx, inst_position in inst_idx_to_position_map.items(): is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position]) if not is_inst_complete: active_inst_idx_list += [inst_idx] return active_inst_idx_list n_active_inst = len(inst_idx_to_position_map) dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq) word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm, None) active_inst_idx_list = collect_active_inst_idx_list(inst_dec_beams, word_prob, inst_idx_to_position_map) return active_inst_idx_list def collect_hypothesis_and_scores(inst_dec_beams, n_best): all_hyp, all_scores = [], [] for inst_idx in range(len(inst_dec_beams)): scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores() all_scores += [scores[:n_best]] hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]] all_hyp += [hyps] return all_hyp, all_scores with torch.no_grad(): if self.encoder is not None: src = self.positional_encoding(images.permute(1, 0, 2)) src_enc = self.encoder(src) else: src_enc = images.squeeze(2).transpose([0, 2, 1]) n_bm = self.beam_size src_shape = src_enc.shape inst_dec_beams = [Beam(n_bm) for _ in range(1)] active_inst_idx_list = list(range(1)) src_enc = src_enc.repeat(1, n_bm, 1) inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list) for len_dec_seq in range(1, 25): src_enc_copy = src_enc.clone() active_inst_idx_list = beam_decode_step(inst_dec_beams, len_dec_seq, src_enc_copy, inst_idx_to_position_map, n_bm, None) if not active_inst_idx_list: break src_enc, inst_idx_to_position_map = collate_active_info(src_enc_copy, inst_idx_to_position_map, active_inst_idx_list) batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams, 1) result_hyp = [] hyp_scores = [] for bs_hyp, score in zip(batch_hyp, batch_scores): l = len(bs_hyp[0]) bs_hyp_pad = bs_hyp[0] + [3] * (25 - l) result_hyp.append(bs_hyp_pad) score = float(score) / l hyp_score = [score for _ in range(25)] hyp_scores.append(hyp_score) return [torch.tensor(np.array(result_hyp), dtype=torch.int64), torch.tensor(hyp_scores)] def generate_square_subsequent_mask(self, sz): """Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ mask = torch.zeros([sz, sz], dtype=torch.float32) mask_inf = torch.triu(torch.full(size=[sz, sz], fill_value=float('-Inf'), dtype=torch.float32), diagonal=1) mask = mask + mask_inf return mask def generate_padding_mask(self, x): padding_mask = x == torch.tensor(0, dtype=x.dtype) return padding_mask def _reset_parameters(self): """Initiate parameters in the transformer model.""" for p in self.parameters(): if p.dim() > 1: xavier_uniform_(p) class PositionalEncoding_2d(nn.Module): """Inject some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings, so that the two can be summed. Here, we use sine and cosine functions of different frequencies. .. math:: ext{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) ext{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) ext{where pos is the word position and i is the embed idx) Args: d_model: the embed dim (required). dropout: the dropout value (default=0.1). max_len: the max. length of the incoming sequence (default=5000). Examples: >>> pos_encoder = PositionalEncoding(d_model) """ def __init__(self, dropout, dim, max_len=5000): super(PositionalEncoding_2d, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros([max_len, dim]) position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) div_term = torch.exp(torch.arange(0, dim, 2).type(torch.float32) * (-math.log(10000.0) / dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = torch.unsqueeze(pe, 0).permute(1, 0, 2) self.register_buffer('pe', pe) self.avg_pool_1 = nn.AdaptiveAvgPool2d((1, 1)) self.linear1 = nn.Linear(dim, dim) self.linear1.weight.data.fill_(1.0) self.avg_pool_2 = nn.AdaptiveAvgPool2d((1, 1)) self.linear2 = nn.Linear(dim, dim) self.linear2.weight.data.fill_(1.0) def forward(self, x): """Inputs of forward function Args: x: the sequence fed to the positional encoder model (required). Shape: x: [sequence length, batch size, embed dim] output: [sequence length, batch size, embed dim] Examples: >>> output = pos_encoder(x) """ w_pe = self.pe[:x.shape[-1], :] w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0) w_pe = w_pe * w1 w_pe = w_pe.permute(1, 2, 0) w_pe = torch.unsqueeze(w_pe, 2) h_pe = self.pe[:x.shape[-2], :] w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0) h_pe = h_pe * w2 h_pe = h_pe.permute(1, 2, 0) h_pe = torch.unsqueeze(h_pe, 3) x = x + w_pe + h_pe x = torch.reshape(x, [x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).permute(2, 0, 1) return self.dropout(x) class SAREncoder(nn.Module): """ Args: enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. enc_drop_rnn (float): Dropout probability of RNN layer in encoder. enc_gru (bool): If True, use GRU, else LSTM in encoder. d_model (int): Dim of channels from backbone. d_enc (int): Dim of encoder RNN layer. mask (bool): If True, mask padding in RNN sequence. """ def __init__(self, enc_bi_rnn=False, enc_drop_rnn=0.0, enc_gru=False, d_model=512, d_enc=512, mask=True, **kwargs): super().__init__() assert isinstance(enc_bi_rnn, bool) assert isinstance(enc_drop_rnn, (int, float)) assert 0 <= enc_drop_rnn < 1.0 assert isinstance(enc_gru, bool) assert isinstance(d_model, int) assert isinstance(d_enc, int) assert isinstance(mask, bool) self.enc_bi_rnn = enc_bi_rnn self.enc_drop_rnn = enc_drop_rnn self.mask = mask kwargs = dict(input_size=d_model, hidden_size=d_enc, num_layers=2, batch_first=True, dropout=enc_drop_rnn, bidirectional=enc_bi_rnn) if enc_gru: self.rnn_encoder = nn.GRU(**kwargs) else: self.rnn_encoder = nn.LSTM(**kwargs) encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size) def forward(self, feat, img_metas=None): if img_metas is not None: assert len(img_metas[0]) == feat.size(0) valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] h_feat = feat.shape[2] feat_v = F.max_pool2d(feat, kernel_size=(h_feat, 1), stride=1, padding=0) feat_v = feat_v.squeeze(2) feat_v = feat_v.permute(0, 2, 1).contiguous() holistic_feat = self.rnn_encoder(feat_v)[0] if valid_ratios is not None: valid_hf = [] T = holistic_feat.size(1) for i in range(valid_ratios.size(0)): valid_step = torch.min(T, torch.ceil(T * valid_ratios[i])) - 1 valid_hf.append(holistic_feat[i, valid_step, :]) valid_hf = torch.stack(valid_hf, dim=0) else: valid_hf = holistic_feat[:, -1, :] holistic_feat = self.linear(valid_hf) return holistic_feat class BaseDecoder(nn.Module): def __init__(self, **kwargs): super().__init__() def forward_train(self, feat, out_enc, targets, img_metas): raise NotImplementedError def forward_test(self, feat, out_enc, img_metas): raise NotImplementedError def forward(self, feat, out_enc, label=None, img_metas=None, train_mode=True): self.train_mode = train_mode if train_mode: return self.forward_train(feat, out_enc, label, img_metas) return self.forward_test(feat, out_enc, img_metas) class ParallelSARDecoder(BaseDecoder): """ Args: out_channels (int): Output class number. enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. dec_drop_rnn (float): Dropout of RNN layer in decoder. dec_gru (bool): If True, use GRU, else LSTM in decoder. d_model (int): Dim of channels from backbone. d_enc (int): Dim of encoder RNN layer. d_k (int): Dim of channels of attention module. pred_dropout (float): Dropout probability of prediction layer. max_seq_len (int): Maximum sequence length for decoding. mask (bool): If True, mask padding in feature map. start_idx (int): Index of start token. padding_idx (int): Index of padding token. pred_concat (bool): If True, concat glimpse feature from attention with holistic feature and hidden state. """ def __init__(self, out_channels, enc_bi_rnn=False, dec_bi_rnn=False, dec_drop_rnn=0.0, dec_gru=False, d_model=512, d_enc=512, d_k=64, pred_dropout=0.0, max_text_length=30, mask=True, pred_concat=True, **kwargs): super().__init__() self.num_classes = out_channels self.enc_bi_rnn = enc_bi_rnn self.d_k = d_k self.start_idx = out_channels - 2 self.padding_idx = out_channels - 1 self.max_seq_len = max_text_length self.mask = mask self.pred_concat = pred_concat encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1) self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k) self.conv3x3_1 = nn.Conv2d(d_model, d_k, kernel_size=3, stride=1, padding=1) self.conv1x1_2 = nn.Linear(d_k, 1) kwargs = dict(input_size=encoder_rnn_out_size, hidden_size=encoder_rnn_out_size, num_layers=2, batch_first=True, dropout=dec_drop_rnn, bidirectional=dec_bi_rnn) if dec_gru: self.rnn_decoder = nn.GRU(**kwargs) else: self.rnn_decoder = nn.LSTM(**kwargs) self.embedding = nn.Embedding(self.num_classes, encoder_rnn_out_size, padding_idx=self.padding_idx) self.pred_dropout = nn.Dropout(pred_dropout) pred_num_classes = self.num_classes - 1 if pred_concat: fc_in_channel = decoder_rnn_out_size + d_model + encoder_rnn_out_size else: fc_in_channel = d_model self.prediction = nn.Linear(fc_in_channel, pred_num_classes) def _2d_attention(self, decoder_input, feat, holistic_feat, valid_ratios=None): y = self.rnn_decoder(decoder_input)[0] attn_query = self.conv1x1_1(y) bsz, seq_len, attn_size = attn_query.shape attn_query = attn_query.view(bsz, seq_len, attn_size, 1, 1) attn_key = self.conv3x3_1(feat) attn_key = attn_key.unsqueeze(1) attn_weight = torch.tanh(torch.add(attn_key, attn_query)) attn_weight = attn_weight.permute(0, 1, 3, 4, 2).contiguous() attn_weight = self.conv1x1_2(attn_weight) bsz, T, h, w, c = attn_weight.size() assert c == 1 if valid_ratios is not None: for i in range(valid_ratios.size(0)): valid_width = torch.min(w, torch.ceil(w * valid_ratios[i])) if valid_width < w: attn_weight[i, :, :, valid_width:, :] = float('-inf') attn_weight = attn_weight.view(bsz, T, -1) attn_weight = F.softmax(attn_weight, dim=-1) attn_weight = attn_weight.view(bsz, T, h, w, c).permute(0, 1, 4, 2, 3).contiguous() attn_feat = torch.sum(torch.mul(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False) if self.pred_concat: hf_c = holistic_feat.shape[-1] holistic_feat = holistic_feat.expand(bsz, seq_len, hf_c) y = self.prediction(torch.cat((y, attn_feat, holistic_feat), 2)) else: y = self.prediction(attn_feat) if self.train_mode: y = self.pred_dropout(y) return y def forward_train(self, feat, out_enc, label, img_metas): """ img_metas: [label, valid_ratio] """ if img_metas is not None: assert img_metas[0].size(0) == feat.size(0) valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] lab_embedding = self.embedding(label) out_enc = out_enc.unsqueeze(1) in_dec = torch.cat((out_enc, lab_embedding), dim=1) out_dec = self._2d_attention(in_dec, feat, out_enc, valid_ratios=valid_ratios) return out_dec[:, 1:, :] def forward_test(self, feat, out_enc, img_metas): if img_metas is not None: assert len(img_metas[0]) == feat.shape[0] valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] seq_len = self.max_seq_len bsz = feat.size(0) start_token = torch.full((bsz,), fill_value=self.start_idx, device=feat.device, dtype=torch.long) start_token = self.embedding(start_token) emb_dim = start_token.shape[1] start_token = start_token.unsqueeze(1).expand(bsz, seq_len, emb_dim) out_enc = out_enc.unsqueeze(1) decoder_input = torch.cat((out_enc, start_token), dim=1) outputs = [] for i in range(1, seq_len + 1): decoder_output = self._2d_attention(decoder_input, feat, out_enc, valid_ratios=valid_ratios) char_output = decoder_output[:, i, :] char_output = F.softmax(char_output, -1) outputs.append(char_output) _, max_idx = torch.max(char_output, dim=1, keepdim=False) char_embedding = self.embedding(max_idx) if i < seq_len: decoder_input[:, i + 1, :] = char_embedding outputs = torch.stack(outputs, 1) return outputs class SARHead(nn.Module): def __init__(self, in_channels, out_channels, enc_dim=512, max_text_length=30, enc_bi_rnn=False, enc_drop_rnn=0.1, enc_gru=False, dec_bi_rnn=False, dec_drop_rnn=0.0, dec_gru=False, d_k=512, pred_dropout=0.1, pred_concat=True, **kwargs): super(SARHead, self).__init__() self.encoder = SAREncoder(enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru, d_model=in_channels, d_enc=enc_dim) self.decoder = ParallelSARDecoder(out_channels=out_channels, enc_bi_rnn=enc_bi_rnn, dec_bi_rnn=dec_bi_rnn, dec_drop_rnn=dec_drop_rnn, dec_gru=dec_gru, d_model=in_channels, d_enc=enc_dim, d_k=d_k, pred_dropout=pred_dropout, max_text_length=max_text_length, pred_concat=pred_concat) def forward(self, feat, targets=None): """ img_metas: [label, valid_ratio] """ holistic_feat = self.encoder(feat, targets) if self.training: label = targets[0] final_out = self.decoder(feat, holistic_feat, label, img_metas=targets) else: final_out = self.decoder(feat, holistic_feat, label=None, img_metas=targets, train_mode=False) return final_out def hard_swish(x, inplace=True): return x * F.relu6(x + 3.0, inplace=inplace) / 6.0 class DSConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding, stride=1, groups=None, if_act=True, act='relu', **kwargs): super(DSConv, self).__init__() if groups == None: groups = in_channels self.if_act = if_act self.act = act self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels=int(in_channels * 4), kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(int(in_channels * 4)) self.conv3 = nn.Conv2d(in_channels=int(in_channels * 4), out_channels=out_channels, kernel_size=1, stride=1, bias=False) self._c = [in_channels, out_channels] if in_channels != out_channels: self.conv_end = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, bias=False) def forward(self, inputs): x = self.conv1(inputs) x = self.bn1(x) x = self.conv2(x) x = self.bn2(x) if self.if_act: if self.act == 'relu': x = F.relu(x) elif self.act == 'hardswish': x = hard_swish(x) else: None exit() x = self.conv3(x) if self._c[0] != self._c[1]: x = x + self.conv_end(inputs) return x class ASFBlock(nn.Module): """ This code is refered from: https://github.com/MhLiao/DB/blob/master/decoders/feature_attention.py """ def __init__(self, in_channels, inter_channels, out_features_num=4): """ Adaptive Scale Fusion (ASF) block of DBNet++ Args: in_channels: the number of channels in the input data inter_channels: the number of middle channels out_features_num: the number of fused stages """ super(ASFBlock, self).__init__() self.in_channels = in_channels self.inter_channels = inter_channels self.out_features_num = out_features_num self.conv = nn.Conv2d(in_channels, inter_channels, 3, padding=1) self.spatial_scale = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, bias=False, padding=1), nn.ReLU(), nn.Conv2d(in_channels=1, out_channels=1, kernel_size=1, bias=False), nn.Sigmoid()) self.channel_scale = nn.Sequential(nn.Conv2d(in_channels=inter_channels, out_channels=out_features_num, kernel_size=1, bias=False), nn.Sigmoid()) def forward(self, fuse_features, features_list): fuse_features = self.conv(fuse_features) spatial_x = torch.mean(fuse_features, dim=1, keepdim=True) attention_scores = self.spatial_scale(spatial_x) + fuse_features attention_scores = self.channel_scale(attention_scores) assert len(features_list) == self.out_features_num out_list = [] for i in range(self.out_features_num): out_list.append(attention_scores[:, i:i + 1] * features_list[i]) return torch.cat(out_list, dim=1) class DBFPN(nn.Module): def __init__(self, in_channels, out_channels, use_asf=False, **kwargs): super(DBFPN, self).__init__() self.out_channels = out_channels self.use_asf = use_asf self.in2_conv = nn.Conv2d(in_channels=in_channels[0], out_channels=self.out_channels, kernel_size=1, bias=False) self.in3_conv = nn.Conv2d(in_channels=in_channels[1], out_channels=self.out_channels, kernel_size=1, bias=False) self.in4_conv = nn.Conv2d(in_channels=in_channels[2], out_channels=self.out_channels, kernel_size=1, bias=False) self.in5_conv = nn.Conv2d(in_channels=in_channels[3], out_channels=self.out_channels, kernel_size=1, bias=False) self.p5_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p4_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p3_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) self.p2_conv = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=3, padding=1, bias=False) if self.use_asf is True: self.asf = ASFBlock(self.out_channels, self.out_channels // 4) def forward(self, x): c2, c3, c4, c5 = x in5 = self.in5_conv(c5) in4 = self.in4_conv(c4) in3 = self.in3_conv(c3) in2 = self.in2_conv(c2) out4 = in4 + F.interpolate(in5, scale_factor=2, mode='nearest') out3 = in3 + F.interpolate(out4, scale_factor=2, mode='nearest') out2 = in2 + F.interpolate(out3, scale_factor=2, mode='nearest') p5 = self.p5_conv(in5) p4 = self.p4_conv(out4) p3 = self.p3_conv(out3) p2 = self.p2_conv(out2) p5 = F.interpolate(p5, scale_factor=8, mode='nearest') p4 = F.interpolate(p4, scale_factor=4, mode='nearest') p3 = F.interpolate(p3, scale_factor=2, mode='nearest') fuse = torch.cat([p5, p4, p3, p2], dim=1) if self.use_asf is True: fuse = self.asf(fuse, [p5, p4, p3, p2]) return fuse class RSELayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, shortcut=True): super(RSELayer, self).__init__() self.out_channels = out_channels self.in_conv = nn.Conv2d(in_channels=in_channels, out_channels=self.out_channels, kernel_size=kernel_size, padding=int(kernel_size // 2), bias=False) self.se_block = SEModule(self.out_channels) self.shortcut = shortcut def forward(self, ins): x = self.in_conv(ins) if self.shortcut: out = x + self.se_block(x) else: out = self.se_block(x) return out class RSEFPN(nn.Module): def __init__(self, in_channels, out_channels, shortcut=True, **kwargs): super(RSEFPN, self).__init__() self.out_channels = out_channels self.ins_conv = nn.ModuleList() self.inp_conv = nn.ModuleList() for i in range(len(in_channels)): self.ins_conv.append(RSELayer(in_channels[i], out_channels, kernel_size=1, shortcut=shortcut)) self.inp_conv.append(RSELayer(out_channels, out_channels // 4, kernel_size=3, shortcut=shortcut)) def forward(self, x): c2, c3, c4, c5 = x in5 = self.ins_conv[3](c5) in4 = self.ins_conv[2](c4) in3 = self.ins_conv[1](c3) in2 = self.ins_conv[0](c2) out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') p5 = self.inp_conv[3](in5) p4 = self.inp_conv[2](out4) p3 = self.inp_conv[1](out3) p2 = self.inp_conv[0](out2) p5 = F.upsample(p5, scale_factor=8, mode='nearest') p4 = F.upsample(p4, scale_factor=4, mode='nearest') p3 = F.upsample(p3, scale_factor=2, mode='nearest') fuse = torch.cat([p5, p4, p3, p2], dim=1) return fuse class LKPAN(nn.Module): def __init__(self, in_channels, out_channels, mode='large', **kwargs): super(LKPAN, self).__init__() self.out_channels = out_channels self.ins_conv = nn.ModuleList() self.inp_conv = nn.ModuleList() self.pan_head_conv = nn.ModuleList() self.pan_lat_conv = nn.ModuleList() if mode.lower() == 'lite': p_layer = DSConv elif mode.lower() == 'large': p_layer = nn.Conv2d else: raise ValueError("mode can only be one of ['lite', 'large'], but received {}".format(mode)) for i in range(len(in_channels)): self.ins_conv.append(nn.Conv2d(in_channels=in_channels[i], out_channels=self.out_channels, kernel_size=1, bias=False)) self.inp_conv.append(p_layer(in_channels=self.out_channels, out_channels=self.out_channels // 4, kernel_size=9, padding=4, bias=False)) if i > 0: self.pan_head_conv.append(nn.Conv2d(in_channels=self.out_channels // 4, out_channels=self.out_channels // 4, kernel_size=3, padding=1, stride=2, bias=False)) self.pan_lat_conv.append(p_layer(in_channels=self.out_channels // 4, out_channels=self.out_channels // 4, kernel_size=9, padding=4, bias=False)) def forward(self, x): c2, c3, c4, c5 = x in5 = self.ins_conv[3](c5) in4 = self.ins_conv[2](c4) in3 = self.ins_conv[1](c3) in2 = self.ins_conv[0](c2) out4 = in4 + F.upsample(in5, scale_factor=2, mode='nearest') out3 = in3 + F.upsample(out4, scale_factor=2, mode='nearest') out2 = in2 + F.upsample(out3, scale_factor=2, mode='nearest') f5 = self.inp_conv[3](in5) f4 = self.inp_conv[2](out4) f3 = self.inp_conv[1](out3) f2 = self.inp_conv[0](out2) pan3 = f3 + self.pan_head_conv[0](f2) pan4 = f4 + self.pan_head_conv[1](pan3) pan5 = f5 + self.pan_head_conv[2](pan4) p2 = self.pan_lat_conv[0](f2) p3 = self.pan_lat_conv[1](pan3) p4 = self.pan_lat_conv[2](pan4) p5 = self.pan_lat_conv[3](pan5) p5 = F.upsample(p5, scale_factor=8, mode='nearest') p4 = F.upsample(p4, scale_factor=4, mode='nearest') p3 = F.upsample(p3, scale_factor=2, mode='nearest') fuse = torch.cat([p5, p4, p3, p2], dim=1) return fuse class DeConvBNLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, if_act=True, act=None, name=None): super(DeConvBNLayer, self).__init__() self.if_act = if_act self.act = act self.deconv = nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_channels) self.act = act if act is not None: self._act = Activation(act) def forward(self, x): x = self.deconv(x) x = self.bn(x) if self.act is not None: x = self._act(x) return x class EASTFPN(nn.Module): def __init__(self, in_channels, model_name, **kwargs): super(EASTFPN, self).__init__() self.model_name = model_name if self.model_name == 'large': self.out_channels = 128 else: self.out_channels = 64 self.in_channels = in_channels[::-1] self.h1_conv = ConvBNLayer(in_channels=self.out_channels + self.in_channels[1], out_channels=self.out_channels, kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='unet_h_1') self.h2_conv = ConvBNLayer(in_channels=self.out_channels + self.in_channels[2], out_channels=self.out_channels, kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='unet_h_2') self.h3_conv = ConvBNLayer(in_channels=self.out_channels + self.in_channels[3], out_channels=self.out_channels, kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='unet_h_3') self.g0_deconv = DeConvBNLayer(in_channels=self.in_channels[0], out_channels=self.out_channels, kernel_size=4, stride=2, padding=1, if_act=True, act='relu', name='unet_g_0') self.g1_deconv = DeConvBNLayer(in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=4, stride=2, padding=1, if_act=True, act='relu', name='unet_g_1') self.g2_deconv = DeConvBNLayer(in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=4, stride=2, padding=1, if_act=True, act='relu', name='unet_g_2') self.g3_conv = ConvBNLayer(in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1, if_act=True, act='relu', name='unet_g_3') def forward(self, x): f = x[::-1] h = f[0] g = self.g0_deconv(h) h = torch.cat([g, f[1]], dim=1) h = self.h1_conv(h) g = self.g1_deconv(h) h = torch.cat([g, f[2]], dim=1) h = self.h2_conv(h) g = self.g2_deconv(h) h = torch.cat([g, f[3]], dim=1) h = self.h3_conv(h) g = self.g3_conv(h) return g class FCEFPN(nn.Module): """ Feature Pyramid Network, see https://arxiv.org/abs/1612.03144 Args: in_channels (list[int]): input channels of each level which can be derived from the output shape of backbone by from_config out_channels (list[int]): output channel of each level spatial_scales (list[float]): the spatial scales between input feature maps and original input image which can be derived from the output shape of backbone by from_config has_extra_convs (bool): whether to add extra conv to the last level. default False extra_stage (int): the number of extra stages added to the last level. default 1 use_c5 (bool): Whether to use c5 as the input of extra stage, otherwise p5 is used. default True norm_type (string|None): The normalization type in FPN module. If norm_type is None, norm will not be used after conv and if norm_type is string, bn, gn, sync_bn are available. default None norm_decay (float): weight decay for normalization layer weights. default 0. freeze_norm (bool): whether to freeze normalization layer. default False relu_before_extra_convs (bool): whether to add relu before extra convs. default False """ def __init__(self, in_channels, out_channels, spatial_scales=[0.25, 0.125, 0.0625, 0.03125], has_extra_convs=False, extra_stage=1, use_c5=True, norm_type=None, norm_decay=0.0, freeze_norm=False, relu_before_extra_convs=True): super(FCEFPN, self).__init__() self.out_channels = out_channels for s in range(extra_stage): spatial_scales = spatial_scales + [spatial_scales[-1] / 2.0] self.spatial_scales = spatial_scales self.has_extra_convs = has_extra_convs self.extra_stage = extra_stage self.use_c5 = use_c5 self.relu_before_extra_convs = relu_before_extra_convs self.norm_type = norm_type self.norm_decay = norm_decay self.freeze_norm = freeze_norm self.lateral_convs = [] self.lateral_convs_module = nn.ModuleList() self.fpn_convs = [] self.fpn_convs_module = nn.ModuleList() fan = out_channels * 3 * 3 st_stage = 4 - len(in_channels) ed_stage = st_stage + len(in_channels) - 1 for i in range(st_stage, ed_stage + 1): if i == 3: lateral_name = 'fpn_inner_res5_sum' else: lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2) in_c = in_channels[i - st_stage] if self.norm_type is not None: lateral = ConvNormLayer(ch_in=in_c, ch_out=out_channels, filter_size=1, stride=1, norm_type=self.norm_type, norm_decay=self.norm_decay, freeze_norm=self.freeze_norm, initializer=None) else: lateral = nn.Conv2d(in_channels=in_c, out_channels=out_channels, kernel_size=1) self.lateral_convs_module.add_module(lateral_name, lateral) self.lateral_convs.append(lateral) for i in range(st_stage, ed_stage + 1): fpn_name = 'fpn_res{}_sum'.format(i + 2) fpn_conv_module = nn.Sequential() if self.norm_type is not None: fpn_conv = ConvNormLayer(ch_in=out_channels, ch_out=out_channels, filter_size=3, stride=1, norm_type=self.norm_type, norm_decay=self.norm_decay, freeze_norm=self.freeze_norm, initializer=None) else: fpn_conv = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1) self.fpn_convs_module.add_module(fpn_name, fpn_conv) self.fpn_convs.append(fpn_conv) if self.has_extra_convs: for i in range(self.extra_stage): lvl = ed_stage + 1 + i if i == 0 and self.use_c5: in_c = in_channels[-1] else: in_c = out_channels extra_fpn_name = 'fpn_{}'.format(lvl + 2) extra_fpn_conv_module = nn.Sequential() if self.norm_type is not None: extra_fpn_conv = ConvNormLayer(ch_in=in_c, ch_out=out_channels, filter_size=3, stride=2, norm_type=self.norm_type, norm_decay=self.norm_decay, freeze_norm=self.freeze_norm, initializer=None) else: extra_fpn_conv = nn.Conv2d(in_channels=in_c, out_channels=out_channels, kernel_size=3, stride=2, padding=1) self.fpn_convs_module.add_module(extra_fpn_name, extra_fpn_conv) self.fpn_convs.append(extra_fpn_conv) @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], 'spatial_scales': [(1.0 / i.stride) for i in input_shape]} def forward(self, body_feats): laterals = [] num_levels = len(body_feats) for i in range(num_levels): laterals.append(self.lateral_convs[i](body_feats[i])) for i in range(1, num_levels): lvl = num_levels - i upsample = F.interpolate(laterals[lvl], scale_factor=2.0, mode='nearest') laterals[lvl - 1] += upsample fpn_output = [] for lvl in range(num_levels): fpn_output.append(self.fpn_convs[lvl](laterals[lvl])) if self.extra_stage > 0: if not self.has_extra_convs: assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs' fpn_output.append(torch.max_pool2d(fpn_output[-1], 1, stride=2)) else: if self.use_c5: extra_source = body_feats[-1] else: extra_source = fpn_output[-1] fpn_output.append(self.fpn_convs[num_levels](extra_source)) for i in range(1, self.extra_stage): if self.relu_before_extra_convs: fpn_output.append(self.fpn_convs[num_levels + i](F.relu(fpn_output[-1]))) else: fpn_output.append(self.fpn_convs[num_levels + i](fpn_output[-1])) return fpn_output class PGFPN(nn.Module): def __init__(self, in_channels, **kwargs): super(PGFPN, self).__init__() num_inputs = [2048, 2048, 1024, 512, 256] num_outputs = [256, 256, 192, 192, 128] self.out_channels = 128 self.conv_bn_layer_1 = ConvBNLayer(in_channels=3, out_channels=32, kernel_size=3, stride=1, act=None, name='FPN_d1') self.conv_bn_layer_2 = ConvBNLayer(in_channels=64, out_channels=64, kernel_size=3, stride=1, act=None, name='FPN_d2') self.conv_bn_layer_3 = ConvBNLayer(in_channels=256, out_channels=128, kernel_size=3, stride=1, act=None, name='FPN_d3') self.conv_bn_layer_4 = ConvBNLayer(in_channels=32, out_channels=64, kernel_size=3, stride=2, act=None, name='FPN_d4') self.conv_bn_layer_5 = ConvBNLayer(in_channels=64, out_channels=64, kernel_size=3, stride=1, act='relu', name='FPN_d5') self.conv_bn_layer_6 = ConvBNLayer(in_channels=64, out_channels=128, kernel_size=3, stride=2, act=None, name='FPN_d6') self.conv_bn_layer_7 = ConvBNLayer(in_channels=128, out_channels=128, kernel_size=3, stride=1, act='relu', name='FPN_d7') self.conv_bn_layer_8 = ConvBNLayer(in_channels=128, out_channels=128, kernel_size=1, stride=1, act=None, name='FPN_d8') self.conv_h0 = ConvBNLayer(in_channels=num_inputs[0], out_channels=num_outputs[0], kernel_size=1, stride=1, act=None, name='conv_h{}'.format(0)) self.conv_h1 = ConvBNLayer(in_channels=num_inputs[1], out_channels=num_outputs[1], kernel_size=1, stride=1, act=None, name='conv_h{}'.format(1)) self.conv_h2 = ConvBNLayer(in_channels=num_inputs[2], out_channels=num_outputs[2], kernel_size=1, stride=1, act=None, name='conv_h{}'.format(2)) self.conv_h3 = ConvBNLayer(in_channels=num_inputs[3], out_channels=num_outputs[3], kernel_size=1, stride=1, act=None, name='conv_h{}'.format(3)) self.conv_h4 = ConvBNLayer(in_channels=num_inputs[4], out_channels=num_outputs[4], kernel_size=1, stride=1, act=None, name='conv_h{}'.format(4)) self.dconv0 = DeConvBNLayer(in_channels=num_outputs[0], out_channels=num_outputs[0 + 1], name='dconv_{}'.format(0)) self.dconv1 = DeConvBNLayer(in_channels=num_outputs[1], out_channels=num_outputs[1 + 1], act=None, name='dconv_{}'.format(1)) self.dconv2 = DeConvBNLayer(in_channels=num_outputs[2], out_channels=num_outputs[2 + 1], act=None, name='dconv_{}'.format(2)) self.dconv3 = DeConvBNLayer(in_channels=num_outputs[3], out_channels=num_outputs[3 + 1], act=None, name='dconv_{}'.format(3)) self.conv_g1 = ConvBNLayer(in_channels=num_outputs[1], out_channels=num_outputs[1], kernel_size=3, stride=1, act='relu', name='conv_g{}'.format(1)) self.conv_g2 = ConvBNLayer(in_channels=num_outputs[2], out_channels=num_outputs[2], kernel_size=3, stride=1, act='relu', name='conv_g{}'.format(2)) self.conv_g3 = ConvBNLayer(in_channels=num_outputs[3], out_channels=num_outputs[3], kernel_size=3, stride=1, act='relu', name='conv_g{}'.format(3)) self.conv_g4 = ConvBNLayer(in_channels=num_outputs[4], out_channels=num_outputs[4], kernel_size=3, stride=1, act='relu', name='conv_g{}'.format(4)) self.convf = ConvBNLayer(in_channels=num_outputs[4], out_channels=num_outputs[4], kernel_size=1, stride=1, act=None, name='conv_f{}'.format(4)) def forward(self, x): c0, c1, c2, c3, c4, c5, c6 = x f = [c0, c1, c2] g = [None, None, None] h = [None, None, None] h[0] = self.conv_bn_layer_1(f[0]) h[1] = self.conv_bn_layer_2(f[1]) h[2] = self.conv_bn_layer_3(f[2]) g[0] = self.conv_bn_layer_4(h[0]) g[1] = torch.add(g[0], h[1]) g[1] = F.relu(g[1]) g[1] = self.conv_bn_layer_5(g[1]) g[1] = self.conv_bn_layer_6(g[1]) g[2] = torch.add(g[1], h[2]) g[2] = F.relu(g[2]) g[2] = self.conv_bn_layer_7(g[2]) f_down = self.conv_bn_layer_8(g[2]) f1 = [c6, c5, c4, c3, c2] g = [None, None, None, None, None] h = [None, None, None, None, None] h[0] = self.conv_h0(f1[0]) h[1] = self.conv_h1(f1[1]) h[2] = self.conv_h2(f1[2]) h[3] = self.conv_h3(f1[3]) h[4] = self.conv_h4(f1[4]) g[0] = self.dconv0(h[0]) g[1] = torch.add(g[0], h[1]) g[1] = F.relu(g[1]) g[1] = self.conv_g1(g[1]) g[1] = self.dconv1(g[1]) g[2] = torch.add(g[1], h[2]) g[2] = F.relu(g[2]) g[2] = self.conv_g2(g[2]) g[2] = self.dconv2(g[2]) g[3] = torch.add(g[2], h[3]) g[3] = F.relu(g[3]) g[3] = self.conv_g3(g[3]) g[3] = self.dconv3(g[3]) g[4] = torch.add(g[3], h[4]) g[4] = F.relu(g[4]) g[4] = self.conv_g4(g[4]) f_up = self.convf(g[4]) f_common = torch.add(f_down, f_up) f_common = F.relu(f_common) return f_common class Im2Seq(nn.Module): def __init__(self, in_channels, **kwargs): super().__init__() self.out_channels = in_channels def forward(self, x): B, C, H, W = x.shape x = x.squeeze(dim=2) x = x.permute(0, 2, 1) return x class EncoderWithRNN_(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithRNN_, self).__init__() self.out_channels = hidden_size * 2 self.rnn1 = nn.LSTM(in_channels, hidden_size, bidirectional=False, batch_first=True, num_layers=2) self.rnn2 = nn.LSTM(in_channels, hidden_size, bidirectional=False, batch_first=True, num_layers=2) def forward(self, x): self.rnn1.flatten_parameters() self.rnn2.flatten_parameters() out1, h1 = self.rnn1(x) out2, h2 = self.rnn2(torch.flip(x, [1])) return torch.cat([out1, torch.flip(out2, [1])], 2) class EncoderWithRNN(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithRNN, self).__init__() self.out_channels = hidden_size * 2 self.lstm = nn.LSTM(in_channels, hidden_size, num_layers=2, batch_first=True, bidirectional=True) def forward(self, x): x, _ = self.lstm(x) return x class EncoderWithFC(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithFC, self).__init__() self.out_channels = hidden_size self.fc = nn.Linear(in_channels, hidden_size, bias=True) def forward(self, x): x = self.fc(x) return x class EncoderWithSVTR(nn.Module): def __init__(self, in_channels, dims=64, depth=2, hidden_dims=120, use_guide=False, num_heads=8, qkv_bias=True, mlp_ratio=2.0, drop_rate=0.1, attn_drop_rate=0.1, drop_path=0.0, qk_scale=None): super(EncoderWithSVTR, self).__init__() self.depth = depth self.use_guide = use_guide self.conv1 = ConvBNLayer(in_channels, in_channels // 8, padding=1, act='swish') self.conv2 = ConvBNLayer(in_channels // 8, hidden_dims, kernel_size=1, act='swish') self.svtr_block = nn.ModuleList([Block(dim=hidden_dims, num_heads=num_heads, mixer='Global', HW=None, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer='swish', attn_drop=attn_drop_rate, drop_path=drop_path, norm_layer='nn.LayerNorm', epsilon=1e-05, prenorm=False) for i in range(depth)]) self.norm = nn.LayerNorm(hidden_dims, eps=1e-06) self.conv3 = ConvBNLayer(hidden_dims, in_channels, kernel_size=1, act='swish') self.conv4 = ConvBNLayer(2 * in_channels, in_channels // 8, padding=1, act='swish') self.conv1x1 = ConvBNLayer(in_channels // 8, dims, kernel_size=1, act='swish') self.out_channels = dims self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward(self, x): if self.use_guide: z = x.clone() z.stop_gradient = True else: z = x h = z z = self.conv1(z) z = self.conv2(z) B, C, H, W = z.shape z = z.flatten(2).permute(0, 2, 1) for blk in self.svtr_block: z = blk(z) z = self.norm(z) z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2) z = self.conv3(z) z = torch.cat((h, z), dim=1) z = self.conv1x1(self.conv4(z)) return z class SequenceEncoder(nn.Module): def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs): super(SequenceEncoder, self).