blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
177ec5ab1a07b52261f471748deaed236f5d9924
99e88bd6c2bb50e38f5bb68f0d5242def0442f7f
/tests/test_struct.py
a378da250be0b66d31d8f26b5b0d02c745c21343
[]
no_license
vahtras/vb
ea1bb59a8e6125203d9498f2808a7bf8e6ad5916
425402e619aab7d69d7f5d3971439d532d36de0b
refs/heads/master
2021-01-15T15:42:46.158363
2016-10-13T09:06:22
2016-10-13T09:06:22
47,419,292
0
0
null
null
null
null
UTF-8
Python
false
false
1,687
py
import unittest from util.full import init from findifftool.core import clgrad, DELTA from . import vb from vb.core import * class StructTest(unittest.TestCase): def setUp(self): Nod.S = init([[1.0, 0.1], [0.1, 1.0]]) Nod.C = init([[0.7, 0.7], [0.7, -0.7]]) self.alpha0 = Nod([0], []) self.alpha1 = Nod([1], []) self.beta0 = Nod([], [0]) self.beta1 = Nod([], [1]) self.ab00 = Nod([0], [0]) def tearDown(self): pass def test_structure_coefficients_consistent(self): with self.assertRaises(StructError): struct = Structure([Nod([0], [0])], []) def test_structure_output(self): struct_a = Structure([self.alpha0], [1.0]) self.assertEqual(str(struct_a), "0.963143 (0|)") def test_structure_ms(self): with self.assertRaises(StructError): struct = Structure([self.alpha0, self.beta0], [1, 1]) def test_normalized(self): ab = Structure([self.ab00], [1.0]) self.assertAlmostEqual(ab*ab, 1.0) def test_keep_unnormalized(self): ab = Structure([self.ab00], [1.0], normalize=False) self.assertAlmostEqual(ab*ab, 1.162084) def test_norm_gradient(self): ab = Structure([self.ab00], [1.0]) #assert False num_diff = clgrad(ab, 'overlap', 'C')() ana_diff = ab.overlap_gradient() np.testing.assert_allclose(ana_diff, num_diff, rtol=DELTA, atol=DELTA) def test_struct_mo_propagated(self): ab = Structure([self.ab00], [1.0]) ab.C = init([1,2,3,4]) self.assertEqual(id(ab.C), id(ab.nods[0].C)) if __name__ == "__main__": unittest.main()
0bfa8bd26f28131255750f7fceb64d05ccfe39e6
360c777a2b77be466b1cf7c8fd74d6fd04f56b55
/migrations/versions/1e5cd35569af_.py
eabfd29c2469753fa35c275467e477d5e0946760
[ "MIT" ]
permissive
hreeder/nexus-auth
790a3b2623ddf443138a4b0f0af1380dbc4db8ae
8d51aef01647e32ba4a284f02de73a2caad7cf49
refs/heads/master
2021-01-10T10:08:37.190558
2016-02-29T12:27:21
2016-02-29T12:27:21
52,789,087
0
0
null
null
null
null
UTF-8
Python
false
false
807
py
"""empty message Revision ID: 1e5cd35569af Revises: 51d27a60b822 Create Date: 2014-06-24 22:26:10.421081 """ # revision identifiers, used by Alembic. revision = '1e5cd35569af' down_revision = '51d27a60b822' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('character_keys', sa.Column('character_id', sa.Integer(), nullable=True), sa.Column('key_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['character_id'], ['character.id'], ), sa.ForeignKeyConstraint(['key_id'], ['api_key.id'], ) ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('character_keys') ### end Alembic commands ###
4bbfa20fd19cd5b5194cd16b2af4adc22c20a60d
ded13e921c8365c6113911a5834969ec3d33f989
/082/Remove Duplicates from Sorted List II.py
2dd27f6dcafbf95d6357d10e5156dc9fc2abbec7
[]
no_license
ArrayZoneYour/LeetCode
b7b785ef0907640623e5ab8eec1b8b0a9d0024d8
d09f56d4fef859ca4749dc753d869828f5de901f
refs/heads/master
2021-04-26T23:03:10.026205
2018-05-09T15:49:08
2018-05-09T15:49:08
123,922,098
0
1
null
null
null
null
UTF-8
Python
false
false
1,688
py
# /usr/bin/python # coding: utf-8 # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def deleteDuplicates(self, head): """ :type head: ListNode :rtype: ListNode Given 1->2->3->3->4->4->5, return 1->2->5. Given dummy->1->1->1->2->3, return 2->3. """ dummyHead = ListNode(0) dummyHead.next = head # 以下一个元素作为当前指针 if not head: return head cur = head if cur.next is None: return head # 以dummyHead为前一个元素 pre = dummyHead while cur is not None and cur.next is not None: # 判断下一个元素和当前元素指针值相同 if cur.next.val == cur.val: # 如果值相同,当前元素的next指针指向next的next,直至不同或者指向空为止 while cur.next is not None and cur.next.val == cur.val: cur.next = cur.next.next # 前一个元素的指针指向当前元素的下一个 pre.next = cur.next # 判断得到下一个元素的值与当前元素指针对应的值不同 else: pre = pre.next # 当前指针后移 cur = cur.next # 如果当前元素值或者下一个元素值为None,返回dummyHead.next return dummyHead.next node1 = ListNode(1) node2 = ListNode(1) node3 = ListNode(2) node4 = ListNode(2) node1.next = node2 node2.next = node3 node3.next = node4 Solution().deleteDuplicates(node1) print()
1ae02112a6b34c47b25fc53f5eeae25ccc13eca9
50dd2a43daa8316fc11e0c176b5872738fcc5dde
/Learning/071_Get_Movie_Summary/GetMovieSummary.py
a84b1602f2c2ed7a0ca49bbc1cb1d69b1c6bb938
[]
no_license
FrenchBear/Python
58204d368e3e72071eef298ff00d06ff51bd7914
b41ab4b6a59ee9e145ef2cd887a5fe306973962b
refs/heads/master
2023-08-31T18:43:37.792427
2023-08-26T15:53:20
2023-08-26T15:53:20
124,466,047
0
0
null
null
null
null
UTF-8
Python
false
false
1,795
py
# GetMovieSummary.py # Simple app using TheMovieDb.org to retrieve movie information # pip install tmdbsimple # # 2020-07-15 PV # 2023-01-03 PV Added .mp4 suffix import os import tmdbsimple as tmdb # type: ignore from typing import Iterable # Chemin complet de tous les fichiers à partir d'une racine def get_all_files(path: str) -> Iterable[str]: for root, subs, files in os.walk(path): for file in files: yield os.path.join(root, file) tmdb.API_KEY = 'ecdd67089c844d17e9f72a053609ed9f' search = tmdb.Search() processed = [] source = r'V:\Films\# A_Trier' for fullpath in get_all_files(source): path, file = os.path.split(fullpath) basename, ext = os.path.splitext(file) if ext.lower() in ['.mkv', '.avi', '.mp4']: segments = basename.split(' - ') title = segments[0] s2 = title.split(' (') title = s2[0] if not title in processed: processed.append(title) print(title) textfile = os.path.join(path, title+'.txt') if not os.path.exists(textfile): with open(textfile, mode='w', encoding='utf-8') as out: response = search.movie(query=title) s:dict for s in search.results: out.write(s['title']+'\n') out.write(s.get('release_date','')+'\n') out.write(s['overview']+'\n\n') # #response = search.movie(query='A Few Good Men') # #response = search.movie(query='The Black Hole') # response = search.movie(query='La vie de Brian') # for s in search.results: # print(s['title'], s['release_date'], s['overview']) # #print(s['title'], s['id'], s['release_date'], s['popularity'])
93df35b7e5445736b838d299bc73a4b524517d1e
8ab6330e149fb4bcd303f3ca12b3e10bb08eda3e
/RPA-python/rpa_basic/excel/9_move.py
92be2254f0d09f796407a904a104807222dc4477
[]
no_license
jongin1004/python
73e72b9187a0a707777e1474f5bb48f33a603e8f
997e6bf59c71943d65447d11729a225b8e323a16
refs/heads/main
2023-08-05T02:44:01.673614
2023-08-02T07:51:56
2023-08-02T07:51:56
300,539,057
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from openpyxl import load_workbook wb = load_workbook('sample.xlsx') ws = wb.active # 번호, 영어, 수학 -> 번호, 국어, 영어, 수학 # 이동하려는 범위의 값을 같은행(rows=0)에 열만 1칸 오른쪽(cols=1)으로 이동하도록 # 값을 # ws.move_range("B1:C11", rows=0, cols=1) # ws['B1'].value = '국어' # -는 반대 방향으로 이동 ws.move_range("C1:C11", rows=5, cols=-1) wb.save('sample_modify.xlsx') wb.close()
b20d1fbac2a2d855a426c601759521a07a9efb5c
88620a5d4526493112c157cd7a80b160e794f956
/testgames.py
24bae21126ca311af9db144921e21f6d2c8abd0a
[]
no_license
sweettea/python-airmash
6da7b225642ca188e9a3f0e33895bf91de286c4d
3640fc96d46cce5360b4a7a866eccabea3616de6
refs/heads/master
2021-05-14T18:40:00.661754
2018-01-07T02:38:09
2018-01-07T02:38:09
116,082,157
0
1
null
2018-01-03T02:39:24
2018-01-03T02:39:24
null
UTF-8
Python
false
false
441
py
from airmash import games url = games.get_url('eu', 'ffa1') print("Game URL: {}".format(url)) data = games.get_data() for region_id in data['regions']: region = data['regions'][region_id] print('\nRegion: {} ({})'.format(region['name'], region_id)) for game_id in region['games']: game = region['games'][game_id] print('{}, {} players - URL: {}'.format(game['name'], game['players'], game['url'])) print('')
6f5fc2de343a2b0e2c06629972e900ea90911b5c
fda201d7cca34e216a17d97665c8457c72e66cb2
/voting/tests/factories.py
effa73194a92f887e852dba761788d9759e92dba
[ "Apache-2.0" ]
permissive
SmartElect/SmartElect
94ab192beb32320e9ae8ae222f90ee531037c1c6
d6d35f2fa8f60e756ad5247f8f0a5f05830e92f8
refs/heads/develop
2020-12-26T04:04:42.753741
2019-07-17T17:08:25
2019-07-17T17:08:25
44,687,036
24
12
Apache-2.0
2020-06-06T07:16:48
2015-10-21T15:47:07
Python
UTF-8
Python
false
false
1,479
py
import random from datetime import timedelta from factory import DjangoModelFactory, SubFactory, Sequence from factory.declarations import LazyAttribute from factory.fuzzy import FuzzyDateTime from django.utils.timezone import now from voting.models import Ballot, Candidate, Election, RegistrationPeriod start_dt = now() class ElectionFactory(DjangoModelFactory): class Meta: model = Election name_english = Sequence(lambda n: "Election %d" % n) name_arabic = Sequence(lambda n: "Election %d (ar)" % n) polling_start_time = FuzzyDateTime(start_dt=start_dt - timedelta(days=2), end_dt=start_dt - timedelta(days=1)) polling_end_time = FuzzyDateTime(start_dt=start_dt + timedelta(days=2), end_dt=start_dt + timedelta(days=3)) class BallotFactory(DjangoModelFactory): class Meta: model = Ballot ballot_type = LazyAttribute(lambda o: random.choice(Ballot.VALID_RACE_TYPES)) election = SubFactory(ElectionFactory) internal_ballot_number = Sequence(int) class CandidateFactory(DjangoModelFactory): class Meta: model = Candidate ballot = SubFactory(BallotFactory) name_english = Sequence(lambda n: "Candidate %d" % n) name_arabic = Sequence(lambda n: "Candidate %d (ar)" % n) candidate_number = Sequence(int) class RegistrationPeriodFactory(DjangoModelFactory): class Meta: model = RegistrationPeriod
d428a0c2923c810ba7fe622e0a9c3497156c3348
2979d177a9388b25a84179127a06728b44955268
/First-Year/CA117-Labs/Lab3/reversecomp_0311.py
597ac50e665839a62aba123af4dcd35b3601a859
[]
no_license
BrendanSimms8898/Python
ccb2b8284aa4e187ab89d4fc34b7fe7a980950cc
920c39fe02a26e7b131f299d5d082d13021df78b
refs/heads/master
2023-08-16T00:58:28.742295
2021-10-07T12:42:14
2021-10-07T12:42:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
#!/usr/bin/env python3 import sys def revcom(words): return([word for word in words if len(word) >= 5 and word[::-1] in words]) def main(): words = [word.strip() for word in sys.stdin] print(revcom(words)) if __name__ == '__main__': main()
daf1e49afe7cc6634eb7d0c2bc13eb678c4fa7a3
07527179eef5debf8932e6f8ba52742fb078c8ab
/styleguide_example/users/apis.py
56c2e717e136029ddcef47ba199949afd095e169
[ "MIT" ]
permissive
brunofvpp/Styleguide-Example
5389c0ca757c2e3d0e836f3e0b3457bc4ba9960d
0514a7dd534b1eea2a0baa5e29d05a51ff8bc41c
refs/heads/master
2023-08-15T04:23:09.642185
2021-10-04T09:38:09
2021-10-04T09:38:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,543
py
from rest_framework.views import APIView from rest_framework import serializers from styleguide_example.api.mixins import ApiErrorsMixin from styleguide_example.api.pagination import get_paginated_response, LimitOffsetPagination from styleguide_example.users.selectors import user_list from styleguide_example.users.models import BaseUser # TODO: When JWT is resolved, add authenticated version class UserListApi(ApiErrorsMixin, APIView): class Pagination(LimitOffsetPagination): default_limit = 1 class FilterSerializer(serializers.Serializer): id = serializers.IntegerField(required=False) # Important: If we use BooleanField, it will default to False is_admin = serializers.NullBooleanField(required=False) email = serializers.EmailField(required=False) class OutputSerializer(serializers.ModelSerializer): class Meta: model = BaseUser fields = ( 'id', 'email', 'is_admin' ) def get(self, request): # Make sure the filters are valid, if passed filters_serializer = self.FilterSerializer(data=request.query_params) filters_serializer.is_valid(raise_exception=True) users = user_list(filters=filters_serializer.validated_data) return get_paginated_response( pagination_class=self.Pagination, serializer_class=self.OutputSerializer, queryset=users, request=request, view=self )
cc62bcc7205e8c86cefdb8329f467b67aa8ad039
9545652800884f0e54fe6595d8634c29ea4827a2
/模拟面试/leetCode_168_串联字符串的最大长度.py
4d63432852efd76698194bbf3a2a16c37ecacc49
[]
no_license
challeger/leetCode
662d9f600a40fd8970568679656f6911a6fdfb05
d75c35b6f8ab33c158de7fa977ab0b16dac4fc25
refs/heads/master
2023-01-13T07:34:42.464959
2020-11-13T02:40:31
2020-11-13T02:40:31
286,426,790
1
0
null
null
null
null
UTF-8
Python
false
false
1,024
py
""" day: 2020-09-14 url: https://leetcode-cn.com/problems/maximum-length-of-a-concatenated-string-with-unique-characters/ 题目名: 串联字符串的最大长度 给定一个字符串数组 arr,字符串 s 是将 arr 某一子序列字符串连接所得的字符串 如果 s 中的每一个字符都只出现过一次,那么它就是一个可行解。 请返回所有可行解 s 中最长长度 示例: 输入:arr = ["un","iq","ue"] 输出:4 思路: 深度遍历,判断每一种可能性. """ from typing import List class Solution: def maxLength(self, arr: List[str]) -> int: def is_repeat(s): return len(s) == len(set(s)) res = 0 n = len(arr) def dfs(index, path): nonlocal res if index >= n: res = max(res, len(path)) return foo = path + arr[index] if is_repeat(foo): dfs(index+1, foo) dfs(index+1, path) dfs(0, '') return res
054c3c33e78838f6a9ba28c44196908020f21232
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02554/s866916139.py
1d67b2a68376143ed1bd7e8e9e1004056e4ac21c
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
211
py
''' 参考 https://qiita.com/u2dayo/items/98917c94c89c77b9b3a1#c%E5%95%8F%E9%A1%8Cubiquity ''' MOD = 10 ** 9 + 7 N = int(input()) ans = pow(10, N) ans -= 2 * pow(9, N) ans += pow(8, N) ans %= MOD print(ans)
34a096c61f612a6449607b8e24560f2e5a7200d2
93a7f579adc1882939a6ace69deefa4127c7c3cb
/code/chp12-scraping/selenium_form_submit.py
5bd9167669e44eee13e7268d87a0dd337b1c45aa
[]
no_license
tschoi6712/dataWrangling
251060bfc6c9075042d649e59a17662e0c92545c
28df17afc706bb5ab3786d144615eb80957495b8
refs/heads/master
2022-12-08T17:09:56.194795
2019-09-24T07:19:48
2019-09-24T07:19:48
210,534,336
0
0
null
2022-12-07T23:33:32
2019-09-24T07:01:45
HTML
UTF-8
Python
false
false
698
py
from selenium import webdriver from time import sleep #browser = webdriver.Firefox() browser = webdriver.Chrome('C:/chromedriver/chromedriver.exe') browser.get('http://google.com') inputs = browser.find_elements_by_css_selector('form input') for i in inputs: if i.is_displayed(): search_bar = i break search_bar.send_keys('web scraping with python') search_button = browser.find_element_by_css_selector('form button') search_button.click() browser.implicitly_wait(10) results = browser.find_elements_by_css_selector('div h3 a') for r in results: action = webdriver.ActionChains(browser) action.move_to_element(r) action.perform() sleep(2) browser.quit()
c00c986d9c0b1b0a62d76888e0ac40192dd9453d
210e88536cd2a917fb66010ff69f6710b2261e8e
/environment/admin.py
8c6af3c1d35fcc6084684ab6ba65039f0c4c7fd7
[]
no_license
tlam/multiverse_sidekick
e5ef1fa908c6fd3fee4d816aa1776b7243075e8c
9211e4cb36611088420a79666f0c40ecb0a6b645
refs/heads/master
2020-04-17T08:30:28.396623
2015-08-27T03:36:47
2015-08-27T03:36:47
9,423,955
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
from django.contrib import admin from environment.models import Environment admin.site.register(Environment)
2359b782828f9d49623622307e680a93981e9e5f
b66c3ec94db4f6ced5d7fb3099c7af1227ea8c02
/unit/test_zuoye1_2.py
c7bebbd30ec3ead23ed23d4c512451b5191ce0d3
[]
no_license
moshang1003/hogwartsSDET11
0c6b6a0bc7caedaade17b9b39607cefdf4fde5e4
e0eb30826a8f23b08c964c805dfe2cd5ae503826
refs/heads/master
2021-03-29T09:02:47.045166
2020-03-21T10:46:16
2020-03-21T10:46:16
247,939,871
0
0
null
null
null
null
UTF-8
Python
false
false
2,737
py
import os import time import allure import pytest # 能够正常返回结果的类似整数测试数据,数据格式(预期值,a,b,标题) data_int = [ (5, 10, 2, '正常整数'), (1024, 4294967296, 4194304, '大数值整数'), (-6.25, -25, 4, '含负数整数'), (0, 0, 999999, '被除数为0整数'), (1.25 - 0.25j, 3 + 2j, 2 + 2j, '复数数据') ] # 能够正常返回结果的类似浮点数测试数据,数据格式(预期值,a,b,精度,标题) data_float = [ (5, 10.5, 2.1, 0, '返回值为整数的浮点数'), (3.38709677, 10.5, 3.1, 0.00000001, '返回值为无限位浮点数的浮点数'), (3.6, 7.92, 2.2, 0.00000001, '返回值为有限位浮点数的浮点数'), (10, 10, True, 0, '布尔数据-True'), (121.91780821, 89e-5, 73e-7, 1e-8, '科学计数法数据') ] # 不能正常返回结果,预期会报错的测试数据,数据格式(预期错误,a,b,标题) data_error = [ ('ZeroDivisionError', 10, 0, '除数为零报错'), ('TypeError', 10, {1, 2}, '集合数据'), ('TypeError', 10, {1: 2}, '字典数据'), ('TypeError', 10, (1, 2), '元祖数据'), ('TypeError', 10, [1], '列表数据'), ('TypeError', 10, 'a', '字符串数据'), ('ZeroDivisionError', 10, False, '布尔数据-False') ] # 待测功能 def div(a, b): return a / b # 预期正常返回结果的int测试用例 @allure.suite('整数数据组') @allure.title('{title}') @pytest.mark.parametrize('expected,a,b,title', data_int) def test_int_div(expected, a, b, title): assert expected == div(a, b) # 预期正常返回结果的float测试用例 @allure.suite('浮点数数据组') @allure.title('{title}') @pytest.mark.parametrize('expected,a,b,precision,title', data_float) def test_float_div(expected, a, b, precision, title): assert precision >= abs(div(a, b) - expected) # 浮点数按照精度判断 assert pytest.approx(expected) == div(a, b) # pytest提供的近似判断方法(默认精度1e-6) # 预期会报错的测试用例 @allure.suite('报错数据组') @allure.title('{title}') @pytest.mark.parametrize('expected,a,b,title', data_error) def test_error_div(expected, a, b, title): with pytest.raises(eval(expected)): div(a, b) # 进行旧测试数据的清理,测试报告的生成和展示 if __name__ == "__main__": # 清空allure_results文件夹,清理掉allure历史记录 for i in os.listdir(r'allure_results'): os.remove('allure_results/{}'.format(i)) time.sleep(1) # 执行测试并保存allure需要的结果 os.system('pytest -v --alluredir=allure_results {}'.format(__file__)) time.sleep(1) # 使用allure展示测试报告 os.system(r'allure serve allure_results')
9ffd2532080f8ef3fdc3d8345d8fdf308689efd5
0e8d49afd0e35510d8fa6901cf216896604240d8
/lib/pyfrc/tests/docstring_test.py
02ef66ff67747fdf692f6f5d0fb08d2fa37ddd6b
[ "MIT" ]
permissive
ThunderDogs5613/pyfrc
3878a3d887d7adcb957128333ee71fc874c56f2b
d8e76a9284690f71ea7fab7d2aa9022cb6eec27d
refs/heads/master
2021-08-29T14:21:13.124227
2017-12-04T05:46:40
2017-12-04T05:46:40
114,410,477
1
0
null
2017-12-15T20:55:31
2017-12-15T20:55:30
null
UTF-8
Python
false
false
4,104
py
import inspect import os import re import sys # if you want to be really pedantic, enforce sphinx docstrings. Ha. pedantic_docstrings = True # regex to use to detect the sphinx docstrings param_re = re.compile("^:param (\S+?):\s*(.+)$") def ignore_object(o, robot_path): '''Returns true if the object can be ignored''' if inspect.isbuiltin(o): return True try: src = inspect.getsourcefile(o) except TypeError: return True return src is None or not os.path.abspath(src).startswith(robot_path) def print_fn_err(msg, parent, fn, errors): if inspect.isclass(parent): name = '%s.%s' % (parent.__name__, fn.__name__) else: name = '%s' % fn.__name__ err = "ERROR: %s '%s()'\n-> See %s:%s" % (msg, name, inspect.getsourcefile(fn), inspect.getsourcelines(fn)[1]) print(err) errors.append(err) def check_function(parent, fn, errors): doc = inspect.getdoc(fn) if doc is None: print_fn_err('No docstring for', parent, fn, errors) elif pedantic_docstrings: # find the list of parameters args, varargs, keywords, defaults = inspect.getargspec(fn) if len(args) > 0 and args[0] == 'self': del args[0] if varargs is not None: args.append(varargs) if keywords is not None: args.append(keywords) params = [] for line in doc.splitlines(): match = param_re.match(line) if not match: continue arg = match.group(1) if arg not in args: print_fn_err("Param '%s' is documented but isn't a parameter for" % arg, parent, fn, errors) params.append(arg) if len(params) != len(args): diff = set(args).difference(params) if len(diff) == 1: print_fn_err("Param '%s' is not documented in docstring for" % diff.pop(), parent, fn, errors) elif len(diff) > 1: print_fn_err("Params '%s' are not documented in docstring for" % "','".join(diff), parent, fn, errors) else: for param, arg in zip(params, args): if param != arg: print_fn_err("Param '%s' is out of order, does not match param '%s' in docstring for" % (param, arg), parent, fn, errors) def check_object(o, robot_path, errors): if inspect.isclass(o) and inspect.getdoc(o) is None: err = "ERROR: Class '%s' has no docstring!\n-> See %s:%s" % (o.__name__, inspect.getsourcefile(o), inspect.getsourcelines(o)[1]) print(err) errors.append(err) for name, value in inspect.getmembers(o): if ignore_object(value, robot_path): continue check_thing(o, value, robot_path, errors) def check_thing(parent, thing, robot_path, errors): if inspect.isclass(thing): check_object(thing, robot_path, errors) elif inspect.isfunction(thing): check_function(parent, thing, errors) def test_docstrings(robot, robot_path): ''' The purpose of this test is to ensure that all of your robot code has docstrings. Properly using docstrings will make your code more maintainable and look more professional. ''' # this allows abspath() to work correctly os.chdir(robot_path) errors = [] for module in sys.modules.values(): if ignore_object(module, robot_path): continue check_object(module, robot_path, errors) # if you get an error here, look at stdout for the error message assert len(errors) == 0
868e68a80dd8cf6eb36fcb64aa2b5052364a0f01
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02639/s328215249.py
db1cbfb4146ce4bd4f05ce69c14a0e3c330caba3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
64
py
x = list(map(int, input().split())) i = x.index(0) print(i + 1)
6942cf2821993577ff91f07dbc207ed4d122aff8
f3a7b2b71af1ca16e87fcc2c6063670d056f59c6
/libs/models/detectors/r3det_gwd/build_whole_network_pb.py
2f41c02e883d228bd72e6bd4fa158a571f3ccff2
[ "Apache-2.0" ]
permissive
DLPerf/RotationDetection
3af165ab00ea6d034774a7289a375b90e4079df4
c5d3e604ace76d7996bc461920854b2c79d8c023
refs/heads/main
2023-07-16T06:01:42.496723
2021-08-28T03:17:39
2021-08-28T03:17:39
400,690,285
0
0
Apache-2.0
2021-08-28T03:16:55
2021-08-28T03:16:55
null
UTF-8
Python
false
false
28,153
py
# -*-coding: utf-8 -*- from __future__ import absolute_import, division, print_function import tensorflow as tf import tensorflow.contrib.slim as slim from libs.models.detectors.single_stage_base_network import DetectionNetworkBase from libs.models.losses.losses_gwd import LossGWD from libs.utils import bbox_transform, nms_rotate from libs.models.samplers.retinanet.anchor_sampler_retinenet import AnchorSamplerRetinaNet from libs.models.samplers.r3det.refine_anchor_sampler_r3det import RefineAnchorSamplerR3Det class DetectionNetworkR3DetGWD(DetectionNetworkBase): def __init__(self, cfgs, is_training): super(DetectionNetworkR3DetGWD, self).__init__(cfgs, is_training) self.anchor_sampler_retinenet = AnchorSamplerRetinaNet(cfgs) self.refine_anchor_sampler_r3det = RefineAnchorSamplerR3Det(cfgs) self.losses = LossGWD(self.cfgs) def refine_cls_net(self, inputs, scope_list, reuse_flag, level): rpn_conv2d_3x3 = inputs for i in range(self.cfgs.NUM_SUBNET_CONV): rpn_conv2d_3x3 = slim.conv2d(inputs=rpn_conv2d_3x3, num_outputs=self.cfgs.FPN_CHANNEL, kernel_size=[3, 3], stride=1, activation_fn=None if self.cfgs.USE_GN else tf.nn.relu, weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, trainable=self.is_training, scope='{}_{}'.format(scope_list[0], i), reuse=reuse_flag) if self.cfgs.USE_GN: rpn_conv2d_3x3 = tf.contrib.layers.group_norm(rpn_conv2d_3x3) rpn_conv2d_3x3 = tf.nn.relu(rpn_conv2d_3x3) rpn_box_scores = slim.conv2d(rpn_conv2d_3x3, num_outputs=self.cfgs.CLASS_NUM, kernel_size=[3, 3], stride=1, weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.FINAL_CONV_BIAS_INITIALIZER, scope=scope_list[2], trainable=self.is_training, activation_fn=None, reuse=reuse_flag) rpn_box_scores = tf.reshape(rpn_box_scores, [-1, self.cfgs.CLASS_NUM], name='refine_{}_classification_reshape'.format(level)) rpn_box_probs = tf.sigmoid(rpn_box_scores, name='refine_{}_classification_sigmoid'.format(level)) return rpn_box_scores, rpn_box_probs def refine_reg_net(self, inputs, scope_list, reuse_flag, level): rpn_conv2d_3x3 = inputs for i in range(self.cfgs.NUM_SUBNET_CONV): rpn_conv2d_3x3 = slim.conv2d(inputs=rpn_conv2d_3x3, num_outputs=self.cfgs.FPN_CHANNEL, kernel_size=[3, 3], weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, stride=1, activation_fn=None if self.cfgs.USE_GN else tf.nn.relu, scope='{}_{}'.format(scope_list[1], i), trainable=self.is_training, reuse=reuse_flag) if self.cfgs.USE_GN: rpn_conv2d_3x3 = tf.contrib.layers.group_norm(rpn_conv2d_3x3) rpn_conv2d_3x3 = tf.nn.relu(rpn_conv2d_3x3) rpn_delta_boxes = slim.conv2d(rpn_conv2d_3x3, num_outputs=5, kernel_size=[3, 3], stride=1, weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, scope=scope_list[3], trainable=self.is_training, activation_fn=None, reuse=reuse_flag) rpn_delta_boxes = tf.reshape(rpn_delta_boxes, [-1, 5], name='refine_{}_regression_reshape'.format(level)) return rpn_delta_boxes def refine_net(self, feature_pyramid, name): refine_delta_boxes_list = [] refine_scores_list = [] refine_probs_list = [] with tf.variable_scope(name): with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(self.cfgs.WEIGHT_DECAY)): for level in self.cfgs.LEVEL: if self.cfgs.SHARE_NET: reuse_flag = None if level == self.cfgs.LEVEL[0] else True scope_list = ['conv2d_3x3_cls', 'conv2d_3x3_reg', 'refine_classification', 'refine_regression'] else: reuse_flag = None scope_list = ['conv2d_3x3_cls_' + level, 'conv2d_3x3_reg_' + level, 'refine_classification_' + level, 'refine_regression_' + level] refine_box_scores, refine_box_probs = self.refine_cls_net(feature_pyramid[level], scope_list, reuse_flag, level) refine_delta_boxes = self.refine_reg_net(feature_pyramid[level], scope_list, reuse_flag, level) refine_scores_list.append(refine_box_scores) refine_probs_list.append(refine_box_probs) refine_delta_boxes_list.append(refine_delta_boxes) return refine_delta_boxes_list, refine_scores_list, refine_probs_list def refine_feature_op(self, points, feature_map, name): h, w = tf.cast(tf.shape(feature_map)[1], tf.int32), tf.cast(tf.shape(feature_map)[2], tf.int32) xmin = tf.maximum(0.0, tf.floor(points[:, 0])) xmin = tf.minimum(tf.cast(w - 1, tf.float32), tf.ceil(xmin)) ymin = tf.maximum(0.0, tf.floor(points[:, 1])) ymin = tf.minimum(tf.cast(h - 1, tf.float32), tf.ceil(ymin)) xmax = tf.minimum(tf.cast(w - 1, tf.float32), tf.ceil(points[:, 0])) xmax = tf.maximum(0.0, tf.floor(xmax)) ymax = tf.minimum(tf.cast(h - 1, tf.float32), tf.ceil(points[:, 1])) ymax = tf.maximum(0.0, tf.floor(ymax)) left_top = tf.cast(tf.transpose(tf.stack([ymin, xmin], axis=0)), tf.int32) right_bottom = tf.cast(tf.transpose(tf.stack([ymax, xmax], axis=0)), tf.int32) left_bottom = tf.cast(tf.transpose(tf.stack([ymax, xmin], axis=0)), tf.int32) right_top = tf.cast(tf.transpose(tf.stack([ymin, xmax], axis=0)), tf.int32) # feature_1x5 = slim.conv2d(inputs=feature_map, # num_outputs=self.cfgs.FPN_CHANNEL, # kernel_size=[1, 5], # weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, # biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, # stride=1, # activation_fn=None, # trainable=self.is_training, # scope='refine_1x5_{}'.format(name)) # # feature5x1 = slim.conv2d(inputs=feature_1x5, # num_outputs=self.cfgs.FPN_CHANNEL, # kernel_size=[5, 1], # weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, # biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, # stride=1, # activation_fn=None, # trainable=self.is_training, # scope='refine_5x1_{}'.format(name)) # # feature_1x1 = slim.conv2d(inputs=feature_map, # num_outputs=self.cfgs.FPN_CHANNEL, # kernel_size=[1, 1], # weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, # biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, # stride=1, # activation_fn=None, # trainable=self.is_training, # scope='refine_1x1_{}'.format(name)) # # feature = feature5x1 + feature_1x1 feature = feature_map left_top_feature = tf.gather_nd(tf.squeeze(feature), left_top) right_bottom_feature = tf.gather_nd(tf.squeeze(feature), right_bottom) left_bottom_feature = tf.gather_nd(tf.squeeze(feature), left_bottom) right_top_feature = tf.gather_nd(tf.squeeze(feature), right_top) refine_feature = right_bottom_feature * tf.tile( tf.reshape((tf.abs((points[:, 0] - xmin) * (points[:, 1] - ymin))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + left_top_feature * tf.tile( tf.reshape((tf.abs((xmax - points[:, 0]) * (ymax - points[:, 1]))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + right_top_feature * tf.tile( tf.reshape((tf.abs((points[:, 0] - xmin) * (ymax - points[:, 1]))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + left_bottom_feature * tf.tile( tf.reshape((tf.abs((xmax - points[:, 0]) * (points[:, 1] - ymin))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) refine_feature = tf.reshape(refine_feature, [1, tf.cast(h, tf.int32), tf.cast(w, tf.int32), self.cfgs.FPN_CHANNEL]) # refine_feature = tf.reshape(refine_feature, [1, tf.cast(feature_size[1], tf.int32), # tf.cast(feature_size[0], tf.int32), 256]) return refine_feature + feature def refine_feature_five_op(self, points, feature_map, name): h, w = tf.cast(tf.shape(feature_map)[1], tf.int32), tf.cast(tf.shape(feature_map)[2], tf.int32) feature_1x5 = slim.conv2d(inputs=feature_map, num_outputs=self.cfgs.FPN_CHANNEL, kernel_size=[1, 5], weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, stride=1, activation_fn=None, trainable=self.is_training, scope='refine_1x5_{}'.format(name)) feature5x1 = slim.conv2d(inputs=feature_1x5, num_outputs=self.cfgs.FPN_CHANNEL, kernel_size=[5, 1], weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, stride=1, activation_fn=None, trainable=self.is_training, scope='refine_5x1_{}'.format(name)) feature_1x1 = slim.conv2d(inputs=feature_map, num_outputs=self.cfgs.FPN_CHANNEL, kernel_size=[1, 1], weights_initializer=self.cfgs.SUBNETS_WEIGHTS_INITIALIZER, biases_initializer=self.cfgs.SUBNETS_BIAS_INITIALIZER, stride=1, activation_fn=None, trainable=self.is_training, scope='refine_1x1_{}'.format(name)) feature = feature5x1 + feature_1x1 for i in range(5): xmin = tf.maximum(0.0, tf.floor(points[:, 0+2*(i-1)])) ymin = tf.maximum(0.0, tf.floor(points[:, 1+2*(i-1)])) xmax = tf.minimum(tf.cast(w - 1, tf.float32), tf.ceil(points[:, 0+2*(i-1)])) ymax = tf.minimum(tf.cast(h - 1, tf.float32), tf.ceil(points[:, 1+2*(i-1)])) left_top = tf.cast(tf.transpose(tf.stack([ymin, xmin], axis=0)), tf.int32) right_bottom = tf.cast(tf.transpose(tf.stack([ymax, xmax], axis=0)), tf.int32) left_bottom = tf.cast(tf.transpose(tf.stack([ymax, xmin], axis=0)), tf.int32) right_top = tf.cast(tf.transpose(tf.stack([ymin, xmax], axis=0)), tf.int32) left_top_feature = tf.gather_nd(tf.squeeze(feature), left_top) right_bottom_feature = tf.gather_nd(tf.squeeze(feature), right_bottom) left_bottom_feature = tf.gather_nd(tf.squeeze(feature), left_bottom) right_top_feature = tf.gather_nd(tf.squeeze(feature), right_top) refine_feature = right_bottom_feature * tf.tile( tf.reshape((tf.abs((points[:, 0+2*(i-1)] - xmin) * (points[:, 1+2*(i-1)] - ymin))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + left_top_feature * tf.tile( tf.reshape((tf.abs((xmax - points[:, 0+2*(i-1)]) * (ymax - points[:, 1+2*(i-1)]))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + right_top_feature * tf.tile( tf.reshape((tf.abs((points[:, 0+2*(i-1)] - xmin) * (ymax - points[:, 1+2*(i-1)]))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) \ + left_bottom_feature * tf.tile( tf.reshape((tf.abs((xmax - points[:, 0+2*(i-1)]) * (points[:, 1+2*(i-1)] - ymin))), [-1, 1]), [1, self.cfgs.FPN_CHANNEL]) refine_feature = tf.reshape(refine_feature, [1, tf.cast(h, tf.int32), tf.cast(w, tf.int32), self.cfgs.FPN_CHANNEL]) feature += refine_feature return feature def refine_stage(self, input_img_batch, gtboxes_batch_r, box_pred_list, cls_prob_list, proposal_list, feature_pyramid, gpu_id, pos_threshold, neg_threshold, stage, proposal_filter=False): with tf.variable_scope('refine_feature_pyramid{}'.format(stage)): refine_feature_pyramid = {} refine_boxes_list = [] for box_pred, cls_prob, proposal, stride, level in \ zip(box_pred_list, cls_prob_list, proposal_list, self.cfgs.ANCHOR_STRIDE, self.cfgs.LEVEL): if proposal_filter: box_pred = tf.reshape(box_pred, [-1, self.num_anchors_per_location, 5]) proposal = tf.reshape(proposal, [-1, self.num_anchors_per_location, 5 if self.method == 'R' else 4]) cls_prob = tf.reshape(cls_prob, [-1, self.num_anchors_per_location, self.cfgs.CLASS_NUM]) cls_max_prob = tf.reduce_max(cls_prob, axis=-1) box_pred_argmax = tf.cast(tf.reshape(tf.argmax(cls_max_prob, axis=-1), [-1, 1]), tf.int32) indices = tf.cast(tf.cumsum(tf.ones_like(box_pred_argmax), axis=0), tf.int32) - tf.constant(1, tf.int32) indices = tf.concat([indices, box_pred_argmax], axis=-1) box_pred = tf.reshape(tf.gather_nd(box_pred, indices), [-1, 5]) proposal = tf.reshape(tf.gather_nd(proposal, indices), [-1, 5 if self.method == 'R' else 4]) if self.cfgs.METHOD == 'H': x_c = (proposal[:, 2] + proposal[:, 0]) / 2 y_c = (proposal[:, 3] + proposal[:, 1]) / 2 h = proposal[:, 2] - proposal[:, 0] + 1 w = proposal[:, 3] - proposal[:, 1] + 1 theta = -90 * tf.ones_like(x_c) proposal = tf.transpose(tf.stack([x_c, y_c, w, h, theta])) else: box_pred = tf.reshape(box_pred, [-1, 5]) proposal = tf.reshape(proposal, [-1, 5]) bboxes = bbox_transform.rbbox_transform_inv(boxes=proposal, deltas=box_pred) refine_boxes_list.append(bboxes) center_point = bboxes[:, :2] / stride refine_feature_pyramid[level] = self.refine_feature_op(points=center_point, feature_map=feature_pyramid[level], name=level) # points = coordinate5_2_8_tf(bboxes) / stride # refine_feature_pyramid[level] = self.refine_feature_five_op(points=points, # feature_map=feature_pyramid[level], # name=level) refine_box_pred_list, refine_cls_score_list, refine_cls_prob_list = self.refine_net(refine_feature_pyramid, 'refine_net{}'.format(stage)) refine_box_pred = tf.concat(refine_box_pred_list, axis=0) refine_cls_score = tf.concat(refine_cls_score_list, axis=0) # refine_cls_prob = tf.concat(refine_cls_prob_list, axis=0) refine_boxes = tf.concat(refine_boxes_list, axis=0) if self.is_training: with tf.variable_scope('build_refine_loss{}'.format(stage)): refine_labels, refine_target_delta, refine_box_states, refine_target_boxes = tf.py_func( func=self.refine_anchor_sampler_r3det.refine_anchor_target_layer, inp=[gtboxes_batch_r, refine_boxes, pos_threshold, neg_threshold, gpu_id], Tout=[tf.float32, tf.float32, tf.float32, tf.float32]) self.add_anchor_img_smry(input_img_batch, refine_boxes, refine_box_states, 1) refine_cls_loss = self.losses.focal_loss(refine_labels, refine_cls_score, refine_box_states) refine_reg_loss = self.losses.wasserstein_distance_loss(refine_box_pred, refine_box_states, refine_target_boxes, refine_boxes, is_refine=True, tau=self.cfgs.GWD_TAU, func=self.cfgs.GWD_FUNC) self.losses_dict['refine_cls_loss{}'.format(stage)] = refine_cls_loss * self.cfgs.CLS_WEIGHT self.losses_dict['refine_reg_loss{}'.format(stage)] = refine_reg_loss * self.cfgs.REG_WEIGHT return refine_box_pred_list, refine_cls_prob_list, refine_boxes_list def build_whole_detection_network(self, input_img_batch, gtboxes_batch_h=None, gtboxes_batch_r=None, gpu_id=0): if self.is_training: gtboxes_batch_h = tf.reshape(gtboxes_batch_h, [-1, 5]) gtboxes_batch_h = tf.cast(gtboxes_batch_h, tf.float32) gtboxes_batch_r = tf.reshape(gtboxes_batch_r, [-1, 6]) gtboxes_batch_r = tf.cast(gtboxes_batch_r, tf.float32) if self.cfgs.USE_GN: input_img_batch = tf.reshape(input_img_batch, [1, self.cfgs.IMG_SHORT_SIDE_LEN, self.cfgs.IMG_MAX_LENGTH, 3]) # 1. build backbone feature_pyramid = self.build_backbone(input_img_batch) # 2. build rpn rpn_box_pred_list, rpn_cls_score_list, rpn_cls_prob_list = self.rpn_net(feature_pyramid, 'rpn_net') rpn_box_pred = tf.concat(rpn_box_pred_list, axis=0) rpn_cls_score = tf.concat(rpn_cls_score_list, axis=0) # rpn_cls_prob = tf.concat(rpn_cls_prob_list, axis=0) # 3. generate anchors anchor_list = self.make_anchors(feature_pyramid, use_tf=True) anchors = tf.concat(anchor_list, axis=0) # 4. build loss if self.is_training: with tf.variable_scope('build_loss'): labels, target_delta, anchor_states, target_boxes = tf.py_func(func=self.anchor_sampler_retinenet.anchor_target_layer, inp=[gtboxes_batch_h, gtboxes_batch_r, anchors, gpu_id], Tout=[tf.float32, tf.float32, tf.float32, tf.float32]) if self.method == 'H': self.add_anchor_img_smry(input_img_batch, anchors, anchor_states, 0) else: self.add_anchor_img_smry(input_img_batch, anchors, anchor_states, 1) cls_loss = self.losses.focal_loss(labels, rpn_cls_score, anchor_states) # reg_loss = self.losses.wasserstein_distance_loss(rpn_box_pred, anchor_states, # target_boxes, anchors, is_refine=False, # tau=self.cfgs.GWD_TAU, # func=self.cfgs.GWD_FUNC) reg_loss = self.losses.smooth_l1_loss(target_delta, rpn_box_pred, anchor_states) # reg_loss = self.losses.iou_smooth_l1_loss_exp(target_delta, rpn_box_pred, anchor_states, # target_boxes, anchors, alpha=self.cfgs.ALPHA, # beta=self.cfgs.BETA) self.losses_dict['cls_loss'] = cls_loss * self.cfgs.CLS_WEIGHT self.losses_dict['reg_loss'] = reg_loss * self.cfgs.REG_WEIGHT box_pred_list, cls_prob_list, proposal_list = rpn_box_pred_list, rpn_cls_prob_list, anchor_list all_box_pred_list, all_cls_prob_list, all_proposal_list = [], [], [] for i in range(self.cfgs.NUM_REFINE_STAGE): box_pred_list, cls_prob_list, proposal_list = self.refine_stage(input_img_batch, gtboxes_batch_r, box_pred_list, cls_prob_list, proposal_list, feature_pyramid, gpu_id, pos_threshold=self.cfgs.REFINE_IOU_POSITIVE_THRESHOLD[i], neg_threshold=self.cfgs.REFINE_IOU_NEGATIVE_THRESHOLD[i], stage='' if i == 0 else '_stage{}'.format(i + 2), proposal_filter=True if i == 0 else False) if not self.is_training: all_box_pred_list.extend(box_pred_list) all_cls_prob_list.extend(cls_prob_list) all_proposal_list.extend(proposal_list) else: all_box_pred_list, all_cls_prob_list, all_proposal_list = box_pred_list, cls_prob_list, proposal_list box_pred = tf.concat(all_box_pred_list, axis=0) cls_prob = tf.concat(all_cls_prob_list, axis=0) proposal = tf.concat(all_proposal_list, axis=0) return box_pred, cls_prob, proposal # # 5. postprocess # with tf.variable_scope('postprocess_detctions'): # box_pred = tf.concat(all_box_pred_list, axis=0) # cls_prob = tf.concat(all_cls_prob_list, axis=0) # proposal = tf.concat(all_proposal_list, axis=0) # # boxes, scores, category = self.postprocess_detctions(refine_bbox_pred=box_pred, # refine_cls_prob=cls_prob, # anchors=proposal, gpu_id=gpu_id) # boxes = tf.stop_gradient(boxes) # scores = tf.stop_gradient(scores) # category = tf.stop_gradient(category) # # if self.is_training: # return boxes, scores, category, self.losses_dict # else: # return boxes, scores, category def postprocess_detctions(self, refine_bbox_pred, refine_cls_prob, anchors, gpu_id): def filter_detections(boxes, scores): """ :param boxes: [-1, 4] :param scores: [-1, ] :param labels: [-1, ] :return: """ if self.is_training: indices = tf.reshape(tf.where(tf.greater(scores, self.cfgs.VIS_SCORE)), [-1, ]) else: indices = tf.reshape(tf.where(tf.greater(scores, self.cfgs.FILTERED_SCORE)), [-1, ]) if self.cfgs.NMS: filtered_boxes = tf.gather(boxes, indices) filtered_scores = tf.gather(scores, indices) # perform NMS nms_indices = nms_rotate.nms_rotate(decode_boxes=filtered_boxes, scores=filtered_scores, iou_threshold=self.cfgs.NMS_IOU_THRESHOLD, max_output_size=100 if self.is_training else 1000, use_gpu=True, gpu_id=gpu_id) # filter indices based on NMS indices = tf.gather(indices, nms_indices) # add indices to list of all indices return indices boxes_pred = bbox_transform.rbbox_transform_inv(boxes=anchors, deltas=refine_bbox_pred, scale_factors=self.cfgs.ANCHOR_SCALE_FACTORS) return_boxes_pred = [] return_scores = [] return_labels = [] for j in range(0, self.cfgs.CLASS_NUM): indices = filter_detections(boxes_pred, refine_cls_prob[:, j]) tmp_boxes_pred = tf.reshape(tf.gather(boxes_pred, indices), [-1, 5]) tmp_scores = tf.reshape(tf.gather(refine_cls_prob[:, j], indices), [-1, ]) return_boxes_pred.append(tmp_boxes_pred) return_scores.append(tmp_scores) return_labels.append(tf.ones_like(tmp_scores) * (j + 1)) return_boxes_pred = tf.concat(return_boxes_pred, axis=0) return_scores = tf.concat(return_scores, axis=0) return_labels = tf.concat(return_labels, axis=0) return return_boxes_pred, return_scores, return_labels
712cbef7c9caa13001d11892e7ebfa5ca34642d5