__init__() self.encoder_reshape = Im2Seq(in_channels) self.out_channels = self.encoder_reshape.out_channels self.encoder_type = encoder_type if encoder_type == 'reshape': self.only_reshape = True else: support_encoder_dict = {'reshape': Im2Seq, 'fc': EncoderWithFC, 'rnn': EncoderWithRNN, 'svtr': EncoderWithSVTR} assert encoder_type in support_encoder_dict, '{} must in {}'.format(encoder_type, support_encoder_dict.keys()) if encoder_type == 'svtr': self.encoder = support_encoder_dict[encoder_type](self.encoder_reshape.out_channels, **kwargs) else: self.encoder = support_encoder_dict[encoder_type](self.encoder_reshape.out_channels, hidden_size) self.out_channels = self.encoder.out_channels self.only_reshape = False def forward(self, x): if self.encoder_type != 'svtr': x = self.encoder_reshape(x) if not self.only_reshape: x = self.encoder(x) return x else: x = self.encoder(x) x = self.encoder_reshape(x) return x class FPN_Up_Fusion(nn.Module): def __init__(self, in_channels): super(FPN_Up_Fusion, self).__init__() in_channels = in_channels[::-1] out_channels = [256, 256, 192, 192, 128] self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 1, 1, act=None, name='fpn_up_h0') self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 1, 1, act=None, name='fpn_up_h1') self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 1, 1, act=None, name='fpn_up_h2') self.h3_conv = ConvBNLayer(in_channels[3], out_channels[3], 1, 1, act=None, name='fpn_up_h3') self.h4_conv = ConvBNLayer(in_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_h4') self.g0_conv = DeConvBNLayer(out_channels[0], out_channels[1], 4, 2, act=None, name='fpn_up_g0') self.g1_conv = nn.Sequential(ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_up_g1_1'), DeConvBNLayer(out_channels[1], out_channels[2], 4, 2, act=None, name='fpn_up_g1_2')) self.g2_conv = nn.Sequential(ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_up_g2_1'), DeConvBNLayer(out_channels[2], out_channels[3], 4, 2, act=None, name='fpn_up_g2_2')) self.g3_conv = nn.Sequential(ConvBNLayer(out_channels[3], out_channels[3], 3, 1, act='relu', name='fpn_up_g3_1'), DeConvBNLayer(out_channels[3], out_channels[4], 4, 2, act=None, name='fpn_up_g3_2')) self.g4_conv = nn.Sequential(ConvBNLayer(out_channels[4], out_channels[4], 3, 1, act='relu', name='fpn_up_fusion_1'), ConvBNLayer(out_channels[4], out_channels[4], 1, 1, act=None, name='fpn_up_fusion_2')) def _add_relu(self, x1, x2): x = torch.add(x1, x2) x = F.relu(x) return x def forward(self, x): f = x[2:][::-1] h0 = self.h0_conv(f[0]) h1 = self.h1_conv(f[1]) h2 = self.h2_conv(f[2]) h3 = self.h3_conv(f[3]) h4 = self.h4_conv(f[4]) g0 = self.g0_conv(h0) g1 = self._add_relu(g0, h1) g1 = self.g1_conv(g1) g2 = self.g2_conv(self._add_relu(g1, h2)) g3 = self.g3_conv(self._add_relu(g2, h3)) g4 = self.g4_conv(self._add_relu(g3, h4)) return g4 class FPN_Down_Fusion(nn.Module): def __init__(self, in_channels): super(FPN_Down_Fusion, self).__init__() out_channels = [32, 64, 128] self.h0_conv = ConvBNLayer(in_channels[0], out_channels[0], 3, 1, act=None, name='fpn_down_h0') self.h1_conv = ConvBNLayer(in_channels[1], out_channels[1], 3, 1, act=None, name='fpn_down_h1') self.h2_conv = ConvBNLayer(in_channels[2], out_channels[2], 3, 1, act=None, name='fpn_down_h2') self.g0_conv = ConvBNLayer(out_channels[0], out_channels[1], 3, 2, act=None, name='fpn_down_g0') self.g1_conv = nn.Sequential(ConvBNLayer(out_channels[1], out_channels[1], 3, 1, act='relu', name='fpn_down_g1_1'), ConvBNLayer(out_channels[1], out_channels[2], 3, 2, act=None, name='fpn_down_g1_2')) self.g2_conv = nn.Sequential(ConvBNLayer(out_channels[2], out_channels[2], 3, 1, act='relu', name='fpn_down_fusion_1'), ConvBNLayer(out_channels[2], out_channels[2], 1, 1, act=None, name='fpn_down_fusion_2')) def forward(self, x): f = x[:3] h0 = self.h0_conv(f[0]) h1 = self.h1_conv(f[1]) h2 = self.h2_conv(f[2]) g0 = self.g0_conv(h0) g1 = torch.add(g0, h1) g1 = F.relu(g1) g1 = self.g1_conv(g1) g2 = torch.add(g1, h2) g2 = F.relu(g2) g2 = self.g2_conv(g2) return g2 class Cross_Attention(nn.Module): def __init__(self, in_channels): super(Cross_Attention, self).__init__() self.theta_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_theta') self.phi_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_phi') self.g_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act='relu', name='f_g') self.fh_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_weight') self.fh_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fh_sc') self.fv_weight_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_weight') self.fv_sc_conv = ConvBNLayer(in_channels, in_channels, 1, 1, act=None, name='fv_sc') self.f_attn_conv = ConvBNLayer(in_channels * 2, in_channels, 1, 1, act='relu', name='f_attn') def _cal_fweight(self, f, shape): f_theta, f_phi, f_g = f f_theta = f_theta.permute(0, 2, 3, 1) f_theta = torch.reshape(f_theta, [shape[0] * shape[1], shape[2], 128]) f_phi = f_phi.permute(0, 2, 3, 1) f_phi = torch.reshape(f_phi, [shape[0] * shape[1], shape[2], 128]) f_g = f_g.permute(0, 2, 3, 1) f_g = torch.reshape(f_g, [shape[0] * shape[1], shape[2], 128]) f_attn = torch.matmul(f_theta, f_phi.permute(0, 2, 1)) f_attn = f_attn / 128 ** 0.5 f_attn = F.softmax(f_attn, dim=-1) f_weight = torch.matmul(f_attn, f_g) f_weight = torch.reshape(f_weight, [shape[0], shape[1], shape[2], 128]) return f_weight def forward(self, f_common): f_shape = f_common.size() f_theta = self.theta_conv(f_common) f_phi = self.phi_conv(f_common) f_g = self.g_conv(f_common) fh_weight = self._cal_fweight([f_theta, f_phi, f_g], [f_shape[0], f_shape[2], f_shape[3]]) fh_weight = fh_weight.permute(0, 3, 1, 2) fh_weight = self.fh_weight_conv(fh_weight) fh_sc = self.fh_sc_conv(f_common) f_h = F.relu(fh_weight + fh_sc) fv_theta = f_theta.permute(0, 1, 3, 2) fv_phi = f_phi.permute(0, 1, 3, 2) fv_g = f_g.permute(0, 1, 3, 2) fv_weight = self._cal_fweight([fv_theta, fv_phi, fv_g], [f_shape[0], f_shape[3], f_shape[2]]) fv_weight = fv_weight.permute(0, 3, 2, 1) fv_weight = self.fv_weight_conv(fv_weight) fv_sc = self.fv_sc_conv(f_common) f_v = F.relu(fv_weight + fv_sc) f_attn = torch.cat([f_h, f_v], dim=1) f_attn = self.f_attn_conv(f_attn) return f_attn class SASTFPN(nn.Module): def __init__(self, in_channels, with_cab=False, **kwargs): super(SASTFPN, self).__init__() self.in_channels = in_channels self.with_cab = with_cab self.FPN_Down_Fusion = FPN_Down_Fusion(self.in_channels) self.FPN_Up_Fusion = FPN_Up_Fusion(self.in_channels) self.out_channels = 128 self.cross_attention = Cross_Attention(self.out_channels) def forward(self, x): f_down = self.FPN_Down_Fusion(x) f_up = self.FPN_Up_Fusion(x) f_common = torch.add(f_down, f_up) f_common = F.relu(f_common) if self.with_cab: f_common = self.cross_attention(f_common) return f_common def conv3x3_block(in_channels, out_channels, stride=1): n = 3 * 3 * out_channels w = math.sqrt(2.0 / n) conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=True) block = nn.Sequential(conv_layer, nn.BatchNorm2d(out_channels), nn.ReLU()) return block class STN(nn.Module): def __init__(self, in_channels, num_ctrlpoints, activation='none'): super(STN, self).__init__() self.in_channels = in_channels self.num_ctrlpoints = num_ctrlpoints self.activation = activation self.stn_convnet = nn.Sequential(conv3x3_block(in_channels, 32), nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(32, 64), nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(64, 128), nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(128, 256), nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(256, 256), nn.MaxPool2d(kernel_size=2, stride=2), conv3x3_block(256, 256)) self.stn_fc1 = nn.Sequential(nn.Linear(2 * 256, 512, bias=True), nn.BatchNorm1d(512), nn.ReLU(inplace=True)) fc2_bias = self.init_stn() self.stn_fc2 = nn.Linear(512, num_ctrlpoints * 2, bias=True) def init_stn(self): margin = 0.01 sampling_num_per_side = int(self.num_ctrlpoints / 2) ctrl_pts_x = np.linspace(margin, 1.0 - margin, sampling_num_per_side) ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) ctrl_points = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32) if self.activation == 'none': pass elif self.activation == 'sigmoid': ctrl_points = -np.log(1.0 / ctrl_points - 1.0) ctrl_points = torch.Tensor(ctrl_points) fc2_bias = torch.reshape(ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]]) return fc2_bias def forward(self, x): x = self.stn_convnet(x) batch_size, _, h, w = x.shape x = torch.reshape(x, shape=(batch_size, -1)) img_feat = self.stn_fc1(x) x = self.stn_fc2(0.1 * img_feat) if self.activation == 'sigmoid': x = F.sigmoid(x) x = torch.reshape(x, shape=[-1, self.num_ctrlpoints, 2]) return img_feat, x def build_output_control_points(num_control_points, margins): margin_x, margin_y = margins num_ctrl_pts_per_side = num_control_points // 2 ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side) ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) output_ctrl_pts_arr = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr) return output_ctrl_pts def compute_partial_repr(input_points, control_points): N = input_points.shape[0] M = control_points.shape[0] pairwise_diff = torch.reshape(input_points, shape=[N, 1, 2]) - torch.reshape(control_points, shape=[1, M, 2]) pairwise_diff_square = pairwise_diff * pairwise_diff pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1] repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist) mask = repr_matrix != repr_matrix repr_matrix.masked_fill_(mask, 0) return repr_matrix def grid_sample(input, grid, canvas=None): input.stop_gradient = False output = F.grid_sample(input, grid, align_corners=True) if torch.__version__ >= '1.3.0' else F.grid_sample(input, grid) if canvas is None: return output else: input_mask = input.data.new(input.size()).fill_(1) output_mask = F.grid_sample(input_mask, grid) padded_output = output * output_mask + canvas * (1 - output_mask) return padded_output class TPSSpatialTransformer(nn.Module): def __init__(self, output_image_size=None, num_control_points=None, margins=None): super(TPSSpatialTransformer, self).__init__() self.output_image_size = output_image_size self.num_control_points = num_control_points self.margins = margins self.target_height, self.target_width = output_image_size target_control_points = build_output_control_points(num_control_points, margins) N = num_control_points forward_kernel = torch.zeros(N + 3, N + 3) target_control_partial_repr = compute_partial_repr(target_control_points, target_control_points) forward_kernel[:N, :N].copy_(target_control_partial_repr) forward_kernel[:N, -3].fill_(1) forward_kernel[-3, :N].fill_(1) forward_kernel[:N, -2:].copy_(target_control_points) forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1)) inverse_kernel = torch.inverse(forward_kernel) HW = self.target_height * self.target_width target_coordinate = list(itertools.product(range(self.target_height), range(self.target_width))) target_coordinate = torch.Tensor(target_coordinate) Y, X = target_coordinate.split(1, dim=1) Y = Y / (self.target_height - 1) X = X / (self.target_width - 1) target_coordinate = torch.cat([X, Y], dim=1) target_coordinate_partial_repr = compute_partial_repr(target_coordinate, target_control_points) target_coordinate_repr = torch.cat([target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate], dim=1) self.inverse_kernel = inverse_kernel self.padding_matrix = torch.zeros(3, 2) self.target_coordinate_repr = target_coordinate_repr self.target_control_points = target_control_points def forward(self, input, source_control_points): assert source_control_points.ndimension() == 3 assert source_control_points.shape[1] == self.num_control_points assert source_control_points.shape[2] == 2 batch_size = source_control_points.size(0) Y = torch.cat([source_control_points, self.padding_matrix.expand(batch_size, 3, 2)], 1) mapping_matrix = torch.matmul(self.inverse_kernel, Y) source_coordinate = torch.matmul(self.target_coordinate_repr, mapping_matrix) grid = torch.reshape(source_coordinate, shape=[-1, self.target_height, self.target_width, 2]) grid = torch.clamp(grid, 0, 1) grid = 2.0 * grid - 1.0 output_maps = grid_sample(input, grid, canvas=None) return output_maps, source_coordinate class STN_ON(nn.Module): def __init__(self, in_channels, tps_inputsize, tps_outputsize, num_control_points, tps_margins, stn_activation): super(STN_ON, self).__init__() self.tps = TPSSpatialTransformer(output_image_size=tuple(tps_outputsize), num_control_points=num_control_points, margins=tuple(tps_margins)) self.stn_head = STN(in_channels=in_channels, num_ctrlpoints=num_control_points, activation=stn_activation) self.tps_inputsize = tps_inputsize self.out_channels = in_channels def forward(self, image): stn_input = torch.nn.functional.interpolate(image, self.tps_inputsize, mode='bilinear', align_corners=True) stn_img_feat, ctrl_points = self.stn_head(stn_input) x, _ = self.tps(image, ctrl_points) return x class LocalizationNetwork(nn.Module): def __init__(self, in_channels, num_fiducial, loc_lr, model_name): super(LocalizationNetwork, self).__init__() self.F = num_fiducial F = num_fiducial if model_name == 'large': num_filters_list = [64, 128, 256, 512] fc_dim = 256 else: num_filters_list = [16, 32, 64, 128] fc_dim = 64 self.block_list = nn.Sequential() for fno in range(0, len(num_filters_list)): num_filters = num_filters_list[fno] name = 'loc_conv%d' % fno conv = ConvBNLayer(in_channels=in_channels, out_channels=num_filters, kernel_size=3, act='relu', name=name) self.block_list.add_module(name, conv) if fno == len(num_filters_list) - 1: pool = nn.AdaptiveAvgPool2d(1) else: pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) in_channels = num_filters self.block_list.add_module('{}_pool'.format(name), pool) name = 'loc_fc1' stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0) self.fc1 = nn.Linear(in_channels, fc_dim, bias=True) initial_bias = self.get_initial_fiducials() initial_bias = initial_bias.reshape(-1) name = 'loc_fc2' self.fc2 = nn.Linear(fc_dim, F * 2, bias=True) self.out_channels = F * 2 def forward(self, x): """ Estimating parameters of geometric transformation Args: image: input Return: batch_C_prime: the matrix of the geometric transformation """ B = x.shape[0] i = 0 for block in self.block_list: x = block(x) x = x.squeeze(dim=2).squeeze(dim=2) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = x.reshape(shape=[-1, self.F, 2]) return x def get_initial_fiducials(self): """ see RARE paper Fig. 6 (a) """ F = self.F ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) return initial_bias class GridGenerator(nn.Module): def __init__(self, in_channels, num_fiducial): super(GridGenerator, self).__init__() self.eps = 1e-06 self.F = num_fiducial name = 'ex_fc' self.fc = nn.Linear(in_channels, 6, bias=True) def forward(self, batch_C_prime, I_r_size): """ Generate the grid for the grid_sampler. Args: batch_C_prime: the matrix of the geometric transformation I_r_size: the shape of the input image Return: batch_P_prime: the grid for the grid_sampler """ C = self.build_C_paddle() P = self.build_P_paddle(I_r_size) inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).type(torch.float32) P_hat_tensor = self.build_P_hat_paddle(C, torch.as_tensor(P)).type(torch.float32) inv_delta_C_tensor.stop_gradient = True P_hat_tensor.stop_gradient = True batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime) batch_C_ex_part_tensor.stop_gradient = True batch_C_prime_with_zeros = torch.cat([batch_C_prime, batch_C_ex_part_tensor], dim=1) inv_delta_C_tensor = inv_delta_C_tensor batch_T = torch.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros) P_hat_tensor = P_hat_tensor batch_P_prime = torch.matmul(P_hat_tensor, batch_T) return batch_P_prime def build_C_paddle(self): """ Return coordinates of fiducial points in I_r; C """ F = self.F ctrl_pts_x = torch.linspace(-1.0, 1.0, int(F / 2), dtype=torch.float64) ctrl_pts_y_top = -1 * torch.ones([int(F / 2)], dtype=torch.float64) ctrl_pts_y_bottom = torch.ones([int(F / 2)], dtype=torch.float64) ctrl_pts_top = torch.stack([ctrl_pts_x, ctrl_pts_y_top], dim=1) ctrl_pts_bottom = torch.stack([ctrl_pts_x, ctrl_pts_y_bottom], dim=1) C = torch.cat([ctrl_pts_top, ctrl_pts_bottom], dim=0) return C def build_P_paddle(self, I_r_size): I_r_height, I_r_width = I_r_size I_r_grid_x = (torch.arange(-I_r_width, I_r_width, 2, dtype=torch.float64) + 1.0) / torch.as_tensor(np.array([I_r_width]).astype(np.float64)) I_r_grid_y = (torch.arange(-I_r_height, I_r_height, 2, dtype=torch.float64) + 1.0) / torch.as_tensor(np.array([I_r_height]).astype(np.float64)) P = torch.stack(torch.meshgrid([I_r_grid_x, I_r_grid_y]), dim=2) P = P.permute(1, 0, 2) return P.reshape([-1, 2]) def build_inv_delta_C_paddle(self, C): """ Return inv_delta_C which is needed to calculate T """ F = self.F hat_C = torch.zeros((F, F), dtype=torch.float64) for i in range(0, F): for j in range(i, F): if i == j: hat_C[i, j] = 1 else: r = torch.norm(C[i] - C[j]) hat_C[i, j] = r hat_C[j, i] = r hat_C = hat_C ** 2 * torch.log(hat_C) delta_C = torch.cat([torch.cat([torch.ones((F, 1), dtype=torch.float64), C, hat_C], dim=1), torch.cat([torch.zeros((2, 3), dtype=torch.float64), C.permute(1, 0)], dim=1), torch.cat([torch.zeros((1, 3), dtype=torch.float64), torch.ones((1, F), dtype=torch.float64)], dim=1)], dim=0) inv_delta_C = torch.inverse(delta_C) return inv_delta_C def build_P_hat_paddle(self, C, P): F = self.F eps = self.eps n = P.shape[0] P_tile = torch.unsqueeze(P, dim=1).repeat(1, F, 1) C_tile = torch.unsqueeze(C, dim=0) P_diff = P_tile - C_tile rbf_norm = torch.norm(P_diff, p=2, dim=2, keepdim=False) rbf = torch.mul(rbf_norm ** 2, torch.log(rbf_norm + eps)) P_hat = torch.cat([torch.ones((n, 1), dtype=torch.float64), P, rbf], dim=1) return P_hat def get_expand_tensor(self, batch_C_prime): B, H, C = batch_C_prime.shape batch_C_prime = batch_C_prime.reshape([B, H * C]) batch_C_ex_part_tensor = self.fc(batch_C_prime) batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2]) return batch_C_ex_part_tensor class TPS(nn.Module): def __init__(self, in_channels, num_fiducial, loc_lr, model_name): super(TPS, self).__init__() self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr, model_name) self.grid_generator = GridGenerator(self.loc_net.out_channels, num_fiducial) self.out_channels = in_channels def forward(self, image): image.stop_gradient = False batch_C_prime = self.loc_net(image) batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:]) batch_P_prime = batch_P_prime.reshape([-1, image.shape[2], image.shape[3], 2]) if torch.__version__ < '1.3.0': batch_I_r = F.grid_sample(image, grid=batch_P_prime) else: batch_I_r = F.grid_sample(image, grid=batch_P_prime, align_corners=True) return batch_I_r import torch from torch.nn import MSELoss, ReLU from _paritybench_helpers import _mock_config, _mock_layer, _paritybench_base, _fails_compile TESTCASES = [ # (nn.Module, init_args, forward_args, jit_compiles) (ASFBlock, lambda: ([], {'in_channels': 4, 'inter_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])], {}), True), (AttentionGRUCell, lambda: ([], {'input_size': 4, 'hidden_size': 4, 'num_embeddings': 4}), lambda: ([torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])], {}), True), (AttentionHead, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'hidden_size': 4}), lambda: ([torch.rand([4, 4])], {}), False), (Backbone, lambda: ([], {}), lambda: ([], {}), False), (BasicStem, lambda: ([], {}), lambda: ([torch.rand([4, 3, 64, 64])], {}), False), (BiaffineAttention, lambda: ([], {'in_features': 4, 'out_features': 4}), lambda: ([torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])], {}), True), (Block, lambda: ([], {'dim': 4, 'num_heads': 4}), lambda: ([torch.rand([4, 4, 4])], {}), False), (CTCHead, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (ClsHead, lambda: ([], {'in_channels': 4, 'class_dim': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Conv2d, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (ConvNormLayer, lambda: ([], {'ch_in': 4, 'ch_out': 4, 'filter_size': 4, 'stride': 1}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Conv_BN_ReLU, lambda: ([], {'in_planes': 4, 'out_planes': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (DBHead, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (DSConv, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'padding': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (DeConvBNLayer, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (DropBlock, lambda: ([], {'block_size': 4, 'keep_prob': 4, 'name': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (DropPath, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (Encoder, lambda: ([], {'n_layer': 1, 'n_head': 4, 'd_key': 4, 'd_value': 4, 'd_model': 4, 'd_inner_hid': 4, 'prepostprocess_dropout': 0.5, 'attention_dropout': 0.5, 'relu_dropout': 0.5}), lambda: ([torch.rand([4, 4, 4]), torch.rand([4, 4, 4])], {}), False), (EncoderLayer, lambda: ([], {'n_head': 4, 'd_key': 4, 'd_value': 4, 'd_model': 4, 'd_inner_hid': 4, 'prepostprocess_dropout': 0.5, 'attention_dropout': 0.5, 'relu_dropout': 0.5}), lambda: ([torch.rand([4, 4, 4]), torch.rand([4, 4, 4])], {}), False), (EncoderWithFC, lambda: ([], {'in_channels': 4, 'hidden_size': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (EncoderWithRNN, lambda: ([], {'in_channels': 4, 'hidden_size': 4}), lambda: ([torch.rand([4, 4])], {}), True), (EncoderWithRNN_, lambda: ([], {'in_channels': 4, 'hidden_size': 4}), lambda: ([torch.rand([4, 4, 4])], {}), False), (FFN, lambda: ([], {'d_inner_hid': 4, 'd_model': 4, 'dropout_rate': 0.5}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (FrozenBatchNorm, lambda: ([], {'num_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (GELU, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Head, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Hsigmoid, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Hswish, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Identity, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Lambda, lambda: ([], {'func': _mock_layer()}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (LastLevelMaxPool, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (LayoutLMPooler, lambda: ([], {'hidden_size': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (LayoutXLMOutput, lambda: ([], {'config': _mock_config(intermediate_size=4, hidden_size=4, layer_norm_eps=1, hidden_dropout_prob=0.5)}), lambda: ([torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])], {}), False), (LayoutXLMPooler, lambda: ([], {'hidden_size': 4, 'with_pool': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (LayoutXLMSelfOutput, lambda: ([], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, hidden_dropout_prob=0.5)}), lambda: ([torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])], {}), False), (LocalizationNetwork, lambda: ([], {'in_channels': 4, 'num_fiducial': 4, 'loc_lr': 4, 'model_name': 4}), lambda: ([torch.rand([4, 4, 64, 64])], {}), True), (MTB, lambda: ([], {'cnn_num': 4, 'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Mlp, lambda: ([], {'in_features': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (MultiHeadAttention, lambda: ([], {'d_key': 4, 'd_value': 4, 'd_model': 4}), lambda: ([torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4]), torch.rand([4, 4, 1, 4]), torch.rand([4, 4])], {}), False), (MultiheadAttention, lambda: ([], {'embed_dim': 4, 'num_heads': 4}), lambda: ([torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])], {}), True), (PSEHead, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (PTAttentionGRUCell, lambda: ([], {'input_size': 4, 'hidden_size': 4, 'num_embeddings': 4}), lambda: ([torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])], {}), True), (PTAttentionHead, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'hidden_size': 4}), lambda: ([torch.rand([4, 4])], {}), False), (PositionalEncoding, lambda: ([], {'dropout': 0.5, 'dim': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (PositionalEncoding_2d, lambda: ([], {'dropout': 0.5, 'dim': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (PrePostProcessLayer, lambda: ([], {'process_cmd': [4, 4], 'd_model': 4, 'dropout_rate': 0.5}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (PrepareEncoder, lambda: ([], {'src_vocab_size': 4, 'src_emb_dim': 4, 'src_max_len': 4}), lambda: ([torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])], {}), False), (RSELayer, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (SARHead, lambda: ([], {'in_channels': 4, 'out_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (SASTHead, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (SAST_Header1, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (SAST_Header2, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (SEModule, lambda: ([], {'in_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (ShortCut, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'stride': 1, 'name': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (SubSample, lambda: ([], {'in_channels': 4, 'out_channels': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (Swish, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (TPS, lambda: ([], {'in_channels': 4, 'num_fiducial': 4, 'loc_lr': 4, 'model_name': 4}), lambda: ([torch.rand([4, 4, 64, 64])], {}), False), (TransformerDecoderLayer, lambda: ([], {'d_model': 4, 'nhead': 4}), lambda: ([torch.rand([4, 4, 4]), torch.rand([4, 4, 4])], {}), False), (TransformerEncoderLayer, lambda: ([], {'d_model': 4, 'nhead': 4}), lambda: ([torch.rand([4, 4, 4])], {}), False), ] class Test_frotms_PaddleOCR2Pytorch(_paritybench_base): def test_000(self): self._check(*TESTCASES[0]) def test_001(self): self._check(*TESTCASES[1]) def test_002(self): self._check(*TESTCASES[2]) def test_003(self): self._check(*TESTCASES[3]) def test_004(self): self._check(*TESTCASES[4]) def test_005(self): self._check(*TESTCASES[5]) def test_006(self): self._check(*TESTCASES[6]) def test_007(self): self._check(*TESTCASES[7]) def test_008(self): self._check(*TESTCASES[8]) def test_009(self): self._check(*TESTCASES[9]) def test_010(self): self._check(*TESTCASES[10]) def test_011(self): self._check(*TESTCASES[11]) def test_012(self): self._check(*TESTCASES[12]) def test_013(self): self._check(*TESTCASES[13]) def test_014(self): self._check(*TESTCASES[14]) def test_015(self): self._check(*TESTCASES[15]) def test_016(self): self._check(*TESTCASES[16]) def test_017(self): self._check(*TESTCASES[17]) def test_018(self): self._check(*TESTCASES[18]) def test_019(self): self._check(*TESTCASES[19]) def test_020(self): self._check(*TESTCASES[20]) def test_021(self): self._check(*TESTCASES[21]) def test_022(self): self._check(*TESTCASES[22]) def test_023(self): self._check(*TESTCASES[23]) def test_024(self): self._check(*TESTCASES[24]) def test_025(self): self._check(*TESTCASES[25]) def test_026(self): self._check(*TESTCASES[26]) def test_027(self): self._check(*TESTCASES[27]) def test_028(self): self._check(*TESTCASES[28]) def test_029(self): self._check(*TESTCASES[29]) def test_030(self): self._check(*TESTCASES[30]) def test_031(self): self._check(*TESTCASES[31]) def test_032(self): self._check(*TESTCASES[32]) def test_033(self): self._check(*TESTCASES[33]) def test_034(self): self._check(*TESTCASES[34]) def test_035(self): self._check(*TESTCASES[35]) def test_036(self): self._check(*TESTCASES[36]) def test_037(self): self._check(*TESTCASES[37]) def test_038(self): self._check(*TESTCASES[38]) def test_039(self): self._check(*TESTCASES[39]) def test_040(self): self._check(*TESTCASES[40]) def test_041(self): self._check(*TESTCASES[41]) def test_042(self): self._check(*TESTCASES[42]) def test_043(self): self._check(*TESTCASES[43]) def test_044(self): self._check(*TESTCASES[44]) def test_045(self): self._check(*TESTCASES[45]) def test_046(self): self._check(*TESTCASES[46]) def test_047(self): self._check(*TESTCASES[47]) def test_048(self): self._check(*TESTCASES[48]) def test_049(self): self._check(*TESTCASES[49]) def test_050(self): self._check(*TESTCASES[50]) def test_051(self): self._check(*TESTCASES[51]) def test_052(self): self._check(*TESTCASES[52]) def test_053(self): self._check(*TESTCASES[53]) def test_054(self): self._check(*TESTCASES[54]) def test_055(self): self._check(*TESTCASES[55]) def test_056(self): self._check(*TESTCASES[56]) def test_057(self): self._check(*TESTCASES[57]) def test_058(self): self._check(*TESTCASES[58])
62fdac76001172e852e91825b8e6245b3d0c843a
69d2627942a554d6914ba05de097a290fed66bad
/vb2py/targets/pythoncard/vbcontrols/vbtextfield.py
c37d1f300778de7e1e6b1ae23f4e6f2c677da7be
[ "BSD-3-Clause" ]
permissive
rayzamgh/sumurProjection
0fcef39cc75e620057b012f1bd35cae1c49a5554
847ce71e85093ea5ee668ec61dbfba760ffa6bbd
refs/heads/master
2020-07-23T23:33:26.621550
2019-12-22T05:31:24
2019-12-22T05:31:24
207,738,494
1
0
null
2019-10-28T16:00:07
2019-09-11T06:23:43
Python
UTF-8
Python
false
false
831
py
from vb2py.targets.pythoncard.controlclasses import VBWrapped, VBWidget from vb2py.targets.pythoncard import Register import vb2py.logger log = vb2py.logger.getLogger("VBTextField") from PythonCard.components import textfield import wx import sys from PythonCard import event, registry, widget class VBTextField(VBWidget): __metaclass__ = VBWrapped _translations = { "Text" : "text", "Enabled" : "enabled", "Visible" : "visible", } _indexed_translations = { "Left" : ("position", 0), "Top" : ("position", 1), "Width" : ("size", 0), "Height" : ("size", 1), } _proxy_for = textfield.TextField log.debug("Registering VBTextField as '%s'" % sys.modules[__name__].VBTextField) Register(VBTextField)
1951975481074fd5d822438ba56fe73946a2f7b6
c0baa78917da5bf81cd04758b127a8d3c5d27da6
/vize/160401025/client/client.py
c993aad9b32dc6e608e41e9816a5ed83282d47a3
[ "Unlicense" ]
permissive
nyucel/blm304
9e3049e2743e2e9055e8e067724a966e82579d07
e23f28674229470b5f110ea37428f9c1ca13ac51
refs/heads/master
2022-11-07T12:36:12.620417
2020-06-27T11:09:59
2020-06-27T11:09:59
259,326,143
14
207
Unlicense
2020-06-27T11:10:00
2020-04-27T13:14:48
Python
UTF-8
Python
false
false
4,818
py
# -*- coding: utf-8 -*- """ @author: Halil İbrahim Koç """ import socket import time import os import sys port=42 buffer=4096 if len(sys.argv) != 2: print("Host bilgisi girilmelidir.") sys.exit() try: socket.gethostbyname(sys.argv[1]) except socket.error: print("Host bilgisi gereklidir. Kontrol edip tekrar deneyiniz.") sys.exit() host = sys.argv[1] try: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) print("Bağlantı başlatılıyor") s.setblocking(0) s.settimeout(15) except socket.error: print("Başarısız bağlantı") sys.exit() while True: command = input( "Aşağıdaki komutlardan birini giriniz: \n1. get [dosya ismi]\n2. put [dosya ismi]\n3. list\n4. exit\n ") """o get [dosya ismi] o put [dosya ismi] o list o exit""" clientCommand = command.encode('utf-8') try: s.sendto(clientCommand, (host, port)) except ConnectionResetError: print( "Port bilgisi yanlış.") sys.exit() clientArguments = command.split() if clientArguments[0] == "get": try: ClientData, clientAddr = s.recvfrom(51200) except: print("Program zaman aşımına uğradı.") sys.exit() text = ClientData.decode('utf8') print(text) try: ClientData2, clientAddr2 = s.recvfrom(buffer) except: print("Program zaman aşımına uğradı.") sys.exit() text2 = ClientData2.decode('utf8') print(text2) if len(text2) < 50: if clientArguments[0] == "get": ComingFile = open(clientArguments[1], "wb") d = 0 try: # number of paclets CountC, countaddress = s.recvfrom(buffer) except: print("Bağlantı zaman aşımına uğradı.") sys.exit() packet1 = CountC.decode('utf8') packet12 = int(packet1) while packet12 != 0: ClientBData, clientbAddr = s.recvfrom(4096) dataS = ComingFile.write(ClientBData) d += 1 print("Paket Adedi:" + str(d)) packet12 = packet12 - 1 ComingFile.close() print( "Dosya indirildi.") elif clientArguments[0] == "put": try: ClientData, clientAddr = s.recvfrom(buffer) except: print("Bağlantı zaman aşımına uğradı.") sys.exit() text = ClientData.decode('utf8') print(text) if text == "Put fonksiyonu başlatıldı.": if os.path.isfile(clientArguments[1]): c = 0 #Length = len(CL1[1]) size = os.stat(clientArguments[1]) sizeS = size.st_size # number of packets #sizeS = sizeS[:-1] print("Dosya boyutu(bayt): " + str(sizeS)) Num = int(sizeS / buffer) Num = Num + 1 print("Gönderilen Paket Sayısı: " + str(Num)) s.sendto(str(Num).encode('utf8'), clientAddr) packet_num = int(Num) SendingFile = open(clientArguments[1], "rb") while packet_num != 0: Run = SendingFile.read(buffer) s.sendto(Run, clientAddr) c += 1 packet_num -= 1 print("Paket Sayısı:" + str(c)) SendingFile.close() print("İstemciden sunucuya put işlemi sona erdi.") # s.sendto(str(sizeS).encode('utf8'),clientAddr) else: print("İstemcinin bulunduğu dizinde dosya bulunamadı.") else: print("Geçersiz.") elif clientArguments[0] == "list": try: ClientData, clientAddr = s.recvfrom(buffer) ClientData2, clientAddr2 = s.recvfrom(buffer) except: print("Bağlantı zaman aşımına uğradı.") sys.exit() text = ClientData.decode('utf8') print(text) lists=ClientData2.decode('utf8') print("Server'daki dosyalar:") lists=lists.split(',') for i in lists: print(i) elif clientArguments[0] == "exit": print( "Client ve Server kapatılıyor.") quit() print("Client kapatıldı.")
eac3e5d6c2b6049b58d419a252bf24a4d5f309b5
90c6262664d013d47e9a3a9194aa7a366d1cabc4
/tests/opcodes/cases/test_set_size_149.py
2290405a5f8b27eb8d84dfab529207a21fb3edd7
[ "MIT" ]
permissive
tqtezos/pytezos
3942fdab7aa7851e9ea81350fa360180229ec082
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
refs/heads/master
2021-07-10T12:24:24.069256
2020-04-04T12:46:24
2020-04-04T12:46:24
227,664,211
1
0
MIT
2020-12-30T16:44:56
2019-12-12T17:47:53
Python
UTF-8
Python
false
false
829
py
from unittest import TestCase from tests import abspath from pytezos.repl.interpreter import Interpreter from pytezos.michelson.converter import michelson_to_micheline from pytezos.repl.parser import parse_expression class OpcodeTestset_size_149(TestCase): def setUp(self): self.maxDiff = None self.i = Interpreter(debug=True) def test_opcode_set_size_149(self): res = self.i.execute(f'INCLUDE "{abspath("opcodes/contracts/set_size.tz")}"') self.assertTrue(res['success']) res = self.i.execute('RUN {} 111') self.assertTrue(res['success']) exp_val_expr = michelson_to_micheline('0') exp_val = parse_expression(exp_val_expr, res['result']['storage'].type_expr) self.assertEqual(exp_val, res['result']['storage']._val)
98d68f537c4a3515d10e239146c0345ecd931861
7ae0efc9798b7c9fa720022ed5d763d6ab27cd13
/python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
4aac878763b6f6f7cab09ca5cdc3cfeab0f49d6d
[ "Apache-2.0" ]
permissive
ceci3/Paddle
e1d0b56a1bb1de9a0d26977868795f86e2c0580b
e4d475eabd83e7a6fa1e88c64c28747450f87d66
refs/heads/develop
2023-08-03T03:43:35.139011
2022-02-08T11:36:07
2022-02-08T11:36:07
171,274,803
0
3
Apache-2.0
2021-08-24T07:14:24
2019-02-18T11:49:16
C++
UTF-8
Python
false
false
9,706
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import threading, time import paddle from paddle.static import sparsity import numpy as np class TestASPUtils(unittest.TestCase): def test_get_check_method(self): self.assertEqual( paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D), paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D) self.assertEqual( paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY), paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) self.assertEqual( paddle.fluid.contrib.sparsity.CheckMethod.get_checking_method( paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST), paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D) def test_density(self): x = np.array([[1.0, 1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0, 1.0]]) self.assertEqual(sparsity.calculate_density(x), 0.56) x[:, 0] = 0.0 self.assertEqual(sparsity.calculate_density(x), 0.4) def test_check_mask_1d(self): x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0, 1.0]]) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 4)) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 5)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 5)) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_1d(x, 3, 6)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_1d(x, 4, 6)) def test_get_mask_1d(self): for _ in range(10): x = np.random.randint(10, size=(5, 5)) x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4)) x = np.random.randn(5, 4) x = paddle.fluid.contrib.sparsity.get_mask_1d(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_1d(x, 2, 4)) def test_check_mask_2d(self): x = np.array([[1.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 1.0]]) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 4)) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 5)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 5)) self.assertTrue(paddle.fluid.contrib.sparsity.check_mask_2d(x, 3, 6)) self.assertFalse(paddle.fluid.contrib.sparsity.check_mask_2d(x, 4, 6)) def test_get_mask_2d_greedy(self): for _ in range(10): x = np.random.randint(10, size=(5, 5)) x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) x = np.random.randn(5, 4) x = paddle.fluid.contrib.sparsity.get_mask_2d_greedy(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) def test_get_mask_2d_best(self): for _ in range(10): x = np.random.randint(10, size=(5, 5)) x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) x = np.random.randn(5, 4) x = paddle.fluid.contrib.sparsity.get_mask_2d_best(x, 2, 4) self.assertTrue( paddle.fluid.contrib.sparsity.check_mask_2d(x, 2, 4)) def test_threadsafe_valid_2d_patterns(self): def get_reference(m=4, n=2): from itertools import permutations patterns = np.zeros(m) patterns[:n] = 1 patterns = list(set(permutations(patterns.tolist()))) patterns = patterns + patterns patterns = np.asarray(list(set(permutations(patterns, m)))) valid = ((patterns.sum(axis=1) <= n).sum(axis=1) == m ).nonzero()[0].reshape(-1) valid_patterns = np.empty((valid.shape[0], m, m)) valid_patterns[:] = patterns[valid[:]] return valid_patterns for _ in range(4): computing_thread = threading.Thread( target=paddle.fluid.contrib.sparsity.utils. _compute_valid_2d_patterns, args=(2, 4)) computing_thread.start() time.sleep(3) patterns_map = paddle.fluid.contrib.sparsity.utils._valid_2d_patterns reference_patterns = get_reference() reference_key = '4_2' self.assertTrue(reference_key in patterns_map) self.assertTrue(len(patterns_map) == 1) self.assertTrue((reference_patterns == patterns_map[reference_key]).all( )) def test_check_sparsity(self): for _ in range(10): x = np.random.randint(10, size=(5)) x_2d = x.reshape(1, x.shape[0]) self.__test_1D_2D_sparsity_checking_methods(x_2d) x = np.random.randint(10, size=(5, 5)) x_2d = x self.__test_1D_2D_sparsity_checking_methods(x_2d) x = np.random.randint(10, size=(5, 5, 5)) x_2d = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) self.__test_1D_2D_sparsity_checking_methods(x_2d) x = np.random.randint(10, size=(5, 5, 5, 5)) x_2d = x.reshape(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]) self.__test_1D_2D_sparsity_checking_methods(x_2d) def test_create_mask(self): for _ in range(10): x = np.random.randint(10, size=(5)) self.__test_1D_2D_sparse_mask_generation_methods(x) x = np.random.randint(10, size=(5, 5)) self.__test_1D_2D_sparse_mask_generation_methods(x) x = np.random.randint(10, size=(5, 5, 5)) self.__test_1D_2D_sparse_mask_generation_methods(x) x = np.random.randint(10, size=(5, 5, 5, 5)) self.__test_1D_2D_sparse_mask_generation_methods(x) def __test_1D_2D_sparsity_checking_methods(self, x_2d): mask = paddle.fluid.contrib.sparsity.get_mask_1d(x_2d, 2, 4) self.assertEqual( paddle.fluid.contrib.sparsity.check_sparsity( mask, func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, n=2, m=4), paddle.fluid.contrib.sparsity.check_mask_1d(mask, 2, 4)) mask = paddle.fluid.contrib.sparsity.get_mask_2d_best(x_2d, 2, 4) self.assertEqual( paddle.fluid.contrib.sparsity.check_sparsity( mask, func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, n=2, m=4), paddle.fluid.contrib.sparsity.check_mask_2d(mask, 2, 4)) def __test_1D_2D_sparse_mask_generation_methods(self, x): mask = paddle.fluid.contrib.sparsity.create_mask( x, func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_1D, n=2, m=4) self.assertTrue( paddle.fluid.contrib.sparsity.check_sparsity( mask, func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_1D, n=2, m=4)) mask = paddle.fluid.contrib.sparsity.create_mask( x, func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_GREEDY, n=2, m=4) self.assertTrue( paddle.fluid.contrib.sparsity.check_sparsity( mask, func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, n=2, m=4)) mask = paddle.fluid.contrib.sparsity.create_mask( x, func_name=paddle.fluid.contrib.sparsity.MaskAlgo.MASK_2D_BEST, n=2, m=4) self.assertTrue( paddle.fluid.contrib.sparsity.check_sparsity( mask, func_name=paddle.fluid.contrib.sparsity.CheckMethod.CHECK_2D, n=2, m=4))
2cb15c7e19657fdd48dace6e7f42e043d7826183
264d31fb1af03024c4e0a6530aa059ac59a71365
/model_pruning/python/pruning.py
8f2d111b2de54ec2a597c0cf471315b37f34b5b5
[ "Apache-2.0" ]
permissive
adarob/google-research
b5cf7d329635080f0f911213e916454f7598a762
b6ec492d289969dd1440553eb56f77b2474b90c7
refs/heads/master
2021-01-03T01:58:33.983703
2020-02-11T19:05:14
2020-02-11T19:15:42
239,868,678
0
1
Apache-2.0
2020-02-11T21:31:39
2020-02-11T21:31:38
null
UTF-8
Python
false
false
37,469
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions to add support for magnitude-based model pruning. # Adds variables and ops to the graph to enable # elementwise masking of weights apply_mask(weights) # Returns a list containing the sparsity of each of the weight tensors get_weight_sparsity() # Returns a list of all the masked weight tensorflow variables get_masked_weights() # Returns a list of all the mask tensorflow variables get_masks() # Returns a list of all the thresholds get_thresholds() # Returns a list of all the weight tensors that have been masked get_weights() The Pruning class uses a tf.hparams object to set up the parameters for a model pruning. Here's a typical usage: # Parse pruning hyperparameters pruning_hparams = pruning.get_pruning_hparams().parse(FLAGS.pruning_hparams) # Create a pruning object using the pruning_hparams p = pruning.Pruning(pruning_hparams) # Add mask update ops to the graph mask_update_op = p.conditional_mask_update_op() # Add the summaries p.add_pruning_summaries() # Run the op session.run(mask_update_op) # An object of the pruning also accepts externally defined sparsity: sparsity = tf.Variable(0.5, name = "ConstantSparsity") p = pruning.Pruning(pruning_hparams, sparsity=sparsity) """ # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow.compat.v1 as tf from model_pruning.python import pruning_utils from tensorflow.contrib import training as contrib_training from tensorflow.python.ops import variables # pylint: disable=g-direct-tensorflow-import MASK_COLLECTION = 'masks' THRESHOLD_COLLECTION = 'thresholds' MASKED_WEIGHT_COLLECTION = 'masked_weights' WEIGHT_COLLECTION = 'kernel' # The 'weights' part of the name is needed for the quantization library # to recognize that the kernel should be quantized. MASKED_WEIGHT_NAME = 'weights/masked_weight' WEIGHT_GRADIENT_COLLECTION = 'gradient_weights' OLD_WEIGHT_COLLECTION = 'old_weights' OLD_OLD_WEIGHT_COLLECTION = 'old_old_weights' def apply_mask(x, scope='', prune_option='weight'): """Apply mask to a given weight tensor. Args: x: Input weight tensor scope: The current variable scope. Defaults to "". prune_option: pruning option. Defaults to 'weight'. option = 'first_order_gradient' means using |weight| * |first order gradient| for pruning. option = 'second_order_gradient' means using |weight| * |second order gradient| for pruning. Returns: Tensor representing masked_weights """ mask = pruning_utils.weight_mask_variable(x, scope) threshold = pruning_utils.weight_threshold_variable(x, scope) # Add masked_weights in the weights namescope so as to make it easier # for the quantization library to add quant ops. masked_weights = tf.multiply(mask, x, MASKED_WEIGHT_NAME) if prune_option in ('first_order_gradient', 'second_order_gradient'): # absolute value of gradients for gradient based pruning gradient = pruning_utils.weight_gradient_variable(x, scope) old_weight = pruning_utils.old_weight_variable(x, scope) old_old_weight = pruning_utils.old_old_weight_variable(x, scope) # Make sure the mask for a given variable are not added multiple times to the # collection. This is particularly important when applying mask to RNN's # weight variables if mask not in tf.get_collection_ref(MASK_COLLECTION): tf.add_to_collection(THRESHOLD_COLLECTION, threshold) tf.add_to_collection(MASK_COLLECTION, mask) tf.add_to_collection(MASKED_WEIGHT_COLLECTION, masked_weights) tf.add_to_collection(WEIGHT_COLLECTION, x) if prune_option in ('first_order_gradient', 'second_order_gradient'): tf.add_to_collection(WEIGHT_GRADIENT_COLLECTION, gradient) tf.add_to_collection(OLD_WEIGHT_COLLECTION, old_weight) tf.add_to_collection(OLD_OLD_WEIGHT_COLLECTION, old_old_weight) return masked_weights def get_masked_weights(): return tf.get_collection(MASKED_WEIGHT_COLLECTION) def get_masks(): return tf.get_collection(MASK_COLLECTION) def get_thresholds(): return tf.get_collection(THRESHOLD_COLLECTION) def get_weights(): return tf.get_collection(WEIGHT_COLLECTION) def get_gradients(): return tf.get_collection(WEIGHT_GRADIENT_COLLECTION) def get_old_weights(): return tf.get_collection(OLD_WEIGHT_COLLECTION) def get_old_old_weights(): return tf.get_collection(OLD_OLD_WEIGHT_COLLECTION) def get_weight_sparsity(): """Get sparsity of the weights. Args: None Returns: A list containing the sparsity of each of the weight tensors """ masks = get_masks() return [tf.nn.zero_fraction(mask) for mask in masks] def get_pruning_hparams(): """Get a tf.HParams object with the default values for the hyperparameters. name: string name of the pruning specification. Used for adding summaries and ops under a common tensorflow name_scope begin_pruning_step: integer the global step at which to begin pruning end_pruning_step: integer the global step at which to terminate pruning. Defaults to -1 implying that pruning continues till the training stops weight_sparsity_map: list of strings comma separed list of {weight_variable_name:target sparsity} or {regex:target sparsity} pairs. For layers/weights not in this list, sparsity as specified by the target_sparsity hyperparameter is used. Eg. [conv1:0.9,conv2/kernel:0.8] block_dims_map: list of strings comma separated list of {weight variable name:block_height x block_width} or {regex:block_height x block_width} pairs. For layers/weights not in this list, block dims are specified by the block_height, block_width hyperparameters are used Eg. [dense1:4x4,dense2:1x16,dense3:1x1] threshold_decay: float the decay factor to use for exponential decay of the thresholds pruning_frequency: integer How often should the masks be updated? (in # of global_steps) nbins: integer number of bins to use for histogram computation block_height: integer number of rows in a block (defaults to 1), can be -1 in which case it is set to the size of the corresponding weight tensor. block_width: integer number of cols in a block (defaults to 1), can be -1 in which case it is set to the size of the corresponding weight tensor. block_pooling_function: string Whether to perform average (AVG) or max (MAX) pooling in the block (default: AVG) initial_sparsity: float initial sparsity value target_sparsity: float target sparsity value sparsity_function_begin_step: integer the global step at this which the gradual sparsity function begins to take effect sparsity_function_end_step: integer the global step used as the end point for the gradual sparsity function sparsity_function_exponent: float exponent = 1 is linearly varying sparsity between initial and final. exponent > 1 varies more slowly towards the end than the beginning use_tpu: False Indicates whether to use TPU gradient_decay_rate: float when prune_option is gradient based pruning, decay factor for gradient decay prune_option: string option = 'weight' means using |weight| for pruning. option = 'first_order_gradient' means using |weight| * |first order gradient| for pruning. option = 'second_order_gradient' means using |weight| * |second order gradient| for pruning. second order gradient is approximated by |weight + old_old_weight - 2*old_weight|. option = 'compression' means using compression. alpha_decrement_value: only effective when prune_option is 'compression', see graph_compression/compression_lib/compression_op.py. The following arguments are all only effective when prune_option == 'compression', see graph_compression/compression_lib/compression_op.py for details. begin_compression_step: only effective when prune_option is 'compression', see graph_compression/compression_op.py. end_compresson_step: only effective when prune_option is 'compression', see graph_compression/compression_op.py. compression_frequency: only effective when prune_option is 'compression', see graph_compression/compression_op.py. compression_option: only effective when prune_option is 'compression', see graph_compression/compression_op.py. rank: only effective when prune_option is 'compression', see graph_compression/compression_op.py. update_option: only effective when prune_option is 'compression', see graph_compression/compression_op.py. run_update_interval_check: only effective when prune_option is 'compression' see graph_compression/compression_op.py. pruning_fraction: only effective when prune_option is 'compression', see graph_compression/compression_op.py. We use the following sparsity function: num_steps = (sparsity_function_end_step - sparsity_function_begin_step)/pruning_frequency sparsity(step) = (initial_sparsity - target_sparsity)* [1-step/(num_steps -1)]**exponent + target_sparsity Args: None Returns: tf.HParams object initialized to default values """ return contrib_training.HParams( name='model_pruning', begin_pruning_step=0, end_pruning_step=-1, weight_sparsity_map=[''], block_dims_map=[''], threshold_decay=0.0, pruning_frequency=10, nbins=256, block_height=1, block_width=1, block_pooling_function='AVG', initial_sparsity=0.0, target_sparsity=0.5, sparsity_function_begin_step=0, sparsity_function_end_step=100, sparsity_function_exponent=3.0, use_tpu=False, gradient_decay_rate=0.99, prune_option='weight', alpha_decrement_value=0.01, begin_compression_step=0, end_compresson_step=-1, compression_frequency=10, compression_option=0, rank=7, update_option=0, run_update_interval_check=1, pruning_fraction=0.4) class Pruning(object): def __init__(self, spec=None, global_step=None, sparsity=None): """Set up the specification for model pruning. If a spec is provided, the sparsity is set up based on the sparsity_function in the spec. The effect of sparsity_function is overridden if the sparsity variable is passed to the constructor. This enables setting up arbitrary sparsity profiles externally and passing it to this pruning functions. Args: spec: Pruning spec, a tf.HParams object global_step: A tensorflow variable that is used while setting up the sparsity function sparsity: A tensorflow scalar variable storing the sparsity """ # Pruning specification self._spec = spec if spec else get_pruning_hparams() tf.logging.vlog(0, 'Pruning spec...') self.print_hparams() self.matrix_compression_spec = self._spec # Sanity check for pruning hparams self._validate_spec() # A tensorflow variable that tracks the sparsity function. # If not provided as input, the graph must already contain the global_step # variable before calling this constructor. self._global_step = self._setup_global_step(global_step) # Stores the tensorflow sparsity variable. # Built using self._setup_sparsity() or provided externally self._sparsity = ( sparsity if sparsity is not None else self._setup_sparsity()) # List of tensorflow assignments ops for new masks and thresholds self._assign_ops = [] self._assign_gradient_ops = [] self._assign_old_weight_ops = [] self._assign_old_old_weight_ops = [] # Tensorflow variable keeping track of the last global step when the masks # and gradients were updated self._last_update_step = self._setup_last_update_step() self._last_gradient_update_step = self._setup_last_gradient_update_step() # Block dimensions self._block_dims = [self._spec.block_height, self._spec.block_width] # Block pooling function self._block_pooling_function = self._spec.block_pooling_function # Mapping of layer/weight names and block dims self._block_dims_map = self._get_block_dims_map() # Mapping of weight names and target sparsity self._weight_sparsity_map = self._get_weight_sparsity_map() def _validate_spec(self): spec = self._spec if spec.begin_pruning_step < 0: raise ValueError('Illegal value for begin_pruning_step') if spec.begin_pruning_step >= spec.end_pruning_step: if spec.end_pruning_step != -1: raise ValueError( 'Pruning must begin before it can end. begin_step=%d, end_step=%d.' 'Set end_pruning_step to -1 if pruning is required till training' 'stops' % (spec.begin_pruning_step, spec.end_pruning_step)) if spec.sparsity_function_begin_step < 0: raise ValueError('Illegal value for sparsity_function_begin_step') if spec.sparsity_function_begin_step >= spec.sparsity_function_end_step: raise ValueError('Sparsity function requires begin_step < end_step') if not 0.0 <= spec.threshold_decay < 1.0: raise ValueError('threshold_decay must be in range [0,1)') if not 0.0 <= spec.initial_sparsity < 1.0: raise ValueError('initial_sparsity must be in range [0,1)') if not 0.0 <= spec.target_sparsity < 1.0: raise ValueError('target_sparsity must be in range [0,1)') if spec.prune_option not in ('weight', 'first_order_gradient', 'second_order_gradient'): raise ValueError('prune option specified is not supported') def _setup_global_step(self, global_step): graph_global_step = global_step if graph_global_step is None: graph_global_step = tf.train.get_global_step() if not graph_global_step: raise ValueError( 'Could not get the global step. Either pass it explicitly, or ' 'ensure that the library is called within a TF graph.') return tf.cast(graph_global_step, tf.int32) def _setup_sparsity(self): begin_step = self._spec.sparsity_function_begin_step end_step = self._spec.sparsity_function_end_step initial_sparsity = self._spec.initial_sparsity target_sparsity = self._spec.target_sparsity exponent = self._spec.sparsity_function_exponent with tf.name_scope(self._spec.name): p = tf.minimum( 1.0, tf.maximum( 0.0, tf.div( tf.cast(self._global_step - begin_step, tf.float32), end_step - begin_step))) sparsity = tf.add( tf.multiply(initial_sparsity - target_sparsity, tf.pow(1 - p, exponent)), target_sparsity, name='sparsity') return sparsity def _setup_last_update_step(self): with tf.variable_scope( self._spec.name, use_resource=self._spec.use_tpu) as scope: try: last_update_step = tf.get_variable( 'last_mask_update_step', [], initializer=tf.zeros_initializer(), trainable=False, dtype=tf.int32) except ValueError: scope.reuse_variables() last_update_step = tf.get_variable( 'last_mask_update_step', dtype=tf.int32) return last_update_step def _get_block_dims_map(self): """Returns the map of layer name: block dims.""" block_dims_map = {} val_list = self._spec.block_dims_map filtered_val_list = [l for l in val_list if l] for val in filtered_val_list: weight_name, block_dims_str = val.split(':') block_dims_str = block_dims_str.split('x') if len(block_dims_str) != 2: raise ValueError('Expected 2 values for block dim for %s, got %s' % (weight_name, block_dims_str)) block_dims = [int(block_dims_str[0]), int(block_dims_str[1])] block_dims_map[re.compile(weight_name)] = block_dims return block_dims_map def _get_block_dims(self, weight_name): """Returns the block dims for the given layer/weight name.""" block_dims_list = [ block_dims for regexp, block_dims in self._block_dims_map.items() if regexp.search(weight_name) ] if not block_dims_list: return self._block_dims if len(block_dims_list) > 1: raise ValueError('Multiple matches in block_dims_map for weight %s' % weight_name) return block_dims_list[0] def _setup_last_gradient_update_step(self): with tf.variable_scope( self._spec.name, use_resource=self._spec.use_tpu) as scope: try: last_gradient_update_step = tf.get_variable( 'last_gradient_update_step', [], initializer=tf.zeros_initializer(), trainable=False, dtype=tf.int32) except ValueError: scope.reuse_variables() last_gradient_update_step = tf.get_variable( 'last_gradient_update_step', dtype=tf.int32) return last_gradient_update_step def _get_weight_sparsity_map(self): """Returns the map of weight_name:sparsity parsed from the hparams.""" weight_sparsity_map = {} val_list = self._spec.weight_sparsity_map filtered_val_list = [l for l in val_list if l] for val in filtered_val_list: weight_name, sparsity = val.split(':') if float(sparsity) >= 1.0: raise ValueError('Weight sparsity can not exceed 1.0') weight_sparsity_map[re.compile(weight_name)] = float(sparsity) return weight_sparsity_map def _get_sparsity(self, weight_name): """Returns target sparsity for the given layer/weight name.""" target_sparsity = [ sparsity for regexp, sparsity in self._weight_sparsity_map.items() if regexp.search(weight_name) ] if not target_sparsity: return self._sparsity if len(target_sparsity) > 1: raise ValueError('Multiple matches in weight_sparsity_map for weight %s' % weight_name) # TODO(suyoggupta): This will work when initial_sparsity = 0. Generalize # to handle other cases as well. return tf.multiply(self._sparsity, tf.div(target_sparsity[0], self._spec.target_sparsity)) def _update_mask(self, weights, threshold, gradients): # pylint: disable=unused-argument """Updates the mask for a given weight tensor. This functions first computes the cdf of the weight tensor, and estimates the threshold value such that 'desired_sparsity' fraction of weights have magnitude less than the threshold. Args: weights: The weight tensor that needs to be masked. threshold: The current threshold value. The function will compute a new threshold and return the exponential moving average using the current value of threshold gradients: The gradient tensor that is used for salience calculation. Returns: new_threshold: The new value of the threshold based on weights, and sparsity at the current global_step new_mask: A numpy array of the same size and shape as weights containing 0 or 1 to indicate which of the values in weights falls below the threshold Raises: ValueError: if sparsity is not defined """ if self._sparsity is None: raise ValueError('Sparsity variable undefined') sparsity = self._get_sparsity(weights.op.name) with tf.name_scope(weights.op.name + '_pruning_ops'): tf.logging.info('Applying option %s pruning', self._spec.prune_option) if self._spec.prune_option == 'weight': abs_weights = tf.abs(weights) elif self._spec.prune_option in ('first_order_gradient', 'second_order_gradient'): if gradients is None: raise ValueError('gradient tensor cannot be None.') # gradient variable stores absolute value already abs_weights = tf.multiply(tf.abs(weights), gradients) else: raise ValueError('undefined option') k = tf.cast( tf.round(tf.cast(tf.size(abs_weights), tf.float32) * (1 - sparsity)), tf.int32) # Generate a random shuffling of the weights s.t. the tie-breaker on # weight magnitude is random uniform. shuffling = tf.random_shuffle( tf.range(tf.size(abs_weights))) shuffling = tf.reshape(shuffling, [-1, 1]) # Flatten the weights and scatter the values randomly. abs_weights = tf.reshape(abs_weights, [-1]) abs_weights = tf.scatter_nd( shuffling, abs_weights, tf.shape(abs_weights)) # Sort the entire array _, indices = tf.nn.top_k(abs_weights, k=tf.size(abs_weights)) # `k` is how many non-zero weights we're going to have. Create a new # mask where the first `k` elements are set to one and all others are # set to zero. mask_staging = tf.range(tf.size(abs_weights)) mask_staging = tf.cast( tf.less(mask_staging, k), tf.float32) # Scatter the mask back into the proper positions for the weight matrix. indices = tf.reshape(indices, [-1, 1]) new_mask = tf.scatter_nd( indices, mask_staging, tf.shape(mask_staging)) # Un-shuffle the newly created mask. new_mask = tf.reshape( tf.gather_nd( new_mask, shuffling), tf.shape(weights)) return tf.constant(0, tf.float32), new_mask def _maybe_update_block_mask(self, weights, threshold, gradients=None): """Performs block-granular masking of the weights. Block pruning occurs only if the block_height or block_width is > 1 and if the weight tensor, when squeezed, has ndims = 2. Otherwise, elementwise pruning occurs. Args: weights: The weight tensor that needs to be masked. threshold: The current threshold value. The function will compute a new threshold and return the exponential moving average using the current value of threshold gradients: The gradient tensor that used for salience calculation. Returns: new_threshold: The new value of the threshold based on weights, and sparsity at the current global_step new_mask: A numpy array of the same size and shape as weights containing 0 or 1 to indicate which of the values in weights falls below the threshold Raises: ValueError: if block pooling function is not AVG or MAX """ block_dims = self._get_block_dims(weights.op.name) squeezed_weights = tf.squeeze(weights) if squeezed_weights.get_shape().ndims != 2 or block_dims == [1, 1]: return self._update_mask(weights, threshold, gradients) if (self._spec.prune_option in ('first_order_gradient', 'second_order_gradient') and gradients is None): raise ValueError( 'Gradient based pruning implementation for block sparsity is not supported.' ) for i in range(2): if block_dims[i] == -1: block_dims[i] = squeezed_weights.get_shape()[i] if self._block_pooling_function not in ['AVG', 'MAX']: raise ValueError('Unknown pooling function for block sparsity: %s' % self._block_pooling_function) with tf.name_scope(weights.op.name + '_pruning_ops'): abs_weights = tf.abs(squeezed_weights) if gradients is not None: abs_gradients = tf.abs(tf.squeeze(gradients)) pool_window = block_dims pool_fn = pruning_utils.factorized_pool squeeze_axis = None if not self._spec.use_tpu: pool_fn = tf.nn.pool abs_weights = tf.reshape( abs_weights, [1, abs_weights.get_shape()[0], abs_weights.get_shape()[1], 1]) if gradients is not None: # Reshape gradients to be a rank 4 tensor of shape [1, .., .., 1]. abs_gradients = tf.reshape( abs_gradients, [1, gradients.get_shape()[0], gradients.get_shape()[1], 1]) squeeze_axis = [0, 3] pooled_weights = pool_fn( abs_weights, window_shape=pool_window, pooling_type=self._block_pooling_function, strides=pool_window, padding='SAME', name=weights.op.name + '_pooled') if gradients is not None: pooled_gradients = pool_fn( abs_gradients, window_shape=pool_window, pooling_type=self._block_pooling_function, strides=pool_window, padding='SAME', name=gradients.op.name + '_pooled') else: pooled_gradients = None if pooled_weights.get_shape().ndims != 2: pooled_weights = tf.squeeze(pooled_weights, axis=squeeze_axis) if gradients is not None and pooled_gradients.get_shape().ndims != 2: pooled_gradients = tf.squeeze(pooled_gradients, axis=squeeze_axis) smoothed_threshold, new_mask = self._update_mask(pooled_weights, threshold, pooled_gradients) updated_mask = pruning_utils.expand_tensor(new_mask, block_dims) sliced_mask = tf.slice( updated_mask, [0, 0], [squeezed_weights.get_shape()[0], squeezed_weights.get_shape()[1]]) return smoothed_threshold, tf.reshape(sliced_mask, tf.shape(weights)) def _get_assign_old_weight_ops(self): if self._assign_old_weight_ops: raise ValueError( 'Assign op list not empty. _get_old_weight_assign_ops() called twice?' ) weights = get_weights() old_weights = get_old_weights() if len(weights) != len(old_weights): raise ValueError( 'Number of weights %s and number of old_weights %s mismatch' % (len(weights), len(old_weights))) for index, weight in enumerate(weights): old_weight = old_weights[index] self._assign_old_weight_ops.append( pruning_utils.variable_assign(old_weight, weight)) def _get_assign_old_old_weight_ops(self): if self._assign_old_old_weight_ops: raise ValueError( 'Assign op list not empty. _get_old_old_weight_assign_ops() called twice?' ) old_old_weights = get_old_old_weights() old_weights = get_old_weights() if len(old_old_weights) != len(old_weights): raise ValueError( 'Number of old_old_weights %s and number of old_weights %s mismatch' % (len(old_old_weights), len(old_weights))) for index, old_old_weight in enumerate(old_old_weights): old_weight = old_weights[index] self._assign_old_old_weight_ops.append( pruning_utils.variable_assign(old_old_weight, old_weight)) def _get_assign_gradient_ops(self): # Make sure the assignment ops have not already been added to the list if self._assign_gradient_ops: raise ValueError( 'Assign op list not empty. _get_mask_assign_ops() called twice?') weights = get_weights() old_weights = get_old_weights() old_old_weights = get_old_old_weights() gradients = get_gradients() if len(weights) != len(old_weights): raise ValueError( 'Number of weights %s and number of old_weights %s mismatch' % (len(weights), len(old_weights))) if len(weights) != len(gradients): raise ValueError( 'Number of weights %s and number of gradients %s mismatch' % (len(weights), len(gradients))) for index, _ in enumerate(weights): weight = weights[index] old_weight = old_weights[index] old_old_weight = old_old_weights[index] gradient = gradients[index] if weight.shape.as_list() != old_weight.shape.as_list(): raise ValueError('weight tensor has different shape from old_weight') if weight.shape.as_list() != gradient.shape.as_list(): raise ValueError('weight tensor has different shape from gradient') if weight.shape.as_list() != old_old_weight.shape.as_list(): raise ValueError('weight tensor has different shape from old_weight') is_partitioned = isinstance(weight, variables.PartitionedVariable) if is_partitioned: weight = weight.as_tensor() old_weight = old_weight.as_tensor() old_old_weight = old_old_weight.as_tensor() decay = self._spec.gradient_decay_rate if self._spec.prune_option == 'first_order_gradient': tf.logging.info('Applying first order gradient pruning') normalized_weight_delta = tf.nn.l2_normalize( tf.abs(weight - old_weight)) elif self._spec.prune_option == 'second_order_gradient': tf.logging.info('Applying second order gradient pruning') normalized_weight_delta = tf.nn.l2_normalize( tf.abs(weight + old_old_weight - 2 * old_weight)) else: raise ValueError('Unknown prune option. Should not execute this code.') new_gradient = decay * gradient + (1 - decay) * normalized_weight_delta self._assign_gradient_ops.append( pruning_utils.variable_assign(gradient, new_gradient)) def _get_mask_assign_ops(self): # Make sure the assignment ops have not already been added to the list if self._assign_ops: raise ValueError( 'Assign op list not empty. _get_mask_assign_ops() called twice?') masks = get_masks() weights = get_weights() thresholds = get_thresholds() gradients = get_gradients() if len(masks) != len(thresholds): raise ValueError( 'Number of masks %s and number of thresholds %s mismatch' % (len(masks), len(thresholds))) for index, mask in enumerate(masks): threshold = thresholds[index] weight = weights[index] if self._spec.prune_option in ('first_order_gradient', 'second_order_gradient'): gradient = gradients[index] else: gradient = None is_partitioned = isinstance(weight, variables.PartitionedVariable) if is_partitioned: weight = weight.as_tensor() new_threshold, new_mask = self._maybe_update_block_mask( weight, threshold, gradient) self._assign_ops.append( pruning_utils.variable_assign(threshold, new_threshold)) self._assign_ops.append( pruning_utils.partitioned_variable_assign(mask, new_mask) if is_partitioned else pruning_utils.variable_assign(mask, new_mask)) def old_weight_update_op(self): with tf.name_scope(self._spec.name): if self._spec.prune_option not in ('first_order_gradient', 'second_order_gradient'): return tf.no_op('gradient_update_no_op') if not self._assign_old_weight_ops: self._get_assign_old_weight_ops() with tf.control_dependencies(self._assign_old_weight_ops): tf.logging.info('Updating old weights.') return tf.no_op('old_weight_update') def old_old_weight_update_op(self): with tf.name_scope(self._spec.name): if self._spec.prune_option != 'second_order_gradient': return tf.no_op('gradient_update_no_op') if not self._assign_old_old_weight_ops: self._get_assign_old_old_weight_ops() with tf.control_dependencies(self._assign_old_old_weight_ops): tf.logging.info('Updating old old weights.') return tf.no_op('old_old_weight_update') def gradient_update_op(self): with tf.name_scope(self._spec.name): if self._spec.prune_option not in ('first_order_gradient', 'second_order_gradient'): return tf.no_op('gradient_update_no_op') if not self._assign_gradient_ops: self._get_assign_gradient_ops() with tf.control_dependencies([ tf.assign( self._last_gradient_update_step, self._global_step, name='last_gradient_update_step_assign') ]): with tf.control_dependencies(self._assign_gradient_ops): tf.logging.info('Updating gradients.') return tf.no_op('gradient_update') def conditional_gradient_update_op(self): def maybe_update_gradients(): with tf.name_scope(self._spec.name): is_step_within_pruning_range = tf.logical_and( tf.greater_equal(self._global_step, self._spec.begin_pruning_step), # If end_pruning_step is negative, keep pruning forever! tf.logical_or( tf.less_equal(self._global_step, self._spec.end_pruning_step), tf.less(self._spec.end_pruning_step, 0))) return is_step_within_pruning_range def gradient_update_op(): return self.gradient_update_op() def no_update_op(): return tf.no_op() return tf.cond(maybe_update_gradients(), gradient_update_op, no_update_op) def mask_update_op(self): with tf.name_scope(self._spec.name): if not self._assign_ops: self._get_mask_assign_ops() grad_update_ops = self.gradient_update_op() old_weight_update_ops = self.old_weight_update_op() old_old_weight_update_ops = self.old_old_weight_update_op() with tf.control_dependencies([ tf.assign( self._last_update_step, self._global_step, name='last_mask_update_step_assign') ]): with tf.control_dependencies([grad_update_ops]): with tf.control_dependencies([old_old_weight_update_ops]): with tf.control_dependencies([old_weight_update_ops]): with tf.control_dependencies(self._assign_ops): tf.logging.info('Updating masks.') return tf.no_op('mask_update') def conditional_mask_update_op(self): def maybe_update_masks(): with tf.name_scope(self._spec.name): is_step_within_pruning_range = tf.logical_and( tf.greater_equal(self._global_step, self._spec.begin_pruning_step), # If end_pruning_step is negative, keep pruning forever! tf.logical_or( tf.less_equal(self._global_step, self._spec.end_pruning_step), tf.less(self._spec.end_pruning_step, 0))) is_pruning_step = tf.less_equal( tf.add(self._last_update_step, self._spec.pruning_frequency), self._global_step) return tf.logical_and(is_step_within_pruning_range, is_pruning_step) def mask_update_op(): return self.mask_update_op() def no_update_op(): return tf.no_op() return tf.cond(maybe_update_masks(), mask_update_op, no_update_op) def add_pruning_summaries(self): """Adds summaries of weight sparsities and thresholds.""" with tf.name_scope(self._spec.name + '_summaries'): tf.summary.scalar('sparsity', self._sparsity) tf.summary.scalar('last_mask_update_step', self._last_update_step) tf.summary.scalar('last_gradient_update_step', self._last_gradient_update_step) masks = get_masks() thresholds = get_thresholds() gradients = get_gradients() for mask, threshold, gradient in zip(masks, thresholds, gradients): tf.summary.scalar(mask.op.name + '/sparsity', tf.nn.zero_fraction(mask)) tf.summary.scalar(threshold.op.name + '/threshold', threshold) tf.summary.scalar(gradient.op.name + '/gradient', tf.norm(gradient)) tf.summary.scalar(gradient.op.name + '/gradient-sparsity', tf.nn.zero_fraction(gradient)) tf.summary.histogram(gradient.op.name + '/abs.gradient', gradient) def apply_mask(self, x, scope=''): return apply_mask(x, scope, self._spec.prune_option) def print_hparams(self): tf.logging.vlog(0, self._spec.to_json())
46ae0f16489d49d88a5abf519a6add085e10a25d
36959b56e506dbbe2d3c381cdccfe16965c14d24
/Django/alms/leave/models.py
020e39c03be6ec8eadabbc804613a01e862b778e
[]
no_license
Sathishkumar-M/Django
e2935fe0c69acb4cb39be2bc0504fd3d5619d002
e54038ef70295274639b6207efe8e7e3939cbe36
refs/heads/master
2020-03-21T20:22:48.684770
2018-06-28T10:42:51
2018-06-28T10:42:51
139,003,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,293
py
from django.db import models from django.contrib.auth.models import User from django.utils import timezone import datetime # Create your models here. class LeaveRules(models.Model): leave_type = models.CharField(max_length=256,blank=False) leave_rules = models.TextField(blank=True,default='') created_date = models.DateTimeField(default=timezone.now) def __str__(self): return self.leave_type # @property # def owner(self): # return self.user class LeaveApply(models.Model): user = models.ForeignKey(User,related_name='leaves') leave_type = models.ForeignKey(LeaveRules,related_name='leaves',null=True,blank=True) start_date = models.DateField(default=datetime.date.today, blank=True) end_date = models.DateField(default='', blank=True) no_of_days = models.DecimalField(max_digits=2,decimal_places=0,null=True) notes = models.TextField(blank=True,default='') tag_to = models.CharField(max_length=256,blank=False) status = models.CharField(max_length=256,default='Awaiting') status_by = models.CharField(max_length=256,default='') created_date = models.DateTimeField(default=timezone.now) published_date = models.DateTimeField(blank=True,null=True) def __str__(self): return self.user.username
c95ef593fefb765b7876720245730eeb8f614d53
89155ebee895cbd04e4eb7a9d079a820d90ffd7e
/viewset_modelviewset_application/app/migrations/0004_auto_20210122_0531.py
7d4d27a8ea437a57f34a859481d6f08daaf624ca
[]
no_license
mahmudgithub/Rest-api-playground
822c0671b534fc057461703711ef980d9d31ce56
a452a329d60c9104afdeadde13f7493741e4914a
refs/heads/master
2023-03-31T17:23:13.605754
2021-04-11T14:10:31
2021-04-11T14:10:31
331,842,045
1
0
null
null
null
null
UTF-8
Python
false
false
368
py