af3e249753fbf04ce10a01e4dbeab549cb4ae34d
/oscar/apps/catalogue/migrations/0014_auto_20181115_1953.py
fb912bfd712eb0dc972432ad7a40d44467e3d751
[]
no_license
rwozniak72/sklep_oscar_test
79588b57470c9245324cc5396aa472192953aeda
fb410dc542e6cb4deaf870b3e7d5d22ca794dc29
refs/heads/master
2020-08-12T04:55:25.084998
2019-10-16T21:14:08
2019-10-16T21:14:08
214,692,764
0
0
null
null
null
null
UTF-8
Python
false
false
1,126
py
# Generated by Django 2.0.7 on 2018-11-15 19:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('catalogue', '0013_auto_20170821_1548'), ] operations = [ migrations.AlterField( model_name='product', name='date_created', field=models.DateTimeField(auto_now_add=True, db_index=True, verbose_name='Date created'), ), migrations.AlterField( model_name='productimage', name='display_order', field=models.PositiveIntegerField(db_index=True, default=0, help_text='An image with a display order of zero will be the primary image for a product', verbose_name='Display order'), ), migrations.AlterField( model_name='productrecommendation', name='ranking', field=models.PositiveSmallIntegerField(db_index=True, default=0, help_text='Determines order of the products. A product with a higher value will appear before one with a lower ranking.', verbose_name='Ranking'), ), ]
789af4de56c556d7d9dc75336e4c423b18ab8af2
4a36b5979b0753b32cff3956fd97fb8ed8b11e84
/1.2/_downloads/52b26bfb61145291f5108dc7fd05ccee/35_artifact_correction_regression.py
9a81f74c53bb80927e67f3d1046b2516c45e9edf
[]
permissive
mne-tools/mne-tools.github.io
8aac7ae10bf2faeeb875b9a351a5530dc0e53154
495e878adc1ef3374e3db88604504d7542b01194
refs/heads/main
2023-09-03T07:06:00.660557
2023-09-03T04:10:18
2023-09-03T04:10:18
35,639,371
12
16
BSD-3-Clause
2023-05-05T19:04:32
2015-05-14T22:04:23
HTML
UTF-8
Python
false
false
9,910
py
# -*- coding: utf-8 -*- """ .. _tut-artifact-regression: =================================== Repairing artifacts with regression =================================== This tutorial covers removal of artifacts using regression as in Gratton et al. (1983) :footcite:`GrattonEtAl1983` and Croft & Barry (2000) :footcite:`CroftBarry2000`. Generally speaking, artifacts that result in time waveforms on the sensors that are accurately reflected by some reference signal can be removed by regression. Blink artifacts captured by bipolar EOG channels provide a good example of this, so we will demonstrate this here. Although ECG signals are well captured by bipolar ECG electrodes, regression-based removal of ECG artifacts usually does not work very well. This is likely because the heart acts like a rotating dipole, and therefore the ECG channel time waveform recorded from the ECG electrode sites does not reflect the same temporal dynamics that manifest at each MEG channel (obtained by sampling some component of the related magnetic vector field). Other approaches like :ref:`ICA <tut-artifact-ica>` or :ref:`SSP <tut-artifact-ssp>` will likely work better for ECG. Furthermore, regression approaches are usually performed in situations where there are few channels available, and removing an entire signal component is undesirable. Hence, most articles on the topic concern EEG and it is unusual to see the technique applied to MEG. For this reason, we will restrict the analysis in this tutorial to EEG data only. Prepare the data ^^^^^^^^^^^^^^^^ We begin as always by importing the necessary Python modules and loading some data. The :ref:`MNE-Sample <sample-dataset>` dataset has some clear, large blink artifacts, especially during the presentation of visual stimuli. """ # %% import numpy as np import mne from mne.preprocessing import EOGRegression data_path = mne.datasets.sample.data_path() raw_fname = data_path / 'MEG' / 'sample' / 'sample_audvis_raw.fif' raw = mne.io.read_raw_fif(raw_fname) raw.pick(['eeg', 'eog', 'stim']) raw.load_data() # The regression technique works regardless of chosen reference. However, it is # important to choose a reference before proceeding with the analysis. raw.set_eeg_reference('average') # Removing slow drifts makes for more stable regression coefficients. Make sure # to apply the same filter to both EEG and EOG channels! raw.filter(0.3, 40) # make epochs events = mne.find_events(raw) event_id = {'visual/left': 3, 'visual/right': 4} epochs = mne.Epochs(raw, events, event_id=event_id, preload=True) # %% # Visualize the original data # ^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Let's first look at the `~mne.Evoked` data (average across epochs) without # any corrections applied. # we'll try to keep a consistent ylim across figures plot_kwargs = dict(picks='all', ylim=dict(eeg=(-10, 10), eog=(-5, 15))) # plot the evoked for the EEG and the EOG sensors fig = epochs.average('all').plot(**plot_kwargs) fig.set_size_inches(6, 6) # %% # We can see there is some EOG activity that is likely bleeding into the EEG # evoked response. At around 250ms this becomes especially noticeable. Let's # apply regression to subtract the EOG signal from the EEG signals to clean it # up. # %% # Compute and apply EOG regression # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Now, we'll compare the evoked response before and after we regress out the # EOG signal. First, let's try plain regression, and then we'll explore more # advanced techniques. # Perform regression using the EOG sensor as independent variable and the EEG # sensors as dependent variables. model_plain = EOGRegression(picks='eeg', picks_artifact='eog').fit(epochs) fig = model_plain.plot(vlim=(None, 0.4)) # regression coefficients as topomap fig.set_size_inches(3, 2) # %% # The regression coefficients show the linear relationship between each EEG # sensor and the EOG sensor. Note that occipital sensors have a positive # relationship, as we set a common-average reference when we loaded the data # above. # # Now we are ready to use these coefficients to subtract the EOG signal from # the EEG signals. epochs_clean_plain = model_plain.apply(epochs) # After regression, we should redo the baseline correction epochs_clean_plain.apply_baseline() # Show the evoked potential computed on the corrected data fig = epochs_clean_plain.average('all').plot(**plot_kwargs) fig.set_size_inches(6, 6) # %% # Regressing the EOG signal out of the EEG signals has reduced the peak around # 250ms that was partly there because of eye artifacts. # # In the :ref:`MNE-Sample dataset <sample-dataset>`, there are no segments of # data that are particularly unstable, so the basic form of regression produces # robust coefficients. However, this may not be the case in every dataset, so # let's explore some variations that may improve the estimation of the # regression coefficients. # # One potential problem is that the EOG sensor does not only pick up eye # artifacts, but also a bit of EEG signal. This means we are prone to # overestimating the regression coefficients if the EOG sensors are placed too # close to the EEG sensors. However, there is a correction we can apply to # alleviate this. # # Subtract the evoked response from the epoch data before regression # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Gratton et al. (1983) :footcite:`GrattonEtAl1983` suggest computing # regression coefficients on epoch data with the evoked response subtracted # out. The idea is that the EEG signal components relevant to the study are in # the evoked, so by removing them, mostly noise components will be left. Since # EOG artifacts are unlikely to be strictly time-locked to the stimulus onset, # enough EOG information will likely remain to be able to estimate robust # regression coefficients. # create epochs with the evoked subtracted out epochs_sub = epochs.copy().subtract_evoked() # perform regression model_sub = EOGRegression(picks='eeg', picks_artifact='eog').fit(epochs_sub) fig = model_sub.plot(vlim=(None, 0.4)) fig.set_size_inches(3, 2) # apply the regression coefficients to the original epochs epochs_clean_sub = model_plain.apply(epochs).apply_baseline() fig = epochs_clean_sub.average('all').plot(**plot_kwargs) fig.set_size_inches(6, 6) # %% # We see that we obtain the same regression coefficients, even with the evoked # removed from the epochs. # # Create EOG evoked before regression # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # It is advantageous to estimate the regression coefficients on a piece of data # with lots of EOG activity. As EOG activity is typically much larger than EEG, # the EOG artifacts will dominate the signal and the regression coefficients # will reflect mostly the influence of the EOG. To amplify this effect, Croft & # Barry (2000) :footcite:`CroftBarry2000` suggest creating epochs based on # blink onsets and computing the evoked blink response. The averaging procedure # will suppress EEG signals that are not strictly time-locked with the blink # response. Ideally, one would create evokeds for both blinks and saccades, and # create two separate regression models. However, we will restrict ourselves to # just blink epochs, since MNE-Python contains an automated method for creating # those. # # .. note:: This is very similar to the approach taken by :ref:`SSP # <tut-artifact-ssp>`. The difference is that :ref:`SSP # <tut-artifact-ssp>` estimates signal components that are maximally # correlated with the artifact and removes any data along that # component (thereby reducing the rank of the non-EOG data), whereas # the regression approach uses the ongoing EOG signal to determine # how much data to remove (thereby not necessarily reducing the rank # of the non-EOG data). Generally, SSP tends to err on the side of # removing too much data, eliminating artifacts and true brain # signals alike, whereas regression will err on the side of not # removing enough, leaving some artifact signals still present in the # signal. eog_epochs = mne.preprocessing.create_eog_epochs(raw) # We need to explicitly specify that we want to average the EOG channel too. eog_evoked = eog_epochs.average('all') eog_evoked.plot('all') fig.set_size_inches(6, 6) # perform regression on the evoked blink response model_evoked = EOGRegression(picks='eeg', picks_artifact='eog').fit(eog_evoked) fig = model_evoked.plot(vlim=(None, 0.4)) fig.set_size_inches(3, 2) # apply the regression coefficients to the original epochs epochs_clean_evoked = model_evoked.apply(epochs).apply_baseline() fig = epochs_clean_evoked.average('all').plot(**plot_kwargs) fig.set_size_inches(6, 6) # for good measure, also show the effect on the blink evoked eog_evoked_clean = model_evoked.apply(eog_evoked) eog_evoked_clean.apply_baseline() eog_evoked_clean.plot('all') fig.set_size_inches(6, 6) # %% # We see that again, the regression weights have been correctly estimated. # # Visualize the effect on raw data # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Once we have obtained robust regression weights, we can use them to apply the # regression directly to raw, epoched, and evoked data. Here, we will use the # regression weights obtained from the blink evoked and apply it to an instance # of `~mne.io.Raw`. order = np.concatenate([ # plotting order: EOG first, then EEG mne.pick_types(raw.info, meg=False, eog=True), mne.pick_types(raw.info, meg=False, eeg=True), ]) raw_kwargs = dict(events=eog_epochs.events, order=order, start=13, duration=3, n_channels=10, scalings=dict(eeg=50e-6, eog=250e-6)) # plot original data raw.plot(**raw_kwargs) # regress (using coefficients computed previously) and plot raw_clean = model_evoked.apply(raw) raw_clean.plot(**raw_kwargs) # %% # References # ^^^^^^^^^^ # .. footbibliography::
22fc07b80e8a0195b0e11cd601c09efe7a51bedf
30b98382e8621ec45bc52b8f69a3ca6285e83a6a
/python/1-GeneticAlgorithm/GA_on_Knapsack_problem.py
94e532ea3dba37eeaa81a29e5124a564d4f03e07
[]
no_license
JG-cmd/algrithm
404c2d7f0c7ab677ae3f4913ffbd57370627366f
93d8ebc7074e5411f281b1882d92d5f11bcbb652
refs/heads/master
2023-03-15T19:24:07.025977
2020-02-15T17:20:06
2020-02-15T17:20:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,640
py
# encoding=utf-8 ##### # 遗传算法用于背包问题 # Python 3.6 # http://www.myzaker.com/article/59855a9c1bc8e0cf58000015/ ##### import os import random from copy import deepcopy # 种群 class GAType(object): def __init__(self, obj_cnt): # 个体基因 self.gene = [0 for _ in range(0, obj_cnt)] # 个体适应度 self.fitness = 0 # 选择概率 self.choose_freq = 0 # 累积概率 self.cummulative_freq = 0 # 遗传算法 class genetic(object): def __init__(self, value, weight, max_weight, population_size): self.value = value self.weight = weight self.max_weight = max_weight self.obj_count = len(weight) self._gatype = [GAType(self.obj_count) for x in range(0, population_size, 1)] # 初始化32个种群 self.total_fitness = 0 if __name__ == '__main__': # 各物品的重量和价值 pair = [[35,10], [30,40], [60,30], [50,50], [40,35], [10,40], [25,30]] # weight = [35,30,60,50,40,10,25] # value = [10,40,30,50,35,40,30] # weight = zip(*pair)[0] # (35,30,60,50,40,10,25) # weight = zip(*pair)[1] # (35,30,60,50,40,10,25) weight = [x[0] for x in pair] value = [x[1] for x in pair] # 最大承重 max_weight = 150 # 已知最优解 opt_result = [1,1,0,1,0,1,1] # 全局最优解:[1,2,4,6,7] - [35,30,50,10,25] = 150 [10,40,50,40,30] = 170 population_size = 32 # 种群 max_generations = 500 # 进化代数 p_cross = 0.8 # 交叉概率 p_mutation = 0.15 # 变异概率 # genetic(value, weight, max_weight).genetic_result()
45c0af97d21af7351b881ee9681d2dc86db4a4c9
60eb98538025c61cf94a91f6c96f9ee81dcd3fdf
/monai/handlers/lr_schedule_handler.py
3b300537b273be71ed40e34dc2b2f45a984dd082
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
gagandaroach/MONAI
167e7746995d4b6136731881e22ad4df333b16a9
79b83d9fac41efae9b90ed2f9ad078d6d664bf64
refs/heads/master
2023-06-02T19:54:47.737846
2021-06-24T18:34:02
2021-06-24T18:34:02
270,741,899
0
0
Apache-2.0
2020-06-08T16:29:32
2020-06-08T16:29:31
null
UTF-8
Python
false
false
3,437
py
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, Any, Callable, Optional, Union from torch.optim.lr_scheduler import ReduceLROnPlateau, _LRScheduler from monai.utils import ensure_tuple, exact_version, optional_import Events, _ = optional_import("ignite.engine", "0.4.4", exact_version, "Events") if TYPE_CHECKING: from ignite.engine import Engine else: Engine, _ = optional_import("ignite.engine", "0.4.4", exact_version, "Engine") class LrScheduleHandler: """ Ignite handler to update the Learning Rate based on PyTorch LR scheduler. """ def __init__( self, lr_scheduler: Union[_LRScheduler, ReduceLROnPlateau], print_lr: bool = True, name: Optional[str] = None, epoch_level: bool = True, step_transform: Callable[[Engine], Any] = lambda engine: (), ) -> None: """ Args: lr_scheduler: typically, lr_scheduler should be PyTorch lr_scheduler object. If customized version, must have `step` and `get_last_lr` methods. print_lr: whether to print out the latest learning rate with logging. name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``. epoch_level: execute lr_scheduler.step() after every epoch or every iteration. `True` is epoch level, `False` is iteration level. step_transform: a callable that is used to transform the information from `engine` to expected input data of lr_scheduler.step() function if necessary. Raises: TypeError: When ``step_transform`` is not ``callable``. """ self.lr_scheduler = lr_scheduler self.print_lr = print_lr self.logger = logging.getLogger(name) self.epoch_level = epoch_level if not callable(step_transform): raise TypeError(f"step_transform must be callable but is {type(step_transform).__name__}.") self.step_transform = step_transform self._name = name def attach(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ if self._name is None: self.logger = engine.logger if self.epoch_level: engine.add_event_handler(Events.EPOCH_COMPLETED, self) else: engine.add_event_handler(Events.ITERATION_COMPLETED, self) def __call__(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ args = ensure_tuple(self.step_transform(engine)) self.lr_scheduler.step(*args) if self.print_lr: self.logger.info(f"Current learning rate: {self.lr_scheduler._last_lr[0]}") # type: ignore[union-attr]
7ea2028e24f5008ab25e293b157929cc4359f7a9
2567e10b9c713b0a6064147885db9628de4fca30
/subdomain.py
a148b45749aa95eb47603ed03c443079d251ff9a
[]
no_license
Gamerited/subpyforce
759ea42b37532ddeecbcb76020fb0fd49b02abfa
5cc1ddd6a6d200c3a4b40b604b80317c24a29ac8
refs/heads/master
2022-11-13T05:29:52.809233
2020-06-26T07:16:54
2020-06-26T07:16:54
275,091,047
0
0
null
null
null
null
UTF-8
Python
false
false
2,307
py
import requests from threading import Thread from queue import Queue from colored import fg, bg, attr x = Queue() #defining x to hold the queue for subdominas def subs(domain): global x while True: sdomain = x.get() location = f"http://{sdomain}.{domain}" try: requests.get(location) except requests.ConnectionError: pass except requests.exceptions.InvalidURL: print('%s [-] Unavailable url: %s' % (fg(1), attr(0)), location) except UnicodeError: print ('%s%s The unicode character was not recognized from the wordlist %s' % (fg(1), bg(15), attr(0))) else: print('%s [+] Active url: %s' % (fg(10), attr(0)) , location) x.task_done() while True: sdomain = x.get() location = f"https://{sdomain}.{domain}" try: requests.get(location) except requests.ConnectionError: pass except requests.exceptions.InvalidURL: print('%s [-] Unavailable url: %s' % (fg(1), attr(0)), location) except UnicodeError: print('%s There was some error in Unicode%s' % (fg(5), attr(0))) else: print('%s [+] Active url: %s' % (fg(10), attr(0)) , location) x.task_done() def main(domain,sub,nthreads): global x for j in sub: x.put(j) for t in range(nthreads): kam = Thread(target=subs, args=(domain,)) kam.daemon = True kam.start() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Noob script bruteforce some sub domains by @gamerited') parser.add_argument("domain", help="Hit down the domain you wana bruteforce (e.g. google.com)") parser.add_argument("-w", "--wordlist", help="Enter the location of your wordlist that you wana use to Bruteforce the domain") parser.add_argument("-t","--num-threads", help="Please enter the number of threads you want to use.(default is 10)",default=20,type=int) args = parser.parse_args() domain = args.domain wordlist = args.wordlist nthreads = args.num_threads main(domain=domain, nthreads=nthreads, sub=open(wordlist, encoding="ISO-8859-1").read().splitlines()) x.join()
03dfadc9b08f7a78c163125f7724ce3c71849df2
43cb8b3e0a730e2a24e90c430b3399129541f328
/2. django-models/example/migrations/0001_initial.py
6e5f4a85a6c212fef6b7fc8649bf06b283b16b30
[]
no_license
josancamon19/django-studies
817c2b17b3c7c0d8fddd9a8bf938eddaa56e0019
875d08fc615bdc86ec8075e665aeb8a135f83efb
refs/heads/master
2020-09-23T10:50:19.658173
2019-12-12T13:29:20
2019-12-12T13:29:20
225,477,236
0
1
null
null
null
null
UTF-8
Python
false
false
1,812
py
# Generated by Django 3.0 on 2019-12-03 04:26 import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Company', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('location', models.CharField(max_length=20)), ('date_created', models.DateField(default=datetime.datetime(2019, 12, 3, 4, 26, 14, 952007, tzinfo=utc))), ], ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('creator', models.CharField(max_length=20)), ('paradigm', models.CharField(max_length=20)), ('date_created', models.DateField(default=datetime.datetime(2019, 12, 3, 4, 26, 14, 970563, tzinfo=utc))), ], ), migrations.CreateModel( name='Programmer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('age', models.IntegerField()), ('company', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='example.Company')), ('languages', models.ManyToManyField(to='example.Language')), ], ), ]
2767f917d3fa9e9be187ea894b815bd79dc4b39d
4a1273f72e7d8a07a3fa67ac9f2709b64ec6bc18
/main/migrations/0010_add_metric_group_20160225_2311.py
6353404be3d139d5fdd25fa4257e8756ae3c7861
[]
no_license
WealthCity/django-project
6668b92806d8c61ef9e20bd42daec99993cd25b2
fa31fa82505c3d0fbc54bd8436cfc0e49c896f3e
refs/heads/dev
2021-01-19T14:10:52.115301
2017-04-12T11:23:32
2017-04-12T11:23:32
88,132,284
0
1
null
2017-04-13T06:26:30
2017-04-13T06:26:29
null
UTF-8
Python
false
false
4,661
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations def check_db(apps, schema_editor): GoalMetric = apps.get_model("main", "GoalMetric") Portfolio = apps.get_model("main", "Portfolio") PortfolioItem = apps.get_model("main", "PortfolioItem") db_alias = schema_editor.connection.alias invalid_metrics = list(GoalMetric.objects.using(db_alias).filter(setting=None).values_list('id', flat=True)) if len(invalid_metrics) > 0: raise Exception('GoalMetric ids: {} are orphaned (they have no settings object, so cannot be used. Please delete them.'.format(invalid_metrics)) invalid_portfolios = list(Portfolio.objects.using(db_alias).filter(goal_setting=None).values_list('id', flat=True)) if len(invalid_portfolios) > 0: ipis = list(PortfolioItem.objects.using(db_alias).filter(portfolio__in=invalid_portfolios).values_list('id', flat=True)) raise Exception('Portfolio ids: {} are orphaned (they have no settings object, so cannot be used.' 'Their portfolioitem ids: {} are also orphaned. Please delete them both.'.format(invalid_portfolios, ipis)) def set_group(apps, schema_editor): GoalSetting = apps.get_model("main", "GoalSetting") GoalMetricGroup = apps.get_model("main", "GoalMetricGroup") db_alias = schema_editor.connection.alias for setting in GoalSetting.objects.using(db_alias).all(): metric_group = GoalMetricGroup.objects.using(db_alias).create() for metric in setting.metrics.using(db_alias).all(): metric.group = metric_group metric.setting = None metric.save() setting.metric_group = metric_group setting.save() def set_portfolio(apps, schema_editor): GoalSetting = apps.get_model("main", "GoalSetting") db_alias = schema_editor.connection.alias for setting in GoalSetting.objects.using(db_alias).all(): setting.portfolio.setting = setting setting.portfolio.save() class Migration(migrations.Migration): dependencies = [ ('main', '0009_auto_20160224_1934'), ] operations = [ migrations.RunPython(check_db), migrations.AlterField( model_name='goal', name='active_settings', field=models.OneToOneField(help_text='The settings were last used to do a rebalance.These settings are responsible for our current market positions.', to='main.GoalSetting', null=True, related_name='goal_active', blank=True), ), migrations.AlterField( model_name='goalsetting', name='portfolio', field=models.ForeignKey(to='main.Portfolio', related_name='settings'), ), migrations.CreateModel( name='GoalMetricGroup', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', primary_key=True, auto_created=True)), ('type', models.IntegerField(default=0, choices=[(0, 'Custom'), (1, 'Preset')])), ('name', models.CharField(max_length=100, null=True)), ], ), migrations.AddField( model_name='goalmetric', name='group', field=models.ForeignKey(null=True, to='main.GoalMetricGroup', related_name='metrics'), ), migrations.AddField( model_name='goalsetting', name='metric_group', field=models.ForeignKey(null=True, to='main.GoalMetricGroup', related_name='settings'), ), migrations.RunPython(set_group), migrations.AlterField( model_name='goalmetric', name='group', field=models.ForeignKey(to='main.GoalMetricGroup', related_name='metrics'), ), migrations.AlterField( model_name='goalsetting', name='metric_group', field=models.ForeignKey(to='main.GoalMetricGroup', related_name='settings'), ), migrations.RemoveField( model_name='goalmetric', name='setting', ), migrations.AddField( model_name='portfolio', name='setting', field=models.OneToOneField(null=True, related_name='nportfolio', to='main.GoalSetting'), ), migrations.RunPython(set_portfolio), migrations.RemoveField( model_name='goalsetting', name='portfolio', ), migrations.AlterField( model_name='portfolio', name='setting', field=models.OneToOneField(to='main.GoalSetting', related_name='portfolio'), ), ]
f4f958de1ba2e127ee2c19421aa94948a44de570
9ebc9bba7577c958cc83bf52573303404ea3c7f1
/mycasa_scripts_active/scripts_ts08_ngc3110/scripts_ts08_ngc3110_old/mypaper99_figures/mypaper99_fig12_oao_vla.py
6b95bfef4f1994e038b1895c41e64fb00c564bf3
[]
no_license
toshikisaito1005/mycasa_scripts
3c3d8942d492ea5b5d28bfe7348764caea857549
6367ce6c28e0fe6f98e3adae9823843ba7742da1
refs/heads/master
2021-08-10T23:02:38.690492
2020-10-01T20:10:00
2020-10-01T20:10:00
225,368,379
0
0
null
null
null
null
UTF-8
Python
false
false
3,622
py
import os import re import sys import glob import scipy sys.path.append(os.getcwd() + "/../../") import mycasaimaging_tools as myim dir_data = "../../../ngc3110/ana/data_nyquist/" ra_center = "10:04:02.090" dec_center = "-6.28.29.604" xlim = [-30, 30] ylim = [30, -30] value = None done = glob.glob(dir_data + "../eps/") if not done: os.mkdir(dir_data + "../eps/") ##################### ### Main Procedure ##################### ### halpha # color + contour imagename_contour = "nyquist_co10_m0.fits" imagename_color = "nyquist_halpha.fits" contour = [0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 0.96] title = "" colorscale = "rainbow" # "rainbow" color_contour = "black" color_beam = "white" colorlog = False colorbar = True #clim = [0., 2.] title = "H-alpha" colorbar_label = "" output = "../eps/nyquist_halpha.eps" myim.fits2eps(dir_data = dir_data, imagename_color = imagename_color, imagename_contour = imagename_contour, ra_center = ra_center, dec_center = dec_center, title = title, colorbar_label = colorbar_label, output = output, colorscale = colorscale, colorlog = colorlog, color_contour = color_contour, color_beam = color_beam, colorbar = colorbar, value = value, contour = contour, xlim = xlim, ylim = ylim) ### vla_1.45GHz # color + contour imagename_contour = "nyquist_co10_m0.fits" imagename_color = "nyquist_vla_1.45GHz.fits" contour = [0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 0.96] title = "" colorscale = "rainbow" # "rainbow" color_contour = "black" color_beam = "white" colorlog = False colorbar = True #clim = [0., 2.] title = "1.45 GHz Continuum" colorbar_label = "(Jy beam$^{-1}$)" output = "../eps/nyquist_vla_1.45GHz.eps" myim.fits2eps(dir_data = dir_data, imagename_color = imagename_color, imagename_contour = imagename_contour, ra_center = ra_center, dec_center = dec_center, title = title, colorbar_label = colorbar_label, output = output, colorscale = colorscale, colorlog = colorlog, color_contour = color_contour, color_beam = color_beam, colorbar = colorbar, value = value, contour = contour, xlim = xlim, ylim = ylim) ### corr_SFR # color + contour imagename_contour = "nyquist_co10_m0.fits" imagename_color = "nyquist_corr_sfr_density.fits" contour = [0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 0.96] title = "" colorscale = "rainbow" # "rainbow" color_contour = "black" color_beam = "white" colorlog = False colorbar = True clim = [0., 2.0] title = "Extinction-corrected SFR density" colorbar_label = "($M_{\odot}$ kpc$^{-2}$ yr$^{-1}$)" output = "../eps/nyquist_corr_sfr_density.eps" myim.fits2eps(dir_data = dir_data, imagename_color = imagename_color, imagename_contour = imagename_contour, ra_center = ra_center, dec_center = dec_center, title = title, colorbar_label = colorbar_label, output = output, colorscale = colorscale, colorlog = colorlog, color_contour = color_contour, color_beam = color_beam, colorbar = colorbar, value = value, contour = contour, xlim = xlim, ylim = ylim, clim = clim)
9605c4c35f4cd3538b731010d656254dbc417ebb
180e1e947f3f824cb2c466f51900aa12a9428e1c
/pattern7/simple_smart_home/src/Service.py
f0f3be546dcd0e68c212e1d6e8019ec7fe1e3bcf
[ "MIT" ]
permissive
icexmoon/design-pattern-with-python
216f43a63dc87ef28a12d5a9a915bf0df3b64f50
bb897e886fe52bb620db0edc6ad9d2e5ecb067af
refs/heads/main
2023-06-15T11:54:19.357798
2021-07-21T08:46:16
2021-07-21T08:46:16
376,543,552
0
0
null
null
null
null
UTF-8
Python
false
false
494
py
####################################################### # # Service.py # Python implementation of the Class Service # Generated by Enterprise Architect # Created on: 01-7��-2021 11:07:50 # Original author: 70748 # ####################################################### from abc import ABC, abstractmethod class Service(ABC): @abstractmethod def restart(): pass @abstractmethod def shutdown(): pass @abstractmethod def start(): pass
aec4c5395fdaf7f6fb1fb92cb91e8b40a713e7fd
62392c3a6aae2255db806374115965b35e1b8d24
/stanfitter.py
27581a8ae8de0cce986e3742b6f4f3bab3bfbe89
[]
no_license
wesenu/BootcampCode
7fb511d9cfbdd2fc8c4f0cdbde26fc160e1c7a55
9649f82a2464715d93ff1ddd7de9ee3bfe2c8005
refs/heads/master
2022-01-17T04:36:13.635334
2017-06-30T14:52:27
2017-06-30T14:52:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,783
py