# Generated by Django 3.1.4 on 2021-01-22 13:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0003_one_city'), ] operations = [ migrations.AlterField( model_name='one', name='city', field=models.CharField(max_length=100), ), ]
28cce25feb029f8c2e58daa7e26b3c7c31e89446
56f5b2ea36a2258b8ca21e2a3af9a5c7a9df3c6e
/CMGTools/H2TauTau/prod/25aug_corrMC/up/mc/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0_1377544841/HTT_24Jul_newTES_manzoni_Up_Jobs/Job_165/run_cfg.py
4b626943fbef786d0d255b19f5fe1f78243bbfcc
[]
no_license
rmanzoni/HTT
18e6b583f04c0a6ca10142d9da3dd4c850cddabc
a03b227073b2d4d8a2abe95367c014694588bf98
refs/heads/master
2016-09-06T05:55:52.602604
2014-02-20T16:35:34
2014-02-20T16:35:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,499
py
import FWCore.ParameterSet.Config as cms import os,sys sys.path.append('/afs/cern.ch/user/m/manzoni/summer13/CMGTools/CMSSW_5_3_9/src/CMGTools/H2TauTau/prod/25aug_corrMC/up/mc/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0_1377544841/HTT_24Jul_newTES_manzoni_Up_Jobs') from base_cfg import * process.source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), inputCommands = cms.untracked.vstring('keep *', 'drop cmgStructuredPFJets_cmgStructuredPFJetSel__PAT'), duplicateCheckMode = cms.untracked.string('noDuplicateCheck'), fileNames = cms.untracked.vstring('/store/cmst3/user/cmgtools/CMG/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_1739.root', '/store/cmst3/user/cmgtools/CMG/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_174.root', '/store/cmst3/user/cmgtools/CMG/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_1740.root', '/store/cmst3/user/cmgtools/CMG/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_1741.root', '/store/cmst3/user/cmgtools/CMG/DY1JetsToLL_M-50_TuneZ2Star_8TeV-madgraph/Summer12_DR53X-PU_S10_START53_V7A-v1/AODSIM/V5_B/PAT_CMG_V5_16_0/cmgTuple_1742.root') )
849e4f1ba87609eb8511f0ba7b7db5d349078f29
8b44c7f5f9c2264fd5bfe91ea324fdbd53813413
/algorithms/DQN/train_DQN.py
0d2c4954ac20e0ad3bed569e5108a376d106f5d8
[ "MIT" ]
permissive
syd951186545/reinforce_py
ee33a63d6c8c94c3318877460a49470ef7788036
46769da50aea65346cd3a300b55306d25f1f2683
refs/heads/master
2020-05-14T13:54:32.067888
2018-06-08T14:43:45
2018-06-08T14:43:45
181,823,264
1
0
MIT
2019-04-17T05:31:04
2019-04-17T05:31:00
Python
UTF-8
Python
false
false
5,083
py
from __future__ import print_function from __future__ import division import os import argparse import gym import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from agent import DQN def main(args): set_random_seed(args.seed) env = gym.make('CartPole-v0') agent = DQN(env, args) agent.construct_model(args.gpu) # load pretrained models or init new a model. saver = tf.train.Saver(max_to_keep=1) if args.model_path is not None: saver.restore(agent.sess, args.model_path) ep_base = int(args.model_path.split('_')[-1]) best_mean_rewards = float(args.model_path.split('/')[-1].split('_')[0]) else: agent.sess.run(tf.global_variables_initializer()) ep_base = 0 best_mean_rewards = None rewards_history, steps_history = [], [] train_steps = 0 # Training for ep in range(args.max_ep): state = env.reset() ep_rewards = 0 for step in range(env.spec.timestep_limit): # pick action action = agent.sample_action(state, policy='egreedy') # Execution action. next_state, reward, done, debug = env.step(action) train_steps += 1 ep_rewards += reward # modified reward to speed up learning reward = 0.1 if not done else -1 # Learn and Update net parameters agent.learn(state, action, reward, next_state, done) state = next_state if done: break steps_history.append(train_steps) if not rewards_history: rewards_history.append(ep_rewards) else: rewards_history.append( rewards_history[-1] * 0.9 + ep_rewards * 0.1) # Decay epsilon if agent.epsilon > args.final_epsilon: agent.epsilon -= (args.init_epsilon - args.final_epsilon) / args.max_ep # Evaluate during training if ep % args.log_every == args.log_every-1: total_reward = 0 for i in range(args.test_ep): state = env.reset() for j in range(env.spec.timestep_limit): action = agent.sample_action(state, policy='greedy') state, reward, done, _ = env.step(action) total_reward += reward if done: break current_mean_rewards = total_reward / args.test_ep print('Episode: %d Average Reward: %.2f' % (ep + 1, current_mean_rewards)) # save model if current model outpeform the old one if best_mean_rewards is None or (current_mean_rewards >= best_mean_rewards): best_mean_rewards = current_mean_rewards if not os.path.isdir(args.save_path): os.makedirs(args.save_path) save_name = args.save_path + str(round(best_mean_rewards, 2)) \ + '_' + str(ep_base + ep + 1) saver.save(agent.sess, save_name) print('Model saved %s' % save_name) # plot training rewards plt.plot(steps_history, rewards_history) plt.xlabel('steps') plt.ylabel('running avg rewards') plt.show() def args_parse(): parser = argparse.ArgumentParser() parser.add_argument( '--model_path', default=None, help='Whether to use a saved model. (*None|model path)') parser.add_argument( '--save_path', default='./models/', help='Path to save a model during training.') parser.add_argument( '--double_q', default=True, help='enable or disable double dqn') parser.add_argument( '--log_every', default=500, help='Log and save model every x episodes') parser.add_argument( '--gpu', default=-1, help='running on a specify gpu, -1 indicates using cpu') parser.add_argument( '--seed', default=31, help='random seed') parser.add_argument( '--max_ep', type=int, default=2000, help='Number of training episodes') parser.add_argument( '--test_ep', type=int, default=50, help='Number of test episodes') parser.add_argument( '--init_epsilon', type=float, default=0.75, help='initial epsilon') parser.add_argument( '--final_epsilon', type=float, default=0.2, help='final epsilon') parser.add_argument( '--buffer_size', type=int, default=50000, help='Size of memory buffer') parser.add_argument( '--lr', type=float, default=1e-4, help='Learning rate') parser.add_argument( '--batch_size', type=int, default=128, help='Size of training batch') parser.add_argument( '--gamma', type=float, default=0.99, help='Discounted factor') parser.add_argument( '--target_network_update', type=int, default=1000, help='update frequency of target network.') return parser.parse_args() def set_random_seed(seed): np.random.seed(seed) tf.set_random_seed(seed) if __name__ == '__main__': main(args_parse())
26dd0cdf3db785f86670a75ed04fad31e9b09252
8202512dc4fef386dc927fa60c22596e149fb6f0
/venv/bin/gunicorn
0092995224d9586509475559b4ecc8a8608582ec
[]
no_license
dimoka777/tv
6e8d6e754383a897588ddd203e0670650c22245e
8159cb76c695802efb4a30ecc2cc5a71960a23c0
refs/heads/master
2020-06-19T05:18:59.333318
2019-07-13T15:19:50
2019-07-13T15:19:50
196,577,844
0
0
null
null
null
null
UTF-8
Python
false
false
242
#!/home/dimoka/Django/tv/venv/bin/python # -*- coding: utf-8 -*- import re import sys from gunicorn.app.wsgiapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
e278ef7ff6ed2f42a6e7361f4d93862a94eec361
6c96601d64a02c4050410c5e45efa6e1bd8253f6
/wikked/web.py
c300577283de746aa268b31b14b5208e90308176
[ "Apache-2.0" ]
permissive
ludovicchabant/Wikked
7c0627f513f5ccbe052484dcb1ae89336e552cf4
02ec3c0361ac90b0366e7a90f8928a54d40616b5
refs/heads/master
2022-12-03T08:12:08.621371
2019-03-09T07:41:40
2019-03-09T07:41:40
15,740,703
17
0
Apache-2.0
2022-12-03T01:25:58
2014-01-08T16:17:33
Python
UTF-8
Python
false
false
7,577
py
import os import os.path import logging import urllib.parse from werkzeug import SharedDataMiddleware from flask import Flask, abort, g from wikked.wiki import Wiki, WikiParameters # Create the main app. static_folder = os.path.join(os.path.dirname(__file__), 'static') app = Flask( 'wikked', static_folder=static_folder, static_url_path='/static') app.config.from_object('wikked.settings') app.config.from_envvar('WIKKED_SETTINGS', silent=True) # Setup some config defaults. app.config.setdefault('SQL_DEBUG', False) app.config.setdefault('SQL_COMMIT_ON_TEARDOWN', False) app.config.setdefault('WIKI_ROOT', None) app.config.setdefault('WIKI_UPDATE_ON_START', True) app.config.setdefault('WIKI_AUTO_RELOAD', False) app.config.setdefault('WIKI_ASYNC_UPDATE', False) app.config.setdefault('WIKI_SERVE_FILES', False) app.config.setdefault('WIKI_BROKER_URL', 'sqla+sqlite:///%(root)s/.wiki/broker.db') app.config.setdefault('WIKI_NO_FLASK_LOGGER', False) app.config.setdefault('WIKI_STYLESHEET', None) app.config.setdefault('PROFILE', False) app.config.setdefault('PROFILE_DIR', None) app.config.setdefault('INFLUXDB_HOST', None) app.config.setdefault('INFLUXDB_PORT', 8086) app.config.setdefault('INFLUXDB_USERNAME', 'root') app.config.setdefault('INFLUXDB_PASSWORD', 'root') app.config.setdefault('INFLUXDB_DATABASE', 'database') if app.config['WIKI_NO_FLASK_LOGGER']: app.logger.handlers = [] # Find the wiki root, and further configure the app if there's a # config file in there. wiki_root = app.config['WIKI_ROOT'] if wiki_root is None: from wikked.utils import find_wiki_root wiki_root = find_wiki_root() if wiki_root is None: raise Exception("Can't find the wiki root to use.") config_path = os.path.join(wiki_root, '.wiki', 'app.cfg') if os.path.isfile(config_path): app.config.from_pyfile(config_path) # Make the app serve static content and wiki assets in DEBUG mode. app.config['WIKI_ROOT'] = wiki_root app.config['WIKI_FILES_DIR'] = os.path.join(wiki_root, '_files') if app.config['WIKI_SERVE_FILES']: app.wsgi_app = SharedDataMiddleware( app.wsgi_app, {'/files': app.config['WIKI_FILES_DIR']}) # Add a special route for the `.well-known` directory. app.wsgi_app = SharedDataMiddleware( app.wsgi_app, {'/.well-known': os.path.join(wiki_root, '.well-known')}) # Profiling if app.config['PROFILE']: profile_dir = app.config['PROFILE_DIR'] from werkzeug.contrib.profiler import ProfilerMiddleware app.wsgi_app = ProfilerMiddleware(app.wsgi_app, profile_dir=profile_dir) # Customize logging. if app.config['DEBUG']: lg = logging.getLogger('wikked') lg.setLevel(logging.DEBUG) if app.config['SQL_DEBUG']: lg = logging.getLogger('sqlalchemy') lg.setLevel(logging.DEBUG) app.logger.debug("Creating Flask application...") # This lets components further modify the wiki that's created for # each request. app.wikked_post_init = [] # When requested, set the wiki as a request global. def get_wiki(): wiki = getattr(g, '_wiki', None) if wiki is None: wiki = Wiki(app.wiki_params) for i in app.wikked_post_init: i(wiki) wiki.start() g.wiki = wiki return wiki # Set the default wiki parameters. app.wiki_params = app.config.get('WIKI_FACTORY_PARAMETERS', None) if app.wiki_params is None: app.wiki_params = WikiParameters(wiki_root) # Just uncache pages when the user has edited one. def uncaching_wiki_updater(wiki, url): app.logger.debug("Uncaching all pages because %s was edited." % url) wiki.db.uncachePages(except_url=url, only_required=True) app.wiki_params.wiki_updater = uncaching_wiki_updater # Login extension. def user_loader(username): wiki = get_wiki() return wiki.auth.getUser(username) # Setup the Jinja environment. def get_read_url(url): return '/read/' + url.lstrip('/') def get_edit_url(url): return '/edit/' + url.lstrip('/') def get_rev_url(url, rev): return '/rev/%s?%s' % (url.lstrip('/'), urllib.parse.urlencode({'rev': rev})) def get_diff_url(url, rev1=None, rev2=None): args = {} if rev1 is not None: args['rev1'] = rev1 if rev2 is not None: args['rev2'] = rev2 if len(args) > 0: return '/diff/%s?%s' % (url.lstrip('/'), urllib.parse.urlencode(args)) return '/diff/%s' % url.lstrip('/') app.jinja_env.globals.update({ 'get_read_url': get_read_url, 'get_edit_url': get_edit_url, 'get_rev_url': get_rev_url, 'get_diff_url': get_diff_url }) from flask_login import LoginManager # NOQA login_manager = LoginManager() login_manager.init_app(app) login_manager.user_loader(user_loader) login_manager.unauthorized_handler(lambda: abort(401)) # Bcrypt extension. from wikked.bcryptfallback import Bcrypt # NOQA app.bcrypt = Bcrypt(app) # Import the views. import wikked.commonroutes # NOQA import wikked.api.admin # NOQA import wikked.api.edit # NOQA import wikked.api.history # NOQA import wikked.api.read # NOQA import wikked.api.special # NOQA import wikked.api.user # NOQA import wikked.views.admin # NOQA import wikked.views.edit # NOQA import wikked.views.error # NOQA import wikked.views.history # NOQA import wikked.views.read # NOQA import wikked.views.special # NOQA import wikked.views.user # NOQA # Async wiki update. if app.config['WIKI_ASYNC_UPDATE']: app.logger.debug("Will use Celery tasks to update the wiki...") from wikked.tasks import celery_app, update_wiki # Configure Celery. app.config['WIKI_BROKER_URL'] = app.config['WIKI_BROKER_URL'] % ( {'root': wiki_root}) celery_app.conf.update(app.config) app.logger.debug("Using Celery broker: %s" % app.config['WIKI_BROKER_URL']) # Make the wiki use the background update task. def async_updater(wiki): app.logger.debug("Running update task on Celery.") update_wiki.delay(wiki.root) app.wiki_params.wiki_updater = async_updater # InfluxDB metrics. if app.config['INFLUXDB_HOST']: try: import influxdb except ImportError: raise Exception("Please install the `influxdb` package if you need " "analytics for your Wikked app.") host = app.config['INFLUXDB_HOST'] port = app.config['INFLUXDB_PORT'] username = app.config['INFLUXDB_USERNAME'] password = app.config['INFLUXDB_PASSWORD'] database = app.config['INFLUXDB_DATABASE'] metrics_db = influxdb.InfluxDBClient(host, port, username, password, database) app.logger.info("Opening InfluxDB %s on %s:%s as %s." % ( database, host, port, username)) import time from flask import request, request_started, request_tearing_down def on_request_started(sender, **extra): g.metrics_start_time = time.clock() def on_request_tearing_down(sender, **extra): duration = time.clock() - g.metrics_start_time data = [ { "name": "requests", "columns": ["request_path", "compute_time"], "points": [ [str(request.path), duration] ] } ] metrics_db.write_points(data) request_started.connect(on_request_started, app) request_tearing_down.connect(on_request_tearing_down, app)
656e3ca9877621760222278ef164bbd08c56b93f
a870e1db82fbf8f57b9d5fb4ebdc5f205df1a063
/web/settings_local.py
5c9f3553952426e2191ef7bf823ec68d679890c2
[]
no_license
mireq/django-frontend-template
36692d705dd84513e1389379219bdb619c9d1f8a
9f3bd4e3e9374deb77586374a6ed62f6e6ccb316
refs/heads/master
2023-08-16T19:23:09.761808
2023-08-13T04:12:38
2023-08-13T04:12:38
50,784,205
0
1
null
2023-08-13T04:12:40
2016-01-31T16:44:42
Python
UTF-8
Python
false
false
167
py
# pylint: disable=wildcard-import,unused-wildcard-import from .settings import * COMPRESS_POSTCSS_BINARY = 'postcss' # path to postcss binary ALLOWED_HOSTS = ['*']
246f7edf8f9ea743330f9bfaca9cbe94bdb63b24
5da5473ff3026165a47f98744bac82903cf008e0
/packages/google-cloud-securitycenter/samples/generated_samples/securitycenter_v1p1beta1_generated_security_center_create_notification_config_sync.py
55d2d4595a454c01a04b080a669795c6d806194c
[ "Apache-2.0" ]
permissive
googleapis/google-cloud-python
ed61a5f03a476ab6053870f4da7bc5534e25558b
93c4e63408c65129422f65217325f4e7d41f7edf
refs/heads/main
2023-09-04T09:09:07.852632
2023-08-31T22:49:26
2023-08-31T22:49:26
16,316,451
2,792
917
Apache-2.0
2023-09-14T21:45:18
2014-01-28T15:51:47
Python
UTF-8
Python
false
false
2,015
py
# -*- coding: utf-8 -*- # Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for CreateNotificationConfig # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-securitycenter # [START securitycenter_v1p1beta1_generated_SecurityCenter_CreateNotificationConfig_sync] # This snippet has been automatically generated and should be regarded as a # code template only. # It will require modifications to work: # - It may require correct/in-range values for request initialization. # - It may require specifying regional endpoints when creating the service # client as shown in: # https://googleapis.dev/python/google-api-core/latest/client_options.html from google.cloud import securitycenter_v1p1beta1 def sample_create_notification_config(): # Create a client client = securitycenter_v1p1beta1.SecurityCenterClient() # Initialize request argument(s) request = securitycenter_v1p1beta1.CreateNotificationConfigRequest( parent="parent_value", config_id="config_id_value", ) # Make the request response = client.create_notification_config(request=request) # Handle the response print(response) # [END securitycenter_v1p1beta1_generated_SecurityCenter_CreateNotificationConfig_sync]
1375c8329253029ffd84e0e0fcc00fa5367fdf5d
480e33f95eec2e471c563d4c0661784c92396368
/GeneratorInterface/PomwigInterface/python/POMWIG_SingleDiffractiveMinusWmunu_10TeV_cff.py
b86f148ed4e8c4c5f1a7b01056222a8797b3ed6e
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
1,323
py
import FWCore.ParameterSet.Config as cms herwig6Parameters = cms.PSet( comEnergy = cms.double(10000.0), useJimmy = cms.bool(False), doMPInteraction = cms.bool(False), herwigHepMCVerbosity = cms.untracked.bool(False), herwigVerbosity = cms.untracked.int32(1), printCards = cms.untracked.bool(True), maxEventsToPrint = cms.untracked.int32(2), crossSection = cms.untracked.double(-1.0), filterEfficiency = cms.untracked.double(1.0), ) source = cms.Source("EmptySource") generator = cms.EDFilter("PomwigGeneratorFilter", herwig6Parameters, HerwigParameters = cms.PSet( parameterSets = cms.vstring('SDInclusiveWmunu'), SDInclusiveWmunu = cms.vstring('NSTRU = 14 ! H1 Pomeron Fit B', 'Q2WWMN = 1E-6 ! Minimum |t|', 'Q2WWMX = 4.0 ! Maximum |t|', 'YWWMIN = 1E-6 ! Minimum xi', 'YWWMAX = 0.2 ! Maximum xi', 'IPROC = 11452 ! Process PomP -> W -> munu', 'MODPDF(1) = 10150 ! Set MODPDF CTEQ61', 'MODPDF(2) = -1 ! Set MODPDF') ), diffTopology = cms.int32(2), survivalProbability = cms.double(0.05), h1fit = cms.int32(2), doPDGConvert = cms.bool(False) ) ProductionFilterSequence = cms.Sequence(generator)
f27b89cf6bda2b7d42a99756ab87727eb21adda5
76c40ae54b4985cdb0b4692106795ded8115da42
/train_cross_domain.py
78924d5ad3718d7470998843a2f82cac444aec26
[]
no_license
leosampaio/keras-generative
1b23ea6b18af8c09bdf08c30dc6a0428c06eb385
ffafbae19d24c0ce7e812f610c4754a343400a9e
refs/heads/master
2021-05-09T09:04:43.636608
2018-11-21T17:26:28
2018-11-21T17:26:28
119,418,618
1
1
null
2018-01-29T17:48:49
2018-01-29T17:48:49
null
UTF-8
Python
false
false
4,264
py
import os import sys import math import argparse from keras import backend as K import numpy as np from sklearn.preprocessing import LabelBinarizer os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import matplotlib matplotlib.use('Agg') from models import models from datasets import load_dataset def main(): # Parsing arguments parser = argparse.ArgumentParser(description='Training GANs or VAEs') parser.add_argument('--model', type=str, required=True) parser.add_argument('--dataset', type=str, required=True) parser.add_argument('--epoch', type=int, default=200) parser.add_argument('--batchsize', type=int, default=50) parser.add_argument('--output', default='output') parser.add_argument('--zdims', type=int, default=256) parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--resume', type=str, default=None) parser.add_argument('--testmode', action='store_true') parser.add_argument('--conditional', action='store_true') parser.add_argument('--aux-classifier', action='store_true') parser.add_argument('--label-smoothing', default=0.0, type=float) parser.add_argument('--input-noise', default=0.0, type=float) parser.add_argument('--run-id', '-r', default=1, type=int) parser.add_argument('--checkpoint-every', default=1, type=int) parser.add_argument('--notify-every', default=1, type=int) parser.add_argument('--triplet-margin', default=1., type=float) parser.add_argument('--triplet-weight', default=1., type=float) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--n-layers-to-share', default=0, type=int) parser.add_argument('--submodels', nargs=2, help="Submodels used to build the bigger one", required=True) parser.add_argument('--resume-submodels', nargs=2, help="Submodels pretrained weights") parser.add_argument('--dis-loss-control', default=1., type=float) args = parser.parse_args() # select gpu and limit resources if applicable if 'tensorflow' == K.backend(): import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(args.gpu) set_session(tf.Session(config=config)) # make output directory if not exists if not os.path.isdir(args.output): os.mkdir(args.output) # load datasets dataset = load_dataset(args.dataset) # Construct model if args.model not in models: raise Exception('Unknown model:', args.model) model = models[args.model]( input_shape=dataset.shape[1:], z_dims=args.zdims, output=args.output, label_smoothing=args.label_smoothing, input_noise=args.input_noise, run_id=args.run_id, test_mode=args.testmode, checkpoint_every=args.checkpoint_every, notify_every=args.notify_every, aux_classifier=args.aux_classifier, is_conditional=args.conditional, conditional_dims=len(dataset.attr_names), triplet_margin=args.triplet_margin, triplet_weight=args.triplet_weight, lr=args.lr, submodels=args.submodels, dis_loss_control=args.dis_loss_control, submodels_weights=args.resume_submodels, permutation_matrix_shape=(len(dataset), dataset.mirror_len) ) if args.resume or args.resume_submodels: model.load_model(args.resume) # generate random samples to evaluate generated results over time # use the same samples for all trainings - useful when resuming training np.random.seed(14) samples = np.random.normal(size=(100, args.zdims)).astype(np.float32) conditionals_for_samples = np.array( [LabelBinarizer().fit_transform( range(0, len(dataset.attr_names))) [i % len(dataset.attr_names)] for i in range(100)]) np.random.seed() model.main_loop(dataset, samples, samples_conditionals=conditionals_for_samples, epochs=args.epoch, batchsize=args.batchsize) if __name__ == '__main__': main()
04b1d77dab59666059f65cc7262e758d96a4570f
8afb5afd38548c631f6f9536846039ef6cb297b9
/MY_REPOS/PYTHON_PRAC/python-mega-algo/conversions/hexadecimal_to_decimal.py
beb1c2c3ded67ee5fca164a33d6462fa7c495ebb
[ "MIT" ]
permissive
bgoonz/UsefulResourceRepo2.0
d87588ffd668bb498f7787b896cc7b20d83ce0ad
2cb4b45dd14a230aa0e800042e893f8dfb23beda
refs/heads/master
2023-03-17T01:22:05.254751
2022-08-11T03:18:22
2022-08-11T03:18:22
382,628,698
10
12
MIT
2022-10-10T14:13:54
2021-07-03T13:58:52
null
UTF-8
Python
false
false
1,509
py
hex_table = {hex(i)[2:]: i for i in range(16)} # Use [:2] to strip off the leading '0x' def hex_to_decimal(hex_string: str) -> int: """ Convert a hexadecimal value to its decimal equivalent #https://www.programiz.com/python-programming/methods/built-in/hex >>> hex_to_decimal("a") 10 >>> hex_to_decimal("12f") 303 >>> hex_to_decimal(" 12f ") 303 >>> hex_to_decimal("FfFf") 65535 >>> hex_to_decimal("-Ff") -255 >>> hex_to_decimal("F-f") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function >>> hex_to_decimal("") Traceback (most recent call last): ... ValueError: Empty string was passed to the function >>> hex_to_decimal("12m") Traceback (most recent call last): ... ValueError: Non-hexadecimal value was passed to the function """ hex_string = hex_string.strip().lower() if not hex_string: raise ValueError("Empty string was passed to the function") is_negative = hex_string[0] == "-" if is_negative: hex_string = hex_string[1:] if not all(char in hex_table for char in hex_string): raise ValueError("Non-hexadecimal value was passed to the function") decimal_number = 0 for char in hex_string: decimal_number = 16 * decimal_number + hex_table[char] return -decimal_number if is_negative else decimal_number if __name__ == "__main__": from doctest import testmod testmod()
f69c7a91af50182b1bf902e53170333407c5b9b3
d145eb9a03200855caddbf53da53ee092386f93f
/python/etcd/test4.py
40b212bbfbc7814103a5054b2c71eebf234395df
[]
no_license
oberstet/scratchbox
0ecb44df40664526c4eab6dae69837735e8cf7fe
87ac59b98782c70888df24b633f890e3305e7c8c
refs/heads/master
2022-11-08T03:36:36.108804
2022-10-22T09:52:20
2022-10-22T09:52:20
3,698,059
26
8
null
null
null
null
UTF-8
Python
false
false
1,843
py
from twisted.internet.task import react from twisted.internet.defer import inlineCallbacks from autobahn.twisted.util import sleep import etcd import txaio @inlineCallbacks def main(reactor): # a Twisted etcd client client = etcd.Client(reactor, u'http://localhost:2379') # get etcd status status = yield client.status() print(status) # get value for a key try: value = yield client.get(b'/cf/foo') print('value={}'.format(value)) except IndexError: print('no such key =(') # set a value for some keys for i in range(3): rev = yield client.set('/cf/foo0{}'.format(i).encode(), b'woa;)') print('value set, revision={}'.format(rev)) # delete key key = u'/cf/foo02'.encode() rev = yield client.delete(key) print(rev) # iterate over key range (maybe an async iter in the future?) pairs = yield client.get(b'/cf/foo01', b'/cf/foo05') for key, value in pairs.items(): print('key={}: {}'.format(key, value)) # iterate over keys with given prefix pairs = yield client.get(b'/cf/foo0', prefix=True) for key, value in pairs.items(): print('key={}: {}'.format(key, value)) # watch keys for change events prefixes = [b'/cf/', b'/foo/'] # our callback that will be invoked for every change event def on_watch(key, value): print('watch callback fired for key {}: {}'.format(key, value)) # start watching on given key prefixes d = client.watch(prefixes, on_watch) # sleep for n seconds .. delay = 10 print('watching {} for {} seconds ..'.format(prefixes, delay)) yield sleep(delay) # .. and stop watching yield d.cancel() # submit transaction # create lease if __name__ == '__main__': txaio.start_logging(level='info') react(main)
769f7cb542a82ef942a57683d24a36f3ba41cbc1
0be644ba0208b1f9f93018f74580fd5047618a3b
/src/industries/power_plant.py
aa022bf8d0e6cd3ab277a822db436cfdd9905568
[]
no_license
ebla71/XIS
1ba48f019c063132b561d8c2e469634349b96aae
9f96b8f210b91da29ce0d3b34e896f629fc7dede
refs/heads/main
2023-08-22T11:45:22.723296
2021-10-05T09:11:11
2021-10-05T09:11:11
355,645,289
0
0
null
2021-09-25T21:51:01
2021-04-07T18:29:02
Python
UTF-8
Python
false
false
4,892
py
from industry import IndustryTertiary, TileLocationChecks industry = IndustryTertiary(id='power_plant', accept_cargo_types=['COAL', 'PETR', 'PEAT'], prod_cargo_types=[], prob_in_game='3', prob_random='5', prod_multiplier='[0, 0]', map_colour='168', life_type='IND_LIFE_TYPE_BLACK_HOLE', prospect_chance='0.75', name='string(STR_IND_POWER_PLANT)', nearby_station_name='string(STR_STATION_POWERHUNGRY)', fund_cost_multiplier='15', intro_year=1900) industry.economy_variations['FIRS'].enabled = True industry.economy_variations['BASIC_ARCTIC'].enabled = True industry.economy_variations['BASIC_ARCTIC'].accept_cargo_types = ['PEAT'] industry.add_tile(id='power_plant_tile_1', animation_length=7, animation_looping=True, animation_speed=3, custom_animation_control={'macro': 'random_first_frame', 'animation_triggers': 'bitmask(ANIM_TRIGGER_INDTILE_CONSTRUCTION_STATE)'}, location_checks=TileLocationChecks(require_effectively_flat=True, disallow_industry_adjacent=True)) sprite_ground = industry.add_sprite( sprite_number='GROUNDTILE_MUD_TRACKS' ) sprite_ground_overlay = industry.add_sprite( sprite_number='GROUNDTILE_MUD_TRACKS' ) sprite_1 = industry.add_sprite( sprite_number='2047' ) sprite_2 = industry.add_sprite( sprite_number='2050' ) sprite_3 = industry.add_sprite( sprite_number='2053' ) sprite_4 = industry.add_sprite( sprite_number='2054' ) sprite_smoke_1 = industry.add_smoke_sprite( smoke_type='white_smoke_big', xoffset=3, yoffset=0, zoffset=36 ) industry.add_spritelayout( id='power_plant_spritelayout_cooling_tower', ground_sprite=sprite_ground, ground_overlay=sprite_ground_overlay, building_sprites=[sprite_1], ) industry.add_spritelayout( id='power_plant_spritelayout_large_building', ground_sprite=sprite_ground, ground_overlay=sprite_ground_overlay, building_sprites=[sprite_2], smoke_sprites=[sprite_smoke_1], ) industry.add_spritelayout( id='power_plant_spritelayout_small_building', ground_sprite=sprite_ground, ground_overlay=sprite_ground_overlay, building_sprites=[sprite_3], ) industry.add_spritelayout( id='power_plant_spritelayout_substation', ground_sprite=sprite_ground, ground_overlay=sprite_ground_overlay, building_sprites=[sprite_4], ) industry.add_industry_layout( id='power_plant_industry_layout_1', layout=[(0, 0, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (0, 1, 'power_plant_tile_1', 'power_plant_spritelayout_small_building'), (1, 0, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (1, 1, 'power_plant_tile_1', 'power_plant_spritelayout_large_building'), (2, 0, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (2, 1, 'power_plant_tile_1', 'power_plant_spritelayout_large_building'), (3, 0, 'power_plant_tile_1', 'power_plant_spritelayout_substation'), (3, 1, 'power_plant_tile_1', 'power_plant_spritelayout_substation')] ) industry.add_industry_layout( id='power_plant_industry_layout_2', layout=[(0, 1, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (0, 2, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (1, 0, 'power_plant_tile_1', 'power_plant_spritelayout_large_building'), (1, 1, 'power_plant_tile_1', 'power_plant_spritelayout_large_building'), (1, 2, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (2, 0, 'power_plant_tile_1', 'power_plant_spritelayout_small_building'), (2, 1, 'power_plant_tile_1', 'power_plant_spritelayout_substation'), (2, 2, 'power_plant_tile_1', 'power_plant_spritelayout_small_building')] ) industry.add_industry_layout( id='power_plant_industry_layout_3', layout=[(0, 0, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (0, 1, 'power_plant_tile_1', 'power_plant_spritelayout_cooling_tower'), (1, 0, 'power_plant_tile_1', 'power_plant_spritelayout_small_building'), (1, 1, 'power_plant_tile_1', 'power_plant_spritelayout_large_building'), (2, 0, 'power_plant_tile_1', 'power_plant_spritelayout_substation'), (2, 1, 'power_plant_tile_1', 'power_plant_spritelayout_small_building')] )
13d0d57dd8b47b5a6e7bcc2d381ee1431205e156
84e13b07d2c1c2ee9bc670bbc78a677358f4713d
/0x07-python-test_driven_development/4-print_square.py
6541eb37b96a7ee8c04013627e37407eb14cc943
[]
no_license
thegermanblob/holbertonschool-higher_level_programming
b3ad5da5e120df1bced24313af50e2399f43a75c
f1b91a6cc1b9c3dd51dbcf83e61f0a084253c0be
refs/heads/main
2023-09-05T09:00:56.464406
2021-11-22T14:58:37
2021-11-22T14:58:37
361,759,191
1
0
null
null
null
null
UTF-8
Python
false
false
461
py
#!/usr/bin/python3 """ Module that contains square """ def print_square(size): """ Function that prints a square and validates size """ if type(size) is not int: raise TypeError("size must be an integer") if size < 0: raise ValueError("size must be >= 0") if size == 0: print("") else: for x in range(0, size): for y in range(0, size): print("#", end="") print("")
0264140fed967a1644148682d47d81f3fd7b0d4b
89a015d681c109801be843492dbbc76349fc8d24
/setup.py
4c5c6668172d3ad63eafbd7fcb7660ae259bb009
[ "MIT" ]
permissive
chmouel/tekton-neat
2d4eba1116f98aed1334bb9768514200ce6c71fd
8714a0e673a7eb4c5670f4acbb61701719423cdd
refs/heads/main
2023-01-06T03:46:37.275733
2020-11-06T10:43:09
2020-11-06T10:43:09
310,533,512
4
2
MIT
2020-11-06T10:37:46
2020-11-06T08:15:15
Python
UTF-8
Python
false
false
1,515
py
#!/usr/bin/env python """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [] setup_requirements = ['pyyaml'] test_requirements = [ 'pytest>=3', ] setup( author="Chmouel Boudjnah", author_email='[email protected]', python_requires='>=3.5', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Export your tekton templates neatly", entry_points={ 'console_scripts': [ 'tekton-neat=tekton_neat.cli:main', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='tekton-neat', name='tekton-neat', packages=find_packages(include=['tekton_neat', 'tekton_neat.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/chmouel/tekton-neat', version='0.3.0', zip_safe=False, )
695d6603fe971ba90553ceab15ef9984279b0050
56ce2972848c1cb293bd7b5347ad377092ac2c78
/pythonx/cm_core.py
efa3686399c5deab80d53c35cc8b569df5fa6241
[ "MIT" ]
permissive
Ron89/nvim-completion-manager
a01c0be520d195fb9406af7f50cc7ef20f261665
7b40275c2a26ed966a74613e93dbe72eab500115
refs/heads/master
2021-01-22T05:50:24.808823
2017-02-12T07:30:56
2017-02-12T07:30:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,393
py
# -*- coding: utf-8 -*- # For debugging # NVIM_PYTHON_LOG_FILE=nvim.log NVIM_PYTHON_LOG_LEVEL=INFO nvim import os import sys import re import logging import copy import importlib import threading from threading import Thread, RLock import urllib import json from neovim import attach, setup_logging from http.server import BaseHTTPRequestHandler, HTTPServer from cm import cm logger = logging.getLogger(__name__) # use a trick to only register the source withou loading the entire # module class CmSkipLoading(Exception): pass class CoreHandler: def __init__(self,nvim): self._nvim = nvim # { '{source_name}': {'startcol': , 'matches'} self._matches = {} self._sources = {} self._last_matches = [] # should be True for supporting display menu directly without cm_refresh self._has_popped_up = True self._subscope_detectors = {} scoper_paths = self._nvim.eval("globpath(&rtp,'pythonx/cm/scopers/*.py')").split("\n") # auto find scopers for path in scoper_paths: if not path: continue try: modulename = os.path.splitext(os.path.basename(path))[0] modulename = "cm.scopers.%s" % modulename m = importlib.import_module(modulename) scoper = m.Scoper() for scope in scoper.scopes: if scope not in self._subscope_detectors: self._subscope_detectors[scope] = [] self._subscope_detectors[scope].append(scoper) logger.info('scoper <%s> imported for %s', modulename, scope) except Exception as ex: logger.exception('importing scoper <%s> failed: %s', modulename, ex) # auto find sources sources_paths = self._nvim.eval("globpath(&rtp,'pythonx/cm/sources/*.py')").split("\n") for path in sources_paths: modulename = os.path.splitext(os.path.basename(path))[0] modulename = "cm.sources.%s" % modulename # use a trick to only register the source withou loading the entire # module def register_source(name,abbreviation,priority,scopes=None,cm_refresh_patterns=None,events=[],detach=0): # " jedi # " refresh 1 for call signatures # " detach 0, jedi enters infinite loops sometime, don't know why. # call cm#register_source({ # \ 'name' : 'cm-jedi', # \ 'priority': 9, # \ 'abbreviation': 'Py', # \ 'scopes': ['python'], # \ 'refresh': 1, # \ 'channels': [ # \ { # \ 'type': 'python3', # \ 'path': 'autoload/cm/sources/cm_jedi.py', # \ 'events': ['InsertLeave'], # \ 'detach': 0, # \ } # \ ], # \ }) channel = dict(type='python3', path= modulename, detach=detach, events=events) source = {} source['channels'] = [channel] source['name'] = name source['priority'] = priority source['abbreviation'] = abbreviation if cm_refresh_patterns: source['cm_refresh_patterns'] = cm_refresh_patterns if scopes: source['scopes'] = scopes logger.info('registering source: %s',source) nvim.call('cm#register_source',source) # use a trick to only register the source withou loading the entire # module raise CmSkipLoading() cm.register_source = register_source try: # register_source m = importlib.import_module(modulename) except CmSkipLoading: # This is not an error logger.info('source <%s> registered', modulename) except Exception as ex: logger.exception("register_source for %s failed", modulename) logger.info('_subscope_detectors: %s', self._subscope_detectors) self._file_server = FileServer() self._file_server.start(self._nvim.eval('v:servername')) self._matcher = cm.smart_case_prefix_matcher self._sorter = cm.alnum_sorter self._ctx = None def cm_complete(self,srcs,name,ctx,startcol,matches,refresh=0,*args): # adjust for subscope if ctx['lnum']==1: startcol += ctx.get('scope_col',1)-1 # if cm.context_outdated(self._ctx,ctx): # logger.info('ignore outdated context from [%s]', name) # return self._sources = srcs try: # process the matches early to eliminate unnecessary complete function call result = self.process_matches(name,ctx,startcol,matches) if (not result) and (not self._matches.get(name,{}).get('last_matches',[])): # not popping up, ignore this request logger.info('Not popping up, not refreshing for cm_complete by %s, startcol %s', name, startcol) return finally: # storing matches if name not in self._matches: self._matches[name] = {} if len(matches)==0: del self._matches[name] else: self._matches[name]['startcol'] = startcol self._matches[name]['refresh'] = refresh self._matches[name]['matches'] = matches # wait for cm_complete_timeout, reduce flashes if self._has_popped_up: logger.info("update popup for [%s]",name) # the ctx in parameter maybe a subctx for completion source, use # nvim.call to get the root context self._refresh_completions(self._nvim.call('cm#context')) else: logger.info("delay popup for [%s]",name) def cm_insert_enter(self): self._matches = {} def cm_complete_timeout(self,srcs,ctx,*args): if not self._has_popped_up: self._refresh_completions(ctx) self._has_popped_up = True # The completion core itself def cm_refresh(self,srcs,root_ctx,*args): # update file server self._ctx = root_ctx self._file_server.set_current_ctx(root_ctx) # initial scope root_ctx['scope'] = root_ctx['filetype'] self._sources = srcs self._has_popped_up = False # simple complete done if root_ctx['typed'] == '': self._matches = {} elif re.match(r'[^0-9a-zA-Z_]',root_ctx['typed'][-1]): self._matches = {} root_ctx['src_uri'] = self._file_server.get_src_uri(root_ctx) ctx_lists = [root_ctx,] # scoping i = 0 while i<len(ctx_lists): ctx = ctx_lists[i] scope = ctx['scope'] if scope in self._subscope_detectors: for detector in self._subscope_detectors[scope]: try: sub_ctx = detector.sub_context(ctx, self._file_server.get_src(ctx)) if sub_ctx: # adjust offset to global based # and add the new context sub_ctx['scope_offset'] += ctx.get('scope_offset',0) sub_ctx['scope_lnum'] += ctx.get('scope_lnum',1)-1 if int(sub_ctx['lnum']) == 1: sub_ctx['typed'] = sub_ctx['typed'][sub_ctx['scope_col']-1:] sub_ctx['scope_col'] += ctx.get('scope_col',1)-1 logger.info('adjusting scope_col') sub_ctx['src_uri'] = self._file_server.get_src_uri(sub_ctx) ctx_lists.append(sub_ctx) logger.info('new sub context: %s', sub_ctx) except Exception as ex: logger.exception("exception on scope processing: %s", ex) i += 1 # do notify_sources_to_refresh refreshes_calls = [] refreshes_channels = [] # get the sources that need to be notified for ctx in ctx_lists: for name in srcs: info = srcs[name] if not info.get('enable',True): # ignore disabled source continue try: if not self._check_scope(ctx,info): logger.info('_check_scope ignore <%s> for context scope <%s>', name, ctx['scope']) continue if (name in self._matches) and not self._matches[name]['refresh']: # no need to refresh logger.info('cached for <%s>, no need to refresh', name) continue if not self._check_refresh_patterns(ctx['typed'],info): continue if 'cm_refresh' in info: # check patterns when necessary refreshes_calls.append(dict(name=name,context=ctx)) # start channels on demand here if info.get('channels',None): channel = info['channels'][0] if 'id' not in channel: if channel.get('has_terminated',0)==0: logger.info('starting channels for %s',name) # has not been started yet, start it now info = self._nvim.call('cm#_start_channels',name) for channel in info.get('channels',[]): if 'id' in channel: refreshes_channels.append(dict(name=name,id=channel['id'],context=ctx)) except Exception as inst: logger.exception('cm_refresh process exception: %s', inst) continue if not refreshes_calls and not refreshes_channels: logger.info('not notifying any channels, _refresh_completions now') self._refresh_completions(root_ctx) self._has_popped_up = True else: logger.info('notify_sources_to_refresh calls cnt [%s], channels cnt [%s]',len(refreshes_calls),len(refreshes_channels)) logger.debug('cm#_notify_sources_to_refresh [%s] [%s] [%s]', refreshes_calls, refreshes_channels, root_ctx) self._nvim.call('cm#_notify_sources_to_refresh', refreshes_calls, refreshes_channels, root_ctx) # check patterns for dict, if non dict, return True def _check_refresh_patterns(self,typed,opt): if type(opt)!