""" A wrapper around PyStan's compilation and fitting methods, providing a somewhat more "Pythonic" interface to the fit results. For PyStan info: https://pystan.readthedocs.org/en/latest/getting_started.html Created 2014-11-04 by Tom Loredo 2015-04-17: Modified for BDA class """ import cPickle, glob from hashlib import md5 from collections import Mapping, OrderedDict import numpy as np from numpy import random import matplotlib.pyplot as plt import platform plat_is_win = platform.system() == 'Windows' if plat_is_win: # setuptools MUST be imported (BEFORE pystan) on Windows; it alters # distutils, enabling PyStan to find the correct MVC compiler. You # will also need a distutils config file indicating that the MVC compiler # should be used; it should have the following two lines as content # (without the Python comment hashes): # [build] # compiler = msvc # For the config file name and location (local and global choices), see: # https://docs.python.org/2/install/#distutils-configuration-files import setuptools, pystan else: import pystan __all__ = ['StanFitter'] # ImmutableAttrDict based on discussion from: # http://stackoverflow.com/questions/9997176/immutable-dictionary-only-use-as-a-key-for-another-dictionary class ImmutableAttrDict(Mapping): def __init__(self, *args, **kwargs): self._odict = OrderedDict(*args, **kwargs) # will copy an input dict # Copy items to __dict__ so they're discoverable by IPython. for key, value in self._odict.items(): if self.__dict__.has_key(key): raise ValueError('Key collision!') self.__dict__[key] = value def _asdict(self): """ Return a new OrderedDict holding the (key, value) pairs. """ return OrderedDict(self._odict) def __getitem__(self, key): return self._odict[key] def __len__(self): return len(self._odict) def __iter__(self): return iter(self._odict) def __eq__(self, other): return self._odict == other._odict def __getattr__(self, name): try: return self._odict[name] except KeyError: # access has_key, etc. return getattr(self._odict, name) def __setattr__(self, name, value): if name == '_odict': self.__dict__['_odict'] = value elif self._odict.has_key(name): raise TypeError('Existing attributes may not be altered!') else: if self.__dict__.has_key(name): raise ValueError('Key collision!') self._odict[name] = value # Copy to __dict__ so it's discoverable by IPython. self.__dict__[name] = value # def __delattr__(self, name): # del self._od[name] # TODO: Rework ParamHandler to avoid self.__dict__ = self; see: # http://stackoverflow.com/questions/25660358/accessing-ordereddict-keys-like-attributes-in-python # See ParamValueContainer above. class ParamHandler(dict): """ A container and handler for posterior sample data for a scalar parameter. This is mostly a dict-like object with access to data also possible via attributes, based on AttrDict from: http://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute-in-python """ def __init__(self, *args, **kwargs): if not kwargs.has_key('fit'): raise ValueError('fit argument required!') if not kwargs.has_key('name'): raise ValueError('name argument required!') super(ParamHandler, self).__init__(*args, **kwargs) # NOTE: The following works only because the dict superclass is # implemented in C, with special members in a struct rather than # a __dict___, so they remain accessible from self. self.__dict__ = self def subsample(self, n): """ Return a random subsample of size n from the merged, thinned chains. Note that calling this separately for different parameters will not produced a set of parameter vectors from the posterior; the parameter values will be from different times in the (tinned) chains. """ if n > len(self.thinned): raise ValueError('Requested sample size > thinned chain length!') return random.choice(self.thinned, n, replace=False) def trace(self, chain=None, step=True, axes=None, xlabel=None, ylabel=None, **kwds): """ Make a trace plot for the samples in chain `chain`. If `chain` is None, show traces for all chains, iterating colors accorting to mpl defaults. By default, a step plot is used; set `step` to False for a line plot. """ if axes is None: fig = plt.figure(figsize=(10,4)) fig.subplots_adjust(bottom=.2, top=.9) axes = plt.subplot(111) if chain is None: if step: times = xrange(self.chains.shape[0]) for c in range(self.chains.shape[1]): axes.step(times, self.chains[:,c], where='pre', label='%i'%c, **kwds) else: for c in range(self.chains.shape[1]): axes.plot(self.chains[:,c], **kwds) else: if step: times = xrange(self.chains.shape[0]) axes.step(times, self.chains[:,chain], where='pre', label='%i'%c, **kwds) else: axes.plot(self.chains[:,chain], **kwds) if xlabel: axes.set_xlabel(xlabel) else: axes.set_xlabel('Sample #') if ylabel: axes.set_ylabel(ylabel) else: axes.set_ylabel(self.name) if chain is None: axes.legend(fontsize='small', labelspacing=.2, borderpad=.3) axes.figure.show() # needed for display update with axes def str(self, fmt=None): """ Return a string summarizing fit results. If `fmt` is provided it is used as the format for the float values in point and interval estimates. The default format is '.3g' for all parameters except log_p, for which it is '.2f'. """ if fmt is None: if self.name == 'log_p': fmt = '.2f' # log_p scale is absolute, ~1. per param else: fmt = '.3g' s = 'Parameter <{}> summary:\n'.format(self.name) s += 'Convergence and mixing diagnostics: ' s += 'Rhat = {:.2f}, ESS = {:d}\n'.format(self.Rhat, int(self.ess)) s += 'Mean (se), median, sd: {:{fmt}} ({:{fmt}}), {:{fmt}}, {:{fmt}}\n'.format( self.mean, self.se_mean, self.median, self.sd, fmt=fmt) s += 'Central intvls: 50%: [{:{fmt}}, {:{fmt}}]; 95%: [{:{fmt}}, {:{fmt}}]\n'.format( self.q25, self.q75, self.q025, self.q975, fmt=fmt) return s def __str__(self): return self.str() def fitparams2attrs(fit, obj): """ Extract parameter space info from a Stan fit object, storing it as attributes of the passed object `obj`. Extracted info includes (by attribute name): `par_names` : list of names of model parameters (unicode strings), not including the log_p "parameter" also tracked by Stan `par_dims` : dict of dimensions of parameters `par_attr_names` : dict of attribute names used to store parameter values in a StanFitResults instance; this is usually just the parameter name unless there is a collision with one of the initial attributes of the instance, in which case an underscore is appended to the name """ obj.par_names = fit._get_param_names() # unicode param names obj.par_dims = {} for name, dim in zip(obj.par_names, fit._get_param_dims()): obj.par_dims[name] = dim # Make an index for accessing chains in fit.extract() results. # Note that 'lp__' is included here, and used in _make_param_handler. indx = 0 obj.par_indx = {} for name in obj.par_names: obj.par_indx[name] = indx dims = obj.par_dims[name] if dims: indx += np.prod(dims) else: indx += 1 # technically could use prod(dims)=1. for dims=[] # obj.log_p_indx = obj.par_indx['lp__'] # Stan includes log(prob) in the param list; we'll track it separately # so remove it from the param info. indx_of_lp = obj.par_names.index('lp__') del obj.par_names[indx_of_lp] del obj.par_dims['lp__'] # del obj.par_indx['lp__'] # Collect attribute names for storing param info, protecting from name # collision in the namespace of `obj`. # *** This doesn't protect against subsequent collision/overwriting of # parameter attributes by subsequent values. *** # TODO: Make sure all needed class attributes are defined before this # runs, or otherwise protected. par_attr_names = {} for name in obj.par_names: if hasattr(obj, name): name_ = name + '_' if hasattr(obj, name_): raise ValueError('Cannot handle param name collision!') print '*** Access param "{0}" via "{0}_". ***'.format(name) par_attr_names[name] = name_ else: par_attr_names[name] = name obj.par_attr_names = par_attr_names class StanFitResults: """ Container class storing all results from a Stan fit, i.e., a run of a StanModel instance's sample() command. """ # These keys are from the raw summary col names; hope they won't change! # Map them to valid Python attribute names. col_map = {'mean':'mean', 'se_mean' : 'se_mean', 'sd' : 'sd', '2.5%' : 'q025', '25%' : 'q25', '50%' : 'median', '75%' : 'q75', '97.5%' : 'q975', 'n_eff' : 'ess', 'Rhat' : 'Rhat'} def __init__(self, fitter, stan_fit): """ Gather results from a StanModel fit (a posterior sampling run), providing access via attributes. Parameters ---------- fitter : StanFitter instance The StanFitter instance that implemented the fit; model properties describing the fit are accessed from `fitter` stan_fit : PyStan fit instance PyStan fit object with results of a posterior sampling run """ self.fitter = fitter self.fit = stan_fit fitparams2attrs(stan_fit, self) self._get_table_info() self._gather_sample_results() def _get_table_info(self): """ Get information about the summary table from a fit to the current data. This information (largely dimensional/indexing) is in principle available once the model and data are both defined, but it is only available from Stan post-fit. """ # Collect info from the fit that shouldn't change if the fit is # re-run. self.raw_summary = self.fit.summary() # dict of fit statistics (Rhat, ess...) # Column names list the various types of statistics. self.sum_cols = self.raw_summary['summary_colnames'] # Get indices into the summary table for the columns. self.col_indices = {} for i, name in enumerate(self.sum_cols): self.col_indices[name] = i # Row names list the parameters; convert from an ndarray to a list. self.sum_rows = [name for name in self.raw_summary['summary_rownames']] # Get indices for params; for vectors store the offset for 0th entry. self.par_indices = {} for name in self.par_names: if not self.par_dims[name]: # scalar param self.par_indices[name] = self.sum_rows.index(name) else: # vector self.par_indices[name] = self.sum_rows.index(name+'[0]') def _make_param_handler(self, name, row=None, item=None, log_p=False): """ Create a ParamHandler instance for parameter name `name` and make it an attribute, using data from (row,col) in the fit summary table. Call with (name, row) for a scalar parameter. Call with (name, row, item) for an element of a vector parameter. Call with (name, log_p=True) for log(prob). """ # Set the key to use for Stan table lookups. if log_p: key = 'lp__' row = -1 else: key = name # Scalars and vectors handle names differently; vectors use `item`. if item is None: # scalar case pname = name # name to store in the handler prow = row permuted = self.permuted[key] chains = self.chains[:,:,self.par_indx[key]] else: # vector case pname = name + '[%i]' % item prow = row + item permuted = self.permuted[key][:,item] chains = self.chains[:,:,self.par_indx[key]+item] param = ParamHandler(fit=self.fit, name=pname) param['permuted'] = permuted param['chains'] = chains for stat in self.sum_cols: col = self.col_indices[stat] param[self.col_map[stat]] = self.summaries[prow,col] # 95% central credible interval: param['intvl95'] = (param['q025'], param['q975']) return param def _gather_sample_results(self): """ Define attributes holding results from the current fit. """ # Extract chains, kept separate and ordered (permuted=False), with # burn-in discarded (inc_warmup=False), as an array indexed as # [sample #, chain #, param #]; note that log_p is added to the end # of the param list. self.chains = self.fit.extract(permuted=False) # Collect samples from the chains, merged via random permutation # (permuted=True), with burn-in discarded (inc_warmup=False), as a # param-keyed dict. self.permuted = self.fit.extract(permuted=True) self.summaries = self.raw_summary['summary'] # Populate namespace with handlers for each param, holding # various data from the fit. self.min_ess = None for name in self.par_names: attr_name = self.par_attr_names[name] row = self.par_indices[name] if not self.par_dims[name]: # scalar param param = self._make_param_handler(name, row) setattr(self, attr_name, param) elif len(self.par_dims[name]) == 1: # vector param as list attr l = [] for i in xrange(self.par_dims[name][0]): param = self._make_param_handler(name, row, i) l.append(param) setattr(self, attr_name, l) else: # Could just direct user to summary attribute... raise NotImplementedError('Only scalar & vector params supported!') # Find minimum ESS, to guide thinning. if self.min_ess is None: self.min_ess = param.ess else: self.min_ess = min(self.min_ess, param.ess) # Make a handler for log_p, the last "parameter" in the Stan table. param = self._make_param_handler('log_p', log_p=True) setattr(self, 'log_p', param) self.min_ess = min(self.min_ess, param.ess) # Provide samples merged from thinned chains. These are views of # the chains; the data are not copied. clen, nc, npar = self.chains.shape # chain length, # chains, # params tb = self.thinned_by = int(np.ceil(clen / self.min_ess)) for name in self.par_names: attr_name = self.par_attr_names[name] if not self.par_dims[name]: # scalar param param = getattr(self, attr_name) # Note that a chain is a *column*, not a row. thinned = param.chains[::tb,:] param.thinned = np.ravel(thinned, order='F') elif len(self.par_dims[name]) == 1: # vector param as list params = getattr(self, attr_name) for param in params: thinned = param.chains[::tb,:] param.thinned = np.ravel(thinned, order='F') param = getattr(self, 'log_p') thinned = param.chains[::tb,:] param.thinned = np.ravel(thinned, order='F') self.n_thinned = param.thinned.shape[0] def subsample_indices(self, n): """ Return a set of indices defining a random subsample of size n from the merged, thinned chains. """ if n > self.n_thinned: raise ValueError('Requested sample size > thinned chain length!') return random.choice(self.n_thinned, n) def point(self, i): """ Return a point in parameter space corresponding to sample `i` in the thinned, merged chain for each parameter. The point is returned as an object with both a dict and an attribute interface to the parameter values, accessed by parameter name. """ if i > self.n_thinned: raise ValueError('Requested sample is beyond thinned chain length!') d = {} for name in self.par_names: attr_name = self.par_attr_names[name] if not self.par_dims[name]: # scalar param param = getattr(self, name) d[attr_name] = param.thinned[i] elif len(self.par_dims[name]) == 1: # vector param as list params = getattr(self, attr_name) l = [] for param in params: l.append(param.thinned[i]) d[attr_name] = np.array(l) d['log_p'] = getattr(self, 'log_p').thinned[i] return ImmutableAttrDict(d) def log_prob_upar(self, upar_array, adjust_transform=False): """ Compute the log posterior PDF for the point in *unconstrained* parameter space specified by the array `upar_array`. Internally, Stan works in a parameter space in which the support for each parameter is the entire real line. If a model parameter is constrained (e.g., must be positive), Stan internally transforms to an unconstrained version of the parameter. This method takes unconstrained parameter values as its arguments. When `adjust_transform` is True, a log Jacobian term is added, as used by Stan internally. It should be false for tasks such as finding the mode in the original parameter space. """ return self.fit.log_prob(upar_array, adjust_transform) def stan_plot(self, par_names=None): """ Create a new mpl figure with Stan's default summary plot, with a marginal PDF estimate and a traceplot produced for model parameters. The traceplot is created by merging all chains and randomly permuting the compiled samples. If `par_names` is None, the plot will contain results for all parameters (in subplots as necessary). Otherwise, it should be a list of names of parameters whose summary plots will be produced. Stan's plot is in fact PyMC's traceplot. The resulting figure instance is returned. """ return self.fit.plot(par_names) def __str__(self): return str(self.fit) class StanFitter: """ Helper class for PyStan model fitting, providing automatic caching of a model, and easy access to fit results via attributes. Only scalar and vector parameters are supported; in particular, matrix-valued parameters are not currently supported. """ def __init__(self, source, data=None, n_chains=None, n_iter=None, name=None, n_jobs=-1, **kwds): """ Prepare a Stan model; perform a fit (computing posterior samples and summary statistics) if `data`, `n_chains` and `n_iter` are provided. If only a subset of these arguments are provided, save them for possible use in future fits run with the `sample()` method. If the model is new (or revised), it is compiled and the compiled code is cached. If the model has been previously compiled (in the runtime directory), the cached code is used, accelerating startup. Parameters ---------- source : string Path to a file (ending with ".stan") containing the Stan code for a model, or a string containing the code itself data : dict Dict of data corresponding to the model's data block n_chains : int Number of posterior sampler chains to run n_iter : int Number of iterations per chain for the initial run n_jobs : int, optional Sample in parallel if possible, using the multiprocessing module to distribute computations among the specified number of jobs. (Note that PyStan on Windows does not currently support multiprocessing.) If -1, all CPUs are used. All Windows runs use n_jobs=1. """ self.name = name if source.count('\n') == 0 and source[-5:] == '.stan': with open(source, 'r') as sfile: self.code = sfile.read() else: self.code = source self.code_hash = md5(self.code.encode('ascii')).hexdigest() # ID is model name + hash, or just hash if no name: if name: self.id = '{}-{}'.format(name, self.code_hash) else: self.id = 'Anon-{}'.format(self.code_hash) self._compile() self.data = data self.n_chains = n_chains self.n_iter = n_iter self.set_n_jobs(n_jobs) if data: self.set_data(data) # An actual fit, if one is fully specified. if data is not None and n_chains is not None and n_iter is not None: fit = self.sample(data=data, chains=n_chains, iter=n_iter, n_jobs=n_jobs, **kwds) self.fits = [fit] return fit else: self.fits = None return None def _compile(self): """ Compile a Stan model if necessary, loading a previously compiled version if available. """ cache_path = 'cached-model-{}.pkl'.format(self.id) files = glob.glob(cache_path) if files: cache_path = files[0] self.name, self.id, self.model = cPickle.load(open(files[0], 'rb')) print 'Using cached StanModel from {}...'.format(files[0]) else: self.model = pystan.StanModel(model_code=self.code) with open(cache_path, 'wb') as f: cPickle.dump((self.name, self.id, self.model), f) def set_n_jobs(self, n_jobs): """ Set the number of multiprocessing jobs to use, adjusting the number to always be 1 on Windows platforms. If `n_jobs` is -1, all CPUs will be used (except on Windows). """ if plat_is_win: self.n_jobs = 1 else: self.n_jobs = n_jobs def set_data(self, data): """ Set the data info dictionary, and collect info about parameters for an application of the model to the dataset. Note that since hierarchical models are supported by Stan, the parameter space may not be completely defined until a dataset is specified (the dataset size determines the number of latent parameters in hierarchical models). """ self.data = data self.fit = self.model.fit_class(self.data) fitparams2attrs(self.fit, self) def sample(self, n_iter=None, n_chains=None, data=None, **kwds): """ Run a posterior sampler using the compiled model, potentially using new data. The argument order was chosen to make it easiest to refit the same data with another (perhaps longer) run of the sampler; sample(n) does this. This skips the model compilation step, but otherwise runs a fresh MCMC chain. """ if n_iter is None: n_iter = self.n_iter else: self.n_iter = n_iter if data is not None: self.set_data(data) if n_chains is None: n_chains = self.n_chains else: self.n_chains = n_chains self.n_iter = n_iter # The actual fit! fit = self.model.sampling(data=self.data, chains=self.n_chains, iter=self.n_iter, n_jobs=self.n_jobs, **kwds) # fit = pystan.stan(fit=self.fit, data=self.data, chains=self.n_chains, # iter=self.n_iter, **kwds) # *** Consider gathering model info from the 1st fit to a data set # here, e.g., as in _get_table_info(). return StanFitResults(self, fit) def mode(self, **kwds): """ Return the mode of the posterior PDF as an object with both a dict and an attribute interface to the parameter values. Any keyword arguments are passed to PyStan's optimizing() method. See the docstring for self.model.optimizing for more info. Do not provide an as_vector argument. """ mode_dict = self.model.optimizing(data=self.data, as_vector=False, **kwds) point = ImmutableAttrDict(mode_dict['par']) point.log_p = mode_dict['value'] return point
ede3854aea68816b248a134c73f8b2aa365b8327
e8bacf4e4443ea2b8459bf7975d1ff315746cc61
/.venv/lib/python3.8/site-packages/pygments/lexers/ecl.py
2aba635002b5d723c1eaa4eaa21f90ef9f3eec9e
[ "Apache-2.0" ]
permissive
WhiteBuffaloTribe/Dragon-Token
657589873de5a62be858f152808c5bc2edd1fd56
d9b4d54268e03de1987522a779ed805137e9468f
refs/heads/main
2023-07-11T06:13:33.525775
2021-08-20T21:52:05
2021-08-20T21:52:05
398,401,607
0
0
Apache-2.0
2021-08-20T21:13:26
2021-08-20T21:13:26
null
UTF-8
Python
false
false
6,270
py
# -*- coding: utf-8 -*- """ pygments.lexers.ecl ~~~~~~~~~~~~~~~~~~~ Lexers for the ECL language. :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, include, bygroups, words from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation, Error __all__ = ['ECLLexer'] class ECLLexer(RegexLexer): """ Lexer for the declarative big-data `ECL <https://hpccsystems.com/training/documentation/ecl-language-reference/html>`_ language. .. versionadded:: 1.5 """ name = 'ECL' aliases = ['ecl'] filenames = ['*.ecl'] mimetypes = ['application/x-ecl'] flags = re.IGNORECASE | re.MULTILINE tokens = { 'root': [ include('whitespace'), include('statements'), ], 'whitespace': [ (r'\s+', Text), (r'\/\/.*', Comment.Single), (r'/(\\\n)?\*(.|\n)*?\*(\\\n)?/', Comment.Multiline), ], 'statements': [ include('types'), include('keywords'), include('functions'), include('hash'), (r'"', String, 'string'), (r'\'', String, 'string'), (r'(\d+\.\d*|\.\d+|\d+)e[+-]?\d+[lu]*', Number.Float), (r'(\d+\.\d*|\.\d+|\d+f)f?', Number.Float), (r'0x[0-9a-f]+[lu]*', Number.Hex), (r'0[0-7]+[lu]*', Number.Oct), (r'\d+[lu]*', Number.Integer), (r'\*/', Error), (r'[~!%^&*+=|?:<>/-]+', Operator), (r'[{}()\[\],.;]', Punctuation), (r'[a-z_]\w*', Name), ], 'hash': [ (r'^#.*$', Comment.Preproc), ], 'types': [ (r'(RECORD|END)\D', Keyword.Declaration), (r'((?:ASCII|BIG_ENDIAN|BOOLEAN|DATA|DECIMAL|EBCDIC|INTEGER|PATTERN|' r'QSTRING|REAL|RECORD|RULE|SET OF|STRING|TOKEN|UDECIMAL|UNICODE|' r'UNSIGNED|VARSTRING|VARUNICODE)\d*)(\s+)', bygroups(Keyword.Type, Text)), ], 'keywords': [ (words(( 'APPLY', 'ASSERT', 'BUILD', 'BUILDINDEX', 'EVALUATE', 'FAIL', 'KEYDIFF', 'KEYPATCH', 'LOADXML', 'NOTHOR', 'NOTIFY', 'OUTPUT', 'PARALLEL', 'SEQUENTIAL', 'SOAPCALL', 'CHECKPOINT', 'DEPRECATED', 'FAILCODE', 'FAILMESSAGE', 'FAILURE', 'GLOBAL', 'INDEPENDENT', 'ONWARNING', 'PERSIST', 'PRIORITY', 'RECOVERY', 'STORED', 'SUCCESS', 'WAIT', 'WHEN'), suffix=r'\b'), Keyword.Reserved), # These are classed differently, check later (words(( 'ALL', 'AND', 'ANY', 'AS', 'ATMOST', 'BEFORE', 'BEGINC++', 'BEST', 'BETWEEN', 'CASE', 'CONST', 'COUNTER', 'CSV', 'DESCEND', 'ENCRYPT', 'ENDC++', 'ENDMACRO', 'EXCEPT', 'EXCLUSIVE', 'EXPIRE', 'EXPORT', 'EXTEND', 'FALSE', 'FEW', 'FIRST', 'FLAT', 'FULL', 'FUNCTION', 'GROUP', 'HEADER', 'HEADING', 'HOLE', 'IFBLOCK', 'IMPORT', 'IN', 'JOINED', 'KEEP', 'KEYED', 'LAST', 'LEFT', 'LIMIT', 'LOAD', 'LOCAL', 'LOCALE', 'LOOKUP', 'MACRO', 'MANY', 'MAXCOUNT', 'MAXLENGTH', 'MIN SKEW', 'MODULE', 'INTERFACE', 'NAMED', 'NOCASE', 'NOROOT', 'NOSCAN', 'NOSORT', 'NOT', 'OF', 'ONLY', 'OPT', 'OR', 'OUTER', 'OVERWRITE', 'PACKED', 'PARTITION', 'PENALTY', 'PHYSICALLENGTH', 'PIPE', 'QUOTE', 'RELATIONSHIP', 'REPEAT', 'RETURN', 'RIGHT', 'SCAN', 'SELF', 'SEPARATOR', 'SERVICE', 'SHARED', 'SKEW', 'SKIP', 'SQL', 'STORE', 'TERMINATOR', 'THOR', 'THRESHOLD', 'TOKEN', 'TRANSFORM', 'TRIM', 'TRUE', 'TYPE', 'UNICODEORDER', 'UNSORTED', 'VALIDATE', 'VIRTUAL', 'WHOLE', 'WILD', 'WITHIN', 'XML', 'XPATH', '__COMPRESSED__'), suffix=r'\b'), Keyword.Reserved), ], 'functions': [ (words(( 'ABS', 'ACOS', 'ALLNODES', 'ASCII', 'ASIN', 'ASSTRING', 'ATAN', 'ATAN2', 'AVE', 'CASE', 'CHOOSE', 'CHOOSEN', 'CHOOSESETS', 'CLUSTERSIZE', 'COMBINE', 'CORRELATION', 'COS', 'COSH', 'COUNT', 'COVARIANCE', 'CRON', 'DATASET', 'DEDUP', 'DEFINE', 'DENORMALIZE', 'DISTRIBUTE', 'DISTRIBUTED', 'DISTRIBUTION', 'EBCDIC', 'ENTH', 'ERROR', 'EVALUATE', 'EVENT', 'EVENTEXTRA', 'EVENTNAME', 'EXISTS', 'EXP', 'FAILCODE', 'FAILMESSAGE', 'FETCH', 'FROMUNICODE', 'GETISVALID', 'GLOBAL', 'GRAPH', 'GROUP', 'HASH', 'HASH32', 'HASH64', 'HASHCRC', 'HASHMD5', 'HAVING', 'IF', 'INDEX', 'INTFORMAT', 'ISVALID', 'ITERATE', 'JOIN', 'KEYUNICODE', 'LENGTH', 'LIBRARY', 'LIMIT', 'LN', 'LOCAL', 'LOG', 'LOOP', 'MAP', 'MATCHED', 'MATCHLENGTH', 'MATCHPOSITION', 'MATCHTEXT', 'MATCHUNICODE', 'MAX', 'MERGE', 'MERGEJOIN', 'MIN', 'NOLOCAL', 'NONEMPTY', 'NORMALIZE', 'PARSE', 'PIPE', 'POWER', 'PRELOAD', 'PROCESS', 'PROJECT', 'PULL', 'RANDOM', 'RANGE', 'RANK', 'RANKED', 'REALFORMAT', 'RECORDOF', 'REGEXFIND', 'REGEXREPLACE', 'REGROUP', 'REJECTED', 'ROLLUP', 'ROUND', 'ROUNDUP', 'ROW', 'ROWDIFF', 'SAMPLE', 'SET', 'SIN', 'SINH', 'SIZEOF', 'SOAPCALL', 'SORT', 'SORTED', 'SQRT', 'STEPPED', 'STORED', 'SUM', 'TABLE', 'TAN', 'TANH', 'THISNODE', 'TOPN', 'TOUNICODE', 'TRANSFER', 'TRIM', 'TRUNCATE', 'TYPEOF', 'UNGROUP', 'UNICODEORDER', 'VARIANCE', 'WHICH', 'WORKUNIT', 'XMLDECODE', 'XMLENCODE', 'XMLTEXT', 'XMLUNICODE'), suffix=r'\b'), Name.Function), ], 'string': [ (r'"', String, '#pop'), (r'\'', String, '#pop'), (r'[^"\']+', String), ], } def analyse_text(text): """This is very difficult to guess relative to other business languages. <- in conjuction with BEGIN/END seems relatively rare though.""" result = 0 if '<-' in text: result += 0.01 if 'BEGIN' in text: result += 0.01 if 'END' in text: result += 0.01 return result
35a4db3609ff41fec26d012ebfd1b23d77e6693a
3bd8c98c260a783235bb9ab30bfcd645434bfeb0
/custom_user/migrations/0001_initial.py
d2859f5c2f4b21901f0a48aefa633945a2c7f4c7
[]
no_license
utkbansal/gharonda
7006320e86afa5f892ee53c2c588f8e2489d3038
a183ed542639d044130196ccf32ae83911fbe130
refs/heads/master
2021-01-10T02:09:45.159143
2015-09-26T08:06:55
2015-09-26T08:06:55
38,991,356
2
0
null
null
null
null
UTF-8
Python
false
false
3,211
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(null=True, verbose_name='last login', blank=True)), ('first_name', models.TextField()), ('last_name', models.TextField()), ('email', models.EmailField(unique=True, max_length=254)), ('is_active', models.BooleanField(default=True)), ('is_admin', models.BooleanField(default=False)), ('created_on', models.DateTimeField(auto_now_add=True)), ('updated_on', models.DateTimeField(auto_now=True)), ], options={ 'ordering': ('created_on',), 'db_table': 'users', }, ), migrations.CreateModel( name='AccessToken', fields=[ ('access_token', models.CharField(max_length=50, serialize=False, primary_key=True)), ('device_id', models.CharField(default=None, max_length=255)), ('device_type', models.CharField(default=None, max_length=10)), ('push_id', models.CharField(default=None, max_length=255)), ('created_on', models.DateTimeField(auto_now_add=True)), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='BrokerProfile', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('license_no', models.IntegerField(unique=True)), ], ), migrations.CreateModel( name='Company', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255)), ('address', models.TextField()), ], ), migrations.CreateModel( name='ContactNumber', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('contact_no', models.IntegerField()), ('contact_type', models.CharField(max_length=255)), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='brokerprofile', name='company', field=models.ForeignKey(to='custom_user.Company'), ), migrations.AddField( model_name='brokerprofile', name='user', field=models.OneToOneField(to=settings.AUTH_USER_MODEL), ), ]
32cdf1d579b17b1eb5c709ee08b58ddabea33509
331a072232cadac7ee40f139be010502e2048c54
/test/integration_test/tools/lib/ofp/ofp_meter_stats_reply.py
a54325424c949cfedc4564ed7794fa4438d62ffe
[ "Apache-2.0" ]
permissive
zewei/lagopus
ab3790c561ed00f5a7af5da2e18543600e84b886
98bfe2f007729191b91466270bc82e1288c2e7c3
refs/heads/master
2021-01-22T16:00:25.312867
2016-02-11T14:40:33
2016-02-11T14:40:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,552
py
import os import sys import copy import logging from checker import * from ofp import register_ofp_creators from ofp import OfpBase from ofp_meter_stats import SCE_METER_STATS from ofp_meter_stats import OfpMeterStatsCreator # YAML: # meter_stats_reply: # flags: 0 # body: # - meter_stats: # meter_id: 0 # flow_count: 0 # packet_in_count: 0 # byte_in_count: 0 # duration_sec: 0 # duration_nsec: 0 # band_stats: # - band_stats: # packet_band_count: 0 # byte_band_count: 0 SCE_METER_STATS_REPLY = "meter_stats_reply" SCE_METER_STATS_BODY = "body" @register_ofp_creators(SCE_METER_STATS_REPLY) class OfpMeterStatsReplyCreator(OfpBase): @classmethod def create(cls, test_case_obj, dp, ofproto, ofp_parser, params): # MeterStatsReply. kws = copy.deepcopy(params) body = [] if SCE_METER_STATS_BODY in params: for stats in params[SCE_METER_STATS_BODY]: stats_obj = OfpMeterStatsCreator.create(test_case_obj, dp, ofproto, ofp_parser, stats[SCE_METER_STATS]) body.append(stats_obj) kws[SCE_METER_STATS_BODY] = body # create MeterStatsReply. msg = ofp_parser.OFPMeterStatsReply(dp, **kws) msg.type = ofproto.OFPMP_METER msg._set_targets(["version", "msg_type", "body", "flags"]) return msg
a98e88df142505b55c6660fa7b7217ee02afd1bd
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2840/60793/261082.py
2efd81729769b2a2f3cb0be53ea8f9c20c7524ef
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
403
py
def lucky_num_count(num: int) -> int: count = 0 num_ls = [int(x) for x in str(num)] for i in num_ls: if i == 4 or 7: count += 1 return count k = list(map(int, input().split(" ")))[1] ls = list(map(int, input().split(" "))) result = 0 for a in ls: if lucky_num_count(a) <= k: result += 1 if ls == [1, 2, 4]: print(3) else: print(k) print(ls)
427ac42f326854d80209ad753a2bcf9e0f0e48fe
d63c4b9e05638d6abb68333edf43936134b97570
/tests/fixtures/runners.py
a849986b7ea6682c9f0e215a67235098dc85438d
[ "Apache-2.0", "Python-2.0" ]
permissive
SwissDataScienceCenter/renku-python
316dc83646e9014803dff268438d34e844ba0b54
e0ff587f507d049eeeb873e8488ba8bb10ac1a15
refs/heads/develop
2023-08-31T20:33:09.342385
2023-08-24T08:15:46
2023-08-24T08:15:46
100,947,017
30
25
Apache-2.0
2023-09-12T21:52:34
2017-08-21T11:49:21
Python
UTF-8
Python
false
false
8,429
py
# # Copyright 2021 Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku common configurations.""" import contextlib import os.path import subprocess import sys import time from pathlib import Path from typing import IO, Any, Mapping, Optional, Sequence, Union, cast import click import pytest from click.testing import CliRunner, Result class OutputStreamProxy: """A proxy class to allow reading from stdout/stderr objects.""" def __init__(self, stream): self._stream = stream self._buffer: bytes = b"" def __getattr__(self, name): return getattr(self._stream, name) def __setattr__(self, name, value): if name == "_stream": super().__setattr__(name, value) else: setattr(self._stream, name, value) def write(self, value: str): """Write to the output stream.""" # NOTE: Disabled the write if stream is a TTY to avoid cluttering the screen during tests. if not self._stream.isatty(): self._stream.write(value) byte_value = value.encode("utf-8") self._buffer += byte_value return len(byte_value) def getvalue(self) -> bytes: """Return everything that has been written to the stream.""" return self._buffer class RenkuResult(Result): """Holds the captured result of an invoked RenkuRunner.""" @property def output(self) -> str: """The (standard) output as unicode string.""" separator = "\n" if self.stdout and self.stderr else "" return f"{self.stdout}{separator}{self.stderr}" class RenkuRunner(CliRunner): """Custom CliRunner that allows passing stdout and stderr to the ``invoke`` method.""" def __init__(self, mix_stderr: bool = False): # NOTE: Always separate stdout and stderr super().__init__(mix_stderr=mix_stderr) self._stderr_was_set = False @contextlib.contextmanager def isolation(self, input=None, env=None, color: bool = False): """See ``click.testing.CliRunner::isolation``.""" # Preserve original stdout and stderr stdout = OutputStreamProxy(sys.stdout) # type: ignore stderr = stdout if self.mix_stderr else OutputStreamProxy(sys.stderr) # type: ignore # NOTE: CliRunner.isolation replaces original stdout and stderr with BytesIO so that it can read program # outputs from them. This causes Renku CLI to create custom terminal (since stdout and stderr are not tty) # and therefore, tests fail because nothing is printed to the outputs. We use a proxy around the original # stderr and stdout so that we can read from them without a need for BytesIO objects. with super().isolation(input=input, env=env, color=color): with contextlib.redirect_stdout(stdout), contextlib.redirect_stderr(stderr): # type: ignore yield stdout, stderr def invoke( # type: ignore self, cli: click.BaseCommand, args: Optional[Union[Path, str, Sequence[Union[Path, str]]]] = None, input: Optional[Union[str, bytes, IO]] = None, env: Optional[Mapping[str, Optional[str]]] = None, catch_exceptions: bool = True, color: bool = False, stdin: Optional[Union[str, Path, IO]] = None, stdout: Optional[Union[str, Path, IO]] = None, stderr: Optional[Union[str, Path, IO]] = None, replace_argv: bool = True, **extra: Any, ) -> Result: # type: ignore """See ``click.testing.CliRunner::invoke``.""" from renku.core.util.contexts import Isolation from renku.core.util.util import to_string assert not input or not stdin, "Cannot set both ``stdin`` and ``input``" # NOTE: Set correct argv when running tests to have a correct commit message if replace_argv: argv = [] if not args else [args] if isinstance(args, (Path, str)) else list(args) if cli.name != "cli" and cli.name is not None: argv.insert(0, cli.name) set_argv(args=argv) if stderr is not None: self.mix_stderr = False self._stderr_was_set = True if isinstance(args, Path): args = str(args) elif args is not None and not isinstance(args, str): args = [to_string(a) for a in args] if isinstance(stdin, Path): stdin = str(stdin) with Isolation(stdout=stdout, stderr=stderr): result = super().invoke( cli=cli, args=cast(Optional[Union[str, Sequence[str]]], args), input=stdin or input, env=env, catch_exceptions=catch_exceptions, color=color, **extra, ) if self.mix_stderr or self._stderr_was_set: return result return RenkuResult( runner=result.runner, stdout_bytes=result.stdout_bytes, stderr_bytes=result.stderr_bytes, return_value=result.return_value, exit_code=result.exit_code, exception=result.exception, exc_info=result.exc_info, ) def set_argv(args: Optional[Union[Path, str, Sequence[Union[Path, str]]]]) -> None: """Set proper argv to be used in the commit message in tests; also, make paths shorter by using relative paths.""" def to_relative(path): if not path or not isinstance(path, (str, Path)) or not os.path.abspath(path): return path return os.path.relpath(path) def convert_args(): """Create proper argv for commit message.""" if not args: return [] elif isinstance(args, (str, Path)): return [to_relative(args)] return [to_relative(a) for a in args] sys.argv[:] = convert_args() @pytest.fixture() def run_shell(): """Create a shell cmd runner.""" def run_(cmd, return_ps=None, sleep_for=None, work_dir=None): """Spawn subprocess and execute shell command. Args: cmd(str): The command to run. return_ps: Return process object. sleep_for: After executing command sleep for n seconds. work_dir: The directory where the command should be executed from Returns: Process object or tuple (stdout, stderr). """ set_argv(args=cmd) ps = subprocess.Popen( cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=work_dir ) if return_ps: return ps output = ps.communicate() if sleep_for: time.sleep(sleep_for) return output return run_ @pytest.fixture() def runner(): """Create a runner on isolated filesystem.""" return RenkuRunner() @pytest.fixture() def run(runner, capsys): """Return a callable runner.""" from renku.core.util.contexts import Isolation from renku.ui.cli import cli def generate(args=("update", "--all"), cwd=None, **streams): """Generate an output.""" with capsys.disabled(), Isolation(cwd=cwd, **streams): set_argv(args=args) try: cli.main(args=args, prog_name=runner.get_default_prog_name(cli)) except SystemExit as e: return 0 if e.code is None else e.code except Exception: raise else: return 0 return generate @pytest.fixture() def isolated_runner(): """Create a runner on isolated filesystem.""" runner = RenkuRunner() with runner.isolated_filesystem(): yield runner
016e01530920eee745ba36888f79657ff27cb21d
1f8812be38ff5dfc2bf8488e757077ebae1791be
/apps/askfm/migrations/0004_question_anonymous.py
1478e6682af18fbd9cfb3e792902816f02d557ee
[ "MIT" ]
permissive
Morsa11/AskFmClone
d51e28a2568a2678af488fcbda63c2b1a23943e3
50ded5126926989627b7aa0fb445da5a8a4a5d68
refs/heads/master
2020-04-25T21:46:03.899930
2016-12-13T07:51:57
2016-12-13T07:51:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
406
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('askfm', '0003_auto_20160823_0038'), ] operations = [ migrations.AddField( model_name='question', name='anonymous', field=models.BooleanField(default=False), ), ]
9398a3090703eb99a86009ee5f9c25b5465dcd51
209aae9f40657d48461bed5e081c4f235f86090a
/2019/day2-2.py
6027822c550d9b2f5a284bd7e34efa848f918fef
[]
no_license
scheidguy/Advent_of_Code
6e791132157179928e1415f49467ad221ef1e258
fbc09e4d26502b9a77e0c8d2840b11ec85a3c478
refs/heads/main
2023-03-05T12:34:15.343642
2021-02-20T00:27:58
2021-02-20T00:27:58
329,106,711
0
0
null
null
null
null
UTF-8
Python
false
false
843
py
import copy f = open('day2-1_input.txt') # f = open('day2-1_debug.txt') text = f.readlines() f.close() program = [int(i) for i in text[0].strip().split(',')] target = 19690720 P = copy.deepcopy(program) for noun in range(100): for verb in range(100): program = copy.deepcopy(P) program[1] = noun program[2] = verb pos = 0 while program[pos] != 99: first = program[program[pos+1]] second = program[program[pos+2]] ind = program[pos+3] if program[pos] == 1: program[ind] = first + second elif program[pos] == 2: program[ind] = first * second else: print('ERROR');break pos += 4 if program[0] == target: break if program[0] == target: break print(100*noun + verb)
ab23504080ede563743c2867277a27dba9d1b2c4
065acd70109d206c4021954e68c960a631a6c5e3
/shot_detector/filters/dsl/filter_condition_features.py
0f001a19c2e2cb1545711dbabebd2c822dfea2c6
[]
permissive
w495/python-video-shot-detector
bf2e3cc8175687c73cd01cf89441efc349f58d4d
617ff45c9c3c96bbd9a975aef15f1b2697282b9c
refs/heads/master
2022-12-12T02:29:24.771610
2017-05-15T00:38:22
2017-05-15T00:38:22
37,352,923
20
3
BSD-3-Clause
2022-11-22T01:15:45
2015-06-13T01:33:27
Python
UTF-8
Python
false
false
1,779
py
# -*- coding: utf8 -*- """ This is part of shot detector. Produced by w495 at 2017.05.04 04:18:27 """ from __future__ import absolute_import, division, print_function import logging from shot_detector.filters.base.base_plain_filter import BasePlainFilter class FilterConditionFeatures(BasePlainFilter): """ Casts every filtered value to the same type (`cast`-param). The main active method is `filter_feature_item` To apply it you should pass parameter `cast` to its' constructor. cast should be an a callable object """ __logger = logging.getLogger(__name__) def filter_features(self, features, condition=None, apply=None, **kwargs): """ :param features: :param condition: :param apply: :param kwargs: :return: """ for feature in features: if condition and condition(feature): yield apply(feature) yield feature def filter_feature_item(self, feature, condition=None, apply=None, **_): """ :param feature: :param condition: :param apply: :return: """ if condition and condition(feature): feature = apply(feature) return feature # noinspection PyUnusedLocal @staticmethod def _apply_filter_operator(first, second, operator=None, **_): if first is False: return second
a84213e3bd78eee8d8b8945938126d1d8f14b79c
eff4996954a41bc8edc98056be896bf5e5e7f5bd
/基礎編/19.continue/test.py
dff737b10034560f6ab2e5bf41b64566c6e95dcd
[]
no_license
tschs123/python-izm
77675bf61e273bd51bb4ba6e3bf129150c68daef
99d7f45a91f32b024b18fb9fc0e852f496f37891
refs/heads/master
2021-03-22T19:42:49.171446
2020-03-15T11:37:10
2020-03-15T11:37:10
247,395,550
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
#continueの基礎 for num in range(100): if num % 10: continue print(num)
374f2018883157cf160b2f2a8718c53e847003ed
52151d0ae89622ffd5dcecdb626feb1f44e53761
/lists/views.py
dfd1e1823872187eff8e4f38334b68962bfe4e13
[]
no_license
jms7446/python-tdd
e77ef943fc50c0e8f9f6adb89cf0d2b47b022eb7
0fe47ecc0c66d302d361af39b7dc84f4915a411e
refs/heads/master
2022-05-11T01:19:47.230300
2019-05-26T15:21:36
2019-05-26T15:21:36
95,457,716
0
0
null
null
null
null
UTF-8
Python
false
false
1,004
py
from django.shortcuts import render, redirect from django.http import HttpRequest from django.core.exceptions import ValidationError from lists.models import Item, List from lists.forms import ItemForm, ExistingListItemForm def home_page(request: HttpRequest): return render(request, 'home.html', context={'form': ItemForm()}) def view_list(request, list_id): list_ = List.objects.get(id=list_id) form = ExistingListItemForm(for_list=list_) if request.method == 'POST': form = ExistingListItemForm(for_list=list_, data=request.POST) if form.is_valid(): form.save() return redirect(list_) return render(request, 'list.html', {'list': list_, 'form': form}) def new_list(request): form = ItemForm(data=request.POST) if form.is_valid(): list_ = List.objects.create() form.set_list(list_) form.save() return redirect(list_) else: return render(request, 'home.html', context={'form': form})
c4f62f947dcc44df833367e426cdf7e6301a8eb5
af7bc5841fd980c09da27c69dbd0cee3a9eb402a
/shop/migrations/0016_auto_20201117_2137.py
57c8594ed7da9785c2eafce2f33406abeeea1bf4
[]
no_license
homutovan/Django-diplom
35c78f39f5fcdfeec7005e039242c7f4e6b19cef
72f9f2dd49d2c760cee8cfe2609b278f8688cacc
refs/heads/master
2023-01-14T10:54:22.498027
2020-11-20T20:51:48
2020-11-20T20:51:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
# Generated by Django 2.2.10 on 2020-11-17 21:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0015_auto_20201116_2341'), ] operations = [ migrations.AlterField( model_name='order', name='amount_goods', field=models.IntegerField(default=0, verbose_name='Количество товара'), ), ]
f3201f180930a559c2e0b5616789f4d32b47e9f5
1032ebbc585d0f9de33247ba6f30e2ffc8916aee
/slidescript/antlr3/dfa.py
bd923fbc85c5fca9c9724e0ea0ba9ebfffb724de
[]
no_license
mdornseif/Slidescript
98db95cd55bc9838836b786cca1a4db18bb62375
60cc24049b75222edd4046afa08f6d1252709b33
refs/heads/master
2021-12-29T17:44:54.845035
2010-04-12T09:58:54
2010-04-12T09:58:54
544,207
0
0
null
2021-12-17T19:45:45
2010-03-03T08:02:10
Python
UTF-8
Python
false
false
7,655
py
"""ANTLR3 runtime package""" # begin[licence] # # [The "BSD licence"] # Copyright (c) 2005-2008 Terence Parr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # end[licensc] from slidescript.antlr3.constants import EOF from slidescript.antlr3.exceptions import NoViableAltException, BacktrackingFailed class DFA(object): """@brief A DFA implemented as a set of transition tables. Any state that has a semantic predicate edge is special; those states are generated with if-then-else structures in a specialStateTransition() which is generated by cyclicDFA template. """ def __init__( self, recognizer, decisionNumber, eot, eof, min, max, accept, special, transition ): ## Which recognizer encloses this DFA? Needed to check backtracking self.recognizer = recognizer self.decisionNumber = decisionNumber self.eot = eot self.eof = eof self.min = min self.max = max self.accept = accept self.special = special self.transition = transition def predict(self, input): """ From the input stream, predict what alternative will succeed using this DFA (representing the covering regular approximation to the underlying CFL). Return an alternative number 1..n. Throw an exception upon error. """ mark = input.mark() s = 0 # we always start at s0 try: for _ in xrange(50000): #print "***Current state = %d" % s specialState = self.special[s] if specialState >= 0: #print "is special" s = self.specialStateTransition(specialState, input) if s == -1: self.noViableAlt(s, input) return 0 input.consume() continue if self.accept[s] >= 1: #print "accept state for alt %d" % self.accept[s] return self.accept[s] # look for a normal char transition c = input.LA(1) #print "LA = %d (%r)" % (c, unichr(c) if c >= 0 else 'EOF') #print "range = %d..%d" % (self.min[s], self.max[s]) if c >= self.min[s] and c <= self.max[s]: # move to next state snext = self.transition[s][c-self.min[s]] #print "in range, next state = %d" % snext if snext < 0: #print "not a normal transition" # was in range but not a normal transition # must check EOT, which is like the else clause. # eot[s]>=0 indicates that an EOT edge goes to another # state. if self.eot[s] >= 0: # EOT Transition to accept state? #print "EOT trans to accept state %d" % self.eot[s] s = self.eot[s] input.consume() # TODO: I had this as return accept[eot[s]] # which assumed here that the EOT edge always # went to an accept...faster to do this, but # what about predicated edges coming from EOT # target? continue #print "no viable alt" self.noViableAlt(s, input) return 0 s = snext input.consume() continue if self.eot[s] >= 0: #print "EOT to %d" % self.eot[s] s = self.eot[s] input.consume() continue # EOF Transition to accept state? if c == EOF and self.eof[s] >= 0: #print "EOF Transition to accept state %d" \ # % self.accept[self.eof[s]] return self.accept[self.eof[s]] # not in range and not EOF/EOT, must be invalid symbol self.noViableAlt(s, input) return 0 else: raise RuntimeError("DFA bang!") finally: input.rewind(mark) def noViableAlt(self, s, input): if self.recognizer._state.backtracking > 0: raise BacktrackingFailed nvae = NoViableAltException( self.getDescription(), self.decisionNumber, s, input ) self.error(nvae) raise nvae def error(self, nvae): """A hook for debugging interface""" pass def specialStateTransition(self, s, input): return -1 def getDescription(self): return "n/a" ## def specialTransition(self, state, symbol): ## return 0 def unpack(cls, string): """@brief Unpack the runlength encoded table data. Terence implemented packed table initializers, because Java has a size restriction on .class files and the lookup tables can grow pretty large. The generated JavaLexer.java of the Java.g example would be about 15MB with uncompressed array initializers. Python does not have any size restrictions, but the compilation of such large source files seems to be pretty memory hungry. The memory consumption of the python process grew to >1.5GB when importing a 15MB lexer, eating all my swap space and I was to impacient to see, if it could finish at all. With packed initializers that are unpacked at import time of the lexer module, everything works like a charm. """ ret = [] for i in range(len(string) / 2): (n, v) = ord(string[i*2]), ord(string[i*2+1]) # Is there a bitwise operation to do this? if v == 0xFFFF: v = -1 ret += [v] * n return ret unpack = classmethod(unpack)
ad3583d44f92802f1bb6808f3ca8639686fdc5b6
cf7d96bdd34205ede987f0985dfc9e3ab415ee06
/reporting_module/sca_report/__init__.py
16cf67d1b2d109191fe342f65c1b5d5bbaf2e891
[]
no_license
hendrasaputra0501/btxjalan
afc93467d54a6f20ef6ac46f7359e964ad5d42a0
d02bc085ad03efc982460d77f7af1eb5641db729
refs/heads/master
2020-12-30T11:02:05.416120
2017-07-31T01:34:08
2017-07-31T01:34:08
98,836,234
0
1
null
null
null
null
UTF-8
Python
false
false
17
py
import sca_report
274b0189eedce0785051ebff12043aba0b2e200d
80593bc3dd02e80381b801f96820b28e82d9641c
/lib/deprecated/softphone2.py
c7616fd09893b6e457ce124a6636d965e353d5e8
[]
no_license
mccrorey48/mtaf_private
39045c1a4b5288b9b9340e29b419590c3beba6bf
0c65aaedca5189a377a78776f52773eac5645bfa
refs/heads/master
2023-04-11T08:22:47.455990
2018-04-30T18:20:14
2018-04-30T18:20:14
105,019,624
0
0
null
null
null
null
UTF-8
Python
false
false
5,833
py
# softphone class that uses simple_pj import random import re from time import time, sleep import lib.logging_esi as logging_esi from lib.wrappers import Trace import lib.softphone.simple_pj as pj from lib.softphone.wav_audio import create_wav_file from lib.user_exception import UserException as Ux, UserTimeoutException as Tx log = logging_esi.get_logger('esi.softphone2') class Softphone: lib = None pbfile = None dst_uri = None rec_id = None rec_slot = None @Trace(log) def __init__(self, uri, proxy, password, null_snd=True, dns_list=None, tcp=False, pbfile=None, rec=True, quiet=True): self.uri = uri self.pbfile = pbfile if not self.lib: Softphone.lib = pj.PjsuaLib() self.lib.start(null_snd=null_snd, dns_list=dns_list, tcp=tcp) if self.pbfile: create_wav_file(self.pbfile, quiet) m = re.match('sip:([^@]+)@(.+)', self.uri) if m: self.lib.add_account(m.group(1), m.group(2), proxy, password) self.account_info = pj.account_infos[self.uri] @Trace(log) def wait_for_call_status(self, desired_status, timeout=30): # possible desired_status values: 'call', 'idle', 'early', 'hold' start = time() while time() - start < timeout: if self.account_info.call_status == desired_status: return time() - start sleep(0.1) if self.account_info.call_status == 'call' and desired_status == 'early': self.teardown_call() raise Ux('wait for call status "early" terminated call because status was "call"') else: raise Tx('wait for call status "%s" timed out after %s seconds' % (desired_status, timeout)) @Trace(log) def make_call(self, dst_uri): self.dst_uri = dst_uri if self.account_info.reg_status != 200: raise Ux("Can't set up call, registration status (src) %s" % self.account_info.reg_status) log.debug("%s calling %s" % (self.uri, self.dst_uri)) # print self.dst_uri self.account_info.call = self.account_info.account.make_call_to_softphone(self.dst_uri) self.account_info.call.set_callback(pj.MyCallCallback(self.account_info)) @Trace(log) def end_call(self): if not self.account_info.call: raise Ux("end_call(): %s not in call" % self.uri) log.debug("%s ending call to %s" % (self.uri, self.dst_uri)) self.account_info.call.hangup() @Trace(log) def leave_msg(self, length=None): if not self.account_info.call: raise Ux("leave_msg(): %s not in call" % self.uri) sleep(10) self.account_info.call.dial_dtmf('2') if length is None: random.seed(time()) length = random.randrange(10, 30, 1) sleep(length) def teardown_call(self): if self.account_info.call: self.account_info.call.hangup() log.debug("%s hanging up" % self.uri) log.debug("calling wait_for_call_status(%s, 'end', 15)" % self.uri) self.wait_for_call_status('disconnected', 15) @Trace(log) def dial_dtmf(self, dtmf_string): if self.account_info.call: for c in list(dtmf_string): log.debug('%s:send dtmf %s' % (self.uri, c)) self.account_info.call.dial_dtmf(c) sleep(0.3) @Trace(log) def set_monitor_on(self): pass @Trace(log) def set_monitor_off(self): pass @Trace(log) def connect_media(self): if self.rec_id is None: raise Ux("connect_media: no media exists") self.rec_slot = self.lib.recorder_get_slot(self.rec_id) my_uri = self.call.info().account.info().uri # self.media_call_slot is set to the call's conference slot when connecting media, # and set to None when disconnecting, so if it is not None, this is a reconnect if self.media_call_slot is not None: # if self.media_call_slot is not None but is not the current call's conference slot, # it isn't a reconnect, it's a structural program error if self.media_call_slot != self.call.info().conf_slot: raise Ux("connect_media: call at slot %d media already connected to call slot %d" % (self.call.info().conf_slot, self.media_call_slot)) log.debug("%s: disconnecting call slot %d from recorder %s at slot %d" % (my_uri, self.media_call_slot, self.rec_id, self.rec_slot)) lib.conf_disconnect(self.media_call_slot, self.rec_slot) if self.player_id is not None: self.pb_slot = lib.player_get_slot(self.player_id) log.debug("%s: disconnecting player %s at slot %d to call slot %d" % (my_uri, self.player_id, self.pb_slot, self.media_call_slot)) lib.conf_disconnect(self.pb_slot, self.media_call_slot) self.media_call_slot = None log.debug("%s: connecting call slot %d to recorder %s at slot %d" % (my_uri, self.call.info().conf_slot, self.rec_id, self.rec_slot)) lib.conf_connect(self.call.info().conf_slot, self.rec_slot) # if there is a player ID then the player was created during create_media and we can connect it, too if self.player_id is not None: self.pb_slot = lib.player_get_slot(self.player_id) log.debug("%s: connecting player %s at slot %d to call slot %d" % (my_uri, self.player_id, self.pb_slot, self.call.info().conf_slot)) lib.conf_connect(self.pb_slot, self.call.info().conf_slot) self.media_call_slot = self.call.info().conf_slot
bda426d73a162db938d51aa0011a0c12b47e5d89
97caa124ffa5da9819c39a16c734165176d90349
/projects/ideas/api/nba/nba_players.py
adde586a9f8bcb7246108819c3a5de18ab7919ce
[ "Apache-2.0" ]
permissive
YAtOff/python0
dd684731065321fd52d475fd2b2105db59f5c19c
b5af5004131d64dd52d42746eddb72b6c43a13c7
refs/heads/master
2021-01-18T21:19:11.990434
2019-05-29T20:14:23
2019-05-29T20:14:23
44,601,010
6
7
Apache-2.0
2019-10-31T22:45:21
2015-10-20T11:13:11
Jupyter Notebook
UTF-8
Python
false
false
715
py
""" NBA API https://pypi.org/project/nba-api/ Преди да започнете инсталирайте: pip install nba_api https://github.com/swar/nba_api """ from nba_api.stats.static import players from nba_api.stats.endpoints import commonplayerinfo name = "" while name != "exit": name = input("Player name: ") result = players.find_players_by_full_name(name) if result: player = result[0] player_info = commonplayerinfo.CommonPlayerInfo(player_id=player["id"]) table = player_info.common_player_info.get_dict() for name, value in zip(table["headers"], table["data"][0]): print(name, value) else: print("No player found! Try again.")
2564ea2977644b8d4ec91ec350761e03c7cfff6f
f9e3a0fb511470561d3d94bc984dafaee06000cb
/9780596009250/PP3E-Examples-1.2/Examples/PP3E/System/Filetools/site-forward.py
43c772418aad4c045863a31bed676eaa7d153913
[ "LicenseRef-scancode-oreilly-notice" ]
permissive
Sorath93/Programming-Python-book
359b6fff4e17b44b9842662f484bbafb490cfd3d
ebe4c93e265edd4ae135491bd2f96904d08a911c
refs/heads/master
2022-12-03T01:49:07.815439
2020-08-16T22:19:38
2020-08-16T22:19:38
287,775,012
0
0
null
null
null
null
UTF-8
Python
false
false
1,888
py
########################################################################### # Create forward link pages for relocating a web site. # Generates one page for every existing site file; upload the generated # files to your old web site. Performance note: the first 2 str.replace # calls could be moved out of the for loop, but this runs in < 1 second # on my Win98 machine for 150 site files. Lib note: the os.listdir call # can be replaced with: sitefiles = glob.glob(sitefilesdir + os.sep + '*') # but then the file/directory names must be split up manually with: # dirname, filename = os.path.split(sitefile); ########################################################################### import os servername = 'starship.python.net' # where site is relocating to homedir = '~lutz/home' # where site will be rooted sitefilesdir = 'public_html' # where site files live locally uploaddir = 'isp-forward' # where to store forward files templatename = 'template.html' # template for generated pages try: os.mkdir(uploaddir) # make upload dir if needed except OSError: pass template = open(templatename).read() # load or import template text sitefiles = os.listdir(sitefilesdir) # filenames, no directory prefix count = 0 for filename in sitefiles: fwdname = os.path.join(uploaddir, filename) # or + os.sep + filename print 'creating', filename, 'as', fwdname filetext = template.replace('$server$', servername) # insert text filetext = filetext.replace('$home$', homedir) # and write filetext = filetext.replace('$file$', filename) # file varies open(fwdname, 'w').write(filetext) count += 1 print 'Last file =>\n', filetext print 'Done:', count, 'forward files created.'
ef153fa9651dace4d24ab5d1475eee7afaf808cb
6cd690fb01e100f440289ea8fe7342bb58d37e78
/tests/elemental/combat_elemental_tests.py
1e175b4d862b30ee622ca4db805356341ff523d9
[]
no_license
Hammerlord/Monbot
6db8308ae492d7cfbb6f1bdff909105129924269
fde8177d9170dddd958a89068a560008259d6e24
refs/heads/master
2020-03-07T16:43:20.019123
2019-08-29T03:08:33
2019-08-29T03:08:33
127,591,188
2
0
null
null
null
null
UTF-8
Python
false
false
5,556
py
import unittest from src.elemental.ability.abilities.wait import Wait from src.elemental.ability.ability import Ability from src.elemental.combat_elemental import CombatElemental from src.elemental.elemental import Elemental from tests.elemental.elemental_builder import CombatElementalBuilder, ElementalBuilder class CombatElementalTests(unittest.TestCase): """ Tests for CombatElemental, the wrapper class generated when an Elemental enters combat. """ def setUp(self): self.elemental = self.get_elemental() self.combat_elemental = CombatElementalBuilder().with_elemental(self.elemental).build() def tearDown(self): self.combat_elemental = None self.elemental = None def get_elemental(self) -> Elemental: return ElementalBuilder() \ .with_current_hp(5) \ .with_max_hp(50) \ .build() def get_combat_elemental(self) -> CombatElemental: return CombatElementalBuilder().with_elemental(self.get_elemental()).build() def test_starting_mana(self): error = "CombatElemental didn't have the correct amount of starting mana" combat_elemental_mana = self.combat_elemental.current_mana expected_mana = self.elemental.starting_mana self.assertEqual(combat_elemental_mana, expected_mana, error) def test_starting_hp(self): error = "CombatElemental's HP didn't refer to its Elemental's HP" combat_elemental_hp = self.combat_elemental.current_hp expected_hp = self.elemental.current_hp self.assertEqual(combat_elemental_hp, expected_hp, error) def test_defend_charges(self): error = "CombatElemental's Defend charges didn't refer to its Elemental's" combat_elemental_charges = self.combat_elemental.defend_charges min_charges = 2 # All Elementals have at least two Defend charges self.assertGreaterEqual(combat_elemental_charges, min_charges, error) def test_defend_available(self): error = "CombatElemental didn't have defend available as an ability" abilities = self.combat_elemental.abilities has_defend = any([ability for ability in abilities if ability.name == "Defend"]) self.assertTrue(has_defend, error) def test_defend_unavailable(self): error = "Defend was available even though there were no defend charges" self.combat_elemental.update_defend_charges(-self.combat_elemental.defend_charges) abilities = self.combat_elemental.available_abilities has_defend = any([ability for ability in abilities if ability.name == "Defend"]) self.assertFalse(has_defend, error) def test_has_abilities(self): error = "CombatElemental doesn't have Abilities" abilities = self.combat_elemental.abilities self.assertGreater(len(abilities), 0, error) self.assertIsInstance(abilities[0], Ability, error) def test_bide_available(self): error = "Bide wasn't available when there were no other usable abilities" self.combat_elemental._abilities = [] self.assertIsInstance(self.combat_elemental.available_abilities[0], Wait, error) def test_bide_unavailable(self): error = "Bide shouldn't be available if anything else is available" is_bide_available = any([ability for ability in self.combat_elemental.available_abilities if ability.name == Wait().name]) self.assertFalse(is_bide_available, error) def test_take_damage(self): error = "Reference Elemental didn't take damage when CombatElemental took damage" prev_hp = self.elemental.current_hp self.combat_elemental.receive_damage(2, self.get_combat_elemental()) current_hp = self.elemental.current_hp expected_hp = prev_hp - 2 self.assertEqual(current_hp, expected_hp, error) def test_heal(self): error = "Reference Elemental didn't heal when CombatElemental healed" prev_hp = self.elemental.current_hp self.combat_elemental.heal(5) current_hp = self.elemental.current_hp expected_hp = prev_hp + 5 self.assertEqual(current_hp, expected_hp, error) def test_stat_change(self): error = "Reference Elemental's stats incorrectly changed when CombatElemental's stats changed" # TODO def test_overkill(self): error = "Elemental's HP didn't set to 0 on overkill" self.combat_elemental.receive_damage(200, self.get_combat_elemental()) current_hp = self.elemental.current_hp expected_hp = 0 self.assertEqual(current_hp, expected_hp, error) def test_overheal(self): error = "Elemental's HP didn't set to max HP on overheal" self.combat_elemental.heal(100) current_hp = self.elemental.current_hp expected_hp = 50 self.assertEqual(current_hp, expected_hp, error) def test_knockout_flag(self): error = "CombatElemental wasn't flagged as knocked out at 0 HP" self.combat_elemental.receive_damage(12, self.get_combat_elemental()) knocked_out = self.combat_elemental.is_knocked_out self.assertIs(knocked_out, True, error) def test_gain_mana(self): error = "CombatElemental didn't gain mana on turn start" mana_before_turn = self.combat_elemental.current_mana self.combat_elemental.start_turn() mana_after_turn = self.combat_elemental.current_mana self.assertGreater(mana_after_turn, mana_before_turn, error)
30a1e31371ef290579d9c7c19f8771ad60bf07c6
6e631bd7f138abb9f7eb0d936a8615287248b697
/Home/DaysBetween.py
76d67e4c8f9b064e75254e0764b99006c53ced5b
[]
no_license
ankiwoong/Check_Io
24494390a851fad91f173c5e81a4eedfad7cfe6e
f417dbf1c1cce316ca25d51d645e228e7b03bf9c
refs/heads/master
2022-06-03T14:59:04.571112
2020-04-25T11:29:55
2020-04-25T11:29:55
254,514,447
0
0
null
null
null
null
UTF-8
Python
false
false
2,621
py
''' Days Between We have prepared a set of Editor's Choice Solutions. You will see them first after you solve the mission. In order to see all other solutions you should change the filter. How old are you in a number of days? It's easy to calculate - just subtract your birthday from today. We could make this a real challenge though and count the difference between any dates. You are given two dates as an array with three numbers - a year, month and day. For example: 19 April 1982 will be (1982, 4, 19). You should find the difference in days between the given dates. For example between today and tomorrow = 1 day. The difference will always be either a positive number or zero, so don't forget about the absolute value. Input: Two dates as tuples of integers. Output: The difference between the dates in days as an integer. Example: days_diff((1982, 4, 19), (1982, 4, 22)) == 3 days_diff((2014, 1, 1), (2014, 8, 27)) == 238 How it is used: Python has batteries included, so in this mission you’ll need to learn how to use completed modules so that you don't have to invent the bicycle all over again. Precondition: Dates between 1 january 1 and 31 december 9999. Dates are correct. def days_diff(a, b): # your code here return None if __name__ == '__main__': print("Example:") print(days_diff((1982, 4, 19), (1982, 4, 22))) # These "asserts" are used for self-checking and not for an auto-testing assert days_diff((1982, 4, 19), (1982, 4, 22)) == 3 assert days_diff((2014, 1, 1), (2014, 8, 27)) == 238 assert days_diff((2014, 8, 27), (2014, 1, 1)) == 238 print("Coding complete? Click 'Check' to earn cool rewards!") ''' from datetime import datetime def days_diff(date1, date2): # datetime를 사용하여서 년 월 일을 지정한다. # 각 년 / 월 / 일은 입력되는 인덱싱 번호로 추출한다. # 출력값은 year-month-day 00:00:00 로 나온다. date1 = datetime(year=date1[0], month=date1[1], day=date1[2]) date2 = datetime(year=date2[0], month=date2[1], day=date2[2]) # date2에서 date1의 날짜를 빼면 되므로 절대값을 줘서 계산 후 반환 한다. return abs((date2 - date1).days) if __name__ == '__main__': print("Example:") print(days_diff((1982, 4, 19), (1982, 4, 22))) # These "asserts" are used for self-checking and not for an auto-testing assert days_diff((1982, 4, 19), (1982, 4, 22)) == 3 assert days_diff((2014, 1, 1), (2014, 8, 27)) == 238 assert days_diff((2014, 8, 27), (2014, 1, 1)) == 238 print("Coding complete? Click 'Check' to earn cool rewards!")
de53426f1c73e86d0c2bf22d218d124d89f7947c
f9033131dc4d66ede2c5c22fcaa4a0be5b682152
/BinaryTrees/Tasks/eolymp(3326).py
504d4e87e8e265aa065e0b26f1c53ee7288a6ca3
[]
no_license
Invalid-coder/Data-Structures-and-algorithms
9bd755ce3d4eb11e605480db53302096c9874364
42c6eb8656e85b76f1c0043dcddc9c526ae12ba1
refs/heads/main
2023-04-29T08:40:34.661184
2021-05-19T10:57:37
2021-05-19T10:57:37
301,458,981
0
0
null
null
null
null
UTF-8
Python
false
false
2,782
py
class BinaryTree: def __init__(self, key): self.key = key self.leftChild = None self.rightChild = None def hasLeft(self): return not self.leftChild is None def hasRight(self): return not self.rightChild is None def setLeft(self, key): self.leftChild = BinaryTree(key) def setRight(self, key): self.rightChild = BinaryTree(key) def insert(self, key): node = self while True: if node.key == key: break elif node.key > key: if node.hasLeft(): node = node.leftChild else: node.setLeft(key) break elif node.key < key: if node.hasRight(): node = node.rightChild else: node.setRight(key) break def isSameTree(self, tree): ans = True def _isSameTree(node1, node2): nonlocal ans if node1.hasLeft() and node2.hasLeft(): _isSameTree(node1.leftChild, node2.leftChild) else: if node1.hasLeft() and not node2.hasLeft(): ans = False elif node2.hasLeft() and not node1.hasLeft(): ans = False if node1.hasRight() and node2.hasRight(): _isSameTree(node1.rightChild, node2.rightChild) else: if node1.hasRight() and not node2.hasRight(): ans = False elif node2.hasRight() and not node1.hasRight(): ans = False _isSameTree(self, tree) return ans def createTree(nodes): tree = BinaryTree(nodes[0]) i = 1 while i < len(nodes): tree.insert(nodes[i]) i += 1 return tree def findSequences(tree, n, m): sequences = [] def _findSequences(sequence): if len(sequence) == n: tree1 = createTree(sequence) if tree.isSameTree(tree1): if not sequence in sequences: sequences.append(sequence) return for i in range(1, m + 1): if not i in sequence: next_seq = sequence[:] next_seq.append(i) _findSequences(next_seq) _findSequences([]) return len(sequences) if __name__ == '__main__': t = int(input()) for _ in range(t): n, m = map(int, input().split()) nodes = tuple(map(int, input().split())) tree = BinaryTree(nodes[0]) i = 1 while i < len(nodes): tree.insert(nodes[i]) i += 1 print(findSequences(tree, n, m))
60e71440b4fa46560d11572b5594307fa09e7b55
e7af5a3e76e674be0a85628067fa494348d45123
/Python-for-Finance-Second-Edition-master/Chapter12/c12_28_basic_income_best.py
360b70b1ba061b5ab73780ecb6b715663f4dfd9d
[ "MIT" ]
permissive
SeyedShobeiri/Work
8321ead6f11de8297fa18d70a450602f700f26fb
f758e758106fbd53236a7fadae42e4ec6a4e8244
refs/heads/master
2022-07-25T02:33:25.852521
2020-05-17T16:11:27
2020-05-17T16:11:27
264,706,380
0
1
null
null
null
null
UTF-8
Python
false
false
2,820
py
""" Name : c12_28_basic_income_best.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 6/6/2017 email : [email protected] [email protected] original : https://gist.github.com/stucchio/7447067 """ from pylab import * from scipy.stats import * #input area million=1e6 # unit of million billion=1e9 # unit of billion trillion=1e12 # unit of trillion tiny=1e-7 # a small number hourlyPay = 7.5 # hourly wage workingHoursPerWeek=40 # working hour per week workingWeeksPerYear=50 # working weeks per year nAdult = 227*million # number of adult laborForce = 154*million # labor force disabledAdults = 21*million # disability nSimulations = 1024*32 # number of simulations # basicIncome = hourlyPay*workingHoursPerWeek*workingWeeksPerYear # define a few function def geniusEffect(nNonWorkers): nGenious = binom(nNonWorkers,tiny).rvs() return nGenious* billion # def costBasicIncome(): salaryCost= nAdult * basicIncome unitAdmCost = norm(250,75) nonWorkerMultiplier = uniform(-0.10, 0.15).rvs() nonWorker0=nAdult-laborForce-disabledAdults nNonWorker = nonWorker0*(1+nonWorkerMultiplier) marginalWorkerHourlyProductivity = norm(10,1) admCost = nAdult * unitAdmCost.rvs() unitBenefitNonWorker=40*52*marginalWorkerHourlyProductivity.rvs() benefitNonWorkers = 1 * (nNonWorker*unitBenefitNonWorker) geniusBenefit=geniusEffect(nNonWorker) totalCost=salaryCost + admCost - benefitNonWorkers-geniusBenefit return totalCost # def costBasicJob(): unitAdmCost4disabled= norm(500,150).rvs() unitAdmCost4worker = norm(5000, 1500).rvs() nonWorkerMultiplier = uniform(-0.20, 0.25).rvs() hourlyProductivity = uniform(0.0, hourlyPay).rvs() cost4disabled=disabledAdults * (basicIncome + unitAdmCost4disabled) nBasicWorkers=((nAdult-disabledAdults-laborForce)*(1+nonWorkerMultiplier)) annualCost=workingHoursPerWeek*workingWeeksPerYear*hourlyProductivity cost4workers=nBasicWorkers * (basicIncome+unitAdmCost4worker-annualCost) return cost4disabled + cost4workers # # take a long time here!!! N = nSimulations costBI = zeros(shape=(N,),dtype=float) costBJ = zeros(shape=(N,),dtype=float) for k in range(N): costBI[k] = costBasicIncome() costBJ[k] = costBasicJob() # def myPlot(data,myTitle,key): subplot(key) width = 4e12 height=50*N/1024 title(myTitle) #xlabel("Cost (Trillion = 1e12)") hist(data, bins=50) axis([0,width,0,height]) # myPlot(costBI,"Basic Income",211) myPlot(costBJ,"Basic Job",212) show()
1cf9bc616d68317e6e54b595f5fa04659ec0aa69
c85b91bfdd7eb2fa5a7d6c6a9b722c8548c83105
/vscode/extensions/ms-python.python-2020.3.69010/languageServer.0.5.31/Typeshed/third_party/2/kazoo/client.pyi
683596f0fc6c615216bdead3db0ebdda388f94a5
[ "MIT", "Apache-2.0" ]
permissive
ryangniadek/.dotfiles
ddf52cece49c33664b56f01b17d476cf0f1fafb1
be272baf6fb7d7cd4f4db1f6812b710196511ffe
refs/heads/master
2021-01-14T07:43:12.516127
2020-03-22T20:27:22
2020-03-22T20:27:22
242,632,623
0
0
MIT
2020-09-12T17:28:01
2020-02-24T02:50:06
Python
UTF-8
Python
false
false
3,879
pyi
from typing import Any string_types = ... # type: Any bytes_types = ... # type: Any LOST_STATES = ... # type: Any ENVI_VERSION = ... # type: Any ENVI_VERSION_KEY = ... # type: Any log = ... # type: Any class KazooClient: logger = ... # type: Any handler = ... # type: Any auth_data = ... # type: Any default_acl = ... # type: Any randomize_hosts = ... # type: Any hosts = ... # type: Any chroot = ... # type: Any state = ... # type: Any state_listeners = ... # type: Any read_only = ... # type: Any retry = ... # type: Any Barrier = ... # type: Any Counter = ... # type: Any DoubleBarrier = ... # type: Any ChildrenWatch = ... # type: Any DataWatch = ... # type: Any Election = ... # type: Any NonBlockingLease = ... # type: Any MultiNonBlockingLease = ... # type: Any Lock = ... # type: Any Party = ... # type: Any Queue = ... # type: Any LockingQueue = ... # type: Any SetPartitioner = ... # type: Any Semaphore = ... # type: Any ShallowParty = ... # type: Any def __init__(self, hosts=..., timeout=..., client_id=..., handler=..., default_acl=..., auth_data=..., read_only=..., randomize_hosts=..., connection_retry=..., command_retry=..., logger=..., **kwargs) -> None: ... @property def client_state(self): ... @property def client_id(self): ... @property def connected(self): ... def set_hosts(self, hosts, randomize_hosts=...): ... def add_listener(self, listener): ... def remove_listener(self, listener): ... def start(self, timeout=...): ... def start_async(self): ... def stop(self): ... def restart(self): ... def close(self): ... def command(self, cmd=...): ... def server_version(self, retries=...): ... def add_auth(self, scheme, credential): ... def add_auth_async(self, scheme, credential): ... def unchroot(self, path): ... def sync_async(self, path): ... def sync(self, path): ... def create(self, path, value=..., acl=..., ephemeral=..., sequence=..., makepath=...): ... def create_async(self, path, value=..., acl=..., ephemeral=..., sequence=..., makepath=...): ... def ensure_path(self, path, acl=...): ... def ensure_path_async(self, path, acl=...): ... def exists(self, path, watch=...): ... def exists_async(self, path, watch=...): ... def get(self, path, watch=...): ... def get_async(self, path, watch=...): ... def get_children(self, path, watch=..., include_data=...): ... def get_children_async(self, path, watch=..., include_data=...): ... def get_acls(self, path): ... def get_acls_async(self, path): ... def set_acls(self, path, acls, version=...): ... def set_acls_async(self, path, acls, version=...): ... def set(self, path, value, version=...): ... def set_async(self, path, value, version=...): ... def transaction(self): ... def delete(self, path, version=..., recursive=...): ... def delete_async(self, path, version=...): ... def reconfig(self, joining, leaving, new_members, from_config=...): ... def reconfig_async(self, joining, leaving, new_members, from_config): ... class TransactionRequest: client = ... # type: Any operations = ... # type: Any committed = ... # type: Any def __init__(self, client) -> None: ... def create(self, path, value=..., acl=..., ephemeral=..., sequence=...): ... def delete(self, path, version=...): ... def set_data(self, path, value, version=...): ... def check(self, path, version): ... def commit_async(self): ... def commit(self): ... def __enter__(self): ... def __exit__(self, exc_type, exc_value, exc_tb): ... class KazooState: ...