=type({}): return True patterns = opt.get('cm_refresh_patterns',None) if not patterns: return True for pattern in patterns: if re.search(pattern,typed): return True return False # almost the same as `s:check_scope` in `autoload/cm.vim` def _check_scope(self,ctx,info): scopes = info.get('scopes',['*']) cur_scope = ctx.get('scope',ctx['filetype']) for scope in scopes: # only match filetype for `*` scope, to prevent multiple notification if scope=='*' and cur_scope==ctx['filetype']: return True if scope==cur_scope: return True return False def _refresh_completions(self,ctx): matches = [] # sort by priority names = sorted(self._matches.keys(),key=lambda x: self._sources[x]['priority'], reverse=True) if len(names)==0: # empty logger.info('_refresh_completions names: %s, startcol: %s, matches: %s', names, ctx['col'], []) self._complete(ctx, ctx['col'], []) return col = ctx['col'] startcol = col base = ctx['typed'][startcol-1:] # basick processing per source for name in names: try: self._matches[name]['last_matches'] = [] source_startcol = self._matches[name]['startcol'] if source_startcol>col or source_startcol==0: self._matches[name]['last_matches'] = [] logger.error('ignoring invalid startcol for %s %s', name, self._matches[name]['startcol']) continue source_matches = self._matches[name]['matches'] source_matches = self.process_matches(name,ctx,source_startcol,source_matches) self._matches[name]['last_matches'] = source_matches if not source_matches: continue # min non empty source_matches's source_startcol as startcol if source_startcol < startcol: startcol = source_startcol except Exception as inst: logger.exception('_refresh_completions process exception: %s', inst) continue # merge processing results of sources for name in names: try: source_startcol = self._matches[name]['startcol'] source_matches = self._matches[name]['last_matches'] if not source_matches: continue prefix = ctx['typed'][startcol-1 : source_startcol-1] for e in source_matches: e['word'] = prefix + e['word'] # if 'abbr' in e: # e['abbr'] = prefix + e['abbr'] matches += source_matches except Exception as inst: logger.exception('_refresh_completions process exception: %s', inst) continue if not matches: startcol=len(ctx['typed']) or 1 logger.info('_refresh_completions names: %s, startcol: %s, matches cnt: %s', names, startcol, len(matches)) logger.debug('_refresh_completions names: %s, startcol: %s, matches: %s, source matches: %s', names, startcol, matches, self._matches) self._complete(ctx, startcol, matches) def process_matches(self,name,ctx,startcol,matches): base = ctx['typed'][startcol-1:] abbr = self._sources[name].get('abbreviation','') # formalize datastructure formalized = [] for item in matches: e = {} if type(item)==type(''): e['word'] = item else: e = copy.deepcopy(item) formalized.append(e) # filtering and sorting result = [ e for e in formalized if self._matcher(base=base,item=e)] result = self._sorter(base,startcol,result) # fix some text for e in result: if 'menu' not in e: if 'info' in e and e['info'] and len(e['info'])<50: if abbr: e['menu'] = "<%s> %s" % (abbr,e['info']) else: e['menu'] = e['info'] else: # info too long if abbr: e['menu'] = "<%s>" % abbr else: # e['menu'] = "<%s> %s" % (self._sources[name]['abbreviation'], e['info']) pass return result def _complete(self, ctx, startcol, matches): if not matches and not self._last_matches: # no need to fire complete message logger.info('matches==0, _last_matches==0, ignore') return self._nvim.call('cm#_core_complete', ctx, startcol, matches, async=True) self._last_matches = matches def cm_shutdown(self): self._file_server.shutdown(wait=False) # Cached file content in memory, and use http protocol to serve files, instead # of asking vim for file every time. FileServer is important in implementing # the scoping feature, for example, language specific completion inside # markdown code fences. class FileServer(Thread): def __init__(self): self._rlock = RLock() self._current_context = None self._cache_context = None self._cache_src = "" Thread.__init__(self) def start(self,nvim_server_name): """ Start the file server @type request: str """ server = self class HttpHandler(BaseHTTPRequestHandler): def do_GET(self): try: server.run_GET(self) except Exception as ex: logger.exception('exception on FileServer: %s', ex) self.send_response(500) self.send_header('Content-type','text/html') self.end_headers() message = str(ex) self.wfile.write(bytes(message, "utf8")) # create another connection to avoid synchronization issue? self._nvim = attach('socket',path=nvim_server_name) # Server settings # 0 for random port server_address = ('127.0.0.1', 0) self._httpd = HTTPServer(server_address, HttpHandler) Thread.start(self) def run_GET(self,request): """ Process get request. This method, with the `run_` prefix is running on the same thread as `self.run` method. @type request: BaseHTTPRequestHandler """ params = {} for e in urllib.parse.parse_qsl(urllib.parse.urlparse(request.path).query): params[e[0]] = e[1] logger.info('thread %s processing %s', threading.get_ident(), params) context = json.loads(params['context']) src = self.get_src(context) if src is None: src = "" request.send_response(200) request.send_header('Content-type','text/html') request.end_headers() request.wfile.write(bytes(src, "utf8")) def run(self): logger.info('running server on port %s, thread %s', self._httpd.server_port, threading.get_ident()) self._httpd.serve_forever() def get_src(self,context): with self._rlock: # If context does not match current context, check the neovim current # context, if does not match neither, return None if cm.context_outdated(self._current_context,context): self._current_context = self._nvim.eval('cm#context()') if cm.context_outdated(self._current_context,context): logger.info('get_src returning None for oudated context: %s', context) return None # update cache when necessary if cm.context_outdated(self._current_context, self._cache_context): logger.info('get_src updating cache for context %s', context) self._cache_context = self._current_context self._cache_src = "\n".join(self._nvim.current.buffer[:]) scope_offset = context.get('scope_offset',0) scope_len = context.get('scope_len',len(self._cache_src)) return self._cache_src[scope_offset:scope_offset+scope_len] def set_current_ctx(self,context): """ This method is running on main thread as cm core """ with self._rlock: self._current_context = context def get_src_uri(self,context): # changedtick and curpos is enough for outdating check stripped = dict(changedtick=context['changedtick'],curpos=context['curpos']) if 'scope_offset' in context: stripped['scope_offset'] = context['scope_offset'] if 'scope_len' in context: stripped['scope_len'] = context['scope_len'] query = urllib.parse.urlencode(dict(context=json.dumps(stripped))) return urllib.parse.urljoin('http://127.0.0.1:%s' % self._httpd.server_port, '?%s' % query) def shutdown(self,wait=True): """ Shutdown the file server """ self._httpd.shutdown() if wait: self.join() def main(): start_type = sys.argv[1] # the default nice is inheriting from parent neovim process. Increment it # so that heavy calculation will not block the ui. try: os.nice(1) except: pass # psutil ionice try: import psutil p = psutil.Process(os.getpid()) p.ionice(psutil.IOPRIO_CLASS_IDLE) except: pass if start_type == 'core': # use the module name here setup_logging('cm_core') logger = logging.getLogger(__name__) logger.setLevel(get_loglevel()) # change proccess title try: import setproctitle setproctitle.setproctitle('nvim-completion-manager core') except: pass try: # connect neovim nvim = nvim_env() handler = CoreHandler(nvim) logger.info('starting core, enter event loop') cm_event_loop('core',logger,nvim,handler) except Exception as ex: logger.exception('Exception when running channel: %s',ex) exit(1) finally: # terminate here exit(0) elif start_type == 'channel': name = sys.argv[2] # use the module name here setup_logging(name) logger = logging.getLogger(name) logger.setLevel(get_loglevel()) # change proccess title try: import setproctitle setproctitle.setproctitle('nvim-completion-manager %s' % name) except: pass try: # connect neovim nvim = nvim_env() m = importlib.import_module(name) handler = m.Source(nvim) logger.info('handler created, entering event loop') cm_event_loop('channel',logger,nvim,handler) except Exception as ex: logger.exception('Exception: %s',ex) exit(1) finally: # terminate here exit(0) def nvim_env(): nvim = attach('stdio') # setup pythonx pythonxs = nvim.eval('globpath(&rtp,"pythonx")') for path in pythonxs.split("\n"): if not path: continue if path not in sys.path: sys.path.append(path) return nvim def get_loglevel(): # logging setup level = logging.INFO if 'NVIM_PYTHON_LOG_LEVEL' in os.environ: l = getattr(logging, os.environ['NVIM_PYTHON_LOG_LEVEL'].strip(), level) if isinstance(l, int): level = l return level def cm_event_loop(type,logger,nvim,handler): def on_setup(): logger.info('on_setup') def on_request(method, args): func = getattr(handler,method,None) if func is None: logger.info('method: %s not implemented, ignore this request', method) return None func(*args) def on_notification(method, args): logger.debug('%s method: %s, args: %s', type, method, args) if type=='channel' and method=='cm_refresh': ctx = args[1] # The refresh calculation may be heavy, and the notification queue # may have outdated refresh events, it would be meaningless to # process these event if nvim.call('cm#context_changed',ctx): logger.info('context_changed, ignoring context: %s', ctx) return func = getattr(handler,method,None) if func is None: logger.info('method: %s not implemented, ignore this message', method) return func(*args) logger.debug('%s method %s completed', type, method) nvim.run_loop(on_request, on_notification, on_setup) # shutdown func = getattr(handler,'cm_shutdown',None) if func: func() main()
[ "l" ]
l
fe4d5bc55a87020fa99d3ab6ac248746bcac93f7
ad9bd58a3ec8fa08dfcc994d4101ee815a9f5bc0
/02_algorithm/baekjoon/all_problem/1967.py
7869d00865f64f47645925bb25b3fd2d27997977
[]
no_license
wally-wally/TIL
93fc1d0e3bc7d030341ed54155294c68c48b4c7d
936783bc86f563646c0398c24e2fcaa707f0ed23
refs/heads/master
2023-04-28T08:59:48.235747
2023-04-12T12:06:52
2023-04-12T12:06:52
195,918,111
40
7
null
2020-09-29T16:20:46
2019-07-09T02:31:02
Python
UTF-8
Python
false
false
1,243
py
import sys sys.stdin = open('input_1967.txt', 'r') from collections import deque def find_farthest_vertex(start_node): distance, farthest_vertex = 0, start_node dq = deque() dq.append((start_node, 0)) visited = [False for _ in range(n + 1)] visited[start_node] = True while dq: pop_node, pop_dist = dq.popleft() for node in tree_info[pop_node]: if not visited[node]: visited[node] = True now_dist = tree_info[pop_node][node] dq.append((node, pop_dist + now_dist)) if distance < pop_dist + now_dist: distance = pop_dist + now_dist farthest_vertex = node return distance, farthest_vertex n = int(input()) if n == 1: print(0) else: tree_info = dict() for _ in range(n - 1): node1, node2, dist = map(int, input().split()) if node1 not in tree_info: tree_info[node1] = dict() tree_info[node1][node2] = dist if node2 not in tree_info: tree_info[node2] = dict() tree_info[node2][node1] = dist temp_vertex = find_farthest_vertex(1)[1] distance = find_farthest_vertex(temp_vertex)[0] print(distance)
e28df1d439e040246ab819554cc779df88495db5
b13b603bf8f07da1100b7fcb2e505f9c389e5764
/level2/구명보트.py
b2937d51318cf687b8b938b9224531f55a5bf9f3
[]
no_license
123qpq/programers
3a499646f65bed9f15b0db3e66d7445536579942
970b62210f6c29ea0d13bd381fb1e0a9b997143f
refs/heads/main
2023-06-20T12:00:10.681082
2021-07-20T04:36:46
2021-07-20T04:36:46
322,791,861
0
0
null
null
null
null
UTF-8
Python
false
false
355
py
from collections import deque def solution(people, limit): boats = 0 people.sort() people = deque(people) while people: boats += 1 if len(people) == 1: break if people[0] + people[-1] <= limit: people.popleft() people.pop() else: people.pop() return boats
594ba8fc903636d753d54513ba19fe91419f506c
6502929152acc82097c6bb9fa9b211a30b23b6c0
/2_anomaly_detection_nyc.py
446aea1c4757dddf1487d6ef315105b8176e12b4
[ "Apache-2.0" ]
permissive
lulzzz/RNN-Time-series-Anomaly-Detection
ceec98a902b3504224834c03a22e7e7673f11470
194a20100749bae0f18b7a9681055b92f892c7e9
refs/heads/master
2020-03-10T03:37:45.860990
2018-04-11T01:38:42
2018-04-11T01:38:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,349
py
import argparse import torch import torch.nn as nn from torch.autograd import Variable import preprocess_data from model import model from torch import optim from matplotlib import pyplot as plt import numpy as np from anomalyDetector import fit_norm_distribution_param from anomalyDetector import anomalyScore from sklearn.svm import SVR parser = argparse.ArgumentParser(description='PyTorch RNN Anomaly Detection Model on nyc_taxi Dataset') parser.add_argument('--prediction_window_size', type=int, default=10, help='prediction_window_size') args_ = parser.parse_args() print("=> loading checkpoint ") checkpoint = torch.load('./save/nyc_taxi/checkpoint.pth.tar') print("=> loaded checkpoint") args = checkpoint['args'] args.prediction_window_size= args_.prediction_window_size # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### TimeseriesData = preprocess_data.DataLoad(args.data) train_dataset = preprocess_data.batchify(args,TimeseriesData.trainData, 1)[:10000] test_dataset = preprocess_data.batchify(args,TimeseriesData.testData, 1) ############################################################################### # Build the model ############################################################################### model = model.RNNPredictor(rnn_type = args.model, enc_inp_size=3, rnn_inp_size = args.emsize, rnn_hid_size = args.nhid, dec_out_size=3, nlayers = args.nlayers,) model.load_state_dict(checkpoint['state_dict']) del checkpoint if args.cuda: model.cuda() # At any point you can hit Ctrl + C t endPoint=3500 try: mean, cov = fit_norm_distribution_param(args, model, train_dataset, endPoint,channel_idx=0) train_scores, _, _, hiddens,_ = anomalyScore(args, model, train_dataset, mean, cov, 3000) score_predictor = SVR(C=1.0,epsilon=0.2) score_predictor.fit(torch.cat(hiddens,dim=0).numpy(),train_scores) scores, sorted_predictions,sorted_errors, _, predicted_scores = anomalyScore(args, model, test_dataset, mean, cov, endPoint,score_predictor=score_predictor) sorted_predictions = torch.cat(sorted_predictions, dim=0) sorted_errors = torch.cat(sorted_errors,dim=0) scores = np.array(scores) except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') target= preprocess_data.reconstruct(test_dataset.cpu()[:, 0, 0].numpy(), TimeseriesData.trainData['seqData_mean'], TimeseriesData.trainData['seqData_std']) sorted_predictions_mean = preprocess_data.reconstruct(sorted_predictions.mean(dim=1).numpy(), TimeseriesData.trainData['seqData_mean'], TimeseriesData.trainData['seqData_std']) sorted_predictions_1step = preprocess_data.reconstruct(sorted_predictions[:,-1].numpy(), TimeseriesData.trainData['seqData_mean'], TimeseriesData.trainData['seqData_std']) sorted_predictions_Nstep = preprocess_data.reconstruct(sorted_predictions[:,0].numpy(), TimeseriesData.trainData['seqData_mean'], TimeseriesData.trainData['seqData_std']) #sorted_errors_mean = sorted_errors.mean(dim=1).abs().cpu().numpy() sorted_errors_mean = sorted_errors.abs().mean(dim=1).cpu().numpy() sorted_errors_mean *=TimeseriesData.trainData['seqData_std'] fig, ax1 = plt.subplots(figsize=(15,5)) ax1.plot(target,label='Target', color='black', marker='.', linestyle='--', markersize=1, linewidth=0.5) ax1.plot(sorted_predictions_mean,label='Mean predictions', color='purple', marker='.', linestyle='--', markersize=1, linewidth=0.5) ax1.plot(sorted_predictions_1step,label='1-step predictions', color='green', marker='.', linestyle='--', markersize=1, linewidth=0.5) ax1.plot(sorted_predictions_Nstep,label=str(args.prediction_window_size)+'-step predictions', color='blue', marker='.', linestyle='--', markersize=1, linewidth=0.5) ax1.plot(sorted_errors_mean,label='Absolute mean prediction errors', color='orange', marker='.', linestyle='--', markersize=1, linewidth=1) ax1.legend(loc='upper left') ax1.set_ylabel('Value',fontsize=15) ax1.set_xlabel('Index',fontsize=15) ax2 = ax1.twinx() ax2.plot(scores,label='Anomaly scores from \nmultivariate normal distribution', color='red', marker='.', linestyle='--', markersize=1, linewidth=1) ax2.plot(predicted_scores,label='Predicted anomaly scores from SVR', color='cyan', marker='.', linestyle='--', markersize=1, linewidth=1) ax2.legend(loc='upper right') ax2.set_ylabel('anomaly score',fontsize=15) plt.axvspan(3024,3040 , color='yellow', alpha=0.3) plt.xlim([0, endPoint]) plt.title('Anomaly Detection on ' + args.data + ' Dataset', fontsize=18, fontweight='bold') plt.tight_layout() plt.xlim([1500,endPoint]) plt.savefig('result/'+args.data+'/fig_scores.png') plt.show()
252b8ee31d1bd50da52453b3ffc3d15607759ff3
e8bf00dba3e81081adb37f53a0192bb0ea2ca309
/domains/nav/problems/auto/problem1083_SD.py
44761016946ddef7cbb4c415a70a66f745d3cab7
[ "BSD-3-Clause" ]
permissive
patras91/rae_release
1e6585ee34fe7dbb117b084df982ca8a8aed6795
0e5faffb7eb732fdb8e3bbf2c6d2f2cbd520aa30
refs/heads/master
2023-07-13T20:09:41.762982
2021-08-11T17:02:58
2021-08-11T17:02:58
394,797,515
2
1
null
null
null
null
UTF-8
Python
false
false
1,135
py
__author__ = 'patras' from domain_springDoor import * from timer import DURATION from state import state, rv DURATION.TIME = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } DURATION.COUNTER = { 'unlatch1': 5, 'unlatch2': 5, 'holdDoor': 2, 'passDoor': 3, 'releaseDoor': 2, 'closeDoors': 3, 'move': 7, 'take': 2, 'put': 2, } rv.LOCATIONS = [1, 2, 3, 4, 5] rv.EDGES = {1: [2], 2: [1, 3], 3: [2, 4, 5], 4: [3], 5: [3]} rv.DOORS = ['d1', 'd2'] rv.DOORLOCATIONS = {(2, 3): 'd1', (3, 5): 'd2'} rv.DOORTYPES = {'d1': 'spring', 'd2': 'spring'} rv.ROBOTS = ['r1', 'r2', 'r3', 'r4'] def ResetState(): state.load = {'r1': NIL, 'r2': NIL, 'r3': NIL, 'r4': NIL} state.status = {'r1': 'free', 'r2': 'free', 'r3': 'free', 'r4': 'free'} state.loc = {'r1': 4, 'r2': 3, 'r3': 1, 'r4': 3} state.pos = {'o1': 4} state.doorStatus = {'d1': 'closed', 'd2': 'closed', } state.doorType = {'d1': UNK, 'd2': UNK, } tasks = { 10: [['fetch', 'r1', 'o1', 3]], } eventsEnv = { }
0b0c4aff2067846b9dd29a167bd9b9af5c1b88d7
aa6985deb43e26732899d06ee39fd6cb4befc2ae
/strongmotionfetch/retriever.py
78bb5088fde03bef4274155037a08d13e372b0ae
[ "LicenseRef-scancode-public-domain-disclaimer" ]
permissive
jnf0910/strongmotionfetch
2592396183a651799b3ae3a33c77a2b25128d85d
c9e6f30797e6893bf60506b24096c52537a0110b
refs/heads/master
2020-12-25T09:28:53.617747
2016-06-23T20:48:39
2016-06-23T20:48:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,020
py
class Retriever(object): def __init__(self,rawfolder,inputfolder): self._inputfolder = inputfolder self._rawfolder = rawfolder def getData(self,time,lat,lon,timewindow,radius): self.fetch(time,lat,lon,timewindow,radius) #find files online, download to raw folder traces = self.readFiles() #read any files downloaded into raw folder, turn into list of ObsPy Trace objects amps = self.traceToAmps(traces) #pull out peak amplitudes, return as data structure xmlstr = self.ampsToXML(amps) #convert these amps to an xml string self.saveToXML(xmlstr) #write that xml string to a file in the input folder def fetch(self,time,lat,lon,timewindow,radius): #this is implemented in child classes pass def readFiles(self): #this is implemented in child classes pass def traceToAmps(traces=None): #this is implemented here pass def ampsToXML(amps=None): #this is implemented here pass
b76c818f8bfb550baeb076a2434b1a8e483f19e2
36b388d25580e60068da2d6cab88d94f90959749
/lib/datasets/SearchDatasetWrap.py
f7925b3c9235992b325687ea7c761c732570e971
[ "MIT" ]
permissive
z-x-yang/NAS-Projects
4b733b381e325819f958d9af684267b9d4f7fac8
54ecec7f750e11077b2ecc60ddcd74ce417434ac
refs/heads/master
2020-09-08T14:45:13.712958
2019-11-09T16:04:05
2019-11-09T16:04:05
221,163,104
3
0
MIT
2019-11-12T08:05:37
2019-11-12T08:05:34
null
UTF-8
Python
false
false
1,186
py
import torch, copy, random import torch.utils.data as data class SearchDataset(data.Dataset): def __init__(self, name, data, train_split, valid_split, check=True): self.datasetname = name self.data = data self.train_split = train_split.copy() self.valid_split = valid_split.copy() if check: intersection = set(train_split).intersection(set(valid_split)) assert len(intersection) == 0, 'the splitted train and validation sets should have no intersection' self.length = len(self.train_split) def __repr__(self): return ('{name}(name={datasetname}, train={tr_L}, valid={val_L})'.format(name=self.__class__.__name__, datasetname=self.datasetname, tr_L=len(self.train_split), val_L=len(self.valid_split))) def __len__(self): return self.length def __getitem__(self, index): assert index >= 0 and index < self.length, 'invalid index = {:}'.format(index) train_index = self.train_split[index] valid_index = random.choice( self.valid_split ) train_image, train_label = self.data[train_index] valid_image, valid_label = self.data[valid_index] return train_image, train_label, valid_image, valid_label
c6269ba6d485726a565012d1258590f2aa850778
1e4eefff1c19ffb81016ce99f2284fb657293f65
/sorting/test/insertion_sort.py
0bc84a94a6f9223c9f3bc60740800fc4d84f4a58
[]
no_license
Solero93/bcn-algorithm-club-py
5e1edf15f087e0edf2cf7ba0859fb5e4523525ad
1edf407498756e7ba36534387bb4241b8b455c4f
refs/heads/master
2020-03-28T09:06:30.328130
2019-03-25T10:38:48
2019-03-25T10:38:48
148,014,386
3
1
null
null
null
null
UTF-8
Python
false
false
340
py
from unittest import TestCase from src.insertion_sort import insertion_sort from test.fixtures import test_cases class BuiltInSortTest(TestCase): def test_sort(self): for case in test_cases: self.assertEqual(insertion_sort(case), sorted(case), msg=f'{case} should be {sorted(case)}')
00610e1274a588c4ba24de9621ed3e9c8cb3f68e
781e2692049e87a4256320c76e82a19be257a05d
/assignments/python/wc/src/99.py
126258ad6d501e7e292a6de1f96af9a0b43e54a6
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
169
py
def word_count(input): counts = {} for word in input.split(): if not word in counts: counts[word] = 1 else: counts[word] = counts[word] + 1 return counts
1a4b29df1d245f93801fe603eb728d890f2ba45e
adc6d8ee596e4710c3241332758bb6990bdd8914
/Trabajo de grado_final/Anexos/Codigos/test_todoRE.py
b3e6bc0cdb7029307a37568546836197b0bdb655
[]
no_license
NatalyTinoco/Trabajo-de-grado_Artefactos
cf9491c47a8a23ce5bab7c52498093a61319f834
5cc4e009f94c871c7ed0d820eb113398ac66ec2f
refs/heads/master
2022-03-20T00:51:48.420253
2019-11-24T19:10:40
2019-11-24T19:10:40
197,964,659
1
0
null
null
null
null
UTF-8
Python
false
false
2,752
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 5 12:53:35 2019 @author: Daniela y Nataly Descripción del código: Código donde se une toda la metodología para identificación de Reflejos especulares (mRE). *Entrada: imagePath1(ruta de la imagen) *Salida: predic (predicción del clasificador (1-RE y 0-OTROS)), original_2(imagen original), imDU_2 (Imagen sin etiquetas),umbrImage (mascara con los RE reales), original_3 (imagen con bbox graficados, ubicación de los artefactos) y bboxre (posición de los bbox). """ import cv2 import pickle import pandas as pd from Normalizacion import normalizacionMaxMin from equalization import adaptativeequalization from rOI import ROI from ventanIDEA import ventanIDEA from caracRE import caracRe fileOpen = 'model_pickle' with open(fileOpen,'rb') as f: mpRE = pickle.load(f) def test_all_RE(imagePath): original = cv2.imread(imagePath) original_2 =original.copy() original_3=original.copy() imNorm = normalizacionMaxMin(original) imEqu = adaptativeequalization(imNorm) imDR = imEqu.copy() roiImage = ROI(imEqu) for z in range(3): imDR[:,:,z]=imEqu[:,:,z]*roiImage imDR_2=original_2.copy() for z in range(3): imDR_2[:,:,z]=original_2[:,:,z]*roiImage imDU_2=imDR_2.copy() imDU = imDR.copy() umbrImage = ventanIDEA(imDR,roiImage) for z in range(3): imDU[:,:,z]=imDR[:,:,z]*umbrImage try: contours,hierachy = cv2.findContours(umbrImage,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) except ValueError: _,contours,_ = cv2.findContours(umbrImage,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) predic=[] bboxre=[],[],[],[],[] if len(contours)==0: pred=0 else: for c in range(len(contours)): cnt = contours[c] x,y,w,h = cv2.boundingRect(cnt) cropped2 = imDR[int(y):int(y+h),int(x):int(x+w)] brillo,contraste,desvi=caracRe(cropped2) carac=pd.DataFrame({'contrastB':contraste,'desviacionB':desvi,'Brillo':brillo},index =['1']) pred=int(mpRE.predict(carac)) if pred == 1: umbrImage[int(y):int(y+h),int(x):int(x+w)] = umbrImage[int(y):int(y+h),int(x):int(x+w)] cv2.rectangle(original_3,(int(x),int(y)),(int(x+w),int(y+h)),(0,0,255),2) bboxre[0].append(1) bboxre[1].append(int(x)) bboxre[2].append(int(y)) bboxre[3].append(int(w+x)) bboxre[4].append(int(h+y)) else: umbrImage[int(y):int(y+h),int(x):int(x+w)] = 0 predic.append(pred) return predic, original_2 , imDU_2,umbrImage,original_3,bboxre
ddd21339f6ece5a9cfaea4ecafc2c753eb9eee93
a2e638cd0c124254e67963bda62c21351881ee75
/Extensions/Adaptiv XVA/FPythonCode/HedgingCostHooksTemplate.py
9674f7e8d046ad05bf4c5c7fab47c7b123fe95f4
[]
no_license
webclinic017/fa-absa-py3
1ffa98f2bd72d541166fdaac421d3c84147a4e01
5e7cc7de3495145501ca53deb9efee2233ab7e1c
refs/heads/main
2023-04-19T10:41:21.273030
2021-05-10T08:50:05
2021-05-10T08:50:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,164
py
""" Compiled: 2020-09-18 10:38:50 """ #__src_file__ = "extensions/cva/adaptiv_xva/./etc/HedgingCostHooksTemplate.py" '''--------------------------------------------------------------------- All functions in HedgingCostHooksTemplate can be overridden in a HedgingCostHooks module. To do so, create a module called HedgingCostHooks (or rename the HedgingCostHooksTemplate to HedgingCostHooks) and copy the function declaration of the function you want to override into it. ---------------------------------------------------------------------''' import acm context = acm.GetDefaultContext() def CreditDeskCounterParty(): return 'HedgingCost Credit sales desk' def IsHedgingCostCandidate(trade): """Filter to enable Request HedgingCost""" hasCreditBalance = trade.CreditBalance() != None isStatusSimulated = trade.Status() == 'Simulated' return hasCreditBalance and isStatusSimulated def ConfirmedTradeStatus(): """Trade status to use after HedgingCost is confirmed""" return 'FO Confirmed' def CreditBalanceIncludedTrades(): ''' This method creates a filter (FASQLQuery) that specifies if a trade should be included in the Credit Balance portfolio. The filter is merged with the filter defined by the mapping in the extension value 'creditBalanceToTrade'. It is also possible to use a stored insert items query Example: 1. Create a shared Insert Items query that excludes trades where Status = Simulated named "GlobalHedgingCostFilter" 2. Use this stored query in the hook def CreditBalanceIncludedTrades(): filter = acm.FStoredASQLQuery["GlobalHedgingCostFilter"] return filter.Query() ''' enum = acm.FEnumeration["enum(TradeStatus)"].Enumeration("Simulated") return acm.Filter.SimpleAndQuery("FTrade", "Status", "GREATER", enum) def GetSuggestedHedgingCost(trade): calculationSpaceTradeSheet = acm.Calculations().CreateCalculationSpace(context, 'FTradeSheet') denomValue = calculationSpaceTradeSheet.CalculateValue(trade, 'Incremental CVA') return denomValue
581247815b035fa94285115f1360f3627bd39e61
c012d16bbb77853bc39973d920da94b70000dc01
/Admins/migrations/0001_initial.py
bcd34f16091d2c29f5fe1ceda6ea5f1c88c388ed
[]
no_license
OverLoadedBurden/Dynamiet
68c7e88d900581bdd53f1e51756c14db65359fd2
1988bbeeb73c313cf07c750fba5adb7739445012
refs/heads/master
2020-11-25T01:20:34.645831
2020-03-14T01:17:57
2020-03-14T01:17:57
228,428,056
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
# Generated by Django 2.2.5 on 2020-02-14 21:21 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('name', models.CharField(max_length=255, primary_key=True, serialize=False)), ('password', models.CharField(max_length=255)), ('isAdmin', models.BooleanField(default=False)), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, ), ]
5c21b8c69f06a8ed02e60a08f8978ace23ae7480
69abeb93aba9f9d978b522a027c502a8ea9f4f65
/manage.py
cd9a179107b2400db6cf790a5fc655bfe5ab9fa3
[]
no_license
pengra/library
36d32160a85830db864effe9f1233761e6284048
35ba6de62ac8598ca26d7977fb0613c2b6781a09
refs/heads/master
2020-03-29T13:14:04.272936
2019-02-13T23:19:33
2019-02-13T23:19:33
149,947,390
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "labwatch.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
5003d8457a1f911eeb54d2ad10a3f8b5cdc99dc4
fdab4771b4956bac64727a8d67a8b769c296b7af
/manage.py
e0e7b902cb8d8c23cc67744c5abc554a8bc16c67
[ "MIT" ]
permissive
darkdrei/Inventario
17e5dae215fa7b2e8d8aff8cc2cf37011c67fc03
dc2dcc830be5a49ba602c242d8c7d5d9c24c7b5c
refs/heads/master
2020-09-20T05:20:36.557735
2017-11-27T20:45:25
2017-11-27T20:45:25
94,501,187
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "inv.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
c9dc89b118798fc71c4cb566d283176f2deeaf07
23382d130e2a020ac90d7b88ab045b34f7719565
/setup.py
e14c95a9495bc2105d2b1bc69d26a302ae7755d6
[ "MIT" ]
permissive
dunossauro/sfp
f2967f519017e9c9a8f95ff6dccd09293775c72a
944e78ff453aba692ed5b6a3cf7855093d6e987a
refs/heads/master
2021-04-06T13:03:18.403904
2018-06-22T17:16:44
2018-06-22T17:16:44
124,821,555
4
2
MIT
2018-07-10T21:32:27
2018-03-12T02:16:11
Python
UTF-8
Python
false
false
314
py
from setuptools import setup setup(name='sfp', version='0.0.1', description='Simple Functional programming', url='https://github.com/z4r4tu5tr4/sfp', author='Eduardo Mendes', author_email='[email protected]', license='MIT', packages=['sfp'], zip_safe=False)
5f975472428eedee10faaba92c1b0d561dcc4e86
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/PhysicsTools/PatAlgos/python/selectionLayer1/electronCountFilter_cfi.py
80af141c59547eefb55cd53baaca26468ed67b02
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
262
py
import FWCore.ParameterSet.Config as cms # module to filter on the number of Electrons countPatElectrons = cms.EDFilter("PATCandViewCountFilter", minNumber = cms.uint32(0), maxNumber = cms.uint32(999999), src = cms.InputTag("cleanPatElectrons") )
901a4aed1e3a9151da4ec4c0e44368812347fc74
bdde5ee603138399475ef42eeca67701f0d910ae
/mycoplasma_home/views/pagelets/public/HomePagelet.py
cfb042b9323db49d62695f1ed3c8d37cf7719204
[]
no_license
idoerg/MyDIG
63c19f980df8246a4a0b1c4e93fdd28bf69b97e9
88cc8f24a5d4b248dff1aafb54713e44537c611f
refs/heads/master
2021-01-10T20:38:46.336870
2012-11-30T02:45:08
2012-11-30T02:45:08
5,939,219
1
0
null
null
null
null
UTF-8
Python
false
false
1,095
py
''' Pagelet for the Home Page Author: Andrew Oberlin Date: July 23, 2012 ''' from renderEngine.PageletBase import PageletBase from mycoplasma_home.models import Organism, OrganismWithImages, OrganismWithGenome, OrganismWithTags class HomePagelet(PageletBase): ''' Renders the center of the home page Params: request -- the Django request object with the POST & GET args Returns: Dictionary of arguments for rendering this pagelet ''' def doProcessRender(self, request): self.setLayout('public/home.html') allMycoplasma = Organism.objects.filter(genus__exact="Mycoplasma").order_by('species') allGenomes = OrganismWithGenome.objects.values_list('organism_id', flat=True).order_by('organism_id') allImages = OrganismWithImages.objects.values_list('organism_id', flat=True).order_by('organism_id') allTags = OrganismWithTags.objects.values_list('organism_id', flat=True).order_by('organism_id') return { 'all_mycoplasma' : allMycoplasma, 'all_genomes' : allGenomes, 'all_images' : allImages, 'all_tags' : allTags }
898f544645356394e471bd139055540ae348b4ee
3fbd28e72606e5358328bfe4b99eb0349ca6a54f
/.history/a_games_20210607183048.py
6937ef94493d7d66c872ea111a2a66ef9fd75b41
[]
no_license
Tarun1001/codeforces
f0a2ef618fbd45e3cdda3fa961e249248ca56fdb
576b505d4b8b8652a3f116f32d8d7cda4a6644a1
refs/heads/master
2023-05-13T04:50:01.780931
2021-06-07T21:35:26
2021-06-07T21:35:26
374,399,423
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
n= int(input()) jer=[] for _ in range(0, n): h, a = map(int, input().split("")) jer.append((h, a)) def sol(jer) : count=0 for i in range(0,len(jer)): for j in range(0,len(jer)): if i==j: continue hometeamHomejersey= jer[i][0] awayteamAwayjersey= jer[i][1] if hometeamHomejersey==awayteamAwayjersey: count+=1 return c
d6b7ff2786b8b58ae1df6bcc85b8c85ca3d12c8c
d0f21d669a1099fe7138d763985d0c392968f93f
/tests/test_visitors/test_ast/test_imports/test_protected_import.py
d27ec451dcc7abe58ea249e088f9f20d2d4a5fc7
[ "MIT" ]
permissive
jigi-33/wemake-python-styleguide
3aab4f13023d3a882b19e65a9967f8abe2a72db1
1239a4726b91de588b20b268c47485373bf125a1
refs/heads/master
2021-01-08T19:24:11.454562
2020-02-28T20:09:58
2020-02-29T05:39:16
242,120,262
1
0
MIT
2020-02-29T05:39:18
2020-02-21T11:08:25
Python
UTF-8
Python
false
false
2,032
py
# -*- coding: utf-8 -*- import pytest from wemake_python_styleguide.violations.best_practices import ( ProtectedModuleMemberViolation, ProtectedModuleViolation, ) from wemake_python_styleguide.visitors.ast.imports import WrongImportVisitor import_public = 'import public' import_protected = 'import _protected' import_from_protected = 'from _protected import something' import_from_protected_path = 'from path._protected import something' import_protected_from = 'from some.path import _protected' import_from_public = 'from public import something' import_from_public_path = 'from public.path import something' import_protected_as_alias = 'from some.path import _protected as not_protected' @pytest.mark.parametrize('code', [ import_public, import_from_public, import_from_public_path, ]) def test_correct_import( assert_errors, parse_ast_tree, code, default_options, ): """Testing that correct imports are allowed.""" tree = parse_ast_tree(code) visitor = WrongImportVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('code', [ import_protected, import_from_protected, import_from_protected_path, ]) def test_incorrect_modules_import( assert_errors, parse_ast_tree, code, default_options, ): """Testing that imports from protected modules are restricted.""" tree = parse_ast_tree(code) visitor = WrongImportVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ProtectedModuleViolation]) @pytest.mark.parametrize('code', [ import_protected_from, import_protected_as_alias, ]) def test_incorrect_module_members_import( assert_errors, parse_ast_tree, code, default_options, ): """Testing that importing of protected objects is restricted.""" tree = parse_ast_tree(code) visitor = WrongImportVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ProtectedModuleMemberViolation])
be8508f0365a7e8e553b47eb14de29e6433f5c5c
14324a581c4f22c7ea8a96cc79725cdb84960e43
/trees/migrations/0001_initial.py
3c8b0a061d9d005b156b6ecbbccf9c5d97f9ef14
[]
no_license
dogger123/django-treeapi
a3f141f87bb515e4af4f820a80daf6bacc40199d
942da122d6c9909c21321a1aea2849428ba47120
refs/heads/master
2020-05-22T13:20:22.798164
2019-05-13T06:45:13
2019-05-13T06:45:13
186,357,054
1
1
null
null
null
null
UTF-8
Python
false
false
2,374
py
# Generated by Django 2.2 on 2019-05-10 11:03 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='DataSet', fields=[ ('dataSet_id', models.AutoField(primary_key=True, serialize=False)), ('dataSet_name', models.CharField(max_length=200, null=True)), ('dataSet_type', models.CharField(max_length=200, null=True)), ('table_name', models.CharField(max_length=200, null=True)), ('size', models.IntegerField(default=0)), ('create_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='cretetime')), ], ), migrations.CreateModel( name='Trees', fields=[ ('tree_id', models.AutoField(primary_key=True, serialize=False)), ('tree_name', models.CharField(default=0, max_length=200)), ('tree_type', models.CharField(max_length=200, null=True)), ('tree_dict', models.TextField(default=0)), ('detpth', models.IntegerField(default=0)), ('nodes_num', models.IntegerField(default=0)), ('create_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='cretetime')), ('dataSet', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='trees.DataSet')), ], ), migrations.CreateModel( name='Analysis', fields=[ ('analysis_id', models.AutoField(primary_key=True, serialize=False)), ('analysis_name', models.CharField(max_length=200)), ('accuracy', models.FloatField()), ('ifthen', models.TextField()), ('content', models.TextField(null=True)), ('create_time', models.DateTimeField(default=django.utils.timezone.now, verbose_name='cretetime')), ('dataSet', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='trees.DataSet')), ('tree', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='trees.Trees')), ], ), ]
[ "=" ]
=
a53aa1a02c0c228ee59d066579a76805bac6c7cf
0ac2dbd8427971ae05a2ba80b625c5c027b6c978
/hue.py
a3e50a905eb8ff81ede8b96487f90edd6620a9ca
[ "MIT" ]
permissive
kalliope-project/kalliope_neuron_hue
02b783e92170cc1d23516478df8a5b1770bac759
12729702c7c4827f0945c6bf71ef030dee8f4058
refs/heads/master
2021-01-11T20:11:33.053097
2020-07-29T15:33:46
2020-07-29T15:33:46
79,062,591
2
3
null
null
null
null
UTF-8
Python
false
false
6,534
py
import ipaddress import logging from kalliope.core.NeuronModule import NeuronModule, MissingParameterException, InvalidParameterException from phue import Bridge logging.basicConfig() logger = logging.getLogger("kalliope") class Hue(NeuronModule): def __init__(self, **kwargs): super(Hue, self).__init__(**kwargs) self.bridge_ip = kwargs.get('bridge_ip', None) self.groups_name = kwargs.get('groups_name', None) self.lights_name = kwargs.get('lights_name', None) self.group_name = kwargs.get('group_name', None) self.light_name = kwargs.get('light_name', None) self.state = kwargs.get('state', None) self.brightness = kwargs.get('brightness', None) # check if parameters have been provided if self._is_parameters_ok(): # connect to the bridge self.b = Bridge(self.bridge_ip) # get all groups groups = self.b.get_group() if self.groups_name is not None: for group_name in self.groups_name: # get all lights id from in the target group name lights_ids = self._get_lights_id_by_from_group_name(groups, group_name) # switch status of each light in the group depending on the state logger.debug("Lights id: %s" % lights_ids) if lights_ids is not None: for light_id in lights_ids: self.switch_light(int(light_id)) if self.lights_name is not None: for light_name in self.lights_name: # get the id of the target light by its name light = self.b.get_light(light_name) if light is not None: self.switch_light(light["name"]) if self.light_name is not None: # get the id of the target light by its name light = self.b.get_light(self.light_name) if light is not None: self.switch_light(light["name"]) if self.group_name is not None: lights_ids = self._get_lights_id_by_from_group_name(groups, self.group_name) # switch status of each light in the group depending on the state logger.debug("Lights id: %s" % lights_ids) if lights_ids is not None: for light_id in lights_ids: self.switch_light(int(light_id)) def _is_parameters_ok(self): # test bridge ip is set if self.bridge_ip is None: raise MissingParameterException("Hue neuron needs a bridge_ip") # test if the ip is a valid ip. The following line will raise an exception ipaddress.ip_address(self.bridge_ip) # user must set at least one parameter that concern group or light name if self.groups_name is None and self.lights_name is None \ and self.group_name is None and self.light_name is None: raise MissingParameterException("Hue neuron needs at least one of following parameters: " "group_name, light_name, groups_name, lights_name") # test groups_name or lights_name are a list if self.groups_name is not None: if not isinstance(self.groups_name, list): raise InvalidParameterException( "Hue neuron: groups_name must be a list") if self.lights_name is not None: if not isinstance(self.lights_name, list): raise InvalidParameterException( "Hue neuron: lights_name must be a list") # test groups_name or lights_name are a list if self.group_name is not None: if not isinstance(self.group_name, str): raise InvalidParameterException( "Hue neuron: group_name must be a string") if self.light_name is not None: if not isinstance(self.light_name, str): raise InvalidParameterException( "Hue neuron: light_name must be a string") # test state ok if self.state is None: raise MissingParameterException("Hue neuron needs a state \"on\" or \"off\"") if self.state not in ["on", "off"]: raise InvalidParameterException("Hue: state must be \"on\" or \"off\"") if self.brightness is not None: r = range(0, 101) if int(self.brightness) not in r: raise InvalidParameterException("Hue: brightness must be in range 0:100") return True @staticmethod def _get_lights_id_by_from_group_name(groups, group_name_to_find): """ Return a list of light ID of the group by its name :param groups: list of group from the bridge api :param group_name_to_find: string group to find in the list :return: list of lights IDs """ lights_id = None for group in groups: group_id = str(group) group_dict = groups[group_id] if group_dict["name"] == group_name_to_find: lights_id = group_dict["lights"] break return lights_id @staticmethod def _get_boolean_from_state(state): if state == "on": return True return False def switch_light(self, light_identifier): """ Call the HUE api to switch the light depending on the desired state :param light_identifier: ID or name of the light """ logger.debug("HUE: Switching light %s to state %s" % (light_identifier, self.state)) boolean_state = self._get_boolean_from_state(self.state) self.b.set_light(light_identifier, 'on', boolean_state) if boolean_state and self.brightness is not None: brightness_number = self.get_brightness_number_from_percent(self.brightness) logger.debug("HUE: Set brightness to %s" % self.brightness) self.b.set_light(light_identifier, 'bri', brightness_number) @staticmethod def get_brightness_number_from_percent(brightness_percent): """ The phue lib wants a number between 0 and 254. The neuron ask for a percent between 0 and 100. We need to convert :param brightness_percent: integer between 0 and 100 :return: """ return int(round((254 * int(brightness_percent))/100))