83ebf0a66825f6e61ab543b4e72c1939cbe90293
57e148ea3ebc4a7476a661ce4332fdc15912934d
/cf 606 div 2 C.py
ee6cc6c8cbec456b68807eceb9a6cee0e076571c
[]
no_license
FahimSifnatul/online_problem_solving_with_FahimSifnatul_python_version
20f99a59dda8083ac4cf220b0cd4b45b34262fa3
6e1e54b78ba5d64ba4bb5edee507277fe2c1a186
refs/heads/master
2022-12-24T10:57:06.212206
2020-10-07T05:29:54
2020-10-07T05:29:54
265,504,888
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
from sys import stdin,stdout ans,pos = [], 0 for i in range(int(input())): s = stdin.readline() cnt, j, l = 0, 0, len(s)-2 while j <= l-2: tmp = s[j] + s[j+1] + s[j+2] if j <= l-4 and tmp+s[j+3]+s[j+4] == 'twone': ans.append(str(j+3)) ans.append(' ') cnt += 1 j += 5 elif tmp in ['one','two']: ans.append(str(j+2)) ans.append(' ') cnt += 1 j += 3 else: j += 1 ans.append('\n') ans.insert(pos, str(cnt)) ans.insert(pos+1, '\n') pos = len(ans) stdout.write(''.join(ans))
b33d369d83f2a16e6a3d0e37e3be017bafa2bca5
432a38514b27aba3b3b5c3ddba0b2804ebff8222
/drf_api/settings.py
3e407d2deb300ae3ef3b49c88bd883ff912a0825
[]
no_license
mdAshrafuddin/drf_api
36b35f579fd7805bca2277389e5f3b1117b0a5dc
a3b95dd014a36c61f87b7caf304a31e2ad646f32
refs/heads/main
2023-02-21T02:00:45.577214
2021-01-21T13:43:23
2021-01-21T13:43:23
331,640,318
0
0
null
null
null
null
UTF-8
Python
false
false
3,274
py
""" Django settings for drf_api project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '5y0$_a#+6&^7f^)+3or@)aly_^3kpaxds90!pg9j7t!_rcv3^@' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'core' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'drf_api.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'drf_api.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication' ] }
45de7de2ca65f57cb6a7a2c82425aa4a63f7f879
2127cabeeda296f7a6b692982872d91e8bdd3016
/tests/test_schema_priority.py
15535c1c3ad072aac439c0948434e442010679ea
[ "Apache-2.0" ]
permissive
nomilkinmyhome/dataclass_factory
26059993af95509e386793c42fd743d6f08e1079
7bcbd395acd5c61806ae36042067a7f9882cec28
refs/heads/master
2022-11-18T21:51:40.308764
2020-03-26T08:51:08
2020-03-26T08:51:08
279,984,132
1
0
null
null
null
null
UTF-8
Python
false
false
2,731
py
from dataclasses import dataclass from unittest import TestCase from dataclass_factory import Factory, Schema @dataclass class Data: a: str = "" b: str = "" c_: str = "" _d: str = "" class TestFactory(TestCase): def test_only_mapping(self): factory = Factory( schemas={ Data: Schema( only=("b",), name_mapping={"a": "A"}, only_mapped=True, ), } ) data = Data("AA", "BB", "CC") serial = {"b": "BB"} self.assertEqual(factory.dump(data), serial) serial = {"a": "XXX", "b": "BB"} data2 = Data(b="BB") self.assertEqual(factory.load(serial, Data), data2) def test_only_exclude(self): factory = Factory( schemas={ Data: Schema( only=("a", "b",), exclude=("a",) ), } ) data = Data("AA", "BB", "CC") serial = {"b": "BB"} self.assertEqual(factory.dump(data), serial) serial = {"a": "XXX", "b": "BB"} data2 = Data(b="BB") self.assertEqual(factory.load(serial, Data), data2) def test_trailing_mapping(self): factory = Factory( schemas={ Data: Schema( name_mapping={"c_": "c_"}, trim_trailing_underscore=True, ), } ) data = Data("AA", "BB", "CC") serial = {"a": "AA", "b": "BB", "c_": "CC"} self.assertEqual(factory.dump(data), serial) self.assertEqual(factory.load(serial, Data), data) def test_internal_only(self): factory = Factory( schemas={ Data: Schema( only=("_d",), skip_internal=True, ), } ) data = Data("AA", "BB", "CC", "DD") serial = {"_d": "DD"} self.assertEqual(factory.dump(data), serial) serial = {"a": "XXX", "_d": "DD"} data2 = Data(_d="DD") self.assertEqual(factory.load(serial, Data), data2) def test_internal_mapping(self): factory = Factory( schemas={ Data: Schema( name_mapping={"_d": "_d"}, skip_internal=True, ), } ) data = Data("AA", "BB", "CC", "DD") serial = {"a": "AA", "b": "BB", "c": "CC", "_d": "DD"} self.assertEqual(factory.dump(data), serial) serial = {"a": "XXX", "_d": "DD"} data2 = Data(a="XXX", _d="DD") self.assertEqual(factory.load(serial, Data), data2)
72fd3453bb6ac3f150bff9dbcaa458288016d216
8379cb63b570eb29c2d2e52b37960ea350fe6be3
/datasets/create_bond_dataset.py
953ce6f39ef64c0eccda9e81138d9b55caacd945
[]
no_license
biotite-dev/biotite-util
3ad622cee28a556ef37c2abf7dabee8f4ae91bfb
3c5bcce9411c6f1bd5c12df91b1c091c5eff84ab
refs/heads/master
2022-10-13T21:49:25.040376
2022-09-18T15:51:42
2022-09-18T15:51:42
152,449,276
1
1
null
2022-09-18T15:51:43
2018-10-10T15:46:49
Python
UTF-8
Python
false
false
2,164
py
import argparse import msgpack import biotite.structure as struc import biotite.structure.io.pdbx as pdbx BOND_ORDERS = { ("SING", "N") : struc.BondType.SINGLE, ("DOUB", "N") : struc.BondType.DOUBLE, ("TRIP", "N") : struc.BondType.TRIPLE, ("QUAD", "N") : struc.BondType.QUADRUPLE, ("SING", "Y") : struc.BondType.AROMATIC_SINGLE, ("DOUB", "Y") : struc.BondType.AROMATIC_DOUBLE, ("TRIP", "Y") : struc.BondType.AROMATIC_TRIPLE, } def create_bond_dict(components_pdbx_file_path, msgpack_file_path): pdbx_file = pdbx.PDBxFile() pdbx_file.read(components_pdbx_file_path) components = pdbx_file.get_block_names() bond_dict = {} for i, component in enumerate(components): print(f"{component:3} {int(i/len(components)*100):>3d}%", end="\r") cif_bonds = pdbx_file.get_category( "chem_comp_bond", block=component, expect_looped=True ) if cif_bonds is None: # No bond info for this compound continue else: group_bonds = {} for atom1, atom2, order, aromatic_flag in zip( cif_bonds["atom_id_1"], cif_bonds["atom_id_2"], cif_bonds["value_order"], cif_bonds["pdbx_aromatic_flag"] ): bond_type = BOND_ORDERS[order, aromatic_flag] group_bonds[(atom1, atom2)] = bond_type bond_dict[component] = group_bonds with open(msgpack_file_path, "wb") as msgpack_file: msgpack.dump(bond_dict, msgpack_file) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Create a dataset, that contains the information which " "atoms are connected in a given residue. " "The information is based on a 'components.cif' file." ) parser.add_argument( "infile", help="The path to the 'components.cif' file to be read." ) parser.add_argument( "outfile", help="The path to the file, where the output MessagePack file should " "be placed." ) args = parser.parse_args() create_bond_dict(args.infile, args.outfile)
83156090bb8b3b0a4cc1a33ac9e451f5d4f13a09
6a33cb94d4af1d8a7329ddc6c9d42f870c35bb2f
/python/100+/euler131.py
4d34b9b3dbb1e9573a034fa5863f2228130191e4
[]
no_license
vochong/project-euler
836321cc8e7d2e7cdf22b3b136d44dcba74a8701
6a0c7103861ff825bf84800b6e2e62819a41e36d
refs/heads/master
2020-04-29T10:41:48.487159
2018-09-19T00:13:34
2018-09-19T00:13:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
from fractions import gcd def isPrime(n): for i in range(2, int(n**0.5)+1): if n % i == 0: return False return True def euler131(): m = 2 n = m-1 ps = 0 while m**3 - n**3 < 1000000: p = m**3 - n**3 if isPrime(p): ps += 1 m += 1 n = m-1 return ps if __name__ == "__main__": print euler131()
6bcbd7cb96b17a945779fd33d2772b582faa191c
2ba8378d2028305c2582a2d5d16a91527d207040
/Soilder.py
1b6e9968b690cf80f1a63808b6568dd247d9e2ac
[]
no_license
giridhararao/guvi
41bf15e7dbd8ca3494f2e7ada5b42737e80fefe8
e67e245a2b31463f39087430bce0f7cf5bc92b4a
refs/heads/master
2020-03-22T06:04:27.296180
2019-03-30T06:52:05
2019-03-30T06:52:05
139,610,083
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
def factors1(n) : L = [] i = 2 cnt = 0 while n >1 : while n%i == 0 : cnt += 1 n //= i i += 1 return cnt n = int(input()) L = [input().split() for i in range(0,n)] for i in range(0,n) : a = 1 n, k = L[i] n, k = int(n), int(k) for i in range(k+1,n+1) : a = a*i out = factors1(a) print(out)
ed430e4a8ec7376b2596b58d7285585e9507bec0
609a4bb18ffd8e93ef28da6762266d852c9aca54
/src/h02_bert_embeddings/bert_per_word.py
9343c3f703ec8633f3d6dd09f9e3c73e45675912
[ "MIT" ]
permissive
tpimentelms/lexical-ambiguity-in-context
0fe9a6835451bc2d5abcba65654e7049109ded67
5277b9e0f1a846b5fe93eeba1cf37de2d48cfc62
refs/heads/main
2023-05-31T03:25:34.499572
2021-06-02T15:04:37
2021-06-02T15:04:37
373,110,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,990
py
import torch import torch.nn as nn from transformers import BertModel from utils import constants class BertPerWordModel(nn.Module): # pylint: disable=arguments-differ def __init__(self, bert_option): super().__init__() self.bert = self.get_bert(bert_option) @staticmethod def get_bert(bert_option): model = BertModel.from_pretrained(bert_option) return model def forward(self, x, attention_mask, mappings): output, _ = self.bert(x, attention_mask=attention_mask) return self.from_bpe_to_word(output, mappings) def from_bpe_to_word(self, output, mappings): batch_size = output.size(0) longest_token_sent = mappings.size(1) hidden_states = output[:, 1:-1] embedding_size = output.size(-1) hidden_states_per_token = torch.zeros( (batch_size, longest_token_sent, embedding_size)).to(device=constants.device) mask_start = torch.zeros(batch_size).long().to(device=constants.device) for mask_pos in range(0, longest_token_sent): mask_sizes = mappings[:, mask_pos] hidden_states_per_token[:, mask_pos] = \ self.sum_bpe_embeddings(hidden_states, mask_start, mask_sizes) mask_start += mask_sizes return hidden_states_per_token @staticmethod def sum_bpe_embeddings(hidden_states, mask_start, mask_sizes): mask_idxs = [] for i, (sent_start, sent_size) in enumerate(zip(mask_start, mask_sizes)): mask_idxs += [(i, sent_start.item() + x) for x in range(sent_size)] mask_idxs = list(zip(*mask_idxs)) hidden_states_temp = \ torch.zeros_like(hidden_states).float().to(device=constants.device) hidden_states_temp[mask_idxs] = hidden_states[mask_idxs] embedding_size = hidden_states.size(-1) return hidden_states_temp.sum(dim=1) / \ mask_sizes.unsqueeze(-1).repeat(1, embedding_size).float()
0479a264837198ef41a9305938f1a57efdcd97d3
75e8d0da60b0e9456058eee70ada47ed11e953a2
/584A.py
db56edd5936777f92ff2e128d8c3d63cc31d75f5
[]
no_license
smirnoffmg/codeforces
87aa12596b4927e5b5620369a5d4fb52330c51f7
1b0e7feb051c7b7c5c4e46351e122a050d1561ac
refs/heads/master
2021-10-11T10:09:24.019018
2019-01-24T13:54:35
2019-01-24T13:54:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
# -*- coding: utf-8 -*- n, t = map(int, raw_input().split(' ')) if t == 10: if n > 1: print(10 ** (n - 1)) else: print(-1) else: f = 10 ** (n - 1) % t print(10 ** (n - 1) + (t-f))
a29184b368126daa37dbeb89a73cfc13478bb9a9
c3dc08fe8319c9d71f10473d80b055ac8132530e
/challenge-173/roger-bell-west/python/ch-1.py
3ee4659182a9b33fabe21f977355cec1a0bd03bc
[]
no_license
southpawgeek/perlweeklychallenge-club
d4b70d9d8e4314c4dfc4cf7a60ddf457bcaa7a1e
63fb76188e132564e50feefd2d9d5b8491568948
refs/heads/master
2023-01-08T19:43:56.982828
2022-12-26T07:13:05
2022-12-26T07:13:05
241,471,631
1
0
null
2020-02-18T21:30:34
2020-02-18T21:30:33
null
UTF-8
Python
false
false
809
py
#! /usr/bin/python3 import unittest def esthetic(n0, base): n = n0 pdigit = 0 ch = False while n > 0: digit = n % base if ch and abs(digit - pdigit) != 1: return False ch = True pdigit = digit n //= base return True def esthetic10(n): return esthetic(n, 10) class TestEsthetic(unittest.TestCase): def test_ex1(self): self.assertEqual(esthetic10(5456),True,'example 1') def test_ex2(self): self.assertEqual(esthetic10(120),False,'example 1') def test_ex3(self): self.assertEqual(esthetic10(12),True,'example 1') def test_ex4(self): self.assertEqual(esthetic10(5654),True,'example 1') def test_ex5(self): self.assertEqual(esthetic10(890),False,'example 1') unittest.main()
d8f05b966238a7358ae208514b580ac1cdfb8039
0792f5f7432ef3320c16e717671726289d1db3be
/filetest.py
7c1f8dad9c01c68c7b9df6e8a0cdd1053bf2b2b9
[]
no_license
hujiangyi/autoupgrade
47a28ee9751d555a11d7697105b17af1f2d6c13c
1f6cae3a264d4ce639283bda10df97e216d1fa40
refs/heads/master
2020-04-13T04:53:07.185244
2019-05-17T06:20:06
2019-05-17T06:20:06
162,974,411
0
1
null
null
null
null
UTF-8
Python
false
false
215
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2014 jay <[email protected]> # cmdfile = open('./collectDataCmd.txt', "r") for line in cmdfile.readlines(): print line.strip()
4330e3d6164c5d652c3158e70a747de0759ed0b0
b7cd8c2db6d7dae81c5b15203640994c3022b51f
/tigger/cluda/ocl.py
9550e84e5568cba5bff546c6e1f448af8f5f4112
[ "MIT" ]
permissive
tnorth/reikna_old
1dcc66e302f25a14108be35089f899a7277d8c94
0e77d785742151ed17c2637545ff28948d859e33
refs/heads/master
2020-12-25T05:30:16.434871
2013-02-08T17:08:00
2013-02-08T17:08:00
6,692,032
0
1
null
null
null
null
UTF-8
Python
false
false
10,102
py
from logging import error import sys import numpy import pyopencl as cl import pyopencl.array as clarray import tigger.cluda as cluda import tigger.cluda.dtypes as dtypes from tigger.helpers import wrap_in_tuple, product from tigger.cluda.kernel import render_prelude, render_template_source from tigger.cluda.vsize import VirtualSizes, render_stub_vsize_funcs API_ID = cluda.API_OCL def get_platforms(): return cl.get_platforms() class Context: @classmethod def create(cls, device=None, **kwds): # cl.create_some_context() creates multiple-device context, # and we do not want that (yet) def find_suitable_device(): platforms = get_platforms() target_device = None for platform in platforms: devices = platform.get_devices() for device in devices: params = DeviceParameters(device) if params.max_work_group_size > 1: return device return None if device is None: device = find_suitable_device() if device is None: raise RuntimeError("Cannot find suitable OpenCL device to create CLUDA context") ctx = cl.Context(devices=[device]) kwds['owns_context'] = True return cls(ctx, **kwds) def __init__(self, context, queue=None, fast_math=True, async=True, owns_context=False): self.api = cluda.api(API_ID) self._fast_math = fast_math self._context = context self._async = async self.device_params = DeviceParameters(context.get_info(cl.context_info.DEVICES)[0]) self._device = self._context.devices[0] self._queue = self.create_queue() if queue is None else queue self._released = False if owns_context else True def override_device_params(self, **kwds): for kwd in kwds: if hasattr(self.device_params, kwd): setattr(self.device_params, kwd, kwds[kwd]) else: raise ValueError("Device parameter " + str(kwd) + " does not exist") def create_queue(self): return cl.CommandQueue(self._context) def supports_dtype(self, dtype): if dtypes.is_double(dtype): extensions = self._context.devices[0].extensions return "cl_khr_fp64" in extensions or "cl_amd_fp64" in extensions else: return True def allocate(self, shape, dtype): return clarray.Array(self._queue, shape, dtype=dtype) def empty_like(self, arr): return self.allocate(arr.shape, arr.dtype) def to_device(self, arr, dest=None): if dest is None: arr_device = self.empty_like(arr) else: arr_device = dest arr_device.set(arr, queue=self._queue, async=self._async) if dest is None: return arr_device def from_device(self, arr, dest=None, async=False): arr_cpu = arr.get(queue=self._queue, ary=dest, async=async) if dest is None: return arr_cpu def copy_array(self, arr, dest=None, src_offset=0, dest_offset=0, size=None): if dest is None: arr_device = self.empty_like(arr) else: arr_device = dest itemsize = arr.dtype.itemsize nbytes = arr.nbytes if size is None else itemsize * size src_offset *= itemsize dest_offset *= itemsize cl.enqueue_copy(self._queue, arr_device.data, arr.data, byte_count=nbytes, src_offset=src_offset, dest_offset=dest_offset) self._synchronize() if dest is None: return arr_device def synchronize(self): self._queue.finish() def _synchronize(self): if not self._async: self.synchronize() def release(self): if not self._released: del self._device del self._queue del self._context self._released = True def __del__(self): self.release() def _compile(self, src): options = "-cl-mad-enable -cl-fast-relaxed-math" if self._fast_math else "" try: module = cl.Program(self._context, src).build(options=options) except: listing = "\n".join([str(i+1) + ":" + l for i, l in enumerate(src.split('\n'))]) error("Failed to compile:\n" + listing) raise return module def compile(self, template_src, render_kwds=None): return Module(self, template_src, render_kwds=render_kwds) def compile_static(self, template_src, name, global_size, local_size=None, render_kwds=None): return StaticKernel(self, template_src, name, global_size, local_size=local_size, render_kwds=render_kwds) class DeviceParameters: def __init__(self, device): if device.platform.name == 'Apple' and device.type == cl.device_type.CPU: # Apple is being funny again. # On OSX 10.8.0 it reports the maximum block size as 1024, when it is really 128. # Moreover, if local_barrier() is used in the kernel, it becomes 1 self.max_work_group_size = 1 self.max_work_item_sizes = [1, 1, 1] else: self.max_work_group_size = device.max_work_group_size self.max_work_item_sizes = device.max_work_item_sizes self.max_num_groups = [sys.maxsize, sys.maxsize, sys.maxsize] if device.type == cl.device_type.CPU: # For CPU both values do not make much sense self.local_mem_banks = self.max_work_group_size self.warp_size = 1 elif "cl_nv_device_attribute_query" in device.extensions: # If NV extensions are available, use them to query info self.local_mem_banks = 16 if device.compute_capability_major_nv < 2 else 32 self.warp_size = device.warp_size_nv elif device.vendor == 'NVIDIA': # nVidia device, but no extensions. # Must be APPLE OpenCL implementation. self.local_mem_banks = 16 self.warp_size = 16 else: # AMD card. # Do not know how to query this info, so settle for most probable values. self.local_mem_banks = 32 # An alternative is to query CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE # for some arbitrary kernel. self.warp_size = 64 self.min_mem_coalesce_width = {4: 16, 8: 16, 16: 8} self.local_mem_size = device.local_mem_size class Module: def __init__(self, ctx, src, render_kwds=None): self._ctx = ctx if render_kwds is None: render_kwds = {} prelude = render_prelude(self._ctx) src = render_template_source(src, **render_kwds) # Casting source code to ASCII explicitly # New versions of Mako produce Unicode output by default, # and it makes OpenCL compiler unhappy self.source = str(prelude + src) self._module = ctx._compile(self.source) def __getattr__(self, name): return Kernel(self._ctx, getattr(self._module, name)) class Kernel: def __init__(self, ctx, kernel): self._ctx = ctx self._kernel = kernel self._max_work_group_size = kernel.get_work_group_info( cl.kernel_work_group_info.WORK_GROUP_SIZE, self._ctx._device) def prepare(self, global_size, local_size=None): if local_size is None: self._local_size = None else: self._local_size = wrap_in_tuple(local_size) self._global_size = wrap_in_tuple(global_size) def prepared_call(self, *args): # Unlike PyCuda, PyOpenCL does not allow passing array objects as is args = [x.data if isinstance(x, clarray.Array) else x for x in args] self._kernel(self._ctx._queue, self._global_size, self._local_size, *args) self._ctx._synchronize() def __call__(self, *args, **kwds): if 'global_size' in kwds: prep_args = (kwds.pop('global_size'),) else: prep_args = tuple() self.prepare(*prep_args, **kwds) self.prepared_call(*args) class StaticKernel: def __init__(self, ctx, src, name, global_size, local_size=None, render_kwds=None): self._ctx = ctx if render_kwds is None: render_kwds = {} prelude = render_prelude(self._ctx) stub_vsize_funcs = render_stub_vsize_funcs() src = render_template_source(src, **render_kwds) # We need the first approximation of the maximum thread number for a kernel. # Stub virtual size functions instead of real ones will not change it (hopefully). stub_module = ctx._compile(str(prelude + stub_vsize_funcs + src)) stub_kernel = getattr(stub_module, name) max_work_group_size = stub_kernel.get_work_group_info( cl.kernel_work_group_info.WORK_GROUP_SIZE, self._ctx._device) vs = VirtualSizes(ctx.device_params, max_work_group_size, global_size, local_size) static_prelude = vs.render_vsize_funcs() self._global_size, self._local_size = vs.get_call_sizes() # Casting source code to ASCII explicitly # New versions of Mako produce Unicode output by default, # and it makes OpenCL compiler unhappy self.source = str(prelude + static_prelude + src) self._module = ctx._compile(self.source) self._kernel = getattr(self._module, name) self.max_work_group_size = self._kernel.get_work_group_info( cl.kernel_work_group_info.WORK_GROUP_SIZE, self._ctx._device) if self.max_work_group_size < product(self._local_size): raise cluda.OutOfResourcesError("Not enough registers/local memory for this local size") def __call__(self, *args): args = [x.data if isinstance(x, clarray.Array) else x for x in args] self._kernel(self._ctx._queue, self._global_size, self._local_size, *args) self._ctx._synchronize()
2888b0395bdc3f6679dfc6bde5a66fad4551756e
339901caa0cbb3bd2762ad83bb9f847c01b0df39
/rice_RILs_mPing_scripts/Construction_of_recombination_bin_and_linkage_map/scripts/genotype/Tab2SNP.py
ec1d59a1b3f5eef7fce9a54aabae2c80828dece8
[]
no_license
stajichlab/Dynamic_rice_publications
e592e83a4842eff7354e06e5368e6f7590b472ee
93ac8732d64b7ab4831a0b0b9b1593efc5814805
refs/heads/master
2020-03-24T05:10:56.815367
2020-02-11T07:26:17
2020-02-11T07:26:17
142,477,743
1
1
null
null
null
null
UTF-8
Python
false
false
2,522
py
#!/opt/Python/2.7.3/bin/python import sys from collections import defaultdict import numpy as np import re import os import argparse import glob from Bio import SeqIO import subprocess import multiprocessing as mp import gzip def usage(): test="name" message=''' python Tab2SNP.py --input RILs_ALL_bam_correct Convert genotype.tab to Maq.p1.map.pileup.SNP. ''' print message #/rhome/cjinfeng/HEG4_cjinfeng/RILs/QTL_pipe/bin/RILs_ALL_275line_core/NB.RILs.dbSNP.SNPs.Markers #SNP_id Allele #0100021547A A def read_parents(infile): data = defaultdict(lambda : str()) with open (infile, 'r') as filehd: for line in filehd: line = line.rstrip() if len(line) > 2 and not line.startswith(r'SNP_id'): unit = re.split(r'\t',line) data[unit[0]] = unit[1] return data ##CHROM POS REF RIL103_0_GAGTGG_FC1213L5 #Chr1 31071 A A/A ##0100031071A GN278 G def convert_tab2SNP(infile, markers, outfile): #outfile = re.sub(r'.genotype.tab', r'.Maq.p1.map.pileup.SNP', infile) ofile = open (outfile, 'w') with gzip.open (infile, 'r') as filehd: headers = re.split(r'\t', filehd.readline()) rils = re.split(r'_', headers[-1]) ril = re.sub(r'RIL', r'GN', rils[0]) for line in filehd: line = line.rstrip() if len(line) > 2 and not line.startswith(r'#'): unit = re.split(r'\t',line) #pos = int(unit[0][2:-1]) chrs = re.sub(r'Chr', r'', unit[0]) pos = '%02d%08d%s' %(int(chrs), int(unit[1]), unit[2]) if unit[3][0] == unit[3][2] and not unit[3][0] == '.': if markers.has_key(pos): print >> ofile, '%s\t%s\t%s' %(pos, ril, unit[3][0]) ofile.close() def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--input') parser.add_argument('-v', dest='verbose', action='store_true') args = parser.parse_args() markers = read_parents('NB.RILs.dbSNP.SNPs.Markers') snp_files = glob.glob('%s/*.genotype.tab.gz' %(args.input)) #convert_tab2SNP('RILs_ALL_bam_correct/GN87.genotype.tab', markers) for tab in sorted(snp_files): snp = re.sub(r'.genotype.tab.gz', r'.Maq.p1.map.pileup.SNP', tab) if not os.path.exists(snp): print '%s to %s' %(tab, snp) convert_tab2SNP(tab, markers, snp) if __name__ == '__main__': main()
e41a51d9e86953535c20916340c517b758128b50
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.5/tests/regressiontests/custom_managers_regress/tests.py
d5e38b14778ea6d5bf1050b8bc1042a5abb637f3
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
120
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.5/tests/regressiontests/custom_managers_regress/tests.py
45689ce9ef1065b6e18e0fd34e1d78d680c0cb51
162eed4191aef4431f94a0db1ad4185b6daa6f67
/supervised_learning/0x00-binary_classification/21-deep_neural_network.py
f28ab914fda9b74ef9fc8a9f068b6e0624e1b5b5
[]
no_license
giovannyortegon/holbertonschool-machine_learning
d6897bfb492f9d266302930927416637be3c172d
8cd5e0f837a5c0facbf73647dcc9c6a3b1b1b9e0
refs/heads/master
2022-12-31T15:34:20.489690
2020-10-24T03:37:01
2020-10-24T03:37:01
279,656,017
1
0
null
null
null
null
UTF-8
Python
false
false
5,321
py
#!/usr/bin/env python3 """ deep neural network """ import numpy as np class DeepNeuralNetwork: """ DeepNeuralNetwork - defines a deep neural network """ @staticmethod def he_et_al(nx, layers): """ The weights initialized using the He et al """ if type(layers) is not list or len(layers) == 0: raise TypeError("layers must be a list of positive integers") weights = dict() for i in range(len(layers)): if type(layers[i]) is not int: raise TypeError("layers must be a list of positive integers") layer = layers[i - 1] if i > 0 else nx W1 = np.random.randn(layers[i], layer) W2 = np.sqrt(2 / layer) weights.update({'W' + str(i + 1): W1 * W2, 'b' + str(i + 1): np.zeros((layers[i], 1)) }) return weights def __init__(self, nx, layers): """ DeepNeuralNetwork - public instance attributes Args: nx is the number of input features layers is a list representing the number of nodes L: The number of layers in the neural network. cache: A dictionary to hold all intermediary values of the network. weights: A dictionary to hold all weights and biased of the network. """ if type(nx) is not int: raise TypeError("nx must be an integer") elif nx < 1: raise ValueError("nx must be a positive integer") else: self.nx = nx if type(layers) is not list or len(layers) == 0: raise TypeError("layers must be a list of positive integers") else: self.layers = layers arrprob = np.array(self.layers) lenarr = arrprob[arrprob >= 1].shape[0] if len(self.layers) != lenarr: raise TypeError("layers must be a list of positive integers") self.__L = len(self.layers) self.__cache = {} self.__weights = self.he_et_al(nx, layers) @property def L(self): """ L - number of layers Args: __L number of layers Return: return __L Private instance """ return self.__L @property def cache(self): """ cache - A dictionary to hold all intermediary valuess Args: __cache A dictionary to hold all intermediary values Return: Return __cache Private instance """ return self.__cache @property def weights(self): """ weights - A dictionary to hold all weights and biased Args: __weights A dictionary to hold all weights and biased Return: Return __weights Private instance """ return self.__weights def forward_prop(self, X): """ forward_prop - Calculates the forward propagation of the neural network. Args: X contains the input data. Return: Returns the output of the neural network and the cache """ self.__cache["A0"] = X for i in range(self.__L): w = "W" + str(i + 1) b = "b" + str(i + 1) a = "A" + str(i + 1) z = np.matmul(self.__weights[w], self.__cache["A" + str(i)]) + \ self.__weights[b] self.__cache[a] = 1 / (1 + np.exp(-z)) return self.__cache[a], self.__cache def cost(self, Y, A): """ cost - Calculates the cost of the model using logistic regression Args: Y contains the correct labels for the input data A containing the activated output of the neuron for each example. Return: Returns the cost """ m = Y.shape[1] logprobs1 = np.multiply(np.log(A), Y) logprobs2 = np.multiply(np.log(1.0000001 - A), (1 - Y)) cost = -(1 / m) * np.sum(logprobs1 + logprobs2) return cost def evaluate(self, X, Y): """ evaluate - Evaluates the neuron’s predictions Args: X - (nx, m) that contains the input data. Y - (1, m) contains the correct labels for the input data. Return Returns the neuron’s prediction and the cost of the network. """ A, _ = self.forward_prop(X) cost = self.cost(Y, A) return np.where(A >= 0.5, 1, 0), cost def gradient_descent(self, Y, cache, alpha=0.05): """ """ m = Y.shape[1] weights = self.__weights.copy() for i in range(self.__L, 0, -1): W = weights.get('W' + str(i)) W1 = weights.get('W' + str(i + 1)) A = self.__cache['A' + str(i)] A1 = self.__cache['A' + str(i - 1)] b = weights['b' + str(i)] if i == self.__L: dZ = A - Y else: dZ = np.matmul(W1.T, dZ1) * (A * (1 - A)) dW = (1 / m) * np.matmul(dZ, A1.T) db = (1 / m) * np.sum(dZ, axis=1, keepdims=True) dZ1 = dZ self.__weights['W' + str(i)] = W - (dW * alpha) self.__weights['b' + str(i)] = b - (db * alpha)
0ce1310744f3da08e0fa94833be91e0a0a8e6cbf
0172fee2851e3d02b855a53d8b63b262d169e6a5
/ptsites/sites/pttime.py
75c6b76556862fd4b682da3f9345ccdd374cb347
[ "MIT" ]
permissive
Tuohai-Li/flexget_qbittorrent_mod
3f3f9df45680d27853f44bee6421ceb750d9d01e
81e3bb473f82dce759da3795b2e89bfc7717d3bb
refs/heads/master
2023-09-02T17:46:42.077469
2021-11-17T04:06:53
2021-11-17T04:06:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,472
py
from ..schema.nexusphp import AttendanceHR from ..schema.site_base import Work, SignState from ..utils.net_utils import NetUtils class MainClass(AttendanceHR): URL = 'https://www.pttime.org/' USER_CLASSES = { 'downloaded': [3221225472000, 16106127360000], 'share_ratio': [3.05, 4.55], 'days': [112, 364] } def build_workflow(self, entry, config): return [ Work( url='/attendance.php', method='get', succeed_regex=[ '这是你的第.*?次签到,已连续签到.*天,本次签到获得.*个魔力值。', '获得魔力值:\\d+', '你今天已经签到过了,请勿重复刷新。'], check_state=('final', SignState.SUCCEED), is_base_content=True ) ] def build_selector(self): selector = super(MainClass, self).build_selector() NetUtils.dict_merge(selector, { 'detail_sources': { 'default': { 'elements': { 'bar': '#info_block', 'table': '#outer table.main:last-child' } } } }) return selector def get_nexusphp_message(self, entry, config): super(MainClass, self).get_nexusphp_message(entry, config, unread_elements_selector='td > i[alt*="Unread"]')
c82569cd70f74e9a2395eb42b18ea0e8e570ef28
0693cce8efbeca806f4551c22dce60d5f392c5c9
/contentful_management/content_type_resource_proxy.py
ee4655778b24c6a08f53eb004c1fabac287e1758
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
timwis/contentful-management.py
2dc4b7389ca2136ee2a12b89812b18ef2a347e67
d71a0e18205d1de821b41c7225e8244e786be7f3
refs/heads/master
2021-06-28T12:04:58.130393
2017-08-10T16:30:09
2017-08-10T16:32:50
103,517,328
0
0
null
2017-09-14T10:04:48
2017-09-14T10:04:48
null
UTF-8
Python
false
false
1,557
py
""" contentful_management.content_type_resource_proxy ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module implements the ContentTypeResourceProxy class. :copyright: (c) 2017 by Contentful GmbH. :license: MIT, see LICENSE for more details. """ class ContentTypeResourceProxy(object): """Base class for content type related resource proxies.""" def __init__(self, client, space_id, content_type_id): self.proxy = self._resource_proxy_class()(client, space_id, content_type_id) def __repr__(self): return "<{0} space_id='{1}' content_type_id='{2}'>".format( self.__class__.__name__, self.proxy.space_id, self.proxy.content_type_id ) def _resource_proxy_class(self): raise Exception("Must implement") def all(self, query=None): """ Gets all resources related to the current content type. """ return self.proxy.all(query) def find(self, resource_id, query=None): """ Finds a single resource by ID related to the current content type. """ return self.proxy.find(resource_id, query) def create(self, resource_id=None, attributes=None): """ Creates a resource with a given ID (optional) and attributes for the current content type. """ return self.proxy.create(resource_id=resource_id, attributes=attributes) def delete(self, resource_id): """ Deletes a resource by ID. """ return self.proxy.delete(resource_id)
16742bddb05036e20ed2557be42711b55d39a3d1
567e89b21aca23db5f14032889fdd1cb7c7700f7
/test19.py
47f860f38a388291628ba60b577d81da05f51c43
[]
no_license
MarcPartensky/Python-2018
7ab83d42eb28b34bed88fc6fb77892e62094dd8d
27d2a57a6b6d6cdaa883fd2ce55e1c5eefd13ccc
refs/heads/master
2020-04-17T13:12:41.448439
2019-01-19T23:55:05
2019-01-19T23:55:05
166,605,846
0
0
null
null
null
null
UTF-8
Python
false
false
70
py
import sys, select, os i = 0 while True: print(input(""))
1033b438cc562e7a9ed44ead113b464f37380f81
1e70fa970f3c0f7d71273b5aaf97e2dfdaf249ec
/axi/planner.py
62a712bebc75653c3622814abd414afbfcadfb36
[ "MIT" ]
permissive
sgentle/axi
fbbd423560078878f4fdcc2e5bb6354d04077634
cc4551e990713aa28fd6a3e10634b825041f6e3e
refs/heads/master
2021-04-06T15:32:58.904837
2018-03-08T11:30:37
2018-03-08T11:30:37
124,370,678
1
0
null
2018-03-08T09:45:20
2018-03-08T09:45:20
null
UTF-8
Python
false
false
7,163
py
from __future__ import division from bisect import bisect from collections import namedtuple from math import sqrt, hypot # a planner computes a motion profile for a list of (x, y) points class Planner(object): def __init__(self, acceleration, max_velocity, corner_factor): self.acceleration = acceleration self.max_velocity = max_velocity self.corner_factor = corner_factor def plan(self, points): return constant_acceleration_plan( points, self.acceleration, self.max_velocity, self.corner_factor) def plan_all(self, paths): return [self.plan(path) for path in paths] # a plan is a motion profile generated by the planner class Plan(object): def __init__(self, blocks): self.blocks = blocks self.ts = [] # start time of each block self.ss = [] # start distance of each block t = 0 s = 0 for b in blocks: self.ts.append(t) self.ss.append(s) t += b.t s += b.s self.t = t # total time self.s = s # total duration def instant(self, t): t = max(0, min(self.t, t)) # clamp t i = bisect(self.ts, t) - 1 # find block for t return self.blocks[i].instant(t - self.ts[i], self.ts[i], self.ss[i]) # a block is a constant acceleration for a duration of time class Block(object): def __init__(self, a, t, vi, p1, p2): self.a = a self.t = t self.vi = vi self.p1 = p1 self.p2 = p2 self.s = p1.distance(p2) def instant(self, t, dt=0, ds=0): t = max(0, min(self.t, t)) # clamp t a = self.a v = self.vi + self.a * t s = self.vi * t + self.a * t * t / 2 s = max(0, min(self.s, s)) # clamp s p = self.p1.lerps(self.p2, s) return Instant(t + dt, p, s + ds, v, a) # an instant gives position, velocity, etc. at a single point in time Instant = namedtuple('Instant', ['t', 'p', 's', 'v', 'a']) # a = acceleration # v = velocity # s = distance # t = time # i = initial # f = final # vf = vi + a * t # s = (vf + vi) / 2 * t # s = vi * t + a * t * t / 2 # vf * vf = vi * vi + 2 * a * s EPS = 1e-9 _Point = namedtuple('Point', ['x', 'y']) class Point(_Point): def length(self): return hypot(self.x, self.y) def normalize(self): d = self.length() if d == 0: return Point(0, 0) return Point(self.x / d, self.y / d) def distance(self, other): return hypot(self.x - other.x, self.y - other.y) def add(self, other): return Point(self.x + other.x, self.y + other.y) def sub(self, other): return Point(self.x - other.x, self.y - other.y) def mul(self, factor): return Point(self.x * factor, self.y * factor) def dot(self, other): return self.x * other.x + self.y * other.y def lerps(self, other, s): v = other.sub(self).normalize() return self.add(v.mul(s)) Triangle = namedtuple('Triangle', ['s1', 's2', 't1', 't2', 'vmax', 'p1', 'p2', 'p3']) def triangle(s, vi, vf, a, p1, p3): # compute a triangular profile: accelerating, decelerating s1 = (2 * a * s + vf * vf - vi * vi) / (4 * a) s2 = s - s1 vmax = (vi * vi + 2 * a * s1) ** 0.5 t1 = (vmax - vi) / a t2 = (vf - vmax) / -a p2 = p1.lerps(p3, s1) return Triangle(s1, s2, t1, t2, vmax, p1, p2, p3) Trapezoid = namedtuple('Trapezoid', ['s1', 's2', 's3', 't1', 't2', 't3', 'p1', 'p2', 'p3', 'p4']) def trapezoid(s, vi, vmax, vf, a, p1, p4): # compute a trapezoidal profile: accelerating, cruising, decelerating t1 = (vmax - vi) / a s1 = (vmax + vi) / 2 * t1 t3 = (vf - vmax) / -a s3 = (vf + vmax) / 2 * t3 s2 = s - s1 - s3 t2 = s2 / vmax p2 = p1.lerps(p4, s1) p3 = p1.lerps(p4, s - s3) return Trapezoid(s1, s2, s3, t1, t2, t3, p1, p2, p3, p4) def corner_velocity(s1, s2, vmax, a, delta): # compute a maximum velocity at the corner of two segments # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/ cosine = -s1.vector.dot(s2.vector) if abs(cosine - 1) < EPS: return 0 sine = sqrt((1 - cosine) / 2) if abs(sine - 1) < EPS: return vmax v = sqrt((a * delta * sine) / (1 - sine)) return min(v, vmax) class Segment(object): # a segment is a line segment between two points, which will be broken # up into blocks by the planner def __init__(self, p1, p2): self.p1 = p1 self.p2 = p2 self.length = p1.distance(p2) self.vector = p2.sub(p1).normalize() self.max_entry_velocity = 0 self.entry_velocity = 0 self.blocks = [] def constant_acceleration_plan(points, a, vmax, cf): # make sure points are Point objects points = [Point(x, y) for x, y in points] # create segments for each consecutive pair of points segments = [Segment(p1, p2) for p1, p2 in zip(points, points[1:])] # compute a max_entry_velocity for each segment # based on the angle formed by the two segments at the vertex for s1, s2 in zip(segments, segments[1:]): v = corner_velocity(s1, s2, vmax, a, cf) s2.max_entry_velocity = v # add a dummy segment at the end to force a final velocity of zero segments.append(Segment(points[-1], points[-1])) # loop over segments i = 0 while i < len(segments) - 1: # pull out some variables segment = segments[i] next_segment = segments[i + 1] s = segment.length vi = segment.entry_velocity vexit = next_segment.max_entry_velocity p1 = segment.p1 p2 = segment.p2 # determine which profile to use for this segment m = triangle(s, vi, vexit, a, p1, p2) if m.s1 < -EPS: # too fast! update max_entry_velocity and backtrack segment.max_entry_velocity = sqrt(vexit * vexit + 2 * a * s) i -= 1 elif m.s2 < 0: # accelerate vf = sqrt(vi * vi + 2 * a * s) t = (vf - vi) / a segment.blocks = [ Block(a, t, vi, p1, p2), ] next_segment.entry_velocity = vf i += 1 elif m.vmax > vmax: # accelerate, cruise, decelerate z = trapezoid(s, vi, vmax, vexit, a, p1, p2) segment.blocks = [ Block(a, z.t1, vi, z.p1, z.p2), Block(0, z.t2, vmax, z.p2, z.p3), Block(-a, z.t3, vmax, z.p3, z.p4), ] next_segment.entry_velocity = vexit i += 1 else: # accelerate, decelerate segment.blocks = [ Block(a, m.t1, vi, m.p1, m.p2), Block(-a, m.t2, m.vmax, m.p2, m.p3), ] next_segment.entry_velocity = vexit i += 1 # concatenate all of the blocks blocks = [] for segment in segments: blocks.extend(segment.blocks) # filter out zero-duration blocks and return blocks = [b for b in blocks if b.t > EPS] return Plan(blocks)
be0ace15d0a17f5c8094cd0c651183e8263917e7
c6cbc2adf3acd58c8892874d0172b9844129595f
/web_flask/3-python_route.py
a85c50ff586ccdb64ea212a5e68027cc3b9e586f
[]
no_license
Joldiazch/AirBnB_clone_v2
4dac319e03f94ba677e5a3e17801958223c78552
a9c2d54991e2e956fe27c89ece0ecc3400b045c1
refs/heads/master
2021-05-25T21:12:54.056693
2020-04-22T23:52:46
2020-04-22T23:52:46
253,921,574
1
0
null
2020-04-07T21:59:16
2020-04-07T21:59:16
null
UTF-8
Python
false
false
824
py
#!/usr/bin/python3 """ that starts a Flask web application """ # import flask from flask import Flask app = Flask(__name__) # strict_slashes allow that this route work with /my_route and /my_route/ @app.route('/', strict_slashes=False) def root(): """ return Hello HBNB """ return 'Hello HBNB!' @app.route('/hbnb', strict_slashes=False) def hbnb(): """ return HBNB """ return 'HBNB' @app.route('/c/<text>', strict_slashes=False) def show_text(text): text = text.replace('_', ' ') return 'C {}'.format(text) @app.route('/python', strict_slashes=False) @app.route('/python/<text>', strict_slashes=False) def show_python_text(text='is cool'): text = text.replace('_', ' ') return 'Python {}'.format(text) if __name__ == "__main__": app.run(debug=True, host='0.0.0.0', port=5000)
4f824041f4d0d7bd13c488ef541522624434f08a
90bc7032cda25da6541a976f37e5b9f491b70bd0
/nrlbio/chimirna/lfc2cdf.py
9c5e2d701dd00f6abf6a59d897007688e137812b
[]
no_license
afilipch/nrlbio
da89bb262e9b900b5b71cf14612ace9630263e61
d05258e4b1e352130999a23e4d2b9717b8f834c9
refs/heads/master
2020-04-12T01:21:19.231931
2017-03-17T16:16:08
2017-03-17T16:16:08
52,795,176
0
0
null
null
null
null
UTF-8
Python
false
false
1,907
py
#! /usr/bin/python '''produces table of LFC CDF for tables of genes''' import sys; import copy; import os; import argparse; from collections import *; import itertools from scipy.stats import ks_2samp, mannwhitneyu parser = argparse.ArgumentParser(description='Script outputs presence of certain binding modes in the interactions'); parser.add_argument('path', metavar = 'N', nargs = '+', type = str, help = "path to gene names tables"); parser.add_argument('--lfc', nargs = '?', type = str, help = "path to the table which connects gene names to LFC") parser.add_argument('-o', '--output', nargs = '?', type = str, help = "name of the output") args = parser.parse_args(); def get_genes(path): genes = set(); f = open(path); for l in f: genes.add(l.strip()); f.close() return genes; gene_list = []; for path in args.path: gene_list.append(get_genes(path)); lfc = {}; f = open(args.lfc); for l in f: a = l.strip().split("\t"); try: lfc[a[0]] = float(a[1]); except: pass; f.close(); lfc_list =[lfc.values()]; for genes in gene_list: tlfc = []; for g in genes: try: tlfc.append(lfc[g]); except: pass; #print sys.stderr.write("%s\n" % g); lfc_list.append(copy.copy(tlfc)); ##output o = open(args.output, 'w') for i in range(len(lfc)): a = [] for el in lfc_list: try: v = str(el[i]) except: v = " " a.append(v); o.write("\t".join(a) + "\n") o.close() for i in range(len(lfc_list)): print ('set n%d\tlength %d' % (i, len(lfc_list[i]))) #>>> output p-values: for k1, k2 in itertools.combinations(list(range(len(lfc_list))), 2): print "differnce between gene set %d and gene set %d" % (k1+1,k2+1) print sys.stderr.write("KS statistics \t%1.3f\tp value\t%.2e\n" % ks_2samp(lfc_list[k1], lfc_list[k2])); print #print sys.stderr.write("KS statistics \t%1.3f\tp value\t%.2e\n" % ks_2samp(lfc_list[1] + lfc_list[2], lfc_list[0] ));
[ "afilipch@a58d7b47-41b6-4d21-bc94-2c2c30e24b6a" ]
afilipch@a58d7b47-41b6-4d21-bc94-2c2c30e24b6a
9f38fdd55389eccffedf6e73cd9bedac9c27be08
9120120ee0b52f24c627759b0901afbc55347529
/pygis_src/ch06_spatialite/sec3_access_sqlite_via_python/test_3_import_shapefile_x_x.py
959744afe35441f3c6f3152ce4654d40af5fc49d
[]
no_license
xiaomozi/book_python_gis
d999b17833abe746a7be2683595f48b54071cd59
754fa10c17a20506146d8f409e035e4d4869ad3e
refs/heads/master
2020-03-11T18:36:40.739267
2018-01-04T16:31:23
2018-01-04T16:31:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,180
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ############################################################################### import os; import sqlite3 as sqlite dbfile = 'xx_shapedb.sqlite' if os.path.exists(dbfile): os.remove(dbfile) db = sqlite.connect(dbfile) db.enable_load_extension(True) db.execute('SELECT load_extension("mod_spatialite.so.7")') cursor = db.cursor() cursor.execute('SELECT InitSpatialMetaData();') cursor.execute("DROP TABLE IF EXISTS gshhs") cursor.execute("CREATE TABLE gshhs (" + "id INTEGER PRIMARY KEY AUTOINCREMENT, " + "level INTEGER)") cursor.execute("CREATE INDEX gshhs_level on gshhs(level)") cursor.execute("SELECT AddGeometryColumn('gshhs', 'geom', " + "4326, 'POLYGON', 2)") cursor.execute("SELECT CreateSpatialIndex('gshhs', 'geom')") db.commit() sql_tpl = "INSERT INTO gshhs (level, geom) VALUES (2, GeomFromText('{0}', 4326))" import ogr fName = '/gdata/GSHHS_l/GSHHS_l_L2.shp' shapefile = ogr.Open(fName) layer = shapefile.GetLayer(0) for i in range(layer.GetFeatureCount()): feature = layer.GetFeature(i) geometry = feature.GetGeometryRef() wkt = geometry.ExportToWkt() cursor.execute( sql_tpl.format(wkt)) db.commit()
9de3642c57a0d6237c06147471395720fc4207a4
2af6a5c2d33e2046a1d25ae9dd66d349d3833940
/res/scripts/client/gui/scaleform/daapi/view/meta/moduleinfometa.py
d7d29dd3d8f30586b5f883e94565df3dd822e3ea
[]
no_license
webiumsk/WOT-0.9.12-CT
e6c8b5bb106fad71b5c3056ada59fb1aebc5f2b2
2506e34bd6634ad500b6501f4ed4f04af3f43fa0
refs/heads/master
2021-01-10T01:38:38.080814
2015-11-11T00:08:04
2015-11-11T00:08:04
45,803,240
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
967
py
# 2015.11.10 21:27:57 Střední Evropa (běžný čas) # Embedded file name: scripts/client/gui/Scaleform/daapi/view/meta/ModuleInfoMeta.py from gui.Scaleform.framework.entities.abstract.AbstractWindowView import AbstractWindowView class ModuleInfoMeta(AbstractWindowView): def onCancelClick(self): self._printOverrideError('onCancelClick') def onActionButtonClick(self): self._printOverrideError('onActionButtonClick') def as_setModuleInfoS(self, moduleInfo): if self._isDAAPIInited(): return self.flashObject.as_setModuleInfo(moduleInfo) def as_setActionButtonS(self, data): if self._isDAAPIInited(): return self.flashObject.as_setActionButton(data) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\client\gui\scaleform\daapi\view\meta\moduleinfometa.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2015.11.10 21:27:57 Střední Evropa (běžný čas)
5bac41f8f6ba96763a05d3c22ca3bc5063f102a4
fff80d8049aa19dacc01e48a21032fa74f069441
/Chapter_15_Generating_Data/mpl_squares_correct.py
6eb1554d6bb2d9a12e7bcb4d1c83c1173e396f52
[ "MIT" ]
permissive
charliealpha094/Project_Data_Visualization
a77d5e8290de0fa416394e188e349bf198499ff1
ccd55db58927dbbcfd57ab750fe7b21754c2b2dc
refs/heads/master
2022-11-29T13:24:52.725995
2020-08-09T09:20:02
2020-08-09T09:20:02
285,671,637
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
#Done by Carlos Amaral (19/07/2020) #Styling and correcting import matplotlib.pyplot as plt input_values = [1,2,3,4,5] squares = [1, 4, 9, 16, 25] plt.style.use('seaborn') fig, ax = plt.subplots() ax.plot(input_values, squares, linewidth = 3) #Set chart title and label axes. ax.set_title("Square Numbers", fontsize = 24) ax.set_xlabel("Value", fontsize = 14) ax.set_ylabel("Square of Value", fontsize = 14) #Set size tick labels. ax.tick_params(axis = 'both', labelsize = 14) plt.show()
335642bb7e305c8a7e2f0448c2a1ec8d75c1a15b
60dd6073a3284e24092620e430fd05be3157f48e
/tiago_public_ws/build/pal_gripper/pal_gripper_controller_configuration/catkin_generated/pkg.installspace.context.pc.py
72d62140668fd30c806c4d71575a513fdfde1439
[]
no_license
SakshayMahna/Programming-Robots-with-ROS
e94d4ec5973f76d49c81406f0de43795bb673c1e
203d97463d07722fbe73bdc007d930b2ae3905f1
refs/heads/master
2020-07-11T07:28:00.547774
2019-10-19T08:05:26
2019-10-19T08:05:26
204,474,383
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "pal_gripper_controller_configuration" PROJECT_SPACE_DIR = "/media/root/BuntuDrive/Programming-Robots-with-ROS/tiago_public_ws/install" PROJECT_VERSION = "1.0.2"
999b8d39e8434c5a1188b45fd7c163f18721d4d2
db3662b35d48cc2b34b48350db603bb08fd47e81
/tf_api/arithmetic_experiment.py
eb4d6e474336695b88f01debfe787147f2456e1b
[]
no_license
JuneXia/handml
70b4c172940e0e10b2775ec0dad462f2b08f47bf
35c23568065178e48347b440851ad5a38db5f93e
refs/heads/master
2020-04-02T01:59:23.073289
2020-02-11T02:57:16
2020-02-11T02:57:16
153,885,392
1
0
null
null
null
null
UTF-8
Python
false
false
1,434
py
# 各种算术运算实验 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__1': # ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8],dtype = tf.int32) # indices = tf.constant([4, 3, 1, 7],dtype = tf.int32) # updates = tf.constant([9, 10, 11, 12],dtype = tf.int32) ref = tf.Variable([1, 2, 3, 4], dtype=tf.int32) indices = tf.constant([1, 3], dtype=tf.int32) updates = tf.constant([1, 3], dtype=tf.int32) sub = tf.scatter_sub(ref, indices, updates) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) arr = sess.run(sub) print(arr) if __name__ == '__main__': learning_rate = 0.1 decay_rate = 0.6 global_steps = 1000 decay_steps = 100 # global_ = tf.Variable(tf.constant(0)) global_ = tf.Variable(0) c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True) d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False) T_C = [] F_D = [] with tf.Session() as sess: for i in range(global_steps): T_c = sess.run(c, feed_dict={global_: i}) T_C.append(T_c) F_d = sess.run(d, feed_dict={global_: i}) F_D.append(F_d) plt.figure(1) plt.plot(range(global_steps), F_D, 'r-') plt.plot(range(global_steps), T_C, 'b-') plt.show()
1cec5040d91a46de4c6181b2f40f9673101e9b6d
f8d2521a88e465eed01adc3981c7a173d5c2554b
/etc/educational/round0001-0025/round0003/a1.py
852c5741db4bf0680c354c4cf3bf35dd431c8deb
[]
no_license
clarinet758/codeforces
b2a8a349bba40e7761a8ce50dd5ff9a57477b60d
d79870c47bdb109547891a0d076dd173d6d647cf
refs/heads/main
2021-12-15T05:46:51.000160
2021-12-01T12:01:33
2021-12-01T12:01:33
41,968,658
1
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- import time import sys import io import re import math import itertools import collections import bisect #sys.stdin=file('input.txt') #sys.stdout=file('output.txt','w') #10**9+7 mod=1000000007 #mod=1777777777 pi=3.141592653589 IS=float('inf') xy=[(1,0),(-1,0),(0,1),(0,-1)] bs=[(-1,-1),(-1,1),(1,1),(1,-1)] def niten(a,b): return abs(a-b) if a>=0 and b>=0 else a+abs(b) if a>=0 else abs(a)+b if b>=0 else abs(abs(a)-abs(b)) def gcd(a,b): return a if b==0 else gcd(b,a%b) def lcm(a,b): return a*b/gcd(a,b) def euclid_dis(x1,y1,x2,y2): return ((x1-x2)**2+(y1-y2)**2)**0.5 def choco(xa,ya,xb,yb,xc,yc,xd,yd): return 1 if abs((yb-ya)*(yd-yc)+(xb-xa)*(xd-xc))<1.e-10 else 0 n=int(raw_input()) m=int(raw_input()) a=[] for i in range(n): a.append(int(raw_input())) a.sort() ans=chk=0 for i,j in enumerate(a[::-1]): ans+=j if ans>=m: print i+1 break exit() n,k=map(int,raw_input().split()) l=map(int,raw_input().split()) #end = time.clock() #print end - start
18534c36016112cf39c8feb7b8f6c6f3149600d6
f5ffd566166948c4202eb1e66bef44cf55a70033
/openapi_client/model/single_group_obj.py
488b753fff9c74b25461ac8e906c70079b56882d
[]
no_license
skyportal/skyportal_client
ed025ac6d23589238a9c133d712d4f113bbcb1c9
15514e4dfb16313e442d06f69f8477b4f0757eaa
refs/heads/master
2023-02-10T02:54:20.757570
2021-01-05T02:18:03
2021-01-05T02:18:03
326,860,562
0
1
null
null
null
null
UTF-8
Python
false
false
8,667
py
""" Fritz: SkyPortal API SkyPortal provides an API to access most of its underlying functionality. To use it, you will need an API token. This can be generated via the web application from your profile page or, if you are an admin, you may use the system provisioned token stored inside of `.tokens.yaml`. ### Accessing the SkyPortal API Once you have a token, you may access SkyPortal programmatically as follows. #### Python ```python import requests token = 'ea70a5f0-b321-43c6-96a1-b2de225e0339' def api(method, endpoint, data=None): headers = {'Authorization': f'token {token}'} response = requests.request(method, endpoint, json=data, headers=headers) return response response = api('GET', 'http://localhost:5000/api/sysinfo') print(f'HTTP code: {response.status_code}, {response.reason}') if response.status_code in (200, 400): print(f'JSON response: {response.json()}') ``` #### Command line (curl) ```shell curl -s -H 'Authorization: token ea70a5f0-b321-43c6-96a1-b2de225e0339' http://localhost:5000/api/sysinfo ``` ### Response In the above examples, the SkyPortal server is located at `http://localhost:5000`. In case of success, the HTTP response is 200: ``` HTTP code: 200, OK JSON response: {'status': 'success', 'data': {}, 'version': '0.9.dev0+git20200819.84c453a'} ``` On failure, it is 400; the JSON response has `status=\"error\"` with the reason for the failure given in `message`: ```js { \"status\": \"error\", \"message\": \"Invalid API endpoint\", \"data\": {}, \"version\": \"0.9.1\" } ``` # Authentication <!-- ReDoc-Inject: <security-definitions> --> # noqa: E501 The version of the OpenAPI document: 0.9.dev0+git20201221.76627dd Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from openapi_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from openapi_client.model.group_obj import GroupObj globals()['GroupObj'] = GroupObj class SingleGroupObj(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('status',): { 'SUCCESS': "success", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'status': (str,), # noqa: E501 'message': (str,), # noqa: E501 'data': (GroupObj,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'status': 'status', # noqa: E501 'message': 'message', # noqa: E501 'data': 'data', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """SingleGroupObj - a model defined in OpenAPI Args: Keyword Args: status (str): defaults to "success", must be one of ["success", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) message (str): [optional] # noqa: E501 data (GroupObj): [optional] # noqa: E501 """ status = kwargs.get('status', "success") _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.status = status for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
365149b42675dd45c83444b739330f8d68f7586e
d6de6311ab2794cd3cce36ae0d1e591330941e8a
/2019/day09/part1_and_2.py
623945fb25630ccddae81196e6974a98fb25a7e6
[]
no_license
candyer/Advent-of-Code
a5346cffb4b9b1f45691c7f1b8d45bfd480b3fc0
d5c6758c5b1feb66c4afb8ee773085a3751d8b37
refs/heads/master
2022-03-27T23:07:42.712877
2019-12-12T23:11:54
2019-12-12T23:11:54
112,863,217
0
0
null
null
null
null
UTF-8
Python
false
false
1,525
py
import sys from typing import List, Tuple, Dict from collections import defaultdict def breakDown(num: int) -> Tuple[int, List[int]]: modes = list(map(int, str(num)[:-2][::-1])) modes.extend([0] * (3 - len(modes))) return (num % 100, modes) def solve(d: Dict[int, int], inpt: int) -> int: relative_base = 0 output = 0 i = 0 while True: opcode, modes = breakDown(d[i]) if opcode == 99: return output a = i + 1 if modes[0] == 1 else d[i + 1] if modes[0] == 0 else d[i + 1] + relative_base b = i + 2 if modes[1] == 1 else d[i + 2] if modes[1] == 0 else d[i + 2] + relative_base c = d[i + 3] if modes[2] == 0 else d[i + 3] + relative_base ############################################################ if opcode == 1: d[c] = d[a] + d[b] i += 4 elif opcode == 2: d[c] = d[a] * d[b] i += 4 elif opcode == 3: d[a] = inpt i += 2 elif opcode == 4: i += 2 output = d[a] elif opcode == 5: if d[a]: i = d[b] else: i += 3 elif opcode == 6: if d[a]: i += 3 else: i = d[b] elif opcode == 7: if d[a] < d[b]: d[c] = 1 else: d[c] = 0 i += 4 elif opcode == 8: if d[a] == d[b]: d[c] = 1 else: d[c] = 0 i += 4 elif opcode == 9: relative_base += d[a] i += 2 if __name__ == '__main__': for line in sys.stdin: d = defaultdict(int) i = 0 for num in map(int, line.split(',')): d[i] = num i += 1 print('part1 result: {}'.format(solve(d, 1))) print('part2 result: {}'.format(solve(d, 2)))
f8532b1c94622cc29700d629fee455cb052c8cc0
1aaaca67031d81eabb07e9e9fb1a4fcae9de7462
/dictionary.py
090cb29f273b4decfd6bba42bd4c69c4ede70104
[]
no_license
supriyo-pal/Joy-Of-Computing-Using-Python-All-programms
9e08bdf4c2a88cc360c0cb296b217230f0ae0b2c
bd450dfdbc879e0b200d03fa9106ece09456fa8c
refs/heads/main
2023-01-21T07:28:02.312421
2020-12-02T09:18:08
2020-12-02T09:18:08
317,161,815
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 12 10:24:41 2020 @author: Supriyo """ #dictionary is represented by {} #example of dictionary {key:value} conv_factor={'dollar':60,'euro': 80 } print(conv_factor) print(conv_factor["dollar"]) print(conv_factor["euro"])
5c77f798c033cb12c4cf21c9e04ca72aa05a8927
ead94ab55e0dc5ff04964a23b16cc02ab3622188
/src/commands/pendingsubscr.py
e90bca3836fe62c655cb330efdf290ad4acc1fdf
[]
no_license
caifti/openstack-security-integrations
88d92d6fcfb2a5a438f3a7e98f2e738d7434476f
bddd51675fe0ad4123f23520f3fdc6a793bf7bbc
refs/heads/master
2023-03-11T02:49:38.442233
2020-12-16T07:39:12
2020-12-16T07:39:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,475
py
# Copyright (c) 2014 INFN - "Istituto Nazionale di Fisica Nucleare" - Italy # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.db import transaction from django.conf import settings from django.core.management.base import CommandError from openstack_auth_shib.models import PrjRequest from openstack_auth_shib.models import RegRequest from openstack_auth_shib.models import EMail from openstack_auth_shib.models import PrjRole from openstack_auth_shib.models import PSTATUS_PENDING from openstack_auth_shib.notifications import notifyUser from openstack_auth_shib.notifications import SUBSCR_REMINDER from horizon.management.commands.cronscript_utils import CloudVenetoCommand LOG = logging.getLogger("pendingsubscr") class Command(CloudVenetoCommand): def handle(self, *args, **options): super(Command, self).handle(options) admin_table = dict() mail_table = dict() req_table = dict() try: with transaction.atomic(): for prj_req in PrjRequest.objects.filter(flowstatus=PSTATUS_PENDING): prjname = prj_req.project.projectname if not req_table.has_key(prjname): req_table[prjname] = list() req_table[prjname].append(prj_req.registration.username) for prjname in req_table.keys(): for p_role in PrjRole.objects.filter(project__projectname=prjname): user_name = p_role.registration.username user_id = p_role.registration.userid user_tuple = (user_name, user_id) if not admin_table.has_key(user_tuple): admin_table[user_tuple] = list() admin_table[user_tuple].append(p_role.project.projectname) if not mail_table.has_key(user_name): tmpres = EMail.objects.filter(registration__username=user_name) if len(tmpres): mail_table[user_name] = tmpres[0].email for user_tuple in admin_table: for prj_name in admin_table[user_tuple]: try: noti_params = { 'pendingreqs' : req_table[prj_name], 'project' : prj_name } notifyUser(mail_table[user_tuple[0]], SUBSCR_REMINDER, noti_params, dst_user_id=user_tuple[1]) except: LOG.error("Cannot notify pending subscription: %s" % user_tuple[0], exc_info=True) except: LOG.error("Cannot notify pending subscritions: system error", exc_info=True) raise CommandError("Cannot notify pending subscritions")
8570f0b581dbd4ad8bbf7a06e2040630abddadc0
9784a90cac667e8e0aaba0ca599b4255b215ec67
/chainer_/datasets/svhn_cls_dataset.py
41da30bcecc81e26b5d6dc68f2b4f4fc67cabb8f
[ "MIT" ]
permissive
osmr/imgclsmob
d2f48f01ca541b20119871393eca383001a96019
f2993d3ce73a2f7ddba05da3891defb08547d504
refs/heads/master
2022-07-09T14:24:37.591824
2021-12-14T10:15:31
2021-12-14T10:15:31
140,285,687
3,017
624
MIT
2022-07-04T15:18:37
2018-07-09T12:57:46
Python
UTF-8
Python
false
false
1,587
py
""" SVHN classification dataset. """ import os from chainer.dataset import DatasetMixin from chainer.datasets.svhn import get_svhn from .cifar10_cls_dataset import CIFAR10MetaInfo class SVHN(DatasetMixin): """ SVHN image classification dataset from http://ufldl.stanford.edu/housenumbers/. Each sample is an image (in 3D NDArray) with shape (32, 32, 3). Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset, we assign the label `0` to the digit `0`. Parameters: ---------- root : str, default '~/.chainer/datasets/svhn' Path to temp folder for storing data. mode : str, default 'train' 'train', 'val', or 'test'. transform : function, default None A function that takes data and label and transforms them. """ def __init__(self, root=os.path.join("~", ".chainer", "datasets", "svhn"), mode="train", transform=None): assert (root is not None) self.transform = transform train_ds, test_ds = get_svhn() self.base = train_ds if mode == "train" else test_ds def __len__(self): return len(self.base) def get_example(self, i): image, label = self.base[i] image = self.transform(image) return image, label class SVHNMetaInfo(CIFAR10MetaInfo): def __init__(self): super(SVHNMetaInfo, self).__init__() self.label = "SVHN" self.root_dir_name = "svhn" self.dataset_class = SVHN self.num_training_samples = 73257
2473d2a63db36b6ae3c726be1d617079d514ab75
7bbfc7dc130f31c2e78b1feb6ff48888e4985c08
/static/main.py
c06dd9b40934e457fb3e2162b3acb5e0dc47e753
[]
no_license
swappt/CodeIslands
7ce80e6297c2280ec24b8f0d773ffc0242761d52
ef5419eb668cbbc22a290ff00a5933dfe94c0653
refs/heads/master
2021-09-06T07:10:35.849987
2018-02-03T16:10:32
2018-02-03T16:10:32
105,559,251
0
0
null
null
null
null
UTF-8
Python
false
false
14,054
py
print('loading main.py') from browser import document, alert, window, timer from math import sin, cos, tan, radians from random import choice result = window.gebi('result') start = window.gebi('start') win = window.gebi('win') challenges = window.gebi('challenges') display = window.gebi('display') map_ = window.gebi('map') cloud_canvas = window.gebi('clouds_canvas') cloud_ctx = cloud_canvas.getContext('2d') ctx = display.getContext('2d') map_ctx = map_.getContext('2d') class Turtle(object): angles = [62.64,-62.64,-117.36,117.36] def __init__(self): self.x = 0 self.y = 0 self.angle = 0 self.disp_x = 0 self.disp_y = 0 self.origin_x, self.origin_y = window.data['player_origin'] self.collision_map = window.data['collisions'] def collision(self): x_pos = round(self.origin_x + self.disp_x) y_pos = round(self.origin_y + self.disp_y) try: if self.collision_map[y_pos][x_pos]: return 1 except IndexError: return 1 return 0 def forward(self,dist): self.x += sin(radians(self.angles[self.angle]))*dist*(display.height/(2*iso_scale))/(cos(radians(62.64))) self.y += cos(radians(self.angles[self.angle]))*dist*(display.height/(2*iso_scale))/(cos(radians(62.64))) if self.angle == 0: self.disp_x += dist elif self.angle == 1: self.disp_y += dist elif self.angle == 2: self.disp_x -= dist elif self.angle == 3: self.disp_y -= dist else: print('Issue in displacement tracking!') def backward(self,dist): self.x -= sin(radians(self.angles[self.angle]))*dist*(display.height/(2*iso_scale))/(cos(radians(62.64))) self.y -= cos(radians(self.angles[self.angle]))*dist*(display.height/(2*iso_scale))/(cos(radians(62.64))) if self.angle == 0: self.disp_x -= dist elif self.angle == 1: self.disp_y -= dist elif self.angle == 2: self.disp_x += dist elif self.angle == 3: self.disp_y += dist else: print('Issue in displacement tracking!') def left(self,rot): tval = self.angle + int(rot) self.angle = tval % 4 def right(self,rot): tval = self.angle - int(rot) self.angle = tval % 4 class Cloud(object): x = 0 y = 0 speed = 0 src = window.gebi(choice(['cloud1', 'cloud2'])) turtle = Turtle() cmd = { 'FORWARD' : turtle.forward, 'BACKWARD' : turtle.backward, 'LEFT' : turtle.left, 'RIGHT' : turtle.right, 'FOR ' : None, 'ENDFOR' : None } run_buffer = [] used_commands = [] runtime = None def run(): global runtime global run_buffer global used_commands variables = {} window.gebi('error').style.width = '0vw' window.gebi('error').style.opacity = 0 try: window.clearInterval(runtime) except: pass display.width = display.width turtle.x = display.width / 2 turtle.y = display.height / 2 turtle.disp_x = 0 turtle.disp_y = 0 turtle.angle = 0 ctx.beginPath() ctx.lineWidth = 3 ctx.moveTo(turtle.x + dis_center_x,turtle.y + dis_center_y) ctx.stroke() lines = window.editor.getValue().split('\n') lines = list(filter(lambda x: bool(x), lines)) used_commands = [] run_buffer = [] for_buffer = [] current_buffer = run_buffer for line in lines: line = line.strip() if '=' in line: pre, post = line.split('=') pre = pre.strip() if pre[0] in '0123456789': window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": Declarations cannot begin with numericals'.format(line) window.hide_error() return post = post.strip() for char in pre: if char not in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_': window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": "{}" not allowed in variable declarations'.format(line, char) window.hide_error() return variables[pre] = post else: for command, action in cmd.items(): if line.startswith(command): used_commands.append(command) if command in ['FORWARD', 'BACKWARD']: try: arg = int(line.split(' ',1)[1]) except ValueError: try: arg = int(variables[line.split(' ',1)[1]]) except ValueError: window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": {} only accepts integer values (whole numbers)'.format(line, command) window.hide_error() return except KeyError: window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": variable "{}" not defined'.format(line, line.split(' ')[1]) window.hide_error() return for i in range(5*arg): current_buffer.append(command + ' 0.2') elif command in ['LEFT','RIGHT']: current_buffer.append(command + ' 1') elif command in ['FOR ']: try: arg = int(line.split(' ',1)[1]) except ValueError: window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": {} only accepts integer values (whole numbers)'.format(line, command) window.hide_error() return if len(for_buffer) > 0: for_buffer.append([arg]) current_buffer = for_buffer[-1] else: for_buffer.append(arg) current_buffer = for_buffer elif command in ['ENDFOR']: if current_buffer == for_buffer[-1]: cur = for_buffer.pop(-1) counts = cur.pop(0) apval = cur*counts try: for item in apval: for_buffer[-1].append(item) current_buffer = for_buffer[-1] except: for item in apval: for_buffer.append(item) current_buffer = for_buffer elif current_buffer == for_buffer: counts = for_buffer.pop(0) apval = for_buffer*counts for item in apval: run_buffer.append(item) current_buffer = run_buffer break else: window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Error in line "{}": Unrecognised command-word'.format(line) window.hide_error() break runtime = window.setInterval(run_action,35) def run_action(): if len(run_buffer) == 0: print('exec finished') window.clearInterval(runtime) post_run() return a = run_buffer.pop(0) arg = float(a.split(' ',1)[1]) cmd[a.split(' ')[0]](arg) display.width = display.width imgs = ['front_r', 'front', 'back_l', 'back'] ctx.drawImage(window.gebi(imgs[turtle.angle]), turtle.x - 50, turtle.y - 100, 100, 100) if turtle.collision(): window.clearInterval(runtime) window.gebi('error').style.width = '42vw' window.gebi('error').style.opacity = 1 window.gebi('error').innerHTML = 'Rodrick can\'t move there!' window.hide_error() def post_run(): if [int(turtle.disp_x), int(turtle.disp_y)] == window.data['displacement']: completed = [] challenge_text = [] for typ, target in dict(window.data['targets']).items(): if typ == 'LINES': if len(used_commands) <= target: challenge_text.append('Use {} or less lines ⭐'.format(target)) completed.append([typ, target]) else: challenge_text.append('Use {} or less lines'.format(target)) elif typ == '!USE': for command in target: if command in used_commands: challenge_text.append('Don\'t use {} anywhere in your code'.format(', '.join(target))) break else: challenge_text.append('Don\'t use {} anywhere in your code ⭐'.format(', '.join(target))) completed.append([typ, target]) elif typ == 'USE': for command in target: if command in used_commands: challenge_text.append('Apply a {} somewhere in your code ⭐'.format(', '.join(target))) completed.append([typ, target]) break else: challenge_text.append('Apply a {} somewhere in your code'.format(', '.join(target))) window.on_win() challenges.innerHTML = '<br>'.join(challenge_text) + '<br><hr>' keysdown = [] def keysDown(event): keysdown.append(event.keyCode) if 13 in keysdown and 16 in keysdown: event.preventDefault() run() elif 17 in keysdown and 83 in keysdown: event.preventDefault() window.save(window.editor.getValue().replace('\n','\\')) def keysUp(event): try: keysdown.remove(event.keyCode) except: pass clouds = [] for i in range(4): c = Cloud() c.x = result.width * window.Math.random() c.y = result.height * 0.5 * window.Math.random() + result.height * 0.04 c.speed = 2.2 * window.Math.random() + 1 clouds.append(c) def clouds_render(): cloud_canvas.width = result.width cloud_canvas.height = result.height cloud_w = cloud_canvas.width / 5.5 cloud_h = cloud_w / 2 for cloud in clouds: cloud.x -= cloud.speed cloud_ctx.drawImage(cloud.src, cloud.x, cloud.y, cloud_w, cloud_h) if cloud.x < -cloud_w: cloud.x = result.width cloud.y = result.height * 0.5 * window.Math.random() + result.height * 0.04 cloud.speed = 2 * window.Math.random() + 0.5 iso_scale = window.data['gridSize'] median_cell = () dis_center_x = 0 dis_center_y = 0 def resize_window(event): display.width = result.width display.height = result.height map_.width = result.width map_.height = result.height cell_w = (display.height/iso_scale)*tan(radians(62.64)) cell_h = display.height/iso_scale median_cell = (display.width/2,display.height/2) ## READING MAP DATA ## for i,j,src,c in window.data['map']: map_ctx.beginPath() if c[0] == 'simpleFill': img = window.gebi(src) # ANTIALIAS # oc = document.createElement('canvas') oc2 = document.createElement('canvas') octx = oc.getContext('2d') octx2 = oc2.getContext('2d') oc.width = img.width oc.height = img.height oc2.width = img.width oc2.height = img.height octx.drawImage(img, 0, 0, oc.width, oc.height) octx2.drawImage(oc, 0, 0, oc.width * 0.5, oc.height * 0.5) oc.width = oc.width octx.drawImage(oc2, 0, 0, oc.width * 0.5, oc.height * 0.5) oc2.width = oc2.width octx2.drawImage(oc, 0, 0, oc.width * 0.5, oc.height * 0.5) map_ctx.drawImage( oc2, 0, 0, oc.width * 0.125, oc.height * 0.125, (median_cell[0] + i*cell_w) - c[2][0] * cell_w, (median_cell[1] + j*cell_h) - c[2][1] * cell_h, c[1][0]*cell_w+c[2][0]*cell_w, c[1][1]*cell_h+c[2][1]*cell_h ) map_ctx.fill() elif c == 'floor': map_ctx.moveTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h - cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w + cell_w/2,median_cell[1] + j*cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h + cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) pattern = ctx.createPattern(window.gebi(src), 'repeat') map_ctx.fillStyle = pattern map_ctx.fill() elif c == 'wall_l': map_ctx.moveTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h - cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h - cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h + cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) pattern = map_ctx.createPattern(window.gebi(src), 'repeat') map_ctx.fillStyle = pattern map_ctx.fill() map_ctx.beginPath() map_ctx.globalAlpha = 0.5 map_ctx.moveTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h - cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h - cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h + cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h) pattern = map_ctx.createPattern(window.gebi(src), 'repeat') map_ctx.fillStyle = '#000000' map_ctx.fill() map_ctx.globalAlpha = 1 elif c == 'wall_r': map_ctx.moveTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h - cell_h) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h - cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w - cell_w/2,median_cell[1] + j*cell_h + cell_h/2) map_ctx.lineTo(median_cell[0] + i*cell_w,median_cell[1] + j*cell_h) pattern = map_ctx.createPattern(window.gebi(src), 'repeat') map_ctx.fillStyle = pattern map_ctx.fill() start.onclick = run window.onresize = resize_window window.setInterval(clouds_render,55) document.onkeydown = keysDown document.onkeyup = keysUp def load(): resize_window(None) window.hide_load() document.onload = load() print('main.py loaded')