0176a59c63441c166cfeb79c09e228a5f8d8e60a
f62fd455e593a7ad203a5c268e23129473d968b6
/murano-3.2.0/murano/tests/unit/engine/system/test_workflowclient.py
e109fe367da54e038fac1b25d37a1fb6d2067d9d
[ "Apache-2.0" ]
permissive
MinbinGong/OpenStack-Ocata
5d17bcd47a46d48ff9e71e2055f667836174242f
8b7650128cfd2fdf5d6c8bc4613ac2e396fb2fb3
refs/heads/master
2021-06-23T05:24:37.799927
2017-08-14T04:33:05
2017-08-14T04:33:05
99,709,985
0
2
null
2020-07-22T22:06:22
2017-08-08T15:48:44
Python
UTF-8
Python
false
false
6,229
py
# Copyright (c) 2016 AT&T # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. try: from mistralclient.api import client as mistralcli except ImportError as mistral_import_error: mistralcli = None import mock from oslo_config import cfg from murano.dsl import murano_method from murano.dsl import murano_type from murano.engine.system import workflowclient from murano.tests.functional.common import utils as test_utils from murano.tests.unit import base CONF = cfg.CONF rand_name = test_utils.DeployTestMixin.rand_name class TestMistralClient(base.MuranoTestCase): def setUp(self): super(TestMistralClient, self).setUp() self.mistral_client_mock = mock.Mock() self.mistral_client_mock.client = mock.MagicMock( spec=mistralcli.client) self._patch_client() self.mock_class = mock.MagicMock(spec=murano_type.MuranoClass) self.mock_method = mock.MagicMock(spec=murano_method.MuranoMethod) self._this = mock.MagicMock() self._this.owner = None self.addCleanup(mock.patch.stopall) def _patch_client(self): self.mock_client = mock.Mock(return_value=self.mistral_client_mock) self.client_patcher = mock.patch.object(workflowclient.MistralClient, '_client', self.mock_client) self.client_patcher.start() self.mock_create_client = mock.Mock( return_value=self.mistral_client_mock) self.create_client_patcher = mock.patch.object( workflowclient.MistralClient, '_create_client', self.mock_create_client) self.create_client_patcher.start() def _unpatch_client(self): self.client_patcher.stop() self.create_client_patcher.stop() def test_run_with_execution_success_state(self): test_output = '{"openstack": "foo", "__execution": "bar", "task":'\ ' "baz"}' mock_execution = mock.MagicMock( id='123', state='SUCCESS', output=test_output) self.mock_client.executions.create.return_value = mock_execution self.mock_client.executions.get.return_value = mock_execution run_name = rand_name('test') timeout = 1 mc = workflowclient.MistralClient(self._this, 'regionOne') output = mc.run(run_name, timeout) for prop in ['openstack', '__execution', 'task']: self.assertFalse(hasattr(output, prop)) self.assertEqual({}, output) def test_run_with_execution_error_state(self): mock_execution = mock.MagicMock( id='123', state='ERROR', output="{'test_attr': 'test_val'}") self.mock_client.executions.create.return_value = mock_execution self.mock_client.executions.get.return_value = mock_execution run_name = rand_name('test') timeout = 1 mc = workflowclient.MistralClient(self._this, 'regionOne') expected_error_msg = 'Mistral execution completed with ERROR.'\ ' Execution id: {0}. Output: {1}'\ .format(mock_execution.id, mock_execution.output) with self.assertRaisesRegexp(workflowclient.MistralError, expected_error_msg): mc.run(run_name, timeout) def test_run_except_timeout_error(self): mock_execution = mock.MagicMock( id='123', state='TEST_STATE', output="{'test_attr': 'test_val'}") self.mock_client.executions.create.return_value = mock_execution self.mock_client.executions.get.return_value = mock_execution run_name = rand_name('test') timeout = 1 mc = workflowclient.MistralClient(self._this, 'regionOne') expected_error_msg = 'Mistral run timed out. Execution id: {0}.'\ .format(mock_execution.id) with self.assertRaisesRegexp(workflowclient.MistralError, expected_error_msg): mc.run(run_name, timeout) def test_run_with_immediate_timeout(self): mock_execution = mock.MagicMock( id='123', state='ERROR', output="{'test_attr': 'test_val'}") self.mock_client.executions.create.return_value = mock_execution run_name = rand_name('test') timeout = 0 mc = workflowclient.MistralClient(self._this, 'regionOne') self.assertEqual(mock_execution.id, mc.run(run_name, timeout)) def test_upload(self): mc = workflowclient.MistralClient(self._this, 'regionOne') definition = rand_name('test') self.assertIsNone(mc.upload(definition)) self.assertTrue(workflowclient.MistralClient. _client.workflows.create.called) @mock.patch('murano.engine.system.workflowclient.auth_utils') def test_client_property(self, _): self._unpatch_client() test_mistral_settings = { 'url': rand_name('test_mistral_url'), 'project_id': rand_name('test_project_id'), 'endpoint_type': rand_name('test_endpoint_type'), 'auth_token': rand_name('test_auth_token'), 'user_id': rand_name('test_user_id'), 'insecure': rand_name('test_insecure'), 'cacert': rand_name('test_ca_cert') } with mock.patch('murano.engine.system.workflowclient.CONF')\ as mock_conf: mock_conf.mistral = mock.MagicMock(**test_mistral_settings) region_name = rand_name('test_region_name') mc = workflowclient.MistralClient(self._this, region_name) mistral_client = mc._client self.assertIsNotNone(mistral_client)
9afe0a1a5bce3f2082734a16953c0bbd764400f5
f305f84ea6f721c2391300f0a60e21d2ce14f2a5
/7_graph/二分图/无权二部图最大匹配问题/lcp4覆盖.py
61be67685f06f8a62381a377bfa0e43cbe726510
[]
no_license
981377660LMT/algorithm-study
f2ada3e6959338ae1bc21934a84f7314a8ecff82
7e79e26bb8f641868561b186e34c1127ed63c9e0
refs/heads/master
2023-09-01T18:26:16.525579
2023-09-01T12:21:58
2023-09-01T12:21:58
385,861,235
225
24
null
null
null
null
UTF-8
Python
false
false
764
py
from typing import List from 匈牙利算法 import Hungarian DIR4 = [(0, 1), (1, 0), (0, -1), (-1, 0)] class Solution: def domino(self, row: int, col: int, broken: List[List[int]]) -> int: H = Hungarian() grid = [[0] * col for _ in range(row)] for r, c in broken: grid[r][c] = 1 for r in range(row): for c in range(col): if grid[r][c] == 1 or (r + c) & 1: continue cur = r * col + c for dr, dc in DIR4: nr, nc = r + dr, c + dc if 0 <= nr < row and 0 <= nc < col and grid[nr][nc] == 0: H.addEdge(cur, nr * col + nc) return len(H.work())
8fe1be9af65e823f2f90637c4f4eac341e0fec56
70d39e4ee19154a62e8c82467ef75b601e584738
/devops/terminate_exact_ec2.py
631b42526a94ae6b2852b48145767358a038e527
[ "Apache-2.0" ]
permissive
babywyrm/sysadmin
6f2724be13ae7e5b9372278856a8c072073beffb
2a5f3d29c7529bc917d4ff9be03af30ec23948a5
refs/heads/master
2023-08-16T03:50:38.717442
2023-08-16T03:05:55
2023-08-16T03:05:55
210,228,940
10
5
null
2023-05-01T23:15:31
2019-09-22T23:42:50
PowerShell
UTF-8
Python
false
false
320
py
#!/usr/bin/python3 ## ## ## ########################################3 import sys import boto3 ## ## #### _input_instance_id_to_kill_it__ ## ## ec2 = boto3.resource('ec2') for instance_id in sys.argv[1:]: instance = ec2.Instance(instance_id) response = instance.terminate() print(response) ########### ## ## ##
3a37b7b47d59f49963becb153844bc7c178688c7
1bd073f585706c31c406bceb81eb400f8ac27c1d
/tools/Polygraphy/polygraphy/tools/convert/convert.py
aa2311a379ccc4b9e4dc8acfdfe187ee41b5a4f9
[ "BSD-3-Clause", "MIT", "ISC", "Apache-2.0", "BSD-2-Clause" ]
permissive
neevaco/TensorRT
7b5e54c6a7cc6d0fc545e47ab7cf6656f23d5e19
650a4a6ed29403bec1a55663b48ef41a075d0b3c
refs/heads/neeva
2023-05-29T19:20:26.431716
2022-08-19T23:09:26
2022-08-26T19:09:39
526,771,012
0
0
Apache-2.0
2022-08-19T23:09:27
2022-08-19T22:49:25
null
UTF-8
Python
false
false
4,377
py
# # SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from polygraphy import mod from polygraphy.logger import G_LOGGER from polygraphy.tools.args import ( DataLoaderArgs, ModelArgs, OnnxFromTfArgs, OnnxInferShapesArgs, OnnxLoadArgs, OnnxSaveArgs, TfLoadArgs, TrtConfigArgs, TrtLoadEngineArgs, TrtLoadNetworkArgs, TrtLoadPluginsArgs, TrtSaveEngineArgs, ) from polygraphy.tools.base import Tool onnx_backend = mod.lazy_import("polygraphy.backend.onnx") trt_backend = mod.lazy_import("polygraphy.backend.trt") class Convert(Tool): """ Convert models to other formats. """ def __init__(self): super().__init__("convert") def get_subscriptions(self): return [ ModelArgs(model_opt_required=True), TfLoadArgs(allow_artifacts=False), OnnxFromTfArgs(), OnnxInferShapesArgs(), OnnxLoadArgs(allow_from_tf=True), OnnxSaveArgs(output_opt=False), DataLoaderArgs(), # For int8 calibration TrtConfigArgs(), TrtLoadPluginsArgs(), TrtLoadNetworkArgs(), TrtLoadEngineArgs(), TrtSaveEngineArgs(output_opt=False), ] def add_parser_args(self, parser): parser.add_argument("-o", "--output", help="Path to save the converted model", required=True) parser.add_argument( "--convert-to", help="The format to attempt to convert the model to." "'onnx-like-trt-network' is EXPERIMETNAL and converts a TensorRT network to a format usable for visualization. " "See 'OnnxLikeFromNetwork' for details. ", choices=["onnx", "trt", "onnx-like-trt-network"], ) onnx_args = self.arg_groups[OnnxLoadArgs].group onnx_args.add_argument( "--fp-to-fp16", help="Convert all floating point tensors in an ONNX model to 16-bit precision. " "This is *not* needed in order to use TensorRT's fp16 precision, but may be useful for other backends. " "Requires onnxmltools. ", action="store_true", default=None, ) def run(self, args): if not args.convert_to: _, ext = os.path.splitext(args.output) if ext not in ModelArgs.EXT_MODEL_TYPE_MAPPING: G_LOGGER.critical( f"Could not automatically determine model type based on output path: {args.output}\nPlease specify the desired output format with --convert-to" ) convert_type = ModelArgs.ModelType(ModelArgs.EXT_MODEL_TYPE_MAPPING[ext]) elif args.convert_to == "onnx-like-trt-network": convert_type = "onnx-like-trt-network" else: CONVERT_TO_MODEL_TYPE_MAPPING = {"onnx": "onnx", "trt": "engine"} convert_type = ModelArgs.ModelType(CONVERT_TO_MODEL_TYPE_MAPPING[args.convert_to]) if convert_type == "onnx-like-trt-network": onnx_like = trt_backend.onnx_like_from_network(self.arg_groups[TrtLoadNetworkArgs].load_network()) onnx_backend.save_onnx(onnx_like, args.output) elif convert_type.is_onnx(): model = self.arg_groups[OnnxLoadArgs].load_onnx() if args.fp_to_fp16: model = onnx_backend.convert_to_fp16(model) self.arg_groups[OnnxSaveArgs].save_onnx(model, args.output) elif convert_type.is_trt(): with self.arg_groups[TrtLoadEngineArgs].load_engine() as engine: self.arg_groups[TrtSaveEngineArgs].save_engine(engine, args.output) else: G_LOGGER.critical(f"Cannot convert to model type: {convert_type}")
73ff13809669834f4c7b58d502e2a2ec8d0f8a55
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_271/ch153_2020_04_13_20_28_57_339505.py
bc782a307772aadce3e74cda6678a4513b48cff7
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
def agrupa_por_idade(dicionario1): dicionario2={} for nome, idade in dicionario1.items(): if idade<=11: dicionario2['criança']='{0}, {1}'.format(dicionario2['criança'], nome) if 12<=idade<=17: dicionario2['adolescente']='{0}, {1}'.format(dicionario2['adolescente'], nome) if 18<=idade<=59: dicionario2['adulto']='{0}, {1}'.format(dicionario2['adulto'], nome) else: dicionario2['idoso']='{0}, {1}'.format(dicionario2['idoso'], nome) return dicionario2
caf5b92bfa055fb5a5ae7e31b1e15c75f38f4e95
946d72e6b44e5fdad5b10a9cbca40260d3202413
/old/titles.py
a16f19c9755a0039d21f53755b06b58c9cd7eb10
[]
no_license
pudo/wahlprogramme
323527b7271a5a2af53530a8b2e2357b3bf1144e
2cf794f10001d183678c3cc1a39b73f4c87035c3
refs/heads/master
2020-06-06T04:56:09.890984
2013-08-09T14:58:39
2013-08-09T14:58:39
11,253,695
1
1
null
null
null
null
UTF-8
Python
false
false
749
py
from common import PARTIES, load_doc, nomenklatura def all_titles(): for party in PARTIES: doc = load_doc(party) for i, h in enumerate(doc.findall('.//*')): if not h.tag in ['h1', 'h2']: continue #titles.upsert({ # 'party': party, # 'index': i, # 'element': h.tag, # 'text': h.text #}, ['party', 'text']) print [party, h.tag, h.text] fp = '[%s:%s] %s' % (party, h.tag, h.text) try: entity = nomenklatura.lookup(fp) print [h.text, entity.name] except Exception, e: print e if __name__ == '__main__': all_titles()
9975c0b7a9b56900ff37076e86ba832eeb79c265
9477ff0926416001b7c801ff36fbc8e74009e3ae
/excel-reformat/excelhandler/drmamma/migrations/0015_auto_20201029_1314.py
28260e6b99d3124c802f72495b3e9c0dcc7121cd
[]
no_license
Tedhoon/business-automation
ab0cbcc405f646bcce7cdb4904073f1b0cd7ca9d
17247fe8979060db3c00d3ff6a2ff2918a4c7ea5
refs/heads/master
2023-03-25T13:48:22.755946
2021-03-23T08:43:45
2021-03-23T08:43:45
285,768,349
0
0
null
2021-03-23T08:43:46
2020-08-07T07:37:09
Python
UTF-8
Python
false
false
3,137
py
# Generated by Django 3.0.8 on 2020-10-29 04:14 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('drmamma', '0014_auto_20201029_1115'), ] operations = [ migrations.CreateModel( name='NaverFarmTemp', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('store_code', models.TextField(blank=True, null=True, verbose_name='발주처 코드')), ('order_pk', models.TextField(blank=True, null=True, verbose_name='주문번호')), ('product_num', models.TextField(blank=True, null=True, verbose_name='품목번호')), ('product_order_num', models.TextField(blank=True, null=True, verbose_name='품목별 주문번호')), ('receiver', models.TextField(blank=True, null=True, verbose_name='수령인')), ('address', models.TextField(blank=True, null=True, verbose_name='수령인 주소(전체)')), ('post_num', models.TextField(blank=True, null=True, verbose_name='수령인 우편번호')), ('phone_num', models.TextField(blank=True, null=True, verbose_name='수령인 휴대전화')), ('phone_num2', models.TextField(blank=True, null=True, verbose_name='수령인 전화번호')), ('message', models.TextField(blank=True, null=True, verbose_name='배송메시지')), ('product_name', models.TextField(blank=True, null=True, verbose_name='주문상품명(옵션포함)')), ('product_code', models.TextField(blank=True, null=True, verbose_name='자체품목코드')), ('amount', models.TextField(blank=True, null=True, verbose_name='수량')), ('price', models.TextField(blank=True, null=True, verbose_name='상품구매금액(KRW)')), ('discount', models.TextField(blank=True, null=True, verbose_name='상품별 추가할인금액')), ('total_price', models.TextField(blank=True, null=True, verbose_name='총 주문 금액')), ], options={ 'verbose_name': '네이버 스토어팜', 'verbose_name_plural': '네이버 스토어팜', }, ), migrations.DeleteModel( name='Cafe24', ), migrations.AlterModelOptions( name='cafe24temp', options={'verbose_name': 'Cafe24', 'verbose_name_plural': 'Cafe24'}, ), migrations.AlterField( model_name='deliveryexcel', name='uploaded_at', field=models.DateField(default=datetime.datetime(2020, 10, 29, 13, 14, 48, 524036), verbose_name='업로드 날짜'), ), migrations.AddField( model_name='naverfarmtemp', name='made_by_source', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='drmamma.DeliveryExcel', verbose_name='연관 엑셀'), ), ]
c68dc8b29ed0c767a60726b18d7726f906aed1b2
878a3094430bb914717d641a4f4b06574e872518
/hm_03_面向对象/hm_11_上架管理4.py
4e2cbca0ab8b874e2983fc1dc9d370b7edfc341a
[]
no_license
2020668/python2019
3f33eea85fdd3f2866d867859d5694abb71effe9
f8a98389fa09f95e72914afa4935afc5c68eaccd
refs/heads/master
2020-06-07T23:36:17.871376
2019-08-29T09:45:10
2019-08-29T09:45:10
193,116,002
0
0
null
null
null
null
UTF-8
Python
false
false
2,119
py
# 空库位 bcdefgh_list = ["1B022","1B023","1B013","1B033","1B043","1B053","1B063","1B073","1B083"] mnpq_list = ["1M053","1Q023"] # sku基础数据 class SkuData(): def __init__(self,sku,layer_num,layer,box_num,length,width,heigth,weigth): self.sku = sku self.layer_num = layer_num self.layer = layer self.box_num = box_num self.length = length self.width = width self.heigth = heigth self.weigth = weigth # 维护基础数据 sku11059905 = SkuData("11059905",10,6,16,36,28,21,15.5) sku11039131 = SkuData("11039131",9,3,1,23.5,18,25,5.5) # 主程序 class Sku(object): def __init__(self,sku,total): self.sku = sku if self.sku == "11059905": total_heigth = total/sku11059905.box_num/sku11059905.layer_num*sku11059905.heigth t_num = sku11059905.layer_num*sku11059905.layer*sku11059905.box_num t_height = sku11059905.layer*sku11059905.heigth if self.sku == "11039131": total_heigth = total/sku11039131.box_num/sku11039131.layer_num*sku11039131.heigth t_num = sku11039131.layer_num*sku11039131.layer*sku11039131.box_num t_height = sku11039131.layer*sku11039131.heigth if total_heigth > 80: for i in range(len(bcdefgh_list)-1,-1,-1): print("数量%d,请入库位%s"% (t_num,bcdefgh_list[i])) bcdefgh_list.pop(i) # print(bcdefgh_list) total_heigth -= t_height total -= t_num if total_heigth <= 80: for r in range(len(mnpq_list)-1,-1,-1): print("数量%d,请入库位%s" % (total, mnpq_list[r])) mnpq_list.pop(r) return else: for r in range(len(mnpq_list)-1,-1,-1): print("数量%d,请入库位%s"% (total,mnpq_list[r])) mnpq_list.pop(r) return input_sku = input("请输入SKU:") input_total = int(input("请输入数量:")) Sku = Sku(input_sku,input_total)
f0c5e3397709ca4ce121c0f482289221424aac74
9bb83bf5f6c2b5d2da4dda711591ef9987490c66
/3DdetectionPrototype/Yolo-Pytorch-nms-updated/dataset/__init__.py
d919b198f149734f06916b220e93721264ed2db8
[]
no_license
nudlesoup/DeepLearning
cb5b7039a9de6098194b56143d1a72a564fed1c9
336e415b0353d6e18d106f894a97d8873a55e544
refs/heads/master
2021-06-25T00:50:40.339768
2020-12-23T02:38:58
2020-12-23T02:38:58
172,002,661
2
0
null
null
null
null
UTF-8
Python
false
false
1,122
py
from .coco import get_dataset as get_COCO from .pascal import get_dataset as get_VOC from dataset.augment.bbox import bbox_flip from dataset.augment.image import makeImgPyramids import os import torch from torch.utils.data import DataLoader import numpy as np def get_imgdir(dataset_root, batch_size, net_size): from torchvision.transforms import transforms from PIL import Image class dataset: def __init__(self, root, transform): self.imglist = os.listdir(root) self.root = root self.transform = transform def __len__(self): return len(self.imglist) def __getitem__(self, item): path=os.path.join(self.root,self.imglist[item]) img=Image.open(path) ori_shape=np.array(img.size) img=self.transform(img) return path,img,torch.from_numpy(ori_shape.astype(np.float32)) transform=transforms.Compose([ transforms.Resize((net_size,net_size)), transforms.ToTensor(), transforms.Normalize(mean=(0,0,0),std=(1,1,1)) ]) dataloader=DataLoader(dataset=dataset(dataset_root,transform),shuffle=False,batch_size=batch_size) return dataloader
fcdc76019f54d93a78ba8f653e0c6cb535f38400
5e879f2ae5b5d1c1202bd0905b2c1a4d2de63072
/cadnano/document.py
8506c64a304830bf1d860a3b5b28aa55f3d56cf1
[ "MIT" ]
permissive
n-corpuz/cadnano2.5
bac385e103bfd0ffebdffc6ac023c182d5a2d3e1
66041865bbe164e14135584b10c5f6b6510d878e
refs/heads/master
2020-12-28T19:08:32.602263
2016-03-24T01:57:26
2016-03-24T01:57:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,668
py
#!/usr/bin/env python # encoding: utf-8 from operator import itemgetter import cadnano.util as util import cadnano.preferences as prefs from cadnano.cnproxy import ProxyObject, ProxySignal from cadnano.cnproxy import UndoStack, UndoCommand from cadnano.strand import Strand from cadnano.oligo import Oligo from cadnano.strandset import StrandSet from cadnano.virtualhelix import VirtualHelix from cadnano.part import Part from cadnano.part import HoneycombPart from cadnano.part import SquarePart from cadnano import app class Document(ProxyObject): """ The Document class is the root of the model. It has two main purposes: 1. Serve as the parent all Part objects within the model. 2. Track all sub-model actions on its undoStack. """ def __init__(self, parent=None): super(Document, self).__init__(parent) self._undostack = UndoStack() self._parts = [] self._assemblies = [] self._controller = None self._selected_part = None # the dictionary maintains what is selected self._selection_dict = {} # the added list is what was recently selected or deselected self._selected_changed_dict = {} app().documentWasCreatedSignal.emit(self) # end def ### SIGNALS ### documentPartAddedSignal = ProxySignal(object, ProxyObject, name='documentPartAddedSignal') # doc, part # dict of tuples of objects using the reference as the key, # and the value is a tuple with meta data # in the case of strands the metadata would be which endpoints of selected # e.g. { objectRef: (value0, value1), ...} documentSelectedChangedSignal = ProxySignal(dict, name='documentSelectedChangedSignal') # tuples of items + data documentSelectionFilterChangedSignal = ProxySignal(list, name='documentSelectionFilterChangedSignal') documentViewResetSignal = ProxySignal(ProxyObject, name='documentViewResetSignal') documentClearSelectionsSignal = ProxySignal(ProxyObject, name='documentClearSelectionsSignal') ### SLOTS ### ### ACCESSORS ### def undoStack(self): """ This is the actual undoStack to use for all commands. Any children needing to perform commands should just ask their parent for the undoStack, and eventually the request will get here. """ return self._undostack def parts(self): """Returns a list of parts associated with the document.""" return self._parts def assemblies(self): """Returns a list of assemblies associated with the document.""" return self._assemblies ### PUBLIC METHODS FOR QUERYING THE MODEL ### def selectedPart(self): return self._selected_part def addToSelection(self, obj, value): self._selection_dict[obj] = value self._selected_changed_dict[obj] = value # end def def removeFromSelection(self, obj): if obj in self._selection_dict: del self._selection_dict[obj] self._selected_changed_dict[obj] = (False, False) return True else: return False # end def def clearSelections(self): """ Only clear the dictionary """ self._selection_dict = {} # end def def addStrandToSelection(self, strand, value): ss = strand.strandSet() if ss in self._selection_dict: self._selection_dict[ss][strand] = value else: self._selection_dict[ss] = {strand: value} self._selected_changed_dict[strand] = value # end def def removeStrandFromSelection(self, strand): ss = strand.strandSet() if ss in self._selection_dict: temp = self._selection_dict[ss] if strand in temp: del temp[strand] if len(temp) == 0: del self._selection_dict[ss] self._selected_changed_dict[strand] = (False, False) return True else: return False else: return False # end def def selectionDict(self): return self._selection_dict # end def def selectedOligos(self): """ as long as one endpoint of a strand is in the selection, then the oligo is considered selected """ s_dict = self._selection_dict selected_oligos = set() for ss in s_dict.keys(): for strand in ss: selected_oligos.add(strand.oligo()) # end for # end for return selected_oligos if len(selected_oligos) > 0 else None #end def def clearAllSelected(self): self._selection_dict = {} # the added list is what was recently selected or deselected self._selected_changed_dict = {} self.documentClearSelectionsSignal.emit(self) # end def def isModelSelected(self, obj): return obj in self._selection_dict # end def def isModelStrandSelected(self, strand): ss = strand.strandSet() if ss in self._selection_dict: if strand in self._selection_dict[ss]: return True else: return False else: return False # end def def getSelectedValue(self, obj): """ obj is an objects to look up it is prevetted to be in the dictionary """ return self._selection_dict[obj] def getSelectedStrandValue(self, strand): """ strand is an objects to look up it is prevetted to be in the dictionary """ return self._selection_dict[strand.strandSet()][strand] # end def def sortedSelectedStrands(self, strandset): # outList = self._selection_dict[strandset].keys() # outList.sort(key=Strand.lowIdx) out_list = [x for x in self._selection_dict[strandset].items()] getLowIdx = lambda x: Strand.lowIdx(itemgetter(0)(x)) out_list.sort(key=getLowIdx) return out_list # end def def determineStrandSetBounds(self, selected_strand_list, strandset): min_low_delta = strandset.partMaxBaseIdx() min_high_delta = strandset.partMaxBaseIdx() # init the return values ss_dict = self._selection_dict[strandset] # get the StrandSet index of the first item in the list ss_idx = strandset._findIndexOfRangeFor(selected_strand_list[0][0])[2] ss_list = strandset._strand_list len_ss_list = len(ss_list) max_ss_idx = len_ss_list - 1 i = 0 for strand, value in selected_strand_list: while strand != ss_list[ss_idx]: # incase there are gaps due to double xovers ss_idx += 1 # end while idxL, idxH = strand.idxs() if value[0]: # the end is selected if ss_idx > 0: low_neighbor = ss_list[ss_idx - 1] if low_neighbor in ss_dict: valueN = ss_dict[low_neighbor] # we only care if the low neighbor is not selected temp = min_low_delta if valueN[1] \ else idxL - low_neighbor.highIdx() - 1 # end if else: # not selected temp = idxL - low_neighbor.highIdx() - 1 # end else else: temp = idxL - 0 # end else if temp < min_low_delta: min_low_delta = temp # end if # check the other end of the strand if not value[1]: temp = idxH - idxL - 1 if temp < min_high_delta: min_high_delta = temp # end if if value[1]: if ss_idx < max_ss_idx: high_neighbor = ss_list[ss_idx + 1] if high_neighbor in ss_dict: valueN = ss_dict[high_neighbor] # we only care if the low neighbor is not selected temp = min_high_delta if valueN[0] \ else high_neighbor.lowIdx() - idxH - 1 # end if else: # not selected temp = high_neighbor.lowIdx() - idxH - 1 # end else else: temp = strandset.partMaxBaseIdx() - idxH # end else if temp < min_high_delta: min_high_delta = temp # end if # check the other end of the strand if not value[0]: temp = idxH - idxL - 1 if temp < min_low_delta: min_low_delta = temp # end if # increment counter ss_idx += 1 # end for return (min_low_delta, min_high_delta) # end def def getSelectionBounds(self): min_low_delta = -1 min_high_delta = -1 for strandset in self._selection_dict.keys(): selected_list = self.sortedSelectedStrands(strandset) temp_low, temp_high = self.determineStrandSetBounds( selected_list, strandset) if temp_low < min_low_delta or min_low_delta < 0: min_low_delta = temp_low if temp_high < min_high_delta or min_high_delta < 0: min_high_delta = temp_high # end for Mark train bus to metro return (min_low_delta, min_high_delta) # end def # def operateOnStrandSelection(self, method, arg, both=False): # pass # # end def def deleteSelection(self, use_undostack=True): """ Delete selected strands. First iterates through all selected strands and extracts refs to xovers and strands. Next, calls removeXover on xoverlist as part of its own macroed command for isoluation purposes. Finally, calls removeStrand on all strands that were fully selected (low and high), or had at least one non-xover endpoint selected. """ xoList = [] strand_dict = {} for strandset_dict in self._selection_dict.values(): for strand, selected in strandset_dict.items(): part = strand.virtualHelix().part() idxL, idxH = strand.idxs() strand5p = strand.connection5p() strand3p = strand.connection3p() # both ends are selected strand_dict[strand] = selected[0] and selected[1] # only look at 3' ends to handle xover deletion sel3p = selected[0] if idxL == strand.idx3Prime() else selected[1] if sel3p: # is idx3p selected? if strand3p: # is there an xover xoList.append((part, strand, strand3p, use_undostack)) else: # idx3p is a selected endpoint strand_dict[strand] = True else: if not strand5p: # idx5p is a selected endpoint strand_dict[strand] = True if use_undostack and xoList: self.undoStack().beginMacro("Delete xovers") for part, strand, strand3p, useUndo in xoList: Part.removeXover(part, strand, strand3p, useUndo) self.removeStrandFromSelection(strand) self.removeStrandFromSelection(strand3p) self._selection_dict = {} self.documentClearSelectionsSignal.emit(self) if use_undostack: if xoList: # end xover macro if it was started self.undoStack().endMacro() if True in strand_dict.values(): self.undoStack().beginMacro("Delete selection") else: return # nothing left to do for strand, delete in strand_dict.items(): if delete: strand.strandSet().removeStrand(strand) if use_undostack: self.undoStack().endMacro() def paintSelection(self, scafColor, stapColor, use_undostack=True): """Delete xovers if present. Otherwise delete everything.""" scaf_oligos = {} stap_oligos = {} for strandset_dict in self._selection_dict.values(): for strand, value in strandset_dict.items(): if strand.isScaffold(): scaf_oligos[strand.oligo()] = True else: stap_oligos[strand.oligo()] = True if use_undostack: self.undoStack().beginMacro("Paint strands") for olg in scaf_oligos.keys(): olg.applyColor(scafColor) for olg in stap_oligos.keys(): olg.applyColor(stapColor) if use_undostack: self.undoStack().endMacro() def resizeSelection(self, delta, use_undostack=True): """ Moves the selected idxs by delta by first iterating over all strands to calculate new idxs (method will return if snap-to behavior would create illegal state), then applying a resize command to each strand. """ resize_list = [] # calculate new idxs for strandset_dict in self._selection_dict.values(): for strand, selected in strandset_dict.items(): part = strand.virtualHelix().part() idxL, idxH = strand.idxs() newL, newH = strand.idxs() deltaL = deltaH = delta # process xovers to get revised delta if selected[0] and strand.connectionLow(): newL = part.xoverSnapTo(strand, idxL, delta) if newL == None: return deltaH = newL-idxL if selected[1] and strand.connectionHigh(): newH = part.xoverSnapTo(strand, idxH, delta) if newH == None: return deltaL = newH-idxH # process endpoints if selected[0] and not strand.connectionLow(): newL = idxL + deltaL if selected[1] and not strand.connectionHigh(): newH = idxH + deltaH if newL > newH: # check for illegal state return resize_list.append((strand, newL, newH)) # end for # end for # execute the resize commands if use_undostack: self.undoStack().beginMacro("Resize Selection") for strand, idxL, idxH in resize_list: Strand.resize(strand, (idxL, idxH), use_undostack) if use_undostack: self.undoStack().endMacro() # end def def updateSelection(self): """ do it this way in the future when we have a better signaling architecture between views """ # self.documentSelectedChangedSignal.emit(self._selected_changed_dict) """ For now, individual objects need to emit signals """ for obj, value in self._selected_changed_dict.items(): obj.selectedChangedSignal.emit(obj, value) # end for self._selected_changed_dict = {} # for ss in self._selection_dict: # print self.sortedSelectedStrands(ss) # end def def resetViews(self): # This is a fast way to clear selections and the views. # We could manually deselect each item from the Dict, but we'll just # let them be garbage collect # the dictionary maintains what is selected self._selection_dict = {} # the added list is what was recently selected or deselected self._selected_changed_dict = {} self.documentViewResetSignal.emit(self) # end def ### PUBLIC METHODS FOR EDITING THE MODEL ### def addHoneycombPart(self, max_row=prefs.HONEYCOMB_PART_MAXROWS, max_col=prefs.HONEYCOMB_PART_MAXCOLS, max_steps=prefs.HONEYCOMB_PART_MAXSTEPS): """ Create and store a new DNAPart and instance, and return the instance. """ dnapart = None if len(self._parts) == 0: dnapart = HoneycombPart(document=self, max_row=max_row, max_col=max_col, max_steps=max_steps) self._addPart(dnapart) return dnapart def addSquarePart(self, max_row=prefs.SQUARE_PART_MAXROWS, max_col=prefs.SQUARE_PART_MAXCOLS, max_steps=prefs.SQUARE_PART_MAXSTEPS): """ Create and store a new DNAPart and instance, and return the instance. """ dnapart = None if len(self._parts) == 0: dnapart = SquarePart(document=self, max_row=max_row, max_col=max_col, max_steps=max_steps) self._addPart(dnapart) return dnapart def removeAllParts(self): """Used to reset the document. Not undoable.""" self.documentClearSelectionsSignal.emit(self) for part in self._parts: part.remove(use_undostack=False) # end def def removePart(self, part): self.documentClearSelectionsSignal.emit(self) self._parts.remove(part) ### PUBLIC SUPPORT METHODS ### def controller(self): return self._controller def setController(self, controller): """Called by DocumentController setDocument method.""" self._controller = controller # end def def setSelectedPart(self, newPart): if self._selected_part == newPart: return self._selected_part = newPart # end def ### PRIVATE SUPPORT METHODS ### def _addPart(self, part, use_undostack=True): """Add part to the document via AddPartCommand.""" c = self.AddPartCommand(self, part) util.execCommandList( self, [c], desc="Add part", use_undostack=use_undostack) return c.part() # end def ### COMMANDS ### class AddPartCommand(UndoCommand): """ Undo ready command for deleting a part. """ def __init__(self, document, part): super(Document.AddPartCommand, self).__init__("add part") self._doc = document self._part = part # end def def part(self): return self._part # end def def redo(self): if len(self._doc._parts) == 0: self._doc._parts.append(self._part) self._part.setDocument(self._doc) self._doc.setSelectedPart(self._part) self._doc.documentPartAddedSignal.emit(self._doc, self._part) # end def def undo(self): self._doc.removePart(self._part) self._part.setDocument(None) self._doc.setSelectedPart(None) self._part.partRemovedSignal.emit(self._part) # self._doc.documentPartAddedSignal.emit(self._doc, self._part) # end def # end class # end class
d9d22ee6b4dc770f86c458638636032fe0fcc083
ffc563a34204ee65c5a518de07c78310c668c316
/opennem/monitors/aemo_intervals.py
221c76b1d35e35ce8cbd489b7544c2ef495630db
[ "MIT" ]
permissive
MarnieShaw/opennem
45924ac132d199751958eade224684d867118145
062178a9e64764e2bd89352b223280c8eeff60e4
refs/heads/master
2023-03-29T07:04:02.435282
2021-03-25T12:57:08
2021-03-25T12:57:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,277
py
import logging from datetime import datetime, timedelta from opennem.monitors.aemo_wem_live_intervals import ( get_aemo_wem_live_facility_intervals_recent_date, ) from opennem.notifications.slack import slack_message from opennem.schema.network import NetworkWEM from opennem.settings import settings from opennem.utils.dates import chop_microseconds logger = logging.getLogger("opennem.monitors.aemo") def aemo_wem_live_interval() -> bool: """ Monitors the delay from the AEMO live scada data on the portal """ network = NetworkWEM now_date = datetime.now().astimezone(network.get_timezone()) live_most_recent = get_aemo_wem_live_facility_intervals_recent_date() live_delta = chop_microseconds(now_date - live_most_recent) logger.debug( "Live time: {}, delay: {}".format(live_most_recent, live_delta) ) # @TODO move the minutes into settings if live_delta > timedelta(minutes=90): slack_message( "*WARNING*: AEMO Live intervals for WEM on {} curently delayed by {}\n\nAEMO feed most recent: {}".format( settings.env, live_delta, live_most_recent ) ) return True return False if __name__ == "__main__": delay = aemo_wem_live_interval()
75f54c77a9ee1903b8b9431bc9f974b241471089
bad62c2b0dfad33197db55b44efeec0bab405634
/sdk/containerservice/azure-mgmt-containerservice/azure/mgmt/containerservice/v2022_04_02_preview/aio/operations/_maintenance_configurations_operations.py
98bc829d3d02f593cedf079f1a3759a9a9385799
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
test-repo-billy/azure-sdk-for-python
20c5a2486456e02456de17515704cb064ff19833
cece86a8548cb5f575e5419864d631673be0a244
refs/heads/master
2022-10-25T02:28:39.022559
2022-10-18T06:05:46
2022-10-18T06:05:46
182,325,031
0
0
MIT
2019-07-25T22:28:52
2019-04-19T20:59:15
Python
UTF-8
Python
false
false
19,865
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._maintenance_configurations_operations import ( build_create_or_update_request, build_delete_request, build_get_request, build_list_by_managed_cluster_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class MaintenanceConfigurationsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.containerservice.v2022_04_02_preview.aio.ContainerServiceClient`'s :attr:`maintenance_configurations` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_managed_cluster( self, resource_group_name: str, resource_name: str, **kwargs: Any ) -> AsyncIterable["_models.MaintenanceConfiguration"]: """Gets a list of maintenance configurations in the specified managed cluster. Gets a list of maintenance configurations in the specified managed cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either MaintenanceConfiguration or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2022-04-02-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.MaintenanceConfigurationListResult] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_managed_cluster_request( resource_group_name=resource_group_name, resource_name=resource_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_managed_cluster.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("MaintenanceConfigurationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_managed_cluster.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerService/managedClusters/{resourceName}/maintenanceConfigurations"} # type: ignore @distributed_trace_async async def get( self, resource_group_name: str, resource_name: str, config_name: str, **kwargs: Any ) -> _models.MaintenanceConfiguration: """Gets the specified maintenance configuration of a managed cluster. Gets the specified maintenance configuration of a managed cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :param config_name: The name of the maintenance configuration. Required. :type config_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MaintenanceConfiguration or the result of cls(response) :rtype: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2022-04-02-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.MaintenanceConfiguration] request = build_get_request( resource_group_name=resource_group_name, resource_name=resource_name, config_name=config_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("MaintenanceConfiguration", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerService/managedClusters/{resourceName}/maintenanceConfigurations/{configName}"} # type: ignore @overload async def create_or_update( self, resource_group_name: str, resource_name: str, config_name: str, parameters: _models.MaintenanceConfiguration, *, content_type: str = "application/json", **kwargs: Any ) -> _models.MaintenanceConfiguration: """Creates or updates a maintenance configuration in the specified managed cluster. Creates or updates a maintenance configuration in the specified managed cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :param config_name: The name of the maintenance configuration. Required. :type config_name: str :param parameters: The maintenance configuration to create or update. Required. :type parameters: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MaintenanceConfiguration or the result of cls(response) :rtype: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def create_or_update( self, resource_group_name: str, resource_name: str, config_name: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> _models.MaintenanceConfiguration: """Creates or updates a maintenance configuration in the specified managed cluster. Creates or updates a maintenance configuration in the specified managed cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :param config_name: The name of the maintenance configuration. Required. :type config_name: str :param parameters: The maintenance configuration to create or update. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MaintenanceConfiguration or the result of cls(response) :rtype: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def create_or_update( self, resource_group_name: str, resource_name: str, config_name: str, parameters: Union[_models.MaintenanceConfiguration, IO], **kwargs: Any ) -> _models.MaintenanceConfiguration: """Creates or updates a maintenance configuration in the specified managed cluster. Creates or updates a maintenance configuration in the specified managed cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :param config_name: The name of the maintenance configuration. Required. :type config_name: str :param parameters: The maintenance configuration to create or update. Is either a model type or a IO type. Required. :type parameters: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MaintenanceConfiguration or the result of cls(response) :rtype: ~azure.mgmt.containerservice.v2022_04_02_preview.models.MaintenanceConfiguration :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2022-04-02-preview")) # type: str content_type = kwargs.pop("content_type", _headers.pop("Content-Type", None)) # type: Optional[str] cls = kwargs.pop("cls", None) # type: ClsType[_models.MaintenanceConfiguration] content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "MaintenanceConfiguration") request = build_create_or_update_request( resource_group_name=resource_group_name, resource_name=resource_name, config_name=config_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.create_or_update.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("MaintenanceConfiguration", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerService/managedClusters/{resourceName}/maintenanceConfigurations/{configName}"} # type: ignore @distributed_trace_async async def delete( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, resource_name: str, config_name: str, **kwargs: Any ) -> None: """Deletes a maintenance configuration. Deletes a maintenance configuration. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param resource_name: The name of the managed cluster resource. Required. :type resource_name: str :param config_name: The name of the maintenance configuration. Required. :type config_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2022-04-02-preview")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[None] request = build_delete_request( resource_group_name=resource_group_name, resource_name=resource_name, config_name=config_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.delete.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerService/managedClusters/{resourceName}/maintenanceConfigurations/{configName}"} # type: ignore