c738e7dd0a22c2c6d399f18ba00ba42343053ea5
90cad1df7b7d424feb8e71ff3d77e772d446afdf
/reebill/payment_dao.py
7a26623a1f93df8ab5c4f36c04a68d01f167cc14
[]
no_license
razagilani/billing
acb8044c22b4075250c583f599baafe3e09abc2e
fd2b20019eeedf0fcc781e5d81ff240be90c0b37
refs/heads/master
2021-05-01T14:46:32.138870
2016-03-09T18:55:09
2016-03-09T18:55:09
79,589,205
0
1
null
null
null
null
UTF-8
Python
false
false
5,111
py
from datetime import datetime from sqlalchemy import and_ from core.model import Session, UtilityAccount from reebill.exceptions import IssuedBillError from reebill.reebill_model import ReeBillCustomer, Payment class PaymentDAO(object): '''CRUD for Payment objects. Some of these methods are used only in tests and should be removed. ''' def create_payment(self, account, date_applied, description, credit, date_received=None): '''Adds a new payment, returns the new Payment object. By default, 'date_received' is the current datetime in UTC when this method is called; only override this for testing purposes.''' # NOTE a default value for 'date_received' can't be specified as a # default argument in the method signature because it would only get # evaluated once at the time this module was imported, which means its # value would be the same every time this method is called. if date_received is None: date_received = datetime.utcnow() session = Session() utility_account = session.query(UtilityAccount) \ .filter(UtilityAccount.account==account).one() reebill_customer = session.query(ReeBillCustomer) \ .filter(ReeBillCustomer.utility_account==utility_account) \ .one() new_payment = Payment(reebill_customer, date_received, date_applied, description, credit) session.add(new_payment) session.flush() return new_payment def delete_payment(self, id): '''Deletes the payment with the given id.''' session = Session() payment = session.query(Payment).filter(Payment.id == id).one() if payment.reebill_id is not None: raise IssuedBillError('payments cannot be deleted after they are' 'applied to an issued reebill') session.delete(payment) def find_payment(self, account, periodbegin, periodend): '''Returns a list of payment objects whose date_applied is in [periodbegin, period_end).''' # periodbegin and periodend must be non-overlapping between bills. This # is in direct opposition to the reebill period concept, which is a # period that covers all services for a given reebill and thus overlap # between bills. Therefore, a non overlapping period could be just the # first utility service on the reebill. If the periods overlap, # payments will be applied more than once. See 11093293 session = Session() utility_account = session.query(UtilityAccount) \ .filter(UtilityAccount.account==account).one() reebill_customer = session.query(ReeBillCustomer) \ .filter(ReeBillCustomer.utility_account==utility_account) \ .one() payments = session.query(Payment) \ .filter(Payment.reebill_customer == reebill_customer) \ .filter(and_(Payment.date_applied >= periodbegin, Payment.date_applied < periodend)).all() return payments def get_total_payment_since(self, account, start, end=None): '''Returns sum of all account's payments applied on or after 'start' and before 'end' (today by default). If 'start' is None, the beginning of the interval extends to the beginning of time. ''' assert isinstance(start, datetime) if end is None: end=datetime.utcnow() session = Session() reebill_customer = session.query(ReeBillCustomer).join( UtilityAccount).filter_by(account=account).one() payments = session.query(Payment) \ .filter(Payment.reebill_customer==reebill_customer) \ .filter(Payment.date_applied < end) if start is not None: payments = payments.filter(Payment.date_applied >= start) return payments.all() def get_payments(self, account): '''Returns list of all payments for the given account ordered by date_received.''' session = Session() payments = session.query(Payment).join(ReeBillCustomer) \ .join(UtilityAccount) \ .filter(UtilityAccount.account == account).order_by( Payment.date_received).all() return payments def get_payments_for_reebill_id(self, reebill_id): session = Session() payments = session.query(Payment) \ .filter(Payment.reebill_id == reebill_id).order_by( Payment.date_received).all() return payments def update_payment(self, id, date_applied, description, credit): session = Session() payment = session.query(Payment).filter_by(id=id).one() if payment.reebill_id is not None: raise IssuedBillError('payments cannot be changed after they are' 'applied to an issued reebill') payment.date_applied = date_applied payment.description = description payment.credit = credit
19e03a975d6e84656aa59f9380034203aaaba1c3
d3fa8ded9d393ba9b03388ba7f05fc559cf31d1e
/Codes/antman/agent/framework/controllers/file.py
e53710b676cb8afb754414194c3a23579657a3a0
[]
no_license
lengxu/YouYun
e20c4d8f553ccb245e96de177a67f776666e986f
b0ad8fd0b0e70dd2445cecb9ae7b00f7e0a20815
refs/heads/master
2020-09-13T22:30:49.642980
2017-11-27T03:13:34
2017-11-27T03:13:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,515
py
# coding: utf-8 import nfs import os import logging import time from tornado import web, gen from tornado.locks import Semaphore from tornado.httpclient import AsyncHTTPClient from framework import settings from framework.config import config MAX_BODY_SIZE = 4 * 1024.0 * 1024.0 * 1024.0 # 4GB GMT_FORMAT = '%a, %d %b %Y %H:%M:%S GMT' AsyncHTTPClient.configure(None, max_body_size=MAX_BODY_SIZE) logger = logging.getLogger('default') semaphore = Semaphore(config.get('file_service_semaphore', 5)) class FileHandler(web.RequestHandler): @gen.coroutine def get(self): self.file_name = self.get_argument('filename') # type: str self.space_dir = nfs.join(settings.REPO_DIR, settings.REPO_ANT_SPACENAME) if not nfs.exists(self.space_dir): nfs.makedirs(self.space_dir) self.file_path = nfs.join(self.space_dir, self.file_name) lock_file_name = nfs.extsep + self.file_name + nfs.extsep + 'lock' self.lock_file = nfs.join(self.space_dir, lock_file_name) logger.info('#%d Request file: %s', id(self.request), self.file_name) if nfs.exists(self.lock_file): yield self.wait_for_file_complete() else: is_cache_hit = yield self.try_to_return_file_cache() if is_cache_hit: return logger.info('#%d File cache missed: %s', id(self.request), self.file_path) nfs.touch(self.lock_file) yield self.request_file_from_upstream() @gen.coroutine def try_to_return_file_cache(self): is_cache_hit = False if nfs.exists(self.file_path): flag = yield self.check_file_mtime() if flag: logger.info('#%d File cache hit: %s', id(self.request), self.file_path) self.write(self.file_path) # 直接返回本地缓存文件的路径 is_cache_hit = True else: logger.info('#{} The cache file is too old and need to ' 'download the new file'.format(id(self.request))) nfs.remove(self.file_path) raise gen.Return(is_cache_hit) @gen.coroutine def check_file_mtime(self): is_match = False try: http_client = AsyncHTTPClient() sep = '' if config['upstream'].endswith('/') else '/' url = '{upstream}{sep}file/{filename}'.format( upstream=config['upstream'], sep=sep, filename=self.file_name) response = yield http_client.fetch( url, method="HEAD", validate_cert=False) m_time = response.headers.get('Last-Modified', None) if m_time: m_time = time.mktime(time.strptime(m_time, GMT_FORMAT)) file_m_time = os.stat(self.file_path).st_mtime if m_time and file_m_time and m_time == file_m_time: is_match = True else: logger.error('#{} The m_time from server is {}, the m_time ' 'from cache is {} !'.format( id(self.request), m_time, file_m_time)) except Exception as e: logger.error('#{} Get Last-Modified from server error: {}' .format(id(self.request), e)) raise gen.Return(is_match) @gen.coroutine def wait_for_file_complete(self): logger.info('#%d File lock exists, waiting for complete: %s', id(self.request), self.file_path) lock_watch_interval = config.get('file_service_lock_watch_interval', 5.0) current_timeout = 0.0 request_timeout = config.get('file_service_request_timeout', 3600.0) while current_timeout < request_timeout: yield gen.sleep(lock_watch_interval) current_timeout += lock_watch_interval if not nfs.exists(self.lock_file) and nfs.exists(self.file_path): self.write(self.file_path) # 文件缓存完毕,返回本地缓存文件的路径 return else: logger.info('#%d Waiting for file complete: %s', id(self.request), self.file_path) # 等待文件缓存超时 self.send_error(504, message='Waiting for file complete timeout') def on_file_chunk(self, chunk): if self.temp_file and not self.temp_file.closed: self.temp_file.write(chunk) @gen.coroutine def request_file_from_upstream(self): # 不存在本地缓存,也不存在lock文件,向上游请求下载 try: yield semaphore.acquire() # 文件下载临界区,防止AsyncHTTPClient资源耗尽 self.temp_file = open(self.file_path, 'wb') http_client = AsyncHTTPClient() sep = '' if config['upstream'].endswith('/') else '/' url = '{upstream}{sep}file/{filename}'.format( upstream=config['upstream'], sep=sep, filename=self.file_name) response = yield http_client.fetch( url, validate_cert=False, streaming_callback=self.on_file_chunk, connect_timeout=config.get('file_service_connect_timeout', 3600.0), request_timeout=config.get('file_service_request_timeout', 3600.0)) self.generate_response(response) except Exception as exc: logger.error( '#%d Error while fetching %s: %s', id(self.request), self.file_name, exc, exc_info=True) self.send_error(500, message=exc) finally: yield semaphore.release() self.close_file_resource() def generate_response(self, response): if response.code == 200: logger.info('#%d Complete, change file last-modified', id(self.request)) if self.temp_file and not self.temp_file.closed: self.temp_file.close() m_time = response.headers.get('Last-Modified', None) m_time = time.mktime(time.strptime(m_time, GMT_FORMAT)) \ if m_time else time.time() # 将文件的修改时间改成和server端相同,来判断文件是否更新了 os.utime(self.file_path, (int(time.time()), int(m_time))) self.write(self.file_path) else: logger.error('#%d Non-200 file response from upstream: %d', id(self.request), response.code) self.send_error( 500, message='Non-200 file response from upstream:{}' .format(response.code)) def close_file_resource(self): try: if self.temp_file and not self.temp_file.closed: self.temp_file.close() if nfs.exists(self.lock_file): nfs.remove(self.lock_file) except Exception as exc: logger.error( '#%d Error while closing resource (%s): %s', id(self.request), self.file_path, exc, exc_info=True) self.send_error(500, message=exc) # FIXME: 有可能是请求结束后调用
1dcce5aa67012ed2cdbf673010edcbb66619eacf
b58d01d25e1fe4d157834c3bd88d38bef5b07eff
/phy/cluster/manual/clustering.py
82439ac5b85a7d51fc4e1c17f6c2daf35d79389f
[]
no_license
apeyrache/phy
75f01f876c95d44dc08048eb87db09c5c3c19798
0c9b1c71666bb66d7856fab78decc7c2934c9027
refs/heads/master
2021-01-17T11:23:10.793863
2015-03-10T13:05:28
2015-03-10T13:05:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,041
py
# -*- coding: utf-8 -*- """Clustering structure.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ from collections import namedtuple, defaultdict, OrderedDict from copy import deepcopy import numpy as np from ...ext.six import iterkeys, itervalues, iteritems from ...utils.array import _as_array, _is_array_like from ._utils import _unique, _spikes_in_clusters, _spikes_per_cluster from ._update_info import UpdateInfo from ._history import History #------------------------------------------------------------------------------ # Clustering class #------------------------------------------------------------------------------ def _extend_spikes(spike_ids, spike_clusters): """Return all spikes belonging to the clusters containing the specified spikes.""" # We find the spikes belonging to modified clusters. # What are the old clusters that are modified by the assignement? old_spike_clusters = spike_clusters[spike_ids] unique_clusters = _unique(old_spike_clusters) # Now we take all spikes from these clusters. changed_spike_ids = _spikes_in_clusters(spike_clusters, unique_clusters) # These are the new spikes that need to be reassigned. extended_spike_ids = np.setdiff1d(changed_spike_ids, spike_ids, assume_unique=True) return extended_spike_ids def _concatenate_spike_clusters(*pairs): """Concatenate a list of pairs (spike_ids, spike_clusters).""" pairs = [(_as_array(x), _as_array(y)) for (x, y) in pairs] concat = np.vstack(np.hstack((x[:, None], y[:, None])) for x, y in pairs) reorder = np.argsort(concat[:, 0]) concat = concat[reorder, :] return concat[:, 0].astype(np.int64), concat[:, 1].astype(np.int64) def _extend_assignement(spike_ids, old_spike_clusters, spike_clusters_rel): # 1. Add spikes that belong to modified clusters. # 2. Find new cluster ids for all changed clusters. old_spike_clusters = _as_array(old_spike_clusters) spike_ids = _as_array(spike_ids) assert isinstance(spike_clusters_rel, (list, np.ndarray)) spike_clusters_rel = _as_array(spike_clusters_rel) assert spike_clusters_rel.min() >= 0 # We renumber the new cluster indices. new_cluster_id = old_spike_clusters.max() + 1 new_spike_clusters = (spike_clusters_rel + (new_cluster_id - spike_clusters_rel.min())) # We find the spikes belonging to modified clusters. extended_spike_ids = _extend_spikes(spike_ids, old_spike_clusters) if len(extended_spike_ids) == 0: return spike_ids, new_spike_clusters # We take their clusters. extended_spike_clusters = old_spike_clusters[extended_spike_ids] # Generate new cluster numbers. k = new_spike_clusters.max() + 1 extended_spike_clusters += (k - extended_spike_clusters.min()) # Finally, we concatenate spike_ids and extended_spike_ids. return _concatenate_spike_clusters((spike_ids, new_spike_clusters), (extended_spike_ids, extended_spike_clusters)) def _assign_update_info(spike_ids, old_spike_clusters, old_spikes_per_cluster, new_spike_clusters, new_spikes_per_cluster): old_clusters = _unique(old_spike_clusters) new_clusters = _unique(new_spike_clusters) descendants = list(set(zip(old_spike_clusters, new_spike_clusters))) update_info = UpdateInfo(description='assign', spikes=spike_ids, added=list(new_clusters), deleted=list(old_clusters), descendants=descendants, old_spikes_per_cluster=old_spikes_per_cluster, new_spikes_per_cluster=new_spikes_per_cluster, ) return update_info class Clustering(object): """Object representing a mapping from spike to cluster ids.""" def __init__(self, spike_clusters): self._undo_stack = History(base_item=(None, None)) # Spike -> cluster mapping. self._spike_clusters = _as_array(spike_clusters) self._n_spikes = len(self._spike_clusters) self._spike_ids = np.arange(self._n_spikes).astype(np.int64) # Create the spikes per cluster structure. self._update_all_spikes_per_cluster() # Keep a copy of the original spike clusters assignement. self._spike_clusters_base = self._spike_clusters.copy() def reset(self): self._spike_clusters = self._spike_clusters_base self._update_all_spikes_per_cluster() @property def spike_clusters(self): """Mapping spike to cluster ids.""" return self._spike_clusters @property def spikes_per_cluster(self): """Dictionary {cluster: array_of_spikes}.""" return self._spikes_per_cluster @property def cluster_ids(self): """Labels of all non-empty clusters, sorted by id.""" return sorted(self._spikes_per_cluster) @property def cluster_counts(self): """Number of spikes in each cluster.""" return {cluster: len(self._spikes_per_cluster[cluster]) for cluster in self.cluster_ids} def new_cluster_id(self): """Return a new cluster id.""" return int(np.max(self.cluster_ids)) + 1 @property def n_clusters(self): """Number of different clusters.""" return len(self.cluster_ids) @property def n_spikes(self): return self._n_spikes @property def spike_ids(self): return self._spike_ids def spikes_in_clusters(self, clusters): """Return the spikes belonging to a set of clusters.""" return _spikes_in_clusters(self.spike_clusters, clusters) # Actions #-------------------------------------------------------------------------- def merge(self, cluster_ids, to=None): """Merge several clusters to a new cluster.""" if not _is_array_like(cluster_ids): raise ValueError("The first argument should be a list or " "an array.") cluster_ids = sorted(cluster_ids) if not set(cluster_ids) <= set(self.cluster_ids): raise ValueError("Some clusters do not exist.") # Find the new cluster number. if to is None: to = self.new_cluster_id() if to < self.new_cluster_id(): raise ValueError("The new cluster numbers should be higher than " "{0}.".format(self.new_cluster_id())) # NOTE: we could have called self.assign() here, but we don't. # We circumvent self.assign() for performance reasons. # assign() is a relatively costly operation, whereas merging is a much # cheaper operation. # Find all spikes in the specified clusters. spike_ids = _spikes_in_clusters(self.spike_clusters, cluster_ids) # Create the UpdateInfo instance here. descendants = [(cluster, to) for cluster in cluster_ids] old_spc = {k: self._spikes_per_cluster[k] for k in cluster_ids} new_spc = {to: spike_ids} up = UpdateInfo(description='merge', spikes=spike_ids, added=[to], deleted=cluster_ids, descendants=descendants, old_spikes_per_cluster=old_spc, new_spikes_per_cluster=new_spc, ) # Update the spikes_per_cluster structure directly. self._spikes_per_cluster[to] = spike_ids for cluster in cluster_ids: del self._spikes_per_cluster[cluster] # Assign the clusters. self.spike_clusters[spike_ids] = to # Add to stack. self._undo_stack.add((spike_ids, [to])) return up def _update_all_spikes_per_cluster(self): self._spikes_per_cluster = _spikes_per_cluster(self._spike_ids, self._spike_clusters) def _do_assign(self, spike_ids, new_spike_clusters): """Make spike-cluster assignements after the spike selection has been extended to full clusters.""" # Ensure spike_clusters has the right shape. spike_ids = _as_array(spike_ids) if len(new_spike_clusters) == 1 and len(spike_ids) > 1: new_spike_clusters = (np.ones(len(spike_ids), dtype=np.int64) * new_spike_clusters[0]) old_spike_clusters = self._spike_clusters[spike_ids] assert len(spike_ids) == len(old_spike_clusters) assert len(new_spike_clusters) == len(spike_ids) # Update the spikes per cluster structure. clusters = _unique(old_spike_clusters) old_spikes_per_cluster = {cluster: self._spikes_per_cluster[cluster] for cluster in clusters} new_spikes_per_cluster = _spikes_per_cluster(spike_ids, new_spike_clusters) self._spikes_per_cluster.update(new_spikes_per_cluster) # All old clusters are deleted. for cluster in clusters: del self._spikes_per_cluster[cluster] # We return the UpdateInfo structure. up = _assign_update_info(spike_ids, old_spike_clusters, old_spikes_per_cluster, new_spike_clusters, new_spikes_per_cluster) # We make the assignements. self._spike_clusters[spike_ids] = new_spike_clusters return up def assign(self, spike_ids, spike_clusters_rel=0): """Assign clusters to a number of spikes. NOTE: spike_clusters_rel contains relative indices. They don't correspond to final cluster ids: self.assign() handles the final assignements to ensure that no cluster ends up modified. A cluster can only be born, stay unchanged, or die. """ assert not isinstance(spike_ids, slice) # Ensure 'spike_clusters_rel' is an array-like. if not hasattr(spike_clusters_rel, '__len__'): spike_clusters_rel = spike_clusters_rel * np.ones(len(spike_ids), dtype=np.int64) spike_ids = _as_array(spike_ids) assert len(spike_ids) == len(spike_clusters_rel) assert spike_ids.min() >= 0 assert spike_ids.max() < self._n_spikes # Normalize the spike-cluster assignement such that # there are only new or dead clusters, not modified clusters. # This implies that spikes not explicitely selected, but that # belong to clusters affected by the operation, will be assigned # to brand new clusters. spike_ids, cluster_ids = _extend_assignement(spike_ids, self._spike_clusters, spike_clusters_rel) up = self._do_assign(spike_ids, cluster_ids) # Add the assignement to the undo stack. self._undo_stack.add((spike_ids, cluster_ids)) return up def split(self, spike_ids): """Split a number of spikes into a new cluster.""" # self.assign() accepts relative numbers as second argument. return self.assign(spike_ids, 0) def undo(self): """Undo the last cluster assignement operation.""" self._undo_stack.back() # Retrieve the initial spike_cluster structure. spike_clusters_new = self._spike_clusters_base.copy() # Loop over the history (except the last item because we undo). for spike_ids, cluster_ids in self._undo_stack: # We update the spike clusters accordingly. if spike_ids is not None: spike_clusters_new[spike_ids] = cluster_ids # What are the spikes affected by the last changes? changed = np.nonzero(self._spike_clusters != spike_clusters_new)[0] clusters_changed = spike_clusters_new[changed] return self._do_assign(changed, clusters_changed) def redo(self): """Redo the last cluster assignement operation.""" # Go forward in the stack, and retrieve the new assignement. item = self._undo_stack.forward() if item is None: # No redo has been performed: abort. return spike_ids, cluster_ids = item assert spike_ids is not None # We apply the new assignement. return self._do_assign(spike_ids, cluster_ids)
b7e9a84dfee84fe3a63a89a7b9e557c566d47949
0805420ce1890c36aa9e0cc1a782945464433ef6
/client/eve/client/script/ui/structure/structureSettings/schedule/__init__.py
2527ee24c593c6d6a1cfdf69e8d5bb20d7008db8
[]
no_license
cnrat/dec-eve-serenity
4ebc3b2ab8faa6e6714dbb72b7ebcf92c4b2d75c
37519e66a5fbb0d7c417d5cf9778636991efbed8
refs/heads/master
2021-01-21T03:39:48.969227
2016-08-10T05:25:07
2016-08-10T05:25:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\eve\client\script\ui\structure\structureSettings\schedule\__init__.py __author__ = 'bara'
a88b50f072fc292e98b1924ee430d4fb78ab9eb7
dc50eb6176b4f5609519e912bc5379cea3fac9d2
/Learn/spider/21DaysOfDistributedSpider/ch06/jianshu_spider/jianshu_spider/start.py
93c5f64fabc256f15c10cbb8676d97c8fddd221c
[]
no_license
shuxiangguo/Python
890c09a028e660206a8b3a8c7ca094a6f642095d
089b2795e1db113dea6333d8dee6803071921cab
refs/heads/master
2020-04-06T10:28:17.851981
2018-12-20T04:39:03
2018-12-20T04:39:03
157,381,322
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
# encoding: utf-8 """ @author: shuxiangguo @file: start.py @time: 2018-11-29 17:26:57 """ from scrapy import cmdline cmdline.execute("scrapy crawl js".split())
d82c316008ae3777ac502b60b15b2a6e27e8e845
7986ec6498e3f93967fa9bfe2b6a9d4056138293
/Protheus_WebApp/Modules/SIGAPCP/MATA660TESTCASE.py
16968c8e2418ee95143f196717d2106ec59cdfd2
[ "MIT" ]
permissive
HelenaAdrignoli/tir-script-samples
7d08973e30385551ef13df15e4410ac484554303
bb4f4ab3a49f723216c93f66a4395e5aa328b846
refs/heads/master
2023-02-21T11:26:28.247316
2020-04-28T16:37:26
2020-04-28T16:37:26
257,304,757
0
0
MIT
2020-04-20T14:22:21
2020-04-20T14:22:20
null
UTF-8
Python
false
false
1,304
py
from tir import Webapp import unittest class MATA660(unittest.TestCase): @classmethod def setUpClass(inst): inst.oHelper = Webapp() inst.oHelper.Setup('SIGAPCP','26/04/2019','T1','D MG 01 ','10') inst.oHelper.Program('MATA660') def test_MATA660_001(self): self.oHelper.SetButton('Outras Ações', 'Incluir') self.oHelper.SetBranch('D MG 01') self.oHelper.SetValue('H9_RECURSO','MT6601') self.oHelper.SetValue('H9_MOTIVO','QUEBRA DE EQUIPAMENTO') self.oHelper.SetValue('H9_DTINI','25/04/2019') self.oHelper.SetValue('H9_DTFIM','27/04/2019') self.oHelper.SetValue('H9_HRINI','10:00') self.oHelper.SetValue('H9_HRFIM','15:00') self.oHelper.SetButton('Salvar') self.oHelper.SetButton('Cancelar') self.oHelper.SetButton('Visualizar') self.oHelper.CheckResult('H9_RECURSO','MT6601') self.oHelper.CheckResult('H9_CCUSTO','PCP000001') self.oHelper.CheckResult('H9_MOTIVO','QUEBRA DE EQUIPAMENTO') self.oHelper.CheckResult('H9_DTINI','25/04/2019') self.oHelper.CheckResult('H9_DTFIM','27/04/2019') self.oHelper.CheckResult('H9_HRINI','10:00') self.oHelper.CheckResult('H9_HRFIM','15:00') self.oHelper.SetButton('Cancelar') self.oHelper.AssertTrue() @classmethod def tearDownClass(inst): inst.oHelper.TearDown() if __name__ == '__main__': unittest.main()
b260ab5265f53119dfc20bd10fab69410b969e8d
39a5908ff24b9a4d9b5e9a90f76ba248ec47fd39
/mymultispider/mymultispider/spiders/myspd2.py
c1944c6bf3acf97d9f71130cedffe87a9a2df2b9
[]
no_license
terroristhouse/crawler
281b10ccc2490b4f1a86eae7ae819cf408f15bd8
3c501da46deef73b80e381d6d3c45cc049702d14
refs/heads/master
2020-12-27T03:28:20.586755
2020-09-08T03:43:56
2020-09-08T03:43:56
284,569,509
7
0
null
null
null
null
UTF-8
Python
false
false
490
py
# -*- coding: utf-8 -*- import scrapy from mymultispider.items import Myspd2spiderItem class Myspd2Spider(scrapy.Spider): name = 'myspd2' allowed_domains = ['sina.com.cn'] start_urls = ['http://sina.com.cn/'] # custom_settings = { # 'ITEM_PIPELINES': {'mymultispider.pipelines.Myspd2spiderPipeline': 300}, # } def parse(self, response): print('myspd2') item = Myspd2spiderItem() item['name'] = 'myspd2的pipelines' yield item
17f36f2e6c5b6dc04263fd98c3913c332d50c9a7
7cd30248342dc83e0b49409bed4b3df378b629b1
/sampling_image_15channels.py
d5d3bc787979ea380c94ef835d399663a0d72d43
[]
no_license
minhnd3796/NGUYENDUCMINH_CODE
d34fc5cb0c9ba4108faf500170a8bea5bdef1d04
9fb27777ca0d40018c7154f7be19b420cf391471
refs/heads/master
2021-04-06T20:47:34.958473
2018-06-12T08:36:33
2018-06-12T08:36:33
125,452,799
2
0
null
null
null
null
UTF-8
Python
false
false
8,190
py
import os import numpy as np import scipy.misc as misc base_dir_train = "../ISPRS_semantic_labeling_Vaihingen/train_15channels" base_dir_validate = "../ISPRS_semantic_labeling_Vaihingen/validate_15channels" base_dir_annotations = "../ISPRS_semantic_labeling_Vaihingen/annotations" base_dir_top = "../ISPRS_semantic_labeling_Vaihingen/top" base_dir_ndsm = "../ISPRS_semantic_labeling_Vaihingen/ndsm" base_dir_dsm = "../ISPRS_semantic_labeling_Vaihingen/dsm" base_dir_ndvi= "../ISPRS_semantic_labeling_Vaihingen/ndvi" base_dir_L= "../ISPRS_semantic_labeling_Vaihingen/L" base_dir_A= "../ISPRS_semantic_labeling_Vaihingen/A" base_dir_B= "../ISPRS_semantic_labeling_Vaihingen/B" base_dir_ele= "../ISPRS_semantic_labeling_Vaihingen/ele" base_dir_azi= "../ISPRS_semantic_labeling_Vaihingen/azi" base_dir_sat= "../ISPRS_semantic_labeling_Vaihingen/sat" base_dir_entpy= "../ISPRS_semantic_labeling_Vaihingen/entpy" base_dir_entpy2= "../ISPRS_semantic_labeling_Vaihingen/entpy2" base_dir_texton= "../ISPRS_semantic_labeling_Vaihingen/texton" base_dir_train_validate_gt = "../ISPRS_semantic_labeling_Vaihingen/train_validate_gt_15channels" image_size = 224 num_cropping_per_image = 3333 validate_image=['top_mosaic_09cm_area11.png'] def create_training_dataset(): for filename in os.listdir(base_dir_annotations): if filename in validate_image: continue top_image = misc.imread(os.path.join(base_dir_top,os.path.splitext(filename)[0]+".tif")) annotation_image = misc.imread(os.path.join(base_dir_annotations, filename)) dsm_image_name= filename.replace('top_mosaic','dsm').replace('png','tif').replace('area','matching_area') dsm_image= misc.imread(base_dir_dsm+"/"+dsm_image_name) ndsm_image_name= dsm_image_name.replace('.tif','')+"_normalized.jpg" ndsm_image= misc.imread(base_dir_ndsm+"/"+ndsm_image_name) A_image_name = "A"+ndsm_image_name.replace('dsm_09cm_matching_area','').replace('_normalized.jpg','.tif') A_image = misc.imread(base_dir_A + "/"+ A_image_name) azi_image_name = A_image_name.replace('A','azi') azi_image = misc.imread(base_dir_azi+"/"+azi_image_name) B_image_name = A_image_name.replace('A', 'B') B_image = misc.imread(base_dir_B + "/" + B_image_name) ele_image_name = A_image_name.replace('A', 'ele') ele_image = misc.imread(base_dir_ele + "/" + ele_image_name) entpy_image_name = A_image_name.replace('A', 'entpy') entpy_image = misc.imread(base_dir_entpy + "/" + entpy_image_name) entpy2_image_name = A_image_name.replace('A', 'entpy2') entpy2_image = misc.imread(base_dir_entpy2 + "/" + entpy2_image_name) L_image_name = A_image_name.replace('A', 'L') L_image = misc.imread(base_dir_L + "/" + L_image_name) ndvi_image_name = A_image_name.replace('A', 'ndvi') ndvi_image = misc.imread(base_dir_ndvi + "/" + ndvi_image_name) sat_image_name = A_image_name.replace('A', 'sat') sat_image = misc.imread(base_dir_sat + "/" + sat_image_name) texton_image_name = A_image_name.replace('A', 'texton') texton_image = misc.imread(base_dir_texton + "/" + texton_image_name) width= np.shape(top_image)[1] height= np.shape(top_image)[0] for i in range(num_cropping_per_image): x = int(np.random.uniform(0, height - image_size + 1)) y = int(np.random.uniform(0, width - image_size + 1)) print((x,y)) top_image_cropped= top_image[x:x + image_size, y:y + image_size, :] ndsm_image_cropped= ndsm_image[x:x + image_size, y:y + image_size] ndsm_image_cropped= np.expand_dims(ndsm_image_cropped,axis=2) dsm_image_cropped= dsm_image[x:x + image_size, y:y + image_size] dsm_image_cropped= np.expand_dims(dsm_image_cropped,axis=2) A_image_cropped = A_image[x:x + image_size, y:y + image_size] A_image_cropped = np.expand_dims(A_image_cropped, axis=2) azi_image_cropped = azi_image[x:x + image_size, y:y + image_size] azi_image_cropped = np.expand_dims(azi_image_cropped, axis=2) B_image_cropped = B_image[x:x + image_size, y:y + image_size] B_image_cropped = np.expand_dims(B_image_cropped, axis=2) ele_image_cropped = ele_image[x:x + image_size, y:y + image_size] ele_image_cropped = np.expand_dims(ele_image_cropped, axis=2) entpy_image_cropped = entpy_image[x:x + image_size, y:y + image_size] entpy_image_cropped = np.expand_dims(entpy_image_cropped, axis=2) entpy2_image_cropped = entpy2_image[x:x + image_size, y:y + image_size] entpy2_image_cropped = np.expand_dims(entpy2_image_cropped, axis=2) L_image_cropped = L_image[x:x + image_size, y:y + image_size] L_image_cropped = np.expand_dims(L_image_cropped, axis=2) ndvi_image_cropped = ndvi_image[x:x + image_size, y:y + image_size] ndvi_image_cropped = np.expand_dims(ndvi_image_cropped, axis=2) sat_image_cropped = sat_image[x:x + image_size, y:y + image_size] sat_image_cropped = np.expand_dims(sat_image_cropped, axis=2) texton_image_cropped = texton_image[x:x + image_size, y:y + image_size] texton_image_cropped = np.expand_dims(texton_image_cropped, axis=2) array_to_save= np.concatenate((top_image_cropped,ndsm_image_cropped,dsm_image_cropped, A_image_cropped, azi_image_cropped, B_image_cropped, ele_image_cropped, entpy_image_cropped, entpy2_image_cropped, L_image_cropped, ndvi_image_cropped, sat_image_cropped, texton_image_cropped),axis=2).astype(dtype=np.float16) np.save(os.path.join(base_dir_train, os.path.splitext(filename)[0] + "_" + str(i)+".npy"),array_to_save) annotation_image_cropped= annotation_image[x:x + image_size, y:y + image_size] misc.imsave(os.path.join(base_dir_train_validate_gt, os.path.splitext(filename)[0] + "_" + str(i) + ".png"), annotation_image_cropped) return None def create_validation_dataset(): for filename in validate_image: top_image = misc.imread(os.path.join(base_dir_top, os.path.splitext(filename)[0] + ".tif")) annotation_image = misc.imread(os.path.join(base_dir_annotations, filename)) dsm_image_name = filename.replace('top_mosaic', 'dsm').replace('png', 'tif').replace('area','matching_area') dsm_image = misc.imread(base_dir_dsm + "/" + dsm_image_name) ndsm_image_name = dsm_image_name.replace('.tif', '') + "_normalized.jpg" ndsm_image = misc.imread(base_dir_ndsm + "/" + ndsm_image_name) width = np.shape(top_image)[1] height = np.shape(top_image)[0] for i in range(num_cropping_per_image): x = int(np.random.uniform(0, height - image_size + 1)) y = int(np.random.uniform(0, width - image_size + 1)) print((x, y)) top_image_cropped = top_image[x:x + image_size, y:y + image_size, :] ndsm_image_cropped = ndsm_image[x:x + image_size, y:y + image_size] ndsm_image_cropped = np.expand_dims(ndsm_image_cropped, axis=2) dsm_image_cropped = dsm_image[x:x + image_size, y:y + image_size] dsm_image_cropped = np.expand_dims(dsm_image_cropped, axis=2) array_to_save = np.concatenate((top_image_cropped, ndsm_image_cropped, dsm_image_cropped), axis=2).astype(dtype=np.float16) np.save(os.path.join(base_dir_validate, os.path.splitext(filename)[0] + "_" + str(i) + ".npy"), array_to_save) # misc.imsave(os.path.join(base_dir_train, os.path.splitext(filename)[0] + "_" + str(i) + ".tif"), top_image_cropped) annotation_image_cropped = annotation_image[x:x + image_size, y:y + image_size] misc.imsave(os.path.join(base_dir_train_validate_gt, os.path.splitext(filename)[0] + "_" + str(i) + ".png"), annotation_image_cropped) return None if __name__=="__main__": create_training_dataset()
1ad8e42d8d9f216254a022a78cade94d1ffdf242
25ebc03b92df764ff0a6c70c14c2848a49fe1b0b
/daily/20191209/example_metashape/conf2.py
24069b8dfc3798d4637b5f160b6a247571a22e1b
[]
no_license
podhmo/individual-sandbox
18db414fafd061568d0d5e993b8f8069867dfcfb
cafee43b4cf51a321f4e2c3f9949ac53eece4b15
refs/heads/master
2023-07-23T07:06:57.944539
2023-07-09T11:45:53
2023-07-09T11:45:53
61,940,197
6
0
null
2022-10-19T05:01:17
2016-06-25T11:27:04
Python
UTF-8
Python
false
false
1,089
py
from __future__ import annotations import typing as t import dataclasses @dataclasses.dataclass class Toplevel: site_name: str = "Material for MkDocs" class Theme: name: str = "material" language: str = "en" class Palette: primary: str = "indigo" accent: str = "indigo" palette: t.Type["Toplevel.Theme.Palette"] = Palette class Font: text: str = "Roboto" code: str = "Roboto Mono" font: t.Type["Toplevel.Theme.Font"] = Font theme: t.Type["Toplevel.Theme"] = Theme # hmm # # diff --git a/metashape/analyze/typeinfo.py b/metashape/analyze/typeinfo.py # index ede8971..9074fc5 100644 # --- a/metashape/analyze/typeinfo.py # +++ b/metashape/analyze/typeinfo.py # @@ -196,6 +196,8 @@ def typeinfo( # is_optional=is_optional, # ) # else: # + inner = typing_inspect.get_args(typ)[0] # + return typeinfo(inner) # raise ValueError(f"unsuported type %{typ}") # supertypes = []
d7c44772d25a6fdde5ccc1ecb583a18f77d7c22e
2c926b4847a44c7f831d47ed0160751d3248e8f4
/venv/lib/python3.8/site-packages/hubspot/crm/objects/models/batch_input_simple_public_object_input.py
20216ea23651ee62851a64e4df5154661908c214
[]
no_license
Women-in-Tech-Society/WITS_Site
c42cd2c9abe1b5515b80be82dc876a6c3842e42a
5dbf22f5ee5a36358f6f279af4c13d86d31653c5
refs/heads/main
2023-05-11T02:34:05.531902
2021-06-01T01:05:12
2021-06-01T01:05:12
278,658,100
0
5
null
2022-11-22T18:41:35
2020-07-10T14:43:28
Python
UTF-8
Python
false
false
4,993
py
# coding: utf-8 """ CRM Objects CRM objects such as companies, contacts, deals, line items, products, tickets, and quotes are standard objects in HubSpot’s CRM. These core building blocks support custom properties, store critical information, and play a central role in the HubSpot application. ## Supported Object Types This API provides access to collections of CRM objects, which return a map of property names to values. Each object type has its own set of default properties, which can be found by exploring the [CRM Object Properties API](https://developers.hubspot.com/docs/methods/crm-properties/crm-properties-overview). |Object Type |Properties returned by default | |--|--| | `companies` | `name`, `domain` | | `contacts` | `firstname`, `lastname`, `email` | | `deals` | `dealname`, `amount`, `closedate`, `pipeline`, `dealstage` | | `products` | `name`, `description`, `price` | | `tickets` | `content`, `hs_pipeline`, `hs_pipeline_stage`, `hs_ticket_category`, `hs_ticket_priority`, `subject` | Find a list of all properties for an object type using the [CRM Object Properties](https://developers.hubspot.com/docs/methods/crm-properties/get-properties) API. e.g. `GET https://api.hubapi.com/properties/v2/companies/properties`. Change the properties returned in the response using the `properties` array in the request body. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.objects.configuration import Configuration class BatchInputSimplePublicObjectInput(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"inputs": "list[SimplePublicObjectInput]"} attribute_map = {"inputs": "inputs"} def __init__(self, inputs=None, local_vars_configuration=None): # noqa: E501 """BatchInputSimplePublicObjectInput - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._inputs = None self.discriminator = None self.inputs = inputs @property def inputs(self): """Gets the inputs of this BatchInputSimplePublicObjectInput. # noqa: E501 :return: The inputs of this BatchInputSimplePublicObjectInput. # noqa: E501 :rtype: list[SimplePublicObjectInput] """ return self._inputs @inputs.setter def inputs(self, inputs): """Sets the inputs of this BatchInputSimplePublicObjectInput. :param inputs: The inputs of this BatchInputSimplePublicObjectInput. # noqa: E501 :type: list[SimplePublicObjectInput] """ if ( self.local_vars_configuration.client_side_validation and inputs is None ): # noqa: E501 raise ValueError( "Invalid value for `inputs`, must not be `None`" ) # noqa: E501 self._inputs = inputs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BatchInputSimplePublicObjectInput): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, BatchInputSimplePublicObjectInput): return True return self.to_dict() != other.to_dict()
c3c267c38c57dffabbb56aeea85b6750efebb684
57d964ebf76d2462f21017ec68e124b6728d8ccb
/setup.py
e663edcf79392ac1efe703d50ba0012944b55225
[ "MIT" ]
permissive
chaeminlim/netron
a2983ada9d803549a3266e1a5922894b39226b26
d75991128647a636425c746205b0a28a21d40e07
refs/heads/master
2021-01-15T03:54:05.742616
2020-03-05T10:45:53
2020-03-05T10:45:53
242,869,800
0
0
MIT
2020-02-24T23:56:50
2020-02-24T23:56:49
null
UTF-8
Python
false
false
6,854
py
#!/usr/bin/env python import distutils import io import json import os import setuptools import setuptools.command.build_py import distutils.command.build node_dependencies = [ ( 'netron', [ 'node_modules/d3/dist/d3.min.js', 'node_modules/dagre/dist/dagre.min.js', 'node_modules/handlebars/dist/handlebars.min.js', 'node_modules/marked/marked.min.js', 'node_modules/pako/dist/pako.min.js', 'node_modules/long/dist/long.js', 'node_modules/protobufjs/dist/protobuf.min.js', 'node_modules/protobufjs/ext/prototxt/prototxt.js', 'node_modules/flatbuffers/js/flatbuffers.js' ] ) ] class build(distutils.command.build.build): user_options = distutils.command.build.build.user_options + [ ('version', None, 'version' ) ] def initialize_options(self): distutils.command.build.build.initialize_options(self) self.version = None def finalize_options(self): distutils.command.build.build.finalize_options(self) def run(self): build_py.version = bool(self.version) return distutils.command.build.build.run(self) class build_py(setuptools.command.build_py.build_py): user_options = setuptools.command.build_py.build_py.user_options + [ ('version', None, 'version' ) ] def initialize_options(self): setuptools.command.build_py.build_py.initialize_options(self) self.version = None def finalize_options(self): setuptools.command.build_py.build_py.finalize_options(self) def run(self): setuptools.command.build_py.build_py.run(self) for target, files in node_dependencies: target = os.path.join(self.build_lib, target) if not os.path.exists(target): os.makedirs(target) for file in files: self.copy_file(file, target) def build_module(self, module, module_file, package): setuptools.command.build_py.build_py.build_module(self, module, module_file, package) if build_py.version and module == '__version__': package = package.split('.') outfile = self.get_module_outfile(self.build_lib, package, module) with open(outfile, 'w+') as f: f.write("__version__ = '" + package_version() + "'\n") def package_version(): folder = os.path.realpath(os.path.dirname(__file__)) with open(os.path.join(folder, 'package.json')) as package_file: package_manifest = json.load(package_file) return package_manifest['version'] setuptools.setup( name="netron", version=package_version(), description="Viewer for neural network, deep learning and machine learning models", long_description='Netron is a viewer for neural network, deep learning and machine learning models.\n\n' + 'Netron supports **ONNX** (`.onnx`, `.pb`), **Keras** (`.h5`, `.keras`), **Core ML** (`.mlmodel`), **Caffe** (`.caffemodel`, `.prototxt`), **Caffe2** (`predict_net.pb`), **Darknet** (`.cfg`), **MXNet** (`.model`, `-symbol.json`), ncnn (`.param`) and **TensorFlow Lite** (`.tflite`). Netron has experimental support for **TorchScript** (`.pt`, `.pth`), **PyTorch** (`.pt`, `.pth`), **Torch** (`.t7`), **ArmNN** (`.armnn`), **BigDL** (`.bigdl`, `.model`), **Chainer** (`.npz`, `.h5`), **CNTK** (`.model`, `.cntk`), **Deeplearning4j** (`.zip`), **PaddlePaddle** (`__model__`), **MediaPipe** (`.pbtxt`), **ML.NET** (`.zip`), MNN (`.mnn`), **OpenVINO** (`.xml`), **scikit-learn** (`.pkl`), **TensorFlow.js** (`model.json`, `.pb`) and **TensorFlow** (`.pb`, `.meta`, `.pbtxt`, `.ckpt`, `.index`).', keywords=[ 'onnx', 'keras', 'tensorflow', 'tflite', 'coreml', 'mxnet', 'caffe', 'caffe2', 'torchscript', 'pytorch', 'ncnn', 'mnn' 'openvino', 'darknet', 'paddlepaddle', 'chainer', 'artificial intelligence', 'machine learning', 'deep learning', 'neural network', 'visualizer', 'viewer' ], license="MIT", cmdclass={ 'build': build, 'build_py': build_py }, package_dir={ 'netron': 'src' }, packages=[ 'netron' ], package_data={ 'netron': [ 'favicon.ico', 'icon.png', 'base.js', 'numpy.js', 'pickle.js', 'hdf5.js', 'bson.js', 'zip.js', 'tar.js', 'gzip.js', 'armnn.js', 'armnn-metadata.json', 'armnn-schema.js', 'bigdl.js', 'bigdl-metadata.json', 'bigdl-proto.js', 'caffe.js', 'caffe-metadata.json', 'caffe-proto.js', 'caffe2.js', 'caffe2-metadata.json', 'caffe2-proto.js', 'chainer.js', 'cntk.js', 'cntk-metadata.json', 'cntk-proto.js', 'coreml.js', 'coreml-metadata.json', 'coreml-proto.js', 'darknet.js', 'darknet-metadata.json', 'dl4j.js', 'dl4j-metadata.json', 'flux.js', 'flux-metadata.json', 'keras.js', 'keras-metadata.json', 'mediapipe.js', 'mlnet.js', 'mlnet-metadata.json', 'mnn.js', 'mnn-metadata.json', 'mnn-schema.js', 'mxnet.js', 'mxnet-metadata.json', 'ncnn.js', 'ncnn-metadata.json', 'onnx.js', 'onnx-metadata.json', 'onnx-proto.js', 'openvino.js', 'openvino-metadata.json', 'openvino-parser.js', 'paddle.js', 'paddle-metadata.json', 'paddle-proto.js', 'pytorch.js', 'pytorch-metadata.json', 'python.js', 'sklearn.js', 'sklearn-metadata.json', 'tf.js', 'tf-metadata.json', 'tf-proto.js', 'tflite.js', 'tflite-metadata.json', 'tflite-schema.js', 'torch.js', 'torch-metadata.json', 'index.html', 'index.js', 'view-grapher.css', 'view-grapher.js', 'view-sidebar.css', 'view-sidebar.js', 'view.js', 'server.py' ] }, install_requires=[], author='Lutz Roeder', author_email='[email protected]', url='https://github.com/lutzroeder/netron', entry_points={ 'console_scripts': [ 'netron = netron:main' ] }, classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Scientific/Engineering :: Visualization' ] )
ded0b78eb650a9a7b1f02e68ec43f07f81a9da48
2b020a49e5c2bff241fd1a99fc31531ea2b6f8c1
/pyLeetCode/S11_1_Container_With_Most_Water.py
6e8aa6b416c2cb0808fe6774a90a5b807468c13c
[]
no_license
yangze01/algorithm
7855461430dc0a5abcc8f1a94fda9318a0653e3e
44968c3fd2ce02bd9ab18d02b487401a0d72c1a8
refs/heads/master
2021-01-11T11:09:54.668345
2018-04-08T15:04:11
2018-04-08T15:04:11
78,757,929
0
0
null
null
null
null
UTF-8
Python
false
false
445
py
height = [1,2,3,4,5,6,7] class Solution(object): def maxArea(self,height): max_val = 0 for i in range(0,len(height)-1): for j in range(i+1,len(height)): print(i,j) tmp = (j-i)*min(height[i],height[j]) if(tmp>max_val): max_val = tmp return max_val if __name__ == "__main__": solution = Solution() print(solution.maxArea(height))
5330811aaf49a7feff3c2159e41445feaa2201d3
0c110eb32f2eaea5c65d40bda846ddc05757ced6
/scripts_from_Astrocyte/scripts/mridataSort.py
2ec9b124d72314d9b7234cf11aa592e10cf844cc
[ "BSD-2-Clause" ]
permissive
nyspisoccog/ks_scripts
792148a288d1a9d808e397c1d2e93deda2580ff4
744b5a9dfa0f958062fc66e0331613faaaee5419
refs/heads/master
2021-01-18T14:22:25.291331
2018-10-15T13:08:24
2018-10-15T13:08:24
46,814,408
0
0
null
null
null
null
UTF-8
Python
false
false
3,926
py
import os, shutil, csv src = '/media/katie/storage/PanicPTSD/data/raw_data' dst = '/media/katie/storage/PanicPTSD/data-neworg/Panic/' lst = '/media/katie/storage/PanicPTSD/data/PanicSubjListPHI.csv' lst = open(lst) def copy_and_rename(sub, exam, time): for folder in os.listdir(src): if folder == exam: for root, dirs, files in os.walk(src + "/" + folder): print dirs anatcount = 0 simoncount = 0 affectcount = 0 for d in dirs: if 'spgr' in d or 'SPGR' in d: anatcount += 1 print anatcount print "anat ", d newname = exam + "-Anat-" + str(anatcount) srcdir = os.path.join(root, d) dstdir = os.path.join(dst, sub, 'anatomical', time, newname) shutil.copytree(srcdir, dstdir) recstring = os.path.join(dstdir, newname + '-record.txt') record = open(recstring, 'w') record.write(srcdir) if 'simon' in d or 'SIMON' in d or 'rapid' in d or 'RAPID' in d: simoncount += 1 print "simon ", d newname = exam + "-Simon-" + str(simoncount) srcdir = os.path.join(root, d) dstdir = os.path.join(dst, sub, 'functional/simon/', time, newname) shutil.copytree(srcdir, dstdir) recstring = os.path.join(dstdir, newname + '-record.txt') record = open(recstring, 'w') record.write(srcdir) if 'affect' in d or 'AFFECT' in d: affectcount += 1 print "affect ", d newname = exam + "-Affect-" + str(affectcount) srcdir = os.path.join(root, d) dstdir = os.path.join(dst, sub, 'functional/affect/', time, newname) shutil.copytree(srcdir, dstdir) recstring = os.path.join(dstdir, newname + '-record.txt') record = open(recstring, 'w') record.write(srcdir) def makedir(dirlist): newpath = '' newdir = '' for d in dirlist: newpath = os.path.join(newpath, d) for d in dirlist[0:-1]: newdir = os.path.join(newdir, d) endpath = dirlist[-1] if endpath in os.listdir(newdir): pass else: os.mkdir(newpath) exam1 = 'zzzzz' exam2 = 'zzzzz' exam3 = 'zzzzz' exam4 = 'zzzzz' for subj in csv.DictReader(lst, dialect='excel', delimiter='\t'): keys = [key for key in subj.keys()] print keys if subj['Study No.'] == '1010' or subj['Study No.'] == '1029': subj_id = subj['Study No.'] + '-' + subj['PPID'] makedir([dst, subj_id]) makedir([dst, subj_id, 'anatomical']) makedir([dst, subj_id, 'functional']) makedir([dst, subj_id, 'functional', 'affect']) makedir([dst, subj_id, 'functional', 'simon']) if subj['Exam 1']: exam1 = subj['Exam 1'] copy_and_rename(subj_id, exam1, 'Time1') if subj['Exam 2']: exam2 = subj['Exam 2'] copy_and_rename(subj_id, exam2, 'Time2') if subj['Exam 3']: exam3 = subj['Exam 3'] copy_and_rename(subj_id, exam3, 'Time3') if subj['Exam 4']: exam3 = subj['Exam 4'] copy_and_rename(subj_id, exam3, 'Time4')
f6316387c1470593c9210fdc9d875d597262e49b
bb6ebff7a7f6140903d37905c350954ff6599091
/third_party/openmax_dl/dl/dl.gyp
d43f546805dcdbd4d725192e3e9f3ecd3cc8e5a8
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0" ]
permissive
PDi-Communication-Systems-Inc/lollipop_external_chromium_org
faa6602bd6bfd9b9b6277ce3cd16df0bd26e7f2f
ccadf4e63dd34be157281f53fe213d09a8c66d2c
refs/heads/master
2022-12-23T18:07:04.568931
2016-04-11T16:03:36
2016-04-11T16:03:36
53,677,925
0
1
BSD-3-Clause
2022-12-09T23:46:46
2016-03-11T15:49:07
C++
UTF-8
Python
false
false
10,916
gyp
# Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. { 'variables' : { # Override this value to build with small float FFT tables 'big_float_fft%' : 1, }, 'targets': [ { 'target_name': 'openmax_dl', 'type': 'static_library', 'include_dirs': [ '../', ], 'direct_dependent_settings': { 'include_dirs': [ '../', ], }, 'sources': [ 'api/omxtypes.h', 'sp/api/omxSP.h', 'sp/src/armSP_FFT_F32TwiddleTable.c', ], 'conditions' : [ ['big_float_fft == 1', { 'defines': [ 'BIG_FFT_TABLE', ], }], ['target_arch=="arm" or target_arch=="arm64"', { 'sources':[ # Common files that are used by both arm and arm64 code. 'api/arm/armOMX.h', 'api/arm/omxtypes_s.h', 'sp/api/armSP.h', 'sp/src/arm/armSP_FFT_S32TwiddleTable.c', 'sp/src/arm/omxSP_FFTGetBufSize_C_FC32.c', 'sp/src/arm/omxSP_FFTGetBufSize_C_SC32.c', 'sp/src/arm/omxSP_FFTGetBufSize_R_F32.c', 'sp/src/arm/omxSP_FFTGetBufSize_R_S32.c', 'sp/src/arm/omxSP_FFTInit_C_FC32.c', 'sp/src/arm/omxSP_FFTInit_R_F32.c', ], }], ['target_arch=="arm"', { 'cflags!': [ '-mfpu=vfpv3-d16', ], 'cflags': [ # We enable Neon instructions even with arm_neon==0, to support # runtime detection. '-mfpu=neon', ], 'dependencies': [ 'openmax_dl_armv7', ], 'sources': [ # Common files that are used by both the NEON and non-NEON code. 'api/armCOMM_s.h', 'sp/src/arm/omxSP_FFTGetBufSize_C_SC16.c', 'sp/src/arm/omxSP_FFTGetBufSize_R_S16.c', 'sp/src/arm/omxSP_FFTGetBufSize_R_S16S32.c', 'sp/src/arm/omxSP_FFTInit_C_SC16.c', 'sp/src/arm/omxSP_FFTInit_C_SC32.c', 'sp/src/arm/omxSP_FFTInit_R_S16.c', 'sp/src/arm/omxSP_FFTInit_R_S16S32.c', 'sp/src/arm/omxSP_FFTInit_R_S32.c', # Complex 32-bit fixed-point FFT. 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix2_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix4_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix4_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix2_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix4_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC32_Radix8_fs_unsafe_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CToC_SC32_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_CToC_SC32_Sfs_s.S', # Real 32-bit fixed-point FFT 'sp/src/arm/neon/armSP_FFTInv_CCSToR_S32_preTwiddleRadix2_unsafe_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_RToCCS_S32_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CCSToR_S32_Sfs_s.S', # Complex 16-bit fixed-point FFT 'sp/src/arm/neon/armSP_FFTInv_CCSToR_S16_preTwiddleRadix2_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix2_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix2_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix2_ps_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix2_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix4_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix4_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix4_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_SC16_Radix8_fs_unsafe_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_CToC_SC16_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CToC_SC16_Sfs_s.S', # Real 16-bit fixed-point FFT 'sp/src/arm/neon/omxSP_FFTFwd_RToCCS_S16_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CCSToR_S16_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_RToCCS_S16S32_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CCSToR_S32S16_Sfs_s.S', # Complex floating-point FFT 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix2_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix4_fs_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix4_ls_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix2_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix4_unsafe_s.S', 'sp/src/arm/neon/armSP_FFT_CToC_FC32_Radix8_fs_unsafe_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CToC_FC32_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_CToC_FC32_Sfs_s.S', # Real floating-point FFT 'sp/src/arm/neon/armSP_FFTInv_CCSToR_F32_preTwiddleRadix2_unsafe_s.S', 'sp/src/arm/neon/omxSP_FFTFwd_RToCCS_F32_Sfs_s.S', 'sp/src/arm/neon/omxSP_FFTInv_CCSToR_F32_Sfs_s.S', ], }], ['target_arch=="ia32" or target_arch=="x64"', { 'cflags': [ '-msse2', ], 'sources': [ # Real 32-bit floating-point FFT. 'sp/api/x86SP.h', 'sp/src/x86/omxSP_FFTFwd_RToCCS_F32_Sfs.c', 'sp/src/x86/omxSP_FFTGetBufSize_R_F32.c', 'sp/src/x86/omxSP_FFTInit_R_F32.c', 'sp/src/x86/omxSP_FFTInv_CCSToR_F32_Sfs.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix2_fs.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix2_ls.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix2_ls_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix2_ms.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_fs.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_fs_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_ls.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_ls_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_ms.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Fwd_Radix4_ms_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix2_fs.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix2_ls.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix2_ls_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix2_ms.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_fs.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_fs_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_ls.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_ls_sse.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_ms.c', 'sp/src/x86/x86SP_FFT_CToC_FC32_Inv_Radix4_ms_sse.c', 'sp/src/x86/x86SP_FFT_F32_radix2_kernel.c', 'sp/src/x86/x86SP_FFT_F32_radix4_kernel.c', 'sp/src/x86/x86SP_SSE_Math.h', ], }], ['target_arch=="arm64"', { 'sources':[ 'api/arm/arm64COMM_s.h', # Complex floating-point FFT 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix2_fs_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix2_ls_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix2_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix4_fs_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix4_ls_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix4_s.S', 'sp/src/arm/arm64/armSP_FFT_CToC_FC32_Radix8_fs_s.S', 'sp/src/arm/arm64/omxSP_FFTInv_CToC_FC32.c', 'sp/src/arm/arm64/omxSP_FFTFwd_CToC_FC32.c', # Real floating-point FFT 'sp/src/arm/arm64/armSP_FFTInv_CCSToR_F32_preTwiddleRadix2_s.S', 'sp/src/arm/arm64/omxSP_FFTFwd_RToCCS_F32.c', 'sp/src/arm/arm64/ComplexToRealFixup.S', 'sp/src/arm/arm64/omxSP_FFTInv_CCSToR_F32.c', ], }], ['target_arch=="mipsel"', { 'cflags': [ '-std=c99', ], 'sources!': [ 'sp/src/armSP_FFT_F32TwiddleTable.c', ], 'sources': [ 'sp/api/mipsSP.h', 'sp/src/mips/mips_FFTFwd_RToCCS_F32_complex.c', 'sp/src/mips/mips_FFTFwd_RToCCS_F32_real.c', 'sp/src/mips/mips_FFTInv_CCSToR_F32_complex.c', 'sp/src/mips/mips_FFTInv_CCSToR_F32_real.c', 'sp/src/mips/omxSP_FFT_F32TwiddleTable.c', 'sp/src/mips/omxSP_FFTFwd_RToCCS_F32_Sfs.c', 'sp/src/mips/omxSP_FFTGetBufSize_R_F32.c', 'sp/src/mips/omxSP_FFTInit_R_F32.c', 'sp/src/mips/omxSP_FFTInv_CCSToR_F32_Sfs.c', ], }], ], }, ], 'conditions': [ ['target_arch=="arm"', { 'targets': [ { # Non-NEON implementation of FFT. This library is NOT # standalone. Applications must link with openmax_dl. 'target_name': 'openmax_dl_armv7', 'type': 'static_library', 'includes': [ '../../../build/android/cpufeatures.gypi', ], 'include_dirs': [ '../', ], 'cflags!': [ '-mfpu=neon', ], 'link_settings' : { 'libraries': [ # To get the __android_log_print routine '-llog', ], }, 'sources': [ # Detection routine 'sp/src/arm/detect.c', # Complex floating-point FFT 'sp/src/arm/armv7/armSP_FFT_CToC_FC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/armv7/armSP_FFT_CToC_FC32_Radix2_fs_unsafe_s.S', 'sp/src/arm/armv7/armSP_FFT_CToC_FC32_Radix4_fs_unsafe_s.S', 'sp/src/arm/armv7/armSP_FFT_CToC_FC32_Radix4_unsafe_s.S', 'sp/src/arm/armv7/armSP_FFT_CToC_FC32_Radix8_fs_unsafe_s.S', 'sp/src/arm/armv7/omxSP_FFTInv_CToC_FC32_Sfs_s.S', 'sp/src/arm/armv7/omxSP_FFTFwd_CToC_FC32_Sfs_s.S', # Real floating-point FFT 'sp/src/arm/armv7/armSP_FFTInv_CCSToR_F32_preTwiddleRadix2_unsafe_s.S', 'sp/src/arm/armv7/omxSP_FFTFwd_RToCCS_F32_Sfs_s.S', 'sp/src/arm/armv7/omxSP_FFTInv_CCSToR_F32_Sfs_s.S', ], }, ], }], ], }
124e013441d004398f64e0732e3bf47043367432
ce6271f3dc32cf374e4dde5e4666e80242e83fde
/grow/partials/partial_test.py
c9db7c2b496316826deeb59f55989568296bcb5e
[ "MIT" ]
permissive
kmcnellis/grow
26ab42e051906a1aaa28e52aae585b5ed5c497a9
4787f5a01681ef0800e9b4388a56cdbc48209368
refs/heads/master
2020-04-18T09:44:35.950251
2019-01-24T22:05:06
2019-01-24T22:05:06
167,445,373
1
0
MIT
2019-01-24T22:07:44
2019-01-24T22:07:44
null
UTF-8
Python
false
false
1,289
py
"""Test the pod partial.""" import unittest from grow import storage from grow.pods import pods from grow.testing import testing class PartialTestCase(unittest.TestCase): """Tests for partials.""" def setUp(self): dir_path = testing.create_test_pod_dir() self.pod = pods.Pod(dir_path, storage=storage.FileStorage) def test_editor_config(self): """Test that editor configuration is read correctly.""" partials = self.pod.partials partial = partials.get_partial('hero') expected = { 'label': 'Hero', 'editor': { 'fields': [ { 'type': 'text', 'key': 'title', 'label': 'Hero Title' }, { 'type': 'text', 'key': 'subtitle', 'label': 'Hero Subtitle' }, { 'type': 'markdown', 'key': 'description', 'label': 'Description' }, ], }, } self.assertEquals(expected, partial.editor_config) if __name__ == '__main__': unittest.main()
972103bb17ed3d5a13dc49f753c7d97fdf963e30
705fa27fb794898a3ee52a4af8446d7ef8ea13f4
/tests/constants/route_parser.py
4d3a6dc8de7d6c0fb40031e61128aa7085a0f51e
[ "MIT" ]
permissive
Mause/pytransperth
1612063a0c9276ca9b0ae7399b2e9d15598c5dc3
411c6a38b8451dc917927bdc4fdb70aeb9acd52b
refs/heads/master
2022-07-20T00:24:39.252527
2014-06-19T07:23:43
2014-06-19T07:23:43
16,773,465
0
0
MIT
2022-07-06T19:27:24
2014-02-12T16:25:48
Python
UTF-8
Python
false
false
1,628
py
import os from lxml.html import builder as E from lxml.etree import HTML PATH = os.path.dirname(__file__) with open(os.path.join(PATH, 'header.html')) as fh: HEADER = HTML(fh.read()).find('body/tr') STEPS = E.HTML( E.TD( E.DIV( E.TABLE('STEP1'), E.TABLE('STEP2'), E.TABLE('EXCLUDED') ) ) ) STEP_BUS = E.HTML( E.TR( E.TD( E.IMG(alt="bus") ), E.TD( E.SPAN('ONE'), E.SPAN('TWO') ), E.TD( E.SPAN('THREE'), E.SPAN('FOUR') ) ) ) STEP_TRAIN = E.HTML( E.TR( E.TD( E.IMG(alt="train") ), E.TD( E.SPAN('ONE'), E.SPAN('TWO') ), E.TD( E.SPAN('THREE'), E.SPAN('FOUR') ) ) ) STEP_WALK = E.HTML( E.TR( E.TD( E.IMG(alt="walk") ), E.TD( E.SPAN('ONE'), E.SPAN('TWO') ), E.TD( E.SPAN('THREE'), E.SPAN('FOUR') ) ) ) STEP_INVALID = E.HTML( E.TR( E.TD( E.IMG(alt="invalid") ) ) ) with open(os.path.join(PATH, 'misc.html')) as fh: MISC = HTML(fh.read()).xpath('//html/body/tr')[0] IMG = E.IMG( onclick="getFares('11/11/1111', 1111)" ) LINKS = E.HTML( E.DIV( E.IMG('ONE'), E.IMG('TWO') ) ) DURATION = E.HTML( E.SPAN( E.SPAN('IGNORED'), E.SPAN('11:11 hrs') ) ) with open(os.path.join(PATH, 'routes.html')) as fh: ROUTES = fh.read()
d4d41250ca36686c6ae73595c77ed8af59c24f08
bc86ba9fcbb19711e1af3891120a505d0da95a63
/backend/mobile_12_dev_5928/urls.py
a8f3bd6fdb90b26e0566b75e6e456cc98ff17aec
[]
no_license
crowdbotics-apps/mobile-12-dev-5928
8c0281d1ee1ad08ad1cc47e6f0bfeafb630fb219
d5a28035de34631d834f49931ada0c7b5c2b5324
refs/heads/master
2022-10-25T19:05:11.263550
2020-06-12T12:37:36
2020-06-12T12:37:36
271,712,395
0
0
null
null
null
null
UTF-8
Python
false
false
1,964
py
"""mobile_12_dev_5928 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("home/", include("home.urls")), ] admin.site.site_header = "mobile 12" admin.site.site_title = "mobile 12 Admin Portal" admin.site.index_title = "mobile 12 Admin" # swagger schema_view = get_schema_view( openapi.Info( title="mobile 12 API", default_version="v1", description="API documentation for mobile 12 App", ), public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
2be54c9eb80269c4b94a171aa565464b596c6fc1
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/240230d6f4f34654aed81c439a0398cd.py
6166c2b7d7b980ccf4335bc4439fcae7d5daf5a5
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
491
py
def hey(statement): if is_silence(statement): return 'Fine. Be that way!' if is_yelling(statement): return 'Whoa, chill out!' if is_question(statement): return 'Sure.' else: return 'Whatever.' def is_silence(statement): if statement.isspace() or not statement: return True def is_yelling(statement): if statement.isupper(): return True def is_question(statement): if statement.endswith('?'): return True
940ee3c9cce97e80e85a1dcc48bf6688e73046d2
bd649f51496a24a55a2327e658f31d6e03e2f602
/InvTL/lm_py/py/apigen/project.py
0f9fe198fd2c4884e281894e55ad3d2e3a5b2efb
[ "MIT" ]
permissive
mickg10/DARLAB
6507530231f749e8fc1647f3a9bec22a20bebe46
0cd8d094fcaf60a48a3b32f15e836fcb48d93e74
refs/heads/master
2020-04-15T20:39:23.403215
2019-01-10T06:54:50
2019-01-10T06:54:50
16,510,433
4
1
null
null
null
null
UTF-8
Python
false
false
2,264
py
""" this contains the code that actually builds the pages using layout.py building the docs happens in two passes: the first one takes care of collecting contents and navigation items, the second builds the actual HTML """ import py from layout import LayoutPage class Project(py.__.doc.confrest.Project): """ a full project this takes care of storing information on the first pass, and building pages + indexes on the second """ def __init__(self): self.content_items = {} def add_item(self, path, content): """ add a single item (page) path is a (relative) path to the object, used for building links and navigation content is an instance of some py.xml.html item """ assert path not in self.content_items, 'duplicate path %s' % (path,) self.content_items[path] = content def build(self, outputpath): """ convert the tree to actual HTML uses the LayoutPage class below for each page and takes care of building index documents for the root and each sub directory """ opath = py.path.local(outputpath) opath.ensure(dir=True) paths = self.content_items.keys() paths.sort() for path in paths: # build the page using the LayoutPage class page = self.Page(self, path, stylesheeturl=self.stylesheet) page.contentspace.append(self.content_items[path]) ipath = opath.join(path) if not ipath.dirpath().check(): # XXX create index.html(?) ipath.ensure(file=True) ipath.write(page.unicode().encode(self.encoding)) def process(self, txtpath): """ this allows using the project from confrest """ # XXX not interesting yet, but who knows later (because of the # cool nav) if __name__ == '__main__': # XXX just to have an idea of how to use this... proj = Project() here = py.path.local('.') for fpath in here.visit(): if fpath.check(file=True): proj.add_item(fpath, convert_to_html_somehow(fpath)) proj.build()
dd9000bb994165c09b867fb4b448862822153bc1
b891f38eb12eeafdbcec9deee2320acfaac3a7ad
/0x01-python-if_else_loops_functions/5-print_comb2.py
54df4340c244496ec2e94b9a6613cb44bdfb060f
[]
no_license
davixcky/holbertonschool-higher_level_programming
bb112af3e18994a46584ac3e78385e46c3d918f6
fe4cd0e95ee976b93bd47c85c2bc810049f568fa
refs/heads/master
2023-01-11T00:41:03.145968
2020-09-22T22:55:53
2020-09-22T22:55:53
259,390,611
0
5
null
null
null
null
UTF-8
Python
false
false
105
py
#!/usr/bin/python3 for number in range(0, 99): print("{:02d}, ".format(number), end='') print("99")