6402742e91d560e57aa48ce294e2c9c7563695af
39f8535e6b4aaf313278d65c2561c57db1425a44
/web/register/migrations/0010_registeredperson_borough_gss.py
97bbba8cf8f0192ef65af1880694fbc437324756
[]
no_license
DemocracyClub/TakePart.london
39c61f58740400597a24bd525eff78939a3f30ed
816d427c37ad4f485aa392ff1d376f0f2681746a
refs/heads/master
2022-02-11T15:01:04.782754
2017-11-09T15:10:25
2017-11-09T15:10:25
60,079,282
0
2
null
2022-01-21T19:27:25
2016-05-31T10:12:47
Python
UTF-8
Python
false
false
492
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-26 12:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('register', '0009_auto_20160526_1010'), ] operations = [ migrations.AddField( model_name='registeredperson', name='borough_gss', field=models.CharField(blank=True, db_index=True, max_length=100), ), ]
b5152f8763fc21f32e7530a4d1b55be7ae98c02a
faabe34af6297530617395bcc6811350765da847
/platforms/leetcode/PalindromeLinkedList.py
bb7cf2be3376bd29d8d2a59cce309f2d4124781c
[]
no_license
pqnguyen/CompetitiveProgramming
44a542aea299bd553dd022a9e737e087285b8b6d
27330e7ff79c4ac883d7e1fcdf2f0d30939c3f78
refs/heads/master
2021-07-21T12:15:47.366599
2021-06-27T14:58:48
2021-06-27T14:58:48
132,837,831
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
# https://leetcode.com/explore/learn/card/linked-list/219/classic-problems/1209/ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def isPalindrome(self, head: ListNode) -> bool: if not head: return True mid = self.findMid(head) lastNode = self.reverse(mid) while lastNode: if head.val != lastNode.val: return False lastNode = lastNode.next head = head.next return True def reverse(self, head): if not head: return None prev, next = head, head.next while next: tmp = next.next next.next = prev prev = next next = tmp head.next = None return prev def findMid(self, head): slow = fast = head while fast and fast.next: fast = fast.next.next slow = slow.next if fast: tmp = slow.next slow.next = None slow = tmp return slow
ecadf6700b1b850bb101d6a8ca65912bbfd57019
49e87fd199287ea7234c9bbfb3ec40447b9ed3d4
/app/main/forms.py
cdf55969ee17ccd31d37bf6e400ca91820058ac5
[ "MIT" ]
permissive
mornicamwende/Pitching-site
ae732d3d9ba38f1878b49113a6adc81769d2c1b6
04336aa97f2a1c806ad6668f104ff64d27c8d995
refs/heads/master
2022-12-20T10:48:11.003418
2020-09-25T04:59:35
2020-09-25T04:59:35
296,598,453
1
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField, RadioField,SelectField from wtforms.validators import Required class CommentsForm(FlaskForm): comment = TextAreaField('Comment', validators=[Required()]) # vote=RadioField('default field arguments', choices=[('1', 'UpVote'), ('1', 'DownVote')]) submit = SubmitField('SUBMIT') class PitchForm(FlaskForm): category_id = SelectField('Select Category', choices=[('1', 'Interview'), ('2', 'Pick Up Lines'), ('3', 'Promotion'),('4','Product')]) content = TextAreaField('make a pitch', validators=[Required()]) submit = SubmitField('Create Pitch') class UpvoteForm(FlaskForm): ''' Class to create a wtf form for upvoting a pitch ''' submit = SubmitField('Upvote') class DownvoteForm(FlaskForm): ''' Class to create a wtf form for downvoting a pitch ''' submit = SubmitField('Downvote') class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about you.',validators = [Required()]) submit = SubmitField('Submit')
f2bb49281f0fba43c8434c29776d7e6336e7bdab
0010a92176b766f4bdf37c1144fa0f724cfaf564
/env/lib/python3.5/site-packages/aliyunsdkecs/request/v20140526/DeleteDeploymentSetRequest.py
3bd5bc595a1de6573918990b939e99dd35fd5e19
[]
no_license
pengjinfu/My-Admin
bc2d8b53da8be0fad60e1d8979bdca3f2c4560d9
26206d1def673adb7dfe5c8044c654a0e65320d1
refs/heads/master
2021-08-30T02:17:57.432743
2017-12-15T17:05:05
2017-12-15T17:05:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,950
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DeleteDeploymentSetRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DeleteDeploymentSet') def get_DeploymentSetId(self): return self.get_query_params().get('DeploymentSetId') def set_DeploymentSetId(self,DeploymentSetId): self.add_query_param('DeploymentSetId',DeploymentSetId) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
671e4b30e3dff24f2ef3c935f670c8ca01e9944a
aeb2f0bb7b01f87a1b6c65b88b216bed47025fe5
/experiment/model244.py
db116321214dca543600494dc929d47788834d3c
[]
no_license
kurupical/riiid
7e68239cd50243fbb734bf433d60ebd7469cb180
7bab580ce03d03873748a6afc91092c11871465f
refs/heads/master
2023-03-30T04:15:54.109815
2021-04-04T01:20:33
2021-04-04T01:20:33
302,828,112
2
1
null
null
null
null
UTF-8
Python
false
false
30,472
py
import numpy as np import pandas as pd from typing import Optional, Any import gc import random from tqdm import tqdm from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split import seaborn as sns import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.utils.rnn as rnn_utils from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from datetime import datetime as dt import os import glob import pickle import json from feature_engineering.feature_factory_for_transformer import FeatureFactoryForTransformer from feature_engineering.feature_factory import \ FeatureFactoryManager, \ DurationPreviousContent, \ ElapsedTimeBinningEncoder, \ UserContentRateEncoder, \ QuestionQuestionTableEncoder2, \ PreviousAnswer2, \ StudyTermEncoder2, \ MeanAggregator, \ ElapsedTimeMeanByContentIdEncoder, \ DurationFeaturePostProcess from experiment.common import get_logger import time from transformers import AdamW, get_linear_schedule_with_warmup torch.manual_seed(0) np.random.seed(0) is_debug = False is_make_feature_factory = False load_pickle = True epochs = 12 device = torch.device("cuda") wait_time = 0 class SAKTDataset(Dataset): def __init__(self, group, n_skill, n_part=8, max_seq=100, is_test=False, predict_mode=False): super(SAKTDataset, self).__init__() self.max_seq = max_seq self.n_skill = n_skill self.samples = group self.is_test = is_test self.n_part = n_part self.predict_mode = predict_mode self.user_ids = [] for user_id in group.keys(): q = group[user_id][("content_id", "content_type_id")] if not is_test: self.user_ids.append([user_id, -1]) else: is_val = group[user_id]["is_val"] for i in range(len(q)): if is_val[i]: self.user_ids.append([user_id, i+1]) def __len__(self): return len(self.user_ids) def __getitem__(self, index): user_id = self.user_ids[index][0] end = self.user_ids[index][1] # ============================= # setting index # ============================= idx_dict = { ("content_id", "content_type_id"): 0, "user_answer": 1, "part": 2, "prior_question_elapsed_time_bin300": 3, "duration_previous_content_bin300": 4, "answered_correctly": 5, "prior_question_had_explanation": 6, "rating_diff_content_user_id": 7, "task_container_id_bin300": 8, "previous_answer_index_content_id": 9, "previous_answer_content_id": 10, "timediff-elapsedtime_bin500": 11 } num_sequence = len(idx_dict) item_ary = np.zeros((num_sequence, self.max_seq)) data_length = len(self.samples[user_id][("content_id", "content_type_id")]) if self.is_test: start = np.max([0, end - self.max_seq]) else: start = 0 end = data_length seq_length = end - start for item_name, idx in idx_dict.items(): item_ary[idx, -seq_length:] = self.samples[user_id][item_name][start:end] def get_data(key, remove_now=False): if remove_now: return item_ary[idx_dict[key], :][:-1] else: return item_ary[idx_dict[key], :][1:] return { "x": get_data(key="answered_correctly", remove_now=True) + 2, # 1: lecture, 2: not correct, 3: correct "user_answer": get_data(key="user_answer", remove_now=True) + 1, "target_id": get_data(key=("content_id", "content_type_id")), "part": get_data(key="part"), "elapsed_time": get_data(key="prior_question_elapsed_time_bin300"), "duration_previous_content": get_data(key="duration_previous_content_bin300"), "label": get_data(key="answered_correctly"), "prior_q": get_data(key="prior_question_had_explanation"), "rate_diff": get_data(key="rating_diff_content_user_id"), "container_id": get_data(key="task_container_id_bin300"), "previous_answer_index_content_id": get_data(key="previous_answer_index_content_id"), "previous_answer_content_id": get_data(key="previous_answer_content_id"), "timediff-elapsedtime_bin500": get_data(key="timediff-elapsedtime_bin500"), "prior_content_id": get_data(key=("content_id", "content_type_id"), remove_now=True) } class FFN(nn.Module): def __init__(self, state_size=200): super(FFN, self).__init__() self.state_size = state_size self.lr1 = nn.Linear(state_size, state_size) self.ln1 = nn.LayerNorm(state_size) self.relu = nn.ReLU() self.lr2 = nn.Linear(state_size, state_size) self.ln2 = nn.LayerNorm(state_size) def forward(self, x): x = self.lr1(x) x = self.ln1(x) x = self.relu(x) x = self.lr2(x) x = self.ln2(x) return x def _get_activation_fn(activation): if activation == "relu": return nn.ReLU() elif activation == "gelu": return nn.GELU() raise RuntimeError("activation should be relu/gelu, not {}".format(activation)) class LITLayer(nn.Module): """ https://arxiv.org/pdf/2012.14164.pdf """ def __init__(self, input_dim, embed_dim, dropout, activation): super(LITLayer, self).__init__() self.input_dim = input_dim self.embed_dim = embed_dim self.activation = activation self.linear1 = nn.Linear(input_dim, embed_dim) self.lstm = nn.LSTM(embed_dim, embed_dim) self.linear2 = nn.Linear(embed_dim, input_dim) self.norm_lstm = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.linear1(x) x = self.activation(x) x = self.dropout(x) lstm, _ = self.lstm(x) x = self.norm_lstm(lstm) + x x = self.dropout(x) x = self.linear2(x) return x class LITTransformerEncoderLayer(nn.Module): r"""TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) """ def __init__(self, d_model, nhead, dim_feedforward=256, dropout=0.1, activation="relu"): super(LITTransformerEncoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.lit_layer = LITLayer(input_dim=d_model, embed_dim=dim_feedforward, dropout=dropout, activation=self.activation) def __setstate__(self, state): if 'activation' not in state: state['activation'] = nn.ReLU super(LITTransformerEncoderLayer, self).__setstate__(state) def forward(self, src: torch.Tensor, src_mask: Optional[torch.Tensor] = None, src_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ src2 = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.lit_layer(src) src = src + self.dropout2(src2) src = self.norm2(src) return src def future_mask(seq_length): future_mask = np.triu(np.ones((seq_length, seq_length)), k=1).astype('bool') return torch.from_numpy(future_mask) class CatEmbedding(nn.Module): def __init__(self, embed_dim): super(CatEmbedding, self).__init__() self.embed_dim = embed_dim self.ln1 = nn.LayerNorm(embed_dim) self.gru = nn.GRU(input_size=embed_dim, hidden_size=embed_dim // 2) self.ln2 = nn.LayerNorm(embed_dim // 2) def forward(self, x): x = self.ln1(x) x, _ = self.gru(x) x = self.ln2(x) return x class ContEmbedding(nn.Module): def __init__(self, input_dim, embed_dim, seq_len): super(ContEmbedding, self).__init__() self.embed_dim = embed_dim self.bn = nn.BatchNorm1d(seq_len-1) self.gru = nn.GRU(input_size=input_dim, hidden_size=embed_dim) self.ln2 = nn.LayerNorm(embed_dim) def forward(self, x): x = self.bn(x) x, _ = self.gru(x) x = self.ln2(x) return x class SAKTModel(nn.Module): def __init__(self, n_skill, max_seq=100, embed_dim=128, num_heads=8, dropout=0.2, cont_emb=None): super(SAKTModel, self).__init__() self.n_skill = n_skill self.embed_dim_cat = embed_dim embed_dim_small_cat = 32 embed_dim_middle_cat = 32 embed_dim_cat_all = embed_dim_small_cat*5 + embed_dim_middle_cat*5 + embed_dim embed_dim_all = embed_dim_cat_all + cont_emb self.embedding = nn.Embedding(4, embed_dim_small_cat) self.user_answer_embedding = nn.Embedding(6, self.embed_dim_cat) self.prior_question_had_explanation_embedding = nn.Embedding(4, embed_dim_small_cat) self.e_embedding = nn.Embedding(n_skill + 1, self.embed_dim_cat) self.part_embedding = nn.Embedding(8, embed_dim_small_cat) self.elapsed_time_embedding = nn.Embedding(302, embed_dim_middle_cat) self.duration_previous_content_embedding = nn.Embedding(302, embed_dim_middle_cat) self.container_embedding = nn.Embedding(302, embed_dim_middle_cat) self.prev_ans_idx_embedding = nn.Embedding(302, embed_dim_middle_cat) self.prev_ans_content_id_embedding = nn.Embedding(4, embed_dim_small_cat) self.timediff_elapsedtime_embedding = nn.Embedding(502, embed_dim_middle_cat) encoder_layer = LITTransformerEncoderLayer(d_model=embed_dim_all, nhead=num_heads, dropout=dropout) self.transformer_enc = nn.TransformerEncoder(encoder_layer=encoder_layer, num_layers=4) self.gru = nn.GRU(input_size=embed_dim_all, hidden_size=embed_dim_all) self.continuous_embedding = ContEmbedding(input_dim=1, embed_dim=cont_emb, seq_len=max_seq) self.prior_content_embedding = nn.Sequential( nn.Linear(self.embed_dim_cat, embed_dim_small_cat), nn.LayerNorm(embed_dim_small_cat) ) self.cat_embedding = nn.Sequential( nn.Linear(embed_dim_cat_all, embed_dim_cat_all), nn.LayerNorm(embed_dim_cat_all) ) self.layer_normal = nn.LayerNorm(embed_dim_all) self.ffn = FFN(embed_dim_all) self.dropout = nn.Dropout(dropout/2) self.pred = nn.Linear(embed_dim_all, 1) def forward(self, item, device): x = item["x"].to(device).long() question_ids = item["target_id"].to(device).long() parts = item["part"].to(device).long() label = item["label"].to(device).float() elapsed_time = item["elapsed_time"].to(device).long() duration_previous_content = item["duration_previous_content"].to(device).long() prior_q = item["prior_q"].to(device).long() user_answer = item["user_answer"].to(device).long() rate_diff = item["rate_diff"].to(device).float() container_id = item["container_id"].to(device).long() prev_ans_idx = item["previous_answer_index_content_id"].to(device).long() prior_content_id_ans_correctly = item["previous_answer_content_id"].to(device).long() prior_content_id = item["prior_content_id"].to(device).long() timediff_elapsedtime = item["timediff-elapsedtime_bin500"].to(device).long() att_mask = future_mask(x.size(1)).to(device) e = self.e_embedding(question_ids) p = self.part_embedding(parts) prior_q_emb = self.prior_question_had_explanation_embedding(prior_q) user_answer_emb = self.user_answer_embedding(user_answer) prior_content_id_emb = self.e_embedding(prior_content_id) prior_content_user_answer_emb = self.prior_content_embedding(user_answer_emb + prior_content_id_emb) timediff_elapsedtime_emb = self.timediff_elapsedtime_embedding(timediff_elapsedtime) # decoder x = self.embedding(x) el_time_emb = self.elapsed_time_embedding(elapsed_time) dur_emb = self.duration_previous_content_embedding(duration_previous_content) container_emb = self.container_embedding(container_id) prev_ans_idx_emb = self.prev_ans_idx_embedding(prev_ans_idx) prev_ans_content_id_emb = self.prev_ans_content_id_embedding(prior_content_id_ans_correctly) x = torch.cat([x, el_time_emb, dur_emb, e, p, prior_q_emb, container_emb, prev_ans_idx_emb, prev_ans_content_id_emb, prior_content_user_answer_emb, timediff_elapsedtime_emb], dim=2) cont = rate_diff cont_emb = self.continuous_embedding(cont.view(x.size(0), x.size(1), -1)) x = self.cat_embedding(x) x = torch.cat([x, cont_emb], dim=2) x = x.permute(1, 0, 2) # x: [bs, s_len, embed] => [s_len, bs, embed] att_dec = self.transformer_enc(x, mask=att_mask) att_dec, _ = self.gru(att_dec) att_dec = att_dec.permute(1, 0, 2) # att_output: [s_len, bs, embed] => [bs, s_len, embed] x = self.layer_normal(att_dec) x = self.ffn(x) + att_dec x = self.dropout(x) x = self.pred(x) return x.squeeze(-1) def train_epoch(model, train_iterator, val_iterator, optim, criterion, scheduler, epoch, device="cuda"): model.train() train_loss = [] num_corrects = 0 num_total = 0 labels = [] outs = [] tbar = tqdm(train_iterator) for item in tbar: optim.zero_grad() label = item["label"].to(device).float() output = model(item, device) target_idx = (label.view(-1) >= 0).nonzero() loss = criterion(output.view(-1)[target_idx], label.view(-1)[target_idx]) loss.backward() optim.step() scheduler.step() train_loss.append(loss.item()) output = output[:, -1] label = label[:, -1] target_idx = (label.view(-1) >= 0).nonzero() pred = (torch.sigmoid(output) >= 0.5).long() num_corrects += (pred.view(-1)[target_idx] == label.view(-1)[target_idx]).sum().item() num_total += len(label) labels.extend(label.view(-1)[target_idx].data.cpu().numpy()) outs.extend(output.view(-1)[target_idx].data.cpu().numpy()) tbar.set_description('loss - {:.4f}'.format(loss)) acc = num_corrects / num_total auc = roc_auc_score(labels, outs) loss = np.mean(train_loss) preds = [] labels = [] model.eval() i = 0 with torch.no_grad(): for item in tqdm(val_iterator): label = item["label"].to(device).float() output = model(item, device) preds.extend(torch.nn.Sigmoid()(output[:, -1]).view(-1).data.cpu().numpy().tolist()) labels.extend(label[:, -1].view(-1).data.cpu().numpy()) i += 1 if i > 100 and epoch < 8: break auc_val = roc_auc_score(labels, preds) return loss, acc, auc, auc_val def main(params: dict, output_dir: str): import mlflow print("start params={}".format(params)) model_id = "train_0" logger = get_logger() # df = pd.read_pickle("../input/riiid-test-answer-prediction/train_merged.pickle") df = pd.read_pickle("../input/riiid-test-answer-prediction/split10/train_0.pickle").sort_values(["user_id", "timestamp"]).reset_index(drop=True) if is_debug: df = df.head(30000) df["prior_question_had_explanation"] = df["prior_question_had_explanation"].fillna(-1) df["answered_correctly"] = df["answered_correctly"].replace(-1, np.nan) column_config = { ("content_id", "content_type_id"): {"type": "category"}, "user_answer": {"type": "leakage_feature"}, "answered_correctly": {"type": "leakage_feature"}, "part": {"type": "category"}, "prior_question_elapsed_time_bin300": {"type": "category"}, "duration_previous_content_bin300": {"type": "category"}, "prior_question_had_explanation": {"type": "category"}, "rating_diff_content_user_id": {"type": "numeric"}, "task_container_id_bin300": {"type": "category"}, "previous_answer_index_content_id": {"type": "category"}, "previous_answer_content_id": {"type": "category"}, "timediff-elapsedtime_bin500": {"type": "category"} } if not load_pickle or is_debug: feature_factory_dict = {"user_id": {}} feature_factory_dict["user_id"]["DurationPreviousContent"] = DurationPreviousContent(is_partial_fit=True) feature_factory_dict["user_id"]["ElapsedTimeBinningEncoder"] = ElapsedTimeBinningEncoder() feature_factory_dict["user_id"]["UserContentRateEncoder"] = UserContentRateEncoder(rate_func="elo", column="user_id") feature_factory_dict["user_id"]["PreviousAnswer2"] = PreviousAnswer2(groupby="user_id", column="content_id", is_debug=is_debug, model_id=model_id, n=300) feature_factory_dict["user_id"]["StudyTermEncoder2"] = StudyTermEncoder2(is_partial_fit=True) feature_factory_dict["user_id"][f"MeanAggregatorStudyTimebyUserId"] = MeanAggregator(column="user_id", agg_column="study_time", remove_now=False) feature_factory_dict["user_id"]["ElapsedTimeMeanByContentIdEncoder"] = ElapsedTimeMeanByContentIdEncoder() feature_factory_dict["post"] = { "DurationFeaturePostProcess": DurationFeaturePostProcess() } feature_factory_manager = FeatureFactoryManager(feature_factory_dict=feature_factory_dict, logger=logger, split_num=1, model_id=model_id, load_feature=not is_debug, save_feature=not is_debug) print("all_predict") df = feature_factory_manager.all_predict(df) def f(x): x = x // 1000 if x < -100: return -100 if x > 400: return 400 return x df["task_container_id_bin300"] = [x if x < 300 else 300 for x in df["task_container_id"]] df["timediff-elapsedtime_bin500"] = [f(x) for x in df["timediff-elapsedtime"].values] df = df[["user_id", "content_id", "content_type_id", "part", "user_answer", "answered_correctly", "prior_question_elapsed_time_bin300", "duration_previous_content_bin300", "prior_question_had_explanation", "rating_diff_content_user_id", "task_container_id_bin300", "previous_answer_index_content_id", "previous_answer_content_id", "row_id", "timediff-elapsedtime_bin500"]] print(df.head(10)) print("data preprocess") ff_for_transformer = FeatureFactoryForTransformer(column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) ff_for_transformer.make_dict(df=df) n_skill = len(ff_for_transformer.embbed_dict[("content_id", "content_type_id")]) if not load_pickle or is_debug: df_val_row = pd.read_feather("../../riiid_takoi/notebook/fe/validation_row_id.feather").head(len(df)) if is_debug: df_val_row = df_val_row.head(3000) df_val_row["is_val"] = 1 df = pd.merge(df, df_val_row, how="left", on="row_id") df["is_val"] = df["is_val"].fillna(0) print(df["is_val"].value_counts()) w_df = df[df["is_val"] == 0] w_df["group"] = (w_df.groupby("user_id")["user_id"].transform("count") - w_df.groupby("user_id").cumcount()) // params["max_seq"] w_df["user_id"] = w_df["user_id"].astype(str) + "_" + w_df["group"].astype(str) group = ff_for_transformer.all_predict(w_df) dataset_train = SAKTDataset(group, n_skill=n_skill, max_seq=params["max_seq"]) del w_df gc.collect() ff_for_transformer = FeatureFactoryForTransformer(column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) if not load_pickle or is_debug: group = ff_for_transformer.all_predict(df[df["content_type_id"] == 0]) dataset_val = SAKTDataset(group, is_test=True, n_skill=n_skill, max_seq=params["max_seq"]) os.makedirs("../input/feature_engineering/model218", exist_ok=True) if not is_debug and not load_pickle: with open(f"../input/feature_engineering/model218/train.pickle", "wb") as f: pickle.dump(dataset_train, f) with open(f"../input/feature_engineering/model218/val.pickle", "wb") as f: pickle.dump(dataset_val, f) if not is_debug and load_pickle: with open(f"../input/feature_engineering/model218/train.pickle", "rb") as f: dataset_train = pickle.load(f) with open(f"../input/feature_engineering/model218/val.pickle", "rb") as f: dataset_val = pickle.load(f) print("loaded!") dataloader_train = DataLoader(dataset_train, batch_size=params["batch_size"], shuffle=True) dataloader_val = DataLoader(dataset_val, batch_size=params["batch_size"], shuffle=False) model = SAKTModel(n_skill, embed_dim=params["embed_dim"], max_seq=params["max_seq"], dropout=dropout, cont_emb=params["cont_emb"]) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=params["lr"], weight_decay=0.01, ) num_train_optimization_steps = int(len(dataloader_train) * 20) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=params["num_warmup_steps"], num_training_steps=num_train_optimization_steps) criterion = nn.BCEWithLogitsLoss() model.to(device) criterion.to(device) for epoch in range(epochs): loss, acc, auc, auc_val = train_epoch(model, dataloader_train, dataloader_val, optimizer, criterion, scheduler, epoch, device) print("epoch - {} train_loss - {:.3f} auc - {:.4f} auc-val: {:.4f}".format(epoch, loss, auc, auc_val)) preds = [] labels = [] with torch.no_grad(): for item in tqdm(dataloader_val): label = item["label"].to(device).float() output = model(item, device) preds.extend(torch.nn.Sigmoid()(output[:, -1]).view(-1).data.cpu().numpy().tolist()) labels.extend(label[:, -1].view(-1).data.cpu().numpy().tolist()) auc_transformer = roc_auc_score(labels, preds) print("single transformer: {:.4f}".format(auc_transformer)) df_oof = pd.DataFrame() # df_oof["row_id"] = df.loc[val_idx].index print(len(dataloader_val)) print(len(preds)) df_oof["predict"] = preds df_oof["target"] = labels df_oof.to_csv(f"{output_dir}/transformers1.csv", index=False) """ df_oof2 = pd.read_csv("../output/ex_237/20201213110353/oof_train_0_lgbm.csv") df_oof2.columns = ["row_id", "predict_lgbm", "target"] df_oof2 = pd.merge(df_oof, df_oof2, how="inner") auc_lgbm = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values) print("lgbm: {:.4f}".format(auc_lgbm)) print("ensemble") max_auc = 0 max_nn_ratio = 0 for r in np.arange(0, 1.05, 0.05): auc = roc_auc_score(df_oof2["target"].values, df_oof2["predict_lgbm"].values*(1-r) + df_oof2["predict"].values*r) print("[nn_ratio: {:.2f}] AUC: {:.4f}".format(r, auc)) if max_auc < auc: max_auc = auc max_nn_ratio = r print(len(df_oof2)) """ if not is_debug: mlflow.start_run(experiment_id=10, run_name=os.path.basename(__file__)) for key, value in params.items(): mlflow.log_param(key, value) mlflow.log_metric("auc_val", auc_transformer) mlflow.end_run() torch.save(model.state_dict(), f"{output_dir}/transformers.pth") del model torch.cuda.empty_cache() with open(f"{output_dir}/transformer_param.json", "w") as f: json.dump(params, f) if is_make_feature_factory: # feature factory feature_factory_dict = {"user_id": {}} feature_factory_dict["user_id"]["DurationPreviousContent"] = DurationPreviousContent(is_partial_fit=True) feature_factory_dict["user_id"]["ElapsedTimeBinningEncoder"] = ElapsedTimeBinningEncoder() feature_factory_manager = FeatureFactoryManager(feature_factory_dict=feature_factory_dict, logger=logger, split_num=1, model_id="all", load_feature=not is_debug, save_feature=not is_debug) ff_for_transformer = FeatureFactoryForTransformer(column_config=column_config, dict_path="../feature_engineering/", sequence_length=params["max_seq"], logger=logger) df = pd.read_pickle("../input/riiid-test-answer-prediction/train_merged.pickle") if is_debug: df = df.head(10000) df = df.sort_values(["user_id", "timestamp"]).reset_index(drop=True) feature_factory_manager.fit(df) df = feature_factory_manager.all_predict(df) for dicts in feature_factory_manager.feature_factory_dict.values(): for factory in dicts.values(): factory.logger = None feature_factory_manager.logger = None with open(f"{output_dir}/feature_factory_manager.pickle", "wb") as f: pickle.dump(feature_factory_manager, f) ff_for_transformer.fit(df) ff_for_transformer.logger = None with open(f"{output_dir}/feature_factory_manager_for_transformer.pickle", "wb") as f: pickle.dump(ff_for_transformer, f) if __name__ == "__main__": if not is_debug: for _ in tqdm(range(wait_time)): time.sleep(1) output_dir = f"../output/{os.path.basename(__file__).replace('.py', '')}/{dt.now().strftime('%Y%m%d%H%M%S')}/" os.makedirs(output_dir, exist_ok=True) for cont_emb in [8]: for cat_emb in [256]: dropout = 0.5 lr = 0.9e-3 if is_debug: batch_size = 8 else: batch_size = 128 params = {"embed_dim": cat_emb, "cont_emb": cont_emb, "max_seq": 100, "batch_size": batch_size, "num_warmup_steps": 3000, "lr": lr, "dropout": dropout} main(params, output_dir=output_dir)
539ae6e0ecf887e6d1d29a89a317d920bcd8899a
c6f946097032432c787a4e3f2b1c7839a5966bfa
/problem 0120.py
0e0fc987f8d8b2772162ed041c676b86767c43ef
[]
no_license
a100kpm/daily_training
70a3bfdc1a773025bc03dad64310f7ad9f58eb22
dc80f1708cba6f46a51d2e385bc16613acb5e710
refs/heads/master
2020-05-17T21:20:21.067730
2019-05-21T16:41:52
2019-05-21T16:41:52
183,969,271
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
''' Good morning! Here's your coding interview problem for today. This problem was asked by Microsoft. Implement the singleton pattern with a twist. First, instead of storing one instance, store two instances. And in every even call of getInstance(), return the first instance and in every odd call of getInstance(), return the second instance. ''' class Singleton: def __init__(self,val1,val2): self.val1=val1 self.val2=val2 self.compteur=1 def getInstance(self): if self.compteur==1: self.compteur=2 return self.val1 else: self.compteur=1 return self.val2
c146b0e1db17224998ba1eda4eafc3f9d27dd06b
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/EightTeV/RSGraviton/RSGravitonToWW_kMpl04_M_4000_TuneZ2star_8TeV_pythia6_cff.py
227007a6d47128f5bc79ef6b8f9004b7add104ff
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
894
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.PythiaUEZ2starSettings_cfi import * generator = cms.EDFilter("Pythia6GeneratorFilter", pythiaHepMCVerbosity = cms.untracked.bool(False), maxEventsToPrint = cms.untracked.int32(0), pythiaPylistVerbosity = cms.untracked.int32(0), filterEfficiency = cms.untracked.double(1), comEnergy = cms.double(8000.0), crossSection = cms.untracked.double(1.137e-4), PythiaParameters = cms.PSet( pythiaUESettingsBlock, processParameters = cms.vstring( 'MSEL = 0', 'MSUB(391) = 1', 'MSUB(392) = 1', 'PMAS(347,1) = 4000', 'PARP(50) = 2.16', '5000039:ALLOFF', '5000039:ONIFANY 24', ), parameterSets = cms.vstring( 'pythiaUESettings', 'processParameters') ) ) ProductionFilterSequence = cms.Sequence(generator)
ab01bcb3ab68c2fc29a7e2bd4b6c8a4e7377d5c9
0d2503015d98cdb3fc1e4cda3a7c2053658e4e79
/virtual/bin/flask
10fa3f3435b188049bea61fba98adf01742219de
[ "MIT" ]
permissive
juru-juliette/BlogApp
fe2e2f96fd7c676a3f025176912b103c9c3ab085
146a5d1bea24f872d598be5181ad79f309887b93
refs/heads/master
2022-09-29T11:12:11.148345
2019-10-03T10:22:57
2019-10-03T10:22:57
211,067,370
0
0
null
2021-03-20T01:44:34
2019-09-26T10:54:44
Python
UTF-8
Python
false
false
250
#!/home/wecode/Documents/flask/BlogApp/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
7418efa19b2b99b91268d1c1c3eaecb2564be978
069c90561a55dbb050102914ba92a786137f3dd4
/setup.py
0d4d001769f4749905acc1374f364ba1baf66cff
[]
no_license
reorx/yaml2pac
a9075d8d706e26b4629e8fb98398bf0a5321c758
78a42e9bb5f2f27bdef5a3236cf242d3828ba5a1
refs/heads/master
2021-01-10T05:06:10.319371
2017-04-30T13:07:41
2017-04-30T13:07:41
48,587,654
1
1
null
null
null
null
UTF-8
Python
false
false
1,168
py
#!/usr/bin/env python # coding=utf-8 from setuptools import setup # Use semantic versioning: MAJOR.MINOR.PATCH version = '0.1.0' def get_requires(): try: with open('requirements.txt', 'r') as f: requires = [i for i in map(lambda x: x.strip(), f.readlines()) if i] return requires except IOError: return [] def get_long_description(): try: with open('README.md', 'r') as f: return f.read() except IOError: return '' setup( # license='License :: OSI Approved :: MIT License', name='yaml2pac', version=version, author='reorx', author_email='[email protected]', description='Generate decent pac file from a set of yaml rules', url='https://github.com/reorx/yaml2pac', long_description=get_long_description(), packages=['yaml2pac'], # Or use (make sure find_packages is imported from setuptools): # packages=find_packages() install_requires=get_requires(), package_data={ 'yaml2pac': ['template.pac'] }, entry_points={ 'console_scripts': [ 'yaml2pac = yaml2pac.__main__:main' ] } )
a0e3e218a5b7ec2bf7ffd20d00fc6f0888cf6ea0
3c6fc92c8de309cd287e6f1b1b6e0af1e1aaf5c9
/fix_date.py
7e72e5bba097726d748338a2f8b498060b29976c
[ "BSD-3-Clause", "LicenseRef-scancode-public-domain", "CC-PDDC" ]
permissive
caltechlibrary/caltechdata_migrate
37e2b0fff3814eb69e413796a2ef8513959ebfda
839feab326eb0b412d740db64e96d7ad0048c295
refs/heads/master
2021-10-27T08:38:30.755678
2021-10-20T19:06:28
2021-10-20T19:06:28
106,311,559
1
0
null
null
null
null
UTF-8
Python
false
false
961
py
from caltechdata_api import get_metadata,caltechdata_edit,decustomize_schema import requests import os idvs = [1163,1164,1165,1166,1167,1168,1169] #Get access token from TIND sed as environment variable with source token.bash token = os.environ['TINDTOK'] metadata = {} for idv in idvs: api_url = "https://data.caltech.edu/api/record/" r = requests.get(api_url+str(idv)) r_data = r.json() if 'message' in r_data: raise AssertionError('id '+idv+' expected http status 200, got '+r_data.status+r_data.message) if not 'metadata' in r_data: raise AssertionError('expected as metadata property in response, got '+r_data) metadata = r_data['metadata'] for d in metadata['relevantDates']: if d['relevantDateType'] == 'created': d['relevantDateType'] = 'Created' metadata = decustomize_schema(metadata) response = caltechdata_edit(token,idv,metadata,production=True) print(response)
34e6fc1924b4bf98002f93525d9a60d3efac008f
fb8cbebdf034b2f478943752d5443afc82c6eef5
/tuirer/venv/lib/python3.6/site-packages/IPython/core/tests/test_paths.py
a7dc1fddc233e5b268dcea9533b91a8ace9c0cd8
[]
no_license
fariasjr/CitiTuirer
f64e0ec93ef088f8140bb0961d2ad4ed3b59448a
deb3f7a9c2d45b8a7f54639037f097b99abdac11
refs/heads/master
2020-03-24T05:10:36.261050
2018-08-01T20:24:30
2018-08-01T20:24:30
142,477,521
0
0
null
null
null
null
UTF-8
Python
false
false
7,394
py
import errno import os import shutil import sys import tempfile import warnings from unittest.mock import patch from IPython import paths from IPython.testing.decorators import skip_win32 from IPython.utils.tempdir import TemporaryDirectory import nose.tools as nt from testpath import assert_isdir, assert_isfile, modified_env TMP_TEST_DIR = os.path.realpath(tempfile.mkdtemp()) HOME_TEST_DIR = os.path.join(TMP_TEST_DIR, "home_test_dir") XDG_TEST_DIR = os.path.join(HOME_TEST_DIR, "xdg_test_dir") XDG_CACHE_DIR = os.path.join(HOME_TEST_DIR, "xdg_cache_dir") IP_TEST_DIR = os.path.join(HOME_TEST_DIR,'.ipython') def setup(): """Setup testenvironment for the module: - Adds dummy home dir tree """ # Do not mask exceptions here. In particular, catching WindowsError is a # problem because that exception is only defined on Windows... os.makedirs(IP_TEST_DIR) os.makedirs(os.path.join(XDG_TEST_DIR, 'ipython')) os.makedirs(os.path.join(XDG_CACHE_DIR, 'ipython')) def teardown(): """Teardown testenvironment for the module: - Remove dummy home dir tree """ # Note: we remove the parent test dir, which is the root of all test # subdirs we may have created. Use shutil instead of os.removedirs, so # that non-empty directories are all recursively removed. shutil.rmtree(TMP_TEST_DIR) def patch_get_home_dir(dirpath): return patch.object(paths, 'get_home_dir', return_value=dirpath) def test_get_ipython_dir_1(): """test_get_ipython_dir_1, Testcase to see if we can call get_ipython_dir without Exceptions.""" env_ipdir = os.path.join("someplace", ".ipython") with patch.object(paths, '_writable_dir', return_value=True), \ modified_env({'IPYTHONDIR': env_ipdir}): ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, env_ipdir) def test_get_ipython_dir_2(): """test_get_ipython_dir_2, Testcase to see if we can call get_ipython_dir without Exceptions.""" with patch_get_home_dir('someplace'), \ patch.object(paths, 'get_xdg_dir', return_value=None), \ patch.object(paths, '_writable_dir', return_value=True), \ patch('os.name', "posix"), \ modified_env({'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'XDG_CONFIG_HOME': None }): ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, os.path.join("someplace", ".ipython")) def test_get_ipython_dir_3(): """test_get_ipython_dir_3, move XDG if defined, and .ipython doesn't exist.""" tmphome = TemporaryDirectory() try: with patch_get_home_dir(tmphome.name), \ patch('os.name', 'posix'), \ modified_env({ 'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'XDG_CONFIG_HOME': XDG_TEST_DIR, }), warnings.catch_warnings(record=True) as w: ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, os.path.join(tmphome.name, ".ipython")) if sys.platform != 'darwin': nt.assert_equal(len(w), 1) nt.assert_in('Moving', str(w[0])) finally: tmphome.cleanup() def test_get_ipython_dir_4(): """test_get_ipython_dir_4, warn if XDG and home both exist.""" with patch_get_home_dir(HOME_TEST_DIR), \ patch('os.name', 'posix'): try: os.mkdir(os.path.join(XDG_TEST_DIR, 'ipython')) except OSError as e: if e.errno != errno.EEXIST: raise with modified_env({ 'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'XDG_CONFIG_HOME': XDG_TEST_DIR, }), warnings.catch_warnings(record=True) as w: ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, os.path.join(HOME_TEST_DIR, ".ipython")) if sys.platform != 'darwin': nt.assert_equal(len(w), 1) nt.assert_in('Ignoring', str(w[0])) def test_get_ipython_dir_5(): """test_get_ipython_dir_5, use .ipython if exists and XDG defined, but doesn't exist.""" with patch_get_home_dir(HOME_TEST_DIR), \ patch('os.name', 'posix'): try: os.rmdir(os.path.join(XDG_TEST_DIR, 'ipython')) except OSError as e: if e.errno != errno.ENOENT: raise with modified_env({ 'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'XDG_CONFIG_HOME': XDG_TEST_DIR, }): ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, IP_TEST_DIR) def test_get_ipython_dir_6(): """test_get_ipython_dir_6, use home over XDG if defined and neither exist.""" xdg = os.path.join(HOME_TEST_DIR, 'somexdg') os.mkdir(xdg) shutil.rmtree(os.path.join(HOME_TEST_DIR, '.ipython')) print(paths._writable_dir) with patch_get_home_dir(HOME_TEST_DIR), \ patch.object(paths, 'get_xdg_dir', return_value=xdg), \ patch('os.name', 'posix'), \ modified_env({ 'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'XDG_CONFIG_HOME': None, }), warnings.catch_warnings(record=True) as w: ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, os.path.join(HOME_TEST_DIR, '.ipython')) nt.assert_equal(len(w), 0) def test_get_ipython_dir_7(): """test_get_ipython_dir_7, test home directory expansion on IPYTHONDIR""" home_dir = os.path.normpath(os.path.expanduser('~')) with modified_env({'IPYTHONDIR': os.path.join('~', 'somewhere')}), \ patch.object(paths, '_writable_dir', return_value=True): ipdir = paths.get_ipython_dir() nt.assert_equal(ipdir, os.path.join(home_dir, 'somewhere')) @skip_win32 def test_get_ipython_dir_8(): """test_get_ipython_dir_8, test / home directory""" with patch.object(paths, '_writable_dir', lambda path: bool(path)), \ patch.object(paths, 'get_xdg_dir', return_value=None), \ modified_env({ 'IPYTHON_DIR': None, 'IPYTHONDIR': None, 'HOME': '/', }): nt.assert_equal(paths.get_ipython_dir(), '/.ipython') def test_get_ipython_cache_dir(): with modified_env({'HOME': HOME_TEST_DIR}): if os.name == 'posix' and sys.platform != 'darwin': # test default os.makedirs(os.path.join(HOME_TEST_DIR, ".cache")) with modified_env({'XDG_CACHE_HOME': None}): ipdir = paths.get_ipython_cache_dir() nt.assert_equal(os.path.join(HOME_TEST_DIR, ".cache", "ipython"), ipdir) assert_isdir(ipdir) # test env override with modified_env({"XDG_CACHE_HOME": XDG_CACHE_DIR}): ipdir = paths.get_ipython_cache_dir() assert_isdir(ipdir) nt.assert_equal(ipdir, os.path.join(XDG_CACHE_DIR, "ipython")) else: nt.assert_equal(paths.get_ipython_cache_dir(), paths.get_ipython_dir()) def test_get_ipython_package_dir(): ipdir = paths.get_ipython_package_dir() assert_isdir(ipdir) def test_get_ipython_module_path(): ipapp_path = paths.get_ipython_module_path('IPython.terminal.ipapp') assert_isfile(ipapp_path)
cf5eab74fe573d51a22c2f3485b293846afe840e
eb9f655206c43c12b497c667ba56a0d358b6bc3a
/python/testData/types/ResolveToAnotherFileClassWithBuiltinNameField/foo.py
bfb5ad1dcf26fa6d998d1e54b6d605d64cc93e4c
[ "Apache-2.0" ]
permissive
JetBrains/intellij-community
2ed226e200ecc17c037dcddd4a006de56cd43941
05dbd4575d01a213f3f4d69aa4968473f2536142
refs/heads/master
2023-09-03T17:06:37.560889
2023-09-03T11:51:00
2023-09-03T12:12:27
2,489,216
16,288
6,635
Apache-2.0
2023-09-12T07:41:58
2011-09-30T13:33:05
null
UTF-8
Python
false
false
64
py
class Foo: def __init__(self, id: int): self.id = id
3191f5b594eccb4f79d85a07b133cb6f7a2535c0
9d0195aa83cc594a8c61f334b90375961e62d4fe
/JTTest/SL7/CMSSW_10_2_15/src/dataRunA/nano857.py
04b4cd41f6e1d1d64132d0089fc6468a9aa5cf29
[]
no_license
rsk146/CMS
4e49592fc64f6438051544c5de18598db36ed985
5f8dab8c59ae556598b9747b52b88205fffc4dbe
refs/heads/master
2022-12-01T03:57:12.126113
2020-08-04T03:29:27
2020-08-04T03:29:27
284,863,383
0
0
null
null
null
null
UTF-8
Python
false
false
4,292
py
# Auto generated configuration file # using: # Revision: 1.19 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: nanoAOD_jetToolbox_cff -s NANO --data --eventcontent NANOAOD --datatier NANOAOD --no_exec --conditions 102X_dataRun2_Sep2018Rereco_v1 --era Run2_2018,run2_nanoAOD_102Xv1 --customise_commands=process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) --customise JMEAnalysis/JetToolbox/nanoAOD_jetToolbox_cff.nanoJTB_customizeMC --filein /users/h2/rsk146/JTTest/SL7/CMSSW_10_6_12/src/ttbarCutTest/dataReprocessing/0004A5E9-9F18-6B42-B31D-4206406CE423.root --fileout file:jetToolbox_nano_datatest.root import FWCore.ParameterSet.Config as cms from Configuration.StandardSequences.Eras import eras process = cms.Process('NANO',eras.Run2_2018,eras.run2_nanoAOD_102Xv1) # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('Configuration.StandardSequences.GeometryRecoDB_cff') process.load('Configuration.StandardSequences.MagneticField_AutoFromDBCurrent_cff') process.load('PhysicsTools.NanoAOD.nano_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('file:root://cms-xrd-global.cern.ch//store/data/Run2018A/EGamma/MINIAOD/17Sep2018-v2/270000/8AED26BC-E17D-4643-A7BA-9ED388728487.root'), secondaryFileNames = cms.untracked.vstring() ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( annotation = cms.untracked.string('nanoAOD_jetToolbox_cff nevts:1'), name = cms.untracked.string('Applications'), version = cms.untracked.string('$Revision: 1.19 $') ) # Output definition process.NANOAODoutput = cms.OutputModule("NanoAODOutputModule", compressionAlgorithm = cms.untracked.string('LZMA'), compressionLevel = cms.untracked.int32(9), dataset = cms.untracked.PSet( dataTier = cms.untracked.string('NANOAOD'), filterName = cms.untracked.string('') ), fileName = cms.untracked.string('file:jetToolbox_nano_datatest857.root'), outputCommands = process.NANOAODEventContent.outputCommands ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, '102X_dataRun2_Sep2018Rereco_v1', '') # Path and EndPath definitions process.nanoAOD_step = cms.Path(process.nanoSequence) process.endjob_step = cms.EndPath(process.endOfProcess) process.NANOAODoutput_step = cms.EndPath(process.NANOAODoutput) # Schedule definition process.schedule = cms.Schedule(process.nanoAOD_step,process.endjob_step,process.NANOAODoutput_step) from PhysicsTools.PatAlgos.tools.helpers import associatePatAlgosToolsTask associatePatAlgosToolsTask(process) # customisation of the process. # Automatic addition of the customisation function from PhysicsTools.NanoAOD.nano_cff from PhysicsTools.NanoAOD.nano_cff import nanoAOD_customizeData #call to customisation function nanoAOD_customizeData imported from PhysicsTools.NanoAOD.nano_cff process = nanoAOD_customizeData(process) # Automatic addition of the customisation function from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff import nanoJTB_customizeMC #call to customisation function nanoJTB_customizeMC imported from JMEAnalysis.JetToolbox.nanoAOD_jetToolbox_cff process = nanoJTB_customizeMC(process) # End of customisation functions # Customisation from command line process.add_(cms.Service('InitRootHandlers', EnableIMT = cms.untracked.bool(False))) # Add early deletion of temporary data products to reduce peak memory need from Configuration.StandardSequences.earlyDeleteSettings_cff import customiseEarlyDelete process = customiseEarlyDelete(process) # End adding early deletion
b98d7f3a306f0489f526d005559bda871a9dae63
e18da3301b53da6792f581159a953da71c00422b
/aula_1/ex_3.py
989a228d4c99271fe93379b33bf46298099135f3
[]
no_license
fernandolago/python-521
6c4998b60784d966e8ed4aff0e500f1ab4f1fab0
e103b055c9cf04da889a380d55192307f66d34f4
refs/heads/master
2022-12-09T20:13:47.982648
2019-08-08T20:02:27
2019-08-08T20:02:27
200,073,861
0
0
null
2022-12-08T05:57:51
2019-08-01T15:16:36
Python
UTF-8
Python
false
false
270
py
import requests URL = 'https://viacep.com.br/ws/{}/json' cep = input('Digite seu cep: ') print(cep) URL_FORMATADA = URL.format(cep) print(URL_FORMATADA) response = requests.get(URL_FORMATADA) print(response) print(dir(response)) x = response.json() print(type(x))
43129de68025bc596b16c6a2f1e3e13749c0063e
4892b326dfd98d9513ba583868b1298c8a4e276c
/experiments/04_benchmark_memory/shared.py
ec654e7e21ec078f1a29ec876fa6a3fd6eef3cce
[ "MIT" ]
permissive
MeNicefellow/cockpit
019640a610b05c46426d35eb9e6c8d49a3d970c7
5bd5ab3cda03eda0b0bf276f29d5c28b83d70b06
refs/heads/master
2023-01-23T06:59:43.329922
2020-11-24T07:56:03
2020-11-24T07:56:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,413
py
"""Compare memory footprint w/o individual gradient transformations.""" import os import sys import warnings import pandas from memory_profiler import memory_usage from torch.optim import SGD from cockpit.runners.scheduled_runner import _ScheduleCockpitRunner HERE = os.path.abspath(__file__) DIR = os.path.join(os.path.dirname(HERE), "data") FIG_DIR = os.path.join(os.path.dirname(HERE), "fig") os.makedirs(DIR, exist_ok=True) os.makedirs(FIG_DIR, exist_ok=True) def set_up(): from cockpit.utils import fix_deepobs_data_dir from deepobs.pytorch.config import set_default_device fix_deepobs_data_dir() FORCE_CPU = True if FORCE_CPU: set_default_device("cpu") INTERVAL = 0.01 def report_memory(f): mem_usage = memory_usage(f, interval=INTERVAL) mem_time = [INTERVAL * idx for idx in range(len(mem_usage))] return pandas.DataFrame(data={"time": mem_time, "usage": mem_usage}) def lr_schedule(num_epochs): """Some Learning rate schedule. Example: >>> # Halving the learning rate every epoch: >>> lambda epoch: 0.5 ** epoch >>> # A less aggressive decay: >>> lambda epoch: 0.9 ** epoch >>> # Constant learning rate (using init lr): >>> lambda epoch: 1.0 """ return lambda epoch: 1.0 def run(quants, testproblem): optimizer_class = SGD hyperparams = { "lr": {"type": float, "default": 0.001}, "momentum": {"type": float, "default": 0.0}, "nesterov": {"type": bool, "default": False}, } def plot_schedule(global_step): return False runner = MemoryBenchmarkRunner( optimizer_class, hyperparams, quantities=quants, plot=False, plot_schedule=plot_schedule, ) runner.run( testproblem=testproblem, num_epochs=1, l2_reg=0.0, # necessary for backobs! track_interval=1, plot_interval=1, show_plots=False, save_plots=False, save_final_plot=False, save_animation=False, lr_schedule=lr_schedule, ) class MemoryBenchmarkRunner(_ScheduleCockpitRunner): """Run first forward-backward pass and update step of training, then quit. Note: Disables DeepOBS' additional metrics. Performs one step per epoch. """ STOP_BATCH_COUNT_PER_EPOCH = 1 def _maybe_stop_iteration(self, global_step, batch_count): """Stop after first step of each epoch.""" if batch_count == self.STOP_BATCH_COUNT_PER_EPOCH: warnings.warn( "The memory benchmark runner performs only " + f"{self.STOP_BATCH_COUNT_PER_EPOCH} steps per epoch." ) raise StopIteration def _should_eval(self): """Disable DeepOBS' evaluation of test/train/valid losses and accuracies.""" return False def hotfix_deepobs_argparse(): """Truncate command line arguments from pytest call to make DeepOBS arparse work. TODO Think about good alternatives. """ sys.argv = sys.argv[:1] def parse(): testproblem = sys.argv[1] try: num_run = int(sys.argv[2]) except IndexError: num_run = None hotfix_deepobs_argparse() return testproblem, num_run def skip_if_exists(filename): if os.path.exists(filename): print(f"Skipping as file already exists: {filename}") sys.exit(0)
[ "Anonymous" ]
Anonymous
bc4d811f9de41de53688ff53da3865f5f47c9c4f
926b3c52070f6e309567c8598248fd5c57095be9
/src/mmgeneration/tests/test_cores/test_fp16_utils.py
a4cf5a42c2cf57c0146ba1cc930cd875facaca6c
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
6,975
py
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch import torch.nn as nn from mmcv.utils import TORCH_VERSION from mmgen.core.runners.fp16_utils import (auto_fp16, cast_tensor_type, nan_to_num) def test_nan_to_num(): a = torch.tensor([float('inf'), float('nan'), 2.]) res = nan_to_num(a, posinf=255., neginf=-255.) assert (res == torch.tensor([255., 0., 2.])).all() res = nan_to_num(a) assert res.shape == (3, ) with pytest.raises(TypeError): nan_to_num(1) def test_cast_tensor_type(): inputs = torch.FloatTensor([5.]) src_type = torch.float32 dst_type = torch.int32 outputs = cast_tensor_type(inputs, src_type, dst_type) assert isinstance(outputs, torch.Tensor) assert outputs.dtype == dst_type inputs = 'tensor' src_type = str dst_type = str outputs = cast_tensor_type(inputs, src_type, dst_type) assert isinstance(outputs, str) inputs = np.array([5.]) src_type = np.ndarray dst_type = np.ndarray outputs = cast_tensor_type(inputs, src_type, dst_type) assert isinstance(outputs, np.ndarray) inputs = dict( tensor_a=torch.FloatTensor([1.]), tensor_b=torch.FloatTensor([2.])) src_type = torch.float32 dst_type = torch.int32 outputs = cast_tensor_type(inputs, src_type, dst_type) assert isinstance(outputs, dict) assert outputs['tensor_a'].dtype == dst_type assert outputs['tensor_b'].dtype == dst_type inputs = [torch.FloatTensor([1.]), torch.FloatTensor([2.])] src_type = torch.float32 dst_type = torch.int32 outputs = cast_tensor_type(inputs, src_type, dst_type) assert isinstance(outputs, list) assert outputs[0].dtype == dst_type assert outputs[1].dtype == dst_type inputs = 5 outputs = cast_tensor_type(inputs, None, None) assert isinstance(outputs, int) inputs = nn.Sequential(nn.Conv2d(2, 2, 3), nn.ReLU()) outputs = cast_tensor_type(inputs, None, None) assert isinstance(outputs, nn.Module) @pytest.mark.skipif( not TORCH_VERSION >= '1.6.0', reason='Lower PyTorch version') def test_auto_fp16_func(): with pytest.raises(TypeError): # ExampleObject is not a subclass of nn.Module class ExampleObject(object): @auto_fp16() def __call__(self, x): return x model = ExampleObject() input_x = torch.ones(1, dtype=torch.float32) model(input_x) # apply to all input args class ExampleModule(nn.Module): @auto_fp16() def forward(self, x, y): return x, y model = ExampleModule() input_x = torch.ones(1, dtype=torch.float32) input_y = torch.ones(1, dtype=torch.float32) output_x, output_y = model(input_x, input_y) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 model.fp16_enabled = True output_x, output_y = model(input_x, input_y) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 if torch.cuda.is_available(): model.cuda() output_x, output_y = model(input_x.cuda(), input_y.cuda()) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 # apply to specified input args class ExampleModule(nn.Module): @auto_fp16(apply_to=('x', )) def forward(self, x, y): return x, y model = ExampleModule() input_x = torch.ones(1, dtype=torch.float32) input_y = torch.ones(1, dtype=torch.float32) output_x, output_y = model(input_x, input_y) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 model.fp16_enabled = True output_x, output_y = model(input_x, input_y) assert output_x.dtype == torch.half assert output_y.dtype == torch.float32 if torch.cuda.is_available(): model.cuda() output_x, output_y = model(input_x.cuda(), input_y.cuda()) assert output_x.dtype == torch.half assert output_y.dtype == torch.float32 # apply to optional input args class ExampleModule(nn.Module): @auto_fp16(apply_to=('x', 'y')) def forward(self, x, y=None, z=None): return x, y, z model = ExampleModule() input_x = torch.ones(1, dtype=torch.float32) input_y = torch.ones(1, dtype=torch.float32) input_z = torch.ones(1, dtype=torch.float32) output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 assert output_z.dtype == torch.float32 model.fp16_enabled = True output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) assert output_x.dtype == torch.half assert output_y.dtype == torch.half assert output_z.dtype == torch.float32 if torch.cuda.is_available(): model.cuda() output_x, output_y, output_z = model( input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) assert output_x.dtype == torch.half assert output_y.dtype == torch.half assert output_z.dtype == torch.float32 # out_fp32=True class ExampleModule(nn.Module): def __init__(self): super().__init__() self.out_fp32 = True @auto_fp16(apply_to=('x', 'y')) def forward(self, x, y=None, z=None): return x, y, z model = ExampleModule() model.fp16_enabled = True input_x = torch.ones(1, dtype=torch.half) input_y = torch.ones(1, dtype=torch.float32) input_z = torch.ones(1, dtype=torch.float32) output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 assert output_z.dtype == torch.float32 # out_fp32=True class ExampleModule(nn.Module): @auto_fp16(apply_to=('x', 'y'), out_fp32=True) def forward(self, x, y=None, z=None): return x, y, z model = ExampleModule() input_x = torch.ones(1, dtype=torch.half) input_y = torch.ones(1, dtype=torch.float32) input_z = torch.ones(1, dtype=torch.float32) output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) assert output_x.dtype == torch.half assert output_y.dtype == torch.float32 assert output_z.dtype == torch.float32 model.fp16_enabled = True output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 assert output_z.dtype == torch.float32 if torch.cuda.is_available(): model.cuda() output_x, output_y, output_z = model( input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) assert output_x.dtype == torch.float32 assert output_y.dtype == torch.float32 assert output_z.dtype == torch.float32
395244d5698ec1b8f201d619d17776ad10b0251a
42c578d7d9056e3caab7263cde114626d7ad3450
/p/lib/python3.8/smtpd.py
1ee11938504efa638fbff8b12e6910b420d1442e
[]
no_license
javier290595/mythicalclass
66a38ae916468aa80e62d9cc5881406e9beae84b
34f3255d4720834dbe0aabf8c5daa4a270a415bd
refs/heads/master
2023-01-08T12:33:13.232972
2020-11-12T01:52:09
2020-11-12T01:52:09
312,138,106
0
0
null
null
null
null
UTF-8
Python
false
false
73
py
/home/linuxbrew/.linuxbrew/Cellar/[email protected]/3.8.6/lib/python3.8/smtpd.py
1ccc6390564eddf80e6cf1914171d5f378c81954
2fe726cefb4448adf900dfe1242238a4622026ea
/simple_library/library_app/admin.py
bf6c366952106be918901ebb17550a835e83ca79
[]
no_license
romankarki/Library-Book-App
2623e1f3f0d2b3bc04ab7386a81e521bd2907305
571d3d843bb612e8fdbdb78a02cde1be781ab5fa
refs/heads/master
2022-07-25T04:19:50.510807
2020-05-11T06:22:55
2020-05-11T06:22:55
262,956,328
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
from django.contrib import admin from library_app.models import Books, Student, BookUser # Register your models here. admin.site.register(Books) admin.site.register(Student) admin.site.register(BookUser)
7ce6a01f3c5650d970ef32d681f884d359a3815e
e3c17b642b827e798f3f2e3eb3ba108aeb1e5769
/Unit 26/judge_set_intersection.py
06ad5d53382c41d1d1937daa0bff2cab437d0d5f
[]
no_license
ckiekim/Python-Lecture-1903
d6c2eecbf56168e5e5da26dc31f1740979ea7c8c
4fa84301f9f1b567ba240823309e9c8d0f3f5c64
refs/heads/master
2020-04-28T15:13:58.892548
2019-03-27T14:03:40
2019-03-27T14:03:40
175,365,462
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
x, y = map(int, input().split()) a = {i for i in range(1, x+1) if x % i == 0} b = {i for i in range(1, x+1) if y % i == 0} divisor = a & b print(a, b, divisor) result = 0 if type(divisor) == set: result = sum(divisor) print(result)
aa07192cc7cff07ad907477514b91befd340672b
40e7e12de3a4c2e3c55d064898f331eb89093ff0
/seleniumbase/console_scripts/sb_behave_gui.py
19b73a535867507fcb1503f6aa1b601c52b85ae3
[ "MIT" ]
permissive
bryoh/SeleniumBase
0f2ed8701557d3c512a65e050271ff1f2a2e02e2
fda7a286c4a0b2cb9015baa19d825b89834c8c1b
refs/heads/master
2023-05-26T16:29:26.919583
2023-05-12T16:51:41
2023-05-12T16:51:41
132,666,520
0
0
MIT
2023-02-01T10:38:22
2018-05-08T21:19:55
Python
UTF-8
Python
false
false
15,167
py
""" Launches SeleniumBase Behave Commander | GUI for Behave. Usage: seleniumbase behave-gui [OPTIONAL PATH or TEST FILE] sbase behave-gui [OPTIONAL PATH or TEST FILE] Examples: sbase behave-gui sbase behave-gui features/ sbase behave-gui features/calculator.feature Output: Launches SeleniumBase Behave Commander | GUI for Behave. """ import colorama import subprocess import sys if sys.version_info <= (3, 7): current_version = ".".join(str(ver) for ver in sys.version_info[:3]) raise Exception( "\n* SBase Commander requires Python 3.7 or newer!" "\n** You are currently using Python %s" % current_version ) import tkinter as tk # noqa: E402 from tkinter.scrolledtext import ScrolledText # noqa: E402 is_windows = False if sys.platform in ["win32", "win64", "x64"]: is_windows = True def set_colors(use_colors): c0 = "" c1 = "" c2 = "" c3 = "" c4 = "" c5 = "" c6 = "" cr = "" if use_colors: colorama.init(autoreset=True) c0 = colorama.Fore.BLUE + colorama.Back.LIGHTCYAN_EX c1 = colorama.Fore.BLUE + colorama.Back.LIGHTGREEN_EX c2 = colorama.Fore.RED + colorama.Back.LIGHTYELLOW_EX c3 = colorama.Fore.BLACK + colorama.Back.LIGHTGREEN_EX c4 = colorama.Fore.BLUE + colorama.Back.LIGHTYELLOW_EX c5 = colorama.Fore.RED + colorama.Back.LIGHTYELLOW_EX c6 = colorama.Fore.MAGENTA + colorama.Back.LIGHTYELLOW_EX cr = colorama.Style.RESET_ALL return c0, c1, c2, c3, c4, c5, c6, cr def send_window_to_front(root): root.lift() root.attributes("-topmost", True) root.after_idle(root.attributes, "-topmost", False) def do_behave_run( root, tests, selected_tests, command_string, browser_string, rs_string, quiet_mode, demo_mode, mobile_mode, dashboard, headless, save_screenshots, additional_options, ): total_tests = len(tests) total_selected_tests = 0 test_to_run = None for selected_test in selected_tests: if selected_tests[selected_test].get(): total_selected_tests += 1 full_run_command = "%s -m behave" % sys.executable if total_selected_tests == 0 or total_tests == total_selected_tests: if command_string: full_run_command += " " full_run_command += command_string else: for test_number, test in enumerate(tests): if selected_tests[test_number].get(): full_run_command += " " test_to_run = test if test.startswith("(GROUP) "): test_to_run = test.split("(GROUP) ")[1] full_run_command += test_to_run.split(" => ")[0] else: full_run_command += test.split(" => ")[0] if "(-D edge)" in browser_string: full_run_command += " -D edge" elif "(-D firefox)" in browser_string: full_run_command += " -D firefox" elif "(-D safari)" in browser_string: full_run_command += " -D safari" if "(-D rs)" in rs_string: full_run_command += " -D rs" elif "(-D rs -D crumbs)" in rs_string: full_run_command += " -D rs -D crumbs" elif "(-D rcs)" in rs_string: full_run_command += " -D rcs" elif "(-D rcs -D crumbs)" in rs_string: full_run_command += " -D rcs -D crumbs" if quiet_mode: full_run_command += " --quiet" if demo_mode: full_run_command += " -D demo" if mobile_mode: full_run_command += " -D mobile" if dashboard: full_run_command += " -D dashboard" if headless: full_run_command += " -D headless" elif "linux" in sys.platform: full_run_command += " -D gui" if save_screenshots: full_run_command += " -D screenshot" additional_options_list = additional_options.split(" ") dash_T_needed = False if ( "-T" not in additional_options_list and "--no-timings" not in additional_options_list and "--show-timings" not in additional_options_list ): dash_T_needed = True dash_k_needed = False if ( "-k" not in additional_options_list and "--no-skipped" not in additional_options_list and "--show-skipped" not in additional_options_list ): dash_k_needed = True additional_options = additional_options.strip() if additional_options: full_run_command += " " full_run_command += additional_options if dash_T_needed: full_run_command += " -T" if dash_k_needed: full_run_command += " -k" print(full_run_command) if not additional_options or " " not in additional_options: subprocess.Popen(full_run_command, shell=True) else: proc = subprocess.Popen( full_run_command, stderr=subprocess.PIPE, shell=True ) (output, error) = proc.communicate() if error and proc.returncode == 2: if str(error).startswith("b'") and str(error).endswith("\\n'"): error = str(error)[2:-3] elif str(error).startswith("b'") and str(error).endswith("'"): error = str(error)[2:-1] else: error = str(error) error = error.replace("\\n", "\n") print(error) send_window_to_front(root) def create_tkinter_gui(tests, command_string, t_count, f_count, s_tests): root = tk.Tk() root.title("SeleniumBase Behave Commander | GUI for Behave") root.minsize(820, 656) tk.Label(root, text="").pack() options_list = [ "Use Chrome Browser (Default)", "Use Edge Browser (-D edge)", "Use Firefox Browser (-D firefox)", ] if "darwin" in sys.platform: options_list.append("Use Safari Browser (-D safari)") brx = tk.StringVar(root) brx.set(options_list[0]) question_menu = tk.OptionMenu(root, brx, *options_list) question_menu.pack() options_list = [ "New Session Per Test (Default)", "Reuse Session for ALL the tests (-D rs)", "Reuse Session and clear cookies (-D rs -D crumbs)", "Reuse Session in the SAME class/feature (-D rcs)", "Reuse Session in class and clear cookies (-D rcs -D crumbs)", ] rsx = tk.StringVar(root) rsx.set(options_list[0]) question_menu = tk.OptionMenu(root, rsx, *options_list) question_menu.pack() qmx = tk.IntVar() chk = tk.Checkbutton( root, text="Quiet Mode (--quiet)", variable=qmx, pady=0 ) chk.pack() dmx = tk.IntVar() chk = tk.Checkbutton( root, text="Demo Mode (-D demo)", variable=dmx, pady=0 ) chk.pack() mmx = tk.IntVar() chk = tk.Checkbutton( root, text="Mobile Mode (-D mobile)", variable=mmx, pady=0 ) chk.pack() dbx = tk.IntVar() chk = tk.Checkbutton( root, text="Dashboard (-D dashboard)", variable=dbx, pady=0 ) chk.pack() chk.select() hbx = tk.IntVar() chk = tk.Checkbutton( root, text="Headless Browser (-D headless)", variable=hbx, pady=0 ) chk.pack() ssx = tk.IntVar() chk = tk.Checkbutton( root, text="Save Screenshots (-D screenshot)", variable=ssx, pady=0 ) chk.pack() tk.Label(root, text="").pack() plural = "s" if f_count == 1: plural = "" run_display = ( "Select from %s rows (%s feature%s with %s scenarios): " "(All tests will run if none are selected)" % (len(tests), f_count, plural, t_count) ) if t_count == 1: run_display = "Only ONE TEST was found and will be run:" tests = s_tests tk.Label(root, text=run_display, bg="yellow", fg="magenta").pack() text_area = ScrolledText( root, width=100, height=12, wrap="word", state=tk.DISABLED ) text_area.pack(side=tk.TOP, fill=tk.BOTH, expand=True) count = 0 ara = {} for row in tests: row += " " * 200 ara[count] = tk.IntVar() cb = None if not is_windows: cb = tk.Checkbutton( text_area, text=(row), bg="teal", fg="yellow", anchor="w", pady=0, variable=ara[count], ) else: cb = tk.Checkbutton( text_area, text=(row), bg="teal", fg="yellow", anchor="w", pady=0, borderwidth=0, highlightthickness=0, variable=ara[count], ) text_area.window_create("end", window=cb) text_area.insert("end", "\n") count += 1 tk.Label(root, text="").pack() additional_options = "" aopts = tk.StringVar(value=additional_options) tk.Label( root, text='Additional "behave" Options: (Eg. "-D incognito --junit")', bg="yellow", fg="blue", ).pack() entry = tk.Entry(root, textvariable=aopts) entry.pack() entry.focus() entry.bind( "<Return>", ( lambda _: do_behave_run( root, tests, ara, command_string, brx.get(), rsx.get(), qmx.get(), dmx.get(), mmx.get(), dbx.get(), hbx.get(), ssx.get(), aopts.get(), ) ), ) tk.Button( root, text="Run Selected Tests", fg="green", bg="gray", command=lambda: do_behave_run( root, tests, ara, command_string, brx.get(), rsx.get(), qmx.get(), dmx.get(), mmx.get(), dbx.get(), hbx.get(), ssx.get(), aopts.get(), ), ).pack() tk.Label(root, text="\n").pack() # Bring form window to front send_window_to_front(root) # Use decoy to set correct focus on main window decoy = tk.Tk() decoy.geometry("1x1") decoy.iconify() decoy.update() decoy.deiconify() decoy.destroy() # Start tkinter root.mainloop() def main(): use_colors = True if "linux" in sys.platform: use_colors = False c0, c1, c2, c3, c4, c5, c6, cr = set_colors(use_colors) command_args = sys.argv[2:] command_string = " ".join(command_args) message = "" message += c2 message += "*" message += c4 message += " Starting the " message += c0 message += "Selenium" message += c1 message += "Base" message += c2 message += " " message += c6 message += "Behave" message += c4 message += " " message += c3 message += "Commander" message += c4 message += " GUI App" message += c2 message += "..." message += cr print(message) command_string = command_string.replace("--quiet", "") command_string = command_string.replace("-q", "") proc = subprocess.Popen( "%s -m behave -d %s --show-source" % (sys.executable, command_string), stdout=subprocess.PIPE, shell=True, ) (output, error) = proc.communicate() if error: error_msg = "Error collecting tests: %s" % str(error) error_msg = c5 + error_msg + cr print(error_msg) return filename = None feature_name = None scenario_name = None f_tests = [] # Features s_tests = [] # Scenarios tests = [] # All tests file_scenario_count = {} f_count = 0 s_count = 0 t_count = 0 if is_windows: output = output.decode("latin1") else: output = output.decode("utf-8") for row in output.replace("\r", "").split("\n"): if row.startswith("Feature: "): if f_count > 0: file_scenario_count[str(f_count)] = s_count f_count += 1 s_count = 0 elif row.startswith(" Scenario: "): s_count += 1 file_scenario_count[str(f_count)] = s_count elif row.startswith(" Scenario Outline: "): s_count += 1 file_scenario_count[str(f_count)] = s_count file_scenario_count[str(f_count)] = s_count f_count = 0 s_count = 0 for row in output.replace("\r", "").split("\n"): if row.startswith("Feature: "): f_count += 1 feature_name = row.split("Feature: ")[1] if " # features/" in feature_name: filename = feature_name.split(" # features/")[-1] filename = "features/" + filename.split(":")[0] feature_name = feature_name.split(" # features/")[0] elif " # features\\" in feature_name: filename = feature_name.split(" # features\\")[-1] filename = "features\\" + filename.split(":")[0] feature_name = feature_name.split(" # features\\")[0] else: filename = feature_name.split(" # ")[-1] filename = filename.split(":")[0] feature_name = feature_name.split(" # ")[-1] s_count = file_scenario_count[str(f_count)] filename = filename.strip() t_name = "(GROUP) %s => %s" % (filename, feature_name) t_name += " <> (%s Total)" % s_count f_tests.append(t_name) elif ( row.startswith(" Scenario: ") or row.startswith(" Scenario Outline: ") ): t_count += 1 line_num = row.split(":")[-1] scenario_name = None if row.startswith(" Scenario: "): scenario_name = row.split(" Scenario: ")[-1] else: scenario_name = row.split(" Scenario Outline: ")[-1] if " -- @" in scenario_name: scenario_name = scenario_name.split(" # ")[0].rstrip() elif " # features/" in scenario_name: scenario_name = scenario_name.split(" # features/")[0] else: scenario_name = scenario_name.split(" # ")[0] scenario_name = scenario_name.strip() s_tests.append("%s:%s => %s" % (filename, line_num, scenario_name)) tests = f_tests + s_tests if not tests: err_msg_0 = c5 + "ERROR:" + cr + "\n" err_msg_1 = ' No "behave" tests found! Expecting "*.feature" files!' err_msg_1 = c6 + err_msg_1 + cr + "\n" err_msg_2 = ' "*.feature" files would live in a "features/" folder.' err_msg_2 = c6 + err_msg_2 + cr + "\n" err_msg_3 = "Exiting SBase Behave Commander..." err_msg_3 = c5 + err_msg_3 + cr error_msg = err_msg_0 + err_msg_1 + err_msg_2 + err_msg_3 print(error_msg) return create_tkinter_gui(tests, command_string, t_count, f_count, s_tests) if __name__ == "__main__": print('To open SBase Behave Commander, type "sbase behave-gui"')
183661cb8b23d1df34f583e6b5382ed03c4b6ce8
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/eqpt/ingrstorm5min.py
b3222a2b328d64900531c4742e3aa46ea97d0615
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
20,191
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class IngrStorm5min(Mo): """ A class that represents the most current statistics for Ingress Storm Ctrl in a 5 minute sampling interval. This class updates every 10 seconds. """ meta = StatsClassMeta("cobra.model.eqpt.IngrStorm5min", "Ingress Storm Ctrl") counter = CounterMeta("dropBytesRate", CounterCategory.GAUGE, "bytes-per-second", "Storm Ctrl Drop Bytes rate") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "dropBytesRateLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "dropBytesRateMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "dropBytesRateMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "dropBytesRateAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "dropBytesRateSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "dropBytesRateTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "dropBytesRateThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "dropBytesRateTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "dropBytesRateTr" meta._counters.append(counter) counter = CounterMeta("dropBytes", CounterCategory.COUNTER, "bytes", "Storm Ctrl Drop Bytes") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "dropBytesLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "dropBytesCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "dropBytesPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "dropBytesMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "dropBytesMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "dropBytesAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "dropBytesSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "dropBytesBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "dropBytesThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "dropBytesTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "dropBytesTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "dropBytesRate" meta._counters.append(counter) meta.moClassName = "eqptIngrStorm5min" meta.rnFormat = "CDeqptIngrStorm5min" meta.category = MoCategory.STATS_CURRENT meta.label = "current Ingress Storm Ctrl stats in 5 minute" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.pc.AggrIf") meta.parentClasses.add("cobra.model.l1.PhysIf") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.eqpt.IngrStorm") meta.superClasses.add("cobra.model.stats.Item") meta.rnPrefixes = [ ('CDeqptIngrStorm5min', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "dropBytesAvg", "dropBytesAvg", 18046, PropCategory.IMPLICIT_AVG) prop.label = "Storm Ctrl Drop Bytes average value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesAvg", prop) prop = PropMeta("str", "dropBytesBase", "dropBytesBase", 18041, PropCategory.IMPLICIT_BASELINE) prop.label = "Storm Ctrl Drop Bytes baseline" prop.isOper = True prop.isStats = True meta.props.add("dropBytesBase", prop) prop = PropMeta("str", "dropBytesCum", "dropBytesCum", 18042, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Storm Ctrl Drop Bytes cumulative" prop.isOper = True prop.isStats = True meta.props.add("dropBytesCum", prop) prop = PropMeta("str", "dropBytesLast", "dropBytesLast", 18040, PropCategory.IMPLICIT_LASTREADING) prop.label = "Storm Ctrl Drop Bytes current value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesLast", prop) prop = PropMeta("str", "dropBytesMax", "dropBytesMax", 18045, PropCategory.IMPLICIT_MAX) prop.label = "Storm Ctrl Drop Bytes maximum value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesMax", prop) prop = PropMeta("str", "dropBytesMin", "dropBytesMin", 18044, PropCategory.IMPLICIT_MIN) prop.label = "Storm Ctrl Drop Bytes minimum value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesMin", prop) prop = PropMeta("str", "dropBytesPer", "dropBytesPer", 18043, PropCategory.IMPLICIT_PERIODIC) prop.label = "Storm Ctrl Drop Bytes periodic" prop.isOper = True prop.isStats = True meta.props.add("dropBytesPer", prop) prop = PropMeta("str", "dropBytesRate", "dropBytesRate", 18051, PropCategory.IMPLICIT_RATE) prop.label = "Storm Ctrl Drop Bytes rate" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRate", prop) prop = PropMeta("str", "dropBytesRateAvg", "dropBytesRateAvg", 18064, PropCategory.IMPLICIT_AVG) prop.label = "Storm Ctrl Drop Bytes rate average value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateAvg", prop) prop = PropMeta("str", "dropBytesRateLast", "dropBytesRateLast", 18061, PropCategory.IMPLICIT_LASTREADING) prop.label = "Storm Ctrl Drop Bytes rate current value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateLast", prop) prop = PropMeta("str", "dropBytesRateMax", "dropBytesRateMax", 18063, PropCategory.IMPLICIT_MAX) prop.label = "Storm Ctrl Drop Bytes rate maximum value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateMax", prop) prop = PropMeta("str", "dropBytesRateMin", "dropBytesRateMin", 18062, PropCategory.IMPLICIT_MIN) prop.label = "Storm Ctrl Drop Bytes rate minimum value" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateMin", prop) prop = PropMeta("str", "dropBytesRateSpct", "dropBytesRateSpct", 18065, PropCategory.IMPLICIT_SUSPECT) prop.label = "Storm Ctrl Drop Bytes rate suspect count" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateSpct", prop) prop = PropMeta("str", "dropBytesRateThr", "dropBytesRateThr", 18067, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Storm Ctrl Drop Bytes rate thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("dropBytesRateThr", prop) prop = PropMeta("str", "dropBytesRateTr", "dropBytesRateTr", 18069, PropCategory.IMPLICIT_TREND) prop.label = "Storm Ctrl Drop Bytes rate trend" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateTr", prop) prop = PropMeta("str", "dropBytesRateTrBase", "dropBytesRateTrBase", 18068, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Storm Ctrl Drop Bytes rate trend baseline" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateTrBase", prop) prop = PropMeta("str", "dropBytesRateTtl", "dropBytesRateTtl", 18066, PropCategory.IMPLICIT_TOTAL) prop.label = "Storm Ctrl Drop Bytes rate total sum" prop.isOper = True prop.isStats = True meta.props.add("dropBytesRateTtl", prop) prop = PropMeta("str", "dropBytesSpct", "dropBytesSpct", 18047, PropCategory.IMPLICIT_SUSPECT) prop.label = "Storm Ctrl Drop Bytes suspect count" prop.isOper = True prop.isStats = True meta.props.add("dropBytesSpct", prop) prop = PropMeta("str", "dropBytesThr", "dropBytesThr", 18048, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Storm Ctrl Drop Bytes thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("dropBytesThr", prop) prop = PropMeta("str", "dropBytesTr", "dropBytesTr", 18050, PropCategory.IMPLICIT_TREND) prop.label = "Storm Ctrl Drop Bytes trend" prop.isOper = True prop.isStats = True meta.props.add("dropBytesTr", prop) prop = PropMeta("str", "dropBytesTrBase", "dropBytesTrBase", 18049, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Storm Ctrl Drop Bytes trend baseline" prop.isOper = True prop.isStats = True meta.props.add("dropBytesTrBase", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("l1EthIfToEPg", "EPG", "cobra.model.fv.EPg")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
be1275ae642e75f3b7013809e57c2dd830e8801e
f531c56db4cd2776c765b9aca0c4cebaea864ec2
/ABC152/b.py
67ad0d250e393f4fab6a6c5be90863c24befc29a
[]
no_license
SatoKeiju/AtCoder-Python3
1c76f8ec5d99470b6e316115f0433b4b3cb64024
9c2860e2cfda490d5848b0557876ef616eff01a2
refs/heads/master
2021-06-23T05:59:46.911733
2021-03-30T08:00:34
2021-03-30T08:00:34
212,088,768
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
def main(): a, b = map(int, input().split()) print(str(min(a, b)) * max(a, b)) if __name__ == '__main__': main()
7e045832ecae12c48e1e1b63db2b5658de3529ec
2293c76c3d18e2fcd44ded90bd40113d26285663
/pyeccodes/defs/grib1/localConcepts/eswi/sort_table.py
03e1224d57722c17f3827e62f20c2c5f19e1c0d2
[ "Apache-2.0" ]
permissive
ecmwf/pyeccodes
b1f121dbddf68d176a03805ed5144ba0b37ac211
dce2c72d3adcc0cb801731366be53327ce13a00b
refs/heads/master
2022-04-23T10:37:40.524078
2020-04-18T06:30:29
2020-04-18T06:30:29
255,554,540
9
3
null
null
null
null
UTF-8
Python
false
false
7,112
py
def load(h): return ({'abbr': 0, 'code': 0, 'title': 'none'}, {'abbr': 1, 'code': 1, 'title': 'Atm. conc. [g/kg]'}, {'abbr': 2, 'code': 2, 'title': 'Log Atm. conc. [g/kg]'}, {'abbr': 3, 'code': 3, 'title': 'Atm. conc. [g/m3]'}, {'abbr': 3, 'code': 3, 'title': 'Atm. conc. [g/m3]'}, {'abbr': 4, 'code': 4, 'title': 'Log Atm. conc. [g/m3]'}, {'abbr': 7, 'code': 7, 'title': 'Atm. conc. [number/m3]'}, {'abbr': 9, 'code': 9, 'title': 'Atm. conc. [Bq/m3]'}, {'abbr': 10, 'code': 10, 'title': 'Log Atm. conc. [Bq/m3]'}, {'abbr': 11, 'code': 11, 'title': 'Atm. conc. at reference height [g/kg]'}, {'abbr': 12, 'code': 12, 'title': 'Atm. conc. at reference height [g/m3]'}, {'abbr': 13, 'code': 13, 'title': 'Log Atm. conc. at reference height [g/m3]'}, {'abbr': 14, 'code': 14, 'title': 'Total column [g/m2]'}, {'abbr': 14, 'code': 14, 'title': 'Column up to 6000m [g/m2]'}, {'abbr': 14, 'code': 14, 'title': 'Column up above 6000m [g/m2]'}, {'abbr': 14, 'code': 14, 'title': 'Max in column up to 6000m [g/m3]'}, {'abbr': 14, 'code': 14, 'title': 'Max in column above 6000m [g/m3]'}, {'abbr': 15, 'code': 15, 'title': 'Level at max in column up to 6000m [m]'}, {'abbr': 15, 'code': 15, 'title': 'Level at max in column above 6000m [m]'}, {'abbr': 21, 'code': 21, 'title': 'Integrated atm. conc. s [g/kg]'}, {'abbr': 22, 'code': 22, 'title': 'Log Integrated atm. conc. s [g/kg]'}, {'abbr': 23, 'code': 23, 'title': 'Integrated atm. conc. s [g/m3]'}, {'abbr': 24, 'code': 24, 'title': 'Logarith of Integrated atm. conc. s [g/m3]'}, {'abbr': 27, 'code': 27, 'title': 'Integrated atm. conc. s [number/m3]'}, {'abbr': 29, 'code': 29, 'title': 'Integrated atm. conc. s [Bq/m3]'}, {'abbr': 30, 'code': 30, 'title': 'Log Integrated atm. conc. s [Bq/m3]'}, {'abbr': 51, 'code': 51, 'title': 'Conc. in liquid water [g/m3]'}, {'abbr': 53, 'code': 53, 'title': 'Conc. in liquid water Equivalents/m3'}, {'abbr': 54, 'code': 54, 'title': 'Conc. in liquid water [number/m3]'}, {'abbr': 55, 'code': 55, 'title': 'Conc. in liquid water [Bq/m3]'}, {'abbr': 61, 'code': 61, 'title': 'Conc. in ice water [g/m3]'}, {'abbr': 63, 'code': 63, 'title': 'Conc. in ice water Equivalents/m3'}, {'abbr': 64, 'code': 64, 'title': 'Conc. in ice water [number/m3]'}, {'abbr': 65, 'code': 65, 'title': 'Conc. in ice water [Bq/m3]'}, {'abbr': 71, 'code': 71, 'title': 'Conc. in precipitation [g/m3]', 'units': 'mg/l'}, {'abbr': 73, 'code': 73, 'title': 'Conc. in precipitation Equivalents/m3'}, {'abbr': 74, 'code': 74, 'title': 'Conc. in precipitation [number/m3]'}, {'abbr': 75, 'code': 75, 'title': 'Conc. in precipitation [Bq/m3]'}, {'abbr': 81, 'code': 81, 'title': 'Dry deposition [g/m2]'}, {'abbr': 82, 'code': 82, 'title': 'Log Dry deposition [g/m2]'}, {'abbr': 84, 'code': 84, 'title': 'Dry deposition [number/m2]'}, {'abbr': 85, 'code': 85, 'title': 'Dry deposition [Bq/m2]'}, {'abbr': 91, 'code': 91, 'title': 'Wet deposition [g/m2]'}, {'abbr': 92, 'code': 92, 'title': 'Log Wet deposition [g/m2]'}, {'abbr': 94, 'code': 94, 'title': 'Wet deposition [number/m2]'}, {'abbr': 95, 'code': 95, 'title': 'Wet deposition [Bq/m2]'}, {'abbr': 101, 'code': 101, 'title': 'Total deposition [g/m2]'}, {'abbr': 102, 'code': 102, 'title': 'Log Total deposition [g/m2]'}, {'abbr': 104, 'code': 104, 'title': 'Total deposition [number/m2]'}, {'abbr': 105, 'code': 105, 'title': 'Total deposition [Bq/m2]'}, {'abbr': 110, 'code': 110, 'title': 'Emissions [ton]'}, {'abbr': 111, 'code': 111, 'title': 'Emissions [kg]'}, {'abbr': 112, 'code': 112, 'title': 'Emissions [g]'}, {'abbr': 114, 'code': 114, 'title': 'Emissions [number]'}, {'abbr': 115, 'code': 115, 'title': 'Emissions [Bq]'}, {'abbr': 121, 'code': 121, 'title': 'Emissions [kg/s]'}, {'abbr': 122, 'code': 122, 'title': 'Emissions [g/s]'}, {'abbr': 124, 'code': 124, 'title': 'Emissions [number/s]'}, {'abbr': 125, 'code': 125, 'title': 'Emissions [Bq/s]'}, {'abbr': 131, 'code': 131, 'title': 'Emissions [kg/(m2 s)]'}, {'abbr': 132, 'code': 132, 'title': 'Emissions [g/(m2 s)]'}, {'abbr': 134, 'code': 134, 'title': 'Emissions [number/(m2 s)]'}, {'abbr': 135, 'code': 135, 'title': 'Emissions [Bq/(m2 s)]'}, {'abbr': 136, 'code': 136, 'title': 'Surface emissions [kg/(m2 s)]'}, {'abbr': 137, 'code': 137, 'title': 'Surface emissions [g/(m2 s)]'}, {'abbr': 138, 'code': 138, 'title': 'Surface emissions [number/(m2 s)]'}, {'abbr': 139, 'code': 139, 'title': 'Surface emissions [Bq/(m2 s)]'}, {'abbr': 150, 'code': 150, 'title': 'Inhalation dose [nSv]'}, {'abbr': 151, 'code': 151, 'title': 'Ground dose [nSv]'}, {'abbr': 152, 'code': 152, 'title': 'Infinite cloud dose [nSv]'}, {'abbr': 153, 'code': 153, 'title': 'Sum of cloud and ground dose [nSv]'}, {'abbr': 201, 'code': 201, 'title': 'Dry deposition velocity [m/s]'}, {'abbr': 202, 'code': 202, 'title': 'Settling velocity [m/s]'}, {'abbr': 203, 'code': 203, 'title': 'Scavenging coefficient [1/s]'}, {'abbr': 205, 'code': 205, 'title': 'Degree hours or days for last day [K]'}, {'abbr': 206, 'code': 206, 'title': 'Current degree days [K]'}, {'abbr': 207, 'code': 207, 'title': 'Critical degree days [K]'}, {'abbr': 208, 'code': 208, 'title': 'Accum pollen emission [grains/m2]'}, {'abbr': 209, 'code': 209, 'title': 'Correction factor [fraction]'}, {'abbr': 210, 'code': 210, 'title': 'Aerosol optical depth []'}, {'abbr': 240, 'code': 240, 'title': 'Deposition arrival since 1 Jan 1971 [days]'}, {'abbr': 241, 'code': 241, 'title': 'Latest deposition since 1 Jan 1971 [days]'}, {'abbr': 242, 'code': 242, 'title': 'Time of max activity since 1 Jan 1971 [days]'}, {'abbr': 243, 'code': 243, 'title': 'Max radioactive activity [Bq/m2]'}, {'abbr': 244, 'code': 244, 'title': 'Log Max radioactive activity'}, {'abbr': 250, 'code': 250, 'title': 'Relative occurrence []'}, {'abbr': 251, 'code': 251, 'title': 'statistics [kg]'}, {'abbr': 252, 'code': 252, 'title': 'statistics [mol]'}, {'abbr': None, 'code': 255, 'title': 'missing value'})